

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

FACULTY OF ENGINEERING AND TECHNOLOGY OUTCOME BASED EDUCATION

CURRICULUM & SYLLABUS

BACHELOR OF TECHNOLOGY COMPUTER SCIENCE AND ENGINEERING (Part Time)

REGULATION 2022

DEPARTMENT OF
COMPUTER SCIENCE AND ENGINEERING

Department of CSE

Vision:

To become a Premier Institution of Excellence in Computer Science and Engineering that would develop self sustaining and globallycompetent Computer Science and Information Technology Professionals.

Mission:

M1: Enable studentswith the best of Technologies and Knowledge emerging in the domain of Computer Science and Engineering.

M2: Equip the department laboratories with the power of in-demand Technologies and Software for the On-Demand Industry.

M3: Share and Collaborate knowledge across the IT Industries for holistic development of skilled and talented students.

M4: Impart the students with Ethical values, Critical thinking and Broad based computational skills.

M5: Motivate the students to comprehend problems across Inter Disciplinary Domains and offer innovative solution using ICT.

B. Tech-CSE Program Educational Objectives (PEO)

The Graduate will be able to

PEO1: Establish a career in Computer Science and Engineering in Industry, Government, Academia and work collaboratively with Peers

PEO2: Successfully pursue Higher Studies in the field of Engineering, Science, Technology and Management and/or take up Research

PEO3: Promote Design, Research and implementation of Products and Services in the field of Computer Science & Engineering through strong Communication, Leadership and Entrepreneurial Skills

PEO4: Engage himself in a Professional, Ethical and Responsible manner to the Profession, Industry, Nation and the Society

PEO5: Undertake the development of Innovative Systems and Solutions using Hardware and Software integration

PEO6: Contribute to the Nation's ICT Mission through software development and ICT related activities of the government

B. Tech-CSE Program Specific Outcomes (PSO)

PSO's describe what students are expected to know or be able to do by the time of graduation from the program.

PSO1: To apply the knowledge and professional skill of theoretical Computer science to provide ethical solutions for real world problems

PSO2: To comprehend highly complex engineering problems with the knowledge of basic science and engineering.

PSO3: To design economic, innovative hardware and software system for various domains.

PSO4: To create platforms for secured information sharing and management for engineering or social applications.

B. Tech-CSE Program Outcomes (PO)

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Mapping of Mission with PEO

Mission/ PEO	PEO1	PEO2	PEO3	PEO4	PEO5	PEO6
M1	3	3	3	2	3	2
M2	3	3	3	1	2	2
M3	3	2	3	3	2	1
M4	2	2	3	3	3	1
M5	2	2	3	2	3	3

Mapping of PEO with PO

PEO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PEO1	3	3	3	2	2	3	1	2	3	2	1	3
PEO2	3	3	3	2	2	3	2	2	1	3	1	3
PEO3	3	3	3	3	2	2	2	2	3	3	3	2
PEO4	3	3	3	1	2	3	3	3	3	2	1	1
PEO5	3	3	3	3	3	2	2	2	3	2	3	3
PEO6	3	2	2	1	2	3	3	3	3	3	3	2

Manning of PEO with PSO

	Ma	ipping of PEO with P	50	
PEO/PSO	PSO1	PSO2	PSO3	PSO4
PEO1	3	3	2	1
PEO2	2	2	1	2
PEO3	2	3	3	3
PEO4	3	1	2	2
PEO5	1	2	3	2
PEO6	2	2	2	2

Strength of Correlation 3-High 2-Medium 1-L

Dr.M.G.R. Educational and Research Institute (Deemed to be University)
Department of Computer Science and Engineering
2022 Regulation

		I SEMESTER						
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/	L	T/ S.Lr	P/R	C	Category
	CODE		ETL		J.L1			
1	EBMA22006	Discrete Mathematics	Ту	3	1/0	0/0	4	BS
2	EBCS22003	Data Base Management System	Ту	3	0/0	0/0	3	PC
3	EBEC22ID1	Digital Principles and System Design	Ту	3	0/0	0/0	3	ID
4	EBCS22002	Data Structures	Ту	3	1/0	0/0	4	PC
		PRACTICALS*						
1	EBCS22L01	Data Structures Lab	Lb	0	0/0	3/0	1	PC
2	EBCS22ET3	Object Oriented Programming With C++	ETL	1	0/1	3/0	3	PC
Credits Sub Total								18

		II SEMESTER						
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C	Category
1	EBMA22011	Statistics for Computer Engineers	Ту	3	1/0	0/0	4	BS
2	EBCS22004	Design and analysis of Algorithms	Ту	3	0/0	0/0	3	PC
3	EBCS22005	Operating Systems	Ту	3	0/0	0/0	3	PC
4	EBEC22ID2	Microprocessor and Microcontrollers	Ту	3	0/0	0/0	3	ID
		PRACTICALS*				•		
1	EBCS22L04	Operating Systems Lab	Lb	0	0/0	3/0	1	PC
2	EBCS22ET4	Java Programming	ETL	1	0/1	3/0	3	PC
Credits Sub Total								17

		III SEMESTER						
S.NO.	SUBJECT	SUBJECT NAME	Ty/	L	T/	P/R	C	Category
	CODE		Lb/		S.Lr			
			ETL					
1	EBCS22006	Computer Organization and Architecture	Ту	3	1/0	0/0	4	PC
2	EBCS22007	Computer Networks	Ty	3	0/0	0/0	3	PC
3	EBCS22EXX	Program Elective I	Ту	3	0/0	0/0	3	PE
		PRACTICALS*						
1	EBCS22L05	Network Programming Lab	Lb	0	0/0	3/0	1	PC
2	EBCS22ET5	User Experience design	ETL	1	0/1	3/0	3	PC
Credits Sub Total								14

Dr.M.G.R. Educational and Research Institute (Deemed to be University)
Department of Computer Science and Engineering
2022 Regulation

	IV SEMESTER									
SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C	Category			
EBCS22009	Object Oriented Software Engineering	Ту	3	0/0	0/0	3	PC			
EBCS22008	Principles of Compiler Design	Ту	3	0/0	0/0	3	PC			
EBCS22011	Artificial Intelligence	Ту	3	0/0	0/0	3	PC			
EBCS22EXX	Program Elective II	Ту	3	0/0	0/0	3	PE			
	PRACTICALS*									
EBCS22L07	Object Oriented Software Engineering Lab	Lb	0	0/0	3/0	1	PC			
	Credits Sub Total									

		VSEMESTER						
S.NO.	SUBJECT	SUBJECT NAME	Ty/	L	T/	P/R	C	Category
	CODE		Lb/		S.Lr			
			ETL					
1	EBCS22012	Big Data Analytics	Ту	3	1/0	0/0	4	PC
2	EBCS22010	Web Design Using PHP&	Ty	3	0/0	0/0	3	PC
	LDC322010	MySQL	1 y	'	0/0	0/0	3	
3	EBCS22014	Cloud Computing	Ty	3	1/0	0/0	4	PC
4	EBCS22EXX	Program Elective III	Ту	3	0/0	0/0	3	PE
		PRACTICALS*						
1	EBCS22L08	Web Design Using PHP&	Lb	0	0/0	3/0	1	PC
1	EDCS22LU6	MySQL Lab	LU	U	0/0	3/0	1	r C
Credits Sub Total								15

		VI SEMESTER						
S.NO.	SUBJECT	SUBJECT NAME	Ty/	L	T/	P/R	C	Category
	CODE		Lb/		S.Lr			
			ETL					
1	EBCS22015	Machine Learning	Ту	3	0/0	0/0	3	PC
2	EBCC22ID2	Principles Of Management and	Ту	3	0/0	0/0	3	HS
		Behavioral Science	- 3		0,0	0,0		112
3	EBCS22EXX	Program Elective IV	Ту	3	0/0	0/0	3	PE
		PRACTICALS*		•				
1	EBCS22L09	Data Analytics Lab using	Lb	0	0/0	3/0	1	PC
	EBC322L09	Machine Learning Algorithms	Lb		0/0	3/0	1	PC
2	EBCS22I05	Project Phase – 1	Lb	0	0/0	3/3	2	PC
	EDC322103	110ject 1 liase – 1	LU	U	0/0	3/3		FC
Credits Sub Total								

		VII SEMESTER						
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С	Category
1	EBCS22EXX	Program Elective V	Ту	3	0/0	0/0	3	PE
		PRACTICALS*						
1	EBCS22L11	Project Phase – II	Lb	0	0/0	12/12	8	PC
Credits Sub Total								11

Credit Summary

 Semester 1:
 18

 Semester 2:
 17

 Semester 3:
 14

 Semester 4:
 13

 Semester 5:
 15

 Semester 6:
 12

 Semester 7:
 11

Total Credits: 100

	ELECTIVE -I									
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C	Category		
1	EBCS22E01	Image Processing	Ту	3	0/0	0/0	3	PE		
2	EBCS22E02	Geographical Information Systems	Ту	3	0/0	0/0	3	PE		
3	EBCS22E03	Database Tuning	Ту	3	0/0	0/0	3	PE		
4	EBCS22E04	Component Based Technology	Ту	3	0/0	0/0	3	PE		
5	EBCS22E05	E-Commerce	Ту	3	0/0	0/0	3	PE		
6	EBCS22E06	Computer Graphics and Multimedia	Ту	3	0/0	0/0	3	PE		
7	EBCS22E07	Wireless and Mobile Networking	Ту	3	0/0	0/0	3	PE		

		ELECTIVE -II	[
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/	L	T/ S.Lr	P/R	С	Category
			ETL					2.0
1	EBCS22E08	5 G Networks	Ту	3	0/0	0/0	3	PE
2	EBCS22E09	Information Storage Management	Ту	3	0/0	0/0	3	PE
3	EBCS22E10	Risk Management	Ту	3	0/0	0/0	3	PE
4	EBCS22E11	Cryptography and Network Security	Ту	3	0/0	0/0	3	PE
5	EBCS22E12	Mobile Adhoc Networks	Ту	3	0/0	0/0	3	PE
6	EBCS22E13	Network Infrastructure Management	Ту	3	0/0	0/0	3	PE
7	EBCS22E14	Cyber Forensics and Internet Security	Ту	3	0/0	0/0	3	PE
8	EBCS22E15	Database Security	Ту	3	0/0	0/0	3	PE
9	EBCS22E16	Management Information Systems	Ту	3	0/0	0/0	3	PE

		ELECTIVE -III	[
S.NO.	SUBJECT	SUBJECT NAME	Ty/	L	T/	P/R	C	Category
	CODE		Lb/		S.Lr			
			ETL					
1	EBCS22E17	Mobile Application Development	Ту	3	0/0	0/0	3	PE
2	EBCS22E18	Data Science	Ту	3	0/0	0/0	3	PE

Dr.M.G.R. Educational and Research Institute (Deemed to be University)
Department of Computer Science and Engineering
2022 Regulation

3	EBCS22E19	Embedded Systems Architectures	Ту	3	0/0	0/0	3	PE
4	EBCS22E20	Agile Software Development	Ту	3	0/0	0/0	3	PE
5	EBCS22E21	Automation	Ту	3	0/0	0/0	3	PE
6	EBCS22E22	Social Computing	Ту	3	0/0	0/0	3	PE
7	EBCS22E23	Enterprise Architecture	Ту	3	0/0	0/0	3	PE
8	EBCS22E24	Network Forensics	Ту	3	0/0	0/0	3	PE
9	EBCS22E25	Distributed Computing	Ту	3	0/0	0/0	3	PE

	ELECTIVE -IV												
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С	Category					
1	EBCS22E26	Edge Computing	Ty	3	0/0	0/0	3	PE					
2	EBCS22E27	Cyber Physical Systems	Ty	3	0/0	0/0	3	PE					
3	EBCS22E28	Foundations of Parallel Programming	Ту	3	0/0	0/0	3	PE					
4	EBCS22E29	Virtualization	Ty	3	0/0	0/0	3	PE					
5	EBCS22E30	Data Modernization Analysis	Ту	3	0/0	0/0	3	PE					
6	EBCS22E31	Robotics	Ty	3	0/0	0/0	3	PE					
7	EBCS22E32	Deep Learning Techniques	Ту	3	0/0	0/0	3	PE					
8	EBCS22E33	Enterprise Resource Planning	Ту	3	0/0	0/0	3	PE					
9	EBCS22E34	Quantum Computing	Ту	3	0/0	0/0	3	PE					
10	EBCS22E35	Social Network Analysis	Ту	3	0/0	0/0	3	PE					
11	EBCS22E36	Neuro Fuzzy Computing	Ту	3	0/0	0/0	3	PE					
12	EBCS22E37	Augmented And Virtual Reality	Ту	3	0/0	0/0	3	PE					
13	EBCS22E38	Blockchain	Ty	3	0/0	0/0	3	PE					
14	EBCS22E39	M-Commerce	Ту	3	0/0	0/0	3	PE					
15	EBCS22E40	Real Time Systems	Ту	3	0/0	0/0	3	PE					
16	EBCS22E41	Optimization Techniques	Ту	3	0/0	0/0	3	PE					
17	EBCS22E42	Natural Language Processing	Ту	3	0/0	0/0	3	PE					

SEMESTER 1:

SEMESTER 1:															
COURSE CODE EBMA22006	COU	RSE N.	AME:	Disc	rete M	athem	atics		/Lb/ CL/IE	L	T/S.	Lr	P/R	C	
	Prere	quisite:	First y	ear Eng	gineerii	ng Mat	hematic	es	Tv	3	1/0	0	0/0	4	
L : Lecture T :							Projec		-	1 C:				1	
Ty/Lb/ETL/IE	: Theo	ry/Lab/	/Embec	lded Tł	neory a	nd Lab	/Interna	ıl Evalı	ation						
OBJECTIVE	S :														
The students sl															
To understand								_				neory			
To understand									rrence	relat	tions				
To understand									. •						
To understand							nite sta	te macı	iine.						
10 understand	ine Ba	ne Basic concepts in Graph theory													
COURSE OU	TCOM	COMES (COs): Students will be able to													
CO1	To un	o understand the Basic concepts in Logic and Predicate calculus													
CO2	To un	understand the Basic concepts in Combinatorics													
CO3		o understand the Basic concepts in Group theory													
CO4		Γο understand the Basic concepts in Automata													
CO5	To un	derstar	nd the E	Basic co	oncepts	in Gra	ph theo	ory							
Mapping of C	ourse	Outcor	nes wit	th Prog	gram C	Outcom	es (PO	s)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	010	PO1	1 PC	012	
CO1	3	3	2	3	2	1	1	1	2		1	1		3	
CO2	3	2	1	2	1	2	1	2	2		1	1		3	
CO3	2	3	1	3	2	2	2	1	1		2	1		3	
CO4	3	3	1	2	1	2	2	1	1		2	1		2	
CO5	2	3	1	2	1	2	2	1	1		2	2		3	
COs / PSOs		PSO1			PSO ₂			PSO:	3			PS	O 4		
CO1		2			1			3					1		
CO2		2			1			3					1		
CO3		2			1			3					1		
CO4		2 1 3 1													
CO5		2			1			3					1		
3/2/1 Indicate	s Stren	gth Of	Corre	lation,	3 – Hi	gh, 2-	Mediui	n, 1- L	ow						
ory	Basic Science	Basic Science Engineeri no Humanities and social Science Program Core Program elective Open Elective Inter Disciplinary Skill Practical Practical Practical													
. 5	1 1/	1	1	I		1	1						1		

COURSE CODE: EBMA22006	COURSE NAME :	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
	DISCRETE MATHEMATICS	Ту	3	1/0	0/0	4

UNIT I LOGIC 12 hrs

Statements – Truth Table – Connectives – Normal Forms – Predicate Calculus – Inference Theory.

UNIT II COMBINATORICS

12hrs

Mathematical Induction – Pigeon Hole Principle – Principle of Inclusion and Exclusion – Recurrence Relations – Generating Functions.

UNIT III GROUPS

12 hrs

Basic Concepts – Groups – Subgroups – Homomorphism – Kernel – Cosets – Lagrange's theorem - Group Homomorphisms – Rings and Fields (Definitions and simple theorems and problems).

UNIT IV AUTOMATA

12 hrs

Finite Automata – Regular grammar – Introduction – Context free grammar – Introduction to Turing machine – Finite state machine – Introduction – Language Recognition

UNIT V GRAPHS 12 hrs

Introduction to Graphs – Terminology – Matrix representation of Graphs: Incidence matrix, Adjacency matrix – Graph Isomorphism – Connectivity – Euler and Hamiltonian Paths (simple theorems and problems).

Total Hours: 60

Reference Books:

- 1) Veerarajan T., Discrete Mathematics, Tata McGraw Hill Publishing Co., (2008).
- 2) Tremblay J.P., Manohar R., *Discrete Mathematical structures with applications to Computer science*, Tata McGraw Hill Publishing Co., (2008).
- 3) Kolman, Busby, Ross, Discrete Mathematical Structures, Pearson, (2014).
- **4)** Kenneth Rosen, *Discrete Mathematics and its applications (SIE)*, Tata McGraw Hill Publishing Co., (2007).

2022 Regulation

COURSE CODE:	COURSE NAME: DATABASE MANAGEMENT SYSTEMS	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22003	Prerequisite: DATA STRUCTURES	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits T/L/ETL /IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVE:

Thestudents should be made to

- To understand the different issues involved in the design and implementation of a database system.
- To study the physical and logical database designs, database modeling, relational, hierarchical, and network models.
- To develop an understanding of essential DBMS concepts such as: database security, integrity, and concurrency.

concurren	icy.												
COURSE OU		MES (C	COs): S	Student	s will b	e able	to						
CO1								iques of	DBMS	[L2]			
CO2	Apply	indexi	ing and	hashin	g in da	tabase	implem	nentation	[L3]				
CO3	Analy	ze rout	ine req	uisite f	or mair	ntaining	g and q	uerying o	database	s and need	l for sort	ing	
			rations										
CO4						nsactio	n mana	igement,	concurr	ency cont	rol and		
			tem in										
CO5									eal-time	e applicati	ons[L3]		
Mapping of C											1	ı	
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	1				2	2	2		2	
CO2	3	2	3	1	1			2	2	2	1	3	
CO3	2	3	3	1				1	3	3	1	3	
CO4	2	3	3	1	1	1		2	3	3	1	3	
CO5	3	3	3	1	1	1		3	3	2	1	3	
COs / PSOs		PSO ₁			PSO ₂			PSO3			PSO4		
CO1		2			1						1		
CO2		2			1						1		
CO3		1			1						1		
CO4		2			1			2			1		
CO5		2			1			2			1		
3/2/1 Indicate	s Stren	gth Of	Correla	tion, 3	– High	, 2- Me	edium,	1- Low					
Category	Basic Science	Enginee	Enginee ring Humanities and social Core Program elective Open Elective Inter Disciplinary Skill Component Practical Incomponent										
		l	l	-								L	

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	C
EBCS22003	DATABASE MANAGEMENT SYSTEMS	Ту	3	0/0	0/0	3

UNIT I FUNDAMENTALS OF DATABASE

9 Hrs

Introduction - Purpose of database systems - Data Abstraction -Data models - Instances and schemas - Data Independence - DDL - DML - Database user - ER model - Entity sets- keys - ER diagram - relational model - structure - relational algebra- relational calculus- views

UNIT II SQL, INDEXING & HASHING

9 Hrs

SQL - normalization – normalization using functional – Multivalued join dependence - file transaction – data dictionary – indexing and hashing basic concepts and B+ tree Indices - static and dynamic hash functions

UNIT III QUERY PROCESSING AND TRANSACTIONS

9 Hrs

Overview - Measures of Query Cost - Selection Operation - Sorting - Join Operation - Transaction Concept - A Simple Transaction Model - Storage Structure - Serializability

UNIT IV CONCURRENCY CONTROL AND RECOVERY SYSTEM

9 Hrs

Lock-Based Protocols - Deadlock Handling - Timestamp-Based Protocols - Validation-Based Protocols - Failures Classification - Storage - Recovery and Atomicity - Recovery Algorithm - Buffer Management

UNIT V ADVANCED TOPICS IN DATABASES

9 Hrs

Database-System Architectures - Parallel Databases - Distributed Databases - Database Tuning - Introduction to Special Topics - Spatial & Temporal Databases - Data Mining and Warehousing.

Total Hours: 45

TEXT BOOKS:

1. Abraham, Silberschatz. Henry, F. K..Sudharshan, S. (2013) Database System Concepts (6thed.) Tata McGraw Hill, New Delhi

REFERENCE BOOKS:

- 1. Ramez, E. Shamkant, B. Navathe (2008) Fundamentals of database systems (5th ed.), Pearson Education
- 2. Date, C. J. (2012) An Introduction to Database Systems (8th ed.), Pearson Education

					20)22 Reg	ulation							
COURSE CODE:		OIGITA	L PRI	NCIPI DESI	LES AN	ND SY	STEM	Ty/I ETI		L	T/ S.Lı	- P/R	R C	
EBEC22ID	Pre	requisit						T		3	0/0		3	
L : Lecture T										h C:	Credit	ts		
Ty/Lb/ETL/I		ory/Lal	b/Embe	edded 7	Theory a	and Lal	o/Intern	al Evalu	ation					
OBJECTIVE														
The students s														
					codes									
								gital syst						
								l circuit				es		
		the analysis for synchronous and asynchronous Sequential circuits												
COURSE O	UTCO:	OMES (COs): Students will be able to												
CO1	A	Acquire	d know	ledge :	about ni	umber :	systems	and its	conve	rsior	ıs			
CO2				nowledge about boolean algebra										
CO3	A	Ability 1	to ident	dentify, analyze & design combinational circuits										
CO4	A	Ability 1	to ident	identify & analyze synchronous & asynchronous circuits										
Mapping of	Course	Outcomes with Program Outcomes (POs)												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9 1	PO10	PO11	PO12	
CO1	3	1	2	1	1	1	1	1	1		2	1	1	
CO2	3	2	1	1	1	1	1	1	1		1	1	1	
CO3	2	2	3	1	1	2	1	1	2		2	1	1	
CO4	2	2	3	1	1	2	1	1	2		2	1	1	
COs /	DC	01		DC	100			PSO3				DCO 4	,	
PSOs	PS	O 1		PS	SO2							PSO4		
CO1	1	1			3			1				1		
CO2	1	1			3			1				1		
CO3	3	3			2			1				1		
CO4	3	3			2		1 1							
3/2/1 Indicate	es Stren	ngth Of	Correla	ation, 3	3 – High	n, 2- M	Medium, 1- Low							
		Ĭ		<u> </u>										
Category	3asic Science	ngineering cience	umanities and	rogram	Program elective	pen Elective	Inter Disciplinary	Skill Component	Practical /Project					

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	С
EBEC22ID1	DIGITAL PRINCIPLES AND SYSTEM DESIGN	Ту	3	0/0	0/0	3

UNIT I NUMBER SYSTEMS

9 Hrs

Review of Decimal, Binary, Octal And Hexadecimal Number Systems-Binary Addition Subtraction, Multiplication& Division—Number Conversions – Signed Magnitude form – 1's and 2's Complement – Binary weighted codes- Binary arithmetic – codes – BCD code, Gray code, Excess-3 Code.

UNIT II BOOLEAN ALGEBRA

) Hrs

Binary logic Functions- Boolean laws –Boolean Algebra – Reduction of Boolean Expressions De Morgan's Theorems, Sum Of Products –Product Of Sums –karnaugh map- Quine McCluskey Method.

UNIT III COMBINATIONAL LOGIC

) Hrs

Logic gates – AND, OR, NOT, NOR, NAND and EX-OR Gates – Half adder – Full adder – Half subtractor – Full subtractor – Demultiplexer – Demultiplexer – Decoder.

UNIT IV SYNCHRONOUS/ASYNCHRONOUS SEOUENTIAL LOGIC 9 Hrs

Latches-R-S- Flip Flop, S-R Flip Flop, D Flip Flop, JK Flip Flop, T Flip-Flop - Master slave Flip-Flop - Counters - Up Down counters- Binary Counters-Ring counter- Shift Registers. Asynchronous counters - Decade counters - State diagram - State Table - State Reduction - State Assignment- Excitation Table- Analysis of Asynchronous sequential circuits - Design of Asynchronous Sequential Circuits.

UNIT V MEMORY DEVICES

9Hrs

Basic memory structure – ROM -PROM – EPROM – EEPROM –EAPROM, RAM – Static and dynamic RAM - Programmable Logic Devices – Programmable Logic Array (PLA) -Programmable Array Logic (PAL) – Field Programmable Gate Arrays (FPGA) – Implementation of combinational logic circuits using PLA, PAL.

Total Hours: 45

TEXT BOOKS:

- 1. Charles H. Roth & Larry L.Kinney, "Fundamentals of Logic Design", Cengage Learning, 7th Edition
- 2. M. Morris Mano & Michael D.Ciletti (2008) Digital Design. Pearson Education
- 3. Thomas.L.Floyd (2013) "Digital Fundamentals", 10th Edition Pearson Education
- 4. A.Anand Kumar —Fundamentals of Digital Circuits, 4th Edition, PHI Learning Private Limited, 2016.
- 5. Soumitra Kumar Mandal Digital Electronics, McGraw Hill Education Private Limited, 2016.

REFERENCE BOOKS:

- 1. Ronald J. Neal S. Gregory L (2009), "Digital Systems", 10th Edition, Pearson Prentice Hall.
- 2. R P Jain, (2010), "Modern Digital Electronics", 4th Edition, Tata Mcgraw Hill Ed. Pvt. Ltd

COURSE CODE: EBCS22002	DATA STRUCTURES	Ty/ Lb/ ETL/IE	L	T/ S.Lr	P/R	С
	Prerequisite: Nil	Ту	3	1/0	0/0	4

L: Lecture T:Tutorial S.Lr: Supervised Learning P: Project R: Research C:

Credits Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal

Evaluation

OBJECTIVES:

Thestudents should be made to

Maste	r the impl		tion of 1	inked d	lata etru	ctures s	nich ac	linked lie	ete and h	inarytree			
	miliar wit									illal y li cc	~S		
	niliar with									merge s	ortandhe	eancort	
	niliar wid niliar som				_						ortandin	арзон	
	r the stand												
COURSE OU	TCOME	S (COs): Stude	ents wil	l be abl	e to	orogram	mmg ia	iiguuge(ju vu)			
CO1		`					various	algorithi	ns and i	mplemen	t various	operations	
		ays and				,		υ		1		1	
CO2	Apply	major	algorith	nms and	l data st	ructures	s to solv	ve proble	ms[L3]				
CO3		Design and apply tree data structure in data compression algorithms[L3] Analyze and apply appropriate searching and/or sorting techniques in the application											
CO4	devel	opment	[L4]			_		_	•	-	•	1	
CO5	Analy Path[ze grap	h data s	structur	e and ap	oply it t	o real w	orld pro	blems in	finding	shortest		
Mapping of C			with F	Progran	n Outc	omes (I	POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	1			2	2	1	2		2	
CO2	3	3	3	1			3	2	3	2	1	2	
CO3	3	2	3	1		1	2	2	3	1	1	2	
CO4	3	3	3	1	1	1	2	2	3	2	1	2	
CO5	3	3	3	1	1	1	2	3	2	1	1	1	
COs / PSOs		PSO1			PSO 2			PSC 3)		PSO	D4	
CO1		3			3			2			1		
CO2		3			3			1			2		
CO3		3			2			3			1		
CO4		3			3			1			2		
CO5		3			3			2			1		
3/2/1 indicate	s Strengt	hofCor	relation	n 3-	High, 2	- Medi	um,1-L	ow					
							>		,				
	nce		and	Je Je		\ e	Inter Disciplinary	Skill Component	103601				
	Basic Science	ering e	nities Scien	m Co	Program elective	Electi	Disci	Comp					
gory	Basic	Engineering Science	Humanities and social Science	Program Core	Prograr elective	Open Elective	Inter	Skill	r 1act				
Category				<i>'</i>									

COURSE CODE: EBCS22002	COURSE NAME:	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
	DATA STRUCTURES	Ту	3	1/0	0/0	4

UNIT - I LINEAR DATA STRUCTURES - LIST

12Hrs

Introduction: Abstract Data Types (ADT) **Arrays**: Definition, Single and Multidimensional Arrays, **Linked lists**: Array Implementation and Dynamic Implementation of Singly Linked Lists, Doubly Linked List, Circularly Linked List, Operations on a Linked List. Insertion, Deletion, Traversal, Polynomial Representation and Addition, Generalized Linked List.

UNIT - II LINEAR DATA STRUCTURES - STACK AND QUEUES

12Hrs

Stacks: Abstract Data Type, Primitive Stack operations: Push & Pop, Array and Linked Implementation of Stack, Application of stack: Prefix and Postfix Expressions, Evaluation of postfix expression, Recursion, Tower of Hanoi Problem, Simulating Recursion, **Queues**: Queue ADT, Operations on Queue: ENQUE, DEQUE, Full and Empty, Circular queues, Array and linked implementation of queues, Dequeue and Priority Queue.

UNIT - III NON LINEAR DATA STRUCTURES - TREES

12Hrs

Trees: Basic terminology, Binary Trees, Binary Tree Representation: Array Representation and Dynamic Representation, Complete Binary Tree, Algebraic Expressions, Extended Binary Trees, Tree Traversal algorithms: Inorder, Preorder and Postorder, Threaded Binary trees, Binary Search Trees, AVL Trees, B-Trees, Heaps.

UNIT – IV NON LINEAR DATA STRUCTURES –GRAPHS

12Hrs

Graphs: Terminology, Sequential and linked Representations of Graphs: Adjacency Matrices, Adjacency List, Adjacency Multi list, Graph Traversal: Depth First Search and Breadth First Search, Connected Component, Spanning Trees, Minimum Cost Spanning Trees: Prims and Kruskal algorithm. Shortest Path algorithm: Dijikstra Algorithm

UNIT - V SEARCHING, SORTING AND HASHING

1)Hrc

Searching: Sequential search, Binary Search, Comparison and Analysis Internal Sorting: Insertion Sort, Selection, Bubble Sort, Quick Sort, Two Way Merge Sort, Heap Sort, Radix Sort, Hashing: Hash Function, Collision Resolution Strategies

Total Hours:60

TEXTBOOK

- 1. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", 2nd Edition, Pearson Education, 1997.
- 2. Reema Thareja, "Data Structures Using C", Second Edition, Oxford University Press, 2011

REFERENCES

- 1. Aaron M. Tenenbaum, Yedidyah Langsam and Moshe J. Augenstein "Data Structures Using C and C++", PHI Learning Private Limited, Delhi India
- 2. Horowitz and Sahani, "Fundamentals of Data Structures", Galgotia Publications Pvt Ltd Delhi India.

A.K. Sharma, Data Structure Using C, Pearson Education IN

COURSE CODE: EBCS22L01	COUI	RSE NA	AME: DATA	STRU	CTUR	ES LA	В	1 -	Lb/ TL/IE	L	T/S.l	Lr	P/ R	С	
	Prerec	-	C PRO	GRAMN	MING A	ND MS	OFFIC	E]	Lb	0	0/	0	3/0	1	
L : Lecture T:7									arch C:						
Credits Ty/Lb/	ETL/IE	: Theo	ry/Lab/	Embed	ded Th	eory an	dLab/I1	nternal							
Evaluation OBJECTIVE	C •The	ctuden	ta ahou	ıld ba ı	mada t	0									
							z opplyz	ing the	charac	torio	itios o	fon			
	-	ed app	-	111-801 v	ing ao	iiity by	appry	ing the	Ciiaiac	icis	siles o	11 all			
		object		ed con	cents i	n Iawa									
COURSE OU					•		e to								
		`							1 1		1				
CO1				_			-		cks and	que	ue da	ta stru	cture	S	
CO2							world								
CO3		•				•	e applio								
CO4	1	_			-		-	Search	1 Trees						
CO5		Analyze the complexity of given algorithms													
		ourse Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	POS	PO	9 P	O10	PO11	PC	D12	
CO1	3	2	2	1				2	2		2		4	2	
CO2	3	2	3	1	1			2	2		2	1		3	
CO3	2	3	3	1				1	3		3	1		3	
CO4	2	3	3	1	1	1		2	3		3	1		3	
CO5	3	3	3	1	1	1		3	3		2	1		3	
	3	2	2	1				2	2		2			2	
COs / PSOs		PSO			PSO			PS	O3			PS			
CO1		1			2							04			
CO2		2 2			1							1			
CO3		1			1 1							1 1			
CO4		2			1			2				1			
CO5		2			1			2				1			
3/2/1 Indicates	Streng		orrelati	on, 3 –	High, 2	2- Medi	um, 1-								
Category	Basic Science	Engine ering	Humanities and social Science	Program Core	Program elective	lective	Inter Disciplinary		Practical /Project						
		田市	E. S.	_ √	<u>Б</u>	0	11 D		P I						

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22L01	DATA STRUCTURES LAB	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS:

- 1. Write a program to implement list ADT using arrays and linked list.
- 2. Write a Program to implement the following using an array a) Stack ADT b) Queue ADT.
- 3. Write a Program to implement the following using a singly linked list a) Stack ADT b) Queue ADT.
- 4. Write a program that reads an infix expression, converts the expression to postfix form and then evaluates the postfix expression.
- 5. Write a Program to traverse binary tree in preorder, postorder and inorder.
- 6. Write a program to perform the following operations a) Insert an element into a binary search tree.b)Delete an element from a binary search tree.c)Search for a key element in a binary search tree.
- 7. Write a Program for the implementation of Binary Heaps
- 8. Write a Program for the implementation of Breadth First Search and Depth First Search.
- 9. Write a Program for the implementation of Linear Search and Binary Search
- 10. Write a Program for sorting. (bubble sort, insertion sort, shell sort, heap sort)
- 11. Write a Program for the implementation of Collision Resolution using Open Addressing

Software requirement: C/C++

Total Hours:45

COURSE CODE EBCS22ET3	COURSE NAME: OBJECT ORIENTED PROGRAMMING WITH C++	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
	Prerequisite: C PROGRAMMING AND MS OFFICE TOOLS	ETL	2	0/0	2/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

• Understand the basic concepts and techniques which form the object oriented programming paradigm.

paradi	_																				
	nber the																				
				ng File cond																	
COURSE OU		,																			
CO1	Under	rstandii	ng the I	Basic Conce	epts of	object	oriente	d progr	ammin	g. [L2]											
CO2	I	_	_	about Clas		-															
CO3	1 -	_		various kir			_	d inher	ritance	concepts	[L3]										
CO4	Desig	Design generic classes with C++ templates[L6]																			
CO5	Devel	Develop an Application with C++ Techniques[L6]																			
	ourse Outcomes with Program Outcomes (POs)																				
COs/POs	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12																			
CO1	3	3	1	2	2	2	1	1	2	1	1	1									
CO2	3	2	2	2	2	2	1	2	2	2	1	1									
CO3	3	3	2	2	2	2	1	1	1	2	1	2									
CO4	3	2 2 2 1 2 1 2 2 1 2																			
CO5	3	3	2	1	1	2	1	2	1	2	1	1									
COs / PSOs		PSO1		P	SO2			PSO3	<u> </u> 3		PSO	4									
CO1		1	1 1 1																		
		1 1			3			1													
CO1 CO2 CO3		2			3			1 2			1 1										
CO1 CO2 CO3 CO4					3						1 2										
CO1 CO2 CO3 CO4 CO5		2 2 1			3 3 3			2 1 1			1										
CO1 CO2 CO3 CO4	s Stren	2 2 1	f Corre	lation, 3 –	3 3 3	2- Med	ium, 1	2 1 1			1 2										
CO1 CO2 CO3 CO4 CO5	Basic Science	2 2 1	es and		3 3 3	ctive	Inter Disciplinary 1	2 1 1 - Low	Practical /Project		1 2										

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22ET3	OBJECT ORIENTED PROGRAMMING WITH C++	ETL	2	0/0	2/0	3

UNIT I 12Hrs

BASIC CONCEPTS OF OOPS: Programming methodologies - Object Oriented Concepts -Features & Applications of OOPS-Benefits of OOPS-Structure of C++ - C++ Tokens-Operators in C++ - Data types-Control statements - Arrays

UNIT II 12Hrs

Class & Objects: Classes and Objects-Abstraction-Encapsulation-Definition - Data members - Function members - Access Modifiers- Constructors - Types of Constructors- Destructors - Static members - Inline functions- Arrays of Object

UNIT III 12Hrs

INHERITANCE AND POLYMORPHISM: Overloading Operators - Rules for Operator overloading, - Function Overloading- Overloading Unary & Binary Operators - Friend Function - Virtual functions - Abstract Classes -Inheritance -Definition -Single Inheritance-Multiple Inheritance-Hierarchical Inheritance-Single Inheritance-Hybrid Inheritance.

UNIT IV 12Hrs

TEMPLATES & EXCEPTION HANDLING: Class Templates - Function Templates - Overloading Template Functions-Basics of Exception handling -Try-Catch-Throw - Rethrowing an Exception, Exception specifications, Processing Unexpected Exceptions-Error handling during File operations, Formatted I/O.

UNIT V 12Hrs

Files and Streams: Creating a Sequential Access File- Reading Data from A Sequential Access File, Updating Sequential Access Files-Random Access Files-Creating A Random Access File- Writing Data Randomly To a Random Access File- Reading Data Sequentially from a Random Access File. Stream Input/Output Classes and Objects, Stream Output, Stream Input, Unformatted I/O (with read and write), Stream Manipulators, Stream Format States, Stream Error States.

Total Hours: 60

TEXT BOOKS:

- 1. Stanley, B. Lippman (2012) The C++ Primer, (5th ed.), Addison Wesley
- 2.C++ How to Program by H M Deitel and P J Deitel, 1998, Prentice Hall

REFERENCES:

- 1. Stroustrup, B (2004) The C++ Programming Language, (3 rd ed.), Pearson Education
- 2. Balagurusamy, E (2008) Object Oriented Programming with C++, (4th ed.), Tata Mcgraw Hill II SEMESTER:

COURSE CODE EBMA22011	COURSE NAME: Statistics for Computer Engineers	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
	Prerequisite: First year Engineering Mathematics	Ty	3	1/0	0/0	4

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- To understand the Basic concepts in Frequency distribution, Measures of Central Tendency and Relative Measures of Dispersion.

 To understand the Basic of

			-					ariable ar of Corre		bility. d Regressi	on.					
• To unde			-					1 4	. 17	7 1	. ,					
COURSE OU'							ternative	nypotne	esis and C	Critical po	ints					
CO1		derstan					ioa									
COI	10 un	derstan	u me Da	asic coi	icepis ii	1 Statist	lics									
CO2	To un	derstan	d the Ba	asic cor	ncepts in	1 Proba	bility									
CO3	To un	To understand the Basic concepts in Correlation To understand the Basic concepts in Probability distributions														
CO4		To understand the Basic concepts in Probability distributions														
CO5		To understand the Basic concepts in Sampling theory urse Outcomes with Program Outcomes (POs)														
											T.					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12				
CO1	2	3	2	3	1	2	1	2	2	1	1	2				
CO2	3	3	1	2	2	2	2	2	1	1	2	2				
CO3	2	2	1	3	1	2	1	1	2	2	2	3				
CO4	3	2	1	3	1	1	2	2	1	1	1	3				
CO5	3	3	2	2	1	2	2	1	2	2	2	2				
COs / PSOs		PSO1			PSO2			PSO	3		PSO4	•				
CO1		2			1			3			1					
CO2		2			1			3			1					
CO3		2			1			3			1					
CO4		2			1			3			1					
CO5		2			1			3			1					
3/2/1 Indicates	Streng	gth Of (Correla	tion, 3	– High	, 2- Me	dium,	1- Low								
Category	Basic Science	Basic Science Enginee Find Find For Strength Of Correlation, 3 – High, 2- Medium, 1- Low For Brogram Component Inter Disciplinary Skill Component Project Project														
	$\sqrt{}$															

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBMA22011	STATISTICS FOR COMPUTER ENGINEERS	Ту	3	1/0	0/0	4

UNIT I BASICS OF STATISTICS

12 hrs

Variables – Uni-variate Data – Frequency Distribution – Measures of Central Tendency – Mean – Median – Mode – Quartiles – Measures of Dispersion – The Range – Mean deviation – Quartile Deviation – Standard Deviation – Relative Measures of Dispersion – Coefficient of Variation – Quartile Coefficient of Variation – Skewness and Kurtosis (Definition and Simple problems).

UNIT II PROBABILITY AND RANDOM VARIABLE

12 hrs

Axioms of Probability - Independent Events - Mutually exculsive Events - Conditional probability - Total probability - Baye's Theorem - Random variable - Probability mass function - Probability density function - Properties (Definition and simple problems).

UNIT III CORRELATION & REGRESSION

12 hrs

Bi-variate data – Applications of Correlation: Karl Pearson's Coefficient of Correlation – Rank Correlation: Spearman's Rank Correlation – Linear Regression.

UNIT IV STANDARD DISTRIBUTIONS

12 hrs

Binomial – Poisson – Geometric – Uniform – Exponential – Normal distributions.

UNIT V TESTING OF HYPOTHESIS

12 hrs

Tests of Significance – Null hypothesis – Alternative hypothesis – Critical points - Large Sample Tests – Mean proportions – Small Sample Tests – t, F, Chi-square Tests: Independence of Attributes, Goodness of Fit.

Total Hours: 60

Reference Books:

- 1) Veerarajan T., *Probability, Statistics and, Random Processes*, Tata McGraw Hill Publishing Co., (2008).
- 2) Singaravelu, Probability and Random Processes, Meenakshi Agency, (2017).
- 3) Gupta S.C., Kapoor V.K., Fundamentals of Mathematical Statistics, S.Chand& Co., (2007).
- **4)** Richard Johnson A., *Miller & Freund's Probability and statistics for Engineers (9th ed)*, Prentice Hall of India, (2016).

			Бера	rtment (outer Sci 2 Regul		a Engir	ieering					
COURSE CODE: EBCS22004	1	RSE NA ESIGN	ME: AND A	NALYS				s	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	(
			OATA S						Ty	3	0/0	0/0	3	
L : Lecture T :									C: Credits	8	•			
T/L/ETL/IE:		.ab/Emb	edded T	heory a	nd Lab/	Internal	Evaluati	ion						
OBJECTIVE														
Thestudents sh														
	arn the al	_	-		-									
	derstand		_		design to	echnique	es.							
	derstand		_											
 To Un 	derstand	the limi	tations o	of Algor	ithm po	wer								
COURSE OU	TCOM	ES (CO	s): Stude	nts will	be able	to								
CO1	Under	stand the	e fundan	nentals	of algor	ithms[L2	2]							
CO2	Analy	nalyze time complexity of various algorithms[L4]												
CO3	Apply	the diffe	erent pro	blem so	olving to	echnique	es to solv	ve basio	mathemat	ical pr	oblems[L3	3]		
CO4	Analy	apply the different problem solving techniques to solve basic mathematical problems[L3] analysing the structure of tree and graphs to identify the limitations in solving the problem[L4]												
CO5				gorithms for solving real world applications[L5]										
		irse Outcomes with Program Outcomes (POs)												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11 P	012	
CO1	3	3	2	2					2	2	,		2	
CO2	3	3	3	1					3	2			2	
CO3	3	2	2	2					3	2			2	
CO4	2	3	3	1			1		2	2	. 1	1	2	
CO5	2	3	3	1	1		1		2	2	. 1	1	3	
COs / PSOs		PSO1			PSO2			PS	O3		PS	SO4		
CO1		3			3							1		
CO2		3			3			-				1		
CO3 CO4		3			3				3			2		
CO4		3			3			•	,			2		
CO5		3			3			•	3			3		
3/2/1indicates	Strengt	h of Co	rrelatio	1 3- H	ligh, 2-	Mediun	n, 1-Lov	v						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	InterDisciplinary	Skill Component	Practical /Project					

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22004	DESIGN AND ANALYSIS OF ALGORITHMS	Ty	3	0/0	0/0	3

UNIT I BASIC CONCEPTS AND INTRODUCTION TO ALGORITHMS 9 Hrs

Introduction-Historical Background-Time Complexity-Space Complexity— Fundamentals of Algorithmic Problem Solving — Important Problem Types —Asymptotic Notations and their properties. Analysis Framework — Empirical analysis — Mathematical analysis for Recursive and Non-recursive algorithms — Visualization

UNIT II BRUTE FORCE AND DIVIDE-AND-CONQUER

9 Hrs

Brute Force – Closest-Pair and Convex Hull Problems-Exhaustive Search – Traveling Salesman Problem – Knapsack Problem – Assignment problem. Divide and conquer methodology – Merge sort – Quick sort – Binary search – Multiplication of Large Integers – Strassen's Matrix Multiplication-Closest-Pair and Convex Hull Problems.

UNIT III DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE 9 Hrs

Computing a Binomial Coefficient – Warshall's and Floyd' algorithm – Optimal Binary Search Trees – Knapsack Problem and Memory functions. Greedy Technique– Prim's algorithm- Kruskal's Algorithm- Dijkstra's Algorithm- Huffman Trees.

UNIT IV ITERATIVE IMPROVEMENT

9 Hrs

The Simplex Method-The Maximum-Flow Problem – Maximm Matching in Bipartite Graphs- The Stable marriage Problem.

UNIT V COPING WITH THE LIMITATIONS OF ALGORITHM POWER 9 Hrs

Limitations of Algorithm Power-Lower-Bound Arguments-Decision Trees-P, NP and NP-Complete Problems-Coping with the Limitations – Backtracking – n-Queens problem – The 3-Coloring Problem-Hamiltonian Circuit Problem – Subset Sum Problem-Branch and Bound – Assignment problem – Knapsack Problem – Traveling Salesman Problem-Approximation Algorithms for NP – Hard Problems – Traveling Salesman problem – Knapsack problem.

Total Hours: 45

TEXT BOOK:

- 1. AnanyLevitin, "Introduction to the Design and Analysis of Algorithms", Third Edition, Pearson Education, 2012.
- 2. M. H. Alsuwaiye, "Voronoi Diagrams", Third Edition, World Scientific.

REFERENCE BOOKS:

- 1. Thomas H.Cormen, Charles E.Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to Algorithms", Third Edition, PHI Learning Private Limited, 2012.
- 2. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, "Data Structures and Algorithms", Pearson Education, Reprint 2006.
- 3. Donald E. Knuth, "The Art of Computer Programming", Volumes 1& 3 Pearson Education, 2009. Steven
- S. Skiena, "The Algorithm Design Manual", Second Edition, Springer, 2008.
- 4. http://nptel.ac.in/

Dr.M.G.R. Educational and Research Institute (Deemed to be University)

	I	Or.M.G.l	R. Educa Depar		f Comp		ence and			nivers	sity)			
COURSE CODE	COUF	RSE NA	ME: OPERA	ATING					Lb/ L/IE	L	T/S	.Lr	P/R	C
EBCS22005	Prereq	uisite: C	ompute	r Organi	zation a	nd Arch	itecture		Ty	3	0/	0	0/0	3
L : Lecture T :	Tutorial	S.Lr:	Supervi	sed Lea	rning P	: Projec	t R : Re	search	C: Cred	its	•			
Ty/Lb/ETL/IE :	Theory	/Lab/En	nbedded	Theory	and Lab	/Intern	al Evalı	ation						
OBJECTIVES														
The students sh														
	and the	-	-			-								
	te the Sc													
	approp									oleme	ent pag	e repl	acemer	ıt
	hm, und						ns and d	irector	ies.					
	ate emei													
COURSE OUT														
CO1	Remer	nber and	d Unders	stand fur	ections,	structure	es and hi	story c	f operat	ing sy	stems	[L1]		
CO2	Analyz	nalyze various functions of CPU processing algorithms[L4]												
CO3	Unders	derstand the concept of hazard and analyze with prevention process[L2]												
CO4	Analyz	ze variou	ıs memo	ory mana	igement	scheme	s[L4]							
CO5	11.0		ctionality											
Mapping of Co										ı		1		
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	010	PO1	1 P	012
CO1	3	3	3	2	1	1	1		1			2		1
CO2	3	3	2	1	1	1					1	2		2
CO3	3	3	3	1	2	1			1			1		
CO4	3	3	3	1	1	2	1				1			
CO5	3	3	3	2	2	2			1		1			
COs / PSOs		PSO1			PSO2			PSC)3			PS	04	
CO1		3			3			2				2		
CO2		3			3			1				2		
CO3		3			3			3				3		
CO4		3			3			2				3		
CO5		3			3			2				2	?	
3/2/1 Indicates	Strengt	h Of C	orrelatio		ligh, 2-	Mediur	n, 1- Lo	W						
Category	Basic Sciences	Engineering Sciences	Humanities and Social	✓ Program Core	Program Electives	Open Electives	InterDisciplin ary	Skill Component	Practical /Project					
Ca	H S	S	<u> </u>	✓	дЩ	ОЩ	<u> </u>	S	<u> </u>					

2022 Regulation

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22005	OPERATING SYSTEM	Ту	3	0/0	0/0	3

UNIT I CONCEPTS & PROCESSES 9 Hrs

Introduction -Computer system architecture-operating system structure-operations-management of process, memory, storage-protection and security-Operating System Services-System Calls-types-System Programs-System Structure-Virtual Machines-System Design and Implementation- Process Concept-Process Scheduling-Operation on Process-Cooperating Processes- Inter Process Communication

UNIT II 9 Hrs

PROCESS MANAGEMENT, SYNCHRONIZATION AND DEADLOCKS

Threads-Multithreading Models. CPU Scheduling Concepts-Scheduling Criteria-Scheduling Algorithms-Threads and Multiple-Processor Scheduling-Real Time Scheduling- - Process Synchronization-The Critical Section Problem-Synchronization-Peterson solution, mutex-Hardware-Semaphores Monitor-Deadlocks-Deadlock Characterization-Methods of Handling Deadlocks-Deadlock Prevention-Deadlock Avoidance-Deadlock Detection-Recovery form Deadlock

UNIT III 9 Hrs

MEMORY MANAGEMENT

Main Memory-Swapping-Contiguous Memory Allocation - Address Translation - Paging - Segmentation - Virtual Memory-Demand paging-page replacement-thrashing-allocating Kernel memory.

UNIT IV 9 Hrs

STORAGE MANAGEMENT

Files And Secondary Storage Management: File Concepts - Access Methods - Directory Structure - File System Mounting - File Sharing - Protection - File System Structure - Implementation - Recovery - Disk Structure - Disk Scheduling - Disk Management- I/O Systems

UNIT V 9 Hrs

CASE STUDY

Linux System — Design Principles, Kernel Modules, Process Management, Scheduling, Memory Management, Input-Output Management, File System, Inter-process Communication; Network Structure, Security. Windows 10 - Design Principles, System Components, Terminal Services and fast user switching, File System, Networking, Programmer Interface.

Total Hours: 45

TEXT BOOKS:

1.Abraham Silberschatz, Peter B. Galvin, Greg Gagne(2018) Operating System Concepts (10th ed.), ISBN: 978-1-119-32091-3

REFERENCE BOOKS:

- 1. D.M.Dhamdhere. D. M. (2012) Operating Systems, (3 rd ed.), Tata McGraw Hill
- 2. Tanenbaum (2015) Modern Operating Systems, Pearson Publication.

William Stallings (2015) Operating Systems (8 th ed.) Prentice Hall of India

	2022 Regulation					
COURSE CODE: EBEC22ID2	COURSE NAME: MICROPROCESSORS AND MICROCONTROLLERS	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
	Prerequisite: DIGITAL PRINCIPLES AND SYSTEM DESIGN	TY	3	0/0	0/0	3
	Tutorial S.Lr: Supervised Learning P: Project R: R Theory/Lab/Embedded Theory and Lab/Internal Evaluat		Cred	its		•
	, , , , , , , , , , , , , , , , , , ,					

OBJECTIVE:

Thestudents should be made to

- To study the basic architectures and operational features of the processors and controllers.
- To learn the assembly language and programming of 8086.

COURSE OUT CO1	COM Descri Demoi Analyz Explai	be the instrate ze the in the o	os): Stu working the prog nterfaci	dents w g of 808 grammi	ill be ab 86 Mici ing in n	ole to coproce	ssor	nerai dev	/ices with	n processo	ors.						
CO1 1 CO2 1 CO3 A CO4 1	Descri Demor Analyz Explai Illustra	be the nstrate ze the in the o	working the pro- nterfaci	g of 808 grammi	86 Mici ing in n	roproce											
CO2 1 CO3 2 CO4 1	Demoi Analyz Explai Illustra	nstrate ze the i n the o	the pro	grammi	ing in n	Describe the working of 8086 Microprocessor Demonstrate the programming in microprocessor											
CO3 A	Analyz Explai Illustra	ze the in the o	nterfaci				ocessor										
CO4]	Explai Illustra	n the o		alyze the interfacing of different peripheral devices with the microprocessors plain the operation of 8051 microcontroller in real time process													
	Illustra		Perano	n of 804						торгосов							
			annlica			0001111			process								
Mapping of Co	urse (ıtcome	s (Pos)										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12					
CO1	2	3	3	3	2	1	1	2	1	2	2	2					
CO2	3	3	3	3	2	1	2	2	2	2	2	2					
CO3	2	3	3	3	3	2	2	2	1	3	2	3					
CO4	3	3	3	3													
CO5	3	3 3 3 3 1 2 2 1 1 3															
Cos /PSOs		PSO1			PSO2			PSO	3		PSO4						
CO1		3			3			3			1						
CO2		2			3			3			1						
CO3		3			3			3			2						
CO4		3			3			3			1						
CO5	٦,	2	1 1	2	3	2 2 6 1	1	3			3						
3/2/1 Indicates S	Strengt	th Of C	orrelati	on, 3 –	High, .	2- Medi	ium, 1-	Low									
Category	Basic Science																
							\										

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C	
EBEC22ID2	MICROPROCESSORS AND MICROCONTROLLERS	Ту	3	0/0	0/0	3	

UNIT I: THE 8086 MICROPROCESSORS

9 Hrs

Introduction to 8086 – Microprocessor architecture – Addressing modes – Instruction set and assembler directives – Assembly language programming

UNIT II: 8086 SYSTEM BUS STRUCTURE

9 Hrs

8086 signals – Basic configurations – System bus timing –System design using 8086 – I/O programming – Introduction to Multiprogramming – System Bus Structure – Multiprocessor configurations – Coprocessor, closely coupled and loosely Coupled configurations

UNIT III I/O INTERFACING

9 Hrs

Memory Interfacing and I/O interfacing – Parallel communication interface – Serial communication interface – D/A and A/D Interface – Timer – Keyboard /display controller – Interrupt controller – DMA controller

UNIT IV: MICROCONTROLLER

9 Hrs

Architecture of 8051 – Special Function Registers (SFRs) – I/O Pins Ports and Circuits – Instruction set – Addressing modes.

UNIT V: INTERFACING MICROCONTROLLER

9 Hrs

Programming 8051 Timers – Serial Port Programming – Interrupts Programming – LCD & Keyboard Interfacing – ADC, DAC & Sensor Interfacing – External Memory Interface- Stepper Motor and Waveform generation.

Total Hours: 45

TEXT BOOKS:

1. Yu-Cheng Liu, Glenn A.Gibson, —Microcomputer Systems: The 8086 / 8088 Family —

Architecture, Programming and Design, Second Edition, Prentice Hall of India, 2007.

2. Mohamed Ali Mazidi, Janice GillispieMazidi, Rolin McKinlay, —The 8051 Microcontroller and Embedded Systems: Using Assembly and Cl, Second Edition, Pearson education, 2011.

REFERENCES:

- 1. Doughlas V. Hall, —Microprocessors and Interfacing, Programming and Hardwarell, TMH, 2012
- 2. A.K.Ray,K.M.Bhurchandi, "Advanced Microprocessors and Peripherals" 3rd edition, Tata McGrawHill, 2012

,

Dr.M.G.R. Educational and Research Institute (Deemed to be University)

			Depart	ment of		er Scienc Regulation	ce and Er	ngineerir	ng					
COURSE CODE EBCS22L04	COUR	SE NAN	ME: PERAT	ING SY			,	Ty/I ETL		L	T/S.	.Lr	P/R	C
EBCS22E04	Prereq	uisite: D	BMS LA	AΒ					Lb	0	0/	0	3/0	1
L: Lecture T:	Tutorial	S.Lr : \$	Superviso	ed Learn	ing P:	Project 1	R : Resea	arch C: 0	Credits		1			
Ty/Lb/ETL/IE:														
OBJECTIVES														
The students sho	ould be r	nade to												
To learn	to Crea	te proces	sses and	impleme	ent IPC									
To learn	to use s	system ca	alls throu	ugh C pr	ograms									
To lear	n to use	the file s	ystem re	elated sys	stem cal	ls								
To gain	knowled	dge to A	nalyze th	ne perfor	mance o	f the var	ious Pag	e Replac	ement Al	goritl	hms			
To learn	to Imp	lement F	ile Orga	nization	and File	Allocat	ion Strate	egies						
COURSE OUT	-		_											
CO1		stand pro				ement IP	C[L2]							
		•		•	•									
CO2	Unders	stand and	l apply D	Deadlock	avoidar	nce and I	Detection	Algorit	hms[L3]					
CO3	Analyz	ze the pe	rforman	ce of var	rious CP	U Sched	luling Ala	gorithms	s[L4]					
CO4	Analyz	ze the per	rformano	ce of the	various	Page Re	placemer	nt Algori	thms[L4]					
CO5	Apply	File Org	anizatio	n and Fil	e Alloca	tion Stra	ategies[L	3]						
Mapping of Co	urse Ou	itcomes	with Pro	ogram C	Outcome	s (Pos)								
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PC	D10	PO1	1 P	O12
CO1	3	2	2	1				2	2		2			2
CO2	3	2	3	1	1			2	2		2	1		3
CO3	2	3	3	1				1	3		3	1		3
CO4	2	3	3	1	1	1		2	3		3	1		3
CO5	3	3	3	1	1	1		3	3		2	1		3
Cos / PSOs		PSO1			PSO2			PSO	3			PSC)4	
CO1		3			2			3				2		
CO2		3			3			2				3		
CO3		3			2			2				2		
CO4		3			3			3				1		
CO5	~	3		<u> </u>	1			2				1		
3/2/1 Indicates		h Of Co		n, 3 – Hi	gh, 2- N	<u>ledium,</u>	1- Low							
Category	Basic Science	Engine ering	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
1	I		1	✔		1	1	l	✓					

✓ Program Core

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22L04	OPERATING SYSTEM LAB	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS:

- 1. Basic UNIX commands learning and usage.
- 2. Shell Programming.
- 3. File system related system calls. (Learn to create, open, read, write, seek into, close files & open, read, write, search, close directories).
- 4. Process management Fork, Exec (Learn to create a new process and to overlay an executable binary image on an existing process).
- 5. Process synchronization using semaphores (Solutions to synchronization problems like producer consumer problem, dining philosopher's problem etc...).
- 6. Inter-process communication among unrelated processes using shared memory.
- 7. CPU Scheduling algorithms.
- 8. Implementation of Deadlock Detection Algorithm
- 9. Contiguous memory allocation strategies best fit, first fit and worst fit strategies.
- 10. Page replacement algorithms

Total Hours:45

			Depa	rtment o		iter Scie Regula		Engineer	ring					
COURSE CODE EBCS22ET4	COUR	RSE NA		A PRO	GRAMM	IING			Гу/Lb/ ETL/IE	L	T/S.I	Lr	P/R	C
	Prereq	uisite: (OOPS						ETL	2	0/0		2/0	3
L : Lecture T :			-		_				Credits			·		
Ty/Lb/ETL/IE:		/Lab/En	nbedded	Theory	and Lab	/Interna	al Evalu	ation						
• Create	ould be tand the a secure	basic co d progra	oncepts mming	languag	ge		m the o	bject-orie	ented progr	ammi	ing cond	cepts.		
COURSE OUT		,	•				ming co	oncepts ar	nd basic ch	aracte	eristics o	of Jav	ra[L2]	
CO2	Impart	ting the	principl	es of pa	ckages, i	nheritan	ce and i	nterfaces	[L3]					
CO3	To def	fine exce	eptions a	and use	I/O stream	ms[L4]								
CO4	Develo	oping a	java app	lication	with thre	eads and	l generio	es classes	[L6]					
CO5					e Graphio			es[L6]						
Mapping of Co							<u></u>		T.					
COs/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P(010	PO11	PC)12
CO1	3	3	1	2	2	2	1	1	2		1	1		1
CO2	3	3	2	2	2	2	1	2	2		2	1		1
CO3	3	3	3	2	2	2	1	1	1		2	1		2
CO4	3	3	2	2	1	2	2	1	2		2	1		2
CO5	3	3	2	1	1	2	1	2	1		2	1		1
COs / PSOs		PSO1			PSO2			PSC	03			PSO	04	
CO1		3			3			3				3		
CO2		3			2			2				3		
CO3		3			3			3				3		
CO4		2			3			2				2		
CO5		1			3			1				1		
3/2/1 Indicates	Strengt	th Of C	orrelati	on, 3 –	High, 2-	Mediun	n, 1- Lo	W						
Category	Basic Science	Engineering Science	Humanities and Social Science	Program Core	Program Elective	Open Elective	Inter Disciplinary	Skill Component	Practical / Project					
J				-				<u> </u>	V					

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22ET4	JAVA PROGRAMMING	ETL	2	0/0	2/0	3

UNIT I 12Hrs

INTRODUCTION TO OOP AND JAVA FUNDAMENTALS: Object Oriented Programming – Abstraction – objects and classes – Encapsulation- Inheritance – Polymorphism- OOP in Java – Features of Java – The Java Environment – Java Source File -Structure – Compilation-Fundamental Programming Structures in Java – Defining Classes and Objects in Java – Constructors- Methods -Access specifiers – static members -Comments, Data Types, Variables, Operators, Control Flow, Arrays.

UNIT II 12Hrs

INHERITANCE AND POLYMORPHISM: Inheritance – Super classes- sub classes –Protected members – constructors in sub classes- the Object class – abstract classes and methods- final methods and classes – Interfaces – Defining an interface-Implementing interface- Differences between classes and interfaces and extending interfaces – Object cloning -Inner Classes-Array Lists – Strings and its Functions

UNIT III 12Hrs

EXCEPTION HANDLING & STREAMS: Exceptions – Exception hierarchy – Throwing and catching Exceptions – Built-in exceptions- Creating own exceptions, Stack Trace Elements-Input / Output Basics –Streams – Byte streams and Character streams – Reading and Writing Console – Reading and Writing Files

UNIT IV 12Hrs

MULTITHREADING AND GENERIC PROGRAMMING: Multithreading Definition-Differences between Multithreading and Multitasking-Thread- Thread life cycle- Creating threads-Synchronizing threads-Inter-thread communication, Daemon threads- Thread groups-Generic Programming — Generic classes — generic methods — Bounded Types — Restrictions and Limitations.

UNIT V 12Hrs

EVENT DRIVEN PROGRAMMING: Graphics programming – Frame – Components – working with 2D Shapes – Using color, fonts, and images – Basics of event handling – event handlers – adapter classes -actions – mouse events – AWT event hierarchy – Introduction to Swing – layout management – Swing Components – Text Fields, Text Areas – Buttons- Check Boxes – Radio Buttons – Lists- choices Scrollbars – Windows – Menus – Dialog Boxes.

Total Hours: 60

TEXT BOOKS:

1. Herbert Schildt, "Java The complete reference", 8th Edition, McGraw Hill Education, 2011. 2. Cay S. Horstmann, Gary cornell, "Core Java Volume –I Fundamentals", 9th Edition, Prentice Hall, 2013.

REFERENCES:

- 1. Paul Deitel, Harvey Deitel, "Java SE 8 for programmers", 3rd Edition, Pearson, 2015.
- 2. Programming with Java E. BalagurusamyTataMc-Graw Hill, 5th Edition New Delhi.
- 3. Steven Holzner, "Java 2 Black book", Dreamtech press, 2011.
- 4. Timothy Budd, "Understanding Object-oriented programming with Java", Updated Edition, Pearson Education, 2000.

III SEMESTER:

COURSE CODE:	COUR	SE NAN		R ORG	ANIZAT	ΓΙΟΝ A	ND		Ty/Lb/	L	T/S	.Lr	P/R	C
EBCS22006					CTUR				ETL/IE					
	Prereq	uisite: N	licropro	cessor a	nd Micro	ocontrol	lers		Ty	3	1/	0	0/0	4
L : Lecture T : T			1		_	3			C: Credits					•
Ty/Lb/ETL/IE:		Lab/Eml	bedded 7	Theory a	nd Lab/	Internal	Evaluat	ion						
OBJECTIVES:														
Thestudents shou														
1			-		a comp	uter incl	uding C	PU, m	emory, I/O		and	stora	ge,	
understa				•										
• understa			-	•	_									
							g with th	ne com	puter hardy	vare				
COURSE OUT	COMES	S (Cos):	Student	s will be	e able to									
CO1	Unders	stand the	theoret	ical basi	cs of cer	ntral pro	cessing	unit[L	2]					
CO2	Unders	stand the	basic o	peration	s of CPU	U[L2]								
CO3	apply t	he know	ledge ga	ained an	d Desig	na centr	al proces	ssing u	ınit[L3]					
CO4	apply t	he conce	epts of n	nemory	organiza	ation and	l I/O pro	ocessin	g unit[L2]					-
CO5	Analyz	ze the ex	ecution	of simp	le instru	ction[L4	1]							
Mapping of Cou	Course Outcomes with Program Outcomes (Pos)													
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	O10	PO1	1 PC	D12
CO1	3	2	2						1			1		1
CO2	3	3	3						1			1		1
CO3	3	2	2									1		1
CO4	3	3	3	1				1				1		1
CO5	3	2	3	1				1	1			1		1
Cos / PSOs		PSO1			PSO2			PS	O3			PSC)4	
CO1		3			1							1		
CO2		3			2				1					
CO3		-			3				1			-		
CO4 CO5		2 2			2 2							$\frac{1}{1}$		
3/2/1 Indicates S	trenath (elation 3	Nigh		dium 1	Low					1		
3/2/1 malcates 5				7 – 111g1	, 2- VICC		Low							
Category	Basic Science	Engineer ing	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill	Practical /Project					
				•										

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22006	COMPUTER ORGANIZATION AND	Tv	3	1/0	0/0	4
	ARCHITECTURE	1 y		170	0,0	,

UNIT I BASIC STRUCTURE OF COMPUTERS

12 Hrs

Basic functional blocks of a computer: CPU, memory, input-output subsystems, control unit. Instruction set architecture of a CPU – registers, instruction execution cycle, RTL interpretation of instructions, addressing modes, instruction set. Case study – instruction sets of some common CPUs.

UNIT II ARITHMETIC AND LOGIC UNIT

12 Hrs

Data representation: signed number representation, fixed and floatingpoint representations, character representation. Computer arithmetic – integer addition and subtraction, ripple carry adder, carry look-ahead adder, etc. multiplication – shift-and-add, Booth multiplier, carry save multiplier, etc. Division – non-restoring and restoring techniques, floating point arithmetic.

UNIT III PROCESSOR UNIT

12 Hrs

Data path implementation-Control unit-hardwired control – micro programmed control, nano programming – Concepts of pipelining – Pipeline hazards

UNIT IV MEMORY SYSTEM

12 Hrs

Memory hierarchy-Internal organization of RAM – ROM – Interleaved Memory-Cache and associative memories -Virtual memory – Memory organization and cache coherence issues

UNIT V INPUT/OUTPUT AND PERIPHERALS

12 Hrs

Input-output subsystems, I/O transfers – program controlled, interrupt driven and DMA, privileged and non-privileged instructions, software interrupts and exceptions. Programs and processes – role of interrupts in process state transitions.

Total Hours: 60

TEXT BOOKS:

- John L. Hennessey and David A. Patterson, "Computer Architecture A Quantitative Approach", Morgan Kaufmann / Elsevier Publishers, Fouth Edition, 2012.
- 2. John Hayes (2012),(2007)digitized Computer Architecture and Organization, Tata McGraw Hill
- 3. Carl Hamacher, ZvonkoVranesic, SafwatZaky and NaraigManjikian, "Computer Organization and Embedded Systems", Sixth Edition, Tata McGraw Hill, 2012.

REFERENCE BOOKS:

1.Morris Mano (2009) Computer System Architecture, (3rd ed.), Pearson Education

Subject Code:	COURSE NAME: COMPUTER NETWORKS	Ty/Lb/ ETL/IE	L	T/S. Lr	P/R	С
EBCS22007	Prerequisite: OPERATING SYSTEMS	Ту	3	0/0	0/0	3

L:LectureT:Tutorial S.Lr:Supervised Learning P:Project R:ResearchC:Credits

T/L/ETL/IE:Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVE:

The students should be made to

- Remember how the networks functions takes place
- Understand how communication takes place in various mediums
- Learn about the protocols for data communication in the net work layers

Study about the various network algorithms or smooth data communication														
COURSEO	UTCO	MES(C	COs:St	udents	will be	e able t	0							
CO1	Stude	ents wil	l under	stand a	nd reme	mber h	ow netv	work works.	[L2]					
CO2	Stude	ents wil	l have l	knowle	dge on l	lp addro	ess and	analyze the p	rotocols. [[L1]				
CO3	Appl	y know	ledge a	bout pr	otocols	to avoi	d conge	estion. [L3]						
CO4	Acqu	acquaintance to apply algorithms in networks. [L4]												
CO5	Will	Vill understand how layers of networks work. [L2]												
	Course	urseOutcomeswithProgramOutcomes (Pos)												
COs/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	2	2	2	3	1	3	3	3	3	2		
CO2	3	2	1	2	2	3	3	1	3	3	3	2		
CO3	3	2	1	3	3	3	2	2	3	3	3	2		
CO4	3	3	2	3	1	3	1	3	2	3	3	2		
CO5	3	2	2	2	1	3	3	3	3	3	3	3		
COs/PSOs		PSO1			PSO2			PSO3			PSO4			
CO1		3			3			3			3			
CO2		3			2			3			2			
CO3		3			2			3			2			
CO4		3			1			3			2			
CO5		3			3			3			2			
3/2/1Indicat	esStre	ngthOf	Correl	ation,3	High,	2-Medi	ium,1- 1	Low						
Category	Basic Science	engthOfCorrelation,3-High,2-Medium,1-Low Humanities and Social Brogram Core Core Core Disciplinary Skill Component Practical / Project Droject Component Practical / Project Component Co												

COURSE CODE		Ty/Lb/ ETL/IE	L	T/S .Lr	P/R	С
EBCS22007	COMPUTER NETWORKS	Ту	3	0/0	0/0	3

UNITI INTRODUCTION

9Hrs

Introduction to computer networks and uses – Network: devices, topology, types – Reference model – The physical layer – The theoretical basis for data communication – Transmission media: Guided and unguided- Public Switched Telephone Network. Mobile telephone system.

UNITII DATALINKLAYER

9Hrs

Data link layer design issues – Error detection and correction – Sliding window protocols- example data link protocols HDLC –Channel access on links: SDMA – TDMA – FDMA – CDMA – ETHERNET – 802.11, 802.16 – Bridges and Switches-Bluetooth

UNITIII NETWORKLAYER

9Hrs

Network layer design issues – Circuit switching – Packet switching – Virtual circuit switching-Routing algorithms – Congestion control algorithms – Internetworking- Network layer in Internet – IPV4 and Basics – IPV6 Addressing – IPV6 Protocol.

UNITIV TRANSPORTLAYER

9Hrs

Transport layer design issues – Transport protocols – Simple transport protocol – Internet transport protocols UDP, TCP – Flow Control – Congestion control – Congestion avoidance

UNITY APPLICATION LAYER

9Hrs

Domainnamesystem-Electronicmail-IntroductiontoWorldWideWeb: HTTP, APPLICATION LAYER PROTOCOLS: Simple Network Management Protocol, File Transfer Protocol, Simple Mail Transfer Protocol, Telnet, RTP.

TotalHours:45

TEXTBOOKS:

- 1. PetersonDavie(2012)ComputerNetworks-AsystemApproach (2nd ed.),MorganKauffmanHarcourt Publishers.
- 2. James F. Kurose, Keith W. Ross Computer Networking: Atop-Down Approach/Edition 6, Pearson publication, 2012.

- 1. AndrewS. Tanenbaum. DavidJ. Wetherall, "ComputerNetworks" 5th EditionPHI,2011
- 2. WilliamStallings," Dataandcomputer communications", PHI,2001
- 3. DouglasE.comer, "Internetworkingwith TCP/IP-Volume-I", PHI,5thedition2006
- 4. Godbole, "Data communicationandnetworking", TMH, 2004.
- 5. ForouzanB.A., "DataCommunicationsandnetworking", TMH, 2003.

COURSE CODE: EBCS22L05	COURSE NAME: NETWORKPROGRAMMINGLAB	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
	Prerequisite: OPERATING SYSTEMS LAB	Lb	0	0/0	3/0	1

L:LectureT:Tutorial S.Lr:SupervisedLearning P:Project R:ResearchC:Credits Ty/Lb/ETL/IE:Theory/Lab/EmbeddedTheoryandLab/Internal Evaluation

OBJECTIVES:

The students should be made to

- $\bullet \quad Hands on Experience to design an application using TCP \ and UDP sockets.$
- HandsonExperiencetodesignaninterfacetotransferafilebetweentwoendsusingFTP
- HandsonExperiencetodevelopa RMIapplicationforspecificoperation

• Toha	veackn	owledg	getowo	rkwith	Netwo	rkSim	ulators	, common		-		
COURSEOUTC	OMES	(COs):Stude	nts wil	l be abl	e to						
CO1	Abilit	tytoapj	olythek	nowle	dgeinS	ocketF	rogran	nmingus	ingTC	P andU	DP[L3]	
CO2	Desig	gn a Cl	ient/Se	rverAp	plicati	onProg	gramby	rememb	eringt	hestand	ardsofprot	ocol[L6]
CO3	Abilit	tytocre	ateaSe	rverba	sedapp	licatio	nusing	RMIand	RPCcc	oncepts[[L6]	
CO4	Unde	Inderstandhownetwork stimulatorworks[L2]										
CO5	Analy	Analyzethestateofnetwork[L4]										
MappingofCour	rseOut	comes	withPı	rogran	Outco	omes (POs)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	3	1	3	3	3	3	2
CO2	3	2	1	2	2	3	3	1	3	3	3	2
CO3	3	2	1	3	3	3	2	2	3	3	3	2
CO4	3	3	2	3	1	3	1	3	2	3	3	2
CO5	3	2	2	2	1	3	3	3	3	3	3	3
COs/PSOs		PSO1			PSO2			PSO3			PSC)
CO1		3			3			3			3	
CO2		3			2			3			3	
CO3		3			3			3			3	
CO4		3			2			2			2	
CO5		3			2			3			2	
3/2/1IndicatesSt	trength	OfCo	rrelati	on,3–I	ligh,2-	-Mediu	ım,1- I	Low				
Basic Science	Engineer ing	Science	Humanities and social Science	✓ Program Core	Program	elective	Open Elective	Inter Disciplinary		Skill Component	Rractical /Project	

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	C
EBCS22L05	NETWORKPROGRAMMING LAB					
		Lb	0	0/0	3/0	1

LISTOF EXPERMENTS:

- 1. Networking Commands with options. (Case Study).
- 2. Socket program to extent communication between two deferent ends using TCP.
- 3. Socket program to extent communication between two deferent ends using UDP
- 4. Create a Socket (TCP) between two computers and enable file transfer between them.
- 5. Design a TCP concurrent server to echo given set of sentences using poll functions
- 6. Implement Concurrent Time Server application using UDP to execute the program at remote server. Client sends a time request to the server; server sends its system time back to the client. Client displays the result.
- 7. Implementation of RPC in server-client model
- 8. Implementation of ARP/RARP.
- 9. HTTP Socket program to download a web page.
- 10. File transfer in Client-Server architecture using following methods
 - a) Using RS232C b) Using TCP/IP
- 11. To implement RMI (Remote Method Invocation)
- 12. Write a network program to broadcast/ multicast a message to a group in the same network.
- 13. Demonstration of Network Simulators.

Total Hours:45

COURSE CODE EBCS22ET5	COURSE NAME: USER EXPERIENCE DESIGN	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	С
	Prerequisite: NIL	ETL	2	0/0	2/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- Gain knowledge on the desirable features of good user interfaces and the design process
- Ability to design effective screens, web interfaces, system menus and navigational schemes and to identify suitable interaction devices.

CO1 3 3 3 3 3 3 2 1 1 1 1 CO2 3 3 3 3 3 2 2 1 1 1 CO3 3 3 3 2 2 2 1 1 1 CO4 3 3 2 2 2 1 1 1 CO5 3 3 2 2 2 1 1 CO5 3 3 3 2 2 1 1 CO5 3 3 3 3 2 2 2 CO1 3 3 3 2 2 2 2 CO3 3 2 2 2 2 2 2 CO4 3 3 3 3 3 2 2 2 3/2/1 Indicates Strength Of Correlation, 3 - High, 2- Medium, 1- Low <t< th=""><th></th><th></th><th colspan="12">identify the Internationalization aspects of User Interface Design and apply them in practice.</th></t<>			identify the Internationalization aspects of User Interface Design and apply them in practice.											
CO2	COURSE O	UTCON	MES (CO	Os): Stu	dents wi	ll be able	e to							
CO3	CO1	Under	stand the	many c	onsidera	itions inv	volved in	n interfac	e and sc	reen desig	gn (L1)			
CO4	CO2	Learn	the ratio	nale and	apply th	ne rules f	or an ef	fective d	esign me	ethodology	y (L3)			
CO5	CO3				reens an	d Web p	ages tha	it encour	age effic	cient, accu	rate com	prehensio	n and	
Mapping of Course Outcomes with Program Outcomes (POs)	CO4		ontrols (L2)											
COs/Pos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 F CO1 3 3 3 3 3 2 1	CO5	Perfor	m the us	er interfa	ace desig	gn proces	ss, inclu	ding inte	rface de	velopment	t and test	ing (L5)		
CO1		Course O	utcomes	with Pro	gram O	utcomes	(POs)							
CO2 3 3 3 3 3 3 2 1 1 1 CO3 3 3 3 2 2 2 1 1 1 CO4 3 3 2 2 2 1 1 1 CO5 3 3 2 2 2 1 1 1 CO5 3 3 2 2 2 1 1 1 CO5 3 3 3 2 2 1 <	COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO3	CO1	3	3	3	3	3	3	2		1	1	1		
CO4 3 3 2 2 2 2 1 1 CO5 3 3 2 2 2 1 1 CO5 9SOs PSO1 PSO2 PSO3 PSO4 CO1 3 3 2 3 2 CO2 3 2 3 2 2 CO3 3 2 2 2 2 CO4 3 3 3 2 2 2 3/2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- Low Image: Cost of the correlation of the correlat	CO2	3	3	3	3	3	3	2			1	1	1	
CO5 3 3 2 2 2 1 COs / PSOs PSO1 PSO2 PSO3 PSO4 CO1 3 3 3 2 CO2 3 2 3 2 CO3 3 2 2 2 CO4 3 3 3 2 CO5 3 2 2 2 3/2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- Low				1	2	3	2	2	1	1			1	
COs / PSOs PSO1 PSO2 PSO3 PSO4 CO1 3 3 3 2 CO2 3 2 3 2 CO3 3 2 2 2 CO4 3 3 3 2 CO5 3 2 2 2 CO5 3 2 2 2 3/2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- Low	CO4	3	3	2	2	2	2	1	1					
CO1 3 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CO5	3	3	3	2	2	2	1						
CO1 3 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GO / PGO		DG O 4			PGGG			Page		<u> </u>	DGG 4		
CO2 3 2 2 2 2 2 CO4 3 3 2 2 2 2 2 2 CO5 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	COs / PSOs		PSOI			PSO2			PSO	3		PSO4		
CO3 3 2 2 2 CO4 3 3 3 2 2 2 CO5 3 2 2 2 3/2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- Low									3			2		
CO4 3 3 2 2 2 2 2 2 3/2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- Low	CO2		3			2			3			2		
CO5 3 2 2 2 3/2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- Low	CO3		3			2			2			2		
3/2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- Low	CO4		3			3			3			2		
cience cience in			-			_			2			2		
Category Category asic Science gineerin science manities and cial Science ogram re Program lective en Elective kill omponent ractical 'roject	3/2/1 Indicate	s Streng	th Of Co	rrelation	1, 3 – Hig	gh, 2- Me	dium, 1-	Low						
Op e Co	Category	Basic Science	Engineerin g Science	Humanities and social Science		Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22ET5	USER EXPERIENCE DESIGN	ETL	2	0/0	2/0	3

UNIT-I INTRODUCTION TO USER INTERFACES

12Hrs

Importance of User Interface: Definition-Importance of good design-Benefits of good design Characteristics of Graphical and Web Interfaces: Interaction styles-The Graphical User Interfaces Popularity of graphics - The concept of direct manipulation - Advantages/Disadvantages of Graphical systems-Characteristics of GUI- The Web User Interface-Popularity and characteristics of Web Interface- Principles of User Interface Design.

UNIT-II USER INTERFACE DESIGN PROCESS

12Hrs

Designing for people-Seven Commandments-Common usability problems-measures of usability. Know your user (or) Client: Important Human Characteristics in design- Human Considerations in the design - Human Interaction Speeds-Performance versus preference. Understand the business function: Business definition and requirements analysis-determining basic business functions-Design Standards (or) Style Guides-Training and documentation needs.

UNIT-III INTERFACE AND SCREEN DESIGN

12Hrs

Interface Design Goals - Screen & Web page Meaning and purpose- Organizing Elements – consistency Starting point-Ordering Data and Content - Navigation and Flow - Visually Pleasing Composition - Distinctiveness- Focus and Emphasis - Technological considerations in Interface Design.

UNIT IV DEVELOP SYSTEM MENUS AND NAVIGATION SCHEMES

12Hrs

Structure of Menus: Single-Sequential Linear- Simultaneous-Hierarchical-Connected-Event Trapping Menus. Functions of Menus: Navigation-Execution-displaying information-parameter input. Contents of Menus: Menu context-Menu Title-Choice Descriptions-Completion

Instructions. Formatting of Menus: Consistency-Display-Presentation-Organization-Complexity-Item arrangement- Ordering-Grouping- Selection support Menus. Phrasing the menus: Menu Titles -Menu Choice description-Menu Instruction-Intent Indicators-Keyboard short cuts. Web site Navigation Kinds of Graphical menus.

UNIT V WINDOWS AND INTERACTION DEVICES

12Hrs

Window Characteristics- Components of a Window-Window Presentation Styles-Types of Windows Organizing Window functions-The Web and the Browser. Input Devices-Characteristics-Selection of proper input device. Output Devices-Screens-Speakers International Considerations:-Localization-Cultural considerations-Words and Texts-Images and symbols- Colors, Sequence and functionality-Requirements determination and testing. Accessibility: Types of Disabilities-Accessibility Design.

Total Hours: 60

TEXT BOOKS:

1.The Essential Guide to User Interface Design: An Introduction To GUI Design Principles and Techniques 3rd Edition, By Wilbert O. Galitz

2. User Interface Design and Evaluation 1st Edition - March 22, 2005 Debbie Stone, Caroline Jarrett, Mark Woodroffe, ShaileyMinocha

- 1. Wilbert O Galitz, "The Essential Guide to User Interface Design", Wiley India Pvt., Ltd., Third Edition,
- 2. Ben Shneidermann, "Designing the User Interface", Pearson Education Asia, Fifth Edition, 2013
- 3. Alan Dix, Janet Finlay, G D Abowd and Russel Beale, "Human Computer Interaction", Pearson Education

SEMESTER IV:

COURSE CODE	COURSE NAME: OBJECT ORIENTED SOFTWARE ENGINEERING	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22009	Prerequisite: OBJECT ORIENTED PROGRAMMING WITH C++	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- Understand different software life cycle concepts
- Study and design SRS Documents for software projects.

 Use UML Diagrams to express design of a software systematic systematic statement of the systematic systematic

	_	L Diagrams to express design of a software system nd various testing and maintenance measures											
			_										
COURSE OUT	COMES	(COs):	Students	s will be	able to								
CO1	Understa	ind the k	ey activ	ities in	managii	ng Softv	vare Dev	velopment	[L2]				
CO2	A nnly O	higgt Or	riantad I	Dogian I	Dringin1e	na to dov	ralan sat	ftware [L3	1				
CO2	Apply O	ojeci-Oi	ienieu i	Jesigii i	Tincipie	is to dev	ciop soi	iwaie [L3	J				
CO3	Apply di	fferent l	Modelin	g Techn	iques to	model	software	e projects[L3]				
CO4	Apply Sy	ystemati	c Procee	dure for	Softwa	re Desig	n and D	eploymen	t[L3]				
CO5	Analyze	nalyze various testing and maintenance techniques[L4]											
Mapping of Co	urse Outo	se Outcomes with Program Outcomes (POs)											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	3	1	2	3	1	2	3	2	1	3	
CO2	2	3	2	1	3	3	1	3	2	2	1	3	
CO3	3	2	2	1	3	2	1	3	2	3	1	2	
CO4	3	3	2	1	3	2		3	2	2	1	3	
CO5	3	2	2	1	2	2		3	3	2	1	3	
COs / PSOs		PSO1			PSO2			PSO3			PSO4		
CO1		3			2			3			2		
CO2		3			3			3			3		
CO3		2			3			2			2		
CO4		2			2			3			3		
CO5		2			1			3			3		
3/2/1 Indicates	Strength Of Correlation, 3 – High, 2- Medium, 1- Low												
Category	Basic Science	Eng	Humanities and social	Prog	Progra m	Open Flective	Inter Discipli	Skill Compon	/Project				
Ç				✓									

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22009	OBJECT ORIENTED SOFTWARE	Ту	3	0/0	0/0	3
EDC322007	ENGINEERING			0/0	0/0	5

UNIT ISOFTWARE DEVELOPMENT LIFE CYCLE AND MODELS

9Hrs

Introduction – Software Development Life Cycle: Requirement Analysis – Designing – Coding – Testing – Deployment – Maintenance – Software Process Models: Waterfall Model – Incremental Development – Reuse-oriented Software Engineering – OOSD Life Cycle: Object-Oriented Analysis – Object-Oriented Design – Object-Oriented Implementation – Software Process Activities: Software Specification – Software design and implementation – Software Validation – Software Evolution – Object Modeling Techniques – Rumbaugh Methodology – Booch Methodology – Jacobson Methodology – Agile Methodology – Boehm's Spiral Model.

UNIT II OBJECT ORIENTED SOFTWARE REQUIREMENT ANALYSIS

OBJECT ORIENTED SOFTWARE DESIGN

9 Hrs

Introduction – Software Requirements Specification (SRS) Document – System Functions: Functional and Non-Functional Requirements – **Unified Modeling Language (UML):** Introduction – Classification of UML Diagrams: **Structural UML:** Class Diagram – Object Diagram – Component Diagram – **Behavior UML:** State Diagram – Activity Diagram – Use Case Diagram – Sequence Diagram – **System Modeling:** Context Models – Interaction

Models – Structural Models – Behavioral Models.

9 Hrs

System Design: System Architectural Design Decisions – Architectural Views – Architectural Patterns -- Object-Oriented Design: OO Concepts – OO Design Axioms and Corollaries – Design Patterns – Designing Classes – Designing protocols and class visibility – OO Design using UML – Designing Methods – Access Layer: OODBMS – Table Class Mapping – Designing Access Layer Classes – View Layer: Designing Interface Objects.

UNIT IV SOFTWARE TESTING

9 Hrs

Introduction –Testing Strategies – Test Cases – Test Plan – **Types of Testing:** Unit Testing – Integration Testing – Development Testing – Object Oriented Testing – User Acceptance Testing – Quality Assurance Testing – Myer's Debugging Principles.

UNIT V SOFTWARE QUALITY MANAGEMENT

9 Hrs

Software Quality — **Software Quality Management:** Quality Assurance — Quality Planning — Quality Control — Benefits Of Software Quality — Best Practices of Software Quality — **Project Management:** Risk Management — Configuration Management — Change Management — Version Management — Release Management.

Total Hours: 45

TEXT BOOK:

UNIT III

1. Yogesh Singh, Ruchika Malhotra (2012), Object-Oriented Software Engineering, PHI Learning Private Limited.

REFERENCES:

- 1. Ian Sommerville (2008) Software Engineering (9th ed.) Pearson Education Asia
- 2. Ali Bahrami (2008) Object Oriented System Development McGraw Hill international
- 3. Roger S. Pressman (2010) Software Engineering: A Practitioner Approach (8th ed.) McGraw hill Publications
- 4. Grady Booch (2009) Object oriented Analysis &design ,Pearson Education India

	2022 110841411111					
COURSE CODE: EBCS22008	COURSE NAME: PRINCIPLES OF COMPILER DESIGN	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	C
EBCS22006	Prerequisite Computer Organization and Architecture	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL/IE : Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVE													
Thestudents sh													
To understar	ıd, design a	and imple	ment a le	xical a	nalyzer	·.							
To understar	ıd, design a	and imple	ment a pa	arser.									
To understar	ıd, design i	intermedia	ate code g	generati	ion sch	emes.							
To understar	nd runtime	environm	nent and r	nachine	indep	endent op	timizatio	n.					
COURSE OU	TCOMES	S (COs):	Students	will be	able to								
CO1	To real	lize basics	s of comp	iler des	ign an	d apply fo	or real tin	ne applica	ations. ((L1)			
CO2	To Intr	oduce dif	ferent tra	nslatio	n langu	ages (L4))						
CO3	Ability	to under	stand the	importa	ance of	code ger	neration a	nd code	optimiza	ation. (L2)		
CO4	To know about compiler generation tools and techniques (L2)												
CO5													
		ign a simple compiler using the construction tools. (L5) Outcomes with Program Outcomes (Pos)											
COs/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	3	2	1	1	2	2	2	2	1 0 1 1	1 011	
CO2	2	2	2	1	2	1	2	2	2	1	1	1	
CO3	3	2	3	2	2	2	1	1	1		1	1	
CO4	3	3	3	2	3	3	1	1 -			1 -		
CO5	3	3	3	2	3	2	1						
COs / PSOs		PSO1			PSO	2		PSO3	3		PSO4		
CO1		3			3			3			2		
CO2		2			3			2			2		
CO3		2			2			1			1		
CO4		2			1			1			-		
CO5		2			1			1			-		
3/2/1 Indicate	s Strength	Of Corr	elation,	3 – Hig	h, 2- N	Iedium,	1- Low						
						စ							
						Program elective		 		ent	ect		
	nce	F 0	anc		ere	ele	\ \	;	1		Proj		
ory	cie	ring	ies ien	(S	am	ecti	1.55		lwo	al /I		
Category	ic S	lee1	anit I Sc		am 	ogr	E	ਦ੍ਰ	Í	1 <u>C</u>	,tic		
Cai	Basic Science	Engineering Science	Humanities and social Science		Program Core	P_{Γ}	Open Elective	Inter Disciplinary		Skill Component	Practical /Project		
		Se Ei	H S		<u>. </u>		l o		1	<i>V</i> 1	<u> </u>		
		1		/	'								

3/2/1 Indicates S	Strength	Of Corr	elation, 3 – l	High, 2-	Medium, 1	- Low			
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project
				V					

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22008	PRINCIPLES OF COMPILER DESIGN	Ту	3	0/0	0/0	3

UNIT I- Introduction: 9 Hrs

The structure of a compiler, The science of building a compiler, Programming language basics

Lexical Analysis:

The Role of the Lexical Analyzer, Input Buffering, Recognition of Tokens, The Lexical-Analyzer Generator Lex, Finite Automata, From Regular Expressions to Automata, Design of a Lexical-Analyzer Generator, Optimization of DFA-Based Pattern Matchers.

UNIT II – Syntax Analysis

9 Hrs

Role of Parser – Grammars – Error Handling – Context-free grammars – Writing a grammar, Top-Down Parsing – General Strategies Recursive Descent Parser –FIRST and FOLLOW- -LL(1) grammars- Non Recursive Predictive Parser-Bottom Up Parsing – Shift Reduce Parser-LR Parser-LR (0) Item Construction of SLR Parsing Table - Introduction to LALR Parser – Error Handling and Recovery in Syntax Analyzer-YACC.

UNIT III – Syntax-Directed Translation:

9 Hrs

Syntax-Directed Definitions, Evaluation Orders for SDD's, Applications of Syntax-Directed Translation, Syntax-Directed Translation Schemes, Implementing L-Attributed SDD's.

Intermediate-Code Generation:

Variants of Syntax Trees, Three Address Code, Types and Declarations, Translation of Expressions, Type Checking, Control Flow, Backpatching, Switch Statements.

UNIT IV- Run-Time Environments:

9 Hrs

Storage Organization- Stack Allocation of Space, Access to Nonlocal Data on the Stack, Heap Management, Introduction to Garbage Collection, Introduction to Trace-Based Collection.

Code Generation:

Issues in the Design of a Code Generator, The Target Language, Addresses in the Target Code, Basic Blocks and Flow Graphs, Optimization of Basic Blocks, A Simple Code Generator, Peephole Optimization, Register Allocation and Assignment, Dynamic Programming Code-Generation.

UNIT V – Machine-Independent Optimization:

9 Hrs

The Principal Sources of Optimization, Introduction to Data-Flow Analysis, Foundations of Data-Flow Analysis, Constant Propagation, Partial-Redundancy Elimination, Loops in Flow Graphs.

Total Hours: 45

TEXT BOOKS: 1. Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman (2007), Compilers Principles, Techniques and Tools, 2nd edition, Pearson Education, New Delhi, India.

- 1. Alfred V. Aho, Jeffrey D. Ullman (2001), Principles of compiler design, Indian student edition, Pearson Education, New Delhi, India.
- 2. Kenneth C. Louden (1997), Compiler Construction–Principles and Practice, 1st edition, PWS Publishing.
- 3. K. L. P Mishra, N. Chandrashekaran (2003), Theory of computer science- Automata Languages and computation, 2nd edition, Prentice Hall of India, New Delhi, India.

COURSE CODE EBCS22011	COURSE NAME: ARTIFICIAL INTELLIGENCE	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
	Prerequisite: Nil	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- To gain a historical perspective of AI and its foundations.
- To become familiar with basic principles of AI toward problem solving, inference, perception, knowledge representation, and learning.
- The students will be able to solve problems using AI techniques.
- To develop new games using AI techniques.
- To guide the process of deducing information in a computational manner.

COURSE OUT														
CO1	Illustra	te differ	ent types	of AI a	gents an	d searchi	ing strate	egies.						
CO2	Discov	er to inf	erence th	e knowl	edge and	d plan ef	fectively	7.						
CO3	Discus	s the tec	hniques i	used for	game pl	aying us	ing vario	ous searcl	n algorithm	ıs.				
CO4	Analyz	Analyze various types of planning to create effective AI applications.												
CO5	Classify various learning techniques.													
Mapping of Co	ourse Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	3	1	1	1	1	1	1	1	1	1	3		
CO2	3	3	1	1	3	3	2	1	3	2	1	3		
CO3	2	3	2	2	3	3	1	1	3	3	1	3		
CO4	3	3	3	3	3	2	2	2	3	3	2	3		
CO5	1	1	1	1	2	1	3	2	1	1	3	3		
COs / PSOs		PSO1			PSO2			PSO	3		PSO4			
CO1		3		2				1			1			
CO2		3			3			3			2			
CO3		3			2			2			3			
CO4		2			3			3			3			
CO5		3			2			3			3			
3/2/1 Indicates	Strengt	h Of Co	rrelatio	n, 3 – H	igh, 2- N	Aedium,	1- Low							
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical / Project					

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22011	ARTIFICIAL INTELLIGENCE	Ту	3	0/0	0/0	3

UNIT I Introduction and Agents

9 Hrs

Introduction—History of AI-Intelligent agent —Structure of Agents—Problem solving agents - Uninformed search strategies-Searching with partial information.

UNIT IIInformed Search Methods and Game Playing

9 Hrs

Informed search Strategies – A* Heuristic function – Hill Climbing search – Constraint Satisfaction problem - Optimal decisions in games – Pruning – Alpha-Beta pruning.

UNIT IIIKnowledge and Logic

9 Hrs

Knowledge based agent – The Wumpus world environment –Propositional Logic - First-order logic –Syntax and Semantics of FOL-Knowledge engineering process –Inference in FOL – Forward and backward chaining algorithm.

UNIT IVPlanning 9 Hrs

Planning Problem-Language of planning problems-Planning with state space search-Partial order planning-Planning graphs-Planning with propositional logic-Analysis of planning approaches.

UNIT VForms of Learning

9 Hrs

Inductive learning-Learning Decision trees-Ensemble Learning-Logical formulation of learning-Explanation based learning-Learning using relevance information.

Total Hours: 45

TEXT BOOKS:

- 1. Stuart R. Peter N. (2010) Artificial Intelligence A modern Approach, Prentice Hall
- 2. Elaine R. Kevin K. (2008) Artificial Intelligence Tata McGraw Hill

- 1. Tim Jones M. (2008) Artificial Intelligence, A System Approach(Computer Science)
- 2. Ben Coppin (2004) Artificial intelligence illuminated, Jones and Bartlett Learning

COURSE	COURSE NAME:	T/T L/				
CODE	OBJECT ORIENTED SOFTWARE	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22L07	ENGINEERING LAB	EIL/IE				
	Prerequisite: OBJECT ORIENTED PROGRAMMING	Lb	0	0/0	3/0	1
	WITH C++	LU	U	0/0	3/0	1

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- Design and implement complex software solutions using software engineering techniques
- Understand working knowledge of Unified Modeling Language (UML) Sources Control
- Identify Use Cases and develop Use Case Model

 Identify Use Cases and develop Use Case Model Identify Conceptual Classes and develop a domain model with UML Class Diagram 													
1	-			-					_				
Underst	tand the in	teraction	between o	objects a	and repr	esent th	em usin	g UML	Interacti	on Diagra	ıms.		
COURSE OUT	COMES	(COs): S	tudents w	ill be al	ble to								
CO1	Analyze	and desig	n solutio	ns for co	omplex	projects	[L4]						
CO2	Apply th	ne appropi	riate notat	ion to c	onstruc	t variou	s UML l	Models[L3]				
CO3	Understa	Understand the importance of Systems Analysis and Design in solving complex problems[L2]											
CO4	Evaluate the difference between Object-Oriented Approach and Traditional Approach[L5]												
CO5	Apply the role and function of each UML Model in developing object-oriented software[L3]												
Mapping of Co	Course Outcomes with Program Outcomes (POs)												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	3	1	2	1	1	2	3	2	2	3	
CO2	2	3	1	2	3	3	2	1	2	2	1	3	
CO3	3	2	2	1	2	2	2	2	2	3	1	2	
CO4	3	3	1	2	3	2	1	3	3	2	1	3	
CO5	1	2	2	2	1	2	2	1	2	3	2	3	
COs / PSOs		PSO1		PSO2				PSO3	3		PSO4	•	
CO1		3			2			3			2		
CO2		3			3			3			3		
CO3		2			3			2			2		
CO4		1			2			1			3		
CO5		2			1			3			2		
3/2/1 Indicates	Strength	Of Corre	elation, 3	– High	, 2- Me	dium, 1	- Low						
Category	Basic Science	Enginee ring	Humanities and social Science	Program	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				
				•									

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.L r	P/ R	С
EBCS22L07	OBJECT ORIENTED SOFTWARE ENGINEERINGLAB	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- 1. Study of Case tools such as Rational Rose or Equivalent Tools
- 2. Student Result Management System
- 3. Inventory Control System
- 4. Railway Reservation System
- 5. Hotel Management System
- 6. Automating Banking Process
- 7. Library Management System
- 8. Passport Automation System
- 9. E-Ticketing

SOFTWARE REQUIRED:

Languages: C/C++/JDK 1.3, JSDK, WEB BROWSER & UML

Any Front End Tools (Like VB, VC++, Developer 2000)

Any Back End Tools (Like Oracle, MS-Access, SQL, DB2)

Modelling and Design: Rational Rose

Total Hours:45

SEMESTER V:

COURSE	COURSI	E NAME	Ξ:										Т
CODE		Bl	IG DAT	A ANA	LYTICS	S		Ty/Lb	o/ L/IE	L	T/S.Lr	P/R	C
EBCS2201								E1.	L/II				
2	Prerequis								Гу	3	1/0	0/0	4
L : Lecture T Ty/Lb/ETL/I									: Credits	S			
OBJECTIV		// Lau/ Ell	iibedded	Theory	aliu Lau	/ IIIICI IIa	Evalua	uon					
The students		made to											
	tify Big Da			es Impli	ications								
	nderstand			-		d file sv	stem						
	ntroduce M												
	nderstand,							ations					
COURSE O													
CO1	Understa	nd the B	ig Data	Platform	and its	Use case	es (L1)						
CO2	Able to in	mplemer	nt Apach	e Hadoo	p (L4)								
CO3	Apply H	DFS Cor	ncents ar	nd Interf	acing wi	th HDF:	S (L3)						
CO4	Understa						- ()						
CO5	Understa				,	a& R. (I	(2)						
Mapping of													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO1	l PO	12
CO1	2	3	3	3	2	2	2	1	1	1	1		
CO2	3	3	1	3	2	2	1	1	1		1		
CO3	2	3	3	3	3	2	1	1		1			
CO4	2	3	3	2	2	1							
CO5	3	2	2	2	2	1	1				1		1
COs/		PSO1			PSO2			PSO	3		PS	04	
PSOs													
CO1		2			2			3					
CO2		3			2			2					
CO3		2			3			3					
CO4		2			2			2					
CO5		3		2 11	2		4 7	3				2	
3/2/1 Indicat	tes Streng	th of Co		n, 3 – H	1gh, 2- I	Vledium	, I- Lov	V 					
Category	Basic Science	Enginee ring	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				
0		<u>щ.г</u>	T S	✓									

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22012	BIG DATA ANALYTICS	Ту	3	1/0	0/0	4

UNIT I Introduction to Big Data and Hadoop

12 Hrs

Big Data overview – Types of Digital Data –Data preparation phase- Apache Hadoop – History of Hadoop – Analyzing Data with Hadoop - Hadoop Streaming – Analytical Architecture – Big data ecosystem - IBM Big Data strategy – Infosphere BigInsights and Big Sheets

UNIT II HDFS (Hadoop Distributed File System)

12 Hrs

HDFS Concepts – HDFS Architecture- HDFS Files – HDFS high availability- Analysing data with Hadoop – Hadoop Streaming – Hadoop echo System- Data flow – Types of NoSQL Databases comparison of SQL and NoSQL Data ingestion with Flume and Scoop- Hadoop archives- Hadoop I/O: Compression – Serialization – Avro – File based Data Structure

UNIT III Introduction to MongoDB and MapReduce Programming

12Hrs

MongoDB: Features – JSON – Generating a unique key – Data types –Terms used in RDBMS and MongoDB – MongoDB Query Language – Insert method – Arrays – Indexes – Mango Import – Mongo Export – **MapReduce:** Mapper – Reducer – combiner – Partitioner – Searching – Sorting - compression

UNIT IV Introduction to Hive and Pig

12 Hrs

Hive: Introduction – Hive Architecture – Data types – File Formats – Hive Query Language Statements-Partitions – Bucketing – Views - Sub Query – joins - Aggregations – Group by Having – Hive user defined function – Serialization and Descrialization **Pig:** Primitive Data Types – Running Pig – Execution Modes of Pig – HDFS commands – Relational Operators – Eval Function - Complex Data Types – Piggy Bank – User defined functions – Parameter Substitution

UNIT V Introduction to Cassandra

12 Hrs

Apache Cassandra – Introduction – Features of Cassandra – Peer to Peer Networks – Gossip and failure detection – Partitioner - Replication Factor – Anti-Entropy and Read Repair – writes in Cassandra. Analytics with R – Big Data Analytics with BigR

Total Hours: 60

TEXT BOOKS:

- 1. Seema Acharya, SubhasiniChellappan, "Big Data Analytics" Wiley Publication, 2015
- 2. Tom White "Hadoop: The DefintiveGudie 4th Edition, O'Reilly, 2015

- 1. Jay Liebowitz, "Big Data and Business Analytics" Auerbach Publications, CRC press (2013)
- 2. Michael Mineli, Michele Chambers, Ambiga Dhiraj, "Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses", Wiley Publications, 2013
- 3. ArvindSathi, "BigDataAnalytics: Disruptive Technologies for Changing the Game", MC Press, 2012

COURSE CODE:	COUR WEB D			ING PH	P / MYS	SQL		Ty/	Lb/ TL/IE	L	T/S.Lr	P/R	C
EBCS22010	Prerequ	uisite: J	AVA PI	ROGRA	MMING				Ty	3	0/0	0/0	3
L : Lecture T Ty/Lb/ETL/IE										h C: Cı	edits		L
OBJECTIVE	ES:												
The students s	should b	e made	to										
• Remer	mber abo	out HT	ML, CS	SS3, PF	IP and	XML o	oncepts	S					
 Under 	stand the	e instal	lation p	rocess	and wo	ork with	n MySÇ	QL da	tabase.				
 Design 	n the bas	sic and	advanc	ed appl	lication	s using	PHP a	nd M	ySQL.				
• Study	about th	e conce	ept of V	Web ser	vices.								
COURSE OU	JTCOM	IES (C	Os) : S	tudents	will be	able to							
CO1	Remen	nber the	e funda	mental	s of HT	TML, C	SS and	PHP	[L1]				
CO2	Learn t					• •	-						
CO3	Unders	stand th	e skil	ls that	will	enable	to de	sign	and b	uild hi	gh level	web e	enabled
	applica	applications[L2]											
CO4	Apply	the co	oncept	of the	serve	rside p	rogram	ming	g to de	velop 1	the applic	cation o	n web
	pages[]	L3]											
CO5	Acquai	int the l	atest p	rogram	ming la	anguage	e for the	e con	cepts of	web se	rvices [L4	4]	
Mapping of C	Course (Outcon	nes wit	h Prog	ram O	utcom	es (POs	s)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	I	208	PO9	PO10	PO11	PO12
CO1	3	3	3	1	2	2	3		2	3	3	3	3
					_	2	_		3	l –			3
CO2	3	3	3	3	3	3	2			3	3	2	_
CO3	3	3	3	1	3	2	1		3	3	3	3	3
CO3 CO4	3	3	3	1 2	3	2 2	1 3		3	3	3	3 3	3
CO3 CO4 CO5	3 3 3	3 3 3	3	1	3 3 3	2	1		3 3 1	3	3	3 3 3	3
CO3 CO4 CO5 COs / PSOs	3 3 3	3 3 3 PSO1	3	1 2	3 3 PSO2	2 2	1 3	P	3 3 1 SO3	3	3	3 3 3 PSO4	3
CO3 CO4 CO5 COs/PSOs CO1	3 3 3	3 3 3 PSO1 3	3	1 2	3 3 PSO2 2	2 2	1 3	P	3 3 1 SO3 3	3	3	3 3 3 PSO4 3	3
CO3 CO4 CO5 COs / PSOs CO1 CO2	3 3 3	3 3 3 PSO1 3	3	1 2	3 3 3 PSO2 2	2 2	1 3	P	3 3 1 SO3 3 3	3	3	3 3 3 PSO4 3 3	3
CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3	3 3 3	3 3 3 PSO1 3 3	3	1 2	3 3 PSO2 2 2	2 2	1 3	P	3 3 1 SO3 3 3	3	3	3 3 PSO4 3 3	3
CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4	3 3 3	3 3 3 PSO1 3	3	1 2	3 3 3 PSO2 2 2 2 2	2 2	1 3	P	3 3 1 SO3 3	3	3	3 3 PSO4 3 3 3	3
CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3	3 3 3	3 3 3 PSO1 3 3 3 3	3 3 3	1 2 3	3 3 3 PSO2 2 2 2 2 2	2 2 2	1 3 2		3 3 1 SO3 3 3 3 3	3	3	3 3 PSO4 3 3	3
CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5	3 3 3	3 3 3 PSO1 3 3 3 3	3 3 3	1 2 3	3 3 3 PSO2 2 2 2 2 2	2 2 2	1 3 2		3 3 1 SO3 3 3 3 3	3	3	3 3 PSO4 3 3 3	3
CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5	3 3 3	3 3 3 PSO1 3 3 3 3	3 3 3	1 2 3	3 3 3 PSO2 2 2 2 2 2	2 2 2	1 3 2		3 3 1 SO3 3 3 3 3	3	3	3 3 PSO4 3 3 3	3
CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5	3 3 3	3 3 3 PSO1 3 3 3 3 3 gth of c	3 3 3	1 2 3	3 3 3 PSO2 2 2 2 2 2 - Higl	2 2 2	1 3 2		3 3 1 SO3 3 3 3 3	3	3	3 3 PSO4 3 3 3	3
CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5	3 3 3	3 3 3 PSO1 3 3 3 3 3 gth of c	3 3 3	1 2 3	3 3 3 PSO2 2 2 2 2 2 - Higl	2 2 2	1 3 2	ı, 1 -	3 3 1 SO3 3 3 3 3 3 Low	3	3	3 3 PSO4 3 3 3	3
CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5 3/2/1 indicate	3 3 3	3 3 PSO1 3 3 3 3 3 3 5th of c	3 3 3	1 2 3 3 tion 3	3 3 3 PSO2 2 2 2 2 2 - Higl	2 2 2 2	1 3 2	ı, 1 -	3 3 1 SO3 3 3 3 3 3 Low	3	3	3 3 PSO4 3 3 3	3
CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5 3/2/1 indicate	3 3 3	3 3 PSO1 3 3 3 3 3 3 5th of c	ies and social	1 2 3 3 tion 3	3 3 3 PSO2 2 2 2 2 2 - Higl	2 2 2 2	1 3 2	ı, 1 -	3 3 1 SO3 3 3 3 3 3 Low	3	3	3 3 PSO4 3 3 3	3
CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5	3 3 3	3 3 PSO1 3 3 3 3 3 3 5th of c	ies and social	1 2 3 3 tion 3	3 3 3 PSO2 2 2 2 2 2 - Higl	2 2 2 2	1 3 2	ı, 1 -	3 3 1 SO3 3 3 3 3 3 Low	3	3	3 3 PSO4 3 3 3	3
CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5 3/2/1 indicate	3 3 3	3 3 PSO1 3 3 3 3 3 3 5th of c	ies and social	1 2 3 3 tion 3	3 3 3 PSO2 2 2 2 2 2	2 2 2 2	1 3 2		3 3 1 SO3 3 3 3 3	3	3	3 3 PSO4 3 3 3	3
CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5	3 3 3	3 3 3 PSO1 3 3 3 3 3 gth of c	3 3 3	1 2 3 tion 3	3 3 3 PSO2 2 2 2 2 2 - Higl	2 2 2	1 3 2	ı, 1 -	3 3 1 SO3 3 3 3 3 3 Low	3	3	3 3 PSO4 3 3 3	3

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22010	WEB DESIGNING USING PHP / MYSQL	Ту	3	0/0	0/0	3

UNIT I INTRODUCTION TO HTML AND PHP

9 Hrs

Introduction to Web server and Web browser - HTML - forms - frames - tables - web page design - Dynamic HTML - introduction - cascading style sheets - object model and collections - event model - filters and transition - data binding - data control - Introduction to PHP-- Lexical structure - Variable function, - Manipulating and searching strings-Arrays

UNIT II XML 9 Hrs

Role of XML - XML and the Web - XML Language Basics - Revolutions of XML - Service Oriented Architecture (SOA). XML - Name Spaces - Structuring with Schemas and DTD - Presentation Techniques - Transformation - XML Infrastructure- Overview of SOAP- Introduction to SGML - COM - DCOM - CORBA

UNIT III SERVER SIDE PROGRAMMING

9 Hrs

Introduction to Servlets and Java Server Page (JSP), Servlets lifecycle, Servlet Classes and Sessions. JSP Application Design, JSP objects, sharing data between JSP pages, Sharing Session and Application Data, Database Programming using JDBC, development of java beans in JSP.

UNIT IV DATABASES AND GRAPHICS USING PHP

9 Hrs

Using PHP to access Database – Relational Databases and SQL – MySQLi Object interface – SQLite-Direct file level manipulation – mongoDB.Embedding an image in a page – Basic Graphic concepts – Creating and drawing images.

UNIT V WEB SERVICES

9 Hrs

Overview - Architecture - Technologies - UDDI - WSDL - ebXML -. File Handling in PHP-file uploads - file access

Total Hours: 45

TEXT BOOKS:

- 1. Richard Clark, Oli Studholme, Christopher Murphy and DivyaManian," Beginning HTML5 and CSS 3" @ Apress, 2012.
- 2. Frank. P. Coyle, "XML, Web Services and The Data Revolution", Pearson Education, 2002.
- 3. Kevin Tatroe, Peter MacIntyre, etal"Programming PHP" O REILLY 3rd Edition 2013
- 4. Luke Welling, Laura Thomson "PHP and MySQL Web Development" Person Education 5th Edition 2016.

- 1. Robin Nixon "Learning PHP, MySQL & JavaScript" O REILLY 5th Edition 2015.
- 2. Laura Lemay, Rafe Coburn, Jennifer Kyrnin, "Mastering HTML, CSS & JavaScript Web Publishing", Pearson Education.2015 Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services", Pearson Education, 2004.

					2022	Regulati	on								
COURSE	COUF	RSE NA						T	y/Lb/	\mathbf{L}	T/S.Lr	P/R	$ _{\mathbf{C}}$		
CODE			CLO	UD CO)MPUT	ING		E	TL/IE	L	1/ S. Lf	r/K			
EBCS22014	Prerec	uisite: (Comput	er Netv	vorks				Ty	3	1/0	0/0	4		
L : Lecture T	: Tutori	al S.L	r : Supe	ervised	Learning	g P : Pr	oject R	: Researc	h C: Cre	dits			•		
Ty/Lb/ETL/IE	E: Theo	ry/Lab/	Embedo	ded The	ory and	Lab/Int	ernal Ev	valuation							
OBJECTIVE															
The students s															
					cloud sy										
					to cloud										
								and man							
							plicatio	ns and as	sess their	r impo	ortance.				
COURSE OU	JTCON	IES (C	Os) :Stu	ıdents w	ill be abl	e to									
CO1	Under	stand th	e funda	mental	principle	es of clo	oud com	nputing. []	L2]						
CO2	Under	stand th	e impo	rtance o	of virtual	ization	in distri	buted cor	nputing a	and ho	w this h	as ena	bled		
			-		omputing										
CO3					Cloud C		ng. [[<i>A</i>]								
CO4					Infrastru		<u> </u>								
CO5					loud Sec			J1]							
				•			-								
Mapping of C								DOO	DO0	DO	10 DO	11 D	012		
COs/POs CO1	PO1 3	PO2 3	PO3	PO4 2	PO5 3	PO6 2	PO7 2	PO8 2	PO9	PO 2			O12 3		
CO2	3	3	3	2	3	2	2	2	3	2		3	3		
CO3	3	2	3	2	3	2	2	3	2	3			2		
CO4	3	2	2	2	3	2	2	2	3	2		3	2		
CO5	3	3	2	2	3	2	2	2	3	2			2		
										 	· ·				
COs / PSOs		PSO1			PSO2			PSO3			PS	SO4			
CO1		•						PSO3 PSO4							
		3			3		2 3								
CO2		3			3										
CO2 CO3		3			3			2				3			
CO2 CO3 CO4															
CO3 CO4		3			3 3			3				3 2			
CO3	es Stren	3 3 3 3	Correl	ation, 3	3 3 2 2	, 2- Me	dium, 1	2 3 3 3				3 2 2			
CO3 CO4 CO5	es Stren	3 3 3 3	Correl	ation, 3	3 3 2 2 3 – High	, 2- Me		2 3 3 - Low				3 2 2			
CO3 CO4 CO5		3 3 3 3		ation, 3	3 3 2 2 3 – High	, 2- Me		2 3 3 - Low	ject			3 2 2			
CO3 CO4 CO5 3/2/1 Indicate		3 3 3 3 19th Of			3 3 2 2 3 – High			2 3 3 - Low	Project			3 2 2			
CO3 CO4 CO5 3/2/1 Indicate		3 3 3 3 19th Of			3 3 2 2 3 – High			2 3 3 - Low	al /Project			3 2 2			
CO3 CO4 CO5 3/2/1 Indicate		3 3 3 3 19th Of			3 3 2 2 3 – High			2 3 3 - Low	ctical /Project			3 2 2			
CO3 CO4 CO5	Basic Science	3 3 3 3	Humanities and social Science		3 3 2 2	Open Elective	Inter Disciplinary mi	2 3 3 3	Practical /Project			3 2 2			

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22014	CLOUD COMPUTING	Ту	3	1/0	0/0	4

UNIT I-FOUNDATION 12 Hrs

Introduction to Cloud Computing, Migrating into a Cloud, Enriching the 'Integration as a Service' Paradigm for the Cloud Era, The Enterprise Cloud Computing Paradigm

UNIT II-INFRASTRUCTURE AS A SERVICE (IAAS)

12 Hrs

Virtual Machines Provisioning and Migration Services, On the Management of Virtual Machines for

Cloud Infrastructures, Enhancing Cloud Computing Environments Using a Cluster as a Service, Secure Distributed Data Storage in Cloud Computing

UNIT III-PLATFORM AND SOFTWARE AS A SERVICE (PAAS/IAAS) 12 Hrs

Aneka—Integration of Private and Public Clouds, CometCloud: An Autonomic Cloud Engine, T-Systems' Cloud-Based Solutions for Business Applications, Workflow Engine for Clouds, Understanding Scientific Applications for Cloud Environments, TheMapReduce Programming Model and Implementations

UNIT IV-MONITORING AND MANAGEMENT

12 Hrs

An Architecture for Federated Cloud Computing, SLA Management in Cloud Computing: A Service Provider's Perspective, Performance Prediction for HPC on Clouds

UNIT V-APPLICATIONS 12 Hrs

Best Practices in Architecting Cloud Applications in the AWS Cloud, Massively Multiplayer Online Game Hosting on Cloud Resources, Building Content Delivery Networks Using Clouds, Resource Cloud Mashups

Total Hours: 60

TEXT BOOKS:

1.Buyya, Rajkumar, James Broberg, and Andrzej M. Goscinski, eds. *Cloud computing: Principles and paradigms*. John Wiley & Sons, 2010.

- 1. Voorsluys, William, James Broberg, and RajkumarBuyya. "Introduction to cloud computing." *Cloud computing: Principles and paradigms* (2011): 1-44.
- 2. Shawish, Ahmed, and Maria Salama. "Cloud computing: paradigms and technologies." *Inter-cooperative collective intelligence: Techniques and applications*. Springer, Berlin, Heidelberg, 2014. 39-67.
- 3.Birje, Mahantesh N., et al. "Cloud computing review: concepts, technology, challenges and security." *International Journal of Cloud Computing* 6.1 (2017): 32-57

			Dep	artmen		nputer S 022 Reg		and Eng	ineerin	g	• /	
COURSE CODE: EBCS22L08	W		ESIGN MYSQ		G PHP		Ty/Ll ETI		L	T/S.Lr	P/R	C
EBCS22L08		quisite: E TOOI		RAMM	ING AN	D MS	L	b	0	0/0	3/0	1
L : Lecture T	: Tutor	ial S.	Lr : Su	pervise	d Lear	ning P	: Proje	ct R: F	Researc	ch C: Cree	dits	1
Ty/Lb/ETL/II		ory/Lab	/Embe	dded T	heory a	and Lat	/Intern	al Eval	uation			
OBJECTIVE												
The students s												
	_	wn wel			_							
			_		_		sing CS	SS.				
		_	_	-	nic wel							
	_				tion wi							
COURSE OU	JTCO	MES (C	COs): S	Students	s will be	able to						
CO1	Desig	n a wel	bpage u	ısing va	arious l	ntml tag	gs[L6]					
CO2					ı PHP[l							
CO3									ze web	pages[L2	2]	
CO4	Able	to learn	and de	evelop	to desig	gn form	handli	ng[L6]				
CO5	Create	e applic	cations	using c	lifferen	t types	of web	service	es and	framewor	ks[L6]	
Mapping of C	Course	Outco	mes wi	ith Pro	gram (Outcor	nes (PC	Os)				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	3	3	2	3	2	3	3
CO2	3	3	3	2	3	3	2	2	3	3	2	2
CO3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	2	3	3	2	2	3	3	3	3	3	3	2
CO5	3	3	3	3	3	3	3	3	3	3	3	3
COs / PSOs		PSO1			PSO2			PSO3			PSO4	
CO1		3			3			3			2	
CO2		3			3			2			2	
CO3		2			3			3			3	
CO4		2			1			2			3	
CO5		3			3			3			3	
3/2/1 Indicate	es Stre	ngth O	f Corr	elation	, 3 – H	igh, 2-	Mediu	m, 1- I	JOW			
Category	Basic Science Busic Science Engineeri Busic Science Busic Science Brogram Core Program Core Open Elective Open Elective Open Elective Open Elective Open Elective Aractical Open Elective Open Elective Open Elective Open Elective Open Elective Aractical Open Elective Open											

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22L08	WEB DESIGNUSING PHP &MYSQL LAB	Lb	0	0/0	3/0	1

LISTOF EXPERMENTS:

- 1. Create a web page which includes the following using HTML
 - a) Import an Image,
 - b) Include Check box, Radio Button,
 - c) Use href tag
- 2. Create a web page which includes the following using HTML
 - a) Create a table,
 - b) Include the types of List
 - c) Use hover tag
- 3. Generate the Fibonacci series using PHP user-defined function.
- 4. Apply any two PHP sort functions each on an indexed array and an associative array.
- 5. Create a web page with the following using HTML
 - i) To embed an image map in a web page
 - ii) To fix the hot spots
 - iii) Show all the related information when the hot spots are clicked.
- 6. Create a web page with all types of Cascading style sheets.
- 7. Client Side Scripts for Validating Web Form Controls using DHTML
- 8. Form Handling in PHP- Create a recruitment website where a job seeker can upload his/her details (ex naukri)
- 9. Create an Employee database with two fields Employer's Name, Employee's Name with MySql and insert two records into those fields using PHP code.
- 10.Develop a webpage using scripting languages with the help of CSS

Total Hours:45

SEMESTER VI:

COURSE CODE	COUR	RSE NA		IINE LI	EARNII	NG		-	Lb/ L/IE	L	T/S.Lr	P/R	C
EBCS22015	Drereo	uisite: A	rtificial	l Intellic	rence			Ty		3	0/0	0/0	3
L : Lecture T :						P · Proi	ect R ·		ı C· Cre		0/0	0/0	
Ty/Lb/ETL/IE									1 C. CIC	arts			
OBJECTIVES													
The students sh	nould be	made to	C										
•								problem					
•				pervised	l, semi-s	supervis	sed and u	unsuperv	ised lea	ırning a	lgorithms	in	
		ne learn	_										
•		stand th					_	1.1	1 .				
COURSE OF							ms for p	roblem s	solving				
COURSE OU'							nme and	termino	logies a	nd nerf	orm data p	re_	
				aciiiiic i	Carming	aigoitti	iiiis aiiu		iogics a	na pen	oriii uaia f	710-	
CO2		ssing[L2] v appropriate supervised learning algorithms to design predictive models to solve any given											
		oly appropriate supervised learning algorithms to design predictive models to solve any given blem[L3]											
CO3							orithms	and deve	lop app	lication	s for perfo	orming	
		ring and											
CO4			olutions	for con	nplex pr	oblems	using a	tificial r	eural n	etworks	and kerne	el	
GO#		nes[L5]	1 1	1.1	.1	1 . 1	1.1	C :	1.1	1	FT 01		
CO5								for suita	ible app	lication	is[L2]		
Mapping of C COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 PO1	1 D4	012
COS/TOS	3	3	3	1	3	2	1	1	109	10	10 101	1 1	1
CO2	3	3	3	3	3	1	1	-			1		1
CO3	3	3	3	3	3	2	1	1			1		1
CO4	3	3	3	3	3	2	1				1		2
CO5	3	3	3	3	3	1	1				1		1
COs / PSOs		PSO1			PSO2			PSO	3		PS	O4	
CO1		2			1			1				3	
CO2		3			2			2				2	
CO3		3			2			3				3	
CO4		3			3			2				3	
CO5	C4	3	Y1-4	<u>.</u>	3	NA. 1.	1	3			-	3	
3/2/1 Indicates	Streng	trength Of Correlation, 3 – High, 2- Medium, 1- Low											
Category	Basic Science	Engineer	Humanities and social Science	Program Core Program elective Open Elective Disciplinary Skill Component Practical /Project									

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22015	MACHINE LEARNING	Ту	3	0/0	0/0	3

UNIT I: INTRODUCTION TO MACHINE Learning

9 Hrs

Machine Learning Fundamentals –Types of Machine Learning - Supervised, Unsupervised, Reinforcement- The Machine Learning process. Terminologies in ML- Testing ML algorithms: Overfitting, Training, Testing and Validation Sets-Confusion matrix -Accuracy metrics- ROC Curve- Basic Statistics: Averages, Variance and Covariance, The Gaussian- The Bias-Variance trade off- Applications of Machine Learning.

UNIT II: SUPERVISED LEARNING

9 Hrs

Regression: Linear Regression – Multivariate Regression- Classification: Linear Discriminant Analysis, Logistic Regression- K-Nearest Neighbor classifier. Decision Tree based methods for classification and Regression- Ensemble methods.

UNIT III: UNSUPERVISED LEARNING

9 Hrs

Clustering- K-Means clustering, Hierarchical clustering - The Curse of Dimensionality –Dimensionality Reduction - Principal Component Analysis - Probabilistic PCA- Independent Components analysis

UNIT IV: ARTIFICIAL NEURAL NETWORKS AND KERNEL MACHINES 9 Hrs

Perceptron- Multilayer perceptron- Back Propagation – Initialization, Training and Validation Support Vector Machines (SVM) as a linear and non-linear classifier - Limitations of SVM

UNIT V: PROBABILISTIC GRAPHICAL MODELS

9 Hrs

Bayesian Networks - Learning Naive Bayes classifiers-Markov Models - Hidden Markov Models Sampling - Basic sampling methods - Monte Carlo - Reinforcement Learning

Total Hours: 45

TEXT BOOKS

- 1. Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012.
- 2. Stephen Marsland, "Machine Learning –An Algorithmic Perspective", CRC Press, 2009.
- 3. SaikatDutt, Subramanian Chandramouli, Amit Kumar Das, "Machine Learning", Pearson Education, 2018.
- 4. Christopher Bishop, "Pattern Recognition and Machine Learning" Springer, 2011.

- 1. Andreas C. Muller, "Introduction to Machine Learning with Python: A Guide for Data Scientists", O'Reilly,2016.
- 2. Sebastian Raschka, "Python Machine Learning", Packt Publishing, 2015.

COURSE CODE: EBCC22ID2	COURSE AND BEH				OF MAN	NAGEMI	ENT	Ty/Lb/ ETL/IE	L	T/S Lr	P/R	C			
EBCC22ID2	Prerequi	isite: Nil						Ty	3	0/0	0/0	3			
L:LectureT:	Tutorial	SLr:S	upervis	sedLear	ningP:	ProjectI	R:Resear	chC:Cred	its						
T/L/ETL/IE:T	Γheory/La	ıb./Emb	edded]	heorya	ındLab.	/Interna	ıl Evalua	ation							
OBJECTIVE:															
	• About th	ne evoluti	ion, func	tions and	d principl	les of Ma	nagement	Studies							
	• The app		_	-	-										
COURSEOUT	• The syst					lling in tl	he organiz	zation.							
COURSEOUT							:	-£ M	C4. J:	(I1 2	`				
CO1		ear understanding in planning, and have knowledge in aspect of Management Studies (Level 2) derstanding the planning process in the organization. (Level 2)													
CO2		lerstanding the planning process in the organization. (Level 2) lerstanding the concept of organization. (Level 2)													
CO3		erstanding the concept of organization. (Level 2)													
CO4		onstrate the ability to directing and coordinating. (Level 3)													
CO5		lyze and formulate the best control methods. (Level 4)													
MappingofCo	urseOutco	mes(COs	s)withPr	ogramC)utcome:	s(POs)&	Program [®]	SpecificOut 	comes(PS	SOs)	1	1			
COs/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	2	2	3		2		3	3	2	3	2			
CO2	3	2	2	3		2		3	2	3		2			
CO3	3			2			3	2		2	2	2			
CO4	3	3	3	3		2		2	2	2	2	2			
CO5	2	3	3		3	3	3	2	3	2	2	2			
COs /PSOs	P	SO1		PSO2		PSO3	PSO4								
CO1			2	2		3	3								
CO2			2	2		3	3								
CO3			2	2		3	3								
CO4			2	2		3	3								
CO5			2	2		3	3		1						
Category	Basic Science	Engineeri ng Science Humanities and social Science Program Core Program elective						Skill Component	Practical /Project						
		Engineeri ng Science Humanities an social Science Program Core Program elective Open Elective Skill Component Practical Practical Practical													

	COURSE NAME: PRINCIPLES OF MANAGEMENT AND BEHAVIORAL SCIENCE	Ty/Lb/ ETL/IE	L	T/SLr	P/R	C
EBCC22ID2	Prerequisite: Nil	Ту	3	0/0	0/0	3

UNIT- I INTRODUCTION

Definition of Management – Science or Art – Manager Vs Entrepreneur - types of managers - managerial roles and responsibilities – Evolution of Management –need and Importance of Organizational Behavior, Leadership styles – Theories – Leaders Vs Managers.

UNIT -II PLANNING & ORGANISING

9 hours

9 hours

Nature and purpose of planning – planning process – types of planning – Planning premises objectives –hierarchy of objectives, Management By Objectives (MBO)— Decision making process. Nature and purpose of Formal and informal organization structure— types – Line and staff authority— delegation of authority – centralization and decentralization.

UNIT-III STAFFING AND COORDINATING

9 hours

Human Resource Planning, Job Analysis, Recruitment, Selection, Training and Development, Performance Management, Career planning. Coordination –Nature and purpose - Coordination at various levels: Top management, Middle management, Supervisory management and workers. Techniques for effective coordination

UNIT- IV DIRECTING AND CONTROLING

9 hours

Direction: Principles of direction – Need and Importance for directing, process of controlling – budgetary and non-budgetary control techniques – use of technology. Recent Trends in Management controlling.

UNIT-V GROUP BEHAVIOUR AND MOTIVATION

9 hours

Group Dynamics - How Groups Work, Stages of Group Development, Team building, Motivation - Theories of motivation Organizational Conflict - Causes - Types of Conflicts, Managing conflicts.

Total Hours: 45

Reference Books:

- 1. Stephen A. Robbins & David A. Decenzo& Mary Coulter, "Fundamentals of Management" 7th Edition, Pearson Education, 2011.
- 2. Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008.
- 3. Harold Koontz & Heinz Weihrich "Essentials of management" Tata Mc Graw Hill, 1998.
- 4. S.S. Khanka Organizational Behaviour S. Chand Ltd. 2006.
- 5. L.M.Prasad Organizational Behaviour. S. Chand Company 3rd edition 2004.

COLIDGE	COLI	ACE NIA	ME		202	2 Regul	ation							
COURSE CODE EBCS22L09		RSE NA Analy	tics La	b using Igorith		ine Lea	rning	Ty/Lt		L	T/S.L r	P/I	2	C
	Prereg	uisite:	Artifici	al Intell	igence			L	ιb	0	0/0	3/0)	1
L : Lecture T	: Tutor	ial S.l	Lr : Sup	ervised	Learni	ng P:	Project	R : Res	search C	C: Cre	dits		-	
Ty/Lb/ETL/II	E : Theo	ory/Lab	/Embed	lded Th	eory an	nd Lab/	Internal	Evalua	tion					
OBJECTIVI The students	should ement B	ig Data	ı Analyı			able to								
		`												
CO1	Explo	re the B	Big Data	ı Platfo	m Had	oop and	l its Use	e cases ((L4)					
CO2	Imple	ment an	d demo	onstrate	various	algori	thms us	ing Had	loop (L5	5)				
CO3	Expos	posure on Big data Analytics problems. (L3)												
CO4	_	plore and implement Map Reduce Jobs (L4)												
CO5	Expos	xposure to Decision Tree based ID3 problems (L3)												
Mapping of	Course	urse Outcomes with Program Outcomes (POs)												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	lo PO	11	PO1	2
CO1	2	2	2	3	3	3	2	1	1	1			1	
CO2	1	3	1	2	3	2	2	1	1	1				
CO3	3	2	3	3	3	2	1		1]	1		
CO4	3	2	3	2	2	2	1							
CO5	2	3	2	2	2	2	1							
COs / PSOs		PSO1			PSO2			PSO3			PS	O4		
CO1		3			2			3				2		
CO2		2			2			2			Ź	2		
CO3		3			3			2			-	1		
CO4		2			1			1			2	2		
CO5		3			2			2			-	1		
3/2/1 Indicat	es Stre	ngth of	Correl	lation, 3	3 – Hig	h, 2- M	ledium,	1- Lov	٧					
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
				_										

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.L r	P/R	C
EBCS22L09	Data Analytics Lab using Machine Learning Algorithms	Lb	0	0/0	3/0	1

List of Experiments

- 1. Downloading and installing Hadoop; Understanding different Hadoop modes. Start-up scripts, Configuration files.
- 2. Hadoop Implementation of file management tasks, such as Adding files and directories, Retrieving files and Deleting files
- 3. Implement of Matrix Multiplication with Hadoop Map Reduce
- 4. Run a basic Word Count Map Reduce program to understand Map Reduce Paradigm.
- 5. Implementation of K-means clustering using Map Reduce
- 6. Implement and demonstrate the FIND-S Algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a CSV file.
- 7. For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.
- 8. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
- 9. Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.
- 10. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.

Total Hours:45

			Бер	artinent		22 Regi		iiu En	gineering				
COURSE CODE: EBCS22I05	COUR	SE NAM		JECT :	PHASE	- I			Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBC522105	Preregu	iisite: N	L						IE	0	0/0	3/3	2
L : Lecture T				vised Le	earning	P : Proj	ect R:	Resea	rch C: Cre	dits	I		
T/L/ETL /IE:	Theory/	Lab/Em	bedded '	Theory	and Lab	/Intern	al Eval	uatior	1				
OBJECTIVE													
The students s	should be	e made t	0										
explo mento acqui	re a probor. The pred to rea	olem or i roject de al-world	ssue , ac monstra issues a	ldress thates the and prob	nrough f student's olems. T	ocused s ability his proj	and app to synti ect affir	lied re hesize ms the	ly and provesearch und and apply e students to present effe	ler th the k	e direction of the dire	on of a see and s	faculty
COURSE OU	JTCOM	ES (CO	s): Stud	dents w	ill be ab	le to							
CO1	Apply issue.	the know	vledge a	ınd skil	ls acquir	ed in th	ne cours	e of s	tudy, addre	essing	g a speci	fic prob	lem or
CO2	Design	the soft	ware sys	stem eff	ectively								
CO3	Encour		lents to		•		creative	ly ab	out societa	ıl iss	sues and	develo	p usei
CO4				ience an	d get lir	iked wi	th the pr	ofessi	onal netwo	rk.			
CO5	Equip t	he stude	nts with	industr	y knowl	ledge ar	nd under	stand	ng of vario	us p	ossible te	chnolo	gies.
Mapping of (Course (omes (P	Os)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 PO	11 P	O12
CO1	3	3	2	3	2	3	2	2	3		2	3	3
CO2	3	3	3	3	3	3	3	2			2	3	3
CO3	3	3	3	3	3	3	3	2			3	3	3
CO4	3	2	3	3	3	3	2	3			3	3	3
CO5	2	2	2	2	2	2	3	2	2 2		2	1	2
COs / PSOs		PSO1			PSO2			PS	O3		P	SO4	
CO1		3			2				3			3	
CO2		3			3				3			3	
CO3		3			3				3			3	
CO4		2			2				2			2	
CO5		3 2							3			2	
3/2/1 Indicate	es Strength Of Correlation, 3 – High, 2- Medium, 1-							Low					
Category	Basic Science	Engineerin g Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				

Dr.M.G.R. Educational and Research Institute (Deemed to be University)

Department of Computer Science and Engineering

	2022 Regulation					
COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22I05	PROJECT PHASE – I	IE	0	0/0	3/3	2

OBJECTIVE:

B. Tech CSE Project carries 12 credits of which, Phase I carries 2 credit.

In Phase I, Students are expected to

- i. Identify a Problem.
- ii. Have the feasibility explored.
- iii. Freeze the Requirement specification (both user and system).
- iv. Construct the architectural model (as many as required).
- v. Design the solution.
- vi. If possible, publish the Feasibilty study as a survey paper

DESCRIPTION:

Students are expected to do the Project in a group of 3 to 4 students. They should identify the area/topic of the Project and should collect the literatures related to the project. Students intending to do Industrial projects will approach the industries with the support of the university, identify the industrial problem and finalize the project. In case of Industrial projects apart from Industry guide, a guide has to be appointed by the department. At the end of the Semester the students should submit their Project Phase - I report to the Department and Viva -Voce examination will be conducted by the examiners duly appointed by the Head of the department.

Total Hours:45

SEMESTER VII:

COURSE CODE: EBCS22L11			PROJE		IASE –	II		1 -	/Lb/ ETL/	/IE		T/S.Lr		
T T		isite:Pro				D D	·		Lb		0	0/0	12/1	2
L : Lecture T :										C: Cre	dits			
T/L/ETL /IE:		Lab/Em	bedded	Theory	and Lat	o/Intern	al Eval	uatic	n					
OBJECTIVE The students s		e made t	0											
	bjective			iect is t	o culmii	nate the	academ	ic et	ıdv ər	nd prov	ride aı	n onnoi	tunity	to
	re a prob													
	y mentoi													
	cills acqu													8-
	ılly and													ly.
COURSE OU														
CO1		ain the t												
CO2	To expi	ess prof	iciency	in hand	ling the	technol	ogies							
CO3	To supp	ort the	societal	problen	ns									
CO4	To sum	marize t	he inno	vative i	deas wit	h good	docume	ntatio	on					
CO5	To valid	date the	implem	entatior	of the	softwar	e/Hardw	are s	ysten	n				
Mapping of C	Course C	Outcome		Progra	m Outc	omes (I								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PC)8	PO9	PO	10 P	D11	PO ₁
CO1	3	3	3	3	2	3	3	1	1	2	2		3	3
CO2	3	3	3	3	3	3	3		2	2	2		3	3
CO3	3	3	3	3	3	3	3	2		2	3		3	3
CO4	3	2	3	3	3	3	2	3		3	3		3	3
CO5	1	2	2	2	2	2	3	2	2	2	2		1	2
COs / PSOs		PSO1			PSO2			PS	SO3			P	SO4	
CO1		3			3				2				3	
CO2		3			3				3				3	
CO3		3			3				3				3	
CO4		2			2				2				2	
CO5	Cı	3	7 1		2	2 37 1	• •		2				2	
3/2/1 Indicate	es Streng	gth Of C	Correla	tion, 3 -	- High,	2- Mea	ium, 1-	Low						
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
									'					

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22L11	PROJECT PHASE – II	Lb	0	0/0	12/12	8

OBJECTIVE:

Students are expected to carry out the following:

- (i) Implement the Design using suitable technologies.
- (ii) Generate the test cases.
- (iii) Demonstrate the solution with suitable user interface.
- (iv) Prepare a project report consolidating the phase-I and II activities.

DESCRIPTION:

To make the students to make use of the knowledge and skill developed during their four years of study and to apply them for making an innovative product/process for the development of society and industries. Students are expected to do a Project work either in an Industry or at the University in the field of relevant Engineering /inter-disciplinary /multi-disciplinary area in a group of 3 or 4 students. The work to be carried out in Phase II should be continuation of Phase I. Each group will be allotted a guide based on the area of Project work. In case of industrial Project external guide has to be allotted from Industry. Inter disciplinary/multi-disciplinary project can be done with students of different disciplines as a group. Monthly reviews will be conducted during the semester to monitor the progress of the project by the project review committee. Students have to submit the Project thesis at the end of the semester and appear for the Project Viva-Voce examination conducted by the examiners duly appointed by the Controller of Examination. In case of industrial project certificate in proof has to be included in the report along with the bonofide certificate.

Total Hours:45

ELECTIVE-I

COURSE	COI	URSE N						Ty/Lb/		T/S.L			
CODE:			IMA	AGE PI	ROCES	SING		ETL/IE	, L	r	P/	$^{\prime}$ R \mid C	
EBCS22E01													
		equisite						Ty	3	0/0	0.	/0 3	
L : Lecture T :					_				: :				
Credits Ty/Lb/	/ETL/I	E : Theo	ory/Lab	/Embed	lded The	eory and	d Lab/In	ternal					
Evaluation													
OBJECTIVE													
The students sho													
		_						rms neces	•	_	processi	ng.	
		_				ency do	main of	various tra	ansforn	1			
 To Lea 	ırn ima	ge resto	ration p	rocedu	res.								
 To Lea 	rn the	image s	egment	ation an	d repres	sentatio	n techni	ques					
 To Lea 	rn the	image c	ompres	sion pro	ocedures	5							
COURSE OUT	ГСОМ	IES (CC)s) : Stu	dents w	ill be abl	e to							
CO1								undament					
CO2	App	ly imag	e enhan	cement	and An	alyze ir	nages in	the freque	ency do	main (L	.3)		
CO3		ly imag											
CO4	App	ly segm	entation	n metho	d and d	etect bo	undary 1	region of a	ın imag	ge (L3)			
CO5	Able	e to imp	rove the	quality	y of an i	mage (L4)						
Mapping of C													
COs/POs	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	1	2	2	2	1	2	1	1	1	1		
CO2	3	3	3	3	3	1	2	1				1	
CO3	3	3	3	3	3	2	2		1				
CO4	2	2	2	1	2	2	2		1				
CO5	3	3	2	2	2	1	2		1		1	1	
COs / PSOs	PS	PSO1 PSO2 PSO3 PSO4											
CO1		3			2	-		2			2		
CO2		3			3			1			3		
	_	_		1	_		1	_		_	_		

3/2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- Low

CO3

CO4

CO5

Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project		
Cate					~						

COURSE CODE	COURSENAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22E01	IMAGEPROCESSING	Ty	3	0/0	0/0	3

UNIT I Digital Image Fundamentals

9 Hrs

Digital image representation-Fundamental steps in image processing -Elements of digital image processing systems, Digital Image Fundamentals - Elements of visual perception-A simple image model -Sampling and quantization - Some basic relationship between pixels-Imaging geometry -2D Transformations-DFT, DCT, KLT and SVD.

UNIT II IMAGE ENHANCEMENT

9 Hrs

Background -Enhancement by point Processing -Enhancement in the frequency domains - Spatial Domain: Gray level transformations: Histogram Processing, Spatial filtering, Image Smoothing, Image Sharpening. - Color image processing. Introduction to Fourier Transform—Smoothing and Sharpening frequency domain filters — Ideal, Butterworth and Gaussian filters, Homomorphic filtering, Color image enhancement.

UNIT III IMAGE RESTORATION

9 Hrs

Image Restoration: -Algebraic approach to restoration- degradation model, Properties, Noise models —Mean Filters — Order Statistics — Adaptive filters — Band reject Filters — Band pass Filters — Notch Filters — Optimum Notch Filtering — Inverse Filtering — Wiener - Interactive Restoration.

UNIT IV IMAGE SEGMENTATION

9 Hrs

Images Segmentation: Detection of discontinuous, Edge linking and boundary detection - Thresholding - Region - Oriented segmentation - The use of motion in segmentation. Morphological image processing: Preliminaries, dilation, erosion, open and closing, hit or miss transformation, basic morphologic algorithms.

UNIT V Image Compression & Object Recognition

9 Hrs

Fundamentals -image Compression models -Elements of information Theory - Error-free Compression - Lossy Compression - Image Compression standards. Object Recognition: Patterns and patterns classes, recognition based on decision—theoretic methods, matching, optimum statistical classifiers, neural networks, structural methods — matching shape numbers, string matching

Total Hours: 45

TEXT BOOKS:

Digital Image Processing, RafealC.Gonzalez, Richard E.Woods, Second Edition, Pearson Education/PHI.

- 1. Image Processing, Analysis, and Machine Vision, Milan Sonka, Vaclav Hlavac and Roger Boyle, Second Edition, Thomson Learning.
- 2.Introduction to Digital Image Processing with Matlab, Alasdair McAndrew, Thomson Course Technology
 - 3. Computer Vision and Image Processing, Adrian Low, Second Edition, B.S.Publications
- 4. Digital Image Processing using Matlab, RafealC.Gonzalez, Richard E.Woods, Steven L. Eddins, Pearson Education.

COURSE	COUF	RSE NA	ME:					TE.	- ·						
CODE: EBCS22E0				Inform	nation S	Systems			Lb/ L/IE	2	L	T/S r	P	P/R	C
2	Prereq	uisite: N	Vil						Ty		3	0/0	0 ()/0	3
L : Lecture	T : Tuto	rial S	.Lr : Su	pervise	d Learn	ing P:	Project	R : I	Resea	arch C:	Cred	its	'		
T/L/ETL /II	E: Theor	y/Lab/I	Embedd	ed The	ory and	Lab/Inte	ernal Ev	alua	tion						
OBJECTIVI	E:														
The students	should b	e made	to:												
						e, interp									
		new geo	coding	g technic	que and	apply th	ne learn	t GIS	mo	deling f	for a r	eal	time ca	se	
stud															
COURSE (DUTCO	MES (COs):	Students	s will be	able to									
CO1				S conce	<u> </u>	/									
CO2	Under	stand th	e variou	ıs GIS r	nodels	(L1)									
CO3						time app	lication	(L3))						
CO4	To ana	lyze the	e variou	s GIS to	echniqu	es (L4)									
CO5						que for r			stuc	dy(L3)					
Mapping of		e Outco	mes w	ith Prog	gram O	utcome	s (POs))							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	8	PO9	PO1	10	PO11	P	D12
CO1	2	2	2	1	2	3	3			2	2				
CO2	2	2	2	2	2	2	2			2	1				
CO3	3	2	3	3	2	3	2	2	2	1	2				1
CO4	3	1	2	3	3	2	2			2	1		1		1
CO5	3	3	3	2	2	2	1	2	2	2	1		1		1
COs		PSO ₁			PSO ₂			PS	SO3				PSO ₄	1	
/PSOs															
CO1		1			2				1				2		
CO2		2			2				1				1		
CO3		2			1				1				2		
CO4		2			1				2				1		
CO5	22422 64	2	of Cox	mala ti a		II:ab M	Madia		2				2		
H/M/L indi	cates S	irengin 		relation	<u> </u>	High, M	- Mean	um,	L-L()W			I		
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project						
					~										

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C	
EBCS22E02	GEOGRAPHICAL INFORMATION SYTEMS	Ту	3	0/0	0/0	3	

OBJECTIVES:

- The students will be able to design, explore, interpolate and analyze GIS models
- To create a new geo coding technique and apply the learnt GIS modeling for a real time case study.

UNIT I BASIC CONCEPTS

9 Hrs

Introduction - History of GIS - Components of a GIS - Hardware, Software, Data, People, Methods - Proprietary and open source Software - Types of data - Spatial, Attribute data- types of attributes - Coordinate Systems - Vector Data Model - Raster Data Model.

UNIT II DATA ACQUISTION & MANIPULATION

9 Hrs

GIS Data Acquisition - Geometric Transformation - Spatial Data Editing - Attribute Data Input and Management - Data Display and Cartography.

UNIT III DATA ANALYSIS

9 Hrs

Data Exploration - Vector Data Analysis tools- Raster Data Analysis tools - Terrain Mapping and Analysis - Viewsheds and Watersheds.

UNIT IV INTERPOLATION & MODELLING

9 Hrs

Spatial Interpolation - Geocoding and Dynamic Segmentation - Path Analysis and Network Applications - GIS Model and Modelling

UNIT V APPLICATIONS

9 Hrs

GIS Applicant - Natural Resource Management - Engineering - Navigation - Vehicle tracking and fleet management - Marketing and Business applications - Case studies.

Total Hours: 45

TEXT BOOK:

1. Kang-tsung Chang (2015), Introduction to Geographic Information Systems, (8th ed.), Mcgrawhill ISBN 0078095131, 9780078095139

- 1. Prithvish Nag And Smita Sengupta, Introduction To Geographical Information Systems, Concept Publishing Company, 2007, ISBN 8180694399, 9788180694394
- 2. Paul Longley, Geographical information systems, 2/e, Wiley, 1999, Digitised 2007, ISBN 0471321826, 9780471321828

			1			Regulat		Jiigilicci	υ			
COURSE	COUI	RSE NAM	IE:				Ty/Lb	/				
CODE:		DATA	BASE	TUNI	NG		ETL/I]	T/S.Lr	P/R	C
EBCS22E03	Prerec	quisite: DI	3MS					Ty	3	3 0/0	0/0	3
L : Lecture T :	Tutori	al S.Lr:	Super	vised L	earning	g P:P	roject R	: Resea	rch C:	Credits	'	
Ty/Lb/ETL/IE	: Theo	ory/Lab/Er	nbedde	d Theo	ry and	Lab/In	ternal E	valuatio	n			
OBJECTIVE	S:											
The students s	hould b	e made to)									
• The stu	idents v	will be abl	e to tui	ne the d	latabas	es for d	lifferent	data bas	se appl	cations		
 To dev 	elop ca	ise studies	in data	a bases,	and ab	le to tr	oublesh	oot the	lata ba	ses		
 Identif 	y the ci	ritical perf	orman	ce tunir	ig steps	S						
COURSE OU	ITCON	MES (CO	s): Stud	lents wil	ll be abl	e to						
CO1	Reme	mber the o	concept	ts of DI	BMS[L	1]						
CO2	Unde	rstand the	fundan	nentals	of Tun	ing. [L	2]					
CO3	Analy	ze the dat	abases	for diff	erent A	Applica	tions[L4	.]				
CO4		the Troul				* *		_				
CO5		op Applic										
Mapping of C												
COs/POs	PO1	PO2	PO3		PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	2	1	1	2	2	2	1
CO2	3	3	3	3	2	3	2	2	3	3	3	3
CO3	3	3	2	3	2	3	3	2	3	3	3	2
CO4	2	3	3	2	1	2	2	3	2	3	3	2
CO5	3	3	3	3	3	3	3	3	3	3	3	3
COs / PSOs		PSO1			PSO2			PSO3			PSO4	
CO1		2			3			3			2	
CO2		1			3			3			2	
CO3		2			3			3			3	
CO4		2			2			2			1	
CO5		3			3			3			3	
3/2/1 Indicate	s Strer	ngth Of C	orrelat	tion, 3	– High	, 2- M	edium, 1	- Low				
									T			
		၂	Humanities and social									
		ien	d sc		tive		ary	nt	ct			
ory	Se	Sc	ano	رو	lec	و	lin;	one	roje			
Category	ien	ng	ties	Cor	me	ctiv	scip	du	1/P			
Car	Basic Science	Engineering Science	Humanit	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project			
	asic	gin	um.	gre	Pro	en	ıter	Kill	ract			
	В	En	H	Prc		Op	Ir	Š	P			
					~							

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22E03	DATABASE TUNING	Ty	3	0/0	0/0	3

UNIT I Fundamentals of Tuning

9 Hrs

Review of Relational Databases – Relational Algebra - Locking and Concurrency Control – Correctness Consideration – Lock Tuning – Logging and the Recovery Subsystem – Principles of Recovery – Tuning the Recovery Subsystem – Operating Systems Considerations – Hardware Tuning

UNIT II Indexing and Hashing

9 Hrs

Types of Queries – Data Structures – B tree – B+ Tree - Hash Structures – Bit Map Indexes – Clustering Indexes – Non Clustering Indexes – Composite Indexes – Hot Tables – Comparison of Indexing and Hashing Techniques

UNIT III Query Optimization

9 Hrs

Techniques - Tuning Relational Systems - Normalization - Tuning De-normalization - Clustering Two Tables - Aggregate Maintenance - Record Layout - Query Tuning - Triggers - Client Server Mechanisms - Objects, Application Tools and Performance - Tuning the Application Interface - Bulk Loading Data - Accessing Multiple Databases

UNIT IV Troubleshooting

9 Hrs

Query Plan Explainers – Performance Monitors – Event Monitors – Finding —Suspicious Queries – Analyzing a Query 's Access Plan – Profiling a Query Execution – DBMS Subsystems

UNIT V Interface and Connectivity Tuning

9Hrs

Objects, Application Tools and Performance –Tuning the Application Interface – Bulk Loading Data – Accessing Multiple Databases – ODBC – JDBC Tuning — Case Studies: Tuning E Commerce Application—Data Warehouse Tuning – Transaction Chopping

TOTAL HOURS: 45

TEXT BOOKS:

- 1. Dennis Shasha and Philippe Bonnet (2005) Database Tuning, Principles, Experiments, and Troubleshooting Techniques, Elsevier
- 2. Thomas Connoly and CarlolynBegg (2009) Database Systems, A Practical Approach to Design, Implementation and Management, (4th ed.) Pearson Education

REFERENCES:

1. Peter Gulutzan and Trudy Pelzer, —SQL Performance Tuning, Addison-Wesley, First Edition, 2002.

Dr.M.G.R. Educational and Research Institute (Deemed to be University)

	•	J1.IVI. G.1			f Compu		nce and	Engineer	ring	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•			
COURSE CODE EBCS22E04		RSE NA		DA SEN				Ty/Lt	o/ L/IE	L	T/S		P/R	C
EDC322E04		uisite: I				NOLO	G1	Т	'y	3	0)	0	3
L : Lecture T		•				$\sigma P \cdot P$	roiect F							
Ty/Lb/ETL/II						_	•			21041				
OBJECTIVE														
The students s														
		n JAVA												
		undamental properties of components, technology and architecture and middleware.												
3. Under	stand C	Component Frameworks and Development.												
COURSE OU	JTCON	MES (C	Os): Stu	ıdents v	will be al	ble to								
CO1	Under	erstand the fundamentals of software components and their architecture (L1)												
CO2	Devel	relop a Java Thread and Create a bean for an application (L5)												
CO3	Devel	elop and Implement CORBA Based Technology Component (L5)												
CO4					-	•			oment (L					
CO5	,							nt and te	sting To	ols (l	L4)			
Mapping of (T = -	1					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9)10	PO1	1 P	O12
CO1	3	2	1	1	1	2	1	2	2	_	1	1		1
CO2	3	2	3	1	2	2	1	2 2	2		3	3		
CO3	3	2 2	3	2	3	1	1	2	2 2		3	2	_	
CO5	2	3	1	2	3	1		2	1		2	2		
COs / PSOs		PSO1	1		PSO2	1		PSO		 	L	PS	04	
CO1		2			2			1				1		
CO2		3			3			1				2		
CO3		3			3			2				3		
CO4		2			3			2				3		-
CO5		1			3		2 3							
3/2/1 Indicate	es Strer	igth Of	Correl	ation, 3	3 – Higł	ı, 2- Me	Medium, 1- Low							
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
		SE	S		1									

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22E04	COMPONENT BASED TECHNOLOGY	Ty	3	0/0	0/0	3

UNIT I INTRODUCTION 9Hrs

Software Components – objects – fundamental properties of Component technology – modules – interfaces – callbacks – directory services – component architecture – components and middleware

UNIT II JAVA BASED COMPONENT TECHNOLOGIES 9Hrs

Threads – Java Beans – Events and connections – properties – introspection – JAR files – reflection – object serialization – Enterprise Java Beans – Distributed Object models – RMI and RMI-IIOP

UNIT III CORBA COMPONENT TECHNOLOGIES 9Hrs

Java and CORBA – Interface Definition language – Object Request Broker – system object model – portable object adapter – CORBA services – CORBA component model – containers – application server – model driven architecture

UNIT IV NET BASED COMPONENT TECHNOLOGIES 9Hrs

COM – Distributed COM – object reuse – interfaces and versioning – dispatch interfaces – connectable objects – OLE containers and servers – Active X controls – .NET components – assemblies – appdomains – contexts – reflection – remoting

UNIT V COMPONENT FRAMEWORKS AND DEVELOPMENT 9Hrs

Connectors – contexts – EJB containers – CLR contexts and channels – Black Box {PAGE } component framework – directory objects – cross-development environment – component-oriented programming – Component design and implementation tools – testing tools – assembly tools.

Total Hours:45

TEXT BOOK

1. Clemens||Szyperski,||,Component||Software: Beyond Object-Oriented Programming',||Pearson||Education||publishers,||2013

REFERENCES

- 1. Ed|Roman,||,Mastering||Enterprise||Java||Beans',||John||Wiley||&||Sons||Inc.,||2012.
- 2. Mowbray, ||, Inside || CORBA', || Pearson || Education, || 2013.
- 3. Freeze, ||, Visual || Basic || Development || Guide || for || COM || & || COM+', || BPB || Publication, || 2011. 4. Hortsamann, || Cornell, ||, CORE || JAVA Vol-II' ||, || Sun || Press, || 2012.

COURSE	COURSE NAME:	Ty/Lb/	-		D /D	-
CODE:	E-COMMERCE	ETL/IE	L	T/S.Lr	P/R	C
EBCS22E05	Prerequisite: Nil	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- Understand the nature of e-Commerce
- Recognize the business impact and potential of e-Commerce
- To Learn the E-Commerce Platform and its concepts
- To Understand the Technology, infrastructure and Business in E-Commerce
- To Understand the Security and Challenges in E-Commerce

• To B	uild an	Own I	E-Com	merce	using O	pen So	urce Fra	mework	S				
COURSE O	UTCO	MES (COs):S	Student	s will be	able to							
CO1	Unde	erstand	the co	ncepts	of E-co	mmerc	e busine	ess mode	els and str	rategy (L2	2)		
CO2										rvices (L			
CO3	Desi	gn and	apply	variou	s protoc	ols for	wireless	devices	s for M-co	ommerce	(L5)		
CO4	Able	Able to classify the technologies of Mobile commerce (L4) Design and develop an E-Commerce model for enterprise (L5)											
CO5	Desi	gn and	develo	p an E	E-Comm	nerce m	odel for	enterpri	ise (L5)				
Mapping of													
COs/POs	PO1												
CO1	2	2	2	2	2	2	1	1				1	
CO2	3	2	2	2	3	2	2	1	1		1		
CO3	3	3	2	2	3	2	2	2	1	1	1		
CO4	3	3 3 2 3 2 2 1											
CO5	2	3	2	3	3	2	3	2	1	1	1	1	
COs /PSOs	PSO1			PSO2			PSO3				PSO4		
CO1		2			1			1			1		
CO2		2			2			2			2		
CO3		2			1			1			1		
CO4		3			2			2			2		
CO5		3			3			3			3		
3/2/1 Indica	tes Str	ength (Of Cor	relati	on, 3 –	High, 2	2- Mediu	ım, 1- L	ωw				
Category	Basic Science	Engineering	Humanities and social	Program Core	Program elective	O O O O O O O O O O O O O O O O O O O							
$C_{\mathcal{E}}$					/								

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S. Lr	P/R	С
EBCS22E05	E-COMMERCE	Ту	3	0/0	0/0	3

UNIT I Introduction

9 Hrs

History of E-Commerce -E-Commerce Vs E-Business-Emergence of the Internet- Advantages-Disadvantages- Business model- E -Business Models based on the relationship of Transaction Parties- E -Business Models based on the relationship of Transaction Types- Technologies of World Wide Web- Internet Client Server Applications- Networks and Internets-Software Agents-Internet Standards and Specification-Internet Service Provider-Markup Language and the web-JavaScript-XML-Intranets and Extranets.

UNIT II E-Marketing

9 Hrs

Identifying Web Presence Goals- The Browsing Behaviour Model-Online Marketing-E-Advertising-Internet Marketing Trends-Targets Markets-E-Branding-Marketing Strategies E-Security: Security on the Internet-E- Business Risk Management Issues-E-Payment Systems: Digital Token based e-payment System-Classification of New Payment System- Electronic Cash-Risk and E-Payment System-Designing E-paymentSystem- Digital Signature.

UNIT III E-Customer Relationship Management

9 Hrs

CRM-ECRM Solutions- ECRM Toolkit-Typical Business Touch point. E-Supply Chain Management-Supply Chain Management for Various Industries- E-Strategy and Knowledge management.

UNIT IV Mobile Commerce

9 Hrs

Information System for Mobile Commerce-Mobile Payments-Cellular Networks-Different Generations in wireless Communication- Technologies for mobile Commerce-WAP Programming Model. Portals for E-Business: Portals- Requirements of Intelligent Websites, Ethical, Social, Political issues in E-Commerce.

UNIT V Applications

9 Hrs

Plan your Business and create a web Site with wordpress.B2B, B2C models of E-commerce.

Business model of any E-commerce website Mini project develop E-Commerce projects

Total Hours: 45

TEXT BOOK:

- 1. P.T. Joseph, S.J. (2015), E-Commerce Indian Perspective Fifth Edition, PHI Learning
- 2. Kenneth C.Laudon, Carol Guercio Traver-E-Commerce, Pearson, 10th Edition, 2016

- 1. Zheng Qin(2009), Introduction to E-Commerce, Springer.
- 2. MamtaBhusry, E-Commerce, Laxmi Publications PVT Ltd.

COURSI CODE EBCS22E06		COURS		PUTE	R GRA		CS ANI	D	Ty/I ET	Lb/ L/IE	L	T/S.Lr	P/R	C
	P	rerequ	isite: 1	Nil					,	Гу	3	0/0	0/0	3
L : Lecture	T : Tu	torial	S.Lr:	Superv	ised L	earnin	g P : P	roject F	R : Rese	earch (: (Credits	I	
Ty/Lb/ETL/	IE: T	heory/I	Lab/En	nbedde	d Theo	ry and	Lab/I1	nternal 1	Evalua	tion				
OBJECTIV	/ES:													
The students														
				out prii	nitives	, two c	limensi	ional gra	phics a	ınd the	ir			
		ormatio												
								d their tr	ansforr	nation	S.			
		rstand i				or mod	els							
		to crea				C 1								
		come f												
COURSE (nsform g	raamat.	ricel at	****	atures s	A	
CO1		erstand rent sha					es, trai	nstorm g	geomeu	ricai si	ruc	ciures an	a	
CO2							tions x	viewing	and cli	nning 1	ec	hniques	[[2]	
CO3	1		-					ns and so	-			-		
COS								thods[L		Hullici	ıca	ı probie	1118 011	L
CO4								compres		nd diffe	ere	nt file fo	rmats	
		lved in				11p1 0 55	1011, 40	compres	oron un	ia aiii		110 1110 10	71111411	,
CO5						es usin	g Bleno	der [L4]						
Mapping of														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO8	PO	PO1		PO1 l	PO12	
	1	2	3	4	5	6	7		9	0		1		
CO1	3	3	1	1	2	1	1	1	1	1				
CO2	3	3	2	3	2	1	1	1	1	1				
CO3	3	3	2	3	2	1	1	1	1	1				
CO4	2	2	3	2	2	1	1	1	1	1				
CO5	2	2	3	2	2	1	1	1	1	1		7001		
COs /		PSO ₁			PSO ₂			PSO3				PSO4		
PSOs					1			1				1		
CO1		2			1 2			1 1				<u>1</u> 1		
CO2		2			1			1 1				1		
CO4		3			1			1				1		
CO5		3			2			2				1		
3/2/1 Indica	ites St		Of Co	rrelat		– Higł	i, 2- M		1- Low	7				
							ĺ							
	co c		þ					nen						
	Basic Science	ac	Humanities and		_	ive	<u> </u>	Skill Component	Practical /Project					
Category	Scie	Engineering	ties .		Program	Open Elective	Inter Disciplinary	om	al					
ıteg	ic 5	nee	ani	ran	[]	ı El	r cip) II C	ctic					
Ca	Bas	ngi	mn ·	Program	P ₁	per	Inter Disci	Ski	Pra					
		山山	H	<u> </u>		\vdash	' '		,		+			
					~									
		1												

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
	COMPUTER GRAPHICS AND MULTIMEDIA	Ту	3	0/0	0/0	3

UNIT I BASICS OF COMPUTER GRAPHICS AND COLOUR MODELS 9Hrs

Output primitives-Line drawing algorithms-Loading the frame buffer-Line function-Circle generation algorithms –Ellipse generation algorithms- Attributes of output primitives-Basic illumination models — halftone patterns and dithering techniques; Properties of light — Standard primaries and chromaticity diagram; Intuitive color concepts — RGB colour model — YIQ colour model — CMY colour model - colour selection

UNIT II TWO DIMENSIONAL GRAPHICS

9 Hr

Two dimensional transformations- Matrix representations and homogeneous coordinates - Composite transformations - two dimensional viewing -Window to view port transformation - Clipping operations - Point clipping - Line clipping (Cohen - Sutherland line Clipping) - Polygon clipping(Sutherland - Hodgeman algorithm) -Numerical problem solving and programming on two dimensional transformation viewing and clipping

UNIT III THREE DIMENSIONAL GRAPHICS

9 Hrs

Three dimensional concepts - Three dimensional object representation -Three Dimensional Transformations - Visible surface detection methods (Back Face Detection - Depth Buffer Method - Scan Line Method) - Numerical problem solving and programming on three dimensional transformations

UNIT IV MULTIMEDIABASISANDTOOLS

9 Hrs

Multimedia basics — Multimedia applications — Multimedia system architecture — Evolving technologies for multimedia — Defining objects for multimedia systems — Multimedia data interface standards — Multimedia databases. Compression and decompression — Data and file format standards — Multimedia I/O technologies — Digital voice and audio — Video image and animation — Full motion video — Storage and retrieval technologies.

UNIT V HYPERMEDIA

9 Hrs

Multimedia authoring and user interface — Hypermedia messaging -Mobile messaging – Hypermedia message component – Creating hypermedia message – Integrated multimedia message standards – Integrated document management – Distributed multimedia systems. CASE STUDY: BLENDER GRAPHICS Blender Fundamentals — Drawing Basic Shapes — Modeling — Shading & Textures

Total

Hours: 45

TEXT BOOKS:

- 1. **1.** Donald, D. Hearn. Pauline, Baker, M. Warren, Carithers. (2010) Computer graphics with Open GL, (4thed.)
- Computer Graphics (Special Indian Edition) (Schaum's Outline Series) 2nd Edition, 2006 (English, Paperback, Xiang, Plastock, Avadhani), McGraw Hill Education (India) Private Limited
- **3**. K.R. Rao, Zoran S. Bojkovic and Dragorad A. Milovanovic, "Multimedia Communication Systems: Techniques, Standards, and Networks", Pearson Prentice Hall, 2014, ISBN-978-81203-2145-8 2

REFERENCE BOOKS:

1. Peter Shirley, Michael Ashikhmin, Michael Gleicher, Stephen R Marschner, Erik Reinhard, Kelvin

Sung, and AK Peters, Fundamental of Computer Graphics, CRC Press, 2010.

2. John F. Hughes, Andries Van Dam, Morgan Mc Guire, David F. Sklar, James D. Foley, Steven K. Feiner and Kurt Akeley, "Computer Graphics: Principles and Practice", 3rd Edition, Addison-Wesley Professional, 2013

COURSE CODE EBCS22E07		RSE NA RELES) МОВ	ILE NI	ETWO	RKING		Ty/I ETI	Lb/ L/IE	L	T/S	.Lr	P/F	R	C
	Prerec	quisite:	Nil						T	y	3	0/	0	0/0		3
L : Lecture T				-		_						: Cre	dits			
Ty/Lb/ETL/I		eory/La	ıb/Emb	edded	Theory	y and L	.ab/Inte	ernal	Eval	uation						
OBJECTIVE		1.	4.													
I ne students s	hould be made to Understand the Communication Systems															
	•		the m				CIIIS									
COURSE OU	TCOM)									
CO1	To un	derstan	d about	wireles	s comm	nunicati	on[L2]									
CO2	To kn	ow abo	ut the d	ifferent	archite	cture of	cellula	r syste	em[L	4]						
CO3	To un	derstan	d variou	ıs stand	ards of	wireles	s systen	n[L2]								
CO4	To an	alyze ab	out the	Mobile	netwo	rk issue	s[L4]									
CO5	To kn	ow abo	ut Mobi	le netw	ork app	lication	ns[L2]									
Mapping of C	Course (Outcom	nes with	1 Progr	am Ou	tcomes	(POs)									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	3	PO9	P	O10	PO1	1	PO	12
CO1	2	2	1	2	2	3	2	2		1		2	2		2	
CO2	2	1	1	2	2	2	2	1		3		1	2		2	
CO3	2	2	2	3	1	1	2	1		2		2	2		1	
CO4	1	2	2	1	2	3	1	1		2		2	2		2	
CO5	2	2	1	1	2	2	3	1		1		1	2		2	
	2	2	2	1	1	2	2	2		1		3	1		2	
COs / PSOs		PSO1			PSO2			PS	SO3				PS	04		
CO1		2			2				1				2			
CO2		3			2				2				2	,		
CO3		2			2				2				1			
CO4		3			2				2				2			
CO5 3/2/1 Indicate	e Stuar	2 oth Of	Cornel	otion 2	1 High	, 2 M.	odium		2				2			
5/2/1 indicate	s stren	gui OI		ativii, 3	– migr	1, 4- IVI	caram,	1- LO	w 	1						
Category	Basic Science	Engineering	Humanities and social	Program Core	Program elective	Open Elective	Inter Disciplinary Skill Component Practical /Project									

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22E07	WIRELESS AND MOBILE NETWORKING	Ту	3	0/0	0/0	3

UNIT ICOMMUNICATION FUNDAMENTALS

9 Hrs

Introduction - Wireless Transmission - Frequencies for Radio Transmission - Signals - Signal propagation - Multiplexing, Modulation - Bandwidth-Spread spectrum - Cellular systems.

UNIT II MAC AND COMMUNICATION SYSTEMS

9 Hrs

Functions of MAC - Interference -FDMA-TDMA-CDMA and OFDM. Telecommunication systems -GSM-UMTS and IMT-2000, Satellite systems - Broadcast systems - Data Digital Audio Broadcasting - Digital Video Broadcasting.

UNIT III WIRELESS STANDARDS

9 Hrs

Wireless LAN - Infrared vs. Radio Transmission - Infra structure and ad hoc Networks, 802.11, 802.15, MANET - HIPERLAN - Piconet. Wireless ATM - Services - Radio Access Layer - 3GPP,3G, 4G and 5G standards.

UNIT IV MOBILE NETWORK ISSUES

9 Hrs

Mobile network layer - Mobile IP - DHCP - Mobile transport layer - Traditional TCP - Indirect TCP - Snooping TCP, Mobile TCP - Selective Retransmission - Transaction Oriented TCP, Routing Algorithm and protocols

UNIT V MOBILE APPLICATIONS

9 Hrs

Support for Mobility - File systems - Consistency - World wide web - Hyper Text Transfer Protocol - Hypertext markup language -Next generation- Wireless Application Protocol. Over view of smart phones

Total Hours 45

TEXT BOOKS:

- 1. Jochen Schiller, (2008) Mobile Communications (2nd ed.), Pearson Education
- 2. Blake (2002) Wireless Communication Technology, Thomson Learning

REFERENCES:

1. Theodore S.Rappaport (2010) Wireless Communication: Principles and practice, Prentice Hall.

ELECTIVE-II

COURSE	COLU	RSE NA	ME ·											
CODE	COOL	XSE NA		NETW	ORKS			$ T\rangle$	y/Lb/	_	TE/O		D/D	
EBCS22E08			30	11121 11	OKKS				TL/IE	L	1/5	.Lr	P/R	C
	Drerec	quisite:N	Jil						Tv	3	0/	0	0/0	3
L : Lecture				· Sune	rvised	Learr	ning P	· Proj	ect R:			-		_
Ty/Lb/ETL/												10.	crear	· · ·
OBJECTIVE		ncory	<u> Luo, L</u>	mocac		cory a	iia La	0/11110	inai Eve	1144	11011			
The students s		e made	to											
	•							_	ita speeds					
	•							nicatio	ns infrast	ructı	ıre			
COURSE OU	JTCOM	IES (C	Os): Stu	idents v	vill be	able to)							
CO1	Toun	derstan	d about	5G Arc	hitactu	ro[[2]								
CO2		ow abo					cation[]	.11						
CO3					* *									
CO3		derstandalyze th				s prace	ա ၁ԱՐ	44]						
CO5		aluate tl				ic conf	iguratio	m[I 5]						
Mapping of C								ուլեյ						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	O10	PO1	1 P	O12
CO1	2	1	3	1	1	2	1	2	1	+	2	2	1	2
CO2	2	2	2	1	1	2	2	2	2		2	1		2
CO3	3	1	1	2	1	2	2	1	2		2	1		1
CO4	2	2	2	1	2	1	1	2	2		3	2		2
CO5	3	2	2	1	2	2	1	2	2		1	2		2
COs / PSOs		PSO1			PSO2			PSC)3			PSC	04	
CO1		2			2			2				2		
CO2		3			2			2				2		
CO3		2			3			2				1		
CO4		2			2			2				3		
CO5		2			2			1				2		
3/2/1 Indicate	es Stren	gth Of	Correl	ation, 3	– High	, 2- M	edium,	1- Low	7					
			_											
			social		ပ									
			os 1		ctive		nary	ent	ect					
>	ıce	b.o.	and	re		ve	plir		roj					
gor	Cie!	rin	<u>e</u> .	Co	E E	cti	sci	Jui	1/F					
Category	CS	nee	nit	am	Program ele	Ele	_ <u>`</u>	ŭ	tica					
	Basic Science	Engineering	Humanities an	Program Core	Prc	Open Elective	Inter Discipli	Skill Compor	Practical /Pro					
	В	田口	MH.	Prc		Ор	I	SQ.	P					
					/									

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S. Lr	P/R	С	
EBCS22E08	5G Networks	Ty	3	0/0	0/0	3	ĺ

Unit I: 9 Hrs

5G Architecture, Modelingrequirementsandscenarios, Channelmodelrequirements, Propagation scenarios, NFV and SDN, Basics about RAN architecture, High-level requirements for the 5G architecture, Functional architecture and 5G flexibility, Enhanced Multi-RAT coordination features, 5G deployment.

Unit II: 9 Hrs

Machine-type communications- MTC requirements, Fundamental techniques for MTC , Data and control for short packets , Non-orthogonal access protocols , Massive MTC , Design principles , Technology components , Ultra-reliable low-latency MTC , Design principles , Technology components.

Unit III: 9 Hrs

Device-to-device (D2D) communications- D2D standardization: 4G LTE D2D , D2D in 5G: research challenges , Radio resource management for mobile broadband D2D , RRM techniques and concepts for mobile broadband D2D , RRM and system design for D2D , Multi-hop D2D communications for proximity and emergency services , Multi-operator D2D communication.

Unit IV: 9 Hrs

Millimeter wave communications- Channel propagation, Hardware technologies for mmW systems, Architecture and mobility, Beam forming, Physical layer techniques. 5G radio-access technologies - Access design principles for multi-user communications, Multi-carrier with filtering: a new waveform, Non-orthogonal schemes for efficient multiple access, Radio access for dense deployments, Radio access for V2X communication, Radio access for massive machine-type communication.

Unit V: 9 Hrs

Massive multiple-input multiple-output (MIMO) systems - Coordinated multi-point transmission in 5G - Relaying and wireless network coding - Interference management, mobility management, and dynamic reconfiguration.

Total Hours45

Text Books:- 1. 5G Mobile and Wireless Communications Technology ,AfifOsseiran ,Ericsson , Josef. Monserrt ,UniversitatPolitècnica de València , Patrick Marsch , Nokia , Second Edition 2011.

2. 5GNR: "TheNextGenerationWirelessAccessTechnology", ErikDahlman,StefanParkvall,JohanSköld, Elsevier, FirstEdition,2016.

References:-

 $1. \quad Fundamentals of 5GM obile Networks \ , Jonathan Rodriguez \ , \ Wiley \ , First \ edition \\ 201$

COURSE CODE EBCS22E09	COURSE NAME: INFORMATION STORAGE MANAGEMENT	Ty/Lb/ ETL/IE	L	T/S. Lr	P/R	C
	Prerequisite:Nil	Ty	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

The students should be made to

The students sh																
	stand the b															
		nd the Storage Area Network Characteristics and Components. emerging technologies including IP-SAN. architectures, features, and benefits of intelligent storage systems.														
	stand the v						nents in	data cei	nter env	rironment	S.					
COURSE OUT	COMES	(COs):	Studer	its Will	be able	e to										
CO1	Determin						_	_								
CO2		Evaluate the performance of storage subsystems. [L5] Design storage solutions based on application needs. [L6] Define backup, recovery, disaster recovery, business continuity, and replication. [L1]														
CO3		Define backup, recovery, disaster recovery, business continuity, and replication. [L1]														
CO4		Understand logical and physical components of a storage infrastructure[L2]														
CO5	Understa	Understand logical and physical components of a storage infrastructure[L2] rse Outcomes with Program Outcomes (POs)														
Mapping of Co	urse Outo	rse Outcomes with Program Outcomes (POs)														
COs/POs	PO1															
CO1	3	3 3 3 2 2 1 2 2 3 3 3														
CO2																
CO3	3	3 3 3 3 2 1 1 2 2 3 3 3														
CO4	3	3 3 3 2 2 2 2 2 2 2 3														
CO5	3															
COs / PSOs	I	PSO1			PSO2			PSO	3		PSO4					
CO1		3			3			3			3					
CO2		3			3			2			3					
CO3		3			3			2			3					
CO4		3			3			2			3					
CO5		3			2			2			3					
3/2/1 Indicates	Strength	Of Cor	relatio	n, 3 – F	ligh, 2-	Mediu	ım, 1- I	Low								
Category	Basic Science Basic Science Engineering Science Engineering Science Engineering Science Brogram Core Program Core Open Elective Open Elective Practical /Project Practical /Project															
					~											

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22E09	INFORMATION STORAGE MANAGEMENT	Ту	3	0/0	0/0	3

UNIT I INTRODUCTION TO STORAGE SYSTEMS

9

Hrs

Information Storage - Evolution of Storage Technology and Architecture - Data Centre - Infrastructure - ILM - Storage System Environment -Components of Host RAID: Implementation, RAID Array Components-RAID levels & comparison -RAID Impact On Disk Performance- ISS-Components, Intelligent Storage Array.

UNIT II STORAGE NETWORKING TECHNOLOGIES

9

Hrs

Direct-Attached Storage- Types of DAS, DAS Benefits and Limitations, Disk Drive Interfaces-Introduction to Parallel SCSI, SCSI Command Model-Storage Area Networks- Fiber Channel, SAN Evolution, SAN Components, Fiber Channel Connectivity, Fiber Channel Ports, Fiber Channel Architecture, Zoning, Fiber Channel Login Types, Fiber Channel Topologies-NAS-Benefits, NAS File me /Components and Operations, Implementations, File Sharing Protocols.

UNIT III VIRTUALIZATION AND ADVANCED STORAGE NETWORKING 9 Hrs

IP SAN: iSCSI, FCIP. Content-Addressed Storage: Fixed Content and Archives, Types of Archives, Features and Benefits of CAS, CAS Architecture, Object Storage and Retrieval in CAS, CAS Examples. Storage Virtualization: Forms of Virtualization, NIA Storage Virtualization Taxonomy, Storage Virtualization Configurations, Storage Virtualization Challenges, Types of Storage Virtualization.

UNIT IV BUSINESS CONTINUITY AND STORAGE SECURITY 9 Hrs

Information availability – BC Planning Life Cycle, failure analysis, Business Impact Analysis – Backup & Recovery –Purpose and Considerations-Restoration operations-Backup Topologies and Technologies.

UNIT V LOCAL AND REMOTE REPLICATION

9

Hrs

Local Replication: Source and Target, Uses, Data Consistency, Local Replication Technologies, Restore and Restart Considerations, Creating Multiple Replicas, Management Interface.

Remote Replication: Modes of Remote Replication and its Technologies, Network Infrastructure.

Total Hours: 45

TEXT BOOKS:

- 1. EMC Corporation, Information Storage and Management, Wiley India, 2nd edition 2012
- 2. G.Somasundaram, A.Shrivastava, "Information Storage and Management: Storing, Managing and Protecting Digital Information in Classic, Virtualized and Cloud Environment", 2nd Edition, Wiley publication, 2012.

- 1. Robert Spalding, —Storage Networks: The Complete Reference —, Tata McGraw Hill, Osborne, 2003
- 2. Meeta Gupta, Storage Area Networks Fundamentals, Pearson Education Limited, 2002.
- 3. Marc Farley, —Building Storage Networks, Tata McGraw Hill, Osborne, 2001.

COURSE CODE: EBCS22E 10	COU	RSE NA		IANAG	EMENT	7			Ty/Lt		L	T S. Lr		P/ R	C
	Prere	quisite: N	IIL .						Ty		3	0/		0/0	3
L : Lecture		_		ervise	d Learn	ing P : P	roied	et R	: Resea	rch C:	Cred	lits	l l		1
Ty/Lb/ETL						_					0100	4100			
OBJECTIVE		1001 y/ L	uo/ Line	readed	Theory	and Dat	<i>)</i> / 111tC	JI IIu	Dvara	ation					
The students sh		made to:													
			s the vari	ous risks	s face by	an organi	zation	ı							
			k contro												
• Desig	gn a risk	manager	nent prog	gram for	a busine	ss organiz	zation.								
COURSE OUT	ГСОМЕ	S (COs)	: Studen	ts will 1	be able t	0									
CO1	Unde	rstand the	e various	risks fac	ce by an	organizati	on (L	1)							
CO2						asure to the			risk org	anizatior	ı (L3))			
CO3		nstrating		knowle					inancial						
		nizations				11114		1.							
CO4	_		` /	manage	ement pr	ogram for	an or	ganiz	zation (L	4)					
CO5						a business									
Mapping of C															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P	PO	08	PO9	PO	10	PO11	P	O12
							7								
CO1	3	3	3	2	2	2	2		2	2	1	l l	1		
CO2	2	2	2	1	3	3	2		1	2	1	l l	1		1
CO3	3	2	2	1	1	1	1		1	1	2	2			
CO4	2	3	2	1	2	2	3		1	1					1
CO5	3	3	3	2	3	2	1		1	1			1		1
COs /	PS	01		P	SO2			PO)3			PS	SO4		
PSOs															
CO1		3			2				3				2		
CO2		3			2				3				3		
CO3		3			1				3				3		
CO4		3			3				1				1		
CO5		3			3				3				2		
3/2/1 Indicate	es Streng	gth Of C	orrelatio	on, 3 – H	ligh, 2- N	Medium,	1- Lov	W							
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component		Practical /Project					
					~										

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S .Lr	P/ R	C
EBCS22E10	RISK MANAGEMENT	Ту	3	0/0	0/0	3

UNIT I: The Risk Management Process

9 Hrs

Introduction to software risk management, why do we need to manage risk in software development, Use, Objectives, Risk Management Paradigm, Risk management and litigation. Models for Risk Management.

UNIT II: Discovering Risk In Software Development

9 Hrs

Risk attributes and Identification, Identifying software risk, Common software project risks, Risk Taxonomy, Risk Mapping, statements, reviews., Risk ownership and stakeholder management.

UNIT III: Risk Assessment

9 Hrs

Objectives and goals. Approach to assessment, Risk assessment tools and techniques, presenting the risk findings.

UNIT IV: Planning Risk Mitigation Strategies

9 Hrs

Risk Planning, Best practices in the risk planning, Risk management tools, Risk mitigation strategies, Formulating and Implementing risk management plans.

UNIT V: Monitoring Risk in Software Projects

9 Hrs

Developing a process for monitoring risk, formulating a project risk database, Managing and tracking risk, Risk support tools. Software Risk Metrics, organization, estimation, development methodology.

Total

Hours: 45

TEXT BOOKS:

- 1. Yacov Y. Haimes, (2011) Risk Modeling, Assessment, and Management, Wiley
- 2. John Mcmanus,(2004) Risk Management in software development projects, Elsevier Butterworth- Heinemann

- 1. Martin Loosemore, John Raftery, (2006) Risk management in projects, Taylor & Francis Ltd
- 2. Ravindranath P. C, (2007) Applied Software Risk Management, Auerbach,
- 3. Dale Walter Karolak,,(1995) Software engineering risk management, Wiley-Ieee Computer Society

	Dr.M.							Deemed		Unive	ersity)		
		D	epartm	ent of	Compu	ter Sci	ence an	d Engin	eering				
					2022	Regula	tion						
COURSE	COLI	RSE N	лме.										
CODE:	COOL	KSE N.	AIVIL.					Ty/Ll	h/		T/S.L		
CODE.	CD	VDTC	GRAI	DHV A	ND NE	TWO	DK	ETL/		L		' P/F	$\mathbf{R} \mid \mathbf{C}$
EBCS22E1	CN			CURI		21 WO	IXIX	LIL/	IŁ		r		
1	Prerec	auisite:	COMI			VORK	S	Т	v	3	0/0	0/0) 3
L : Lecture T									•	h C			
Ty/Lb/ETL/II				-		_					Cicuits		
OBJECTIVE		JI y/ Lat	J/ EIIIOC	ducu 1	neory a	and La	J/ 111tC1	nai Lva	iuatioi	1			
The student w		bla											
				1.:+		4 -1	1 -f						
			-					nodern (cryptog	grapn	y.		
_	in knov	_		-		· .	у.						
	rstand v			-					44.00				
				of pu	blic key	crypto	osysten	rs, and o	lifferer	nt me	ssage at	thentic	cation
	ntegrity		•										
COURSE O													
CO1			the functions the function that the function of the function o		als of r	networl	s secur	rity, secu	ırity ar	chite	cture, th	reats a	nd
CO2					vntogra	nhic	oneration	one of	cymn	netric	and	A czymr	netric
CO2			ic algor			ipine	орстан	5115 01	Syllili	icuic	and .	лзупп	псин
CO3						t differ	ent net	work co	ourity, 1	aroto	cols [L4	1	
CO4											olication		
CO5												Տ[Ը3]	
								em secu	my sta	muar	us[LZ]		
Mapping of Co./Do.					-				DO	D.C.	10 B4	211	DO1
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO8	PO 9	PO	10 PC		PO1 2
CO1	3	3	3	2	2	2	1	2	2	1	1		<u>2</u> 1
	3	2	3	2	3	1	2	1	2	1	1		<u>1</u> 1
CO2	∣ 3	L	J	<i>L</i>	3	I	<i>L</i>	I	4	1	1		1

CO3	Unde	1 Stantu	various	Secui	ny prac	tices ai	iu sysi	ciii secu	iity sta	muarus[L	۷]	
Mapping of	Course	Outco	mes w	ith Pro	ogram (Outcor	nes (Po	Os)				
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO8	PO	PO10	PO11	PO1
	1	2	3	4	5	6	7		9			2
CO1	3	3	3	2	2	2	1	2	2	1	1	1
CO2	3	2	3	2	3	1	2	1	2	1	1	1
CO3	3	3	3	2	2	1	2	1	2	1	1	1
CO4	3	2	3	2	3	2	2	2	2	1	1	2
CO5	3	3	3	2	3	2	2	2	2	1	1	2
COs / PSOs		PSO1	-		PSO2			PSO3	}		PSO4	
CO1		3			PSO2 2			2			3	
CO2		3			1		1				3	
								1				
CO3		3			1			2			3	
CO4		3			2			2			3	
CO5		3			2			2			3	
2/2/1 7 11	<u> </u>		.	1								
3/2/1 Indicat	es Stre	ngth (elation	n, 3 – H	ligh, 2-	Mediu	ım, 1- L	ow			
1	1	1	ا ت	1	1	1	1	1			1	1

2/2/1 I 1:4	04	4l- O	£ C	-1 - 4 2	2 11	:_L 2	N/L-12	1	T		
3/2/1 Indicat	es Stre	ngth O	1 Corr	elation	, 3 – H	<u> 1gn, 2-</u>	Meain	m, 1-	- Low	 	
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill	Practical /Project		

2022 Regulation

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22E11	CRYPTOGRAPHY AND NETWORK SECURITY	Ту	3	0/0	0/0	3

UNIT I Introduction to modern cryptography

9 Hrs

OSI security architecture - Security attacks, Services and Mechanisms - -Network security model-Classical encryption techniques: substitution techniques, transposition techniques, steganography-Foundations of modern cryptography: perfect security – information theory – product cryptosystem – cryptanalysis.

NUMBER THEORY: Modular arithmetic-Euclid's algorithm- Fermat's and Euler's theorem- The Chinese remainder theorem- Discrete logarithms.

UNIT II SYMMETRIC KEY CIPHERS

9 Hrs

SYMMETRIC KEY CIPHERS: SDES – Block cipher Principles of DES – Strength of DES – Differential and linear cryptanalysis – Block cipher design principles – Block cipher mode of operation – Evaluation criteria for AES – Advanced Encryption Standard – RC4 – Key distribution.

UNIT III 9 Hrs

Public key cryptography: Principles of public key cryptosystems-The RSA algorithm-Key management - Diffie Hellman Key exchange--Elliptic curve cryptography.

UNIT IV

Cryptographic Data Integrity Algorithms

9 Hrs

Authentication requirement – Authentication function – MAC – Hash function – Security of hash function and MAC –MD5 - SHA - HMAC – CMAC - Digital signature and authentication protocols-DSS.

UNIT VNetwork Security and System Security

9 Hrs

Authentication Applications – Pretty Good Privacy – S/MIME – IP Security – Web Security. Intruders – Intrusion Detection – Malicious Software – Viruses and Related Threats - Viruses Countermeasures – Distributed Denial of Service Attacks - Firewalls – Firewall Design Principles – Trusted Systems.

Total Hours: 45

TEXT BOOK:

1. William Stallings (2011) *Cryptography And Network Security – Principles and Practices*, (5th ed.) Pearson Education.

- 1. Atul Kahate (2008) Cryptography and Network Security Tata McGraw Hill
- 2. Bruce Schneier (2007) Applied Cryptography, John Wiley & Sons Inc.
- 3. Charles B. Pfleeger, Shari Lawrence Pfleeger (2007) Security in Computing (4th ed.), Pearson Education

COURSE CODE EBCS22E12		MOI	BILE A	DHOC	NETV	VORK	S		Ty/Lb/	L	T/S.1	Lr	P/R	C
EBCSZZEIZ								F	ETL/IE	_	1,50		- / - \	
		quisite:							Ту	3	0/0		0/0	3
L : Lecture T : Tuto	orial S	S.Lr : Sı	upervise	ed Leari	ning P	: Projec	t R:R	esearc	h C: Credi	its				
Ty/Lb/ETL/IE: Th	eory/La	ab/Emb	edded T	Theory a	and Lab	/Interna	ıl Evalu	ation						
OBJECTIVES:														
The students should								. 11			C 11			
Understan														
Analyze a for future								bie ar	enitectures	s, and	i the ad	ivanta	iges/111	mits
Develop								hnolo	xy that a	·a h	aina w	idalw	danla	wad
throughou			s mai .	iuiiy ui	iiiizc ti	ic au i	100 100	IIIOIO	gy mat ai		cing w	luciy	ucpio	rycu
COURSE OUTCO			Student	ts will 1	he able	to.								
COURSE OUTCO	JIVILIS	(COs).	Studen	ts WIII (oc aoic	. 10								
CO1	Create	e instant	t wirele	ss netw	orks for	convei	ntions. c	onfer	ences, eme	ergen	cy situa	ations		
		tional o							,	8-1	,		,	
CO2		d wireless community networks where little or no infrastructure exists [L6]												
CO3		tegrate wireless multihop relaying technologies with existing wireless LAN												
C03		sologies[L4]												
COA		¥												
CO4		eliver QoS for multimedia and other functions in untethered nets [L3]												
CO5		islate the IETF MANET standards into practical terms [L3] tcomes with Program Outcomes (POs)												
								DOO	DOO		010	DO11		012
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		P		PO11		012
CO1	3	3 2	3	2	3	3	2	2	2 2		3	2		2 2
CO2	2	3	3	2	2	2	2	2	2	-	3	2	_	2
CO4	3	3	2	2	2	2	2	2	2	+	2	2	_	2
CO5	2	3	3	2	2	2	2	2	2		2	2	_	2
203			3											
COs / PSOs		PSO1	I		PSO2	I.		PS	03			PSO)4	
CO1		3			3			3	3			2		
CO2		3			2			3	}			2		
CO3		2			3			2				3		
CO4		3			3			3				2		
CO5		3		L	3			2	2			2		
3/2/1 Indicates Str	ength (ngth Of Correlation, 3 – High, 2- Medium, 1- Low												
			cial				>							
>	ğ		os pi	<u>ē</u>	stive		inar	nen	ojec					
Category	Basic Science	ring	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
ateg	c Sc	Engineering	nitie	ram	ram	Elec	Dis	<u>0</u>	tical					
Ü	3asi	Ingi	Humanit Science	Prog	Prog	Jen]	Inter	Skill	Praci					
		_ = '	1 3			I ~	_	J 2	_				- 1	
			ΣŒ											
			ΞS		~									

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22E12	MOBILE ADHOC NETWORKS	Ту	3	0/0	0/0	3

UNIT I 9 Hrs

Introduction- Adhoc networks. Mobile Ad-Hoc networking with a View of 4G Wireless, Off-the-Shelf Enables of Ad Hoc, IEEE 802.11 in Ad Hoc Networks:

UNIT II 9 Hrs

Protocols, Performance and Open Issues, Scatter net Formation in Bluetooth Networks, Antenna Beam forming and Power Control for Ad Hoc Networks, Topology Control in Wireless Ad Hoc Networks, Broadcasting and Activity Scheduling in Ad Hoc Networks.

UNIT III 9 Hrs

Location Discovery, Routing Approaches in Mobile Ad Hoc Networks, Energy-Efficient Communication in Ad Hoc Wireless, Ad Hoc Networks Security, Self-Organized and Cooperative Ad Hoc Networking.

UNIT IV 9 Hrs

Simulation and Modeling of Wireless, Mobile, and Ad Hoc Networks, Modeling Cross-Layering Interaction Using Inverse Optimization Algorithmic Challenges in Ad Hoc Networks

UNIT V 9 Hrs

Sensor Networks Introduction to sensor network, Unique constraints and challenges, Localization and Tracking, Networking Sensors, Infrastructure establishment, Sensor Tasking and Control, Sensor network databases, Sensor Network Platforms and tools, Industrial Applications and Research directions.

Total Hours: 45

TEXT BOOKS:

- 1. Mobile Adhoc Networks Aggelou, George (McGraw-Hill).
- 2. Mobile Adhoc Networking Stefano Basagni (Editor), Marco Conti (Editor), Silvia Giordano (Editor), Ivan Stojmenovi&Cacute (Editor) (Wiley-IEEE Press).

- 1. Mobile Ad Hoc Networks 2009 George AggelouMcGraw Hill Education
- 2. Mobile Ad Hoc Networking: Cutting Edge Directions (IEEE Series on Digital & Mobile Communication) Hardcover Import, 26 March 2013 Stefano Basagn

COURSE CODE: EBCS22E13		RSE NA NETW(ORK II	NFRAS AGEM		CTURI	E	Ty/Lb/ ETL/IE	L	T/S	.Lr	P/R	C
	Prereq	uisite: C	Comput	er Netw	orks			Ту	3	0/	0	0/0	3
L: Lecture T: T	utorial	S.Lr : 5	Supervi	sed Lea	arning	P : Pro	oject R	: Research C	: Credit	S	<u>'</u>		
T/L/ETL /IE: Th	eory/La	b/Embe	dded T	heory a	nd Lab	/Inter	nal Eva	luation					
security	Network and wire	k Layer eless sec	curity.				nowledg	e about VL	ANs, and	l to test l	Networ	k	
COURSE OUT													
CO1		the con											
CO2	Outline	e the use	e of net	work ir	ıfrastru	cture							
CO3	Recogn	nizethei	mporta	nceand	relevan	ceofV	LANs a	nd EIGRP					
CO4								frastructure					
CO5							rastructi	ures					
Mapping of Cou	ırse Ou	tcomes	with P	rogran	1 Outco	omes (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	012
CO1	3	2	2	2	2	3	1	3	3	3	3		2
CO2	3	2	1	2	2	3	2	1	3	3	3		2
CO3	3	2	2	3	2	3	2	2	3	2	3		2
CO4	3	3	2	3	3	3	3	3	3	3	3		3
CO5	3	3	2	3	2	3	3	3	3	3	3		3
COs / PSOs		PSO1		P	SO2		•	PSO3			PSO	4	
CO1		3			3			3			3		
CO2		3			2			3			2		
CO3		3			2			3			2		
CO4		3			3			3			3		
CO5		3			2			3			2		
3/2/1 Indicates S	Strength	Of Co	rrelati	on, 3 –	High, 2	2- Med	lium, 1-	· Low					
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				
					•								

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22E13	NETWORK INFRASTRUCTURE MANAGEMENT	Ту	3	0/0	0/0	3

UNIT I Internetworking & Ip Addressing

9Hrs

Internetworking Models – Layered Approach – OSI Reference Models – Ethernet Networking – Cabling – Data Encapsulation – Three Layer Hierarchical model – core layer – distribution layer – Access layer – TCP/IP and DoD Model – IP Addressing – Hierarchical IP Addressing scheme - Broadcast Address.

UNIT II Subnetting, VLSM And Ios

9Hrs

Subnetting basics – CIDR – VLSM Design – Summarization – Troubleshooting IP Addressing – IOS user interface – CLI – Router and switch Administrative Configuration – Router Interfaces – viewing, saving, and erasing configuration

UNIT III Managing Internetwork and Ip Routing

9Hrs

Internal component of a Router – routing boot sequence – configuration register – backing up and restoring configuration – CDP – resolving hostnames – Checking network connectivity – IP routing basics – Static routing – default routing – dynamic routing – RIP – IGRP

UNIT IV Eigrp, OSPF, STP and VLANS

9Hrs

EIGRP features – RTP – DUAL – EIGRP to support large Networks –Configuring EIGRP - Load balancing – OSPF terminology – Configuring and verifying OSPF – DR and BDR elections – Loopback interfaces – troubleshooting – STP spanning tree terms and operations – VLANs Basics – memberships – VTP – Configuring VLAN – Inter VLAN routing.

UNIT V ACLS, NAT and Wireless Technologies

9Hrs

Access Lists, VTY access, advanced Access List, Named ACLs, monitoring Access List, configuring access list – NAT names – PAT configuration – NAT using SDM – Wireless technologies – Unified wireless solutions – split MAC architecture – MESH and LWAPP - wireless security

Total Hours: 45

TEXT BOOKS:

- 1. Todd Lammle, 2011 "CCNA Cisco Certified Network Associate study guide Wiley India.
- 2. Brian Hill, 2013 "The complete Reference Cisco" Tata McGraw-Hill.

- 1. Richard Deal, 2013 "CCNA Cisco Certified Network Associate study guide" Tata McGraw-Hill
- 2. Steven Latre et al 2015 "Intelligent Mechanism for Network Component and Security" Springer.

			r		2022 1	Regula	tion		8				
COURSE CODE EBCS22E14	CYB	RSE N ER FO URITY	DRENS		ND IN	NTERN	NET		Ty/Lb/ ETL/I E	L	T/S.Lr	P/R	C
		quisite nology		Data Stı	ructure	, Netwo	orking,	Web	Ту	3	0/0	0/0	3
L : Lecture T :									Research C:	Cre	dits		
T/L/ETL/IE : T	heory/	Lab/E1	nbedde	ed The	ory and	l Lab/I	nterna	l Evalu	ation				
OBJECTIVES The students show To lear	uld be n	ompute											
			- 1	-					l in the digi				
								ent the	data from h	acke	r or intru	der	
COURSE OUT													
CO1	Unde comp		ng hov	v to pro	otect th	e data/	secure	their pe	rsonal and	offic	ial data ii	1	
CO2	Analy	yze the	cybero	crimesu	ısingdi	gital fo	rensics	5					
CO3									curity techn	olog	gies.		
CO4	Appl	y the k	nowled	lge to f	ind the	frauds	with h	elp of o	ase study				
CO5	Analy	yze var	ious in	ternet s	security	y techn	iques						
Mapping of Co	ourse (Outcon	nes wit	th Prog	gram (Outcon	nes (PO	Os)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 PO1	1 PO	12
CO1	3	3	2	2	2	2	2	2	1	1	1 1		1
CO2	3	3	3	3	2	2	2		2	1	1 1		1
CO3	3	3	2	2	3	2	2	1	1				
CO4	3	3	3	3	3	3	1	1					
CO5	3	3 3 3 3 3 1 1 1 1 1											
COs / PSOs		PSO1			PSO2			PS				O4	
CO1		3			3			3				3	
CO2		3			3			2	,		•	3	
CO3				2			•	3					
CO4		3 3 2 3											

CO5	3	3	2
3/2/1 Indicates	Strength Of Corre	lation, 3 – High, 2-	Medium, 1- Low

Engineering Science Skill Component Program elective Inter Disciplinary Practical /Project Humanities and Open Elective Basic Science rogram Core social Science

3

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22E14	CYBER FORENSICS AND INTERNET SECURITY	Ту	3	0/0	0/0	3

UNITI-CyberForensics

9Hrs

Introduction to Cyber Forensics, Definition and types of cybercrimes, electronic evidence and handling, electronic media, collection, searching and storage of electronic media, introduction to internet crimes, hacking and cracking, credit card and ATM frauds, web technology, cryptography, emerging digital crimes and modules.

UNITII-Cyber Forensics ystems

9Hrs

Understanding Computer components- input and output devices, CPU, Digital Media, System software - Operating System Architecture, Application Software, File Systems, Memory organization concept, Data Storage concepts. Network: Topology, Devices, Protocols and Port, Communication media. IP Address: Types and classes.

UNIT III - Cyber Attacks

9Hrs

Ethical hacking, Attack Vectors, Cyberspace and Criminal Behavior, Clarification of Terms, Traditional Problems associated with Computer Crimes, Realms of Cyber world, brief history of the internet, contaminants and destruction of data, unauthorized access, computer intrusions, white-collar crimes, viruses and malicious code, virus attacks, pornography, software piracy, mail bombs, exploitation, stalking and obscenity in internet, Cyber psychology, Social Engineering.

UNITIV-Digita lForensic

9Hrs

Introduction to Digital forensics, Forensic software and handling, forensic hardware and handling, analysis and advanced tools, forensic technology and practices, Biometrics: face, iris and fingerprint recognition, Audio-video evidence collection, Preservation and Forensic Analysis.

UNITY – Internet Security

9Hrs

E-mail Security, Pretty Good Privacy (PGPs) / MIME, IP Security, Access and System Security, Intruders, Intrusion Detection and Prevention, Firewall, Hardware Firewall, Software Firewall, Application Firewall, Packet Filtering., Packet Analysis, Proxy Servers, Firewall setting in Proxy, ACL in Proxy.

Total Hours:45

TEXT BOOKS: 1. John R. Vacca, (2005) Computer Forensics: Computer Crime Scene Investigation, 2nd Edition, Charles River Media. 2. Man Young Rhee, (2003) "Internet Security Cryptographic Principles, Algorithms and Protocols", WILEY.

- $1. \ William \ Stallings, ``Cryptography \ and \ Network \ Security: Principles \ and \ Standards", Prentice \ Hall \ India, 3rd \ Edition, 2003$
- 2. Computer Forensics: Investigating Network Intrusions and Cyber Crime (Ec-Council Press Series: Computer Forensics), 2010
- **3.** Christof Paar, Jan Pelzl, Understanding Cryptography: A Textbook for Students and Practitioners, 2nd Edition, Springers, 2010.

COURS E CODE: EBCS22E 15	COU	RSE N D			SECU	RITY	,		Ty/I / ETI		L	T/S .Lr	P/ R	С
	Prere	quisite	:Nil						T	y	3	0/0	0/0	3
L : Lecture	e T : T	utorial	l S.L	r : Sup	ervise	d Lear	ning I	P : Pr	oject	R : Re	search	C: Cr	edits	
Ty/Lb/ET	L/IE:	Theory	y/Lab/	Embed	lded T	heory	and La	ıb/In	terna	l Evalı	ıation			
OBJECT														
Thestuden														
	-	ide a fo					•							
		and the				ulnera	ibilitie	S						
		audit				'11 1	1.1	4						
COURSE									-FT 21					
CO1 CO2		erstand								abilitie	g in or	arotin	α	
002		yze ine m[L4]	umel	ciii ua	iavase	perspe	CHVE	anu V	umer	aviiilie	o m of	oci atifi	g	
CO3		y the s	ecurity	z polic	ies and	l techn	iauesſ	L31						
CO4									ion in	Secur	ity Mc	delsH	.21	
CO5										ess[L4]]	
Mapping											,			
COs/PO	PO	PO	PO	PO	PO	PO	PO	PO		PO9	PO1	PO	1	PO1
s	1	2	3	4	5	6	7				0	1		2
CO1	3	2	1	2	1	1	1					1		1
CO2	3	2	3	2	1	1	2					1		1
CO3	3	2	2	2	1	1	2					1		1
CO4	3	3	3	2	2	2	1					2		2
CO5	3	3	2	2	2	1	2					1		1
											<u> </u>			
COs/		PSO ₁			PSO ₂			F	PSO3			PS	SO4	
PSOs														
CO1		2			3				3				3	
CO2		2			3				3				3	
CO3		2			3				3				3	
CO4 CO5		3			3				3				<u>3</u>	
H/M/L in	dicate		noth o	f Corr		n H.	High	М_		um, L-	Low			
	dicate				Ciatio	11 11		, 141	vicui	uiii, L	LUW			
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
					~									

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22E15	DATABASE SECURITY	Ту	3	0/0	0/0	3

UNIT I Security Architecture & Operating System Security Fundamentals 9Hrs

Security Architecture: Introduction-Information Systems- Database Management Systems-Information Security Architecture- Database Security—Asset Types and value-Security Methods Operating System Security Fundamentals: Introduction-Operating System Overview-Security Environment — Components- Authentication Methods-User Administration-Password Policies-Vulnerabilities-E-mail Security.

UNIT II Administration of Users, Profiles, Password Policies, Privileges and Roles9 Hrs
Administration of Users: Introduction-Authentication-Creating Users, SQL Server User-Removing,
Modifying Users-Default, Remote Users-Database Links-Linked Servers-Remote Servers-Practices
for Administrators and Managers-Best Practices Profiles, Password Policies, Privileges and Roles:
Introduction-Defining and Using Profiles-Designing and Implementing Password Policies-Granting
and Revoking User Privileges-Creating, Assigning and Revoking User Roles-Best Practices.

UNIT III Database Application Security Models

9 Hrs

Introduction-Types of Users-Security Models: Access Matrix model, Access mode model- DBMS Design Security Packages-Statistical Database Protection & Intrusion Detection Systems-Application Types: Client/Server Applications, Web Applications, Data ware house applications- Application Security Models-Data Encryption.

UNIT IV Virtual Private Databases

9 Hrs

Virtual Private Databases: Introduction-Overview of VPD-Implementation of VPD using Views, Application Context in Oracle-Implementing Oracle VPD-Viewing VPD Policies and Application contexts using Data Dictionary, Policy Manager Implementing Row and Column level Security with SQL Server.

UNIT V Auditing Database Activities and Project Cases

9 Hrs

Using Oracle Database Activities-Creating DLL Triggers with Oracle - Auditing Database Activities with Oracle-Auditing Server Activity with SQL Server 2000-Security and Auditing Project Case Study - Case Studies: Developing an online database, payroll management, tracking database changes, developing a secured authorization repository.

TEXT BOOK:

Total Hours: 45

1. Hassan A. Afyouni, 2009 "Database Security and Auditing", Third Edition, Cengage Learning.

- 1. Charu C. Aggarwal, Philip S Yu, 2008, "Privacy Preserving Data Mining": Models and Algorithms, Kluwer Academic Publishers.
- 2. Ron Ben Natan, 2005, "Implementing Database Security and Auditing", Elsevier Digital Press.

COURSE CODE EBCS22E16	COURSE NAME: MANAGEMENT INFORMATION SYSTEMS	Ty/Lb/ ETL/IE	L	T/S.L r	P/R	C
	Prerequisite: Nil	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- Evaluate the role of the major types of information systems in a business environment and their relationship to each other;
- Assess the impact of the Internet and Internet technology on business electronic commerce and electronic business;
- Identify the major management challenges to building and using information systems and learn how to find appropriate solutions to those challenges

ho	ow to fi	nd appr	opriate	solution	ns to the	se chall	lenges							
COURSE OU	JTCON	ÆS (C	Os): St	udents v	will be a	ible to								
CO1			e basic	concep	ts and to	echnolo	gies use	ed in the	field of 1	nanagem	ent info	rmation		
		ns (L1)												
CO2								sues of i	nformatio	on systen	ns. (L3)			
CO3					siness N									
CO4								Oriente	d Applica	ations are	e like DE	BMS		
					E-Com									
CO5			,		c Data			(L5)						
Mapping of C							` /							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	2	3	3	2	2	2	1	1	1			
CO2	2	3	3	2	3	1	2	2	1		1			
CO3	3	2	3	2	3	2	1	3	2	1	1			
CO4	3	3	3	3	3	2	1	1				1		
CO5	3	3	3	2	3	1	1	1						
COs / PSOs		PSO1			PSO ₂			PSO	3		PSO4			
CO1		3			2			1			2			
CO2		3			2			2			2			
CO3		2			3			2			3			
CO4		3			3			2			3			
CO5		3			2			3			3			
3/2/1 Indicate	es Stren	gth Of	Correl	ation, 3	– Higł	ı, 2- Me	edium,	1- Low				1		
			ial		9									
	6		1 soc		ectiv		nary	ent	ject					
2	ienc	.Е.	s and	ore	m el	ive hve	cipli	юди	/Prc					
[g0]	Sci	ngineerin Science	nitie	m C	Program elective	Eleci	Inter Disciplinary Skill Component Practical /Project							
Category	Basic Science	Engineerin o Science	Humanities and social Science	Program Core	P. P.	Open Elective	Inter	Skill	Pract					
			H ₁	Pr		lo		• • • • • • • • • • • • • • • • • • • •	-					
					~									

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.L r	P/R	С
EBCS22E16	MANAGEMENT INFORMATION SYSTEMS	Ту	3	0/0	0/0	3

UNIT I: FUNDAMENTALS OF INFORMATION SYSTEMS

9 Hrs

Information systems in business-Fundamentals of information systems-Solving business problems with information systems-Business Information systems-Transaction processing systems-Management Information Systems and Decision Support Systems-Artificial intelligence technologies in business-Information system for strategic applications and Issues in Information Technology.

UNIT II: ISSUES IN MANAGING INFORMATION TECHNOLOGY

Managing Information Resources and Technologies-Global Information Technology, Management, Planning and Implementing Change- Integrating Business change with IT-Security and Ethical challenges in managing IT-Social challenges of InformationTechnology.

UNIT III: INTRODUCTION TO E-BUSINESS

9 Hrs

E-commerce frame work, Media convergence, Consumer applications, Organization applications-BUSINESS MODEL: Architectural frame work for E-commerce, Application services and transaction Models – B2C Transactions, B2B Transactions- Intra-Organizational Transactions- WWW Architecture: Client server structure of the web- E-Commerce Architecture-Technology behind the web.

UNIT IV: CONSUMER-ORIENTED E-COMMERCE

9 Hr

Consumer oriented Application: Finance and Home Banking- Home shopping-HomeEntertainment, - Mercantile Process Models-Consumers perspective- Merchantsperspective.

UNIT V: ELECTRONICS DATA INTERCHANGE (EDI)9 Hrs

EDI Concepts, Applications in business – components of international trade, CustomsFinancial EDI, Electronic fund transfer, Manufacturing using EDI, Digital Signatures and EDI.

Total Hours: 45

TEXT BOOKS:

- 1. Management Information Systems- Managing Information Technology in the internet worked Enterprise- James. A O'Brien Tata McGraw Hill publishing company limited, 2002.
- 2. Management Information Systems Laaudon& Laudon PHI ISBN 81-203-1282-1.1998. REFERENCES:
- 1. Management Information systems- S. Sadogopan.PHI 1998Edn. ISBN 81-20311809
- 2. Information systems for modern management G.R. Murdi

ELECTIVE-III

COURSE CODE	COURSE NAME: MOBILE APPLICATION DEVELOPMENT	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22E17	Prerequisite: Operating System, Computer Graphics, Computer Networks and Web Design	Ту	3	0/0	0/0	3
L.: Lecture T	· Tutorial S.Lr · Supervised Learning P · Proje	ct R · Researc	h C: (redits		

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits T/L/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- Describe the limitations and challenges of working in a mobile and wireless environment
- Describe and apply the different types of application models/architectures used to develop

	mobile software applications.												
1						ure of	a mobi	le deve	elop	ment fr	amewor	ks	
COURSE									1				
CO1	Able	to rem	ember	the var	ious M	obile I	Platforn	ns and	ana	lyze its	archited	ctures	
CO2	Unde	rstand	and de	velop v	arious	Mobil	e Appl	cation	s fo	r Andro	oid and A	Apple	
CO3							n mobi						
CO4	Appl	y the di	ifferent	types	of appl	ication	model	s and	arch	itecture	es		
CO5							e servic						
Mapping	of Cou						utcome	s (PO	s)				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	8	PO9	PO10	PO11	PO12
CO1	1	3	2	1	1	2	3	2		1	1		
CO2	2	2	3	1	1	2	3	2		1			1
CO3	3	3	3	2	3	3	3	2		2			
CO4	3	2	3	3	2	2	3	1		2	1	1	
CO5	2	2	2	1	3	3	2	1		2	1		1
COs /		PSO ₁			PSO ₂		PS()3			PS	SO4	
PSOs													
CO1		3			2		2					3	
CO2		3			2							3	
CO3		3			3		2					2	
CO4		2			2		3					3	
CO5		2			3		3					3	
3/2/1 Indi		Strengt	th Of (Correla	ition, 3		h, 2- N	<u> Iediur</u>	m, 1	- Low			
Category	Basic Sciences	Engineering Sciences	Humanities and Social	Program Core	Program Electives	Open Electives	Practical / Project	Internships /	Soft Skills				
					•								

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22E17	Mobile Application Development	Ту	3	0/0	0/0	3

UNIT I Introduction 9

Hrs

Introduction to Mobile Platforms – Exploring Android Platform – Android Studio, Java, XML – Exploring Apple IPhone Platform – XCode, Objective C, Swift – Options for development, Mobile Software Engineering

UNIT II User Interface Development

9

Hrs

UI Elements – Frameworks and Tools - Generic UI Development – VUIs and Mobile Apps - Designing the Right UI - Multichannel and Multimodial UIs - Layouts – Android Intents and Services - Gesture based interfaces – Styles & Themes.

UNIT III Google Andriod Platform

9

Hrs

Characteristics of Mobile Applications - Google Application Architecture - Basic Building Blocks - The Android Emulator - Event based programming - SQLite Database Access - ADB - Mobility and Location Based Services

UNIT IV Apple Iphone Platform

9

Hrs

UI Kit for Interfaces - Understanding basics of Swift - Application development using Swift - Understanding basics of Objective - C - App development using Objective - C - SQLite Database Access - Application Debugging - Location Handling

UNIT V Implementing Software as a Service

9

Hrs

Service Oriented Computing Examples – Google Maps – Enabling Map based services in Application – Amazon Web Services – Exploring AWS S3 & AWS IoT APIs. Case studies on Mobile Application

Total Hours: 45

TEXT BOOKS:

- 1. Ed Burnette (2015) Hello, Android: Introducing Google's Mobile Development Platform, 4th edition, Pragmatic Bookshelf.
- 2. Marko Gargenta (2011) Learning Android, O'Reilly Media.

- 1. Richard Rodger (2012) Beginning Mobile application development in the cloud, Wrox Publication.
- 2. Jonathan A. Zdziarski (2008), iPhone Open Application Development, 2nd edition, O'Reilly Media Publication.

COURSE CODE EBCS22E18	COUF	RSE NA		SCIE	NCE		I .	Ty/Lb ETL/I	E	L	T/S.Lr	P/R	C
	Prerec	quisite:]	Nil						Ту	3	0/0	0/0	3
L : Lecture T				-		_					redits		1
Ty/Lb/ETL/I OBJECTIV		eory/La	.b/Emb	edded '	Theory	and La	ıb/Inter	nal Eva	aluatio	n			
The students		be made	de to										
				ncepts	of data	science	e and a	nalytics	S				
		s techn		-				J					
		Model	-		_								
• know	about	Hadoo	p and l	Map Re	educe p	rocedu	re						
COURSE OU	JTCON	MES (C	Os): S	tudents	will be	e able t	o						
CO1	Understand the application and process of data science[L2]												
CO2		zing th											
CO3		ying va											
CO4											e volumes[
CO5	probl	ems[L3	3]						alizatio	on techni	ques for Ro	eal wor	ld
Mapping of C													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	012
CO1	3	3	2	2	1	1	1				1		1
CO2	3	3	3	2	1	1	2				1		<u>l</u>
CO3	3	3	2	2	1	1	2				1		1
CO4 CO5	3	3	2	2	2	1	2				1		<u>2</u>
COs / PSOs	3	PSO1			PSO2	1		PS	O3		PS		1
CO3/1503		1501			1502			15	03		15	O-T	
CO1		3			3			3			2		
CO2		3			3						2		
CO3				3 3									
CO4 CO5		3			3						2		
3/2/1 Indicate	es Strei		Corre	lation.		h. 2- N	l Iedium				2	-	
				,		,,							
Category	Basic Science	Engineeri	Humanities and	Program	Program	Open Elective	Inter Disciplinary	Skill Component	Danotion	/Project			
					•								

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22E18	DATA SCIENCE	Ty	3	0/0	0/0	3

UNIT I Introduction To Data Science And Big Data

9 HRS

Introduction to Data Science – Applications - Data Science Process – Exploratory Data analysis – Collection of data – Graphical presentation of data – Classification of data – Storage and retrieval of data – Big data – Challenges of Conventional Systems - Web Data – Evolution Of Analytic Scalability - Analytic Processes and Tools - Analysis vs Reporting - Modern Data Analytic Tools - Statistical Concepts: Sampling Distributions - Re-Sampling - Statistical Inference - Prediction Error.

UNIT II Data Analysis

HRS

Correlation – Regression – Probability – Conditional Probability – Random Variables – Analysis using Mean, Median, Mode, Standard Deviation, Skewness, Kurtosis- Regression Modeling - Multivariate Analysis - Bayesian Modeling - Inference and Bayesian Networks - Support Vector and Kernel Methods - Analysis of Time Series: Linear Systems Analysis - Nonlinear Dynamics.

UNIT III Data Mining Techniques

9 HRS

Rule Induction - Neural Networks: Learning and Generalization - Competitive Learning - Principal Component Analysis and Neural Networks - Fuzzy Logic: Extracting Fuzzy Models from Data - Fuzzy Decision Trees - Stochastic Search Methods- Neuro-Fuzzy Modelling - Association rule mining - Clustering - Outlier Analysis - Sequential Pattern Mining - Temporal mining - Spatial mining - Web mining.

UNIT IV Mining Data Streams

9 HRS

Introduction To Streams Concepts – Stream Data Model and Architecture - Stream Computing - Sampling Data in a Stream – Filtering Streams – Counting Distinct Elements in a Stream – Estimating Moments – Counting Oneness in a Window – Decaying Window - Real time Analytics Platform (RTAP) Applications - Case Studies - Real Time Sentiment Analysis, Stock Market Predictions.

UNIT V Frameworks and Visualization

9 HRS

Map Reduce – Hadoop, Hive, MapR – Sharding – NoSQL Databases – Cloud databases - S3 - Hadoop Distributed File Systems – Visualizations - Visual Data Analysis Techniques - Interaction Techniques – Social Network Analysis – Collective Inferencing – Egonets - Systems and Applications.

Total Hours: 45

REFERENCES

- 1. Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007.
- 2. Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 2012.
- 3.Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", John Wiley & sons, 2012.
- 4. Jiawei Han, Micheline Kamber "Data Mining Concepts and Techniques", Second Edition, Elsevier, Reprinted 2008.
- 5. Rachel Schutt, Cathy O'Neil, "Doing Data Science", O'Reilly Publishers, 2013.
- 6. Foster Provost, Tom Fawcet, "Data Science for Business", O'Reilly Publishers, 2013.
- 7. Bart Baesens, "Analytics in a Big Data World: The Essential Guide to Data Science and its Applications", Wiley Publishers, 2014.
- 8. S. N. Sivanandam, S. N Deepa, "Introduction to Neural Networks UsingMatlab 6.0", Tata McGraw-Hill Education, 2006.

COURSE CODE	COURSE NAME: EMBEDDED SYSTEM ARCHITECTURES	Ty/Lb/ ETL/IE	L	T/S.L r	P/R	C
EBCS22E19	Prerequisite: Nil	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- Understand the basics of an embedded system.
- Understand the typical components of an embedded system.

• To un	derstan	d differ	ent com	munica	tion into	erfaces.	w 2 j 20012							
To lea	arn the	design p	rocess	of embe	dded sy	stem ar	plicatio	ns.						
To un	derstan	ds the R	RTOS ar	nd inter-	-process	comm	unicatio	n						
COURSE OU	ГСОМЕ	ES (COs): Stude	nts will	be able	to								
CO1	To un	To understand the basics of Embedded System (L1)												
CO2	Able t	Able to design processor and memory for Embedded systems (L5)												
CO3		To develop an Embedded Firmware (L5)												
CO4		To identify best operating system for embedded system (L4)												
CO5	To apply the basic task Communication (L3)													
	Mapping of Course Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	3	3	3	2	1				1		
CO2	3	3	3	3	3	3	2	1	1		1			
CO3	3	3	2	3 2	3 2	2 2	2 2	1	1	1	1			
CO5	3	2	2	2	2	2	2	1		2				
CO3	3							1						
COs / PSOs		PSO1			PSO2	l		PSO:	3		PSO4			
CO1		3			3			3			2			
CO2		3			2			3			2			
CO3		3			2			2			2			
CO4		3			3			3			2			
CO5		3			2			2			2			
3/2/1 Indicates	Streng	th Of Co	orrelatio	on, 3 – H	ligh, 2-	Medium	, 1- Low	7			1	1		
Category	Basic Science	Engineer ing	Humanities and	Program Core	Program	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
					~									

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С
EBCS22E19	EMBEDDED SYSTEM ARCHITECTURES	Ту	3	0/0	0/0	3

UNIT –I

Hrs

Introduction to Embedded Systems: Definition of Embedded System, Embedded SystemsVs General Computing Systems, History of Embedded Systems, Classification, MajorApplication Areas, Purpose of Embedded Systems, Characteristics and Quality Attributes of Embedded Systems.

UNIT-II:

9Hrs

Typical Embedded System: Core of the Embedded System: General Purpose and DomainSpecific Processors, ASICs, PLDs, Commercial Off-The-Shelf Components (COTS), Memory: ROM, RAM, Memory according to the type of Interface, Memory Shadowing, Memory selection for Embedded Systems, Sensors and Actuators, Communication Interface:Onboard and External Communication Interfaces.

UNIT -III:

9Hrs

Embedded Firmware: Reset Circuit, Brown-out Protection Circuit, Oscillator Unit, RealTime Clock, Watchdog Timer, Embedded Firmware Design Approaches and DevelopmentLanguages.

UNIT-IV:

9Hrs

RTOS Based Embedded System Design: Operating System Basics, Types of OperatingSystems, Tasks, Process and Threads, Multi processing and Multitasking, Task Scheduling.

UNIT-V:

9Hrs

TASK COMMUNICATION: Shared Memory, Message Passing, Remote Procedure Calland Sockets, Task Synchronization: Task Communication/Synchronization Issues, TaskSynchronization Techniques, Device Drivers, How to Choose an RTOS.

Total Hours:45

TEXT BOOKS:

1. Introduction to Embedded Systems - Shibu K.V, Mc Graw Hill.

- 1.Embedded Systems Raj Kamal, TMH.
- 2. Embedded System Design Frank Vahid, Tony Givargis, John Wiley.
- 3.Embedded Systems Lyla, Pearson, 2013.
- 4. An Embedded Software Primer David E. Simon, Pearson Education.

COURSE CODE		RSE NA AGILE		WARE	DEVEI	LOPMI	ENT		y/Lb/ TL/IE	L	T/S.I	Lr	P/R	C
EBCS22E20	Droroc	quisite:	Nil						Ty	3	0/0		0/0	3
L : Lecture T :				rvised Le	earning	P · Pro	iect R ·	Reseat	,		0/0		0/0)
Ty/Lb/ETL/IE			-		_					GI U				
OBJECTIVE		y Laori	Binocac	ica Theor	y una 1	240/1110	ormar L	- raiaa	.1011					
The students s		e made	to											
				s well as	practic	al aspec	ts of ag	ile softv	vare deve	lopm	ent pra	ctices	s and h	ow
				to create						1	•			
 Unde 	rstandin	ng of so	ftware c	lesign an	d a set o	of softw	are tech	nologie	s and AP	Is.				
 do a 	detailed	l exami	nation a	nd demo	nstratio	n of Ag	ile deve	lopmer	t and testi	ng te	echniqu	ies.		
 Unde 	rstand t	he bene	fits and	pitfalls o	of work	ing in a	n Agile	team.						
 Unde 	rstand A	Agile de	velopm	ent and t	esting.									
COURSE OF	TCOM	IEG (G)	2	1 , .	11 1 1	1 4								
COURSE OU							1			. 1		4	FT 41	
CO1	Analy	ze exist	ing pro	oiems wi	ın tne te	eam, de	veiopme	ent proc	ess and w	ıaer	organız	ation	[L4]	
CO2	Apply	a thoro	uah un	derstandi	ng of A	aile pri	ncinles	and sne	cific pract	ices	T 31			
CO2	1 rppry	a 111010	ugn un	aei stallul	115 01 A	Suc bin	icipics i	and spe	onic pract	1003	.]			
CO3	Under	stand a	nd appl	v the mos	st appro	priate w	av to in	nprove	results for	a sp	ecific c	eircun	nstance	e or
	need[I		FF	,	rr	F	,	- T		I				
	necati	<i></i>												
CO4	Analy	ze and a	apply ar	propriate	e adapta	tions to	existin	g practi	ces or pro	cess	es depe	nding	upon	
				oblems[L	-			01	•					
		<i>J</i> 1			,									
CO5	Evalua	ate likel	y succe	sses and	formula	te plan	s to mar	age lik	ely risks c	or pro	blems[[L5]		
Mapping of C								200	T = 0.0		0.40			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	(114)			
CO1	3	3	3	2	1						010	PO11	l P(
CO2	3		2	2	1	1	1		1		010	1		1
CO4	2	3	3	2	1	1	2		1		010	1		1
	3	2	3	2	1	1 1	2	1	1		010	1 1 1		1 1 1
CO4	3	2 2	3 2	2 2	1 2	1 1 2	2 2 1	1	1 1 2		010	1 1 1 2		1 1 1 2
CO5		2	3	2	1	1 1	2	1	1			1 1 1		1 1 1
CO5	3	2 2 3	3 2	2 2 2	1 2 2	1 1 2	2 2 1	1	1 1 2 1			1 1 1 2 1		1 1 1 2
CO5 COs / PSOs	3	2 2	3 2	2 2 2	1 2	1 1 2	2 2 1		1 1 2 1			1 1 1 2		1 1 1 2
	3	2 2 3 PSO1	3 2	2 2 2	1 2 2 PSO2	1 1 2	2 2 1	PSC	1 1 2 1			1 1 2 1 PSO		1 1 1 2
COs / PSOs CO1	3	2 2 3 PSO1 3	3 2	2 2 2	1 2 2 PSO2 3	1 1 2	2 2 1	1 PSC 2	1 1 2 1			1 1 2 1 PSO 3		1 1 1 2
COs / PSOs CO1 CO2 CO3 CO4	3	2 3 PSO1 3 3 3	3 2	2 2 2	1 2 2 PSO2 3 3	1 1 2	2 2 1	PSC 2 2 3 3 3	1 1 2 1			1 1 2 1 PSO 3 3 2 2		1 1 1 2
COS / PSOs CO1 CO2 CO3 CO4 CO5	3 3	2 2 3 PSO1 3 3 3 3	3 2 2 2	2 2 2	PSO2 3 3 3 2	1 2 1	2 2 1 2 2	PSC 2 2 3 3 3 3 3	1 1 2 1			1 1 2 1 PSO 3 3		1 1 1 2
COS / PSOs CO1 CO2 CO3 CO4 CO5	3 3	2 2 3 PSO1 3 3 3 3	3 2 2 2	2 2 2	PSO2 3 3 3 2	1 2 1	2 2 1 2 2	PSC 2 2 3 3 3 3 3	1 1 2 1			1 1 2 1 PSO 3 3 2 2		1 1 1 2
COS / PSOs CO1 CO2 CO3 CO4 CO5	3 3	2 2 3 PSO1 3 3 3 3	3 2 2 2 Correl:	2 2 2	1 2 2 PSO2 3 3 3 2 2 - High,	1 2 1	2 2 1 2	PSC 2 2 3 3 3 3 Low	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 2 1 PSO 3 3 2 2		1 1 1 2
COs / PSOs CO1 CO2 CO3 CO4	3 3	2 2 3 PSO1 3 3 3 3	3 2 2 2 Correl:	2 2 2	1 2 2 PSO2 3 3 3 2 2 - High,	1 2 1	2 2 1 2	PSC 2 2 3 3 3 3 Low	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 2 1 PSO 3 3 2 2		1 1 1 2
COs / PSOs CO1 CO2 CO3 CO4 CO5 3/2/1 Indicate	3 3	2 2 3 PSO1 3 3 3 3 3 gth Of	3 2 2 2 Correl:	2 2 2 ation, 3 –	1 2 2 PSO2 3 3 3 2 2 - High,	1 1 2 1	2 2 1 2	PSC 2 2 3 3 3 3 Low	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 2 1 PSO 3 3 2 2		1 1 1 2
COs / PSOs CO1 CO2 CO3 CO4 CO5 3/2/1 Indicate	3 3	2 2 3 PSO1 3 3 3 3 3 gth Of	3 2 2 2 Correla	2 2 2 ation, 3 –	1 2 2 PSO2 3 3 3 2 2 - High,	1 1 2 1	2 2 1 2	PSC 2 2 3 3 3 3 Low	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 2 1 PSO 3 3 2 2		1 1 1 2
COs / PSOs CO1 CO2 CO3 CO4 CO5 3/2/1 Indicate	3 3	2 2 3 PSO1 3 3 3 3 3 gth Of	3 2 2 2 Correla	2 2 2 ation, 3 –	PSO2 3 3 3 2	1 1 2 1	2 2 1 2	PSC 2 2 3 3 3 3 Low	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 2 1 PSO 3 3 2 2		1 1 1 2
COS / PSOs CO1 CO2 CO3 CO4 CO5	3 3	2 2 3 PSO1 3 3 3 3	3 2 2 2	2 2 2	1 2 2 PSO2 3 3 3 2 2 - High,	1 2 1	2 2 1 2 2	PSC 2 2 3 3 3 3 3	1 1 2 1			1 1 2 1 PSO 3 3 2 2		1 1 2

COURSE CODE	2022 Regulation COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22E20	AGILE SOFTWARE DEVELOPMENT	Ту	3	0/0	0/0	3

UNIT I-Agile Development

9 Hrs

Agile Practices, Overview of Extreme Programming, Planning, Testing, Refactoring, A Programming Episode.

UNIT II-Agile Design

9 Hrs

What is Agile Design? SRP: The Single-Responsibility Principle, OCP: The Open-Closed Principle, LSP: The Liskov Substitution Principle, DIP: The Dependency-Inversion Principle, ISP: The Interface-Segregation Principle.

UNIT III-The Payroll Case Study

9 Hrs

Command and Active Object, Template Method & Strategy: Inheritance vs Delegation, Facade and Mediator, Singleton and Monostate, Null Object, The payroll Case Study: Iteration One Begins, The Payroll Case Study: Implementation.

UNIT IV-Packaging the Payroll System

9 Hrs

Principles of Package Design, Factory, The Payroll Case Study (part 2)

UNIT V-The Weather Station Case Study

9 Hrs

Composite, Observer-Backing into a Pattern, Abstract Server, Adapter, and Bridge, Proxy and Stairway To Heaven: Managing Third Party APIs, Case Study: Weather Station.

Total Hours: 45

TEXT BOOKS:

1. "Agile Software Developement principles, Patterns and Practices" by Robert C. Martin, 1st edition 2003.

- 1."Agile Software Developement" by Thomas Uwe Hansmann, Springer-Verlag Berlin Heidelberg 2010.
- 2. "The Art of Agile Developement" by James Shore & Shane Warden 2006.

COURSE	COUI	RSE NA	AME:						T /T 1 /					
CODE				TOMA	ATION	I			Ty/Lb/	L	T/S.I	Lr I	P/R	C
EBCS22E21									ETL/IE					
	Prerec	quisite:	Nil						Ty	3	0/0) (0/0	3
L : Lecture T :	Tutori	al S.L	r : Sup	ervised	Learni	ng P:	Project	R : I	Research C	: Cre	edits			
Ty/Lb/ETL/IE	: Theo	ry/Lab/	Embed	ded Th	eory an	d Lab/	Interna	l Eva	luation					
OBJECTIVE	S:													
The students														
		ne conc												
		tware a					orld							
_		ses for	-	-	_	IS								
		oftware												
COURSE OU														
CO1	Reme	mber th	ne conce	epts of	Automa	ation[L	1]							
CO2	Under	rstand tl	he fund	amenta	ls of U	secases	. [L2]							
CO3	Analy	ze these	oftware	testing	model	sL4]								
CO4		the no												
CO5	Apply	the co	ncepts i	in real t	ime ent	tities ar	d case	studie	es in auton	atio	n [L6]			
Mapping of C	Course	Outcon	nes wit	h Prog	ram O	utcome	es (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	PO9	P	010	PO11	PO	D12
CO1	3	3	3	3	3	3	3	3	3		2	3		3
CO2	3	3	3	3	3	3	3	3	2		2	3		3
CO3	3	2	2	2	3	3	2	3	2		2	2		3
CO4	3	2	2	2	3	3	2	3	2		2	2		3
CO5	3	2	2	2	3	3	2	3	2		2	2		3
COs / PSOs		PSO1			PSO2			PS	SO3			PSO ₂	1	
CO1		2			3				3			2		
CO2		1			3				3			2		
CO3		2			3				3			2		
CO4		2			2				2			1		
CO5	G.	3			3		<u> </u>		3			3		
3/2/1 Indicate	s Stren	gth Of	Corre	lation,	3 – H1g	gh, 2- N	ledium	1, I- I	LOW					
					o o		5	sut	+					
	ပ		und e	e	tiv	e	ınaı	one) jec					
2	enc	ng	es s	Cor	 slec	ctiv	ldi;	lmp	Pro					
g01	Sci	e eri	niti Sci	m (m ((ii))isc	ပိ	al,					
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
O	Bas	Engineer Science	Hul	Pro	Pro	Opí	Inte	S	Pra					
					_									
					~									
L	l	I						1	1					

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22E21	AUTOMATION	Ту	3	0/0	0/0	3

UNIT I 9Hrs

Overview- Types of automation -Overview of IT automation -Automation use cases - Automation trends -AI and machine learning in automation

UNIT II 9Hrs

Role of Automation in Computer-based Systems- Machine Readable Specification&Design-Automatic Code Verification-Automatic Load Testing- Automatic Problem Discovery-Intelligent Operator Training

UNIT III 9Hrs

Machine learning and workflow- Hyperautomation- Intelligent automation- Intelligent industrial robots- Low-code or no-code workflow

UNIT IV 9Hrs

Terminologies used in Testing- How to write testcases- Principles of testing- Test process steps- Levels of independence in testing- Levels of testing- Software testing models-Introduction to Jira tool-Bugzilla Tool

UNIT V 9Hrs

Invoicing without the use of paper- Applications for jobs - Automated notifications and warnings- Documents in the cloud- Automated software testing- Online sales and marketing-New career paths- Enhancing the need of cybersecurity- Automated data imports and exports

Total Hours:45

TEXT BOOKS:

- 1. Suresh Chandra Satapathy, Ajay Kumar Jena, Jagannath Singh, <u>Saurabh</u> <u>Bilgaiyan</u>," Automated Software Engineering: A Deep Learning-Based Approach (Learning and Analytics in Intelligent Systems) 1st ed. 2020 Edition"
- 2. Design, Build, Ship: Faster, Safer Software Delivery 1st Edition, by Sam Newman (Author), ISBN-13: 978-1491984871

REFERENCE BOOKS:

1.Raoul-Gabriel Urma, Richard Warburton, "Real-World Software Development: A Project-Driven Guide to Fundamentals" 1st Edition

COURSE	COU	RSE NA						1 -	/Lb/	L	T /	S.Lr	P/R	$ _{\mathbf{C}}$
CODE EBCS22E22				L CON	MPUT	ING		E 3	TL/IE		1,	5.L1	1710	
EDC522E22	Prerec	quisite:	Nil						Ty	3	(0/0	0/0	3
L : Lecture T : Tut	torial	S.Lr : 5	Supervi	ised Lea	arning	P : Pro	ject R:	Resea	rch C: 0	Credit	S			
Ty/Lb/ETL/IE: T	heory/I	Lab/Em	bedded	Theory	y and La	ab/Inte	rnal Ev	valuat	ion					
OBJECTIVES:														
The students should											_			
• Understan		-		-		_	-		cial com	putin	g tecl	nnique	S	
• Analyze th								•						
Design va							iting m	odels						
COURSE OUTC								1.70	1 FY 13					
CO1				-	•		ection a							
CO2									l compu					
CO3		-		•	applyi	ng a so	cial con	nputin	g metho	dolog	y for	a parti	cular	
	Learn	ing mo	del. [L3	3]										
CO4	Desig	n the m	ethodo	logy to	solve o	ptimiz	ation pr	oblem	s using A	Artifi	cial al	lgorith	ms[L6]	
CO5	Desig	n social	l netwo	rk anal	ysis to 1	evise t	he princ	ciples o	of social	com	outing	g in va	rious	
	applic	ations[L6]											
Mapping of Cour				rogran	1 Outco	mes (I	POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9 P	O10	PO1	1 PC	012
CO1	3	3	3	2	3	2	2	2	3		2	3		3
CO2	3	3	3	2	3	2	2	2	3		2	3		3
CO3	3	2	3	2	3	2	2	3	2		3	2		2
CO4	3	2	2	2	3	2	2	2	3		2	3		2
CO5	3	3	2	2	3	2	2	2	3		2	3		2
COs / PSOs		PSO ₁			PSO ₂			PSC	03			PS) 4	
CO1		3			3			2	,			3		
CO2		3			3			2				3		
CO3		3			3			3				2		
CO4		3			2			3				2		
CO5		3			2			3	1			2		
3/2/1 Indicates St	rength	Of Co	rrelati	on, 3 –	High, 2	2- Med	ium, 1-	Low				_		
							7.7	#	t					
	é		pt .				ina	ner	oje					
∑	enc	<u> 5</u>	s ar	ore	U	tive	cipl	odu	/Pro					
ogg	Sci	erin	itie	пС	ran	lec.)isc	Con	cal					
Category	Basic Science	Engineering	Humanities and	Program Core	Program	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
J	Ba	ng	lun .	rog	P 9)pe	Int	Sk	Pre					
		ЩУ	, <u>;</u>										\vdash	

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22E22	SOCIAL COMPUTING	Ту	3	0/0	0/0	3

UNIT I-DATA COLLECTION

9 Hrs

Data Collection-Data types and sources, Data Collection and Tools- Data Acquisition, Common Data Processing Toolkit.

UNIT II-DATA PROCESSING METHODOLGY

9 Hrs

Data Processing Principles-Behavior Tracking, Data Processing Methods.

UNIT III-SUPERVISED AND UNSUPERVISED LEARNING MODELS

9 Hrs

Supervised Learning Models-Generalized Linear Algorithms, Decision Trees, Bayesian Method, Bayesian Regression, Gaussian Processes. Unsupervised learning model-Dimensionality Reduction Algorithm, Clustering algorithm.

UNIT IV-STATE-OF-THE-ART ARTIFICAL INTELLIGENCE ALGORITHMS 9Hrs

Deep Learning, Reinforcement Learning, Brother Learning, Epiphany Learning.

UNIT V-SOCIAL NETWORK DATA MINING AND KNOWLEDGE DISCOVERY 9Hrs

Online Social Networks Text Processing Method-Information Extraction, Keyword Mining, Topics Detection and Tracking, online Social Networks Image Recognition methods-Image Retrieval, Image object Detection and Classification.

Total Hours: 45

TEXT BOOKS:

1. "Social Computing with Artificial Intelligence", byXung Liang, Springer 2020.

- 1. Huan Liu John J. Salerno Michael J. young," Social Computing, Behavioral Modeling and Prediction", Springer, 2008.
- 2. Ajith Abraham," Computational social Network Analysis": Springer

COURSE CODE: EBCS22E23	1	RSE NA NTERI		ARCH	ITECT	ΓURE	r	Гу/Lb/ ETL/I	E	L	T/S. Lr	P/I	R
EBCS22E23	Prereq	uisite: 1	Vil					Ty		3	0/0	0/0) 3
L : Lecture T :	Tutoria	l S.Lr	: Super	rvised l	Learnin	g P:P	roject	R : Res	earch (C: Cred	lits		
T/L/ETL/IE:	Γheory/I	Lab/Em	bedded	Theory	y and L	ab/Inte	rnal E	evaluati	on				
OBJECTIVE :													
The students sl													
	derstand												
	ate a ma												
	dling th						s of the	ese elem	ients ai	nd aligi	ning th	iem.	
COURSE OU							A	ala: 4 a a 4a a					
CO1 CO2		ze vari				Enterpr	ise Ar	chitectu	re.				
								1 T	1	, ,.			
CO3								work Im					
CO4 CO5								process	manag	ement.			
Mapping of C		stand th											
COs/POs	PO1	PO2	PO3	Progr PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PC	111	PO12
CO1	3	3	3	2	3	2	2	2	1	1	0 10	/11	1
CO2	3	3	3	2	3	2	2	1	2	1	1		1
CO2				_		-	_	1	_	1	•		-
CO3	3	2	3	2	3	2	2		1		1		
CO4	3	2	2	2	3	2	2	1	1				
CO5	2	3	2	2	3	2	1	1					
COs / PSOs		PSO1			PSO2			PSO	3		P	SO4	
CO1		2											
CO1 CO2		3			3			2				3	
CO3		3			3			3				2	
CO4		3			2			3				2	
CO5		3			2			3				2	
H/M/L indica	tes Stre		Correl	 ation		gh. M-	Medi	um, L-I	ωw				
II/IVI/L IIIdica					11 11	511, 111	Ivical		1011				
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				
	Ba	En	Hu	Prc	Prc Prc	do	Int		Pre				

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S. Lr	P/ R	C
EBCS22E23	ENTERPRISE ARCHITECTURE	Ty	3	0/0	0/0	3

UNIT I INTRODUCTION

9 Hrs

An overview of Digital Transformation and Enterprise Architecture, The purpose and Scope of this Research, The Primary Related Research.

UNIT II DIRECTION OF DIGITAL IT AND ENTERPRISE ARCHITECTURE 9 Hrs

Introduction, Directions of Cloud/Mobile IT, EA Frameworks-TOGAF, FEAF, Adaptive EA, EA Framework Analysis, Agile Enterprise Architecture and Scaling Agile Frameworks.

UNIT III EVALUATION FOR EA FRAMEWORK IMPLEMENTATION METHOD 9 Hrs

Case of EA Framework Building in a Global Pharmaceutical Company, Evaluation and Analysis of Case Study.

UNIT IV EVALUATION OF ARCHITECTURE BOARD REVIEW PROCESS WITH KNOWLEDGE MANAGEMENT 9 Hrs

Case of "Architecture Board Reviwe" in Global HealthCare Company, Evaluation and Analysis of Case Study of Architecture Board view, Global Communication Case Study, Verification and summary.

UNIT V OVERALL EVALUATION AND PERSPECTIVES

9 Hrs

Overall Evaluation-valuation of AIDAF for agility-Related Elements, Perspectives on AIDAF-Benefits of EA Implementation-AIDAF, Challenges Encountered in EA Implementation of AIDAF, Global Communication Structure in Architecture Board.

Total Hours: 45

TEXT BOOK:

1. Yoshimasa Masuda MurlikrishnaViswanthan, 2019, Enterprise Architecture for Global Companies in a Digital IT Era, Springer.

- 1. Thierry PerroudRetoInversini, 2013 "Enterprise Architecture Patterns", Springer.
- 2. Danny Greefhorst Erik Proper, 2011 "Architecture principles of Enterprise Architecture" Springer

CourseCode:	Cours	e Name			D = 1.01			Ty/	Lb/	_	TEVO:		/TD	-
EBCS22E24		NE	TWOF	RK FO	RENSI	.CS		EŤI		L	T/S.	Lr P	/R	C
	Prerec	quisite:	Compu	ter Net	works			T	y	3	0/0) ()/0	3
L : Lecture T										: Credi	ts			
Ty/Lb/ETL/II		ory/Lab	/Embed	lded Th	eory ar	nd Lab/	Interna	al Evalu	ation					
OBJECTIVE														
The students s					4.									
								nsic anal						
								nalysis a	nd netwo	ork sec	urity t	echnol	ogie	š
COURSE OU								1		C 1:	•, 1	• 1		
CO1								potential					•	
CO2							network	data acc	quisition	and ar	nalysis	s using		
CO2			sed appl				4 *	- C t	1. £		1 1 .			
CO3								of netwo	ork forei	isic tec	nnolo	gies		
CO4 CO5			or netwo											—
Mapping of (e netwo					. <u>, , , , , , , , , , , , , , , , , , , </u>						—
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	<u> </u>	PO11	D()12
CO1	3	3	1	3	1	3	3	2	3	2		3	_	2
CO2	3	3	3	3	3	2	2	2	3	2		3	+	2
CO3	3	3	3	3	3	2	2	2	3	2		3		<u>-</u> 1
CO4	3	3	3	3	3	2	2	3	2	2		3	_	3
CO5	3	3	3	2	2	3	1	3	3	2		3	_	1
					_					_				
COs / PSOs		PSO1			PSO2	l		PSC	03			PSO	4	
CO1		3			1			3				3		
CO2		3			2			3				3		
CO3		3			2			3				3		
CO4		3			2			3				3		
~ ~ =		3			3			3				3		
CO5														
CO5 3/2/1 Indicate	es Strer		Corre	lation,	3 – Hig	gh, 2- N	1ediun	1, 1- Lov	v					
	es Strer		Corre	lation,	3 – Hig	gh, 2- N	Tedium	n, 1- Lov	v					
	es Strer			lation,	3 – Hig	gh, 2- N	Aedium		v					
	es Stren	ngth Of		lation,	3 – Hiş	gh, 2- N	1ediun	ent	V					
	es Strer	ngth Of		lation,		gh, 2- N		ent						
3/2/1 Indicate		Science						ent						
3/2/1 Indicate		Science						ent						
		Science	ies and social					ent						
3/2/1 Indicate		Science	ies and social											
3/2/1 Indicate	Basic Science	ngth Of	Humanities and social Science	Program Core	Program elective	gh, 2- N Oben Elective	Inter Disciplinary annipa	ent	Practical /Project					
3/2/1 Indicate		Science	ies and social					ent						

COURSE CODE	COURSE NAME	Ty/Lb/ ETL	L	T/ S.Lr	P/R	С
EBCS22E24	NETWORK FORENSICS	Ту	3	0/0	0/0	3

UNIT I Technical Fundamentals

9

Hrs

Concepts in digital evidence- challenges- investigative methodology- sources of network based evidence- principles of internetworking-Internet Protocol suite- Evidence acquisition

UNIT II Packet and Statistical Flow Analysis

9

Hrs

Packet analysis - protocol analysis - flow analysis- higher layer traffic analysis - Statistical Flow analysis:- sensors-flow record export protocols- collection and aggregation- analysis tools and techniques - Case study and Tools Analysis: Wire Shark

UNIT III Network Intrusion Detection and Analysis

9

Hrs

NIDS/NIPS functionality- modes of detection-types-NIDS/NIPS evidence acquisition -NIPS/NIDS interfaces –packet logging – Case study and Tools Analysis: Snort

UNIT IV Network Devices and Servers

9

Hrs

Sources of Logs-Network log architecture- collecting and analyzing evidence- Switches- routers – firewalls-interfaces-logging - Case study and Tools Analysis: Angry IP Scanner

UNIT V Network Tunnelling and Case Studies

9

Hrs

Tunneling for functionality, confidentiality- covert tunneling- trends in malware evolution-network behavior of malware – future of malware and network forensics - Case study and Tools Analysis : Cuckoo Sandbox

Total Hours: 45

TEXT BOOK:

1. Network Forensics: Tracking Hackers Through CyberSpace Sherri Davidoff, Jonathan Ham Pearson Education 2012

- 1. Introduction to Security and Network ForensicsWilliam J. Buchanan Auerbach Publications 2012
- 2. Handbook of Digital Forensics and Investigations, 1st Edition Eoghan Casey ed., Elsevier Academic Press, ISBN 13: 978-0-12-374267-4,.

COURSE	COU	RSE N	AME:					,	Ty/Lb/	'		T/S.L		
CODE: EBCS22E2		DIST	ΓRIBU	TED (СОМР	UTIN	G		ETL/I E		L	r	P/R	C
5	Prere	quisite:								+	_	0.40	0.40	
		1	1	8)					Ту		3	0/0	0/0	3
L : Lecture												redits	1	
Ty/Lb/ETL/		eory/L	ab/Em	bedded	Theor	y and I	.ab/Int	ernal	Evalua	ation	1			
The students		d be ma	ade to											
				n of dis	stribute	d syste	ms							
					concep									
								outed	systems	s to c	design	a new m	nemory	
COURSE C								odel .	designs	of d	istribut	ed com	nuting	
		ns [L2]		.1 y Z C 11	io reiat	ion ann	O115 III	Juci	acoigno	or u	13111041		Puung	
CO2				cess co	mmun	ication	concep	pts of	distribu	ıted	system	s[L3]		
CO3									ization[]					
CO4									proces				FT 43	
CO5 Mapping of										trıbu	ted file	system	[L4]	
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO		O 9	PO10	PO	11 P	01
CO3/1 O3	1	2	3	4	5	6	7			0)		, 10.	2	01
CO1	2	2	2	2	1	1	1					1		1
CO2	2	3	2	2	1	1	2					1		1
CO3	3	3	3	2	1	1	2					1		1
CO4 CO5	3	3	3	2	2	1	1 2					1		1
COs/	3	PSO1	3		PSO2	_		P	SO3			PS	04	1
PSOs		1501			1502			•	500			10	0.	
CO1		2			3				3			2	2	
CO2		2			3				2				2	
CO3		3			3				3			3		
CO4		2			3				3				3	
3/2/1 Indica	tes Str		Of Co	 rrelatio		High.		dium.		v		•	,	
O/2/1 Indica			01 00						1 201	<u> </u>				
			cial		(a)									
)0S]		tiv		ary	ent	ect					
ory	nce		and	re	elec	ke	plin) ou	Proj					
Category	Basic Science	Engineering	Humanities and social	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
ပိ	ic S	neer	anit	ram	.ogr	ı El	r D	Ŭ	ctic					
	Bas	ngi	mn]	rog	Pr		 Inte	Ski	Pra					
		Щ					· ·							
					~									
<u> </u>	1	1	<u> </u>	1	L	1	1	1	1					

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22E25	DISTRIBUTED COMPUTING	Ту	3	0/0	0/0	3

UNIT IFundamentals and Remote Procedure Call

9 Hrs

Introduction to distributed computing system, Different models, Message passing-Introduction, Desirable features of a good message passing system, Issues in IPC, Synchronization, Buffering, Multidatagram, Process addressing, Failure handling, Group communication - Introduction, RPC model, transparency of RPC, Implementing RPC mechanism, Stub generation, RPC messages, Marshalling arguments and results, Sever management, parameter-passing semantics, Call semantics, Communication protocols for RPCs- Lightweight RPC.

UNIT II Distributed Shared Memory and Synchronization 9 Hrs

Introduction, General architecture of DSM systems, Design and implementation issues of DSM, Granularity, Structure of shared memory space, Consistency model, Replacement strategy, Thrashing, Different approaches to DSM, Advantages of DSM, Clock synchronization, Event ordering, Mutual exclusion, Deadlock, Election algorithm.

UNIT III Resource and Process Management

9 Hrs

Introduction, Desirable features of a good global scheduling algorithm, Task assignment approach, Load balancing approach, Load sharing approach, Process migration, Threads.

UNIT IV DFS/DCE Security

9 Hrs

Desirable features of good DFS, File models, File accessing, models, File sharing semantics, File cachingschemes, File replication, Fault tolerance, Atomic Transaction, Design principles, Authentication, Access control, Digital signatures, DCE security service.

UNIT V CONSISTENCY AND REPLICATION

9 Hrs

Introduction - Data-Centric Consistency Models- Client-Centric Consistency Models- Replica Management - Consistency Protocols

Total Hours: 45

TEXT BOOK:

- 1. Pradeep K. Sinha (2012 Reprint) , Distributed Operating System Concepts and Design PHI
- 2. Ajay D. Kshemkalyani ,MukeshSinghal (2008), Distributed computing : principles, algorithms and systems Cambridge University Press

- 1. Andrew S. Tenenbaum (2012), Modern Operating System (3rd ed.) PHI
- 2. Andrew S. Tenenbaum&MaatrenVansteen (2012) Distributed systems: Principles & Paradigms (2nd ed.),PHI
- 3. HagitAttiya And Jennifer Welch (2004) Distributed computing fundamentals, simulations and Advanced Topics (Digitized in 2007) (2nd ed.), Wiley
- 4. Jean Dollimore, Tim Kindberg, And George Coulouris (2005) Distributed Systems: Concepts and Design (4th ed.) Pearson Education

ELECTIVE -IV& V

COURSE CODE: EBCS22E26	COU	RSE N			IPUTI	NG			Ty/Lb/ ETL/I	L	T/S.	P/R	C
EBCS22E20									E		1/1		
		quisite rithms	: Distr	ibuted	System	is and			Ty	3	0/0	0/0	3
L : Lecture T : T			r : Sup	ervised	l Learn	ing P	: Proie	ct R	: Researc	h C: C	redits		
T / L/ ETL/IE:			-			_							
OBJECTIVE:													
The students sho													
Unders				_	_	_							
_		voluti	on of	compu	iting i	ndustr	y, clou	ıd co	mputing	basics	and ed	lge	
comput													
COURSE OUT		,											
CO1									ions in Ec	lge Co	mputing	[L1]	
CO2							Applica						
CO3	•					-			berryPi[]	[4]			
CO4								licatio	ons[L5]				
CO5	Analy	yze edg	ge com	puting	with o	thers[I	[4]						
Mapping of Co		utcom	es wit	h Prog	ram C	Outcon	nes (PC						
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	8 PO9	_			01
CO1	1	2	3	4	5	6	7	_		0	1	2	
CO1 CO2	3	3	2	1	1	1	1	2	$\frac{2}{2}$	1	3	1	
CO3	3	2	2	1	1	1	1	2	2	$\frac{1}{1}$	3	1	
CO4	3	2	2	1	1	1	1	1	2	2	$\frac{3}{1}$	1	
CO5	3	2	3	2	2	2	1	2	2	3	2	2	
		_											
COs / PSOs		PSO1			PSO2			P	SO3		P	SO4	
CO1		3			2				2			2	
CO2		3			3				1			2	
CO3		3			2				3			1	
CO4		3			1				1			2	
CO5	Stuana	3	Соммо	lation	3	ah 2	Modin	1	I ow			3	
3/2/1 Indicates	Streng	in Oi	Corre	lation,	3 – HI	gn, 2-	vieaiu	ım, 1	- LOW				
							Inter Disciplinary	ent	ect				
>	nce		and	le le		\ \	plir)on	Proj				
gor	ciel	ing		රි	am	ecti	isci	luc					
Category	Basic Science	Engineering	Humanities and	Program Core	Program	Open Elective	r. Ö	Skill Component	Practical /Project				
	3asi	ngi	smr	ogr	Pro	con	nte:	kil	 rac				
	<u> </u>	Äд	H	Pr		Ō	I	J 1	1				
					'								

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22E26	EDGE COMPUTING	Ту	3	0/0	0/0	3

UNIT I EDGE COMPUTING DEFINITION AND USE CASES

9Hrs

Introduction to Edge Computing Scenario's and Use cases - Edge computing purpose and definition, Edge computing use cases, Edge computing hardware architectures, Edge platforms, Edge vs Fog Computing, Communication Models - Edge, Fog and M2M

UNIT II IOT ARCHITECTURE AND CORE IOT MODULES 9Hrs

A connected ecosystem, IoT versus machine-to-machine versus, SCADA, The value of a network and Metcalfe's and Beckstrom's laws, IoT and edge architecture, Role of an architect, Understanding Implementations with examples-Example use case and deployment, Case study – Telemedicine palliative care, Requirements, Implementation, Use case retrospective.

UNIT III RASPBERRYPI

9Hrs

Introduction to RaspberryPi, About the RaspberryPi Board: Hardware Layout and Pinouts, Operating Systems on RaspberryPi, Configuring RaspberryPi, Programming RaspberryPi, Connecting Raspberry Pi via SSH, Remote access tools, Interfacing DHT Sensor with Pi, Pi as Webserver, Pi Camera, Image & Video Processing using Pi.

UNIT IV IMPLEMENTATION 9Hrs

Implementation of Microcomputer RaspberryPi and device Interfacing, Edge to Cloud Protocols, MQTT, MQTT publish-subscribe, MQTT architecture details, MQTT state transitions, MQTT packet structure, MQTT data types, MQTT communication formats, MQTT 3.1.1 working example

UNIT V EDGE COMPUTING

9Hrs

Edge computing with RaspberryPi, Industrial and Commercial IoT and Edge, Edge computing and solutions.

Total

Hours: 45 TEXT BOOK:

- 1. IoT and Edge Computing for Architects Second Edition, by Perry Lea, Publisher: Packt Publishing, 2020, ISBN: 9781839214806
- 2. Raspberry Pi Cookbook, 3rd Edition, by Simon Monk, Publisher: O'Reilly Media, Inc., 2019, ISBN: 978149204322.

- 1. Fog and Edge Computing: Principles and Paradigms by Rajkumar Buyya, Satish Narayana Srirama, wiley publication, 2019, ISBN: 9781119524984.
- 2. David Jensen, "Beginning Azure IoT Edge Computing: Extending the Cloud to the Intelligent Edge, MICROSOFT AZURE

COLIDGE	COLI	OCE NI	ME.											
COURSE CODE	COU	RSE NA	AME:					T	y/Lb/		TEVO	.	D/D	
EBCS22E27		CYI	BER PI	HYSIC	AL SY	STEM	['	TL/IE	L	T/S	.Lr	P/R	C
	D	,	NT'1						T		0/	0	0/0	12
I I I a stania T		quisite:			1 T	.: n	. n!	4 D . I	Ty	3	0/	_	0/0	3
L : Lecture T Ty/Lb/ETL/I										C: C	reams	8		
OBJECTIV		ory/Lat	D/EIIIDE	aded 1	пеогу а	ina Lao	/ IIIteIII	ai Eva	luation					
The students		he mad	le to											
				lementi	ing a cv	her-nh	vsical s	vstem t	from a c	omni	itation	nal ne	ersnect	ive
		_	-					•	ftware b	-		-	-	
contr		ii varae	a ana a	chise th	ne rear	tillic 5	Stellis	WILLI SO	itware o	asca	discit	ore au	itomat	cu
		validate	e proble	ems for	Cyber	Physica	al Syste	ms usii	ng forma	al me	thods	safe	tv	
	ance an				Cyoti	i iiysict	ii bysic	iiis u sii	ig romm	<i>11</i> 1110	inous	, sare	- 9	
COURSE O					s will b	e able 1	to							
CO1								physica	al systen	n froi	m a co	ompu	tation	al
		ective[L			•	C			•			•		
CO2	Apply	real-va	alued ar	nd dens	e time	real-tin	ne syste	ms wit	h softwa	re-ba	ased d	iscre	te	
		ated co												
CO3									systems					
CO4			nd appl	ly cybe	r-physi	cal syst	em pro	blems 1	for safet	y assi	urance	e and	secur	ity
	aspect													
CO5		eHybrid												
Mapping of	Course	Outco	mae wi	ith Pra	aram (74	• • • (DO	(~)						
~~ ~~														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	D10	PO	11 P	012
CO1	PO1 3	PO2 2	PO3 3	PO4 3	PO5 3	PO6 3	PO7 2	PO8 2	2	PC	3	2	11 P	2
CO1 CO2	PO1 3 3	PO2 2 3	PO3 3 3	PO4 3 3	PO5 3 3	PO6 3 2	PO7 2 2	PO8 2 2	2 2	P(3 2	2 2	11 P	2 2
CO1 CO2 CO3	PO1 3 3 3	PO2 2 3 2	PO3 3 3	PO4 3 3 2	PO5 3 3 3	PO6 3 2 2	PO7 2 2 2	PO8 2 2 2	2 2 2	PO	3 2 3	2 2 2	11 P	2 2 2
CO1 CO2 CO3 CO4	PO1 3 3 3 3	PO2 2 3 2 3	PO3 3 3 2	PO4 3 3 2 2	PO5 3 3 3 2	PO6 3 2 2 2	PO7 2 2 2 2	PO8 2 2 2 2 2	2 2 2 2 2	PO	3 2 3 2	2 2 2 2	11 P	2 2 2 2
CO1 CO2 CO3	PO1 3 3 3	PO2 2 3 2	PO3 3 3	PO4 3 3 2	PO5 3 3 3	PO6 3 2 2	PO7 2 2 2	PO8 2 2 2	2 2 2	PO	3 2 3	2 2 2	11 P	2 2 2
CO1 CO2 CO3 CO4 CO5	PO1 3 3 3 3	PO2 2 3 2 3 2	PO3 3 3 2	PO4 3 3 2 2	PO5 3 3 2 2	PO6 3 2 2 2	PO7 2 2 2 2	PO8 2 2 2 2 2 2	2 2 2 2 2	PC	3 2 3 2	2 2 2 2 2		2 2 2 2
CO1 CO2 CO3 CO4 CO5	PO1 3 3 3 3	PO2 2 3 2 3	PO3 3 3 2	PO4 3 3 2 2	PO5 3 3 3 2	PO6 3 2 2 2	PO7 2 2 2 2	PO8 2 2 2 2 2	2 2 2 2 2	PO	3 2 3 2	2 2 2 2		2 2 2 2
CO1 CO2 CO3 CO4 CO5	PO1 3 3 3 3	PO2 2 3 2 3 2 PSO1	PO3 3 3 2	PO4 3 3 2 2	PO5 3 3 2 2 PSO2	PO6 3 2 2 2	PO7 2 2 2 2	PO8 2 2 2 2 2 2 PSO	2 2 2 2 2	PO	3 2 3 2	2 2 2 2 2 PS(04	2 2 2 2
CO1 CO2 CO3 CO4 CO5 COs / PSOs CO1	PO1 3 3 3 3	PO2 2 3 2 3 2	PO3 3 3 2	PO4 3 3 2 2	PO5 3 3 2 2	PO6 3 2 2 2	PO7 2 2 2 2	PO8 2 2 2 2 2 2	2 2 2 2 2	PO	3 2 3 2	2 2 2 2 2	04	2 2 2 2
CO1 CO2 CO3 CO4 CO5	PO1 3 3 3 3	PO2 3 2 3 2 PSO1	PO3 3 3 2	PO4 3 3 2 2	PO5 3 3 2 2 PSO2	PO6 3 2 2 2	PO7 2 2 2 2	PO8 2 2 2 2 2 2 PSO	2 2 2 2 2	PC	3 2 3 2	2 2 2 2 2 PS0	04	2 2 2 2
CO1 CO2 CO3 CO4 CO5 COs/ PSOs CO1 CO2	PO1 3 3 3 3	PO2 2 3 2 3 2 PSO1	PO3 3 3 2	PO4 3 3 2 2	PO5 3 3 2 2 PSO2	PO6 3 2 2 2	PO7 2 2 2 2	PO8 2 2 2 2 2 2 PSO 3 3	2 2 2 2 2	PO	3 2 3 2	2 2 2 2 2 2 PS0	04	2 2 2 2
CO1 CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3	PO1 3 3 3 3	PO2 2 3 2 3 2 PSO1 3 3 2	PO3 3 3 2	PO4 3 3 2 2	PSO2 3 2 PSO2 3 2 3 2 3 4	PO6 3 2 2 2	PO7 2 2 2 2	PO8 2 2 2 2 PSO 3 3 2	2 2 2 2 2	PC	3 2 3 2	2 2 2 2 2 PS(D4	2 2 2 2
CO1 CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4	PO1 3 3 3 3 3	PO2 2 3 2 3 2 PSO1 3 3 2 3 3 3	PO3 3 3 2 3	PO4 3 3 2 2 2	PSO2 3 2 PSO2 3 2 3 2 2 2 2 2 2 2 2 2 2	PO6 3 2 2 2 2	PO7 2 2 2 2 2 2	PO8 2 2 2 2 PSO 3 3 3 3 3	2 2 2 2 2 2 3	PC	3 2 3 2	2 2 2 2 2 2 PS0 2 2 2 2 2 3	D4	2 2 2 2
CO1 CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5	PO1 3 3 3 3 3 3 4 ces Stree	PO2 2 3 2 3 2 PSO1 3 3 2 3 3 3	PO3 3 3 2 3 0f Corr	PO4 3 3 2 2 2	PSO2 3 2 PSO2 3 2 3 2 2 2 2 2 2 2 2 2 2	PO6 3 2 2 2 2 2	PO7 2 2 2 2 2 2	PO8 2 2 2 2 PSO 3 3 3 3 3	2 2 2 2 2 2 3	PO	3 2 3 2	2 2 2 2 2 2 PS0 2 2 2 2 2 3	D4	2 2 2 2
CO1 CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5	PO1 3 3 3 3 3 3 4 ces Stree	PO2 2 3 2 3 2 PSO1 3 3 2 3 3 3	PO3 3 3 2 3 0f Corr	PO4 3 3 2 2 2 2	PSO2 PSO2 3 3 2 2 3 3 2 3 3 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	PO6 3 2 2 2 2 2	PO7 2 2 2 2 2 2 Mediu	PO8 2 2 2 2 PSO 3 3 3 m, 1- I	2 2 2 2 2 2 3	PO	3 2 3 2	2 2 2 2 2 2 PS0 2 2 2 2 2 3	D4	2 2 2 2
CO1 CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5 3/2/1 Indicat	PO1 3 3 3 3 3 3 4 ces Stree	PO2 3 2 3 2 PSO1 3 3 2 3 10 10 10 10 10 10 10 10 10	PO3 3 3 2 3 0f Corr	PO4 3 3 2 2 2 2 elation	PSO2 PSO2 3 2 2 PSO2 3 2 3 2 , 3 - H	PO6 3 2 2 2 2 2	PO7 2 2 2 2 2 2 Mediu	PO8 2 2 2 2 PSO 3 3 3 m, 1- I	2 2 2 2 2 2 2	P(3 2 3 2	2 2 2 2 2 2 PS0 2 2 2 2 2 3	D4	2 2 2 2
CO1 CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5 3/2/1 Indicat	PO1 3 3 3 3 3 3 4 ces Stree	PO2 3 2 3 2 PSO1 3 3 2 3 10 10 10 10 10 10 10 10 10	PO3 3 3 2 3 0f Corr	PO4 3 3 2 2 2 2 elation	PSO2 3 2 2 PSO2 3 2 3 2 3 3 2 , 3 - H	PO6 3 2 2 2 2 2	PO7 2 2 2 2 2 2 Mediu	PO8 2 2 2 2 PSO 3 3 3 m, 1- I	2 2 2 2 2 2 2	PO	3 2 3 2	2 2 2 2 2 2 PS0 2 2 2 2 2 3	D4	2 2 2 2
CO1 CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5 3/2/1 Indicat	PO1 3 3 3 3 3 3 4 ces Stree	PO2 3 2 3 2 PSO1 3 3 2 3 10 10 10 10 10 10 10 10 10	PO3 3 3 2 3 0f Corr	PO4 3 3 2 2 2 2 elation	PSO2 3 2 2 PSO2 3 2 3 2 3 3 2 , 3 - H	PO6 3 2 2 2 2 2	PO7 2 2 2 2 2 2 Mediu	PO8 2 2 2 2 PSO 3 3 3 m, 1- I	2 2 2 2 2 2 2	P(3 2 3 2	2 2 2 2 2 2 PS0 2 2 2 2 2 3	D4	2 2 2 2
CO1 CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5	PO1 3 3 3 3 3	PO2 2 3 2 3 2 PSO1 3 3 2 3 3 3	PO3 3 3 2 3	PO4 3 3 2 2 2 2	PSO2 3 2 2 PSO2 3 2 3 2 3 3 2 , 3 - H	PO6 3 2 2 2 2 2 :igh, 2-	PO7 2 2 2 2 2 2	PO8 2 2 2 2 PSO 3 3 3 3 3	2 2 2 2 2 2 3	P(3 2 3 2	2 2 2 2 2 2 PS0 2 2 2 2 2 3	D4	2 2 2 2

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22E27	CYBER PHYSICAL SYSTEM	Ту	3	0/0	0/0	3

UNIT-I CPS HARDWARE PLATFORMS

9Hrs

Cyber-Physical Systems (CPS) in the real world, Basic principles of design and validation of CPS Processors, Sensors, Actuators, CPS Network, CPS SW stack RTOS, Scheduling Real Time control tasks. Principles of Automated Control Design, Dynamical Systems and Stability, Controller Design Techniques.

UNIT-II STABILITY ANALYSIS

9Hrs

CLFs, MLFs, stability under slow switching, Performance under Packet drop and Noise, From features to software components, Mapping software components to ECUs, CPS Performance Analysis: effect of scheduling, bus latency, sense and actuation faults on control performance, network congestion

UNIT-III FORMAL METHODS FOR SAFETY ASSURANCE OF CYBER-PHYSICAL SYSTEMS

9Hrs

Advanced Automata based modelling and analysis: Basic introduction and examples, Timed and Hybrid Automata, Definition of trajectories, zenoness, Formal Analysis: Flow pipe construction, reachability analysis, Analysis of CPS Software, Weakest Pre-conditions, Bounded Model checking

UNIT-IV HYBRID AUTOMATA MODELLING

9Hrs

Flowpipe construction using Flowstar, SpaceX and Phaver tools, CPS SW Verification: Frama-C, CBMC, Secure Deployment of CPS: Attack models, Secure Task mapping and Partitioning, State estimation for attack detection, Automotive

UNIT-V CASE STUDY 9Hrs

Case study: Vehicle ABS hacking, Power Distribution

Case study: Attacks on Smart grid.

Total Hours: 45

TEXT BOOKS:

- 1.E. A. Lee and S. A. Seshia, "Introduction to Embedded Systems: A Cyber-Physical Systems Approach", 2011.
- 2.R. Alur, "Principles of Cyber-Physical Systems," MIT Press, 2015.
- 3.T. D. Lewis "Network Science: Theory and Applications", Wiley, 2009.

- 1. P. Tabuada, "Verification and control of hybrid systems: a symbolic approach", Springer-Verlag 2009.
- 2. C. Cassandras, S. Lafortune, "Introduction to Discrete Event Systems", Springer 2007.
- 3. Constance Heitmeyer and Dino Mandrioli, "Formal methods for real-time computing", Wiley publisher, 19

COURSE CODE	COUR	COURSE NAME: FOUNDATIONS OF PARALLEL Ty/Lb/ DESTRUCT: Ty/Lb/ L T/S.L P/R C												
EBCS22E28		FUUN		JNS OF		LLEL		ETL	/IE	L	r	1/	N	C
	Prereq	uisite: l						7	Гу	3	0/0	0/	0	3
L : Lecture T				upervis	sed Lea	rning	P : Pro	ect R	: Researce	ch C	: Cred	its		
Ty/Lb/ETL/I														
OBJECTIV	ES:													
The students														
					lel com									
					prograr									
									vith Ope	nMI				
					prograi			OpenC.	L.					
COURSE O	UTCO	MES ((COs):	Studer	nts will	be abl	e to							
CO1	Identi	fy issu	es in pa	arallel p	progran	nming	(L2)							
CO2									nework (
CO3	Desig	n and c	levelop	shared	d memo	ry para	allel pro	ograms	using Pt	threa	ads and	l using	g	
	Open	MP (L5	5)											
CO4	Imple	ment C	raphic	al Proc	essing	OpenC	L prog	rams. (L4)					
CO5	Under	rstand t	he prac	ctical p	arallel 1	prograi	nming	scenar	ios and p	ossi	bilities	(L2)		
Mapping of Co	ourse O	utcomes	with Pr	ogram		es (POs								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PC)10 P	O11	PC)12
CO1	3	3	3	3	3	3	3	1	2		1	_		1
CO2	3	2	2	2	2	3	3	1	1			1		
CO3	3	3	2	3	3	3	2	1	1		1	1	-	1
CO4	2	2	2	2	3	2	2							
COs / PSOs	<u> </u>	PSO1			PSO2			PSO	3	 		PSO4		
CO1		3			3			3	3			3		
CO2		3			3			3				3		
CO3		3			3			3				3		
CO4		3			3			2				2		
CO5		3			2			3				3		
3/2/1 Indicates	Strengt	th Of Co	orrelatio	on, 3 – H	ligh, 2- I	Medium	, 1- Low	7 	<u> </u>					
							ury	ut	ょし					
	3e		nd	6)		l o	lina	one	oje					
>	ien	gu	es a	jo	8	/tiv	cip	пр	/Pı					
gor	Sc	e e	nitie Scie	m (gra	Elec Elec	Dis	$C_{\mathbf{O}}$	ical					
_ate	asic	zine enc	mar ia 1	gra	Progre	ua I	ter	ij	acti					
	Bį	Eng Scie	Hui	Pro		Ope	In	Š	Pr					
			. , .	. ,	1									
		1	l		1			l						
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.L r	P/R	С
EBCS22E28	FOUNDATIONS OF PARALLEL PROGRAMMING	Ту	3	0/0	0/0	3

UNIT I Foundations Of Parallel Programming

9Hrs

Motivation for parallel programming – Need-Concurrency in computing – Basics of processes, multitasking and threads – cache – cache mappings – caches and programs – virtual memory – Instruction level parallelism – hardware multi-threading – Parallel Hardware-SIMD – MIMD – Interconnection networks – cache coherence – Issues in shared memory model and distributed memory model –Parallel Software- Caveats- coordinating processes/ threads- hybrid model – shared memory model and distributed memory model - I/O – performance of parallel programs-– parallel program design.

UNIT II Distributed Memory Programming WithMpi

9Hrs

Basic MPI programming – MPI_Init and MPI_Finalize – MPI communicators – SPMD- programs– MPI_Send and MPI_Recv – message matching – MPI- I/O – parallel I/O – collective communication – Tree-structured communication -MPI_Reduce – MPI_Allreduce, broadcast, scatter, gather, allgather – MPI derived types – dynamic process management – performance evaluation of MPI programs- A Parallel Sorting Algorithm

UNIT III Shared Memory Paradigm WithPthreads

9Hrs

Basics of threads, Pthreads – thread synchronization – critical sections – busy waiting – mutex – semaphores – barriers and condition variables – read write locks with examples - Caches, cache coherence and false sharing – Thread safety-Pthreads case study.

UNIT IV Shared Memory Paradigm: Openmp

9Hrs

Basics OpenMP – Trapezoidal Rule-scope of variables – reduction clause – parallel for directive – loops in OpenMP – scheduling loops –Producer Consumer problem – cache issues – threads safety in OpenMP – Two-body solvers- Tree Search

UNIT V Parallel Programming

9Hrs

Speed and Efficiency, Overhead and Challenges – **Scientific Computing**: Grid Computations, Particle Computations, Matrix Computations – Case Study of Parallel Programming Libraries in Pthread, MPI and OpenMP – Parallelizing Compilers – Other Parallel Programming Models – Parallel Programming Tools

Total Hours: 45

REFERENCES:

- 1. A. Munshi, B. Gaster, T. G. Mattson, J. Fung, and D. Ginsburg,—OpenCL programming guidel, Addison Wesley, 2011
- 2. M. J. Quinn, —Parallel programming in C with MPI and OpenMPI, Tata McGraw Hill, 2003.
- 3. Peter S. Pacheco, —An introduction to parallel programming, Morgan Kaufmann, 2011.
- 4. Rob Farber, —CUDA application design and developmentl, Morgan Haufmann, 2011.
- 5. W. Gropp, E. Lusk, and A. Skjellum, —Using MPI: Portable parallel programming with the message passing interfacel, Second Edition, MIT Press, 1999
- 6. Greg Andrews ,2000, Foundations of Multithreaded, Parallel, and Distributed Programming. Addison-Wesley, Digitized in 16 Nov 2007, ISBN 0201357526, 9780201357523
- 7. Zbigniew J. Czech, 2016, Introduction to Parallel Computing, Cambridge University Press, ISBN 1316802787, 9781316802786

COURSE	COUI	RSE NA	AME:				Т	y/Lb/		_	TP /C T	D/D	
CODE		V	IRTUA	ALIZA'	TION			TL/IE	2	L	T/S.Lr	P/R	C
EBCS22E29	Prerec	quisite:			11011			Ту		3	0/0	0/0	3
L : Lecture T : Tu	torial	S.Lr : \$	Supervi	sed Lea	arning	P : Pro	ject R	: Resea	rch C: 0	Credits	S		
Ty/Lb/ETL/IE: T	heory/L	.ab/Em	bedded	Theory	y and L	ab/Inte	rnal E	valuati	on				
OBJECTIVES:													
The students shou													
• To know to	_		-			n							
• To learn to	-	-				1							
• To unders						IS							
To know to COURSE OUTC						e to							
CO1					of virt		chines	I 21					
CO2					dation[I		ciiiics _[.	D2]					
					nstallat		admin	iatmatia	"[I 2]				
CO3	1 11 5	_					aumm	istratio	п[L3]				
					concep			FT 21					
CO5	l				ualizati			[LZ]					
Mapping of Cour COs/POs	rse Out PO1	PO2	PO3	rogran PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11 D	O12
COS/FOS	3	2	2	3	3	3	3	3	3	3			2
CO2	3	3	3	2	2	2	2	3	2	3			2
CO3	3	2	3	3	3	3	2	2	3	2			2
CO4	3	2	3	2	2	2	3	3	2	2			2
CO5	3	3	2	2	3	2	2	2	2	3	3	3	2
COs / PSOs		PSO1			PSO2			PSO	3		PS	604	
CO1		3			3			3				3	
CO2		3			3			3				2	
CO3		3			3			3				3	
CO4		3			3			2				3	
CO5 3/2/1 Indicates St	rongth	Of Co	wwolati	on 2	Jigh ') Mad	ium 1	<u>3</u>				3	
3/2/1 indicates St	lengun	OI CO	11 Clau)II, 3 <u>–</u>	IIIgii, A	z- Mieu	iuiii, 1-						
			- 13					Skill Component	Practical /Project				
	Basic Science	50	Humanities and			se se	<u></u>	pon	Pro 				
Category	cie	ring	ties	_	Program	ecti	ina	om	al /				
	10.5	nee	ani	ram	Progra	回回	r cipl		ctic				
	Bas	Engineering Science	Humanities ar	Program	Pr	Open Elective	Inter Disciplinary	Skil	Prac				
		ы ў	H			0			-				
					~								
L	I		<u> </u>	<u> </u>	I	l	I						

SUBJECT CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22E29	VIRTUALIZATION	Ty	3	0/0	0/0	3

Unit I Introduction to Virtualization

9hrs

System Architectures – Virtual Machine Basics – Process Virtual Machines – System Virtual Machines – Taxonomy of Virtual Machines – Emulation: Basic Interpretation – Threaded Interpretation – Pre-Coded and Direct Interpretation – Binary Translation – Full and Para Virtualization – Types of Hypervisors – Types of Virtualizations.

UNIT II Server Consolidation

9 Hrs

Hardware Virtualization – Virtual Hardware Overview - Sever Virtualization – Physical and Logical Partitioning - Types of Server Virtualization – Business cases for Sever Virtualization – Uses of Virtual server Consolidation – Planning for Development – Selecting server Virtualization Platform

UNIT III Network Virtualization

9Hrs

Design of Scalable Enterprise Networks - Virtualizing the Campus WAN Design - WAN Architecture - WAN Virtualization - Virtual Enterprise Transport Virtualization—VLANs and Scalability - Theory Network Device Virtualization Layer 2 - VLANs Layer 3 VRF Instances Layer 2 - VFIs Virtual Firewall Contexts Network Device Virtualization - Data-Path Virtualization Layer 2: 802.1q - Trunking Generic Routing Encapsulation - IPsec L2TPv3 Label Switched Paths - Control-Plane Virtualization—Routing Protocols-VRF - Aware Routing Multi-Topology Routing.

UNIT IV Virtualizing Storage

9Hrs

SCSI- Speaking SCSI- Using SCSI buses – Fiber Channel – Fiber Channel Cables – Fiber Channel Hardware Devices – iSCSI Architecture – Securing iSCSI – SAN backup and recovery techniques – RAID – SNIA Shared Storage Model – Classical Storage Model – SNIA Shared Storage Model – Host based Architecture – Storage based architecture – Network based Architecture – Fault tolerance to SAN – Performing Backups – Virtual tape libraries.

Unit V Applying Virtualization

9 hrs

Comparison of Virtualization Technologies: Guest OS, Host OS, Hypervisor, Emulation, Kernel Level – Shared Kernel – Enterprise Solutions: Vmware Server, ESXi, Citrix Xen Server, Microsoft Virtual PC, Microsoft Hyper-V, Virtual Box – Server Virtualization: Configuring Server with Server Virtualization, Adjusting and Tuning Virtual Servers, VM Backup and Migration – Desktop Virtualization: Terminal Services, Hosted Desktop, Web Based Solutions, Localized Virtualized Desktop – Network and Storage Virtualization: VPN, VLAN, SAN and VSAN, NAS.

Total Hours: 45

Text Books:

- 1. Chris Wolf, Erick M. Halter, "Virtualization: From the Desktop to the Enterprise", APress, 2005.
- 2. James E. Smith, Ravi Nair, "Virtual Machines: Versatile Platforms for Systems and Processes", Elsevier/Morgan Kaufmann, 2005.
- 3. David Marshall, Wade A. Reynolds, "Advanced Server Virtualization: VMware and Microsoft Platform in the Virtual Data Center", Auerbach Publications, 2006.

References:

- 1. William von Hagen, "Professional Xen Virtualization", Wrox Publications, January, 2008.
- 2. Kumar Reddy, Victor Moreno, "Network virtualization", Cisco Press, July, 2006.
- 3. Amy Newman, Kenneth Hess, "Practical Virtualization Solutions: Virtualization from the Trenches", Prentice Hall, October 2009

COURSE CODE: EBCS22E30	COURSE NAME: DATA MODERNIZATION ANALYSIS	Ty/Lb/ ETL/IE	L	T/S. Lr	P/ R	C
	Prerequisite: NIL	Ту	3	0/0	0/0	3
L : Lecture T :	Tutorial S.Lr: Supervised Learning P:	Project R:I	Research	C: Cred	dits	

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVE													
The students													
									system				
	rstand t												
	stana o xposed								hniques u	sea in it			
COURSE OU	_							mique					
		`											
CO1										nce.[L1]			
CO2	Li	ink da	ta mir	ing w	ith bu	ısines	s inte	lligen	ce[L4]				
CO3	A	pply v	arious	s mod	eling	techn	iques	.[L3]					
CO4	Ez	xplain	the da	ata an	alysis	and l	nowl	ledge (delivery	stages.[L2]		
CO5	Ez	xplain	the en	mergi	ng tec	hnolo	gy ar	nd visu	alizatio	n[L2]			
Mapping of	f Cour	rse Ou	ıtcom	es wi	th Pr	ograr	n Ou	tcome	s (POs)				
COs	PO1	PO	PO3	PO4	PO	PO	PO	PO8	PO9	PO1	PO11	PO12	
/POs		2			5	6	7			0			
CO1	3	2	1	2	3	3	1	2	3	2	3	1	
CO2	3	2	3	2	3	3	2	2	3	2	3	2	
CO3	3	2	2	2	3	3	2	2	3	2	3	2	
CO4	3	3	3	2	3	3	1	2	3	2	3	2	
CO5	3	3	2	2	3	3	2	2	3	2	3	2	
COs /PSOs		PSO1			PSO2				PSO3			PSO4	
CO1		2			3				3			3	
CO2		2			3				3			3	
CO3		2			3				3			3	
CO4		3			3				3			3	
CO5		3			3				3			2	
3/2/1 indica	tes St	rengt	h of C	Correl	ation	3-	High,	, 2- M	edium,	1-Low			
					e			>	+			+	
	o		ਰੂ		ecti			inar	nen			jec	
>	enc	ng	s an	ore	l el			ipli	odı			/Prc	
Category	Basic Science	Engineering	itie	n C	Program elective			Inter Disciplinary	Skill Component			Practical /Project	
ate ₂	sic	gin	lan.	ŗran	rog		1	er I) 			ıctic	
O	Ba	En.	Humanities and	Program Core	_ A			Lit	Ski			Pre	
		1			l	•		1					

Category	Basic Science	Engineering	Humanities and	Program Core	Program elective	Oxitoot H con	isciplinary	Skill Component	Practical /Project
					V				

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22E30	DATA MODERNIZATION ANALYSIS	Ту	3	0/0	0/0	3

UNIT I BUSINESS INTELLIGENCE

9 Hrs

Effective and timely decisions – Data, information and knowledge – Role of mathematical models – Business intelligence architectures: Cycle of a business intelligence analysis – Enabling factors in business intelligence projects – Development of a business intelligence system – Ethics and business intelligence.

UNIT II KNOWLEDGE DELIVERY

9 Hrs

The business intelligence user types, Standard reports, Interactive Analysis and Ad Hoc Querying, Parameterized Reports and Self-Service Reporting, dimensional analysis, Alerts/Notifications, Visualization: Charts, Graphs, Widgets, Scorecards and Dashboards, Geographic Visualization, Integrated Analytics, Considerations: Optimizing the Presentation for the Right Message.

UNIT III EFFICIENCY

9 Hrs

Efficiency measures – The CCR model: Definition of target objectives- Peer groups – Identification of good operating practices; cross efficiency analysis – virtual inputs and outputs – Other models. Pattern matching – cluster analysis, outlier analysis

UNIT IV BUSINESS INTELLIGENCE APPLICATIONS

9 Hrs

Marketing models – Logistic and Production models – Case studies.

UNIT V FUTURE OF BUSINESS INTELLIGENCE

9 Hrs

Future of business intelligence – Emerging Technologies, Machine Learning, Predicting the Future, BI Search & Text Analytics – Advanced Visualization – Rich Report, Future beyond Technology.

Total Hours: 45

TEXT BOOK:

1. Efraim Turban, Ramesh Sharda, DursunDelen, "Decision Support and Business Intelligence

Systems", 9 th Edition, Pearson 2013.

- 2. Larissa T. Moss, S. Atre, "Business Intelligence Roadmap: The Complete Project Lifecycle of Decision Making", Addison Wesley, 2003.
- 3. Carlo Vercellis, "Business Intelligence: Data Mining and Optimization for Decision Making",

Wiley Publications, 2009.

- 4. David Loshin Morgan, Kaufman, "Business Intelligence: The Savvy Manager"s Guide", Second Edition, 2012.
- 5. Cindi Howson, "Successful Business Intelligence: Secrets to Making BI a Killer App", McGraw-Hill, 2007.
- 6. Ralph Kimball ,Margy Ross , Warren Thornthwaite, Joy Mundy, Bob Becker, "The Data Warehouse LifecycleToolkit", Wiley Publication Inc.,2007

COURSE CODE EBCS22E31	COURSE NAME: ROBOTICS	Ty/Lb/ ETL/IE	L	T/S.L r	P/R	С
	Prerequisite: Nil	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- Expose students to the history and current developments in the field of robotics;
- Strengthen students' grasp of the mathematics and physics involved in the design, construction and control of robots, with a focus on linear algebra and geometry.
- Introduce students to fundamental concepts of electrical and mechanical engineering that will help them better understand the design and development challenges in the field of robotics;
- Help students develop and deepen their grasp of programming concepts and their programming

• Help skills.		develop	and dee	epen the	eir grasj	p of pro	ogramm	ing c	oncepts	and their	progran	ımıng
COURSE OU		ES (COs	s): Stuc	lents wi	ill be ab	ole to						
CO1	Unders	stand the	fundan	entals (of robo	tics and	Lits con	nnone	ents (L1)			
								-				
CO2		stand the										
CO3	_	related I										
CO4	Implen	nent the n	novem	ent of re	obotic j	oints w	ith com	puter	s/microo	controlle	rs. (L4)	
CO5	unders	tand the u	ise of s	ensors a	and inst	trument	tation ir	ı robo	tics (L1))		
Mapping of C	Course (Outcomes	s with !	Progra	m Out	comes ((POs)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	3	2	1	2	1	1	1
CO2	3	3	3	3	3	2	1	1	1		1	1
CO3	3	3	3	3	3	1	1	2	1			
CO4	3	3	3	3	3	1	1	1				
CO5	3	3	3	3	3	1				1		
COs / PSOs		PSO1			PSO ₂			PS()3		PSO ₄	ŀ
CO1		1			1			3			3	
CO2		1			2			3			1	
CO3		1			2			3			2	
CO4		1			2			2			2	
CO5		1			2			3			2	
3/2/1 Indicate	es Stren	gth Of C	orrelat	ion, 3 -	– High,	2- Me	dium, 1	l- Lo	W			
Category	Basic Science	Basic Science Engineer ing Humanities and coxial Science Program Core Program elactive Open Elective Inter Disciplinary Skill Practical /Project										

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.L r	P/R	C
EBCS22E31	ROBOTICS	Ту	3	0/0	0/0	3

Unit-1 Introduction 9 hrs

Introduction: Robots, Jobs and Ethics, Representing Position and Orientation: Working in Two Dimensions, Working in Three Dimensions (3D). Advanced Topics, Using the Toolbox, Wrapping Up, Time and Motion: Time-Varying Pose, Accelerating Bodies and Reference Frames, Accelerating Bodies and Reference Frames, Application: Inertial Navigation, Wrapping Up.

Unit-II Mobile Robots 9 hrs

Mobile Robot Vehicles: Wheeled Mobile Robots, Flying Robots, Advanced Topics, Wrapping Up, Navigation: Reactive Navigation, Map-Based Planning, Localization: Dead Reckoning, Localizing with a Map, Creating a Map, Localization and Mapping, Rao-Blackwellized SLAM, Pose Graph SLAM, Sequential Monte-Carlo Localization, Application: Scanning Laser Rangefinder, Wrapping Up.

Unit-III Arm-Type Robots

9 hrs

Robot Arm Kinematics: Forward Kinematics, Inverse Kinematics, Trajectories, Advanced Topics, Applications, Manipulator Velocity: Manipulator Jacobian, Jacobian Condition and Manipulability, Resolved-Rate Motion Control, Under- and Over-Actuated Manipulators, Force Relationships, Inverse Kinematics: a General Numerical Approach, Advanced Topics. Dynamics and Control: Independent Joint Control, Rigid-Body Equations of Motion, Forward Dynamics, Rigid-Body Dynamics Compensation, Applications.

Unit-IV Computer Vision

9 hrs

Light and Color: Spectral Representation of Light, Color, Advanced Topics, Application: Color Image, Image Formation: Perspective Camera, Camera Calibration, Wide Field-of-View Imaging, Unifi ed Imaging, Novel Cameras, Advanced Topics, Images and Image Processing, Image Histograms, Monadic Operations, Diadic Operations, Spatial Operations, Mathematical Morphology, Shape Changing, Image Feature Extraction: Region Features, Line Features, Point Features, Using Multiple Images: Feature Correspondence, Geometry of Multiple Views, Stereo Vision, Bundle Adjustment, Point Clouds, Structured Light, Applications.

Unit-V Robotics, Vision and Control

9 hrs

Vision-Based Control:Position-Based Visual Servoing, Image-Based Visual Servoing, Using Other Image Features, Advanced Visual Servoing: XY/Z-Partitioned IBVS, IBVS Using Polar Coordinates, IBVS for a Spherical Camera, Applications.

Total Hours:45

Text Book:

1. Robotics, Vision and Control, Fundamental Algorithms in MATLAB, "Second, completely revised, extended and updated edition With 492 Images", Peter Corke.

Reference Book:

- 1. Ghosal, A. (2006). Robotics: fundamental concepts and analysis. Oxford university press.
- 2. Corke, P. I., & Khatib, O. (2011). *Robotics, vision and control: fundamental algorithms in MATLAB* (Vol. 73, p. 2). Berlin: Springer

COURS	E	CC	URSE 1	NAME:				Ty/Lb)		T/				
CODE:								/ETL/		L	S.	P/R	C		
EBCS2	2E32]]	DEEP L	EARN	ING TE	CHNIQ	UES	IE			Lr				
		Pre	erequisit	e: Mach	ine Leari	ning		Ту		3	0/0	0/0	3		
L : Lectu										C: Cred	lits				
Ty/Lb/E			ry/Lab/E	mbedde	ed Theor	y and La	ab/Intern	ial Evalu	ation						
OBJEC' Thestude				_											
Inestude										22.7					
•						_			_		ral Netwo	rk			
					ation usi dge in ha						4:				
•	provide	me p	паспсат	KIIOWIE	uge in na	munng a	mu anar	yzing rea	ıı wortu	аррпса	uons.				
COURS	E OUT	COM	IES (CO)s): Stu	dents wil	l be able	e to								
CO1	Under	stand	the char	racterist	ics of de	ep learni	ing mode	els that a	re usefi	ıl to sol	ve real-wo	rld probler	ns[L2]		
CO2	Under	stand	differer	t metho	dologies	to creat	e applica	ation usi	ng deep	nets. [L	2]				
CO3		ify and apply appropriate deep learning algorithms for analyzing the data for variety of													
	proble														
CO4	- ^ -				ng algori										
CO5									loped n	l model[L5]					
Mappin		urse (mes (PO								
COs/PO	s I	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1		3	3	3	3	2	3	2	2	3	3	3	3		
CO2		3	3	3	3	2	3	2	2	3 3 3			3		
CO3		3	3	3	3	1	3	2	2	3	2	3	3		
CO4		3	3	3	3	2	3	2	2	3	2	3	3		
CO5		3	3	3	3	2	3	2	2	3	2	3	3		
COs / PS	SOs	PS	O1		PSO2	, I		PSO3]	PSO4			
CO1		3	3		3			2				2			
CO2		3	3		3			3				3			
CO3		3	3		3			3				3			
CO4		3	3		3			2				3			
CO5		3	3		2			3				3			
3/2/1 ind	licates s	streng	gth of co	rrelatio	on 3 – I	ligh, 2 -	- Mediu	m, 1-1	Low						
						()									
Category	(Togan)	Basic Science	Engineering Science	Humanities and	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
				. 1		1									
			i		<u> </u>	1	1	i		<u> </u>					

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.L r	P/R	C
EBCS22E32	DEEP LEARNING TECHNIQUES	Ту	3	0/0	0/0	3

UNIT I THE FUNDAMENTALS OF DEEP LEARNING and MACHINE LEARNING 9 Hrs

Introduction to Deep Learning – Difference between Deep Learning and machine learning - Evolution of AI and ML: Historical Epochs - Learning algorithms - Maximum likelihood estimation - Building machine learning algorithm - Neural Networks Multilayer Perceptron - Back-propagation algorithm and its variants.

UNIT II NEURAL NETWORKS AND DEPTHS OF DEEP LEARNING

9 Hrs

Representation Learning - Width and Depth of Neural Networks - Activation Functions: RELU, LRELU, ERELU - Unsupervised Training of Neural Networks - Restricted Boltzmann Machines - Auto Encoders - Deep Learning Applications.

UNIT III CONVOLUTIONAL NEURAL NETWORKS

9 Hrs

Architectural Overview - Motivation, Layers, Filters - Parameter sharing - Regularization - Popular CNN Architectures: ResNet, AlexNet - Applications.

UNIT IV SEQUENCE MODELLING -RECURRENT AND RECURSIVE NETS 9 Hrs

Recurrent Neural Networks - Bidirectional RNNs - Encoder-decoder sequence to sequence architectures - BPTT for training RNN - Long Short-Term Memory Networks.

UNIT V GENERATIVE DEEP LEARNING

9 Hrs

LSTMs to synthesize text - Neural Style transfer and applications - Image synthesis with variational auto encoders - Generative Adversarial Networks: What does a GAN look like? - Generator - Discriminator, Generator vs Discriminator - Training GANs.

Total hours:45

TEXT BOOKS

- 1. Ian Goodfellow, YoshuaBengio and Aaron Courville, "Deep Learning", MIT Press, 2017.
- 2. Josh Patterson, Adam Gibson "Deep Learning: A Practitioner's Approach", O'Reilly Media, 2017
- 3. Umberto Michelucci "Applied Deep Learning. A Case-based Approach to Understanding Deep Neural Networks" Apress, 2018.

- 1. Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012.
- 2. EthemAlpaydin,"Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition 2014.
- 3. Giancarlo Zaccone, Md. RezaulKarim, Ahmed Menshawy "Deep Learning with TensorFlow: Explore neural networks with Python", Packt Publisher, 2017.
- 4. Antonio Gulli, Sujit Pal "Deep Learning with Keras", Packt Publishers, 2017.
- 5. François Chollet "Deep Learning with Python", Manning Publications, 2017.

COURSE CODE	COURSE NAME : ENTERPRISE RESOURCE PLANNING	Ty/Lb/ ETL/IE	L	T/S.L r	P/R	C
EBCS22E33	Prerequisite: Nil	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- Know basic business functional areas and explains how they are related.
- Illustrate how unintegrated information systems fail to support business decision and how integrated information systems can help a company prosper by providing business managers with accurate, consistent, and current data
- Understand how Enterprise Resource Planning software is used to optimize business processes Acquire

	ience in								ework	usiness pi	locesses	Acquire
COURSE OU												
CO1	Under	rstand tl	he basio	structi	are and	models	of ERI	P (L2)				
CO2									cation (L			
CO3	Devel	op an E	ERP sys	tem for	the ma	nagem	ent of in	nformat	ion acros	ss the fur	ctional	areas
	of a b	of a business: (L5)										
CO4	Apply	workii	ng knov	vledge	of how	data an	d transa	actions	are integ	rated in a	ın ERP s	system
	to ma	Apply working knowledge of how data and transactions are integrated in an ERP system to manage the sales order process, production process, and procurement process. (L3)										
CO5	Evalu	ate orga	anizatio	nal opp	ortuniti	ies and	challen	ges in t	he design	n system	within a	ı
	busine	Evaluate organizational opportunities and challenges in the design system within a pusiness scenario (L6)										
Mapping of C	g of Course Outcomes with Program Outcomes (POs)											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	1	2	3	2	3		1	
CO2	3	3	2	1	2	3	2	2	3			2
CO3	3	2	3	3	2	2	3	2	2	2	1	
CO4	3	3	3	2	3	3	2	3	3			2
CO5	2	2	2	3	DG C 2	2	2	2	1		DG O. 4	
COs / PSOs		PSO1			PSO2			PSO	3		PSO4	
CO1 CO2		3 2			3			3			3	
CO2		2			2			3			3	
CO4		3			3			2			2	
CO5		2			3			3			3	
3/2/1 Indicate	s Streng	gth Of (Correlat	tion, 3 –	- High, 2	2- Medi	um, 1- I	Low				
	Suc		an se		_	ive	ıry	nt				
>	Scie	<u> </u>	ties	_	ram 'e	lect	lina	one	, t al			
Category	Basic Science	Engineer ing	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project			
	Bas	Engi ing	Tum ocisi	Progr Core	P _P	bei	Inte Dis	Skill	Pra /Pro			
		田.出	Ξ 🗵									
					~							
1	1						l					l .

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	C
EBCS22E33	ENTERPRISE RESOURCE PLANNING	Ту	3	0/0	0/0	3

UNIT I 9 Hrs

ERP Introduction, Benefits, Origin, Evolution and Structure: Conceptual Model of ERP, the Evolution of ERP, the Structure of ERP

UNIT II 9 Hrs

Business Process Reengineering, Data ware Housing, Data Mining, Online Analytic Processing (OLAP), Product Life Cycle Man-agement (PLM), LAP, Supply chain Management

UNIT III 9 Hrs

ERP Marketplace and Marketplace Dynamics: Market Overview, Marketplace Dynamics, the Changing ERP Market. ERP- Func-tional Modules: Introduction, Functional Modules of ERP Software, Integration of ERP, Supply chain and Customer Relationship Applications

UNIT IV 9 Hrs

ERP Implementation Basics, ERP Implementation Life Cycle, Role of SDLC/SSAD, Object Oriented Architecture, Consultants, Vendors and Employees.

UNIT V 9 Hrs

ERP & E-Commerce, Future Directives- in ERP, ERP and Internet, Critical success and failure factors, Integrating ERP into or-ganizational culture. Using ERP tool: either SAP or ORACLE format to case study

Total Hours: 45

TEXT BOOKS:

- 1. Vinod Kumar Garg and Venkitakrishnan N K, "Enterprise Resource Planning Concepts and Practice", PHI.
- 2. Joseph A Brady, Ellen F Monk, Bret Wagner, "Concepts in Enterprise Resource Planning", Thompson Course Technology

- 1. Alexis Leon, "ERP Demystified", Tata McGraw Hill
- 2. Rahul V. Altekar "Enterprise Resource Planning", Tata McGraw Hill,
- 3. Vinod Kumar Garg and Venkitakrishnan N K, "Enterprise Resource Planning A Concepts and Practice", PHI
- 4. Mary Summer, "Enterprise Resource Planning"- Pearson Education

COURSE	COU	RSE N	AME:					Т	y/Lb/	L	T/	P/R	C
CODE								E	TL/IE		S.Lr		
EBCS22E34	D		ANTU	M CC	<u>)MPU</u>	TING							
EBCS22E34	Prere	quisite	: N1l						Ty	3	0/0	0/0	3
L : Lecture T : Tu	torial	S.Lr:	Superv	vised L	earnin	g P:	Projec	t R : R	Research	C: C	Credits		
Ty/Lb/ETL/IE: T			-			_	•						
OBJECTIVES:													
The students shou													
Understan				-			_						
Remember						princi	ples						
Analyze the GOLDER OF THE CONTROL OF THE CONTR						11 .							
COURSE OUTC			•										
CO1									ng and i			ons. [L2	2]
CO2				icient o	quantu	m algo	rithms	s for se	veral ba	isic p	romise		
	probl	oblems[L2]											
CO3	To ga	in kno	wledge	about	quant	um coi	mpute	rs and	their pri	ncipl	es[L4]		
CO4	To un	dersta	nd the	princip	les, qu	ıantum	infor	mation	and lim	nitatio	on of qu	antum	
	opera	perations formalizing[L2]											
CO5	To ga	o gain knowledge about different quantum error and its correction techniques.										s.	
	[L4]		Č			•						•	
Mapping of Cour	rse Out	tcomes	with	Progra	ım Ou	tcome	s (PO	s)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	2	1	1		1			1			·	3
CO2	3	3	2	2	1				1	1			3
CO3	3	3	3	2	1	2			2	1	1		
CO4	1	2	1	2	2	1	2			3	1		1
CO5	2	2	2	2	2	1	1	2	1				3
COs / PSOs		PSO1			PSO2			PSC)3	_	PS	<u>SO4</u>	
CO1 CO2		3			<u>2</u> 1			<u>2</u>		_		2	
CO2		2			2			2		+		3	
CO4		1			2			2		_		2	
CO5		2			2							3	
3/2/1 Indicates St	rength	Of C	orrelat	ion, 3	– Higl	h, 2- N	Iediur	n, 1- L	ow				
			soc		ive		ξ	nt	t l				
	ဗ္ဗ		pu	0)	ect	()	lina	ne	oje				
ory	ien(gu	s a	Zor(n e	tiv(cip	прс	/Pr				
Category	Sci	erii	iitie	m (gran	3lec	Dis	Col	cal				
Ca	Basic Science	ine	nan	graı	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				
	B ₃	Engineering	Humanities and social	Program Core		эдС	Int	Sk	Pr				
					~								
	I				•		<u> </u>						

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	С
EBCS22E34	QUANTUM COMPUTING	Ту	3	0/0	0/0	3

UNIT I 9 Hrs

FUNDAMENTALS OF QUANTUM COMPUTING: Fundamental Concepts: Introduction and Overview – Global Perspectives – Quantum Bits – Quantum Computation – Quantum Algorithms – Experimental Quantum Information Processing – Quantum Information. Problems on Qubits.

UNIT II 9 Hrs

QUANTUM COMPUTATION: Quantum Circuits – Quantum algorithms, Single Orbit operations, Control Operations, Measurement, Universal Quantum Gates, Simulation of Quantum Systems, Quantum Fourier transform, Phase estimation, Applications, Quantum search algorithms – Quantum counting – Speeding up the solution of NP – complete problems – Quantum Search for an unstructured database. Problems on Boolean functions and Quantum gates

UNIT III 9 Hrs

QUANTUM COMPUTERS: Guiding Principles, Conditions for Quantum Computation, Harmonic Oscillator Quantum Computer, Optical Photon Quantum Computer – Optical cavity Quantum electrodynamics, Ion traps, Nuclear Magnetic resonance.

UNIT IV 9 Hrs

QUANTUM INFORMATIONS: Quantum noise and Quantum Operations – Classical Noise and Markov Processes, Quantum Operations, Examples of Quantum noise and Quantum Operations – Applications of Quantum operations, Limitations of the Quantum operations formalism, Distance Measures for Quantum information. Problems on Measurement

UNIT V 9 Hrs

QUANTUM ERROR CORRECTION AND CRYPTOGRAPHY: Introduction, Shor code, Theory of Quantum Error –Correction, Constructing Quantum Codes, Stabilizer codes, Fault – Tolerant Quantum Computation. Quantum Cryptography-Private Key Cryptography, Privacy Amplification and Information Reconciliation, Quantum Key Distribution, Privacy and Coherent Information, The Security of Quantum Key Distribution. Problems on Quantum error correction and cryptography

Total Hours: 45

TEXT BOOKS:

- **1.**Chris Bernhardt ,"Quantum Computing for Everyone", (The MIT Press) Hardcover Illustrate ,September 2020.
- 2. Willi-Hans Steeb; "Problems and Solutions in Quantum Computing and Quantum Information", Yorick Hardy Academic Consulting and Editorial Services (ACES) Private Limited, January 2020
- 3. M.A. Nielsen and I.Chuang, "Quantum Computation and Quantum Information", Cambridge University Press 2010

- 1. Parag K. Lala ,Quantum Computing: A Beginner's Introduction Paperback", McGraw Hill November 2020.
- 2. V. Sahni, "Quantum Computing", Tata McGraw-Hill Publishing company, 2007.
- **3.** Nayak, Chetan; Simon, Steven; Stern, Ady; Das Sarma, Sankar, "NonabelianAnyons and Quantum Computation", 2008.

COURSE	COURSE NAME:	Ty/Lb/	L	T/	P/R	С
CODE:		ETL/IE				
EBCS22E3	SOCIAL NETWORK ANALYSIS			S.Lr		
5	Prerequisite:Nil	Ty	3	0/0	0/0	3

L:LectureT:Tutorial S.Lr:SupervisedLearning P:Project R:ResearchC:Credits

 $T/L/ETL/IE: Theory/Lab/Embedded Theory and Lab \ Internal \ Evaluation$

OBJECTIVE:

The students should be made to

- Understand the concept of Ontology using Knowledge Representation.
 Learn the prediction of Human Behavior in Social Communities.

1		the prediction of Human Behavior in Social Communities.											
								olications.					
							ith Matr	ix-Based Re	prese	ntations.			
COURSEO							• 1	.: 1: .		T (1			
CO1								ntic applicat					
CO2								other related			.4]		
CO3		tudents will apply the concept of ontology using knowledge representation[L3]											
CO4		Students will visualize social networks with the help of matrix-based representations. [L5]											
CO5	Unders	Inderstand the fundamental concepts in analyzing the large-scale data that are derived from social networks[L2]											
Mappingo	fCourse			rogram(Outcom	es (POs))						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P	PO 9	PO10	PO11	PO12
CO1	3	3	2	2	2	3	1	3		3	3	3	2
CO2	3	2	1	2	2	3	3	1		3	3	3	2
CO3	3	2	1	3	3	3	2	2		3	3	3	2
CO4	3	3	2	3	1	3	1	3		2	3	3	2
CO5	3	2	2	2	1	3	3	3		3	3	3	3
COs/PSO		PSO1			PSO2			PSO3	3			PSO4	
CO1		3			3		3					3	
CO2		3			2			3				2	
CO3		3			2			3				2	
CO4		3			1			3				2	
CO5		3			3			3				2	
3/2/1Indica	atesStre	ngthOfC	Correlati	on,3–Hi	gh,2-Me	edium,1-	- Low						
			al										
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				
		31			~								

COURSE CODE	COURSE NAME:	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	C
EBCS22E35	SOCIAL NETWORK ANALYSIS					
		Ty	3	0/0	0/0	3

UNIT I INTRODUCTION

9 Hrs

Semantic Web: Limitations - Development – Web 2.0 + Semantic Web - Social Network analysis: Development - Key concepts and measures - Electronic sources for network analysis: Electronic discussion networks - Blogs and online communities - Web-based networks.

UNIT II KNOWLEDGE REPRESENTATION, MODELLING AND AGGREGATING 9 Hr

Ontology Representation: Knowledge Representation – Ontology languages for the Semantic Web: RDF and RDF Schema - OWL - Modelling and aggregating social network data: State-of-the-art in network data representation - Ontological representation of social individuals - Ontological representation of social relationships - Aggregating and reasoning with social network data: Representing identity – Reasoning with instance equality.

UNIT III DEVELOPING SOCIAL-SEMANTIC APPLICATIONS-EXTRACTION 9 Hrs

Building Semantic Web applications with social network features: Architecture of Semantic Web applications – Sesame - Elmo – GraphUtil - Flink: Features – System design - Openacademia: Features - System design

UNIT IV PREDICTING HUMAN BEHAVIOR FOR SOCIAL COMMUNITIES 9 Hrs

User data management - Inference and Distribution - Enabling new human experiences - The Social Enabler - Applications - Managing Trust in Online Social Networks: Online Social Networks - Trust in Online Environment - Trust Models Based on Subjective Logic - Trust Network Analysis - Trust Transitivity Analysis

UNIT V Visualizing Social Networks with Matrix-Based Representations 9 Hrs

Social Network Analysis: Graph theory - Centrality - Clustering - Node-Edge Diagrams - Matrix representation - Visualizing online social networks, Visualizing social networks with matrix-based representations - Novel Visualizations and Interactions for Social Networks Exploration: Node-Link Diagrams - Social Network Analysis - Applications - Cover networks - Community welfare - Collaboration networks - Co-Citation networks.

TotalHours:45

TEXTBOOKS:

- 1. Peter Mika, —Social Networks and the Semantic Web, First Edition, Springer 2007.
- 2. BorkoFurht, —Handbook of Social Network Technologies and Applications, 1st Edition, Springer,

2010.

- 1. John G. Breslin, Alexander Passant and Stefan Decker, —The Social Semantic Web, Springer, 2009.
- 2. GuandongXu, Yanchun Zhang and Lin Li, —Web Mining and Social Networking Techniques and applications, First Edition, Springer, 2011.
- 3. Forouzan B.A., "Data Communications and networking", TMH, 2003.

COURSE CODE	COURSE NAME: NEURO FUZZY COMPUTING	Ty/Lb /ETL/IE	L	T/S.Lr	P/R	C
EBCS22E36	Prerequisite: Nil	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab Internal Evaluation

OBJECTIVES:

Thestudents should be made to

- To introduce the various learning rules of Neural Networks both supervised and unsupervised.
- To explain the working of error back propagation training algorithm and its use as a mathematical tool for solving problems.
- To provide knowledge on associative memories and their applications.
- To introduce Fuzzy Logic, Fuzzy relations and Fuzzy mathematics
- To introduce the various learning rules of Neural Networks both supervised and unsupervised.

COURSE OUT					le to			1				
CO1	To Und	erstand the	fundame	ntals of Fi	uzzy set theo	rv (L1)						
CO2					System (L1	• • •						
CO3					etwork and s		d learning	networks	(L2)			
CO4					ry Networks					rks (L5)		
CO5					ence Systems					(-)		
Mapping of Co							1	(- /				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	3	2	1	2	1		1
CO2	3	3	3	3	3	3	2	1	1	1	1	
CO3	3	3	3	2	3	2	2		1	1		
CO4	3	3	2	2	2	2	2					
CO5	3	3	3	2	2	2	2	1				
COs / PSOs		PSO1	ı		PSO2			PSO3	1		PSO4	,
CO1		3			3			3			2	
CO2		3			2			3			2	
CO3		3			2			2			2	
CO4		3			3			3			2	
CO5		3			2			2			2	
3/2/1 Indicates	Strength C	of Correlat	ion, 3 – H	ligh, 2- M	ledium, 1- L	ow				•		
Category	Basic Science	EAngin eering	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical			
					~							

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/SLr	P/R	C
EBCS22E36	NEURO FUZZY COMPUTING	Ту	3	0	0	3

UNIT I Fuzzy Sets

9Hrs

Introduction – Basic definitions and terminology – Set-theoretic Operations – MF Formulation and Parameterization – MFs of one Dimension - MFs of two Dimension – Derivatives of Parameterized MFs – Fuzzy Complement – Fuzzy Intersection and Union- Parameterized T-norm and T-conorm.

UNIT II Fuzzy Inference System

9Hrs

Extension Principle – Fuzzy Relations – Linguistic variables – Fuzzy If-Then Rules – Composite rule of inference – Fuzzy Reasoning – Mamdani Fuzzy Models – Other variants – Sugeno Fuzzy Models – Tsukamoto Fuzzy Models.

UNIT III Neural Network

9Hrs

Fundamental Concepts – Models of a Neuron – Learning – Supervised Learning – Unsupervised Learning – Reinforcement Learning - Types of activation function – Network Architectures – Adaptive Networks – Backpropagation for Feed forward Networks – Supervised Learning Neural Networks – Perceptrons – Adaline – Backpropagation Multilayer perceptron – Radial Basis Function Networks

UNIT IV Other Neural Networks

9Hrs

Associative Memory Network – Autoassociative Memory Network – Heteroassociative Memory Network – Bidirectional Associative Memory – Hopfield Network - Unsupervised Learning Neural Networks – Competitive learning networks – Kohonen Self-Organizing Networks – Learning Vector Quantization – Adaptive Resonance Theory – Fundamental Architecture.

UNIT V Adaptive Neuro-Fuzzy Inference Systems and Applications

9Hrs

Adaptive Neuro-Fuzzy Inference Systems – ANFIS Architecture – Applications - Non-linear systemIdentification – Channel Equalization – Adaptive Noise cancellation.

Total Hours:45

Text Books

- $1.\ J.S.R.Jang,\ C.T.\ Sun\ and\ E.Mizutani,\ "Neuro-Fuzzy\ and\ Soft\ Computing",\ PHI\ /\ Pearson\ Education\ 2004.$
- 2. Simon Haykin, "Neural Network, A Comprehensive Foundation", 2nd Edition Pearson Prentice Hall, 2005.
- 3. S.N.Sivanandam and S.N.Deepa, "Principles of Soft Computing", Wiley India Pvt Ltd, 2011.

Reference Books

- 1. George J. Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic-Theory and Applications", Prentice Hall. 1995.
- 2. James A. Freeman and David M. Skapura, "Neural Networks Algorithms, Applications, and Programming Techniques", Pearson Edn., 2003.
- 3. Satish Kumar, "Neural Network, A Classroom Approach", Tata McGraw Hill, 2007.

	COURSE NAME	Ty/Lb/	L	T/	P/R	C
COURSE CODE: EBCS22E37	AUGMENTED AND VIRTUAL REALITY	ETL/IE		S.Lr		
	Prerequisite: Nil	Ty	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab Internal Evaluation

OBJECTIVES:

The students should be made to

- Establish and cultivate a broad and comprehensive understanding of this rapidly evolving and commercially viable field of Computer Science
 Understand virtual reality, augmented reality and usi

											application				
 Analyze 	the us	er eng	gageme	nt, Bo	ost in	Branc	l Loya	lty, M	obility	, Better	Advertis	sing of			
products	and ma	any mo	ore												
COURSE OUTC	OMES	(COs)	:Stude	nts wil	l be abl	e to									
CO1	To un	derstan	d funda	mental	compu	ıter visi	on, con	nputer g	graphic	s and hu	man-comp	uter			
	intera	ction te	chniqu	es relat	ed to V	R/AR[I	L2]				-				
CO2	To un	derstan	d geom	etric m	odeling	g and V	irtual e	nvironr	nent[L2	2]					
CO3							logy[L4								
CO4		To use various types of Hardware and software in virtual Reality systems[L3]													
CO5	To im	To implement Virtual/Augmented Reality applications[L3]													
Mapping of Course Outcomes with Program Outcomes (POs)															
COs/POs	COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1	3	3	3	2	3	2	2	2	3	2	3	3			
CO2	3	3	3	2	3	2	2	2	3	2	3	3			
CO3	3	2	3	2	3	2	2	3	2	3	2	2			
CO4	3	2	2	2	3	2	2	2	3	2	3	2			
CO5	3	3	2	2	3	2	2	2	3	2	3	2			
COs / PSOs		PSO ₁			PSO ₂			PS			PSO	4			
CO1		3			3			2			3				
CO2		3			3			2			3				
CO3		3			3			3			2				
CO4		3			2			3			2				
CO5		3			2			3	5		2				
3/2/1 Indicates St	rength	Of Co	rrelatio	on, 3 –	High, 2	2- Medi	<u>ıum, 1-</u>	Low							
Category	Basic Science	Engineering	Humanities and	ram	Program	Open Elective	Inter Disciplinary	Skill Component	Practical /Project						
Cal	Basi	Enginee	Hum	Program	Pro	Open	Inter	Skil	Prac						

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	C
EBCS22E37	AUGMENTED AND VIRTUAL REALITY	Ту	3	0/0	0/0	3

UNIT I -INTRODUCTION TO AR-VR TECHNOLOGIES

9 Hrs

History of VR-The five Classic Components of a VR System-Early Commercial VR Technology-VR Becomes an Industry-Reality, Virtuality and Immersion-VR, AR, MR, xR: similarities and differences between AR and VR -Current trends

UNIT II-COMPUTER GRAPHICS AND GEOMETRIC MODELING

9 Hrs

Introduction, the perspective projection, human vision, stereo perspective projection, Colour theory, Conversion From 2D to 3D, 3D space curves, simple 3D boundary representation& modeling, 3D clipping, Illumination models, Reflection models, Shading algorithms. Geometrical Transformations: Introduction, Modeling transformations, Instances, Picking, Flying, Scaling the VE

UNIT III-VIRTUAL ENVIRONMENT

9 Hrs

Input: Tracker, Sensor, Digital Gloves, Movement Capture, Video-based Input, 3D Menus & 3D Scanner etc. Output: Visual /Auditory / Haptic Devices. Generic VR system: Introduction, Virtual environment, Computer environment, VR technology, Model of interaction, VR Systems-cyber sickness -side effects of exposures to virtual reality environment

UNIT IV- VR ON THE WEB & MOBILE

9 Hrs

JS-pros and cons-building blocks (WebVR, WebGL, Three.js, device orientation events)- frameworks (A-frame, React VR)-Google VR for Android-Scripts, mobile device configuration, building to android-cameras and interaction-teleporting-spatial audio-Assessing human parameters-device development and drivers-Design Haptics

UNIT V-DEVELOPMENT TOOLS AND FRAMEWORKS

9 Hr

Human factors: Introduction, the eye, the ear, the somatic senses. Hardware: Introduction, sensor hardware, Head-coupled displays, Acoustic hardware, Integrated VR systems. Software: Introduction, Modeling virtual world, Physical simulation, VR toolkits, Introduction to VRML-AR / VR Applications

Total Hours: 45

TEXT BOOKS

- 1. Grigore C. Burdea, Philippe Coiffet, Virtual Reality Technology, Wiley 2016.
- 2. C. Burdea& Philippe Coiffet, "Virtual Reality Technology", Second Edition, Gregory, John Wiley & Sons, Inc., 2008.
- 3. Jason Jerald. 2015. The VR Book: Human-Centred Design for Virtual Reality. Association for Computing Machinery and Morgan & Claypool, New York, NY, USA.

- 1. Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013.
- 2. Alan Craig, William Sherman and Jeffrey Will, Developing Virtual Reality Applications, Foundations of Effective Design, Morgan Kaufmann, 2009.
- 3. John Vince, "Virtual Reality Systems", Pearson Education Asia, 2007.

COURSE CODE: EBCS22E3		RSE N.		СНОО	LOGY				//Lb/ TL/I E	L	T/ S.L r	P/R	C
8	Prere	quisite:	Nil						Ty	3	0/0	0/0	3
L: Lecture 7				upervis	sed Lea	rning l	P : Proi	ect R:	•			0, 0	
Ty/Lb/ETL/													
OBJECTIV													
The student													
• unde	rstand tl	he histor	ry, type	s and ap	plicatio	ns of B	ockchai	in					
					phy and to creat								
- Faim	mai wiu	11 Tutule	Currenc	ies and	to creat	e own c	rypio io	Ken					
COURSE O	UTCC	MES ((COs)	:Studen	ts will b	e able to)						
CO1								ck chain	[L2]				
CO2	Apply	the diff	ferent C	onsensı	ıs Mech	anisms[L3]						
CO2		.1 1:00	• .			1: 00		c 1	: гт	2.3			
CO3	Apply	the diff	erent ci	ryptocui	rrency to	or differ	ent type	s of don	nains[L	3]			
CO4	Under	stand er	nerging	ahstrac	rt model	s for Bl	ockchai	n Techno	Ιοσν[Ι.2	1			
004	Onder	stand Ci	nerging	, aostrac	i model	.S 101 D1	ockenan	ii i ceime	logy[L2	J			
CO5	Design	n and ar	nalyze tl	ne appli	cations	based or	n Block	chain Teo	hnology	[L4]			
Mapping of							mes (P	Os)					
COs/POs	PO	PO	PO	PO	PO								
	4					PO	PO	PO8	PO9	PO1			01
CO1	1	2	3	4	5	6	PO 7	PO8	PO9	PO1 0	1	2	
CO1	3	3	1	1	5	6 2	PO 7	PO8	PO9		1	2	1
CO2	3	3	1 2	3	5 1 3	6 2 1	PO 7 1 1 1	PO8 1 2	PO9		1 1	2	1 1
CO2 CO3	3 3 3	3 3	1 2 3	1 3 3	5 1 3 3	6 2 1 2	PO 7 1 1 1 1 1	PO8 1 2 2	PO9		1 1 1	2	1 1 2
CO2 CO3 CO4	3 3 3	3 3 3	1 2 3 3	1 3 3 3	5 1 3 3 3	6 2 1 2 2	PO 7 1 1 1 1 1 1 1	PO8 1 2 2 1	PO9		1 1	2	1 1 2 1
CO2 CO3	3 3 3	3 3	1 2 3	1 3 3	5 1 3 3	6 2 1 2	PO 7 1 1 1 1 1	PO8 1 2 2	PO9		1 1 1 1	2	1 1 2
CO2 CO3 CO4	3 3 3	3 3 3	1 2 3 3	1 3 3 3	5 1 3 3 3	6 2 1 2 2 2	PO 7 1 1 1 1 1 1 1	PO8 1 2 2 1			1 1 1 1 1	2	1 1 2 1
CO2 CO3 CO4 CO5	3 3 3	3 3 3 3 3	1 2 3 3	1 3 3 3	5 1 3 3 3 3	6 2 1 2 2 2	PO 7 1 1 1 1 1 1 1	PO8 1 2 2 1 1 1			1 1 1 1 1	2	1 1 2 1
CO2 CO3 CO4 CO5 COs/ PSOs CO1	3 3 3	3 3 3 3 3 PSO1	1 2 3 3	1 3 3 3	5 1 3 3 3 3	6 2 1 2 2 2	PO 7 1 1 1 1 1 1 1	PO8 1 2 2 1 1 1			1 1 1 1 1	2	1 1 2 1
CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2	3 3 3	3 3 3 3 3 PSO1	1 2 3 3	1 3 3 3	5 1 3 3 3 3 PSO2	6 2 1 2 2 2	PO 7 1 1 1 1 1 1 1	PO8 1 2 2 1 1 1 PSC 1 2			1 1 1 1 1	SO4 3 2	1 1 2 1
CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3	3 3 3	3 3 3 3 3 PSO1	1 2 3 3	1 3 3 3	5 1 3 3 3 3 PSO2	6 2 1 2 2 2	PO 7 1 1 1 1 1 1 1	PO8 1 2 2 1 1 PSC 1 2 3			1 1 1 1 1	SO4 3 2 3 2 3	1 1 2 1
CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4	3 3 3	3 3 3 3 3 PSO1 2 3 3 3	1 2 3 3	1 3 3 3	5 1 3 3 3 3 PSO2 1 2 2 3	6 2 1 2 2 2	PO 7 1 1 1 1 1 1 1	PO8 1 2 2 1 1 PSC 1 2 3 2			1 1 1 1 1	SO4 3 2 3 3 3	1 1 2 1
CO2 CO3 CO4 CO5 COs/ PSOs CO1 CO2 CO3 CO4 CO5	3 3 3 3 3	3 3 3 3 3 PSO1 2 3 3 3	1 2 3 3 3 3	1 3 3 3 3	5 1 3 3 3 3 PSO2 1 2 2 3 3	6 2 1 2 2 1	PO 7 1 1 1 1 1 1 1 1 1	PO8 1 2 2 1 1 PSC 1 2 3 2 3 2 3	03		1 1 1 1 1	SO4 3 2 3 2 3	1 1 2 1
CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4	3 3 3 3 3	3 3 3 3 3 PSO1 2 3 3 3	1 2 3 3 3 3	1 3 3 3 3	5 1 3 3 3 3 PSO2 1 2 2 3 3	6 2 1 2 2 1	PO 7 1 1 1 1 1 1 1 1 1	PO8 1 2 2 1 1 PSC 1 2 3 2 3 2 3	03		1 1 1 1 1	SO4 3 2 3 3 3	1 1 2 1

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	C
EBCS22E38	BLOCK CHAIN TECHNOLOGY	Ту	3	0/0	0/0	3

UNIT I 9 Hrs

Introduction: Defining Blockchain and Distributed Ledger, Blockchain Properties Decentralized, Transparent, Immutable and secure. Blockchain Applications. Types of Blockchain: Public, private, and consortium based blockchain, When to use, and when not to use Blockchain, History of Blockchain. Peer to Peer Network, P2P network for blockchain

UNIT II 9 Hrs

Blockchain Data Structure, Characteristics and Consensus Mechanisms - Cryptographic Hash Functions, Digital Signatures, Public Keys as Identities, Hash Pointers and Hash chain and Merkel tree, Consensus mechanisms--Decentralized Identity management, Transactions, incentivising and mining. Distributed Consensus (PoW),.-Proof of storage, proof of stake, proof of deposit, proof of burn, proof of activity. algorithms for adjusting difficulty and retargeting.

UNIT III 9 Hrs

Bit Coin: Cryptocurrency as the first blockchain application. Mechanics of Bitcoin, Bitcoin Scripts, Storing and Using Bitcoins, Mining in Bitcoinhardness of mining - transaction verifiability - anonymity - forks - double spending - mathematical analysis of properties of Bitcoin Limitations of Bitcoin, alternative cryptocurrencies.

UNIT IV 9 Hrs

Smart Contracts and EthereumHistory, Purpose and types of smart contracts, Introduction to Ethereum, bitcoin vs Ethereum stack. P2P network in Ethereum, consensus in Ethereum, scripts in Ethereum, Smart contracts (Ethereum Virtual Machine). Developing and executing smart contracts in Ethereum. State and data structure in Ethereum.

UNIT V 9 Hrs

Private and Consortium based Blockchain: Hyperledger-Need for the consortium. Hyperledger stack, Multichainblockchain. Innovation in Hyperledger, smart contracts, and distributed applications in hyperledger

Case studies/ Enabling Technologies and applications-Application of blockchain in privacy and security, IoT and smart cities, Business and Industry, Data management, e-Governance

Total Hours: 45

Text Books:

- 1. Andreas M. Antonopoulos and Dr. Gavin Wood "Mastering Ethereum Building Smart Contracts and DApps" O"Reilly, Copyright 2019
- 2. Melanie Swan ,"Blockchain: Blueprint for a New Economy "Copyright 2015 Melanie Swan
- 3. Imran Bashir," Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks "
- 4. Imran Bashir, "Mastering Block Chain: Distributed Ledger Technology, Decentralization and SmartContracts Explained", Packt Publishing, first edition 2012

ReferenceBooks:

1. Ritesh Modi, "Solidity Programming Essentials: A Beginner"s Guide to Build Smart Contracts for Ethereum and Block Chain", PacktPublishi

COURSE CODE:	COURSE NAME: MOBILE COMMERCE	Ty/Lb/ ETL/I	L	T/ S.Lr	P/R	C
EBCS22E39		E				
	Prerequisite: NIL	Ty	3	0	0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

Thestudents should be made to

- Help businesses target customers according to their location, service provider, the type of device they use and various other criteria. This can be a good marketing tool.
- Understand the basic concepts and technologies used in the field of management information systems Have the knowledge of the different types of management information systems

 Understand the processes of developing and implementing information systems Case Study to implement m commerce. 															
COURSE OUT	COM	ES (C	Os): St	udents	will b	e able	to								
CO1	Unde	rstand	the im	portan	ce of E	-comn	nerce[L	.2]							
CO2	Anal	yze the	impor	tance o	of M-co	ommer	ce[L4]								
CO3	Unde	rstand	the tec	hnolog	gies use	ed in N	I-Com	merce[]	L2]						
CO4	Imple	ementii	ng thec	ry and	applic	ations	of M-0	Comme	rce[L3]						
CO5	Creat	Creative implementingonBusiness models[L6]													
Mapping of Co	Image of Course Outcomes with Program Outcomes (POs)														
COs/POs															
	1														
CO1	1	1	1	2	1	2	2	1	1	1	2	1			
CO2	1	1	1	2	1	2	2	1	1	1	2	1			
CO3	1	2	1	3	2	3	3	1	2	1	3	2			
CO4	2	2	2	3	2	3	3	2	2	2	3	2			
CO5	2	3	2	3	1	3	3	2	3	2	3	1			
COs / PSOs		PSO ₁			PSO ₂			PS()3		PSO ₂	1			
CO1		3			2			2			2				
CO2		3			1			1			2				
CO3		2			2			2			3				
CO4		1			2			2			2				
CO5		2			2			2			3				
3/2/1 Indicates	Streng	th Of	Corre	lation,	3 – Hi	igh, 2-	Mediu	ım, 1- l	Low						
Category	Basic Science	Engineering .	Humanities and	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project						
					~										

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	С
EBCS22E39	MOBILE COMMERCE	Ту	3	0/0	0/0	3

UNIT I INTRODUCTION OF E- COMMERCE

9Hrs

Traditional commerce and E-commerce – Internet and WWW – Role of WWW – Value Chains – Strategic Business And Industry Value Chains – Role of E-commerce. Packet Switched Networks – TCP/IP Protocol Script – Internet Utility Programmers – SGML, HTML And XML – Web Client and Servers – Web Client/Server Architecture – Intranet And Extranets – Web Based Tools For E-commerce – Security.

UNIT II STRUCTURE OF M-COMMERCE

9Hrs

Introduction – Infrastructure of M–Commerce – Types of Mobile Commerce Services – Technologies Of Wireless Business – Benefits And Limitations, Support, Mobile Marketing & Advertisement, Non–Internet Applications In M–Commerce – Wireless/Wired Commerce Comparisons.

UNIT III TECHNOLOGY TO DEVELOP MOBILE COMMERCE 9Hrs

A Framework for The Study of Mobile Commerce – Wireless Devices For Mobile Commerce – Towards A Classification Framework For Mobile Location Based Services – Wireless Personal And Local Area Networks –The Impact Of Technology Advances On Strategy Formulation In Mobile Communications Networks.

UNIT IV MOBILE COMMERCE: THEORY AND APPLICATIONS 9Hrs

The Ecology of Mobile Commerce – The Wireless Application Protocol – Mobile Business Services – Mobile Portal – Factors Influencing The Adoption of Mobile Gaming Services – Mobile Data Technologies And Small Business Adoption And Diffusion – E–commerce in The Automotive Industry. Case Studies in implementing mobile commerce: finance, retail, telecommunication, healthcare, information technology, sales and services.

UNIT V BUSINESS- TO- BUSINESS E & M COMMERCE 9Hrs

Enterprise Enablement – Email and Messaging – Field Force Automation (Insurance, Real Estate, Maintenance, Healthcare) – Field Sales Support (Content Access, Inventory) – Asset Tracking and Maintenance/Management – Remote IT Support – Customer Retention (B2C Services, Financial, Special Deals) – Warehouse Automation – Security

TotalHours: 45

TEXT BOOKS:

- 1. E.BrianMennecke, J.Troy Strader, "Mobile Commerce: Technology, Theory and Applications", Idea Group Inc., IRM press, 2003.
- 2. Ravi Kalakota, B.AndrewWhinston, "Frontiers of Electronic Commerce", Pearson Education, 2003

- 1. P. J. Louis, "M-Commerce Crash Course", McGraw-Hill Companies February 2001.
- 2. Paul May, "Mobile Commerce: Opportunities, Applications, and Technologies Of Wireless Business" Cambridge University Press March 2001.

COURSE CODE:	COUI	RSE NA		TIME	SYSTE	MS		•	/Lb/	L	T/	P/	R	C
EBCS22E40			112.12		01012	1.120		E	CL/IE		S.Lr	1,		
	Prereq	uisite: N	IL						Ty	3	0/0	0/	0	3
L: Lecture T:			-		_				: Credits	S				
T/L/ETL/IE: T		_ab/Emb	edded T	heory ar	nd Lab/	Interna	l Evalua	tion						
OBJECTIVE:														
Thestudents sho														
		duling a					• . •	.•						
		cation ar Is for rea			t timing	constra	ints and p	properties	8					
COURSE OU					l ha ahla	a to								
CO1		` `	,				stem (L1)	1						
CO2							iling algo		(4)					
CO3							ges and to	,		cvetem	s (I 3)			
CO4		ze the pr					cs and ic	018 101 10	zai tiiiic	System	is (L3)			
CO5		fy the sol					ıs (L6)							
Mapping of Co														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 P	011	PO	12
CO1	3	3	1	1	1	1	1	1	1		1			
CO2	3	3	2	3	1	1	2	1	1	1			1	
CO3	3	3	2	3	3	1	2	1		1	1			
CO4	2	3	2	3	2	1	2	1						
CO5	2	2	3	2	3	1	2		1					
COs / PSOs		PSO1			PSO2			PSO3	1			PSO4		
CO1		3			3			2				1		
CO2		3			3			2				2		
CO3		3			3			3				2		
CO4		3			3			3				2		
CO5	64	3	0 1	· •	3	37.37	1. 1	3				2		
H/M/L indicat	tes Strei	ngtn of G	Correla	tion H	i- Hign <u>,</u>	NI- NIE	aıum, L-	Low						
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component Practical /Project						
					•									

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/ R	С
EBCS22E40	REAL TIME SYSTEMS	Ty	3	0/0	0/0	3

UNIT I Introduction, Task Assignment and Scheduling 9 Hrs

Architecture of real time systems/embedded systems-operating systems issues-performance measures-estimating program run times- Uniprocessor scheduling-IRIS tasks-task assignment algorithms- mode changes –fault tolerance scheduling.

UNIT II Programming Languages and Tools 9 Hrs

Desired characteristics based on ADA-data typing-control structures-packages-exception handling-overloading-multitasking-timing specification-task scheduling-just in time compilation-run time support.

UNIT III INTERTASK COMMUNICATION AND MEMORY MANAGEMENT 9 Hrs

Buffering data – Time relative Buffering- Ring Buffers – Mailboxes – Queues – Critical regions – Semaphores – other Synchronization mechanisms – deadlock – priority inversion – process stack management – run time ring buffer – maximum stack size – multiple stack arrangement – memory management in task control block - swapping – overlays – Block page management – replacement algorithms – memory locking – working sets – real time garbage collection – contiguous file systems.

UNIT IV Real Time Databases, Fault Tolerance, Reliability and Synchornization 9 Hrs Basic definitions-main memory databases -transaction processing-concurrency control-disk scheduling algorithms-serialization and consistency-real time communication-

UNIT V Fault Tolerance, Reliability and Synchornization 9 Hrs

Fault types-fault detection and containment-redundancy-data diversity-reversal checksobtaining parameter values-reliability models for hardware redundancy-software error models-clocks-fault tolerance synchronization-synchronization and software.

Total Hours: 45

TEXT BOOK:

1. C.M.Krishna, Kang.G.Shin, 2010, Realtime Systems, McGraw Hill.

- 1. Rajib Mall, 2007 "Real-time systems: theory and practice", Pearson Education.
- 2. Phillip A.Laplante 2011 Real Time System Design and Analysis, 4 thedition, Wiley.
- 3. Alan burns and andy wellings, 2009 "Real time systems and prog. Languages", 4 thedition, pearson.

COURSE CODE	COURSE NAME:	Ty/Lb/	L	T/	P/R	C
CODE	OPTIMIZATION TECHNIQUES	ETL/IE		S.Lr		
EBCS22E41	Prerequisite: NIL	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- Operation research models using optimization techniques based upon the fundamentals of Engineering mathematics (minimization and Maximization of objective function).
- The problem formulation by using linear, dynamic programming, game theory and queuing models.
- The stochastic models for discrete and continuous variables to control inventory and simulation of manufacturing models for the production decision making.
- · Formulation of mathematical models for quantitative analysis of managerial problems in industry

COURSE OUTCOMES (COs): Students will be able to												
CO1	Understand Linear algebra and matrices, Elements of probability theory-Elementary multivariable											
	calculus											
CO2	Apply the theoretical foundations of various issues related to linear programming modeling to											
		formulate real-world problems as a L P model										
CO3	Understand Unconstrained optimization											
CO4		Understand constrained optimization										
CO5	Analyze Non-linear constrained optimization models											
	Mapping of Course Outcomes with Program Outcomes (POs)											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	3	2	3	2	3	2	2
CO2	3	3	3	3	3	3	2	2	2	3	2	2
CO3	3	2	2	2	3	1	2	3	2	3	2	2
CO4	3	3	2	2	3	2	2	2	3	2	2	2
CO5	3	2	3	2	2	2	2	3	2	2	2	3
COs / PSOs		PSO1			PSO2			PSO3			PSO4	
CO1		3			3			3			2	
CO2		3			2			3			2	
CO3		3		2				2			3	
CO4		3			3			3			2	
CO5		3			2			2			2	
3/2/1 Indicate	s Stren		Correla	tion, 3	– High,	2- Medi	um, 1- L					
		Engineering Science	es l				ary	Skill				
Į.	l o	e Seri	niti cia	ш	e II	ပ္	ling	<u> </u>	t			
900	:i	ine ine	nai So	gra e	Program elective Open Elective Disciplinary Skill Component Practical Practical							
Category	Basic Science	Enginee: Science	Humanities and social	Program Core	rog lec	Open Electi	Inter Disci		rac Pro			
Ü	πо	ВΨЗ	<u> </u>	Ъ	P P e	ОЩ	<u> </u>		H			

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/SLr	P/R	C
EBCS22E41	OPTIMIZATIONTECHNIQUES	Ту	3	0/0	0/0	3

UNIT-I

9Hrs

Mathematical preliminaries

Linear algebra and matrices-Vector space, eigen analysis-Elements of probability theory-Elementary multivariable calculus

UNIT-II 9Hrs

Linear Programming

Introduction to linear programming model - Simplex Method-Duality-Karmarkar's method

UNIT-III

9Hrs

Unconstrained optimization

One-dimensional search methods - Gradient-based methods - Conjugate direction and quasi-Newton methods

UNIT-IV 9Hrs

Constrained Optimization

Lagrange theorem-FONC, SONC, and SOSC conditions

UNIT-V

9Hrs

Non-linear problems

Non-linear constrained optimization models- KKT conditions -Projection methods **Total Hours:45**

Reference Books:

- 1. An introduction to Optimization by Edwin P K Chong, Stainslaw Zak
- 2. Nonlinear Programming by Dimitri Bertsekas

					2022 10	egulatic	/11								
COURSE CODE: EBCS22E42	COURSE NAME: NATURAL LAN			NGUAGE PROCESSING				y/Lb/ ETL/		L	T.		P/R	C	
	Prerequisite: Nil								TY		3	0/0)	0/0	3
L : Lecture T	Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits														
T/L/ETL/IE:		/Lab/E1	mbedde	d Theo	ry and l	Lab/ Int	ternal E	Eval	uatio	n					
OBJECTIV															
Thestudents s									_	_					
			ındame				•		tural	Langu	ıage	Proc	essin	g	
			nges o				rocessii	ng							
			use of					1		, •					
			role of					_	igma	tics					
• 10 ap	opiy tno	e NLP	technic	ques in	practic	cai app	ncation	1S							
COURSE OF	UTCON	MES (C	(Os) : S	tudents	will he	able to)								
CO1			he conc					ural	Lane	าแลงค์	Proc	essir	1σ (I.:	2)	
CO2				_			OTTAL	urur	Lang	suuge .	1100	<i>(</i> C5511	15 (12	<u>-) </u>	
CO3	_	Design and develop NLP Models (L5) Implement a rule based system to taskle membel gay/syntox of a language (L4)													
CO4	Implement a rule based system to tackle morphology/syntax of a language (L4) Design a tag set to be used for statistical processing for real-time applications (L5)											5)			
CO5	Formulate natural language algorithms for processing Linguistic Information. (L3)														
Mapping of (niig i	Jiiiguii	Stic i	111101	шанс	л. (т	13)
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	8	PO9	PC)10	PO1	1 P	012
CO1	2	3	1	2	2	1	1			2		2	1		
CO2	3	3	1	1	3	1	1			2		3			
CO3	2	3	3	2	2	1	1		1	2	1	1			1
CO4	2	3	3	3	3	2	2		2		1	1			
CO5	3	2	3	3	2	1	1		1				1		1
COs / PSOs		PSO ₁			PSO ₂			P	SO3				PSC	4	
CO1		3			3				2				2		
CO2		3 3 3					1								
CO3		2			3				2				2		
CO4	3 2								3				2		
CO5		3			2				3				2		
3/2/1 Indicate	es Strei	ngth Of	f Corre	lation,	3 – Hig	gh, 2- M	Iedium	, 1- l	Low						
			31												
Category	Basic Science	Engineering Science	Humanities and social	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project						
		Ξй	Ηď	P ₁		0		• 1							

•

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	C
EBCS22E42	NATURAL LANGUAGE PROCESSING	Ty	3	0/0	0/0	3

UNIT I – Introduction 9 Hrs

Origins and challenges of NLP – Language Modeling: Grammar-based LM, Statistical LM - Regular Expressions, Finite-State Automata – English Morphology, Transducers for lexicon and rules, Tokenization, Text Normalization, Detecting and Correcting Spelling Errors, Minimum Edit Distance

UNIT II – Word Level Analysis

9 Hrs

Unsmoothed N-grams, Evaluating N-grams, Smoothing, Kneser –Ney Smoothing, Huge Language model and Back off – Word Classes, Part-of-Speech Tagging, Rule-based, Named Entities and Named Entity Tagging, Issues in PoS tagging – Hidden Markov and Maximum Entropy models, Evaluation of Name Entity Recognition.

UNIT III – Syntactic Analysis

9 Hrs

Context-Free Grammars, Grammar rules for English, Treebanks, Normal Forms for grammar – Lexicalized Grammars, Dependency Grammar – Syntactic Parsing, Ambiguity, CKY Dynamic Programming parsing – Span Based Neural Constituency Parsing, Evaluating Parsing – Dependency Relations, Dependency Formalisms, Transaction based Dependency Relations, Graph Based Dependency Relations

UNIT IV-Semantics and Pragmatics

9 Hrs

Requirements for representation, First-Order Logic, Description Logics – Word Senses, Relations between Senses, Word Sense Disambiguation, The WSD Algorithm and Tasks, Word Sense Induction. Semantic Roles, Problem with Thematic Roles, Semantic Role Labeling, Selectional Restrictions.

UNIT V -DISCOURSE ANALYSIS AND LEXICAL RESOURCES

9 Hrs

Coherence Relations, Discourse Structure Parsing, Centering and Entity based Coherence – Reference Phenomena, Anaphora Resolution using Hobbs and Centering Algorithm

Resources: Porter Stemmer, Lemmatizer, Penn Treebank, Brill's Tagger, WordNet, PropBank, FrameNet, Brown Corpus, British National Corpus (BNC).

Total Hours:45

EXT BOOKS:

- 1. Daniel Jurafsky and James H Martin, "Speech and Language Processing", 3e, Pearson Education, 2020...
- 2. Steven Bird, Ewan Klein and Edward Loper, —Natural Language Processing with Pythonl, First Edition, O Reilly Media, 2009.

REFERENCES

- 1. Breck Baldwin, —Language Processing with Java and LingPipe Cookbook, Atlantic Publisher, 2015.
- 2. Richard M Reese, —Natural Language Processing with Javal, O Reilly Media, 2015.
- 3. Nitin Indurkhya and Fred J. Damerau, —Handbook of Natural Language Processing, Second Edition, Chapman and Hall/CRC Press, 2010.
- 4. Tanveer Siddiqui, U.S. Tiwary, —Natural Language Processing and Information Retrievall, Oxford University Press, 2008