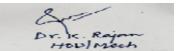
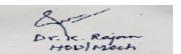


LIST OF ELECTIVE SUBJECTS

	ELECTIVE SUB ELECTIVE -I	JEC18				
Subject Code	Title of Subject	Ty/Lb/E	L	T/S.Lr	P/R	С
BAE20E01	Theory of Elasticity	TL Ty	3	0	0	3
BAE20E02	Aircraft General Engineering and Maintenance Practices	Ту	3	0	0	3
BAE20E03	Space Mechanics	Ту	3	0	0	3
BAE20E04	Industrial Aerodynamics	Ту	3	0	0	3
BAE20E05/ BME18E03	Turbo Machines	Ту	3	0	0	3
	ELECTIVE -II					
Subject Code	Title of Subject	Ty/Lb/E TL	L	T/S.Lr	P/R	С
BAE20E06	Helicopter Theory	Ту	3	0	0	3
BAE20E07	Experimental Stress Analysis	Ту	3	0	0	3
BAE20E08	Fatigue and Fracture Mechanics	Ту	3	0	0	3
BAE20E09	UAV Systems	Ту	3	0	0	3
BAE20E10	Disaster Management	Ту	3	0	0	3
	ELECTIVE -III					
Subject Code	Title of Subject	Ty/Lb/E TL	L	T/S.Lr	P/R	С
BAE20E11	Advanced Aerospace Materials	Ту	3	0	0	3
BAE20E12	Airframe Maintenance and Repair	Ту	3	0	0	3
BAE20E13	Aero Engine Maintenance and Repair	Ту	3	0	0	3
BAE20E14	Air Traffic Control and Planning	Ту	3	0	0	3
BAE20E15	Aircraft Performance	Ту	3	0	0	3
	ELECTIVE -IV					
Subject Code	Title of Subject	Ty/Lb/E TL	L	T/S.Lr	P/R	С
BAE20E16	Hypersonic Aerodynamics	Ту	3	0	0	3
BAE20E17	Experimental Aerodynamics	Ту	3	0	0	3
BAE20E18	Rockets and Missiles	Ту	3	0	0	3
BAE20E19	Structural Dynamics	Ту	3	0	0	3
BAE20E20	Control Engineering	Ту	3	0	0	3



C. B. Palamiron


REGISTRAR Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University)
Periyar E.V.R. High Road, Maduravoyal, Chennai 600 095

ELECTIVE- I

Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 Tv/Lb/ L **T**/ Subject **Subject Name:** P/R C Code: THEORY OF ELASTICITY ETL SLr **BAE20E01 Prerequisite:** Engineering Mechanics, Strength of TY3 0/0 0/0 3 Materials L : Lecture T : Tutorial S.Lr: Supervised Learning P: Practical R: Research C: Credits Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab **OBJECTIVES:** The student will learn To apply linear elasticity in the design and analysis of structures such as beams, plates and shells COURSE OUTCOMES (COs): The students will be able to Understand the basic concepts in continuum mechanics of solids, including of strain, internal CO1 Force and stress (Level 2) CO₂ Apply principles of continuum mechanics to design a structure. (Level 3) CO3 Apply hyper elasticity to determine the response of elastomer-based objects(Level 3) CO4 Characterize materials with elastic constitutive relations. (Level 6) CO5 Use analytical techniques to predict deformation, internal force and failure of simple solids.(Level 5) **Mapping of Course with Program Outcomes (Pos)** Cos/Pos PO₁ PO₂ PO₃ PO4 PO₅ **PO6 PO7** PO8 PO9 **PO10** PO11 **PO12** CO1 3 3 3 2 2 2 2 1 2 2 2 1 CO2 2 2 3 3 3 2 2 2 2 1 1 2 3 2 2 2 2 CO3 3 3 2 2 2 1 1 CO4 3 3 3 2 2 2 2 2 2 2 CO5 3 3 3 2 2 2 2 1 2 1 2 2 Cos/PSOs PSO₁ PSO₂ PSO₃ PSO₄ CO1 3 3 3 2 CO₂ 3 3 3 2 2 CO3 3 3 3 CO4 3 3 3 2 CO5 3 3 3 2 3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low Humanities and Social Internships / Technical Engineering Sciences Program Electives Practical / Project Open Electives Basic Sciences Program Core Sciences

Subject Code : BAE20E01	Subject Name: THEORY OF ELASTICITY	Ty/Lb/ ETL	L	T/ SLr	P/R	С
	Prerequisite : Engineering Mechanics, Strength of Materials	Ту	3	0	0	3

UNIT I BASIC EQUATIONS OF ELASTICITY

Definition of Stress and Strain: Stress - Strain relationships - Equations of Equilibrium, Compatibility equations, Boundary Conditions, Saint Venant's principle - Principal Stresses, Stress Ellipsoid -Stress invariants.

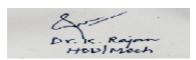
UNIT II PLANE STRESS AND PLANE STRAIN PROBLEMS

Airy's stress function, Bi-harmonic equations, Polynomial solutions, Simple two dimensional problems in Cartesian coordinates like bending of cantilever and simply supported beams.

UNIT III POLAR COORDINATES

Equations of equilibrium, Strain - displacement relations, Stress - strain relations, Airy's stress function, Axi - symmetric problems, Introduction to Dunder's table, Curved beam analysis, Lame's, Kirsch, Michell's and Boussinesque problems -Rotating discs.

UNIT IV TORSION Q


Navier's theory, St. Venant's theory, Prandtl's theory on torsion, semi-inverse method and applications to shafts of circular, elliptical, equilateral triangular and rectangular sections. Membrane Analogy.

UNIT V INTRODUCTION TO THEORY OF PLATES AND SHELLS

Classical plate theory - Assumptions - Governing equations - Boundary conditions - Navier's method of solution for simply supported rectangular plates - Levy's method of solution for rectangular plates under different boundary conditions.

Total No. of Periods: 45

- 1. Wang, C. T., "Applied Elasticity", McGraw-Hill Co., New York, 1993.
- 2. Sokolnikoff, I. S., "Mathematical Theory of Elasticity", McGraw-Hill, New York, 1978.
- 3. Volterra & J.H. Caines, "Advanced Strength of Materials", Prentice Hall, New Jersey, 1991
- 4. Barber, J. R., "Elasticity", Kluwer Academic Publishers, 2004

Subject Code: BAE20E02			S AFT GEI MAINTE		ENGI	NEERI		D	Ty/Lb /ETL	L	T/ SLr	P/R	C	
211220202	Pre		e: Eleme											
			g,Air car				tructive	2	Ty	3	0/0	0/0	3	
		ing lab.												
L : Lecture T : Ty/Lb/ETL : T						P : Prac	tical R	: Reseai	rch C: C:	redits				
OBJECTIVE								lengine	ering an	d mainter	nance pra	ctices.	•	
COURSE OU														
CO1			ge in vari of critica	_	_			aircraft	operatio	ons to car	ryout gro	ound		
CO2		Knowled	ge in spec	cificatio	ns stand	lards of	aircraft	hardwai	re systen	ns.(Level	3)			
CO3		_	ground h	_	proced	ures an	d types o	of equip	ments w	rith specia	ıl			
CO4			do shop		Environ	ment cl	eanlines	s in an a	ircraft n	naterials	shop.(Le	vel 2)		
CO5			nd the FA										on	
			t.(Level 2											
Mapping of C			with Program Outcomes (Pos)											
Cos/Pos	PO1	_	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	
CO1	3	3	3		3		3						3	
CO2	3	3	3		3			3					3	
CO3	3	3			3	3			3				3	
CO4	3	3			3		3				3		3	
CO5	3	3			3								3	
Cos / PSOs	P	SO1	PS	02	PS	03	PS	SO4						
CO1		3	2	,		2		1						
CO2		3	2	,		2		1						
CO3		3	2	,		2		1						
CO4		3	2			2								
CO5		3	2			2		1						
3/2/1 indicate	s Stre	ngth of (Correlati	on 3-	High, 2	- Mediı	ım, 1-L	ow		1	1			
C at eg or	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					

918/8 70 24	THE STATE OF THE S	Unive	sity w	ith Gra	ded Au	tonom	y Stat	us		
		Periya	r E.V.R.	Salai, Ma	duravoy	al, Chen	nai – 9	5		ı
										ı
										l

Dr. K. Rajan Houlmoch

<mark>University with Graded Autonomy Status</mark> Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

Subject Code : BAE20E02	Subject Name:AIRCRAFT GENERAL ENGINEERING AND MAINTENANCE PRACTICES	Ty/Lb/ ETL	L	T/ SLr	P/R	C	
	Prerequisite: Elements of Aeronautical Engineering, Air carft reapair and non destructive testing lab.	Ту	3	0/0	0/0	3	

UNIT IAIRCRAFT GROUND HANDLING AND SUPPORT EQUIPMENT

10

Mooring, jacking, leveling and towing operations - Preparation - Equipment - precautions - Engine starting procedures - Piston engine, turboprops and turbojets - Engine fire extinguishing - Ground power unit.

UNIT HGROUND SERVICING OF VARIOUS SUB SYSTEMS

8

Air conditioning and pressurization - Oxygen and oil systems - Ground units and their maintenance.

UNIT IIIMAINTENANCE OF SAFETY

5

Shop safety - Environmental cleanliness - Precautions

UNIT IV INSPECTION

10

Process - Purpose - Types - Inspection intervals - Techniques - Checklist - Special inspection - Publications, bulletins, various manuals - FAR Air worthiness directives - Type certificate Data sheets-ATA Specifications

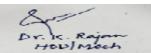
UNITVAIRCRAFT HARDWARE, MATERIALS, SYSTEM PROCESSES

12

Hand tools - Precision instruments - Special tools and equipments in an airplane maintenance shopIdentification terminology - Specification and correct use of various aircraft hardware (i.e. nuts, bolts, rivets, screws etc) - American and British systems of specifications - Threads, gears, bearings, etc -Drills, tapes and reamers - Identification of all types of fluid line fittings. Materials, metallic and non-metallic Plumbing connectors - Cables - Swaging procedures, tests, Advantages of swaging over splicing.

Total No. of Periods: 45

TEXT BOOK


1. Kroes Watkins Delp, "Aircraft Maintenance and Repair", McGraw Hill, New York, 1993

REFERENCES

- 1. A&P Mechanics, "Aircraft Hand Book", FAA Himalayan Book House, New Delhi, 1996
- 2. A&P Mechanics," General Hand Book", F A A Himalayan Bok House, New Delhi, 1996

Dr. K. Rajan Houlmeet

Subject Code:			SPA		CHAN				Ty/Lb /ETL	L	T/ SLr	P/R	(
BAE20E03			e:Enginee Strength o						Ty	3	0/0	0/0	3
L : Lecture T								: Resear	rch C: Cr	edits			
Ty/Lb/ETL:					nd Lab								
OBJECTIVE The k			t will acqu rds the sp		sion								
COURSE OF						oe able 1	to						
CO1	1	Understa	nd the co	ncepts o	of solar s	system (Level 2	.)					
CO2]	Describe	the motio	ons of N	-body p	roblem	and the	concept	s of orbit	al mechai	nics. (Le	vel 3)	
CO3	1	Applicati	on of var	ious sate	ellite pe	rturbatio	on meth	ods. (Le	evel 4)				
CO4	1	Develop	the dynar	nic mod	el in mo	otion of	orbiting	bodies.	(Level 6))			
CO5	1	Design th	e various	types o	f interpl	lanetary	trajecto	ories. (L	evel 5)				
Mapping of (Course	with Pr	ogram O	utcome	es (Pos)								
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	3	3	2	2	2	2	1	2	2	2	2	2
CO2	3	3	3	2	2	2	2	1	2	2	2	2	2
CO3	3	3	3	2	2	2	2	1	2	2	2	2	2
CO4	3	3	3	2	2	2	2	1	2	2	2	2	2
CO5	3	3	3	2	2	2	2	1	2	2	2	2	2
Cos/PSOs	P	SO1	PS	02	PS	O3	PS	SO4					
CO1		3	3			3		2					
CO2		3	3			3		2					
CO3		3	3			3		2					
CO4		3	3			3		2					
CO5		3	3			3		2					
3/2/1 indicate	es Stre	ngth of (Correlati	on 3-	High, 2	- Mediu	ım, 1-L	ow					
		S	ial					al					
	ses	Engineering Sciences	Humanities and Social Sciences	re	Program Electives	'es	ject	Internships / Technical Skill					
	ienc	Sci	sand	1C0]lect	ectiv	Pro	Tec	Soft Skills				
ory	c Sc	ring	ities and Sciences	gran	ım E	n Ele	cal/	ips/T Skill	eft S				
Category	Basic Sciences	inee	hamit S.	Program Core	ogra	Open Electives	Practical / Project	inshi	\mathbf{S}_{0}				
Ca		Eng	-Inm		Pr		Pr	Inter					
					$\sqrt{}$								
			1										

Subject Code: BAE20E03	•	Ty/Lb /ETL	L	T/ SLr	P/R	С
	Prerequisite: Engineering Physics, Engineering Mechanics, Strength of Materials, Propulsion-I	Ту	3	0/0	0/0	3

UNIT I SPACE ENVIRONMENT

8

Peculiarities of space environment and its description- effect of space environment on materials of spacecraft structure and astronauts- manned space missions - effect on satellite life time

UNIT II BASIC CONCEPTS AND THE GENERAL N-BODY PROBLEM

10

The solar system - reference frames and coordinate systems - terminology related to the celestial sphere and its associated concepts - Kepler's laws of planetary motion and proof of the laws -Newton's universal law of gravitation - the many body problem - Lagrange-Jacobi identity - the circular restricted three body problem - libration points - the general N-body problem - two body problem - relations between position and time.

UNIT III SATELLITE INJECTION AND SATELLITE PERTURBATIONS

10

General aspects of satellite injection - satellite orbit transfer - various cases - orbit deviations due to injection errors - special and general perturbations - Cowell's method and Encke's method - method of variations of orbital elements - general perturbations approach.

UNIT IV INTERPLANETARY TRAJECTORIES

8

Two-dimensional interplanetary trajectories - fast interplanetary trajectories - three dimensional interplanetary trajectories - launch of interplanetary spacecraft - trajectory estimation about the target planet - concept of sphere of influence - Lambert's theorem

UNITY BALLISTIC MISSILE TRAJECTORIES

0

Introduction to ballistic missile trajectories - boost phase - the ballistic phase - trajectory geometry -optimal flights - time of flight - re-entry phase - the position of impact point - influence coefficients.

Total No. of Periods: 45

TEXT BOOKS:

- Cornelisse, J.W., "Rocket Propulsion and Space Dynamics", J.W. Freeman & Co., Ltd, London, 1982
- 2. Parker, E.R., "Materials for Missiles and Spacecraft", McGraw Hill Book Co. Inc., 1982.

REFERENCES:

1. Sutton, G.P., "Rocket Propulsion Elements", John Wiley & Sons Inc., New York, 5th Edition, 1993.

Dr. K. Rajan Houlmoch

Subject Code:			NDUSTR		ERODY		CS		Ty/Lb/ ETL	L	T/ SLr	P/R	C
BAE20E04	Pre	erequisite	e: Aerdyı	namics I	&II				Ty	3	0/0	0/0	3
L : Lecture T						P : Prac	tical R	: Resea	rch C: Cre	edits			
Ty/Lb/ETL:													
									es of aero	dynamics	such as	road	
		lding aero		_				d vibrat	ions.				
COURSE OU													
CO1									cle, buildi				
CO2									of wind e		llectors.	(level	3)
CO3									flow (Lev				
CO4		Analyze 1	the aerod	ynamics	of road	vehicle	es, build	ling and	problems	of flow i	nduced v	ibratio	ons
	((Level 4)											
CO5	ı	Analyze t	he mode	l measui	ements,	Lift an	d drag n	neasure	ments tho	ugh vario	us techn	iques a	and
	f	testing of	different	models	. (Level	4)							
Mapping of C	Course	with Pr	ogram O	utcome	s (Pos)								
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	2										3		
CO2	3	2									2		
CO3			3										
CO4	2	3	3								2		
CO5	3	+ -									_		
Cos / PSOs		SO1	PS	02	PS	03	PS	SO4					
CO1		3				2							
CO2													
CO3						3							
CO4		2				2							
CO4		2			<u> </u>	۷							
3/2/1 indicate	a Stra		 - arrolo#	on 2	 High 2	_ Modi:	ım 1 T	OW					
Si 4/ 1 muicate	a su e	ngui vi (JULI CIALI	011 J -	migii, 2	- ivicult	1111, 1-L	1 U W					
	i	sec	ocial		S		٠,	ica]					
	ses	ien	∞	ore	tives	ves	ject	_hu:	(0				
	ğ	Sc	nd	Ü	lec	cti	Prc	Тес 1	cill;				
_	' . <u>≘</u>	L - 0	n a	1 E	ηE	Ele	al/	ps/T Skill	Soft Skills				
ory	Scie	ing	<u>e</u> 8				1 45		ri .				
tegory	sic Scie	eering	nities and Sciences	ogra	ran	en	tic	hij.	Sof				
Category	Basic Sciences	gineering	nanities Scie	Program Cor	rogran	Open Electives	ractic	rnshij	Sof				
Category	Basic Scie	Engineering Sciences	Humanities Scie	Progra	Program Electi	Open	Practical / Proj	Internshi	Sof				
Category	Basic Scie	Engineering	Humanities and Sciences	Progra	Progran	Open	Practic	Internships / Technical Skill	Sof				

Subject Code: BAE20E04	Subject Name : INDUSTRIAL AERODYNAMICS	Ty/Lb/ET L	L	T/ SLr	P/R	С
	Prerequisite: Aerdynamics I &II	Ty	3	0/0	0/0	3

UNIT I ATMOSPHERE

Types of winds, Causes of variation of winds, Atmospheric boundary layer, Effect of terrain on gradient height, Structure of turbulent flows.

UNIT II WIND ENERGY COLLECTORS

9

Horizontal axis and vertical axis machines, Power coefficient, Betz coefficient by momentum theory.

UNIT III VEHICLE AERODYNAMICS

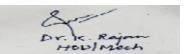
Power requirements and drag coefficients of automobiles, Effects of cut back angle, Aerodynamics of trains and Hovercraft.

UNIT IVBUILDING AERODYNAMICS

Pressure distribution on low rise buildings, wind forces on buildings. Environmental winds in city blocks, Special problems of tall buildings, Building codes, Building ventilation and architectural aerodynamics.

UNITY FLOW INDUCED VIBRATIONS

Effects of Reynolds number on wake formation of bluff shapes, Vortex induced vibrations, Galloping and stall flutter.


Total No. of Periods: 45

TEXT BOOKS:

- 1. M.Sovran (Ed), "Aerodynamics and drag mechanisms of bluff bodies and Road vehicles", Plenum press, New
- 2. Sachs. P., "Winds forces in Engineering", Pergamon Press, 1978.

- 1. Blevins. R.D., "Flow Induced Vibrations", Van Nostrand, 1990.
- 2. Calvent. N.G., "Wind Power Principles", Charles Griffin & Co., London, 1979.

Subject Co BAE 20E0	5/		Subjec	ct Name :	TURB	O MAC	CHINES	3	Ty/I TL	b/E	L	T/ SLr	P/R	С
BME18E0	03			quisite: G nal Engin		uid Med	chanics,		Ту		3	0/0	0/0	3
L : Lecture Ty/Lb/ETL				pervised l			ctical R	: Resea	rch C: 0	Credits	S			1
OBJECTI		•					of diff	erent tv	pes of	turbo	mac	chinery u	ised for	energy
transformat	tion, su	ch as pu	mps, fai	ns, compre	essors, a	s well as	s hydrau							0,
COURSE			, ,											
CO1	Und	lerstand	the con	cepts of tu	ırbo mad	chines a	nd its ap	plication	ıs. (Lev	el 2)				
CO2	Ana	lyze the	perforr	nance of t	urbo ma	chines u	sing firs	st law of	thermo	dynan	nics.	(Level 4))	
CO3	Solv	ve the tu	rbo mac	chines pro	blems u	sing velo	ocity tria	ingle coi	ncepts.	(Level	3)			
CO4	Und	lerstand	the wor	king princ	ciples of	centrifu	ıgal and	axial flo	w com	oresso	rs and	d analyse	its	
	perf	ormanc	e. (Leve	12)	_									
CO5	Calo	culate st	age loss	es, stage	efficienc	y and pr	ressure r	atio in a	xial flo	w com	press	or. (Leve	el 3)	
CO6	Eva	luate the	e perfor	mance cha	aracteris	tics of a	xial and	radial f	low turk	oines.	(Leve	el 4)		
Mapping o	of Cour	se Outo	omes w	ith Progr	am Out	comes (POs)							
COs/POs		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9	PO10	PO11	PO12
CO1		3	2	1	-	-	1	1	1	1	1	1	-	1
CO2		3	3	2	1	-	1	1	1	1	1	2	-	1
CO3		3	3	3	1	-	1	1	1	1	1	2	-	1
CO4		3	3	2	-	-	1	1	1	1	[1	-	1
CO5		3	3	2	1	-	1	1	1	1	1	2	-	1
CO6		3	3	2	1	-	2	1	2	1	1	2	-	1
COs/PSO	s	PS	01	PSC	02	PS	03	PS	SO4					
CO1			3	2	,	,	2		1					
CO2		2	3	2	,	,	2		1					
CO3		3	3	2	,	2	2		1					
CO4		3	3	2	,	1	2		1					
CO5		3	3	2	,	2	2		1					
CO6		3	3	2	,	2	2		1					
3/2/1 indic	ates St	rength (of Corr	elation:	3- High	, 2- Me	dium, 1	-Low					1	
Cateonry		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	✓ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	-	<u> </u>	山	×Ψ	<u>A</u>	√ √	0	<u>A</u>	I	Ñ				

Subject Code:	Subject Name: TURBO MACHINES	Ty/Lb/E TL	L	T/ SLr	P/R	С
BAE 20E05/ BME18E03	Prerequisite: GDJP, Fluid Mechanics, Thermal Engineering	Ty	3	0/0	0/0	3

UNIT-1 INTRODUCTION

9

Definition of turbo machine, parts of turbo machines, Comparison with positive displacement machines, Classification, Application of first and second laws of thermodynamics to turbo machines.

UNIT-2 ENERGY EXCHANGE INTURBOMACHINES

9

Euler's turbine equation, Velocity triangles for different values of degree of reaction, Components of energy transfer, Degree of Reaction, utilization factor, Relation between degree of reaction and Utilization factor.

UNIT-3 CENTRIFUGALCOMPRESSORS

9

Construction details, types, impeller flow losses, slip factor, diffuser analysis losses and performance curves.

UNIT- 4 AXIAL AND RADIALFLOW COMPRESSORS

9

Axial and radial flow compressors and pumps—general analysis, Effect of blade discharge angle on performance, Theoretical head — capacity relationship.

UNIT-5 AXIAL AND RADIALFLOW TURBINES

9

Velocity diagrams, losses and coefficients, blade design principles, testing and performance characteristics.

Total No.of Periods 45

TEXT BOOKS:

- 1. Gas Turbine, V.Ganesan, Tata McGraw Hill Co. Ltd., 3rd edition,2010
- 2. Turbines, Compressors & Fans, S. M. Yahya, Tata McGraw HillCo. Ltd., 2nd edition, 2002

REFERENCE BOOKS:

- 1. D. G. Shepherd, "Principals of Turbo machines", the Macmillan Company(1964).
- 2. S. L.Dixon, "Fluid Mechanics & Thermodynamics of Turbo machines", Elsevier (2005).
- 3. B.K. Venkanna, "Turbomachine", PHI, New Delhi 2009.
- 4. M. S. Govindgouda and A. M.Nagaraj, "A Text Book of Turbomachines", , M. M. Publications, 4Th Ed, 2008.
- 5. V. Kadambi and Manohar Prasad, "An Introduction to Energy Conversion, Volume III, Turbo machinery", New Age International Publishers, reprint2008.

Dr. K. Rajan Hob/Mach

ELECTIVE- II

Dr. K. Rajan Hobb Mech

Subject Name : HELICOPTER THEORY Subject Code: Ty/Lb/ L T/S P/R $\overline{\mathbf{C}}$ **BAE 20E06** ETL Lr **Prerequisite : Elements of Aeronautical** Ty 3 0/0 0/0 3 Engineering

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

 $Ty/Lb/ETL: Theory \, / \, Lab \, / \, Embedded \, Theory \, and \, Lab$

OBJECTIVES:

OBJECT												
	make the stability asp								nd to stud	dy the per	formance	and
COURSI	E OUTCO	MES (Cos	;)									
	completing			e to								
CO1	To perfori	n the Aero	dynamics	calculati	on of Ro	tor bla	de (Level 4	!)				
CO2	Analyze a	nd control	Rotor vib	ration(Le	vel 4)							
CO3	Understan	d stability	and contro	ol charact	eristics	of Helio	copter (Lev	vel 4)				
CO4	Expose to	the power	r plants an	d flight p	erforma	nce (Le	evel 3)					
CO5	Demonstr	ate the Stre	ess analysi	is of the b	lade (Le	vel 4)						
Mapping	of Course	Outcome	s with Pro	ogram O	utcomes	(POs)						
COs/POs	s PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	2	3		2	2		2
CO2	3	3	3	3	3	2	3		2	2		2
CO3	3	3	3	3	3	2	3		2	2		2
CO4	3	3	3	3	3	2	2		2	2		2
CO5	3	3	3	3	3	2	2		2	2		2
Cos / PSOs	PSO1	PSO2	PSO3	PSO4								
CO1	3	3	3									
CO2	3	3	3	2								
CO3	3	3	3	2								
CO4	3	3	3									
CO5	3	2	3									
H/M/L ir	idicates sti	rength of	correlatio	n H – Hi	igh, M –	Mediu	ım, L-L	ow				
Category	Basic Sciences	Engg Sciences	Humanities & Social Sciences	Program core		Program Electives	Open Electives	Practical / Project		Internships / Technical Skills		Soft Skills
						V						1

Subject Code : BAE 20E06	Subject Name : HELICOPTER THEORY	Ty/Lb/ETL	L	T/SLr	P/R	С
	Prerequisite: Elements of Aeronautical Engineering	Ty	3	0/0	0/0	3

UNIT I INTRODUCTION

Helicopter as an aircraft, Basic features, Layout, Generation of lift, Main rotor, Gearbox, tail rotor, power plant, considerations on blade, flapping and feathering, Rotor controls and various types of rotor, Blade loading, Effect of solidity, profile drag, compressibility etc., Blade area required, number of Blades, Blade form, Power losses, Rotor efficiency.

UNIT II AERODYNAMICS OF ROTOR BLADE

Aerofoil characteristics in forward flight, Hovering and Vortex ring state, Blade stall, maximum lift of the helicopter calculation of Induced Power, High speed limitations; parasite drag, power loading, ground effect.

UNIT III POWER PLANTS AND FLIGHT PERFORMANCE

Piston engines, Gas turbines, Ramjet principle, Comparative performance, Horsepower required, Range and Endurance, Rate of Climb, Best Climbing speed, Ceiling in vertical climb, Autorotation.

UNIT IV STABILITY AND CONTROL

Physical description of effects of disturbances, Stick fixed Longitudinal and lateral dynamic stability, lateral stability characteristics, control response. Differences between stability and control of airplane and helicopter.

UNITY ROTOR VIBRATIONS

Dynamic model of the rotor, Motion of the rigid blades, flapping motion, lagging motion, feathering motion, Properties of vibrating system, phenomenon of vibration, fuselage response, vibration absorbers, Measurement of vibration in flight. Rotor Blade Design: General considerations, Airfoil selection, Blade construction, Materials, Factors affecting weight and cost, Design conditions, Stress analysis.

Total No. of Periods: 45

TEXT BOOKS:

- 1. John Fay, "The Helicopter and How It Flies", Himalayan Books 1995
- 2. Lalit Gupta, "Helicopter Engineering", Himalayan Books New Delhi 1996

- 1. Joseph Schafer, "Basic Helicopter Maintenance", Jeppesen 1980
- 2. R WProuty, "Helicopter Aerodynamics"

Subject Code:		EXP	ERIMEN	Subject TAL S			YSIS		Ty/Lb/E	L	T/ SLr	P/R	С
BAE 20E07		erequisite	: Engine						Ту	3	0/0	0/0	3
T T (T		terials.	- C	. 11		D D	1 D	D.	-		0/0	U/U	
L: Lecture T Ty/Lb/ETL:						P : Prac	tical R	: Resea	arch C: Cr	edits			
OBJECTIVE					na Lao								
The Various E					d for me	asuring	displace	ement,	stresses a	nd strain i	n structui	al	
components a													
COURSE OU	JTCO	MES (C	Os): Th	e studei	nts will	be able	to						
CO1		Analyze	the perfor	mance	of meas	uring ins	strumen	tation(Level 4)				
CO2		Impart kr	owledge	on diffe	erent me	ethods o	f strain	measur	ement (Le	evel 2)			
CO3		Design di	ifferent st	rain gau	ige circi	uits (Lev	vel 4)						
CO4		Use photo	pelasticit	y for stre	ess anal	ysis (Le	vel 3)						
CO5		Expose to	the diffe	rent typ	es of N	on Desti	ructive '	Testing	methods(Level 3)			
Mapping of (Course	e with Pr	ogram O	utcome	es (Pos)								
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC)12
CO1	3	3		2	2	2			2	2			2
CO2	3	2			2	2			2	2			2
CO3	3	3	3	3	2	2			2	2			2
CO4	3	3	3	3	3	2			2	2			2
CO5	3	3		2	3	2				2			2
Cos / PSOs	P	SO1	PS	02	PS	SO3	PS	SO4					
CO1		3				2		2					
CO2		3				3		3					
CO3		3	3			3		3					
CO4		3				3		3					
CO5		3				3		3					
3/2/1 indicate	es Stre	ngth of (Correlati	on 3-	High, 2	- Mediu	ım, 1-L	ow			I		
								_					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
					1								

Subject Code: BAE 20E07	Subject Name : EXPERIMENTAL STRESS ANALYSIS	Ty/Lb/ETL	L	T/ SLr	P/R	С	
	Prerequisite: Engineering Mechanics,Strength of Materials.	Ту	3	0/0	0/0	3	

UNIT I BASICS OF MECHANICAL MEASUREMENTS

Basic Characteristics and Requirements of a Measuring System - Principles of Measurements - Precision, Accuracy, Sensitivity and Range of Measurements - Sources of Error - Statistical Analysis of Experimental Data - Contact Type Mechanical Extensometers - Advantages and Disadvantages - Examples of Non -Contact Measurement **Techniques**

UNIT II ELECTRICAL-RESISTANCE STRAIN GAUGES

9

Strain Sensitivity in Metallic Alloys - Gage Construction - Gage Sensitivities and Gage FactorCorrections for Transverse Strain Effects - Performance Characteristics of Foil StrainGagesMaterials Used for Strain Gauges -Environmental Effects - The Three-Element Rectangular Rosette for Strain Measurement - Other Types of Strain Gages - Semiconductor StrainGagesGrid & Brittle Coating Methods of StrainAnalysis

UNIT III STRAIN-GAUGE CIRCUITS & INSTRUMENTATION

9

The Potentiometer Circuit and Its Application to Strain Measurement - Variations From Basic Circuit - Circuit Output - The Wheatstone Bridge Circuit - Current and Constant Voltage Circuits - Analog to Digital conversion -Calibrating Strain-Gage Circuits - Effects of Lead Wires and Switches - Electrical Noise -- Strain Measurement in Bars, Beams and Shafts – Circuit Sensitivity & Circuit Efficiency.

UNIT IV PHOTOELASTIC METHODS OF STRESS ANALYSIS

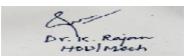
Introduction to Photoelastic Methods - Stress-Optic Law - Effects of a Stressed Model in a Plane Polariscope -Effects of a Stressed Model in a Circular Polariscope - Tardy Compensation - Two-Dimensional Photoelastic Stress Analysis – Fringe Multiplication and Fringe Sharpening - Materials for Two-Dimensional Photoelasticity -Properties and Calibration of Commonly Employed Photoelastic Materials – Introduction to Three-Dimensional Photoelasticity.

UNIT V NON-DESTRUCTIVE TESTING

9

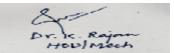
DifferenttypesofNDTTechniques-AcousticEmissionTechnique-Ultrasonics-Pulse-Echo-Through Transmission -Eddy Current Testing - Magnetic Particle Inspection - X-Ray Radiography - Challenges in Non-Destructive Evaluation - Non-Destructive Evaluationin Composites - Image Processing Basics.

Total No. of Periods: 45


TEXT BOOKS:

- 1. Dally, J.W., and Riley, W.F., Experimental Stress Analysis, McGraw Hill Inc., New York 1998.
- 2. Sadhu Singh, Experimental Stress Analysis, Khanna Publishers, New Delhi, 2009.
- 3. Srinath, L.S., Raghava, M.R., Lingaiah, K., Garagesha, G., Pant B., and Ramachandra, K.,
- 4. Experimental Stress Analysis, Tata McGraw Hill, NewDelhi, 1984.

- 1. Albert1. Kobayashi, 'HandbookonExperimentalMechanics, PrenticeHall Publishers, 2008.
- 2. Durelli, A.J.Applied Stress Analysis, Prentice Hall of India Pvt Ltd., New Delhi, 1970.
 - Hetenyi, M., Hand book of Experimental Stress Analysis, John Wiley and Sons Inc., New York, 1972.
- 3. James F. Doyleand James W. Phillips, 'Manual on Experimental Stress Analysis', 5th Edition, 1989. Ramesh, K., Digital Photoelasticity, Springer, New York, 2000.


Subject Code:		FATIC	SUE ANI	Subject		MECH	IANICS		Ty/Lb/ ETL	L	T/ SLr	P/R	C
BAE20E08	Pre		e: Engine					,		2		0/0	2
T . T			Flight Me			D . D	4 1 . D	D	Ty	3	0/0	0/0	3
L: Lecture T Ty/Lb/ETL:						P : Prac	tical K	: Kesear	cn C: Cre	aits			
OBJECTIVE	ES: Th	e student	will lear	n									
COURSE OU	•		re mecha										
COURSE OF								a maaha	nisms(Le	rval 2)			
CO2											1 2)		
									ack critic				
CO3									le materia				
CO4		-	-	the caus	e of fail	lure of a	materia	al based	on fractur	e surface	observa	tions.	
~~~		(Level 6)											
CO5			_	experim	ental ted	chnique	s to dete	ermine tl	ne critical	values of	f parame	ters at	
		crack tip(											
Mapping of (	Course	with Pr	ogram O	utcome	s (Pos)								
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	3	3	2	1	2	2	1	2	1	2	2	2
CO2	3	3	3	2	2	2	2	1	2	1	2	2	2
CO3	3	3	3	2	2	2	2	1	2	1	2	2	2
CO4	3	3	3	2	2	2	2	1	2	1	2	2	2
CO5	3	3	3	2	2	2	2	1	2	1	2	2	2
Cos / PSOs	P	SO1	PS	02	PS	O3	PS	604					
CO1		3	3		(	3		2					
CO2		3	3		í	3		2					
CO3		3	3			3		2					
CO4		3	3			3		2					
CO5		3	3	,		3		2					
3/2/1 indicate	es Stre	ngth of (	Correlati	on 3-	 High, 2	- Mediu	ım, 1-L	ow					
			al										
Cat ego ry	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	Bas	Engine	Humani	Pro	Progr	Ope	Pract	Internsh	Š				





University with Graded Autonomy Status

Periyar E.V.R. Salai, Maduravoyal, Chennai – 95



Subject Code: BAE20E08	Subject Name: FATIGUE AND FRACTURE MECHANICS	Ty/Lb/ETL	L	T/ SLr	P/R	С
	<b>Prerequisite:</b> Engineering Mechanics, Strength of Materials & Flight Mechanics.	Ту	3	0/0	0/0	3

# UNIT I FATIGUE OF STRUCTURES

S.N. curves - Endurance limits - Effect of mean stress, Goodman, Gerber and Soderberg relations and diagrams - Notches and stress concentrations - Neuber's stress concentration factors - Plastic stress concentration factors - Notched S.N. curves - Fatigue of composite materials.

# UNIT II STATISTICAL ASPECTS OF FATIGUE BEHAVIOUR

Low cycle and high cycle fatigue - Coffin - Manson's relation - Transition life - cyclic strain hardening and softening - Analysis of load histories - Cycle counting techniques - Cumulative damage - Miner's theory -Other theories.

# UNIT HIPHYSICAL ASPECTS OF FATIGUE

10

Phase in fatigue life - Crack initiation - Crack growth -surfaces. Final Fracture - Dislocations - fatigue fracture

#### **UNIT IV** FRACTURE MECHANICS

Strength of cracked bodies - Potential energy and surface energy - Griffith's theory - Irwin - Orwin extension of Griffith's theory to ductile materials - stress analysis of "cracked bodies - Effect of thickness on fracture toughness" - stress intensity factors for typical 'geometries.

# UNITY FATIGUE DESIGN AND TESTING

8

Safe life and Fail-safe design philosophies - Importance of Fracture Mechanics in aerospace structures -Application to composite materials and structures

Total No. of Periods: 45

## **TEXT BOOKS:**

- 1. Prasanth Kumar, "Elements of fracture mechanics", Wheeter publication, 1999.
- 2. Barrois W, Ripely, E.L., "Fatigue of aircraft structure," Pergamon press. Oxford, 1983.

- 1. Sih C.G., "Mechanics of fracture." Vol I, Sijthoff and w Noordhoff International Publishing Co., Netherlands, 1989.
- 2. Knott, J.F., "Fundamentals of Fracture Mechanics," Buterworth & Co., Ltd., London, 1983.
- 3. Kare Hellan .'Introduction to Fracture Mechanics', McGraw Hill, Singapore, 1985



Subject Coo BAE 20E09		Subject	Name:	UAV S	YSTEM	S		Ty/Lb /ETL	L	T/SLr	P/R	С
				lements	s of Aern	autical		Ty	3	0/0	0/0	3
L : Lecture	Γ : Tutoria	Engine		l Learni	ng P : Pro	oiect R:	Resear	ch C: Cr	edits			
TY/LB/ETL						.,,						
OBJECTIV	/ES:											
• To make	the studen	ts to unde	rstand th	e basic o	concepts	of UAV	systems	s design				
COURSE (		` ,										
Students con												
CO1	Outline th	e fundame	entals of	UAV(2)	)							
CO2	Illustrate											
CO3	Understa	nd the prin	nciples an	nd appli	cations of	f Avioni	cs hard	ware (3)				
CO4	Estimate	the payloa	ds and o	peration	range of	UAV.(4	4)					
CO5	Test the U	AV and d	evelop g	round c	ontrol sof	ftware (4	l)					
Mapping of							<u>′</u>					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											2
CO2	3	3	3	3	3	3	3	2	2	3	2	2
CO3	3	3	3		3		2		2	2		2
CO4	3	3	3	3	3	2	2		2	2	2	2
CO5	3	3	3	3	3		3	2	2	2	2	2
Cos / PSOs	PSO1	PSO2	PSO3	PSO4								
CO1	3											
CO2	3	3	2									
CO3	3	3		3								
CO4	3	3	3									
CO5	3			3								
H/M/L indi	cates stre	ngth of co	rrelatio	n H–I	High, M -	– Mediu	m, L-	Low			1	
						· ·						
ory	Basic Sciences	Engg Sciences	Humanities & Social Sciences	Program core		Program Electives	Open Electives	Practical / Project	7	Internships / Technical Skills		kills
Category	Basic	Engg ;	Huma Social	Proors		Progre	Open	Practic		Internships / Technical Sk		Soft Skills



Subject Code : BAE 20E09	Subject Name : UAV SYSTEMS	Ty/Lb/ETL	L	T/SLr	P/R	С
	Prerequisite: Elements of Aernautical Engineering	Ту	3	0/0	0/0	3

## UNIT I INTRODUCTION TO UAV

9

History of UAV -classification - Introduction to Unmanned Aircraft Systems-models and prototypes -System Composition-applications

## UNIT II THE DESIGN OF UAV SYSTEMS

9

Introduction to Design and Selection of the System- Aerodynamics and Airframe Configurations-Characteristics of Aircraft Types- Design Standards and Regulatory Aspects-UK,USA and Europe-Design for Stealth-control surfaces-specifications.

# UNIT III AVIONICS HARDWARE

9

Autopilot - AGL-pressure sensors-servos-accelerometer -gyros-actuators- power supply-processor, integration, installation, configuration, and testing

# UNIT IV COMMUNICATION PAYLOADS AND CONTROLS

9

Payloads-Telemetry-tracking-Aerial photography-controls-PID feedback-radio control frequency range - modems-memory system-simulation-ground test-analysis-trouble shooting

# UNIT V THE DEVELOPMENT OF UAV SYSTEMS

9

Waypoints navigation-ground control software- System Ground Testing- System In-flight Testing-Future Prospects and Challenges-Case Studies - Mini and Micro UAVs.

Total No. of Periods: 45

# **REFERENCES:**

- 1. Reg Austin "Unmanned Aircraft Systems UAV design, development and deployment", Wiley, 2010.
- 2. Robert C. Nelson, Flight Stability and Automatic Control, McGraw-Hill, Inc, 1998.
- 3. Kimon P. Valavanis, "Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy", Springer, 2007
- 4. Paul G Fahlstrom, Thomas J Gleason, "Introduction to UAV Systems", UAV Systems, Inc, 1998
- 5. Dr. Armand J. Chaput, "Design of Unmanned Air Vehicle Systems", Lockheed Martin Aeronautics Company,

Dr. K. Rajan Hobb Mach

# University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

Subject	Subject Name:	Ty/Lb/	L	<b>T</b> /	P/R	C
Code:	DISASTER MANAGEMENT	ETL		SLr		
BAE20E10	Prerequisite: NIL	Ty	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Practical: Research C: Credits

 $Ty/Lb/ETL: Theory/Lab/Embedded\ Theory\ and\ Lab$ 

# **OBJECTIVES:**

- To provide students an exposure to disasters, their significance and types.
- To ensure that students begin to understand the relationship between vulnerability, disasters,

er pre	vention a	nd risk re	duction			nomp of		, 411101410	aroy, arous	,,				
UTCO	MES (C	Os): The	e studer	nts will	be able	to								
							uses an	d impacts	. (Level 2	)				
	Apply the	various	disaster	risk red	uction a	pproacl	nes (Le	vel 3)						
	Analyze t	he relatio	nship b	etween o	disaster	and dev	elopme	ent (Leve	14)					
	Applicati	on of tech	nnologie	es in disa	aster rel	ief(Leve	el 3)							
	Conduct of case studies on various disasters like earth quake, drought, flooding etc(Level 5)													
Course	e with Pro													
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
3	3	3	2	1	3	3	1	2	1	2	2			
3	3	3	3	2	3	3	1	2	2	2	2			
3	2	3	2	2	3	3	2	2	2	2	2			
3	3	3	3	3	3	1	1	2	2	2	2			
3	3	3 3 3 2 2 1 2 2						2						
P	SO1	PSC	02	PS	О3	PS	04							
	2	2		1	2	:	3							
	2	2	,	2	2		3							
	2	2	r	7	2		3							
	2	2	,	2	2	:	3							
	2	2	,	2	2	:	3							
es Stre	ength of C	Correlati	on 3-	High, 2	- Mediu	im, 1-L	ow	_1	1	1	<u>l</u>			
Basic Sciences	cial cial													
	Course PO1 3 3 3 7	Apply the   Analyze to     Apply the     Apply the     Applicati     Conduct of     Course with Properties     PO1   PO2     3   3     3   3     3   3     PSO1     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     3     4     5     7     7     7     8     9     9     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10	Understanding various	Understanding various type	COMES (COs) : The students will     Understanding various types of distribution     Apply the various disaster risk red     Analyze the relationship between of     Application of technologies in disaster     Conduct of case studies on various	COMES (COs) : The students will be able   Understanding various types of disasters,   Apply the various disaster risk reduction a   Analyze the relationship between disaster   Application of technologies in disaster rel   Conduct of case studies on various disaster   Course with Program Outcomes (Pos)   PO1   PO2   PO3   PO4   PO5   PO6     Analyze with Program Outcomes (Pos)   PO1   PO2   PO3   PO4   PO5   PO6     Analyze with Program Outcomes (Pos)   PO5   PO6   Analyze with Program Outcomes (Pos)   Analyze with Program Outcomes (Pos)   PO5   PO6   Analyze with Po2   PO5   PO6   Analyze with Po5   PO6   Analyze with Po5   Analyze with Po5   Analyze with Po5   Anal	TCOMES (COs): The students will be able to  Understanding various types of disasters, their can Apply the various disaster risk reduction approach  Analyze the relationship between disaster and dev  Application of technologies in disaster relief (Leve Conduct of case studies on various disasters like e  Course with Program Outcomes (Pos)  PO1 PO2 PO3 PO4 PO5 PO6 PO7  3 3 3 3 2 1 3 3  3 3 3 3 3 3 3 3 3 3 3  3 2 2 3 3 2 2 3 3  3 3 3 3	COMES (COs) : The students will be able to   Understanding various types of disasters, their causes and   Apply the various disaster risk reduction approaches (Le   Analyze the relationship between disaster and developmed   Application of technologies in disaster relief(Level 3)   Conduct of case studies on various disasters like earth querous with Program Outcomes (Pos)	TCOMES (COs): The students will be able to  Understanding various types of disasters, their causes and impacts Apply the various disaster risk reduction approaches (Level 3)  Analyze the relationship between disaster and development (Level Application of technologies in disaster relief(Level 3)  Conduct of case studies on various disasters like earth quake, drout the relationship between disasters like earth quake, drout the relation of the relation of the relation of the relation of the relationship between disasters and development (Level 3)  POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9  3 3 3 3 3 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3 3 1 2 2 3 3 3 3	Comparison   Conduct of case studies on various disasters like earth quake, drought, flood   Course with Program Outcomes (Pos)   PO1   PO2   PO3   PO4   PO5   PO6   PO7   PO8   PO9   PO10   PO2   PO3   PO4   PO5   PO6   PO7   PO8   PO9   PO10   PO3   PO4   PO5   PO6   PO7   PO8   PO9   PO10   PO5   PO5	TCOMES (COs): The students will be able to Understanding various types of disasters, their causes and impacts. (Level 2) Apply the various disaster risk reduction approaches (Level 3) Analyze the relationship between disaster and development (Level 4) Application of technologies in disaster relief(Level 3) Conduct of case studies on various disasters like earth quake, drought, flooding etc(Lecourse with Program Outcomes (Pos)  PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 3 3 3 3 3 2 1 3 3 1 2 2 2 2 2 2 2 2 2 2			



Subject Code: BAE20E10	Subject Name : DISASTER MANAGEMENT	Ty/Lb/ET L	L	T/ SLr	P/R	С
	Prerequisite: NIL	Ту	3	0/0	0/0	3

## UNIT I INTRODUCTION TO DISASTERS

Definition: Disaster, Hazard, Vulnerability, Resilience, Risks - Disasters: Types of disasters -Earthquake, Landslide, Flood, Drought, Fire etc - Classification, Causes, Impacts including social, economic, political, environmental, health, psychosocial, etc.- Differential impacts- in terms of caste, class, gender, age, location, disability - Global trends in disasters: urban disasters, pandemics, complex emergencies, Climate change-Dos and Don'ts during various types of Disasters.

# UNIT II APPROACHES TO DISASTER RISK REDUCTION (DRR)

Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness community based DRR, Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake-holders- Institutional Processess and Framework at State and Central Level- State Disaster Management Authority(SDMA) - Early Warning System - Advisories from Appropriate Agencies.

## UNIT III INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT

Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc.- Climate Change Adaptation- IPCC Scenario and Scenarios in the context of India - Relevance of indigenous knowledge, appropriate technology and local resources.

# UNIT IV DISASTER RISK MANAGEMENTS INDIA

Hazard and Vulnerability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and Preparedness, Disaster Management Act and Policy - Other related policies, plans, programmes and legislation - Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster - Disaster Damage Assessment.

# UNIT V DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND **FIELDWORKS**

Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.

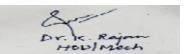
Total No. of Periods: 45

# **TEXTBOOK:**

- 1. Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423
- 2. Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. ISBN-10: 1259007367, ISBN-13: 978-1259007361]
- 3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
- 4. Kapur Anu Vulnerable India: A Geographical Study of Disasters, MAS and Sage Publishers, New Delhi, 2010.

- 1. Govt, of India: Disaster Management Act, Government of India, New Delhi, 2005
- Government of India, National Disaster Management Policy, 2009




Dr. K. Rajan Hob/Mach



# **ELECTIVE- III**

Dr. K. Rajon Hob/Mach

Subject Code: BAE 20E11			ect Name ANCED		SPACE	MATE	CRIALS		Sy/Lb/	L	T/ SLr	P/R	C
			equisite: rials and			ice , Air	craft	Т	<b>Y</b>	3	0/0	0/0	3
L: Lecture T: Tu						ractical	R : Res	search (	C: Credits			ı	-
Ty/Lb/ETL : Theo OBJECTIVES:				y and L	ab								
• On the me				aracteri	zation o	f variou	ıc mater	iale tha	it are use <i>ć</i>	l for air	craft a	nnlicat	ione
COURSE OUTC						1 variou	is mater	1415, 1110	it are usec	i i oi aii	Crart a	ррпса	.10115.
CO1						hanical	behavio	or of co	nventiona	ıl and h	igh pe	rforma	nce
			or Aircra	-							0 1		
CO2								s for cri	tical appl	ication	s in an	aircra	ft
	(Leve	-	C		•								
CO3	,		nd Charac	cterizati	on of ma	aterial s	tructure	using c	lifferent t	echniqu	ies (Le	evel 5)	
CO4									ation (Le				
CO5									pect to th		racter	ization	,
			performa						•				
Mapping of Cour	se with	Progra	m Outco	mes (Po	os)								
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 P	O11	PO12
CO1	3	2	2	3	1	2	2	1	2	2		2	2
CO2	3	2	2	2	2	2	2	1	2	2		2	2
CO3	3	2	3	2	3	2	2	1	2	2		2	2
CO4	3	2	3	3	2	3	3	1	2	2		2	2
CO5	3	3	3	3	2	2	2	1	2	2		2	2
Cos / PSOs	PS	01	PS	02	PS	03	PS	SO4					
CO1	3	3	2	2	,	3		2					
CO2	3	3	3	;		3		2					
CO3	3	3	3	;		3		2					
CO4	3	3	3	;		3		2					
CO5	3	3	3	}		3		2					
3/2/1 indicates St	rength o	of Corre	elation	3- High	, 2- Me	dium, 1	-Low			· I			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
					V								



Subject Code: BAE 20E11	Subject Name: ADVANCED AEROSPACE MATERIALS	Ty/Lb/ ETL	L	T/ SL r	P/R	С
	Prerequisite: Material science, Aircraft Materials and Processes	Ту	3	0/0	0/0	3

# UNIT I MECHANICAL BEHAVIOUR

9

Properties of Conventional Aircraft Materials – Linear and Non-Linear Behaviour – Yielding, Strain Hardening and Fracture – Design for Strength – General Requirements of Materials for Aerospace Applications – Principles of Stressed Skin Construction – Effect of Manufacturing Procedures on Material Behaviour – Micro-structural Influence of Mechanical Behaviour

# UNIT II HIGH PERFORMANCE ALLOYS

9

High Performance Alloys For Aerospace Application – Aluminium, Magnesium, and Titanium alloys – Comparison of Properties – Steel Quality & Effect of Carbon Content – Effect of Alloying & Heat Treatments – Properties of Advanced Alloys used in Aircraft – Effect of Corrosion on Mechanical properties – Stress Corrosion Cracking – Corrosion Resistance Materials – Heat Resistance Alloys – Effect of Alloying Elements & Ideal Percentage Composition

## UNIT III HIGH TEMPERATURE MATERIALS

9

Carbon/Carbon composites – Properties & Advantages – Fabrication Processes – Metal Matrix Composites – Mechanical Properties – Mechanical and Thermal Properties of Materials at Elevated Temperatures – Super Alloys – Ceramic Material Systems and Their Properties – Fabrication of Ceramic Composites – Cermet Tools – Application of These Materials in The Thermal Protection Systems of Aerospace Vehicles – Application of High Temperature Materials in an Aircraft.

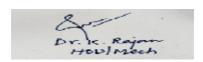
# UNIT IV CHARACTERIZATION OF MATERIAL STRUCTURE

9

X-Ray Diffraction And Their Applications – Absorption of X-rays and filters - X-ray – Diffraction Directions - Working Principles of Transmission Electron Microscopes – Image Formation – Resolving Power – Magnification & Depth of Focus – Advanced Chemical and Thermal analysis – Basic Principles & Practice – Augur Spectroscopy – Differential Thermal Analysis.

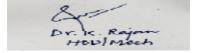
## UNIT V SMART MATERIALS FOR AEROSPACE APPLICATION

9


Fundamentals of Piezoelectricity – Soft and Hard Piezoelectric Ceramics – Basic Piezoceramic Characteristics – Shape Memory Alloys - Fundamentals of Shape Memory Alloy (SMA) Behavior – Phase Transformation – Lattice Structure and DeformationMechanism – Origin of the One-Way Shape Memory Effect – Stress Induced Martensite and Pseudoelasticity – Two-Way Shape Memory Effect.

Total No. of Periods: 45

# **TEXT BOOKS:**


- 1. Adrian Mouritz, 'AIAA Education Series Introduction to Aerospace Materials, 2012.
- 2. Titterton.G., Aircraft Materials and Processes, V Edition, Pitman Publishing Co., 1995.

- 1.J.W. Martin, Engineering Materials, Their properties and Applications, Wykedham Publications (London) Ltd.,1987.
- 2.N.Prasad, Eswara, R. J. H Wanhill, Aerospace Materials and Material Technologies Indian Institute of Metals Series, 2017.
- 3.V. Raghavan. Materials Science and Engineering, Prentice Hall of India, New Delhi, 5th edition, 2004.
- 4.Sam Zhang, 'Aerospace Materials Handbook (Advances in Materials Science and Engineering) 1st




Edition, 2016.

5.L.H. Van Vlack, Elements of Materials Science and Engineering Prentice Hall; publishers, 6th edition, 1989



Subject			;	Subject	Ty/Lb/ET	L	T/	P/R	C				
Code:		AIRFR	AME M	AINTE	L		SLr						
BAE 20E12	Pr	erequisit	e: Streng	th of Ma	Ty	3	0/0	0/0	3				
L : Lecture T	: Tuto	rial S.L	r : Super	vised Le	arning	P : Prac	tical R	: Resea	rch C: Cred	its			•
Ty/Lb/ETL:	Theor	y/Lab/Em	bedded T	Theory a	nd Lab								
OBJECTIVE	ES: T	o make th	e student	s to und	erstand	the Airf	rame co	mpone	nts and the	tools us	ed to ma	intain t	he
components. I	Defec	t investiga	ition, me	thods to	carry ou	ıt inves	tigation	and the	detailed ma	aintenai	nce and p	ractice	3
procedures													
COURSE OU	JTCC												
CO1									to maintain		-	(Leve	12)
CO2		Apply the knowledge of plastics and composites in aircraft maintenance. (Level 4)											
CO3		Carry out	aircraft j	acking,	assembl	ly and ri	igging i	n maint	enance(Lev	el 4)			
CO4			draulic a	nd pneu	matic sy	stem du	ring tro	uble sh	ooting and 1	nainten	ance pra	ctice.	
		(Level 5)											
CO5		Apply the				aft mana	agemen	t.(Leve	l 6)				
Mapping of C													
Cos/Pos	PO ₁	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	3	3	3	3	2	2	3	3	3	2	2	2
CO2	3	3	3	3	3	2	2	3	3	3	2	2	2
CO3	3	3	3	3	3	2	2	3	3	3	2	2	2
CO4	3	3	3	3	3	2	2	3	3	3	2	2	2
CO5	3	3	3	3	3	2	2	3	3	3	2	2	2
Cos / PSOs	I	PSO1	PS	O2	PS	03	PS	<b>SO4</b>					
CO1		3	3	3	3	3		3					
CO2		3	3	3		3	3						
CO3		3	3		3			3					
CO4		3	3	3	3 3								
CO5		3	3	3		3		3					
3/2/1 indicate	s Str	ength of (	Correlati	on 3-	High, 2	- Mediı	ım, 1-L	ow					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
					$\sqrt{}$								



Subject Code:	Subject Name :	Ty/Lb/ET	L	T/	P/R	C
BAE 20E12	AIRFRAME MAINTENANCE AND REPAIR	L		SLr		
	<b>Prerequisite:</b> Strength of Materials; Aircraft Structures	Ту	3	0/0	0/0	3

## UNIT I MAINTENANCE OF AIRCRAFT STRUCTURAL COMPONENTS

Equipments used in welding shop and their maintenance - Ensuring quality welds - Welding jigs and fixtures - Soldering and brazing - laser welding.

Sheet metal repair and maintenance: Selection of materials; Repair schemes; Fabrication of replacement patches; Tools - power/hand; Repair techniques; Peening - Close tolerance fasteners; Sealing compounds; forming/shaping; Calculation of weight of completed repair; Effect of weight -change on surrounding structure. Sheet metal inspection - N.D.T. Testing. Riveted repair design -Damage investigation - Reverse engineering.

# UNIT II PLASTICS AND COMPOSITES IN AIRCRAFT

9

Review of types of plastics used in airplanes - Maintenance and repair of plastic components - Repair of cracks, holes etc., various repairs schemes - Scopes.

Cleaning of fibre reinforced plastic (FRP) materials prior to repair; Break test - Repair Schemes; FRP/honeycomb sandwich materials; laminated FRP structural members and skin panels; Tools/equipment; Vacuum-bag process. Special precautions - Autoclaves

## UNIT III AIRCRAFT JACKING, ASSEMBLY AND RIGGING

9

Airplane jacking and weighing and C.G. Location. Balancing of control surfaces- Inspection maintenance. Helicopter flight controls. Tracking and balancing of main rotor.

# UNIT IV REVIEW OF HYDRAULIC AND PNEUMATIC SYSTEM

12

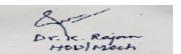
Trouble shooting and maintenance practices - Service and inspection - Inspection and maintenance of landing gear systems. - Inspection and maintenance of air-conditioning and pressurization system, water and waste system. Installation and maintenance of Instruments - handling - Testing -Inspection. Inspection and maintenance of auxiliary systems - Rain removal system - Position and warning system - Auxiliary Power Units (APUs).

# UNITY SAFETY PRACTICES

6

Hazardous materials storage and handling, Aircraft furnishing practices - Equipments. Trouble shooting. Theory and practices.

Total No. of Periods: 45


# **TEXT BOOKS:**

1. Kroes, Watkins, Delp, "Aircraft Maintenance and Repair", McGraw Hill, New York, 1992.

- 1. Larry Reithmeir, "Aircraft Repair Manual", Palamar Books, Marquette, 1992.
- 2. Brimm D.J. Bogges H.E., "Aircraft Maintenance", Pitman Publishing corp., New York, 1940.
- 3. Delp. Bent and Mckinely "Aircraft Maintenance Repair", McGraw Hill, New York, 1987.



Subject Code:	A	ERO E	S NGINE N	Subject MAINT			O REPA	AIR	Ty/Lb/ ETL	L	T/ SLr	P/R	C
<b>BAE20E13</b>		Prerequisite: Aircraft Systems, Aero Engine and								3	0/0	0/0	3
T T		frame lab		, 1 T		D D		D	Ty	_	0/0	U/U	
L : Lecture T Ty/Lb/ETL : 7						P : Prac	tical R	: Resear	rch C: Cr	edits			
OBJECTIVE						the Airf	rame co	mnoner	nts and th	e tools us	ed to ma	intain	the
components.													
procedures.		C	,		,		U						
COURSE OU	UTCO	MES (C	Os): Th	e studei	nts will	be able	to						
CO1	]	Illustrate the usage of Inspection and Maintenance Tools. (Level 2)											
CO2	]	Explain various Defects in Airframe. (Level 2)											
CO3	]	Explain t	he repairi	ng proce	edures c	of Airfra	ıme defe	ects. (Le	evel 3)				
CO4	]	Describe	about the	inspect	ion of E	ingine c	ompone	ents. (Le	vel 3)				
CO5	]	Illustrate	Overhaul	ing prod	cedure o	of Aero	Engine.	(Level	2)				
Mapping of (	Course	with Pr	ogram O	utcome	s (Pos)								
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	3			3		3					3	3
CO2	3	3			3		3	3				(	3
CO3	3	3	3		3		3		3			3	3
CO4	3	3			3		3	3				(	3
CO5	3	3	3		3		3					(	3
Cos / PSOs	P	SO1	PSO2		PSO3		PSO4						
CO1		3	2		2		1						
CO2		3	2 2		2	1							
CO3		3	2	,	2		1						
CO4		3	2	2 2									
CO5		3	2	,	2			1					
3/2/1 indicate	es Stre	ngth of (	Correlati	on 3-	High, 2	- Mediu	ım, 1-L	ow	_	•		·	
		S	la I					Te					
	·	nce	Social		es	S	ct	nice					
	nce	cieı	S	\ore	ctiv	ive	roje	3chi	IIs				
<b>y</b>	cie	Sg	anc	m C	Ele	lect	/ P.	/ T,	Skil				
600	ic S	erin	ities and Sciences	Program Core	am	n E	ical	ips/7 Skill	Soft Skills				
Category	Basic Sciences	ine	lani S	Pro	Program Electives	Open Electives	Practical / Project	qsu.	Š				
C		Engineering Sciences	Humanities and Sciences		Pr		Pr	Internships / Technical Skill					
			H					1					
					V								
			I		1		1						



Subject Code: BAE20E13	Subject Name : AERO ENGINE MAINTENANCE AND REPAIR	Ty/Lb/ET L	L	T/ SLr	P/R	С	
	<b>Prerequisite:</b> Aircraft Systems, Aero Engine and Airframe laboratory	Ту	3	0/0	0/0	3	

## **UNIT I PISTON ENGINES**

Carburetion and Fuel injection systems for small and large engines - Ignition system components -spark plug detail - Engine operating conditions at various altitudes - Engine power measurements - Classification of engine lubricants and fuels - Induction, Exhaust and cooling system - Maintenance and inspection check to be carried out. Inspection and maintenance and trouble shooting - Inspection of all engine components - Daily and routine checks - Overhaul procedures - Compression testing of cylinders - Special inspection schedules -Engine fuel, control and exhaust systems - Engine mount and super charger - Checks and inspection procedures.

**UNIT II PROPELLERS** 

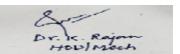
Propeller theory - operation, construction assembly and installation - Pitch change mechanism-Propeller axially system- Damage and repair criteria - General Inspection procedures - Checks on constant speed propellers - Pitch setting, Propeller Balancing, Blade cuffs, Governor/Propeller operating conditions -Damage and repair criteria.

# **UNIT III JET ENGINES**

Types of jet engines - Fundamental principles - Bearings and seals - Inlets - compressors- turbines-exhaust section - classification and types of lubrication and fuels- Materials used - Details of control, starting around running and operating procedures - Inspection and Maintenance- permissible limits of damage and repair criteria of engine components- internal inspection of engines- compressor washing- field balancing of compressor fans- Component maintenance procedures - Systems maintenance procedures - use of instruments for online maintenance - Special inspection procedures-Foreign Object Damage - Blade damage

# UNIT IV TESTING AND INSPECTION

Symptoms of failure - Fault diagnostics - Case studies of different engine systems - Rectification during testing equipments for overhaul: Tools and equipments requirements for various checks and alignment during overhauling - Tools for inspection - Tools for safety and for visual inspection - Methods and instruments for non destructive testing techniques - Equipment for replacement of parts and their repair. Engine testing: Engine testing procedures and schedule preparation - Online maintenance.


# UNITY OVERHAULING

Engine Overhaul - Overhaul procedures - Inspections and cleaning of components - Repairs schedules for overhaul - Balancing of Gas turbine components. Trouble Shooting: Procedures for trouble shooting -Condition monitoring of the engine on ground and at altitude - engine health monitoring and corrective methods.

Total No. of Periods: 45

- 1. Kroes & Wild," Aircraft Power plants", 7th Edition McGraw Hill, New York, 1994.
- 2. Turbomeca," Gas Turbine Engines", The English Book Store", New Delhi, 1993.
- 3. United Technologies Pratt & Whitney, "The Aircraft Gas turbine Engine and its Operation", The English Book Store, New Delhi.

Subject Co BAE20E1		Subject Name: AIR TRAFFIC CONTROL AND PLANNING								L	T/ SLr	P/R	С
Prerequisite: Air line and airport Management L: Lecture T: Tutorial S.Lr: Supervised Learning P: Practical R: R									Ty	3	0/0	0/0	3
L : Lecture Ty/Lb/ETL :							ctical R:	Researc	h C: Cr	edits			
OBJECTIV					iiiu Lao								
Understandi	ng the re	quireme	ent of Air	Traffic	control	systems	s, knowle	dge in fli	ight info	ormation	system a	nd rule	s of
Air traffic sy	ystems												
COURSE C	OUTCO	MES (C	Os): Th	e stude	nts will	be able	e to						
CO1	Understa	and the b	asic princ	ciples of	f Air Tra	affic Ma	anagemer	nt (Level	2)				
			ne require	-			•			(Level 2	)		
			ight Infor										
			e and Rui		•								
			ection inc	•	-			n. (Level	3)				
Mapping of									- /				
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	2	3	3	3	3	2	1	3	3		:	2
CO2	3	2	3	3	3	3	2	1	3	3			2
CO3	3	2	3	3	3	3	2	1	3	3			2
CO4	3	2	3	3	3	3	2	1	3	3			2
CO5	3	2	3	3	3	3	2	1	3	3		:	2
Cos / PSOs	PS	SO1	PS	02	PS	SO3	PS	O4					
CO1		3	2		2								
CO2		3	2	,		2							
CO3		3	2	,	2								
CO4		3	2	2		2							
CO5		3	2		2								
3/2/1 indica	tes Stre	ngth of	Correlati	ion 3-	High, 2	2- Medi	um, 1-Lo	ow					
			72					-					
a C	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	Bas	Engine	Humani	Pro	Progr	Ope	Pract	Internsh	Š				





_	27800.00	THE REAL PROPERTY.	Unive	rsity w						
			Periy	ar E.V.R.	Salai, M	laduravo	yal, Cheni	nai – 95		
					l '					

Dr. K. Rajan How Mach

# Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

Subject Code: BAE20E14	Subject Name : AIR TRAFFIC CONTROL AND PLANNING	Ty/Lb/ET L	L	T/ SLr	P/R	С	
	Prerequisite: Air line and airport Management	Ту	3	0/0	0/0	3	

#### UNIT I BASIC CONCEPTS

Objectives of air traffic control systems - Parts of ATC services - Scope and Provision of ATCs - VFR & IFR operations - Classification of ATS air spaces - Various kinds of separation - Altimeter setting procedures - Establishment, designation and identification of units providing ATS - Division of responsibility of control.

#### UNIT II AIR TRAFFIC SYSTEMS

Area control service, assignment of cruising levels - minimum flight altitude - ATS routes and significant points - RNAV and RNP - Vertical, lateral and longitudinal separations based on time / distance -ATC clearances - Flight plans - position report

#### UNIT III FLIGHT INFORMATION SYSTEMS

10

Radar service, Basic radar terminology - Identification procedures using primary / secondary radar performance checks - use of radar in area and approach control services - assurance control and coordination between radar / non radar control - emergencies - Flight information and advisory service - Alerting service -Co-ordination and emergency procedures - Rules of the air.

#### UNIT IV AERODROME DATA

9

Aerodrome data - Basic terminology - Aerodrome reference code - Aerodrome reference point - Aerodrome elevation - Aerodrome reference temperature - Instrument runway, physical Characteristics; length of primary / secondary runway - Width of runways - Minimum distance between parallel runways etc. obstacles restriction.

#### UNIT V NAVIGATION AND OTHER SERVICES

Visual aids for navigation Wind direction indicator - Landing direction indicator - Location and characteristics of signal area - Markings, general requirements - Various markings - Lights, general requirements - Aerodrome beacon, identification beacon - Simple approach lighting system and various lighting systems - VASI & PAPI - Visual aids for denoting obstacles; object to be marked and lighter -Emergency and other services.

Total No. of Periods: 45

### **TEXT BOOK**


1. AIP (India) Vol. I & II, "The English Book Store", 17-1, Connaught Circus, New Delhi.

#### REFERENCES

- 1. "Aircraft Manual (India) Volume I", latest Edition The English Book Store, 17-1, Connaught Circus, New
- 2. "PANS RAC ICAO DOC 4444", Latest Edition, The English Book Store, 17-1, Connaught Circus, New Delhi



Subject Code:			S AIRCRA		Name :				Ty/Lb/ ETL	L	T/ SLr	P/R	С
BAE 20E15	Pre		e: Propul					and	Ту	3	0/0	0/0	3
	cont								•		0/0	0/0	
L: Lecture T Ty/Lb/ETL:						P : Prac	tical R	: Resea	rch C: Cr	edits			
OBJECTIVE					nu Lao								
The concepts					s the per	rforman	ce of air	rcraft					
COURSE OU		-	_		_								
CO1			l develop					ociated	equation	for subsc	nic airpl	ane	
CO2		Calculate irplane	, under gi	iven ope	erating c	conditio	n, the ra	nge and	l enduran	ce of jet a	and prope	eller	
CO3		-	e perform	nance of	the air	olane du	ring ste	ady glid	le and glii	mp			
CO4			the factor							-			
CO5		Draw the flight envelope of the given aircraft											
Mapping of (	Course	se with Program Outcomes (Pos)											
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	3	3	3	3		3			3		2	2
CO2	3	3	3	3	3		3			3		2	2
CO3	3	3	3	3	3		3			3		2	2
CO4	3	3	3	3	3		3			3		2	2
CO5	3	3	3	3	3		3			3		2	2
Cos/PSOs	PS	<b>501</b>	PSC	02	PS	03	PS	SO4					
CO1		3						2					
CO2		3	3					2					
CO3		3	3					2					
CO4		3	3					2					
CO5		3	3					2					
3/2/1 indicate	es Strer	gth of (	Correlatio	on 3-	High, 2	- Mediu	ım, 1-L	ow		1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
					1								



Subject Code: BAE 20E15	<b>3</b>	Ty/Lb/ ETL	L	T/ SLr	P/R	С
	Prerequisite: Propulsion I &II ,Aircraft Stability and control	Ту	3	0/0	0/0	3

#### UNITI GENERAL CONCEPTS

9

International Standard atmosphere, IAS, EAS, TAS, Propeller theory-Froude momentum and blade element theories, Propeller co-efficients, Use of propeller charts, Performance of fixed and variable pitch propellers, High lift devices, Thrust augmentation.

#### **UNITH DRAGOF BODIES**

0

Streamlined and bluff body, Types of drag, Effect of Reynold's number on skin friction and pressure drag, Drag reduction of airplanes, Drag polar, Effect of Mach number on drag polar. Concept of sweep- effect of sweep on drag

#### UNITIII STEADY LEVEL FLIGHT

9

General equation of motion of an airplane. Steady level flight, Thrust required and Power required, Thrust available and Power available for propeller driven and jet powered aircraft, Effect of altitude, maximum level flight speed, conditions for minimum drag and minimum power required, Effect of drag divergence on maximum velocity, Range and Endurance of Propeller and Jet aircrafts. Effect of wind on range and endurance.

#### UNITIV GLIDING ANDCLIMBINGFLIGHT

9

Shallow and steep angles of climb, Rate of climb, Climb hodograph, Maximum Climb angle and Maximum Rate of climb- Effect of design parameters for propeller jet and glider aircrafts, Absolute and service ceiling, Cruise climb, Gliding flight, Glidehodograph.

#### UNITY ACCELERATED FLIGHT

9

Estimation of take-off and landing distances, Methods of reducing landing distance, level turn, minimum turn radius, maximum turn rate, bank angle and load factor, Constraints on load factor, SST and MSTR. Pull up and pull down maneuvers, V-n diagram.

Total No. of Periods: 45

#### **TEXT BOOKS:**

- 1. Anderson, Jr., J.D. Aircraft Performance and Design, McGraw-Hill International Edition, 1999.
- 2. Houghton, E.L. and Carruthers, N.B. Aerodynamics for engineering students, Edward Arnold Publishers, 1988.

#### **REFERENCES:**

- 1. J.D. Anderson, Introduction to Flight, McGraw-Hill; 8th edition, 2015
- 2. L.J. Clancy, Aerodynamics, Shroff publishers (2006)
- 3. *John J Bertin.*, Aerodynamics for Engineers, Prentice Hall; 6th edition, 2013.
- 4. A.M. Kuethe and C.Y. Chow, Foundations of Aerodynamics, John Wiley & Sons; 5th Edition,1997


Dr. K. Rajan Hob/Mach



# ELECTIVE- IV

Dr. K. Rajon HOD/Mech

#### Ty/Lb/ **T**/ P/R **Subject Subject Name:** L C HYPERSONIC AERODYNAMICS Code: **ETL** SLr Prerequisite: Aerodynamics I &II Ty 3 0/0 0/0 3 **BAE 20E16** L : Lecture T : Tutorial S.Lr: Supervised Learning P: Practical R: Research C: Credits Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab **OBJECTIVES:** To introduce fundamental concepts and features peculiar to hypersonic flow to students to familiarize them with the aerodynamical aspects of hypersonic vehicles and the general hypersonic flow theory. **COURSE OUTCOMES (COs): The students will be able to** Apply the basic concepts of hypersonic aerodynamics to hypersonic Internal/External flow CO1 fields (Level 3) CO2 Establish the properties of inviscid hypersonic flows using surface inclination and approximate methods. (Level 4) CO3 Establish the boundary layer equations for hypersonic flow (Level 3) CO4 Analyze the properties of hypersonic shockwaves and boundary layer interactions in hypersonic flow. (Level 4) CO5 Apply High-temperature gas dynamics to hypersonic Internal/External flow fields. (Level 3) **Mapping of Course with Program Outcomes (Pos)** Cos/Pos PO1 PO₂ PO₃ PO4 PO₅ **PO6 PO7** PO8 PO9 PO10 **PO11** PO12 CO1 3 2 3 CO₂ 3 2 CO3 3 2 2 CO4 3 1 CO5 3 3 3 Cos/PSOs PSO₁ PSO₂ PSO₃ PSO₄ CO₁ 3 2 CO₂ 3 CO3 2 2 CO4 3 CO5 3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low Humanities and Social Internships / Technical Engineering Sciences Program Electives Practical / Project Open Electives Basic Sciences Program Core Soft Skills Sciences Category $\sqrt{}$



# Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

Subject Code: BAE 20E16	Subject Name : HYPERSONIC AERODYNAMICS	Ty/Lb/ET L	L	T/ SLr	P/R	С	
	Prerequisite: Aerodynamics I &II	Ту	3	0/0	0/0	3	

#### UNIT I FUNDAMENTALS OF HYPERSONIC AERODYNAMICS

Introduction to hypersonic aerodynamics - differences between hypersonic aerodynamics and supersonic aerodynamics - concept of thin shock layers and entropy layers - hypersonic flight paths - hypersonic similarity parameters - shock wave and expansion wave relations of inviscid hypersonic flows.

#### UNIT II SIMPLE SOLUTION METHODS FOR HYPERSONICINVISCID FLOWS

Local surface inclination methods - Newtonian theory - modified Newtonian law - tangent wedge and tangent cone and shock expansion methods - approximate methods - hypersonic small disturbance theory thin shock layer theory.

#### UNIT III VISCOUS HYPERSONIC FLOW THEORY

Boundary layer equations for hypersonic flow - hypersonic boundary layers - self similar and non self similar boundary layers - solution methods for non self similar boundary layers - aerodynamic heating and its adverse effects on airframe.

#### UNIT IV VISCOUS INTERACTIONS IN HYPERSONIC FLOWS

Introduction to the concept of viscous interaction in hypersonic flows - Strong and weak viscous interactions - hypersonic viscous interaction similarity parameter - introduction to shock wave boundary layer interactions.

#### UNIT V HIGH TEMPERATURE EFFECTS in HYPERSONIC FLOWS

Nature of high temperature flows - chemical effects in air - real and perfect gases - Gibb's free energy and entropy - chemically reacting boundary layers - recombination and dissociation.

**Total No. of Periods: 45** 

#### **TEXT BOOKS:**

1. John D. Anderson. Jr., "Hypersonic and High Temperature Gas Dynamics", McGraw hill Series, New York, 1996.

### **REFERENCES:**

- 1. John D. Anderson. Jr., "Modern Compressible flow with historical Perspective", McGraw Hill Publishing Company, New York, 1996.
  - 2. John T. Bertin, "Hypersonic Aerothermodynamics", published by AIAA Inc., Washington. D.C., 1994.

#### Ty/Lb/ **T**/ P/R **Subject Subject Name:** L $\mathbf{C}$ Code: EXPERIMENTAL AERODYNAMICS ETL SLr **BAE 20E17** Prerequisite: Fluid Mechanics ,Fundamentals of Тy 3 0/0 0/0 3 aircraft control and Instrumentation system

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Practical R: Research C: Credits

Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab														
temperature i	neasur													
COURSE O		MES (C	Os): The	e studei	nts will	be able	to							
CO1		Analyze	the basic	principl	es in flu	id meas	uremen	ts. (Lev	el 4)					
CO2		Measure	data usin	g wind t	unnel b	alances.	(Level	5)						
CO3		Analyze	the basic	principl	es of flo	w visua	lization	techniq	ues. (Lev	el 4)				
CO4		Do various measurements of pressure, velocity and temperature parameters. (Level 5)												
CO5		Use data	acquisitio	n syste	m for ex	perime	nts. ( Le	vel 3)						
Mapping of	Course	with Pr	ogram O	utcome	s (Pos)									
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3		3								3		
CO2	3	3		3								3		
CO3	3	3	3 3 3											
CO4	3	3		3								3		
CO5	3	3		3								3		
Cos / PSOs	P	SO1	PS	02	PS	O3	PS	SO4						
CO1		3	3					2						
CO2		2	3					3						
CO3		3	2					3						
CO4		3	3					2						
CO5		2	3					3						
3/2/1 indicat	es Stre	ngth of (	Correlati	on 3-	High, 2	- Mediu	ım, 1-L	ow						
C C	Basic Sciences	Basic Sciences  Engineering Sciences  Humanities and Social Sciences  Program Core  Program Electives  Open Electives  Skill Skills  Soft Skills												





University with Graded Autonomy Status													
		Periya	r E.V.R.	Salai, Ma	aduravo	al, Cher	nai – 9	5					
				,									

Dr. K. Rajan How Moch

Subject Code: BAE 20E17	EVDEDIMENTAL AEDODVNAMICS	Ty/Lb/ET L	L	T/ SLr	P/R	С
	Prerequisite: Fluid Mechanics ,Fundamentals of aircraft control and Instrumentation system	Ту	3	0/0	0/0	3

#### UNIT I BASIC MEASUREMENTS IN FLUID MECHANICS

7

Objective of experimental studies - Fluid mechanics measurements - Properties of fluids - Measuring instruments - Performance terms associated with measurement systems - Direct measurements - Analogue methods - Flow visualization - Components of measuring systems - Importance of model studies.

#### UNIT II CHARACTERISTICS OF MEASUREMENTS

10

Characteristic features, operation and performance of low speed, transonic, supersonic and special tunnels - Power losses in a wind tunnel - Instrumentation of wind tunnels - Turbulence- Wind tunnel balance - principles, types and classifications -Balance calibration.

#### UNIT III FLOW VISUALIZATION AND ANALOGUE METHODS

9

Principles of Flow Visualization - Hele-Shaw apparatus - Interferometer - Fringe-Displacement method - Schlieren system - Shadowgraph - Hydraulic analogy - Hydraulic jumps - Electrolytic tank

#### UNIT IV PRESSURE, VELOCITY AND TEMPERATURE MEASUREMENTS

9

Measurement of static and total pressures in low and high speed flows- Pitot-Static tube characteristics - Pressure transducers - principle and operation - Velocity measurements - Hot-wire anemometry - LDV - PIV: Temperature measurements.

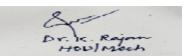
### UNITY SPECIAL FLOWS AND UNCERTAINTY ANALYSIS

10

Experiments on Taylor-Proudman theorem and Ekman layer - Measurements in boundary layers -Data acquisition and processing - Signal conditioning - Uncertainty analysis - Estimation of measurement errors - External estimate of the error - Uncertainty calculation - Uses of uncertainty analysis.

Total No. of Periods: 45

#### **TEXT BOOKS:**


- 1. Rathakrishnan, E., "Instrumentation, Measurements, and Experiments in Fluids," CRC Press -Taylor & Francis, 2007.
- 2. Robert B Northrop, "Introduction to Instrumentation and Measurements", Second Edition, CRC Press, Taylor & Francis, 2006.

#### **REFERENCES:**

- 1. Pope, A., and Goin, L, "High Speed Wind Tunnel Testing", John Wiley, 1985. Bradsaw Experimental Fluid Mechanics.
  - 2. NAL-UNI Lecture Series 12: Experimental Aerodynamics, NAL SP 98 01 April 1998 Lecture course on "Advanced Flow diagnostic techniques" 17-19 September 2008 NAL, Bangalore

Dr. K. Rajan Hobb Mech

Subject Code: BAE 20E18			ROCK	Subject ETS AN					Ty/Lb /ETL	L	T/ SLr	P/R	С
2112 20210	Prer	equisite	: Aerdyn	namics 1	I&II,Pr	opulsio	n I&II.		Ту	3	0/0	0/0	3
L: Lecture T:						P : Prac	tical R	: Resea	rch C: Cre	dits			•
Ty/Lb/ETL : T													
			ne studen				1	• 0		1 . 4 . 4 .	1		1.
On important t their knowledge					aeroayı	namics	ana stag	ging & c	ontrol of i	ockets to	student	s to en	ricn
COURSE OU					nts will	he							
			bout the				issiles (	Level 2	)				
CO2 U	ndersta	derstanding the aerodynamics of Rockets and Missiles (Level 2)											
	pplyin Level 3	olying and understanding the concepts behind Rocket motion in free space and gravitational space vel 3)  alyzing the design philosophy in staging of Rockets and Missiles (Level 4)											
CO4 A	nalyzii	ng the de	esign phil	losophy	in stagi	ng of R	ockets a	nd Miss	siles (Leve	el 4)			
	nalyzir Level 4	alyzing the various aerodynamic characteristics and control methods of Rockets and Missiles evel 4)											
Mapping of C	ourse v	with Pro	ogram O	utcome	s (Pos)								
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	2	3	2	1	2	2	1	2	1	2	2	2
CO2	3	2	3	2	1	2	2	1	2	1	2	2	2
CO3	3	3	3	2	2	2	2	1	2	2	2	2	2
CO4	3	3	3	2	2	2	2	1	2	2	2	2	2
CO5	3	3	3	2	2	2	2	1	2	2	2	2	2
Cos/PSOs	PS	01	PSC	02	PS	03	PS	SO4					
CO1	3	3	2	,	2	2		2					
CO2	(	3	2	,	2	2		2					
CO3	3	3	3		2	2		2					
CO4	3	3	3		2	2		2					
CO5	3	3	3		2	2		2					
3/2/1 indicates	Stren	gth of C	Correlatio	on 3-	High, 2	- Mediu	im, 1-L	ow				•	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
					1								



Subject Code: BAE 20E18	Subject Name : ROCKETS AND MISSILES	Ty/Lb /ETL	L	T/ SLr	P/R	С
	Prerequisite: Aerdynamics I&II,Propulsion I&II.	Ту	3	0/0	0/0	3

#### UNIT I CLASSIFICATION OF ROCKETS AND MISSILES

9

Various methods of classification of missiles and rockets - Basic aerodynamic characteristics of surface to surface, surface to air, air to surface and air to air missiles - Examples of various Indian space launch vehicles and missiles - Current status of Indian rocket programme with respect to international scenario

#### UNIT HAERODYNAMICS OF ROCKETS AND MISSILES

10

10

Airframe components of rockets and missiles - forces acting on a missile while passing through atmosphere - classification of missiles - slender body aerodynamics - method of describing forces and moments - lift force and lateral moment - lateral aerodynamic damping moment - longitudinal moment - drag estimation - upwash and downwash in missile bodies - rocket dispersion.

#### UNIT HIROCKET MOTION IN FREE SPACE AND GRAVITATIONAL FIELD

One dimensional and two-dimensional rocket motions in free space and homogeneous gravitational fields - description of vertical, inclined and gravity turn trajectories - determination of range and altitude - simple approximations to determine burn out velocity and altitude - estimation of culmination time and altitude.

#### UNIT IV STAGING OF ROCKETS AND MISSILES

8

Design philosophy behind multistaging of launch vehicles and ballistic missiles - optimization of multistage vehicles - stage separation techniques in atmosphere and in space - stage separation dynamics and lateral separation characteristics -

#### UNIT V CONTROL OF ROCKETS AND MISSILES

8

Introduction to aerodynamic and jet control methods - various types of aerodynamic control methods for tactical and short range missiles- aerodynamic characteristics - various types of thrust vector control methods including secondary injection thrust vector control for launch vehicles and ballistic missiles -.

**Total No. of Periods: 45** 

#### **TEXT BOOKS:**

- 1. Cornelisse, J.W., "Rocket Propulsion and Space Dynamics", J.W. Freeman & Co., Ltd, London,
- 2. Sutton, G.P., "Rocket Propulsion Elements", John Wiley & Sons Inc., New York, 5th Edition, 1993.

#### **REFERENCES:**

1. Parker, E.R., "Materials for Missiles and Spacecraft", McGraw Hill Book Co. Inc. 1982. Mathur, M.L., and Sharma, R.P., "Gas Turbine, Jet and Rocket Propulsion", Standard Publishers and Distributors, Delhi, 1988

#### **Subject Name: STRUCTURAL DYNAMICS** P/R Ty/Lb/ L **T**/ ETL S.Lr

3

Ty

0/0

0/0

3

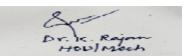
L: Lecture T: Tutorial S.Lr: Supervised Learning P: Practical R: Research C: Credits

**Prerequisite: Aircraft Structures** 

 $Ty/Lb/ETL: Theory/Lab/Embedded\ Theory\ and\ Lab$ 

**Subject Code:** 

**BAE20E19** 


**OBJECTIVES:** To study the effect of periodic and periodic forces on mechanical systems with matrix approach and also to get the natural characteristics of large sized problems using approximate methods.

COURSE OUTCOMES (COs): The students will be able to										
CO1	Understand the basic principles constraints and generalized coordinates Virtual work and force									
	- deflection influence functions - stiffness and flexibility methods. (Level 2)									
CO2	Apply the free and forced vibrations of systems with finite degrees of freedom. (Level 3)									
CO3	Analyzing various matrix method sand modal analysis.(Level 1)									
CO4	Study the different methods to analyze the vibration of component. (Level 4)									
CO5	Determine the approximate methods to evaluating the Eigen frequencies and vectors by									
	reduced subspace. (Level 5)									
Manning of Cour	rse with Program Outcomes (Pos)									

### **Mapping of Course with Program Outcomes (Pos)**

Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	1	1	1	2	1	2	1	2	1
CO2	2	3	3	2	2	1	2	1	2	2	2	2
CO3	2	3	3	2	2	1	2	1	2	2	2	2
CO4	2	3	3	2	2	1	2	1	2	2	2	2
CO5	2	3	3	2	2	1	2	1	2	2	2	2
Cos / PSOs	PS	01	PSC	<b>O2</b>	PS	О3	PS	SO4				
CO1		3	2		,	3		2				
CO2		3	2			3		2				
CO3		3	2		,	3		2				
CO4		3	2		,	3		2				
CO5		3	2		,	3		2				
3/2/1 indicate	es Stren	gth of (	Correlation	on 3-	High, 2	- Medir	ım. 1-L	ow	•		-	•

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
					V						



Subject Code: BAE20E19	Subject Name : STRUCTURAL DYNAMICS	Ty/Lb/ ETL	L	T/ S.Lr	P/R	C
	Prerequisite:Aircraft Structures	Ty	3	0/0	0/0	3

#### UNIT I FORCE DEFLECTION PROPERTIES OF STRUCTURES

9

Constraints and Generalized coordinates - Virtual work and generalized forces - Force - Deflection influence functions - stiffness and flexibility methods.

#### UNIT II PRINCIPLES OF DYNAMICS

9

Free and forced vibrations of systems with finite degrees of freedom - Response to periodic excitation - Impulse Response Function - Convolution Integral

### UNIT III NATURAL MODES OF VIBRATION

9

Equations of motion for Multi degree of freedom Systems - Solution of Eigen value problems - Normal coordinates and orthogonality Conditions. Modal Analysis.

#### **UNIT IV ENERGY METHODS**

9

Rayleigh's principle - Rayleigh - Ritz method - Coupled natural modes - Effect of rotary inertia and shear on lateral vibrations of beams - Natural vibrations of plates.

#### UNITY APPROXIMATE METHODS

9

Approximate methods of evaluating the Eigen frequencies and eigen vectors by reduced, subspace, Lanczos, Power, Matrix condensation and QR methods.

**Total No. of Periods: 45** 


#### **TEXT BOOKS:**

- 1. Tse. F.S., Morse. I.E. and Hinkle. H.T., "Mechanical Vibrations: Theory and Applications", Prentice Hall of India Pvt. Ltd, New Delhi, 2004.
- 2. Hurty. W.C. and M.F. Rubinstein, "Dynamics of Structures", Prentice Hall of India Pvt. Ltd., New Delhi 1987.

#### **REFERENCES:**

- 1. Vierck. R.K., "Vibration Analysis", 2nd Edition, Thomas Y. Crowell & Co Harper & Row Publishers, New York, U.S.A. 1989.
- 2. Timoshenko. S.P., and D.H. Young, "Vibration Problems in Engineering", John Willey & Sons Inc., 1984.
- 3. Ramamurthi. V., "Mechanical Vibration Practice and Noise Control" Narosa Publishing House Pvt. Ltd, 2008.

Subjec	t					t Name		,,	nnai – 95	Ty/L	L	<b>T</b> /	P/R	С	
Code:	e: CO				CONTROL ENGINEERING					b/ET		SLr			
BAE20E	20									L					
Prerequisite:Mather					natics I	atics I,II &III.					3	0/0	0/0	3	
L: Lecture T: Tutorial S.Lr: Supervised Learning P: Pr								tical R	: Researc	ch C: Cr	edits				
Ty/Lb/ETI	_: T	heory/l	Lab/Em	bedded T	heory a	nd Lab									
OBJECTI	VES	S: The	student	will lear	n										
To apply n	nathe	ematica	al know	ledge to n	nodel th	e syster	ns and a	ınalysze	the freq	uency do	omain				
COURSE	OU'	TCOM	IES (C	Os): The	e studei	nts will	be able	to							
CO1	Ap	apply mathematical knowledge to model the system (Level 3)													
CO2	An	alyse t	he frequ	ency don	nain(Le	vel 4)									
CO3	То	check	the stab	ility of ti	me and	frequen	cy dom	ain. (Le	evel 5)						
CO4	Ide	ntify t	he conce	ept and co	onstruct	ion of st	ability(	Level 1)	)						
CO4	Understand various Control system(Level 2)														
Mapping of Course with Program Outcomes (Pos)															
Cos/Pos		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	PO12	
CO1		3	3	3	3	3	2	2			1			2	
CO2		3	3	3	3	3	2	2			1			2	
CO3		3	3	3	3	3	2	2			1		2		
CO4		3	3	3	3	3	2	2			1			2	
CO5		3	3	3	3	3	2	2			1			2	
Cos / PSC	)s	PS	01	PSO	02	PS	O3	PS	SO4						
CO1		3	3 3 2												
CO2		3 3 2													
CO3		3	3	3		2	2								
CO4			3	3			2								
CO5		3 3 2													
3/2/1 indic	ates	Stren	gth of (	Correlatio	on 3-	High, 2	- Mediu	ım, 1-L	ow			_			
\$	Cale	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					





## University with Graded Autonomy Status Perivar E.V.R. Salai, Madurayoval, Chennai – 95

Subject Code:	Subject Name :	Ty/Lb/ET	L	T/	P/R	C
BAE20E20	CONTROL ENGINEERING	L		SLr		
	Prerequisite:Mathematics I,II &III.	Ty	3	0/0	0/0	3

#### UNIT I INTRODUCTION

9

Historical review, Simple pneumatic, hydraulic and thermal systems, Series and parallel system, Analogies, mechanical and electrical components, Development of flight control systems.

#### UNIT II OPEN AND CLOSED LOOP SYSTEMS

9

Feedback control systems - Control system components - Block diagram representation of control systems, Reduction of block diagrams, Signal flow graphs, Output to input ratios.

#### UNIT III CHARACTERISTIC EQUATION AND FUNCTIONS

9

Laplace transformation, Response of systems to different inputs viz., Step impulse, pulse, parabolic and sinusoidal inputs, Time response of first and second order systems, steady state errors and error constants of unity feedback circuit.

#### UNIT IV CONCEPT OF STABILITY

9

Necessary and sufficient conditions, Routh-Hurwitz criteria of stability, Root locus and Bode techniques, Concept and construction, frequency response.

#### UNITY SAMPLED DATA SYSTEMS

Q

Z-Transforms Introduction to digital control system, Digital Controllers and Digital PID controllers

Total No. of Periods: 45

#### **TEXT BOOKS:**

- 1. OGATO, Modern Control Engineering, Prentice-Hall of India Pvt. Ltd., New Delhi, 1998.
- 2. Azzo, J.J.D. and C.H. Houpis Feed back control system analysis and synthesis, McGraw-Hill international3rs Edition, 1998.

#### REFERENCES:

- 1. Kuo, B.C. "Automatic control systems", Prentice-Hall of India Pvt. Ltd., New Delhi, 1998.
- 2. Houpis, C.H. and Lamont, G.B. "Digital control Systems", McGraw Hill Book co., New York, U.S.A. 1995.
- 3. Naresh KSinha, "Control Systems", New Age International Publishers, New Delhi, 1998.

C. B. Palauride

REGISTRAR
Dr. M.G.R.

EDUCATIONAL AND RESEARCH INSTITUTE
(Deemed to be University)
Periyar E.V.R. High Road,
Maduravoyal, Chennai 600 095

Registrar Office
Periyar E.V.R.
High Road
Chennai-95
Registrar Office
Periyar E.V.R.
Maduravoyal
Chennai-95

