

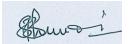
Dr. M.G.R Educational and Research Institute

Department of EEE

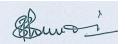
B. Tech - Bio Medical Instrumentation Engineering

Curriculum – 2018 Regulation BMI

	ELECTIVE -I											
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С					
1	BBI18E01	Bio Control System	Ту	3	0/0	0/0	3					
2	BBI18E02	Rehabilitation Engineering	Ту	3	0/0	0/0	3					
3	BBI18E03	Biomaterials and Implantable Devices	Ту	3	0/0	0/0	3					
4	BEI18E05	Embedded System	Ту	3	0/0	0/0	3					


		ELECTIVE -II					
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С
1	BBI18E04	Laser and Ultrasonic Application in Medicine	Ту	3	0/0	0/0	3
2	BBI18E05	Computer based Medical Instrumentation	Ту	3	0/0	0/0	3
3	BBI18E06	Biomedical MEMS and Nano Technology	Ту	3	0/0	0/0	3
4	BBI18E07	Computer Networks	Ту	3	0/0	0/0	3

		ELECTIVE –III					
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С
1	BBI18E08	Neuroscience for Biomedical Applications	Ту	3	0/0	0/0	3
2	BBI18E09	Biological Effects of Radiation	Ту	3	0/0	0/0	3
3	BBI18E10	Drug Delivery Systems	Ту	3	0/0	0/0	3
4	BEI18E12	Artificial Intelligence and Expert Systems	Ту	3	0/0	0/0	3

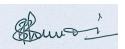

C. B. Palanivel

REGISTRAR Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) Periyar E.V.R. High Road, Maduravoyal, Chennai 600 095

()	Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE	A NAAC
A DESCRIPTION OF A DESC	DEEMED TO BE UNIVERSITY	
	(An ISO 9001 : 2015 Certified Institution)	
	University with Graded Autonomy Status	

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu. India. **ELECTIVE –IV** Ty/ SUBJECT **T**/ S.NO. P/R **SUBJECT NAME** Lb/ L С CODE SLr ETL Ту BBI18E11 Medical Informatics 3 0/0 0/0 3 1 3 0/0 0/0 3 2 BEI18E16 Principles of Robotics Ty Biomedical Signal processing 3 0/0 3 3 0/0 BBI18E12 Ту 4 **Bio-Materials and Artificial Organs** BBI18E13 Ty 3 0/0 0/0 3 **ELECTIVE –V** Ty/ **SUBJECT T**/ S.NO. P/R С **SUBJECT NAME** Lb/ L CODE SLr ETL Recent Advances Applied to Hospital Ту 1 BBI18E14 3 0/0 0/0 3 Engineering Hospital Management 2 3 0/0 0/0 BBI18E15 Ty 3 System Theory Applied to Biomedical BBI18E16 3 Ту 3 0/0 0/0 3 Engineering 4 BBI18E17 Special Transducer and Instrumentation Ty 3 0/0 0/0 3

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE DEEMED TO BE UNIVERSITY	A MAAC
 (An ISO 9001 : 2015 Certified Institution)	
University with Graded Autonomy Status	


University with Graded Autonomy Status Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu. India.

		OPEN ELECTIVE					
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С
1	BEE18OE1	Electrical Safety for Engineers	Ту	3	0/0	0/0	3
2	BEE18OE2	Energy Conservation Techniques	Ту	3	0/0	0/0	3
3	BEE18OE3	Electric Vehicle Technology	Ту	3	0/0	0/0	3
4	BEE18OE4	Biomedical Instrumentation	Ту	3	0/0	0/0	3
5	BEE18OE5	Introduction to Power Electronics	Ту	3	0/0	0/0	3
6	BEE18OE6	Industrial Instrumentation	Ту	3	0/0	0/0	3
7	BEE18OE7	Solar Energy Conversion System	Ту	3	0/0	0/0	3
8	BEE18OE8	Wind Energy Conversion System	Ту	3	0/0	0/0	3
9	BEE18OE9	Energy Storage Technology	Ту	3	0/0	0/0	3
		OPEN LAB					
1	BEE18OL1	Transducer LAB	Lb	0	0/0	3/0	1
2	BEE18OL2	PLC and SCADA LAB	Lb	0	0/0	3/0	1
3	BEE18OL3	Electrical Maintenance LAB	Lb	0	0/0	3/0	1
4	BEE18OL4	Power Electronics LAB	Lb	0	0/0	3/0	1
5	BEE18OL5	Bio Medical Instrumentation LAB	Lb	0	0/0	3/0	1

Subject Code	. 6	hin of Ne	DIC		High Road, Ma			lnadu. India.	TX /	T	Τ /	P/R	C	
Subject Code BBI18E01	: Su	Dject Ina	ame : BIC	CON	KOL S	YSIEN	1		TY / LB/	L	T / S.Lr	P/ K	С	
DDIIOEUI									LD/ ETL		5.Lr			
	Dr	oroquici	te: None							3	0/0	0/0	3	
L : Lecture T :		_		ad Loor	ning D.	Drojact	D · Dog	ooroh (3	0/0	0/0	3	
T/L/ETL : The						Tiojeet	K . Kes	caren c	. Cicuits					
OBJECTIVE		/ Linoed		y und E	uo									
		ong foun	dation in	hasic sci	ience an	d mathe	matics n	ecessar	y to formul	ate solv	ve and ana	alvze co	ntrol	
·		tation pr			lence un	a matrici	inuties ii	ceebbar	y to ronna	ute, 501	ve une une	uy20 00	muor	
		-	strument	ation pro	oblems									
			l instrume			s								
	•				•		matrix	theory	probability	theory	etc			
		· ·	ledge of i	-		•		•	· ·	theory	ete			
COURSE OU	<u> </u>		<u> </u>		mation	systems		i uppite	autons					
CO1					tion in b	asic scie	nce and	mather	natics nece	essarv to	o formulat	e. solve	and	
			ontrol and							soury to	. 1011114141			
CO2		2				1		ems						
CO3					nd instrumentation problems									
CO4		Understands and applies differential equation, integrals, matrix theory, probability theoryetc												
CO5									ems and the			,		
Mapping of C			U		U			2		11				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	
CO1	Μ	Н	Μ	Н	Μ	L	L	Μ	Н	L	Н	ľ	М	
CO2	Μ	Н	L	Μ	Н	L	Μ	Н	L	Μ	Н	ľ	М	
CO3	Η	Μ	L	Η	Μ	L	Н	Μ	L	H	Μ]	L	
CO4	Μ	Н	Μ	L	Μ	Н	L	Μ	H	L	Μ]	H	
CO5	Μ	Н	L	Μ	H	L	Μ	H	L	Μ	Н]	L	
COs / PSOs	PS	501	PSC	02	PS	603	PSO4		PSO5					
CO1	I	М	Н	[L	1	М	H					
CO2]	H	Μ	[]	L]	H	Μ					
CO3		М	H	[N	N]	H	L					
CO4		H	M			L		М	Μ					
CO5		H	Μ			L		М	Н					
H/M/L indicat	es Stren	gth of C	orrelation	H- Hi	igh, M- l	Medium	, L-Low			1				
								kill						
			IL					I S						
		ses	ocia					iica						
		enc	Š		es		ct	chn						
	es	Sci	pu	e	ctiv	es	oje	Tec						
	enc	ng	es se	Cor	Elec	ctiv	Pr	/ S(~					
~	Scit	eri	nitié es	m (mI	Elec	al /	hip	cills					
		e	ŭ H	a	ra	1 H	ic	su	St		1			
Or	ic	19.	ñ ñ	50	bh		5	<u> </u>						
tegory	3 asic	Engin	Juma	rogi	rog	Dpei	ract	nter	oft					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives ✓	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					

BBI18E01 BIO CONTROL SYSTEM 3 0/0 0/0 3

UNIT I CONTROL SYSTEM MODELING

System concept- Differential Equations- Transfer functions- modeling of electrical systems- Translational and rotational mechanical systems-physiological systems- block diagram modeling- signal flow graphs

UNIT II TIME RESPONSE ANALYSIS

Time domain specifications - step and Impulse response analysis of first order and second order systemssteady state errors- Root locus techniques- construction of root locus- dominant poles- applications of Root locus diagram

UNIT III FREQUENCY RESPONSE & STABILITY ANALYSIS

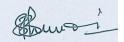
Frequency response- Bode plot-Nyquist plots- Nyquist stability criterion- Relative stability- Gain marginphase margin- bandwidth magnitude plots- constant circles- Nichol's chart –stability –Routh-Hurwitz criteria

UNIT IV PHYSIOLOGICAL CONTROL SYSTEMS

Introduction to physiological control systems- modeling of human movements- parameter estimationlinearizing

UNIT V STUDY OF BIOLOGICAL SYSTEMS

Human Thermal system- Neuro muscular system- Respiratory system- oculomotor system


Total No of Periods: 45

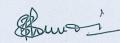
TEXT BOOKS:

- 1. M.Gopal, "Control Systems", Principles and Design, Tata McGraw-Hill, 1997
- 2. Benjamin. C.Kuo, "Automatic Control Systems", Prentice Hall of India, 1995

REFERENCE BOOKS:

1. Manfreclyner and John H.Milsum, "Bio Medical engineering system", McGraw-Hill and Co., New York, 1970

9


9

9

9

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu. India Subject Code: Subject Name : REHABILITATION ENGINEERING TY/ L Τ/ **P/ R** С **BBI18E02** LB/ S.Lr ETL **Prerequisite:** None Т 3 0/0 0/0 3 L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab **OBJECTIVE :** To study basics of Rehabilitation Engineering • To learn the design of Wheel Chairs • To gain knowledge of the recent developments in the field of rehabilitation engineering. • • To understand various assistive technology for vision and hearing To study various orthotic and prosthetic devices • COURSE OUTCOMES (COs) : (3-5) Understands the basics of Rehabilitation Engineering **CO1 CO2** Capable to design Wheel Chairs Understands the recent developments in the field of rehabilitation engineering **CO3 CO4** Acquires various assistive technology for vision and hearing Analysis various orthotic and prosthetic devices **CO5** Mapping of Course Outcomes with Program Outcomes (POs) COs/POs PO3 **PO4 PO5 PO7 PO8 PO9 PO10 PO11 PO12 PO1 PO2 PO6 CO1** Μ L Μ Η L Μ Η L Μ Η Η Η **CO2** Μ Μ L Η L Μ Η Η Μ L Η Μ **CO3** Η Μ Η Μ Μ Η Μ Η Μ L Η L **CO4** L Η Μ L Η Μ Η L L Η Μ Η **CO5** М Η L Η Μ Η Η Μ L L Μ L COs / PSOs **PSO1** PSO2 PSO3 PSO4 PSO5 **CO1** Μ Η Μ Η L **CO2** Η Μ L Η Μ **CO3** Η L Μ Η L **CO4** L Μ Μ L Μ H Η **CO5** М L Μ H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low Internships / Technical Skill Social **Engineering Sciences** Program Electives Practical / Project Humanities and **Open Electives Basic Sciences** Program Core Soft Skills Sciences Category

BBI18E02

UNIT I REHABILITATION TECHNOLOGY

Selection -design and manufacturing of augmentive- assistive devices appropriate for individual with disability

UNIT II REHABILITATION SCIENCE

Knowledge about the basic and clinical research - the variation in the physiological functioning - anatomical structure

UNIT III REHABILITATION ADVOCACY

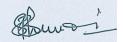
Legal aspect helps the handicapped people in choosing the devices -the provisions available to them in this regard

UNIT IV REHABILITATION MEDICINE

Physiological aspects of functional recovery -neurological and physiological aspects -rehabilitation therapies training to restore vision auditory and speech

UNIT V REHABILITATION ENGINEERING

Introduction to Rehabilitation Engineering - PHAATE model - Clinical practice of rehabilitation Engineering - Low technology tools - Service delivery - Universal design - Design based on human ability - Standards for assistive technology - Test for best design


Total No of Periods: 45

TEXT BOOKS:

1. Reswick.J., "What is Rehabilitation Engineering?, Annual Review of rehabilitation", volume 2 springer – verlag, New York, 1982

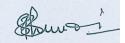
REFERENCE BOOKS:

1. Robinsion.C.J, "Rehabilitation Engineering Handbook of electrical engineering", CRC Press, Bocaraton, 1993

9

9

9


9

3

0/0

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu. India **Subject Code:** Subject Name : BIOMATERIALS AND TY/ L Τ/ **P/ R** С **BBI18E03 IMPLANTABLE DEVICES** LB/ S.Lr ETL Prerequisite: BIOMEDICAL INSTRUMENTATION Т 3 0/0 0/0 3 L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab **OBJECTIVE :** Learn characteristics and classification of Biomaterials • Understand different metals and ceramics used as biomaterials • Learn polymeric materials and combinations that could be used as a tissue replacement implants • Know the various artificial organs developed using these materials to perform medical application. COURSE OUTCOMES (COs) : (3-5) Analyze different types of Biomaterials and its classification. **CO1 CO2** Perform combinations of materials that could be used as a tissue replacement implant. **CO3** Know about the various polymeric materials used for medical applications **CO4** About bio-ceramics and its applications in medicine CO5 The graduate will be capable to perform medical application. Mapping of Course Outcomes with Program Outcomes (POs) COs/POs **PO2 PO4 PO7 PO8 PO9 PO10 PO11 PO12 PO1** PO3 **PO5 PO6 CO1** Μ Η Μ Н Μ L Η Μ Η L L Μ **CO2** Μ Η Η Μ L Η Μ Η Μ L Μ L **CO3** Η Η Η Μ H Μ Н L Η Μ Η Μ **CO4** Η Η Μ L Η Μ L Η Μ L Н Μ **CO5** Μ Η Μ L Η Μ L Η Μ L Н Μ COs / PSOs **PSO1** PSO₂ PSO3 **PSO4** PSO5 L **CO1** Μ Η Μ Η **CO2** Η Μ Η Μ L **CO3** Μ Μ L Н Μ **CO4** Η Η L Μ L **CO5** Μ H Μ L Μ H/M/L indicates Strength of Correlation H-High, M-Medium, L-Low Internships / Technical Skill Humanities and Social **Engineering Sciences** Program Electives Practical / Project **Open Electives Basic Sciences** Program Core Soft Skills Sciences Category

BIOMATERIALS AND IMPLANTABLE DEVICES

BBI18E03

UNIT I BIOCOMPATIBILITY AND HEMOCOMPATIBILITY

Overview of Biomaterials used as medical devices - Classification of biomaterials - Impact and future of biomaterials - performance of implants - Interfacial phenomena and tissue response to biomaterials - Metals and alloys for orthopedic implants- Stainless steel - Cobalt chromium alloy - Titanium and its alloys - Electro kinetic factors - Types of orthopedic fixation devices – pins - screws and plates - IM nails and spinal

UNIT II BIOELECTRIC EFFECT

Wolff'slaw - Interface problems with artificial joints and various fixation methods - Failure of implantation materials- metallic corrosion - wear - metallic implant fractures and their impact on biological systems - Hard tissue replacements- total hip and knee joint replacements

UNIT III POLYMERS IN BIOMEDICAL USE

Hydrogels- silicone rubber- biodegradable polymers- microorganisms in polymeric implants and polymer sterilization-Biopolymers- Synthetic polymers- Composites- Types and Applications- Contraceptive devices

UNIT IV ORTHOPAEDIC IMPLANTS

Ophthalmology - introduction - contact lenses - eye shields and artificial tears- Biological Tests-Material surface characterization – Corrosion- Standards on biomaterials

UNIT V BIOCERAMICS, TYPES

Bioactive- resorbable - non-resorbable -Stoichiometry and Ca/P ratio of various forms calcium phosphates -bio ceramic coatings on metallic implants and bone bonding reactions on implantation - Hydroxyapatite properties and applications - Bone cements and bio glasses- Dental implants – materials - types and designs Total No of Periods: 45

TEXT BOOKS:

- 1. Sujata V Bhat., "Biomaterials", Narosa Publishing House, New Delhi, 2002
- 2. A.F. Von Recum, "Handbook of Biomaterials Evaluation Scientific, Technical and Clinical Testing of Implant Materials", 2nd Edn., Taylor & Francis, Philadelphia, 1999
- F. Silver and C. Dillon, "Biocompatibility: Interactions of Biological and Implantable Materials" Vol.1, VCH Publishers, New York, 1989.
 Park. J.B. "Biomaterials: An Introduction", CBS Publishers, 2007

REFERENCE BOOKS:

- 1. L.L. Hench and E.C. Ethridge "Biomaterials: An Interfacial Approach", Academic press, New York, 1982.
- 2. F.H. Silver, "Biomaterials, Medical Devices and Tissue Engineering: An Intergrated Approach", 1st Editionn, Chapman & Hall, London, 1994
- 3. Buddy Ratner etal., "Biomaterials Science An Introduction to Materials in Medicine", Academic Press, San Diego, 2004

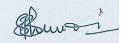
9

9

9

3

0/0


0/0

3

9

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu. India Subject Name : EMBEDDED SYSTEM **Subject Code:** TY/ L Τ/ **P/ R** С S.Lr **BEI18E05** LB/ ETL **Prerequisite: ADVANCEMENT IN ELECTRONICS** Т 3 0/0 0/0 3 L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab **OBJECTIVE :** The brief view of real time and embedded system. ٠ The graduates can understand the embedded system components and interface. • Detailed overview about embedded system design and development. • • Analysis of real time system performance, language and their features. The case studies of safety, aerospace, automobile, medical and industrial application. • COURSE OUTCOMES (COs) : (3-5) Capable to get brief view of real time and embedded system. **CO1 CO2** Understands embedded system components and interface. **CO3** The graduates understand embedded system design and development. **CO4** The graduates Analysisof real time system performance, language and their features **CO5** The graduate will be capable to perform case study on safety, aerospace, automobile, medical and industrial application. Mapping of Course Outcomes with Program Outcomes (POs) COs/POs **PO1 PO2** PO3 PO4 **PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1** Μ Η Μ Η Μ L Η Μ Η L L Μ **CO2** Μ Μ Η Μ L Η Μ L Η Μ L Η **CO3** Η Η Μ Μ Η Η Μ Η Η L Η Μ **CO4** Η Η Μ L Η Μ L Η Μ L Η Μ **CO5** Η Μ Η М L Η Μ Η Μ Μ L L COs / PSOs PSO1 PSO2 PSO3 PSO4 PSO5 **CO1** Μ Η Μ Η L **CO2** Η Μ Η Μ L **CO3** Μ Μ L Η Μ **CO4** Н Μ Н L L **CO5** L Μ Μ Η Μ H/M/L indicates Strength of Correlation H-High, M-Medium, L-Low Internships / Technical Skill Social **Engineering Sciences** Program Electives Practical / Project Humanities and **Open Electives Basic Sciences** Program Core Soft Skills Sciences Category

UNIT I **INTRODUCTION TO EMBEDDED SYSTEMS**

Brief overview of real time systems and embedded systems - Classification of embedded systems -Embedded system definitions - Functional and non-functional requirements - Architectures and standards - Typical applications

UNIT II EMBEDDED SYSTEM COMPONENTS AND INTERFACE

Device choices - Selection criteria and characteristics of Processors and memory systems for embedded applications - Interface and Peripherals - Power sources and management

UNIT III EMBEDDED SYSTEM DESIGN AND DEVELOPMENT

Design methods and techniques - Classification of need - Need analysis -Requirement and specification -Conceptual design - Models and languages - State machine model - State machine tables - Verification -Validation - Simulation and emulation

UNIT IV **REAL TIME SYSTEMS AND MODELS**

Characteristics and classification of real time systems - Real time specifications and Design techniques -Event based - Process based and graph-based models - Real time kernel - Hierarchy services and design strategy - Real time system performance and analysis - Typical real time systems - Their languages and features

UNIT V **CASE STUDIES**

Case studies of safety-critical - time-critical embedded systems with reference to Aerospace- automobile -Medical and Industrial applications.

Total No of Periods: 45

TEXT BOOKS:

BEI18E05

- 1. Noergaard, T., "Embedded Systems Architecture: A Comprehensive Guide for Engineers and Programmers", Elsevier Publications, 2005
- 2. Berger, A.S., "Embedded System Design: An Introduction to Process, Tools and Techniques", CMP Books, 2002

REFERENCE BOOKS:

- 1. David, S., "An Embedded Software Primer", Addison-Wesley, 1999
- 2. Liv, J.W.S., "Real-Time Systems", Pearson Education, 2001
- 3. Vahid and Givargis, T., "Embedded System Design: A Unified Hardware/ Software Introduction",
- 1. John Wiley and Sons, 2002
- 4. Peatman, J.B., "Design with Microcontrollers", McGraw-Hill International Ltd., Singapore, 1989
- 5. Kang, C.M.K., and Shin, G., "Real Time Systems", McGraw Hill, 1997

3

0/0

0/0

EMBEDDED SYSTEM

9

9

3

9

9

Ð	Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE DEEMED TO BE UNIVERSITY	A A A A
	(An ISO 9001 : 2015 Certified Institution)	
	University with Graded Autonomy Status	

Subject Code: BBI18E04 Subject Name : LASER AND ULTRASONIC APPLICATION IN MEDICINE TY / LB / LB / S.Lr T / P/ R BI18E04 APPLICATION IN MEDICINE LB / ETL S.Lr No. Prerequisite: None T 3 0/0 0/0 L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab Volume Volume OBJECTIVE : • • To Study About Ultrasonic • • • To Study About Ultrasonic Scanners • To Study About High Energy Ultrasonic • • • To Gain Knowledge of Holographic Application InMedicine • • • • COURSE OUTCOMES (COs) : (3- 5) • • • • • CO2 Graduate acquires knowledge on Ultrasonic • • • •	C 3
ETL T 3 0/0 0/0 L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab OBJECTIVE : • To Gain Knowledge of Laser • To Study About Ultrasonic • To Study About Ultrasonic Scanners • To Gain Knowledge of Holographic Application InMedicine COURSE OUTCOMES (COs) : (3- 5) CO1 Acquires Knowledge of Laser	3
Prerequisite: NoneT30/00/0L : Lecture T : TutorialSLr : Supervised Learning P : Project R : Research C: CreditsT/L/ETL : Theory/Lab/Embedded Theory and LabOBJECTIVE :• To Gain Knowledge of Laser• To Study About Ultrasonic• To Learn About Ultrasonic Scanners• To Study About High Energy Ultrasonic• To Gain Knowledge of Holographic Application InMedicineCOURSE OUTCOMES (COs) : (3-5)CO1CO1	3
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab OBJECTIVE : • To Gain Knowledge of Laser • To Study About Ultrasonic • To Learn About Ultrasonic Scanners • To Study About High Energy Ultrasonic • To Gain Knowledge of Holographic Application InMedicine COURSE OUTCOMES (COs) : (3-5) CO1 Acquires Knowledge of Laser	
T/L/ETL : Theory/Lab/Embedded Theory and Lab OBJECTIVE : • To Gain Knowledge of Laser • To Study About Ultrasonic • To Learn About Ultrasonic Scanners • To Study About High Energy Ultrasonic • To Gain Knowledge of Holographic Application InMedicine COURSE OUTCOMES (COs) : (3- 5) CO1 Acquires Knowledge of Laser	
OBJECTIVE : • To Gain Knowledge of Laser • To Study About Ultrasonic • To Learn About Ultrasonic Scanners • To Study About High Energy Ultrasonic • To Gain Knowledge of Holographic Application InMedicine COURSE OUTCOMES (COs) : (3- 5) CO1 Acquires Knowledge of Laser	
 To Gain Knowledge of Laser To Study About Ultrasonic To Learn About Ultrasonic Scanners To Study About High Energy Ultrasonic To Gain Knowledge of Holographic Application InMedicine COURSE OUTCOMES (COs) : (3-5) CO1 Acquires Knowledge of Laser	
 To Study About Ultrasonic To Learn About Ultrasonic Scanners To Study About High Energy Ultrasonic To Gain Knowledge of Holographic Application InMedicine COURSE OUTCOMES (COs) : (3-5) CO1 Acquires Knowledge of Laser	
 To Learn About Ultrasonic Scanners To Study About High Energy Ultrasonic To Gain Knowledge of Holographic Application InMedicine COURSE OUTCOMES (COs) : (3-5) CO1 Acquires Knowledge of Laser	
 To Study About High Energy Ultrasonic To Gain Knowledge of Holographic Application InMedicine COURSE OUTCOMES (COs) : (3-5) CO1 Acquires Knowledge of Laser 	
To Gain Knowledge of Holographic Application InMedicine COURSE OUTCOMES (COs) : (3- 5) CO1 Acquires Knowledge of Laser	
COURSE OUTCOMES (COs) : (3- 5) CO1 Acquires Knowledge of Laser	
CO1 Acquires Knowledge of Laser	
CO2 Graduate acquires knowledge on Ultrasonic	
CO3 Capable to analyze Ultrasonic Scanners	
CO4 Understands High Energy Ultrasonic	
CO5 Acquires knowledge on Holographic Application InMedicine	
Mapping of Course Outcomes with Program Outcomes (POs)	
COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO2	12
CO1 M H M L M H M L H M L M	Ν
CO2 H M L M H L M L H M L M	Ν
CO3 L M H L M H L M H L M I	H
CO4 H M L M H L M H L M H I	H
CO5 M L H H M L H M L M H M	Μ
COs/PSOs PSO1 PSO2 PSO3 PSO4 PSO5	
CO1 M H L M H	
CO2 M L H M L	
CO3 H M L M H	
CO4 M H L M H	
CO5 L M H M L	
H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low	
Social Social Social Structures	
ect ect ive d b	
ategory Basic Sciences Engineering Sciences Humanities and Social Sciences Program Electives Program Electives Program Electives Dpen Electives Protical / Project Internships / Technical Skill Soft Skills	
ategory Basic Scie Engineerin Program C Program E Program E Internships Soft Skills	
ategory Basic Sci Engineer Program Program Internshi Soft Skil	
Category Basic S Enginee Enginee Prograr Nopen E Soft Sk	
\circ	

BBI18E04 LASER AND ULTRASONIC APPLICATION IN 3 0/0 0/0 3 MEDICINE

UNIT I LASER

Principles of Laser action -different types and of lasers and its operation -Applications of Laser in Biology -Dentistry, Ophthalmology –Dermatology –Medicine –Surgery -Interferometer Applications -Fluorescence studies in cancer Diagnosis -Laser in Genetic Engineering -Low power applications in Medicine

UNIT II ULTRASONICS

Different Modes of Display - A, B, C -scanning Techniques -Absorption in biological Tissues - Measurement of Ultrasonic Energy -Construction of Ultrasonic probe -Ultrasonic Imaging in Abdomen – Breast –Heart –Chest –Eye –Kidney –Skull -Pulsatile Motion -Pregnant and non-Pregnant uterus

UNIT III ULTRASONIC SCANNERS

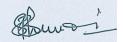
Real Time Echo -2-D Scanners -Colour Doppler

UNIT IV HIGH ENERGY ULTRASONICS

Effects due to High energy ultrasonics applications in Surgery -Cell destruction -Cleaners

UNIT V HOLOGRAPHIC APPLICATION IN MEDCINE

Wave front Recording and Reconstruction -Recording Media -Image forming application -Motion Induced Constrast -correlation filtering -Holograms using Ultrasonic signals and Hologram using Lasers


Total No of Periods: 45

TEXT BOOKS:

- 1. Leon Goldman, M.D., and R. Jamies Rockwell, Jr., "Lasers in medicine Gordon and breach", science publishers Inc., New York, 1971
- 2. Brown Y.H.V. and Dickson J.F. (Eds), "Advances in Bio Medical Engineering", Volume II and V, Academic press, London, 1972
- 3. Georg W. Stroke, Kock W.E., "Ultrasonic Imaging and Holography", plenum press, New York, 1974

REFERENCE BOOKS:

- 1. Mertellucci S. Sand Chester A.N., "Laser Photo biology and photo medicine", plenum press, New York, 1989.
- 2. Wolbarsht M.L., "Laser Application in Medicine and Biology", Plenum press, New York, 1989

9

9

9

9

()	Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE	A NAAC
Allowed to south	DEEMED TO BE UNIVERSITY	
2 4	(An ISO 9001 : 2015 Certified Institution)	
	University with Graded Autonomy Status	
	Perivar E.V.R. High Road. Maduravoval. Chennai-95. Tamilnadu. India.	

						duravoyal, Che		nadu. India.					
Subject Code			ame :COI		R BASI	ED ME	DICAL		TY /	L	Τ/	P/ R	С
BBI18E05	IN	STRUM	ENTATI	ON					LB/		S.Lr		
									ETL				
		-	te: BIOM						Т	3	0/0	0/0	3
L : Lecture T :					0	Project	R : Res	earch C	: Credits				
T/L/ETL : The		o/Embed	ded Theor	y and L	ab								
OBJECTIVE	:												
To Ga	in Knov	vledge of	n Introduc	tion of (Compute	er Based	Medica	l Instru	mentation				
To Stu	idy Abo	ut the M	icrocontro	ollers									
To Lea	arn Abo	out the Sy	stem Des	ign									
To Ga	in Knov	vledge of	n Comput	ers in Pa	tient Mo	onitoring	g						
		•	al Equipr										
COURSE OU													
CO1					troducti	on of C	omputer	Based	Medical In	strumen	tation		
CO2			o analyze										
CO3		1	o analyze										
CO4		Capable to acquire Knowledge On Computers In Patient Monitoring											
CO5			Knowledg						01111011118				
Mapping of C				,		<u> </u>							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO3/1 O3	M	H	M	L	M	H	L	M	H	L	M		H
CO2	H	M	L	M	H	L	M	H	L	M	H		A I
CO2 CO3	H	M		M	H	L	M	H		M	H		/1 [.
CO4	L	M		M	L	H	M	L	M	H			<u>Г</u> И
C04 C05		M	H H	L	M	M	L	M		H			Л
05	L	IVI	п	L	IVI	IVI	L	IVI	L	п		I	VI.
COs / PSOs	D	501	PSC	22	DC	03	DG	504	PSO5				
	-					PSO3		PSO4					
<u>CO1</u>		M	H					<u>M</u> M					
CO2		H	M						H				
<u>CO3</u>			M			H		L	M				
<u>CO4</u>		M	H		I			M	H			_	
CO5		$\frac{M}{1-6C}$						L	Μ				
H/M/L indicat	es Stren	igth of C	orrelation	H- H1	gh, M- I	Viedium	, L-Low	II		1		-	
								ikil					
			al					al S					
		ces	Social					nica					
		en	Ň		/es		çt	chr					
	es	Sci	pun	ø	ctiv	es	oje	Te					
	enc	в ц	SS S	Cor	Ele	Stiv	Pr	/ S					
~	cie	eri	liti6 es	n (nH	llec	al /	hip	ills				
ory		ine	nan ince	graı	graı	n F	tic	rns	SI				
Category	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Ski	Soft Skills				
Ca	Щ	<u> Ш</u>	N N	_д_				I	S		-		
_		1			•	1	1	1		1	1	1	

3

9

9

8086 Architecture - system connections and timing - Instruction set and assembly language programming - Macro assemblers - BIOS and DOS Services - memory and I/O interfacing - Advanced Intel 32 bit processors

UNIT II **MICROCONTROLLERS**

INTRODUCTION

Introduction - 8051 architecture and programming - micro controller based medical systems - TMS 320 series - architecture and programming - applications in bio-signal processing - IDE51 - C Cross Assemblers

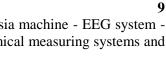
UNIT III SYSTEM DESIGN

Multichannel computerized ECG.EMG and EEG data acquisition - storage -analysis - retrieval techniques - Medical image acquisitions through video - card - storage and retrieval techniques - Moderns and computer networking in the hospital

UNIT IV **COMPUTERS IN PATIENT MONITORING**

Physiological monitoring - automated intensive care units - computerized arrhythmia monitoring information flow in a clinical lab - computerized concepts - interfacing to HIS

UNIT V MEDICAL EQUIPMENTS SYSTEM


Microprocessor based medical system - pulmonary instrumentation - anesthesia machine - EEG system microprocessor based blood pressure monitor - prosthetic systems - bio- chemical measuring systems and microprocessor based medical devices - Radiological Information system.

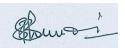
TEXT BOOKS:

1. Kenneth J. Ayala, "The 8051 Micro Controller - Architecture Programming and Applications", Second Edition, Penram International, 1996

REFERENCE BOOKS:

1. Douglas V. Hall, "Microprocessors and Interfacing: Programming and hardware", Mcgrase Hill, Singapore, 1999

Total No of Periods: 45


BBI18E05

UNIT I

9

Subject Code BBI18E06		•	ame :BIO CHNOL(CAL MI	EMS AN	ND		TY / LB/ ETL	L	T / S.Lr	P/R	C
		rerequisi EVICES	te: BIOM	IATER	ALS &	IMPL	ANTAB	LE	Т	3	0/0	0/0	3
L : Lecture T :				ed Learr	ing P:	Project	R : Res	earch C	Credits	1 1			<u> </u>
T/L/ETL : The						5							
OBJECTIVE	:												
• To uno	derstan	d the wor	king princ	ciple of l	MEMS a	and Mic	rosysten	ns					
• To uno	derstan	d the wor	king of M	IOEMS '	Technol	ogy							
• To uno	derstan	d the con	cepts of B	ioMEM	S and its	s applica	ation in l	healthca	re				
 To giv 	ve an in	sight to th	ne DNA b	ased Bio	MEMS								
To stu	dy abo	ut the bio	medical N	Janotech	nology	and its a	pplication	on in res	earchdom	ain			
COURSE OU					0,								
CO1			ds the wo		inciple of	of MEM	S and M	licrosyst	ems				
CO2		understan	ds the wo	rking of	MOEM	S Techr	nology						
CO3		understan	ds the cor	ncepts of	BioME	MS and	its appl	ication i	n healthca	ire			
CO4		Acquires	knowledg	e on the	DNA b	ased Bio	MEMS						
CO5		Acquires	knowledg	e on the	biomed	ical Nar	notechno	ology an	d its applie	cation ir	research	domain	
Mapping of C									• •				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Μ	Н	L	L	Μ	Н	L	Μ	Н	L	Μ]	H
CO2	Н	Н	Н	L	L	Μ	Н	Μ	Н	L	Μ]	H
CO3	Μ	Н	L	Μ	Н	L	Μ	Н	L	Μ	Н]	L
CO4	Н	Μ	L	Μ	Н	L	Μ	Н	L	Μ	Н]	L
CO5	L	Μ	Н	L	Μ	Н	L	Μ	Н	L	Μ]	H
COs / PSOs	P	SO1	PSC	02	PSO3 PSO4			504	PSO5				
CO1		Μ	L	i	I	Н		L					
CO2		Μ	H	[]	Ĺ	I	М	H				
CO3		Н	H	[I	H	I	М	L				
CO4		Μ	H	[]	Ĺ	1	М	Н				
CO5		L	Ν	[Ν	Л		L	Μ				
H/M/L indicat	es Stre	ngth of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low	,					
			I					l Skill					
	ences	Engineering Sciences	Humanities and Social Sciences	Core	Electives	ctives	/ Project	Internships / Technical Skill	S				
Category	Basic Sciences	Engineeri	Humaniti Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internshil	Soft Skills				
•					✓								

BBI18E06

UNIT I MEMS

Introduction - Typical MEMS Products - Application of Micro-system in Healthcare Industry - Working Principles of Microsystems Microsensors - Microactuation - MEMS with actuation - Micro-accelerators and Microfluidics - Materials for MEMS and Microsystems

DEEMED TO BE UNIVERSITY (An ISO 9001 : 2015 Certified Institution) University with Graded Autonomy Status Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu. India.

BIOMEDICAL MEMS AND

NANOTECHNOLOGY

UNIT II MEMS and Microfluidics

DUCATIO

Fundamental principle - Light Modulators -Beam splitter - Micro-lens -Micro-mirrors - Digital Micromirror Device -Light detectors - Important Consideration on Micro-scale fluid -Properties of fluid - Fluid Actuation Methods - Micro-pumps - Typical Micro-fluidic Channel -Micro-fluid Dispenser

UNIT III BIOMEMS

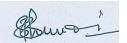
Introduction -Principle of Biosensor -Ampero-metric Biosensor - Micro-dialysis - BioMEMS for Clinical Monitoring - Monitoring of Glucose and Lactate with a micro-dialysis probe - Ammonia Monitoring - Electronic Nose -DNA Sensors

UNIT IV BIOMEMSAND DNA

Unique features of Nucleic Acids -Lab on the Chip –Electrophoresis -Polymerase Chain Reaction (PCR) -Biochemical reaction chains for integration: Biosensors and the "lab biochip" - Typical Microarray experiment -Manufacturing of Microarrays -Synthesis on the chip -Spotting Techniques - PCR on the chip -Microchamber Chips -Micro-fluidics Chips -Emerging BioMEMS Technology

UNIT V BIOMEDICAL NANOTECHNOLOGY

Nanoparticles- Nanomaterial characterization – XRD –SAXS –TEM –SEM -Scanning Tunneling microscopy –AFM -SPM technique -Biomolecular sensing for cancer diagnostics using carbon nanotubes -Carbon nanotube biosensors -Magnetic nanoparticles for MR Imaging -Nano-devices in biomedical applications


Total No of Periods: 45

TEXT BOOKS:

- 1. Steven S, Saliterman, "Fundamentals of BioMEMS and Medical Microdevices", International Society for Optical Engineering, First Edition 2006
- 2. NitaigourPremchandMahalik, "MEMS", Tata McGraw Hill, 2nd Reprint, 2008
- 3. Wanjun Wang and Steven A.Soper, "BioMEMS- Technologies and applications", CRC Press, First edition, 2007

REFERENCE BOOKS:

- 1. Tai-Ran Hsu, "MEMS and Microsystems- Design, Manufacture and NanoscaleEngineering", John Wiley and Sons, 2nd Edition, 2008
- 2. Gerald A Urban, "BioMEMS", Springer, First Edition, 2006
- 3. Abraham P. Lee and James L. Lee, "BioMEMS and BiomedicalNanotechnology", Volume I, Springer, First Edition, 2006
- 4. Paul C.H. Li, "Introduction to Microfluids and BioMEMS: A Design andProblem-Solving Textbook", CRC Press, First Edition, 2009
- 5. Hari Singh Nalwa, "Nanostructured Materials and Nanotechnology", Academic Press, First Edition 2002.

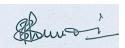
0/0 0/0

3

0/0

3

9


9

9

9

Subject Code BBI18E07			ame : CO	MPUTI	ER NET	WORK	S		TY / LB/ ETL	L	T / S.Lr	P/ R	C
			te: None						Т	3	0/0	0/0	3
L : Lecture T :						Project	R : Res	earch C	: Credits				
T/L/ETL : The		/Embed	ded Theor	ry and L	ab								
OBJECTIVE													
			ission me						ms				
To lea	rn about	t Multipl	exing clea	ar view l	SO - OS	SI layer	ed archit	ecture					
			relay ope		•								
To lea	rn about	t ATM n	etworks.	LAN top	ology, H	Ethernet	, Tokenł	ous					
To lea	rn about	t Token	ring, FDD	I, Wirel	ess LAN	1							
COURSE OU	тсом	ES (CO	s) : (3- 5)									
CO1	Т	o learn a	bout tran	smission	media,	data eno	coding, i	nterface	e and mode	ems, Mu	ltiplexing	2	
CO2			lear view										
CO3	Т	o learn a	bout Frar	nes relay	/ operati	on – lay	ers and	traffic c	ontrol; AT	M netw	orks		
CO4	Т	o clear v	view LAN	topolog	y, Ether	net ,Tok	en bus ,	Token r	ing, FDDl	,Wirele	ss LAN		
CO5	Т	o learn a	bout Tra	nsport la	yer issue	es, sessio	on layer.	, Synchr	onization	,Presenta	ation laye	er	
Mapping of C	Course (Jutcome	s with Pr	ogram (Outcom	es (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Μ	Μ	Μ	L	Н	L	Μ	Н	L	Μ	Н]	Ĺ
CO2	Μ	Н	L	Μ	Н	L	Μ	Η	L	Μ	Η]	L
CO3	Μ	Η	L	Μ	Н	L	Μ	Η	L	Μ	Н]	Ĺ
CO4	Μ	Н	L	Μ	L	Μ	Η	L	Μ	Н	L	Ν	N
CO5	Μ	Н	L	Μ	Н	L	Μ	Н	L	Μ	Н]	Ĺ
	DC		DC		DC	01	DC		PSO5				
COs / PSOs		01	PS			03	PS	504	PSO5				
CO1		M	H				-						
CO2								М	Н				
CO3		M	H	[Ι		I	M M	H H				
CO3]	H	N	[[I I		ת נ	M M H	H H L				
CO4		H L	N N	I I I	I I H	I	ת נ נ	M M H L	H H L M				
CO4 CO5		H L H	N N N	[[[[I I H	I I	ת נ ת	M M H	H H L				
CO4		H L H	N N N	[[[[I I H	I I	ת נ נ	M M H L M	H H L M				
CO4 CO5 H/M/L indicat	l l l es Stren	H L H gth of C	M M M N orrelation Social	I I I H-Hi	I I I gh, M- N	H Medium	I I I , L-Low	M M H L M	H H L M H				
CO4 CO5		H L H	N N N	[[[[I I H	I I	ת נ ת	M M H L	H H L M				

BBI18E07 COMPUTER NETWORKS 3 0/0 0/0 3

UNIT I DATA COMMUNICATION CONCEPTS

Transmission media - Data encoding - Interface and Modems - Multiplexing - Error detection and correction - Digital subscriber line - Circuit switching - Packet switching - Message switching.

UNIT II WIDE AREA NETWORKS

ISO - OSI layered architecture - Function of the layers - Data link protocols - HDLC - LAPB - LAPD - Inter networking devices - Repeaters - Bridges - Routers - Routing algorithms - Distance vector routing-link state routing - X.25 protocol - congestion control

UNIT III FRAME RELAY AND ATM NETWORKS

Frames relay operation - layers and traffic control - ATM networks - Architecture switching - layers service classes

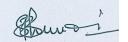
UNIT IV LOCAL AREA NETWORK

LAN topology - Ethernet - Token bus - Token ring - FDDI - Wireless LAN - ATM LAN - IEEE 802 Medium access control layer standard - Random access protocols - ALOHA - Slotted ALOHA

UNIT V OSI LAYERS

Transport layer issues - Session layer - Synchronization - Presentation layer - Encryption - decryption - Application layer - Message handling system - file transfer - virtual terminal - Email.

Total No of Periods: 45


1. William Stallings, "Data and Computer Communication", sixth edition, Pearson education Asia,

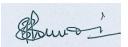
REFERENCE BOOKS:

2000

TEXT BOOKS:

- 1. Behrouz A, Forouzan, "Data Communication and Networking", second edition, Tata McGraw-Hill, 2000.
- 2. Fred Halsall, "Data Communication, Computer networks and Open Systems", Fourth edition, Addison Wesley, 1995
- 3. Andrew S.Tanenbaum, "Computer networks", Third edition, PHI, 1996

9


9

9

P	Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE DEEMED TO BE UNIVERSITY	A NAAC
Concession of the local division of the loca	(An ISO 9001 : 2015 Certified Institution)	
	University with Graded Autonomy Status	

					High Road, Ma		nnai-95. Tami						~
Subject Code			ne: NEUI	ROSCIE	ENCE F	OR BIG	OMEDI	CAL	TY/	L	T/	P/ R	C
BBI18E08	APP	LICAT	IONS						LB/		S.Lr		
	-	<u> </u>	/ N T						ETL		0.10	0.10	
			te: None	1.7	·	D	<u> </u>	1.0	T	3	0/0	0/0	3
L : Lecture T :						Project	R : Res	earch C	: Credits				
T/L/ETL : The		Embed	ded Theor	y and L	ab								
OBJECTIVE			C										
		-	m Concep		<i>.</i> .								
		•	n Transdu		ction								
	•	-	lance Con	-									
			lic Signal	-		. ~							
		<u> </u>	n Simulati		iologica	l System	IS						
COURSE OU													
CO1			nds Syster										
CO2			knowledg				n						
CO3			understan	<u> </u>		<u> </u>							
CO4			nds Period			back							
CO5			n of Biolo	<u> </u>									
Mapping of C								-	-			-	
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	
CO1	M	M	Μ	L	H	L	Μ	H	L	M	H		Ĺ
CO2	M	H	L	Μ	H	L	Μ	H	L	M	H		Ĺ
CO3	Μ	H	L	Μ	H	L	Μ	H	L	M	H		Ĺ
CO4	M	H	L	Μ	L	M	H	L	M	H	L		M
CO5	Μ	H	L	Μ	H	L	Μ	H	L	M	H]	Ĺ
COs / PSOs		01	PSC			03		504	PSO5				
CO1		Μ	H		I			M	H				
CO2		M	H			L		М	H				
CO3		H	M		I			H	L		_		
CO4		L	Μ			I		L	M				
CO5		H	M		I	_		М	H				
H/M/L indicat	es Stren	gth of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low			г			
								lkil					
			- Te					u S					
		ses	Social					nice					
		enc			es		ct	chr					
	SS	Sci	pu	e	ctiv	es	oje	Te					
	ince	38	ss a	OU	Ilec	itiv	\mathbf{Pr}	s /					
	cie	erii	itie 3S	n C	n F	llec	al /	hip	sllis				
ory	S	ine	nan nce	grai	grai	пE	tic	rnsl	Sk				
Category	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Cai	щ	Щ	ы Т		_₽			Iı	S				
		1	1	1		1	1	1		1			

BBI18E08 NEUROSCIENCE FOR BIOMEDICAL 3 0/0 0/03 **APPLICATIONS**

UNIT I INTRODUCTION TO NEUROSCIENCE

An overview of neuroscience - Applications of neuroscience - Neurons and Neuroglia - Neurotransmitters

UNIT II NERVOUS SYSTEM

Nervous system: central nervous system - peripheral nervous system - autonomic nervous system anatomical organization of the nervous system - functional organization of the nervous system - neuronsthe nerve cell - CSF

UNIT III ELECTRICAL PROPERTIES OF NERVOUS SYSTEM

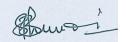
Electrolytes within our neurons - Ion channels - Local signaling - Signal propagation - Action potential -Synapse - Synaptic integration - Modulation of synaptic transmission - Nerve-Muscle interaction

UNIT IV NEURAL NETWORKS

Current flow in neurons - Introduction to electro diagnostic signals and their measurement - nerve conduction study - evoked potentials and EEG

UNIT V **CHALLENGES**

Neuroscience methods and techniques to understand the functions of nervous system - Pathology of Nervous system - Molecular and cellular mechanisms of Parkinson's - Huntington's - Stroke and Alzheimer's diseases


Total No of Periods: 45

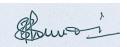
TEXT BOOKS:

- 1. Richard S Snell, "Clinical Neuro Anatomy", Lippincott Williams & Wikkins, 2006
- 2. W.F Ganang, "Review of Medical Physiology", Mc Graw Hill Professional, 21st Edition, 2003

REFERENCE BOOKS:

- 1. A Krishnamurti, "Notes on Nervous System", Janagam Offset Printers, 1999
- 2. Eric R Sandel, "Principles of Neural Science", Elsevier, 4th Edition, 2000

9


9

9

9

P	Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE DEEMED TO BE UNIVERSITY	NAAC
Address of Address	DEEMED TO DE ONTVEROTT	
	(An ISO 9001 : 2015 Certified Institution)	
	University with Graded Autonomy Status	

					. High Road, Ma		ennai-95. Tamil	lnadu. India.	-	<u>г г</u>			
Subject Code:			ame :BIO	LOGIC	CAL EF	FECTS	OF		TY/	L	Τ/	P/ R	С
BBI18E09	R	ADIATI	ON						LB/		S.Lr		
									ETL				
		-	te: MED						Т	3	0/0	0/0	3
L : Lecture T :					U	Project	R : Res	earch C	C: Credits				
T/L/ETL : The		b/Embed	ded Theor	ry and L	ab								
OBJECTIVE													
	•		nof Radia		•								
			tic Applic										
		•	n Genetic										
	•		of Microv		d RF Wi	th Matte	ers						
			n UV Rad										
COURSE OU													
CO1			nds Actior			U							
CO2			o analyze										
CO3			Knowledg										
CO4			nds Effect				Vith Ma	tters					
CO5			Knowledg	/									
Mapping of C						· · · · · · · · · · · · · · · · · · ·	i	-	1	-			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO	12
CO1	Μ	Η	Μ	L	Η	Μ	L	Μ	H	L	Μ	Η	
CO2	Μ	Η	L	Μ	Η	L	Μ	H	L	Μ	Η	L	
CO3	Η	Μ	L	Н	Μ	Η	Μ	Η	L	Μ	Η	L	
CO4	L	Μ	Η	L	Μ	Н	L	Μ	H	L	Μ	Η	
CO5	Η	Μ	L	Μ	H	L	Μ	Η	L	Μ	H	L	
COs / PSOs		SO1	PSC	02		03		SO4	PSO5				
CO1	Μ		H		L		Μ		H				
CO2	Η		Μ		Η		L		H				
CO3	L		Μ		Η		L		Μ				
CO4	Η		L		Μ		Н		Μ				
CO5	Μ		L		Η		L		Μ				
H/M/L indicate	es Strei	ngth of C	orrelation	H- Hi	igh, M- I	Medium	, L-Low		n	•			
								kill					
			П					I SI					
		es	Social					ica					
		enc	Sc		es		t	hh					
	SS	Sci	nd	a)	tiv	es)je(Tec					
	nce	ja ja	is a	Ort	llec	tiv	Pr(s / .					
	cie	enir	itie	n C	n E	lec	la /	1ip(ills				
ory	c S	nee	nan	rar	rar	лE	tic	lsu.	Sk				
Category	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Cat	В	Щ	ΣŇ	Ц Ц		0	Ц Ц	Ir	Ň				
•					✓					1			

BBI18E09BIOLOGICAL EFFECTS OF RADIATION30/00/0

UNIT I ACTION OF RADIATION ON LIVING CELLS

Various theories related to radiation at cellular level -DNA and chromosomal damages -experiments on computation of various parameters related to this radiation exposure

UNIT II SOMATIC APPLICATION OF RADIATION

Radio sensitivity protocols of different issues of human -LA\D 50/30 effective radiation on skin -bone marrow - eye -endocrine glands - basis of radiotherapy

UNIT III GENETIC EFFECTS OF RADIATION

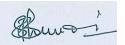
Thresholds and linear dose -gene control hereditary diseases -effect of dose and I Infleneceson genetic equilibrium

UNIT IV EFFECT OF MICROWAVE AND RF WITH MATTERS

Effects on various human organs and systems -wavelength in tissues -nonthermal interaction -low frequency radiation -measurement devices used to compute the thermal effects -standards of protection - national and international standards and precautions.

UNIT V UV RADIATION

Classification of sources-measurement -photo medicine -UV radiation safety Visibleand infrared radiation -combined effect of UV and IR -dose measuring instruments sed safety standards for this radiation


Total No of Periods: 45

TEXT BOOKS:

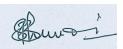
- 1. Glasser.O., "Medical Physics", vol I, II, III, The year book Publishers Iinc., Chicago, 1980
- 2. Baranski.S and Cherski.P, "Biological effects of microwave", Hutchison and Ross Inc., Stroudsburg, 1980

REFERENCE BOOKS:

1. Moselly.H., "non-ionizing Radiation", Adam-Hilgar, Bristol, 1988

9

9


9

9

3

					High Road, Ma		nnai-95. Tamil	nadu. India.					Т
Subject Code	: SI	ubject Na	ame : DR	UG DE	LIVER	Y SYST	EMS		TY/	L	T/	P/ R	С
BBI18E10									LB/ ETL		S.Lr		
	P	rereauisi	ite: None						T	3	0/0	0/0	3
L : Lecture T :					ning P:	Project	R : Res	earch C	C: Credits	-		.,	-
T/L/ETL : The						5							
OBJECTIVE	:												
• To edu	ucate th	e student	t on drug	delivery	system	which w	ould ena	able a c	omprehens	sive anal	ysis		
• Gived	irectior	of these	drug deli	very sys	tems as	an impo	rtant too	ol in im	proving the	e efficac	У		
•			f drugs in	-	•								
-	-		nd future	•			g deliver	y mark	et.				
• Under	stands	Impleme	ntation of	plans ar	nd metho	od							
COURSE OU	TCON	IFS (CO	(3-5)	<u>a</u>									
CO1					out drug	delivery	system	which	would enal	ble a cor	nprehensi	ve anal	vsis
CO2		-			-				tant tool in		-		,
CO2 CO3			nds safety						uni 1001 III	mpiov		i cuc y	
						e		2					
CO4	(Graduate	s can und	erstand a	about pre	esent an	d future	strategi	es within t	he drug	delivery r	narket.	
CO5	1	Understa	nds Imple	mentatio	on of pla	ns and r	nethod						
Mapping of C			•										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	H	M	L	H	H	H	M	L	H	M	H	L	14
CO2	M	H	M	L	H	M	L	H	M	L	H	M	
CO3	H	H	Μ	L	H	L	M	H	L	M	H	L	
CO4	L	М	Н	L	Н	Μ	L	Μ	H	L	Μ	Н	
CO5	Η	Μ	L	Н	L	Μ	Η	L	Μ	Н	L	Н	
COs / PSOs	P	SO1	PS	02	PS	603	PS	504	PSO5				
CO1	Η		Μ		L		Η		H				
CO2	Μ		H		L		Η		Μ				
CO3	H		H		H		Μ		L				
CO4	Μ		Μ		H		L		Μ				
CO5	H	1.60	H		M		L		Μ				
H/M/L indicat	es Strei	ngth of C	orrelation	H - H	igh, M- l	Medium	, L-Low						
								Ski					
			lal					al S					
		lce	Social					nic					
		cier			ive		ect	ech					
	ces	S S	an	ore	ecti	ives	roj	/ L					
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	lls				
ſŊ	Sc	leel	Humanit Sciences	am	am	El	ical	ilsh	Soft Skills				
Category	asic	ıgir	lien	ogr	ogr	Jen	acti	terr	oft (
ate	Βí	Ē	Hı Sc	Pr	Pr	Ō	Pr	In	Sc				
(T)					✓								

BBI18E10DRUG DELIVERY SYSTEMS30/00/03

UNIT I SUSTAINED AND CONTROLLED DRUG DELIVERY

Introduction - properties of drugs - Pharmacokinetic properties of drugs - sustained release formulations - concept - physicochemical biological properties of drug - advantages and disadvantages - controlled drug delivery systems - automatically controlled drug delivery systems and their biomedical applications

UNIT II POLYMERS & TARGETTED DRUG DELIVERY SYSTEMS

Polymers used in drug delivery systems - modules - classification- characterization - advantages and disadvantages of polymer - targeted drug delivery systems - concepts - nanoparticles - liposomes - microspheres - hydrogels

UNIT III TRANSDERMAL DRUG DELIVERY SYSTEMS

Transdermal penetration of drugs - formulation - addition - polymers in transdermal drug delivery system - iontophoresis - transdermal controlled release products and devices

UNIT IV IMPLANTABLE DRUG DELIVERY SYSTEMS

Implantable micro - pump systems - peristaltic micro pump - osmotic micro pump - diaphragm micro pump - Fluorocarbon propellent driven micro pump - solenoid driver reciprocates micro pump - programmable implanted drug administrative device (DAD)

UNIT V SITE SPECIFIC DRUG DELIVERY SYSTEMS

Development in insulin therapy using biomedical controlled drug delivery systems - drug delivery using monoclonal antibodies - role of biosensors and transducers in diagnostic

Total No of Periods: 45

TEXT BOOKS:

- 1. Vyas S. P. Khar R. K., "Targetted and controlled drug delivery Novel Carrier System CBSPD", 2006
- 2. Anya M Hillery et. al.,"Drug delivery and targeting", CRC press, 2000

REFERENCE BOOKS:

1. Robinson R Robinson,"Conventional drug delivery systems", CRC press, 2004

9

9

9

Subject Code: BEI18E12			me : AR' SYSTEM		AL INT	ELLIG	ENCE A	AND	TY / LB/ ETL	L	T / S.Lr	P/ R	C
			te: None						Т	3	0/0	0/0	3
L : Lecture T :						Project	R : Res	earch C	C: Credits				
T/L/ETL : The		o/Embed	ded Theor	ry and L	ab								
OBJECTIVE													
	-	-	-	-	-			que, kn	owledge, 1	reasonin	g and plai	nning.	
	•		s of intell	0 0		search 1	method.						
			owledge 1										
			rstand abo	-	÷		-	•	s.				
			plans and		1 for des	igning c	controlle	rs					
COURSE OU					1		6			1 .	1 .	1 1	1
CO1					nt the c	concept	of inte	lligent	agents, se	earch te	chnique,	knowle	dge,
000			and plan				1	1	(11				
CO2 CO3			of giving i				s and sea	arch me	ethod.				
			nds knowl	U				•					
CO4					•				hodologie				
CO5	U	Jnderstai	nds Imple	mentatio	on of pla	ns and n	nethod f	or desig	gning cont	rollers			
Mapping of C	ourse (Outcome	es with Pr	ogram	Outcom	es (POs	5)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Η	Μ	L	Н	Η	Н	Μ	L	Н	Μ	Н]	L
CO2	Μ	Н	Μ	L	Н	Μ	L	Н	Μ	L	Н	I	M
CO3	Н	Н	Μ	L	Н	L	Μ	Н	L	Μ	Н]	L
CO4	L	Μ	Н	L	Н	Μ	L	Μ	Н	L	Μ]	H
CO5	Η	Μ	L	H	L	Μ	Н	L	Μ	Н	L]	H
COs / PSOs		501	PS			03		SO4	PSO5				
CO1		H	N			Ĺ		H	H	_			
CO2		Μ	H			Ĺ		H	Μ				
CO3		H	E			H		М	L	_			
CO4		Μ	N		-	H		L	Μ				
<u>CO5</u>		H	H H			<u>A</u>		L	Μ				
H/M/L indicate	es Stren	igth of C	orrelation	H- H1	<u>gh, M- l</u>	Medium	, L-Low						
	lces	Engineering Sciences	Humanities and Social Sciences	ore	lectives	ives	Project	Internships / Technical Skill					
Category	Basic Sciences	Ingineerin	Humanities Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships	Soft Skills				

BEI18E12 ARTIFICIAL INTELLIGENCE AND EXPERT 3 0/0 0/0 3 SYSTEMS

UNIT I INTRODUCTION TO ARTIFICIAL INTELLIGENCE

Overview of AI-general concepts-problem spaces and search - search techniques - BFS - DFS-Heuristic search techniques

UNIT II KNOWLEDGE REPRESENTATION

Knowledge - general concepts- predicate logic-representing simple fact- instance and ISA relationships - resolution - natural deduction

UNIT III KNOWLEDGE ORGANISATION AND MANIPULATION

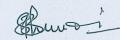
Procedural Vs declaration knowledge - forward Vs backward reasoning - matching techniques - control knowledge/strategies - symbol reasoning under uncertainty - introduction to non – monotonic reasoning - logic for monotonic reasoning

UNIT IV ERCEPTION – COMMUNICATION AND EXPERT SYSTEMS

Natural language processing - pattern recognition - visual image understanding - expert system architecture

UNIT V KNOWLEDGE ACQUISITION

Knowledge acquisition - general concepts - learning - learning by induction - explanation based learning


Total No of Periods: 45

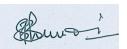
TEXT BOOKS:

- 1. Elaine Rich and Kelvin Knight, "Artificial Intelligence", Tata McGraw-Hill, New Delhi, 1991
- 2. Stuart Russell and Peter Norvig, "Artificial Intelligence: A modern approach", Prentice Hal, 1995

REFERENCE BOOKS:

- 1. Nelson N.J., "Principles of Artificial Intelligence", Springer Verlag, Berlin, 1980
- 2. Patterson, "Introduction to Artificial Intelligence and Expert systems", Prentice Hall of India, New delhi, 1990.

9


9

9

9

		1			High Road, Ma		ennai-95. Tamil	nadu. India.			T (D/D	
Subject Code:	: SI	ubject Na	ame :ME	DICAL	INFOR	MATIC	28		TY/	L	T/	P/ R	C
BBI18E11									LB/		S.Lr		
	D	nonoquici	te: None						ETL T	3	0/0	0/0	3
L : Lecture T :			Supervis	ad Laar	ning D.	Project	D · Dos	earch C		3	0/0	0/0	3
T/L/ETL : The					0	Floject	K . Kes	earch C.	Creans				
OBJECTIVE	•	.0/ Linocu			au								
		wledge o	n Biomed	ical Info	rmation	Techno	logy						
		U	view of Co				logy						
			itals Inform	•									
	•	-			•	d Multir	nadia In	formatic	on System	9			
		•	ated Med	Ũ	÷			ioimatic	on System	8			
COURSE OU					ormation	System	8						
COURSE OU			$\frac{(3-5)}{\text{Knowled}}$		omodia	IInform	nation T	achnolog	TX 7				
CO1 CO2			Knowledg	-					5 y				
CO2 CO3			Knowledg										
CO3							•		dia Inform	nation St	retame		
C04 C05		-	Knowledg	2		0	0				stems		
Mapping of C		-		-	-			ation Sy	stems				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO5/1 OS	H	102 M	105 L	L	105 L	H	10/ M	108 L	109 M	H	L		M
CO1 CO2	M	H		M	H	L II	M	H H		M			L
CO2 CO3	L	M	H	L	M N	H H		M N	H L	L	M		L H
CO3	M	H		M	H	L	M	H		M	H		L
C04 C05	L	M		H		M	H		M	H			M
005	L	191	L	11	L	IVI	11	L	IVI	11		T	<u>/1</u>
COs / PSOs	р	SO1	PSO	$\overline{)}$	PS	03	P	504	PSO5				
CO1		<u>M</u>	H			L		M	H				
CO1		H	N N			L		M	H				
CO2		L	N. N.			H		L	M				
CO4		L M	L			M		L H	L				
C04		H	N.			L		M	H				
H/M/L indicate													
	ob bure.				<u> </u>		, 2 2011	Г					
		ences	Social		es		ct	Internships / Technical Skill					
	iences	ing Sci	ies and	Core	Electiv	ctives	/ Proje	uips / T Skill	s				
Category	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	nternsh	Soft Skills				
^{ate}	B	Ē	Hı Sc	Pr		Ō	Pr	I II	Sc				
0					\checkmark								

BBI18E11MEDICAL INFORMATICS30/00/03

UNIT I BIOMEDICAL INFORMATION TECHNOLOGY

Historical highlights of Healthcare Information systems - Biomedical Information systems - problems and pitfalls - History and evolution of Electric resources - Internet and Interactive Multimedia components

UNIT II OVERVIEW OF COMPUTER HARDWARE

Motherboard and its logic - memory and I/O interfacing -memory and I/O mapI/O peripherals - add-on cards -RS 232-C - various IEEE standards

UNIT III HOSPITALS INFORMATION SYSTEMS

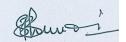
Concept of HIS and its Position on the hospital - introduction of a computerized HIS-application of HIS in project management - Automation of Medical record - hospital Inventory data protection aspects - costs and benefits of HIS - transfer of information within the hospital - Modems and computer networking in Hospitals

UNIT IV VISUAL PROGRAMMING AND MULTIMEDIA INFORMATION SYSTEMS

Visuals Basic principles and programming – Design - Production and testing of multimedia based medical information systems

UNIT V INTEGRATED MEDICAL INFORMATION SYSTEMS

Integration of Intra and Inter hospital information systems - Role of expert systems and fuzzy logic in medical information systems - Physiological system modeling and simulation - Concepts of Virtual reality -web based multimedia information systems - video conferencing


Total No of Periods: 45

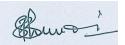
TEXT BOOKS:

- 1. S.K. Chauhan, . "PC Organisation", S.K. Kataria and sons, Delhi.
- 2. Haroidsackman, "Biomedical Inforamtion Technology", Academic Press, New York, 1997

REFERENCE BOOKS:

- 1. Mary Beth Fecko, "Electronic Resources: Access and Issues, Bowker-saur, London, 1997
- 2. R.D. Lele, "Computers in medicine", Tata McGraw Hill, New Delhi, 1999
- 3. Tay Vaughan, "Multimedia making it work", Tata McGRaw Hill, New Yotk, 1999
- 4. Mark Spenik, "Visual Basic 6, Iterative Course", Techmedia, New Delhi, 1999

9


9

9

					High Road, Ma	th Graded Autor aduravoyal, Che	ennai-95. Tami	lnadu. India.					
Subject Code: BEI18E16	Su	bject Na	me : PRI	NCIPLE	ES OF R	OBOTI	CS		TY / LB/ ETL	L	T / S.Lr	P/ R	C
	Pr	erequisit	·e•						T	3	0/0	0/0	3
L : Lecture T :			Supervised	Learnir	g P:Pr	oiect R	: Resear	ch C: Cre		5	0/0	0/0	5
T/L/ETL : Theo						SJ000 11							
OBJECTIVE			j										
		ne basic c	concepts a	nd parts	of robots	5.							
			king of rot				obots.						
	0		U					their app	lications i	n robots	and progr	amming	g of
robots.	-			•							1 0	C	
• The va	rious ap	plication	s of robots	s, justific	ation an	d implen	nentation	n of robo	ts.				
Studyi	ng abou	t the man	ipulators,	activato	rs and gr	ippers ar	nd their o	design co	nsideratio	ns			
	-												
COURSE OU	ГСОМІ	ES (COs)):(3-5)										
CO1	U	Inderstan	ds the bas	ic conce	pts and p	parts of r	obots.						
CO2	ť	Inderstan	ding the v	vorking	of robots	and vari	ous type	es of robo	ots.				
001			ung ure i				ous oppe						
CO3	F	amiliariz	ed with t	he vario	us drive	systems	of rob	ots sense	ors and th	eir annl	cations in	rohote	and
005			ing of rob			systeme	01 1000	013, 301130		ion appr	cations n	1 100003	and
		-	-										
CO4	C	apable o	f knowing	the vari	ous appl	ications	of robots	s, justific	ation and i	impleme	ntation of	robots.	
CO5	U	Inderstan	ds the con	cept of t	he manij	pulators,	activato	ors and gr	ippers and	l their de	sign consi	deratior	18
Mapping of Co	ourse O	utcomes	with Pro	gram O	utcomes	(POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Μ	Н	Μ	L	Н	Μ	Н	Μ	L	Η	Μ]	L
CO2	Н	Μ	L	Н	L	Μ	Н	L	М	Н	L	Ν	М
CO3	Н	Н	Μ	L	Н	Μ	L	Μ	L	H	Μ]	L
CO4	Μ	Н	М	Μ	Н	Μ	L	L	Н	Μ	L	Ν	М
CO5	Μ	Н	Μ	L	Μ	Н	L	Μ	Н	L	Н	Ι	М
COs / PSOs	PS	501	PS	02	PS	503	PS	SO4	PSO5				
CO1		H	N			Ĺ		H	Μ				
CO2		М	I			H		Μ	Н				
CO3		L	H			М		H	Μ				
CO4		М	H	[]]]	L L		Μ	Н				
CO5		М	H					Μ	Μ				
H/M/L indicate	s Streng	th of Co	relation	H- High	n, M- Me	edium, L	-Low			-	- 1		
			al					cal					
		ces	Social					mic					
		ien	S		ves		ect	ect					
	ses	Sc	and	re	cti	ves	rojć	ps / T Skill					
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	S				
x	Sci	een	niti æs	m	E L	Ele	cal	hsn	kill				
SOL	sic	gin(mai enc	gra	gra	en]	ctic	teri	t S				
Category	Ba£	Εnξ	Humanit Sciences	Pro	Pro	Opí	Pra	In	Soft Skills				
Ü		1				-							
		•											

BEI18E16PRINCIPLES OF ROBOTICS30/00/03

UNIT I BASIC CONCEPTS

Definition and origin of robotics - different types of robotics - various generations of robots - degrees of freedom - Asimov's laws of robotics - dynamic stabilization of robots

UNIT II POWER SOURCES AND SENSORS

Hydraulic - pneumatic and electric drives - determination of HP of motor and gearing ratio - variable speed arrangements - path determination - micro machines in robotics - machine vision - ranging - laser - acoustic - magnetic -fiber optic and tactile sensors

UNIT III MANIPULATORS, ACTUATORS AND GRIPPERS

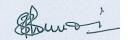
Construction of manipulators - manipulator dynamics and force control - electronic and pneumatic manipulator control circuits - end effectors - U various types of grippers - design considerations

UNIT IV KINEMATICS AND PATH PLANNING

Solution of inverse kinematics problem - multiple solution jacobian work envelop - hill climbing techniques - robot programming languages

UNIT V CASE STUDIES

Multiple robots - machine interface - robots in manufacturing and non-manufacturing applications - robot cell design - selection of robot


Total No of Periods: 45

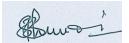
TEXT BOOKS:

- 1. Mikell P. Weiss G.M., Nagel R.N., Odraj N.G., "Industrial Robotics", McGraw-Hill Singapore, 1996
- 2. Ghosh, "Control in Robotics and Automation: Sensor Based Integration", Allied Publishers, Chennai, 1998

REFERENCE BOOKS:

- 1. Deb.S.R., "Robotics technology and flexible Automation", John Wiley, USA 1992
- 2. AsfahlC.R., "Robots and manufacturing Automation", John Wiley, USA 1992
- 3. Klafter R.D., Chimielewski T.A., Negin M., "Robotic Engineering An integrated approach", Prentice Hall of India, New Delhi, 1994
- 4. McKerrow P.J.,"Introduction to Robotics", Addison Wesley, USA, 1991
- 5. Issac Asimov,"I Robot", Ballantine Books, New York, 1986

9


9

9

9

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE	A A A A A A A A A A A A A A A A A A A
(An ISO 9001 : 2015 Certified Institution)	
University with Graded Autonomy Status	
Perivar E.V.R. High Road. Maduravoval. Chennai-95. Tamilnadu. India.	

	~					duravoyal, Che	nnai-95. Tamil	nadu. India.		<u>г -</u> г	m (D / D	~
Subject Code:			me :BIO	MEDIC	CAL SI	GNAL			TY/	L	T/	P/ R	С
BBI18E12	PI	ROCESS	SING						LB/		S.Lr		
	D	• •	4 NT						ETL	2	0.0	0./0	2
			te: None	1 7	· D	D • •	D D	1.0	T	3	0/0	0/0	3
L : Lecture T :						Project	R : Res	earch C	: Credits				
T/L/ETL : The		b/Embed	aed Theor	y and L	ab								
OBJECTIVE		1											
•			periodic	-	-	ls, varioi	us syster	ns					
•			ime doma	•									
•			the prope			orm							
•			ve the Fou										
•			view of F		problem	s in the	fast Fou	rier trar	sforms.				
COURSE OU			/ / /										
CO1			nds period					tems					
CO2		1	of analysis				ation.						
CO3			nds the pro			nsform							
CO4		1	o solve th										
CO5	τ	Jnderstar	nds Overv	iew of F	FT and	problem	s in the	fast Fou	urier transf	orm.			
Mapping of C	ourse (Outcome	s with Pr	ogram	Outcom	es (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Μ	H	Μ	L	Μ	Н	Μ	Н	Μ	L	Н	N	N
CO2	Н	Μ	L	Μ	Н	Μ	L	Н	Μ	L	Μ		H
CO3	H	Μ	L	Н	Μ	Н	Μ	L	Μ	Н	Μ]	L
CO4	H	Μ	Μ	Н	Μ	L	Н	Μ	Н	Μ	L]	H
CO5	L	Μ	Н	Μ	L	Μ	Н	L	Μ	Н	Н	N	M
COs / PSOs	P	501	PSC	02	PS	03	PS	604	PSO5				
CO1		L	Μ			H		M	L				
CO2		H	Μ			L		M	Н				
CO3		M	Μ			L		H	H				
CO4		H	Μ			L		M	Н				
CO5		Μ	Н		Ν			Μ	Н				
H/M/L indicate			orrelation	H- Hi			, L-Low						
					ľ –		,						
								Internships / Technical Skill					
		S	tial					cal					
		nce	Soc		S			mi					
		ciei	с, Ф		ive	~	ect	ecł					
	ces	Š	an	ore	ect	ive	roj	Γ/					
	ien	ing	ies	ŭ	Ē	ecti	/ F	sdi	\mathbf{ls}				
ъ.	Sc	eei	unit ces	am	am	El	cal	idai	ikil				
g01	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	ern	Soft Skills				
Category	Ba	En	Hu Sci	Pr(Pr(Op	Prê	Int	So				
U U					\checkmark								

DEEMED TO BE UNIVERSITY (An ISO 9001 : 2015 Certified Institution) University with Graded Autonomy Status Periyar E.V.R. High Road, Maduravoyal, Chennal-95. Tamilnadu. India.

BBI18E12BIOMEDICAL SIGNAL PROCESSING30/00/03

UNIT I DISCRETE – TIME SIGNALS AND SYSTEMS

DUCATIO

Classification and time domain representation of discrete-time signals - Typical sequences and their representation - Classification of sequences - Basic operations on sequences - Discrete-time systems

UNIT II TRANSFORM

Discrete Fourier Transform (DFT) computation of DFT, Z-transform - Mathematical derivation of the unilateral-properties of the Z-transform - Inverse Z-Transform

UNIT III NEUROLOGICAL SIGNAL PROCESSING

EEG analysis - Linear prediction theory-Autoregressive method adaptive segmentation - Transient detection - Overall performance -classification of sleep stages

UNIT IV CARDIOLOGICAL SIGNAL PROCESSING

ECG data acquisition - ECG lead system ECG parameters and their estimation - Multiscale analysis for parameters estimation of ECG waveforms - Arrhythmia analysis monitoring - Continuous ECG recording

UNIT V ECG DATA REDUCTION TECHNIQUES

Direct ECG data compression techniques - Transformation compression techniques - Other data compression techniques - Compression clinical application of Prony's method

Total No of Periods: 45

TEXT BOOKS:

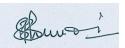
1. DC Reddy, "Biomedical signal processing", TMH, 2005

REFERENCE BOOKS:

- 1. Akav M., "Biomedial signal processing", Academic press 1994
- 2. Kok FL, "Biomedical signal processing", PHI, 1999

3. Mitra SK, "Digital signal processing", TMH, 2001

9


9

9

9

Subject Code: BBI18E13	0	RĞANS	ame :BIO	-MATE	ERIALS	AND A	RTIFI	CIAL	TY / LB/ ETL	L	T / S.Lr	P/ R	C
X X · · · · · · · · · · · · · · · · · ·			te: None	1.7	·	D	<u> </u>	1.0	T	3	0/0	0/0	3
L : Lecture T :			-		0	Project	R : Res	earch C	: Credits				
T/L/ETL : The	•	b/Embed	ded Theor	ry and L	ab								
OBJECTIVE			6 1		1 .			_					
			ferent clas										
-		-	out the ap	-					1				
			-	-	-				aterial test	-	1 1		
			•		-		•		, ethical is	sues and	i regulato	ry stand	ards.
-		-	some of t		ng desig	gns of ar	tificial o	rgans.					
COURSE OU			· · ·		11	1:00	. 1	6	. • 1	1.	1		
<u>CO1</u>									terials use	d in med	licine		
CO2			with the a						1 .1	1 61:	1	•	
<u>CO3</u>									he method				
CO4		•			use tecl	nnologie	s of bioi	materia	l processin	ig, clinic	cal trials, o	ethical is	ssues
<u> </u>			atory stan		6.1		1 .	<u> </u>	C' ' 1				
CO5								s of arti	ficial orga	ns.			
Mapping of C						1		-					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
<u>CO1</u>	Μ	M	H	L	M	H	L	M	H	M			M
CO2	H	Μ	H	Μ	L	Μ	H	L	H	Μ	H		М
CO3	H	L	M	M	L	H	Μ	L	H	Μ	L		М
CO4	H	Μ	L	H	Μ	L	H	Μ	L	Μ	H		L
CO5													
COs / PSOs		SO1	PSC			603		504	PSO5				
CO1		Μ	H			Μ		L	M				
CO2		H	N			L		M	H				
CO3		H	N			M		H	Μ				
CO4		Μ	L			H		М	L				
CO5		М	H			Ĺ		М	Н				
H/M/L indicate	es Strei	ngth of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low						
		~	ial					cal Skil					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				

BBI18E13BIO-MATERIALS AND ARTIFICIAL ORGANS30/00/03

UNIT I STRUCTURE OF BIO-MATERIALS AND BIO-COMPATIBILITY

Definition and classification of bio-materials -mechanical properties -visco elasticity -wound-healing process - body response to implants - blood compatibility

UNIT II IMPLANT MATERIALS

Metallic implant materials -stainless steels -co-based alloys -Ti-based alloys -ceramic implant materials - aluminum oxides -hydroxyapatite glass ceramics carbons -medical applications

UNIT III POLYMERIC IMPLANT MATERIALS

Polymerization –polyolefin – polyamicles –Acrylic –polymers –rubbers -high strength thermoplastics - medical applications

UNIT IV TISSUE REPLACEMENT IMPLANTS

Soft-tissue replacements, sutures -surgical tapes, adhesive -percutaneous and skin implants -maxillofacial augmentation -blood interfacing implants -hard tissue replacement implants -internal fracture fixation devices -joint replacements

UNIT V ARTIFICIAL ORGANS

Artificial Heart -Prosthetic Cardiac Valves -Limb prosthesis - Externally Powered limb Prosthesis -Dental Implants


Total No of Periods: 45

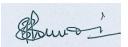
TEXT BOOKS:

1. PARK J.B., "Biomaterials Science and Engineering", Plenum Press, 1984

REFERENCE BOOKS:

1. Chua, Chena.J.Y, Wanga.L.P, N.Huang, "Plasma-surface modification of biomaterials", Materials Science and Engineering: R: Reports, Volume 36, Number 5, 29 March 2002, pp. 143-206 (64)

9


9

9

9

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE DEEMED TO BE UNIVERSITY (An ISO 9001:2015 Certified Institution)	A A A A A A A A A A A A A A A A A A A
University with Graded Autonomy Status	

					High Road, Ma		nnai-95. Tamil						
Subject Code:					DVANCES APPLIED TO				TY/	L	Τ/	P/ R	С
BBI18E14	H	OSPITA	L ENGI	NEERIN	NG				LB/		S.Lr		
									ETL				
			te: None						Т	3	0/0	0/0	3
L : Lecture T :						Project	R : Res	earch C	: Credits				
T/L/ETL : The		o/Embed	ded Theor	y and L	ab								
OBJECTIVE													
			dizationo	-		oment's							
Ũ		•	Clinical I	Engineer	ring								
	•	it Netwo	•										
Ŭ		Ū	-				•••	ological	Parameter	rs			
			d EMC A) Hospita	al Equip	ment's						
COURSE OU													
CO1			knowledg				Hospital	Equipn	nent's				
CO2		Gains knowledge on Clinical Engineering											
CO3			understan		Ŭ								
CO4		Gains knowledge on Fiber Optic Sensors for Measuring Physiological Parameters											
CO5 Acquires knowledge EMI and EMC Applied to Hospital Equipment's													
Mapping of C		1		<u> </u>	1	<u>`</u>	í	•					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Μ	L	Μ	L	Μ	H	L	Μ	H	L	I	N
CO2	Μ	L	H	Μ	L	Μ	H	L	Μ	H	L		N
CO3	L	Μ	H	L	Μ	Η	L	Μ	H	L	Μ]	H
CO4	Н	Μ	L	Μ	H	L	Μ	H	L	Μ	Н]	Ĺ
CO5	Μ	Η	L	Μ	H	L	Μ	Н	L	Μ	Н]	Ĺ
COs / PSOs	PS	501	PSO2		PSO3		PSO4		PSO5				
CO1		H	Μ		L		Μ		Н				
CO2]	Μ	Н	[L M			Н					
CO3		L	Ν	[I	H		L	Μ				
CO4]	Μ	Н	[]	L	М		Н				
CO5		H	Μ			Л		H	L				
H/M/L indicate	es Stren	gth of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low						
								kill					
			_					I SI					
		es	cia					ica					
		suc	Social		SS		t.	hn					
	S	cié	р		tive	S	jec	lec					
	nce	50	s ai	ore	lec	tive	Prc	. / :					
	cie	l in	s	JC	υE	leci	1/	ups	ills				
ıry	Š	nee	ani	ran	ran	Ε	ica	nsh	Ski				
Category	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skil	Soft Skills				
Cat	B	ш	К	P1		0	P1	In	Ň			_	
					✓					1			

BBI18E14 RECENT ADVANCES APPLIED TO HOSPITAL 3 0/0 0/0 3 ENGINEERING

UNIT I STANDARDISATION OF HOSPITAL EQUIPMENTS

Need for standardization -classification of equipment's -international standards -Experimental methods of testing standards -maintenance of standards and recalibration

UNIT II CLINICAL ENGINEERING

Hospital design-electrical- airconditioning-sanitation -ventilation -safety regulation to be incorporated in the hospital center -management and legal aspects -latest drug delivery systems for sustained delivery of medicines

UNIT III NETWORKING

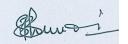
Importance of networking -LAN features -network topologies -LAN components -network operating system -basic data communication concept –application-LAN and multi-user system -planning and installing LAN in hospital set up

UNIT IV FIBRE OPTIC SENSORS FOR MEASURING PHYSIOLOGICAL PARAMETERS 9

Different optical sources -optical detectors -principle of fiber optic cables -single mode multi-mode -step index and graded index type -sensors based on polarization -interferometer principle -magnetic sensors - application of the sensors in measuring pressure –temperature –flow -rotation and chemical activities - principles of smart sensors

UNIT V EMI AND EMC APPLIED TO HOSPITAL EQUIPMENTS

Principles of EMI -computation of EMI -measuring techniques to quantify the level of interference - method of suppressing and isolating this unit from interference


Total No of Periods: 45

TEXT BOOKS:

- 1. Donald R.J. White, "A Handbook of electromagnetic Interference and Compatibility", Vol 4, 5, Published by Donwhite Constant Maryland, 1972
- 2. Webster J.G. and Albert M. Cook, "Clinical Engineering Principles and Practices", Printice Hall Inc, Englewood Cliffs, New Jersery, 1979
- 3. Bernhard Keiser, "Principles of Electromagnetic Compatibility", Artech House- 3rd Edition, 1986

REFERENCE BOOKS:

- 1. Eric Udd, "Fiber Optic Sensors and introduction for engineers and scientists", Wiley Interscience Publication, New Delhi, 1991
- Bajbai, P.K., "Ceramic a novel device for sustained long term delivery of drugsBio Ceramic", Vol III
- 3. Rose Heliman Institute of Technology, Terrahaute, Indian, 1992.
- 4. S.K. Basandia, "Local Area Network", Golgotia Publishing Pvt Ltd., New Delhi, 1995

9

9 in

9

					High Road, Ma		ennai-95. Tamil	lnadu. India.		r			
Subject Code:	: Su	ibject Na	ame :HO	SPITAL	A MANA	MANAGEMENT			TY/	L	T/	P/ R	С
BBI18E15									LB/		S.Lr		
			A NT						ETL		0.10	0.40	2
I. I. I. and the second T. A.			te: None	. 11		Ductor	D . D	1- C	T Creative	3	0/0	0/0	3
L : Lecture T : T/L/ETL : The						Project	K : Kes	earch C	: Credits				
OBJECTIVE		D/EIIIDeu	ded Theor	ly allu L	aU								
		ut nood o	nd scopes	ofalini	ool on air	nonina							
			training a		•	÷	nicol sta	ff in ho	mital				
U		0	g and man		0				spital				
	-		ds and co	0				spital					
						e							
		<u> </u>	computer		leme								
COURSE OU CO1					os of ali	nicolon	inoorin	a					
CO1 CO2		Understands need and scopes of clinical engineering Acquires training and management of technical staff in hospital											
CO2 CO3													
CO4		Graduate understands training and management of technical staff in hospital Understands standards and codes in health care											
C04													
CO5 Understands computer in medicine Mapping of Course Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO3/103	M	<u>102</u> M	105 M	L	H	L	<u>M</u>	H	L	M	<u> </u>		L
CO2	M	H	L	M	H	L	M	H		M	H		և Լ
CO3	M	H		M	H	L	M	H		M	H		L L
CO4	M	H	L	M	L	M	H	L	M	H			M
CO5	M	H	L	M	H	L	M	H	L	M	H		<u>.</u>
000	171			171		12	171			171			
COs / PSOs	P	501	PSC	02	PSO3 PSO4				PSO5				
CO1		M	H				M		H				
CO2		M	H		L		M		H				
CO3		H	N		L H				L				
CO4		L	N			H		L	M				
CO5		H	Ν			L	M		Н				
H/M/L indicate	es Stren	ngth of C	orrelation	H- Hi	gh, M- I	Medium	, L-Low						
		Ī						1					
								Sk					
		Se	cial					cal					
		ince	Social		S		Ļ.	hni					
	Ś	cie	р		tive	S	jec	lec					
	nce	ο Ω Δ	s at	ore	lec	üvе	Prc	L / :					
	ciel	nin	s	JC	ЪЕ	lect	1/1	iips	lls				
ıry	Š	nee	ani	ran	ran	Ξ	tica	nsh	Ski				
Category	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Ski	Soft Skills				
Cat	B	ш	К Н	Pı		0	Pı	In	Ň				
J					✓								

BBI18E15HOSPITAL MANAGEMENT30/00/03

UNIT I NEED AND SCOPES OF CLINICAL ENGINEERING

Clinical engineering program - educational responsibilities - role to be performed by them in hospital - staff structure in hospital

UNIT II NATIONAL HEALTH POLICIES

Need for evolving health policy - health organization in state - health financing system - health education - health insurance - health legislation

UNIT III TRAINING AND MANAGEMENT OF TECHNICAL STAFF IN HOSPITAL 9

Difference between hospital and industrial organization - levels of training - steps of training - developing training program - evaluation of training - wages and salary - employee appraisal method

UNIT IV STANDARDS AND CODES IN HEALTH CARE

Necessity for standardization – FDA - Joint Commission on Accreditation of hospitals - ICRP and other standard organization - methods to monitor the standards

UNIT V COMPUTER IN MEDICINE

Computer application in ICU - X-Ray department - laboratory administration - patient data - medical records - communication - simulation

Total No of Periods: 45

TEXT BOOKS:

1. Webster J.C. and Albert M.Cook, "Clinical Engineering Principle and Practice", Prentice Hall Inc., Englewood Cliffs, New Jersey, 1979

REFERENCE BOOKS:

1. Goyal R.C., "Handbook of hospital personal management", Prentice Hall of India, 1996

9

9 1

9

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE DEEMED TO BE UNIVERSITY (An ISO 9001 : 2015 Certified Institution)	A A A A A A A A A A A A A A A A A A A
University with Graded Autonomy Status	

			0710		High Road, Ma		nnai-95. Tamil			<u> </u>			~
Subject Code:			me :SYS			Y APPL	IED TO)	TY/	L	T /	P/ R	С
BBI18E16	BIG	OMEDI	CAL EN	GINEE	RING				LB/		S.Lr		
					<u> </u>				ETL		0.10	0.10	
			te: BIO (T	3	0/0	0/0	3
L : Lecture T :						Project	R : Res	earch C	: Credits				
T/L/ETL : The		/Embed	ded Theor	ry and L	ab								
OBJECTIVE			C .										
 To Learn about System Concept To Cain Knowledge on Transducer Function 													
To Gain Knowledge on Transducer Function													
To Study about Impedance Concept													
To Learn about Periodic Signals, Feedback													
To Gain Knowledge on Simulation of Biological Systems													
COURSE OUTCOMES (COs) : (3- 5)													
CO1		Understands System Concept Acquires knowledge on Transducer Function											
CO2							n						
CO3			understan										
CO4			nds Period			back							
CO5 Simulation of Biological Systems													
Mapping of C		1		<u> </u>	1	<u>`</u>	í	1					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	
CO1	Μ	Μ	Μ	L	Η	L	Μ	H	L	Μ	H		Ĺ
CO2	Μ	Н	L	Μ	Η	L	Μ	H	L	Μ	H		L
CO3	Μ	Н	L	M	H	L	Μ	H	L	Μ	H		L
CO4	Μ	Н	L	Μ	L	Μ	H	L	Μ	H	L		N
CO5	Μ	Н	L	M	Н	L	Μ	H	L	Μ	H]	Ĺ
COs / PSOs		501	PSC			03		504	PSO5				
CO1		М	H		L		Μ		H				
CO2		М	H		L M				H				
CO3		H	M]		Н		L				
CO4		L	M			H		L	Μ				
CO5	H		Μ]	_		М	Н				
H/M/L indicate	es Stren	gth of C	orrelation	H- Hi	gh, M- I	Medium	, L-Low			1			
								kill					
			Ξ					1 S					
		ses	Social					ica					
		enc			es		t	hn					
	S	Scie	pu	0	tiv	GS CS)je(Tec					
	nce	5 B	s ai	Ore	lec	tive	Pro	. / S					
	cie	enir	itie	n C	пE	lec	- la	nipt	ills				
ory	c S	ne	nan	rar	rar	пE	tice	lsu.	Sk				
Category	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Cat	В	Щ	ΣŇ	Ъ.		0	<u>d</u>	Ir	Ň			_	
Ŭ		1			✓					1		1	

BBI18E16SYSTEM THEORY APPLIED TO
BIOMEDICAL ENGINEERING30/00/03

UNIT I INTRODUCTION

System Concept -System Properties -Piece Wiser Linear Approximation -Electrical Analog for Compliance -Thermal Storage -Mechanical Systems -Step response of a Resistance/Compliant Systems -Pulse Response of First Order System

UNIT II TRANSFER FUNCTION

System as an Operator use of Transfer Function -bioengineering of a Coupled System -Example of Transformed Signals

UNIT III IMPEDANCE CONCEPT

Circuits for the Transfer Function with Impedance Concept Prediction of Performance.

UNIT IV PERIODIC SIGNALS, FEEDBACK

Sinusoidal Functions -Sinusoidal Analysis of Instrumentation System -Evaluation of Transfer Function s from Frequency Response -Relationship between Phase Lag and Time Delay Transient Response of an Undamped Second Order system - General Description of Natural Frequency Damping -Physical Significance of Under Damped Responses - Characterization of Physiological FeedbackSystem -Uses and Testing of System Stability

UNIT V SIMULATION OF BIOLOGICAL SYSTEMS

Simulation of Skeletal music servomechanism -thermo Regulation -Cardiovascular control System - Respiration controls -Occulo Motor System -Endocrine control system and Modeling of receptors

Total No of Periods: 45

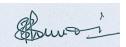
TEXT BOOKS:

- 1. William B. Blesser, "A System Approacg to Biomedicine", McGraw Hill Book Co., New York, 1969
- ManfreoClynes and John H. Milsum, "Biomedical Engineering System", McGraw Hill and Co, New York, 1970

REFERENCE BOOKS:

- 1. Douglas S. Rigg, "Control Theory and Physiological Feedback Mechancis", The William and Wilkins Co., Baltimore, 1970
- RiechardSkalak and Shu Chien, "Handbook of Biomedical Engineering", McGraw Hill and Co., New York, 1987

9


9

9

9

BBIISE17 INSTRUMENTATION LB/ Prerequisite: TJ_ETL S.Lr S.Lr Image: Solution of the state of	Subject Code	e: Subject Name :SPECIAL TI					DUCER	S AND		TY/	L	Τ/	P/ R	С
T30/00/03L: Lecture T: TutorialSL: Supervised Learning P: Project R: Research C: CreditsT/L'ETL: Theory/Lab/Embedded Theory and LabOBJECTIVE:OBJECTIVE:To learn about basic concepts of measurementTo learn about temperature and radiation measurementTo learn about temperature and radiation measurementTo learn about temperature and radiation measurementCOURSE OUTCOMES (COs): (3-5)COURSE OUTCOMES (COs): (3-5)COURCE Analysis how ledge on force, pressure and motion measurementCO2Mapping of Course Uncomes with Program Outcomes (POs)COSPOSPO1PO2PO3PO4PO5PO3PO4PO5PO4PO5PO4PO5PO4PO5PO4PO5PO4PO5PO4PO5PO4PO5	BBI18E17	INSTRUMENTATION								LB/		S.Lr		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										ETL				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		P	rerequisi	te:						Т	3	0/0	0/0	3
	L : Lecture T :	Tutori	al SLr :	Supervis	ed Learı	ning P:	Project	R : Res	earch C:	Credits				
	T/L/ETL : The	eory/La	b/Embed	ded Theor	ry and L	ab								
	OBJECTIVE	:												
	 To gai 	n knov	vledge on	force, pre	essure ai	nd motio	n measu	irement						
To gain knowledge on data acquisition recordingCOURSE OUTCOMES (COs) : (3 - 5)CO1Understands basic concepts of measurementCO2Acquires knowledge on force, pressure and motion measurementCO3Graduate understands chemical and optical transducerCO4Understands temperature and radiation measurementCO4Understands data acquisition recordingMapping of Course Outcomes with Program Outcomes (POs)COs/POsPO1PO1PO1PO12COs/POsPO1PO1PO11PO12COs/POsPO10PO11PO12COs/POsPO10PO11PO12COs/POsPO10PO11PO12CO3MHLCO4OSPO6PO7PO8PO10PO11PO12COs/POSPO10PO11PO12COs/POSPO6PO8PO10PO11PO12CO3MHLCO3														
COURSE OUTCOMES (COs) : (3 - 5) CO1 Understands basic concepts of measurement CO2 Acquires knowledge on force, pressure and motion measurement CO3 Graduate understands chemical and optical transducer CO4 Understands data acquisition recording Mapping of Course Outcomes with Program Outcomes (POS) COs/POS PO1 PO2 PO3 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO3/POS PO1 PO2 PO3 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO3/POS PO4 PO5 PO8 PO9 PO10 PO11 PO12 CO3/POS PO1 PO11 PO12 CO4 M H L M M <th< td=""><td colspan="12">To learn about temperature and radiation measurement</td></th<>	To learn about temperature and radiation measurement													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	• To gain knowledge on data acquisition recording													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CO1	1	Understar	nds basic	concepts	s of meas	suremen	t						
CO4 Understands temperature and radiation measurement CO5 Understands data acquisition recording Mapping of Course Uutcomes with Program Outcomes (POs) COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 M M M L H L M H <th< td=""><td>CO2</td><td></td><td colspan="9">Acquires knowledge on force, pressure and motion measurement</td><td></td></th<>	CO2		Acquires knowledge on force, pressure and motion measurement											
Understands data acquisition recording: Mapping of Course Uutcomes with Program Outcomes (POs) COS/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 COS/POs PO1 M M M L H L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H L M I Image: Cols of the	CO3	(Graduate	understan	ds chem	nical and	optical	transdu	cer					
Mapping of Course Outcomes with Program Outcomes (POs) COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 M M M L H L M M L M L M L M L M L M L </td <td>CO4</td> <td>1</td> <td>Understar</td> <td>nds tempe</td> <td>rature a</td> <td>nd radiat</td> <td>ion mea</td> <td>suremen</td> <td>nt</td> <td></td> <td></td> <td></td> <td></td> <td></td>	CO4	1	Understar	nds tempe	rature a	nd radiat	ion mea	suremen	nt					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CO5	1	Understar	nds data a	cquisitic	on record	ling							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CO1	Μ	Μ	М	L	Н	L	Μ	Н	L	Μ	Н]	Ĺ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CO2	Μ	H	L	Μ	Н	L	Μ	H	L	Μ	H]	Ĺ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CO3	Μ	Н	L	Μ	Н	L	Μ	Н	L	Μ	Н]	L
COs / PSOs PSO1 PSO2 PSO3 PSO4 PSO5 Image of the second	CO4	Μ	Н	L	Μ	L	Μ	Н	L	Μ	Н	L	I	M
CO1 M H L M H CO1 CO2 M H L M H L CO3 H M L H L M CO4 L M H L M H CO4 L M H L M H H/M/L indicates Strength of Correlation H-High, M- Medium, L-Low Junctional Sciences Bractical / M/L indicates Strength of Correlation H-High, M-Medium, L-Low Junctional Sciences Soft Skills Soft Skills Skill Skill Skill Skill	CO5	Μ	Н	L	Μ	Н	L	Μ	Н	L	Μ	Н]	L
CO2 M H L M H L CO3 H M L H L L CO4 L M H L M L CO4 L M H L M H CO4 L M H L M H H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low Soft Skill Soft Skill Internships / Lechnical	COs / PSOs	P	SO1	PSO	02	PSO3		PSO4		PSO5				
CO3 H M L H L CO3 GO3 H M L M L CO3 H M L CO3 H M H L CO4 L M CO4 L M L CO4 H M L M CO5 H M M L M L M L CO5 H M L L M L L CO5 H M L L L L L L CO5 H M L	CO1		Μ	H	[L		М		H				
CO4 L M L M Basic Sciences H M M H CO H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low H- High, M- Medium, L-Low N H Voben Electives N N N N N Soft Skills Soft Skills Soft Skills Soft Skills Soft Skills	CO2		Μ	H	[]	Ĺ	М		H				
CO2 H M T M H Sciences H/M/L indicates Humanities and Sciences N- Medium, T-Tom N- Medium N- Medium Program Electives Internships / Technical N- Medium N- Medium Soft Skills Soft Skills Soft Skills Soft Skills	CO3		Η	N	1]	Ĺ	-	H	L				
Altegory H- High, M- Medium, T-rom Basic Sciences Humanities and Sciences Basic Sciences Figineering Sciences Copen Electives Nogram Core Internships / Technical Soft Skills	CO4		L	N	1	I	H		L	Μ				
ategory Basic Sciences Engineering Sciences Humanities and Social Sciences Program Electives Program Electives Program Electives Internships / Technical Skill Soft Skills		H M								H				
Lategory Basic Sciences Engineering Scie Humanities and Sciences Program Electives Practical / Projec Internships / Te Soft Skills	H/M/L indicat	es Stre	ngth of C	orrelation	H- Hi	igh, M- I	Medium	, L-Low	,					
Lategory Basic Sciences Engineering Scie Humanities and Sciences Program Electives Practical / Projec Internships / Te Soft Skills				ial					cal					
Lategory Basic Sciences Engineering Scie Humanities and Sciences Program Electives Practical / Projec Internships / Te Soft Skills			nces	Soci		s			hni					
		s	cie	p p		ive	s	ject	Tec					
		nce	s S	s ar	ore	lect	tive	Pro	s/' kil					
		cie	erin	itie	n C	пE	llect	al /	dinis 2	ills				
	ory	ic S	ine	nan mce	graı	graı	on E	ctic	erns	t Sk				
	iteg	Bas	Eng	Hur Scie	Pro	Pro	Ope	Pra	Int	Sofi				
	Ca						Ŭ			~ 4				

BBI18E17SPECIAL TRANSDUCERS AND
INSTRUMENTATION30/00/03

UNIT I BASIC CONCEPTS OF MEASUREMENT

Transducer Categories - Characteristics of Transducers Static and Dynamic Characteristics of Measurement

UNIT II FORCE, PRESSURE AND MOTION MEASUREMENT

Various Transducers Capable of Measuring Low Pressure and Force - Its measuring System - External and Catheter tip Transducers - Transducer to Measure Single Movement and Differential Movements - Velocity Transducer - Seismic Pick Up - Accelerometer

UNIT III FLOW MEASUREMENT

Transducer to Measure Velocity - Magnitude and Direction Flow various Methods of measuring these Parameter - Invivo and Invitro Type of Measurements

UNIT IVCHEMICALANDOPTICALTRANSDUCER,TEMPERATUREANDRADIATION MEASUREMENT9

Ion Sensor - Anion and Cation Sensor - Liquid and solid Ion Exchange Membrane Electrodes - Enzyme Electrodes - Molecular Electrode - Fiber Optic Sensor - Photo Acoustic Sensors- PPG Sensors-Various Thermal Sensors Including Integrated Circuit Thermal Sensors - Radiation Thermometry and Chemical Thermometry - Scintillation technique - Gas ionization type films

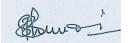
UNIT V DATA ACQUISITION RECORDING

Signal Conditioners - Single and Multi-Channel data acquisition System - DATA Transmission system - Various Types of recorders - Multichannel column display oscilloscope - Multi colour dot scanner - Magnetic recorder.

Total No of Periods: 45

TEXT BOOKS:

- 1. Michael R. Newman, David G. Flemming, "Physical Sensors for Bio Medical Applications", CRC Press Inc, Flordia, 1980
- 2. Rangan C.S., Sarma G.R., And Mani V.S.V., "Instrumentation Devices and System", Tata McGraw Hill Publication Company Limited, New Delhi, 1983


REFERENCE BOOKS:

- 1. Jacob Kline., "Handbook of Bio Medical Engineering", Avademic Press Inc., San Diego 1988
- 2. George C. Barney, "Intelligent Instrumentation", Prentice Hall of India, New Delhi, 1988
- 3. Earnest O.Doebelin., "Measurement System Application and Design", McGraw Hill, New York, 1990

C. B. Palamindu

REGISTRAR Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) Periyar E.V.R. High Road, Maduravoyal, Chennai 600 095

9

9 1-1

9