

FACULTY OF ENGINEERING AND TECHNOLOGY

OUTCOME BASED EDUCATION

Curriculum and Syllabus

B.Tech (Chemical Engineering)
Full Time
Regulations - 2022

Department of Chemical Engineering

VISION

Generating knowledge and developing technology through quality research in frontier areas of chemical engineering and interdisciplinary fields.

MISSION

- ➤ M1: To provide high quality education experience that will prepare graduates to assure leadership position within chemical and associated industries.
- ➤ M2: To attain global recognition in research and train students for meeting the challenging needs of chemical industries and the society
- ➤ M3: Fostering industry academic relationship for mutual benefits and growth.

QUALITY POLICY

We wish to foster a chemical engineering program coupled with research strength to acquire innovation and next generation techniques.

PROGRAM EDUCATIONAL OBJECTIVES [PEO's]

Graduates will be able to:

- **PEO 1:** Graduates pursue profession in chemical & allied engineering
- **PEO 2**: Graduates work in diversified team
- **PEO 3**: Graduates will pursue higher education & research

PROGRAM OUTCOMES

- ➤ PO1 : Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
- ➤ PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- ➤ PO3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

- ➤ PO4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- ➤ PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- ➤ PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- ➤ PO7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8: Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- > PO9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- ➤ PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- ➤ PO11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- ➤ PO12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES [PSO's]

- ➤ PSO 1: Graduates will apply knowledge in physics, chemistry and biology in the field of transfer processes for effective separation and purification of petrochemicals, pharmaceuticals and health care products
- ➤ PSO 2: Graduates will automate and control processes by applying mathematics, process control, instrumentation, simulation and process modelling.
- **PSO 3:** Graduates will design equipment for modern science applications

PEO WITH MISSION STATEMENT

	M1	M2	M3
PEO1	3	2	3
PEO2	3	3	3
PEO3	2	3	3

PEO-PO

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PEO1	3	3	3	3	2	3	3	2	3	2	2	-
PEO2	3	3	2	1	1	1	2	-	-	1	1	2
PEO3	3	3	3	3	1	1	3	2	3	2	3	3

PEO-PSO

	PSO1	PSO2	PSO3
PEO1	2	3	1
PEO2	3	2	1
PEO3	3	1	3

Program Components

Basic Science (Mathematics)	include according to program	
Program Core theory	15	
Program Core Laboratory	10	_
Program Elective	5	
Open Elective	2	
Open Lab	1	
Management paper	1	
Foreign Language	1	
Audit course	2	
Universal Human values	1	
Inter disciplinary theory	3	
Inter disciplinary Lab	2	
ETL	10	
Technical Skills	3	
Soft skill	2	
Project /mini project	3	
Project /mini project	3	

	I SEMEST	ER					
Course Code	Course Title	Ty/Lb/E TL/IE	L	T/SLr	P/R	С	Category
EBEN22001	Technical English	Ту	2	0/0	0/0	2	HS
EBMA22001	Mathematics –I	Ту	3	1/0	0/0	4	BS
EBPH22ET1	Engineering Physics	ETL	2	0/0	2/0	3	BS
EBCH22ET1	Engineering Chemistry	ETL	2	0/0	2/0	3	BS
	Basic Electrical & Electronics						
EBEE22ET1	Engineering	ETL	2	0/0	2/0	3	ES
	PRACTICALS*			•			
	Orientation to Entrepreneurship &						
EBCC22I01	Project lab	IE	1	0/0	1/0	1	HS
EBCS22ET1	C Programming and MS office tools	ETL	1	0/0	2/0	2	ID

	II SEMES'	ΓER					
Course Code	Course Title	Ty/Lb/E TL/IE	L	T/SLr	P/R	С	Categor
EBMA22003	Mathematics –II	Ту	3	1/0	0/0	4	BS
EBPH22003	Bio Materials	Ту	3	0/0	0/0	3	BS
EBCH22002	Industrial Chemistry	Ту	3	0/0	0/0	3	BS
EBCT22001	Introduction to Chemical Engineering	Ту	3	0/0	0/0	3	PC
EBME22001	Engineering Graphics	Ту	2	0/0	2/0	3	ES
	PRACTIC	ALS*				1	•
EBCC22I02	Communicative English Lab	IE	1	0/0	1/0	1	HS
EBCS22ET2	Python Programming	ETL	1	0/0	2/0	2	ID
EBCC22I03	Environmental Science(Audit Course)	IE	1	0/0	1/0	0	BS

Credits Sub Total: 19

	III SEME	STER					
Course Code	Course Title	Ty/Lb/E TL/IE	L	T/SLr	P/R	С	Category
EBMA22007	Mathematics III For Chemical Engineers	Ту	3	1/0	0/0	4	BS
EBCT22002	Mechanical Operations	Ту	3	1/0	0/0	4	PC
EBCT22003	Chemical Process Calculation	Ту	3	0/0	0/0	3	PC
EBCS22ID1	Computer Application In Chemical Engineering	Ту	3	0/0	0/0	3	ID
EBCE22ID4	Environmental Engineering	Ту	3	0/0	0/0	3	ID
	PRACTICAL	S*		•		•	
EBCC22ET1	Universal human values :Understanding harmony	ETL	1	0/0	2/0	2	HS
EBCT22L01	Water Analysis Lab	Lb	0	0/0	3/0	1	PC
EBCT22L02	Mechanical Operation Lab	Lb	0	0/0	3/0	1	PC
EBCS22IL3	Computer Programming Lab	Lb	0	0/0	3/0	1	ID
EBCT22ET1	Fertilizer Technology	ETL	2	0/0	2/0	3	PC

	IV SEMEST	ER					
Course Code	Course Title	Ty/Lb/E TL/IE	L	T/SLr	P/R	C	Category
EBCT22004	Chemical Technology I	Ty	3	1/0	0/0	4	PC
EBCT22005	Chemical Engineering Thermodynamics I	Ty	3	1/0	0/0	4	PC
EBCT22006	Fluid Mechanics	Ту	3	0/0	0/0	3	PC
EBBT22ID1	Bio-Chemical Principles	Ту	3	0/0	0/0	3	ID
EBCC22I04/	The Indian Constitution/	IE	2	0/0	0/0	0	HS
EBCC22I05	The Indian Traditional Knowledge						
	(Audit Course)						
	PRACTICAL	LS*					
EBCT22L03	Food Analysis Lab	Lb	0	0/0	3/0	1	PC
EBCT22L04	Fluid Mechanics Lab	Lb	0	0/0	3/0	1	PC
EBCE22IL1	Environmental Engineering Lab	Lb	0	0/0	3/0	1	ID
EBBT22IL1	Biochemical Lab For Chemical Engineers	Lb	0	0/0	3/0	1	ID
EBCT22I01	Technical Skill 1	ΙE	0	0/0	3/0	1	SC
EBCC22I06	Soft Skill I (Employability Skills)	IE	0	0/0	2/0	1	SC

Credits Sub Total: 20

	V SEMESTI	ER					
Course Code	Course Title	Ty/Lb /ETL/ IE	L	T/SLr	P/R	С	Category
EBCT22007	Mass Transfer I	Ту	3	1/0	0/0	4	PC
EBCT22008	Chemical Engineering Thermodynamics II	Ty	3	1/0	0/0	4	PC
EBCT22009	Chemical Technology II	Ty	3	0/0	0/0	3	PC
EBCT22EXX	Programme Elective I	Ту	3	0/0	0/0	3	PE
EBXX22OEX	Open Elective I	Ту	3	0/0	0/0	3	ID
	Online Course (NPTEL/SWAYAM/any MOOC approved by AICTE/UGC)	IE	1	0/0	1/0	1	ID
	PRACTICALS*						
EBCT22L05	Process Simulation Software Lab	Lb	0	0/0	3/0	1	PC
EBCT22L06	Mass Transfer Lab	Lb	0	0/0	3/0	1	PC
EBCT22I02	Technical Skill 2	ΙE	0	0/0	3/0	1	SC
EBCT22ET2	Polymer Technology	ETL	2	0/0	2/0	3	PC

	VI CENTEGERE								
	VI SEMESTER								
Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	C	Categor		
EBCT22010	Mass Transfer II	Ту	3	1/0	0/0	4	PC		
EBCT22011	Heat Transfer	Ту	3	0/0	0/0	3	PC		
EBCT22012	Chemical Reaction Engineering I	Ту	3	0/0	0/0	3	PC		
EBCT22EXX	Programme Elective II	Ту	3	0/0	0/0	3	PE		
EBXX22OEX	Open Elective II	Ту	3	0/0	0/0	3	ID		
	PRACTICALS:	*				ı	•		
EBCT22L07	Chemical Reaction Engineering Lab	Lb	0	0/0	3/0	1	PC		
EBCT22L08	Heat Transfer Lab	Lb	0	0/0	3/0	1	PC		
EBCC22I07	Soft Skill II (Qualitative and Quantitative Skills)	IE	0	0/0	2/0	1	SC		
EBCT22I03	Technical Skill 3	IE	0	0/0	3/0	1	SC		
EBCT22I04	Mini Project/Internship	IE	0	0/0	3/0	1	SC		

Credits Sub Total: 21

	VII SEMI	ESTER					
Course Code	Course Title	Ty/Lb/ET L/IE	L	T/SLr	P/R	C	Category
EBCT22013	Safety in Chemical Process Industries	Ту	3	1/0	0/0	4	PC
EBCT22014	Process Control And Dynamics	Ту	3	0/0	0/0	3	PC
EBCT22015	Chemical Reaction Engineering II	Ty	3	0/0	0/0	3	PC
EBCT22016	Chemical Process Equipment Design	Ty	3	0/0	0/0	3	PC
EBCT22EXX	Programme Elective III	Ту	3	0/0	0/0	3	PE
	PRACT	ICALS*					
EBXX22OLX	Open Lab	Lb	0	0/0	3/0	1	ID
EBCT22L09	Process Control Lab	Lb	0	0/0	3/0	1	PC
EBCT22L10	Chemical Process Equipment Design & Drawing Lab	Lb	0	0/0	3/0	1	PC
EBCT22I05	Project Phase – 1	IE	0	0/0	3/3	2	P
EBFL22IXX	Foreign Language	IE	2	0/0	1/0	1	HS

	VIII SEMESTER										
Course Code	Course Title	Ty/Lb/E TL/IE	L	T/SLr	P/R	С	Category				
EBCC22ID3	Total Quality Management	Ту	3	0/0	0/0	3	ID				
EBCT22EXX	Programme Elective IV	Ту	3	0/0	0/0	3	PE				
EBCT22EXX	Programme Elective V	Ту	3	0/0	0/0	3	PE				
PRACTICALS*											
EBCT22L11	Project Phase – II	Lb	0	0/0	12/12	8	Р				

Credits Sub Total: 17

Credit Summary

Semester: 1 : 18 Semester: 2 : 19 : 25 Semester: 3 Semester: 4 : 20 Semester: 5 : 24 Semester: 6 : 21 Semester: 7 : 22 : 17 Semester: 8

Total Credits: 166

	PROGRAMME ELECTIVES I									
S.NO	SUBJECT CODE	SUBJECT NAME	Ty / Lb/ ETL/IE	L	T/ SLr	P/R	С			
1	EBCT22E01	Food Technology	Ту	3	0/0	0/0	3			
2	EBCT22E02	Industry Pollution Prevention and Control	Ty	3	0/0	0/0	3			
3	EBCT22E03	Chemistry of Polymer and Composite Materials	Ту	3	0/0	0/0	3			

	PROGRAMME ELECTIVES II									
S.NO	SUBJECT	SUBJECT NAME	Ty/ Lb/	L	T /	P/R	C			
	CODE		ETL/IE		SLr					
1	EBCT22E04	Green Chemistry and Engineering	Ту	3	0/0	0/0	3			
2	EBCT22E05	Modern Separation Processes	Ту	3	0/0	0/0	3			
3	EBCT22E06	Renewable Energy Engineering	Ту	3	0/0	0/0	3			

	PROGRAMME ELECTIVES III									
S.NO	SUBJECT	SUBJECT NAME Ty/ Lb/ L T/ P/R								
	CODE		ETL/IE		SLr					
1	EBCT22E07	Computational Fluid Dynamics	Ту	3	0/0	0/0	3			
2	EBCT22E08	Frontiers Of Chemical Engineering	Ту	3	0/0	0/0	3			
3	EBCT22E09	Industrial Management	Ту	3	0/0	0/0	3			

		PROGRAMME ELECTIVES IV &V					
S.NO	SUBJECT	SUBJECT NAME	Ty/ Lb/	L	T /	P/R	C
	CODE		ETL/IE		SLr		
1	EBCT22E10	Drugs And Pharmaceutical Technology	Ty	3	0/0	0/0	3
2	EBCT22E11	Professional Ethics In Engineering	Ту	3	0/0	0/0	3
3	EBCT22E12	Industrial Instrumentation	Ту	3	0/0	0/0	3
4	EBCT22E13	Process Optimization	Ty	3	0/0	0/0	3

Note:

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and lab/Internal evaluation L/T/SLr/P/R/C: Lecture/Tutorials/Supervised Learning/Practical/Research/Credit HS:Humanities and Social Science,ES:Engg.Science.BS:Basic Science,PC:Program core, PE:Program Elective,OE:Open Elective,P:Project, SC: Skill Component

OPEN ELECTIVE OFFERED BY OTHER DEPARTMENT TO CHEMICAL ENGINEERING STUDENTS COMPUTER SCIENCE AND ENGINEERING

	SUBJECT	SUBJECT NAME	Ty/L	L	T /	P/R	C
S.N	CODE		b/ET		SL		
O			L		r		
1	EBCS22OE1	Cyber security & Forensics	Ty	3	0/0	0/0	3
2	EBCS22OE2	Artificial Intelligence	Ty	3	0/0	0/0	3
3	EBCS22OE3	Data Base Concepts	Ty	3	0/0	0/0	3
4	EBCS22OE4	Software Engineering	Ту	3	0/0	0/0	3

INFORMATION TECHNOLOGY

S.N O	SUBJECT CODE	SUBJECT NAME	Ty/L b/ET L	L	T/ SL r	P/R	С
1	EBIT22OE1	Web Design	Ty	3	0/0	0/0	3
2	EBIT22OE 2	Digital Marketing	TY	3	0/0	0/0	3
3	EBIT22OE3	Cyber Security Essentials	Ty	3	0/0	0/0	3
4	EBIT22OE4	Introduction to Multimedia	Ty	3	0/0	0/0	3

ELECTRONICS AND COMMUNICATION ENGINEERING

S.NO	SUBJECT CODE	SUBJECT NAME	Ty/L b/ET L	L	T/ SL r	P/R	С
1	EBEC22OE1	Internet of Things and its Applications	Ty	3	0/0	0/0	3
2	EBEC22OE2	Cellular Mobile communication	Ty	3	0/0	0/0	3
3	EBEC22OE3	Satellite and its Applications	Ty	3	0/0	0/0	3
4	EBEC22OE4	Fundamentals of Sensors	Ty	3	0/0	0/0	3
5	EBEC22OE5	Microprocessor Based System Design	Ту	3	0/0	0/0	3
6	EBEC22OE6	Industry 4.0 Concepts	Ty	3	0/0	0/0	3

ELECTRICAL AND ELECTRONICS ENGINEERING

S.NO	SUBJECT CODE	SUBJECT NAME	Ty/L	L	T/S	P/R	C
			b/ET L		Lr		
1	EBEE22OE1	Electrical Safety for Engineers	Ty	3	0/0	0/0	3
2	EBEE22OE2	Energy Conservation Techniques	Ty	3	0/0	0/0	3
3	EBEE22OE3	Electric Vehicle Technology	Ty	3	0/0	0/0	3
4	EBEE22OE4	Biomedical Instrumentation	Ty	3	0/0	0/0	3
5	EBEE22OE5	Industrial Instrumentation	Ty	3	0/0	0/0	3
6	EBEE22OE6	Solar Energy Conversion System	Ty	3	0/0	0/0	3
7	EBEE22OE7	Wind Energy Conversion System	Ty	3	0/0	0/0	3
8	EBEE22OE8	Energy Storage Technology	Ту	3	0/0	0/0	3
9	EBEE22OE9	Electrical Machines	Ту	3	0/0	0/0	3

MECHANICAL ENGINEERING

S.NO	SUBJECT CODE	SUBJECT NAME	Ty/Lb/	L	T /	P/R	C
			ETL		SL		
					r		
1	EBME22OE1	Industrial Engineering	Ту	3	0/0	0/0	3
2	EBME22OE2	Refrigeration and Air	Ty	3	0/0	0/0	3
		conditioning					
3	EBME22OE3	Automobile Engineering	Ту	3	0/0	0/0	3
4	EBME22OE4	Industrial Robotics	Ту	3	0/0	0/0	3
5	EBME22OE5	Sustainable Energy	Ту	3	0/0	0/0	3
6	EBME22OE6	Composite Materials	Ту	3	0/0	0/0	3
7	EBME22OE7	Industry 4.0	Ту	3	0/0	0/0	3
8	EBME22OE8	Virtual and Augmented Reality	Ту	3	0/0	0/0	3

CIVIL ENGINEERING

S.NO	SUBJECT CODE	SUBJECT NAME	Ty/L b/ET L	L	T/S Lr	P/R	C
1	EBCE22OE1	Water Pollution and Its management	Ту	3	0/0	0/0	3
2	EBCE22OE2	Air Pollution Control	Ту	3	0/0	0/0	3
3	EBCE22OE3	Green Building and Vastu Concepts	Ту	3	0/0	0/0	3
4	EBCE22OE4	Climate Change and Sustainable Development	Ту	3	0/0	0/0	3
5	EBCE22OE5	Intelligent Transportation Systems	Ty	3	0/0	0/0	3
6	EBCE22OE6	Environment, Health and Safety in Industries	Ту	3	0/0	0/0	3
7	EBCE22OE7	Industrial Pollution Prevention and Cleaner Production	Ту	3	0/0	0/0	3
8	EBCE22OE8	Fundamentals of nanoscience	Ту	3	0/0	0/0	3

BIOTECHNOLOGY

S.NO	SUBJECT CODE	SUBJECT NAME	Ty/L b/ET L	L	T/S Lr	P/R	C
1	EBBT22OE1	Food and Nutrition	Ty	3	0/0	0/0	3
2	EBBT22OE2	Human Physiology	Ty	3	0/0	0/0	3
3	EBBT22OE3	Clinical Biochemistry	Ty	3	0/0	0/0	3
4	EBBT22OE4	Bioprocess Principles	Ty	3	0/0	0/0	3
5	EBBT22OE5	Biosensors and Biomedical Devices in	Ty	3	0/0	0/0	3
		Diagnostics					
6	EBBT22OE6	Basic Bioinformatics	Ty	3	0/0	0/0	3

Dr APJ Abdul Kalam Center For Research

S.NO	SUBJECT CODE	SUBJECT NAME	Ty/Lb/ET L	L	T/SLr	P/R	С
1	EBMG22OE1	Technical Entrepreneurship	Ту	3	0/0	0/0	3
2	EBMG22OE2	Advanced Program in Entrepreneurship	Ту	3	0/0	0/0	3

OPEN LAB OFFERED BY OTHER DEPARTMENT TO CHEMICAL ENGINEERING STUDENTS

COMPUTER SCIENCE AND ENGINEERING

S.NO	SUBJECT CODE	SUBJECT NAME	Ty/Lb /ETL	L	T/S Lr	P/R	C
1	EBCS22OL1	Artificial Intelligence Lab	Lb	0	0/0	3/0	1
2	EBCS22OL2	PHP/My SQL Programming Lab	Lb	0	0/0	3/0	1
3	EBCS22OL3	Database Lab	Lb	0	0/0	3/0	1

INFORMATION TECHNOLOGY

S.NO	SUBJECT CODE	SUBJECT NAME	Ty/Lb /ETL	L	T/SL r	P/R	C
1	EBIT22OL1	Visual Programming Lab	Lb	0	0/0	3/0	1
2	EBIT22OL2	Web Design Lab	Lb	0	0/0	3/0	1
3	EBIT22OL3	Digital content creation Lab	Lb	0	0/0	3/0	1
4	EBIT22OL4	Computer Network Lab	Lb	0	0/0	3/0	1
5	EBIT22OL5	PHP/My SQL Programming Lab	Lb	0	0/0	3/0	1

ELECTRONICS AND COMMUNICATION ENGINEERING

	DEECTROM	CD III ID COMMICI (I CHI I COM	LITGHTELIT	TT 1	<u> </u>		
S.NO	SUBJECT CODE	SUBJECT NAME	Ty/	L	T/S	P/R	C
			Lb/		Lr		
			ET				
			L				
1	EBEC22OL1	Sensors and IoT Lab	Lb	0	0/0	3/0	1
2	EBEC22OL2	Robotics Control Lab	Lb	0	0/0	3/0	1
3	EBEC22OL3	Basics of MATLAB	Lb	0	0/0	3/0	1

ELECTRICAL AND ELECTRONICS ENGINEERING

S.NO	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ET L	L	T/S Lr	P/R	С
1	EBEE22OL1	Transducer Lab	Lb	0	0/0	3/0	1
2	EBEE22OL2	PLC and SCADA Lab	Lb	0	0/0	3/0	1
3	EBEE22OL3	Electrical Maintenance Lab	Lb	0	0/0	3/0	1
4	EBEE22OL4	Power Electronics Lab	Lb	0	0/0	3/0	1
5	EBEE22OL5	Bio Medical Instrumentation Lab	Lb	0	0/0	3/0	1
6	EBEE22OL6	Electrical Machines Lab	Lb	0	0/0	3/0	1

MECHANICAL ENGINEERING

S.NO	SUBJECT CODE	SUBJECT NAME	Ty/Lb	L	T/S	P/R	C
			/ETL		Lr		
1	EBME22OL1	Internal Combustion Engines and Steam Lab	Lb	0	0/0	3/0	1
2	EBME22OL2	Computer Aided Design and Simulation Lab	Lb	0	0/0	3/0	1
3	EBME22OL3	Engineering Metrology Lab	Lb	0	0/0	3/0	1
4	EBME22OL4	Automation Lab	Lb	0	0/0	3/0	1
5	EBME22OL5	Virtual and Augmented Reality Lab	Lb	0	0/0	3/0	1

CIVIL ENGINEERING

S.NO	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ET L	L	T/S Lr	P/R	С
1	EBCE22OL1	Building Drawing Practice using Auto CADD	Lb	0	0/0	3/0	1
2	EBCE22OL2	Geographical Information System And Mapping Lab	Lb	0	0/0	3/0	1
3	EBCE22OL3	Environmental Engineering Laboratory	Lb	0	0/0	3/0	1

BIOTECHNOLOGY

S.NO	SUBJECT CODE	SUBJECT NAME	Ty/Lb/ETL	L	T/S Lr	P/R	С
1	EBBT22OL1	Basic Biochemistry Lab	Lb	0	0/0	3/0	1
2	EBBT22OL2	Basic Bioprocess Lab	Lb	0	0/0	3/0	1
3	EBBT22OL3	Basic Microbiology Lab	Lb	0	0/0	3/0	1
4	EBBT22OL4	Basic Bioinformatics Lab	Lb	0	0/0	3/0	1

OPEN LABS OFFERED TO OTHER DEPARTMENT STUDENTS

		OPEN LAB					
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL/IE	L	T/ SLr	P/R	С
1	EBCT22OL1	Chemical Separation Lab	Lb	0	0/0	3/0	1
2	EBCT22OL2	Chemical Composition Analysis Lab	Lb	0	0/0	3/0	1
3	EBCT22OL3	Alternate Fuel Lab	Lb	0	0/0	3/0	1
4	EBCT22OL4	Food Testing Laboratory	Lb	0	0/0	3/0	1

OPEN ELELCTIVES OFFERED TO OTHER DEPARTMENT STUDENTS

		OPEN ELECTIVES					
S.N	SUBJECT	SUBJECT NAME	Ty/ Lb/	L	T/ SLr	P/R	C
Ο.	CODE		ETL/IE				
1.	EBCT22OE1	Fundamentals of Nanoscience	Ту	3	0/0	0/0	3
2.	EBCT22OE2	Electrochemical Engineering	Ту	3	0/0	0/0	3
3.	EBCT22OE3	Alternative Fuels And Energy System	Ту	3	0/0	0/0	3
4.	EBCT22OE4	Petrochemical Unit Processes	Ту	3	0/0	0/0	3
5.	EBCT22OE5	Principles of Desalination Technologies	Ту	3	0/0	0/0	3
6.	EBCT22OE6	Piping Design Engineering	Ту	3	0/0	0/0	3
7.	EBCT22OE7	E- Waste Management	Ту	3	0/0	0/0	3

		FOREIGN LANGU	AGE				
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL/IE	L	T/ SLr	P/R	С
1	EBFL22I01	FRENCH	IE	2	0/0	1/0	1
2	EBFL22I02	GERMAN	IE	2	0/0	1/0	1
3	EBFL22I03	JAPANESE	IE	2	0/0	1/0	1
4	EBFL22I04	ARABIC	IE	2	0/0	1/0	1
5	EBFL22I05	CHINESE	IE	2	0/0	1/0	1
6	EBFL22I06	RUSSIAN	IE	2	0/0	1/0	1
7	EBFL22I07	SPANISH	IE	2	0/0	1/0	1

Table 1:Credit Distribution Format

Components of Curriculum and Credit distribution for E&T Programmes

Course	Description	No. of			Credit Weight	Contact
Component		Courses	Credits	Total	age (%)	hours
Basic Science	Theory	5	18	24	15	390
	Lab	1	0			
	ETL	2	6			
Engineering Science	Theory	1	3	6	4	220
	Lab	0	0			
	ETL	1	3			
Humanities and Social Science	Theory	1	2	9	5	195
	Lab	3	5			
	ETL	1	2			
Program Core	Theory	16	55	71	42	1055
	Lab	10	10			
	ETL	2	6			
Program Electives		5	15	15	9	225
Open Elective	Theory	2	6			
_	Lab	1	1	7	4	105
Inter-disciplinary	Theory	5	13			
	Lab	3	3	21	12	255
	ETL	2	4			
Skill Component		6	6	6	3	95
Internship/Project		2	10	10	6	250
Others if any		-	-	-	-	
	TOTAL	68	166	166	100	2790

Table 2: **Revision/modification done in syllabus content:**

S.No	Course(Subject) Code	Course (Subject) Name	Concept/ topic if any,	Concept/topic added in the new curriculum	% of Revision/
	Code		removed in current curriculum	the new curriculum	Modifica ion done
1.	EBCH22002	Industrial Chemistry	Engineering Chemistry - I	Added in the semester I	90%
2.	EBCS22ET1	C Programming and MS office tools	Basic Engineering Workshop	Added in the semester I	90%
3.	EBCT22001	Introduction to Chemical Engineering	Engineering Chemistry - II	New programme core is introduce in the semester II as Introduction to Chemical Engineering to impart basic knowledge of Chemical Engineering	100%
4.	EBPH22003	Biomaterials	Engineering Physics	Introduced specifically for department of Chemical Engineering and Biotechnology	100%
5.	EBCT22L01	Water Analysis Lab	Technical Analysis Lab I	Water Analysis Lab has been in introduce in semester III	100%
6.	EBCT22L03	Food Analysis Lab	Technical Analysis II	Introduced in semester IV	100%
7.	EBOL22I01	Online Course (NPTEL/SWAYAM/any MOOC approved by AICTE/UGC).	-	Added has Inter Disciplinary subject with internal evaluation	100%
8.	EBCT22L05	Process Simulation Software Lab	CADCHEM	Any advanced Chemical engineering software will be imparted	100%
9.	Elective EBCT22E05/ EBCT22E04/ EBCT22E07/ EBCT22E12/	Modern Separation Processes, Green Chemistry and Engineering, Computational Fluid Dynamics, Industrial Instrumentation newly added			20%

Table3: List of New courses/ value added courses//life skills/Electives/interdisciplinary /courses focusing on employability/entrepreneurship/skill development.

S. N o	New courses(Sub jects)	Value added courses	Life skill	Electives	Inter Disciplinary	Focus on employability/entrepre neurship/skill development.
1	BCT22008/ Basic Chemical Engineering	BES22L01/ C Programming and MS office tools	BEN22ET1/ Communica tion Lab	-	BES22ET3/ Orientation to Entrepreneursh ip	Employability
2		BES22L02/ Python Programming	BEN22SK1/ Soft Skill I (Career & Confidence Building)	-	BPH22003/ Bio Materials	Employability
3		BHS20ET5/ Human Value	BEN22SK2/ Soft Skill II (Qualitative and Quantitative Skills)	-		Skill development

SEMESTER - I

G 11 4 4	~ ·	<u> </u>		mr.		SEME				700	/T 1	/IC/IC)	. /mc	_	TD/CIT	D/D	Ta
Subject (ect Nan					SH				/ETI	L/ IE	L	T/SLr	P/R	C
EBEN22			<u>equisite</u>							T				2	0/0	0/0	2
C: Credit																	
R: Resear		Lb/E	TL/IE: T	heory /	Lab/Em	beddec	1 The	eory a	nd L	ab/Inte	ernal	Eva	luation				
OBJECT																	
To refresh																	
in-depth													ommun	iica	ation that	they	are
competen					mic con	nmunic	cation	n for a	suc	cessfu	care	eer.					
COURSE			`	,													
Students									~								
CO1	Refres	h and	stimula	te their	English	learnii	ng th	rough	Cor	ntent Ir	itegr	ated	Langua	ıge	Learning	•	
CO2			_	unders	standing	of t	he c	compo	nen	ts of	Eng	lish	langua	ıge	and its	use	in
	commu																
CO3				ocabula	ary and	l synta	actic	kno	wled	lge fo	r us	se ii	n acad	em	nic and	techn	ical
	commu																
CO4	Learn t	to ne	gotiate n	neaning	in inter-	-persor	nal ar	nd aca	dem	nic com	ımur	nicati	on for a	a sı	uccessful	caree	r
CO5	Engage	e in o	rganized	l acader	nic and	profess	siona	l writ	ing 1	for life	-long	g lear	rning ar	nd 1	research		
Mapping	of Cou	rse (Outcome	with F	rogran	1 Outc	ome	(POs)								
Cos/POs	PO1	PO	2 PO3	PO4	PO5	PO6	PO	7 P	08	PO9	PO	10	PO11]	PO12		
CO1	1	-	1	1	3	1	1	2		3	3		1	3	3		
CO2	-	1	-	2	3	2	1	1		3	3		-	3	3		
CO3	1	1	1	1	2	1	-	2		3	3		1	3	3		
CO4	1	2	1	1	3		1	-		2	2		1	2	2		
CO5	1	2	1	-	2	1	-	1		3	3		1	3	3		
COs/PSC	S	P	SO1	•	PSO2			PS	O3			PS	04				
CO1		3			-			1				1					
CO2		3			-			1				1					-
CO3		3			2			1				1					
CO4		3			2			1				1					
CO5		3			2			1				1					
3/2/1 Ind	icates S	tren	gth Of (Correlat		- High	, 2- N	Aediu	ım, 1	1- Low	,						
						e			,								
						Program elective			Inter Disciplinary		1 50	c III			ject		
	nce			and	J.	ele		ķ	plir		3				Proj		
<i>y</i>	cie		ing	ies ien	ပိ	E		ecti	isci			Ī			[] [E		
280	c S		eer Ce	anit Sc	am	grigo	,	ΕŒ	ĹĎ		2	<u> </u>			tica		
Category	Basic Science		Engineering Science	Humanities and social Science	Program Core	Pro		Open Elective	nteı			экш Сошропеш			Practical /Project		
	Щ		Er	H, Sos	Pr			O	I		٥	7]		\perp	<u> </u>		
				V													

Subject	Subject Name :	Ty/Lb/	L	T/SLr	P/R	C
Code	TECHNICAL ENGLISH	ETL/IE				
EBEN22001	Prerequisite: Higher Sec.English	Ty	2	0/0	0/0	2

UNIT I VOCABULARY DEVELOPMENT

6Hrs

Affixes: prefixes and suffixes and word formation—synonyms and antonyms-nominal compounds, expanding using numbers and approximation - preposition, prepositional phrases, preposition + relative pronounadjective: degrees of comparison, formation of adjectives, irregular comparatives- Infinitive and Gerunds

UNIT II GRAMMAR 6Hr

Tenses- auxiliary and modal –voice: active, passive and impersonal passive - Questions: Wh-pattern, Yes/no questions, tag questions – adverbs and adverbial clauses- 'If' clause, 'cause and effect', 'purpose'- Concord: subject-verb agreement

UNIT III READING 6Hrs

Comprehension: extracting relevant information from the text, by skimming and scanning and inferring, identifying lexical and contextual meaning for specific information, identifying the topic sentence and its role in each paragraph, comprehension exercises - Note - making - Précis writing-instructions, suggestions and recommendations.

UNIT IV WRITING 6Hrs

Jumbled sentences- paragraph writing coherence devices- discourse markers. Essay writing- Letter writing, Informal and formal: seeking permission to undergo practical training, letter to an editor of a newspaper complaining about civic problems and suggesting suitable solutions

UNIT V VISUAL AIDS IN COMMUNICATION

6Hrs

Interpretation of diagrams - tables, flow charts, pie charts and bar charts, and their use in Business reports

Total no. of Periods: 30Hrs

TEXT BOOK

1. Panorama_: Content Integrated Language Learning for Engineers, M. Chandrasena Rajeswaran&R.Pushkala,, Vijay Nicole Imprints Pvt. Ltd., Chennai

REFERENCES

- 1. Bhatnagar & Bhatnagar, Communicative English for Engineers and Professionals, Pearson
- 2. Wren and Martin: Grammar and Composition, Chand & Co. 2006
- 3. https://learnenglish.britishcouncil.org
- 4. www.better-english.com/grammar/preposition.

Subject	Subject Name :MATHMATICS-I	Ty/Lb/ETL/IE	L	T/S.Lr	P/R	C
Code: EBMA22001	Prerequisite: Higher secondary Mathematics	Ty	3	1/0	0/0	4
I · I ecture T ·	Tutorial S. Lr. Supervised Learning D. Project	R · Research C· Ci	redite	,		

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVES:

- Apply the Basic concepts in Algebra
- Use the Basic concepts in Matrices Identify and solve problems in Trigo

he Bas	ic conc	concer epts in									
COM		epts in	Function								
	MES (COs):										
Find tl	he sum	mation	of give	n series	of bin	omial ,	exponenti	al and log	arithmic		
Transf	form a	non-dia	gonal n	natrix i	nto an e	equivale	ent diagoi	nal matrix	using or	thogonal	
			of trigor	nometri	c functi	ion into	an infini	te series a	nd separ	ate real a	nd
								na of func	tion of s	everal va	riable
								T = -			1
					PO6					PO11	PO12
					1		1	3			
								3			
											1
_											2
	_	1			1	2	1		2	1	3
P	PSO1		PS	SO2				PSO3			PSO4
	3			3				3			3
	3			3				3			3
	3			3				3			3
	3			3				3			3
	3			3				3			3
Streng	gth Of	Correl	ation, 3	3 – Hig	h, 2- M	ledium,	, 1- Low				
Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives			Practical /Project			
	Find the Transfer Find the Tra	Find the sum Transform a stransformatic Find the expairaginary pa Find the max Evaluate the surse Outcom PO1 PO2 3 3 3 3 3 3 PSO1 3 Strength Of	Find the summation Transform a non-dia transformation Find the expansion of simaginary parts Find the maxima and Evaluate the partial/surse Outcomes with PO1 PO2 PO3 3 3 2 3 3 1 3 2 2 3 3 1 PSO1 PSO1 Strength Of Correl	Find the summation of give Transform a non-diagonal retransformation Find the expansion of trigor imaginary parts Find the maxima and minin Evaluate the partial/total diffurse Outcomes with Progr PO1 PO2 PO3 PO4 3 3 2 2 3 3 1 2 3 3 1 2 PSO1 PSO1 PSO1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Find the summation of given series Transform a non-diagonal matrix is transformation Find the expansion of trigonometric imaginary parts Find the maxima and minima of the Evaluate the partial/total differentiators The expansion of trigonometric imaginary parts Find the maxima and minima of the Evaluate the partial/total differentiators The expansion of trigonometric imaginary parts Find the ex	Find the summation of given series of bind Transform a non-diagonal matrix into an extransformation Find the expansion of trigonometric function imaginary parts Find the maxima and minima of the given Evaluate the partial/total differentiation are surse Outcomes with Program Outcomes PO1 PO2 PO3 PO4 PO5 PO6 3 3 2 2 2 1 3 3 3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 1 1 1 PSO1 PSO2 BYOUND PSO2 BYOUND PSO2 BYOUND PSO2 Strength Of Correlation, 3 – High, 2- Matrix and matrix into an extransformation of the given program outcomes are surse outcomes with Program Outcomes PO1 PO2 PO3 PO4 PO5 PO6 3 3 3 2 2 2 2 1 2 3 3 3 3 3 3 3 3 3 3 3	Find the summation of given series of binomial, or Transform a non-diagonal matrix into an equivalent transformation Find the expansion of trigonometric function into the imaginary parts Find the maxima and minima of the given function into the imaginary parts Find the maxima and minima of the given function into the imaginary parts Evaluate the partial/total differentiation and maximates outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 3 3 2 2 2 1 2 3 3 1 2 2 3 1 3 3 1 2 2 2 3 1 3 3 1 2 1 1 2 PSO1 PSO2 PSO2 Strength Of Correlation, 3 – High, 2- Medium	Find the summation of given series of binomial ,exponential Transform a non-diagonal matrix into an equivalent diagonal transformation Find the expansion of trigonometric function into an infinity imaginary parts Find the maxima and minima of the given function Evaluate the partial/total differentiation and maxima/minimarse Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 3 3 2 2 2 1 2 2 3 3 1 2 3 2 1 2 3 3 1 2 2 2 1 2 2 3 3 1 1 2 1 1 2 1 PSO1 PSO2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Find the summation of given series of binomial ,exponential and log Transform a non-diagonal matrix into an equivalent diagonal matrix transformation Find the expansion of trigonometric function into an infinite series a simaginary parts Find the maxima and minima of the given function Evaluate the partial/total differentiation and maxima/minima of functions Evaluate the partial/total diff	Find the summation of given series of binomial ,exponential and logarithmic Transform a non-diagonal matrix into an equivalent diagonal matrix using or transformation Find the expansion of trigonometric function into an infinite series and separ imaginary parts Find the maxima and minima of the given function Evaluate the partial/total differentiation and maxima/minima of function of surse Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 3 3 2 2 2 2 1 2 2 3 3 3 3 3 3 3 3 3 3 3	Find the summation of given series of binomial ,exponential and logarithmic Transform a non-diagonal matrix into an equivalent diagonal matrix using orthogonal transformation Find the expansion of trigonometric function into an infinite series and separate real a simaginary parts Find the maxima and minima of the given function Evaluate the partial/total differentiation and maxima/minima of function of several valuese Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 3 3 2 2 2 1 2 2 3 1 2 2 3 1 2 3 3 1 2 3 2 2 2 1 2 2 3 1 2 3 2 3 3 1 2 1 2 2 3 2 2 2 1 2 2 2 2 1 2 2 3 1 2 3 3 1 2 1 1 2 2 2 2 2 2 1 2 2 2 1 2 2 2 1 1 2 2 2 1 1 2 1 2 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1

Subject Code :	Subject Name: MATHEMATICS – I	Ty/Lb/ETL/IE4	L T/SLr	P/R	C
EBMA22001	Prerequisite : None	Ту	3 1/0	0/0	4

UNIT I ALGEBRA 12Hrs

Binomial, Exponential, Logarithmic Series (without proof of theorems) – Problems on Summation, Approximation and Coefficients.

UNIT II MATRICES

12Hrs

Characteristic equation – Eigen values and Eigen vectors of a real matrix – Properties of Eigen values – Cayley - Hamilton theorem(without proof) – Orthogonal reduction of a symmetric matrix to Diagonal form.

UNIT III TRIGONOMETRY

12Hrs

Expansions of Sin $n\square$, Cos $n\square$ in powers of Sin \square and Cos \square – Expansion of Tan $n\square$ – Expansions of Sin $^n\square$ and Cos $^n\square$ in terms of Sines and Cosines of multiples of \square – Hyperbolic functions – Separation into real and imaginary parts.

UNIT IV DIFFERENTIATION

12Hrs

Basic concepts of Differentiation – Elementary differentiation methods – Parametric functions – Implicit function –Leibnitz theorem(without proof) – Maxima and Minima – Points of inflection.

UNIT V FUNCTIONS OF SEVERAL VARIABLES

12Hrs

Partial derivatives – Total differential – Differentiation of implicit functions – Taylor's expansion – Maxima and Minima by Lagrange's Method of undetermined multipliers – Jacobians.

Total no. of Hours: 60Hrs

TEXT &REFERENCE BOOKS:

- 1) Kreyszig E., Advanced Engineering Mathematics (10th ed.), John Wiley & Sons, (2011).
- 2) Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).
- 3) John Bird, Basic Engineering Mathematics (5th ed.), Elsevier Ltd, (2010).
- 4) Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).
- 5) P.Kandasamy, K.Thilagavathy and K. Gunavathy, Engineering Mathematics Vol. I (4th Revised ed.),S.Chand& Co., Publishers, New Delhi (2000).
- *6) John Bird, Higher Engineering Mathematics* (5th ed.), Elsevier Ltd, (2006).

Subject (Subject N	lame :El	NGINE	EERING	G PHY	SIC	CS	Ty/L ETL		L	T/SLr	· P/F	R C
		j	Prerequis	site :Hig	her Se	c. Physi	cs			ETL		2	0/0	2/0	3
C: Cred	ts. L: Le							nin	σ. P :						
R: Resea															
OBJEC								5							
		he re	lation be	tween S	cience	. Engin	eering	&	Tecl	nology	·.				
			competer			_	_								
			nental lav	•		_			-		V				
			solve pr							molog	<i>,</i>				
										hrough	effecti	ive tec	chnical	commun	ication
COURS				ctivities	associ	ated WI	tii tiic	COL	1130	mougn	CIICCI	ive tee	micai	Commun	ilcation
Students				were able	e to										
			compete			anding	basic	cor	cept	S.					
											trate co	ompet	encv w	vith expe	rimental
			verify th				_					P		<u>-</u>	
			provide s												
			chnical c							actical s	ituatio	ns.			
			ically to						<u> </u>		10000010				
Mapping							e (POs	()							
Cos/POs		PO		PO	_		PO6	-	07	PO8	POS) <u>I</u>	PO10	PO11	PO12
CO1	3	2	1	2	1	. 1)	1			1	7	•		1
CO2	3	3	1 2	2 2	2			1			1 2	2		1	1
CO3	3	3	3	2	2			1		1	1	2		1	2
CO4	3	3	2	2	1			2		1	2	2		1	2
CO5	3	3	2	1	1			1		2	1	2		1	1
COs/PSOs			PSO1		PSO2			03			PSC			1 -	
CO1			3	2	2		1				1				
CO2			3	2	2		1				1				
CO3			3	2	2		1				1				
CO4			3	2	2		1				1				
CO5			3	2			1				1				
3/2/1 Ind	icates St	reng	th Of Co	rrelation	n, 3 – H	Iigh, 2-	Mediu	ım,	1- L	ow			1		
Category	Basic Science		Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective		Inter Disciplinary		Skill Component		Practical /Project		
Ca	Ba		Eng	Hun	Prog	Prc	Ope		Int		Sk		Pre		

Subject Code EBPH22ET1	Subject Name : ENGINEERING PHYSICS	Ty/Lb/ ETL/IE	L	T/ SLr	P/R	С
	Prerequisite : Higher Sec. Physics	ETL	2	0/0	2/0	3

UNIT I PROPERTIES OF MATTER

12Hrs

Shafts – Solid & Hollow Shafts – Bending moment – Youngs Modulus Determination -I form of girders. viscosity - flow of liquid through a narrow tube: Poiseuille's law - Ostwald's viscometer – Lubrication

Lab Component – 1. Torsional Pendulum – Determination of Rigidity Modulus

2. Coefficient of Viscosity determination using Poiseuille's Method

UNIT II ACOUSTICS & ULTRASONICS

12Hrs

Fundamentals of acoustics - reverberation- reverberation time - factors affecting acoustics. Ultrasonics -Production of ultrasonic waves - detection of ultrasonic waves+ - acoustic grating - application of ultrasonic waves.

Lab Component – 3. Ultrasonic Velocity Determination

UNIT III WAVE OPTICS

12Hrs

Huygen's principle - interference of light - wave front splitting and amplitude - air wedge - Newton's mings - Michelson interferometer and its applications - Fraunhofer diffraction from a single slit - diffraction grating

Lab Component - 4. Spectrometer - Grating

UNIT IV LASER 12Hrs

Laser principle and characteristics - amplification of light by population inversion - properties of laser beams: monochromaticity, coherence, directionality and brightness - different types of lasers - Ruby laser-Nd-YAG laser-He-Ne laser-CO₂ laser - semiconductor laser - applications of lasers in science, engineering and medicine.

Lab Component – 5. Determination of Wavelength of the given Laser source

UNIT V FIBER OPTIC COMMUNICATION

12Hrs

Total Internal Reflection – Propagation of Light in Optical Fibers – Numerical aperture and Acceptance Angle – Types of Optical Fibers (material, refractive index, mode) – Fiber Optical Communication system (Block diagram) – Attenuation–Transmitter, Receiver, Dispersion, Modulation/Demodulation Advantages of Fiber Optical Communication System – IMT, PMT, Wavelength Modulated & Polarization Modulated Sensors – Endoscope Applications.

Lab Component – 6. Determination of Numerical Aperture of Optical Fiber

TEXT BOOKS

Total No of Hours: 60Hrs

- 1. Brijlal, M. N. Avadhanulu & N. Subrahmanyam, Text Book of Optics, S. Chand Publications, 25th edition, 2012
- 2. R. Murugeshan, Electricity and Magnetism, S.Chand Publications, 10th edition, 2017
- 3. R. Murugeshan & Kiruthiga Sivaprasath, Modern Physics, S.Chand Publications, 2016

REFERENCE BOOKS

- 1. Dr. Senthil Kumar Engineering Physics I VRB Publishers, 2016
- 2. N Subrahmanyam & Brijlal, Waves and Oscillations, Vikas Publications, New Delhi, 1988
- 3. N Subrahmanyam & Brijlal, Properties of Matter, S. Chand Co., New Delhi, 1982
- 4. N Subrahmanyam & Brijlal, Text book of Optics, S. Chand Co., New Delhi, 1989
- 5. R. Murugeshan, Electricity and Magnetism, S. Chand & Co., New Delhi, 1995
- 6. Thygarajan K & Ajay Ghatak, Laser Theory and Applications, Macmillan, New Delhi, 1981 7.

Subject Co EBCH22E		Subject	Name	ENGI	NEERI	NG CI	IEMIS	TRY	7	Ty/Lb/ ETL/IE	L		T/SL	r P/R	C
	F	rerequ	isite :I	Higher	Sec. Cl	nemistr	y			ETL	2		0/0	2/0	3
C: Credits	, L: Le	cture, 7	Γ: Tuto	rial, Sl	Lr: Su	pervise	ed Lea	rning	, P	: Proble	m / P	actic	al		
R: Researce	ch, Ty/l	Lb/ETI	L/IE: T	heory .	/Lab/E	mbedd	ed Th	eory	anc	l Lab/In	ternal	Eval	luatio	n	
OBJECTI	VES														
	leduce p														
_			_			_	ts of cl	nemic	al t	hermody	namic	S			
	ırticulat														
	mpart tl		_												
							_		_	with cond	cepts	of pol	ymers	3	
 To i 	ntroduc	e analy	tical to	ols for c	haracte	rizatio	ı techn	iques.							
COURSE	OUTC	OMES	(Cos)												
Students co			` /	vere ab	le to										
CO1	Apply re	elevant	instrum	nentatio	n techn					problen					
CO2	Recall t	he fun	dament	als and	demo	nstrate	by un	dersta	and	ing the	first p	rinci	ples o	of Engine	erin
	sciences														
										ide valid					
			e colla	boratio	n of so	cience	and E	ngine	erir	ng to rec	cogniz	e the	need	l for life	lon
	earning														
									e h	ealth and	socie	ty iss	ues.		
Mapping o					_			1	<u>. </u>	DOO	DO1	0 D	011	DO12	
Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	8	PO9	PO1	U P	011	PO12	
CO1 CO2	3	3	3	3	3	3				2				3	
CO2 CO3	3	3	2	3		3								3	
CO4	3	3	4	3				3						3	
CO5	3	3		3		2	3	2						3	
COs/PSO	_	PSO	1		PSO2		J	4		PSO3	I	SO4	I	PSO5	
CO3/150		3	1								3			303	
		3			-					<u>3</u>	3				
CO2					-										
CO3		3			-					3	3				
CO4		3			-					3	3				
CO5	4 04	3	Of C	1 4*	<u>-</u>	T' 1 2	N 7 1º	1		3	3)			
3/2/1 Indic	ates Sti	rengtn	Of Cor		n, 3 – F	11gn, 2.	- Meai	um, 1	L	<u>.ow</u>	1				
gory	Basic Science	Engineering Science		Humanities and social Science	Program Core	Program elective	Cuitore		Inter Disciplinary		Skill Component			Practical /Project	
Category	Basic	ngine		Iuman	rograi	Progra) 2	, pen r	Inter]		Skill			Practi	

Subject Code : EBCH22ET1	Subject Name : ENGINEERING CHEMISTRY	Ty/Lb /ETL/IE	L	T/ SLr	P/R	С
	Prerequisite : None	ETL	2	0/0	2/0	3

UNIT -I CHEMICAL THERMODYNAMICS

12Hrs

Introduction, Terminology in thermodynamics –System, Surrounding, State and Path functions, Extensive and intensive properties. Laws of thermodynamics – I and II laws-Need for the II law. Enthalpy, Entropy, Gibbs free energy, Helmholtz free energy - Spontaneity and its criteria. Maxwell relations, Gibbs -Helmholtz equation (relating E & A) and (relating H & G).

UNIT -II TECHNOLOGY OF WATER

12Hrs

Water quality parameters – Definition and expression. Analysis of water – alkalinity, hardness and its determination (EDTA method only). Boiler feed water and Boiler Troubles-Scales and sludges, Caustic embrittlement, Priming and Foaming and Boiler corrosion. Water softening processes – Internal conditioning, external conditioning – Demineralization methods. Desalination processes-RO and Electrodialysis.

Lab Component-1. Analyze the water quality parameters for the given water sample.

UNIT -III ANALYTICAL AND CHARACTERIZATION TECHNIQUES

12Hrs

Chromatographic techniques – column, thin layer and paper. Instrumentation-working with block diagram- UV-Visible Spectroscopy, IR Spectroscopy, Scanning electron microscope, Transmission electron microscope.

Lab Component-2. Determination of Rf values of various components using thin layer chromatography.

3. Compute and interpret the structures of the given molecules using Chem Draw.

UNIT – IV ELECTROCHEMISTRY

12Hrs

Conductance – Types of conductance and its Measurement. Electrodes and electrode potential, Nernst equation – EMF measurement and its applications-Electrochemical series- Types of electrodes- Reference electrodes- Standard hydrogen electrode- Saturated calomel electrode-Determination of PH using these electrode.

Lab Component-4. Studies on acid-base conductometric titration.

5. Determination of redox potentials using potentiometry

UNIT -V POLYMERS AND NANO COMPOSITES

12Hrs

Polymers-Introduction-Monomers – Functionality – Degree of polymerization-Tacticity. Classification- Plastics – Thermoplastics and thermosetting plastics, Compounding of plastics – Compression moulding, injection moulding and extrusion processes. Nano composites:particulates, clay and carbon nano tubes. Graphene nano composites and its applications.

Lab Component-6.Polymeric analysis using capillary viscometer

Total No. of Hours: 60Hrs

REFERENCES

- 1. Jain & Jain Engineering Chemistry 17th Edition, Dhanpat Rai Publishing Company
- 2. Vasant R. Gowariker., N. V. Viswanathan, Jayadev Sreedhar, Polymer Science, New Age International, 1986
- 3. B.K. Sharma, Polymer Chemistry, Goel Publishing House
- 4. Y. R. Sharma, Elementary Organic Spectroscopy, S.Chand& Company Ltd.
- 5. N.Krishnamurthy, K.Jeyasubramanian, P.Vallinayagam, Applied Chemistry, Tata McGraw-Hill Publishing Company Limited, 1999.
- 6. Chichester, polymer-clay-nano composites, Johnwiley (2000)

Subject Code EBEE22ET1					LECTI EERIN		&			y/Lb/ TL/IE	L	T	/SLr	P/R	С
			te : No		<u> </u>					TL	2	0/	0	2/0	3
C: Credits, L	: Lectu	re, T: '	Tutoria	al, SLr	: Supe	rvised	Lear	ning,	P: 1	Problem	/ P	racti	cal		
R: Research,														on	
OBJECTIVE	ES														
• Unde	rstand t	he cor	cepts	of circ	uit eler	nents,	circu	it lav	vs a	nd coupl	led	circu	iits.		
• Gain	informa	ation o	n mea	sureme	ent of e	lectric	al pa	rame	ters	•					
							-			nergy pr	odu	ictio	n.		
										modern				dgets.	
	•							_		e device			8	8	
COURSE OU				tome c	neares	una us	SCIIIC	10 51	прт	<u>c de vice</u>	٥.				
Students comp				e able	to										
CO1	Comput					ters for	simp	le pro	oble	ms					
CO2										ement pr	inc	iples			
CO3										wer Gen			Trans	mission	and
	Distribu								•						
CO4	Analyze	e the w	orking	princip	les and	charac	terist	ics of	ana	log electi	oni	ic dev	vices		
CO5	Underst	lerstand basics of digital electronics and solving problems and design combinational													
	circuits														
			Outcome with Program Outcome (POs)												
Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO'	7 P(O8	PO9	P	<u> </u>	PO1		O12
CO1	3	3	3	3									2	1	
CO2	3	3	3	2	2		2						2		
CO3	3	2	3	2	3		2			2				1	
CO4	3	2		2	_		2						2	1	
CO5/PSOs	3	2	3	2	3			700		2	ı		2	1	
		PSO	1		PSO ₂			PSC)3			PSO)4		
CO1		3		-	-			-			_	-			
CO2		3			-										
CO3		3			-			-			-	-			
CO5		3			-			-			-	-			
3/2/1 Indicate	oc Strone		Corro	lation	<u>-</u> 3 Ціс	rh 2- N	//odin	- m 1.	Ι Δ	**7					
3/2/1 Harcate		gin Oi	Corre	1411011,	<u> </u>	511, 2- 1	Tearu	111, 1	LU	**					
Category	Basic Science	Engineering Science)	Humanities and social Science	Program Core	Program elective	,	Open Elective	Inter Disciplinary		Skill Component		Practical /Project		

Subject	Subject Name : BASIC ELECTRICAL &	Ty/Lb/	L	T /	P/R	C
Code :	ELECTRONICS ENGINEERING	ETL/IE		\mathbf{SL}		
EBEE22ET1				r		
	Prerequisite : None	ETL	2	0/0	2/0	3

UNIT I ELECTRIC CIRCUITS

12Hrs

Electrical Quantities – Ohms Law – Kirchhoff's Law – Series and Parallel Connections – Current Division and Voltage Division Rule - Source Transformation – Wye (Y) – Delta (Δ) , Delta (Δ) – Wye (Y) Transformation – Rectangular to Polar and Polar to Rectangular

Lab Components – Measurement of Electrical Quantities

UNIT II MACHINES & MEASURING INSTRUMENTS

12Hrs

Construction & Principle of Operation of DC motor & DC Generator – EMF equation of Generator – Torque Equation of Motor – Construction & Principle of operation of Transformer – Operating principles and Types of measuring instruments – Moving coil, Moving iron – Principle of Energy meter

Lab Component - Measurement of Energy Using energy meter

UNIT III BASICS OF POWER SYSTEM

12Hrs

Generation of Electric Power (Thermal, Hydro, Wind and Solar) – Basic structure of Power system – Types of Transmission & Distribution Schemes – Representation of Substation.

Lab Component - Residential house wiring Stair case wiring

UNIT IV ELECTRON DEVICES

12Hrs

Semiconductor Materials: Silicon and Germanium – PN Junction Diode, Zener Diode – Characteristics and Applications – Bipolar Junction Transistor - JFET, SCR, MOSFET, IGBT –Characteristics and Applications – Operating principle - Rectifiers and Inverters

Lab Component - Resistor colour coding -Resistance Measurement

UNIT V DIGITAL SYSTEM

12Hrs

Number System – Binary, Decimal, Octal, Hexadecimal – Binary Addition, Subtraction, Multiplication & Division – Boolean Algebra – Reduction of Boolean Expressions – Logic Gates - De-Morgan's Theorem - Adder – Subtractor Lab Component - Soldering practice, Logic Gates

Total no of Hours: 60Hrs

TEXT BOOKS:

- 1. D P Kothari, I J Nagrath, 2017, Basic Electrical Engineering, Second Edition, Tata McGraw-Hill Publisher
- 2. A.K. Sawhney, 2015 A Course in Electrical and Electronic Measurements and Instrumentation, Dhanpat Rai & CO publisher
- 3. B.L. Theraja, A.K. Theraja, Text Book of Electrical Technology: Volume 3: Transmission, Distribution and Utilization, S. Chand publisher
- 4. Morris Mano, M, 2016 Digital Logic and Computer Design, Prentice Hall of India
- 5. Millman and Halkias 2015, Electronic Devices and Circuits, Tata McGraw Hill

REFERENCE BOOKS:

1. R. Muthusubramanian, S. Salivahanan, K A Muraleedharan, Basic Electrical, Electronics and Computer Engineering, Second Edition, Tata McGraw-Hill publisher

SEMESTER I (PRACTICAL)

Subject Cod EBCC22I01		TREPI		ORIENT IRSHIP					Ty/I ETI		L	T/SL	r P/F	2	C
		erequis	site : N	one				I	E		1	0/0	1/0		1
C: Credits,					Super	vise	d Le	earni	ing, I	P: Pr	oblem	/ Praction	cal		
R: Research					-				_						
OBJECTIV	ES								<u> </u>						
• Und	lerstand l	ow en	treprer	eurshi	Educa	atio	n tra	nsfo	orms	indi	viduals	into su	ccessfu	1	
lead			1												
• Ider	ntify indiv	zidual ı	otenti	al &S 1	nave ca	ree	r dre	ams	:						
	lerstand o	-													
	ntify com						Jorta	111111	<i>-</i> 13						
	brainsto						leac								
COURSE C				Jup to g	generat	c iu	icas.								
Students cor		`	,	e able to	`										
CO1	Develop					e al	hilits	z to	recog	nize	e busin	ess onn	ortunity		
CO2	Do a sel										Ousin	сва орр	ortunity		
CO3	Articula					_	ncui	iai c	arcci	•					
CO4	Analyze						0- 1	0.000	nata	·+	aa ahili	try to Ex	nd on oth	-mo.o.t	
CO4	_	the io	cai illa	rket en	VIIOIIII	em	. & u	ешс	mstr	ne n	ie abiii	ity to III	ia an an	racı	ive
COF	market	41		1 '11 C				1.	0		1				
CO5	Identify								2 & 0	ieve.	lop				
Mapping of									7 D	00	DOO	DO10	DO11	DC	112
Cos/POs CO1	PO1	PO2 2	PO3	PO4 3	PO5 2	2	06	PO' 2	/ P	08	PO9 2	PO10 2	PO11 2	1)12
CO2	3	2	<u> </u>	3	2	3		2	3		3	3	2	2	
CO2	3	2	2	2	4	3		4	3		3	3	<u> </u>	4	
CO4		3	2	2	2	2			3		2	2	3		
CO5		2	2	3	2	2		3	3		2	2	3	1	
COs/PSOs		PSO] 3	PSO2			<u>J</u>	PSC)3	4	PSO		1	
CO1		2	<u> </u>		1502				3)3		150	74		
CO2		2							3						
CO3		2							3						
CO4		2							3						
CO5		2							3						
3/2/1 Indica	tes Strens	eth Of	Correl	ation, 3	– High	1. 2-	Med	diun	ı. 1-]	Low					
				_ · ·, •		<i>,</i>			,	1					
Ŷ.	Basic Science	ili g	0	Humanities and social Science	Program Core		Program elective		Open Elective	Inter Disciplinary		Skill Component		1 Duction	Fractical /Froject
Category	S S	Engineering	Science	Humaniti Science	am		уraп		Ele	rDi		1C ₀		.;	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

Subject Code : EBCC22I01	Subject Name : ORIENTATION TO ENTREPRENEURSHIP & PROJECT LAB	Ty/Lb/ETL/IE	L	T/ SLr	P/R	C
	Prerequisite : None	IE	1	0/0	1/0	1

UNIT I CHARACTERISTICS OF A SUCCESSFUL ENTREPRENEUR 3Hrs

Introduction to entrepreneurship education – Myths about entrepreneurship – How has entrepreneurship changed the country – Dream it. Do it - Idea planes - Some success stories – Global Legends – Identify your own heroes –

UNITII ENTREPRENEURIAL STYLE

3Hrs

Entrepreneurial styles – Introduction, concept & Different types - Barrier to Communication – Body language speaks louder than words

UNIT III DESIGN THINKING

3Hrs

Introduction to Design thinking – Myth busters – Design thinking Process - Customer profiling – Wowing your customer – Personal selling – concept & process – show & tell concept – Introduction to the concept of Elevator Pitch

UNIT IV RISK MANAGEMENT

3Hrs

Introduction to risk taking & Resilience – Managing risks (Learning from failures, Myth Buster) – Understanding risks through risk takers – Why do I do? – what do I do?

UNIT V PROJECT 3Hrs

How to choose a topic – basic skill sets necessary to take up a project – creating a prototype – Pitch your project – Project presentation.

IDEA GENERATION. EVALUATION & PROJECT PRESENTATION

15Hrs

Total No. of Periods: 30Hrs

Reference Books& Website

- 1. Encyclopedia of Small Business (2011) (e book)
- 2. Oxford Handbook of Entrepreneurship (2014)–(e book)
- 3. lms.learnwise.org

Subject Code: EBCS22ET1	Subject Name: C PROGRAMMING AND MS OFFICE TOOLS	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	С
	Prerequisite: Nil	ETL	1	0/0	2/0	2
C: Credits, L:	Lecture, T: Tutorial, SLr: Supervised Learning, P: P	roblem / Pr	actio	cal		
R. Research	Tv/Lb/FTL/IF: Theory /Lab/Embedded Theory and La	ah/Internal	Fva	luation		

OBJECTIVES: The student should be made to:

- Learn a programming language.
- Learn problem solving techniques.
- Write programs in C and to solve the problems.

							_			_	_	
			•			-				tomation	tools.	
						ms writt	en in C	languag	ge.			
Apply												
11.			_									
To pe	rform d	ocument	ation, a	ccounti	ng opera	ations ar	nd prese	ntation	skills			
Course (Outcom	es with	Progra	m Outc	omes (P	Os)						
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
2		2	2	1	1	1	1	1	1	2	2	
2	2	2	2	1	1	1	1	1	1	2	2	
2	2	3	2	1	1	1	1	1	1	3	2	
2	2	3	3	1	1	1	1	1	1	3	2	
1	1	1	1	1	1	0	0	2	3	2	0	
PSO1	<u> </u>		PSO2			PSO3 PSO4						
1			1			2			2			
1			1			2			2			
1			1			2						
1			1			2			2			
1			1			2			2			
s Stren	gth Of	Correla	tion, 3 -	- High,	2- Medi	um, 1-	Low		_			
Basic Science	Engineering	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				
	Index the strength of the stre	iarize the studer TCOMES (CC) Understand a Write the C c Apply Array Apply Struct To perform d Course Outcom PO1 PO2 2 2 2 2 2 2 1 1 PSO1 1 1 1 1 1 1 1 1 1 1 1 1	iarize the students in procession of the students of t	TCOMES (COs): After Com Understand and trace the exect Write the C code for a given at Apply Arrays and Functions Apply Structures and pointer To perform documentation, at Course Outcomes with Progra PO1 PO2 PO3 PO4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 PSO1 PSO2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	iarize the students in preparation of doc TCOMES (COs): After Completing Understand and trace the execution of Write the C code for a given algorithm Apply Arrays and Functions concept Apply Structures and pointers concept To perform documentation, accounting Course Outcomes with Program Outce PO1 PO2 PO3 PO4 PO5 2 2 2 2 1 2 2 2 1 2 2 2 1 2 2 1 2 PSO1 PSO1 PSO2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TCOMES (COs) :After Completing the could Understand and trace the execution of program Write the C code for a given algorithm. Apply Arrays and Functions concepts to write Apply Structures and pointers concepts for which To perform documentation, accounting operations of Potential Pot	Tromes (Cos): After Completing the course, the Understand and trace the execution of programs writt Write the C code for a given algorithm. Apply Arrays and Functions concepts to write Program Apply Structures and pointers concepts for writing Properform documentation, accounting operations are Course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 2 2 2 2 2 1 1 1 1 1 2 2 2 3 3 2 1 1 1 1	TCOMES (COs): After Completing the course, the student Understand and trace the execution of programs written in C Write the C code for a given algorithm. Apply Arrays and Functions concepts to write Programs Apply Structures and pointers concepts for writing Programs To perform documentation, accounting operations and presecurse Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Treating the students in preparation of documents and presentations with a trace the student can be understand and trace the execution of programs written in C language. Write the C code for a given algorithm. Apply Arrays and Functions concepts to write Programs. Apply Structures and pointers concepts for writing Programs. To perform documentation, accounting operations and presentation. To perform documentation, accounting operations and presentation. To perform documentation, accounting operations and presentation. To perform documentation, accounting operations and presentation. To perform documentation, accounting operations and presentation. To perform documentation, accounting operations and presentation. To perform documentation, accounting operations and presentation. To perform documentation, accounting operations and presentation. To perform documentation, accounting operations and presentation. To perform documentation, accounting operations and presentation. To perform documentation, accounting operations and presentation. To perform documentation, accounting operations and presentation. To perform documentation, accounting operations and presentation. To perform documentation, accounting operations and presentation. To perform documentation, accounting operations and presentation. To perform documentation, accounting operations and presentation. To perform documentation accounting operations and presentation. To	Tromes (Cos): After Completing the course, the student can be able to Understand and trace the execution of programs written in C language. Write the C code for a given algorithm. Apply Arrays and Functions concepts to write Programs Apply Structures and pointers concepts for writing Programs To perform documentation, accounting operations and presentation skills Course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11	

Subject Code:	C PROGRAMMING AND MS OFFICE TOOLS	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	C
EBCS22ET1	Prerequisite: Nil	ETL	1	0/0	2/0	2

UNIT I INTRODUCTION

3Hrs

Basic Structure of C programme- Constants, Variables and data types, Keywords, Identifiers- Operators and expressions- executing a C Program

UNIT II DECISION MAKING STATEMENTS AND LOOPING STATEMENTS 3Hrs

Decision making with if statement, Simple if statement, else-if statement, Nesting if-else statement, The else if ladder, The switch statement, The goto statement, The while statement, The do while statement, The for statement, jumps in loops

UNIT III ARRAYS AND FUNCTIONS

3Hrs

Introduction to Arrays- One dimensional arrays, Two dimensional array, and Multidimensional array- Introduction to Functions- calling a function, category of functions- arguments with return values, argument with no return values- parameter passing Mechanism: Call by Value and Call by Reference. Recursion.

UNIT IV STRUCTURES& POINTERS

3Hrs

Structures definition, giving values to members, Structure initialization, comparison of structure variables, Structure within structures, Understanding pointers, accessing the address of the variable, declaring and initializing pointer, accessing a variable through its pointer and arrays

UNIT V MS-OFFICE

3Hrs

Introduction to MS-Word- Menus- Introduction to MS-Excel: features of MS- Excel, spread sheet/worksheet, parts of MS-excel window, functions in excel sheet, chart, Introduction to MS-Power point

Total No. of Hours: 15Hrs

TEXT BOOKS:

- 1. E.Balaguruswamy, Programming in ANSI C
- 2. Padma Reddy, Computer Concepts & 'C' Programming
- 3. ShobhaHangirke, Computer Application For Business

List of Experiments: C PROGRAMMING

30 periods

- 1. Find the factorial of a given positive number using function.
- 2. Calculate X raised to y using function.
- 3. Find GCD and LCM of two given integer numbers using function.
- 4. Find the sum of N natural numbers using function.
- 5. Book information using Structure.
- 6. Student information using Structure.
- 7. Print the address of a variable and its value using Pointer
- 8. Find area and perimeter of a circle
- 9. Check whether the given number is palindrome or not
- 10. Check whether the given number is prime or not
- 11. Calculate sum of the digits of the given number
- 12. Display Fibonacci series up to N terms
- 13. Check whether a given character is alphabetic, numeric or special character
- 14. Count vowels and consonants in a given string
- 15. Find product of two matrices

MS-OFFICE

- 16. Preparing a news letter:
- 17. To prepare a newsletter with borders, two columns text, header and footer and inserting a graphic image and page layout.
- 18. Creating and editing the table

P/R

 \mathbf{C}

19. Printing envelopes and mail merge.

Subject

- 20. Using formulas and functions: To prepare a Worksheet showing the monthly sales of a company in different branch offices
- 21. Prepare a Statement for displaying Result of 10 students in 5 subjects

Subject Name: MATHEMATICS-II

SEMESTER II

Ty/Lb/

Subject	Subjec	t Name	: MAIT	1EWA	1105-11					LD/	L	I.		P/K		_
Code:									ET	L/IE		S	.Lr			
EBMA22003	_										+_		••	0.10		
~ ~			Higher se		•				Ty		3	1/	0	0/0	4	
C: Credits, L:																
R: Research,		ETL/IE:	Theory	/Lab/E	mbedd	ed The	eory a	nd La	ib/Int	ernal I	Evalua	tion				
OBJECTIVES																
The student s																
• To be a	able to u	nderstan	d basic c	oncepts	s in integ	gration										
 To und 	lerstand t	the conc	epts in r	nultiple	integral	ls										
• To use	the basic	c concep	ots in ord	inary d	ifferenti	al equa	tions									
• To be a	able to ap	pply con	cepts of	analytic	cal geom	netry										
• To be a	able to un	nderstan	d the bas	sic conc	ept of ve	ector ca	alculu	S								
COURSE OU'	TCOME	ES (COs	s):													
CO1	Integra	te the gi	ven func	tion by	using m	ethods	of int	egrati	on and	l to fin	d the a	rea un	der c	urve ai	nd the	2
	volume	of a so	lid by rev	<u>alu</u> atio	n_											
CO2	Evalua	te the m	ultiple in	tegrals	/area/vo	lume a	nd to	chang	e the o	order o	f integr	ation				
CO3	Apply	concepts	s in Ordii	nary Di	fferentia	l equat	ions a	nd to	solvee	eulers o	lifferen	tial ec	uatio	on		
CO4			of planes,											_		
CO5			okes/gau													
Mapping of Co		_														
COs/POs			PO3	PO4	PO5	PO		PO7	PO	8 PC)9	PO10]	PO11	PO	12
CO1	3	3	2	2	2	2		1	2	2		2		1	3	
CO2	3	3	1	2	2	3	2	2	2	3		3	2	2	2	
CO3	3	3	1	2	2	3		1	1	3		3	2	2	2	
CO4	3	3	2	2	1	2	4	2	2	2		3	2	2	2	
CO5	3	3	1	2	2	2	2	2	1	2		3		1	2	
COs / PSOs	PSO1	•	•	PS(<u>)2</u>	•		PS	SO3	•	•		PS	O4	•	
CO1	3			2				1					2			
CO2	3			2				1					2			
CO3	3			2				1					2			
CO4	3			2				1					2			
CO5	3			2				1					2			
3/2/1 Indicates	Strengt	th Of C	orrelatio	n, 3 – 1	High, 2-	Mediu	um, 1-	Low								
							-									
	se		nd	ره	Program Electives		es									
	nce	g g	s a	Òre			tiv		ary	ent						
	cie	erii	itie Sci	n C	n E]lec		olin	one	cal ct					
	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	 ran		Open Electives	F	Disciplinary	Skill Component	Practical /Project					
>-	asi	ngi cie	Tun:	rog	0])	pe.	Inter	Dis	Skill Com	Pra Pra					
yor.	\sim B	ПŅ	T Š	Ъ	<u> </u>		0	+ -								
Category	٧															
C_3																

Subject Code EBMA22003	:Subject Name : MATHEMATICS – II	Ty/Lb /ETL/IE	L	T/ SL r	P/R	С
	Prerequisite : Higher secondary Mathematics	Ty	3	1/0	0/0	4

UNIT I INTEGRATION

12Hrs

Basic concepts of Integration – Methods of Integration – Integration by substitution – Integration by parts – Definite integrals – Properties of definite integrals – Problems on finding Area and Volume using single integrals (simple problems).

UNIT II MULTIPLE INTEGRALS

12Hrs

Double integral in Cartesian and Polar Co-ordinates – Change of order of integration – Triple integral in Cartesian Co-ordinates – Spherical Polar Co-ordinates – Change of variables (simple problems).

UNIT III ORDINARY DIFFERENTIAL EQUATIONS

12Hrs

First order differential equations – Second and higher order linear differential equations with constant coefficients and with RHS of the form: e^{ax} , x^n , Sin ax, Cos ax, $e^{ax}f(x)$, x f(x) where f(x) is Sin bx or Cos bx – Differential equations with variable coefficients (Euler's form) (simple problems).

UNIT IV THREE DIMENSIONAL ANALYTICAL GEOMETRY

12Hrs

Direction Cosines and Ratios – Equation of a straight line – Angle between two lines – Equation of a plane – Coplanar lines – Shortest distance between skew lines – Sphere – Tangent plane.

UNIT V VECTOR CALCULUS

12Hrs

Scalar and Vector functions – Differentiation – Gradient, Divergence and Curl – Directional derivatives – Irrotational and Solenoidal fields– Line, Surface and Volume integrals – Green's, Stoke's and Gauss divergence theorems (statement only) – Verification.

Total no. of Hours: 60Hrs

REFERENCE BOOKS:

- 1) Kreyszig E., Advanced Engineering Mathematics (10th ed.), John Wiley & Sons, (2011).
- 2) Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).
- *3) John Bird, Basic Engineering Mathematics* (5th ed.), *Elsevier Ltd*, (2010).
- 4) Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).
- 5) P.Kandasamy, K.Thilagavathy and K. Gunavathy, Engineering Mathematics Vol. I (4th Revised ed.), S.Chand& Co., Publishers, New Delhi (2000).
- 6) John Bird, Higher Engineering Mathematics (5th ed.), Elsevier Ltd, (2006).

Subject EBPH2		S	Subject	Name	:BIO M	IATERI	IALS	Ty/L E	b/ETI	L/] L	T/S	SLr	P/R	C
		I	rerequ	isite :I	Engg.Pl	hysics		Ty		3	0/0)	0/0	3
C: Cred	lits, L	: Le	cture, 7	Γ: Tuto	orial, S	Lr: Su	pervised		ning, F	P: Proble	em /	Prac	ctical	
													valuatio	n
OBJEC	TIVE	S												
•	Desig	gn, c	onduct	experi	iment a	ınd ana	lyze dat	a.						
•	Deve	lop a	a Scient	tific at	titude	at micr	o and na	ano sca	ale of 1	material	.S			
•	Unde	rstaı	nd the c	concep	ts of M	Iodern	Physics							
					naterial	s to En	gineerir	ng & T	echno	logy				
COURS														
Students									1					
CO1	Ana	lyze	differe	nt typ	es of I	Biomate	erials an	id its	classifi	ication a	and	apply	y the co	oncept of
	nanc	nanotechnology towards biomaterials use.												
CO2	Iden	tify	significa	ant gar	requir	ed to o	vercome	challe	nges a	nd furth	er d	evelo	pment in	n metallic
	and	cerai	nic mat	erials	_								_	
CO3					roguir	ad to or	araoma	ahallan	gog on	d further	. dar	rolon:	mont in r	a olymania
COS		•	_	ani gap	require	ed to ov	rercome	Chanen	iges an	a rurmei	uev	eropi	ment m p	polymeric
	mate	erials												
CO4	CO4 Create combinations of materials that could be used as a tissue replacement implant.													
Mannin	a of (٦٥	as O4s		±4h Duc	arom (Dutoom	$_{0}$ (D($_{0}$)	\					
Mappin	g or c	Jour	se Outc	ome w	in Pro	igi aili v	Julcom	e (FUS)	,					
Cos/PO		01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PC	10	PO11	PO12
Cos/PO	s P	O1 3				PO5		PO7		PO9	PC	010	PO11	PO12
Cos/POs CO1 CO2	s P	O1 3 3	PO2							PO9	PC	010	PO11	
Cos/PO CO1 CO2 CO3	s P	01 3 3 3		PO3	PO4	PO5	PO6	PO7		PO9	PC	010	PO11	1
Cos/PO CO1 CO2 CO3 CO4	s P	O1 3 3	PO2 1	PO3 2		PO5 1		PO7	PO8		PC			
Cos/POs CO1 CO2 CO3 CO4 COs/PSOs	s P	01 3 3 3	PO2	PO3 2 1	PO4	PO5	PO6 2	PO7	PO8	PSO3	PC	PSC	04	1
Cos/PO: CO1 CO2 CO3 CO4 COs/PSOs	s P	01 3 3 3	PO2 1	PO3 2 1 3	PO4	PO5 1	2 3	PO7	PO8	PSO3 3	PC		04	1
Cos/PO: CO1 CO2 CO3 CO4 COs/PSOs CO1 CO2	s P	01 3 3 3	PO2 1	PO3 2 1	PO4	PO5 1	2 3 3	PO7	PO8	PSO3 3 2	PC		04	1
Cos/PO: CO1 CO2 CO3 CO4 COs/PSOs	s P	01 3 3 3	PO2 1	PO3 2 1 3 2	PO4	PO5 1	2 3	PO7	PO8	PSO3 3	PC		3 3	1
Cos/PO: CO1 CO2 CO3 CO4 COs/PSOs CO1 CO2 CO3	S P	01 3 3 3 3 3	PO2	PO3 2 11 3 2 3 3 3	2 2	PO5 1 PSO2	2 3 3 3 2	PO7 2	PO8	PSO3 3 2 3 1	PC		3 3 3	1
Cos/PO: CO1 CO2 CO3 CO4 COs/PSOs CO1 CO2 CO3 CO4	S P	01 3 3 3 3 3	PO2	PO3 2 11 3 2 3 3 3	2 2	PO5 1 PSO2	2 3 3 3 2	PO7 2	PO8	PSO3 3 2 3 1	PC		3 3 3	1
Cos/PO: CO1 CO2 CO3 CO4 COs/PSOs CO1 CO2 CO3 CO4	S P	01 3 3 3 3 3	PO2	PO3 2 11 3 2 3 3 3	2 2	PO5 1 PSO2	2 3 3 3 2	PO7 2	PO8	PSO3 3 2 3 1	PC		3 3 3	1
Cos/PO: CO1 CO2 CO3 CO4 COs/PSOs CO1 CO2 CO3 CO4	S P	01 3 3 3 3 3	PO2 1 PSO: ength O	PO3 2 11 3 2 3 3 3	PO4 2 elation,	PO5 1 PSO2	2 3 3 3 2	PO7 2	PO8	PSO3 3 2 3 1	PO		3 3 3	1
Cos/PO: CO1 CO2 CO3 CO4 COs/PSOs CO1 CO2 CO3	S P	01 3 3 3 3 3	PO2 1 PSO: ength O	PO3 2 11 3 2 3 3 3	PO4 2 elation,	PO5 1 PSO2	2 3 3 2 h, 2- Me	PO7 2	PO8	PSO3 3 2 3 1		PSC	3 3 3	1 1
Cos/PO: CO1 CO2 CO3 CO4 COs/PSOs CO1 CO2 CO3	dicate	01 3 3 3 3 3 3	PO2 1 PSO: ength O	PO3 2 11 3 2 3 3 3	PO4 2 elation,	PO5 1 PSO2	2 3 3 2 h, 2- Me	PO7	PO8	PSO3 3 2 3 1		PSC	3 3 3	1 1
Cos/PO: CO1 CO2 CO3 CO4 COs/PSOs CO1 CO2 CO3 CO4	dicate	01 3 3 3 3 3 3	PO2 1 PSO ength O	PO3 2 11 3 2 3 3 3	PO4 2 elation,	PO5 1 PSO2	2 3 3 2 h, 2- Me	PO7	PO8	PSO3 3 2 3 1		PSC	3 3 3	1 1
Cos/PO: CO1 CO2 CO3 CO4 COs/PSOs CO1 CO2 CO3 CO4	dicate	01 3 3 3 3 3 3	PO2 1 PSO ength O	PO3 2 11 3 2 3 3 3	PO4 2 elation,	PO5 1 PSO2	2 3 3 2 h, 2- Me	PO7	PO8	PSO3 3 2 3 1		PSC	3 3 3	1 1
Cos/PO: CO1 CO2 CO3 CO4 COs/PSOs CO1 CO2 CO3 CO4 3/2/1 Inc	dicate	01 3 3 3 3 3 3	PO2 1 PSO ength O	PO3 2 11 3 2 3 3 3	PO4 2 elation,	PO5 1 PSO2	2 3 3 2 h, 2- Me	PO7	PO8	PSO3 3 2 3 1		PSC	3 3 3	1 1
Cos/PO: CO1 CO2 CO3 CO4 COs/PSOs CO1 CO2 CO3 CO4 3/2/1 Inc	dicate	01 3 3 3 3 3 3	PO2 1 PSO ength O	PO3 2 11 3 2 3 3 3	PO4 2 elation,	PO5 1 PSO2	2 3 3 2 h, 2- Me	PO7	PO8	PSO3 3 2 3 1			3 3 3	1
Cos/PO: CO1 CO2 CO3 CO4 COs/PSOs CO1 CO2 CO3	dicate	01 3 3 3 3 3 3	PO2	PO3 2 11 3 2 3 3 3	2 2	PO5 1 PSO2	2 3 3 3 2	PO7 2	PO8	PSO3 3 2 3 1		PSC	3 3 3	1 1

Subject Code	Subject Name :BIO MATERIALS	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С
EBPH22003	Prerequisite :Engg.Physics	Ty	3	0/0	0/0	3

UNIT I INTRODUCTION TO BIO MATERIALS

9Hrs

Introduction to biomaterials and requirements for biomaterial. Classification of biomaterials: metallic, ceramic, synthetic and natural polymers. Surface, Physical, Mechanical & bulk Properties of biomaterials: Comparison of properties of some common biomaterials. Effects of physiological fluid on the properties of biomaterials.

UNIT II TYPES OF BIO MATERIALS

9Hrs

Metallic and Ceramic Materials - Metallic implants - Stainless steels, co-based alloys, Ti-based alloys, shape memory alloy, nanostructured metallic implants, - common types Polymeric implant materials - Biodegradable polymers for medical purposes, Biopolymers in controlled release systems. Synthetic polymeric membranes and their biological applications. Composite implant materials:

UNIT III SURFACE CHARACTERIZATION

9Hrs

Surface properties and adhesion, contact angle measurement, scanning electron microscopy (SEM), transmission electron microcopy (TEM), scanning tunneling microscopy and atomic force microscopy (AFM). Secondary ion mass spectrometry and confocal laser scanning microscopy.

UNIT IV TESTING OF BIOMATERIALS

9Hrs

Biocompatibility, blood compatibility and tissue compatibility tests, Toxicity tests, sensitization, carcinogenicity, mutagenicity and special tests, Invitro and Invivo testing; Sterilization of implants and devices: ETO, gamma radiation, autoclaving. Effects of sterilization.

UNIT V BIOMATERIALS APPLICATIONS

9Hrs

Materials for bone and joint replacement – stainless steel, titanium based materials and porous metals. Ceramics: alumina, zirconia, calcium phosphate and bioactive glass, bone cement. Polymers: PMMA and polyethylene, rubber and fluorocarbon polymers. Materials for oral and maxillofacial surgery, ophthalmology and intelligent textiles for medical applications. (examples for each).

Total no of Hours: 45Hrs

TEXT BOOKS & REFERENCE BOOKS

- 1.Biomaterials Science: An Introduction to Materials in Medicine, By Buddy D. Ratner, et. al. Academic Press, San Diego, 1996.
- 2. Sujata V. Bhat, Biomaterials, Narosa Publishing House, 2002.
- 3. J B Park, Biomaterials Science and Engineering, Plenum Press, 1984.

Subject Code EBCH22002	Subjec	t Name	e :IND	USTRIA	AL CH	EMI	ISTRY		Ty/L	b/ET	L/IE	L	T/S	Lr	P/R	C
	Prereg	uisite :	Engg.	Chemis	stry				Ty			3	0/0		0/0	3
C: Credits, L	.: Lecture	, T: Tu	ıtorial,	SLr: S	upervi	sed]	Learnin	ıg,	P: Pro	blem	/ Prac	tica	1			
R: Research,	Ty/Lb/E	TL/IE:	: Theo	ry/Lab/	Embed	lded	Theory	y ai	nd Lab	/Inte	rnal E	valu	atior	1		
OBJECTIVE	ES:															
1. To understa																
2. To analyze					_		-	nd o	chemic	al me	ethods.					
3. To detect the																
4. To demons																
5. To illustrate				dustrial	wastewa	ater 1	treatmei	ıt.								
COURSE OU				11 .												
Students comp																
	Reproduc					•										
	Analyze t	he solu	tions fo	or indust	ry base	d pro	oblems	tor	sustair	nable	develo	pme	nt fol	llowin	g pro	ofessional
	ethics.		, 1		• 1		1 1	elopment as a resource of lifelong learning.								
	Develop t									ssess	ıne nea	ith 8	ina sa	irety is	ssues	•
		the tools used to apply the engineering knowledge														
		Outcome with Program Outcome (POs) PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11												4 7	DO 12	
Cos/POs	PO1		PO3		PO5) /	PO8		PO9)10	POI	1 .	PO12	
CO1	3	3	-	-	-	-	3		-		-	-		-		,
CO2	3	-	3	3	-	-	-		-		-	-		-		3
CO3	3	-	-	-	-	2	3		•		-	-		-		3
CO4	3	-	3	-	-	-	-		3		-	-		-		2
CO5	3	<u>-</u>	-	-	3	-	3		-		-	-		-		3
COs/PSOs		PSO	1		PSO2				PSO:	3			PSC)4		
CO1		3			-				3				3			
CO2		3			-				3				3			
CO3		3			-				3				3			
CO4		3			-				3				3			
CO5	n.	3			-		7 30	_	3				3			
3/2/1 Indicate	es Strengt	h Of C	correla	tion, 3 –	- High,	2- M	ledium,	1-	Low	1						
Category	Basic Science	Basic Science Engineering Science Humanities and social Science Program Core							Open Elective	Inter Disciplinary		,				Practical /Project
	Ţ															

Subject Code	Subject Name :INDUSTRIAL	Ty/Lb/	L	T/SL	P/R	C	l
EBCH22002	CHEMISTRY	ETL/IE		r			l
	Prerequisite :Engineering Chemistry	Ty	3	0/0	0/0	3	

UNIT - 1 FUELS & COMBUSTION

9Hrs

Fuels - classification, calorific value, GCV, NCV, Solid fuels-coal – varieties and ranking, analysis – Proximate Carbonisation of coal, Coke –manufacture , Beehive coke oven method, Otto Hoffmann method – recovering by - products - Liquid fuels – petrol –refining-cracking- thermal & catalytic , Synthetic petrol – Hydrogenation of coal (Fischer Tropsch Process and Bergius process) – Polymerization, Knocking properties of Gasoline –octane number, cetane number – Ignition lag, Leaded petrol, Reforming, Gaseous fuels- manufacture and uses Combustion - Flue gas analysis – Orsatapparatus.Alternative fuel-Electric vehicles

UNIT2 FOOD ANALYSIS

9Hrs

Food analysis-Introduction. Moisture Analysis-Introduction-Moisture content of foods-Sample collection and handling-Forms of water in foods- Distillation procedure-Reflux distillation with immiscible solvent,-Physical methods-Direct method-Hydrometer, -Refractometry —Chemical method-Karl Fischer titration-Protein analysis-Kjeldahl method-Dumas combustion method.

UNIT - 3 APPLICATIONS IN PAPER INDUSTRY

9Hrs

Introduction-Manufacture of pulp-Mechanical process-Chemical process-Beating, Refining, Filling, Sizing and Colouring-Manufacture of paper-Calendering-Bagasse utilization in paper industry.

UNIT - 4 BUSINESS CHEMICALS

9Hrs

Toiletry formulations-Soaps and detergent, shampoo, Shaving cream, production. Preparation of cosmetics- moisturizing cream, talcum powder, Nail enamel, Lipstick. Disinfectants- phenyl, hand sanitizer, bleach, causticsoda, naphthalene balls production.

UNIT - 5 INDUSTRIAL WASTES AND TREATMENT PROCESS

9Hrs

Introduction-Characteristics of industrial waste-Types of industrial wastes-Solid industrial wastes-Principles of industrial waste treatment-Treatment and disposal of industrial waste-Sanitary-Chemical analysis of industrial effluents or sewage-Method of treating industrial sludge.

Total No. of Hours: 45Hrs

REFERENCES

- 1. Rama Rao Nadendla, Principles of Organic Medicinal Chemistry, New Age International (P) Limited, Publishers.
- 2. H.D.Belitz, W.Grosch, P.Schieberle, Food Chemistry Springer
- 3. Industrial chemistry by B.K.Sharma, Krisna Prakashan Media(P) Ltd, Publishers.
- 4. Industrial Chemistry C. S. Unnithan, T. Jayachandran & P. Udhayakala, Sree Lakshmi Publications -
- 5. John A.Tyrell, Fundamentals of Industrial Chemistry, , Wiley.
- 6. Ernest M. Flick, Cosmetic and Toiletry Formulations, 2nd Edition, Volume 8, Noyes Publications, William Andrew Publishing, LLC.

Subject Code:	Subject Name : Introduction to Chemical	Ty/Lb/	L	T/S.Lr	P/R	C
ED C/E22001	Engineering	ETL/IE				
EBCT22001	Prerequisite: Nil	Ty	3	0/0	0/0	3

C: Credits, L: Lecture, T: Tutorial, SLr: Supervised Learning, P: Problem / Practical

R: Research, Ty/Lb/ETL/IE: Theory /Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVE:

- To acquire molecular level understanding of matter
- To attain knowledge on application of Mathematics and software tools in chemical Engineering
- To understand the concepts of material and energy balance in chemical reactions

• 10 understan					05								
 To acquaint t 	he stude	ents witl	h the fun	damenta	als of Cl	hemical	l Engine	eering a	nd to bui	ld their p	erspective	e in a	
wholesome n	nanner												
COURSE OUTCO	MES (COs): ((3-5)									,	
Upon successful cor	npletion	of the	course, s	tudent s	hould b	e able t	ю:						
CO1 Correl	ate day	to day li	ike with t	he prin	ciples of	f chemi	cal Eng	gineering	7				
CO2 Assess	the ma	ss and e	nergy in	volved i	n any cl	hemical	l plant.						
CO3 Have a	ın insigl	nt into a	rears who	ere Che	mical E	ngineer	ing play	ys major	role.				
CO4 Carry	out mod	eling ar	nd simula	tion usi	ng soft	ware to	ols.						
CO5 Identif	y their i	ight fut	ure. Gair	confid	ence an	d outlin	e about	the pro	gramme	as a whol	le.		
Mapping of Course	e Outco	mes wit	th Progr	am Out	tcomes	(POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	-	1	2	3	2	•	-	2	3	-	1	2	
CO2	3	3 2 3 2 2 2 2 1 - 1 3 1 2 3 2 2 2 1 - 1											
CO3	-	2 1 2 3 2 2 2 1 3 3											
CO4	2	2	2	3	2	2	2	2	2	1	1	3	
CO5	1	1	-	-	2	3	3	3	3	3	-	-	
COs / PSOs	PS	SO1	PS	O2	PS	5O3	PSO4						
CO1	1		2		3		-						
CO2	3		1		2		-						
CO3	2		2		1		-						
CO4	2		3		2		-						
CO5	-		-		-		-						
H/M/L indicates St	rength	ength of Correlation 3- High, 2- Medium, 1-Low											
	Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core Program Electives Open Electives Inter Disciplinary Skill Component Practical /Project												
Category	В	ЩŠ	ΞŠ	Ъ	P	0	II O	S	P.				

i de la companya de						
		1				
		1				
		V				

Subject Code:	Subject Name : Introduction to	Ty/Lb/ETL	L	T/S.Lr	P/R	C
	Chemical Engineering					
EBCT22001	Prerequisite: Nil	Ty	3	0/0	0/0	3

UNIT I INTRODUCTION

9Hrs

Chemical Engineering in day to life with examples, Origin and growth of chemical Engineers in chemical process industries, unit operations and unit processes concepts, scaling up or down, units and dimensions, application of mathematics in chemical Engg, recent developments in chemical process industries.

UNIT II INTRODUCTION TO MATERIAL AND ENERGY BALANCES 9Hrs

Basic concepts of material and energy balances, energy and mass transport, and kinetics of chemical reactions. Introduction to heat and mass transfer. Process flow sheeting and symbols.

UNIT III FLUID FLOW

9Hrs

Nature of fluid, Viscosity, Flow field, Conservation of mass and energy. Frictional losses, pumping of fluids. Dimensional Analysis and Correlations.

UNIT IV CHEMICAL ENGINEERING COMPUTER SOFTWARE TOOLS AND APPLICATIONS 9Hrs

Introduction to Process Engineering Design Software (HYSYS and PRO II), Computations Using Microsoft Excel, Computer-Aided Design & Drafting, Piping and Equipment Design Software.

UNIT V CAREER DIVERSITIES IN CHEMICAL ENGINEERING 9Hrs

Career Development Leading to Specialization, Chemical Engineering Job Titles/Options, Chemical and Process Engineers, Commissioning Engineer, Process Control/Automation Engineer, Process Safety Engineer, Research & Development Engineer Pharmaceutical Engineer/Pharmaceutical Process Engineer, Pipeline Engineer Chemical Manufacturing Engineer, Environment Engineer.

Total No. of Hours: 45Hrs

Text Books:

- 1. Anderson, L.B., Wenzel, L.A., "Introduction to Chemical Engineering", McGraw-Hill Book Company, Inc., New York (1961).
- 2. Pushpavanam, S., "Introduction to Chemical Engineering", PHI Learning Pvt. Ltd.(2012).
- 3. Ghosal, S.K., Sanyal, S.K., Datta, S., "Introduction to Chemical Engineering", Tata McGraw-Hill Publishing Company Ltd., New Delhi(1997).

References:

- 1. Rao, M.G., Sittig, M., "Dryden's Outlines of Chemical Technology", East-West Press (1997).
- 2. Perry, R.H., Green, D.W., "Perry's Chemical Engineers' Handbook", McGraw-Hill Book Company (2008).

Subject Coo EBME2200		ıbject I RAPHI		ENGI	NEERI	NG			Ty/Lb/	ETL/IE	L		T/SLr	P/R	C
	Pr	erequi	site : N	lone					Ty		2		0/0	2/0	3
C: Credits,	L: Lec	ture, T	: Tuto	rial, Sl	Lr: Su	pervise	d Le	arni	ing, P: P	roblem /	Pra	ctica	ıl	•	
R: Researc	h, Ty/L	b/ETL	/IE: T	neory ,	/Lab/E	mbedd	ed T	heo	ry and L	ab/Intern	al E	Evalı	ation		
OBJECTIV	ES														
• To	acquire	know	ledge i	n geoi	netrica	l drawi	ng.								
• To	expose	the stu	dents	in con	nputer a	aided d	raftii	ng.							
COURSE (OUTCO	MES ((Cos)												
Students con															
CO1	Utilize in India			Engin	eering (Graphic	s Te	chni	ques to di	raft letters	s, N	umbe	ers, Dime	nsionin	ıg
CO2	Demon	strate t	he draf	ting pr	actice v	isualiza	tion	and	projection	n skills us	sefu	l for	conveyin	g ideas	in
	enginee	ering ap	plication	ons.									-		
CO3									equipmen						
CO4									s and Soli	ds. And					
CO5	Draw t				_				Ţ.						
		Course Outcome with Program Outcome (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
Cos/POs		PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	3	3	3	2	2	2				3	3			3	
CO2	3	3	3	2	2	2				3	3			3	
CO3	3	3	3	2		3			2	2	3			3	
CO4 CO5	3	3	3	2	3	1			2	3	3			3	
COs/PSOs	3	PSC		<i>_</i>	PSO2	1	1	PSC		3	3	PSC	<u> </u>	3	
CO1		-	/1		2			-	<i>))</i>			-	J 1		
CO2		-			2			-				_			
CO3		-			2			-				_			
CO4		-			2			-				-			
CO5		-			2			-				-			
3/2/1 Indica	tes Stre	ength (of Cori	relatio	n, 3 – I	Iigh, 2-	Med	liun	n, 1- Low	,					
												•			
Category	Basic Science Engineering Science Humanities and social Science Program Core Program elective Open Elective										Skill Component	1		Practical /Project	

Subject Code EBME22001	Subject Name : ENGINEERING GRAPHICS	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С
	Prerequisite : None	Ty	2	0/0	2/0	3

CONCEPTS AND CONVENTIONS (Not for examination)

5Hrs

Introduction to drawing, importance and areas of applications – BIS standards – IS: 10711 – 2001: Technical products Documentation – Size and layout of drawing sheets – IS 9606 – 2001: Technical products Documentation – Lettering – IS 10714 & SP 46 – 2003: Dimensioning of Technical Drawings – IS: 15021 – 2001: Technical drawings – Projections Methods – drawing Instruments, Lettering Practice – Line types and dimensioning – Border lines, lines title blocks Construction of polygons – conic sections – Ellipse, Parabola, Hyperbola and cycloids.

UNIT I PROJECTION OF POINTS, LINES AND PLANE SURFACES 12Hrs

Projection of points and straight lines located in the first quadrant – Determination of true lengths and true inclinations – projection of polygonal surface and circular lamina in simple position only.

UNIT II PROJECTION OF SOLIDS

10Hrs

Projection of simple solids like prism, pyramid, cylinder and cone in simple position Sectioning of above solids in simple vertical position by cutting plane inclined to any one of the reference plane and perpendicular to the other.

UNIT III DEVELOPMMENT OF SURFACES

9Hrs

Development of lateral surfaces of simple and truncated solids – prisms, pyramids, cylinders, and cones.

UNIT IV ISOMETRIC PROJECTION

9Hrs

Principles of isometric projection – isometric scale – isometric projections of simple solids, like prisms pyramids, cylinders and cones.

UNIT V ORTHOGRAPHICS PROJECTIONS

8Hrs

Orthographic projection of simple machine parts – missing views

BUILDING DRAWING

7Hrs

Building components – front, Top and sectional view of a security shed.

(Basic Auto CAD commands to be taught- not for Examinations)

Total No. of Hours: 60Hrs

Note: First angle projection to be followed. TEXT BOOKS

- 1. Bhatt, N.D. and Panchal, V.M. (2014) Engineering Drawing Charotar Publishing House
- 2. Gopalakrishnan, K.R. (2014) Engineering Drawing (Vol.1& II Combined) Subhas Stores, Bangalore.
- 3. Natrajan K.V., "A Text Book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2018.
- 4. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2008.

SEMESTER II (PRACTICAL)

Subject EBCC22				Name SH I	: COM	IMUN	ICAT	IVE	E		y/Lb/ TL/IE	L		T/SLr	P/R	C
		Prer	equi	site :Pa	ass in Pl	us 2 En	glish			II	£	1		0/0	1/0	1
C: Cred	its, L: I	Lectu	re, T	T: Tuto	orial, SI	Lr: Suj	pervise	d L	earni	ng, P	: Proble:	m / Pı	ract	tical		
R: Resea	arch, T	y/Lb/	ETL	_/IE: 7	heory /	Lab/E	mbedd	ed 7	Theo	ry and	l Lab/In	ternal	Ev	aluatio	1	
OBJEC'	TIVES															
	Γο enga professio									ommu	ınication	and	or	ganized	academ	ic and
COURS	E OUT	COM	ES	(Cos)												
Students	comple	ting tl	his c	ourse v	were abl	e to										
CO1	Engage	e in m	eani	ngful (oral com	munica	tion in	Eng	glish v	with w	riting as	a scaf	folo	ding acti	vity.	
CO2	Have		•	th un	derstand	ling of	the c	omp	onen	ts of	English	lang	uag	ge and i	its use	in oral
CO3		then	thei	heir vocabulary and syntactic knowledge for use in academic and technical on tiate meaning in inter-personal and academic communication for a successful career.												
CO4				te mea	ning in i	nter-pe	rsonal a	and	acade	mic c	ommunic	cation	for	a succes	sful care	eer.
CO5	Engage	e in or	ganized academic and professional writing for life-long learning and research													
Mapping	g of Co	urse (Outcome with Program Outcome (POs)													
Cos/POs	PO	1 P	02	PO3	PO4	PO5	PO6	PO)7	PO8	PO9	PO1	.0	PO11	PO12	
CO1	1	-		1	1	3	2	1		1	3	3		-	3	
CO2	2	1		1	1	3	3	1		2	3	3		1	2	
CO3	1	1		1	1	2	1	-		2	3	3		1	3	
CO4	1	-		-	2	3	1	2		1	2	2		-	3	
CO5	-	1		1	2	3	1	1		-	3	1		1	2	
COs/PSOs	· ·	I	PSO	1		PSO2			PS	SO3	l]	PS()4		
CO1		2	2						1							
CO2		2	2						1							
CO3		2	2						1							
CO4		2	2						1							
CO5		2	2						1							
3/2/1 Inc	licates S	Stren	gth (Of Cor	relatio	n, 3 – E	ligh, 2-	Me	diun	ı, 1- L	ow					
Category	Basic Science		Engineering	ice o	Humanities and social Science	Program Core	Program elective	0	Open Elective	Inter Disciplinary		Skill Component	•		Practical /Project	
Cat	Bas	Basic & Basic & Science Science Science Program Program Open El Inter D Inter D Practic														
					7		1			1					I	

Code	Subject Name : COMMUNICATIIVE ENGLISH LAB	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С
EBCC22I02	Prerequisite :Pass in Plus 2 English	IE	1	0/0	1/0	1

UNIT I LISTENING 6Hrs

Authentic audios and videos

Prescribed Book: English Pronunciation in use – Mark Hancock,

UNIT II SPEAKING

6Hrs

Individual- Solo: Self introduction, Describing, anchoring, welcome address, vote of thanks,

Pair & Group: Role play- formal -informal, narrating stories, film review, analyzing newspaper headings and reports, interpreting Advertisement pamphlets

Group discussion, mock interviews, formal presentation, power point presentation

Prescribed Book: J. C. Richards with J. Hull &S. Proctor, Interchange, Cambridge University Press, 2015.

UNIT III READING 6Hrs

Extensive, focused reading,

Strategies for effective reading - Reading comprehensions - Note making- summarizing- paraphrasing, Review Suggested reading: Short stories, news paper reports, film reviews

UNIT IV WRITING 6Hrs

Extensive writing practices – note taking, Cognitive and meta cognitive strategies to inculcate a sense of organizing ideas into coherent sentences and paragraphs, Formal letters, Business letters. Resume with covering letter

UNIT V NON VERBAL COMMUNICATION/ CHARTS, DIAGRAMS AND TABLE 6Hrs Interpretation of charts Flow chart, pie chart, bar diagram, table, tree diagram, etc.

Total No. of Hours: 30Hrs

TEXT BOOK

- 1. J. C. Richards with J. Hull &S. Proctor, Interchange, Level 2, Cambridge University Press, 2021.
- 2. M. Chandrasena Rajeswaran&R.Pushkala, English Communication Lab Work book REFERENCE BOOK
- 1. Hancock, Mark, English Pronunciation in Use; Cambridge Univ. Press, 2013.
- 2. Dutt, K, Rajeevan, G & Prakash, CLN 2008, A Course on Communication Skills, 1st edn, Cambridge University Press, Chennai

Subject Code		ject Na	ame: P	YTHO	N PRO	GRAN	MMING	T/L/E	ETL/IE	L	T/S.L	r P/R	C	
EBCS22ET2	Pre	requisi		Progra	ammin	g and	MS	ETL		1	0/0	2/0	2	
C: Credits, L				1 SLr	Super	vised	Learning P	· Problei	n / Pract	ical				
R: Research,					-		•				ition			
OBJECTIVE							Theory who	200,111						
Devel	op a bas	sic unde	rstandi	ng of p	rogram	ming a	nd the Pytho	n progra	mming la	ngua	ige			
	progran				-	_	-		Ö	Ü	C			
		•				•	erent discipli	nes,espec	ially as i	t rela	ites in en	gineerin	g.	
								e student can be able to						
CO1	Rer	nember	the syr	ntax and	d semar	ntics of	python prog	on programming language						
CO2	Uno	derstand	d how f	unction	al and	operatio	ions are to be utilized							
CO3					ogramn progran		onstructs like	tructs like variables, conditional logic, looping, and						
CO4							ython classes	S						
CO5	App	oly the	knowle	dge to s	solve va	arious r	eal worldpro							
Mapping of C	Course (Outcom		ı Progr	ram Ou	itcome	s (POs)							
COs/POs	PO1	PO2		PO4	PO5	PO6	PO7	PO8	PO	9	PO10	PO11	PO12	
CO1	3	3	3	2	2	1	1	1	1		0	1	1	
CO2	3	2	2	2	2	1	1	1	1		0	1	1	
CO3	3	2	2	2	2	1	1	1	1		0	1	1	
CO4	3	3	3	2	2	1	2	0	2		0	2	2	
CO5	3	3	3	3	2	1	2	0	2		0	2	2	
GO /PGO	DGO1			DCCC			DG O 2				DGO 4			
COs / PSOs	PSO1			PSO2	<u>, </u>		PSO3				PSO4			
CO1	1			1			2				2			
CO2 CO3	1			1			2				2			
CO4	1			1			2				2			
CO5	1			1			2				2			
H/M/L indica	toc Stra	ngth o	f Corre	•	3. Hi	gh 2-	_	[OW						
		ngui 0.	Corre	auvil	J- 111	g11, 4°.	vicululli, 1-1	LU W						
	ences	Engineering Sciences	Humanities and Social Sciences	Core	Electives	ctives	Inter Disciplinary	Skill Component	Practical /Project					
Category	Basic Sciences	Engineeri	Humanitie Sciences	✓ Program Core	Program Electives	Open Electives	Inter Dis	Skill Co	Practical					

Subject	Subject Name: PYTHON I	PROGRAMMING	Ty/ Lb/ ETL/IE	L	T/S.Lr	P/R	C
Code	Prerequisite: C Programm	ning and MS	ETL	1	0/0	2/0	2
EBCS22ET2	office tools						

UNIT I: INTRODUCTION

9Hrs

History of Python, Need of Python Programming, Applications Basics of Python Programming Using the REPL(Shell), Running Python Scripts, Variables, Assignment, Keywords, Input-Output, Indentation.

UNIT II: TYPES, OPERATORS AND EXPRESSIONS

9Hrs

Types - Integers, Strings, Booleans; Operators- Arithmetic Operators, Comparison (Relational) Operators, Assignment Operators, Logical Operators, Bitwise Operators, Membership Operators, Identity Operators, Expressions and order of evaluations Control Flow- if, if-elif-else, for, while, break, continue, pass.

UNIT III: FUNCTIONS 9Hrs

Defining Functions, Calling Functions, Passing Arguments, Keyword Arguments, Default Arguments, Variable-length arguments, Anonymous Functions, Fruitful Functions (Function Returning Values), Scope of the Variables in a Function - Global and Local Variables.

UNIT IV: LISTS, TUPLES, DICTIONARIES

9Hrs

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: selection sort, insertion sort, mergesort, histogram.

UNIT V: OBJECT ORIENTED PROGRAMMING OOP IN PYTHON

9Hrs

Classes, 'self variable', Methods, Constructor Method, Inheritance, Overriding Methods, Data hiding.

Total No. of Hours: 45Hrs

TEXT BOOKS:

- 1. Python Programming: A Modern Approach, VamsiKurama, Pearson.
- 2. Think Python: How to Think Like a Computer Scientist'', 2nd edition Updated for Python 3, Shroff/O'Reilly Publishers, Allen B. Downey
- 3. Learning Python, Mark Lutz, Orielly.

REFERENCE BOOKS:

- 1. Core Python Programming, W.Chun, Pearson.
- 2. Introduction to Python, Kenneth A. Lambert, Cengage.

Subject Code: EBCC22I03	Subject Name: ENVIRONMENTAL SCIENCE (AUDIT COURSE)	Ty/ Lb/ ETL/IE	L	T / S.Lr	P/ R	C			
Prerequisite: Engineering Chemistry IE 1 0/0									
C: Credits, L: Lecture	e, T: Tutorial, SLr: Supervised Learning, P: Proble	em / Practical							
R: Research, Ty/Lb/ETL/IE: Theory /Lab/Embedded Theory and Lab/Internal Evaluation									
OBJECTIVES.									

- To acquire knowledge of the Environment and Ecosystem & Biodiversity
- To acquire knowledge of the different types of Environmental pollution
- To know more about Natural Resources
- To gain understanding of social issues and the Environment
- To attain familiarity of human population and Environment

COURSE OUTCOMES (COs): (3 – 5)

Students completing the course were able to

	Know about Environment and Ecosystem & Biodiversity													
CO1	Know ab	out Envi	ronment	and Ec	osystem	& Biod	ivers	sity						
CO2	Compreh	end air,	water,	Soil, M	[arine,]	Noise, T	herr	nal	and N	uclear F	olluti	ons	and Sol	id Waste
	managen	nent and	identify t	the imp	ortance	of natur	al re	sour	ces lik	e forest,	water	, and	d food re	sources
CO3	Discover	water co	ncervatio	on and	waterch	ed mana	gem	ent						
CO4	Identify i	its proble	ems and	concern	s clima	te chang	e, gl	obal	l warm	ing, acid	rain,	OZO	ne layer	depletion
	etc.,													
CO5	Explain f	family we	elfare pro	ogramm	nes and	role of ir	ıforr	natio	on tech	nology i	n hun	nan l	nealth an	d
	environn													
Mapping of	of Course	Outcom	es with	Progra	m Outo	comes (P	Os)							
COs/POs	PO1													
CO1	-	-	-	-	-	2	3		2	-	-		-	1
CO2	-	-	-	-	-	2	3		-	-	2		-	1
CO3	-	-	-	-	-	2	3		2	-	-		-	1
CO4	-	-	-	-	-	2	3		2	-	2		-	1
CO5	-	-	-	-	-	2	3		-	-	2		-	1
COs / PSOs	PSO1	PSO2	PSO3	PSO										
				4										
CO1	3	2	1	0										
CO2	3	2	1	3										
CO3	2	3	2	1										
CO4	3	3	3	3										
CO5	3	2	1	3										
H/M/L indi	cates strei	ngth of co	orrelation	3-H	igh, 2 –	Medium	, 1– 1	Low						
			શ્ર	e e										
			ies	cor						ary			ent	
ory	ses	ses	miti			am ves			ves	olin			one	cal ct
Category	Basic Scienc	gg	Humanities & Social	Program core		Program Electives		Open	Electives	Inter Disciplinary		∄	Component	Practical /Project
Ca	Basic Sciences	Engg Sciences	Humaniti Social Sciences	Prc		Prc Ele		O_{p}	Ele	Inter Disci		Skill	S	Pra /Pr
			1			1						 		

Subject Code: EBCC22I03	Subject Name: ENVIRONMENTAL SCIENCE (AUDIT COURSE)	Ty/Lb/ ETL/IE	L	T/ SLr	P/R	C
	Prerequisite: Engineering Chemistry	IE .	1		1/0	0

UNIT I ENVIRONMENT AND ECOSYSTEM

3Hrs

Definition, Scope and Importance of environment – need for public awareness – concept, structure and function of an ecosystem - producers, consumers and decomposers – energy flow in the ecosystem. Biodiversity at national and local levels – India

UNIT II ENVIRONMENT POLLUTION

3Hrs

Definition – causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Nuclear hazards (g) E-Wastes and causes, effects and control measures

UNIT III NATURAL RESOURCES

3Hrs

Forest resources: Use and over-exploitation, deforestation. Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems. Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

3Hrs

From unsustainable to sustainable development – urban problems related to energy – water conservation, rain water harvesting, watershed management – resettlement and rehabilitation of people; its problems and concerns climate change, global warming, acid rain, ozone layer depletion, nuclear accidents ,central and state pollution control boards- Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

3Hrs

Population growth, variation among nations – population explosion, environment and human health – human rights – value education – HIV/AIDS – women and child welfare – role of information technology in environment and human health

(A) AWARENESS ACTIVITIES:

15Hrs

i) small group meetings about water management, promotion of recycle use, generation of less waste, avoiding electricity waste ii) Slogan making event iii) Poster making event iv) Cycle rally v) Lectures from experts

(B) ACTUAL ACTIVITIES:

- i) Plantation ii) Gifting a tree to see its full growth iii) Cleanliness drive iv) Drive for segregation of waste v) To live some big environmentalist for a week or so to understand his work
- vi) To work in kitchen garden for mess vii) To know about the different varieties of plants
- viii) Shutting down the fans and ACs of the campus for an hour or so Total: 30Hrs

TEXT BOOKS

- 1. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, PearsonEducation (2004).
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGrawHill, NewDelhi, (2006).

REFERENCES

- 1. Vairamani, S. and Dr. K. Sankaran. **Elements of Environmental and Health Science.** Karaikudi: KPSVPublications, 5th Edition, July, 2013.
- 2. Ifthikarudeen, Etal, Environmental Studies, Sooraj Publications, 2005.
- 3. R.Murugesan, Environmental Studies, Millennium Publishers and Distributors, 2nd Edition, July, 2009.

SEMESTER - III (THEORY)

Subject Code EBMA22007	Subject Name: Mathematics III for Chemical Engineers	Ty/Lb/ET L/IE	L	T/S.L r	P/ R	C
	Prerequisite: First year Engineering Mathematics	Ту	3	1/0	0/0	4

C: Credits L: Lecture T: Tutorial S.Lr: Supervised Learning P: Problem / Practical R: Research

T/L/ETP/IE: Theory/Lab/Embedded Theory and Practice/Internal evaluation.

OBJECTIVES:

The student should be made to:

• 7	Γo be ab	le to ap	ply the	concept	s in Di	fferentia	al Equat	ions						
•]	Γo undeι	rstand tl	he conc	epts in l	Fourier	series								
•]	Γo analy	ze the F	Problem	s in wa	ve and	Heat eq	uations							
•]	Γo be ab	le to un	derstan	d the c	oncepts	in Anal	lytic fui	nctions						
• 7	Γo be ab	le to so	lve prob	olems ir	Comp	lex integ	gration							
COURS					•									
CO1	To uno	derstand	the co	ncepts o	of partia	ıl differe	ential e	quations	8					
CO2			find fou											
CO3	To be	able to	apply th	ne conce	epts of l	PDE in	wave a	nd heat	problem	ns				
CO4						analytic			•					
CO5						nplex In								
Mapping						_								
COs/PO		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1		2	3	2	3	2	1	2	2	3	1	1	2	
CO2		3	3	1	2	1	2	1	2	2	2	1	3	
CO3		3	2	1	2	2	3	3	1	1	2	1	3	
CO4		2	3	1	2	1	2	2	1	1	2	1	3	
CO5		2	3	1	3	1	2	3	1	1	2	2	3	
COs / PS	SOs		PSO1		PSO2		PSO3				PSO4			
CO1			3		2			1				0		
CO2			3		2			1				3		
CO3			2			3			2			1		
CO4			3			3			3			3		
CO5			3			2			1			3		
3/2/1 Ind	licates S	Strengt	h Of Co	orrelati	<u>on, 3 –</u>	High, 2	2- Medi	um, 1-	Low		_	T	1	
Category		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				

	_
-5	n
J	v

Subject Code EBMA22007	Subject Name: Mathematics III for Chemical Engineers	Ty/Lb/ET L/IE	L	T/S.L r	P/ R	С
	Prerequisite: First year Engineering Mathematics	Ту	3	1/0	0/0	4

UNIT I PARTIAL DIFFERENTIAL EQUATIONS

12 Hrs

Formation – Solutions of standard types of first order equations – Lagrange's equation – Linear partial differential equations of second order and higher order with constant Coefficients.

UNIT II FOURIER SERIES

12 Hrs

Dirichlet's conditions – General Fourier series – Half range Sine & Cosine series – Complex form of Fourier series – Parseval's identity –Harmonic Analysis.

UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

12 Hrs

Classification of second order linear partial differential equations – Solutions of one-dimensional wave equation, one-dimensional heat equation – Steady state solution of two-dimensional heat equation (Cartesian coordinates only) – Fourier series solutions.

UNIT IV ANALYTIC FUNCTIONS

12 Hrs

Analytic functions – Cauchy Riemann equations in Cartesian and Polar form – Properties of analytic functions – Construction of analytic functions – Simple Transformations – Standard transformations : $w = z^2$, $w = e^z$, $w = \sin z$, $w = \cosh z$ – Bilinear transformations.

UNIT V COMPLEX INTEGRATION

12 Hrs

Cauchy's integral theorem (without proof) – Cauchy's integral formulae (without proof) – Taylor's and Laurent's series (without proof) – Singularities: Types – Residues – Cauchy's residue theorem (without proof) – Evaluation of real integrals by Contour Integration (excluding poles on real axis).

Total no. of Hours: 60Hrs

Reference Books:

- 1. Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).
- 2. Veerarajan T., Engineering Mathematics (for semester III), Tata McGraw Hill Publishing Co., (2005).
- 3. Singaravelu, Transforms and Partial Differential Equations, Meenakshi Agency, (2017).
- 4. Kreyszig E., Advanced Engineering Mathematics (10th ed.), John Wiley & Sons, (2011).
- 5. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).

Subject Code:	Subject Name : Mechanical Operations	Ty/Lb/ETL/IE	L	T/S.Lr	P/R	C
EBCT22002	Prerequisite: Unit operations and processes	Ту	3	1/0	0/0	4

 $C: Credits\ L: Lecture\ T: Tutorial\ S.Lr: Supervised\ Learning\ P: Problem\ /\ Practical\ R: Research\ T/L/ETP/IE: Theory/Lab/Embedded\ Theory\ and\ Practice/Internal\ evaluation.$

OBJECTIVE:

• To provide knowledge of particle size analysis, size reduction, storage of solids, particle mechanics, sedimentation and floatation, flow through packed beds, fluidization, filtration, fluid-solid conveying

;	sedimentation and floatation, flow through packed beds, fluidization, filtration, fluid-solidconveying.												
COURS	SE OU	TCOM	ES (CO	os):(3-	5)								
CO1	Abili	ty to kno	ow abou	ıt propert	ies of s	olids.							
CO2	To ur	nderstan	d the pr	ocess and	d equip	ment.							
CO3	To se	lect suit	able siz	e reducti	on equi	pment.							
CO4	To de	etermine	the effe	ectivenes	s and e	fficienc	y of sep	arating	equipn	nents			
CO5	To st	udy desi	gn and	construct	tion of s	separati	ng equi	pments					
Mappin	Mapping of Course Outcomes with Program Outcomes (POs)												
COs/PO	Os/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	1	1	2	1	2	1	-	1	-	-	-	-	1
CO2		•	1	•	1	-	1	-	2	-	-	-	-
CO3	3	3	-	-	-	-	-	1	-	-	-	2	-
CO4		1	2	-	2	-	2	-	2	3	-	1	-
CO5		1	-	1	-	2	-	2	3	-	2	-	1
COs / P		PSO	1	PS	<u>O2</u>		503	PS	SO4				
CO1		3		2		1		-					
CO2		2		1		3		-					
CO3		1		2		3		-					
CO4 CO5		<u>1</u> 2		1		2		-					
			ngth of	<u> </u>	tion 3	<u>1</u> - High,	2. Med	l dium 1	-Low				
11/1/1/1/	inuicai		igii oi	Correla	1011 5	- 111g11, 			LOW				1
Catego	rv.	Basic Sciences	Engineering Sciences	Humanities and Social	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project			
Calego	1 y				√								

Subject Code:	Subject Name : Mechanical Operations	Ty/Lb/ETL/IE	L	T/S.Lr	P/R	C
EBCT22002	Prerequisite: Unit operations and processes	Ту	3	1/0	0/0	4

UNIT I PARTICLE CHARACTERISTICS AND SIZE ANALYSIS

12Hrs

General characteristics of solids, their behavior under different external forces, agglomeration, techniques for size analysis.

UNIT II SIZE REDUCTION

12Hrs

Laws of size reduction classification of equipment, methods of size reduction, disintegration, preparation of colloids.

UNIT III MECHANICAL SEPARATIONS

12Hrs

Screening and Screening equipment, effectiveness of screens, gravity settling, sedimentation, thickening, centrifugal separation, impingement methods, industrial dust removing equipment with special reference to electrostatic and magnetic separators, heavy media separations, floatation.

UNIT IV FILTRATION, MIXING AND AGITATION

12Hrs

Theory of filtration, Batch and continuous filters, centrifuges, membrane and ultra filtration. Equipment for blending and kneading, dispersion, power for agitation, correlations.

UNIT V STORAGE AND CONVEYING OF SOLIDS

12Hrs

Conveyors, elevators, pneumatic conveying, Different methods for storage of solids.

Total No. of Hours: 60Hrs

TEXT BOOK:

1. McCabe, W.L, Smith J.C and Harriot, P., "UNIT Operations in Chemical Engineering", McGraw-Hill, Fourth Edition, 1984.

REFERENCES:

1. Coulson, J.M., Richardson, J.F., "Chemical Engineering", Volume 2, Third Edition, Pergamon Press, 1977.

Subjec	t Code:	Subject	t Name	: Chem	ical Prod	cess Ca	alculatio	ns	Ty/Lb/	ETL/IE	L	T/SLr	P/R	С
EBCT	22003	Prereq	uisite: (General	Chemist	try & 1	basic	r	Гу		3	0/0	0/0	3
		chemic	al react	ions										
L : Lec	ture T : T	utorial	SLr:S	upervise	ed Learni	ng P:	Project F	R : Res	earch C	Credits				
T/L/ETI	_/IE : The	ory/Lab/	Embedo	led The	ory and L	.ab/ Int	ternal eva	aluatio	n					
OBJE	CTIVE:													
•						of engi	neering a	and eco	onomics	for chem	ical pla	nt design a	and optin	ization
	and also	compos	ition of 1	mixture	S.									
COUR	SE OUT	COMES	S (COs)	: (3-5)										
CO1		nd dime												
CO2	Materia	al balanc	e and Er	nergy ba	lance cal	culatio	on for all	chemi	cal proc	esses.				
CO3	Calcula	ation for	batch ar	nd conti	nuous pro	ocesses	applied	to solu	ition of	problems	in cher	nical proc	ess indust	ries.
CO4	Learn t	o perfori	n energy	v balanc	e calcula	tion								
CO5		•	٠.				process i	ndustri	es and c	ome up v	vith apr	propriate s	olution	
	ng of Co									or	<u>F</u> <u>F</u>	F		
COs/P		PO1	PO2	PO3	PO4		PO 6	PO7	PO8	PO9	PO10	PO1 1	PO12	
CO1		3	2	1	_	_	_	1	_	-	_	-	1	
CO2		2	3	1	_	-	_	2	-	-	_	-	-	
CO3		2	3	1	-	-	-	1	-	-	-	-	2	
CO4		3	-	-	-	1	-	-	2	-	-	-	-	
CO5		2	1	-	•	1	-	-	-	1	-	-	1	
COs/l	PSOs		01	PS	O2		SO3	F	SO4					
CO1		3		3		2		2						
CO2		2		3		1		2						
CO3		3		1		2		2						
CO4		2		1		-		-						
CO5	: J: 4 -	1	41 f C	2	2 1	2	N	. 1 T						
H/NI/L	indicate	s Streng			on 3- H	11gn,2-	Mediun	n, 1-Le)W					
		ces	ciences	l Social	ore	ctives	ives	inary	onent	oject				
	Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				
	O	B	Engir		P ₁	Prog	O	Inte	Ski	Pra				

	Subject Name : Chemical Process Calculations	Ty/Lb/ETL/IE	L	T/SLr	P/R	С
EBCT22003	Prerequisite: General Chemistry	Ty	3	0/0	0/0	3
	& basic chemical reactions					

UNIT I UNITS, DIMENSIONS AND GAS CALCULATIONS

9Hrs

Basic and derived UNITs, use of model UNITs in calcualtions, Methods of expression, compositions of mixture and solutions. Ideal and real gas laws - Gas constant - calculations of pressure, volume and temperature using ideal gas law. Use of partial pressure and pure component volume in gas calculations, applications of real gas relationship in gas calculation.

UNIT II MATERIAL BALANCE

9Hrs

Stoichiometric principles, Application of material balance to UNIT operations like distillation, evaporation, crystallisation, drying etc., - Material balance with chemical reaction - Limiting and excess reactants - recycle - bypass and purging - Unsteady state material balances.

UNIT III HUMIDITY AND SATURATION

9Hrs

Calculation of absolute humidity, molal humidity, relative humidity and percentage humidity - Use of humidity in condensation and drying - Humidity chart, dew point.

UNIT IV FUELS AND COMBUSTION

9Hrs

Determination of Composition by orsat analysis of products of combustion of solid, liquid and gas fuels - Calculation of excess air from orsat technique, problems on sulphur and sulphur bearing compounds.

UNIT V THERMO PHYSICS AND THERMOCHEMISTRY

9Hrs

Heat capacity of solids, liquids, gases and solutions, use of mean heat capacity in heat calculations, problems involving sensible heat and latent heats, evaluation of enthalpy. Standard heat of reaction, heats of formation, combustion, solution, mixing etc., calculation of standard heat of reaction - Effect of pressure and temperature on heat of reaction - Energy balance for systems with and without chemical reaction. - unsteady state energy balances.

Total No of Hours: 45Hrs

TEXT BOOKS:

- 1. Bhatt, B.L., Vora, S.M., "Stoichiometry", Tata McGraw-Hill, 1976.
- 2. Himmelblau, D.M., "Basic Principles and Calculations in Chemical Engineering", EEE Sixth Edition, Prentice Hall Inc., 2003 (with CD containing programmes and problems).

REFERENCES:

- 1. Process Calculation for Chemical Engineering, Second Revised Edition, Chemical Engineering Education Development Centre, I.I.T., Madras, 1981
- 2. Process Calculations, Venkataramani, V and Anantharaman, N, Prentice Hall of India Pvt. Ltd. 2007

Subject Cod	e:		•	Name :	-					Lb/ETL	L	T/S	Lr 1	P/R	C
EBCS22ID1				ions in (/IE					
		Pr	erequi	site: Co	mpute	er r unc	ıamen	tais	Ty		3	0/0		0/0	3
L : Lecture T								ect R:	Resear	ch C: Cr	edits	s T/L	/ETL		
Theory/Lab/I	Embe	dded T	heory a	and Lab	/ Intern	al eval	uation								
OBJECTIV	E :														
• To g	ain kr	nowled	ge base	ed on var	rious p	rogram	ming 1	anguag	es app	lied for c	hem	nical t	techno	logy.	
COURSE O	UTC	OMES	(COs):(3-5	()										
CO1	Sele	ct appr	opriate	comput	ter app	lication	is to sto	ore and	retriev	e data.					
CO2	Diss	eminat	e giver	n inform	ation i	n basic	and ad	lvanced	I PC ap	plication	s.				
CO3		dentify and apply digital/computer fundamentals. To analyze calculation of chemical engineering data													
CO4															
CO5		By using computer programming to manipulate simulation of chemical processing													
	ping of Course Outcomes with Program Outcomes (POs)														
COs/POs		DO1	DO2	DO2	PO4	DO5	DO4	PO7	PO8	PO9	PC)1 T	PO11	DO	12
COS/POS		PO1	PO2	PO3	PO4	PUS	PO	PO/	PU8	PO9	0)1 .	POII	PO	12
CO1		3	2	-	_	1	-	_	_	_	1		1	_	
CO2		3	3	_	-	3	-	3	-	-	1		3		
CO3		1	1		-	3	-	-		_	2		<u>3</u> 1	-	
CO4		3	_	2	2	-	3	_	-	2			<u>.</u>	2	
CO5		2	2	-		2	-	3	1	_	1		2	-	
COs / PSOs			SO1		SO2		SO3		SO4		-				
CO1		2	201	1	,	2	-	1							
CO2		2		1		2		1							
CO3		1		2		1		2							
CO4		3		2		1		2							
CO5		1		2		2		1							
H/M/L indic	ates S	Streng	th of C	orrelati	ion 3	- High	, 2- M	edium,	1-Low	7		•		1	
	1									I	1			1	
			ces	ocial											
			enc	So		es		>	+	,,					
		Se	Sci	nd	o	tiv	es	naı	nen	jec					
Cotocom		nce	ıg (s a	Çore	elec	tiv	ipli	poı	Prc					
Category		scie	erii	iitie 3S	n (n E	;]ec	isc	om	al /					
		ic S	ine	nan	graı	grai	'n E	r D	1 C	itic					
		Basic Sciences	Engineering Scien	Humanities and S Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project					
	-	Н	Щ	F	F	F)	,	<u> </u>	1					
								$\sqrt{}$							

Subject Code: EBCS22ID1	Subject Name : Computer Applications in Chemical Engineering	Ty/Lb/ETL /IE	L	T/SLr	P/R	C
EBCS22ID1	Prerequisite: Computer Fundamentals	Ty	3	0/0	0/0	3

UNIT I INTRODUCTION TO PROGRAMMING LANGUAGES

9Hrs

Evaluation of Programming Languages - C, C++ and Java, Review on Windows operating system. Application Program: introduction to Word, Power point

UNIT II INTRODUCTION TO C PROGRAMMING

9Hrs

Introduction to C Programming - data types - constants - Variables - Expressions - Operators - input and output functions - Control Statements - Looping statements. Functions -Definition -Types of Function, Arrays - types of Array- Files handling.

UNIT III SPREAD SHEETS

9Hrs

Creating – opening and saving files – working with worksheets – entering data – editing – formatting – printing – formulae –Charts - Application in Density, molecular weight, mole and percentage compositions, Empirical and Molecular formula calculations, Heat of mixing, Gas laws, Vapour pressure, Chemical Kinetics calculations.

UNIT IV SPREAD SHEETS (DATA ANALYSIS)

9Hrs

Application in data processing, Statistical analysis of data, Regression. Analysis of variance, Interpolation, Graphical representations of various Chemical Engineering

UNIT V FORTRAN

9Hrs

 $Syntax-Mathematical\ and\ logical\ operation-Looping-Conditional\ statements-function-subfunction-Simple\ application\ Programs.$

Total No. of Hours: 45Hrs

TEXT BOOK

- 1. Ashok N.Kamthane, Programming with ANSI and Turbo C, Pearson Education, 2006
- 2. E. Joseph Billo, "Excel® for Chemists- A Comprehensive Guide", John Wiley & Sons, 3rd Edition

REFERENCE BOOKS:

- 1. B.W. Kernighan and D.M.Ritchie, The C Programming Language, 2nd Edition, PHI, 1988
- 2. Kanetkar Y., Let us C, BPB Pub., New Delhi, 1999.
- 3. Jerry, O., Breneman, G.L. Spreadsheet Chemistry, Prentice Hall, Englewood Cliffs, 1991.

Subject Co EBCE22ID		bject N		Enviro	nmenta	al		Tv/	Lb/ETL/	/IE	L	T/SL	P/R	C	
EBCE221D		ngineeri						J.				r			
T . T		erequis			1 T	D.	Daring	D . D .	Ty	C 11		0/0	0/0	3	
L : Lecture Theory/Lab								K : Ke	search C:	Crean	ts 1	l/L/EIL	:		
OBJECTIV	VE:														
• To	impart k	nowledg	ge in fu	ndame	ntal the	ory and	l design	of conv	entional v	vater t	rea	tment fa	cilities.		
• To	impart k	nowledg	ge in fu	ndame	ntal the	ory and	design	of conv	entional v	vastev	vate	er treatm	ent		
faci	ilities.														
• To	impart k	nowledg	ge on th	e princ	iples us	sed to d	lesign ac	dvanced	l wastewat	ter tre	atm	nents.			
COURSE (
						ng wate	r supply	and w	aste water	r syste	ems	, includi	ng water	r	
	transport														
	An understanding of water quality and waste water criteria and standards, and their relation to														
	bublic health. The ability to design and evaluate water supply and waste water project alternatives on basis of														
	The ability to design and evaluate water supply and waste water project alternatives on basis of														
	chosen. To develop students analytical, computational and research skills through assignments, weekly														
						itationa	il and re	search	skills throi	ugh as	ssig	nments,	weekly		
	presentat							ما مسما ه			a : 1 _a	:1:4:			
CO5	10 incui	cate amo	ong stuc	ients s	ensitivii	ly towa	ras soci	ai and c	corporate r	espon	SID	ilities			
Mapping o	f Course	e Outco	mes wi	th Pro	gram C	Outcom	es (POs	s)							
COs/POs	PO1	PO2	PO3	PO	PO5	PO6	PO7	PO8	PO9	PO1	1	PO11	PO12		
				4						0					
CO1	3	2	2	-	-	1	-	-	-	2		-	1		
CO2	3	2	-	-	-	-	-	-	-	2		-	-		
CO3	3	2	1	-	-	2	-	•	-	1		-	3		
CO4	2	-	-	-	1	-	-	•	2	-		-	1		
CO5	-	1	-	-		-	-	•	-	1		-	-		
COs/	PSO1	1	PSO2		PSO3	•	PO4								
PSOs															
CO1	3		3		3		-								
CO2	3		3		3		-								
CO3	3		3		3		-								
CO4	2		1		1		-								
CO5	2		3		1		-								
H/M/L ind	icates St	rength	of Cori	<u>relatio</u>	<u>n 3- I</u>	tigh, 2	- Mediu	ım, 1-L	ow	1	1		<u> </u>		
							3	<u>t</u>	+						
	မ		-				ina.	nen	jeς						
	Basic Science	ad	Science Humanities and	social Science	ore	elective Open Elective	Inter Disciplinary	Skill Component	Practical /Project						
	Scie	Engineering	lies	ciel	Program Core Program	ect	isc	,om	ˈˈal /						
5.	ic 5	nee	lce -	1 S	ogı	History III	r D								
Category	3as	ngin .	Science	cia	90. Pr	elective pen Ele	n	škil	- Prac						
ıteg	<u> </u>	田田	ž T	S	집	<u> </u>			-		-				
$\ddot{\mathcal{C}}$															

Subject Code: EBCE22ID4	Subject Name : Environmental Engineering	Ty/Lb/ETL/IE	L	T/SL r	P/R	С
	Prerequisite: None	Ty	3	0/0	0/0	3

UNIT I PLANNING FOR WATER SUPPLY SYSTEMS

9Hrs

Scope of environmental engineering – role of environmental engineer – Public water supply systems – objectives – design period – population forecasting – water demand – sources of water – sources selection – water quality – characterization – sources of wastewater – estimation of storm runoff.

UNIT II WATER TREATMENT

9Hrs

Screening - types of screening - plain sedimentation - sedimentation with coagulation - settling & flotation - filtration - disinfection.

UNIT II SEWAGE TREATMENT – PRIMARY TREATMENT

9Hrs

Objectives – unit operations & processes – principles, functions and design of screen, grit chambers and primary sedimentation tanks.

UNIT IV SEWAGE TREATMENT – SECONDARY TREATMENT

9Hrs

Secondary treatment – activated sludge process and trickling filter; other treatment methods – stabilization ponds and septic tanks – advances in sewage treatment.

UNIT V SEWAGE DISPOSAL AND SLUDGE MANAGEMENT

9Hrs

Methods – dilution – self purification of surface water bodies – oxygen sag curve – land disposal – sewage farming – deep well injection – soil dispersion system. Thickening – sludge digestion – biogas recovery - drying beds – conditioning and dewatering – sludge disposal.

Total No of Hours: 45Hrs

TEXT BOOKS:

- 1. Garg, S.K., Environmental Engineering, Vols. I &II, Khanna Publishers, New Delhi, 1994
- 2. C.S.Shah, Water Supply And Sanitation, Galgotia Publishing Company, New Delhi, 1994

REFERENCES:

- 1. Manual on Water Supply And Treatment, Ministry Of Urban Development, Government Of India, New Delhi, 1999.
- 2. Manual on sewerage and sewage treatment, CPHEEO, Ministry Of Urban Development, Government Of India, New Delhi, 1993
- 3. H.S.Peavy, D.R.Rowe and George Tchobanoglous, Environmental Engineering, Mcgraw-Hill Book Company, New Delhi, 1995.

SEMESTER III (PRACTICAL)

Subject Code: EBCC22ET1	Subject Name: UNIVERSAL HUMAN VALUES: UNDERSTANDING HARMONY	Ty/Lb/ETL/IE	L	T/SLr	P/R	C
	Prerequisite: None, UHV1 (Desirable)	ETL	1	0/0	2/0	2

L:LectureT:Tutorial SLr: Supervised Learning P:Project R:ResearchC:CreditsT/L/ETL/IE: Theory/Lab/Embedded Theory and Lab/ Internal evaluation

OBJECTIVES:

Human Values Courses: During the Induction Program, students would get an initial exposure to human values through Universal Human Values – I. This exposure is to be augmented by this compulsory full semester foundation course.

- 1. Development of a holistic perspective based on self- exploration about themselves (human being), family, society and nature/existence.
- 2. Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence
- 3. Strengthening of self-reflection.
- 4. Development of commitment and courage to act.

COURS	SEOUTCOMES(Cos):(3–5) The students will be able to
CO1	Relate self and surroundings and identify responsibility in life
CO2	Associate human relationship and nature to handle problems and provide sustainable solutions
CO3	Develop critical ability and engage in reflective and independent Thinking
CO4	Show commitment towards understanding of values
CO5	Apply Human values in day to day setting in real life

Mapping of Course Outcomes with Program Outcomes(POs)

COs/POs	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	POI	POII	PO12
										0		
CO1			1	1		2	1		1	1		2
CO2			2	2	1	2	3	1		2		2
CO3			1	1	1	2			1	2		3
CO4			2		1	1	1	3	1	1		3
CO5			1			2	1	2	1	1		3
Cos/P	SOs		PSO1	·		PSO2		P	SO3		PSC)4
CO	1		3			2			1			-
CO	2		2			3			2			-
CO	3		3			3			-			-
CO	4		2			1			-			-
CO	5		3			-			2			3

3/2/1indicatesstrengthofcorrelation 3 – High, 2 – Medium, 1 – Low

										_
Category	Basic Sciences	Engg Sciences	Humaniti es &SocialS ciences	Program	Program Electives	OpenEle ctives	Inter Disciplina ry	Skill Compone nt	Practical /Project	
			$\sqrt{}$							

Subject Code: EBCC22ET1	Subject Name: UNIVERSAL HUMAN VALUES: UNDERSTANDING HARMONY	Ty/Lb/ETL/IE	L	T/SLr	P/R	C
	Prerequisite: None, UHV1 (Desirable)	ETL	1	0/0	2/0	2

UNIT I INTRODUCTION - NEED, BASIC GUIDELINES, CONTENT AND PROCESS FOR VALUEEDUCATION 12Hrs

Purposeandmotivationforthecourse,recapitulationfromUniversal HumanValues-I - Self-Exploration—what is it? - Its content and process; 'Natural Acceptance'andExperientialValidation-astheprocessforself-exploration. - ContinuousHappinessandProsperity-AlookatbasicHuman Aspirations - Right understanding, Relationship and Physical Facility- the basic requirementsforfulfilmentofaspirationsofeveryhumanbeingwiththeir correctpriority - UnderstandingHappinessandProsperitycorrectly-Acriticalappraisalof the currentscenario - Methodtofulfiltheabovehumanaspirations:understandingandliving in harmony atvariouslevels. Include practice sessions to discuss natural acceptance in human being as the innate acceptance forliving with responsibility (living in relationship, harmony and co-existence) rather than asarbitrariness in choice based on liking-disliking.

UNIT II UNDERSTANDING HARMONY IN THE HUMAN BEING - HARMONY IN MYSELF 12Hrs

Understanding human being as a co-existence of the sentient 'I' and the material 'Body'.- Understanding the needs of Self ('I') and 'Body' - happiness and physical facility. - Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer). - Understanding the characteristics and activities of 'I' and harmony in 'I' - Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physicalneeds, meaning of Prosperity in detail - Programs to ensureSanyam and Health. Include practice sessions to discuss the role others have played in making material goods available tome. Identifying from one's own life. Differentiate between prosperity and accumulation. Discussprogram for ensuring health vs dealing with disease.

UNIT III UNDERSTANDING HARMONY IN THE FAMILY AND SOCIETY- HARMONY IN HUMAN-HUMANRELATIONSHIP 12Hrs

Understanding values in human-human relationship; meaning of Justice (nine universal values inrelationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect asthe foundational values of relationship - Understanding the meaning of Trust; Difference between intention and competence - Understanding the meaning of Respect, Difference between respect and differentiation; the othersalient values in relationship - Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals - Visualizing a universal harmonious order in society- Undivided Society, Universal Order- fromfamily to world family. Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal valuein relationships. Discuss with scenarios. Elicit examples from students' lives.

UNIT IV UNDERSTANDING HARMONY IN THE NATURE AND EXISTENCE - WHOLE EXISTENCE ASCOEXISTENCE 12Hrs

Understanding the harmony in the Nature - Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation nature - Understanding Existence as Co-existence of mutually interacting units in all-pervasive space - Holistic perception of harmony at all levels of existence - Include practice sessions to

discuss human being as cause of imbalance in nature (film "Home" canbe used), pollution, depletion of resources and role of technology etc.

UNIT V IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONALETHICS 12Hrs

Natural acceptance of human values - Definitiveness of Ethical Human Conduct - Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order - Competence in professional ethics: a. Ability to utilize the professional competence foraugmenting universal human order b. Ability to identify the scope and characteristics of peoplefriendlyand eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems. - Case studies of typical holistic technologies, management models and production systems - Strategy for transition from the present state to Universal Human Order: ((a) At the level of individual: as socially and ecologically responsible engineers, technologists and managers, (b)Atthe level of society: as mutually enriching institutions and organizations - Sum up. Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions e.g. Todiscuss the conduct as an engineer or scientist etc.

Total No of Hours: 60Hrs

TEXT BOOK

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

REFERENCE BOOKS

- 1. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi.
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J C Kumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

Subject Code: EBCT22L01	Sub Lab	ject Nar	ne : Wa	ater An	alysis	Ty	y/Lb/E	TL/IE	L	T/S.I	Lr P/R		C
	Prei	requisite	e: Chen	nical To	echnolog	gy Ll)		0	0/0	3/0		1
L : Lecture T :	Tutoria	1 SLr:	Superv	ised Le	arning I	P : Proj	ect R:	Researc	h	<u> </u>			1
C: Credits T/L													
evaluation													
OBJECTIVE	:												
 To red 	uce the	impuriti	es to a	certain 1	evel tha	t does	not caus	se harm	to huma	ın health.			
 To red 	uce the	objectio	nable co	olour, o	dour, tu	rbidty	and hard	dness.					
• To ma	ke wate	r safe fo	r drinki	ng and ı	usable a	pplicat	ion.						
COURSE OU	TCOM	ES (CO	(s):(3-	5)									
		niques a				ysis at	water c	ompone	ents				
* * *		cal techr											
		ance and							ample				
		at phys											
		pret of r	_					nate					
Mapping of C								DOO	DOO	DO10	DO11	- DO	10
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	2	2	-	-	1	-	-	-	2	-	1	
CO2	3	2	-	-	-	•	-	-	-	2	-	-	
CO3	3	2	1	-	- :	2	-	-	_	1	-	3	
CO4	2	-	-	-	1	•	-	-	2	-	-	1	
CO5	- DC 0.1	1	- DG 0.2	-	DGGG	•	-	-	-	1	-	-	
COs / PSOs	PSO1		PSO2		PSO3		PO4						
CO1	3		3		3		-						
CO2	3		3		3		-					-	
CO3	3		3		3		-						
CO4 CO5	2		3		1		-					+	
H/M/L indica		nath of	•	otion	<u>1</u> 3- High	2- M	edium 1	1-I ow					
11/WI/L muica		ngth of	COLLET		J- IIIgii	, 4- 111		I-LOW					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				

Subject Code: EBCT22L01	Subject Name : Water Analysis Lab	Ty/Lb/ETL/IE	L	T / S.Lr	P/ R	C
	Prerequisite: Chemical Technology	Lb	0	0/0	3/0	1

- 1. ALKALINITY, PHENOLPHTHALEIN
- 2. BICARBONATE
- 3. BIOCHEMICAL OXYGEN DEMAND
- 4. CHEMICAL OXYGEN DEMAND
- 5. CARBONATE CALCULATION FROM PH & ALKALINITY
- 6. EDTA TITRATION METHOD FOR CALCIUM ANALYSIS

Subject EBCT	et Code: 22L02	Sub Lab	ject Na	me : M	echanio	cal Ope	eration	Ty/I	Lb/ETI	L/IE	L	T/SL	r P /l	R	C
			equisit	e: Mecl	hanical	operat	tion	Lb			0	0/0	3/	0	1
L : Lect	ure T · I	theo		Supervio	ed I ea	rning D	· Projec	 of D · L	Research	. C· C	red	lite T/I /	FTI ·		
Theory/								π. Ι	xcscarci.	ı C. C	100	nts 1/L/	LIL.		
	CTIVE		THEOLY	una Ba	or micer	nar 2 va									
			he stud	ents wil	1 learn	charact	erization	of so	lids, size	e redu	ıcti	on, tech	niques of	solic	1 –
	fluid se				1 Tour II	onar a o c	or izatioi	1 01 50	1105, 512	o rouc		011, 10011	inques of	DOIL	•
COUR	SE OU	TCOM	ES (CO	(3)	5- 5)										
	Therma					wder									
CO2	Determ	ination	of emis	sivity o	f a grey	body									
	Determ						cients fo	r a coi	mposite	wall					
	Determ														
	Determ								sing bas	sed co	nv	ection			
		F Course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	•	PO10	PO11	PO	12
CO1		2	-	-	-	3	-	-	-	3		-	-	1	
CO2		2	-	2	-	3	-	-	-	3		-	-	2	
CO3		2	-	-	-	1	-	-	-	3		-	2	-	
CO4		3	-	-	1	-	-	-	3	•			1	-	
CO5		2	-	-	-	1	2	2	-	-		-	-	2	
COs /	PSOs	PSO1		PSO2	2	PSO3 PSO4									
CO1		2		2		1		-							
CO2		3		1		-		-							
CO3		1		2		1		-							
CO4		3		2		1		-							
CO5		4		2		1		1							
H/M/I	indica	tes Stre	ength of	Corre	lation	3- Hig	gh, 2- M	lediun	1, 1-Lov	V					
Cobogony	Caregory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project					
				•	V					√ √				+	

Subject Code: EBCT22L02	Subject Name : Mechanical Operation Lab	Ty/Lb/ETL/IE	L	T/SLr	P/R	C
	Prerequisite: Mechanical operation theory	Lb	0	0/0	3/0	1

- 1. Jaw crusher
- 2. Crushing rolls
- 3. Ball mill
- 4. Size analysis by sieving
- 5. Size analysis by sub-sieving
- 6. Filter press
- 7. Leaf filter
- 8. Cyclone separator
- 9. Sedimentation
- 10. Elutriator
- 11. Rotary Drum filter
- 12. Effectiveness of screens

^{*} Minimum 10 experiments shall be offered

Prerequisite: Computer Lb	Subject Code: EBCS22IL3	Subject Name : Computer Programming Lab Ty/Lb/ETL/I E T/SLr P									P/R	C			
L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL: Theory/Lab/Embedded Theory and Lab/ Internal Evaluation OBJECTIVE:			-	_]	Lb	0	0/0		3/0	1
Theory/Lab/Embedded Theory and Lab/ Internal Evaluation											<u> </u>				
OBJECTIVE: • To gain knowledge based on various programming languages applied for chemical technology. COURSE OUTCOMES (COs) : (3-5)								: Rese	arch C:	Credits '	Γ/L/	ETL:	:		
■ To gain knowledge based on various programming languages applied for chemical technology. COURSE OUTCOMES (COs): (3-5) CO1	· · · · · · · · · · · · · · · · · · ·	ded The	ory and	ı Lau/ III	ternar i	zvaiuai	1011								
COURSE OUTCOMES (COs): (3-5) CO1			1						1. 1	C 1		1, 1	1		
CO1					ous pro	gramm	ing lan	guages	applied	for cher	nıca	1 tech	nology	•	
CO2	COURSE OUTC	OMES	(COs)	: (3-5)											
CO2	CO1 At the e	nd of this practical course, the student would have a thorough understanding of skills in													
CO2				crear coa	150, 1110	Staden	i would	. 114 (0)	a thorou	gii diidei	ou.	141115	or sitti		
The chemical formula understand by using C,C+, C++ programme	_	1 0		er progra	ammin	g skill	develo	oment							
Recent trend skill development by using fundamental programming knowledge. To leaning advance technique from computer language									gramme						
Mapping of Course Outcomes with Program Outcomes (POs)											edge				
COS/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 2 - 1 - 3 - 2 - 3 2 - 2 CO2 2 - 1 - 3 - 2 - 3 3 1 CO3 1 2 - 2 - 2 2 2 2 2 CO4 2 2 2 2 2 2 3 3 2 2 1 3 2 CO5 3 3 3 2 1 3 2 2 1 3 CO5 PSOS PSO1 PSO2 PSO2 PSO3 PSO4 CO1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CO5 To lean	ing adv	ance te	chnique 1	from co	mputer	· langua	age							
CO1	Mapping of Cours	se Outo	comes v	vith Pro	gram (Outcon	nes (PC)s)							
CO2	COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10	PO11	PO	12
CO3	CO1	2	-	1	-	3	-	2	-	3	2		-	2	
CO4		2	-	1	-	3	-	2	-		-		3	1	
CO5		_		-	-	2	•	-			2			-	
COs / PSOs PSO1 PSO2 PSO3 PSO4								3	3	2					
CO1								-	-	-	2		1	3	
CO2			SO1		O2				<u>SO4</u>						
CO3 3 2 1 3 2 CO4 CO4 1 2 3 2 2 CO5 2 1 2 1															
CO4 1 2 3 2 1															
Costegory H/M/L indicates Strength of Correlation Basic Sciences Homanities and Social Sciences Arogram Electives Program Electives Open Electives Practical / Project Practical / Project Basic Sciences Arogram Electives Arogram Electives Open Electives Arogram Ele															
H/M/L indicates Strength of Correlation Basic Sciences Humanities and Social Sciences Program Core Open Electives Skill Component Practical / Project Practical / Project															
Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core Program Electives Open Electives Skill Component Practical /Project			l C C -	_	- 2 1	_	NT-15		T						
	H/M/L indicates S	strengt 	n or Co	rrelatio	n 3-1	Hign, 2	- Meai	um, 1-	Low						
	Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project					

Subject Code: EBCS22IL3	Subject Name : Computer Programming Lab	Ty/Lb/ETL/I E	L	T/SLr	P/R	C
	Prerequisite: Computer application in chemical lab	Lb	0	0/0	3/0	1

- 1. Operating Systems Commands (like Copy, ren, del, type, cd, md, rd,..)
- 2. Formatting the Word Document (Fonts, Header, Footer, page number, Tables,...)
 - i. Text Manipulations, Usage of Spell check, and Find & Replace
 - ii. Usage of Numbering, Bullets, Footer and Headers.
 - iii. Picture insertion and alignment.
 - iv. Creation of documents, using templates.
 - v. Mail Merge Concepts.
- 3. Power point Presentation (Slide Design, animation and effects.)
- 4. Working with Excel
 - i. Cell Editing, Usage of Formulae and Bulit-in Functions.
 - ii. using Spread sheet, Empirical and Molecular formula calculation
 - iii. using Spread sheet, Chemical Kinetics calculation

5. C- Programming

- i. Write a C program to implement Single non-linear equation (Equation state such as Van der Waal, Peng Robinson, RKS, Friction factor equation, Ergun equation, Estimation of Drag coefficient etc)
- ii. Write a C program to implement set of linear equation (Material balance of distillation column, multiple extraction unit, etc)
 - ii. Write a C program to find the
 - a. Density b. Molecular Weight c. Mole d. Percentage of Composition

Subject (Subj	ect Nan	ne : Ferti	lizer Te	chnolog	y		/Lb/ETI	L/IE	L	T/S	S.Lr	P/R	
EBCT22ET1 Prerequisite:							E			2	0/0		2/0	3	
L : Lectur									rch C: C	redits					
Ty/L/ETL	: Theor	ry/Lab/E	Embedde	ed Theory	and Lat	o/ Interna	al Evalu	ation							
OBJECT															
• T	o enab	le the sti	udents to	learn the	e fertilize	er manut	facturing	g includ	ling new	or mod	ified	fertili	zer pro	duct	s and
n	ew tech	nniques.													
COURSI	E OUT	COME	S (COs)	: (3-5)											
CO1	Use the proper micronutrients to improve fertility of soil. Use relevant fertilizer on the basic of different properties														
CO2															
CO3	Select	Select the relevant manufacturing process for phosphatic fertilizers													
CO4	Select	the rele	vant ma	nufacturi	ng proce	ss for po	otassic f	ertilize	rs						
CO5	E1 1														
Mapping	Mapping of Course Outcomes with Program Outcomes (POs)														
COs/POs		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	O10	PO11		PO12
CO1		2	3	-	-	-	1	-	-	-	-		3		-
CO2		2	3	-	2	-	2	-	-	-	-		3		1
CO3		-	-	1	-	1	2	1	-	1	3		1		-
CO4		1	-	-	-	2	-	2	-	-	1		-		1
CO5		2	-	2	1	-	2	1	-	-	-		1		1
COs / PS	Os		01	PS	02	PS	O3		SO4						
CO1		2		2		-		1							
CO2		3		1		2		1							
CO3		3		2		1			-						
CO4		2		1		2		2							
CO5		3		2		2		2							
H/M/L iı	ndicate	s Streng	gth of C	orrelatio	n 3- H	igh, 2- I	Mediun	ı, 1-Lov	W						
Category		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project					
					V					V					

Subject Code:	Subject Name : Fertilizer Technology	Ty/Lb/ETL/IE	L	T/S.Lr	P/R	C
EBCT22ET1	Prerequisite: Basic science	ETL	2	0/0	2/0	3

UNIT I NITROGENOUS FERTILISERS

12Hrs

Methods of production of nitrogenous fertilizer-ammonium sulphate, nitrate, urea and calciumammonium nitrate; ammonium chloride and their methods of production, characteristics and specifications, storage and handling.

UNIT II PHOSPHATIC FERTILISERS

12Hrs

Raw materials; phosphate rock, sulphur; pyrites etc., processes for the production of sulphuric and phosphoric acids; phosphates fertilizers – groundrock phosphate; bone meal-single superphosphate, triple superphosphate, triplesuperphosphate, thermal phosphates and their methods of production, characteristics and specifications.

UNIT III POTASSIC FERTILISERS

12Hrs

Methods of production of potassium chloride, potassium sulphatetheir characteristics and specifications.

UNIT IV COMPLEX AND NPK FERTILISERS

12Hrs

Methods of production of ammonium phosphate, sulphated ammoniumphosphate, nitrophosphates, urea, ammonium phosphate, mono-ammonium phosphate and various grades of NPK fertilizers produced in the country.

UNIT V MISCELLANEOUS FERTILISERS

12Hrs

Mixed fertilizers and granulated mixtures; biofertilisers, nutrients, secondary nutrients and micro nutrients; fluid fertilizers, controlled release fertilizers, controlled release fertilizers.

Total No of Hours: 60Hrs

TEXT BOOKS:

- 1. "Handbook of fertilizer technology", Association of India, New Delhi, 1977.
- 2. Menno, M.G.; "Fertilizer Industry An Introductory Survey", HigginbothamsPvt. Ltd., 1973.

REFERENCES:

- 1. Sauchelli, V.; "The Chemistry and Technology of Fertilizers", ACSMONOGRAPH No. 148, Reinhold Publishing Cor. New York, 1980.
- 2. Fertiliser Manual, "UNITed Nations Industrial Development Organisation", UNITed Nations, New York, 1967.
- 3. Slack, A.V.; Chemistry and Technology of Fertilisers, Interscience, New York, 1966.

PRACTICAL EXERCISE

- 1. Prepare chart for fertilizer classification with chemical formula and nutrient content.
- 2. Estimate nutrient content (% N, %P2O, % K2O) in different fertilizers from their chemical formula.
- 3. Estimate percentage of Nitrogen in Ammonium chloride by back titration.
- 4. Estimate percentage of Nitrogen in DAP by Kjeldhal's method.
- 5. Prepare potassium sulphate and potassium chloride.

SUGGESTED STUDENT ACTIVITIES

- 1. Following is the list of proposed student activities. These could be individual or group-based.
- 2. Prepare course/topic based presentations using internet .
- 3. Make a report on fertilizer plants in India/Tamil Nadu with their capacity of production and technology being used.
- 4. Participate in MCQ/Quiz.

SPECIAL INSTRUCTIONAL STRATEGY (IF ANY)

- 1. Show video/animation films about fertilizer production plants.
- 2. Arrange Visit to nearby fertilizer production plant.
- 3. Arrange expert lectures.

Arrange MCQ/Quiz arrange in normal term period.

SEMESTER IV (THEORY)

Subject	Code	e: Sub	ject Na	ame : Che	mical To	echnolog	gy I	Ty/L	b/ ETL/I	E L	T	/ S.Lr	P/R	С
EBCT2	2004	Pre	requisi	te: Engin	eering (Chemistr	y – II	Ty		3	1/0)	0/0	4
L: Lect	ure T			r : Supervi				R : Res	earch C:	Credits	•			
T/L/ET	L: Th	eory/La	b/Embe	edded The	ory and I	Lab/ Inte	rnal Eva	luation						
OBJEC	CTIVI	Ξ:												
•	To in	troduce	history	, importan	ce and co	omponer	nts of che	emical ei	ngineerin	g, conc	epts of u	nit ope	rations	and
	unit p	rocesse	s. Curre	ents scenar	io of che	mical &	allied pr	ocess in	dustries.			_		
COURS	SE O	UTCON	MES (C	(Os): (3-	5)									
CO1				e to explai		•				•				
	shall give them first hand information about the environment in industries and prepare them well for													
~~~	industries  The students are informed about some basic industries with the help of process diagrams, material of													1 6
CO2										•	•	-		
	construction used, chemical and physical processes involved including the equipments used, their safety													
CO3	precautions in design and operation.  This shall give them first hand information about the environment in industries and propers them well for													
COS	This shall give them first hand information about the environment in industries and prepare them well for industries.													
CO4			e vario	ıs manufad	cturing n	rocesses	used in	chemica	l process	industr	ies			
CO5														
Mappir	ng of (	Course	Outcor	nes with H	Program	Outcon	nes (POs	s)						
COs/PO		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PO	12
CO1		3	1	-	2	-	-	-	-	2	-	1	-	
CO2		3	2	-	-	-	-	-	-	3	-	-	-	
CO3		1	3	-	-	-	1	-	-	3	-	-	2	
CO4		2	1	-	1	-	-	-	2	-	-	2	-	
CO5		1	-	1	-	-	-	-	1	-	-	1	-	
COs/P	SOs	PS	01	PSC	)2	PS	O3	PS	O4					
CO1		3		1		1		1						
CO2		2		1		3		3						
CO3		1		3		2		1						
CO4		2		2		1		2						
CO5		2		3		1		1						
H/M/L	indica	ates Str	ength o	of Correla	tion 3-	High, 2	z- Mediu	m, 1-Lo	W			1		
Category		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				
l			En	Huı	,	H.		Inte	Skil	Prac				
					$\sqrt{}$									

<b>Subject Code:</b>	Subject Name : Chemical Technology I	Ty / Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCT22004	Prerequisite: Engineering Chemistry – II	Ty	3	1/0	0/0	4

#### UNIT I INTRODUCTION

12Hrs

Chemical processing, the role of chemical engineers in process industries, importance of block diagrams and flow charts, UNIT operations, UNIT processes, process utilities sand economics, industrial safety and pollution, outline plant and equipment design, process control and instrumentation.

#### UNIT II FERTILIZER CHEMICALS

12Hrs

Growth elements, Function, Nitrogenous fertilizers, Ammonium sulfate, Ammonium Nitrate and Urea, Phosphatic fertilizers, single and triple superphosphate, Ammonium phosphate, Nitro phosphate, Potassium Fertilizers, Potassium Chloride, Potassium Nitrate and phosphate, Compound fertilizers and bio-fertilizers. PHOSPHORUS INDUSTRIES: Phosphate rock, benefaction, phosphoric acid-phosphate. NITROGEN INDUSTRIES: Synthesis ammonia and nitric acid. AGRICHEMICAL INDUSTRIES: Insecticides, pesticides, herbicides, plant nutrients and regulators

#### UNIT III INDUSTRIAL CHEMICALS I

12Hrs

EXPLOSIVES AND PROPELLANTS INDUSTRIES: Explosives, types and characteristics, industrial and military explosives, propellants for rockets. SURFACE COATING INDUSTRIES: Paints, pigments, varnishes, lacquers, industria, and marine coatings. PHOTOGRAPHIC CHEMICALS: Photographic chemicals, manufacture of films, plates and papers, recovery. INDUSTRIAL GASES: Synthetic gas, natural gas, carbon dioxide sulphur-di-oxide, acetylene, helium and argon, hydrogen, oxygen, nitrogen.

#### UNIT IV INDUSTRIAL CHEMICALS II

12Hrs

CHOLORO - ALKALI INDUSTRIES: Soda ash and sodium bicarbonate, Chlorine and caustic soda; bleaching powder and related bleaching agents, hydrochloric acid.SULPHUR AND SULPHURIC ACID INDUSTRIES: Mining and manufacturing of Sulphur, recovery of sulphur from polluting gases, sulphur trioxide and sulphuric acid.ELECTROLYTIC AND ELECTROTHERMAL INDUSTRIES: Abrasives, Carborondum, Calcium Carbide, Aluminium and Magnesium.

#### UNIT V INDUSTRIAL CHEMICALS III

12Hrs

WATER IN INDUSTRY: Role of water treatment methods for industrial and domestic use, recovery of waste water, water conditioning.MARINE CHEMICALS: Sodium chloride, By-products of common salt industry, value added product.NUCLEAR INDUSTRIES: Production of uranium, thorium and zirconium from ores and minerals, separation of isotopes, waste disposal.

**Total No of Hours: 60Hrs** 

#### **TEXT BOOKS**

1. Austin, G.T. Shreve, "Chemical Process Industries", Fifth Edition, McGraw Hill International Book Co., Singapore, 1984. Dryden, C.E., "Outlines of Chemicals Technology", Edited and Revised by Gopala Rao, M. and Sitting, M., Second Edition, Affiliated East-West Press, 1993.

Subject Code:				Name :		al Eng	ineering	g			Ty / I ETL/		L	T / S.I		P/ R	С
EBCT22	005			site: Cl		thermo	dynamic	cs			Ty		3			0/0	4
L : Lectu	re T :								t R	: Res		n C: Cred					
T/L/ETL							_										
OBJECT	TIVE:				<u>-</u>												
				e theory method								amics, tl orium.	nermo	odyr	namic	prop	erties,
COURS																	
CO1	To u	nder	stand a	ind be at	le to us	e the fir	rst law o	of ther	mod	ynan	nics 1	or open a	and c	lose	d syst	ems, t	o set
	up ei	٠.	/ balan	ices for s	teady- a	and uns	teady-st	ate pr	oces	ses a	nd to	solve the	em fo	or sin	nple a	nd cla	assic
CO2	To u	nder	stand a	and be a	ble to u	se the s	second 1	law of	ther	mod	ynan	nics, to se	et up	entr	opy b	alanc	es for
	stead	ly- a	nd uns	steady-st	ate pro	cesses	and to	solve	then	n for	simp	ole and 1	imiti	ng c	ases t	o est	ablish
		bounds for solutions to engineering problems.  Students, at the end of the course will be able to comprehend the fundamental concepts of enthalpy,															
CO3								to co	mpre	eheno	d the	fundame	ental	conc	epts o	of entl	nalpy,
ac:				l energy				1.1		_	1						•
CO4		Students, at the end of the course will be able to use volumetric equations of state to estimate															
COT	saturation pressure of pure components.  Students, at the end of the course will be able to use the concept of thermodynamic consistency of																
CO5																	icy of
Mapping			_						_	ation	ana	test cons	istenc	cy of	data.		
COs/POs	s F	0	PO	PO3	PO4	PO5	PO6	PO	7	PO	8	PO9	PO	10	PO1	1 I	PO12
CO3/1 O	$\frac{1}{1}$		2	103	104	105	100		,			10)	10.	10		-   -	012
CO1	2		1	-	2	-	-	-		_		2	-		1	-	
CO2	3		2	-	-	-	2	-		-		3	-		-	2	)
CO3	2		1	1	-	-	-	-		2		-	2		2	1	_
CO4	3		-	1	-	2	-	-		3		-	-		1	-	
CO5	2		2		2	1	1	1		-		1	1		-	2	
COs/		PS	01	PSC	)2	PS	O3	PSC	<b>)4</b>							•	
PSOs																	
CO1	3			1		1		2									
CO2	2			1		3		3									
CO3	2			1		1		1									
CO4	3			2		1		1									
CO5	1			1		1		2									
H/M/L i	ndicat	es S	trengt	h of Cor	relatio	n 3- I	ligh, 2-	Medi	um,	1-L	ow						
Categor y	Bosio Coion	Dasic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives		Inter	Disciplinary	Skill Component	Practical /Project					
Ī					√											74	

Subject	Subject Name: Chemical Engineering	Ty / Lb/	L	T /	<b>P</b> /	C
Code:	Thermodynamics I	ETL/IE		S.Lr	R	
EBCT22005	Prerequisite: Classical thermodynamics	Ty	3	1/0	0/0	4

# UNIT - I FUNDAMENTAL CONCEPTS IN THERMODYNAMICS

12Hrs

Introduction – systems – surrounding – thermodynamic property – heat – work – energy forms

### UNIT – II FIRST LAW OF THERMODYNAMICS

12Hrs

First law of thermodynamics - batch systems - open systems - applications - chemical reactions

### UNIT - III SECOND LAW OF THERMODYNAMICS

12Hrs

Second law -carnot's principle – reversible – irreversible processes – entropy –criterion for reversible – irreversible – entropy balance

# UNIT - IV REFRIGERATION AND LIQUEFACTION

12Hrs

Heat engines – refrigeration – cycles.

### UNIT - V THERMODYNAMIC PROPERTIES OF FLUIDS

12Hrs

Fluids – state equations – ideal gas – actual gas equations – application.

**Total No of Hours: 60Hrs** 

### **TEXT BOOKS:**

- 1. Smith, J.M., and Van Ness, H.C., "Introduction to Chemical Engineering Thermodynamics", Kogakushai 1976.
- 2. Narayanan K.V" A text book of chemical engineering thermodynamics" Prentice Hall of India pvt. Ltd 2001

### REFERENCES

- 1. Hougen, O.A., Watson, K.M., and Ragatz, R.A., "ChemicalProcess Principles Part II, Thermodynamics", John Wiley 1970.
- 2. Dodge, B.F., "Chemical Engineering Thermodynamics", McGraw-Hill, 1960.
- 3. Sandler, S.I., "Chemical and Engineering Thermodynamics 2nd edn.",
- 4. Wiley, 1989.
- 5. Kyle, B.G., "Chemical and Process Thermodynamics 2nd edn.", Prentice Hall of India Pvt.Ltd., 1990.

Subject		e:	Subject	Name: I	luid M	echanic	s Ty/	Lb/ETI	L/IE	L	T /	S.Lr	<b>P</b> / <b>R</b>	C
EBCT2	22006		Prerequ	iisite: che	mical p	rocess	Ty			3	0/0		0/0	3
			industr											
				Lr : Super					Researc	h C: Cı	redits T/	L/ETL:		
Theory/	/Lab/E	Embe	dded The	ory and L	ab/ Inter	rnal Eva	luation	1						
OBJEC	CTIVI	E:												
•	To u	nderst	and basi	concept	of fluid	flow an	d its ap	plicatio	n to che	mical p	rocess i	ndustries	includ	ing
	pipe 1	flow,	fluid ma	chinery an	d agitat	ion & m	nixing.	_						
COLID	CE O	TTT C	OMEC (	20-) - (2	<u></u>									
				$\frac{\text{COs}}{\text{COs}}$ : (3		C Cl . 1	•,		1.1	1 .	1		11.	
CO1	_			ntal know	_	it fluid,	its pro	operties	s and be	ehavioi	under	various c	ondit	ions of
004				nal flows		0.01	1 01							
CO2	To 11	ntrod	uce fund	amental	aspects	of fluid	d flow	behavi	or					
CO ₃	To identify derivation of basic equations of fluid mechanics and apply													
CO4	Able	to de	emonstr	ate bound	lary lay	er conc	epts							
CO5	To e	stima	te perfo	rmance p	aramete	ers of a	given	Centri	fugal aı	nd Rec	iprocati	ng pump		
Mappii	To estimate performance parameters of a given Centrifugal and Reciprocating pump.  Mapping of Course Outcomes with Program Outcomes (POs)													
COs/PO	Os	PO1	PO	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1		3	2	-	-	-	•	2	-	-	•	1	1	
CO2		3	1	-	3	-	1	-	-	-	•	3	2	
CO3		2	3	-	-	-	•	3	-	-	•	3	2	
CO4		1	-	-	-	2	1	-	3	-	•	-	-	
CO5		2	-	-	-	1	-	-	-	2	-	-	-	
COs / I	<b>PSOs</b>		PSO1	PS	SO2	PS	<b>SO3</b>	PS	SO4					
CO1		3		2		1		3						
CO2		2		1		2		1						
CO3		2		1		1		3						
CO4		3		2		-		-						
CO5		2		1		-		-						
H/M/L	indic	ates S	Strength	of Correl	ation	3- High	ı, 2- M	edium,	1-Low					
			g	ial										
			nce	300		SS		<b>~</b>						
		S	cie	Jq S		ive	Š	ıary	ent	ect				
Catego	OFT	ce	ρυ Ο	s aı	ore	lect	ive	rilc	oon	roj				
Catego	or y	ciei	iri	frie S	υC	ıΕ	lect	scij	Jun	1/F				
		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				
		asi	ngi	um Sien	go.	.0g	per	iter	Ξ	act				
		B	垣	H S	Pl	Pı	0	In	S	Pı				
								<u> </u>		<u> </u>				

<b>Subject Code:</b>	<b>Subject Name : Fluid Mechanics</b>	Ty/Lb/ETL/IE	L	T/S.Lr	P/R	С
EBCT22006	Prerequisite: chemical process	Ту	3	0/0	0/0	3
	industries					

### UNIT I INTRODUCTION

9Hrs

Concept of fluid - the fluid as a continuum - properties of a fluid -density -viscosity -surface tension - heat capacity - vapour pressure.

### UNIT II FLUID STATICS

9Hrs

Application to manometry – Floatation – gravity settling – centrifugal separation – acceleration.

### UNIT III FLOW OF FLUIDS

9Hrs

Bernoullis theorem and application – laminar flow – turbulent flow – pressure drop – Newtonian and non- newtonian flow.

### UNIT IV COMPRESSIBLE FLUID FLOW

9Hrs

Mach no – nozzle flow – flow of fluid through packed bed – fluidization.

# UNIT V INDUSTRIAL PIPING

9Hrs

Valves – fluid moving machinery – pumps – characteristics of centrifugal pump – other types of pumps – compressors – work – blowers of pumps

Total No of Hours: 45Hrs

### **TEXT BOOKS:**

- 1. Noel de Nevers, "Fluid Mechanics for Chemical Engineers", Second Edition, McGraw-Hill, 1991.
- 2. McCabe, W.L, Smith J.C and Harriot .P.," UNIT Operations in Chemical Engineering ", McGraw-Hill, Sixth Edition 2000.

### **REFERENCES:**

- 1. Chemical engineering hand book by Perry.
- 2. White, F.M., "Fluid Mechanics", 4th Edition, McGraw-Hill Inc., 1999.

Subject Name: Bio-Chemical Principles	Ty/Lb/ETL/I	L	T/S.Lr	P/R	$\mathbf{C}$
	${f E}$				
Prerequisite: Engineering mathematics,	Ty	3	0/0	0/0	3
physics, stoichiometric concepts, chemistry					
	Prerequisite: Engineering mathematics,	Prerequisite: Engineering mathematics, Ty	Prerequisite: Engineering mathematics, Ty 3	Prerequisite: Engineering mathematics, Ty 3 0/0	Prerequisite: Engineering mathematics, Ty 3 0/0 0/0

L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab/ Internal Evaluation

# **OBJECTIVE:**

- To understand the theory and applications of classical thermodynamics, thermodynamic properties, equations of state, methods used to describe and predict phase equilibria.
- To provide knowledge of thermodynamic properties of real fluids and mixtures to design chemical process plants.

	proce	ss plants	S.										Chemical
COUR	SE OU	UTCOM	IES (C	$\overline{\mathrm{Os}}$ : (3	- 5)								
CO1	To in	npart kno	owledg	e on desi	gn and	operati	on of f	ermenta	ation pro	ocesses	with all i	ts prereq	uisites.
CO2									es, meta	bolic st	oichiome	try, ener	getics and
				volved i									
CO ₃	To ap		ineering	g princip	les to s	ystems	contair	ing bio	logical	catalyst	s to meet	the need	s of the
CO4			romise	s of mole	ecular h	iology	and ge	netic en	gineerii	ng into i	new proc	esses to 1	nake bio-
	produ	icts in ed	conomi	cally fea	sible w	ay.	8		6	8	<b>F</b>		
CO5									or biopr	ocess te	chnology	•	
				nes with					ı	1	ı	1	
COs/P		PO1	PO2	PO3	PO4	PO5	PO6		PO8	PO9	PO10	PO11	PO12
CO1		3	-	-	2	-	-	3	-	-	-	-	1
CO2		2	-	2	-	-	-	1	-	-	2	-	-
CO3		3	1	1	-	-	-	-	2	-	-	1	-
CO4		2	-	-	-	1	-	-	-	2	-	-	1
CO5	200	2	2	3	-	-	-	2	-	1	-	1	-
COs /			01		<u>O2</u>		803		<u>SO4</u>				
CO1		2		1		1		2					
CO2						1		2					
CO3		3		1		1		2					
CO4	+	2		1		2		1					
CO5	india	_	onath a	f Correl	otion 2	_	4 Ma	<u>1</u>	1 T ovv				
II/IVI/I	ı maica	ates Str	ength o	i Correi	ation 5	- nigii	, 4- Me	arum,	1-LOW				
			ences	3		'es		<u> </u>	ıt	<del></del>			
Category	Care Sor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project			
		ISi.	136	- Hui	rog	rog	be	ıteı	ξij	ac ac			
		Ba	ы	11, 01	P	P	0	1	S	Pl			

Subject	Subject Name : Bio-Chemical Principles	Ty/Lb/ETL/I	L	T/S.Lr	P/R	С
		E				
Code:	Prerequisite: Engineering mathematics,	Ty	3	0/0	0/0	3
EBBT22ID1	physics, stoichiometric concepts, chemistry					

### UNIT I OVERVIEW OF FERMENTATION PROCESSES

9Hrs

Overview of fermentation industry, general requirements of fermentation processes, basic configuration of fermentor and ancillaries, main parameters to be monitored and controlled in fermentation processes.

### UNIT II RAW MATERIALS AND MEDIA DESIGN FOR FERMENTATION PROCESS

9Hrs

Criteria for good medium, medium requirements for fermentation processes, carbon, nitrogen, minerals, vitamins and other complex nutrients, oxygen requirements, medium formulation of optimal growth and product formation, examples of simple and complex media, design of various commercial media for industrial fermentations – medium optimization methods

### UNIT III STERILIZATION KINETICS

9Hrs

Thermal death kinetics of microorganisms, batch and continuous heat sterilization of liquid media, filter sterilization of liquid media, air sterilization and design of sterilization equipment - batch and continuous.

### UNIT IV METABOLIC STOICHIOMETRY AND ENERGETICS

9Hrs

Stoichiometry of cell growth and product formation, elemental balances, degrees of reduction of substrate and biomass, available electron balances, yield coefficients of biomass and product formation, maintenance coefficients energetic analysis of microbial growth and product formation, oxygen consumption and heat evolution in aerobic cultures, thermodynamic efficiency of growth.

### UNIT V KINETICS OF MICROBIAL GROWTH AND PRODUCT FORMATION

9Hrs

Modes of operation - batch, fed batch and continuous cultivation. Simple unstructured kinetic models for microbial growth, Monod model, growth of filamentous organisms, product formation kinetics - leudeking- piret models, substrate and product inhibition on cell growth and product formation.

Total No. of Hours: 45Hrs

### **TEXT BOOKS:**

- 1. Bailey and Ollis, "Biochemical Engineering Fundamentals", McGraw Hill (2nd Ed.), 1986.
- 2. Shule and Kargi, "Bioprocess Engineering", Prentice Hall, 1992.

### **REFERENCES:**

- 1. Pauline Doran, Bioprocess Engineering Calculation, Blackwell Scientific Publications.
- 2. Peter F. Stanbury, Stephen J. Hall & A. Whitaker, Principles of Fermentation Technology, Science & Technology Books.
- 3. Harvey W. Blanch, Douglas S. Clark, Biochemical Engineering, Marcel Dekker, Inc.

Subject Code: EBCC22I04	Subject Name : The Indian Constitution (Audit Course )	Ty/Lb/ETL/IE	L	T / S.Lr	P/R	С
	Prerequisite: NIL	IE	2	0/0	0/0	0

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL: Theory/Lab/Embedded Theory and Lab/ Internal Evaluation

# **OBJECTIVES:**

CO₂

CO3

1

1

- To provide an overview of the history of the making of Indian Constitution
- To understand the preamble and the basic structures of the Constitution.
- To Know the fundamental rights, duties and the directive principles of state policy
- To understand the functionality of the legislature, the executive and the judiciary

• 10 ui	nderstand ti	ne runctio	nanty of	the legisla	iture, the	executive	and the	judiciar	У			
COURSE O	OUTCOMI	ES (COs)	: After s	tudying tl	nis course	the stude	ent woul	d be ab	le to			
CO1	To provi	ide an ove	rview of	the history	of the ma	aking of Ir	ndian Co	nstitutio	n			
CO2	To unde	rstand the	preambl	e and the b	asic struc	tures of th	e Consti	tution.				
CO3	To Knov	w the fund	lamental	rights, dut	ies and the	e directive	principl	es of sta	te policy	ý		
Mapping of	Course O	utcomes	with Pro	gram Out	comes (P	Os)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						3	1	1	1	1		
CO2						3	1	1	1	1		
CO3						3	1	1	2	1		
COs /	PSO1	PSO2	2,	PSO3								
PSOs												
CO1	1	1		2								

# H/M/L indicates Strength of Correlation 3- High, 2- Medium, 1-Low

2

2

Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project	Basic Science	
			*								

Subject	Subject Name : The Indian	Ty/Lb/ETL/I	L	T/S.Lr	P/R	C
Code:	Constitution(Audit Course)	$\mathbf{E}$				
<b>EBCC22I04</b>	Prerequisite: NIL	IE	2	0/0	0/0	0

UNIT 1
The History of the Making of Indian Constitution, Preamble and the Basic Structures

UNIT 2
Fundamental Rights and Duties, Directive Principles of State Policy

UNIT 3
Legislature, Executive and Judiciary

UNIT 4
Emergency Powers

UNIT 5 3Hrs

Special Provisions for Jammu and Kashmir, Nagaland and Other Regions, Amendments

**Total no Hours: 15 Hrs** 

#### **TEXT BOOKS:**

1. D D Basu, Introduction to the Constitution of India, 20th Edn., Lexisnexis Butterworths, 2012.

### **REFERENCE BOOKS:**

- 1. Rajeev Bhargava (ed), Ethics and Politics of the Indian Constitution, Oxford University Press, New Delhi, 2008.
- 2. Granville Austin, The Indian Constitution: Cornerstone of a Nation, Oxford University Press, Oxford, 1966.
- 3. Zoya Hassan, E. Sridharan and R. Sudarshan (eds), India's Living Constitution: Ideas, Practices, Controversies, Permanent Black, New Delhi, 2002.
- 4. Subhash C. Kashyap, Our Constitution, National Book Trust, New Delhi, 2011.

Subject Code: EBCC22I05	Subject Name : The Indian Traditional Knowledge( Audit Course)	T / L/ ETL/IE	L	T/SLr	P/R	C
	Prerequisite: NIL	Ty	2	0/0	0/0	0

 $L: Lecture \ T: Tutorial \quad SLr: Supervised \ Learning \ P: Project \ R: Research \ C: Credits \ T/L/ETL: Theory/Lab/Embedded \ Theory \ and \ Lab/Internal \ Evaluation$ 

### **OBJECTIVE:**

- To understand the Pre- colonial and Colonial Period, Indian Traditional Knowledge System
- To understand the Traditional Medicine, Traditional Production and Construction Technology
- To Know the History of Physics and Chemistry, Traditional Art and Architecture and Vastu Shashtra, Astronomy and Astrology
- To understand the Origin of Mathematics, Aviation Technology in Ancient India, Crafts and Trade in Ancient India

# COURSE OUTCOMES (COs): (3-5)

The Students will be able to

CO1	To understand the Pre- colonial and Colonial Period, Indian Traditional Knowledge System
CO2	To understand the Traditional Medicine, Traditional Production and Construction Technology
CO3	To understand the Origin of Mathematics, Aviation Technology in Ancient India, Crafts and Trade in Ancient

# **Mapping of Course Outcomes with Program Outcomes (POs)**

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12
										0		
CO1		3	3	1		3				3		1
CO2		3	3	1		3				3		1
CO3		3	3	1		3				3		1
COs / PSOs	PS	<b>O</b> 1	PS	O2	PS	О3						
CO1	1		1		2							
CO2	1		1		2							
CO3	1		1		2							

# H/M/L indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project		
			✓								

Subject	Subject Name : The Indian Traditional	T / L/	L	T/SLr	P/R	C
Code:	Knowledge( Audit Course)	ETL/IE				
EBCC22I05	Prerequisite: NIL	Ty	2	0/0	0/0	0

UNIT I 3Hrs

Historical Background: TKS During the Pre- colonial and Colonial Period, Indian Traditional Knowledge System

UNIT II 3Hrs

Traditional Medicine, Traditional Production and Construction Technology

UNIT III 3Hrs

History of Physics and Chemistry, Traditional Art and Architecture and Vastu Shashtra, Astronomy and Astrology

UNIT IV 3Hrs

Origin of Mathematics, Aviation Technology in Ancient India, Crafts and Trade in Ancient India

UNIT V 3Hrs

TKS and the Contemporary World, TKS and the Indian Union, TKS and IT Revolution.

### **TEXT BOOKS:**

- 1. Amit Jha (2009), Traditional knowledge system in india, 1st Edition, Delhi University (North Campus)
- 2. Dr.A.K.Ghosh (2011), Traditional Knowledge of Household Products

Total no. of Hours: 15 Hrs

# SEMESTER IV (PRACTICAL)

Subject		Su	bject Na	me : Foo	d Analy	sis Lab	Ty/I	Lb/ETL	/IE		L	T/S	.Lr	P/R	C
EBCT2	22L03	Pro	erequisit	te:			Lb				0	0/0		3/0	1
L : Lecti	ure T : Tu			pervised L	earning	P : Proje	ct R:R	esearch (	C: Credit	3	1	l	1		.!
			-	Theory an	_										
OBJEC	TIVE:			-											
•	Cookin	g progra	ams are	growing i	n popul	arity; ho	wever,	an exter	sive rev	iew has	not e	examin	ed their	over	all
	impact.		·		1 1	•									
•	•	re, this	study re	viewed p	revious	research	on coc	king/ho	me food	prepara	tion	interve	entions a	and di	et
			•	omes amo				_							
COURS	SE OUT				711 <u>5</u> 44441	tio una r		a mipne	ations ic	r praeti					
CO1	Apply	a techr	niques an	nalysis the	e food n	naterials									
CO2				and biolo				d.							
CO3		•	•	onents fo		•			nle.						
CO4	•			nodology						nd analys	sis				
CO5	11 0			echniques	- 11							and vo	lumes		
				ith Progra				ing whach	y divers	е ргоре	11105	ana vo	rames		
COs/PC		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	O10	PO11	P	012
CO1		3	_	_	_		3	_	_	_	+-				
CO2		1	_	_	3	_	1	_		_	1		_	+-	
CO2		-	-	1	-		2	-	•	-	1		-	-	
CO4		-   -	-	1	1	1	1	-	-	-	1		-	-	
CO5		-   -	1	1	1		1	1	-	_	+-		-	-	
				- DG4		- Da			-	-			-		
COs / P	SOs		501	PSO	<u> </u>		03		04		-				
CO1		2		3		3		-			-				
CO2		3		3 2		3		2			-				
CO4		3		2		1		-							
CO5		2		3		1		-							
	indicates		th of Cor	relation	3- High		lium, 1-	Low							
			1	T	·	1			1	ı					
		es	ences	Social	<b>9</b>	ives	es								
Catego	ory	Basic Sciences	ing Sci	ities and Sciences	Program Core	n Electi	Open Electives	plinary	ponent	Project					
		Basic	Engineering Sciences	Humanities and Sciences	Progr	Program Electives	Open	Inter Disciplinary	Skill Component	Practical /Project					
				Η				ln	S	Pı					

<b>Subject Code:</b>	Subject Name : Food Analysis Lab	Ty/Lb/ETL/IE	L	T/S.Lr	P/R	C
EBCT22L03	Prerequisite:	Lb	0	0/0	3/0	1

- 1. Moisture content –Lab Oven Method
- 2. Moisture content Using Moisture meter
- 3. Ash- Total
- 4. Ash-Acid Insoluble
- 5. Crude Protein Kjeldahi Method
- 6. Crude Fat –Soxhlet Apparatus Method
- 7. Total Carbohydrates
- 8. Crude Fiber
- 9. Cut out test for Canned Fishery Products
- 10. Detection of adulterants in different food product
- 11. Organochlorine Pesticides in water by Gas Chromatgraphic (GC) Method
- 12. N-Methylcarbamoyloximes and N-Methylcarbamates in Finished Drinking Water by High Performance Liquid Chromatography (HPLC)
- 13. Acesulfame K Detection and Detection and Determination in Sweets
- 14. Sensory Evaluation General Concepts
- 15. Sensory Evaluation Taste Intensity Tests
- 16. Sensory Evaluation Preference Test –Paired Preference Test
- 17. Sensory Evaluation Preference Test- Hedonic Rating Scale
- 18. Sensory Evaluation Preference Test Food Action / Attitude Rating Test
- 19. Sensory Evaluation Preference Test Preference Ranking Test
- 20. Sensory Evaluation Difference Test Paired Comparison Test

Subject Code:	Su	bject N	ame : Flu	uid Med	hanics	Lab		Ty/Lb/	ETL/IE	L T	/ S.Lr	P/R	C
EBCT22L04			ite: Fluid					Lb		0 0/	0	3/0	1
L: Lecture T: Tu	itorial	SLr : Su	pervised	Learnin	g P : Pr	oject R	: Resea	arch C: Ci	redits T/L	/ETL:			
Theory/Lab/Embe	edded T	Theory a	nd Lab/ I	nternal	Evaluat	ion							
<b>OBJECTIVE:</b>													
	•	mentall	y to calib	rate flov	v meters	s, find p	ressure	loss for f	fluid flow	s and d	etermine	pump	
characte													
COURSE OUT													
			sic physi										
									ons invol				
									entum, a	nd ene	rgy bala	nce.	
CO4 Having	g know	ledge a	bout cur	rent res	earch t	opics a	bout fl	uid mecl	hanics.				
Mapping of Co								T.	1		_	•	
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7		PO9	PO10		PO	12
CO1	2	-	-	3	-	2	-	3	-	1	1	-	
CO2	2	-	-	1	-	-	-	-	-	3	-	1	
CO3	3	-	-	-	-	-	-	1	-	-	2	-	
CO4	2	-	-	-	1	-	-	-	2	-	-	1	
COs / PSOs		01	PSC	)2	PS	03	P	SO4					
CO1	3		2		-		-						
CO2	2		1		-								
CO3	3		2		-		-						
CO4	2		1		1		-						
H/M/L indicate	s Stren	gth of (	Correlati	on 3-	High, 2	2- Medi	um, 1-1	Low					
		S	ces										
	es	nce	ien	e Ju	ves	'es							
	Basic Sciences	neering Sciences	Sc	Program Core	Program Electives	Open Electives	>	<b>+</b>	ب				
	Sci	N.	ial	am	區	Ele.	isciplinary	omponent	al /Project				
gor	ic	ii.	Soc	gr	ш	l u	plii	poī	Pro				
ategory	3as	ieel	pr	Pro	gra	ed(	sci	mc	n //				
ŭ	—	gin	s aı		Pro		Di		tica				
		Engi	itie				Inter D	Skill C	Practica				
			ıanı				Ir	$\infty$	<u> </u>				
			Humanities and Social Sciences										
			T										
				1					\ \ \				
				V		1	I .		V	_1			

Subject	Subject Name : Fluid Mechanics Lab	Ty/Lb/ETL/IE	L	T/S.Lr	P/R	C
Code:	Prerequisite: Fluid Mechanics	Lb	0	0/0	3/0	1
EBCT22L04	_					

- 1. Calibration of constant and variable Head meters
- 2. Calibration of Weirs
- 3. Drag reduction studies
- 4. Flow through straight pipe
- 5. Flow through Vertical concentric pipe
- 6. Pressure drop studies in packed column
- 7. Fluidization
- 8. Open drum orifice and draining time
- 9. Flow through helical coil and spiral
- 10. Characteristic curves of centrifugal pump
- 11. Viscosity measurement of non Newtonian fluids
- 12. Flow of air thro' orifice using Air compressor

^{*} Minimum 10 experiments shall be offered.

Subject EBCE2		Su La	-	ame: Env	vironm	ental E	nginee	ring	Ty/Lb/	ETL/IE	L	T / S	S.Lr	P/ R	C
		Pr	erequisi	ite: Envi	ronme	ntal En	gineer	ing	Lb		0	0/0		3/0	1
L : Lectu				Supervised		-			arch C: C	Credits					
		ry/Lab/I	Embedde	ed Theory	and Lal	b/ Interi	nal Eva	luation							
OBJEC'				. •			. 15		m ·						
•	-			•				_	_	will enab	le t	hem 1	to hav	e a ca	reer
COURS				$\frac{\text{omplishm}}{\text{omplishm}}$	ient in t	ne publ	ic or pi	ivate s	ector.						
				, ,	1.1 1		<u> </u>		. 1	. 1		. 1.1			
CO1						mporta	nce of e	environ	imental,	concepts	ben	ind tr	ne		
	metno	odologi	es to co	ontrol pol	lution.										
CO2	To de	evelop e	environ	mental so	cientists	and en	gineers	and se	nsitize t	hem towa	rds	envir	onme	ntal is	sues
CO2	Т		aa.14:	a a 1 . a 1 . d 1 1					4-1 :	o o 4 o 4 le mos			14.: .1.	: a a ! . a 1	
CO3		_	anaiyti	cai skiii	s in a	ssessin	g envii	ronmen	itai imp	acts thro	ugn	an	nuitia	iscipi	inary
CO4	appro To in		amono	students	sensiti	vity top	varde ec	rcial an	d corner	ate respoi	neik	nilitio	<u> </u>		
	1011	-uncaic	umong	staucins	50115111	ντι <b>υ</b> τον	varus 30	mai all	a corpor	aic respoi	1010	/IIIIIC	· .		
CO5	To in	prove	the com	municat	ion and	writing	g skill s	o as to	face the	competiti	ve v	world			_
Monrie	a of Ca	ιπαο <b>Ω</b>	tooms	with Pro	anom O	hutoo	α ( <b>D</b> Ω~)								
COs/PO		PO1	PO2	PO3	PO4	PO5			DOO	DOO	D/	210	DO1	1 T	001
COS/PO	8	POI	POZ	103	PU4	PUS	PO6	PO7	PO8	PO9	P	<b>)10</b>	PO1	1   1	PO1
CO1		2	3	-	_	_	2	_	_	<b> </b>	1		_	1	
CO2		2	3	-	1	_	-	-	3	_	•			2	
CO3		2	-	_	_	_	_	_	3	1	_		-		
					_	•			ļ <b>-</b>				-		
CO4		3	-	-	-	-	1	-	-	-	-		1		
CO5		3	-	-	-		-	-	1	-	-		-	-	1
COs / PS	SOs		01	PSO	02		O3	PS	SO4						
CO1		3		1		-		•							
CO3		2		1		-		-							
CO4		3				-		-							
CO5		2		-		2		-							
H/M/L i	ndicate	s Stren	gth of C	orrelatio	n 3- H	ligh, 2-	Mediun	n, 1-Lov	W						
				seo											
			တ္သ	Humanities and Social Sciences											
		S	nce	Š		es S	S	Ľ	nt	ct					
		ce	cie:	ial	ore	ctiv	is	ina	ne	oje					
	>	zier	S	Soc	n C	Ele Ele	ect	ldi	upc	/Pr					
	gor	Š	rinį.	pı	ran	m l	回回	)isc	Cor	cal					
	Category	Basic Sciences	Engineering Sciences	s ar	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project					
	0	B	ngi	tie	Ъ	Pro	0	Inte	Sk	Pra					
			豆	lani											
				[nu											
				H											
										$\sqrt{}$					

Subject Code: EBCE22IL1	Subject Name: Environmental Engineering Lab	Ty/Lb/ETL/IE	L	T / S.Lr	P/ R	С
	Prerequisite: Environmental Engineering	Lb	0	0/0	3/0	1

- 1. a) Determine of PH
- b) Determination of Turbidity.
- 2. Determination of Hardness.
- 3. Determination of Alkalinity.
- 4. Determination of Residual Chlorine.
- 5. Estimation of Chlorides.
- 6. Estimation of Ammonia Nitrogen.
- 7. Estimation of Sulphate.
- 8. Determination of optimum coagulant dose.
- 9. Determination of specific conductivity.
- 10. Estimation of available chlorine in Bleaching Powder.
- 11. Determination of dissolved Oxygen.
- 12. Determination of suspended settle able, volatile and fixed solids.
- 13. B.O.D. Test.
- 14. C.O.D. Test.

**Total No of Hours: 30Hrs** 

# * Minimum 10 experiments shall be offered

Subject Code:	Subject Name : Biochemical Lab For Chemical	Ty/Lb/ETL/IE	L	T/S.Lr	P/R	C
EBBT22IL1	Engineers					
	Prerequisite: Chemistry	Lb	0	0/0	3/0	1

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL: Theory/Lab/Embedded Theory and Lab/ Internal Evaluation

# **OBJECTIVE:**

- To enable the students to acquire a specialized knowledge on biomolecular concepts.
- To understand the selected aspect related to metabolism.

# **COURSE OUTCOMES (COs): (3-5)**

- **CO1** To analyze bioprocess design and operations.
- CO2 To acquire knowledge in the quantitative and qualitative estimation of biomolecules.
- **CO3** To develop familiarity with biochemical Laboratory techniques.
- **CO4** Understand the importance and applications of advanced biochemical instrumentation techniques.
- CO5 Understand the basic principles involved in isolation of biomolecules from various biological sources.

# **Mapping of Course Outcomes with Program Outcomes (POs)**

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	1	-	-	-	-	-	1	1	-
CO2	3	-	-	-	-	-	-	2	-	-	-	-
CO3	2	-	-	-	-	-	1	-	-	-	-	1
CO4	2	2	2	-	-	2	-	-	-	-	1	-
CO5	3	2	2	1	-	-	-	-	1	-	-	1
COs / PSOs	PS	O1	PS	02	PS	SO3	PS	SO4				
CO1	3		2		3		-					
CO2	2		1		2		-					
CO3	3		2		3		-					
CO4	2		-		2		-					
CO5	3		-		2		-					

# H/M/L indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project		
							V		V		

Subject Code: Subject	ect Name : Biochemical Lab For Chemical	Ty/Lb/ETL/IE	L	T/S.Lr	<b>P</b> / <b>R</b>	C
EBBT22IL1 Engin	neers					
Prerec	equisite: Chemistry	Lb	0	0/0	3/0	1

- 1. Buffer Preparation.
- 2. Qualitative analysis of Carbohydrate
  - a. Monosaccharide
  - b.Disaccharide
  - c.Polysaccharide
- 3. Qualitative analysis of Protein

Albumin

b.Peptone

c.Casein

- 4. Estimation of Carbohydrate by Benedict's method.
- 5. Estimation of Protein by Lowry's method.
- 6. Isolation of Protein from Milk.
- 7. Isolation of Starch from Potato.
- 8. Isolation of Cholesterol from Egg Yolk.
- 9. Paper Chromatography.
- 10. Thin layer Chromatography.
- a. Density Composition
- b. Molecular Weight c. Mole d. Percentage of

•	ct Code:	St	bject N	ame : Tec	hnical S	Skill I		Ty/Lb/	ETL/IE	L	T/5	S.Lr	P/R	С
	Γ22Ι01		erequis					IE		0	0/0		3/0	1
	ture T : Tu				earning	P : Proje	ect R : R	Research	C: Cred	its T/L/E	ETL: The	ory/Lab/I	Embedo	ded
	and Lab/	Internal	Evaluati	ion										
	ECTIVE:						1		1. 1.6		. 1 1			
•				d on vario	ous prog	rammıng	g langua	ges app	lied for c	chemical	technolog	ЗУ		
COU	RSE OUT													
CO1	Students	should	gain insi	ght about	mass an	d energy	balanc	es.						
CO2	industry			about the			_			ers and t	heir appli	cation in	chemic	al
CO3	Students	will und	derstand	well abou	t foul pu	ımps/cor	mpresso	r and pi	ping					
CO4				nd about t		ring equ	ipments	<b>.</b>						
CO5				ped with b										
Марр	Mapping of Course Outcomes with Program Outcomes (POs)													
COs/I	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	)12
CO1		3	3	3	3	3	3	2	2	3	2	3	2	
CO2		3	3	2	3	3	3	2	2	3	3	3	3	
CO3		3	3	3	-	2	-	-	-	3	-	3	-	
CO4		2	-	-	1	-	2	-	2	1	-	2	-	
CO5		1	-	2	-	-	-	-	-	1	-	1	-	
	PSOs		SO1	PSC	02	PS	O3	PS	SO4					
CO1		2		2		-		-						
CO2		3		1		-		-						
CO3		2		-		1		-						
CO4		3		2		1		-						
CO5	r : 3: 4 -	2	-41 f C	3	. 2 11	1	л - 1°	-   1 T						
H/IVI/	L indicate	s Stren	gtn of C	orrelatioi	а 3- н	ign, 2- N	vieaium	i, 1-L0V	y 					
	Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				
									$\sqrt{}$					
		<u> </u>	1					<u> </u>	<u> </u>					

Subject Code:	Subject Name : Technical Skill I	Ty/Lb/ETL/IE	L	T/S.Lr	P/R	C
EBCT22I01	Prerequisite: Nil	IE	0	0/0	3/0	1

Students should acquire skill in the domain/inter disciplinary area from government/private training centers/industries /University for a minimum period of 15 calendar days. The training can be through off line, online or mixed mode. Students are supposed to prepare Technical skill report at the end of the training and submit the report along with the certificate in proof of the training, during the viva voce examination conducted by the examiners duly appointed by the head of the department.

Subject Code: EBCC22I06	Subject Name : Soft Skills I (Employability Skills)	Ty/Lb/ETL/ IE	L	T/S.Lr	P/R	С
	Prerequisite: Plus 2 English	IE	0	0/0	2/0	1

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory/Lab/Embedded Theory and Lab/ Internal Evaluation

### **OBJECTIVE:**

- 1. Become good listeners to get engaged in interactive communication for effective team building.
- 2. Develop assertive and adaptive behaviour to be leaders
- 3. Develop peer interaction for a successful lifelong learning.
- 4. Learn skills necessary for a cooperative living in academic and professional environments
- 5. Use soft skills for the purposes of research and follow ethics in society and profession.

# COURSE OUTCOMES (COs): (3-5)

Students will be able to

COI		fisteriers to get engaged	in interactive communication for	checuve team building.
$\perp CO1$	Recome good	listeners to get engages	l in interactive communication for	effective team building

CO2 Develop assertive and adaptive behavior to be leaders

CO3 Develop peer interaction for a successful lifelong learning.

CO4 Learn skills necessary for a cooperative living in academic and professional environments

CO5 Use soft skills for the purposes of research and follow ethics in society and profession

# **Mapping of Course Outcomes with Program Outcomes (POs)**

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	2	2	1	2	3	-	-	-
CO2	3	3	3	1	2	2	1	2	3	-	-	-
CO3	3	3	3	1	2	2	1	2	3	-	-	-
CO4	3	3	3	3	3	2	1	2	3	-	-	-
CO5	3	3	3	3	3	2	1	2	3	-	-	-
COs / PSOs	PS	SO1	PS	O2	PS	SO3	PS	SO4				1
CO1		3		2		2		2				
CO2		2		2		2		2				
CO3		3		2		2		2				
CO4		3		2		2		2				
CO5		3		2		2		2				
II/M/I indicat	tog Ctmom	ath of C	ommolotic	n 2 T	liah 2	Modium	1 T av					

#### H/M/L indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project		
								V			

Subject Code: EBCC22I06	Subject Name : Soft Skills I (Employability Skills)	Ty/Lb/ETL/ IE	L	T / S.Lr	P/R	С
	Prerequisite: Plus 2 English	IE	0	0/0	2/0	1

# **Prefatory Note**

This paper aims to equip students with skills essential for work place and global environment to which they will move on from the university, once they complete the course. As such, this paper provides students with a set of ten interlinked soft skills: Listening, team work, emotional intelligence, assertiveness, learning to learn, problem solving, attending interviews, adaptability, non-verbal communication and written communication. Students will get engaged in pair work, group work, role play, discussion, presentation, story telling, writing assignments etc.,

### Unit -I

Listening, Speaking, Reading and Writing skills (LSRW)

**Unit-II** 

Team work skills: adaptability, emotional intelligence, learning skills

**Unit -III** 

Leadership Qualities: assertiveness, reasoning, compassion and compatibility

**Unit-IV** 

Problem solving: willingness to learn, creative thinking, developing observation skills

Unit -V

Interview skills: employability skills, resume writing

#### Reference book:

1. S.P. Dhanavel, English and Soft Skills, Vol. 1, Orient BlackswanPvt. Ltd. 2010

# SEMESTER V (THEORY)

<b>Subject Code</b>	Subj	ect Nam	e : Mass	Transfe	r-I		ŗ	Ty/Lb/E	TL/IE	L	T / S.	Lr	P/ <b>R</b>	С
EBCT22007	Prer	equisite:	Engineer	ring ma	themati	ics, phy	sics,	Гу		3	1/0	(	)/0	4
			c concep											
L: Lecture T:	Tutorial	SLr:	Supervise	d Learn	ing P : F	Project F	R : Rese	arch C: C	Credits T	T/L/E1	TL:Th	eory/L	ab/Er	nbedded
Theory and La	.b/ Intern	al Evalu	ation											
OBJECTIVE	:													
The pi	irpose of	f this cou	rse istoin	roduce	the unde	ergradua	ite stude	ents with	them O	stimpo	ortant s	eparat	ion	
equipi	nents in	the proce	ess industr	y.										
COURSE OU	TCOM	ES (COs	(3-5)											
			concept		fusion i	in gases	. lianio	ls and so	olids					
			mass tra						nas					
	• •	_	HTU,HE						r Humi	difica	ntion o	nerati	ons	
			d for dry											nments
												<u> ۱۱۱۲ و ۱۱۱</u>	cqui	pinents
To estimate process of nuclei formation, theories and operation of crystallization Mapping of Course Outcomes with Program Outcomes (POs)														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10	PO11	PO	12
CO1	2	-	-	3	-	2	-	3	-	1		1	-	
CO2	2	_	-	1	-	-	-	-	-	3			1	
CO3	3	_	_	-	_	_	_	1	_	-		2	†-	
CO4	2	_	-	-	1	-	-	-	2	-	<u> </u>		1	
CO5	3	-	-	-	-	1	-	1-	2	-		•	-	
COs / PSOs	PSC	01	PSC	)2	PS	O3	PS	SO4						
CO1	3		2		-		-							
CO2	2		1		-		-							
CO3	3		2		-		-							
CO4	2		1		1		-							
CO5	3		1		2		-							
H/M/L indica	tes Strei	ngth of C	Correlatio	on 3- I	High, 2-	Mediu	m, 1-Lo	)W						
					1			T						
			Se											
			Sciences											
		ces	cie		es		_							
	es			e.	ive	es	nary	lent	ject					
Cotogory	enc	Sci	cia	Ω̈́	ect	ctiv	olir.	100.	orc,					
Category	Sci	gu	So	ш	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	Elec	scij	l luc	11/1					
	ic :	eri	pur	gra	.am	l uz	Di	ŭ	tica					
	Basic Sciences	zine.	es s	Program Core	Program Electiv	Open Electives	Inter Disciplina	Skill Component	Practical /Project					
	[ ,	Engineering Scier	Humanities and Social		Pı		Ir	$\infty$	<u> </u>					
			ma											
			Hu											
				,									-	
				V	<u> </u>				<u> </u>					

EBCT22007	MASS TRANSFER-I	3	1/0	0/0	4

#### UNIT I DIFFUSION

12Hrs

Molecular and eddy diffusion in gases and liquids, steady state diffusion under stagnant and laminar flow conditions Diffusivity measurement and prediction, multi-component diffusion, diffusion in solids and its applications.

### UNIT II MASS TRANSFER COEFFICIENTS

12Hrs

Concept of mass transfer coefficients, mass transfer under laminar and turbulent flow past solids, boundary layers, mass transfer at fluids surfaces correlation of mass transfer coefficients, JD,HTU, and NTU concepts, theories of mass transfer and their applications, interphase mass transfer and over all mass transfer coefficients in binary and multi-component systems, application to gas-liquid and liquid-liquid systems.

#### UNIT III HUMIDIFICATION AND AIR CONDITIONING

12Hrs

Basic concepts, psychrometric chart construction, Humidification and dehumidification operations, design calculations, cooling tower principle and operation, types of equipment, design calculation. UNIT - IV DRYING 9Hrs Theory and mechanism of drying, drying characteristics of materials, batch and continuous drying, calculation for continuous drying, drying equipment, design and performance of various drying equipments.

UNIT IV DRYING 12Hrs

Theory and mechanism of drying, drying characteristics of materials, batch and continuous drying, calculation for continuous drying, drying equipment, design and performance of various drying equipments

### UNIT V CRYSTALLISATION

12Hrs

Nuclei formation and crystal growth, theory of crystallisation, growth coefficients and the factors affecting these in crystallisation, batch and continuous industrial crystallisers, principle of design of equipment.

# **Total No of Hours: 60Hrs**

#### **TEXT BOOKS**

- 1. Treybal, R.E., "Mass Transfer Operations", McGraw-Hill Kogakusha, 1980.
- 2. McCabe, W.L., Smith, J.C., and Harriot, P., "UNIT Operations in Chemical Engineering", McGrawHill Edn, 1993.

### **REFERENCES**

- 1. Roman Zarzytci, AndrzaiChacuk, "Absorption: Fundamentals and Application", Pergamon Press, 1993.
- 2. skelland, A.H.P., "Diffusional Mass Transfer", Krieger, Malabar FL (1985).Strigle (jr), R.F., "Packed Tower Design and Applications", Second Edition, Gulf Publishing Company, USA., 1994.
- 3. Coulson, J.M., Richardson, J.F., "Chemical Engineering" Vol. I, Pergamon Press, 1977.
- 4. Foust, A.S.Wenzel, L.A., Clump, C.W., Naus, L., and Anderson, L.B., "Principles of UNIT Operations", Second Edition, Wiley, 1980.

Subject	Code:			: CHEM		ENGINI	EERIN(	3	Ty/Lb/E	ΓL/IE	L	T/S.Lr	P/R	C
EBCT22	2008			esign cher		ocess pla	ants.		Ty		3	1/0	0/0	4
L : Lectu Theory a					Learnir	ng P : Pr	oject R :	Resea	rch C: Cr	edits T/I	L/ETL	: Theory/	Lab/Eml	pedded
OBJECT														
	_				namic p	roperties	s of real	fluids	and mixtu	res to de	esign	chemical p	rocess p	lants.
COURS									-					
CO1	coeffic	ients.										vior of mix		
CO2									• •	ise non-	idealit	y of mixtu	res with	multiple
CO3				d capabili						cuch ac	gae li	quid, liqui	d liquid	solid
COS				mic course								iquiu, iiqui	u-nquiu	, sonu-
CO4												quilibrium	in ideal	gas
				amic term										
CO5	Students, at the end of the course will be able to describe nonideal gas, liquid, solid and multiphase chemical reaction equilibria and predict equilibrium conversions.													
Monning	mapping of Course Outcomes with Program Outcomes (POs)													
Mapping of Course Outcomes with Program Outcomes (POs)  COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1		3	-	-	2	1	1	3	-	-	$\frac{10}{1}$	-	1	<u> </u>
CO2		2	-	2	-	2	-	1	-	2	2	-	2	
CO3	1	1	1	-	1	2	-	-	-	2	-	3	-	
CO4		2	2	2	-	-	2	-	2	3	2	-	1	
CO5		3	1	3	2	-	1	2	1	-	1	2	1	
COs / PS		PSC	<u> </u>	PSC	)2	PS	O3		SO4					
CO1		3		3		2		1						
CO2		2 1		3 2		1		2						
CO4		<u>1</u> 1		2		3		1						
CO5		2		1		1		2						
			th of Co	orrelation	3- H		Medium		w					
						<b>9</b> ,		, – – -						
Category		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				
					V									

EBCT22008	CHEMICAL ENGINEERING THERMODYNAMICS-II	3	1/0	0/0	4
					i i

# UNIT – I APPLICATION OF THERMODYNAMICS TO GAS EQUATIONS

12Hrs

Partial derivaties—exact differentials — Maxwells relations — thermodynamic — properties equation — application to actual gas equation.

### UNIT - II FUGACITY CORRELATIONS

12Hrs

Residual properties – fugacity – fugacity coefficient - correlation

### UNIT - III SOLUTION THERMODYNAMIC THERORY

12Hrs

Solutions – actual – ideals – excess free energy – activity – activity coefficients – correlations

# UNIT - IV V.L.E FROM EQUATION OF STATES

12Hrs

 $V.L.E\ correlation-data\ generation-result-gas-liquid\ system-Henry's\ law-liquid-liquid\ ,$ 

liquid – solid gas – solid equilibrium.

# UNIT - V CHEMICAL REACTION EQUILIBRIA

12Hrs

Chemical reaction equilibrium – equilibrium constant – calculations

**Total No of Hours: 60Hrs** 

### **TEXT BOOKS**

- 1. Smith, J.M., Van Ness, H.C., "Introduction to Chemical Engineering Thermodynamics", Kogakushai 1976.
- 2. Kyle, B.G., "Chemical and Process Thermodynamics 2nd edn. "Prentice Hall of India Pvt.Ltd., 1990.

### **REFERENCES**

- 1. Hougen, O.A., Watson, K.M., and Ragatz, R.A., "Chemical Process Principles Part II", Thermodynamics, John Wiley...
- 2. Dodge, B.F., "ChemicalEngineering Thermodynamics", McGraw-Hill, 1
- 3. Sandler, S.I., "Chemical and Engineering Thermodynamics", 2nd Edition., Wiley.

_	t Code:	Su	bject Na	ame : Ch	emical '	Techno	logy II	Ty	Lb/ETI	/IE	L	T/5	S.Lr	P/R	C
EBCT2	22009	Pro	erequisi	ite: Chen	nical Te	chnolog	gy I	Ty			3	0/0		0/0	3
				Supervise		•	v		earch C:	Credits					
		ry/Lab/l	Embedd	ed Theory	y and La	b/ Inter	nal Eva	luation							
	CTIVE:			1											
• COUD		•		ologies of		organic	and inc	organic j	process 1	ndustrie	S.				
			`	): (3-5)		.1									
CO1				and pape		ology.									
CO2	·			oap indus											
CO3	•	•		d petroche				1		<u> </u>					
CO4				aspects 1		•••				n of was	ste				
CO5				process fl					SS						
	Mapping of Course Outcomes with Program Outcomes (POs)  COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
	Os .	3	POZ		2	1	1	3						1	12
CO1			-	-					-	-	1		-		
CO2		2	-	2	-	2	-	1	-	2	2		-	2	
CO3		1	1	-	1	2	-	-	-	3	-		3	- 1	
CO ₄		3	1	3	2	-	1	2	1	-	1		2	1	
COs/I	PSOs	PSO1		PSO2	4	PSO3		PSO4		-	1		<u> </u>	1	
CO1	1003	3		3		2		-							
CO2		2		3		1		1							
CO3		1		2		1		2							
CO4		1		2		3		1							
CO5		2		1		1		2							
	indicate		adh af (		2 1		Madian								
H/M/L	indicate	s Stren	gin or C	Correlatio	)n 3-1	Hign,2-	Mealui	n, 1-L0	w 		_				
Category		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project					

<b>Subject Code:</b>	Subject Name : Chemical Technology II	Ty/Lb/ETL/IE	L	T/S.Lr	P/R	C
EBCT22009	Prerequisite: Chemical Technology I	Ту	3	0/0	0/0	3

### UNIT I PULP AND PAPER INDUSTRIES

9Hrs

Wood and Wood extracts – Wood Chemicals - Cellulose derivatives, Manufacture of pulp – different processes of pulping – Manufacture of paper – Manufacture of Boards.

# UNIT II SUGAR, STARCH INDUSTRIES & OILS, FATS, SOAPS & DETERGEN INDUSTRIES 9Hrs

Raw and refined sugar by products of sugar industries, starch and starch derivatives. Vegetable oils and animal fats, their nature, analysis and extraction methods, hydrogenation of oils, fatty acids and alcohols, waxes, soaps, synthetic detergents.

### UNIT III PETROLEUM AND PETROCHEMICAL INDUSTRIES

9Hrs

Petroleum refining, physical and chemical conversion products, lubricating oils, petrochemical precursors, methane, olefins, acetylenes and aromatics and products obtained from them by various UNIT processes.

#### UNIT IV RUBBER AND POLYMERS

9Hrs

Monomers – Thermosetting and Thermoplastic materials – General properties and applications of Resins – polymerization processes – different types - Natural rubber; Synthetic rubber such as SBR, NBR,CR - Fundamental methods of processing of synthetic Rubbers.

### UNIT V SYNTHETIC FIBRE AND FILM INDUSTRIES

9Hrs

Natural and synthetic fibres – properties of - Poly amides – manufacture of Nylon 6. 6. Polyesters Fibers – manufacture of – Cellulosic fibres – Viscose Rayon production manufacture of films - cellulose Acetate, PVC, Polyesters – polyethylene.

**Total No. of Hours: 45Hrs** 

#### **TEXT BOOKS:**

- 1. Austin, G.T., "Shreve's Chemical Process Industries", Fifth Edition, McGraw-Hill International Book Co, Singapore, 1984.
- 2. Dryden, C.E., "Outlines of Chemical Technology", Edited and Revised by Gopala Rao. M. and M.Sittig, Second edition, Affiliated East-West press, 1993.

#### **REFERENCES:**

- 1. Kent, J.A.(ed), "Riggel's Hand Book of Industrial Chemistry", Van Nostrant Reinhold, 1974.
- 2. CHEMTECH 1-4, Chemical Engineering Education Development Centre I.I.T., Madras 1975-78

.

Subject Code:	Subject Name: Online Course	Ty/Lb/ETL/IE	L	T/S.Lr	P/R	C
EBOL22I01	(NPTEL/SWAYAM/any MOOC,					
	approved by AICTE/UGC)					
	Prerequisite:	Ty	1	0/0	1/0	1

Students should register for the online course with a minimum course duration of 4 weeks through the online portals such as NPTEL/SWAYAM/Any MOOC in the beginning of the semester.A mentor will be assigned by the department for monitoring the students.

Students are expected to attend the online classes regularly and submit the weekly assignments before the due dates. Students should appear for the online examination and submit the certificate at the end of the semester .Internal Examination will be conducted by the examiners duly appointed by the head of the department.

# **SEMESTER V (PRACTICAL)**

	Subject Name : Process Simulation Software Lab	Ty / Lb/ETL/IE	L	T/S.Lr	P/R	С
EBCT22L05	Prerequisite: General Chemistry & basic chemical reactions	Lb	0	0/0	3/0	1

 $L: Lecture \ T: Tutorial \quad SLr: Supervised \ Learning \ P: Project \ R: Research \ C: Credits \ T/L/ETL: Theory/Lab/Embedded \ Theory \ and \ Lab/ \ Internal \ Evaluation$ 

# **OBJECTIVE**

- Supply of software on CD-ROM media.
- Technical support on telephone, fax and email.
- Has facility to regress physical and transport properties

	rus ruemby to regress physical and transport properties
COURS	SE OUTCOMES (COs): (3-5)
CO1	To understand graphical user interface
CO2	To apply vapor phase association data for important system
CO3	To apply different k values for different unit operations/trays
CO4	Several Examples from Chemical Engineering fields to be solved using self-developed programmes
CO5	Stagewise calculations for unit operations, dynamics of linear and non-linear systems, simulation of heat transfer
	equipment, optimisation of equipment, process and plant

# **Mapping of Course Outcomes with Program Outcomes (POs)**

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	<b>PO12</b>
CO1	3	2	1	-	-	-	1	-	-	-	-	1
CO2	2	3	1	-	-	-	2	-	-	-	-	-
CO3	2	3	1	-	1	•	1	-	-	1	-	2
CO4	3	2	1	-	-	1	2	-	2	2	-	1
CO5	2	1	-	-	-	-	-	-	-	1	1	1
COs / PSOs	PS	SO1	PS	SO2	PSO3		PSO4					

COs / PSOs	PSO1	PSO2	PSO3	PSO4		
CO1	3	2	3	2		
CO2	2	3	1	2		
CO3	3	1	2	2		
CO4	3	2	-	-		
CO5	1	2	-	-		

# H/M/L indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project		
									V		

	Subject Name : Process Simulation Software Lab	Ty / Lb/ETL/IE	L	T / S.Lr	P/R	С
EBCT22L05	Prerequisite: General Chemistry & basic chemical reactions	Lb	0	0/0	3/0	1

CC STEADY STATE	Steady state process simulation software for simulation/ Process design of continuous processes involving Distillation, Reactors, Absorbers, Pumps, Compressors, Piping, Control Value, Safety valves, liquid-liquid extraction,
	expanders etc.
CC SAFETYNET	For the design/analysis of emergency relief systems (in steady state or dynamic mode) using DIERS technology and complex piping systems. Can also be applied to any other (non-emergency) piping network or for utility distribution analysis
CC DYNAMICS	Dynamic Analysis of Distillation Columns and Kinetic data regression, reactor scale up and Dynamic Simulation of batch reactor and/or their associated equipment.
СС ВАТСН	Simulation for Batch Distillation Process.
CC THERM	Design/ Rating/ Simulation/ Fouling factor determination for Shell & tube, plate & frame, Air Cooled , and double pipe heat exchangers software

Subject				: Mass				y/Lb/ET	L/IE	L		S.Lr	P/R	C
EBCT2				Chemica			L			0	0, 0		3/0	1
L : Lectural Theory and					Learning	g P : Proj	ject R:	Researc	h C: Cre	edits T/L	ETL: Th	eory/Lat	/Embe	dded
OBJEC		memai	Lvaiuati	OII										
		the stud	lents to d	levelop s	ound wo	orking ki	nowled	ge on dit	fferent ty	vnes of n	nass transf	er eauin	ments.	
				: (3-5)				6	·	, F == ==				
CO1				perations	of mass	s transfer	r.							
CO2	Apply	principl	es of ma	ass transf	er to pre	edict tran	nsfer co	efficient	s					
CO3	Analyz	ze worki	ng of va	rious mas	ss transf	er equip	ment							
CO4	Design	mass tr	ansfer e	quipment	•									
CO5 Evaluate no. of stages required for given mass transfer problem.														
Mapping of Course Outcomes with Program Outcomes (POs)														
COs/PO	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1		3	-	2	-	1	-	-	-	-	2	-	3	
CO2		2	-	-	-	2	-	-	1	-	3	-	2	
CO3		2	2	1	2	-	2	-	3	-	-	3	-	
CO4		1	2	-	3	-	-	2	-	2	1	-	3	
CO5		2	-	3	-	2	-	2	-	3	-	2	2	
COs /Ps	SOs	PSC	01	PS	SO2	PS	03	PSO4						
CO1		3		2	-			-						
CO2		2		1		-		-						
CO3		3		2		2		-						
CO4		-		1		1		2						
CO5	indicato	2 Strong	oth of C	2	n 2 I	ligh 2	Modin	3 m 1 L o	***					
H/M/L	muicate	Suren	gmore	orrelatio	)II 3- I	11g11, 2-	Mediu	III, 1-LU	<u>w</u>			1		
H/M/L indicate  Category		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				
					$\sqrt{}$					V				

<b>Subject Code:</b>	Subject Name : Mass Transfer Lab	Ty/Lb/ETL/IE	L	T/S.Lr	P/R	C
EBCT22L06	Prerequisite: Chemical engineering	Lb	0	0/0	3/0	1

- 1. Simple distillation
- 2. Steam distillation
- 3. Packed column distillation
- 4. Bubble cap distillation
- 5. Diffusivity measurements
- 6. Liquid-liquid extraction
- 7. Vacuum Dryer
- 8. Tray dryer
- 9. RDC
- 10. Adsorption
- 11. Surface Evaporation

Subject Code:		Su	ıbject Na	ame : Teo	hnical S	Skill II	7	Γy/Lb/E	TL/IE	L	T /	S.Lr	P/R	С
EBCT22I02			<b>Prerequisite: Chemistry</b>					E		0	0/0		3/0	1
L : Lec	ture T : Tı					P : Proj	ect R :	Researcl	h C: Cr	edits T/L	/ETL : T	heory/	Lab/E	nbedded
	and Lab/					v						•		
OBJE	ECTIVE:													
•	To enab	le the s	tudents to	o acquire	a specia	lized kn	owledge	e on bio	molecu	ılar conc	epts.			
•	To unde	erstand	the select	ed aspect	related	to metab	olism.							
COU	RSE OUT	COMI	ES (COs)	: (3-5)										
CO1	Students	Students should gain insight about mass and energy balances.												
CO2	Students industry	audents are able to know about the basics of heat exchanges and fired heaters and their application in chemical dustry												hemical
CO3		dents will understand well about foul pumps/compressor and piping												
CO4	Students	tudents should understand about the construction and working of chemical Engineering equipments												
CO5	5 Students should be equipped with basic simulation tools													
Mapp	oing of Co	urse O	utcomes	with Pro	gram O	utcome	s (POs)	1						
COs/l	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO	11 P	O12
CO1		3	3	3	3	3	3	2	2	3	2	3	2	
CO2		3	3	2	3	3	3	2	2	3	3	3	3	
CO3		3	3	3	-	2	-	-	-	3	-	3	-	
CO4		2	-	-	1	-	2	-	2	1	-	2	-	
CO5	DCO.	1	- 501	2	-	- DC	-	-	-	1	-	1	-	
CO ₁	PSOs	2	SO1	PSO2		PSO3								
CO2		3		1		-								
CO3		2		-		1								
CO4		3		2		1								
CO5		2		3		1								
H/M/	L indicate	s Stren	gth of C	orrelatio	n 3- H	ligh, 2-	Mediur	n, 1-Lov	W	•		•	•	
·														
		Basic Sciences	Engineering Sciences	d Social	Program Core	Program Electives	Open Electives	ciplinary	nponent	/Project				
Cate	gory	Basic	Engineer	Humanities and Social Sciences	Progr	Prograr	Open	Inter Disciplinary	Skill Component	Practical /Project				
									1					

Subject Code:	Subject Name : Technical Skill II	Ty/Lb/ETL/IE	L	T/S.Lr	P/R	C
EBCT22I02	Prerequisite: Chemistry	IE	0	0/0	3/0	1

Students should acquire skill in the domain/inter disciplinary area from government/private training centers/industries /University for a minimum period of 15 calendar days. The training can be through off line, online or mixed mode. Students are supposed to prepare Technical skill report at the end of the training and submit the report along with the certificate in proof of the training, during the viva voce examination conducted by the examiners duly appointed by the head of the department.

Subject Code:			Subject Na	ame: Pol	ymer To	echnolog	gy	Ty/Lb	/ETL/II	E L	T / S.	Lr	P/R	C
	Г22ЕТ2		Prerequisi					ETL		2	0/0		2/0	3
			al SLr : Suj		Learning	g P : Pro	ject R:	Research	h C: Cre	dits T/L/I	ETL: The	eory/Lab/	Embe	dded
Theory	and La	.b/ Inter	nal Evaluat	ion										
OBJE	ECTIV	E:												
•			e students to						m the m	olecular v	weight dis	tribution	,	
			n polymeriz		l transiti	on in po	olymers.							
			MES (COs)											
CO1														
	principles related to the synthesis and characterization of polymers.													
CO2	Under	stand th	and the techniques and their characteristics/limitations of synthesis of polymers.											
CO3			ne structure-											
CO4			nd apply the		<u> </u>									
CO5			ne basic issu			_		_	es and n	ano-comp	osites.			
			Outcomes						1	T	1	1		
COs/l	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO:	12
CO1		3	-	2	-	1	-	-	-	-	2	-	3	
CO2		2	-	-	-	2	-	-	1	-	3	-	2	
CO3		2	2	1	2	-	2	-	3	-	-	3	-	
CO4		1	2	-	3	-	-	2	-	2	1	-	3	
	CO5 2 -		3	-	2	-	2	-	3	-	2	2		
COs /	<b>PSOs</b>		PSO1	PSO2		PSO3		PSO4						
CO1		3		2		-		-						
CO2		2		1		-		-						
CO3		3		2		2		-						
CO4		-		1		1		2						
CO5			2 1				3							
H/M/	L indic	ates Sti	rength of C	orrelatio	n 3- I	High, 2-	Mediu	m, 1-Lo	W	ı	T	1		
Cate	gory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				
										٧				

Subject Code:	Subject Name: Polymer Technology	Ty/Lb/ETL/IE	L	T/S.Lr	P/R	C
EBCT22ET2	Prerequisite: Engineering chemistry 1	ETL	2	0/0	2/0	3

#### UNIT I INTRODUCTION

12Hrs

History of Macromolecules – structure of natural products like cellulose, rubber, proteins – concepts of macro molecules – Staudinger's theory of macromolecules – difference between simple organic molecules and macromolecules.

#### UNIT II ADDITION POLYMERIZATION

12Hrs

Chemistry of Olefins and Dienes – double bonds – Chemistry of free radicals –monomers – functionality – Polymerization: Initiation – types of initiation – free radical polymerization – cationic polymerization – anionic polymerization – coordination polymerization – industrial polymerization – bulk, emulsion, suspension and solution polymerization techniques – Kinetics – Copolymerization concepts.

#### UNIT III CONDENSATION POLYMERIZATION

12Hrs

Simple condensation reactions – Extension of condensation reactions to polymer synthesis – functional group reactivity – polycondensation – kinetics of polycondensation- Carother's equation – Linear polymers by polycondensation– Interfacial polymerization – crosslinked polymers by condensation – gel point.

#### UNIT IV MOLECULAR WEIGHTS OF POLYMERS

12Hrs

Difference in molecular weights between simple molecules and polymers –number average and weight average molecular weights – Degree of polymerization and molecular weight – molecular weight distribution – Polydispersity – molecular weight determination. Different methods – Gel Permeation Chromatography – Osmometry, Light Scattering.

#### UNIT V TRANSITIONS IN POLYMERS

12Hrs

First and second order transitions – Glass transition, Tg – multiple transitions in polymers – experimental study – significance of transition temperatures –crystallinity in polymers – effect of crystallization – in polymers – factors affecting crystallization crystal nucleation and growth – relationship between Tg and Tm – Relationship between properties and crystalline structure.

#### Total No. of Hours: 60Hrs

### **TEXT BOOKS:**

- 1. Billmeyer.F.W., Jr, Text Book of Polymer Science, Ed. Wiley-Interscience, 1984.
- 2. Seymour.R.B., and Carraher.C.E., Jr., Polymer Chemistry, 2nd Ed., Marcel Dekker, 1988.
- 3. Gowariker.V.T., Viswanathan.N.V., and Sreedar.J., Polymer Science, Wiley Eastern Ltd., 1988.

#### **REFERENCES:**

- 1. Joel, R.F Polymer Science and Technology, Eastern Economy Edition, 1999.
- 2. Rodriguez, F., Cohen.C., Oberic.K and Arches, L.A., Principles of Polymer Systems, 5th edition, Taylor

## **SEMESTER VI (THEORY)**

				SE	MESTE	K VI (1	HEOK	( )					
Subject Cod	e: Subje	ct Name :	Mass Tra	ansfer I	I			Ty/Lb	/ETL/IE	L	Γ/S.Lr	P/R	C
EBCT22010	Prerece balance	-	asic math	ematics	& energ	gy & m	aterial	Ty		3	1/0	0/0	4
L : Lecture T			pervised I	Learning	P : Proj	ect R : I	Research	C: Cred	its T/L/ETL	: The	eory/Lab	/Embedd	ed
Theory and I					· ·						•		
OBJECTIV	E:												
		ents differ	ent separat	iontechi	niques an	dalsoto	knowthe	designot	fadistillatio	ncolu	mn.		
• Tou	nderstandth	ecalculati	ions involv	edInliq	uid-liqui	dextrac	tion and s	solidliqu	id extraction	١.			
COUDER	LITCOME	C (CO ₂ )	(2.5)										
COURSE O				1 copore	tion on	orotions	should	bo olon	<u>,                                    </u>				
	concept of to design				tion op	erations	SHOUIG	be clear	L •				
					hina oo	uinmar	<b>*</b>						
	king of Ex				ming eq	uipinei	its						
	e to choose					~							
	erstand wo												
Mapping of COs/POs	PO1	PO2	PO3	PO4	PO5	POS)	PO7	PO8	PO9	PO	10 PO1	1 PO	12
CO5/1 O5 CO1	2	102	103	3	103	-	107	3	1	2	10 1 01	1 10	14
CO2	3	-	-	-	_	_	-	2	1	1	-	2	
CO3	3	2	3	-	_	_	1	-	-	-	2		
CO4	3	3	2	2	_	_	-	2	_	-	3	-	
CO5	2	-	-	1	-	2	-	3	-	1	-	2	
COs / PSOs	PS	SO1	PS	02	PS	O3	PS	SO4					
CO1	3		2		1		3						
CO2	3		1		3		3						
CO3	2		1		2		2						
CO4	3		1		2		3						
CO5	3		3		2		1						
H/M/L indic	ates Stren	gth of Co	rrelation	3- Hig	h, 2- M	edium, 1	1-Low						
			ses										
		S	ciences										
	S	nce		(0)	ves	SS	ary	int	sct				
	nce	cie	ial	or	cti	tive	lin:	one	roje				
Catagogy	cie	20 S	Soc	m (	Ele	lecı	cip	du	. P.				
Category	Basic Sciences	rin (	pu	Program Core	Program Elective	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				
	asi	nec	s a	ro§	gr	)pei	er ]	ΞΞ.	acti				
	m	Engineering Sciences	itie		Prc	0	Int	Sk	Pr				
		山	Humanities and Social S										
			Hun Hun										

Subject Code: EBCT22010	Subject Name : Mass Transfer II	Ty/Lb/ETL /IE	L	T/S.Lr	P/R	C
	Prerequisite: Basic mathematics & energy &	Ty	3	1/0	0/0	4
	material balance					

#### UNIT I ABSORPTION

12Hrs

Equilibrium and operating line concept in absorption calculations; types of contactors, design of packed and plate type absorbers; Operating characteristics of stagewise and differential contactors, concepts of NTU, HTU and overall volumetric mass transfer coefficients; multicomponent absorption; mechanism and model of absorption with chemical reaction; thermal effects in absorption process.

## UNIT II DISTILLATION

12Hrs

Vapour-liquid equilibria, Raoult's law and deviations from ideality, methods of distillation; fractionation of binary and multicomponent system; design calculations by McCabe-Thiele and ponchon-Savarit, methods; continuous contact distillation tower (packed tower) design; extractive and azeotropic; distillation low pressure distillation; steam distillation.

## UNIT III LIQUID-LIQUID EXTRACTION

12Hrs

Equilibrium in ternary systems; equilibrium stagewise contact calculations for batch and continuous extractors, differential contact extraction equipment - spray, packed and mechanically agitated contactors and their design calculations; pulsed extractors, centrifugal extractors.

## UNIT IV SOLID-LIQUID EXTRACTION (LEACHING)

12Hrs

Solid-liquid equilibria; leaching equipment-batch and continuous types; calculation of number of stages.

# UNIT V ADSORPTION, ION EXCHANGEAND MISCELLANEOUS SEPARATION PROCESSES

` 12Hrs

Theories of adsorption of gases and liquids; industrial adsorbents, adsorption equipment for batch and continuous operation; design calculation of ion-exchange resins; principle of ion-exchange; industrial equipment. Membrane separation process; solid and liquid membranes; concept of osmosis; reverse osmosis; electrodialysis; their applications; foam separation process; Thermal and sweep diffusion process.

## Total No. of Hours: 60Hrs

#### TEXT BOOKS

1.R.E.Treybal, "Mass Transfer Operations", McGraw-Hill, Kogakusha, 1980.

2.W.L McCabe J.C.Smith, and Harriot. P., "UNIT Operations of Chemical Engineering", sixth edition McGraw-Hill. International Edition, 2001.

#### REFERENCES

- 1, C.Judson King "Separation Processes", Tata McGraw-Hill 1974.
- 2. A.H.P.Skelland, "Diffusional Mass Transfer", Krieger, Malapur, FL (1985).
- 3. Roman Zarfyki and Andrzej Chacuk, " Absorption Fundamentals and Applications", Pergamon Press, 1993.
- 4. P. Wankat" Equilibrium Stage Separations ", Prentice Hall, 1993.
- 5. R.F.Strigle (jr), Packed Tower Design and Application, 2nd Edn Gulf Publishing company U.S.A. 1994.

	t Code:	Subje	ect Nam	e : Heat T	<b>Fransfe</b> i	r			y/Lb/ET	L/IE	L	T/S.L	r I	P/ <b>R</b>	C
EBCT2	22011		_	Basic ma	aths & r	naterial	energy	T	<b>y</b>		3	0/0	0	0/0	3
		balan													
								R : Rese	arch C: C	redits T/L	/ETL	<i>,</i> :			
Theory	/Lab/Em	bedded	Theory	and Lab/	Internal	Evaluat	ion								
<b>OBJE</b> (	CTIVE:														
•								sms in	fluids and	l solids an	d thei	r applic	ation	s in	
	various	heat tra	nsfer eq	uipment i	n proces	s indust	ries.								
COUR	SE OUT	COMI	ES (COs	s):(3-5)											
CO1				on heat co		n conve	ection a	nd radia	tion pher	omena					
CO2										changer o	lesion	<u> </u>			
CO3				on the pri							105151	1.			
CO4					_					te heat exc	chang	ers			
CO5										ors, furna		,010			
				with Pro			_			,					
COs/Po		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 PC	)11	PO	12
CO1		3	1	-	-	3	-	-	-	-	-	2		2	
CO2		1	2	-	-	-	-	2	-	-	-	3		2	
CO3		2	3	-	-	1	-	-	-	-	-	3		2	
CO4		3	1	1	2	-	-	-	1	-	2	3		3	
CO5		3	3	-	-	-	-	-	2	-	-	2		1	
COs / I	PSOs	P	SO1	PS	O2	PS	SO3	P	SO4						
CO1		3		2		1		3							
CO2		1		2		3		2							
CO3		3		2		1		3							
CO4		2		1		2		3							
CO5		3		2		1		-							
H/M/L	indicate	s Strer	ngth of (	Correlatio	on 3- I	High, 2-	Mediu	m, 1-Lo	W						
			1	1	1	1	I	1	1						
			ses	ial		S									
		es	Sciences	and Social nces	<u>e</u>	Electives	es	sciplinary	omponent	ıl /Project					
		Sciences	Sci	spi S	$C_{O}$	ect	Electives	rilc	loc	roj					
		Scie	gu Ç	s and ences	ш		]lec	scip	- Jun	1/F					
~		); ]:	erii	ities Scie	gra	am		Dis	ပိ	ica					
Catego	ory	Basic	ine.	ani	Program Core	gc	Open	Inter Di	Skill C	Practica					
		F	Engineeri	Humanities Scier		Program		III	Ş	Pr					
			Щ	Ħ	<u> </u>										
			1	1	1 '	1	I	I	1	1	1			1	

<b>Subject Code:</b>	Subject Name : Heat Transfer	Ty/Lb/ETL/IE	L	T/S.Lr	P/R	C
EBCT22011	Prerequisite: Basic maths &	Ty	3	0/0	0/0	3
	material energy balance					

## UNIT I BASIC PRINCIPLES AND CONDUCTION

9Hrs

Importance of heat transfer in Chemical Engineering operations - Modes of heat transfer - Mean temperature difference. Concept of heat conduction - Fourier's law of heat conduction - one dimensional steady state heat conduction equation for flat plate, hollow cylinder, hollow sphere - Heat conduction through a series of resistances - Analogy between flow of heat and flow of electricity - Thermal conductivity measurement; effect of temperature on thermal conductivity; conduction through liquids.

### UNIT II FILM COEFFICIENTS AND THEIR APPLICATION

9Hrs

Individual and overall heat transfer coefficients and the relationship between them - Conduction with heat source - Two dimensional steady state conduction - Analytical and graphical methods - Transient heat conduction.

#### UNIT III CONVECTION

9Hrs

Concept of heat transfer by convection - Natural and forced convection - Application of dimensional analysis for convection - Equations for forced convection under laminar, transition and turbulent conditions - Equations for natural convection - Heat transfer from condensing vapours, heat transfer to boiling liquids - Influence of boundary layer on heat transfer - Heat transfer to molten metals - Heat transfer in packed and fluidised beds.

## UNIT IV HEAT EXCHANGERS

9Hrs

Parallel and counter flow heat exchangers - Log mean temperature difference - Single pass and multipass heat exchangers; plate heat exchangers; use of correction factor charts; heat exchangers effectiveness; number of transfer UNIT - Chart for different configurations - Fouling factors and wilson's plot - Design of various types of heat exchangers - Design of furnaces - Design of condensers, - Design of tubular reactors.

## UNIT V RADIATION AND EVAPORATION

9Hrs

Concept of thermal radiations - Black body concept - Stefan Boltsman's law -concept of grey body - radiation between surfaces. Types of evaporation - single effect and multiple effect evaporation - Design calculation for single and multiple effect evaporation.

**Total No of Hours: 45Hrs** 

## **TEXT BOOKS:**

- 1. McCabe, W.L., Smith, J.C., and Harriot, P., "UNIT Operations in Chemical Engineering", McGraw-Hill Recent Edn.
- 2. BinayK.Dutta "Heat Transfer Principles and Applications", Prentice Hall of India, 2001.
- 3. Kern, D.Q., "Process Heat Transfer", McGraw-Hill Revised adition.

#### **REFERENCES:**

1. Coulson, J.M., Richardson, J.F., "Chemical Engineering", Vol.I., Pergamon and ECBPRACTICAL

	t Code:			e : Chemi				ing I		ETL/IE	L	T/S.Lr	_	C
EBCT				Equatio					Ty	~	3	0/0	0/0	3
		Tutorial b/ Interna			d Learm	ing P: I	Project	R : Rese	earch C:	Credits T	/L/ETL:	Theory/L	ab/Embe	dded
	CTIVE		ı Evalua	шоп										
			wledge	from calc	ulus di	fferentia	ıl equati	one ther	modyna	mics gen	eral chen	nistry, and	material	and
				olve reacto				ons the	modyna	iiics, gen	crai chen	instry, and	material	and
				rate data	_	•		and to u	se them	to design	chemical	l reactors		
										_		a given ne	ed.	
				eactors w					• •	•		U		
COUR	SE OU	TCOME	S (COs)	):(3-5)										
CO1		concept fo		odynamic	es and fi	rst law	can be u	nderstoo	od, PVT	behavior	of fluids	and ideal	gas proce	esses
CO2				omogeneo	ous reac	tions								
CO3	Design	n of ideal	reactors	for single	e and co	mplex r	eactions							
CO4	Develo	op skills t	o choose	e the right	reactor	among	single, 1	multiple	, recycle	reactor,	etc. scher	nes.		
CO5	Design	of non-i	sotherm	al reactor	s and th	e heat ex	change	equipm	nent requ	ired.				
Mappi	ng of C	ourse Ou	itcomes	with Pro	gram C	Outcome	es (POs)	)						
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1		1	-	3	3	-	3	3	-	2	1	-	3	
CO2		2	2	-	-	2	-	1	-	2	-	1	3	
CO3		3	-	2	-	-	1	-	2	-	-	3	-	
CO4		2	1	-	1	-	2	-	2	-	3	1	1	
CO5	500	3	-	-	-	3	-	-	3	-	-	1	-	
COs/I	PSOs	PSC	)1	PSC	)2	PS	<u>O3</u>		SO4					
CO1		3		2		1		-						
CO2		2		1		-		1						
CO3		2		-		2		1						
CO4		2		3		3		-						
CO5		2		1		1		3						
H/M/L	indica	tes Stren	gth of C	orrelatio	n 3- I	High, 2-	Mediu	n, 1-Lo	w	•		1		
	Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				
				H										

<b>Subject Code:</b>	<b>Subject Name : Chemical Reaction</b>	Ty/Lb/ETL/IE	L	T/S.Lr	P/R	C
EBCT22012	Engineering I					
	Prerequisite: Equations	Ty	3	0/0	0/0	3
	thermodynamics	-				

#### UNIT – I REACTION KINETICS

9Hrs

Law of mass action, rate equation, elementary, non-elementary reactions and their mechanisms, theories of reaction rate and temperature dependency, analysis of experimental reactor data, evaluation of rate equation, integral and differential analysis for constant variable volume system, fitting of data complex reaction mechanism.

#### UNIT - II IDEAL REACTORS

9Hrs

Design for homogeneous systems, batch, stirred tank and tubular flow reactor, design of reactors for multiple reactions, combination reactor system, size comparison of reactors.

#### UNIT - III CHOICE OF REACTORS

9Hrs

Factors affecting choice, optimum yield and conversion, selectivity, reactivity and yield problems, consecutive, parallel and mixed reactions, recycle.

## **UNIT - IV HEAT EFFECTS IN REACTORS**

9Hrs

Isothermal and non isothermal homogeneous reactor systems, adiabatic reactors, rates of heat exchanges for different reactors, design for constant rate heat input and constant heat transfer coefficient, operation, batch and continuous reactors, optimum temperature progression.

## UNIT - V REACTOR STABILITY AND REACTION EQUILIBRIA 9Hrs

Criteria for stability of reactors, limit cycles and oscillating reaction, parameter sensitivity. Equilibrium in chemically reactive systems, evaluation of reaction equilibrium constant, effect of temperature on equilibrium, application to system involving gaseous components, computation of equilibrium composition.

**Total No of Hours: 45Hrs** 

#### **TEXT BOOKS:**

1. Smith.J.M., "Chemical Engineering Kinetics", McGraw-Hill Third Edition.

#### **REFERENCES:**

1. Levenspiel.O, "Chemical Reaction Engineering", John Wiley, Second Edition.

## SEMESTER VI (PRACTICAL)

Subjec	t Code:	Subje	ct Nam	e : Chem	ical Rea	ction E	ngineer	ing Lab	Ty/	Lb/ETL	L	T/S.Lr	P/R	C		
EBCT	22L07	Prerequisite: Chemical Reaction Engineering Lb 0 0/0 3/0 1 orial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL: Theory/Lab/Embedded internal Evaluation														
L : Lecti	ure T : Tu	torial S	Lr : Sup	ervised L	earning	P : Proje	ect R : F	Research	C: Cred	its T/L/ET	L:Th	neory/Lab/E	mbedd	ed		
Theory a	and Lab/ l	Internal l	Evaluati	on												
OBJE	CTIVE:															
•	To impa	rt knowl	ledge on	design of	f reactor	s.										
COUR	SE OUT	COME	S (COs)	: (3-5)												
CO1	Students	would	get a sou	ınd worki	ng knov	vledge o	n differ	ent type:	s of react	ors.						
CO2	Design of	chemical	l reactor	s optimal	ly, using	minim	ım amo	unt of da	ata							
CO3	)			judicious						able						
CO4				ed to oper												
CO5									tv and/or	selectivity	v and/o	or safety by				
				reactor ty				<u>F</u>	-,	~	,					
Mappi							s (POs)									
COs/P		F Course Outcomes with Program Outcomes (POs)           PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12           2         3         3         -         1         -         -         2         -         -         3           1         -         -         -         2         -         -         3           3         -         1         -         -         2         -         -         3           3         -         1         -         -         1         1         -         -         1														
CO1		PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12           2         3         3         -         1         -         -         2         -         -         3           2         3         -         3         -         -         3         -         2         -           1         -         -         -         2         -         -         3														
CO2		2     3     3     -     1     -     -     -     2     -     -     3       2     3     -     3     -     -     3     -     2     -       1     -     -     -     -     2     -     -     3       3     -     1     -     -     -     1     1     -     -     -     1       2     2     -     -     2     1     1     1     -     2     1     1														
CO3		1	2     3     -     -     3     -     2     -       1     -     -     -     2     -     -     3       3     -     1     -     -     1     1     -     -     1													
CO4		3	3     -     1     -     -     -     1     1     -     -     -     1       2     2     -     -     2     1     1     1     -     2     1     1													
CO5		2	2 2 1 1 1 - 2 1 1 PSO1 PSO2 PSO3 PSO4													
COs/	PSOs	PS	PSO1 PSO2 PSO3 PSO4													
CO1		2	2         -         -         2         1         1         1         -         2         1         1           PSO1         PSO2         PSO3         PSO4         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         <													
CO2		PSO1         PSO2         PSO3         PSO4           2         2         1         -           3         1         2         1														
CO3		2		1		2		1								
CO4		3		1		1		2								
CO5		2		2		2		1								
H/M/L	indicate	s Streng	th of C	orrelation	n 3- H	igh, 2- I	Mediun	1, 1-Lov	V							
	1			T	ı	Ι	ı		1	1		1	1			
Categ	ory	Basic Sciences  Humanities and Social Sciences  Program Electives  Open Electives  Skill Component  Practical / Project														
					V					V						

<b>Subject Code:</b>	Subject Name: Chemical Reaction Engineering Lab	Ty/Lb/ETL	L	T/S.Lr	P/R	C
EBCT22L07	Prerequisite: Chemical Reaction Engineering	Lb	0	0/0	3/0	1

- 1. Kinetic studies in a batch reactor
- 2. Kinetics in a plug flow reactor
- 3. Kinetics in a PFR followed by a CSTR
- 4. RTD in a PFR
- 5. RTD in a packed bed
- 6. RTD in CSTRs in series
- 7. Combined Reactor
- 8. Packed Bed Reactor
- 9. Adiabatic Reactor
- 10. Catalytic Reactor
- 11. Kinetics in Semi-batch Reactor

*Minimum 10 experiments shall be offered.

Subjec	t Code:	Su	bject Na	ame : Hea	at Trans	sfer Lab	) '	Гу/Lb/E	TL/IE	L	T/S	.Lr	P/R	C	
EBCT				te: Trans				Lb		0	0/0		3/0	1	
					earning	P: Proj	ect R:	Research	C: Cred	dits T/L/I	ETL: The	ory/Lab/I	Embed	ded	
•	and Lab/	Internal	Evaluati	ion											
OBJE	CTIVE:														
•						•	nductio	on, conve	ction an	d radiatio	on and hea	t transfer			
	equipme	ents like	evapora	tor and he	eat exch	anger.									
COUR	SE OUT	COME	S (COs)	: (3-5)											
CO1	At the e	nd of th	is course	e, the stud	ents wo	uld have	knowl	edge in v	various l	eat trans	fer method	dology in	proces	SS	
	engineer	ring and	to desig	gn heat tra	nsfer ed	uipment	s such	as furnac	ce, boile	rs, heat e	xchangers	evaporat	ion.		
CO2	_			eat transfe								•			
CO3										ess of he	at pipe				
CO4		Estimate heat transfer coefficients in condensation, boiling and effectiveness of heat pipe  Estimate heat transfer coefficients in forced convection, free convection and determine effectiveness of heat exchangers  g of Course Outcomes with Program Outcomes (POs)													
							,								
Mappi	ng of Co	urse Ou	tcomes	with Pro	gram O	utcome	s (POs)	)							
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	
CO1		PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12           3         -         -         3         -         -         3         2         1           2         -         3         3         -         -         -         -         -           1         -         -         2         -         -         -         -         -         -         -													
CO2		PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12           3         -         -         3         -         -         3         2         1           2         -         3         3         -         -         -         -         -           1         -         -         2         -         -         -         -         1         -           2         3         -         -         -         -         -         2													
CO3		3     -     -     3     -     -     3     2     1       2     -     3     3     -     -     -     -       1     -     -     2     -     -     -     -     -     -													
CO4		1     -     -     2     -     -     -     -     -     1     -       2     3     -     -     -     -     -     -     2													
COs/	PSOs	1     -     -     2     -     -     -     -     -     1     -       2     3     -     -     -     -     -     -     2													
CO1		2 3 2													
CO2		2		1		-		-							
CO3		2		1		3		-							
CO4		3		2		1		-							
H/M/L	indicate	s Stren	gth of C	orrelatio	n 3- H	<b>ligh, 2-</b> ]	Mediu	m, 1-Lov	V						
Cafacotty	Caregory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project					
					V					V					
		1	ı	1	1	1	1	1	1	1		1			

<b>Subject Code:</b>	Subject Name : Heat Transfer Lab	Ty/Lb/ETL/IE	L	T/S.Lr	P/R	C
EBCT22L08	Prerequisite: Transfer by conduction	Lb	0	0/0	3/0	1

- 1. Thermal Conductivity measurement
- 2. Emissivity mesurement
- 3. Stefan-Boltzmann Constant verification
- 4. Thermocouple calibration
- 5. Natural Convection
- 6. Forced Convection
- 7. Parallel Flow Double Pipe Heat Exchanger
- 8. Counter Flow Double Pipe Heat Exchanger

120

Subject Code: EBCC22I07			ame : Sof ntitative S		I ( Qua	litative	Ty/I	b/ETL/	IE	L	T/5	S.Lr	P/R	C
	Pr	erequis	ite: Techi	nical En	glish		IE			0	0/0		2/0	1
L : Lecture T : 7 T/L/ETL : Theo								rch C: C	Credits		<u> </u>			
<ul> <li>To unders</li> </ul>	stand the stand the	Basic co	ncepts in L ncepts in A ncepts in E ): (3-5)	rithmeti	cal Reaso	oning								
			epts of Log	gical Stat	tements a	and Argu	ments							
			Logical co											
			cepts in Nu											
			epts of Per				ons							
			data using											
Mapping of Co	,							_		ı		_		
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10	PO11	PO	<u>12</u>
CO1	3	2	3	3	3	2	1	2	3	-		3	1	
CO2	2	3	2	3	3	2	1	2	2	-		-	-	
CO3	3	2	3	2	3	1	2	1	3	-		-	-	
CO4	3	1	2	3	2	3	3	2	2	-		1	-	
CO5	3	2	3	22	3	2	1	201	3	-		-	-	
COs / PSOs CO1	3	501	<b>PSO</b> 2	<u>J2</u>	3	803	- PS	<u>504</u>						
CO2	2		3		3		-							
CO3	3		2		3		-							
CO4 CO5	2		3		3		-							
H/M/L indicate		gth of C	orrelatio	n 3- I	1igh, 2-	Mediun	_	w		<u> </u>				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project					
		田	Ħ											

Subject Code: EBCC22I07	Subject Name : Soft Skill II ( Qualitative And Quantitative Skills)	Ty/Lb/ETL/IE	L	T / S.Lr	P/R	С
	Prerequisite: Technical English	IE	0	0/0	2/0	1

#### UNIT I LOGICAL REASONING I

4Hrs

Logical Statements – Arguments – Assumptions – Courses of Action.

#### UNIT II LOGICAL REASONING II

4Hrs

Logical conclusions – Deriving conclusions from passages – Theme detection.

## UNIT III ARITHMETICAL REASONING I

4Hrs

Number system – H.C.F & L.C.M – Problem on ages – Percentage – Profit & Loss – Ratio & Proportion – Partnership.

### UNIT IV ARITHMETICAL REASONING II

4Hrs

Time & Work – Time & Distance – Clocks – Permutations & Combinations – Heights & Distances – Odd man out and Series.

## UNIT V DATA INTERPRETATION

4Hrs

Tabulation – Bar graphs – Pie graphs – Line graphs.

**Total No of periods: 20Hrs** 

## **REFERENCE BOOK:**

- 1. R.S.Agarwal, A modern approach to Logical Reasoning, S.Chand & Co., (2017).
- 2. R.S.Agarwal, A modern approach to Verbal and Non verbal Reasoning, S.Chand & Co., (2017).
- 3. R.S.Agarwal, Quantitative Aptitude for Competitive Examinations, S.Chand & Co., (2017).
- 4. A.K.Gupta, Logical and Analytical Reasoning, Ramesh Publishing House, (2014).
- 5. B.S.Sijwali, Indu sijwali, A new approach to Reasoning (Verbal and Non verbal), Arihant Publishers, (2014).

Subject Code	: Subj	ect Nam	e : Techn	ical Ski	II III			Ty/Lb/E	/ETL/I	L	T/S.I	Lr F	P/ R	C
EBCT22I03	Prer	equisite:	Chemica	l React	ion Eng	ineerin	g	IE		0	0/0	3	6/0	1
L : Lecture T : Theory and Lat			•	Learning	g P : Pro	oject R :	Resear	ch C: Ci	edits T/	L/ET	L : Theo	ry/Lab/	Emb	edde
OBJECTIVE	<b>:</b>													
• To im	nart kno	wledge o	n design o	of reacto	ors.									
COURSE OU														
CO1 Stude	ents shou	ıld gain i	nsight abo	out mass	and end	ergy bal	ances.							
	ents are a		ow about	the bas	ics of he	eat exch	anges a	nd fired	heaters	and t	heir appli	ication	in	
			nd well al	out fou	1 pumps	/compr	essor ar	nd piping	τ					
CO4 Stude	ents shou	ıld under	stand abo	ut the co	onstructi	on and	workin	g of che	mical Er	ngine	ering equ	ipment	S	
CO5 Stude	ents shou	ıld be eqı	ıipped wi	th basic	simulat	ion tool	S							
Mapping of C		Outcomes		ogram (	Outcom	es (POs	s)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO		PO11	_	)12
CO1	3	3	3	3	3	3	2	2	3	2	3		2	
CO2	3	3	2	3	3	3	2	2	3	3	3		3	
CO3	3	3	3	-	2	-	-	-	3	-	3		-	
CO4	2	-	-	1	-	2	-	2	1	-	2		-	
CO5	1	-	2	-	- DC	-	- T	- 0004	1	-	1	<u>l</u>	-	
COs / PSOs CO1	2	SO1	2 PS	02		503		SO4						
CO2	3		1		-		-							
CO2	2		-		1		-		+					
CO4	3		2		1		-		+					
CO5	$\frac{3}{2}$		3		1		-							
H/M/L indica		noth of (		n 3.		Medin	 m_1.L	OW.						
II/WI/L mate	ics bire	ngth of C	on i ciati	)II J-1	ingii, 2	Wicuiu	iii, 1-12	OW						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project					

 $\sqrt{}$ 

<b>Subject Code:</b>	Subject Name : Technical Skill III	Ty/Lb/ETL/I	L	T/S.Lr	<b>P</b> / <b>R</b>	C
ED CT22102		E				
EBCT22I03	Prerequisite: Chemical Reaction Engineering	IE	0	0/0	3/0	1

Students should acquire skill in the domain/inter disciplinary area from government/private training centers/industries /University for a minimum period of 15 calendar days. The training can be through off line, online or mixed mode. Students are supposed to prepare Technical skill report at the end of the training and submit the report along with the certificate in proof of the training, during the viva voce examination conducted by the examiners duly appointed by the head of the department.

Subject EBCT2			ject Na ernship	ame : M	lini P	roject/	Ту	/Lb/E	TL/IE	E	I	T	' / S	.Lr	P/R	C
LDC12				site: Nil			IE				0	0	/0		3/0	1
L : Lectur									: Rese	earch	C: C	redits	s T/	L/ETL	:	
Theory/L	ab/En	nbedde	d Theo	ry and L	ab/ In	ternal E	valuatio	on								
OBJEC	TIVE	<b>:</b>														
				of the In			is to p	rovide	a shor	rt-ter	m wo	rk ex	peri	ience i	n an	
				Organiz												
COURS CO1				<b>.: (</b> t of an ir		u / organ	nizotion	Vaamr	onu n	ortoir	ing t	o tho	dor	noin of	Fetuda	7
CO2				and kno												<u>/ •                                     </u>
CO2		•		get linke		_				ito tii	c car		υg	am m	ıu	
CO3				blem, for						cted	proje	ct				
CO4	_		_	ns for co									stair	able		
	de	velopn	nent.													
CO5				ical and				-		work	ing in	ı a te	am	and		
				fectively					•							
Mappin										- 1	DOO	D/	11	DO11	DO.	10
COs/PC	)S	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO8		PO9	P( 0	)1	PO11	PO	12
CO1		2	1	1	1	1	3	3	3		3	3		3	3	
CO2		3	2	3	3	2	3	3	3		3	3		3	2	
CO3		3	3	3	2	3	•	1	1		3	3		3	-	
CO4		3	3	3	1	-	1	1	3		2	3		1	-	
CO5		3	1	2	1	-	•	•	-		-	1		2	3	
COs / P	SOs	P	SO1	PS	<b>SO2</b>	PS	03		PSO4							
CO1		3		3		2			3							
CO2		3		3		2			3							
CO3		2		3		1			-							
CO4		2		1		2			-							
CO5	• 1•	1	41	- C	1 4.	1	r. 1. 2	N / 1º	2							
H/M/L	ınaıca	ites Sti	rengtn	oi Corr	elatio	n 3- H	ugn, 2-	Meai	um, 1	-Low	7					
				ces												
			Se	ien												
		Se	Suc	Sc	بو	ves	Se		ГУ	ut	1	3				
		suce	Scie	cial	Cor	ecti	tive		ina	nuc	O.i.e.	5				
	ory	scie	3 gt	Soc	m (	Εĭ	lec		ipl	npc	Pr					
	Category	ic S	erii	pun	Program Core	am	ın E		)isc	Cor	2	3				
	Cat	Basic Sciences	jine	es s	Pro	Program Electives	Open Electives		Inter Disciplinary	Skill Component	Practical /Project					
		I	Engineering Sciences	niti		Pr	)		Int	Sk	Pr	-				
				Humanities and Social Sciences												
				Hu												
						<u> </u>					1					

 Subject Name : Mini Project/ Internship	Ty/Lb/ETL/IE	L	T/S.Lr	P/R	C
Prerequisite: Nil	IE	0	0/0	3/0	1

#### MINI PROJECT

Students will have an opportunity to expose their knowledge and talent to make an innovative project. Students are supposed to do innovative projects useful to industries/society in the area of relevant Engineering, inter and multi-disciplinary areas, under the guidance of a staff member. They have to prepare a project report and submit to the department.

At the end of the semester Viva-Voce examination will be conducted by the internal Examiner duly appointed by the Head of the department and the students will be evaluated.

#### **INTERNSHIP**

Students are supposed to undergo internship in related Industries for a minimum period of 30days cumulatively during the semester. They have to prepare a report on the Internship with a certificate in proof from competent authority in the industry. At the end of the semester Viva-Voce examination will be conducted by the Examiners be duly appointed by the Head of the department and the students will evaluated.

## SEMESTER VII (THEORY)

Subject (				e : Safety					es	Ty/Lb/ETL/	TE L	T/S.Lr	P/R	C
EBCT22		1		Chemica						Гу	3	1/0	0/0	4
L : Lecture Theory and					earning	P : Proj	ect R : F	Research	C: C	redits T/L/E	TL : Th	neory/Lab/E	Embedd	ed
OBJECT	TIVE:													
• T	o study	process	s techno	logies of v	various o	organic a	and inor	ganic pr	ocess	industries.				
COURSI														
CO1	To im	part the	principl	es of safet	y in che	emical p	rocess o	peration	s.					
CO2	To edu	icate the	e studen	ts the imp	ortance	of safety	y proced	ures and	l safe	ty regulation	s in ch	emical indu	stries.	
CO3	Ability	to und	erstand 1	the manuf	acturing	g of vario	ous inor	ganic an	d org	anic chemica	als			
CO4	Ability	to und	erstand 1	the proces	s flow o	liagram	and vari	ious prod	cess p	arameters				
CO5	Ability	to ider	ntify and	solve eng	gineerin	g proble	ms durii	ng produ	iction					
Mapping			tcomes	with Prog	gram O	utcome	s (POs)						_	
COs/POs	S	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO		PO10	PO11	PO1	2
CO1		2	2	2	2	1	1	1	1	3	3	2	1	
CO2		1	1	1	1	2	2	2	1	2	1	2	1	
CO3		2	1	1	1	3	2	3	1	2	1	1	2	
CO4		2	1	2	1	1	1	2	2	2	1	2	2	
CO5		1	1	1	2	2	1	2	1	2	1	2	3	
COs / PS	Os		01	PS(	)2		O3		SO4					
CO1		2		1		2		2						
CO2		1		1		1		-						
CO3		1		1		2		2						
CO4		1		2		2		1						
CO5		2		2		2		1						
H/M/L ir	ndicates	Streng	gth of C	orrelation	1 3- H	ligh, 2- I	Mediun	ı, 1-Low	7					
Categor	y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				
	•				$\sqrt{}$									

•	Subject Name : Safety In Chemical Process Industries	Ty/Lb/ETL/IE	L	T/S.Lr	P/R	C
EBCT22013	Prerequisite: Chemical Reaction Engineering	Ty	3	1/0	0/0	4

#### UNIT I INTRODUCTION

12Hrs

Safety in industries – need for development – importance of safety consciousness in Indian Chemical Industry – social environmental setup – Tolerance limit of the society – Psychological attitude towards safety programmes.

## UNIT II SAFETY PROGRAMMES

12Hrs

Elements of safety programmes – Effective realization – Economic and social benefits – Effective communication training at various levels of production and operation.

## UNIT III SAFETY PERFORMANCE

12Hrs

Appraisal – Effective steps to implement safety procedures – Periodic inspection and study of plant layout and constant maintenance – Periodic advice and checking to follow safety procedures – proper selection and replacement of handling equipments – personal protective equipment.

#### UNIT IV ACCIDENTS

12Hrs

Industrial accidents – accident costs – identification of accident spots – remedial measure – identification and analysis of causes of injury to men and machines – accident prevention – accident proneness – vocational guidance, fault free analysis – Fire prevention and fire protection.

## UNIT V HEALTH HAZARDS AND LEGAL ASPECTS

12Hrs

Health hazards – occupational – Industrial health hazards – health Standards and rules – safe working environments – parliamentary legislation – Factories act – Labor Welfare Act – ESI Act – Workmen Compensation Act.

**Total No of Hours: 60Hrs** 

#### **TEXT BOOK**

- 1. William Handley, Industrial Safety Hand Book, Mc Graw-Hill Book Company, 2nd edition, 1969.
- 2. Fawatt, H.H and Wood, W.S., Safety and Accident Prevention in Chemical operation, Interscience, 1965.

#### REFERENCE

- 1. Heinrich, H.W, Dan Perterson, P.E and Nester Rood, Industrial Accident Prevention, McGraw-Hill, 1980.
- 2. Blake, R.P., Industrial Safety, PHI, III ed, 1963.

Subject	Code:	Sul	biect Νε	me : Pro	cess Co	ntrol A	nd Dyna	amics	Tv	/Lb/ETL/II	L	T/S.Lr	P/R	С
				te: Engin					Ty			0/0	0/0	3
EBCT2	2014	II,	Engine	ering Mat	themati	cs III &	IV							
I · I ooti	ure T : Tut	orio1	SI r · S	uporvisod	I I oornir	ng D · Dr	roject D	· Pasaar	oh C:	Crodite				
	L: Theory			•		•	v		JII C.	Citalis				
OBJEC		Lau/ L	inocaac	d Theory	and Lac	/ IIItCI II	ai Evaiu	ation						
		e knov	vledge c	of process	instrum	ente & 11	ınderetai	nd dynar	nic m	odeling of a	nhve	ical proce	ec neina	firet
	principles.		vicuge o	i process	mstrum	ents & u	muei sta	na aynar	ine ii	odening of a	pnys	icai proce	ss using	mst
			ia aantus	1 aabama	and to		a aantua	1 arvatam	in					
	SE OUTC				s and to	appry ur	e contro	n system	III Võ	rious proces	sses.			
COURS	SE OUTC	OME	s (COs)	: (3-3)										
CO1	Develop	funda	mental	and empi	rical mo	dels for	dynamio	process	ses &	Implement	dynan	nic model	s with o	ſ
	without	contro	ollers.											
CO2	Analyse	PID c	ontrolle	rs and mo	re advai	nced con	ntrollers	to achie	ve de	sired perfori	nance	& Under	stand va	rious
				l methods						•				
CO3	Design	a contr	ol strate	gy for ke	y unit or	erations	(reacto	r, distilla	tion	column, etc	)			
CO4										, pressure, l		and tempe	rature	
	measure	ment		•								•		
CO5	Design	of feed	lback co	ntrol syst	ems usir	ng freque	ency res	ponse te	chnic	ues.				
Mappin	g of Cour	se Ou	tcomes	with Prog	gram O	utcomes	s (POs)							
COs/PC	)s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	POS	PO9	PO	10 PO	11 PC	)12
CO1		3	2	-	2	-	-	2	-	3	1	-	1	
CO2		2	-	-	3	-	3	-	-	3	1	-	2	
CO3		3 2	2	3	2	-	-	-	-	2	-	2	3	
CO4 CO5		<i>)</i> .												
1 (1)2			1	2	-	-	-	-	2	- 2	- 2	2	3	
		3	3	3	-	- - PS	2	2	-	3	3	3		
COs/P	SOs	PS		3 PS(	-		2	2 PS	-	3	3			
	SOs	3	3	3		- PS 1 3		2	-	3	3			
COs/P CO1	SOs	3 PS 3	3	3 PS(	-	1		2 PS	-	3	3			
COs / P CO1 CO2	SOs	PS 3 2	3	3 PSC 2 1		3		2 PS	-	3	3			
COs / P CO1 CO2 CO3 CO4 CO5	SOs	PS PS 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 01	3 PSO 2 1 3 3		1 3 2 2 3	03	2 PS 1 3 - 2	04	3	3			
COs / P CO1 CO2 CO3 CO4 CO5	SOs	PS PS 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 01	3 PSO 2 1 3 3		1 3 2 2 3	03	2 PS 1 3 -	04	3	3			
COs / P CO1 CO2 CO3 CO4 CO5	SOs	3 PS 3 2 3 2 2 Streng	3 O1 gth of Co	3 PSO 2 1 3 3	1 3- H	1 3 2 2 3	O3  Medium	PS 1 3 - 2 2 , 1-Low	- O4		3			
COs / P CO1 CO2 CO3 CO4 CO5	SOs	3 PS 3 2 3 2 2 Streng	3 O1 gth of Co	3 PSO 2 1 3 3 1 porrelation	1 3- H	1 3 2 2 3 igh, 2- N	O3  Medium	PS 1 3 - 2 2 , 1-Low	- O4		3			
COs / P CO1 CO2 CO3 CO4 CO5	SOs	3 PS 3 2 3 2 2 Streng	3 O1 gth of Co	3 PSO 2 1 3 3 1 porrelation	1 3- H	1 3 2 2 3 igh, 2- N	O3  Medium	PS 1 3 - 2 2 , 1-Low	- O4		3			
COs / P CO1 CO2 CO3 CO4 CO5	SOs	PS PS 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 O1 gth of Co	3 PSO 2 1 3 3 1 porrelation		1 3 2 2 3	03	PS 1 3 - 2 2 , 1-Low	- O4		3			
COs / P CO1 CO2 CO3 CO4 CO5	indicates	3 PS 3 2 3 2 2 Streng	3 01	3 PSO 2 1 3 3 1 porrelation	1 3- H	1 3 2 2 3 igh, 2- N	O3  Medium	PS 1 3 - 2 2 , 1-Low	- O4		3			
COs / P CO1 CO2 CO3 CO4 CO5 H/M/L	indicates	3 PS 3 2 3 2 2 Streng	3 O1 gth of Co	3 PSO 2 1 3 3	1 3- H	1 3 2 2 3 igh, 2- N	O3  Medium	2 PS 1 3 - 2	04	Practical /Project	3			

<b>Subject Code:</b>	<b>Subject Name: Process Control And Dynamics</b>	Ty/Lb/ETL/IE	L	T/S.Lr	P/R	C
	Prerequisite: Engineering Chemistry I &	Ty	3	0/0	0/0	3
EBCT22014	II, Engineering Mathematics III & IV					

#### UNIT I RESPONSE OF FIRST ORDER SYSTEM

9Hrs

Laplace transformation, transform of standard functions, derivatives and integrals, inversion, theorems in Laplace transformation, application. Open-loop systems, first order systems and their transient response for standard input functions, first order systems in series, linearization and its application in process control, second order systems and their dynamics, transfer function for chemical reactors and dynamics.

#### UNIT II THE CONTROL SYSTEM

9Hrs

Closed loop control systems, development of block diagram for feed-back control systems, servo and regulator problems, Transfer function for controllers and final control element, principles of pneumatic and electronic controllers, transportation lag, transient response of closed-loop control systems and their stability.

#### UNIT III CLOSED LOOP TRANFER FUNCTIONS

9Hrs

Introduction to frequency response of closed-loop systems, control system design by frequency, Bode diagram, stability criterion, Nyquist diagram; Tuning of controller settings.

## UNIT IV CONTROLSYSTEM DESIGN BY FREQUENCY RESPON

9Hrs

Controller mechanism, introduction to advanced control systems, cascade control, feed forward control, control of distillation towers and heat exchangers, introduction to microprocessors and computer control of chemical processe

## UNIT V ADVANCED CONTRO SYSTEM

9Hrs

Principles of measurements and classification of process control instruments, measurements of temperature, pressure, fluid flow, liquid weight and weight flow rate, viscosity and consistency, p^H, concentration, electrical and thermal conductivity, humidity of gases, composition by physical and chemical properties and spectroscopy.

**Total No of Hours: 45Hrs** 

#### **TEXT BOOKS:**

- 1. Patranabis .D, Principles of Process control, II edition, Tata McGraw Hill Publishing Co Ltd., 1981.
- 2. PeterHarriott, Processcontrol, Tata McGraw Hill Publishing Co., Reprint 2004.

### **REFERENCES:**

- 1. Thomas, E.Marlin, Process Control, 2ndEdn, McGraw Hills International Edn 2000. George Stephanopoulos, Chemical Process Control, Prentice Hall of India 2003.
- 2. Norman H.CEAGLSKE, Automatic process control for chemical engineers, John Wiley & Sons, Japan

•	t Code:	Subje	ect Nam	e : Chem	ical Re	action <b>E</b>	Enginee	ring II	Ty/L	b/ETL/IE	L	T/S.Lr	P/R	C
EBCT	22015		quisite: y balan	Basic m	aths, ch	emistry	& mat	erial	Ty		3	0/0	0/0	3
I · I ecti	ıre T · Tıı	_	,,,		earning	P · Pro	iect R ·	Researc	h C: Cre	ditsT/L/F	I The	eory/Lab/E	    mbedd	ed
	and Lab/				20arming	,1 .110	jeet it .	rescare	ii C. Cic		1L . III	ory, Lao, L	mocaa	ca
•	CTIVE:													
• '	To apply	the kno	wledge	of materia	al energy	balanc	es, mas	s transfe	r and ch	emical rea	ction en	gineering	for solv	ing
	problems													
COUR	SE OUT	COME	S (COs)	):(3-5)										
CO1	Ability	to distir	iguish b	etween va	arious R	TD curv	ves and	predict t	he conv	ersion from	n a non-	ideal react	tor usin	<u>σ</u>
	tracer inf													0
CO2	Design	of ideal	reactors	s for singl	le and co	omplex 1	reaction	s						
CO3	Develop	o rate la	ws for h	eterogene	eous rea	ction								
CO4	Design	of react	ors for 1	non-cataly	tic and	catalytic	c reactio	ns.						
CO5				as–liquid					mical re	action				
Mappi	ng of Co	urse Ou	tcomes	with Pro	gram C	outcome	es (POs)	)						
COs/P	Os	PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	PO7	PO8	PO9	PO10	PO11	PO12	2
CO1		3	2	-	-	-	-	1	1	-	1	-	1	
CO2		1	3	-	3	-	-	2	3	-	-	2	-	
CO3		2	1	1	-	-	-	-	-	-	1	-	-	
CO4		2	-	-	-	-	2	-	-	-	3	-	-	
CO5		1	-	2	-	-	-	-	1	-	-	-	1	
COs/l	PSOs		01	PSC	02		SO3		SO4					
CO1		2		3		1		2						
CO2		3		2		1		3						
CO3		2		1		2		3						
CO4		3		1		2		2						
CO5	indicata		ath of C	_	n 2 I		Modin	. –						
II/IVI/L	indicate	s streng	gin or C	orreiauo	on 3- r	11g11,2 -	Mearu	III, 1-LO	w	1			1	
Categ	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				
					<b>V</b>									

<b>Subject Code:</b>	Subject Name: Chemical Reaction Engineering II	Ty/Lb/ETL/IE	L	T/S.Lr	P/R	C
EBCT22015	Prerequisite: Basic maths, chemistry & material	Ty	3	0/0	0/0	3
	energy balance					

### UNIT - I NON-IDEAL REACTORS

9Hrs

The residence time distribution as a factor performance; residence time functions and relationship between themin reactor; basic models for non-ideal flow; conversion in non-ideal reactors.

## UNIT - II HETEROGENEOUS PROCESS AND SOLID CATALYSIS

9Hrs

Rate equations for heterogeneous reactions nature of catalysis, adsorption isothermal and rates of adsorption, desorption and surface reaction analysis of rate equation and rate controlling steps, surface area and pore-volume distribution, catalyst preparation.

#### UNIT - III GAS-SOLID CATALYTIC REACTORS

9Hrs

Diffusion within catalyst particle effective thermal conductivity mass and heat transfer within catalyst pellets; Effective factors, Thiele Modulus, fixed bed reactors.

#### UNIT - IV GAS-SOLID NON-CATALYTIC REACTORS

9Hrs

Models for explaining the kinetics; volume and surface models; controlling resistances and rate controlling steps; time for complete conversion for single and mixed sizes, fluidised and static reactors.

## UNIV – V GAS-LIQUID REACTIONS

9Hrs

Absorption combined with chemical reactions; mass transfer coefficients and kinetic constants; application of film penetration and surface renewal theories; Hatta number and enhancement factor for first order reaction, tower reactor design.

**Total No of Hours: 45Hrs** 

### **TEXT BOOK**

1. Fogler. H.S., "Elements of Chemical reaction engineering" 3rd edition, Prentice Hall of India Pvt. Ltd., 1999 (Indians Reprint 2003)

#### REFERENCES

- 1. Levenspiel, O; "Chemical Reaction Engineering", 2nd Edition, John Wiley, 1972.
- 2. Smith J.M., "Chemical Engineering Kinetics", 3rd edition, McGraw-Hill, New York, 1981.

Subject					ical Pro	cess Eq	uipmen	t Desig	n Ty/L	b/ETL/IE		T/S.Lr	P/R	C		
EBCT22			quisite:						Ty		3	0/0	0/0	3		
				Supervised and Lab/ I				: Resear	ch C: Cr	edits T/L/	ETL :					
OBJECT	TIVE:															
• To	acquire	e basic ı	ındersta	nding of o	design p	aramete	r, compl	lete knov	wledge o	f design p	rocedu	res for				
										external pı						
					upports	etc.), ar	nd differ	ent type	s of equi	pment test	ing me	ethods.				
COURS						ant dagi	an and i	inam antan	-t	tone of one	inma	at decien				
CO1					• •					eters of equ	uipinei	nt design				
CO2	•			nal pressu				•		1 /		`				
CO3				ial vessels ent fabric					arts of vo	essels (e.g.	. heads	5)				
CO5						ia testing	g memo	us								
		ů														
COs/PO		Posign batch and continuous reactors   F Course Outcomes with Program Outcomes (POs)   PO1														
CO1		PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12           2         3         3         -         1         -         -         2         -         -         3           2         3         -         3         -         3         -         2         -           2         -         -         2         -         3         -         -         3														
CO2		2     3     -     -     3     -     2     -       2     -     -     -     2     -     -     3														
CO3			-	-	-	-	2	-	-	3	-	-	_			
CO4		3		-	3	-	-	3	-	-	-	1	3			
CO5			l .		2	-	-	-	-	-	-		2			
COs / PS	SOs	2         2         2         2         -         -         -         -         -         2           PSO1         PSO2         PSO3         PSO4         -         -         2														
CO1		2		2		-		-								
CO2		3		1		-		-								
CO3		2		1		-		3								
CO4						1		-								
CO5				_		-		-								
H/M/L i	ndicates	Streng	gth of C	orrelatio	1 3- H	igh, 2- 1	Mediun	1, 1-Lov	V							
Categor	у	Basic Sciences  Humanities and Social Sciences  Humanities and Social Sciences  A brogram Electives  Bractical / Project  A brogram Electives  A component  Bractical / Project  A component  Bractical / Project  Bractica														
					<b>V</b>											

Subject Code: EBCT22016	Subject Name : Chemical Process Equipment Design	Ty/Lb/ETL/IE	L	T/S.Lr	P/R	C
	Prerequisite:	Ty	3	0/0	0/0	3

UNIT – I 9Hrs

Design of storage vessels for non-volatile and volatile fluids – design of pressure vessels – design of vessel supports.

UNIT – II 9Hrs

Design of Heat Exchangers – Double pipe – shell & tube – finned tube – plate heat exchangers – design of evaporators – single & multi effect.

UNIT – III 9Hrs

Design of mass transfer operation equipment – Absorber – Distillation column – Plate and packed columns.

UNIT – IV 9Hrs

Design of Dryers – Rotary – Spray dryers – cooling towers

UNIT – V 9Hrs

Design of Agitated vessels – filters – cyclones

**Total No. of Hours: 45Hrs** 

## **TEXT BOOKS**:

- 1. M.V.Joshi and V.V. Mahajan, "Process Equipment Design", MacMillan India Ltd.
- 2. S.D.Dawande, "Process Design of Equipments", Central Techno Publications, Nagpur, 2000.

## **REFERENCES:**

- 1. Indian Standard Specifications IS-803, 1962; IS-4072, 1967; IS-2825, 1969. Indian Standards Institution, New Delhi.
- 2. R.H. Perry, "Chemical Engineers' Handbook", McGraw Hill.
- 3. W.L.McCabe, J.C.Smith and Harriet, "Unit Operation of Chemical Engineering", McGraw Hill.
- 4. Robert Treybal, "Mass Transfer Operations", McGraw Hill.
- 5. J.M. Coulson and J.Richardson, "Chemical Engineering", vol. 6, Asian Books Printers Ltd.

## SEMESTER VII (PRACTICAL)

Subject	Code:	Su	bject Na	me : Pro	cess Coi	ntrol La	b	Т	y/Lb/ET	L/IE	L T	/ S.Lr	P/R	С
EBCT2	2L09			te: Proces				s L	b		0 0/	0	3/0	1
					arning F	: Projec	ct R : Re	search (	C: Credits	T/L/ET	L: Theory	/Lab/Eml	oedded	
Theory a	nd Lab/ I	nternal I	Evaluatio	on										
OBJEC	CTIVE:													
•	To determ	mine exp	periment	ally the m	ethods o	of contro	lling the	process	ses includ	ing meas	surements	using pro	cess	
	simulatio	on techni	iques.											
COURS	SE OUT	COMES	S (COs)	: (3-5)										
CO1	Students	would l	nave kno	wledge or	n the dev	elopme	nt and us	se of rig	ht type of	control	dynamics	for proces	ss conti	rol
	Under di	ifferent o	operative	e condition	ns.									
CO2	An abilit	ty to des	ign proc	ess contro	l system	compor	nents to	meet de	sired need	ls within	realistic o	onstraints	S.	
CO3											and condu			its as
	well as t	o analyz	e and int	terpret dat	a									
CO4	An abili	ity to use	e the tecl	nniques, s	kills and	tools to	identify	formula	ate and so	lve engi	neering pr	oblems.		
Monnie	ag of Cor	irca Om	teemes	with Prog	ram O.	teamer	( <b>P(</b> G)							
COs/PO		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12.
CO1	<i>.</i>	1	-	2		3	-	-	-	1	-	3		12
CO2		3	_	-	_	2	-	2	-	-	-	-	2	
CO3		2	1	3	-	-	-	-	2	-	-	2	3	
CO4		3	-	-	-	2	-	2	-	-	-	-	2	
COs / P	PSOs	PS	501	PS	02	PS	SO3	P	SO4					
CO1		2		1										
CO2		2		2		-		-						
CO3		3		2		1		-						
CO4		2		2		-		-						
H/M/L	indicates	s Streng	th of Co	rrelation	3- Hi	gh, 2- M	ledium,	1-Low						
					1		1			1				
				es										
			8	Sciences										
			ences	Scie		ves	8	ary	ent	ect				
		ıces		_	Core	I . —	ives	ina	nei					
Catego	orv	Basic Science	$\sim$	OC	1 C	Elec	Open Electiv	Inter Disciplin	Skill Compon	Practical /Proj				
Curogo	<i>y</i>	SS	l:ii	Spi	Program	m	园	)isc	[Jo]	cal				
		asic	nee	s an	10g	gra	ben	l is	][[	ıcti				
		В	Engineering Sci	itie	Д	Program Elect	0	Inte	Sk	Pre				
			亞	nani										
				Humanities and Social										
				Ŧ						1,				
					V					V				
		I .	1	1	1	I.	1	1	_1	1				

<b>Subject Code:</b>	Subject Name: Process Control Lab	Ty/Lb/ETL/IE	L	T/S.Lr	P/R	C
EBCT22L09	Prerequisite: Process control and dynamics	Lb	0	0/0	3/0	1

- 1. Response of first order system
- 2. Response of second order system
- 3. Response of Non-Interacting level System
- 4. Response of Interacting level System
- 5. Open loop study on a thermal system
- 6. Closed loop study on a level system
- 7. Closed loop study on a flow system
- 8. Closed loop study on a thermal system
- 9. Tuning of a level system
- 10. Tuning of a pressure system
- 11. Tuning of a thermal system
- 12. Flow co-efficient of control valves
- 13. Characteristics of different types of control valves
- 14. Closed loop study on a pressure system
- 15. Tuning of pressure system
- 16. Closed loop response of cascade control system

*Minimum 10 experiments shall be offered.

Subject Code:	t	Subject Drawin		: Chemic	al Proce	ess Equi	ipment	Design &	& Ty/I E	b/ETL/I	L	T/5	S.Lr	P/R	C
EBCT2	22L10	Prerequ	uisite: C	Chemical	Process	Equipn	nent De	esign	Lb		0	0/0		3/0	1
				Supervised I Theory a		_			ch C: C	Credits	<u> </u>				
		•							equipr	nents and t	to dr	aw th	em with		
	riate dim	-			•			•	• •						
COUR	SE OUT	ГСОМЕ	S (COs)	):(3-5)											
CO1	Revie	w the sta	andard	flow shee	et symb	ols and	constru	act a flo	w shee	t using th	e sy	mbol	S		
CO2				t exchan				m specif	fication	1					
CO3		esign single and multiple effect evaporators esign a distillation column and an absorber for a separation problem													
CO4								eparatio	n prob	lem					
CO5	Design a centrifugal pump and a batch reactor ping of Course Outcomes with Program Outcomes (POs)														
Mappii	ng of Co	ourse Ou	itcomes	with Pro	gram O	utcome	s (POs)								
COs/PO	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PC	10	PO11	PO	12
CO1		3	-	-	-	-	1	-	-	3	-		-	3	
CO2		2	-	3	-	-	-	3	-	-	1		-	3	
CO3		3	-	-	-	2	-	-	-	-	2		-	-	
CO4 CO5		3 2	2	-	2	3	3	2	-	1	3		1	1	
COs / H	DSO _G		01	- PS(	<u> </u>		03		- O4	1	-		1	1	
COS/I	rsus	3	O1	3	<i>J</i> 2	3	003	-	<del>U4</del>						
CO2		3		1		-		_							
CO3		2		1		3		_							
CO4		3		3		1		-							
CO5		4		2		1		-							
H/M/L	indicate	es Streng	gth of $\overline{\mathbf{C}}$	orrelatio	n 3- H	ligh, 2-	Mediun	n, 1-Low	7		_				_
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project					

Subject Code:	Subject Name : Chemical Process Equipment Design & Drawing Lab	Ty/Lb/ETL/I E	L	T/S.Lr	P/R	C
EBCT22L10	Prerequisite: Chemical Process Equipment Design	Lb	0	0/0	3/0	1

UNIT – I 9Hrs

Design of storage vessels for non-volatile and volatile fluids – design of pressure vessels – design of vessel supports.

UNIT – II 9Hrs

Design of Heat Exchangers – Double pipe – shell & tube – finned tube – plate heat exchangers – design of evaporators – single & multi effect.

UNIT – III 9Hrs

Design of mass transfer operation equipment – Absorber – Distillation column – Plate and packed columns.

UNIT – IV 9Hrs

Design of Dryers – Rotary – Spray dryers – cooling towers

UNIT – V 9Hrs

Design of Agitated vessels – filters – cyclones

**Total No of periods: 45Hrs** 

<b>Subject Code:</b>	Subject Name: PROJECT PHASE -I	Ty/Lb/ETL/IE	L	T/S.Lr	P/R	C
EBCT22I05	Prerequisite: Practical Knowledge of Basic	IE	0	0/0	3/3	2
	Chemical Engineering Concepts					

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory/Lab/Embedded Theory and Lab

## **OBJECTIVE:**

- The objective of the Main Project is to culminate the academic study and provide an opportunity to explore a problem or issue, address through focused and applied research under the direction of a faculty mentor.
- The project demonstrates the student's ability to synthesize and apply the knowledge and skills acquired to real-world issues and problems.
- This project affirms the students to think critically and creatively, find an optimal solution, make ethical decisions and to present effectively.

## COURSE OUTCOMES (COs): (3-5)

CO1	Apply the knowledge and skills acquired in the course of study addressing a specific problem or issue.
CO2	To encourage students to think critically and creatively about societal issues and develop user friendly and reachable solutions.
CO3	To refine research skills and demonstrate their proficiency in communication skills
CO4	To take on the challenges of teamwork, prepare a presentation and demonstrate the innate talents.

Manning of	Course	Outcomes	with Progran	o Outcomes	(POs)
mapping or	Course	Outcomes	with i iogian		(I OS)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	3	3	1	2	2	3	3
CO2	3	3	3	3	3	3	3	2	2	2	3	3
CO3	2	3	3	3	3	3	3	2	3	3	3	3
CO4	3	3	3	3	3	2	2	2	3	3	3	3
COs / PSOs	PS	01	PSC	<b>)2</b>	PS	<b>O3</b>	PS	<b>504</b>				
CO1	3		3		2		3					
CO2	3		3		3		2					
CO3	3		2		1		3					
CO4	3		3		3		2					
TT 15 F 17 A 34 .	<b>~</b> .		- · ·	A TT.		7.0	_					

## H/M/L indicates Strength of Correlation 3- High,2- Medium, 1-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project		
				$\sqrt{}$					V		

Subject Code:	Subject Name: PROJECT PHASE -I	Ty/Lb/ETL/IE	L	T/S.Lr	P/R	C
EBCT22I05	Prerequisite: Practical Knowledge of Basic	IE	0	0/0	3/3	2
	Chemical Engineering Concepts					
				i		1

Students are expected to do the Project in a group of 3 to 4 students. Theyshould identify the area/topic of the Project and should collect the literatures related to the project. Students intending to do Industrial projects will approach the industries with the support of the university, identify the industrial problem and finalize the project. In case of Industrial projects apart from Industry guide, a guide has to be appointed by the department. At the end of the Semester the students should submit their Project Phase - I report to the Department and Viva -Voce examination will be conducted by the examiners duly appointed by the Head of the department.

Subject Code: Subject Name EBFL22IXX Prerequisite:					eign La	nguage			Lb/ ETI	/IE		T/S.Lr	P/R	C
								IE				0/0	1/0	1
L : Lecture Theory and					earning	P : Proje	ect R : R	lesearch	C: Cred	lits T/L/E	ſL:Th	eory/Lab/E	imbedd	.ed
OBJECT	IVE:													
												te effective		
fo	reign 1	anguage	and into	eract in a	culturall	y approj	priate m	anner w	ith nativ	e speaker	s of tha	t language.		
COURSE	OUT	COME	S (COs)	: (3-5)										
CO1				roficiency	in lister	ning, spe	eaking, 1	eading,	and wri	ting.				
CO2											l culture	e acquisitio	n. Dec	ode,
				authentic						<i>66.</i>		1		,
Mapping														
COs/POs		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO11	PO	12
CO1		1	1	1	1	1	3	1	3	2	3	3	1	
CO2		2	1	1	1	1	3	1	3	3	3	3	1	
COs / PSO	Os	PS	01	PSC	02	PS	O3	PS	SO4					
CO1		2		1		2		2						
CO2		2		2		3		2						
H/M/L in	dicates	s Streng	gth of Co	orrelation	1 3- H	igh,2- N	Iedium,	,1-Low						
Category	,	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				
				√										

<b>Subject Code:</b>	Subject Name : Foreign Language	Ty / Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBFL22IXX	Prerequisite: Nil	IE	2	0/0	1/0	1

Foreign language is introduced in the curriculum to make the students globally employable. Students should select and register for any one of the foreign languages from the given list. At the end of the course students should be able to read, write and converse the language in the basic level. At the end of the semester the assessment will be done through internal examination by the examiner duly appointed by the head of the department.

## SEMESTER VIII (THEORY)

Subject Code:	Subject Name: Total Quality Management							Ту	/ Lb/ETL	L	T/SLr	P/R	C
EBCC22ID3	Pre	Prerequisite: Nil						Ty		3	0/0	0/0	3
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits													
T/L/ETL : Theory	T/L/ETL: Theory/Lab/Embedded Theory and Lab												
<b>OBJECTIVE:</b> T													
			students					-	• •				
									cordingly				
• To give understand International Quality Certification Systems – ISO 9000 and other standards													rds
• To understand concepts related to quality of services in contemporary environment													
COURSE OUTCOMES (COs):													
	CO1 Understand the Quality Policies (Level 2)												
11.	CO3 Apply Total Quality Management tools in Industry (Level 3)												
11													
							s in Man	ufacturii	ng Manage	ment(	Level 2)		
Mapping of Cou	rse Out	tcomes v	with Prog	ram Ou	itcomes	(POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PO	12
CO1	3	-	2	3	3	-	-	3	3	2	3		2
CO2	-	3	2		-	3	-	3	2	3			2
CO3	3	2	-	2	2	-	3	2	-	2	2		2
CO4	-	-	3	3	3	-	3	2	2	2	2		2
CO5	3	3	3	3	3	3	-	2	3	2	2		2
COs / PSOs	PS	<u>01</u>	PSC			O3	1	O4					
CO1		•	2			3		3					
CO2		•	2	1		3		3					
CO3		-	2			3		3					
CO4		-	2			3		3					
CO5	•	•	2			3	3						
H/M/L indicates	Streng	th of Co	rrelation	3- Hi	gh,2- M	edium,	1-Low	ı	<del>                                     </del>		1		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				

Subject Code:	Subject Name: Total Quality Management	T y/ Lb/ETL	L	T/SLr	P/R	С
EBCC22ID3	Prerequisite: Nil	Ty	3	0/0	0/0	3

## UNIT-I QUALITY POLICY, PLANNING AND MANAGEMENT

9Hrs

Evolution of quality as a strategy- Definitions of quality, Quality Philosophies of Deming, Crosby and Miller, Service Vs product Quality, Customer focus, Quality and Business performance leadership for quality management, Quality planning, Designing for Quality and Manufacturing for Quality, Vision, Mission statements and Quality policy.

## UNIT – II BASIC CONCEPTS F TOTAL QUALITY MANAGEMENT

9Hrs

Total Quality management- TQM models, human and system Components, Continuous Improvement Strategies, Deming wheel, Internal External Customer concept, Customer satisfaction Index, Customer retention, Team work and team building, Empowerment, TQM culture, Quality Circle, 5S principle, Top Management commitment.

## UNIT - III QUALITY MANAGEMENT TOOLS

9Hrs

Quality management tools - Principles and applications of quality Function deployment, Failure Mode and Effect Analysis (FMEA), Taguichi Techniques, Basic tools- Statistical techniques and graphical tools and diagrams.

## UNIT - IV VARIOUS CONCEPTS OF QC TECHNIQUES

9Hrs

Modern QC techniques - Japanese Production Related Techniques: Just in time (JIT) - Quality circles - Total productive maintenance (TPM) - Kaizen - Kanban - 5S concepts - Toyota production systems - JIDOKA - ANDON etc. Concepts on quality management systems (QMS - ISO 9000 - 2000) - Environmental Management Systems (EMS - ISO -14000)

#### UNIT- V MODERN TREND AND CONCEPTS IN MANUFACTURING MANAGEMENT 9Hrs

Modern Trend and Concept in Manufacturing Management: Business processes reengineering (BPR) – Lean / flexible – manufacturing systems – Six sigma concepts. Quality Leadership- Quality Awards – Quality Tools-Quality Function Deployment.

**Total No of Periods: 45Hrs** 

### **REFERENCES BOOKS:**

- 1. Jill A. Swift, Joel E.Ross and Vincent K.Omachonu, Peinciples of Total Quality, St. Lucie Press, US, 1998.
- 2. Samuel K.Ho. TOM. An integrated approach, kogan page India Pvt Ltd. 2002
- 3. Dale H.N Bester field et al, Total Quality management, Pearson Education Asia, 2001
- 4. RoseJ.E. Total Quality Management Kogan page India Pvt Ltd, 1993.
- 5. Mullar Max, 'Essentials of Materail Management, Amacom

## SEMESTER VII (PRACTICAL)

Subject Code:	Subject Name : Project Phase II							Ty/Lb/E	ΓL	L	T/S.Lr	P/R	C
EBCT22L11	Prereg	Prerequisite: Project Phase – 1					Lb		0	0/0	12/12	8	
L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits													
T/L/ETL: Theory/Lab/Embedded Theory and Lab													
OBJECTIVE:													
• The objective of the project is to make use of the knowledge gained by the student at various stages of the degree													
course.													
COURSE OUTCOMES (COs): (3-5)													
CO1 Apply	the kno	wledge a	and skills	acquired	d in the o	course of	f study	addressin	g a spec	cific p	roblem or	issue.	
CO2 To end	courage	students	to think o	ritically	and cre	atively a	bout so	cietal issu	ies and	devel	op user		
friend	ly and re	achable	solutions			•							
			ls and der				•						
						_	tation a	ind demon	istrate t	he inr	nate talents	•	
Mapping of Cou							700	700	700	700	10 5	04   1	2010
COs/POs	PO 1	PO 2	PO3	PO 4	PO 5	PO 6	<b>PO</b> 7	PO8	PO 9	PO	10   P	01   1	2012
CO1	3	3	3	3	2	3	3	1	2	2	3	3	3
CO2	3	3	3	3	3	3	3	2	2	2	3	3	3
CO3	2	3	3	3	3	3	3	2	3	3	3	3	
CO4	3	3	3	3	3	2	2	2	3	3	3	3	3
COs / PSOs	P	SO1	PS	SO2	P	SO3	]	PSO4					
CO1	3		3		2		3						
CO2	3		3		3		2						
CO3	3		2		1		3						
CO4	3	41 f C	3	2 115	3	/ - J	1 1						
H/M/L indicate	s Streng	tn oi Co	orrelation	3- H	gn, 2- N	ieaium,	, 1-LOW	/ 		Į.			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				
				√					√				

Subject Code:	Subject Name : Project Phase II	Ty/Lb/ETL	L	T/S.Lr	P/R	C
EBCT22L11	Prerequisite: Project Phase – 1	Lb	0	0/0	12/12	8

To make the students to make use of the knowledge and skill developed during their four years of study and to apply them for making an innovative product/process for the development of society and industries.

Students are expected to do a Project work either in an Industry or at the University in the field of relevant Engineering /inter-disciplinary /multi-disciplinary area in a group of 3 or 4 students. The work to be carried out in Phase II should be continuation of Phase I. Each group will be allotted a guide based on the area of Project work. In case of industrial Project external guide has to be allotted from Industry. Inter disciplinary/multi-disciplinary project can be done with students of different disciplines as a group. Monthly reviews will be conducted during the semester to monitor the progress of the project by the project review committee. Students have to submit the Project thesis at the end of the semester and appear for the Project Viva-Voce examination conducted by the examiners duly appointed by the Controller of Examination. In case of industrial project certificate in proof has to be included in the report along with the bonofide certificate.

# PROGRAMME ELECTIVES - I

Subject	Code:	Su	bject Na	ame: Food	d Techn	ology		Ty/	Lb/ET	L/ <b>IE</b>	L	T/S	SLr	P/R	С	
EBCT22	E01	Pr	erequisi	te: Chem	istry an	d Micro	biology	Ty			3	0/0		0/0	3	
I . I actu		utomio1	CI C		Laamain	- D . Da	oioat D .	Dagaana	sh C. Car	dita						
				upervised d Theory			ojeci K :	Researc	in C. Cre	ans						
		y/Lao/L	mocdac	d Theory	and Lao											
OBJEC		_			_			_								
				the studer									d in it, p	ackagi	ng,	
S	storing a	nd preso	ervation,	food pois	soning, i	ood rela	ted haza	rds and	safety, a	nd trans	sportat	ion.				
COURS	E OUT	COME	S (COs)	: (3-5)												
CO1	Under	rstanding the various causes of food deterioration and food poisoning. ification of appropriate processing, preservation, and packaging method.														
CO2				•		•		_		hod.						
CO3				ty and eff												
CO4		•	rtant spe	cies of par	thogenic	microb	es and de	escribe f	factors th	at affec	ct their	grow	th in var	ious ty	pes	
go -	of foo			11 .			.1 .									
CO5				ed hazards												
	_	F Course Outcomes with Program Outcomes (POs)           PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12														
COs/PO	S	3	PO2	1 PO3	PO4	PU5	PO6	PO7 2	PU8	3	PUI	U	1 PO11	PO	12	
CO2		2	-	1	-	1	-	3	-	3	-		1	2		
CO3		3	-	1	-	_	-	2	_	_	-		1			
CO4		2	-	1	-	1	-	3	-	+			1	2		
CO5		3	-	1	-	_	-	2	<del>-</del>	-	-		1	-		
COs / PS	SOs		501	PS	02	PS	SO3		SO4				-			
CO1	, , ,	3	.01	2	<u> </u>	1		3								
CO2		2		1		3		3								
CO3		3		3		3		1								
CO4		2		1		3		3								
CO5		1		2		3		1								
H/M/L i	ndicate	s Streng	gth of Co	orrelation	1 3-	High, 2-	Mediu	m,1-Lov	w							
			iences	Social		es		5	ıt	st						
		səs			ore	tives	ves	nary	ner	oject						
		ien	S	ces	C	:Jec	ecti	ilqi	odt	Pro						
Categor	y	Basic Scien	Engineering Sc	Humanities and Sciences	Program Co	Program Elec	Open Electiv	Inter Discipli	Skill Component	Practical /Pro						
		ısic	ee	niti Sc	.0g	grai	oeu	I D	11 (	ctic						
		Be	igir	ma	Pl	rog	O	Inte	Ski	Pra						
			亞	Hn				, –								
						•										

<b>Subject Code:</b>	Subject Name: Food Technology	Ty / Lb/ ETL/IE	L	T/SLr	P/R	C
EBCT22E01	Prerequisite: Chemistry and Microbiology	Ty	3	0/0	0/0	3

## UNIT I AN OVERVIEW

9Hrs

General aspects of food industry world food needs and Indian situation.

# UNIT II FOOD CONSTITUENTS, QUALITY AND DERIVATIVE FACTORS 9Hrs

Constituents of food quality and nutritive aspects food additives standards deteriorative factors and their control.

## UNIT III GENERAL ENGINEERING ASPECTS AND PROCESSING METHODS 9Hrs

Preliminary processing methods conversion and preservation operations.

#### UNIT IV FOOD PRESERVATION METHODS

9Hrs

Preservation by heat and cold dehydration concentration drying irradiation microwave heating sterilization and pasteurization fermentation and pickling packing methods.

## UNIT V P RODUCTION AND UTILISATION OF FOOD PRODUCTS

9Hrs

Cereal grains pulses vegetables; fruits; spices fats and oils bakery confectionery and chocolate productssoft and alcoholic beverages dairy products meat poultry and fish products.

**Total No. of Hours: 45Hrs** 

#### **TEXT BOOKS:**

- 1. Heid J.L. Joslyn M.A., Fundamentals of Food Processing Operation, The AVI publishing Co., West port 1967.
- 2. Potter N.N., Food Science, The AVI publishing Co., Westport, 1963.

- 1. Heldman D.R., Food Process Engineering, The AVI publishing co., 1975.
- 2. Charm S.E., The Fundamentals of Foods Engineering, The AVI Publishing Co., Westport, 1966

Subject Code: EBCT22E02	Subject Name: Industry Pollution Prevention And Control	Ty / Lb/ ETL/IE	L	T / SLr	P/R	C					
	Prerequisite: Chemistry and Microbiology	Ту	3	0/0	0/0	3					
L · Lecture T · Tutor	· Lecture T · Tutorial SLr · Supervised Learning P · Project R · Research C · Credits T/L/FTL · Theory/Lab/Embedded										

L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab/ Internal Evaluation

## **OBJECTIVE:**

• To impart knowledge to the students about food processing and various unit operations involved in it, packaging, storing and preservation, food poisoning, food related hazards and safety, and transportation.

COURS	E O	UT	CO	ME	S (CC	<b>Os</b> ):(	<b>3-5</b> )
001	<b>T</b> T	1		1.	.1		

CO1	Understanding the various causes of food deterioration and food poisoning.
CO2	Identification of appropriate processing, preservation, and packaging method.
CO3	Analyze product quality and effect of processing technique on it.
CO4	Design gravity settling chamber, cyclones, electrostatic precipitator, fabric filters and absorbers for air pollution
	control.
CO5	Identify the best way to dispose, minimize or utilize haradous solid waste from chemical industries and

# understand the ethical issues and societal impact of releasing pollutants in environment. Mapping of Course Outcomes with Program Outcomes (POs)

		T										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	-	2	3	-	-	-	-	2
CO2	3	2	2	2	-	1	3	-	-	-	-	2
CO3	3	2	2	3	-	2	3	-	-	-	-	2
CO4	3	3	2	3	-	1	3	-	-	-	-	2
CO5	1	1	1	1	-	1	3	3	-	-	-	2
COs / PSOs	PS	<b>O</b> 1	PS	PSO2		PSO3		SO4				
CO1	3		2		1	1						
CO2	2		1		3		3					
CO3	2		3	3			1					
CO4	2	3		2	2							
CO5	3 2		1 3									

# H/M/L indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project		
					V						

Subject Code: EBCT22E02	Subject Name: Industry Pollution Prevention And Control	Ty / Lb/ ETL/IE	L	T / SLr	P/R	С
	Prerequisite: Chemistry and Microbiology	Ту	3	0/0	0/0	3

9Hrs

Industrial activity and environment, industrialization and sustainable development indicators of sustainability- sustainability strategies-Barriers to sustainability- Pollution prevention in achieving sustainability

#### UNIT II POLICIES AND REGULATIONS

9Hrs

Prevention vs control of industrial pollution-Environment policies and Regulations to encourage pollution prevention 143 CHEM-Engg&Tech-SRM-2013

## UNIT III ENVIRONMENTAL CONTAMINANTS

9Hrs

Environment friendly chemical processes-Properties of environmental contaminants - Regulations for clean environment and implications for industries

## UNIT IV LIFE CYCLE ASSESSMENT

9Hrs

Life cycle assessment and pollution prevention economics-Design for the environment-International environmental standards-Environmental technology assessment.

#### UNIT V INDUSTRIAL APPLICATIONS OF POLLUTION PREVENTION

9Hrs

Water, energy and reagent conservation-residuals management-Economic recovery and recycling of wastes. Industrial applications of pollution prevention, Life cycle assessment, waste audits and technology assessments

**Total No. of Hours: 45Hrs** 

#### **TEXT BOOK**

- 1. Bishop .P, "Pollution Prevention: Fundamentals and Practice", McGraw Hill International Edn., McGraw Hill Book Co., Singapore, 2000.
- 2. Roy T.K. (Editor), "Chemical Technology for better Environment", Allied Publishers Ltd., Chennai, 1998.

#### **REFERENCES**

1. Freeman. H.M, "Industrial Pollution Prevention Hand Book", McGraw Hill, 1995. 2. James G. Mann and Y.A.Liu, "Industrial Water Reuse and Waste Water Minimization", McGraw Hill, 1999

Subject			•	me: Che Materia	-	of Polyn	ner And		Ty / Lb/ ETL/IE		L	Γ/SLr	P/R	C
EBCT22	ZE03	Pro	erequisi	te: Chem	istry				Ty		3 0	)/0	0/0	3
L : Lectu	re T : T	utorial	SLr : S	upervised	Learnir	ng P : Pr	oject R	: Resear	ch C: Cı	edits	<u> </u>			1
				d Theory		•	·							
OBJEC'	TIVE:													
		le the sti	idents to	understa	nd the m	nechanis	m of no	lymeriz	ation va	rious tec	hniques	of		
							•	•			•	on of polyn	ners	
COURS	-				r porjan	<u> </u>	1010001		., 1000010		<u> </u>	on or pory		
CO1				d the basi				of com	posite m	aterials a	and mak	e sound pro	ediction	on
CO2	1							osites in	certain	applicat	ions wit	h reference	to	
		osite pro												
CO3												es, and to be	e able t	0
CO4				ions for the hanical p						nere app	ropriate.	<u> </u>		
C04	Allary	se the m	icromec	namear p	roperties	or more	e remnor	ceu con	iposites.					
				with Prog						_				
COs/PO	S	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO11	PO	12
CO1		3	-	1	-	2	-	2	-	3	-	1	2	
CO2		2	1	1	-	1	1	3	-	2	-	3	1	
CO3		3	-	2	-	2	-	2	-	2	-	1	3	
CO4		3	-	1	-	2	-	2	-	3	-	1	2	
COs / PS	SOs	PS	01	PSC	)2	PS	SO3	P	SO4					
CO1		3		2	<u> </u>	1		3						
CO2		2		1		2		3						
CO3		2		3		3		1						
CO4		2		3		1		2						
H/M/L i	ndicate	s Streng	th of Co	orrelation	1 3- H	igh, 2- I	Medium	, 1-Lov	V					
				cial				5	ıt					
Categoi	·v	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				
	,	Basic	Enginee: Science	Humani Science	Progra	Prog	Open	Int	Sk	Pra				

Subject Code:	Subject Name: Chemistry of Polymer And Composite Materials	Ty / Lb/ ETL/IE	L	T/SLr	P/R	С
EBCT22E03	Prerequisite: Chemistry	Ty	3	0/0	0/0	3

#### UNIT I FUNDAMENTAL CONCEPTS OF POLYMER

9Hrs

Introduction, classification of polymer, nomenclature, trade and common name of polymer, monomers and functionality concept of monomers (with example), concept of cross linking and isomerism, general applications of polymer.

## UNIT II SOLVENTS, FILLERS AND ADDITIVES

9Hrs

**Solvents**: Introduction, Classification, types of solvents, types of solutions, method of finding chain length, demixing, flexible chains, particle size & shape, compatibility, phase transition, ternary systems. **Fillers**: Introduction, types of fillers, particle geometry, organic fillers, cellulosic, fibers, and inorganic fillers, applications. **Additives**: Introduction, plasticizers, classification, effect on chemical properties & stability, flexibilizers, release agents, antioxidants, applications.

#### UNIT III POLYMERIZATION PATHWAY

9Hrs

Step polymerization, chain polymerization, anionic polymerization, cationic polymerization, free radical polymerization (with kinetics), and ring opening polymerization.

#### UNIT IV POLYMER SYNTHESIS

9Hrs

Synthesis and applications of polystyrene, polyvinyl acetate, nylon-6, nylon-66, polyvinyl chloride, unsaturated polyvinyl chloride, chlorinated polyvinyl chloride, teflon, poly (3- hydroxybutyrate-co-3-hydroxyvalerate)(PHBV), polyethylene terephthalate, poly glyptal, polymethyl methacrylate, poly urethane, neoprene, phenol formaldehyde, urea formaldehyde, melamine formaldehyde, epoxy resins, poly propylene, High-density polyethylene, low- density polyethylene.

#### UNIT V COMPOSITE MATERIALS

9Hrs

Introduction and industrial applications of composites, **Fiber Reinforced Composites** (**FRC**): introduction, importance and properties, manufacture of fiber fabric, manufacture of fiber preforms, Forming processes, Bladder moulding, Compression moulding, Autoclave and vacuum bag, Mandrel wrapping, Wet layup, Chopper gun, Filament winding, Pultrusion, Resin transfer moulding, Carbon fibre, Aramid fibre material, Kevlar.Introduction, example and application of Particle Reinforced Composites (PRC).

Total No. of Hours: 45Hrs

#### **REFERENCE BOOKS:**

- 1. A Textbook of Polymers Vol I & II, M. S. Bhatnagar, S. Chand Publication
- 2. Plastic Materials John Brydson, Elsevier Publication
- 3. Polymer Science & Technology Joel Fried, PHI
- 4. Introductory Polymer Chemistry, G. S. Misra, New Age International
- 5. Polymer Science, G. Govariker, New Age International

# PROGRAMME ELECTIVE - II

Subje	ct Code:	Su	bject Na	ame: Gre	en Chei	mistry a	nd Eng	gineering	g Ty/IE	Lb/ETL\	L	T / S	S.Lr	P/ R	C
EBCT	<b>C22E04</b>	Pr	erequisi	te: Nil					Ty		3	0/0		0/0	3
L : Le	cture T : T	utorial	SLr : S	Supervised	1 Learni	ng P : P	roject R	: Resear	rch C: C	redits					<u> </u>
T/L/ET	L : Theory	/Lab/E	mbedded	l Theory a	and Lab	/ Interna	l Evalua	ation							
OBJE	CTIVE:														
•				_				-		ind polluti costs and			•	ents.	
COUI	RSE OUT				<u> </u>										
CO1	Explain	how Gr	reen chei	mistry and	l sustain	ability r	elates to	problei	ns of so	cietal cond	ern.				
CO2	Analyze	a proce	ess and i	dentify ho	w it ma	y be ma	de more	environ	mentall	y friendly/	sust	ainab	le/green		
CO3	Integrate	e, synth	esize, an	d apply k	nowledg	ge of the	relation	nship bet	ween so	ience and	tech	nolog	gy and		
	societal	issues i	n both fo	ocused an	d broad	interdisc	ciplinar	y context	ts.						
CO4	• •														
	oing of Course Outcomes with Program Outcomes (POs)														
COs/I	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	010	PO11	PO	12
CO1		2	2	1	3	-	-	-	-	-	2		-	-	
CO2		3	2	1	-	3	-	3	-	-	-		-	1	
CO3		2	3	3	3	1	-	-	-	3	-		-	-	
CO4		3	-	2	-	2	-	-	-	-	-		-	-	
COs /	PSOs	PS	501	PSC	<b>)</b> 2	PS	O3	PS	SO4						
CO1		2		1		3		3							
CO2		3		3		2		1							
CO3		3		2		1		1							
CO4		3		3		2		1							
H/M/I	L indicate	s Stren	gth of C	orrelatio	n 3- H	ligh, 2-	Mediur	n, I-Lov	V						
				Humanities and social Science		ive		5	lt.	=					
		e		s pu	0)	lecti	0	lina	nen	Ojec					
		ienc	ng	es a	Core	Program elective	ctiv(	cip	mpc	/Pr					
Cate	Category  Engineering Science				gm (	gra	Ele	Dis	Co	ical					
		3asi	Enginee Science	Humanit Science	Program Core	Prc	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
			N E	N H	Pr	<b>√</b>	Ō							1	
						<b>,</b>									

<b>Subject Code:</b>	Subject Name: Green Chemistry and Engineering	Ty/Lb/ETL\	L	T/S.Lr	P/R	C
		IE				
EBCT22E04	Prerequisite: Nil	Ty	3	0/0	0/0	3

#### UNIT I ENVIROMENTAL ISSUES

9Hrs

Overview of Major Environmental Issues, Global Environmental Issues. Air Quality Issues. Water Quality Issues, Ecology, Natural Resources, Description of Risk. Value of Risk Assessment in the Engineering Profession. Risk- Based Environmental Law. Risk Assessment Concepts. Hazard Assessment. Dose- Response. Risk Characterization.

#### UNIT II POLLUTION PRAVENTION

9Hrs

Pollution Prevention- Pollution Prevention Concepts and Terminology. Chemical Process Safety. Responsibilities for Environmental Protection. Environmental Persistence. Classifying Environmental Risks Based on Chemical Structure. Exposure Assessment for Chemicals in the Ambient Environment.

#### UNIT III GREEN CHEMISTRY

9Hrs

Green Chemistry. Green Chemistry Methodologies. Quantitative/Optimization-Based Frameworks for the Design of Green Chemical Synthesis Pathways. Green Chemistry Pollution Prevention in Material Selection for Unit Operations. Pollution Prevention for Chemical Reactors. Pollution Prevention for Separation Devices. Pollution Prevention Applications for Separative Reactors. Pollution Prevention in Storage Tanks and Fugitive Sources.

#### UNIT IV ESTIMATION OF ENVIROMENTAL EFFECTS

9Hrs

Process Energy Integration. Process Mass Integration. Case Study of a Process Flow sheet- Estimation of Environmental Fates of Emissions and Wastes.

#### UNIT V ENVIROMENTAL EVALUATIONS

9Hrs

Magnitudes of Environmental Costs. A Framework for Evaluating Environmental Costs. Hidden Environmental Costs. Liability Costs. Internal Intangible Costs. External Intangible Costs. Introduction to Product Life Cycle Concepts. Life-Cycle Assessment. Life-Cycle Impact Assessments. Streamlined Life-Cycle Assessments. Uses of Life-Cycle Studies.

Total No. of Hours: 45Hrs

#### **TEXT BOOKS:**

- 1. Allen, D.T., Shonnard, D.R, Green Engineering: Environmentally Conscious Design of Chemical Processes. Prentice Hall PTR 2002.
- 2. MukeshDoble and Anil Kumar Kruthiventi, Green Chemistry and Engineering, Elsevier, Burlington, USA, 2007.

Subject C	Code:	Su	bject N	ame: Mo	dern Se	paratio	n Proce	esses	T y/ Lb/ ETL/IE		L T/	SLr	P/R	C
EBCT22I	E <b>05</b>	Pr	erequis	ite: Adva	nced se	paratio	n		Ту		3 0/0		0/0	3
L : Lecture Theory/Lat					•	_	5	Resear	rch C: Cr	edits T/L	/ETL :			<u> </u>
OBJECT		1 1	1			, ,			. 6 1					
COURSE					e princi	ple and	technica	al conc	ept of adv	vanced se	eparation p	rocesses	<b>5.</b>	
	2001	COME	13 (CUS	) : ( 3- 3)										
CO1				•		•	•	•	•		uding equ	ilibrium	stages	,
CO2	_			nt contacti										
CO2	Desig	gn vario	us com	onents of	equipn	nent use	a in aav	ancea	separatio	n process	se			
CO3	Com	pare vai	rious op	tions and	select a	n approj	priate pr	ocess f	or a parti	cular sep	aration			
CO4							lvanced	separa	tion proce	esses bas	ed on mer	nbranes,		
3.7				tillation, e			( <b>DO</b>	`						
		urse Outcomes with Program Outcomes (POs)  PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
COs/POs		PO1   PO2   PO3   PO4   PO5   PO6   PO7   PO8   PO9   PO10   PO11   PO12												
CO1		3	-	-	3	-	-	2	-	-	-	-	1	
CO2		2	-	-	-	-	-	3	-	-	-	2	-	
CO3		3	-	-	-	2	-	-	-	-	-	-	2	
CO4	^	2	-	- DC/	-	- DC	1	-	-	-	-	2	-	
COs / PSo	Us		01	PSO 2	<u>)2</u>		03		SO4					
CO2		2		1		-		-						
CO3		3		2		<u>-</u>		_						
CO4		2		1		_		_						
H/M/L in	dicate		gth of C		n 3-1	High, 2-	Mediu	m, 1-L	ow	1		_		
Category  Basic Sciences  Engineering Sciences		Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project						
						<b>√</b>								

Subject Code:	<b>Subject Name: Modern Separation Processes</b>	T y/ Lb/	L	T/SLr	P/R	C
		ETL/IE				
EBCT22E05	Prerequisite: Advanced separation	Ту	3	0/0	0/0	3

#### UNIT I BASICS OF SEPARATION PROCESS

9Hrs

Review of Conventional Processes, Recent advances in Separation Techniques based on size, surface properties, ionic properties and other special characteristics of substances, Process concept, Theory and Equipment used in cross flow Filtration, cross flow Electro Filtration, Surface based solid – liquid separations involving a second liquid.

#### UNIT II MEMBRANE SEPARATIONS

9Hrs

Types and choice of Membranes, Plate and Frame, tubular, spiral wound and hollow fiber Membrane Reactors and their relative merits, commercial, Pilot Plant and Laboratory Membrane permeators involving Dialysis, Reverse Osmosis, Nanofiltration, Ultra filtration and Micro filtration, Ceramic-Hybrid process and Biological Membranes.

#### UNIT III SEPARATION BY ADSORPTION

9Hrs

Types and choice of Adsorbents, Adsorption Techniques, Dehumidification Techniques, Affinity Chromatography and Immuno Chromatography, Recent Trends in Adsorption.

#### UNIT IV INORGANIC SEPARATIONS

9Hrs

Controlling factors, Applications, Types of Equipment employed for Electrophoresis, Dielectrophoresis, Ion Exchange Chromatography and Eletrodialysis, EDR, Bipolar Membranes.

## UNIT V OTHER TECHNIQUES

9Hrs

Separation involving Lyophilisation, Pervaporation and Permeation Techniques for solids, liquids and gases, zone melting, Adductive Crystallization, other Separation Processes, Supercritical fluid Extraction, Oil spill Management, Industrial Effluent Treatment by Modern Techniques.

Total No. of Hours: 45Hrs

- 1. King, C. J., "Separation Processes", Tata McGraw Hill, 1982.83
- 2. Roussel, R. W., "Handbook of Separation Process Technology", John Wiley, New York, 1987.
- 3. Nakagawal, O. V., "Membrane Science and Technology" Marcel Dekkar, 1992.

Subject C	Code:	Subjec	t Name	: Renewa	ble Ene	rgy Eng	ineerin	σ ,	Tv / Lb/	ETL/IE	L T/	SLr	P/ R	С
EBCT221				conversio			,		Ty		3 0/0		0/0	3
							ct R : R			ts T/L/ETI				
Theory an			_		C	3						•		
OBJECT														
• T	his course	e helps tl	he stude	nts to und	erstand	the impo	ortance,	availabi	lity, con	version tecl	nnologie	s of re	newable	<b>;</b>
		_		plications		•								
COURSE	OUTCO	OMES (	COs): (	3- 5)										
CO1	Make int	erpretation	on about	the energy	sources.									
CO2	Compreh	nend the e	energy an	d energy ty	ypes.									
CO3	Make int	erpretation	on about	the solar er	nergy.									
CO4	Explain t	the solar	energy po	wer plants	3.									
CO5	Make int	erpretation	on about	the geother	mal ener	gy								
	ing of Course Outcomes with Program Outcomes (POs)													
COs/POs		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1		)12
CO1		3	2	-	-	3	-	-	-	2	-	-	3	
CO2	2     3     -     1     -     -     -     3     -     1     -       1     -     -     -     1     -     -     2     -     -													
CO3														
CO5	3													
COs / PS	Os		01	PSO	)2		03		5O4	<del>-</del>	-	1		
CO1	03	3	.01	2	<u> </u>	-			704					
CO2		2		1	-			-						
CO3		1		2		3		-						
CO4		3		2		1		-						
CO5		1		2		-		-						
H/M/L in	dicates S	trength	of Corr	elation	3- High	ı, 2- Me	dium, 1	-Low						
H/M/L indicates S  Category		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				
		1	1		14	√ √		I						

Subject Code: EBCT22E06	Subject Name: Renewable Energy Engineering	Ty / Lb/ ETL/IE	L	T/SLr	P/ R	C
	Prerequisite: conversion technologies	Ту	3	0/0	0/0	3

9Hrs

World energy status, Current energy scenario in India, Environmental aspects of energy utilization, Environment - Economy - Energy and Sustainable development, energy planning. classification of Energy resources, Advantages and disadvantages of Non-Conventional source of energy, Renewable energy resources - potentials -achievements – applications.

#### UNIT II SOLAR ENERGY

9Hrs

Basic concepts, Solar thermal systems – Flat plate and concentrating collectors, Solar passive space - Solar heating and cooling techniques – Solar desalination –Solar Pond - Solar cooker - Solar dryers-Solar furnaces - Solar pumping, Solar 139 CHEM-Engg&Tech-SRM-2013 green house- Solar thermal power plant – Solar photo voltaic conversion – Solar cells – PV applications

## UNIT III WINDENERGY

9Hrs

Introduction-Background-Availability- wind power plants , Power from the wind, Wind energy conversion systems, site characteristics, Wind turbines types –Horizontal and vertical axis-design principles of wind turbine, Magnus effect-Performance. Wind energy Applications – New developments - Safety and environmental aspects.

#### UNIT IV BIOMASS ENERGY

9Hrs

Biomass – usable forms- composition- fuel properties – applications, Biomass resources, Biomass conversion technologies - direction combustion - pyrolysis –gasification -anaerobic digestion, Bioethanol and Biodiesel Production – Recent developments. Energy farming, Biogas technology - Family biogas plants, Community and institutional biogas plants – design consideration – applications.

## UNIT V OTHER RENEWABLE ENERGY SOURCES

9Hrs

Tidal energy – Wave energy – Open and closed OTEC Cycles – Small hydro –Geothermal energy Fuel cell technology - types, principle of operation –applications.Hydrogen energy production - Storage system.

Total No. of Hours: 45Hrs

#### **TEXT BOOK:**

- 1. Rai. G.D. "Non Conventional Energy Sources", Khanna Publishers, New Delhi, 1999.
- 2. Sukhatme.. S.P. "Solar Energ", Tata McGraw Hill Publishing Company Ltd., New Delhi, 1997.
- 3. "Renewable energy sources of conversion technology": Bansal..N.K Manfred Kleen Man and Michael Meliss, TMH Publicatio

- 1. Kothari. P, K C, Singal and Rakesh Ranjan, "Renewable EnergySources and Emerging Technologies
- ", PHI Pvt. Ltd., New Delhi, 2008
- 2. Godfrey Boyle, Renewable Energy, Power for a Sustainable Future, OxfordUniversityPress, U.K, 1996.
- 3. Twidell. J.W. & Weir, A., Renewable Energy Sources, EFN Spon Ltd., UK, 1986.
- 4. Freris, Wind Energy Conversion systems, Prentice Hall, UK, 1990.

#### PROGRAMME ELECTIVE - III

Subject Code:	Subject Name: Computational Fluid	T y/ Lb/	L	T/S.Lr	P/R	C
ED CTOEO7	Dynamics	ETL/IE				
EBCT22E07	Prerequisite: Basic Mathematics and fluid	Ту	3	0/0	0/0	3
	mechanics					

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL: Theory/Lab/Embedded Theory and Lab/ Internal Evaluation

## **OBJECTIVE:**

• To make the students to demonstrate competence in setting up computational fluid dynamics models for some industrially important applications. This technical competence in building and conducting CFD simulations is a skill.

## **COURSE OUTCOMES (COs): (3-5)**

CO1	Upon completing the course,	the student should have a	a Hands-on experience	with a commercial CFD	program.

- Provide the student with a significant level of experience in the use of modern CFD software for the analysis of complex fluid-flow systems.
- Improve the student's research and communication skills using a self-directed, detailed study of a complex fluid-flow problem and to communicate the results in written form.

## **Mapping of Course Outcomes with Program Outcomes (POs)**

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	-	1	-	-	-	3	-	-	3
CO2	2	3	-	-	-	-	-	-	3	3	-	-
CO3	3	2	1	-	-	-	-	2	-	1	-	-
COs / PSOs	PSO1		PSO2		PSO3		PSO4					
CO1	2		2		-		-					
CO2	3		1		-		-					
CO3	2	•	1		-		-	•				
CO4	3		2		-		-					

## H/M/L indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project		
					$\sqrt{}$						

Subject Code:	Subject Name: Computational Fluid Dynamics	T y/ Lb/ ETL/IE	L	T / S.Lr	P/R	С
EBCT22E07	Prerequisite: Basic Mathematics and fluid mechanics	Ту	3	0/0	0/0	3

## UNIT I CONSERVATION LAWS AND TURBULENCE MODELS

9Hrs

Governing equations of fluid flow and heat transfer –mass conservation, momentum and energy equation, differential and integral forms, conservation and non-conservation form. Characteristics of turbulent flows, time averaged Navier Strokes equations, turbulence models-one and two equation, Reynolds Stress, LES and DNS.

## UNIT II FINITE DIFFERNCE APPROXIMATION

9Hrs

Mathematical behaviour of PDE, finite difference operators, basic aspects of discretization by FDM, explicit and implicit methods, error and stability analysis.

#### UNIT III FINITE VOLUME METHOD

9Hrs

Diffusion problems – explicit and implicit time integration Convection-diffusion problems – properties of discretisation schemes, central, upwind, hybrid, QUICK schemes Solution of discretised equations.

#### UNIT IV FLOW FIELD COMPUTATION

9Hrs

Pressure velocity coupling, staggered grid, SIMPLE algorithm, PISO algorithm for steady and unsteady flows.

## UNIT V GRID GENERATION

9Hrs

Physical aspects, simple and multiple connected regions, grid generation by PDE solution, grid generation by algebraic mapping.

Total No. of Hours: 45Hrs

## **TEXT BOOKS:**

- 1. Anderson, J. D., "Computational Fluid Dynamics: The Basics with Applications", McGraw-Hill, 1995.
- 2. Fletcher, C. A. J., "Computational Techniques for Fluid Dynamics", Springer Verlag, 1997.
- 3. Versteeg, H.K. and Malalasekera, W., "An Introduction to Computational Fluid Dynamics: The Finite Volume Method", Pearson Education Ltd., 2007.

- 1. Chung T.J Computational Fluid Dynamics Cambridge University Press, 2003.
- 2. Muralidhar, K., and Sundararajan, T., "Computational Fluid Flow and Heat Transfer", arosaPublishing House, New Delhi, 2001.
- 3. Ghoshdastidar, P.S., "Computer Simulation of flow and heat transfer" Tata McGraw Hill Publishing Company Ltd. 1998.
- 4. Subas, V. Patankar "Numerical heat transfer fluid flow", Hemisphere Publishing Corporation, 1980.
- 5. Taylor, C and Hughes, J.B. "Finite Element Programming of the Navier Stock Equation", Pineridge Press Limited, U.K., 1981.

	ect Code:			me : Fro				ineering		Lb/ETL			/S.Lr	P/R	C
EB	CT22E08	B Pre	erequisi	te: Chemi	ical pro	duct des	sign		Ty			3 0/	0	0/0	3
	ure T : Tu				earning H	P: Projec	ct R : Re	esearch (	C: Credit	s T/L/ET	L: Th	neory/	/Lab/En	nbedde	d
	and Lab/ I	nternal I	Evaluatio	on											
OBJE	CTIVE:														
•				understar	d the ch	emical p	oroduct (	design aı	nd availa	ble rene	wable o	energ	y resou	rces.	
	SE OUT												~		
CO1				irse, the st					xperienc	e with a	comme	ercial	CFD p	rogram	
CO2				ntier area											
CO3				test develo					engineeri	ng					
CO4				to ends in			velopme	ent							
CO5				disciplina											
	ing of Cou								1	T	1				
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0	PO11	PO	12
CO1		3	2	-	-	3	-	-	-	2	-		-	3	
CO2		2	3	-	1	-	-	-	-	3	-		1	-	
CO3		1	-	-	-	-	1	-	-	-	2		-	-	
CO4		3	-	-	-	-	2	-	-	2	-		-	-	
CO5		2	-	-	-	-	1	-	1	-	-		-		
COs /	COs / PSOs PSO1				)2	PS	O3	PS	<b>604</b>						
CO1				2		-		-							
CO2		2		1	-			-							
CO3		1		2		3		-							
CO4		3		2		1		-							
CO5		1		2		-		-							
H/M/L	indicates	Streng	th of Co	rrelation	3- Hi	gh, 2- M	Iedium,	1-Low			-	-			
			Se	Social Sciences											
		S	Engineering Sciences	Sc	ø	Program Electives	Se	ary	ent	ect					
		Sciences	cie	ial	Program Core	cti	Electives	Inter Disciplinary	Component	Practical /Project					
Categ	ory	cie	ρυ Ο	300	n (	Ele	leci	cip	dω	<u>P</u>					
			rin	р	raı	ш		)is	ō	cal					
		Basic	ıee	ar	rog	gra	Open	r I	) 	icti					
		B	ıgi	ties	Ъ	Pro	Ō	Inte	Skill	Pra					
			En	ami											
				Humanities an											
1				Ħ											
											+				
						· •									
1															
			1	l		I	l		i .	I .	1				

Subject Code:	<b>Subject Name : Frontiers of Chemical Engineering</b>	T y/ Lb/ETL/IE	L	T/S.Lr	P/R	C
EBCT22E08	Prerequisite: Chemical product design	Ty	3	0/0	0/0	3

#### UNIT I PROCESS INTENSIFICATION

9Hrs

Novel reactor configurations combination of reaction and separation use of different energy fields, lab on a chip.

#### UNIT II CHEMICAL PRODUCT DESIGN

9Hrs

Scope and importance identification of needs and specifications sources of ideas and screening ideas selection of product idea process development for product manufacture specialty chemical manufacture economic aspects.

#### UNIT III RENEWABLE ENERGY

9Hrs

Hydrogen production, Hydrogen economy, Fuel Cell Technology, biofuel cells and bio-hydrogen, solar energy.

#### UNIT IV MATERIALS ENGINEERING

9Hrs

Polymers and composites, ceramics and glasses, colloidal dispersions and nanoparticles, thin films and electronic materials.

## UNIT V BIOENGINEERING

9Hrs

Biomechanics, biotransport and biomaterials, biomolecular and cellular engineering, drug discovery and development.

Total No. of Hours: 45Hrs

## **TEXT BOOKS:**

- 1. Keil, F. J., Modeling of Process Intensification Wiley-VCH Verlag GmbH & Co. KGaA2007
- 2. Cussler, E.l. and Moggridge, G.D., "Chemical product design" Cambridge University Press, Cambridge, 2001
- 3. Hoffmann, P, Tomorrow's energy: hydrogen, fuel cells, and the prospects for a cleaner planet, MIT Press, Sabon, 2002.

#### **REFERENCES:**

1. Mitchell, B.S., An introduction to materials engineering and science for chemical and materials engineers, John Wiley and Sons Inc., New Jersey, 2004

Subject (	Code:	Su	bject Na	ame: Indi	ustrial N		nent	T y/	L/b ETI	L/IE	L	T / SLr	P/R	C
EBCT22				te: Basic				Ty			_	0/0	0/0	3
L : Lecture	e T : Tu	torial S	SLr : Sup	ervised L	earning	P : Proje	ect R : F	Research	C: Cred	lits T/L/	ETL : Tł	neory/Lab/	Embedo	ded
Theory and	d Lab Iı	nternal I	Evaluatio	on										
OBJECT	TIVE:													
• T	o provi	de an o	pportuni	ty to learn	n basic n	nanagem	ent con	cepts es	sential fo	or busine	ess.			
COURS	E OUT	COME	S (COs)	: (3-5)										
CO1	At the	end of	this cour	se, the stu	idents w	ould hav	ve know	ledge o	n the bas	sic mana	gement j	orinciples t	o beco	me
	Manag	gement	(s) profe	ssional.										
CO2	Devel	op attitu	ide for c	ontinuous	learning	2.								
CO3				anagemen			olve the	m						
CO4				and growt					n and sol	ve them	ì			
				with Prog										
COs/POs	S	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	) PO11	PO	12
CO1		3	-	-	-	-	2	-	2	-	-	-	1	
CO2		2	-	-	-	-	2	-	-	-	3	-	-	
CO3		2	-	-	-	2	-	-	2	-	-	-	2	
CO4		2	-	2	-	2	-	-	-	2	2	1	1	
COs / PS	Os		501	PSC	02	PS	O3	PS	SO4					
CO1		3		2		-		-						
CO2		2		1		-		-						
CO3		3		1		-		-						
CO4		2		1		-		-						
H/M/L ii	ndicate	s Stren	gth of C	orrelatio	n 3- H	igh, 2- <b>N</b>	Medium	1,1-Low	•					
				SS										
Categor	у	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				
						√								

Subject Code: EBCT22E09	Subject Name: Industrial Management	T y/ L/b ETL/IE	L	T/SLr	P/R	C
	<b>Prerequisite: Basic Management</b>	Ty	3	0/0	0/0	3

9Hrs

Management - Definition - Functions - Evolution of Modern Management - Scientific Management Development of Management Thought. Approaches to the study of Management, Forms of Organization - Individual Ownership - Partnership - Joint Stock Companies - Co-operative Enterprises - Public Sector Undertakings, Corporate Frame Work - Share Holders - Board of Directors - Committees - Chief Executive - Trade Union.

#### UNIT II FUNCTIONS OF MANAGEMENT

9Hrs

Planning – Nature and Purpose – Objectives – Strategies – Policies and Planning Premises – Decision Making – Organizing – Nature and Process – Premises – Departmentalization – Line and staff – Decentralization – Organizational culture, Staffing - selection and training – Placement –Performance appraisal – Career Strategy – Organizational Development. Leading – Managing human factor – Leadership – Communication, Controlling - Process of Controlling – Controlling techniques, productivity and operations management – Preventive control, Industrial Safety.

## UNIT III ORGANIZATIONAL BEHAVIOUR

9Hrs

Definition – Organization – Managerial Role and functions – Organizational approaches, Individual behaviour – causes – Environmental Effect – Behavior and Performance, Perception – Organizational Implications. Personality Contributing factors - Dimension – Need Theories – Process Theories – Job Satisfaction, Learning and BehaviorLearning Curves, Work Design and approaches.

## UNIT IV GROUP DYNAMICS

9Hrs

Group Behavior – Groups – Contributing factors – Group Norms, Communication – Process – Barriers to communication – Effective communication, leadership – formal and informal characteristics – Managerial Grid – Leadership styles – Group Decision Making – Leadership Role in Group. Decision, Group Conflicts – Types – Causes – Conflict Resolution – Inter group relations and conflict, Organization centralization and decentralization – Formal and informal – Organizational Structures – Organizational Change and Development – Change Process – Resistance to Change – Culture and Ethics.

#### UNIT V MODERN CONCEPTS

9Hrs

Management by Objectives (MBO), Management by Exception (MBE), Strategic. Management - Planningfor Future direction – SWOT Analysis – Information technology in management – Decisions support system – Business Process. Re-engineering (BPR) – Enterprises Resource Planning (ERP) – Supply Chain Management (SCM) – Activity Based Management (ABM).

Total No. of Hours: 45Hrs

#### **TEXT BOOKS:**

- 1. Herald Knottz and Heinz Weihrich, 'Essentials of Management', TataMcGraw Hill Education Pvt. Ltd., 2010.85
- 2. Stephen P. Robbins, 'Organization Behaviour', Pearson Education Inc., 13 edition, 2010.

- 1. Ties, AF, Stoner and R.Edward Freeman, 'Management' Prentice Hall of India Pvt. Ltd. New Delhi 110 011. 1992
- 2. Joseph J. Massie, 'Essentials of Management' Prentice Hall of India Pvt. Ltd. 1985.
- 3. P.C. Tripathi & P.N. Reddy, 'Principles of Management', TataMcGraw Hill, 2006.

# PROGRAMME ELECTIVE – IV & V

Subject	Code:	Su	bject Na	ame: Dr	ugs And	l		<b>T</b> y/	L/b ETI	L/IE	L	T / SLr	P/R	C
	<b>AT</b> 40	Ph	armace	utical Te	chnolog	y								
EBCT2	2E10	Pro	erequisi	te: Engin	eering	Chemist	try	Ty			3	0/0	0/0	3
: Lectu	re T : Tu	torial S	Lr : Sur	pervised L	earning	P : Proje	ect R : R	lesearch	C: Cred	its T/L	/ETL : T	heory/Lab	/Embedo	ded
	nd Lab/ l				C	3						J		
OBJEC	CTIVE:													
•	To give	the stud	ents an ı	understand	ding of t	he poly	technica	l nature	of engir	neering	and drug	discovery	in the	
	_			involving	_				C	Ü		•		
	SE OUT				,	<u> </u>	<u> </u>							
CO1					dents wo	uld have	e knowle	edge on	the basi	c mana	gement p	rinciples t	o becom	ne
		ement(s)						C				•		
CO2				nism of the	he action	of diffe	erent inc	rganic a	nd orag	anic co	mpound.			
CO3	Knowle	edge on	the meth	nod of pre	naration	of diffe	rent dru	gs.						
CO4	Classifi	ication o	of drug c	ategories	with exa	ımples u	ınder dif	ferent a	gents.					
Mappir	ng of Cou	urse Ou	tcomes	with Pro	gram O	utcomes	s (POs)							
COs/PO		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO1	1 PO	12
CO1		3	-	-	3	-	-	2	-	-	-	-	1	
CO2		2	-	-	-	-	-	3	-	-	-	2	-	
CO3		3	-	-	-	2	-	-	-	-	-	-	2	
CO4		2	-	-	-	-	1	-	-	-	-	2	-	
COs / P	PSOs	PS	O1	PS(	)2	PS	О3	PS	SO4					
CO1		3		2		-		-						
CO2		2		1		-		-						
CO3		3		2		-		-						
CO4		2		1		-		-						
H/M/L	indicate	s Streng	gth of C	orrelatio	n 3- H	igh, 2- I	Medium	, 1-Low	7					
				ses										
			S	enc										
		S	ences	Sciences	4)	ives	es							
		uces			ore	ctiv		ary	ent	ect				
		Basic Scienc	Engineering Sci	300	Program Co	Program Elect	Open Electiv	Inter Disciplinar	Skill Component	Practical /Project				
Catego	ory	S	ring	S pu	rar	_ _ _	田田	cip	duu	1 /P				
		asi	nee	s ar	rog	gra	per	Dis	ပိ	ica				
		B	ııgı	ties	Ь	Pro	0	ter	Cill	act				
			亞	 vani				ln.	SI	$\rm P_1$				
				Humanities and Social										
				H										
		1	1											

Subject Code:	Subject Name: Drugs And Pharmaceutical Technology	T y/ L/b ETL/IE	L	T/SLr	P/R	С
EBCT22E10	Prerequisite: Engineering Chemistry	Ту	3	0/0	0/0	3

9Hrs

Development of drugs and pharamaceutical industry; organic the rapeuticagents uses and economics.

# UNIT II DRUG METABOLISM AND PHARMACO KINETICS &MICROBIOLOGICAL AND ANIMAL PRODUCTS

9Hrs

Drug metabolism; physico chemical principles; pharma kinetics-action of drugson human bodies. Antibioticsgram positive, gram negative and broad spectrumantibiotics; hormones

#### UNIT III IMPORTANT UNIT PROCESSES AND THEIR APPLICATION 9Hrs

Chemical conversion processes; alkylation; carboxylation; condensation and cyclisation; dehydration, esterification, halogenation, oxidation, sulfonation; complex chemical conversions fermentation.

## UNIT IV MANUFACTURING PRINCIPLES & PACKING AND QUALITYCONTROL 9Hrs

Compressed tablets; wet granulation; dry granulation or slugging; advancementin granulation; direct compression, tablet presses formulation; coating pills; capsules sustained action dosage forms; parential solutions, oral liquids; injections; ointments; standard of hygiene and manufacturing practice. Packing; packing techniques; quality control.

#### UNIT V PHARMACEUTICAL PRODUCTS & PHARMACEUTICALANALYSIS 9Hrs

Vitamins; cold remedies; laxatives; analgesics; nonsteroidal contraceptives; external antiseptics; antacids and others. Analytical methods and tests forvarious drugs and pharmaceuticals – spectroscopy, chromatography, fluorimetry, polarimetry, refractometry, pHmetry.

Total No. of Hrs: 45Hrs

#### **TEXT BOOK:**

1. Rawlines, E.A.; "Bentleys Text book of Pharmaceutics", III Edition, Bailliere Tindall, London, 1977.

- 1. Yalkonsky, S.H.; Swarbick. J.; "Drug and Pharamaceutical Sciences", Vol.I, II, III, IV, V, VI and VII, Marcel Dekkar Inc., New York, 1975.
- 2. "Remingtons Pharmaceutical Sciences", Mack Publishing Co., 1975.

Subject Code: EBCT22E11			: Professi					Ty / L ETL/I		L		SLr	P/R	C
	Prereq	uisite: N	Moral scie	ence and	l genera	al Englis	sh	Ty		3	0/0		0/0	3
L : Lecture T : T	utorial	SLr : S	upervised	Learnin	g P : Pro	oject R :	Resear	ch C: Cr	edits			l.		
T/L/ETL : Theor	ry/Lab/E	mbedde	d Theory	and Lab	/ Interna	l evalua	tion							
<b>OBJECTIVE:</b>														
								and Hum	an Values	, to ii	nstill	Moral a	nd	
			ty and to a	appreciat	te the rig	ghts of o	thers.							
COURSE OUT														
			ical and no			ons								
			in conditi											
			in social											
			on moral											
Mapping of Co														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10	PO11	PO	<u>12</u>
CO1	3	-	-	3	-	-	2	-	-	1		-	1	
CO2	2	-	-	-	-	-	3	-	-	-		2	-	
CO3	3	-	-	-	2	-	-	-	2	-		-	2	
CO4	2	-	1	-	-	1	-	-	-	-		2	-	
COs / PSOs	PS	01	PS(	)2	PS	O3	PS	SO4						
CO1	3		2		-		-							
CO2	2		1		2		3							
CO3	3		2		-		-							
CO4	2		1		-		-							
H/M/L indicate	s Streng	th of Co	orrelation	3- Hi	igh, 2- N	<b>Iedium</b>	, 1-Low	7						
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
		<u> </u>	<del></del>		<b>√</b>									

EBCT22E11	PROFESSIONAL ETHICS IN ENGINEERING	3	0/0	0/0	3

#### UNIT I HUMAN VALUES

9Hrs

Morals, values and Ethics – Integrity – Work ethic – Service learning – Civicvirtue – Respect for others – Living peacefully – Caring – Sharing – Honesty – Courage – Valuing time – Cooperation – Commitment – Empathy – Self confidence – Character – Spirituality – Introduction to Yoga and meditation for professional excellence and stress management.

#### UNIT II ENGINEERING ETHICS

9Hrs

- $Senses \ of \ `Engineering \ Ethics'-Variety \ of \ moral \ issues-Types \ of \ inquiry-Moral \ dilemmas-Moral \ Autonomy$
- Kohlberg's theory Gilligan's theory Consensus and Controversy Models of professional roles
- Theories about right action Self interest Customs and Religion Uses of Ethical Theories

#### UNIT III ENGINEERING AS SOCIAL EXPERIMENTATION

9Hrs

Engineering as Experimentation – Engineers as responsible Experimenters –Codes of Ethics – A Balanced Outlook on Law.

#### UNIT IV SAFETY, RESPONSIBILITIES AND RIGHTS

9Hrs

Safety and Risk – Assessment of Safety and Risk – Risk Benefit Analysis and Reducing Risk Respect for Authority – Collective Bargaining – Confidentiality– Conflicts of Interest – Occupational Crime – Professional Rights – Employee Rights – Intellectual Property Rights (IPR) – Discrimination.

## UNIT V GLOBAL ISSUES

9Hrs

Multinational Corporations – Environmental Ethics – Computer Ethics – Weapons Development – Engineers as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – Moral Leadership – Code of Conduct – Corporate Social Responsibility

Total No. of Hours: 45Hrs

#### **TEXT BOOKS:**

- 1. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 2003.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.

- 1. Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, NewJersey, 2004.
- 2. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics Concepts and Cases", Cengage Learning, 2009
- 3. John R Boatright, "Ethics and the Conduct of Business", Pearson Education,New Delhi, 2003
- 4. Edmund G Seebauer and Robert L Barry, "Fundametals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001

Subject				Industri					y / Lb/ E	TL/IE		T / SLr	P/R	C
EBCT2				Moral scie					J		3	0/0	0/0	3
				upervised d Theory			oject R :	Resear	ch C: Cre	edits				
OBJEC	TIVE:													
•	To enabl	le the stu	idents to	create an	awaren	ess on E	ngineeri	ng Ethi	cs and H	uman Val	ues, to	instill Mor	al and	
	Social V	alues an	d Loyalı	ty and to a	apprecia	te the rig	ghts of ot	hers.						
COURS	SE OUT	COMES	S (COs)	: (3-5)										
CO1	To kno	w basic	of Instru	ımentatioı	1									
CO2	To kno	w about	sensors											
CO3	Identif	y and an	alyze an	ethical is	sue in th	e subjec	t matter	under i	nvestigat	ion or in a	a releva	ant field.		
CO4	Identif	y ethical	concern	s in resea	rch and	intellect	ual conte	exts, inc	cluding a	cademic i	ntegrit	y, use and c	itation	of
	sources	s, the obj	ective p	resentatio	n of data	a, and th	e treatm	ent of h	uman su	bjects.				
Mappin	g of Co	urse Ou	tcomes	with Prog	gram O	utcomes	(POs)							
COs/PC	)s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO11	PO	12
CO1	<b>7</b> 5	3	-	-	1	-	-	-	1	-	3	-	-	
CO2		2	-	-	1	-	-	2	-	-	-	-	1	
CO3		3	-	-	-	-	3	-	-	2	-	1	-	
CO4		2	3	1	-	-	2	-	-	-	-	2	-	
COs / P	SOs		01	PSC	)2	PS	03	P	SO4					
CO1		3		2		-		-						
CO2		2		1		-		-			+			
CO3		3		3		1		-						
	indicato		th of Co	rrelation	H_ H		Modiur	n I I	<b>N 1 1 1 1 1 1 1 1 1 1</b>					
11/141/12	marcate	s ou chg	in or Co	of i ciation	11-11	ugu, wi-	Miculai	11, 12-12(	J VV					
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	✓ Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				
						,								

<b>Subject Code:</b>	Subject Name: Industrial	Ty / Lb/ ETL/IE	L	T/SLr	P/R	C
EBCT22E12	Instrumentation					
	Prerequisite: Moral	Ту	3	0/0	0/0	3
	science and general					
	English					

UNIT I 5Hrs

Introduction – Variables, UNITs & standards of measurement, Measurementterms – characteristic. Data Analysis.

UNIT II 12Hrs

Process Variables Measurement–Temperature systems— Thermocouples, Thermo resistive system, Filled-system thermometers, Radiation thermometry, Location of temperature measuring devices in equipments, Pressure system—Mechanical pressure elements Pressure Transducers and Transmitters, Vacuum measurement, Resonant wire pressure Transducer, Flow system—Differential producers, Variable area flow meters, Velocity, vortex, mass, ultrasonic & other flow meters, positive displacement flow meters, Open—channel flow measurements, Force systems, Strain gauges Humidity Moisturesystem, Humidity Measurement, Moisture measurement system, Rheological system, Viscosity measurement, Radiation system, Nuclear radiation instrumentation.

UNIT III 10Hrs

Analytical instrumentation – Analysis instruments, Sample conditioning forprocess analyzers, X-ray Analytical methods, Quadrupole mass spectrometry, Ultra violet Absorption Analysis, Infra red process analyzers, Photometricreaction product analysers Oxygen analyzers, Oxidation – reduction potential lmeasurements, pH measuring systems, Electrical conductivity and Resistivitymeasurements, Thermal conductivity, gas analysis, Combustible, Total hydrocarbon, and CO analyzer, Chromatography.

UNIT IV 9Hrs

Fundamentals of Automatic process control – Control algorithms-Automaticcontrollers – Electronic controllers - Electric controllers (Traditional) – Hydrauliccontrollers – Fluidics - Programmable controllers.

UNIT V 9Hrs

Sensors, Transmitters and control valves - Pressure, Flow, Level, Temperatureand Composition sensors, Transmitters, Pneumatic and electronic controlvalves, Types, Actuator, accessories, Instrumentation symbols and Labels.

**TOTAL No. of Hrs: 45Hrs** 

#### **TEXTBOOKS:**

- 1. Fribance, "Industrial Instrumentation Fundamentals", Mc Graw Hill Co. Inc. New York 1985
- 2. Eckman D.P. "Industrial Instrumentation", Wiley Eastern Ltd., 1989.
- 3. Considine D M and Considine G D "Process Instruments Controls" Handbook 3rd Edition, McGraw Hill Book Co., NY, 1990.
- 4. Schorg D E, Edgar T.F and Mellichamp D.A, "Process Dynamics and Control" John Wiley 1989.

- 1. Ernest Doebelin, Measurement systems, McGraw Hill Book, Co., NY, 1975.
- 2. Astrom K.J., Bjonwittenmark, Computer controlled systems, Prentice- Hallof India, New Delhi 1994.
- 3. Cartis Johnson, Process Control Instrumentation Technology, Prentice-Hallof India, New Delhi 1993.

Subject	ct Code	· Sı	ubiect N	ame : Pr	ocess O	ntimiza	tion	T v/	Lb/ ET	L/IE	L	T/S.Lr	P/R	С	
	T22E13			ite: PCE		Jume		Ty	Lo, Li	LITE	3	0/0	0/0	3	
						ing P · I	Project F		arch C: (	Tredits T		L : Theory			
			al evalua		o Dearn		rojecti			or cares 1	, 2, 21	2.111001	, Luo, Li	no <b>caaca</b>	
OBJEC															
		se the	students	with vari	ous math	nematica	ıl metho	ds for m	umerical	l analysi	s and u	ise of softv	vare too	ls	
				): (3-5)						-					
CO1	Throu	gh this	course,	the studer	nts would	d have l	earnt ab	out the s	systems	of equat	ions, p	robability	statistics	S,	
				grammin						•	•	•			
CO2	Define	e the st	ructure o	f optimiz	ation pro	oblems,	define t	he essen	tial prop	erties of	f optim	ization pro	blems.		
CO3												dels, expla		ding up of	
			models.		,				,						
CO4	Define	e object	tive func	tion: defi	ne soluti	on tecni	iques of	objectiv	e functi	on.					
CO5		efine objective function; define solution tecniques of objective function.  efine linear programming, explain solution tecniques of linear programming													
		Course Outcomes with Program Outcomes (POs)													
COs/PC		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO1	1 PC	)12	
CO1		3	-	-	-	-	2	-	2	-	-	-	1		
CO2		2	-	-	-	-	2	-	-	-	3	-	-		
CO3		2	-	-	-	2	-	-	2	-	-	-	2		
CO4		2	-	2	-	2	-	-	-	2	2	1	1		
CO5		3	-	-	-	-	2	-	2	-	-	-	1		
COs / P	SOs	P	SO1	PS	<b>O2</b>	PS	SO3	PS	SO4						
CO1		2		2		2		-							
CO2		3		1		3		-							
CO3		2		1		2		-							
CO4		3		2		1		-							
CO5		1		2	•	3		-							
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project					
						V									

Subject Code:	Subject Name : Process	T y/ Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCT22E13	Optimization					
	Prerequisite: PCE	Ту	3	0/0	0/0	3

#### UNIT I OPTIMISATION

15Hrs

Introduction; formulation of objective functions; fitting models to data classification of functions; necessary and sufficient conditions for optimum unimodal, multimodal functions; analytical methods lagrange multiplier methods.

#### UNIT II NUMERICAL METHODS

15Hrs

Unimodel functions; newton's quasi newton, secant methods; region elimination methods, polynomial approximation; quadratic and cubic interpolation techniques for optimum. Multimodal functions; direct methods; random, grid. Hooke's nelder and mead methods; Powell's technique; indirect methods gradient and conjugate gradient methods; secant methods.

## UNIT III LINEAR AND NON-LINEAR PROGRAMMING APPLICATIONS

15Hrs

Review on basic concepts of LP formulations; Simplex methods; Integer, quadratic, geometric and dynamic programming. Heat transfer and energy conservation; separation processes; fluid flow systems; reactor design and operation; large scale systems.

**Total No. of Hours: 45Hrs** 

#### TEXT BOOKS:

- 1. Edgar, T.F., Himmelblau, D.M., "Optimisation of Chemical Processes", McGraw-Hill II Edition 2001.
- 2. Reklaitis, G.V., Ravindran, A., Ragsdell, K.M. "Engineering Optimisation", John Wiley, II Edition 2006

- 1. Biles, W.E., Swain, J.J.; "Optimisation and Industrial Experimentation", Inter Science, New York, 1980.
- 2. Seinfeld, J.H.; Lapidus, L; "Process Modelling, Estimation and Identification" Prentice Hall, Englewood Cliffs, New Jersey, 1974.
- 3. Beveridge, C.S.; Schechter, R.S.; "Optimisation: Theory and Practice", McGraw-Hill Book Co., New York, 1970.

## OPEN ELETIVE OFFERED TO OTHER DEPARTMENT STUDENTS

Subject Co		Su	bject Na	ame : Fu	ndamen	tals of	Nanosc	ience	T y/ Lb	/ ETL	L	T/S.Lr	P/R	С
EBCT22O1	E1	Pr	erequisi	te: Nano	materia	ıl			Ty		3	0/0	0/0	3
L : Lecture	T : Tutor	ial	SLr : Su	pervised	Learnin	g P : Pro	oject R :	Resear	rch C:				•	
Credits T/L/	ETL: T	neory	/Lab/En	bedded T	Theory a	nd Lab								
OBJECTIV														
					basis o	f nanom	aterial	science,	, prepara	tion met	hod, ty	pes and ap	plication	1.
COURSE (														
CO1				it the scie										
CO2	Will de	velop	knowle	dge in ch	aracteris	stic nano	omateria	al						
CO3	Will de	mons	trate the	preparat	ion of na	anomate	rials							
CO4			e to characterize major top-down and bottom-up strategies											
CO5	will kn	ow w	w what forces act between atoms and/or molecules when nanoparticles are generated											
Mapping of	f Course	Outo	Outcomes with Program Outcomes (POs)											
COs/POs		<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	PO7	PO8	PO9	PO1	0 PO1	1 PO	12
CO1	1		2	3	2	2	2	2	2	-	-	-	2	
CO2	1		1	2	2	2	2	2	1	1	1	1	1	
CO3	2		2	3	1	3	1	-	-	-	-	1	2	
CO4	3		2	2	2	1	1	1	1	1	1	2	3	
CO5	2		2	1	1	1	1	1	1	1	1	2	2	
COs / PSOs		PSO1		PSO2		PSO3		PSO ₂	4					
CO1	1			2		2		2						
CO2 CO3	3			3		3		2		1				
CO4	1			1		1		1		1				
CO5	2			1		1		2						
		1		1		1								
ategory		Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project	Basic Science			
C							$\sqrt{}$							
Category		basic Science		_	Program Core	Program elective		Inter Disciplinary	Skill Component	Practical /Project	Basic Science			

Subject Code: EBCT22OE1	Subject Name : Fundamentals of Nanoscience	T y/ Lb/ ETL	L	T/S.Lr	P/R	С
	Prerequisite: Nanomaterial	Ty	3	0/0	0/0	3

9Hrs

Nanoscale Science and Technology- Implications for Physics, Chemistry, Biology and Engineering-Classifications of nanostructured materials- nanoparticles- quantum dots, nanowires-ultra-thinfilms-multilayered materials. Length Scales involved and effect on properties: Mechanical, Electronic, Optical, Magnetic and Thermal properties. Introduction to properties and motivation for study (qualitative only).

#### UNIT II GENERAL METHODS OF PREPARATION

9Hrs

Bottom-up Synthesis-Top-down Approach: Co-Precipitation, Ultrasonication, Mechanical Milling, Colloidal routes, Self-assembly, Vapour phase deposition, MOCVD, Sputtering, Evaporation, Molecular Beam Epitaxy, Atomic Layer Epitaxy, MOMBE.

## UNIT III NANOMATERIALS

9Hrs

Nanoforms of Carbon - Buckminster fullerene- graphene and carbon nanotube, Single wall carbon Nanotubes (SWCNT) and Multi wall carbon nanotubes (MWCNT)- methods of synthesis(arc-growth, laser ablation, CVD routes, Plasma CVD), structure-property Relationships applications- Nanometal oxides-ZnO, TiO2, MgO, ZrO2, NiO, nanoalumina, CaO, AgTiO2, Ferrites, Nanoclays functionalization and applications-Quantum wires, Quantum dots- preparation, properties and applications.

#### UNIT IV CHARACTERIZATION TECHNIQUES

9Hrs

X- ray diffraction technique, Scanning Electron Microscopy – environmental techniques, Transmission Electron Microscopy including high-resolution imaging, Surface Analysis techniques-AFM, SPM, STM, SNOM, ESCA, SIMSNanoindentation.

#### UNIT V APPLICATIONS

9Hrs

NanoInfoTech: Information storage- nanocomputer, molecular switch, super chip, nanocrystal, Nanobiotechlogy: nanoprobes in medical diagnostics and biotechnology, Nano medicines, Targetted drug delivery, Bioimaging – Microelectro Mechanical Systems (MEMS), Nano Electro Mechanical Systems (NEMS)- Nanosensors, nano crystalline silver for bacterial inhibition, Nanoparticles for sunbarrier products - In Photostat, printing, solar cell, battery.

#### **Total No. of Hours: 45Hrs**

#### **TEXT BOOKS:**

- 2. A.S. Edelstein and R.C. Cammearata, eds., "Nanomaterials: Synthesis, Properties and Applications", Institute of Physics Publishing, Bristol and Philadelphia, 1996.
- 3. N John Dinardo, "Nanoscale charecterisation of surfaces & Interfaces", 2nd edition, Weinheim Cambridge, Wiley-VCH, 2000

- 1.G Timp (Editor), "Nanotechnology", AIP press/Springer, 1999.
- 2. Akhlesh Lakhtakia (Editor), "The Hand Book of NanoTechnology, Nanometer Structure,
- 3. Theory, Modeling and Simulations". Prentice-Hall of India (P) Ltd, New Delhi, 2007.

Subject Code:	Subjec	t Name:	Electroc	hemica	l Engine	eering	Ту	/ Lb/ E	TL/IE	L	T/SLr	P/R	C
EBCT22OE2	Prereq	uisite: N	Moral science and general English					Ty			0/0	0/0	3
L : Lecture T : T T/L/ETL : Theor						oject R :	Researc	ch C: Cre	edits	<u>                                     </u>			<u> </u>
<b>OBJECTIVE:</b>													
	•			roductio	n, storag	ge, distril	oution a	nd utiliza	ation of elec	ctroche	mical ene	ergy and	l the
associate COURSE OUT													
							tand the	concept	of current	distribu	ıttion		
			ochemical	•									
			ation of e										
CO4 Student Mapping of Cou			nd the soc				ncai eng	gineering	5				
	iiise Ou	tcomes	with i i og	çı am O	utcomes	(1 0s)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	) PO11	PO	12
CO1	3	-	-	1	-	2	-	-	-	-	-	1	
CO2	2	2	-	2	-	-	-	-	-	3	- 2	-	
CO3 CO4	3		-	-	-	-	2	-	2	-	3	1	
COs / PSOs		01	PSO	) - () 2		603	- P:	SO4	4	-	-	1	
CO1	3	.01	2	<u> </u>	-		-	304					
CO2	2		1		-		-						
CO3	2		1		-		-						
CO4	3		2		-		-						
H/M/L indicate	s Streng	gth of Co	orrelation	1 3- H	igh, 2- N	Aedium,	1-Low						
			Sciences										
Category	Basic Sciences	ring Sciences	al	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				
	Basi	Engineering Sc	Humanities and Soci	Prog	Progra	Oper	Inter I	Skill	Practi				
						<b>V</b>							

	Subject Code: EBCT22OE2	Subject Name: Electrochemical Engineering	Ty / Lb/ ETL/IE	L	T/SLr	P/R	С
		Prerequisite: Moral science and	Ty	3	0/0	0/0	3
۱		general English					

UNIT I 9Hrs

Review basics of electrochemistry: Faraday's law -Nernst potential -Galvanic cells - Polarography, The electrical double layer: It's role in electrochemical processes -Electro capillary curve -Helmoltz layer - Guoy -Steven's layer

-fields at the interface.

UNIT II 9Hrs

Mass transfer in electrochemical systems: diffusion controlled electrochemical reaction —the importance of convention and the concept of limiting current. Over potential, primary-secondary current distribution —rotating disc electrode.

UNIT III 9Hrs

Introduction to corrosion, series, corrosion theories derivation of potentialcurrent relations of activities controlled and diffusion controlled corrosion process. Potential-pH diagram, Forms of corrosion-definition, factors and control methods of various forms of corrosion-corrosion control measures industrial boiler water corrosion control –protective coatings –Vapor phase inhibitors –cathodic protection, sacrificial anodes

-Paint removers.

UNIT IV 9Hrs

Electro deposition –electro refining –electroforming –electro polishing –anodizing –Selective solar coatings, Primary and secondary batteries –types of batteries, Fuel cells.

UNIT V 9Hrs

Electrodes used in different electrochemical industries: Metals-Graphite –Lead dioxide –Titanium substrate insoluble electrodes –Iron oxide –semi conducting type etc. Metal finishing-cell design. types of electrochemical reactors, batch cell, fluidized bed electrochemical reactor, filter press cell, Swiss roll cell, plug flow cell, design equation, figures of merits of different type of electrochemical reactors.

## **Total No. of Hours: 45Hrs**

#### **TEXTBOOKS:**

- 1. Eckenfelder, W. W, Jr. "Industrial Water Pollution Control" McGraw-Hill: New York, 1966.
- 2. P. L. Ballaney, "Thermal Engineering", Khanna Publisher New Delhi, 1986.
- 3. Perry R. H. Green D. W. "Perry's chemical Engineer's Handbook", McGraw Hill, New York, 2007.

#### REFERENCES:

1. P. N. Ananthanarayan, "Basic Refrigeration & Air conditioning", Tata McGraw Hill, New Delhi, 2007.

· ·	t Code:	Subjec System		: Alternat	ive Fuel	ls And E	Ty/	Lb/ ETL	L	T/SLr	P/R	С		
EBCT	22OE3	Prereq	uisite: N	Moral scie	ence and	l genera	sh	Ty		3	0/0	0/0	3	
T T			ar a	. 1	· ·	D D		D		11.				<u> </u>
				upervised		g P : Pro	oject R :	Researc	h C: Cre	dits				
	CTIVE:	y/Lab/E	mbeade	d Theory	and Lab									
ODJE		z a <b>b</b> out ti	he tynes	of alterna	tive fuel	s and en	erov soi	urces for	IC engir	nes				
	SE OUT				tive ruei	s and on	101 Ey 301		Te eligii	103.				
CO1	On con	npletion	of the co	ourse, the	student	will und	erstand	the vario	ous alterr	native fuels	avail	able, its pr	opertie	s.
	perform	mance characteristics, combustion characteristics, emission characteristics, engine modifications required												
CO2	etc., To know	ow making color as fuel												
CO3	To knov	o know making vegetable oil as fuel												
CO4				ng hydrog		and CL	naines							
						and CI t	ngmes							
CO5	Emissio	n and Co	ombustic	on of bioga	as									
				with Prog										
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO ₁₀	PO11		<u>12</u>
CO1		1	2	3	2	2	2	2	2		-	-	2	
CO2		1	1	2	2	2	2	2	1		1	1	1	
CO3		3	2 2	3 2	2	3	1	1	1		1	1 2	3	
CO5		2	2	1	1	1	1	1	1		$\frac{1}{1}$	2	2	
COs/I	PSOs	PSO1		PSO2	1	PSO3	1	PSO4	1	1		2		
CO1	1005	1		2		2		2						
CO2		2		2		3		2						
CO3		3		3		3		2						
CO4		1		1		1		1						
CO5		2		1		1		2						
H/M/L	indicate	s Streng	th of Co	orrelation	3- Hi	gh, 2- N	<b>Iedium</b>	, 1-Low		<u> </u>	1	I I		
Category		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				
							<b>√</b>							

Subject Code: EBCT22OE3	Subject Name: Alternative Fuels And EnergySystems	Ty / Lb/ ETL	L	T/SLr	P/R	С
EBC122GE3	Prerequisite: Moral science and general English	Ту	3	0/0	0/0	3

#### **UNIT I: ALCOHOLS AS FUELS**

9Hrs

Introduction to alternative fuels. – Need for alternative fuels – Availability of different alternative fuels for SI and CI engines. Alcohols as fuels. Production methods of alcohols. Properties of alcohols as fuels. Methods of using alcohols in CI and SI engines. Blending, dual fuel operation, surface ignition and oxygenated additives. Performance emission and combustion characteristics in CI and SI engines.

## **UNIT II: VEGETABLE OILS AS FUELS**

9Hrs

Various vegetable oils and their important properties. Different methods of using vegetable oils engines – Blending, preheating Transesterification and emulsification of Vegetable oils – Performance in engines – Performance, Emission and Combustion Characteristics in diesel engines.

#### **UNIT III: HYDROGEN AS ENGINE FUEL**

9Hrs

Production methods of hydrogen. Combustive properties of hydrogen. Problems associated with hydrogen as fuel and solutions. Different methods of using hydrogen in SI and CI engines. Performance, emission and combustion analysis in engines. Hydrogen storage – safety aspects of hydrogen.

## UNIT IV: BIOGAS, NATURAL GAS AND LPG AS FUELS

9Hrs

Production methods of Biogas, Natural gas and LPG. Properties studies. CO2 and H2S scrubbing in Biogas., Modification required to use in SI and CI Engines- Performance and emission characteristics of Biogas, NG and LPG in SI and CI engines.

#### UNIT V: ELECTRIC, HYBRID AND FUEL CELL VEHICLES

9Hrs

Layout of Electric vehicle and Hybrid vehicles – Advantages and drawbacks of electric and hybrid vehicles. System components, Electronic control system – Different configurations of Hybrid vehicles. Power split device. High energy and power density batteries – Basics of Fuel cell vehicles.

Total No. of Hours:45Hrs

#### **TEXT BOOK:**

1. Ayhan Demirbas, 'Biodiesel A Realistic Fuel Alternative for Diesel Engines', Springer-Verlag London Limited 2008.

- 1. Gerhard Knothe, Jon Van Gerpen, Jargon Krahl, The Biodiesel Handbook, AOCS Press Champaign, Illinois 2005.
- 2. Richard L Bechtold P.E., Alternative Fuels Guide book, Society of Automotive Engineers, 1997 ISBN 0-76-80-0052-1.
- 3. Transactions of SAE on Biofuels (Alcohols, vegetable oils, CNG, LPG, Hydrogen, Biogas etc.).
- 4. Science direct Journals (Biomass & Bio energy, Fuels, Energy, Energy conversion Management, Hydrogen Energy, etc.) on biofuels.
- 5. Devaradjane. Dr. G., Kumaresan. Dr. M., "Automobile Engineering", AMK Publishers, 2013.

Subject (	Code:	Subject	t Name:	Petroche	emical U	J <b>nit Pro</b>	cesses	Ty/	Lb/ET	L/IE	L	T/SLr	P/R	С
EBCT22	OE4	Prereq	uisite: N	Aoral scie	nce and	l genera	l Englis	h Ty			3	0/0	0/0	3
L : Lectur	Theory								h C: Cre	dits				
OBJECT • T		n and co	nduct ex	neriment	s and an	alvze an	d intern	et data i	related to	netroche	mical I	Unit proces	ses	
COURSE				•	<i>y</i> <b>4110</b> 411	ur) 20 ur				Petroene		o me proces		
CO1	Student	ts would	he able	to underst	and the	nrincinl	es of var	ious uni	it process	ses in the	netrock	nemical ind	hietry	
			would be able to understand the principles of various unit processes in the petrochemical industry.  ources of petro chemical											
				production										
				ration and										
				nd Esterif										
Mapping COs/POs		ırse Out PO1	PO2	vith Prog PO3	ram Ot PO4	tcomes PO5	(POs) PO6	PO7	PO8	PO9	PO10	PO11	PO	12
COS/POS	•	1	2	3	2	2	2	2	2	109	1010	, FOII	2	14
CO2		1	1	2	2	2	2	2	1	1	1	1	1	
CO3		2	2	3	1	3	1	-	-	-	-	1	2	
CO4		3	2	2	2	1	1	1	1	1	1	2	3	
CO5	0	2	2	1	1	1	1	1	1	1	1	2	2	
COs/PS CO1	Os	PSO1		PSO2		PSO3		PSO4						
CO2		2		2		3		2						
CO3		3		3		3		2						
CO4		1		1		1		1						
CO5		2		1		1		2						
H/M/L in	dicates	s Streng	th of Co	orrelation	3- Hi	igh, 2- N	Iedium,	1-Low						
Category	y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				
							√							

<b>Subject Code:</b>	Subject Name: Petrochemical	Ty / Lb/ ETL/IE	L	T/SLr	P/R	C
	Unit Processes					
EBCT22OE4	Prerequisite: Moral science and	Ту	3	0/0	0/0	3
	general English					

#### UNIT I FEED STOCK AND SOURCE OF PETROCHEMICALS

9Hrs

Overview of Petrochemical Industry – The key growth area of India, Economics – Feed stock selections for Petrochemicals – Steam cracking of Gas and Naphtha to produce Olefins, Dioletis and Production of Acetylene – Cracker product separation and BTX separation.

#### UNIT II SYNTHESIS GAS PRODUCTION

9Hrs

Steam reforming of Natural gas – Naphtha and Heavy distillate to produce Hydrogen and Synthesis gas – Production of Methanol – Oxo process.

#### UNIT III UNIT PROCESSES I

9Hrs

Fundamental and Technological principled involved in Alkylation – Oxidation – Nitration and Hydrolysis.

## UNIT IV UNIT PROCESSES II 9Hrs

Fundamental and Technological principled involved in Sulphonation, Sulfation and Isomerisation.

## UNIT V UNIT PROCESSES III

9Hrs

Fundamental and Technological principles involved in Halogenation and Esterification

Total No. of Hours:45Hrs

#### **TEXT BOOKS:**

- 1. Bhaskara Rao, B.K., "A Text on Petrochemicals", Khanna Publishers, 2000.
- 2. Sukumar Maiti, "Indroduction to Petrochemicals", 2nd Edition, Oxford and IBH Publishers, 2002.

- 1. Margaret Wells, "Handbook of Petrochemicals and Processes", 2nd Edition, Ash GatePublishing Limited, 2002.
- 2. Sami Matar, and Lewis F. Hatch., "Chemistry of Petrochemical Processes", 2nd Edition, Gulf Publishing Company, 2000.
- 3. Dryden, C.E., "Outlines of Chemical Technology", 2nd Edition, Affiliated East-West Press, 1993

Subject	Code:	•	ect Nar		ciples	of Desa	linatio		Ty / Ll ETL/I		L	T / SLr	P/ R	С
EBCT2	2OE5		quisite	e: Mora	l scien	ce and	gener		Ту	<u> </u>	3		0/0	3
L : Lectu	ıre T :	Tutoria	ıl SL	r : Supe	rvised	Learni	ng P :	Projec	t R : Re	search C	: Cre	dits T/L/F	ETL:	
Theory/I	Lab/En	nbedde	dTheo	ry and L	ab/ Int	ernal E	Evalua	tion						
				he techr	niques a	and tec	hnolog	gies of	desalin	ation, Co	rrela	te the cor	e	
curriculu									0					
						f desal	linatio	n syste	m for a	given lo	cation	n and pur	pose.	
COURS						1.6 1	1'	· ·						
CO1			stand the relevance and need for desalination											
CO ₂			he science behind desalination n the thermal system behind the desalination											
CO4				challeng										
CO5									ıtal asp	ects of de	esclin	ation		
Mappin														
COs/PO		PO1						PO7		PO9	PO 0	1 PO11	PO	12
CO1		3	-	-	1	1	-	2	-	-	-	-	-	
CO2		1	-	-	-	1	2	1	-	-	-	-	-	
CO3		2	-		-	-	1	1	-	-	1	-	-	
CO4		-	-	2	-	-	-	-	-	1	-	-	-	
CO5		-	-	-	-	1	-	-	-	1	-	-	-	
COs / P	SOs		SO1		SO2		SO3		<b>PSO4</b>					
CO1		1		2		2		2						
CO2		2		2		3		2						
CO3		3		3		3		2						
CO4		2		1		1		2						
CO5			- 17		1 4		TT: 1		7.	4 7				
H/M/L i	indicat	es Stre	ength o	of Corre	elation	3-	High	, 2- Mo	edium,	1-Low	Π			
Catego	ry	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				
							√							

<b>Subject Code:</b>	Subject Name: Principles of Desalination	Ty/Lb/	L	T /	P/R	C
	Technologies	ETL/IE		SLr		
EBCT22OE5	Prerequisite: Moral science and general English	Ty	3	0/0	0/0	3

## UNIT I: INTRODUCTION 9Hrs

Water Scenario around the world and India – need and relevance of desalination - water sources for desalination – typical seawater composition – brackish water compositional changes- contaminants: anthropogenic and geogenic- drinking water standards – WHO and Indian Standards – Mineral Water standards (indian). Desalination – meaning and description – relation to natural components of desalination - general descriptionminimum energy requirement – review of fundamentals of physical chemistry aspects relevant to desalination, solution properties – estimating the minimum energy requirement - based concept of de-mixing – exergy - estimation from colligative properties – Performance assessment parameters for desalination for thermal and membrane. Different types of Desalination techniques basic resources required for desalination – energy options – relative characteristics of different types of energy options.

## **UNIT II: MEMBRANE DESALINATION**

9Hrs

General features of Pressure Driven Membrane Processes – classification –Micro-filtration(MF) Ultrafiltration (UF), Nano-Filtration (NF) – pore-size – performance relationship. Pretreatment System – Need and relevance – different unit operations including membrane pretreatment (UF) – scaling calculations – dosing systems – treated water quality monitoring – SDI concept. Reverse Osmosis – basic principle – characteristics of membranes used – Nano-filtration – basic principle – comparative features of NF and RO – concentration polarization – transport mechanism and equations (no derivation required)-energy recovery. Performance characteristics of Reverse Osmosis and Nano-filtration – solute rejection recovery- water flux – relationship amongst them –effect of temperature – performance of lab experiments – interpretation of lab data.- application of RO and NF for desalination.

## **UNIT III: THERMAL DESALINATION**

9Hrs

Basic Components of thermal Desalination – Heat Source – Sensible heat vs latent heat for use in desalination – features of isothermal and adiabatic processes. Thermodynamic properties – pressure vs temperature for steam, change of latent, Cp and BPE with temperature. – corrosion of materials and normal material of construction.Description of Flashing and Boiling: single effect evaporation and flashing – Need for multiple effects / stages – accessories for thermal desalination – ejectors – demisters - vacuum systems – pretreatment systems – Pumps. Principles of MSF/ MED: MED with TVC and MVC: Basic design considerations for thermal systems – operational features.

## UNIT IV:NON CONVENTIONAL DESALINATION SYSTEMS

9Hrs

Membrane based Systems: Electrodialysis, Membrane. Distillation, Forward Osmosis.- Basic Principles – performance characteristics – Energy requirements – Challenges. Low temperature thermal desalination including ocean thermal energy and waste heat – Solar desalination including solar stills, solar thermal and solar photovoltaic– limitations and advantages. Hybrid Desalination systems, combined power and water dual purpose plants – examples of working desalination plants.

UNIT V: SOCIETAL, COMMERCIAL, ECONOMICS AND ENVIRONMENTAL ASPECTS

Selection of Desalination System – considerations based on capacity – local resources (including power, water etc.)— ultimate use— scale up — brackish water systems — considerations for societal cause / industrial water recycle. Economic Aspects of esalination — water cost calculation— capital cost/operating costs — feasibility analysis— Environmental issues —challenges — spent membrane, disposal- discharge concentrated stream — use of concentrate stream — recovery of values.

Total No. of Hours:45Hrs

#### **REFERENCE BOOKS:**

1 Fundamentals of Salt Water Desalination: Hisham T. El-Dessouky and Hisham M. Ettouney, ISBN:978-0-444-50810-2 Elsevier (2009)2.A Desalination Primer: Introductory Book for Students and Newcomers to Desalination: K.S. Spiegler and Y.M. El-Sayed, ISBN 086689 034 3,

Subjec	t Code	: Su	bject Na	ame : Pip	ing Desi	gn Eng	gineerin	g T	y/ Lb/ E	TL/IE	L	T/S.Lr	P/R	C
EBCT	220E6	Pr	erequisi	ite: Nil				Ty	7		3	0/0	0/0	3
L : Lectur	- _Р Т · Т	Intorial	SI r · ·	Supervice	d Learni	nσ D · D	Project E	P · Resor	arch C · C	redita T	   	T ·		
Theory/La				-		-	-		archi C. C	nouns 1	/ <b>L</b> / <b>L</b> 1	<b>L</b> .		
			Theory a			vaiuati	.011							
OBJECT		, nogitio	n of the	Chief Dir	ina Enai	noor in	o roput	ad anair	naarina f	irm who	ra tha (	sound tooks	vical	
												sound techi pace throu		red
COS		c and p	iowess i	ii iiistaiiat	ion or pr	ping ca	ппстрп	ii caccui	ing proj	ccis ai a	Taster	pace unou	gii icaac	cu
COURSI		COME	S (COs	):(3-5)										
CO1	To u	nderstar	ding ba	sic of pipi	ng engin	eering								
CO2				g enginee										
CO3	Resp	onsibili	ty of pip	ing requi	rement a	nd meth	nodolog	у						
CO4	Lear	n the cal	culation	in used i	n piping									
CO5				f piping n										
Mapping									DOO	DOA	DO1	0 DO1	1 DA	112
COs/POs CO1	}	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1			12
CO2		2	-	2	2	-	-	3 2	-	2	3	2	1	
CO2		2	-	-	-	1	_	2	-	-	-	-	-	
CO4		3	-	_	_	-	_	-	2	_	-		1	
CO5		2	-	_	2	-	-	2	-	-	3	2	1	
COs / PS	Os	P	SO1	PSC	)2	P	SO3	P	SO4					
CO1		2		2		2		-						
CO2		3		1		3		-						
CO3		1		2		2		-						
CO4		3		2		1		1						
CO5		-		-		-		2						
			Ş	la la										
		S	nce	Social	0)	tives	Š	nary	nent	ç				
		nces	Engineering Sciences		Program Core	ctiv	ives		one	Practical /Project				
		Basic Scien	$^{\circ}$	ities and Sciences	n C	Program Elec	Open Electi	Inter Discipli	Skill Compo	<u>P</u> 1				
		C S	rin	ies	grai	E	ı E	Dis	$C_{\overline{O}}$	cal				
	Σ.	asi	nee	anit S	rog	gra	реі	er ]	=======================================	acti				
	go	В	ngi	Humanities and Sciences	<u> </u>	Prc	0	Int	Š	Pr				
,	Category		田	H,										
	)													
							,							
							$\sqrt{}$							

Subject Code: EBCT22OE6	Subject Name : Piping Design Engineering	T y/ Lb/ ETL/IE	L	T/S.Lr	P/R	С
	Prerequisite: Nil	Ty	3	0/0	0/0	3

### UNIT I INTRODUCTION TO PIPING ENGINEERING

9Hrs

Fluid flow, types of fluids and examples, different pipe fittings. Friction factor, pressure drop for flow Newtonian and non-Newtonian fluids, pipe sizing, economic velocity. Pipe line networks and their analysis for flow in branches, restriction orifice sizing. Pressure drop calculations for non-Newtonian fluids. two phase flow, types of two phase flow, two phase flow as encountered in piping for steam, distillation column, pressure drop, vibrations in two phase flow.

### UNIT II MATERIALS FOR PIPING

9Hrs

Selection of material for piping, desirable properties of piping materials, materials for various temperature and pressure conditions, materials for corrosion resistance. Common ASTM and IS specifications for: Seamless / ERW pipes, pipe fittings, flanges, and fasteners, materials for valves. Gaskets: Functions and properties, types of gaskets and their selection.

#### UNIT III CONTROL & SAFETY IN PIPING

9Hrs

Types of valves, control valves, safety valves, constructional features, criteria for selection. Piping components, pressure relieving devices, constructional features, selection criteria and application, safety features. Calculations for line sizing, steam traps, P.R.V. & condensive systems.

## UNIT IV PIPING SYSTEM DESIGN

9Hrs

Design principles, calculation of pipe diameter, thickness, important system characteristics and design principles related to steam flow at high and low pressures. Design principles and line sizing for vacuum pipelines, slurry pipelines, surge drums and flare stacks, vacuum devices including ejector system. Considerations governing pump selection, analysis of system and pump characteristics in connection with series, parallel flow, and minimum flow and equalizing lines, NPSH, allowable nozzle loads in various codes. Design principles and line sizing of pneumatic conveying of solids, components of conveying systems, dust and fume extraction systems principles.

## UNIT V INSULATION AND COSTING OF PIPING

9Hrs

Purposes of thermal insulation, principles of conductive and convective heat transfer to the extent of application to heat loss / gain through bare pipe surfaces. Critical thickness of insulation, estimating thickness of insulation, optimum thickness of insulation. Insulation for hot and cold materials and their important properties, insulation material selection criteria, typical insulation specification – hot and cold materials. Introduction to P & I Diagrams, Process flow diagrams, standard symbols and notations. Introduction to various facilities required guidelines for Plot Plan / Plant Layout. Introduction to equipment layout, piping layout, piping isometrics and bill of material. Typical piping system layout considerations for following systems: (i) Distillation columns and heat exchangers, (ii) Reactors, (iii) Pipe racks, (iv) Storage tanks, (v) Pumps

### Total No. of Hours: 45Hrs

## REFERENCE BOOKS:

- 1. Piping Design Handbook by John J. Mcketta, by Marcel Dekker, Inc, New York.
- 2. Process plant layout and piping design by Ed Bausbacher & Roger Hunt (PTK Prentice Hall Publication)
- 3. Piping Handbook, Edited by Mohinder Nayyar, McGraw-Hill Education
- 4. Pipe Drafting and Design by Roy A Parisher & Robert A. Rhea. ASME Codes 31

Subject		Subject Name : E-Waste Management	T y/ Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCT2	2OE7	Prerequisite: Nil	Ту	3	0/0	0/0	3
L : Lecture '	T : Tutor	rial SLr : Supervised Learning P : Project R	: Research C: Credits T	/L/ET	L: Theory	//Lab/Emb	edded
Theory and	Lab/ Inte	ernal Evaluation			·		
OBJECTI	IVE:						
• To	secure p	osition of the Chief Piping Engineer in a	reputed engineering first	m wh	ere the so	und techni	cal
experience	and pro	owess in installation of piping can help in	executing projects at a	faste	r pace thro	ough reduc	ed
costs.	-				-	-	
COURSE	OUTC	OMES (COs) : (3-5)					
CO1	To learn	global environment content and concarn					
CO2	To merg	ge hazardous waste					
CO3	To merg	ge and waste by volume reduction and reuse					
CO4	To knov	v industries and public responsibility					

CO4				and publi	•	•							
Mapping													
COs/POs	8	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		2	3	-	1	-	-	3	-	-	3	2	-
CO2		2	3	-	2	-	-	2	-	-	3	3	1
CO3		2	3	1	-	-	-	-	-	2	-	-	2
CO4		3	-		-	-	-	-	-	2	-	2	-
CO5		2	-	2	-	2	-	1	-	-	-	1	-
COs/PS	Os	P	SO1	PS	O2	PS	SO3	P	SO4				
CO1		2		2		2		-					
CO2		3		1		3		-					
CO3		2		2		1		-					
CO4		3		2		1		-					
CO5		2		3		1		-					
	Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project			

Subject Code: EBCT22OE7	Subject Name : E-Waste Management	T y/ Lb/ ETL/IE	L	T/S.Lr	P/ R	С
EBC122GE7	Prerequisite: Nil	Ty	3	0/0	0/0	3

## UNITI INTRODUCTION

6Hrs

Composition – e-waste generation in global context – growth of electrical and electronic industry- Environmental concerns.- Effects on Environment and Human Health.

#### UNIT II THE BASEL CONVENTION

12Hrs

Compliance and implementation- Scheme to control the movement of hazardous waste - Technical assistance offered by the Convention -Other important highlights of the Basel Convention - Waste Electrical and Electronic Equipment (WEEE)- Obligations of the producer under the WEEE.

### UNIT III MANAGEMENT E-WASTE

9Hrs

Hazardous waste isolation- Guidelines for environmentally sound management- compliance and implementation – inventory management- reduction- process modification- volume reduction- recovery and reuse- Concerns/ Challenges for e-waste management

### UNIT IV RECYCLING E-WASTE

12Hrs

Global trade in hazardous waste - Rising illegal e-waste exports - Main factors in global waste trade economy Waste trading as a quintessential part of electronic recycling - Free trade agreements as a means of waste trading Import of hazardous e-waste - Porous ports and lack of checking facilities - Illegal waste imports seized in ports

# UNIT V RECOMMENDED OPTIONS

6Hrs

Creating awareness-Training for the management and minimization of hazardous wastes – sustainable product design –role of government – Responsibility of Industries and public.

Total No. of Hours: 45Hrs

### **REFERENCES:**

- 1. K. Satyamurty, 'Managing e-waste without harming environment', The Hindu, 03 April, 2006.
- 2. Marwaan Macan- Markar, 'Free Trade Cannot Include Toxic Waste', Toxic Trade News, Basel Action Network

(BAN), February, 2007.

3. Freeman M. H. 1989. Standard Handbook of Hazardous Waste Treatment and Disposal, McGraw-Hill Company.

# OPEN LABS OFFERED TO OTHER DEPARTMENT STUDENTS

Subject	t Code:	Subj	ect Nan	ne : Che	mical S	eparatio	on Lab	Ty/	Lb/ETL	/IE	I T/S.I	Lr P/R		С
EBCT2	220L1	Prer	equisite	: Nil				Lb			0/0	3/0		1
L: Lect	ure T : T	utorial	SLr : S	upervise	d Learni	ing P:I	Project	R : Rese	earch C:	Credits				
T/L/ET	L : Theo	ry/Lab/E	Embedde	d Theory	and La	b/ Interi	nal Eval	uation						
OBJEC														
	SE OUT													
CO1	Knowl	edge of v	various c	hemical	enginee	ring sep	aration	processe	es					
CO2	Ability	to selec	t approp	riate sep	aration t	echniqu	e and to	analyse	the sepa	aration fo	or multi-co	mponent	systen	ns
CO3	Ability	to under	rstand th	e repara	tion tech	niques.								
CO4	To lear	n the kn	owledge	about ex	traction	process	<u> </u>							
Mappii	l ng of Co	urse Ou	tcomes	with Pro	gram O	utcome	es (POs)	<u> </u>						
COs/Po		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1		2	3	-	1	_	_	3	-	-	3	2	-	
CO2		2	3	-	2	-	_	2	-	-	3	3	1	
CO3		2	3	1	-	-	_	-	-	2	-	-	2	
CO4		3	-		-	-	-	-	-	2	-	2	-	
COs / F	PSOs	PSO1		PSO2		PSO3		PSO4						
CO1		2		2		2		-						
CO2		3		1		3		-						
CO3		2		2		1		-						
CO4		3		2		1		-						
H/M/L	indicates	Strengtl	n of Cor	relation	3- Hig	h, 2- Me	edium, 1	-Low						
				S.										
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				
										V				

<b>Subject Code:</b>	Subject Name: Chemical Separation Lab	Ty/Lb/ETL/IE	1	T/S.Lr	<b>P</b> / <b>R</b>	C	
EBCT22OL1	Prerequisite: Nil	Lb	(	0/0	3/0	1	1

## LIST OF EXPERIMENTS

- 1. Crystallization
- 2. Filtration
- 3. Decantation
- 4. Sublimation
- 5. Evaporation
- 6. Simple distillation
- 7. Fractional distillation
- 8. Chromatography
- 9. Centrifugation
- 10. Separating funnel
- 11. Magnetic separation
- 12. Precipitation
- 13. Solvent extraction
- 14. Electro deposition
- 15. Oxidation and reduction processes

CO2 To	T: Tu Γheory VE: OUTC  analy ounder ounder ounder	ttorial  //Lab/E  COMES  //Se vari-  rstand t  rstand t	S (COs) ous cher the test i	upervise d Theory : (3-5) mical con n cosmet acterizati	mponent	s presen	t in the	uation	earch C:	0 Credits	0/0	3/0	1
T/L/ETL : 7  OBJECTIV  COURSE O  CO1	VE: OUTC  O analy  O under  O under  O under	COMES  //se variorstand t  rstand t	S (COs) ous cher the test i	: (3-5) mical con n cosmet	mponent	s presen	t in the	uation	earch C:	Credits			
OBJECTIVE COURSE OF COURSE OF CO1  CO2  CO3  TC0  CO4  TC0  Mapping of CO5/POs  CO1  CO2  CO3  CO4  CO5/PSO5	VE: OUTC  o analy o under o under	rstand t	ous cher the test i	: (3-5) mical com n cosmet	mponent tics	s presen	t in the						
COURSE O  CO1 To  CO2 To  CO3 To  CO4 To  Mapping of  CO5/POs  CO1 CO2 CO3 CO4 CO5/PSO6	o analy o under o under o under	rstand trstand t	ous cher he test i he chara	mical con n cosmet acterizati	mponent tics on of in			sample					
CO2 To  CO3 To  CO4 To  Mapping of  CO5/POs  CO1 CO2 CO3 CO4 CO5 / PSO6	o analy o under o under o under	rstand trstand t	ous cher he test i he chara	mical con n cosmet acterizati	mponent tics on of in			sample					
CO2 To  CO3 To  CO4 To  Mapping of  COs/POs  CO1  CO2  CO3  CO4  CO5 / PSO	o under	rstand t	he test i	n cosmet acterizati nical com	tics on of in			sample					
CO3 To  CO4 To  Mapping of  COs/POs  CO1 CO2 CO3 CO4 COs / PSOs	o under	rstand t	he chara	acterizati	on of in	organic							
COs/POs  COs/POs  CO1 CO2 CO3 CO4 COs / PSOs	o under	rstand t	he chem	nical com		organic							
Mapping of COs/POs  CO1 CO2 CO3 CO4 COs / PSO	f Cou				ponents		substan	ice					
COs/POs  CO1 CO2 CO3 CO4 COs / PSOs		rse Ou	tcomes		1	in phar	ma sect	ors					
CO1 CO2 CO3 CO4 COs / PSO				with Pro	ogram C	Outcome	s (POs)	)					
CO2 CO3 CO4 COs / PSOs		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO3 CO4 COs/PSOs		2	3	-	1	-	-	3	-	-	3	2	-
COs / PSOs		2	3	-	2	-	-	2	-	-	3	3	1
COs / PSOs		2	3	1	-	-	-	-	-	2	-	-	2
		3	-		-	-	-	-	-	2	-	2	-
CO1	S	PSO1		PSO2		PSO3		PSO4					
		2		2		2		-					
CO2		3		1		3		-					
CO3		2		2		1		-					
CO4		3		2		1		-					
H/M/L indi	icates	Streng	th of Co	orrelatio	on 3- I	ligh, 2-	Mediu	_ m, 1-Lo	W				<u> </u>
Category		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project			

<b>Subject Code:</b>	<b>Subject Name: Chemical Composition</b>	Ty/Lb/ETL/IE	L	T/S.Lr	P/ R	C
	Analysis Lab					
EBCT22OL2	Prerequisite: Nil	Lb	0	0/0	3/0	1
	_					

# LIST OF EXPERIMENT

- 1. Elemental Analysis
- 2. Chemical composition analysis
- 3. Chemical trace analysis
- 4. Inorganic substance analysis
- 5. Contamination detection analysis
- 6. Material testing analysis
- 7. Petrochemical testing
- 8. Polymer and Plastic testing
- 9. Cosmetics testing
- 10. Pharmaceutical testing

Subject		Subj	ect Nan	ne : Alte	rnate F	uel Lab	Ty	//Lb/ET	L/IE	L	T/S.I	r P/R	C
EBCT2	20L3	Prer	equisite	: Nil			Ll	)		0	0/0	3/0	1
	ure T : T			upervise					earch C:	Credits			
T/L/ETI	L : Theo	ry/Lab/E	Embedde	d Theory	y and La	.b/ Intern	nal Eval	uation					
OBJEC	TIVE:	Environ	mental a	ssessme	nt and ed	conomic	conside	eration o	of alterna	ite fuels			
COURS	SE OUT	COME	S (COs)	: (3-5)									
CO1	Broad o	compreh	ension o	of alterna	ate fuel a	and their	produc	tion tecl	hniques				
CO2	To find						1						
CO3	To find	Densit	y										
CO4	To find	Cloud 1	point and	d Pour po	oint								
Mappin	g of Co	urse Ou	tcomes	with Pro	gram C	utcome	es (POs)	)					
COs/PO	)s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		2	3	-	1	-	-	3	-	-	3	2	-
CO2		2	3	-	2	-	-	2	-	-	3	3	1
CO3		2	3	1	-	-	-	-	-	2	-	-	2
CO4		3	-		_	-	-	-	-	2	-	2	-
COs / P	SOs	PSO1	<u> </u>	PSO2	1	PSO3	ı	PSO4					
CO1		2		3		-		1					
CO2		2		3		-		2					
CO3		2		3		1		-					
CO4		3		-				-					
H H/ <b>M</b> /	L indica	tes Stre	ength of	Correla	tion 3	- High,	2- Med	ium, 1-1	Low				
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project			
										\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			

Subject Code:	Subject Name : Alternate Fuel Lab	Ty/Lb/ETL/IE	L	T/S.Lr	P/ R	C
EBCT22OL3	Prerequisite: Nil	Lb	0	0/0	3/0	1

# LIST OF EXPERIMENT

# Determination of

- 1. MFI
- 2. Fire pint
- 3. Flash point
- 4. Cloud point
- 5. Pour point
- 6. Smoke point
- 7. Viscosity
- 8. Rheology
- 9. Stability
- 10. Density
- 11. Specific gravity
- 12. Weathering

<b>Subject Code:</b>		Subject Name : Food Testing Laboratory						Ty/	Lb/ETL	L	T/S.L	r P/R		C
EBCT22OL4		Prerequisite: Nil						Lb		0	0/0	3/0		1
	ture T : T L : Theor					_	Project 1	R : Rese	earch C:	Credits				
OBJE	CTIVE:	Unders	stand fac	tors that	affect v	iability	and pote	ntial of	new food	d produc	t			
COUR	SE OUT													
CO1														
CO2		Analysis the physical and biological properties of food.												
CO3	Analyzing food components form specific particular food sample.													
CO4	Apply principles methodology and applications and technology of food analysis													
CO5	Apply the sampling techniques to food materials having widely divence properties and volumes													
	ng of Cou	ırse Ou	tcomes	with Pro	ogram (	Outcome	es (POs)		•					
COs/PO	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1		3	-	-	-	-	3	-	-	-	-	-	-	
CO2		1	-	-	3	-	1	-	-	-	1	-	-	
CO3		-	-	1	-	-	2	-	-	-	1	-	-	
CO4		-	-	1	1	1	1	-	-	-	-	-	-	
CO5		-	1	-		-	1	1	-	-	-	-		
COs / PSOs		PSO1		PSO2		PSO3		P	PSO4					
CO1	2		3		3			-						
CO2	3		3		3		2							
CO3	O3 2		2		2		1		-					
CO4		3		2		1	1		-					
CO5	05 2			3		1	1 .							
H/M/L	indicates	Strengt	h of Corr	relation	3- Hig	h, 2- Me	edium, 1	-Low		•				

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project		
									$\checkmark$		

Subject Code:	Subject Name : Food Testing Laboratory	Ty/Lb/ETL	L	T/S.Lr	P/ R	С
EBCT22OL4	Prerequisite: Nil	Lb	0	0/0	3/0	1

- 1. Benedict's test for reducing sugars
- 2. Iodine test for starch
- 3. Sudan III test for lipids
- 4. Biuret test for proteins
- 5. Heavy Metals Analysis
- 6. Nutritional Analysis
- 7. Organic Toxins Analysis
- 8. Pesticide and Residue Analysis
- 9. Plate Test Method
- 10. Microbial and Antimicrobial Analysi