

FACULTY OF ENGINEERING AND TECHNOLOGY

OUTCOME BASED EDUCATION

Curriculum and Syllabus

M. TECH. CHEMICAL ENGINEERING REGULATION – 2022 (Part Time) (For students admitted from the Academic Year 2022-23)

1

DEPARTMENT VISION

Generating knowledge and developing technology through quality research in frontier areas of chemical and interdisciplinary field.

DEPARTMENT MISSION

- To provide high quality education experience that will prepare graduated to assure leadership position within chemical and associated industries.
- To attain global recognition in research and train students for meeting the challenging needs of chemical industries and the society.
- Fostering industry academic relationship for mutual benefits and growth.

QUALITY POLICY

We wish to foster a chemical engineering program coupled with research strength to acquire innovation and next generation techniques.

PROGRAM EDUCATIONAL OBJECTIVES

PEOs reflect the career and professional accomplishments of graduates. The PEOs of the M. Tech Chemical Engineering course follows:

PEO 1: Graduates pursue profession in chemical & allied Engineering

PEO 2: Graduates work in diversified team

PEO 3: Graduates will pursue higher education & research

PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex Engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the publichealthandsafety,andthecultural,societal,andenvironmentalconsiderations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
PO5	Modern tool usage: Create, select, and apply appropriate techniques resources and modern Engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multi disciplinary environments.
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage independent and life-long learning in the broadest context of technological change.

Program Outcomes

LIST OF PROGRAM SPECIFIC OUTCOMES (PSOs)

Г

PSO-1: Graduates will apply knowledge in physics, chemistry and biology in the field of transfer processes for effective separation and purification of petrochemicals, pharmaceuticals and health care products.

PSO-2: Graduates will automate and control processes by applying mathematics, process control, instrumentation, simulation and processmodeling.**PSO-3:** Graduates will design equipment for modern science applications.

PEO WITH MISSION STATEMENT

	M1	M2	M3
PEO1	3	2	3
PEO2	3	3	3
PEO3	2	3	3

PEO-PO

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PEO1	3	3	3	3	2	3	3	2	3	2	2	-
PEO2	3	3	2	1	1	1	2	-	-	1	1	2
PEO3	3	3	3	3	1	1	3	2	3	2	3	3

PEO-PSO

	PSO1	PSO2	PSO3
PEO1	2	3	1
PEO2	3	2	1
PEO3	3	1	3

M.Tech – Chemical Engineering (Part Time	e)
Curriculum and Syllabus	
2022 Regulation	

		I SEMESTER						
S.N O	Sub.Code	Title of Subject	Ty/Lb/ ETL/I E	L	Т	Р	C	Categ ory
1	EMMA22009	Statistical And Numerical Methods For Chemical Engineers	TY	3	1/0	0/0	4	BS
2	EMCT22001	Advanced Separation Processes	TY	3	1/0	0/0	4	PC
3	EMCC22001	Research Methodology and IPR	ΤY	3	0/0	0/0	3	ID
4	EMCC22IXX	Audit course – I	IE	2	0/0	0/0	0	ID
5	EMCT22L01	Advanced separation processes Lab	LB	0	0/0	0/4	2	PC
		TOTAL		11	2	4	13	

	II SEMESTER							
S.N	Sub.Code	Title of Subject	Ty/L			Р	С	Ca
U			b/ET		Т			teg
			L/IE					ory
1.	EMCT22002	Advanced Transport phenomena	ΤY	3	1/0	0/0	4	PC
2.	EMCT22EXX	Programme Elective I	ΤY	3	0/0	0/0	3	PE
3.	EMCT22EXX	Programme Elective II	ΤY	3	0/0	0/0	3	PE
4.	EMCC22IXX	Audit Course-II	IE	2	0/0	0/0	0	ID
5.	EMCT22L02	Process Modeling and Simulation Lab	LB	0	0/0	0/4	2	PC
		TOTAL		11	1	4	12	

	III SEMESTER							
S.N O	Sub.Code	Title of Subject	Ty/L b/ET	I	Т	Р	С	Cate gory
			L/IE					
1.	EMCT22003	Advanced Reaction Engineering	ΤY	3	0/0	0/0	3	PC
2.	EMCT22EXX	Programme Elective III	ΤY	3	0/0	0/0	3	PE
3.	EMCT22EXX	Programme Elective IV	ΤY	3	0/0	0/0	3	PE
4.	EMCT22L03	Advanced Chemical Reaction Engineering	LB	0	0/0	0/4	2	PC
		Lab						
		TOTAL		9	0	4	11	

	IV SEMESTER							
S.N O	Sub.Code	Title of Subject	Ty/L b/ET L/IE	L	Т	Р	С	Categ ory
1.	EMCT22004	Transport in porous Media	ΤY	3	0/0	0/0	3	PC
2.	EMCT22L04	Advanced Chemical Engineering Lab	LB	0	0/0	0/4	2	PC
3.	EMCT22EXX	Programme Elective V	ΤY	3	0/0	0/0	3	PE
4.	EMCT22I01	Term paper	IE	0	0/0	0/4	2	PC
		Total		6	0	8	10	

	V SEMESTER							
S.N O	Sub.Code	Title of Subject	Ty/L b/ET L/IE	L	T	Р	С	Categ ory
1.	EMCT22005	Process Plant Design and Flow Sheeting	ТΥ	3	1/0	0/0	4	PC
2.	EMCC22OEX	Open Elective	IE	3	0/0	0/0	3	ID
3.	EMCT22L05	Dissertation Phase – I	LB	0	0/0	0/10	5	Р
		Total		6	0	10	12	

		VI SEMESTER						
S.NO	Sub.Code	Title of Subject	Ty/L b/ET L/IE	Ι	Т	Р	С	Categ ory
1.	EMCT22L06	Dissertation Phase – II	LB	0	0/0	10/10	10	Р
		Total		0	0	20	10	

SEMESTER	CREDITS
Ι	13
II	12
III	11
IV	10
V	12
VI	10
TOTAL	68

		ELECTIVES (THEORY)				
S.N O	Sub. Code	Title of Subjects	L	Т	Р	C
		ELECTIVE -I				
1	EMCT22E01	Chemical Reactor Analysis I	3	0/0	0/0	3
2	EMCT22E02	Process Design and Synthesis	3	0/0	0/0	3
3	EMCT22E03	Fluidization Engineering	3	0/0	0/0	3
		ELECTIVE -II				
4	EMCT22E04	Industrial Pollution Control	3	0/0	0/0	3
5	EMCT22E05	Application of Nanotechnology in	3	0/0	0/0	3
		Chemical Engineering				
6	EMCT22E06	Chemo informatics	3	0/0	0/0	3
		ELECTIVE -III				
7	EMCT22E07	Modern concepts in Catalysis and Surface	3	0/0	0/0	3
		Phenomenon				
8	EMCT22E08	Advanced Downstream Processes	3	0/0	0/0	3
9	EMCT22E09	Computational Fluid Dynamics	3	0/0	0/0	3
10	EMCT22E10	Bioprocess Engineering	3	0/0	0/0	3
		ELECTIVE -IV				
11	EMCT22E11	Micro and Nano fluidics	3	0/0	0/0	3
12	EMCT22E12	Process Integration	3	0/0	0/0	3
13	EMCT22E13	Micro Flow Chemistry and Process	3	0/0	0/0	3
		Technology				
		ELECTIVE -V				
14	EMCT22E14	Design of Experiments and Parameter	3	0/0	0/0	3
		Estimation				
15	EMCT22E15	Computer Aided Design	3	0/0	0/0	3
16	EMCT22E16	Cleaner Production	3	0/0	0/0	3

		AUDIT COURSES				
S.N	Sub. Code	Title of Subjects	L	Т	Р	С
0						
		AUDIT COURSE-I &II				
1.	EMCC22I01	English for Research paper writing	2	0/0	0/0	0
2.	EMCC22I02	Disaster Management	2	0/0	0/0	0
3.	EMCC22I03	Sanskrit For technical Knowledge	2	0/0	0/0	0
4.	EMCC22I04	Value Education	2	0/0	0/0	0
5.	EMCC22I05	Constitution of India	2	0/0	0/0	0
6.	EMCC22I06	Pedagogy studies	2	0/0	0/0	0
7.	EMCC22I07	Stress management by Yoga	2	0/0	0/0	0
8.	EMCC22I08	Personality Development through Life	2	0/0	0/0	0
		Enlightenment Skills.				
9.	EMCC22I09	Research and Publication Ethics	2	0/0	0/0	0

		LIST OF OPEN ELECTIVES				
S. No	SUB. CODE	COURSE TITLE	L	Т	Р	С
1	EMCC22OE1	Business Analytics	3	0/0	0/0	3
2	EMCC22OE2	Industrial Safety	3	0/0	0/0	3
3	EMCC22OE3	Cost Management of Engineering Projects	3	0/0	0/0	3
4	EMCC22OE4	Composite Materials	3	0/0	0/0	3
5	EMCC22OE5	Waste to Energy	3	0/0	0/0	3

Table 1:Credit Distribution Format(sample) Components of Curriculum and Credit distribution for E&T Programmes

Course	Description	No. of			Credit Weight	Contact
Component		Courses	Credits	Total	age (%)	nours
Basic Science	Theory	1	4	4	5.8	60
	Lab					
	ETL					
Engineering Science	Theory					
	Lab					
	ETL					
Humanities and Social Science	Theory	5	18	28	41.2	420
	Lab	5	10			
	ETL					
Program Core	Theory					
	Lab					
	ETL					
Program Electives		5	15	15	22.5	225
Open Elective	Theory	1	3	3	4.4	45
Inter-disciplinary	Theory	3	3	3	4.4	45
	Lab					
	ETL					
Skill Component						
Internship/Project		2	15	15	22.5	300
Others if any						
	TOTAL	22	68	68	100	1095

Table 2:Revision/modification done in syllabus content:

S.No	Course(Subject)	Course (Subject)	Concept/	Concept/topic	% of
	Code	Name	topic if any,	added in the	Revision/
			removed in	new	Modification
			current	curriculum	done
			curriculum		
1.	EMMA22009	Statistical And	Equation in	1&2	95%
		Numerical Methods	process and	dimensional	
		For Chemical	dealings /	random	
		Engineers	Problems	variable/syste	
			using	m in line and	
			appropriation	non – line	
			theory	equation	
2.	EMCT22004	Transport in porous	-	New program	100%
		Media		core added in	
				the curriculum	
				(III Semester)	
3.	EMCT22I01	Term paper	-	New paper	100%
		* *		added	

Table3:

List of New courses/ value added courses//life skills/Electives/interdisciplinary /courses focusing on employability/entrepreneurship/skill development.

S. No	New courses(Subje cts)	Value added courses	Life skill	Electives	Inter Disciplinary	Focus on employability/entrepreneu rship/skill development.
1	EMOL22I01/ Open Elective (NPTEL/SWA YAM/any MOOC, approved by AICTE/UGC)	-	-	Open Elective	-	Employability
2	EMCT22I02/ Summer Internship	Summer Internship	-	-	V	Skill development
3	EMCT22I03/ Research Publication	-	✓	-	✓	Research
4	EMCT22005/ Process Plant Design and Flow Sheeting (Core Subject)	-	✓ -	-	-	Skill development

SEMESTER-I

Subject Code	Subje	Subject Name: STATISTICAL AND						Ty/	L	T/	P/R	С			
EMMA22009	NUM FNC	ERICA	L ME'. S	[HOD	S FOR	CHEM	ICAL	T	Lb/		S.Lr				
	Dreree	misite.	UG leve	al etatic	tice an a	d Nume	rical	1							
	metho	ds		JI Statis			iicai		ΤY	3	1/0	0/0	4		
L : Lecture T :	Tutorial	S.Lr :	Superv	ised Le	arning	P : Proj	ect R :	Resear	ch C: Cı	redits					
Ty/Lb/ETL: 7	heory/La	b/Embe	dded T	heory a	nd Lab										
OBJECTIVE	S :														
The student s	hould be	made	t o:	c	1.		1.		. 10	1	X 7 · 11				
• To int	oduce the	e basic c	concepts	s of one	e dimen	sional a	nd two	dimensi	ional Ra	indom	Variable	s.			
• Havin	g proble	m solvi I thinki	ng abi	ity-sol	ving so	C1a1 189	sues an	d engir	ieering	probl	ems.				
Havin COURSE OF	g critica. TCOME			IIIIOVa	ative sk										
COURSE OC	D1 To be able to understand Functions of a Random variable.														
	To Understand the problems and solve them with correlation and regression analysis														
CO2	J410 Understand the problems and solve them with correlation and regression analysisJ3To be able to understand Estimation, theory														
CO4	To Deriv	Derive and use the numerical technique					eded fo	or the sc	lution o	f a oiv	ven engin	eering			
004	problems	oblems													
CO5	CO5 To Understand and correlate the analytical and numerical methods														
Mapping of C	ourse Oi	itcomes	with P	rograr	n Outco	omes (I	POs)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1) PO 1	1 PC)12		
CO1	PO1 PO2 PO3														
001	2	2	3	1	1	2	2	2	1		3				
CO1 CO2	2 3	3 2	2 1	2 2	3 2	1 2	1 2	2 2	2 3	2 1	1 2		3		
CO2 CO3	$\begin{array}{r} 2\\ 3\\ \hline 3\\ \hline \end{array}$	3 2 3	2 1 1	2 2 2	3 2 2	1 2 3	1 2 1	2 2 1	2 3 2	2 1 2	1 2 2		3 3 2		
CO2 CO3 CO4	$\begin{array}{c} 2\\ \hline 3\\ \hline 3\\ \hline 3\\ \hline 3\\ \hline \end{array}$	3 2 3 2	2 1 1 2	2 2 2 2	3 2 2 1	1 2 3 2	1 2 1 2	2 2 1 2	2 3 2 1	2 1 2 1	1 2 2 2 2		3 3 2 3		
CO2 CO3 CO4 CO5	2 3 3 3 3 3	3 2 3 2 3	2 1 1 2 1	2 2 2 2 2 2	3 2 2 1 1 1	1 2 3 2 1	1 2 1 2 2	2 2 1 2 1 2	2 3 2 1 2	2 1 2 1 2	1 2 2 2 1		3 3 2 3 2 2		
CO2 CO3 CO4 CO5 CO5 / PSOs	$ \begin{array}{c} 2\\ 3\\ 3\\ 3\\ 3\\ \end{array} $	3 2 3 2 3 PSO1	2 1 1 2 1	2 2 2 2 2 2	3 2 1 1 PSO2	1 2 3 2 1	1 2 1 2 2	2 2 1 2 1 PSO3	2 3 2 1 2	2 1 2 1 2	1 2 2 2 1 PSC	04	$\frac{3}{3}$ $\frac{2}{3}$ $\frac{3}{2}$		
CO2 CO3 CO4 CO5 CO5 / PSOs CO1	2 3 3 3 3	3 2 3 2 3 PSO1 3	2 1 2 1	2 2 2 2 2	3 2 1 1 PSO2 3	1 2 3 2 1	1 2 1 2 2	2 2 1 2 1 PSO3 3	2 3 2 1 2	2 1 2 1 2	1 2 2 2 1 PSC 3	04	3 3 2 3 2 2		
CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2	2 3 3 3 3	3 2 3 2 3 PSO1 3 2	2 1 2 1	2 2 2 2 2	3 2 1 1 PSO2 3 3	1 2 3 2 1	1 2 1 2 2	2 2 1 2 1 PSO3 3 3	2 3 2 1 2	2 1 2 1 2	1 2 2 2 1 PSC 3 2 3)4	3 3 2 3 2		
CO2 CO3 CO4 CO5 CO5 / PSOs CO1 CO2 CO3	2 3 3 3 3	3 2 3 2 3 PSO1 3 2 3 3	2 1 1 2 1	2 2 2 2 2	3 2 1 1 PSO2 3 3 3	1 2 3 2 1	1 2 1 2 2	2 2 1 2 1 PSO3 3 3 3	2 3 2 1 2	2 1 2 1 2 2	1 2 2 2 1 PSC 3 2 3)4	3 3 2 3 2		
CO1 CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4	2 3 3 3 3 	3 2 3 2 3 PSO1 3 2 3 3 3	2 1 1 2 1	2 2 2 2 2	3 2 1 1 PSO2 3 3 3 2	1 2 3 2 1	1 2 1 2 2	2 2 1 2 1 PSO3 3 3 3 3 2	2 3 2 1 2	2 1 2 1 2	1 2 2 2 1 PSC 3 3 3 3 3)4	3 3 2 3 2 2		
CO2 CO3 CO4 CO5 CO5 / PSOs CO1 CO2 CO3 CO4 CO5 2/2/1 Indiacto		3 2 3 2 3 PSO1 3 2 3 3 3 3 5			3 2 1 1 PSO2 3 3 3 2 3	1 2 3 2 1		2 2 1 2 1 PSO3 3 3 3 2 2 2	2 3 2 1 2	2 1 2 1 2 2	1 2 2 2 1 PSC 3 3 3 3 3 3 3)4	3 3 2 3 2 2		
CO2 CO3 CO4 CO5 CO5 / PSOs CO1 CO2 CO3 CO4 CO5 3/2/1 Indicate	2 3 3 3 3 3 5 5 5 5 5 5 5 5 7 6	3 2 3 2 3 PSO1 3 2 3 3 3 h Of Ce	2 1 1 2 1	$\frac{2}{2}$ $\frac{2}$	3 2 1 1 PSO2 3 3 3 2 3 High, 2	1 2 3 2 1 2 2- Med	1 2 2 2	2 2 1 2 1 PSO3 3 3 3 3 2 2 2 Low	2 3 2 1 2		1 2 2 2 1 PSC 3 3 3 3 3 3)4	3 3 2 3 2 2		
CO2 CO3 CO4 CO5 CO5 / PSOs CO1 CO2 CO3 CO4 CO5 3/2/1 Indicate	2 3 3 3 Strengt	3232333333333333333333333333333333333333344<	1 1 2 1 2 1 2 1 2 1 Index Social states	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 2 1 1 PSO2 3 3 3 2 2 3 High,	1 2 3 2 1 1 2 2 1 2 2 2 2 1	Inter 1 Disciplinary 1-	2 1 2 1 PSO3 3 3 3 2 Low	Practical / Project		1 2 2 2 1 PSC 3 3 3 3 3 3)4	3 3 2 3 2		

Subject Code EMMA22009	Subject Name: STATISTICAL AND NUMERICAL METHODS FOR CHEMICAL ENGINEERS	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	C
	Prerequisite: UG level statistics and Numerical methods	TY	3	1/0	0/0	4

UNITI ONE DIMENSIONAL RANDOM VARIABLES

Random variables – Probability function – Moments – Moment generating functions and their properties – Binomial, Poisson, Exponential, and normal distributions – Functions of a Random variable.

TWO DIMENSIONAL RANDOM VARIABLES UNITH

Joint distributions – Marginal and conditional distributions – Functions of two dimensional random variables – Correlation - Regression.

UNITIII ESTIMATIONTHEORY

Unbiased estimators – Method of moments – Maximum likelihood estimation – Curve fitting by Principle of least squares.

UNIT IV SYSTEM OFLINEAREQUATIONS

Gauss Elimination method - Gauss-Jordan method - Iterative methods - Gauss-Jacobi method - Gauss-Seidel method - Matrix Inversion by Gauss-Jordan method- Eigen value problem-Power method.

UNIT V NONLINEAREOUATIONS

REFERENCE BOOKS:

Solution of Algebraic and Transcendental equations – Method of false position -Fixed point iteration method (single and multi variables)- Newton-Raphson method (single and multi variables).

- ♦ Richard Johnson A., Miller & Freund's Probability and statistics for Engineers (8th ed), Prentice Hall of India, (2209).
- ✤ Richard Johnson A., Wichern .D.W, Applied Multivariate Statistical Analysis (6th ed), Prentice Hall of India. (2207).
- ◆ Gupta S.C., Kapoor V.K., Fundamentals of Mathematical Statistics, S.Chand & Co.,(2207).
- Veerarajan T., Numerical Methods, Tata McGraw Hill Publishing Co., (2207).
- Sastry S.S., Introductory Methods of Numerical Analysis, Prentice Hall of India, (2212).
- ★ Kandasamy P., Thilagavathy, Gunavathy K., Numerical Methods (Vol.IV), S.Chand & Co., (2208).

12Hrs

12Hrs

12Hrs

Total no. of hrs: 45Hrs

13

12Hrs

12Hrs

Subject	bject Code: Subjec Proces			Name : A	Advanc	ed Sep	oaratio	n	Ty/Lb	/ETL/I	L	T / S.L	r P/ R	. C
EMCT	22001	Pr	ocesses	sito: Me	ace Tra	ncfor			<u>Ľ</u> Tv		3	1/0	0/0	4
			crequi		155 1 1a	115101			Гy		5	1/0	0/0	-
C : Cred	its L :]	Lecture	T : Tu	torial S.I	Lr : Sup	ervised	l Learn	ing P :	Problem	n / Pract	ical l	R : Resea	ırch	
T/L/ETP	P/IE : T	heory/L	.ab/Em	bedded 7	Theory	and Pra	actice/I	nterna	l evalua	tion.				
OBJE	TIVE													
	> To:	familiar	ize stu	dents wit	th vario	us adva	anced a	spects	of sepa	ration pr	oces	ses and th	ne	
	sele	ection of	f separa	ation pro	cesses.			I	1	1				
×	> To	enable s	tudents	s to unde	rstand	the prin	nciples	and pr	ocesses	of adsor	ptior	n, membr	ane	
	sepa	aration a	and chr	omatogr	aphy ar	nd to de	esign a	n absor	rber or a	a membra	ine u	nit to acl	nieve a	
	spee	cified se	eparatio	on.										
>	> To:	introduc	e them	to new	trends u	used in	the sep	aratio	n techno	ologies.				
COUR	SE OU	JTCON	IES (C	(3): (3)	8-5)									
CO1	List si	ituations	where	liquid–lic	uid extr	action n	night be	preferi	ed to dis	stillation.	make	a prelimi	nary sele	ection
	of a se	olvent us	sing gro	up-intera	ction rul	e, Size	simple e	le extraction equipment						
CO2	Ability	to analy	ze and	design ev	evaporation, chromatography and dialysis based separation processes							esses		
CO3	Differe	entiate be	etween	chemisor	ptions a	nd phys	ical ads	orption	, List ste	eps involv	ed in	adsorptio	on of abs	olute,
~~ .	Which	steps m	ay contr	ol the rat	e of ads	orption,	explain	the co	ncept of	breakthro	ugh i	in fixed-b	ed adsor	ption
CO4	Explan offocts	n how c	rystals	grow, Ex	plain that	ie impo	sfor or	of supe	er satura	tion in cr	ystall	lization. I	Jescribe	
CO5	Explain membrane processes in terms of the membrane, feed, sweep, retentate, permeate, and solute													
005	membr	ane int	eraction	s. Distir	iguish a	among	microfi	ltration	, ultra	filtration,	nar	ofiltration	n, virus	
	filtratio	on, steri	le filtra	tion, filte	er-aid fi	ltration,	and re	everse	osmosis	in terms	of a	verage po	ore size.	
	Explai	n commo	on ideal	ized flow	patterns	s in mer	nbrane	module	s.					
Mappin CO ₂ /D	ng of C	Course	Dutcor	nes with	Progr	am Ou	tcome	S (POS		DOO	DO		11 DC	112
		2	PO2	P03	P04	P05	PU0	PU/ 2	PUð	P09	PU			<u>)12</u>
CO1		2	_	_	-	_	-	3			-	2		
CO2		3	-	-	_	2	-	-	-	-	-	-	2	
CO4		2	-	-	-	-	1	-	-	-	-	2	-	
CO5		3	2	1	-	-	2	-	-	-	1	-	3	
COs /	P	SO1		PSO2		PSO3		PSO4						
PSOs														
CO1		3		2		1		-						
CO2		2		3		-		1						
<u>CO3</u>		3		1		-		1						
<u>CO4</u>		2		2		•		1						
	india.	<u>2</u> 4 ag 6 4m	an ath a	3 f Canna	lation	1 2 II:	~h)]	- \/[]:						
H/M/L	indica	ites Str	ength (of Corre	lation	3- HI	gn, 2-1	vieaiu	m, 1-L)W				
		ice	ad	ies ial	ssore		ive	y	t t					
		cier	srin s	unit Soci	n C	l S	lect	nar	nen	-				
		c Sc	nee Ice:	smi S bi	ran	ran ive	ΠEI	ipli	lod	ica ect				
		asit	ngi :ier	Ht. an	2 00 01	rog lect	per	isci	om	raci				
Cateo	orv	В	ЦŇ		P	ЧД	0	Ir D	C S	P.				
Calego	or y				.1									1
					N									

Subject	Subject Name : Advanced	Ty/Lb/ETL/I	L	T / S.Lr	P/ R	С
Code:	Separation Processes	Ε				
EMCT22001	Prerequisite: Mass Transfer	Ту	3	1/0	0/0	4

UNITI INTRODUCTION

Conventional separation processes - Absorption, Adsorption, Conventional separation processes - Distillation, Drying, Conventional separation processes - Extraction, Diffusion, Conventional separation processes - Leaching, Crystalisation, Advances in separation techniques based on size, Advances in separation techniques based on surface properties, Advances in separation techniques based on ionic properties, Cross flow filtration, Electro filtration, Dual functional filter, Surface based solid-liquid separations involving a second liquid, Sirofloc filter

UNITII BUBBLE ANDFOAMFRACTIONATION

Nature of bubbles and foams, stability of foams, foam fractionation techniques, batch, continuous, single stageand multistage columns. Types and choice of membranes, Plate and frame, spiral wound membranes, Tubular and hollow fibre membrane reactors, Membrane Permeates: Dialysis, Reverse osmosis, Nanofiltration, ultra filtration, microfiltration, Donnan dialysis, Ceramic membranes

UNITIII MEMBRANESEPARATION

Characteristics of organic and inorganic membranes, basis of membrane selection, osmotic pressure, partition coefficient and permeability, concentration polarization, electrolyte diffusion and facilitated transport, macro-filtration, ultra-filtration, reverse osmosis, electro-dialysis. Industrial applications.

UNITIV SPECIALPROCESSES

Liquid membrane separation, super-critical extraction, adsorptive separation-pressure, vacuum and thermal swing, pervaporation and permeation, nano-separation.

UNITV CHROMATOGRAPHIC METHODSOFSEPARATION

Gel, solvent, ion and high performance liquid chromatography.

Total no. of hrs: 60Hrs

REFERENCES

- King C.J., "Separation Processes", Tata McGraw Hill. 1982.
- Nakagawal, O. V., "Membrane Science and Technology", Marcel Dekker, 1992.
- Humphrey, J and G. Keller, Separation Process Technology, McGraw-Hill, 1997 Khoury F.M., "Multistage Separation Processes", 3rd Ed., CRC Press.2204.
- Wankat P.C., "Separation Process Engineering", 2nd Ed., Prentice Hall.2206. Seader J.D. and Henley E.J., "Separation Process Principles", 2ndEd., Wiley.2206
- Basmadjian D., "Mass Transfer and Separation Processes: Principlesand Applications", 2nd Ed., CRC Press.2207.
- Phillip C. Wankat , Separation Process Engineering (2nd Edition), PrinticeHall, 2207
- Rousseau, R. W., "Handbook of Separation Process Technology", John Wiley, New York, 2209.

M.TECH CHEMICAL ENGINEERING 2022 REGULATIONS

12Hrs

12Hrs

12Hrs

12Hrs

12Hrs

15

Subject	Code:	Sul IPI	bject Na R	nme: Re	search	Method	ology a	nd	Ty/Lb/	ETL/IE	L	T / S.L	r P	P/ R	С
EMCC22	2001	Pro	erequisi	te: Basic	Science				Гу		3	0/0	0	/0	3
C : Credits T/L/ETP/I	s L : Leo E : The	cture T : ory/Lab/	Tutoria Embedo	l S.Lr : Su led Theor	pervised y and Pr	d Learni actice/Ir	ng P : P nternal e	roblem . valuatio	/ Practic on.	al R : Rese	arch				
OBJECT	FIVE :														
• Design	and for	rmulatio	n of rese	earch prob	olem.										
• Analyz	ze reseat	rch relat	ed inform	mation and	d statisti	cal meth	nods in 1	esearch	ı .						
Carry of	out resea	arch pro	blem inc	lividually	in a per	fect scie	ntific m	ethod							
Unders	stand the	e filing p	batent ap	plications	process	ses, Pate	nt searc	h, and v	arious to	ols of IPR	, Cop	yright, a	nd Tra	adema	arks.
COURS			<u>S (COs)</u>	:(3-5)	1 11	1									
$\frac{CO1}{CO2}$	Design	and For	mulation	1 of resear	ch prob	lem.	al math	ode in re	asaarch						
	Anaryz	e researe				statistic									
CO3	Carry out research problem individually in a perfect scientific method														
CO4	Understand Patent Filing application Process.														
CO5	Patent Search and various tools used.														
Mapping	Apping of Course Outcomes with Program Outcomes (POs)														
COs/PO	s F	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 PC	011	PO	12
CO1		3	3	3	3	2	2	3	3	3	-	-		-	
CO2		3	2	1	3	3	1	1	1	1	-	-		-	
C03		<u>3</u>	3	$\frac{2}{2}$	1	2	$\frac{2}{2}$	3	3	2	-	-		-	
C04 C05		3	3	$\frac{2}{3}$	$\frac{2}{3}$	3	$\frac{2}{2}$	3	3	3	-			-	
COs / PS	SOs	PSO	1	PS	$\overline{)2}$	PS	03	P	SO4						
CO1	3	;		2		-		-							
CO2	2	2		1		2		1							
CO3	3	3		2		-		-							
CO4	2	2		1		2		1							
H/M/L in	J ndicate) s Streng	th of Co	<u> </u>	3. Hi	- igh 2. N	Aedium	- 1.Low	v						
Categor	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project	Other							

16

Subject Code: EMCC22001	Subject Name : Research Methodology and IPR	Ty/Lb/ETL/IE	L	T / S.Lr	P/ R	С
EMCC22001	Prerequisite: Basic Science	Ту	3	0/0	0/0	3

Course objective:

- Learn the meaning of interpretation, techniques of interpretation, precautions is to be taken in interpretation for research process,
- Application of statistical methods in research.
- Learn intellectual property rights and its constituents.

Unit 1

Introduction to research, Definitions and characteristics of research, Types of Research, Research Process, Problem definition, Objectives of Research, Research Questions, Research design, Quantitative vs. Qualitative Approach, Building and Validating Theoretical Models, Exploratory vs. Confirmatory Research, Experimental vs. Theoretical Research, Importance of reasoning in research.

Unit 2

Problem Formulation, Understanding Modeling & Simulation, Literature Review, Referencing, Information Sources, Information Retrieval, Indexing and abstracting services, Citation indexes, Development of Hypothesis, Measurement Systems Analysis, Error Propagation, Validity of experiments, Statistical Design of Experiments, Data/Variable Types & Classification, Data collection, Numerical and Graphical Data Analysis: Sampling, Observation, Interpretation of Results.

Unit 3

Statistics: Probability & Sampling distribution, Estimation, Measures of central Tendency, Arithmetic mean, Median, Mode, Standard deviation, Co efficient of variation (Discrete serious and continuous serious), Hypothesis testing & application, Correlation & regression analysis, Orthogonal array, ANOVA, Standard error, Concept of point and interval estimation, Level of significance, Degree of freedom, Analysis of variance, One way and two way classified data, 'F' test.

Unit 4

Preparation of Dissertation and Research Papers, Tables and illustrations, Guidelines for writing the abstract, introduction, methodology, results and discussion, conclusion sections of a manuscript. References, Citation and listing system of documents.

Unit 5

Intellectual property rights (IPR) patents copyrights Trademarks Industrial design geographical indication. Ethics of Research Scientific Misconduct Forms of Scientific Misconduct. Plagiarism, Unscientific practices in thesis work, Ethics in science.

Text Book:

- 1. K. S. Bordens, and B. B.Abbott, , "Research Design and Methods A Process Approach", 8th Edition, McGraw Hill, 2011.
- 2. C. R. Kothari, "Research Methodology Methods and Techniques", 2nd Edition, New AgeInternational Publishers

Subject	t Code:	: Su	bject N ocesses	lame : A	Advan	ced sep	aratio	ı	Ty/Lb/	ETL/IE	L	T/S.Lr	P/ R	С
EMCT	22L01	Pr	erequis	site: Tec	hnical	Analys	sis		L	B	0	0/0	0/4	2
C : Credi	ts L : I	_ecture '	T : Tute	orial S.L	r : Supe	rvised	Learnir	ng P : I	Problem	/ Practica	al R :	Research		L
T/L/ETP	/IE : T1	heory/L	ab/Emt	bedded T	heory a	and Prac	ctice/In	ternal	evaluati	on.				
OBJEC	CTIVE	:												
	≻ T	o famili	arize st	udents w	ith var	ious adv	vanced	aspect	s of sepa	aration pr	ocess	ses and the	;	
	se	election	of sepa	ration pr	ocesses	5.								
COUR	SE OU	TCOM	ES (C	Os): (3-	- 5)									
CO1	Knowl	ledge of	mass t	ransfer o	peratio	ns and	mechar	nical op	peration	3				
CO2	Studer	nts shou	ld be at	ole to kno	ow the	synthes	is of m	aterial	s and ap	plications	s in se	eparation p	rocess	es.
CO3	Studer	nts to un	derstan	d them t	o new t	rends u	sed in t	he sep	aration	echnolog	gies			
CO4	Studer	nts to un	derstan	d the pri	nciples	and pro	ocesses	of ads	sorption,	membra	ne sej	paration a	nd	
	chrom	atograp	hy and	to design	an abs	orber o	r a mer	nbrane	e unit to	achieve a	spec	cified separ	ration	
CO5	Studer	nts will b	be able	to provic	le appli	cable so	olutions	s to sej	paration	processes	S			
Mappir	ng of C	of Course Outcomes with Program Outcomes (POs)												
COs/PO	Os I	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 PO1	PO	12
CO1	3	3	-	-	3	-	-	2	-	-	-	-	1	
CO2	2	2	-	-	-	-	-	3	-	-	-	2	-	
CO3	3	3	-	-	-	2	-	-	-	-	-	-	2	
CO4		3	-	-	1	-	-	-	2	-	-	-	2	
CO5	2	2	-	2	-	-	-	1	-	-	1	-	-	
COs /		PSO)1	PS	02	PS	503	I	PSO4					
PSOs				•				-					_	
<u>CO1</u>		3		2		-		1						
<u>CO2</u>	2	2		1		2		-						
CO3		<u>s</u>		-		-		-					_	
C04	4	2		1		2		-						
	indica	L tog Stro	noth of	- f Corrole	ation	2 2 Uia	<u>ьэ</u> м	- Iodium	n 1 I or					
H/WI/L	muica		ingth o	Correla		J- nig	II, ∠ - IV. ∽	lealun	u, 1-Lov	v I			-	
Catag)11	Basic Science	Engineering Sciences	Humanities and Social	Program Core	Program Electives	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				
Calego	лу		_		\checkmark					V	_			

Subject Code:	Subject Name : Advanced separation	Ty/Lb/ETL/IE	L	T/S.Lr	P/ R	С
	processes Lab					
EMCT22L01	Prerequisite: Technical Analysis	LB	0	0/0	0/4	2

LIST OF EXPERIMENTS:

- 1. Separation of fluoride and arsenic using cellulose acetate asymmetric membrane separation process
- 2. Adsorption of dyes from waste water using nano adsorbents.
- 3. Supercritical extraction of the fragrance.
- 4. Study the effect of pressure on permeates flux and solution rejection in RO system.
- 5. Mass transfer studies and studies the effect of parameters in separation system using liquid emulsion membrane.
- 6. Laboratory experiments on ion exchange membranes: effect of process parameters on fluxetc.
- 7. Study the reaction with mass transfer: e.g. Synthesis of calcium carbonate.
- 8. Study the reactive distillation system considering batch and continuous mode

SEMESTER-II

Subjec	ct Co	de: Su	bject	Name : ort Pher	Ad	vance	d		Ty/Lb E	/ETL/I	L	T/ S.I	r	P/ R	С
EMC	Г2200)2 Pr	erequ	isite: 7	Fransp	ort Pl	nenom	ena	T	Y	3	1/0		0/0	4
C : Creo Researc	lits L h T/L	: Lectu /ETP/I	re T: E:The	Tutoria eorv/La	l S.Lr : b/Emb	: Super	rvised Theor	Learn v and	ing P : Practic	Probler e/Interr	n / F nal e	Pract evalu	ical R ation.	:	
OBJE	CTIV	/E :			0, 21110		111001	julia							
	\succ	To fan	niliariz	ze the st	udent	with b	asic co	oncepts	s of tra	nsport j	ohen	ome	na and	l brie	f
	~	review	of ma	themat	ics.										
		To ena	ible stu	udents t	o unde	erstand	the eq	luation	is of ch	ange fo	or iso	other	mal fl	ow a	nd
	D	To int	1- 180 l	thom d	HOW.	of agu	ationa	ofaha	nga fa	· multi	2010	nono	nt avat	omo	
			e them	insigh	t into r	or equa	ies of	or cha two-di	inge 10i	multi o Snal flo	ws a	and a	snects	of	,
	,	dimen	sional	analysi	s mo p	nopen	105 01	t w 0-u		51101 110	ws c	ina a	specis	01	
COUF	RSE (OUTCO	OMES	(COs)	:(3-	5)									
CO1	Unde	erstand	the me	chanisr	n of m	oment	um. he	heat and mass transport for steady and							
	unste	ady flo	W				,						July all		
CO2	Perfo	orm moi	mentu	m, energ	gy and	mass	balanc	es for	a give	n syster	n at	mac	roscop	ic an	d
	micro	oscopic	scale.												
CO3	Solve	e the go	vernin	ig equat	ions to	obtai	n velo	city, te	mpera	ture and	l cor	ncent	tration	prof	iles
CO4	Mode	del the momentum, heat and mass transport under turbulent conditions.													
CO5	Deve	lop ana	logies	among	mome	entum.	energy	v and	mass tr	ansport					
Mapp	ing of	f Cours	e Out	comes	with P	rogra	m Out	come	s (POs)					
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	D10	PO11	PC)12
CO1		3	2	1	-	1	-	-	2	-	-		2	3	
CO2		3	-	2	-	1	-	2	-	-	1		-	1	
CO3		2	1	-	2	-	-	-	2	2	-		-	2	
CO4		3	-	2	-	2	-	3	1	-	3		1	-	
<u>CO5</u>		3 DC	-	1 	-	- D	-	2	-	-	-		2	1	
COS /		PS	01	P	802	P	803	ł	'804						
CO1		3		2		1		_							
CO1		$\frac{3}{2}$		-		2		-							
CO3		2		1		-		-							
CO4		3		-		2		-							
CO5		3		-		1		-							
H/M/I	l indi	icates S	trengt	th of Co	orrelat	ion	3- Hig	h, 2- 1	Mediu	m, 1-Lo) W			r	
		Basic Sciences	Engineering Sciences	Humanities and Social	Program Core	Program Electives	Open Flectives	Inter Disciplinary	Skill Component	Practical /Project					
Categ	gory														

Subject Code:	Subject Name : Advanced	Ty/Lb/ETL/I	L	Τ/	P /	C
	Transport Phenomena	Ε		S.Lr	R	
EMCT22002	Prerequisite: Transport Phenomena	TY	3	1/0	0/0	4

UNITI EQUATIONS OF CHANGE FORISOTHERMALSYSTEMS

Equation of Continuity, Equation of Motion, Equation of Mechanical Energy, Equations of Change in terms of the Substantial Derivative, Use of the Equations to solve Flow Problems, Dimensional Analysis of the Equations of Change. Velocity Distributions with more than one Independent Variable: Time Dependent Flow of Newtonian Fluids. Velocity Distributions in Turbulent Flow -Comparisons of Laminar and Turbulent Flows, Time Smoothed Equations of Change for Incompressible Fluids, Time Smoothed Velocity Profile near a wall, Empirical Expressions for the Turbulent Momentum Flux, Turbulent Flow in Ducts, Turbulent Flow in Jets.

UNITII MACROSCOPIC BALANCES FORISOTHERMALSYSTEMS

The Macroscopic Mass Balance, The Macroscopic Momentum Balance, The Macroscopic Mechanical Energy Balance, Estimation of the Viscous loss, Use of the Macroscopic Balances for Steady-State Problems, Derivation of the Macroscopic Mechanical Energy Balance. Equations of Change for Non-Isothermal Systems: The Energy Equation, Special forms of the Energy Equation, The Boussine sq Equation of Motion for Forced and Free Convection, Use of the Equations of change to Solve Steady-State Problems, Dimensional Analysis of the Equations of Change for Non-Isothermal Systems.

UNITILI TEMPERATURE DISTRIBUTIONS IN SOLIDS AND INLAMINARFLOW 12Hrs Heat Conduction with an Electrical Heat Source, Heat Conduction with a Viscous Heat Source. Temperature Distributions with more than One Independent Variable - Unsteady Heat Conduction in Solids, Steady Heat Conduction in Laminar, Incompressible Flow. Temperature Distributions in Turbulent Flow - Time- Smoothed Equations of Change for Incompressible Non-Isothermal Flow, Time-Smoothed Temperature Profile near a Wall, Empirical Expressions for the Turbulent Heat Flux Temperature Distribution for Turbulent Flow in Tubes.

UNITIV MACROSCOPIC BALANCES FORNON-ISOTHERMALSYSTEMS

Macroscopic Energy Balance, Macroscopic Mechanical Energy Balance, Use Of The Macroscopic Balances To Solve Steady State Problems With Flat Velocity Profiles, Concentration Distributions in Solids and in Laminar Flow: Shell Mass Balances Boundary Conditions, Diffusion through a Stagnant Gas Film, Diffusion with a Heterogeneous Chemical Reaction. Concentration Distributions with more than One Independent Variable: Time-Dependent Diffusion, Steady-State Transport in Binary Boundary Layers, Concentration Distributions in Turbulent Flow - Concentration Fluctuations and the Time-Smoothed Concentration, Time-Smoothing of the Equation of Continuity of A, Semi-Empirical Expressions for the Turbulent Mass Flux, Enhancement of Mass Transfer by a First-Order Reaction in Turbulent Flow.

UNIT V INTERPHASE TRANSPORT INMULTI-COMPONENTSYSTEMS

Definition of Transfer Coefficients in One Phase, Analytical Expressions for Mass Transfer Coefficients, Correlation of Binary Transfer Coefficients in One Phase, Definition of Transfer Coefficients in Two Phases, Mass Transfer and Chemical Reactions. Macroscopic Balances For Multi-Component Systems: Macroscopic Mass Balances, Macroscopic Momentum, Use of the Macroscopic Balances to solve Steady-State Problems.

Total no. of hrs: 60Hrs

REFERENCES

- Thomson W. J., Transport Phenomena, Pearson education, Asia, 2201.
- Geankopolis C. J., Transport Processes and Unit Operations, 4th Ed., Prentice Hall (India) Pvt. Ltd., New Delhi.2204.
- Sird R. B., Stewart W. E. and Light Foot E. N., Transport Phenomena, Revised 2nd Edition, John Wiley & Sons, 2207.

12Hrs

12Hrs

12Hrs

12Hrs

Subject	Code	e: Si	ıbject N mulatio	ame: I	Process	Mode	ling an	d	Ty/Lb/	ETL/IE	L	T / S.Lr	P/ R	С
EMCT	22L02	2 <u>P</u> I	ereauis	ite: Con	puter	Applic	ation L	ab.	L	3	0	0/0	0/4	2
					-p						Ũ	0,0	0, -	_
C : Credi	ts L :	Lecture	T : Tuto	rial S.Lr :	Super	vised L	earning	P: Pro	blem / l	Practical I	$\mathbf{R}:\mathbf{R}$	esearch		
T/L/ETP	/IE : 'I	heory/L	ab/Emb	edded The	eory an	d Pract	ice/Inte	rnal ev	aluation	•				
OBJEC	TIVE	E :												
	ך ∢	To learn	Process	Modeling	and Si	imulatio	on of C	hemica	l operati	ons and r	proces	sses.		
	r 4	Fo under	stand D	vnamic B	-havior	of proc			- op er au	ono ana p				
	r	Fo under	stand Cl	ose loon (control	of proc	esses.							
	× T	To learn	Dvnami	c simulati	on of c	hemica	l proce	sses						
COURS	SE OI		ES (CC	$\mathbf{s} \cdot (3, 4)$	5)	menneu	i pi oce	5505						
					,	• .•						. 1		
cor	Carry Aspei	⁷ out thei n.	modyna	imic prop	erty est	imatior	is using	proper	rty estin	ation and	l prop	berty analys	515 1n	
CO2	Simu	late Mix	er, splitt	er, heat e	xchang	ers, rea	ctors, d	istillati	on colu	nns.				
CO3	Apply	y sensiti	vity, des	ign specif	ication	and ca	se study	y tools	in Aspe	n.				
COA	C . 1	1				•								
CO4	Solve	e linear a	na non-	linear pro	gramm	ing pro	blems							
CO5	Unde	rstand th	e impor	tant physi	ical phe	enomen	a from	the pro	blem sta	tement				
Mappir	ng of (Course (Dutcom	es with P	rogran	n Outco	omes (I	POs)						
COs/PC)s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 PO11	PO	12
CO1		3	2	1	-	-	-	1	-	-	-	-	1	
CO2		2	3	1	-	-	-	2	-	-	-	-	-	
CO3		2	3	1	-	1	-	1	-	-	1	-	2	
<u>CO4</u>		3	2	1	-	-	1	2	-	2	2	-	1	
CO_5	0.00	2	- \1	- DC/	-		2	2	-	-	-	-	2	
$\frac{COS/P}{CO1}$	50s	2 150	Л	2	<u>J</u> 2	2	505	2 P	504				_	
$\frac{cor}{cor}$		2		2		3 1		2						
CO2 CO3		3		1		2		2						
CO4		3		2		-		-						
CO5		1		2		1		1						
H/M/L	indica	ates Stre	ength of	Correlat	ion 3	- High	, 2- Me	dium,	1-Low	u		I		
		es	1	s	e		es							
		enc	gu	itie cial	Cor		ctiv	lary	lent	t al				
		Sci	ecri es	nan So	Е	/es	Ele	uter plir	kill pon	ctic ojeć				
		sic :	gine	Hun Sci Sci	gra	gra ctiv	en]	Ir scil	IS IS	Pra /Pru				
		Bas	Eng		Pro	Pro Ele	Opí	Di	Ŭ					
Catego	ory													
					\checkmark					\checkmark				

Subject Code:	Subject Name : Process Modeling and	Ty/Lb/ETL/IE	L	T/S.Lr	P/ R	С
	Simulation lab					
EMCT22L02	Prerequisite: Computer Application Lab	LB	0	0/0	0/4	2

LIST OF EXPERIMENTS:

Simulation laboratory practical

- $1. \ Thermodynamic property estimation susing property estimation and property analysis in Aspen.$
- 2. Simulate Mixer, splitter, heat exchangers, and reactive distillationcolumn.
- 3. Apply sensitivity, design specification and case study tools inAspen
- 4. Solve linear and non-linear programmingproblems.
- 5. Controller tuning by Ziegler- Nichol's & Cohen- Coonmethods
- 6. Stability analysis using Bode diagrams for controlsystems.
- 7. Simulation of Ideal Binary DistillationColumn
- 8. Simulation of Heat/Mass Transfer coefficient in 3 phase fluidized bed column
- 9. Simulation studies of various unit operations usingCHEMCAD.
- 10. Modeling and Simulation of cycloneseparator

Note: Simulation can be done using C/C++ / MATLAB/ ASPEN PLUS/ CHEMCAD

SEMESTER-III

Subject Code:	Su	bject Na	ame : Adv	vanced l	Reactior	n Engin	eering	Ty/Lb/	ETL/IE	L	T / S.Lr	P/ R	C
EMCT22003	Pr	erequisi	te: Chen	nical Re	action E	Cngg		TY	7	3	0/0	0/0	3
C : Credits L : L	ecture T	: Tutoria	1 S.Lr : Sı	ipervise	1 Learni	ng P : P	roblem	/ Practic	al R : Rese	earch			
T/L/ETP/IE : Tł	neory/Lab	/Embedd	led Theor	y and Pr	actice/Ir	nternal e	valuatio	on.					
OBJECTIVE	:												
➤ This	Subject i	s essenti	al for Des	ign of R	eactor es	specially	y hetero	geneous	reactors.				
> Stud	lents will	learn the	energy ba	alance, t	emperati	ure and	concent	ration pr	ofiles in d	iffere	nt reactors	,	
adva	ince desig	n aspects	s of multi	ple react	ors.								
> Stud	lents will	get insig	ht of impo	ortance c	of popula	ation bal	lance of	particles					
COURSE OU	TCOME	S (COs)	: (3-5)										
CO1 Evalu	ate hetero	geneous	reactor p	erforma	nce cons	idering	mass tra	ansfer lin	nitations				
CO2 Perfor	rm the end	ergy bala	ance and c	btain co	ncentrat	ion prof	files in r	nultiphas	se reactors				
CO3 Estim	ate the pe	rforman	ce of mult	tiphase r	eactors u	under no	on-isothe	ermal co	nditions.				
CO4 Under	derstand modern reactor technologies for mitigation of global warming												
CO5 Role	Role of Reaction Engineering in mitigation of Global warming will also addressed												
Mapping of C	ourse Ou	tcomes	with Prog	gram Ou	ıtcomes	(POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 PO1	1 PO	12
CO1	l	-	3	3	-	3	3	-	2	1	-	3	
CO2 2	2	2	-	-	2	-	1	-	2	-	1	3	
CO3 3	3	-	2	-	-	1	-	2	-	-	3	-	
CO4 2	2	1	-	1	-	2	-	2	-	3	1	1	
CO5 3	3	-	-	-	3	-	-	3	-	-	1	-	
COs / PSOs	PSO	1	PSO	02	PS	03	P	SO4					
CO1 3	3		2		1		-						
CO2 2	2		1		-		1						
CO3 2	2		-		2		1						
CO4 2	2		3		3		-						
CO5 2	2		1		1		3						
H/M/L indicat	tes Streng	gth of Co	orrelation	1 3- H i	igh, 2- N	Iedium	, 1-Low	7					
	es		nd ses	e		es							
	enc	ng	es <i>s</i>	Cor		ctiv	ury	lent	t al				
	Scie	eri es	nitie Sci	u (es n	Elec	lina	kill pon	otic ojec				
	ic S	gine	nar ial	gra	gra	n H	r cip]	Sl	Pro				
	3as	Eng	Hur	rog	Pro; Elec	Dpe	Disc	ŭ	ц 、				
Category	1				шш								
				\checkmark									

Subject Code:	Subject Name : Advanced Reaction Engineering	Ty/Lb/ETL/IE	L	T / S.Lr	P/ R	С
EMCT22003	Prerequisite: Chemical Reaction Engg	TY	3	0/0	0/0	3

UNITI NON-ELEMENTARYKINETICSIMPORTANCE

Approximations for formulations of Rate laws, Formulations of Kinetic model. Effect of flow on conversions in Reactors: Semi batch Reactors : Importance and examples of applications, Material Balance on Semi batch Reactor, Multiple reaction in Semibatch Reactors, Conversion Vs Rate in Reactors, Use of POLYMATHS to solve the equations and understanding the profiles. Non-Isothermal reaction modeling in CSTR & Semi-Batch reactor: Energy Balance equations for CSTR, PFR and Batch reactors, Adiabatic operations Temperature conversion profiles in PFR, CSTR, Steady state tubular reactor with heatexchange.

UNITII NEED FOR MULTI-STAGING CSTR WITHMULTIPLESTAGES

Exothermic and Endothermic Reaction with examples, CSTR with heat effects, Multiple reactions in CSTR and PFR with heat effects, Semi batch Reactors with heat exchange. Design of PFR and Packed Bed Tubular Reactors: Radial and Axial mixing in Tubular reactors, unsteady state in non-isothermal energy balance, STR, Energy balance in Batch Reactors, Volume of reactors calculations for non-isothermal reactors. Optimal Design of Reactors for Reversible exothermic reactions: Unsteady state non-isothermal reactor design, adiabatic operation in batch, Heat effects in semi batch unsteady state operation. Auto thermal Plug flow reactors and packed tubular reactors.PFR with inter stage cooling. Shift of Energy and material balance lines for reversible reactions in CSTR, Examples of optimal design of PFR and Semi batch and CSTR Exothermic Reactions.

UNITIII CATALYTIC REACTIONS THEORYANDMODELING

Global rate of reaction, Types of Heterogeneous reactions Catalysis, Different steps in catalytic reactions, Theories of heterogeneous catalysis. Steady State approximation, formulations of rate law Rate laws derived from the PSSH, Rate controlling steps, Eiley-Rideal model, Reforming catalyst example :Finding mechanism consistent with experimental observations Evaluation of rate law parameters, packed beds : Transport and Reactions, Gradients in the reactors : temperature. Porous media reactors: Mass transfer coefficients, Flow effects on spheres tube and cylinders, External Mass Transfer pore diffusion, structure and concentration gradients Internal Effectiveness Factor Catalytic wall reactor: limiting steps reactions and mass transfer limiting Porous catalyst on tube wall reactors Design of packed bed porous catalytic reactors: Mass transfer limited reactions in Packedbed.

UNITIV FLUIDIZED BEDREACTORMODELING

Geld art Classification of powders, fixed bed Vs fluidized bed why fluidized bed, important parameters pressure drop in fixed bed, Class I model Arbitrary Two Region Flow Models, Class II Chemical Reactor: Plug Flow or Mixed Flow Model. Class III Modeling the Bubbling Fluidized Bed Reactor, BFB, The Kunii-Levenspiel bubbling bed model, Gas Flow Around and Within a Rising Gas Bubble in a Fine particle BFB, Reactor performance of BFB.

UNITV APPLICATION OF POPULATION BALANCE EQUATIONS FOR REACTORMODELING 9Hrs

Particle size distribution, Distribution Functions in Particle Measuring Techniques, Particle distribution model in colloidal particle synthesis in batch reactor, Moments of Distribution, Nucleation rate based on volumetric holdup versus crystal growth rate. Reaction engineering and mitigation of Global warming: CO2 absorption in high pressure water, different techniques of mitigation of CO2, methods of separations. Recent advancements, automotive monolith catalytic converter example, removal and utilization of CO2 for thermal power plants.

Total no. of hrs: 45Hrs

REFERENCES

- ★ K.G. Denbigh : Chemical Reactor Theory, Cambridge University Press, Second Edition, 1971.
- ♦ J.M. Smith : Chemical Engineering Kinetics, Mcgraw Hill, Third Edition, 1981.

9Hrs

9Hrs

27

9Hrs

9Hrs

Levenspiel O., Chemical Reaction Engineering, Wiley, 1998.

 Foggler, H.S., Elements of Chemical Reaction Engineering, Prentice Hallof India, 2208. Fromment G.F. and Bischoff K.B., Chemical Reactor Analysis and Design, John Wiley

Subjec	t Code	e: Su	bject N	Name : A	dvand	ed Che	emical		Ty/Lb/	ETL/IE	L	T/S.Lr	P/ R	С
EMCT		Re	action	Enginee	ring la	b								
ENICI	ZZLUJ	' Pr	erequis	site:					L	D	0	0/0	0/4	2
C : Cred	its L :]	Lecture	T : Tut	orial S.L	r : Sup	ervised	Learni	ng P :	Problem	/ Practic	al R	: Research		<u> </u>
T/L/ETP	P/IE : T	Theory/L	.ab/Eml	bedded T	Theory	and Pra	ctice/Ir	nternal	evaluati	on.				
OBJE	CTIVE	E :												
	► 1	To provi	de throu	ugh unde	rstandi	ng of R	leactior	nEngin	eering.					
	► T	To desig	n reacto	or and ide	entity t	ype of r	reactor	by sui	ting chei	nical kin	etics	and using		
	i	nformati	ion fror	n thermo	dynam	ics, hea	at and n	nass tr	ansferec	onomics.				
		Characte	ristics of	of a fluid	ized be	dreacto	or							
	► L	Jndersta	nding o	of corrosi	on read	ction an	id mono	olithic	catalytic	creactors.				
COUR	SE OU	JTCOM	IES (C	Os):(3)	- 5)									
CO1	Stude	nts will a	able to	know the	e solid-	liquid, I	liquid –	liquid	reaction	s.				
CO2	Stude	nts will	be able	to know	the mi	cro reac	tor bas	ed pro	cess inte	ensificati	on.			
CO3	Stude	nts will	be able	to know	the mo	nolithic	c cataly	tic rea	ctors ap	plications	s			
CO4	Capab	oility to	visualiz	e and un	derstar	nd chem	nical en	gineer	ing unit	operation	ns rel	ated to flu	id and	
	partic	le mecha	anics											
CO5	Under	stand th	e exper	rimental	technic	ues rela	ated to	chemi	cal react	ion engir	neerir	ng		
Mappi	ng of (Course	Outcon	nes with	Progra	am Out	tcomes	(POs)					
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 PO11	PO	12
CO1		2	3	3	-	1	-	-	-	2	-	-	3	
CO2		2	3	-	3	-	-	3	-	3	-	2	-	
CO3		1	-	-	-	-	2	-	-	2	-	-	3	
CO4		3	-	-	1	-	-	-	3	-	-	1	-	
CO5		2	-	-	-	1	2	2	-	-	-	-	2	
COs /		PSC)1	PS	02	PS	503]	PSO4					
PSOs														
CO1		2		2		1		-						
CO2		3		1		2		1						
CO3		2		1		2		1						
CO4		3		2		1		-						
CO5	1	1		2		1		1	. –					
H/M/L	indica	ates Stro	ength o	f Correl	ation	3- Hig	gh, 2- N	/lediu	m, 1-Lo	W				
		3asic Sciences	Engineering Sciences	Humanities and Social	Program Core	Program Electives	Dpen Electives	nter Disciplinary	Skill Component	Practical /Project				
Categ	ory				√				n	\checkmark				

١

Subject Code:	Subject Name : Advanced Chemical Reaction Engineering lab	Ty/Lb/ETL/IE	L	T / S.Lr	P/ R	С
EMCT22L03	Prerequisite: Chemical Reaction Engg Lab	Lb	0	0/0	0/4	2

LIST OF LABORATORY EXPERIMENTS:

- 1. Analyze the characteristics of a fluidized bed reactor
- 2. Kinetics of a (solid-liquid) Esterification reaction in a batch reactor
- 3. Evaluate the performance of a process intensified Batch Reactive Distillation in catalytic reactions
- 4. Evaluate the performance of a process intensified micro reactor in catalytic reactions
- 5. Interfacial (Liquid-Liquid)Nitration
- 6. Gas-solid catalytic reactor analysis: Understanding of gas-solid catalytic reactor theory and dynamics analysis.
- 7. Gas-liquid-solid three-phase catalytic reactor analysis: Understanding gas-liquid-solid three- phase catalytic reactor theory and dynamics analysis.
- 8. Reactor analysis: Understanding the principle and diffusion analysis of batch and flow reactors.
- 9. Corrosion reaction characteristics of a metal in a given electrolyte.
- 10. Reactions on Monolithic Catalytic Reactors

SEMESTER-IV

Subject	t Code	: Su Me	bject N edia	lame :	Transp	port in	Porous	5	Ty/Lb	/ETL/IE	L	T / S.Lr	P/ R	С
EMCT	22004	Pr	erequis	site: En	gineeri	ing Che	emistry	7	T	Y	3	0/0	0/0	3
C : Credi	its L : l	Lecture	T : Tut	orial S.L	r : Sup	ervised	Learni	ng P :	Proble	m / Practi	cal R	R : Researc	h	<u> </u>
T/L/ETP	P/IE : T	heory/L	.ab/Em	bedded 7	Theory	and Pra	actice/I1	nternal	evalua	tion.				
OBJEC	CTIVE	2:												
	Introdu	ice the p	ohysics	and gove	erning	mechan	isms co	ontrolli	ing flov	v and trai	nspor	t processes	3	
	in poro	us medi	a.	$(\mathbf{O}_{\mathbf{z}}) \cdot (\mathbf{z})$	5)									
	SE UU		IES (C	(0s): (3)	- J)	iama ir	wolvod	in trop	nont i	*000000	in no	rous modi	0	
COI	and w	ill be ab	undersi	ork with	the equ	lisilis II.	that go	un uran vern th	isport p ne fate :	and transi	nn pe	orous mean	a	
	water	and solu	ites in	porous n	nedia	uutions	that 50	venn ti		ind transj		л gus,		
CO2	Grasp	general	princip	oles gove	erning t	he coup	oling ar	nong r	eaction	s, flow, a	nd tr	ansport pr	ocesses	s
CO3	Appre	ciate the	e impoi	tance of	differe	ent proc	esses u	nder di	ifferent	condition	ns			
CO4	Devel	op com	outation	nal skills	to sim	ulate co	oupled f	low, tr	anspor	t, and rea	ction	s using a r	eactive	e
	transp	ort mod	eling c	ode.			-		-			-		
CO5	Ability	y to acq	uire an	d use nev	w engir	neering	techniq	ues, sł	cills, ar	d tools fo	or res	earch and		
	develo	opment i	in mech	nanical e	ngineer	ring, an	d to de	velop r	new me	thods and	l disc	cover new		
	knowl	edge	0 /	• • • •	D									
Mappi	ng of C	Course (Outcon	nes with	Progr	am Ou	tcomes	(POs))					
COs/P	Os 1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 PO1	l PO)12
CO1		3	-	2	-	-	1	-	2	3	2	-	-	
CO2	4	2	2	1	-	2	-	-	2	-	1	-	2	
<u>CO3</u>		3	-	1	-	-	-	1	2	-	2	-	2	
<u>CO4</u>		2	2	1	-	2	-	-	2	-	1	-	2	
$\frac{COS}{COa/}$		3 DSC	-		-	- D(-			-	2		2	
		F5 0	/1	PS	002	P:	505	ľ	504					
CO1		3		2		1		1						
CO2		2		1		-		1						
CO3	/	2		2		1		-						
CO4	/	2		1		-		1						
CO5		2		1		2		-						
H/M/L	indica	tes Stro	ength o	of Correl	lation	3- Hi	gh, 2- N	Aediu	m, 1-L	W				
			60	ies	ore			y	t					
		ş	erin s	init	n C	u s	SS	inar	nen					
		c nce	nce	smt S bi	ran	tive	n tive	ipli	lodi	tica ject				
		asi cie	ingi cie	Ht. an	rog	rog]pe]	nter)isc	kill Jom	rac Proj				
		SЕ	чν			дЩ	ОЩ	L	\sim 0	Ч Ц				
Catego	orv					1								
Catego	ory													

Subject Code:	Subject Name : Transport in Porous Media	Ty/Lb/ETL/IE	L	T/S.Lr	P/ R	С
EMCT22004	Prerequisite: Engineering Chemistry	ТҮ	3	0/0	0/0	3

UNITI FUNDAMENTALS

9Hrs

9Hrs

9Hrs

9Hrs

9Hrs

Mass, momentum and energy transport, Darcy and Non-Darcy equations, equilibrium and non-equilibrium conditions, species transport, radioactive decay.

UNITII EFFECTIVEMEDIUMAPPROXIMATION

Equivalent thermal conductivity, viscosity, dispersion.

UNITIII EXACTSOLUTIONS

Flow over a flat plate, flow past a cylinder, boundary-layers, reservoir problems.

UNITIV SPECIALTOPICS

Field scale and stochastic modeling, Turbulent flow, compressible flow, multiphase flow, numerical techniques, hierarchical porous media, nanoscale porous media, multiscale modeling.

UNITV ENGINEERINGAPPLICATIONS

Groundwater, waste disposal, oil and gas recovery, regenerators, energy storage systems. Experimental techniques: Flow visualization, quantitative methods, inverse parameter estimation.

Total no. of hrs: 45Hrs

REFERENCES:

- Principles of Heat Transfer in Porous Media, by M. Kaviany, Springer New York(1995).
- Transport Phenomena in Porous Media, Volumes I-III, edited by D. R. Ingham and I. Pop, Elsevier, New York(1998-2205).
- Dynamics of Fluids in Porous Media, J. Bear, Dover(1988).
- Introduction to Modeling of Transport Phenomena inPorous Media, J. Bear and Y. Bachmat, Kluwer Academic Publishers, London(1990).
- Enhanced Oil Recovery, L.W. Lake, Gulf Publishing Co. Texas(1989).
- The Mathematics of Reservoir Simulation, R.E. Ewing, SIAM Philadelphia(1983).
- Stochastic Methods for Flow in Porous Media: Coping with Uncertainties, Zhang, D., Academic Press, California(2202).
- ★ The Method of Volume Averaging, S. Whitaker, Springer, New York(1999).

Subject Code:		: Su	Subject Name : Advanced Chemical						Ty/Lb/	ETL/IE	L	T/S.Lr	P/ R	C
EMCT22L04		Pr	erequis	ite: Mas	s and I	Heat Tr	ansfer	Lab	L)	0	0/0	0/4	2
C : Credi T/L/ETP	ts L : L /IE : Tl	Lecture ' heory/L	T : Tuto ab/Emb	orial S.Lr edded Th	: Super neory an	rvised L nd Prac	earning	g P : Pi ernal e	oblem / valuatio	Practical	R : I	Research		
OBJEC	TIVE	:												
		Analyze	charac	teristics of	of a flui	dized b	ed drye	er						
	≻ 1	Estimate	e efficie	ency of co	ompact	heat ex	change	rs						
	> 1	Evaluate	e the per	rformanc	e of a p	process	intensif	fication	in catal	ytic react	ions,	ultrasound	l assist	ed
	1	reaction	s, reacti	ive distill	ation c	olumn,	micro r	eactor	and adv	anced flo	w rea	actor		
	> 1	Design	controll	er for a g	iven pr	ocess								
COURS	SE OU	TCOM	ES (CO	Ds):(3-	5)									
CO1	Students will able to know the solid-liquid, liquid –liquid reactions.													
CO2	Students will be able to know the micro reactor based process intensification.													
CO3	Students will be able to know the monolithic catalytic reactors applications.													
CO4	Ability to understand, explain and select instrumental techniques for analysis													
CO5	Ability to plan experiments and operate several specific instruments													
Mapping of Course Outcomes with Program Outcomes (POs)														
COs/PC	Os 1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 PO11	PO	12
CO1		3	-	1	-	-	-	1	1	-	-	-	1	
CO2		2	2	-	-	2	1	1	1	-	2	1	1	
CO3		3	1	-	-	2	-	-	2	1	-	2	-	
CO4		2	2	2	2	-	-	3	3	2	1	3	2	
$CO_{\rm S}$ / PSO _S		s PSC	<u> </u>	2 PS	$\frac{1}{02}$	J PS	<u> </u>	- Р	- 2504	-	2		3	
COS/15OS		2	2		1 -		-							
CO2		3		1		2		1						
CO3	2	2		1		2		1						
CO4	1	1		2		3		2						
<u>CO5</u>		2		1		2		1	4 7					
H/M/L indicates Strength of Correlation 3- High, 2- Medium, 1-Low														
Catago		Basic Sciences	Engineering Sciences	Humanities and Social	Program Core	Program Electives	Open Elective:	Inter Disciplinary	Skill Component	Practical /Project				
Callege	лу								-	\checkmark				

Subject Code:	Subject Name : Advanced Chemical	Ty/Lb/ETL/IE	L	T/S.Lr	P/ R	С
EMCT22L04	Engineering Lab					
	Prerequisite: Mass and Heat Transfer Lab	Lb	0	0/0	0/4	2
	_					

DETAILED SYLLABUS

- 1. Characteristics of a Fluidized beddryer
- 2. Helical Coil heatexchanger
- 3. Determination of Effective thermal conductivity (ETC) in granularmaterial
- 4. Plate Type HeatExchanger
- 5. Kinetics for solid catalyzed esterification reaction in a batchreactor
- 6. Reactive distillation in PackedColumn
- 7. Ultrasonic cavitation basedreactions
- 8. Micro-reactor
- 9. Advanced FlowReactor
- 10. Membrane Separation for waterpurification
- 11. Corrosion characteristics of a metal in a givenelectrolyte
- 12. Control of liquid level in non-interactingsystems.
- 13. Identification and control of a three tanksystem.
- 14. pH control in aprocess.

Subject Code:	Subject Name : Term Paper	Ty/Lb/ETL/IE	L	T / S.Lr	P/ R	С
EMC122101	Prerequisite:	IE	0	0/0	0/4	2

A term paper is an elaborate research-based work on a particular topic in the domain of study. The student must choose a topic of his interest from the domain of study for a term paper. The term paper can be an original research article or review article. In case of review article, the student must refer atleast 50 research/review articles and critically review other researcher's work. The term paper may be 10 -20 pages in length. The general guidelines for writing the term paper as follows:

- 1. Abstract
- 2. Introduction to explain about the broad and general statement on the topic chosen.
- 3. Aim /Objective of the term paper.
- 4. Description of methodology, concepts and arguments.
- 5. Identify the research gap and suggest possible future works.
- 6. Conclusion

Three reviews will be conducted to monitor the progress of the work. At the end of the semester, presentation must be made by the student and Viva-Voce examination will be conducted by the internal Examiner duly appointed by the Head of the department and the students will be evaluated.

SEMESTER-V
Subject	Code	e: Su	bject N	Name :	Pro	cess Pla	ant De	sign	Ty/Lb	/ETL/I	L	T/S.Lr	P/ R	С
EMCT	22005	Pr	<u>riow s</u> ereaui	site:					<u>Е</u> Т	Y	3	1/0	0/0	4
										-	-	2,0	0,0	-
C : Credi	ts L :	Lecture	T : Tu	torial S.	Lr : Su	pervise	d Lear	ning P	: Probl	em / Prac	ctical	l R : Resea	arch	
T/L/ETP	/IE : 'I	heory/l	Lab/En	nbedded	Theory	and P	ractice	Intern	al evalu	lation.				
OBJEC	TIVE	E :												
	\triangleright	Under	standin	g of the	scope,	princip	les, no	rms, a	ccounta	bilities a	nd bo	ounds of		
		conten	nporary	enginee	ering pi	ractice	in the s	specifi	c discip	line.				
	\triangleright	Applic	ation o	of establi	shed er	ngineer	ing me	thods	to com	olex engin	neeri	ng problei	m solv	ing.
	\triangleright	Applic	ation o	of system	atic en	gineeri	ng syn	thesis	and des	ignproce	sses.			0
COURS	SE OU	UTCON	MES (COs): (3-5)	0	0 ~)			0				
CO1	Anal	yze, sy	nthesiz	e and de	sign pr	ocesses	s for m	anufac	turing p	oroductsc	comn	nercially		
CO2	Integ	rrate a	nd an	nlv tec	hnique	s and	know	ledge	acqui	ed in	othe	r courses	such	ı as
	therr	nodyna	mics, h	eat and	mass tr	ansfer,	fluid n	nechar	nics, ins	trumenta	tion	and control	ol to de	esign
	heat	exchan	gers, pl	late and	packed	colum	ns and	engine	eering f	lowdiagr	ams			U
CO3	Use	comme	rcial flo	ow sheet	ing sof	tware t	o simu	late pr	ocesses	and desi	gn p	rocessequi	ipment	t
CO4	Recognize economic, construction, safety, o						y, opera	ability	and oth	er design	ncons	straints		
CO5	Estimate fixed and working capitals and ope						operati	ng cos	ts for p	rocesspla	ints			
Mappir	ng of (Course	Outco	mes wit	h Prog	ram O	utcom	es (PC	Ds)					
COs/PO	Ds []	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 PO1	1 PO)12
CO1		3	-	2	-	-	1	-	2	3	2	-	-	
CO2		2	2	1	-	2	-	-	2	-	1	-	2	
CO3		3	•	1	-	-	-	1	2	-	2	-	2	
<u>CO4</u>		2	2	1	-	2	-	-	2	-	1	-	2	
CO5		<u>3</u>	•	1	-	- D	-	1	2	-	2	-	2	
		P50	Л	P	02	P	503		1504					
CO1		3		2		1		1						
CO2		2		1		-		1						
CO3		2		2		1		-						
CO4		2		1		-		1						
CO5		2		1		2		-						
H/M/L	indica	ates Str	rength	of Corr	elation	3- H	ligh, 2-	Medi	um, 1-1	Low				
		ces		es al	re		ves							
		iene	ing	niti oci	C_0		ecti	lary	ent					
		Sc	neer ces	ma d S.	am	am	El	plin)0U(sct				
		asic	ngir ien	Hu an	ogr	ogr ecti	pen	ter scij	cill Jmc	acti roj€				
Cotor	111 7	B	S E		Pr	Pr El	Ō	D II	ŭŇ	Pr P				
Catego	лу													

Subject Code:	Subject Name :	Process Plant Design	Ty/Lb/ETL/I	L	T/S.Lr	P/ R	С
	& Flow sheeting		Ε				
EMCT22005	Prerequisite:		TY	3	1/0	0/0	4
TI INTRO	DUCTION					1	2Hrs

UNITI **INTRODUCTION**

Basic concepts: General design considerations, Process design development, Layout of plant items, Flow sheets and PI diagrams, Economic aspects and Optimum design, Practical considerations in design and engineering ethics, Degrees of freedom analysis in interconnected systems, Network analysis, PERT/CPM, Direct and Indirect costs, Optimum scheduling and crashing of activities.

UNITH HIERARCHY OF CHEMICALPROCESSDESIGN

Nature of process synthesis and analysis; Developing a conceptual design and flow sheet synthesis. Synthesis of reaction-separation systems; Distillation sequencing; Energy targets. Heat integration of reactors, distillation columns, evaporators and driers; Process change for improved heat integration. Heat and mass exchange networks and networkdesign.

UNITIII FLOW-SHEETING

Synthesis of flow sheet: Propositional logic and semantic equations, Deduction theorem, Algorithmic flow sheet generation using P-graph theory, Sequencing of operating units, Feasibility and optimization of flow sheet using various algorithms viz, Solution Structure Generation (SSG), Maximal Structure Generation (MSG), Simplex, Branch-and-boundetc.

UNITIV ANALYSIS OFCOSTESTIMATION

Factors affecting Investment and production costs, Estimation of capital investment and total product costs, Interest, Time value of money, Taxes and Fixed charges, Salvage value, Methods of calculating depreciation, Profitability, Alternative investments and replacements.

UNITV **OPTIMUM DESIGN ANDDESIGNSTRATEGY**

Break-even analysis, Optimum production rates in plant operation, Optimum batch cycle time applied to evaporator and filter press, Economic pipe diameter, Optimum insulation thickness, Optimum cooling water flow rate and optimum distillation reflux ratio.

Total no. of hrs: 45Hrs

REFERENCES:

- Peters, M.A. and Timmerhaus, K.D., Plant Design and Economics for Chemical Engineers, McGraw Hill(2003).
- Anil Kumar, Chemical Process Synthesis and Engineering Design, Tata McGraw Hill(1982).
- Ulrich, G.D., A Guide to Chemical Engineering Process Design and Economics, John Wiley & Sons (1984).
- Perry, R.H. and Green, D., Chemical Engineer's Handbook, McGraw-Hill(1997).

12Hrs

12Hrs

12Hrs

12Hrs

Subject Code	2:	Subject Na	ame: D	bissertat	ion Pha	se– I		Ty/Lb/	ETL/IE	L	T/S.Lr	P/ R	C
EMCT22L05	5	Prerequisi	te:					Lt)	0	0/0	0/10	5
C : Credits L : T/L/ETP/IE : T	Lecture Theory/I	T : Tutoria Lab/Embedo	l S.Lr : Su ded Theor	pervise y and Pr	d Learni actice/Ir	ng P : P nternal e	roblem / evaluatio	' Practic n.	al R : Res	search		1	
OBJECTIVE	E :												
> Al	bility to	synthesize	knowledge	e and sk	ills prev	iously g	gained ar	nd applie	ed to an ir	n-depth	study and		
\succ C	anable to	of new tech	n different	f method	lalagies	metho	ds and fo	orms of	analysis t	o prodi	ice a suitab	le	
res	search d	esign and i	instify thei	r desigr		, memo			anarysis c	o produ		ic	
> At	bility to	present the	findings of	of their t	 echnical	solutio	n in a w	ritten re	oort.				
> Pr	esenting	the work i	n Internati	ional/ N	ational c	onferen	ce or rep	outed jo	urnals.				
COURSE OU	UTCON	IES (COs)	: (3-5)										
CO1 Ap	ply the l	knowledge	owledge and skills acquired in the course of students to think critically and creativaly of the students to think critically and creativaly of the students are the students and creativaly of the students are th					addressi	ng a speci	ific pro	blem or iss	ue.	
CO2 To	encoura l reachal	ge students	students to think critically and creatively about societal issues and develop user friendly solutions.										
CO3 To	refine re	esearch skil	kills and demonstrate their proficiency in communication skills										
СО4 То	take on	the challen	ges of tear	s of teamwork, prepare a presentation and demonstrate the innate talents.									
Mapping of O	Course	Outcomes	with Prog	gram O	utcomes	(POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 PO11	PO	12
<u>CO1</u>	3	3	3	3	2	3	3	1	2	2	3	3	
<u>CO2</u>	3	3	3	3	3	3	3	2	2	2	3	3	
<u>CO3</u>	2	3	3	3	3	3	3	2	3	3	3	3	
CO_4	<u>э</u> р	<u> </u>	J PS(<u> </u>	J PS	$\frac{2}{03}$	2 P	<u>2</u> SO4	3	3	3	5	
CO1	3		3	<i>,</i>	2	05	3	,04					
CO2	3		3		3		2						
CO3	3		2		1		3						
CO4	3		3		3		2						
H/M/L indica	ates Str	ength of Co	orrelation	3-H	igh, 2- N	Aedium	, 1-Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				
				\checkmark					\checkmark				_

Subject Code:	Subject Name :	Dissertation Phase– I	Ty/Lb/ETL/IE	L	T / S.Lr	P/ R	С
EMCT22L05	Prerequisite:		Lb	0	0/0	0/10	5

Students are expected to do the Project in a group of 3 to 4 students. Theyshould identify the area/topic of the Project and should collect the literatures related to the project. Students intending to do Industrial projects will approach the industries with the support of the university, identify the industrial problem and finalize the project. In case of Industrial projects apart from Industry guide, a guide has to be appointed by the department. At the end of the Semester the students should submit their Project Phase - I report to the Department and Viva -Voce examination will be conducted by the examiners duly appointed by the Head of the department.

SEMESTER- VI

Subject	Code:	S	Subject N	Name : D	isserta	tion Ph	ase – Il	[Ty/Lb/	ETL/IE	L	T/	P/ I	R	С
EMCT2	2L06	I	Prerequi	site:					L	b	0	0/0	10/2	10	10
C · Credit	ο I · I	octur	$ - T \cdot T $	orial S I r	· Supe	rvisod I	oorning	$\mathbf{D} \cdot \mathbf{D}_{r}$	oblem /	Dractical	D · 1	Pasaar	•h		
T/L/ETP/	IE : Th	heory/	Lab/Emt	bedded Th	neory a	nd Pract	tice/Inte	ernal ev	valuatio	n.	к.	Researc	.11		
OBJEC	TIVE	:													
\triangleright	A	bility	to synthe	esize knov	wledge	and skil	lls prev	iously	gained a	and applie	ed to	an in-d	lepth		
sti	udy and	d exe	cution of	f new tech	nnical p	roblem.	•								
	Ca	apable	e to selec	t from dif	ferent	method	ologies,	metho	ds and	forms of a	analy	rsis to p	oroduc	e a	
su	itable	resear	ch desig	n, and jus	tify the	ir desigi	n.			•					
×	A	bility	to prese	nt the find	dings of	t their te	echnica	l soluti	on in a	written re	port.				
		resent	ing the w	$\frac{1}{2}$ ork in Ini	ernatio	nal/ Na	tional c	onferei	nce or r	eputed joi	irnal	s.			
COURS		100	MES (C	(0s): (3-	5)								1.1		
COI	Apply issue.	y the I	knowledg	ge and ski	lls acqu	ured in	the cou	rse of	study ac	Idressing	a spe	ecific p	roblen	n or	
CO2	To en user f	coura riend	ige stude	nts to thir achable s	nk critic	ally and	d creativ	vely ab	out soc	ietal issue	es and	d devel	op		
CO3	To re	fine r	esearch s	kills and	demons	strate th	eir prof	iciency	in con	municati	on sł	cills			
CO4	To tal	take on the challenges of teamwork, prepare a presentation and demonstrate the innate talents.													
Mappin	g of C	ourse	Outcon	nes with l	Progra	m Outc	omes (POs)							
COs/PO	s I	201	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	010 P	011	РО	12
CO1	3	3	3	3	3	2	3	3	1	2	2	3		3	
CO2	3	3	3	3	3	3	3	3	2	2	2	3		3	
CO3	2	2	3	3	3	3	3	3	2	3	3	3		3	
CO4	3	3	3	3	3	3	2	2	2	3	3	3		3	
COs / P	SOs	PS	501	PS	02	PS	503	P	SO4						
CO1	3	3		3		2		3							
CO2	3	3		3		3		2							
CO3	3	3		2		1		3							
CO4	3	3		3		3		2							
H/M/L i	indicat	tes St	rength o	f Correla	tion	3- High	n, 2- Me	edium,	1-Low						
		ces	50	al s	ore		ves	>							
		ien	ring	niti oci nce	Ŭ		ecti	nar	lent	_					
		c Sc	nee	d S cie	ram	ram ive	E	ulli	noq	ical ect					
		asic	ngi Xier	Hu S	1 <u>8</u> 0	og1 ect	pen	ter isci	kill omj	roj					
Catago	r 17	B	К		$\mathbf{P_1}$	P1 EI	Ō	D II	ŭ Ñ	P1 P					
Calego	гy				1					,					
					v		1			N					

Subject Code:	Subject Name : Dissertation Phase – II	Ty/Lb/ETL/IE	L	Τ/	P/ R	С
				S.Lr		
EMCT22L06	Prerequisite:	Lb	0	0/0	10/10	10
						1

To make the students to make use of the knowledge and skill developed during their four years of study and to apply them for making an innovative product/process for the development of society and industries.

Students are expected to do a Project work either in an Industry or at the University in the field of relevant Engineering /inter-disciplinary /multi-disciplinary area in a group of 3 or 4 students. The work to be carried out in Phase II should be continuation of Phase I. Each group will be allotted a guide based on the area of Project work. In case of industrial Project external guide has to be allotted from Industry. Inter disciplinary/multi-disciplinary project can be done with students of different disciplines as a group. Monthly reviews will be conducted during the semester to monitor the progress of the project by the project review committee. Students have to submit the Project thesis at the end of the semester and appear for the Project Viva-Voce examination conducted by the examiners duly appointed by the Controller of Examination. In case of industrial project certificate in proof has to be included in the report along with the bonofide certificate.

FORM NO.F/CDD/004 Rev.00 Date 20.03.2020

PROGRAMME ELECTIVE-I

FORM NO.F/CDD/004 Rev.00 Date 20.03.2020

Subject	Code:	Su	bject Na	ame : Ch	emical l	Reactor	Analys	is I	Ty/Lb/	ETL/IE	L	T / S	S.Lr	P/ R	C
EMCT2	2E01	Pro	erequisi	te:					T	Y	3	0/0		0/0	3
C : Credits T/L/ETP/I	s L : Le E : The	cture T : eory/Lab	: Tutoria /Embedo	l S.Lr : Su led Theor	pervised y and Pr	l Learni actice/Ir	ng P : P nternal e	roblem evaluation	/ Practic on.	al R : Rese	earch				I
OBJECT	TIVE: ≻ To	learn the	e heteros	veneous ca	talvzed	reaction	s and th	e mode	ls involv	ed in react	or des	sign			
COURS	E OUT	COME	S (COs)	:(3-5)											
CO1	Evalua	te hetero	geneous	reactor p	erforma	nce cons	idering	mass tr	ansfer li	mitations					
CO2	Perform	n the ene	ergy bala	ance and c	btain co	ncentrat	tion prot	files in 1	multipha	se reactors	5.				
CO3	Estima	te the pe	rforman	ce of mult	iphase r	eactors	under no	on-isoth	ermal co	onditions					
CO4	The im	portance	e of both	external a	and inter	nal trans	sport eff	fects in	gas						
CO5	Studen	t study n	nass and	heat trans	sfer mec	hanisms	in the c	lifferent	t reactors	3					
Mapping	g of Co	urse Ou	tcomes	with Prog	gram Ou	itcomes	(POs)								
COs/PO	s]	PO1PO2PO3PO4PO5PO6						PO7	PO8	PO9	PO	10	PO11	PO	12
CO1	1	1	2	3	2	1	2	3	2	1	2		3	2	
CO2	2	2	1	2	1	2	1	2	1	2	1		2	1	
CO3	1	1	2	3	2	1	2	3	2	1	2		3	2	
CO4	1	1	-	-	-	2	-	-	1	-	-		2	-	
CO5		2	-	-	-	-	-	-	2	-	-		-	-	
COs/PS	SOs (PSO:	1	PSC	J 2	PS	03	P	804						
	4	2		2		2		2						_	
C02	•	<u>)</u>		1		1		3							
C03		5		-		2		5							
C04	-	1		- 2		-									
H/M/L in	ndicate	s Streng	gth of Co	rrelation	3- H i	igh, 2- N	Aedium	. 1-Lov	V						
Categor	У	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project					
						v									

Subject Code:	Subject Name : Chemical Reactor Analysis I	Ty/Lb/ETL/IE	L	T / S.Lr	P/ R	С
EMCT22E01	Prerequisite:	TY	3	0/0	0/0	3

UNITI CHEMICAL FACTOR AFFECTING THE CHOICE OFTHEREACTOR

Fundamental mass, energy and momentum balance, Model for a semi-batch reactor, optimum operation policies and control strategies, optimal batch operation time, optimal temperature policies, stability of operation and transient behavior for mixed flow reactor. Transient CSTR analysis, Hot spot equation; Optimization using Lagrange multiplier, Poyntrgins maximum principle.

UNITII FIXED BEDCATALYTICREACTOR

The importance and scale of fixed bed catalytic processes, factors in preliminary design, modeling of fixed bed reactor. Pseudo-homogeneous model, the multi- bed adiabatic reactor, auto-thermal operation, nonsteady-state model with axial mixing, two dimensional pseudo-homogeneous models, heterogeneous models, global and intrinsic rates, Mechanism of catalytic reactions, Engineering properties of catalysts -BET surface area, pore volume, pore size, pore size distribution, one dimensional and two dimensional modelequation.

UNITIII **MULTIPHASEFLOWREACTOR**

Types of multiphase flow reactors, packed columns, plate columns, empty columns, stirred vessel reactors.Development of rate equations for solid catalyzed fluid phase reactions; Estimation of kinetic parameters. External mass and heat transfer in catalyst particles. Stability and selectivity, Packed bed reactor, slurry reactor; Trickle bed reactor and fluidized bed reactor. Intra-particle heat and mass transfer -Wheelers parallel pore model, random pore model of Wakao and Smith. deactivation of catalyst, Ideal and non-ideal flow in reactors.

UNITIV DESIGN MODEL FOR MULTIPHASEFLOWREACTORS

Gas and liquid phase in completely mixed and plug flow, gas phase in plug flow and liquid phase in completely mixed flow, effective diffusion model, two zone model, specific design aspects, packed absorber, two-phase fixed bed reactor, plate column, spray tower, bubble reactor, stirred vessel reactor.Computer - aided reactordesign.

TEMPERATURE EFFECTSINREACTOR UNITV

Introduction, well mixed system with steady feed, the stability and start-up of CSTR, limit cycles and oscillatory reactions, the plug flow reactors, tubular reactor, diffusion control, prorogation of reaction zone.

REFERENCE:

- Froment G. F. and K.B.Bischoff, "Chemical Reactor Analysis and Design", John Wiley & Sons
- ◆ Denbigh K. G. and J.C. Turner, "Chemical Reactor and Theory an Introduction", 3rd edition Cambridge UniversityPress.Bruce Nauman, "Chemical Reactor Design", John Wiley &Sons
- Elements of Chemical Reaction Engineering by H. Scott Fogler
- Chemical Engineering Kinetics by J. M.Smith.
- Chemical Reactor Design and Operation by K. R. Westerterp, W. P. M. Van Swaaij and A. A.C.
- M.BeenackersReference Chemical Reactor Analysis and Design by G. F. Froment and K. B.Bischoff

9Hrs

9Hrs

9Hrs

9Hrs

Total no. of hrs: 45Hrs

47

9Hrs

FORM NO.F/CDD/004 Rev.00 Date 20.03.2020

											Rev.00	Date 20.03.20	120	
Subject Co	ode:	Su	bject Na	nme : Pro	ocess De	sign and	d Synth	esis	Ty/Lb/	ETL/IE	L	T/S.Lr	P/ R	С
EMCT22E	202	Pre	erequisi	te:					ТУ	ζ	3	0/0	0/0	3
C : Credits I T/L/ETP/IE	L : Lec : Theo	cture T : ory/Lab/	Tutoria Embedo	l S.Lr : Su led Theor	pervised y and Pr	d Learni actice/Ir	ng P : P nternal e	roblem / valuatio	Practication.	al R : Res	earch			
OBJECTI	VE :													
\succ	Τοι	ındersta	nd the sy	ystematic	approac	hes for t	he deve	lopment	t of conc	eptual ch	emical	process de	signs	
\succ	To l	earn the	advanc	es in prob	lem form	nulation	and sof	tware ca	apabilitie	es which o	offer the	e promise	of a	
	new	generat	ion of p	ractical pi	ocess sy	nthesis	techniqu	ies base	d directl	y on strue	ctural o	ptimizatio	n.	
\succ	Proc	duct des	ign and	developm	ent proc	edure an	d Proce	ss life c	ycle asse	essment	-	-		
COURSE	OUT	COMES	S (COs)	: (3-5)										
CO1 A	nalyze	e alterna	tive pro	cesses and	l equipn	nent								
CO2 Sy	ynthes	ize a ch	emical p	process flo	w sheet	that wo	uld appr	oximate	the real	process				
CO3 D	esign	best pro	cess flov	w sheet fo	r a givei	n produc	:t							
CO4 Pe	erform	n econor	nic anal	ysis relate	d to pro	cess desi	gn and	evaluate	e project	profitabi	lity			
CO5 St	udent	learnin	ig chemi	cal proces	ss synthe	esis, ana	lysis, an	d optim	ization p	orinciples				
Mapping o	of Cou	irse Ou	tcomes	with Prog	gram Ou	itcomes	(POs)							
COs/POs	P	01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO1	1 PO)12
CO1	3		-	1	-	2	-	2	-	3	-	1	2	
CO2	2		1	1	-	1	1	3	-	2	-	3	1	
CO3	3		-	2	-	2	-	2	-	2	-	1	3	
CO4	3		-	1	-	2	-	2	-	3	-	1	2	
CO5	3		-	2	-	2	-	2	-	2	-	1	3	
COs /		PSO1	1	PSC	02	PS	03	P	SO4					
PMSOs											_			
CO1	3			-		1		-			_			
CO2	2			1		1		-						
<u>CO3</u>	3			-		2		-						
<u>CO4</u>	3			-		1		-						
	2	C4	41 - 6 ()	1	2 11	2	<u>/- 1!</u>	- 1 T	_					
H/M/L ING	Icates	s Streng	in of Co	orrelation	1 3- H	lgn, 2- N		, 1-LOW	′ 				<u> </u>	
Category		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				

Subject Code: EMCT22E02	Subject Name : Process Design and Synthesis	Ty/Lb/ETL/IE	L	T / S.Lr	P/ R	С
	Prerequisite:	TY	3	0/0	0/0	3

UNITI **INTRODUCTION**

Introduction to fundamental concepts and principles of process synthesis and design and use of flow sheet simulators to assist process design. Process Flow sheet Models: An Introduction to Design, Chemical process synthesis, analysis and optimization. Introduction to commercial process design software such as HYSYS, Aspen plus etc., Chemical Process (reactor, heat exchanger, distillation etc) analysis using commercialsoftware 9Hrs

UNITII **PRODUCTDESIGNANDDEVELOPMENTS**

Process engineering economics and project evaluation Life Cycle Assessments of process: From design to product development, Engineering Economic Analysis of Chemical Processes, Project costing and performance analysis, Environmental concerns, Green engineering, Engineering ethics, Health and safety. 9Hrs

UNITIII REACTORNETWORKS

Geometry of mixing and basic reactor types, The Attainable Region (AR) approach, AR in higher dimensions & for other processes, Reactive Separation processes, Fundamental behavior and problems, Separation through reactions. Reactive Residue Curve Maps

SYNTHESIS OFSEPARATIONTRAINS **UNITIV**

Criteria for selection of separation methods, select ion of equipment: Absorption, Liquid-liquid extraction Membrane separation, adsorption, leaching, drying, crystallization, Ideal distillation - Column and sequence fundamentals, Sharp splits & sequencing Phase diagrams for 2, 3 and 4 components, Feasibility and vapor ow rates for single columns, Residue curve basics, Non-ideal Distillation - Azeotropic systems; detecting binary azeotropes, Residue curve maps for azeotropic systems, Topological analysis, Feasibility for single azeotropic columns ,Binary VLLE and pressure- swing separation, Non-ideal distillation synthesis. Equipment sequencing: VLE + VLLE, Detailed Residue Curve Maps, Residue curve maps: Interiorstructure

UNITV HEAT EXCHANGERNETWORKSYNTHESIS

Minimum heating and cooling requirements, Minimum Energy Heat Exchanger Network, Loops and Paths, Reducing Number of Exchangers, HENS basics & graphics, The pinch point approach, Stream Splitting, Performance targets, trade-off & utilities, Heat & power integration, HENS as mathematical programming Total no. of hrs: 45Hrs

REFERENCES:

- *J*. "Conceptual Design of Chemical Processes", New York, NY: ✤ Douglas, McGraw-Hill Science/Engineering/Math, 1988. ISBN:0070177627.
- * Seider, W. D., J. D. Seader, and D. R. Lewin. "Product and Process Design Principles: Synthesis, Analysis, and Evaluation", 2nd ed. New York, NY: Wiley, 2204. ISBN:0471216631.
- Richard Turton, Richard C. Bailie, Wallace B. Whiting, Joseph A. Shaeiwitz., "Analysis, Synthesis, and Design of Chemical Processes", 2nd Edition, 2202, Prentice Hall ISBN-10: 0-13-064792-6
- Biegler L.T., Grossmann I.E. and Westerberg A.W., "Systematic Methods of Chemical Process Design", Prentice Hall, 1997.

9Hrs

9Hrs

9Hrs

FORM NO.F/CDD/004 Rev.00 Date 20.03.2020

Subject C EMCT22	Code: E03	Su	bject N	Name :	Fluidiz	ation]	Engine	ering	Ty L/I	/Lb/ET E	L	T / S	S.Lr	P/ R	С
		Pr	erequi	site:						TY	3	0/0		0/0	3
C : Credits T/L/ETP/I	L : L E : Tł	lecture neory/L	T : Tu Lab/Em	torial S.I bedded 7	_r : Sup Гheory	ervised and Pr	l Learn actice/I	ing P : nternal	Proble evalua	m / Practation.	tical	R : R0	esearc	h	
OBJECT	IVE	:			_					_					
	> To	o study o study	the ph	enomeno	on of fluit	uidizati f fluidi	ion wit	h indust	trial pr	ocessing	objec	tive			
	\sim To	o study	the de	sign of e	quipme	ents bas	sed on f	fluidiza	tiontec	hnique					
COURSE	E OU	TCON	IES (C	COs): (3)	3- 5)										
CO1 P	erforn	ning aı	nd unde	erstandin	g the b	ehavio	r fluidiz	zation ii	n fluidi	izedbed					
CO2 E	valua	te the c	he characterization of particles and power c					er cons	umptic	on in fluio	lizati	onreg	gimes		
CO3 U	nders	tandin	ding the applicability of the fluidized beds in estimate pressure drop, bubble size, TDH, vi					eds in cl	nemica	lindustri	es				
CO4 A	bility 1idize	to esti ed beds	mate p	ressure d	lrop, bu	ıbble si	ze, TD	H, void	age, he	eat and n	nass t	ransf	er rate	es for t	he
CO5 A	bility	to wri	vrite model equations for fluidized beds												
Mapping	of C	ourse	e Outcomes with Program Outcomes (POs)												
COs/POs	P	PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12								12				
CO1	3		1	-	1		-	2	-	3	2		1	2	
CO2	2		1	-	3		1	3	-	2	1		3	1	
$\frac{CO3}{CO4}$	3		2	-	1		-	2	-	2	$\frac{2}{2}$		1	3	
<u>CO4</u> CO5	$\frac{3}{2}$		-	2	1	-	2	<u>2</u> 1	-	-	-		<u>1</u> 1	1	
COs /		PSC)1	- PS	02	P	<u>-</u> SO3	P	SO4				<u> </u>	-	
PSOs															
CO1	3			2		1		1		-					
<u>CO2</u>	2	1		1		3		2							
$\frac{CO3}{CO4}$	3			$\frac{2}{2}$		<u>2</u> 1		1							
C04 C05	3			2		2		2							
H/M/L ir	dicat	tes Str	ength o	of Corre	lation	3- Hi	i gh, 2- 1	Mediur	n, 1-L	ow					
Category	¥	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project					

Subject Code:	Subject Name : Fluidization	IY/LD/EIL/IE	L	1 / S. Lr	P/ K	C	ĺ
ЕМСТ22Е03	Dramaguigitat	TX /	2	0/0	0/0	2	
	Prerequisite:	1 1	3	0/0	0/0	3	
UNITI INT	RODUCTION TO FLUIDIZATIONANDA	PPLICATIONS)			9Hı	rs

Phenomenon of fluidization, behavior of fluidized bed, contacting modes, advantages and disadvantages of fluidization, fluidization quality, selection of contacting mode, Beds for Industrial applications, coal gasification, synthesis reactions, physical operations, cracking of hydrocarbons.

UNITII MAPPING OFFLUIDIZATIONREGIMES

characterization of particles, mechanics of flow around single particles, minimum fluidization velocity, pressure drop versus velocity diagram, The Geldart classification of solids, fluidization with carryover of particles, terminal velocity of particles, distributor types, gas entry region of bed, pressure drop requirements, design of gas distributor, power consumption.

BUBBLINGFLUIDIZEDBEDS UNITIII

a 1.

. 0

T1 · 1·

...

Davidson model for bubble in a fluidized bed, and its implications, the wake region and movement of solids at bubbles, coalescence and splitting of bubbles, bubble formation above a distributor, slug flow, Turbulent and fast fluidization - mechanics, flow regimes and design equations, Emulsion movement, estimation of bed properties, bubble rise velocity, scale up aspects, flow models, two phase model, K-L model.

UNITIV SOLIDS MOVEMENT ANDGASDISPERSION

Vertical and horizontal movement of solids, Dispersion model, large solids in beds of smaller particles, staging of fluidized beds, Gas dispersion in beds, gas interchange between bubble and emulsion, estimation of gas interchange coefficient, Heat and mass transfer in fluidized systems, Mixing in fluidized systems - measurements and models.

UNITV FLUIDIZEDBEDREACTORS

Entrainment and elutriation, Freeboard behavior, gas outlet, entrainment from tall vessel, freeboard entrainment model, high velocity fluidization, pressure drop in turbulent and fast fluidization, Slugging, Spouted beds, Circulating Fluidized Beds.Mathematical model of a homogeneous fluidized bed, Design of catalytic reactors, pilot plant reactors, information for design, bench scale reactors, design decisions, deactivating catalysts, Design of noncatalytic reactors, kinetic models for conversion of solids, models for shrinking particles, conversion of solids of unchanging size.

Total no. of hrs: 45Hrs

REFERENCES:

- Levenspiel O. and Kunnii D., "Fluidization Engineering", John Wiley, 1972
- Liang-Shih Fan, "Gas-Liquid-Solid Fluidization Engineering", Butterworths, 1989

M.TECH CHEMICAL ENGINEERING 2020 REGULATIONS

9Hrs

9Hrs

9Hrs

9Hrs

PROGRAMME ELECTIVE-II

Subject	ct Code: Subject Name : Industrial Pollution Control Ty/Lb/ETL/IE L T / S.Lr P/ R C														
EMCT2	2E04	P	rerequisi	te:					T	Y	3	0/0		0/0	3
C : Credit: T/L/ETP/I	s L : L IE : Th	ecture T heory/Lal	: Tutoria D/Embedo	l S.Lr : Su led Theor	pervised y and Pr	d Learni actice/Ir	ng P : P nternal e	roblem valuatio	/ Practic	al R : Rese	earch				
OBJEC	TIVE	:													
	≻ To	o underst	and the in	mportance	of indu	strial po	llution a	and its a	lbatemen	ıt					
	➤ To	o study tł	ne underly	ying princ	iples of	industria	al pollut	ion con	trol						
	➤ To	o acquair	nt the stud	lents with	cases st	udies									
COURS	E OU'	TCOME	ES (COs)	: (3-5)											
CO1	Recog	gnize the	causes an	nd effects	of envir	onmenta	al pollut	ion							
CO2	Analy	ze the m	echanism	n of prolife	eration o	of polluti	on								
CO3	Devel	op meth	ods for po	ollution at	atement	and was	ste mini	mizatio	n						
CO4	Stud	lent shou	ld be able	e to desigr	n comple	ete treatn	nent sys	tem							
CO5	Desig	n treatm	ent metho	ods for gas	s, liquid a	and solid	d wastes								
Mappin	g of C	ourse O	utcomes	with Prog	gram Oı	itcomes	(POs)								
COs/PO	COs/POs PO1 PO2 PO3					PO5	PO6	PO7	PO8	PO9	PO	010	PO11	PO	12
CO1		3	2	-	-	-	-	2	-	3	-		-	1	
CO2		3	-	-	-	2	-	-	2	-	-		3	-	
CO3		2	-	-	-	-	1	-	-	-	-		-	-	
CO4		2	2	2	-	-	-	-	-	1	-		-	-	
CO5		2	-	-	-	-	1	-	-	-	-		-	-	
COs/PS	SOs	<u> PSC</u>)1	PSC	J2	PS	03	P	<u>SO4</u>						
		2		1		-		-						_	
C02		3		<u> </u>		-		-							
C03		<u>2</u> 1		1		2		-							
C04 C05		2		-		-		-							
H/M/L i	ndicat	es Stren	gth of Co	orrelation	3- H i	igh, 2- N	Aedium	, 1-Low	V						
Categor	Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core					Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project					
						v									

-

Subject Code:	Subject Name : In Control	ndustrial Pollution	Ty/Lb/ETL/IE	L	T / S.Lr	P/ R	С
EMCT22E04	Prerequisite:		TY	3	0/0	0/0	3

UNITI **INDUSTRIES&ENVIRONMENT**

Industrial scenario in India - Industrial activity and Environment - Uses of Water by industry - Sources and types of industrial wastewater - Industrial wastewater and environmental impacts - Regulatory requirements for treatment of industrial wastewater - Industrial waste survey - Industrial wastewater generation rates, characterization and variables - Population equivalent - Toxicity of industrial effluents and Bioassay tests.

UNITH **INDUSTRIALNOISEPOLLUTION**

Sources of noise pollution, characterization of noise pollution prevention& control of noise pollution, Factories Act 1948 for regulatory aspects of noise pollution.

UNITIII **AIRPOLLUTANTABATEMENT**

Air pollutants scales of concentration, lapse rate and stability, plume behavior, dispersion of air pollutants, atmospheric dispersion equation and its solutions, Gaussian plume models. Air pollution control methods, Source correction methods, Design concepts for pollution abatement systems for particulates and gases. Such as gravity chambers, cyclone separators, filters, electrostatic precipitators, condensation, adsorption and absorption, thermal oxidation and biological processes.

WASTE WATERTREATMENTPROCESSES **UNITIV**

Design concepts for primary treatment, grid chambers and primary sedimentation basins, selection of treatment process flow diagram, elements of conceptual process design, design of thickner, biological treatment Bacterial population dynamics, kinetics of biological growth and its applications to biological treatment, process design relationships and analysis, determination of kinetic coefficients, activated sludge process. Design, trickling filter design considerations, advanced treatment processes, Study of environment pollution from process industries and their abatement: Fertilizer, paper and pulp, inorganic acids, petroleum and petrochemicals, recovery of materials from process effluents.

UNITV SOLID WASTE AND HAZARDOUSWASTEMANAGEMENT

Sources and classification, properties, public helth aspects, Sanitary land fill design, Hazardous waste classification and rules, management strategies, Nuclear waste disposal Treatment methods - component separation, chemical and biological treatment, incineration, solidification and stabilization, and disposal methods, Latest Trends in solid waste management.

Total no. of hrs: 45Hrs

REFERENCES:

- Rao C.S., "Environmental Pollution Control Engineering", 2ndedition
- Mahajan S.P., "Pollution Control in ProcessIndustries".
- Nemerow N.L., "Liquid waste of industry- theories, Practices and Treatment", Addison Wesley, New York, 1971
- * Weber W.J., "Physico-Chemical Processes for water quality control", Wiley Interscience New York.1969
- * Strauss W., "Industrial Gas Cleaning", Pergamon, London, 1975
- Stern A.C., "Air pollution", Volumes I to VI, academic Press, New York, 1968
- Peterson and Gross .E Jr., "Hand Book of Noise Measurement", 7th Edn, 2203.
- * Antony Milne, "Noise Pollution: Impact and Counter Measures", David & Charles PLC, 2209.

9Hrs

9Hrs

9Hrs

9Hrs

9Hrs

Subject	ject Code: Subject Name : Application of Ty/Lb/ETL/IE L T/S.Lr P/R C													
EMCT	22E05	INA Pr	ereauis	nology I site•	n Unen	nical E	nginee	ring	Т	V	3	0/0	0/0	3
		11	crequis	site.					1	L	3	0/0	0/0	5
C : Credi	ts L : l	Lecture	T : Tuto	orial S.L	: : Supe	rvised	Learnin	Ig P : F	Problem	/ Practica	ul R :	Research		
T/L/ETP	/IE : T	heory/L	ab/Emb	bedded T	heory a	nd Prac	ctice/In	ternal	evaluation	on.				
OBJEC	TIVE	:												
×	Тот	understa	nd the	fundame	ntals of	the pre	paratio	n and	properti	es of nand	omate	erials fron	1 a	
	cher	mical en	igineeri	ng persp	ective	I	1							
COUR	SE OU	JTCOM	ES (C	$\frac{c_1}{(0s)}$: (3-	5)									
CO1	Under	standing	the dit	fferent to	n dowr	and be	ottomu	n annr	oaches f	ornanona	rticle	×c		
CO2	Get to	know t	he diffe	rent ann	ication	s of nar	onartic	<u>p appi</u> des in	chemica	1 enginee	ring	field		
CO3	Learni	ing the c	haracte	rization	technia	ues for	nanona	rticles	enenned		ing			
	Learn		maraett	Allzation	teening	ues 101	nunopu							
CO4	Studer	nts give	a surve	y of the l	key pro	cesses,	princip	les, an	d techni	ques usec	d to b	uild novel		
CO5	nanon	naterials	and as	semblies	of nano	omateri	als	C						
005	Stude	nts gain	knowle	age of st	ructure	, prope	rties, m	anufac	cturing, a	and applie	catioi	ns of vario	ous	
	nanon		and ch	aracteriz	ation m	lethods	in nanc	(DO)	blogy					
марри	oing of Course Outcomes with Program Outcomes (POS)													
COs/PO	Os 🗌	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 PO1	1 PO	012
CO1		3	2	-	-	-	1	-	2	3	-	-	-	
CO2		2	-	1	-	-	-	-	-	-	1	-	2	
CO3		3	-	1	-	-	-	1	2	-	2	-	2	
CO4		2	-	1	-	-	-	-	-	-	1	-	2	
<u>CO5</u>		<u>3</u>	-	1	-	- D(-	1		-	2	-	2	
COS /		PSC	01	PS	02	P	503	ł	2804					
CO1		2		3		-		_						
CO1 CO2		$\frac{2}{2}$		1		-		-						
CO3		3		2		-		-						
CO4		2		3		-		-						
CO5		2		1		2		-						
H/M/L	indica	ites Stre	ength of	f Correla	ation	3- Hig	h, 2- M	lediun	1, 1-Lov	7				
			es	cial										
Catego	ory	Basic Sciences	Engineering Science	Humanities and Soc Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				
						\sim								

9Hrs

Subject Code:	Subject Name : Application of	Ty/Lb/ETL/IE	L	T/S.Lr	P/ R	С	
	Nanotechnology in Chemical Engineering						UNI
EMCT22E05	Prerequisite:	TY	3	0/0	0/0	3	TI
	_						In

troduction to nanotechnology, Feynman's Vision-There's plenty of room at the bottom, Classification of nanostructures, Nanoscale architecture, Chemical interactions at nanoscale, Types of carbon based nanomaterials, Synthesis of fullerenes, Graphene, Carbon nanotubes, Functionalization of carbon nanotubes, One, two and multidimensional structures, Crystallography.

UNITII APPROACHES TO SYNTHESIS OF NANOSCALE MATERIALS AND CHARACTERIZATION

Top down approach, Bottom up approach Bottom-up vs. top-down fabrication; Top-down: Atomization, Sol gel technique, Arc discharge, Laser ablation, RF sputtering; Bottom-up: Chemical Vapor Deposition (CVD), Metal Oxide Chemical Vapor Deposition (MOCVD), Atomic layer deposition (ALD), Molecular beam Molecular self- assembly; Ultrasound assisted, microwave assisted, Mini, micro and nanoemulsion. Wet grinding method, Spray pyrolysis, Ultrasound assisted pyrolysis, atomization techniques. Surfactant based synthesis procedures, Types of molecular modeling methods. Size, shape, crystallinity, topology, chemistry analysis usingX-ray imaging, Transmission Electron Microscopy, HRTEM, Scanning Electron Microscopy, SPM, AFM, STM, PSD, Zeta potential, DSC and TGA.

UNITIII SEMICONDUCTORS ANDQUANTUMDOTS 9Hrs

Intrinsic semiconductors, Extrinsic semiconductors, Review of classical mechanics, de Broglie's hypothesis, Heisenberg uncertainty principle Pauli exclusion principle Schrödinger's equation Properties of the wave function, Applications: quantum well, wire, dot, Quantum cryptography

UNITIV POLYMER-BASED ANDPOLYMER-FILLEDNANOCOMPOSITES 9Hrs Nanoscale Fillers, Nanofiber or Nanotube Fillers, Plate-like Nanofillers, Equi-axed Nanoparticle Fillers, Inorganic Filler Polymer Interfaces, Processing of Polymer Nanocomposites, Nanotube/Polymer Composites, Layered Filler Polymer Composite Processing, Nanoparticle/Polymer Composite Processing: Direct Mixing, Solution Mixing, In- Situ Polymerization, In-Situ Particle Processing, In-Situ Particle Processing Metal/Polymer Nanocomposites, Properties of nano composites.

UNITYAPPLICATIONS TO SAFETY, ENVIRONMENTANDOTHERS9HrsChemical and Biosensors-Classification and Main Parameters of Chemical and Biosensors,
Nanostructured Materials for Sensing, Waste Water Treatment, Nanobiotechnology, Drug Delivery,

Nanostructured Materials for Sensing, Waste Water Treatment, Nanobiotechnology, Drug Delivery, Nanocoatings, Self cleaning Materials, Hydrophobic Nanoparticles, Photocatalysts, Biological nanomaterials, Nanoelectronics, Nanomachines & nanodevices, Societal, Health and Environmental Impacts.

Total no. of hrs: 45Hrs

REFERENCES

- Louis Hornyak G., Dutta Joydeep, Tibbals Harry F. and Rao Anil K., "Introduction to Nanoscience", (CRC Press of Taylor and Francis Group LLC), May 2208, 856pp, ISBN-13:978142204805
- Ajayan P. M., Schadler L. S., Braun P. V., "Nanocomposite Science and Technology", Edited by WILEY-VCH Verlag GmbH Co. KGaA, Weinheim ISBN: 3-527-30359-6,2203.
- Kelsall Robert W., Hamley Ian W., GeogheganMark, "Nanoscale Science and Technology", John Wiley & Sons, Ltd, 2206.MKal Ranganathan Sharma, "Nanostructuring Operations in Nanoscale Science and Engineering", McGraw- Hill Companies, Inc. ISBN: 978-0-07-162609-5,2210.
- "Organic and inorganic nanostructures".-(Artech House MEMS series), Nabok, Alexei,

Subject	Code:	Sul	bject Na	ame: C	hemo I	nformat	tics		Ty/Lb/l	ETL/IE	L	T / S	S.Lr	P/ R	С
EMCT2	2E06	Pre	erequisi	te:					TY	7	3	0/0		0/0	3
C : Credits T/L/ETP/I	s L : Le E : The	ecture T : eory/Lab/	Tutoria Embedo	l S.Lr : Su led Theor	pervised y and Pr	l Learni actice/Ir	ng P : Pr nternal e	roblem / valuatio	Practica	al R : Reso	earch				<u> </u>
OBJECT	FIVE :														
~	To gi	ve studen	its a con	cept of Ch	nemo-inf	formatic	s related	l to chen	nical stru	icture dat	abase	s and	database	e	
	search	h method	S												
COURS	E OUI	rcomes	S (COs)	: (3-5)											
CO1	The co	ourse will	introduc	ce the stud	lents pre	paring f	or profe	ssional	work in	chemistry	must	learn	how to	retriev	ve
CO2	specifi The co	c information	ation fro provide	m the eno	rmous a	nd rapid	ly expan	nding ch	lemicalli	terature.	in all	ofite	manifest	ations	
CO2 CO3	The co	urse will	expose	the studer	t to curr	ent and	relevant	annlica	tions in	OSAR and	d Dru		ion	auons	••
000		Juise will	expose	the studen		cint and	reievain	. applica	uons m	QSAR an		igDesi	ign.		
CO4	Studen	nts unders	stand the	quantum	method	s and mo	odels inv	volved in	n drug d	scovery a	ind tai	rgeted	l drugde	livery	
CO5	Students study the application of Chemical Libraries, Virtual Screening, Prediction of PharmacologicalProperties ng of Course Outcomes with Program Outcomes (POs)														
Mapping	g of Co	ourse Out	tcomes	with Prog	gram Ou	itcomes	(POs)								
COs/POs	s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10	PO11	PO	12
CO1		3	-	1	-	1	-	-	2	-	-		2	-	
CO2		2	-	-	-	-	1	-	-	1	-		-	1	
CO3		3	-	-	-	1	-	-	-	2	-		2	-	
CO4		2	-	-	-	-	1	-	-	1					
CO5		3	-	-	-	1	-	-	-	2					
COs / PS	SOs	PSO1	1	PSC	02	PS	03	PS	504	_					
CO1		2		3		1		-							
CO2		1		-		2		-							
CO3		2		-		1		2		-					
<u>CO4</u>		1		-		2		-							
<u>CO5</u>		2	1 80	-	<u> </u>		<u> </u>	2							
H/M/L 11	ndicate	es Streng	gth of Co	orrelation	3- H	igh, 2- N	ledium	, 1-Low							
Categor	у	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project					
						N									

UNITI CHEMO-INFORMATICS

Introduction, scope and application, Basics of Chemo-informatics, Current Chemo-informatics resources for synthetic polymers, pigments. Primary, secondary and tertiary sources of chemical information, Databases: Chemical Structure Databases (PubChem, Binding database, Drugbank), Database search methods:chemical indexing, proximity searching, 2D and 3D structure and substructure searching. Drawing the Chemical Structure: 2D & 3D drawing tools (ACD Chemsketch) Structureoptimization.

INTRODUCTION TOOUANTUMMETHODS UNITH

Combinatorial chemistry (library design, synthesis and deconvolution), spectroscopic methods and analytical techniques, Representation of Molecules and Chemical Reactions: Different types of Notations, SMILES Coding, Structure of Mol files and Sd files (Molecular converter, SMILES Translator).

ANALYSIS AND USE OF CHEMICAL REACTION INFORMATION UNITIII

Chemical property information, spectroscopic information, analytical chemistry information, chemical safety information, Drug Designing: Prediction of Properties of Compounds, QSAR Data Analysis, Structure-Activity Relationships, Electronic properties, Lead Identification, Molecular Descriptor Analysis.

UNITIV TARGETIDENTIFICATION

Molecular Modeling and Structure Elucidation: Homology Modelling (Modeller 9v7, PROCHECK), Visualization and validation of the Molecule (Rasmol, Pymol Discovery studio), Applications of Chemoinformatics in Drug Research - Chemical Libraries, Virtual Screening, Prediction of Pharmacological Properties.

UNITV DRUGDISCOVERY

Structure based drug designing, Docking Studies (Target Selection, Active site analysis, Ligand preparation and conformational analysis, Rigid and flexible docking, Structure based design of lead compounds, Library docking), Pharmacophore - Based Drug Design, Pharmacophore Modeling (Identification of pharmacophore features, Building 2D/3D pharmacophore hypothesis), Toxicity Analysis-Pharmacological Properties (Absorption, Distribution and Toxicity), Global Properties (Oral Bioavailability and Drug-Likeness) (ADME, OSIRIS, and MOLINSPIRATION)

REFERENCES:

- Bajorath J (2204), "Chemoinformatics: Concepts, Methods and Tools for Drug Discovery" HumanaPress Leach A, Gillet V, "An Introduction to Chemoinformatics" Revised edition, Springer
- ** Gasteiger J. Engel T. "A textbook of Chemoinformatics" Wiley- VCH GmbH & Co.KGaA
- Bunin B. Siesel B. Guillermo M. "Chemoinformatics: Theory, Practice & Products", Springer
- ✤ Lavine B. (2205), "Chemometrics and Chemoinformatics", American ChemicalSociety
- Casteiger J. and Engel T (2203) "Chemoinformatics" Wiley-VCH
- * Bunin Barry A. Siesel Brian, MoralesGuillermo,Bajorath Jürgen.Chemoinformatics: Theory, Practice, & Products Publisher:New York, Springer.2206.
- * Leach Andrew R., Valerie J. Gillet, "An introduction to Chemoinformatics", Publisher: Kluwer academic, 2203. ISBN:1402213477
- * Gasteiger Johann, Handbook of Chemoinformatics: From Data to Knowledge (4 Volumes), 2203. Publisher:Wiley-VCH.

9Hrs

9Hrs

9Hrs

9Hrs

9Hrs

Total no. of hrs: 45Hrs

PROGRAMME ELECTIVE-III

Subject	Code:	Su	bject Na	ame: I	Modern	concep	ts in Cat	alysis	Ty/Lb/	ETL/IE	L	T / S.	.Lr	P/ R	C
EMCT2	2E07	an Pr	d Surfa	ce Pnenoi	nenon				т	7	3	0/0		0/0	3
		11	erequisi						1	L	3	0/0		0/0	5
C : Credits	s L : L	ecture T	: Tutoria	1 S.Lr : Sı	ipervised	d Learni	ng P : Pr	oblem	/ Practic	al R : Rese	earch				
T/L/ETP/I	E:Th	eory/Lab	/Embedd	ded Theor	y and Pr	actice/In	nternal ev	aluatio	on.						
OBJEC	ГІУЕ	•													
	> 7	Γo give th	e studen	ts insight	into adv	ances in	catalytic	reacti	onengin	eering					
	>]	Γo unders	tand the	mechanis	ms invo	lved in c	catalytic	reaction	ns	C C					
	> 7	Го study t	he catal	yst charac	terizatio	ntechnic	ques								
	> 7	Γo study t	he adva	nced indus	strial app	olication	s incatal	ysis							
COURS	E OU	ГСОМЕ	S (COs)	: (3-5)											
CO1	To un	derstand	the conc	epts of ho	mogeno	us and h	ieterogen	eous ca	atalysis,	with speci	ficexa	amples	5.		
CO2	To stu	dy reacti	on mech	anisms an	d kinetio	cs of hor	mogenou	s and h	neteroger	neous catal	yticre	eaction	IS.		
CO3	To fai	niliarize	with the	characteri	zation o	fcatalys	ts								
CO4	Toun	derstand	the annli	cation and	1 mecha	nisme of	fseveral	types o	of catalve	ts in chem	icalir	nduetry	7		
	10 ull	acrotanu	ine appli				several	types 0				iausti y	•		
CO5	To un	derstand	the princ	ciples behi	nd catal	yst deac	tivation a	and stu	dy theirr	nodels					
Mapping	g of Co	ourse Ou	tcomes	with Prog	gram Ou	utcomes	(POs)								
COs/PO	s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 l	PO11	PO	12
CO1	3		2	-	-	-	1	-	2	3	-	-		-	
CO2	2	1	-	1	-	-	-	-	-	-	1	-		2	
CO3	3		-	1	-	-	-	1	2	-	2	-		2	
<u>CO4</u>	2	1	1	-	1	-	-	-	2	-	-	2		-	
CO_{π}/DS		DCO	<u> -</u> 1		-	- DC	-	- D	<u> </u>	-	-	I		-	
COS/PS	$\frac{505}{2}$	P50	1	2	<u>J</u> 2	1 PS	03	P	504						
CO1	د 1			2		1		-							
C02	2			2		5 1									
CO4	2			2		1		2							
C04	2			3		1		<u>-</u> 1							
H/M/L i	ndicat	es Streng	gth of Co	orrelation	3-H i	igh, 2- N	Aedium,	1-Low	V						
				nce											
				cie											
Categor	у			al S											
_			ces	ocia											
			iene	d S		ves		Ŋ	Jt	ct					
		ces	Sc	an	re	scti	ves	lina	onei	oje					
		ienc	ing	ties	Co	Ele	scti	cip	npc	/Pt				1	
		Sc	leer	ani	am	am	Ele	Dis	Col	cal					
		asic	ıgir	mnj	ogr	ogr	Den	ter	ili	acti				1	
		B;	Er	H	Pr	Pr	OI	In	Sk	Pr					

Subject Code:	Subject Name : Modern concepts in Catalysis	Ty/Lb/ETL/IE	L	T/S.Lr	P / R	C
EMCT22E07	Prerequisite:	ТҮ	3	0/0	0/0	3

UNITI INTRODUCTIONTOCATALYSIS

Definition of Catalytic activity, Magnitude of Turnover Frequencies and Active Site Concentrations, Evolution of Important Concepts and Techniques in Heterogeneous Catalysis, Classification of Catalysts – Homogeneous, Heterogeneous, Biocatalysts, Dual Functional Catalysts, Enzymes, Solid Catalysts, Powder Catalysts, Pellets, Composition, Active Ingredients, Supportive materials, Catalysts Activation, CatalystDeactivation.

UNITII ADSORPTIONINCATALYSIS

Adsorption and its importance in Catalysis, Adsorption and potential energy curves, Surface Reconstruction, Adsorption Isotherms and Isobars, Dynamical Considerations, Types of Adsorption Isotherms and their Derivation from Kinetic Principles, Mobility at Surfaces, Kinetics of surface Reactions, Photochemistry on oxide and metallic surfaces, Characterization of the adsorbed molecules

UNITIII CATALYSTCHARACTERIZATION

Catalyst Characterization Methods – Their Working Principle and Applications – XRF, XRD, IR Spectroscopy, XPS, UPS, ESR, NMR; Infrared, Raman, NMR, Mossbauer and X-Ray Absorption spectroscopy, Surface Acidity and Toxicity, Activity, Life time, Bulk density, Thermal stability Crystal Defects, Peroviskites, Spinels, Clays, Pillared Clays, Zeolites.

UNITIV SIGNIFICANCE OF PORE STRUCTURE AND SURFACEAREA 9Hrs

Importance of Surface Area and Pore Structure, Experimental Methods for Estimating Surface Area – Volumetric, Gravimetric, Dynamic Methods, Experimental Methods for Estimating Pore Volume and Diameter Gas Adsorption and Mercury Porosimeter Method, Models of the Pore Structure – Hysteresis Loops, Geometric Models, Wheeler's Model, Dusty Gas Model, Random Pore Model, Diffusion in Porous Catalysts – Effective Diffusivity, Knudsen Diffusion, Effect of Intraparticle Diffusion, Non-isothermal Reactions in Pores, DiffusionControl.

UNITV INDUSTRIAL APPLICATIONS-CASESTUDIES

Industrial processes involving heterogeneous solid catalyst: Synthesis of Methanol, Fiscer-Tropsch Catalysis, Synthesis of Ammonia, Automobile Exhaust Catalysts and Catalyst Monolith, Photocatalytic Breakdown of Water and the Harnessing of Solar Energy.Contribution of homogeneous catalytic process in chemical industry:Oxidations of Alkenes such as production of acetaldehyde, propylene oxide etc., Polymerization such as production of polyethylene, polypropylene or polyesterproduction

Total no. of hrs: 45Hrs

REFERENCES:

- Emmett, P.H. "Catalysis Vol. I and II, Reinhold Corp.", New York, 1954
- Smith, J.M. "Chemical Engineering Kinetics ", McGraw Hill, 1971
- Thomas and Thomas "Introduction to Heterogeneous Catalysts ", Academic Press, London1967
- Piet W.N.M. van Leeuwen, Homogeneous catalysis: Understanding the Art, Springer, 2204
- Piet W.N.M. van Leeuwen, and John C. Chadwick, Homogeneous catalysis: Activity-stabilitydeactivation, Wiley, VCH,2211.

9Hrs

9Hrs

9Hrs

9Hrs

Subject C	ode:	Su Pro	bject Na ocesses	ame :	Advanc	ed Dow	nstrean	1	Ty/Lb/	ETL/IE	L	T / S.Lr	P/ R	C
EMCT22	E08	Pro	erequisi	te:					ТУ	<i>l</i>	3	0/0	0/0	3
C : Credits T/L/ETP/II	L : Leo E : The	cture T : ory/Lab/	Tutoria Æmbedo	l S.Lr : Su led Theor	upervised y and Pr	d Learni actice/Ir	ng P : Pa nternal e	roblem / valuatio	/ Practic	al R : Res	earch			
OBJECT	IVE :													
	≻ To	o unders	tand the	unit proce	esses inv	olved in	downst	ream pr	ocessing	5 .				
	≻ To	o study a	dvanced	l treatmen	t metho	ds.								
COURSE	OUT	COME	S (COs)	:(3-5)			<u> </u>							
CO1	o lear	n effecti	ve strate	gies of do	wnstrea	m proce	ssing in	chemic	al indust	ry.				
CO2	o stud	ly the en	ergy cor	servation	in diffe	rent sepa	aration p	processe	S					
CO3	<u>o</u> una	tond the	rolo of	riying des	ign prin	cipies								
CO4 0		e reactor	s instra	eam and d	ownstre	am proc	esses in	product	ion					
Manning	of Co	urse Au	tcomee	with Proc	ram O	itcomes	(PO c)	Product	.1011					
COs/POs		<u>201</u>	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 PO1	PO	12
CO1	3	0 -	-	2	-	-	1	-	2	3	2		-	
CO2	3		2	-	-	-	2	-	-	3	-	-	2	
CO3	2		1	1	-	-	-	-	2	-	2	2	1	
CO4	3		-	1	-	2	-	-	3	-	-	1	-	
CO5	2		2	-	2	1	1	1	-	1	1	-	2	
COs / PS	Os	PSO	1	PS	02	PS	03	PS	SO4					
CO1	1	<u> </u>		2		1		3						
CO2	3	8		2		1		-						
<u>CO3</u>	1	<u> </u>		2		-		1						
CO4 CO5	1	3		2		1		1						
CU5 H/M/L in	L dianta	s Strong	th of C	1 predation	<u>, 3 U</u>	1 ah 2 N	Indium	<u> </u>	7					
	uicate	soueng			<u> </u>	ign, 2- N		, 1-LUW	, 					
Category		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				

Subject Code:	Subject Name : Processes	Advanced Downstream	Ty/Lb/ETL/IE	L	T / S.Lr	P/ R	С
EMCT22E08	Prerequisite:		ТҮ	3	0/0	0/0	3

UNITI **INTRODUCTION**

Introduction to Downstream processes theory, applications in chemical separation for Gas-Liquid system, Gas- Solid system. Super critical fluids extraction in food, pharmaceutical, environmental and petroleum applications, water treatment, desalination, Bio separation, dialysis, industrialdialysis.

UNITH DOWNSTREAM PROCESSES INPETROCHEMICALINDUSTRY 9Hrs

Cryogenic distillation for refinery, petrochemical off gases, natural gases, gas recovery-Olefin, Helium, Nitrogen, Desulfurization - coal, fluegases

UNITIII **ADVANCEDDISTILLATIONPROCESSES**

Azeotropic & extractive distillation - residue curve maps, homogeneous azeotropic distillation, pressure swing distillation, Column sequences, heterogeneous azeotropic distillation.

UNITIV ENERGY CONSERVATION INSEPARATIONPROCESSES

Energy balance, molecular sieves - zeolights, adsorption, catalytic properties, manufacturing processes, hydrogel process, application, New trends.

UNITV NON-IDEAL MIXTURES ANDIONEXCHANGE

Separations process synthesis for nonazeotropic mixtures, non ideal liquid mixtures, separation synthesis algorithm, Ion exchange - manufacture of resins, physical & chemical properties, capacity, selectivity, application, regeneration, equipment, catalysis use.

Total no. of hrs: 45Hrs

REFERENCES:

- Perry's "Chemical Engg. Handbook": McGraw HillPub.
- ♦ Douglas J.M., "Conceptual Design of Chemical Processes", McGrawHill
- ♦ Liu Y.A., "Recent Developments in Chemical Process & Plant Design", John Wiley & SonsInc.
- Timmerhaus K.D., "Cryogenic Process Engg.", PlenumPress
- ◆ Othmer Kirk "Encyclopedia of Separation Technology, Vol I & II", WileyInterscience

9Hrs

9Hrs

9Hrs

9Hrs

Subject	Code: 2E09	2	Subject Na	ame : Cor	nputatio	onal Flu	id Dyna	amics	Ty/Lb/	ETL/IE	L	T / S.Lr	P/ R	C
	21:07	1	Prerequisi	te:					ТУ	<i>I</i>	3	0/0	0/0	3
C : Credits	sL:Le	ecture '	T : Tutoria	1 S.Lr : Sı	pervise	1 Learni	ng P : Pi	roblem	/ Practic	al R : Rese	earch			
T/L/ETP/I	E : Th	eory/L	ab/Embedo	led Theor	y and Pr	actice/Ir	nternal e	valuatio	on					
OBJEC	FIVE :	:												
	≻ т	'o mak	e students	understan	d the go	verning	equation	s of flu	iid dynar	nics and th	neir d	erivation f	om	
	la	aws of	conservati	on										
	≻ T	o deve	elop a good	understa	nding in	comput	ational s	kills, ir	ncluding	discretisat	ion, a	ccuracy a	nd	
	S	tability	<i>.</i>											
	≻ T	lo acqu	aint the stu	idents wit	h a proc	ess of de	evelopin	g a mat	thematica	al and geo	metri	cal model	of	
	f	low, ap	oplying app	propriate b	oundary	v conditi	ons and	solving	g system	of equatio	ns.			
COURS	E OUI	ГСОМ	IES (COs)	: (3-5)										
CO1	Under	stand t	he basic pr	inciples o	f mather	natics ai	nd nume	rical co	oncepts o	f fluid dyı	namic	s.		
CO2	Develo	op gov	erning equ	ations for	a given	fluid flo	w syster	n.						
CO3	Adapt	finite	difference	technique	s for flui	d flow n	nodels.							
CO4	Apply	finite	difference	method fo	or heat tr	ansfer p	roblems							
CO5	Solve computational fluid flow problems using finite volume techniques.													
Mapping	g of Co	ourse (Dutcomes	with Prog	gram Ou	itcomes	(POs)							
COs/PO	s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 PO	1 PO	12
CO1		3	-	2	-	-	1	-	2	3	2	-	-	
CO2		2	2	1	-	2	-	-	2	-	1	-	2	
CO3		3	-	1	-	-	-	1	2	-	2	-	2	
CO4		1	-	-	-	2	1	-	3	-	-	-	-	
CO5		2 DC	-	- DC/	-	1 PC	-	- D	-	2	-	-	-	
COS/PS	SUS	<u>PS</u> 1	01	2	52	PS	03	2 P	504					
CO1		<u>1</u> 2		2		1		5						
CO2		<u>.</u> 1		2		-		1						
CO4		3		2		-		-						
CO5	,	2		1		-		-						
H/M/L i	/L indicates Strength of Correlation 3- High, 2- Medium, 1-Low													
Categor	Category		ing Sciences	ties and Social	Core	Electives	sctives	ciplinary	nponent	/Project				
		Basic Sc.	Engineer	Humani Science	Program	✓ Program	Open Ele	Inter Dis	Skill Cor	Practical				

Subject Code:	Subject Name : Computational Fluid Dynamics	Ty/Lb/ETL/IE	L	T / S.Lr	P/ R	C
EMCT22E09	Prerequisite:	TY	3	0/0	0/0	3

UNITI INTRODUCTION TOFLUIDDYNAMICS

Concepts of Fluid Flow, Pressure distribution in fluids, Reynolds transport theorem, Integral form of conservation equations, Differential form of conservation equations, Different Types of Flows, Euler and Navier Stokes equations, Properties of supersonic and subsonic flows, Flow characteristics over various bodies. Philosophy of CFD, Governing equations of fluid dynamics and there physical meaning, Mathematical behavior of governing equations and the impact on CFD simulations, Simple CFD techniques and CFL condition. Numerical Methods in CFD:Finite Difference, Finite Volume, and Finite Element, Upwind and downwind schemes, Simple and Simpler schemes, Higher order methods, Implicit and explicit methods, Study and transient solutions

UNITII GRID GENERATION

Basic theory of structured grid generation, Surface grid generation, Mono block, multi block, hierarchical multi block, Moving and sliding multiblock, Grid clustering and grid enhancement. Basic theory of unstructured grid generation, advancing front, Delaunay triangulation and various point insertion methods, Unstructured quad and hex generation, grid based methods, various elements in unstructured grids, Surface mesh generation, Surface mesh repair, Volume grid generation, Volume mesh improvement, mesh smoothing algorithms, grid clustering and quality checks for volume mesh. Adaptive, Moving and Hybrid Grids, Need for adaptive and, moving grids, Tet, pyramid, prism, and hex grids, using various elements in combination

UNITIII TURBULENCE ANDITS MODELLING

Transition from laminar to turbulent flow, Effect of turbulence on time-averaged Navier-Stokes equations, Characteristics of simple turbulent flows, Free turbulent flows, Flat plate boundary layer and pipe flow, Turbulence models, Mixing length model, The k-e model, Reynolds stress equation models, Algebraic stress equation models.

UNITIV CHEMICAL FLUIDMIXINGSIMULATION

Stirred tank modeling using the actual impeller geometry, Rotating frame model, The MRF Model Sliding mesh model, Snapshot model, Evaluating Mixing from Flow Field Results, Industrial Examples

UNITV POST-PROCESSING OF CFDRESULTS

Contour plots, vector plots, and scatter plots, Shaded and transparent surfaces, Particle trajectories and path line trajectories, Animations and movies, Exploration and analysis of data.

Total no. of hrs: 45Hrs

REFERENCES

- Anderson John D., "Computational Fluid Dynamics: The Basics with Applications", Mc Graw Hill, 1995
- Ranade V.V., "Computational Flow Modeling for Chemical Reactor Engineering", Process Engineering Science, Volume 5,2201
- Knupp Patrick and Steinberg Stanly, "Fundamentals of Grid Generation", CRC Press, 1994
- ✤ Wilcox D.C., "Turbulence Modelling for CFD",1993
- Wesseling Pieter, "An Introduction to Multigrid Methods", John Wiley & Sons, 1992
- Thompson J.F., Warsi Z.U.A. and Mastin C.W., "Numerical Grid Generation: Foundations and Applications", North Holland, 1985
- Patankar S.V., "Numerical Heat Transfer and Fluid Flow", McGraw-Hill, 1981
- Gatski Thomas B., Hussaini M. Yousuff and Lumley John L., "Simulation and Modelling of Turbulent Flows", Oxford University Press, 1996
- Laney, C. B., "Computational Gas Dynamics", Cambridge Uni. Press, 1998.

*

9Hrs

9Hrs

9Hrs

9Hrs

9Hrs

Subject Code	cct Code: Subject Name : Bioprocess Engineering T22E10								ETL/IE	L	T/S	5.Lr	P/ R	C
	′ <u> </u>	Prerequisi	te:					TY	7	3	0/0		0/0	3
C · Credits L ·]	Lecture '	Γ · Tutoria	$\frac{1SIr \cdot Si}{1SIr \cdot Si}$	inervised	d Learni	ησ Ρ · Ρ	roblem	/ Practic:	al R · Rese	earch				
T/L/ETP/IE : T	heory/La	ab/Embedo	ded Theor	y and Pr	actice/Ir	nternal e	valuatio	on.		curen				
OBJECTIVE	E :													
	To learn	the princi	iples of bi	o proces	sing for	traditio	nal cher	nical eng	ineering i	n the	design	n and		
	develop To stud	ment of pr	ocesses ir	ivolving ples in tl	biocatal ne devel	lyst. opment	of prod	ucts hase	d on livin	a cella	or			
,	subcom	ponents of	such cell	8.		opment	or prou	uets base	u on nvin	g cena	5 01			
\checkmark	To learn	and deve	lop quanti	tative m	odels an	d appro	aches re	elated to	bioprocess	ses				
×	To learn	mechanis	tic model	s for enz	zyme cat	alyzed 1	reactions	s for larg	e scale pr	oducti	ion of	bio-pro	ducts	
COURSE OU	JTCOM	ES (COs)	: (3-5)											
CO1 Unde	erstand t	ne differen	t cells and	d their us	se in bio	chemica	al proces	sses.						
CO2 Unde	erstand t	he role of	enzymes i	n kinetic	c analysi	s of bio	chemica	al reaction	n.					
CO3 Anal	yze bior	eactors, up	ostream ar	d downs	stream p	rocesses	s in proc	duction o	f bio-proc	lucts				
CO4 Dem	onstrate	the fermer	ntation pro	ocess and	d its pro	ducts fo	r the late	est indus	trial revol	ution				
CO5 Unde	Understand the difference between bioprocesses and chemical processes													
Mapping of C	Mapping of Course Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10	PO11	PO	12
CO1	3	-	2	-	-	1	-	2	3	2		-	-	
CO2	2	2	1	-	2	-	-	2	-	1		-	2	
<u>CO3</u>	3	-	1	-	-	-	1	2	-	2		-	2	
<u>CO4</u>	2	-	-	-	1	-	-	-	2	-		-	1	
COS / PSOS	2 PS	01	J PS	-	- PS	03	2 P	- SO4	1	-		1	-	
CO1	1	01	2		1	05	3	004						
CO2	3		2		1		-							
CO3	1		2		-		1							
<u>CO4</u>	2		1		2		1							
CO5 H/M/L indice	2 tos Stro	ngth of C	1 orrelation	<u>3</u> H	2 igh 2-N	Andium		17						
				- - - - - - - - -	Ign, 2- 1		, 1-LUw	, 						
Category	tiences	ring Sciences	tties and Social s	Core	Electives	ectives	sciplinary	mponent	l /Project					
	Basic Sc	Enginee	Human Science	Program	Program	Open El	Inter Dis	Skill Co	Practica					
			ECH CHE	MICAL I	√ ENGINE	ERING	 2020 RI	EGULAT	IONS				67	!

Subject Code:	Subject Name : Bioprocess Engineering	Ty/Lb/ETL/IE	L	T / S.Lr	P/ R	С
EMCT22E10	Prerequisite:	TY	3	0/0	0/0	3

UNITI INTRODUCTION

Biotechnology and bioprocessing. An overview of biological basics. Basics of enzyme and microbial kinetics. Operating considerations for bioreactors: cultivation method, modifying batch and continuous reactors, immobilized cell systems, solid state fermentations.

UNITII ADVANCEENZYMEKINETICS

Models for complex enzyme kinetics, modeling of effect of pH and temperature, models for insoluble substrate, models for immobilized enzyme systems, diffusion limitations in immobilized enzyme system, electrostatic and steric effects.

UNITIII BIOREACTORS

Selection, scale-up, operation and control of bioreactors: Scale-up and its difficulties, bioreactor instrumentation and control, sterilization of process fluids.Modifications of batch and continuous reactors, chemostat with recycle, multistage chemostat, fed-batch operation, perfusion system, active and passive immobilization of cells, diffusional limitations in the immobilized system, solid state fomenters.

UNITIV HOMOGENEOUS AND HETEROGENEOUS REACTIONSINBIOPROCESSES 9Hrs

Reaction thermodynamics, growth kinetics with Plasmid instability, The thiele modulus and effectiveness factor, diffusion and reaction in waste treatment lagoon. Reactors and choice of reactors.

UNITV RECOVERY AND PURIFICATION OF PRODUCTS

Strategies to recover and purify products, separation of insoluble products, cell disruption, separation of soluble products.

Total no. of hrs: 45Hrs

REFERENCES

- Sailey J.E. and Ollis D.F., "Biochemical Engineering Fundamentals", McGraw-Hill
- Doran P.M., "Bioprocess Engineering Principles", AcademicPress
- Shuler M.L., Kargi F., "Bioprocess Engineering", Prentice–Hall

9Hrs

9Hrs

9Hrs

9Hrs

FORM NO.F/CDD/004 Rev.00 Date 20.03.2020

PROGRAMME ELECTIVE-IV

Subject	Code:	Subject Name : Micro and Nano fluidics					5	Ty/Lb/	ETL/IE	L	T/S	S.Lr	P/ R	C	
EMCT2	2E11	Pre	erequisi	te:					TY	ł	3	0/0		0/0	3
C : Credit T/L/ETP/	s L : Le IE : The	ecture T : eory/Lab/	Tutoria Embedo	l S.Lr : Su led Theor	pervised y and Pr	d Learnin actice/Ir	ng P : Pa nternal e	roblem /	/ Practic on.	al R : Res	earch				
OBJEC	TIVE :	o introdu	ce to th	a students	the ver	ious opp	ortuniti	es in the	omerci	ng field of	micr	oandi	nanoflu	uide	
COURS			$\frac{1}{COs}$	$\cdot (3, 5)$, the val	ious opp	ortuniti		e enter gr	ing field of	IIICI	0 and 1	nanoni	nus.	
				. (5- 5)	•••	1 .	1 0	:1.0				1 .	T.		
001	the thermal sciences with electrostatics, electro kinetics, colloid science; electrochemistry; and molecular biology.														
CO2	To the	the make students familiar with the important concepts applicable to small micro and nano fluidic devices,													
CO3	their fabrication, characterization and application. To get familiarize with the new concepts of real-time nano manipulation & assembly														
CO4	Student understand major methods to fabricate micro/nanofluidic devices														
C05	Studen	t underst	and maj	or applica	tions of	micro/na	anofluic	lics							
Mappin	g of Co	urse Ou	tcomes	with Prog	gram Ou	itcomes	(POs)								
COs/PO	s l	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10	PO11	PO	12
CO1		3	-	2	-	-	1	-	2	3	2		-	-	
CO2	2	2	2	1	-	2	-	-	2	-	1		-	2	
<u>CO3</u>		3	-	1	-	-	-	1	2	-	2		-	2	
<u>CO4</u>	4	2	2	1	-	2	-	-	2	-	1		-		
CO_{5}		<u>5</u>	-		-	- DC	-		2	-	2		-		
COS/P_{i}	SUS /	<u>PSU</u>	L	2	92	PSO3			504						
		3		2		1									
C02	4	2		1		-		1							
	4	2		1		-		•							
C04	A	2		1		-		1							
H/M/L i	ndicate	<u>2</u> es Streno	th of Co	_ 1 orrelation	3. Hi	- igh 2. N	Aedium	- 1.Low	7						
	mulcate				<u> </u>	ign, 2- 1		, 1-1.0	<u> </u>						
Catego	ry	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project					
						V									

Subject Code: EMCT22E11	Subject Name : Nano fluidics	Micro and	Ty/Lb/ETL/IE	L	T / S.Lr	P/ R	С
	Prerequisite:		TY	3	0/0	0/0	3
UNITI INT	PODUCTION					0Hrs	

Fundamentals of kinetic theory-molecular models, micro and macroscopic properties, binary collisions, distribution functions, Boltzmann equation and Maxwellian distribution functions-Wall slip effects and accommodation coefficients, flow and heat transfer analysis of microscale Couette flows, Pressure driven gas micro-flows with wall slip effects, heat transfer in micro-Poiseuille flows, effects of compressibility. Pressure Driven Liquid Microflow: apparent slip effects, physics of near-wall microscale liquid flows, capillary flows, electro-kinetically driven liquid micro - flows and electric double layer (EDL) effects, concepts of electroosmosis, electrophoresis anddielectro-phoresis.

UNITII LAMINARFLOW

Hagen-Poiseullie eqn, basic fluid ideas, Special considerations of flow in small channels, mixing, microvalves & micropumps, Approaches toward combining living cells, microfluidics and 'the body' on a chip, Chemotaxis, cell motility. Case Studies in Microfluidic Devices. Ionic transport: Polymer transport – microtubule transport in nanotuble channels driven by Electric Fields and by Kinesin Biomolecular Motors - Electrophoresis of individual nanotubules in microfluidic channels.

UNITIII FABRICATIONTECHNIQUES

Nanofluidic channels – Biomolecules separation using Nanochannels - Biomolecules Concentration using Nanochannels – Confinement of Biomolecules using Nanochannels. Hydrodynamics: Particle moving in flow fields – Potential Functions in Low Renoylds Number Flow – Arrays of Obstacles and how particles Move in them: Puzzles and Paradoxes in Low Re Flow.

UNITIV MICROFLUIDICSANDLAB-ON-A-CHIP

Microfluidic Devices - Microchannels, Microfilters, Microvalves, Micropumps, Microneedles, Microreserviors, Micro-reaction chambers. Concepts and Advantages of Microfluidic Devices - Fluidic Transport - Stacking and Scaling – Materials for The Manufacture (Silicon, Glass, Polymers) - Fluidic Structures - Fabrication Methods - Surface Modifications - Spotting - Detection Mechanisms. Microcontact printing of ProteinsStrategies- printing types- methods and characterization- Cell nanostructure interactions- networks for neuronal cells. Applications in Automatic DNA sequencing, DNA and Protein microarrays.

UNITV BIOMEMS(MICRO-ELECTRO-MECHANICALSYSTEMS)

Introduction and Overview, Biosignal Transduction Mechanisms: Electromagnetic Transducers Mechanical Transducers, Chemical Transducers, Optical Transducers – Sensing and Actuating mechanisms (for all types). Case Studies in Biomagnetic Sensors, Applications of optical and chemical transducers. Ultimate Limits of Fabrication and Measurement, Recent Developments in BioMEMS and BioNEMS - An alternative approach to traditionalsurgery,Specifictargetingoftumorsandotherorgansfordrugdelivery,Micro-visualizationand manipulation, Implantation of microsensors, microactuators and other components of a larger implanted device or external system (synthetic organs).

Total no. of hrs: 45Hrs

TEXT BOOKS:

- ✤ Joshua Edel "Nanofluidics" RCS publishing,2209.
- ◆ Patric Tabeling "Introduction to Microfluids" Oxford U. Press, New York2205.
- ♦ K. Sarit "Nano Fluids; Science and Technology", RCS Publishing, 2207.

REFERENCES

- M. Madou, Fundamentals of Microfabrication, CRC Press, 1997
- ♦ G. Kovacs, Micromachined Transducers, McGraw-Hill, 1998
- Steven S Saliterman, Fundamentals of BioMEMS and Medical Microdevices, 2206

M.TECH CHEMICAL ENGINEERING 2020 REGULATIONS

9Hrs

9Hrs

9Hrs

9Hrs

Subject (ıbject Code: Subject N				Process	Integrat	tion		Ty/Lb/	ETL/IE	L	T / S.I	Lr	P/ R	C
EMCT22	2E12	Pro	erequisi	te:					T	ľ	3	0/0		0/0	3
C : Credits T/L/ETP/I	E : Lec E : Theo	ture T : ory/Lab	Tutoria /Embedo	l S.Lr : Su led Theory	pervised y and Pr	d Learni actice/Ir	ng P : P nternal e	roblem / valuatio	⁷ Practic n.	al R : Res	earch	I			<u> </u>
OBJECT	TIVE :														
	≻ То	introdu	ice to the	e students,	the var	ious opp	ortuniti	es in the	process	integrati	on in c	chemica	.1		
	ind	ustries.													
	> To	the ma	ke stude	nts familie	ar with t	he impo	rtant co	ncepts p	rocess 11	ntegration	tor he	eat			
	rec	overy/r	ninimize	ition. with the e	acastudi										
COURSI		COME	$\frac{1111112e}{S(CO_s)}$	$\frac{\text{with the C}}{\cdot (3-5)}$	asestuui	les.									
	Maximu	m hoot		$\cdot (3-3)$		and (hath									
		in neat	recover	y for a giv	en proce			ocesses							
CO2	Energy-	intensiv	e therm	al separati	on oper	ations (d	listillati	on	cc: :						
CO3	Evaluate the process integration measures with respect to energy efficiency														
CO4	Understanding of heat and power integration														
<u>CO5</u>	Ability t	o modi	ty proce	sses for m	inimiza	$\frac{1}{4}$	vaste wa	ater and	raw wat	er utilizat	ion				
Mapping	g of Cou	rse Ou	tcomes	with Prog	gram Oi	utcomes	(POs)								
COs/POs	s P	01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 P	011	PO	12
CO1	3		-	2	-	-	1	-	2	3	2	-		-	
CO2	2		2	1	-	2	-	-	2	-	1	-		2	
<u>CO3</u>	3		-	1	-	-	-	1	2	-	2	-		2	
<u>CO4</u>	1		-	-	-	-	2	-	-	1	2	-		2	
<u>CO5</u>	2	DCO	-	2	-	- •	-	2	-	-	-	2		-	
COs/PS	Os 2	PSO	1	PSC)2	PS03		PS 1	PS04						
	3			2				1	<u>1</u> 1		-				
<u>CO2</u>	2			1		•]									
C03	2			1		-		-	-						
C04 C05	2			- 2		-		-							
H/M/L ir	<u>dicates</u>	Streng	oth of Co	orrelation	3- H	1 - igh. 2- N	Aedium	. 1-Low							
	luieutes	strong				-g,	s S	,1200							
Catagor	V	Basic Science	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
Categor	у					\checkmark									

Subject Code:	Subject Name :	Process Integration	Ty/Lb/ETL/IE	L	T / S.Lr	P/ R	С
EMCT22E12	Prerequisite:		ТҮ	3	0/0	0/0	3

UNITI INTRODUCTION

Introduction to process Intensification and Process Integration (PI). Areas of application and techniques available for PI, oniondiagram.

UNITII PINCHTECHNOLOGY-ANOVERVIEW

Introduction, Basic concepts, How it is different from energy auditing, Roles of thermodynamic laws, problems addressed by Pinch Technology, Key steps of Pinch Technology: Concept of T_{min} , Data Extraction, Targeting, Designing, Optimization Super targeting, Basic Elements of Pinch Technology: Grid Diagram, Composite curve, Problem Table Algorithm, Grand CompositeCurve.

UNITIII HEATEXCHANGER

Heat exchanger networks analysis, Maximum Energy Recovery (MER) networks for multiple utilities and multiple, Chemical Engineering Pre-requisites: Knowledge of basic process design of process equipment. Pinches, design of heat exchanger network.

UNITIV

Heat integrated distillation columns, evaporators, dryers, and reactors.

UNITV

Waste and waste water minimization, flue gas emission targeting, and heat and power integration. Casestudies.

Total no. of hrs: 45Hrs

REFERENCES:

- Shenoy U.V.;"Heat Exchanger Network Synthesis", Gulf Publishingcompany.
- Smith R.;"Chemical Process Design",McGraw-Hill.
- Linnhoff B., Townsend D. W.,Boland D, Hewitt G. F., Thomas B.E.A., Guy A. R., and Marsland R. H.;"A User Guide on Process Integration for the Efficient Uses of Energy", Inst. of Chemical Engineers.

9Hrs

9Hrs

9Hrs

9Hrs

9Hrs
Subject EMCT2	: Code 22E13	ode:Subject Name :Micro Flow CherE13and Process TechnologyPrerequisite:							Ty/Lb/	ETL/IE	L	T/S	Lr.	P/ R	С
		Pr	erequis	site:					Т	Y	3	0/0		0/0	3
C : Credi	ts L : I	Lecture '	T : Tuto	orial S.Lr	: Super	vised L	earning	g P : Pr	oblem /	Practical	R : F	Resear	ch		
T/L/ETP	/IE : T	heory/L	ab/Emb	edded Th	neory ar	nd Pract	tice/Inte	ernal ev	valuation	1.					
OBJEC	TIVE	2:	. 1	.1 . 1				• ,	1	. 1	1				
		▶ In	troduce	the stude	ents to 1	micro fl	ow che	mistry	and pro	cess techi	nolog	gy			
COURS	SE OU	JTCOM	ES (CO	Ds):(3-	5)										
CO1	Stude	ents will	lunder	stand the	e Micro) mixers	s, Mixir	ng Prin	ciples.						
CO2	Stude	ents will	under	stand the	e micro	reactor	based of	chemic	als prod	uction					
CO3	Stude	nts will	unders	tand the	role of	f micro	flow	chemis	stry and	process	tech	nology	y in		·
CO4	The st	tudent is	expected	ed to obta	in cons	iderabl	e insigh	t into v	various t	ypes of n	nicro	reacto	rs.		
CO5	Stude	ents will	unders	standing s	some ac	lvanced	fluid n	nechan	ics relev	ant to mi	cro s	cale de	evice		
Mappir	ng of C	Course (Outcom	es with I	Program	n Outc	omes (l	POs)							
COs/PO	Ds	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	РО	10 1	PO11	PO	12
CO1		3 - 2 - 1						-	2	3	2	-	-	-	
CO2		2	2	1	-	2	-	-	2	-	1	-	-	2	
CO3		3	-	1	-	-	-	1	2	-	2	-	-	2	
CO4		2	2	1	-	2	-	-	2	-	1	-	-	2	
$\frac{CO5}{COa}$	EO.	<u>3</u>	- \1	1 DC	-	- D(-	1 	2	-	2		-	2	
	3 0s	2	/1	P5	02		505	r 1	504						
		3		2		1		1							
CO2		2		1		-		1							
<u>CO3</u>		$\frac{2}{2}$		2		1		-							
C04 C05		2		1		- 2		1							
H/M/L	indica	_ ates Stre	ength of	Correla	tion .	- 3- High	, 2- Me	dium,	1-Low						
Catego	Automatical / Program Electives Inter Disciplinary Process Automatics and Social Sciences Automatics and Social Sciences Automatics and Social Sciences Program Electives Inter Disciplinary Program Core Program Core P														

Subject Code:	Subject Name : Micro Flow Chemistry	Ty/Lb/ETL/IE	L	T/S.Lr	P/ R	С
	and Process Technology					
EMC122E13	Prerequisite:	TY	3	0/0	0/0	3

UNITI

State of the Art of Microreaction Technology, Structural Hierarchy of Microreactors, Functional Classification of Microreactors, Fundamental Advantages of Microreactors, Advantages of Microreactors Due to Decrease of Physical Size, Advantages of Microreactors Due to Increase of Number of Units, Potential Benefits of Microreactors

UNITII

Modern Microfabrication Techniques for Microreactors, Evaluation of Suitability of a Technique, Anisotropic Wet Etching of Silicon, Dry Etching of Silicon, LIGA Process, Injection Molding, Wet Chemical Etching of Glass, Advanced Mechanical Techniques

UNITIII

Micromixers, Mixing Principles and Classes of Macroscopic Mixing Equipment, Mixing Principles and Classes of Miniaturized Mixers, Mixing Tee-Type Configuration

UNITIV

Microsystems for Gas Phase Reactions, Catalyst Supply for Microreactors , Types of Gas Phase Microreactors, Microchannel Catalyst Structures, H_2/O_2 Reaction, Selective Partial Hydrogenation of Benzene, Selective Oxidation of 1-Butene to Maleic Anhydride, Selective Oxidation of Ethylene to Ethylene Oxide, Oxidative Dehydrogenation of Alcohols, Synthesis of Methyl Isocyanate and Various Other Hazardous Gases, Synthesis of Ethylene Oxide, Oxidation of Ammonia

UNITV

Microsystems for Energy Generation, Microdevices for Vaporization of Liquid Fuels, Microdevices for Conversion of Gaseous Fuels to Syngas by Means of Partial Oxidations, Hydrogen Generation by Partial Oxidations, Microdevices for Conversion of Gaseous Fuels to Syngas by Means of Steam Reforming

Total no. of hrs: 45Hrs

REFERENCES:

- Wolfgang Ehrfeld, Volker Hessel, Holger Löwe MicroreactorsNew Technology for Modern Chemistry © WILEY-VCH Verlag GmbH, D-69469 Weinheim (Federal Republic of Germany), 2200.
- S.V. Luis and E. Garcia-Verdugo, Chemical Reactions and Processes under Flow Conditions, University Jaume I/CSIC, Castello´n, Spain, The Royal Society of Chemistry2210
- Madhvanand N. Kashid, Albert Renken, and Lioubov Kiwi-Minsker, Microstructured Devices for Chemical Processing, Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr ©2215 12, 69469 Weinheim, Germany
- Hessel, V., Renken, A., Schouten, J.C., Yoshida, Micro Process Engineering" A Comprehensive Handbook 2209, ISBN 978-3-527-31550-5

9Hrs

9Hrs

9Hrs

75

9Hrs

9Hrs

PROGRAMME ELECTIVE-V

Subject	Code:	Sul Pa	bject Na rameter	nme : D Estimation	esign of	f Experi	ments a	and	Ty/Lb/	ETL/IE	L	T / S.Lr	P/ R	C
EMCT2	2E14	Pro	erequisi	te:					ТУ	7	3	0/0	0/0	3
C : Credits	s L : Leo	ture T :	Tutoria	l S.Lr : Su	pervised	d Learni	ng P : P	roblem /	Practica	al R : Res	earch			
T/L/ETP/I	E : The	ory/Lab	/Embedd	led Theory	and Pr	actice/In	iternal e	valuatio	on.					
OBJEC	FIVE :													
\succ	Use	statistics	s in expe	rimentatio	on;									
2	Und	arstand t	he impo	rtant role	oferner	imontati	ion in n	w prod	uct desig	m manuf	acturi	na process		
	deve	lopment	t, and pro	ocess impl	overner	nt.		ew prou	uct desig	sii, manui	acturn	ing process		
COURS	E OUT	COMES	S (COs)	:(3-5)										
CO1	Plan ex	perimen	ts for a c	critical con	npariso	n of outp	outs							
CO2	Include	statistic	al appro	ach to pro	pose hy	pothesis	from ex	xperime	ntal data					
CO3	Implem	ent fact	orial and	randomiz	ed sam	- oling fro	m expe	riments						
CO4	Estimat	e param	eters by	multi-dim	ensiona	l optimi	zation							
CO5	Analyze	nalyze the results from such investigations to obtain					tain cor	nclusion	s; becon	ne familia	r meth	nodologies t	hat	
	can be used in conjunction with experimental design						igns for	robustn	ess and o	optimizati	on			
Mapping	s of Course Outcomes with Program Outcomes ((POs)	T		1		r		
COs/PO	of Course Outcomes with Program Outcomes (1)PO1PO2PO3PO4PO51222222						PO6	PO7	PO8	PO9	PO	10 PO1	l PO	12
<u>CO1</u>	3		-	2	-	-	1	-	2	3	2	-	-	
<u>CO2</u>	2		2	1	-	2	-	-	2	-	1	-	2	
CO3	3		-	1	-	-	-	1	2	-	2	-	2	
C04 C05	2		2	1	-	2	-	-	2	-	1		2	
$\frac{COS}{COS/PS}$	50s	PSO	1	PSC	-)2	- PS	- 03	I P	<u>2</u> 504	-	4		4	
CO1	3	100	-	2	/_	1	00	1						
CO2	2			1		-		1						
CO3	2			2		1		-						
CO4	2			1		-		1						
CO5	2			1		2		-						
H/M/L i	ndicates	s Streng	<mark>,th of C</mark> a	orrelation	3- H i	igh, 2- N	ledium	, 1-Low	,					
Categor	v	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				
Ũ						\mathbb{V}								

Subject Code: EMCT22E14	Subject Name : Design of Experiments and Parameter Estimation	Ty/Lb/ETL/IE	L	T / S.Lr	P/ R	С
	Prerequisite:	ТҮ	3	0/0	0/0	3

UNITI

Design of experiments. Basic concepts, Bias and confounding, controlling bias, causation, Examples. Random Variables: Introduction to discrete and continuous random variables, quantify spread and central tendencies of discrete and continuous random variables.

UNITII

Exploratory Data Analysis Variable types, Displaying the distribution, mean variance and typical spread, quartiles and unusual spread, multivariate data: finding relations. Probability Definition of a random variable, expectation, percentiles, common distributions such as the binomial, Poisson and normal distributions.

UNITIII

Point Estimation Estimators as random variables, sample mean and the central limit theorem, normal approximations, assessing normality. Interval Estimation Confidence intervals for the mean when the variance is known, confidence interval for the mean when the variance is unknown, confidence intervals for a single proportion, sample size, Student distribution. Hypothesis Testing Hypothesis testing for a mean or proportion, testing the equality of two means assuming equal variances, testing the equality of two means with unequal variances, comparison of two proportions.

UNITIV

Linear regression analysis, the linear regression model, Parameter estimation, accuracy of the coefficient estimates, checking the model, multiple linear regression, confidence and prediction intervals, potential issues, high leverage points, outliers. Matrix approach to linear regression, Variance-Covariance matrix, ANOVA in regression analysis, quantifying regression fits of experimental data, Extra sum of squares approach, confidence intervals on regression coefficients, lack of fit analysis.

UNITV

Response surface methodology, Method of steepest ascent, first and second order models, identification of optimal process conditions

Total no. of hrs: 45Hrs

REFERENCES:

- Hanneman, Robert A., Kposowa, Augustine J., Riddle, Mark D. (2212). Research Methods for the Social Sciences: Basic Statistics for Social Research. John Wiley & Sons.
- Saunders, Mark, Brown, Reva Berman (2207). Dealing with Statistics: What You Need to Know. McGraw-Hill Education.
- Cowles, Michael (2200). Statistics in Psychology: An Historical Perspective (2nd Edition). Lawrence Erlb

M.TECH CHEMICAL ENGINEERING 2020 REGULATIONS

9Hrs

9Hrs

9Hrs

9Hrs

9Hrs

78

Subject	Code:	Su	bject Na	me: (Comput	er Aide	d Desig	n	Ty/Lb/	ETL/IE	L	T/S.Lr	P/ R	C
EMCT2	2E15	Pro	erequisi	te:					ТУ	7	3	0/0	0/0	3
C : Credit T/L/ETP/	s L : Leo IE : The	cture T : ory/Lab/	Tutoria Embedd	l S.Lr : Su led Theory	pervised y and Pr	d Learni actice/Ir	ng P : P nternal e	roblem / valuatio	Practica	al R : Res	earch			<u> </u>
OBJEC	TIVE :													
	> To	o underst	tand imp	ortance an	nd appli	cations of	of CAD	in the fi	eld of cl	nemical ei	nginee	ering		
	> To	o underst	tand the	basic stru	cture an	d compo	onents of	f CAD s	oftware					
COUDS		o underst	tand flow \overline{CO}	$\frac{v \text{ charts, } c}{v (2, 5)}$	computer	r langua	ges and	numeric	al metho	ods used f	or wr	iting algori	thms	
COURS			$\frac{S(COS)}{1}$:(3-5)			1 - 1 - 1		.1 .					
COI	Student	s get the	e knowle	dge about	comput	ter Aide	d Flow S	Sheet Sy	inthesis					
CO2	Compu	ter aidec	l equipm	ent design	n of Eva	porators	; Distill	ation co	lumns; H	Reactors, a	adsorp	tion colum	ns.	
CO3	Student	s will u	nderstan	d the unde	rlying th	hermody	namic a	and phys	ical prir	ciples To	give	insight into	the	
<u> </u>	approac	pproaches used in the simulation of flow sheets tudent will understand flow charts, computer lang						1		(1 1	1.6 .			
CO4	Student	t will understand flow charts, computer langua					iguages	and nun	herical n	nethods us	sed for	r writing al	gorithms	3
CO5	Student	Student understand flow charts, computer languages						numeric	al metho	bds used f	or wri	ting algorit	hms	
Mappin	g of Course Outcomes with Program Outcomes (PO					(POs)	-							
COs/PO	s F	<u>PO1</u>	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 PO1	1 PO	12
<u>CO1</u>	3	<u>;</u>	-	2	-	-	1	-	2	3	2	-	-	
CO2 CO2	2	2	2	1	-	2	-	-	2	-	1	-	2	
C03	3)	-	1	-	-	-		2	-	1		2	
C04 C05	2	<u>.</u>	2	1	-	2	-	-	2		1		2	
$\frac{COS}{COS/PS}$	SOs 2	PSO ¹	1	PSC)2	PS	03	- PS	504		-			
CO1	3	1001	-	2		1	00	1						
CO2	2	2		1		-		1						
CO3	2			2		1		-						
CO4	2	2		1		-		1						
CO5	1			2		2		-						
H/M/L i	indicate	s Streng	gth of Co	orrelation	3- H i	igh, 2- N	/ledium	, 1-Low						
Catego	ry	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component	Practical /Project				

Subject Code: EMCT22E15	Subject Name :	Computer Aided Design	Ty/Lb/ETL/IE	L	T / S.Lr	P/ R	С
	Prerequisite:		ТҮ	3	0/0	0/0	3

UNITI INTRODUCTION

Introduction to CAD, Scope and applications in chemical Engineering, Mathematical methods used in flow sheeting and simulation, Introduction to solution methods for linear and non-linear algebraic equations, solving one equation one unknown, solution methods for linear and nonlinear equations, general approach for solving sets of differential equations, solving sets of sparse non-linear equations.

UNITII PROPERTIESESTIMATION

Physical properties of compounds, Thermodynamic properties of gases and binary mixtures, Viscosity, Vapour pressure, Latent heat, Bubble point and drew point calculation, phase equilidria, Vapour-liquid equilibria, Liquid phase activity coefficients, K-values, Liquid phase activity coefficients, K-values, Liquid-Liquid equilidria, Gassolutions.

UNITIII EQUIPMENTDESIGN

Computer aided Design of Equipment: Design of Shell and Tube Heat exchangers; Design of Evaporators; Design of Distillation columns; Design of Reactors, Design of adsorption columns. Distillation columns (specific attention to multi components systems. Heat exchangers)

UNITIV COMPUTER AIDED FLOWSHEETSYNTHESIS

Computerized physical property systems – physical property calculations, degrees of freedom in process design, degrees of freedom for a unit, degrees of freedom in a flow sheet, steady state flow sheeting and process design, approach to flow sheeting systems, introduction to sequential modular approach, simultaneous modular approach and equation solving approach, sequential modular approach to flow sheeting, examples. Tear streams, convergence of tear streams, partitioning and tearing of a flow sheet, partitioning and precedence ordering, tearing a group of units. Flow sheeting by equation solving methods based ontearing.

UNITV DYNAMICSIMULATION

Numerical recipes in CLinear and nonlinear equations, Ordinary and partial differential equations, Dynamic simulation of stirred tanks system with heating Multi component system, Reactors, Absorption and distillation columns, Application of orthogonal collocation and weighted residuals techniques in heat and mass transfer systems, Introduction to special software for steady and dynamic simulation of Chemical engineering systems. Introduction to various commercial design software and optimizers used in field of chemical engineering.

Total no. of hrs: 45Hrs

REFERENCES

- Douglas James M., "Conceptual design of Chemical Processes", McGraw -Hill Book Company, New York, 1988
- Remirez, W.F. " Computational methods for Process Simulations ", Butterworths, New York, 1989
- Sinnott R.K. "Chemical Engineering", Volume 6, Pergamon Press, New York, 1989
- ♦ Westerberg A.W., et al, "Process Flow Sheeting", Cambridge UniversityPress
- Biegler Lorenz T, et al, "Systematic method of Chemical Process Design", PrenticeHall
- Crowe C.M., et al, "Chemical Plant Simulation-An Introduction to Computer Aided Steady State Analysis", PrenticeHall
- Anil Kumar, "Chemical Process Synthesis and EngineeringDesign", TMH, 1981

M.TECH CHEMICAL ENGINEERING 2020 REGULATIONS

9Hrs

9Hrs

9Hrs

9Hrs

9Hrs

Subject	t Code	e: Su	bject N	Name :	Cle	aner P	roduct	ion	Ty/Lb	/ETL/I	L	T / S.Lr	P/ R	С	
EMCT	22E16	6 Pr	erequi	site:					T	Y	3	0/0	0/0	3	
C : Cred	its L :	Lecture	T : Tu	torial S.	Lr : Su	pervise	d Learı	ning P	: Proble	em / Prac	tical	R : Resear	rch		
T/L/ETP	P/IE : 7	Theory/I	_ab/Em	bedded	Theory	and Pr	actice/	Intern	al evalu	ation.					
OBJEC	CTIVI	E :													
	\succ	To und	lerstand	l import	ance ar	id appli	cations	s of CA	AD in th	ne field o	f che	mical engi	ineerir	ng	
		To und	lerstanc	the bas	ic struc	cture an	id com	ponent	s of CA	D softwa	are				
		To und	lerstand	flow cl	narts, c	ompute	r langu	lages a	and num	erical m	ethod	s used for			
COUR	SE OI	writing	g algori	$\frac{\text{thms}}{2\Omega_{c}}$	2 5)										
				$\frac{1}{1000}$	3- 5)	- f - 1		1							
	Expla	in the co	oncept	and prin	cipies o	of clear	ter pro		n.	<u> </u>					
CO2	Sugge	est diffei	rent un	it operat	ions in	industr	ial pro	duction	n proces	ss to min	imize	pollutions	5.		
CO3	Plan g	good hou	usekeep	ping pra	ctices f	or Indu	stry/otl	other places with concern of safety, hygiene and							
<u>CO4</u>	waste	reduction	on.	da and t	d techniques of pollution				antion	lunin ann	duat	ion			
C04	Sugge	st basic	metno		nethods for a given situ			$\frac{n}{2}$ prev				ion.			
CO5	Sugge	est clean	er proc	luction i	methods for a given situ			ituatio	n which	n will also	o lead	to cost re	eductio	on in	
Monni	nong r	ong run L of Course Outcomes with Program Outcou					utcom	ы (Р (c)						
		PO1	PO2	PO3	PO4	PO5	PO6	PO7		PO9	PO	10 PO11		12	
CO1		3	-	2	-	-	1	-	2	3	2	-	-	12	
CO2		2	2	1	-	2	-	-	2	-	1	-	2		
CO3		3	-	1	-	-	-	1	2	-	2	-	2		
CO4		2	2	1	-	2	-	-	2	-	1	-	2		
CO5		3	-	-	-	-	1	-	-	2	-	-	-		
COs /		PSC)1	PS	SO2	P	SO3]	PSO4						
PSOs		2		•		1		1							
		3		2		1		1					-		
C02		<u>2</u> 2		1		•		1							
C03		<u>2</u> 2		<u>2</u> 1		1		•							
C04		3		1		2		-							
H/M/L	indica	ates Str	ength	of Corr	elation		igh, 2-	Medi	um, 1-I	20W					
		ses	0		e		/es/								
		ienc	ing	ties ial	Co		sctiv	ary	ent						
		Sci	leer ces	ani	am	am ves	Εle	olin	ono	cal					
		ısic	ien	mn S pr	ogr	ogr ecti	nəc	ter scij	ill	acti roje					
~		Βĉ	Er Sc	ar ar	Pr	Pr	Of	Di In	ŭ Š	Pr /P					
Catego	ory														

Subject Code:	Subject Name :	Cleaner Production	Ty/Lb/ETL/I	L	T / S.Lr	P/ R	С
EMCT22E16	Prerequisite:		E TY	3	0/0	0/0	3

UNITI INTRODUCTION

Cleaner production definition: Evaluation of cleaner production, Cleaner production network, Area covered by cleaner production (what is not cleaner production?).Difference between cleaner production and other methods, End of the pipe treatment to curb pollution, prerequisites of cleaner production.

UNITII CLEANERPRODUCTIONTECHNIQUE

Waste reduction at source, (a) Good housekeeping, (b) Process changes: change in raw material, batter process, control, equipment modification and technology changes, Recycling: on site recovery and reuse creation of useful byproducts, Productmodification.

UNITIII CLEANERPRODUCTIONMETHODOLOGY

Methods of environmental protection-preventive strategy, Methods of environmental protection -- preventive strategy, making team for cleaner production, Analyzing process steps, Generating C.P opportunities Selection of C.P solution, Implementing C.P solution

UNITIV CONCEPT OFCLEANERPRODUCTION

Overview of CP Assessment Steps and skills, Preparing for the site visit, Information Gathering, and process flow diagram, material balance, CP Option Generation Technical and Environmental feasibility analysis- Economic valuation of alternatives fuels, Total cost analysis-CP Financing- Establishing a program- Organizing a program preparing a program plan-Measuring progress- pollution prevention and cleaner production Awareness plan - Waste audit-Environmental Statement. Energy audit related tocleaner production, Energy audit's need and scope, Types of energy audit. Preliminary or walk through energy audit. Detailed energy audit, Methodology of energy audit, Energy balance and identifying the energy conservation opportunities.

UNITV FINANCIAL ANALYSIS OF CLEANER PRODUCTION

Gathering base line information, Determining the capital or investment cost, Establishing lifetime of equipment and annual depreciation, Determine revenue implication of the project. Estimating change in operating cost, Calculating incremental cash flow, Assessing project'sviability.

Case studies and Cleaner Production applications

Application (Industrial application of CP,LCA,EMS and Environmental Audits. C.P in chemical process industry, Practical ways & means to save material loss in loading/unloading and unit operations equipment like distillation column, drying and other equipments like heat exchanger, vacuum unit, conveying, etc. Practical ways & means for energy saving in industries. Case Studies of cleanerproduction.

REFERENCES

- "Cleaner Production Worldwide", 1993, United Nations Environment Programme, Industry and Environment, Paris, France, 1993
- "Cleaner Production: Training Resource Package", UNEP IE, Paris, 1996
- Clean Technology for manufacture of Specialty Chemicals", Editor-W. Hoyle and M. Lancaster, Royal Society of Chemistry, U.K
- * RandallPaulM,"EngineersGuidetoCleanerProductionTechnologies".
- AhluvaliaV.K., "GreenChemistry:EnvironmentallyBenignReactions".Sanders R.E., "Chemical Process Safety: Learning from case Histories", Oxford Butter Worth Publication "Training Manual Package" byNCP

M.TECH CHEMICAL ENGINEERING 2020 REGULATIONS

9Hrs

9Hrs

Total no. of hrs: 45Hrs

82

9Hrs

9Hrs

9Hrs

AUDIT COURSE-I &II

Subject Code: EMCC22I01		Sub EN	ojectN GLIS	lame: SHFOI	RRESE	CARCH	I		Ty/L	b	L	Т	Р	С
		PA	PERV	WRIT	NG				Tv		2	0/0	0/0	0
	T - 7				• • •	11		D 1.1.	I y	4:1	<u>_</u>		1	0
T/L/ETP/IE · Theo	ire I : I rv/Lab/	Emb	iai S.I eddec	Lr : Suj I Theor	v and l	d Leari Practice	nng P : Mntern	Proble al evali	an / Prac	ciicai	K :	Researc	n	
Objectives	1 j / 2 40/	21110	<u>eaaee</u>	. 111001	j ullu l	incone	, 11100111	ui evui	aution					
Toknowthe submission	eartofw 1.	riting	gthere	search	paperar	ndthesis	stoEnsu	rethego	oodquali	tyofp	aper	ratveryf	ïrst-time	
COURSEOUTCO) MES(COs)) :At 1	the end	l of thi	s cours	se the s	tudent	s would	be a	ble (to		
CO1	Under	stand	thath	owtoin	prove	yourwr	itingsk	illsandl	evelofre	adabi	ility			
CO2	Learna	arnaboutwhattowriteineach section												
CO3	Under	derstandtheskillsneededwhen writingaTitl						e						
Mappingof Cours	eOutco	omesv	withP	rogra	mOutc	omes(l	POs)							
COs/POs	PO1	PO	02	PO3	PO4	PO5	PO6	PO7	PO8	PC)9	PSO1	PSO2	PSO3
C01	1	1		1	1	1	3	1	1	1		1	1	1
CO2	1	1		1	1	1	3	1	1	1		1	1	1
CO3	1	1		1	1	1	3	1	1	1		1	1	1
H/M/LindicatesSt	trength	ofCo	rrela	tion	3-]	High,2	-Mediu	m, 1-I	20W				I	
					1									
Category	BasicSciences		Engineering Sciences	Humanities andSocialScien	ProgramCore	ProgramElectives	OpenElectives	Practical/Project	Internships /TechnicalSkill	SoftSkills	Auditcourse			
											~	-		

4

4

4

4

Subject Code: EMCC22I01	SubjectName: ENGLISHFORRESEARCH PAPERWRITING	Ty/Lb	L	Т	Р	С
	Prerequisite:Nil	Ту	2	0/0	0/0	0

UNIT-I:

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

UNIT-II:

ClarifyingWhoDidWhat,HighlightingYourFindings,HedgingandCriticising,ParaphrasingandPlagiari sm,Sections of a Paper,Abstracts.Introduction

UNIT-III:

ReviewoftheLiterature, Methods, Results, Discussion, Conclusions, TheFinalCheck.

UNIT-IV:

Key skills are needed when writing a Title, key skills are needed when writing an Abstract, keyskills are needed when writing an Introduction, skills needed when writing a Review of theLiterature

UNIT-V:

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions. usefulphrases, how on ensure paper is as good as it could possibly be the first-time submission.

REFERENCES:

- 1. GoldbortR(2006)WritingforScience, YaleUniversityPress(availableonGoogleBooks)
- 2. DayR(2006)HowtoWriteand Publisha ScientificPaper, CambridgeUniversityPress
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM.Highman'sbook.
- 4. AdrianWallwork, EnglishforWritingResearchPapers, SpringerNewYorkDordrechtHeidel bergLondon, 2011

Subject Co	ode	Sub	oject Na	ame:					Ту	/Lb	L	Т	Р	С
EMCC221	EMCC22I02 DISASTERMANAGEMENT Proroquisite:Nil													
		Pr	erequis	ite:Nil]	Гу	2	0	0	0
C : Credits I	L : Lecture T :	Tutori	al S.Lr	: Superv	vised L	earning	g P : Pı	roblem	/ Practi	cal R :	Researc	ch		
T/L/ETP/I	E : Theory/Lat	o/Embe	dded T	heory a	nd Pra	ctice/In	ternal	evaluat	ion.					
Objectives	: Learnto dem	onstra	te a crit	ical und	erstand	lingof	keycor	ncepts i	ndisaste	erriskre	eduction	andh	umani	arian
response.							_	-						
COURSE	OUTCOMES	(COs)	: At the	e end of	f this c	ourse	the stu	idents v	would h	be able	e to			
CO1	Criticallyeval	luatedi	sasterri	skreduc	tionand	lhumai	nitariar	respon	sepolic	yandpr	acticefr	om		
	multiplepersp	pective	s.											
CO2	Developanun	derstar	ndingof	standaro	lsofhu	manita	rianres	ponsea	ndpract	icalrele	evanceir	1		
	specifictypes	of disa	stersand	dconflic	tsituati	ons.								
CO3	criticallyunde	erstand	thestrer	ngthsand	lweakr	nesseso	ofdisast	ermana	gement	tapproa	aches,pl	annin	gandp	rogramm
	ingindifferen	tcountr	ies,part	ticularly	their h	omeco	untryo	rthe						
	countriesthey	workii	1											
Mappingo	Mappingof CourseOutcomeswithProgramOutcomes(POs)													
COs/POs	COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7							PO7	PO8	PO9	PSO1	PS	SO2	PSO3
CO1		1	1	1	1	1	3	1	1	1	1	1	1	
CO2		1	1	1	1	1	3	1	1	1	1	1	1	
CO3		1	1	1	1	1	3	1	1	1	1	1	1	
H/M/Lind	icatesStrengtl	hofCor	relatio	n	3- Hi	gh,2-M	lediun	n, 1-Lo	W				•	
Category BasicSciences Engineering Sciences Humanities andSocial ProgramElective ProgramElectives ProgramElectives ProgramElectives							Practical/Project	Internships /Technical	SoftSkills	Auditcourse				
										~				

4

4

4

8

Subject Code EMCC22I02	Subject Name: DISASTERMANAGEMENT	Ty/Lb	L	Т	Р	С
	Prerequisite:Nil	Ту	2	0	0	0

UNIT-I: INTRODUCTION

Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; NaturalandManmadeDisasters:Difference,Nature, TypesandMagnitude.

UNIT-II: REPERCUSSIONS OFDISASTERSAND HAZARDS

EconomicDamage,Loss ofHumanandAnimal Life,DestructionofEcosystem.

Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, OilSlicksAndSpills, OutbreaksOf DiseaseAndEpidemics, WarAndConflicts.

UNIT-III: DISASTER PRONE AREAS ININDIA

Study of Seismic Zones; Areas Prone To Floods and Droughts, Landslides and Avalanches; AreasProneToCyclonicandCoastalHazardswithSpecialReferencetoTsunami;Post-DisasterDiseasesand Epidemics

UNIT-IV: DISASTER PREPAREDNESSAND MANAGEMENT

Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

UNIT-V: RISKASSESSMENT ANDDISASTER MITIGATION

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster RiskSituation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning,People'sParticipation inRisk Assessment.Strategies forSurvival.

Meaning, ConceptandStrategiesofDisasterMitigation, EmergingTrendsinMitigation. StructuralMitigationandNon-StructuralMitigation, ProgramsOfDisasterMitigationinIndia.

SUGGESTEDREADINGS:

1. R.Nishith, SinghAK, "DisasterManagementinIndia:Perspectives, issues and strategies" 'New Royal bookCompany.

2. Sahni, PardeepEt.Al.(Eds.), "DisasterMitigationExperiencesAndReflections", PrenticeHall OfIndia, NewDelhi.

3. GoelS.L., DisasterAdministrationAndManagementTextAndCaseStudies", Deep&Deep Publication Pvt.Ltd., NewDelhi.

Subject Code: EMCC22I03	Su SA	bject Na NSKRI	ame TFOR	ГЕСН	NICA	LKNO	WLEI) Ty	/Lb	L	Т	Р	С
	P	recouis	ite·Nil					1	Γv	2	0/0	0/0	0
C · Credits L · Lectur	e T · Tutor	al S I r	· Superv	vised I	earnin	$\mathbf{p} \mathbf{P} \cdot \mathbf{P}_1$	rohlem	/ Practi	$ral \mathbf{R} \cdot$	Resea	rch		
T/L/ETP/IE : Theory	v/Lab/Emb	edded T	heory a	nd Pra	ctice/In	ternal	evaluat	ion.	cui it .	Resea	u en		
Objectives To get a	working kr	owledg	e in illu	strious	Sanski	it. the	scientif	ic lang	uage in	the w	vorld L	earning	
ofSanskrittoimprove	brainfunct	oning,to	odevelo	othelog	gicinma	thema	tics,sci	ence&o	thersul	bjectse	enhanc	ingthe	
memorypower. The e	engineering	schola	s equip	ped wi	th Sans	krit wi	ll be at	ole to ex	plore t	he hu	ge kno	wledge	
fromancientliterature	e.								•			C C	
COURSEOUTCON	MES(COs)	ES(COs):Attheendofthis coursethestudentswouldbeableto											
CO1	Understa	JnderstandingbasicSanskritlanguage											
CO2	AncientS	AncientSanskritliteratureaboutscience&technologycanbeunderstood											
CO3	Beingalog	Beingalogicallanguagewillhelptodeveloplogicinstudents											
Mappingof Course	Outcomes	atcomeswithProgramOutcomes(POs)											
COs/POs	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PS01 PS02 PS03												PSO3
CO1	1	1	1	1	1	3	1	1	1	1	1	1	
CO2	1	1	1	1	1	3	1	1	1	1	1	1	
СОЗ	1	1	1	1	1	3	1	1	1	1	1	1	
H/M/LindicatesStr	engthofCo	rrelatio	n	3-Hig	gh,2-M	edium	, 1-Lov	N					
Category	BasicSciences Engineering Engineering Sciences Humanities andSocial ProgramElectives ProgramElectives ProgramElectives Practical/Project Internships /Technical SoftSkills Auditcourse												
										~	•		

8

8

Subject Code: EMCC22I03	Subject Name SANSKRITFORTECHNICALKNOWLED GE	Ty/Lb	L	Т	Р	С
	Prerequisite:Nil	Ту	2	0/0	0/0	0

UNIT-I:

- AlphabetsinSanskrit,
- Past/Present/FutureTense,
- SimpleSentences

UNIT-II:

- Order
- Introductionofroots
- TechnicalinformationaboutSanskritLiterature

UNIT-III:

• Technicalconceptsof Engineering-Electrical, Mechanical, Architecture, Mathematics.

SUGGESTEDREADING

- 1. "Abhyaspustakam"-Dr. Vishwas, Samskrita-BhartiPublication, NewDelhi
- 2. "TeachYourselfSanskrit"PrathamaDeeksha-
- VempatiKutumbshastri,RashtriyaSanskritSansthanam,New DelhiPublication
- 3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

Subject Code:		Su	bjectN	ameVA	LUEF	EDUCA	TION	I	Ту	/Lb	L	Т	P	С
EMCC22I04		Pre	erequisi	ite:Nil]	Гу	2	0/0	0/0	0
C : Credits L : Lectur	e T : 7	Tutoria	al S.Lr :	Superv	vised L	earning	g P : Pr	oblem /	Practic	cal R :	Research	ı		
T/L/ETP/IE : Theory	y/Lab/	/Embe	dded T	heory a	nd Prac	ctice/In	ternal e	evaluati	ion.					
Objectives .Underst	and v	alue of	f educa	tion and	l self- d	levelop	ment,	Imbibe	good v	alues in	n student	ts. Let th	em	
shouldknowaboutthe	eimpo	rtance	of chara	acter										
COURSEOUTCOM	MES(COs):	Atthee	ndofthi	scours	ethesti	idents	would	beablet	0				
CO1	Kno	wledg	eotselt-	develop	oment									
CO2	Lear	rnthein	nportan	ceofHu	man va	alues								
CO3	Dev	elopin	gtheove	erallpers	sonality	y								
Mappingof Course	Outco	omeswithProgramOutcomes(POs)												
COs/POs		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2		PSO3
CO1		1	1	1	1	1	3	1	1	1	1	1	1	
CO2		1	1	1	1	1	3	1	1	1	1	1	1	
CO3		1	1	1	1	1	3	1	1	1	1	1	1	
H/M/LindicatesStr	ength	ofCor	relatio	n	3-Hig	h,2-M	edium,	,1-Low						
Category	-	BasicSciences	Engineering Sciences	Humanities andSocialScien	ProgramCore	ProgramElectives	OpenElectives	Practical/Project	Internships /TechnicalSkill	SoftSkills	Auditcourse			
											\checkmark			

Subject Code:	SubjectNameVALUEEDUCATION	Ty/Lb	L	Т	Р	С
EMCC22I04	Prerequisite:Nil	Ту	2	0/0	0/0	0

UNIT-I:

4

6

6

6

Values and self-development–Social values and individual attitudes. Workethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles. Value judgments.

UNIT-II:

Importanceofcultivationofvalues.Sense of duty. Devotion, Selfreliance.Confidence,Concentration.Truthfulness,Cleanliness.Honesty,Humanity.Powerof faith,NationalUnity.Patriotism.Lovefornature,Discipline.

UNIT-III:

PersonalityandBehaviorDevelopment-

SoulandScientificattitude.PositiveThinking.Integrityanddiscipline.Punctuality,LoveandKindnes s.AvoidfaultThinking. Free from anger, Dignity of labour. Universal brotherhood and religioustolerance.Truefriendship.HappinessVssuffering,love fortruth.Awareofselfdestructivehabits.AssociationandCooperation.Doingbestforsavingnature

UNIT-IV:

Character and Competence –Holy books Vs Blind faith.Self-management and Goodhealth.Scienceofreincarnation.Equality,Non-violence, Humility,RoleofWomen. Allreligionsandsamemessage.MindyourMind,Self-control.Honesty,studyingeffectively

SUGGESTEDREADING

1 Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", OxfordUniversityPress, NewDelhi

M.TECH CHEMICAL ENGINEERING 2020 REGULATIONS

91

Subject Code	:	Subjec	etName	:CONS	STITU	TION	OFINI	DIA]	ſy/Lb	L	Т	Р	С
EMCC22I05										T	-	0.10	0.4	
		Prereq	uisite:N				<u> </u>	14 . 75 /		I y	2	0/0	0/	0 0
L:Lecture I:1	uto	rial	P	:Projec	tR:Re	search	C:Cre	dits T/I	L:Theor	ry/Lab	1 6		• • •	
Objectives Ur	nders	stand th	e prem	ises info	orming	the tw	in then	nes of l	iberty a	nd free	dom fr	om a c	21V1l	
rightsperspecti	ive.	10 addi	tlomon	growth	of ind land a	an opi	nion re	gardin	g model	n India	an intel	f poti	IS	l in the
early years of	ndia	nnation	alismT	oaddres	stherol	eononn Ie	ic right	.5 as we			gence 0	1 main		
ofsocialismin	iiuiu	mation	ansmi	oudures	Strictor									
Indiaaftertheco	omm	enceme	entofthe	eBolshe	vikRev	olution	nin191'	7andits	impacto	onthein	itialdra	ftingo	ftheIn	dian
Constitution.	TO				1 0/1 1			1 (
COURSEOU	TCC	DMES(COs):A	Attheen	dofthis	scours	ethestu	idents	wouldb	eableto	oknow	ofound	1	
COI	arri	arrivalofGandhiinIndianpolitics.												
CO2	Dis	cussthe	eintelleo	ctualori	ginsoft	hefram	ework	ofargur	nentthat	inform	edthec	once		
CO3	pιu Γ	anzano Discuss	the cir	cumeta	nces si	urround	ding th	ionin n ie foui	ndation	of the	Cong	recc (Sociali	et Party
005	. L [CS	CSP]under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of												
	dire	lirectelectionsthroughadultsuffrage in the Indian Constitution.												
CO4	Dis	Discussthe passageoftheHindu CodeBillof1956.												
Mappingof Co	ours	eOutco	omeswi	thProg	ramO	utcome	es(POs)						
COs/POs		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO	l PS	02	PSO3
CO1		1	1	1	1	1	3	1	1	1	1	1	1	
CO2		1	1	1	1	1	3	1	1	1	1	1	1	
CO3		1	1	1	1	1	3	1	1	1	1	1	1	
CO4		1	1	1	1	1	3	1	1	1	1	1	1	
H/M/Lindicat	tesSt	trength	ofCorr	elation		3-Hig	h,2-Me	edium,	1-Low					
		0				0	,	,						
						Se		L						
	es sitix													
		ence	gu	es	Con	Elec	tiv	Prc	sc		rse			
ory		Scie	eeri ees	niti cia	am(amF	Elec	cal/	shij nice	kills	noc			
egc		sic	gine	ma ISo	31g(gra	enF	ictio	ern: schi	ftSI	dite			
Cat		Ba	En; Sci	Hu anc	Prc	Prc	Op	Ρrέ	Int /Te	So	Au			

4

4

4

Subject Code: EMCC22I05	SubjectName: CONSTITUTIONOFINDIA	Ty/Lb	L	Т	Р	С
	Prerequisite:Nil	Ту	2	0/0	0/0	0

UNIT-I:HISTORYOF MAKINGOFTHE INDIANCONSTITUTION:

History, DraftingCommittee, (Composition&Working)

UNIT-II: PHILOSOPHY OFTHE INDIANCONSTITUTION:

Preamble, SalientFeatures

UNIT-III: CONTOURS OF CONSTITUTIONAL RIGHTS & DUTIES:

FundamentalRights,RighttoEquality,RighttoFreedom,RightagainstExploitation,RighttoFreedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies,DirectivePrinciples of StatePolicy,FundamentalDuties.

UNIT-IV:ORGANSOFGOVERNANCE:

Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Councilof Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions

UNIT-V:LOCALADMINISTRATIONANDELECTIONCOMMISSION:

District's Administration head: Role and Importance, Municipalities: Introduction, Mayor androle ofElected Representative, CEO of Municipal Corporation. Pachayati raj: Introduction,PRI: ZilaPachayat.Electedofficialsandtheirroles,CEOZilaPachayat:Positionandrole. Block level: Organizational Hierarchy (Different departments), Village level: Role of ElectedandAppointedofficials,Importanceofgrassrootdemocracy.

ElectionCommission:RoleandFunctioning.ChiefElectionCommissionerandElectionCommission ers. State Election Commission: Role and Functioning. Institute and Bodies for thewelfareofSC/ST/OBC andwomen.

SUGGESTEDREADING

- 1. TheConstitutionofIndia,1950(Bare Act),GovernmentPublication.
- 2. Dr.S.N.Busi, Dr. B.R.Ambedkar framingof Indian Constitution, 1stEdition, 2015.
- 3. M.P.Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D.Basu, IntroductiontotheConstitutionofIndia,LexisNexis,2015.

Subject Code:	S	SubjectName:PEDAGOGYSTUDIES Ty/Lb L T P C											
EMCC22I06	P	erequis	ite:Nil					Г	Гу	2	0/0	0/0	0
L :LectureT :TutorialP:P	rojectR:Re	searchC	Credit:	sT/L:T	heory/l	Lab							
Objectives Studentswillb	eableto:4.I	Reviewe	xisting	evidenc	ceonthe	ereview	topicto	oinform	prograi	mme des	signand		
policymakingundertaken	bytheDfID	,otherag	genciesa	ndrese	archers	s.5.Idei	ntifycri	ticalevi	lenceg	apstogu	idethede	velop	ment.
			0.1.1										
	(COs):Att	heendo	fthiscou	urseth	estude	ntswou	ildbeal	bletokn	OW				
C01	Whatpeda	gogical	practice	sarebe	inguse	d	1 1						
	byteacher	sinform	alandin	tormal	classro	omsinc	levelop	ingcour	ntries?	in such a fr	an dition		
CO2	wnatistne	evidence hatpopu	eontnee	flearne	enesso	onnesej	pedago	gical pr	actices	,1nwhate	condition	1S,	
C03	Howcante	Iowcanteachereducation(curriculumandpracticum)andtheschoolcurriculumand											
005	guidancer	uidancematerialsbestsupporteffectivepedagogy?											
Manningof CourseOutc	omeswith	meswithProgramOutcomes(POs)											
	comeswithProgramOutcomes(POs)												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	;]]	PSO3
C01	1	1	1	1	1	3	1	1	1	1	1	1	
CO2	1	1	1	1	1	3	1	1	1	1	1	1	
CO3	1	1	1	1	1	3	1	1	1	1	1	1	
H/M/LindicatesStrengt	hofCorrel	ation	3-	High,2	-Medi	um, 1-	Low					.1	
		T		0 /		,					T		
Category	BasicSciences Engineering Engineering Sciences Humanities andSocial ProgramCore ProgramClectives Internships /Technical SoftSkills Auditcourse												

Subject Code:	SubjectName:PEDAGOGYSTUDIES	Ty/Lb	L	Т	Р	С
EMCC22I06	Prerequisite:Nil	Ту	2	0/0	0/0	0

UNITI:

Aims and rationale, Policy background, Conceptual framework and terminology, Theories oflearning, Curriculum, Teacher education.Conceptual framework, Research questions.OverviewofmethodologyandSearching.

UNITII:

Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teachereducation.

UNITIII:

Evidence on the effectiveness of pedagogical practices. Methodology for the in depth stage:quality assessment of included studies. How can teacher education (curriculum and practicum)and the school curriculum and guidance materials best support effective pedagogy? Theory

of change. Strengthand nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogics trategies.

UNITIV:

Professional development: alignment with classroom practices and follow- up support, Peersupport.Supportfromtheheadteacherandthecommunity.Curriculumandassessment,Barriersto learning: limitedresources and large classsizes.

UNITV:

Research design, Contexts, Pedagogy, Teacher education, Curriculum and assessment, Disseminationandresearchimpact.

Suggestedreading

- 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31(2):245-261.
- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal ofCurriculumStudies, 36 (3):361-379.
- 3. AkyeampongK(2003)TeachertraininginGhana-doesitcount?Multisiteteachereducationresearch project(MUSTER)countryreport1.London:DFID.
- 4. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning ofbasic maths and reading in Africa: Does teacher preparation count? International JournalEducationalDevelopment, 33 (3):272–282.

M.TECH CHEMICAL ENGINEERING 2020 REGULATIONS

4 rie

2

4

4

2

SubjectCoo EMCC22I	de: 1 06	S	Subject STRESS	Name: S MAN	NAGEN	MENT	BY Y	OGA	Ту	y/Lb	L	Т	Р	C
		Pr	erequis	ite: Basi	cKnov	vledge	ofYoga	l	Ту		2	0/0	0/0	0 0
Objectives									ľ		ł			_
•	ToUr	ndersta	ndtheBa	asic Coi	nceptsc	of Yoga	ı							
•	ToGa	ainknov	wledged	onAshta	ngayog	ga								
•	ToAc	equirek	nowled	geofTeo	chnique	esandP	ractice	ofYoga	asanas					
•	Toun	ounderstandstressandthecauses. To Attain the knowledge about stress busting throughy oga												
CO1	U	Understandthe BasicConceptsofYoga												
CO2	G	GainknowledgeonAshtangayoga												
CO3	Т	ToUnderstandstressand thecauses												
CO4	A	AcquireknowledgeofTechniquesandPracticeofYogasanas												
CO5	A	Attaintheknowledge aboutstressbustingthroughyoga												
Mappingof	Cours	urseOutcomeswithProgramOutcomes(POs)												
COs/POs		PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PS01 PS02 PS03											PSO3	
CO1		1	1	1	1	1	3	1	1	1	1	1	1	
CO2		1	1	1	1	1	3	1	1	1	1	1	1	
CO3		1	1	1	1	1	3	1	1	1	1	1	1	
CO4		1	1	1	1	1	3	1	1	1	1	1	1	
CO5		1	1	1	1	1	3	1	1	1	1	1	1	
H/M/Lindio	catesSt	rength	ofCorr	elation	l	3-Hig	h,2-Me	edium,	1-Low				·	
Category		BasicSciences	Engineerin gSciences	Humanities andSocial	ProgramCore	ProgramElectives	OpenElectives	Practical/Project	Internships /Technical	SoftSkills	Auditcourse			
											\checkmark			

	SubjectCode: EMCC22I06	SubjectName: STRESS MANAGEMENT BY YOGA	Ty/Lb	L	Т	Р	С
		Prerequisite: BasicKnowledgeofYoga	Ту	2	0/0	0/0	0
UI	NITI:					8	
De	efinitionsofEightpar	rtsofyog.(Ashtanga)					
UI	NITII:					8	
i) ap ha	• YamandNiya Ahinsa, satya, ast arigrahaShaucha,sa n	m.Do`s andDon't'sinlife. heya, bramhacharya and ntosh,tapa,swadhyay,ishwarpranid				Q	
UI	• AsanandPrar	avam				0	
i)	Variousvogpo	sesandtheirbenefitsformind&body					
ii) Regularization	ofbreathingtechniquesanditseffects-					
	Typesofprana	yama					
,	SUGGESTEDREA	DING					
	1. 'YogicAsanasfor	GroupTarining-Part-I":JanardanSwami Yoga	abhyasiMano	lal,Na	gpur		
	2. "Rajayogaorco ublication Dep	nqueringtheInternalNature"bySwamiViveka artment),Kolkata	nanda,Advai	itaAsh	rama(P	•	

Subject	¢ A	Subject	Name	WDEW		MENT	TID	MC	Ty/	Lb	L	Т	Р	С
EMCC22I	08	HLIFE	ENLIG	HTEN	MENT	SKILI	LS	JUG						
	-	Prerequ	uisite:N	il					Т	у	2	0/0	0/0	0
L:Lecture	F:Tutorial		P:Pro	jectR:F	Resear	chC:C	reditsT	[/L:Th	eory/La	ab				
Objectives	Tolearntoa	chieveth	hehighe	st goalh	appily,	Tobeco	ome ap	ersonw	ithstabl	emind,	pleasing			
personalitya	anddetermi	nation. I	l'o awak	en wisd	lominst hiscour	tudent rsethes	tudent	tswould	dheahla	tokno	w			
	StudyofS	hrimad-	Bhagw:	ad-Geet	awillhe	elnthest	udentii	ndevelo	ninghis	persor	•• alitvand	lachiev	e	
001	thehighes	t goal ir	nlife			ipinesi	adenti		pingin	person	luntyune	ueme v	C	
CO2	Theperso	nwhoha	sstudied	dGeeta v	villlead	lthenat	ionand	manki	nd tope	aceand	prosperi	ty		
CO3	StudyofN	tudyofNeetishatakamwillhelpin developingversatilepersonalityofstudents.												
Mappingof	CourseOutcomeswithProgramOutcomes(POs)													
COs/POs	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PS01 PS02 PS03													
CO1	1 1 1 1 3 1 1 1 1 1													
CO2		1	1	1	1	1	3	1	1	1	1	1	1	
CO3		1	1	1	1	1	3	1	1	1	1	1	1	
H/M/Lindi	catesStren	gthofC	orrelat	ion	H-H	ligh,M	-Medi	um,L-I	Low					
Category	Category BasicSciences BasicSciences Engineering Sciences Humanities andSocialScien ProgramElectives ProgramElectives ProgramElectives ProgramElectives ProdramSkill Auditcourse Auditcourse													
											~			

8

8

Subject	Subject Name	Ty/Lb	L	Т	Р	С
Code:	PERSONALITYDEVELOPMENTTHROUG					
EMCC22I08	HLIFEENLIGHTENMENTSKILLS					
	Prerequisite:Nil	Ту	2	0/0	0/0	0

UNITI:

Neetisatakam-Holisticdevelopmentofpersonality

- Verses-19,20,21,22(wisdom)
- Verses-29,31,32 (pride&heroism)
- Verses-26,28,63,65 (virtue)
- Verses-52,53,59(dont's)
- Verses-71,73,75,78(do's)

UNITII:

- Approachto daytodayworkandduties.
- ShrimadBhagwadGeeta :Chapter2-Verses41,47,48,
- Chapter3-Verses13,21, 27,35, Chapter6-Verses 5,13,17,23,35,
- Chapter18-Verses45,46,48.

UNITIII:

- Statementsofbasicknowledge.
- ShrimadBhagwadGeeta:Chapter2-Verses56,62,68
- Chapter12-Verses13, 14,15, 16,17,18
- Personality of Role model. ShrimadBhagwadGeeta: Chapter2-Verses 17, Chapter3-Verses36, 37, 42,
- Chapter4-Verses18,38,39
- Chapter18–Verses37,38,63

SUGGESTEDREADING

1. "SrimadBhagavadGita" by Swami Swarupananda Advaita Ashram (Publica

tionDepartment),Kolkata

2. Bhartrihari's Three Satakam (Niti-sringar-vairagya) byP.Gopinath,RashtriyaSanskritSansthanam, NewDelhi.

Subject Code	Subject Name : RESEARCH AND						T / L/	L	T / S	.Lr	P/ R	С		
EMCC22I09		PUBLICATION ETHICS						ETP/IE						
Prere			uisite: core	subjects					Т	2	0	/0	0/0	0
T/L/: Theory/Lab L : Lecture T : Tutorial P : Practical/Project R : Research C: Credits T/L Theory/Lab														
OBJECTIVE:														
• To understand the philosophy of science and ethics, research integrity and publication ethics.														
• To identify research misconduct and predatory publications.														
• To understand indexing and citation databases, open access publications, research metrics (citations, h-														
index, impact Factor, etc.).														
COURSE OUTCOMES (COs) : By doing this course students will														
C01	U	Understand the ethical issues related to Research and Publication												
CO2	G	Get to know about different types of plagiarism and ways for avoiding plagiarism												
CO3	K	Know about best practices and guidelines in publication ethics and also learns to avoid												
	Pl	Publication misconduct												
CO4	G	Get to know about Violation of publication ethics, authorship and contributor ship and												
	ge	get to identify about Predatory publishers and journals.												
C05	OS Get to know about various open sources database and research metrics like indexing citation ato													
005			w about va	inous ope	n source	5 databe	ise und i	cocure	in metres i	ince i	naexn	15, enu	lion etc.,	
Mapping of Course Outcomes with Program Outcomes (POs)														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PC)10	PO11	PO12	
CO1	2	3	3	3	3	2	3	3	2		3	2	3	
CO2	2	3	3	3	3	2	3	3	2		3	2	3	
CO3	2	3	3	3	3	2	3	3	2		3	2	3	
CO4	2	3	3	3	3	3	3	3	3		3	3	3	
CO5	2	3	3	3	3	2	3	3	2		3	2	3	
COs / PSOs	P	SO1	PSO2		PSO3									
CO1		2	3		3									
CO2		2	3		3									
CO3		2	3		3									
CO4		2	3		3									
CO5	~	2		3		3								
1/2/3 indicates	s Streng	<u>gth of C</u>	orrelation	<u>3- High,</u>	<u>2- Medi</u>	um, 1-I	JOW							
Category			Ices		ves		t d							
	iences	ingSc	ties alScien	Core	Electiv	ctives	/Projec	ips	S	Irse	Ac In			
	BasicSc	Engineer ences	Humani IndSocia	Program	Program	DpenEle	Practica	nternsh	SoftSkil	Anditco				
	[U 1		۲ 			

Subject Code: EMCC22I09	Subject Name : RESEARCH AND PUBLICATION ETHICS	T / L/ ETP/IE	L	T / S.Lr	P/ R	С
	Prerequisite: core subjects	Т	2	0/0	0/0	0

Unit I: Introduction

Introduction to philosophy: Definition, nature and scope, concept, branches - Ethics: Definition, moral philosophy, nature of moral judgments and reactions – Ethics with respect to Science and Research Intellectual honesty and research integrity

Unit II: Scientific Conduct

Scientific misconducts: Falsification, Fabrication, and Plagiarism (FFP)

Redundant Publications: Duplicate and over lapping publications, salami slicing – Selective reporting and misrepresentation of data

Unit III: Publication Ethics -I

Publication ethics: Definition, introduction and importance – Best practices/standards setting initiatives and guidelines: COPE, WAME etc. Publication misconduct: definition, Concept, problems that lead to unethical behavior and vice-versa, types.

Unit IV: Publication Ethics - II

Violation of publication ethics, authorship and contributor ship – Identification of publication misconduct, complaints and appeals – Predatory publishers and journals – Subject specific ethical issues, Complaints and appeals: examples and fraud from India and Abroad

Unit V: Data Bases and Research Metrics

Open Access publication and Initiatives – Indexing databases – Citation databases, Web of Science, Scopus, etc. – Impact factor of journals as per Journal Citation report .SNIP, SJR, IPP, Cite Score - Metrics: h-index,gindex,i10index,altmetrics – Conflict of interest.

REFERENCES:

1. Bird A 2006, Philosophy of Science, Routledge

- 2. MacIntyre & Alasdair, 1967, A Short History of Ethics, London.
- 3. Chaddah, P20 1 8, Ethics in Competitive Research: Do not get scooped; do not get plagiarized, ISBN: 9789387480865.
- 4. On Being a Scientist: A Guide to Responsible Conduct in Research, 2009, National Academy of Sciences, National Academy of Engineering and Institute of Medicine. 3rd edition, National Academies Press.
- 5. Resnik, D. B 201 1, what is ethics in research & why is it important. National Institute of Environmental Health Sciences, pp.1—10.

 $http \underline{s://www.niehs.nih.gov/research/reso_uuces/bioethics/whatis/index.cfm$

6. Bcall, J 2012, Predatory publishers are corrupting open access, Nature, Vol. 489, no.7415,pp. 179—179. https://d0i.org/IO.1 03 8/48917%

7. Ethics in Science Education, 2019Indian National Science Academy (INSA),
Research and Governance, ISBN: 978-81-939482-1-7.
http://www.insaindia.rcs.Wpdf/Ethics_Book.pdf