

FACULTY OF ENGINEERING AND TECHNOLOGY

OUTCOME BASED EDUCATION

CURRICULUM & SYLLABUS

BACHELOR OF TECHNOLOGY CIVIL ENGINEERING

DEPARTMENT OF CIVIL ENGINEERING

VISION OF THE DEPARTMENT OF CIVIL ENGINEERING

To achieve the pinnacle of success in the area of sustainable construction and green technologies, thus stimulating economic growth and making the society a better place to live in

THE MISSION OF THE DEPARTMENT OF CIVIL ENGINEERING

M1: To produce graduates who possess technical competence in the field of Civil Engineering with integrity and commitment

M2: To prepare them to serve and contribute as professional engineers, innovators, leaders and entrepreneurs in the global community

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

The Program Educational Objectives of the department are:

PEO 1: To apply fundamental knowledge of basic sciences and engineering to find creative solutions to challenges in civil engineering

PEO 2: To analyze, design and apply skills to address civil engineering problems.

PEO 3: To practice civil engineering in a professional and ethical manner and to implement sustainable technologies for the benefit of industry and society.

PEO 4: To enhance knowledge through research and development in civil engineering using current technologies

PEO 5: To produce professionally competent engineers by improving their software skills, communication skills, managerial skills and entrepreneurship quality to prepare them for lifelong learning

PROGRAM SPECIFIC OUTCOMES (PSOs)

The Program Specific Objectives of the department is to produce professional Civil Engineers with the potential:

PSO 1: To analyze, design and apply technical knowledge with up-to-date skills to solve civil engineering complexities

PSO 2: To function as an individual or in a team to find sustainable solutions in civil engineering domain through research and development

PROGRAM OUTCOMES (POs)

The general Program outcomes of Civil Engineering are as follows:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The Engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Faculty of Engineering and Technology

Regulation 2022 – Framework

Total Credits: 166

Credit for I & II Semester: 37 Credits

Credit for III TO VIII Semester: 129 Credits

Program Components

•	Basic Science (Mathematics) includ	e accord	ling to program - 8
•	Program Core theory	-	15
•	Program Core Laboratory	-	10
•	Program Elective	-	5
•	Open Elective	-	2
•	Open Lab	-	1
•	Management paper	-	1
•	Foreign Language	-	1
•	Audit course	-	2
•	Universal Human values	-	1
•	Inter disciplinary theory	-	3
•	Inter disciplinary Lab	-	3
•	ETL	-	2
•	Technical Skills	-	3
•	Soft skill	-	2
•	Project /mini project	-	3

Curriculum with Course codes for B.Tech (Civil Engineering)

Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	C	Category
EBEN22001	Technical English	Ту	2	0/0	0/0	2	HS
EBMA22001	Mathematics – I	Ту	3	1/0	0/0	4	BS
EBPH22ET1	Engineering Physics	ETL	2	0/0	2/0	3	BS
EBCH22ET1	Engineering Chemistry	ETL	2	0/0	2/0	3	BS
EBEE22ET1	Basic Electrical & Electronics Engineering	ETL	2	0/0	2/0	3	ES
EBCS22ET1	C Programming and MS office tools	ETL	1	0/0	2/0	2	ID
EBCC22I01	Orientation to Entrepreneurship & Project lab	IE	0	0/0	2/0	1	ID

${\bf SEMESTER}-{\bf I}$

Credits Sub Total: 18

	SEMESTER – II										
Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category				
EBMA22003	Mathematics – II	Ту	3	1/0	0/0	4	BS				
EBPH22002	Engineering Mechanics	Ту	3	0/0	0/0	3	BS				
EBCH22002	Industrial Chemistry	Ту	3	0/0	0/0	3	BS				
EBME22001	Engineering Graphics	Ту	2	0/0	2/0	3	ES				
EBCE22001	Smart Structures and Smart Materials	Ту	3	0/0	0/0	3	PC				
EBCC22I02	Communicative English Lab	IE	1	0/0	1/0	1	HS				
EBCS22ET2	Python Programming	ETL	1	0/0	2/0	2	ID				
EBCC22I03	Environmental Science (Audit Course)	IE	1	0/0	1/0	0	HS				

Credits Sub Total: 19

TOTAL CREDITS FOR I YEAR: 37

Note:

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and lab/Internal evaluation

L/T/SLr/P/R/C: Lecture/Tutorials/Supervised Learning/Practical/Research/Credit

HS: Humanities and Social Science, ES: Engg. Science, BS: Basic Science, PC: Program

core, PE: Program Elective, OE: Open Elective, P: Project

	III SEMESTER										
S.NO.	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category			
1	EBMA22005	Mathematics III For Mechanical and Civil Engineers	Ту	3	1/0	0/0	4	BS			
2	EBCE22002	Mechanics of Solids	Ту	3	1/0	0/0	4	PC			
3	EBCE22003	Hill and advanced Surveying	Ту	3	0/0	0/0	3	PC			
4	EBEE22ID7	Energy Conservation Techniques	Ту	3	0/0	0/0	2	ID			
5	EBME22ID2	Composite Materials	Ту	3	0/0	0/0	2	ID			
		PRACTI	CALS								
1	EBCC22ET1	Universal Human Values 2: Understanding Harmony	ETL	1	0/0	2/0	2	ID			
2	EBCE22L01	Surveying Laboratory	Lb	0	0/0	3/0	1	PC			
3	EBCE22L02	Strength of Materials Laboratory	Lb	0	0/0	3/0	1	PC			
4	EBCT22IL1	Water analysis laboratory	Lb	0	0/0	2/0	1	ID			
5	EBCE22ET1	Building Materials	ETL	1	0/0	2/0	2	PC			
Credits Sub Total 22								22			

		IV SEMES	STER						
S.NO.	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category	
1	EBMA22008	Statistical and Numerical methods for Mechanical and Civil Engineers	Ту	3	1/0	0/0	4	BS	
2	EBCE22004	Strength of Materials	Ту	3	1/0	0/0	4	PC	
3	EBCE22005	Fluid Mechanics and Hydraulic Engineering	Ту	3	1/0	0/0	4	РС	
4	EBEC22ID5	Applications of IoT in Civil Engineering	Ту	3	0/0	0/0	2	ID	
5	EBCC22I04/ EBCC22I05	The Indian Constitution/ The Indian Traditional Knowledge (Audit Course)	IE	2	0/0	0/0	0	ID	
		PRACTIO	CALS						
1	EBMA22IL1	Mathematical software for Civil Engineers	Lb	0	0/0	2/0	1	ID	
2	EBCE22L03	Fluid Mechanics and Hydraulic Machinery Laboratory	Lb	0	0/0	3/0	1	PC	
3	EBCE22L04	AUTOCADD laboratory	Lb	0	0/0	3/0	1	PC	
4	EBCS22IL4	Artificial Intelligence and Machine Learning laboratory	Lb	0	0/0	2/0	1	ID	
5	EBCE22I01	Technical Skill I	IE	0	0/0	2/0	1	SC	
6	EBCC22I06	Soft Skill I – Employability skills	IE	0	0/0	2/0	1	SC	
Credits Sub Total 20									

		V SEMES	TER					
S.NO.	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category
1	EBCE22006	Environmental Engineering	Ту	3	1/0	0/0	4	PC
2	EBCE22007	Soil Mechanics	Ту	3	1/0	0/0	4	PC
3	EBCE22008	Concrete Technology	Ту	3	0/0	0/0	3	PC
4	EBCE22EXX	Program Elective I	Ту	3	0/0	0/0	3	PE
5	EBXX22OEX	Open Elective I	Ту	3	0/0	0/0	3	ID
6	EBOL22I01	Online Course (NPTEL/SWAYAM/Any online MOOC course approved by AICTE/UGC)	IE	1	0/0	1/0	1	ID
		PRACTIC	CALS					
1	EBCE22L05	Environmental Engineering laboratory	Lb	0	0/0	3/0	1	PC
2	EBCE22L06	Soil Mechanics Laboratory	Lb	0	0/0	3/0	1	PC
3	EBCE22I02	Technical Skill II	IE	0	0/0	2/0	1	SC
4	EBCE22ET2	Remote Sensing and GIS	ETL	1	0/0	2/0	2	PC
				Cre	dits Sub	Total		23

	VI SEMESTER								
S.NO.	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category	
1	EBCE22009	Structural Analysis	Ту	3	1/0	0/0	4	PC	
2	EBCE22010	Design of Concrete structures	Ту	3	1/0	0/0	4	PC	
3	EBCE22011	Foundation Engineering	Ту	3	1/0	0/0	4	PC	
4	EBCE22EXX	Program Elective II	Ту	3	0/0	0/0	3	PE	
5	EBXX22OEX	Open Elective II	Ту	3	0/0	0/0	3	OE	
		PRACTICA	ALS						
1	EBCE22L07	Concrete Laboratory	Lb	0	0/0	3/0	1	PC	
2	EBCE22L08	Irrigation and Environmental Engineering Drawing	Lb	0	0/0	3/0	1	PC	
3	EBCC22I07	Soft Skill II (Qualitative and Quantitative Skills)	IE	0	0/0	2/0	1	SC	
4	EBCE22I03	Technical Skill III	IE	0	0/0	2/0	1	SC	
5	EBCE22I04	Mini Project / Internship	IE	0	0/0	3/0	1	SC	
Credits Sub Total 23								23	

	VII SEMESTER									
S.NO.	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category		
1	EBCE22012	Design of Steel Structures	Ту	3	1/0	0/0	4	PC		
2	EBCE22EXX	Program Elective III	Ту	3	0/0	0/0	3	PE		
3	EBCE22013	Estimation and Quantity Surveying	Ту	3	1/0	0/0	4	PC		
4	EBCE22014	Construction Management	Ту	3	1/0	0/0	4	PC		
5	EBCE22015	Transportation Engineering	Ту	3	0/0	0/0	3	PC		
		PRAC	TICALS							
1	EBXX22OLX	Open Lab	Lb	0	0/0	3/0	1	ID		
2	EBCE22L09	Structural design studio	Lb	0	0/0	3/0	1	PC		
3	EBCE22L10	Transportation Engineering laboratory	Lb	0	0/0	3/0	1	PC		
4	EBCE22I05	Project Phase – I	IE	0	0/0	3/3	2	Р		
5	EBFL22IXX	Foreign Language	IE	1	0/0	1/0	1	HS		
	Credits Sub Total 24									

	VIII SEMESTER									
S.NO.	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category		
1	EBCC22ID3	Total Quality Management	Ту	3	0/0	0/0	3	ID		
2	EBCE22EXX	Program Elective IV	Ту	3	0/0	0/0	3	PE		
3	EBCE22EXX	Program Elective V	Ту	3	0/0	0/0	3	PE		
	PRACTICALS									
1	EBCE22L11	Project Phase – II	Lb	0	0/0	12/12	8	Р		
Credits Sub Total 17										

TOTAL CREDITS: 166

LIST OF PROGRAM ELECTIVES

	PROGRAM ELECTIVE I										
S.NO.	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category			
1	EBCE22E01	Engineering Geology	Ту	3	0/0	0/0	3	PE			
2	EBCE22E02	Cleaner Production	Ту	3	0/0	0/0	3	PE			
3	EBCE22E03	Building Technology and Habitat Engineering	Ту	3	0/0	0/0	3	PE			
4	EBCE22E04	Architecture and Town Planning	Ту	3	0/0	0/0	3	PE			

	PROGRAM ELECTIVE II									
S.NO.	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category		
1	EBCE22E05	Hydrology	Ту	3	0/0	0/0	3	PE		
2	EBCE22E06	Environmental Impact Assessment	Ту	3	0/0	0/0	3	PE		
3	EBCE22E07	Bridge Structures	Ту	3	0/0	0/0	3	PE		
4	EBCE22E08	Irrigation Engineering	Ту	3	0/0	0/0	3	PE		

	PROGRAM ELECTIVE III										
S.NO.	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category			
1	EBCE22E09	Prestressed Concrete Structures	Ту	3	0/0	0/0	3	PE			
2	EBCE22E10	Housing Planning and Design	Ту	3	0/0	0/0	3	PE			
3	EBCE22E11	Industrial Waste Management	Ty	3	0/0	0/0	3	PE			
4	EBCE22E12	Cost Effective Buildings	Ту	3	0/0	0/0	3	PE			

PROGRAM ELECTIVE IV									
S.NO.	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category	
1	EBCE22E13	Structural Dynamics and Earth Quake Engineering	Ту	3	0/0	0/0	3	PE	
2	EBCE22E14	Dam Engineering	Ту	3	0/0	0/0	3	PE	
3	EBCE22E15	Industrial Structures	Ту	3	0/0	0/0	3	PE	
4	EBCE22E16	Advanced Environmental Engineering	Ty	3	0/0	0/0	3	PE	

PROGRAM ELECTIVE V									
S.NO.	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category	
1	EBCE22E17	Repair and Rehabilitation of Structures	Ту	3	0/0	0/0	3	PE	
2	EBCE22E18	Municipal Solid Waste Management	Ту	3	0/0	0/0	3	PE	
3	EBCE22E19	Finite Element Analysis	Ту	3	0/0	0/0	3	PE	
4	EBCE22E20	Pre Fabricated Structures	Ту	3	0/0	0/0	3	PE	

LIST OF OPEN ELECTIVES OFFERED FOR CIVIL ENGINEERING STUDENTS DEPARTMENT WISE OPEN ELECTIVES

S.NO	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	C	Category
1	EBCS22OE1	Cyber security & Forensics	Ту	3	0/0	0/0	3	ID
2	EBCS22OE2	Artificial Intelligence	Ту	3	0/0	0/0	3	ID
3	EBCS22OE3	Data Base Concepts	Ty	3	0/0	0/0	3	ID
4	EBCS22OE4	Software Engineering	Ту	3	0/0	0/0	3	ID

COMPUTER SCIENCE AND ENGINEERING

INFORMATION TECHNOLOGY

S.NO	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category
1	EBIT22OE1	Web Design	Ту	3	0/0	0/0	3	ID
2	EBIT22OE2	Digital Marketing	Ту	3	0/0	0/0	3	ID
3	EBIT22OE3	Cyber Security Essentials	Ту	3	0/0	0/0	3	ID
4	EBIT22OE4	Introduction to Multimedia	Ту	3	0/0	0/0	3	ID

ELECTRONICS AND COMMUNICATION ENGINEERING

S.NO	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category
1	EBEC22OE1	Internet of Things and its Applications	Ту	3	0/0	0/0	3	ID
2	EBEC22OE2	Cellular Mobile communication	Ту	3	0/0	0/0	3	ID
3	EBEC22OE3	Satellite and its Applications	Ту	3	0/0	0/0	3	ID
4	EBEC22OE4	Fundamentals of Sensors	Ту	3	0/0	0/0	3	ID
5	EBEC22OE5	Microprocessor Based System Design	Ту	3	0/0	0/0	3	ID
6	EBEC22OE6	Industry 4.0 Concepts	Ту	3	0/0	0/0	3	ID

S.NO	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category
1	EBEE22OE1	Electrical Safety for Engineers	Ту	3	0/0	0/0	3	ID
2	EBEE22OE2	Energy Conservation Techniques	Ту	3	0/0	0/0	3	ID
3	EBEE22OE3	Electric Vehicle Technology	Ту	3	0/0	0/0	3	ID
4	EBEE22OE4	Biomedical Instrumentation	Ту	3	0/0	0/0	3	ID
5	EBEE22OE5	Industrial Instrumentation	Ту	3	0/0	0/0	3	ID
6	EBEE22OE6	Solar Energy Conversion System	Ту	3	0/0	0/0	3	ID
7	EBEE22OE7	Wind Energy Conversion System	Ту	3	0/0	0/0	3	ID
8	EBEE22OE8	Energy Storage Technology	Ту	3	0/0	0/0	3	ID
9	EBEE22OE9	Electrical Machines	Ту	3	0/0	0/0	3	ID

ELECTRICAL AND ELECTRONICS ENGINEERING

MECHANICAL ENGINEERING

S.NO	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category
1	EBME22OE1	Industrial Engineering	Ту	3	0/0	0/0	3	ID
2	EBME22OE2	Refrigeration and Air conditioning	Ту	3	0/0	0/0	3	ID
3	EBME22OE3	Automobile Engineering	Ту	3	0/0	0/0	3	ID
4	EBME22OE4	Industrial Robotics	Ту	3	0/0	0/0	3	ID
5	EBME22OE5	Sustainable Energy	Ту	3	0/0	0/0	3	ID
6	EBME22OE6	Composite Materials	Ту	3	0/0	0/0	3	ID
7	EBME22OE7	Industry 4.0	Ту	3	0/0	0/0	3	ID
8	EBME22OE8	Virtual and Augmented Reality	Ту	3	0/0	0/0	3	ID

BIOTECHNOLOGY

S.NO	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category
1	EBBT22OE1	Food and Nutrition	Ту	3	0/0	0/0	3	ID
2	EBBT22OE2	Human Physiology	Ту	3	0/0	0/0	3	ID
3	EBBT22OE3	Clinical Biochemistry	Ту	3	0/0	0/0	3	ID
4	EBBT22OE4	Bioprocess Principles	Ту	3	0/0	0/0	3	ID
5	EBBT22OE5	Biosensors and Biomedical Devices in Diagnostics	Ту	3	0/0	0/0	3	ID
6	EBBT22OE6	Basic Bioinformatics	Ту	3	0/0	0/0	3	ID

CHEMICAL ENGINEERING

S.NO	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category
1	EBCT22OE1	Fundamentals of Nanoscience	Ту	3	0/0	0/0	3	ID
2	EBCT22OE2	Electrochemical Engineering	Ту	3	0/0	0/0	3	ID
3	EBCT22OE3	Alternative Fuels And Energy System	Ту	3	0/0	0/0	3	ID
4	EBCT22OE4	Petrochemical Unit Processes	Ту	3	0/0	0/0	3	ID
5	EBCT22OE5	Principles of Desalination Technologies	Ту	3	0/0	0/0	3	ID
6	EBCT22OE6	Piping Design Engineering	Ту	3	0/0	0/0	3	ID
7	EBCT22OE7	E- Waste Management	Ту	3	0/0	0/0	3	ID

Dr APJ ABDUL KALAM CENTER FOR RESEARCH

S.NO	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category
1	EBMG22OE1	Technical Entrepreneurship	ETL	2	0/1	2/0	3	ID
2	EBMG220E2	Advanced Program in Entrepreneurship	ETL	2	0/1	2/0	3	ID

LIST OF OPEN ELECTIVES OFFERED FOR OTHER DEPARTMENT STUDENTS FROM CIVIL ENGINEERING

S.NO	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category
1	EBCE22OE1	Water Pollution and its Management	Ту	3	0/0	0/0	3	ID
2	EBCE22OE2	Air Pollution and Control	Ту	3	0/0	0/0	3	ID
3	EBCE22OE3	Green Building and Vastu Concepts	Ту	3	0/0	0/0	3	ID
4	EBCE22OE4	Climate Change and Sustainable Development	Ту	3	0/0	0/0	3	ID
5	EBCE22OE5	Intelligent Transportation Systems	Ту	3	0/0	0/0	3	ID
6	EBCE22OE6	Environment, Health and Safety in Industries	Ту	3	0/0	0/0	3	ID
7	EBCE22OE7	Industrial Pollution Prevention and Cleaner Production	Ту	3	0/0	0/0	3	ID
8	EBCE22OE8	Fundamentals of nanoscience	Ty	3	0/0	0/0	3	ID

LIST OF OPEN LABS OFFERED FOR CIVIL ENGINEERING STUDENTS DEPARTMENT WISE OPEN LABS

S.NO	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	C	Category
1	EBCS22OL1	Artificial Intelligence Lab	Lb	0	0/0	3/0	1	ID
2	EBCS22OL2	PHP/My SQL Programming Lab	Lb	0	0/0	3/0	1	ID
3	EBCS22OL3	Database Lab	Lb	0	0/0	3/0	1	ID

COMPUTER SCIENCE AND ENGINEERING

INFORMATION TECHNOLOGY

S.NO	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category
1	EBIT22OL1	Visual Programming Lab	Lb	0	0/0	3/0	1	ID
2	EBIT22OL2	Web Design Lab	Lb	0	0/0	3/0	1	ID
3	EBIT22OL3	Digital content creation Lab	Lb	0	0/0	3/0	1	ID
4	EBIT22OL4	Computer Network Lab	Lb	0	0/0	3/0	1	ID
5	EBIT22OL5	PHP/My SQL Programming Lab	Lb	0	0/0	3/0	1	ID

ELECTRONICS AND COMMUNICATION ENGINEERING

S.NO	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category
1	EBEC22OL1	Sensors and IoT Lab	Lb	0	0/0	3/0	1	ID
2	EBEC22OL2	Robotics Control Lab	Lb	0	0/0	3/0	1	ID
3	EBEC22OL3	Basics of MATLAB	Lb	0	0/0	3/0	1	ID

S.NO	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category
1	EBEE22OL1	Transducer Lab	Lb	0	0/0	3/0	1	ID
2	EBEE22OL2	PLC and SCADA Lab	Lb	0	0/0	3/0	1	ID
3	EBEE22OL3	Electrical Maintenance Lab	Lb	0	0/0	3/0	1	ID
4	EBEE22OL4	Power Electronics Lab	Lb	0	0/0	3/0	1	ID
5	EBEE22OL5	Bio Medical Instrumentation Lab	Lb	0	0/0	3/0	1	ID
6	EBEE22OL6	Electrical Machines Lab	Lb	0	0/0	3/0	1	ID

ELECTRICAL AND ELECTRONICS ENGINEERING

MECHANICAL ENGINEERING

S.NO	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category
1	EBME22OL1	Internal Combustion Engines and Steam Lab	Lb	0	0/0	3/0	1	ID
2	EBME22OL2	Computer Aided Design and Simulation Lab	Lb	0	0/0	3/0	1	ID
3	EBME22OL3	Engineering Metrology Lab	Lb	0	0/0	3/0	1	ID
4	EBME22OL4	Automation Lab	Lb	0	0/0	3/0	1	ID
5	EBME22OL5	Virtual and Augmented Reality Lab	Lb	0	0/0	3/0	1	ID

BIOTECHNOLOGY

S.NO	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category
1	EBBT22OL1	Basic Biochemistry Lab	Lb	0	0/0	3/0	1	ID
2	EBBT22OL2	Basic Bioprocess Lab	Lb	0	0/0	3/0	1	ID
3	EBBT22OL3	Basic Microbiology Lab	Lb	0	0/0	3/0	1	ID
4	EBBT22OL4	Basic Bioinformatics Lab	Lb	0	0/0	3/0	1	ID

S.NO	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category
1	EBCT22OL1	Chemical Separation Lab	Lb	0	0/0	3/0	1	ID
2	EBCT22OL2	Chemical Composition Analysis Lab	Lb	0	0/0	3/0	1	ID
3	EBCT22OL3	Alternate Fuel Lab	Lb	0	0/0	3/0	1	ID
4	EBCT22OL4	Food Testing Laboratory	Lb	0	0/0	3/0	1	ID

CHEMICAL ENGINEERING

LIST OF OPEN LABS OFFERED FOR OTHER DEPARTMENT STUDENTS FROM CIVIL ENGINEERING

S.NO	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category
1	EBCE22OL1	Building Drawing Practice using Auto CADD	Lb	0	0/0	3/0	1	ID
2	EBCE22OL2	Geographical Information System and Mapping Laboratory	Lb	0	0/0	3/0	1	ID
3	EBCE22OL3	Environmental Engineering Laboratory	Lb	0	0/0	3/0	1	ID

FOREIGN LANGUAGES								
S.NO	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category
1	EBFL22I01	French language	IE	1	0/0	0/1	1	HS
2	EBFL22I02	German language	IE	1	0/0	0/1	1	HS
3	EBFL22I03	Japanese language	IE	1	0/0	0/1	1	HS
4	EBFL22I04	Arabic language	IE	1	0/0	0/1	1	HS
5	EBFL22I05	Chinese language	IE	1	0/0	0/1	1	HS
6	EBFL22I06	Russian language	IE	1	0/0	0/1	1	HS
7	EBFL22I07	Spanish language	IE	1	0/0	0/1	1	HS

LIST OF FOREIGN LANGUAGES

Course Component	Description	No. of Courses	Credits	Total	Credit Weightage (%)	Contact hours
Pagia	Theory	8	28			450
Solonoo	Lab	0	0	28	16.86	0
Science	ETL	0	0			0
Engineering	Theory	2	6			120
Soionoo	Lab	0	0	6	3.61	0
Science	ETL	0	0			0
Humanities	Theory	3	3			90
and Social	Lab	1	1	4	2.41	30
Science	ETL	0	0			0
Ducanam	Theory	15	56			840
Program	Lab	10	10	70	42.16	450
Core	ETL	2	4			90
Drogram	Theory	5	15			225
Flogram	Lab	0	0	15	9.03	0
Liecuves	ETL	0	0			0
Onen	Theory	2	6			90
Floctivo	Lab	1	1	7	4.21	45
LIECUVE	ETL	0	0			0
Inton	Theory	6	10			225
dissiplinary	Lab	4	4	20	12.04	120
uiscipiinai y	ETL	3	6			135
Skill Component		6	6	6	3.61	165
Project		2	10	10	6.02	90
Others if any		-	-	-	-	-
		70		166	100	3165

Table 1: Components of Curriculum and Credit distribution for Civil Engineering

Table 2:

Revision/modification done in syllabus content:

S.No	Course (Subject) Code	Course (Subject) Name	Concept/ topic if any, removed in current curriculum	Concept/ topic added in the new curriculum	% of Revision/ Modification done
1	EBCE22003	Hill and Advanced Surveying	-	Curve Setting, Geodetic surveying, field astronomy	60%
2	EBCE22005	Fluid Mechanics and Hydraulic Engineering	Positive displacement pumps, air vessels	-	20%
3	EBCE22L09	Structural Design Studio	_	 Program for Design of Slabs. Using Excel Program for Design of Beams. Using Excel Program for Design of Column and Footing Using Excel 	40%

Table 3:

List of New courses/value added courses/life skills/Electives/interdisciplinary/courses focusing on employability/ entrepreneurship/ skill development.

-						
S.No	New courses (Subjects)	Value added courses	Life skill	Electives	Inter Disciplinary	Focus on employability/ entrepreneurship/ skill development
1	Smart structures and smart materials	Technical skill I – Manual Building Drawing	Universal Human Values 2: Understanding Harmony	Engineering Geology	Orientation to Entrepreneurshi p and project lab	Hill and Advanced Surveying
2	Advanced Environmental Engineering	Technical Skill II – Survey Camp	The Indian Constitution/ The Indian Traditional Knowledge	Cleaner Production	C Programming and MS office tools	Soft Skill I – Employability skills
3	Fundamentals of nanoscience	Technical Skill III – Detailing of R.C and Steel Structures	Foreign Language	Building Technology and Habitat Engineering	Python programming	Soft Skill II (Qualitative and Quantitative Skills)
4	Online course (NPTEL/SWAY AM/Any online MOOC course approved by AICTE/UGC)			Architecture and Town Planning	Energy Conservation Techniques	Mini Project / Internship
5	Industrial chemistry			Hydrology	Composite Materials	Total Quality Management
6				Environmental Impact Assessment	Water analysis laboratory	Project Phase – I
7				Bridge Structures	Applications of IoT in Civil Engineering	Project Phase – II
8				Irrigation Engineering	Mathematical software for Civil Engineers	Structural design studio
9				Prestressed Concrete Structures	Artificial Intelligence and Machine Learning laboratory	
10				Housing Planning and Design		
11				Industrial Waste		
12				Cost Effective		

	Buildings
	Structural
12	Dynamics and
15	Earth Quake
	Engineering
14	Dam
14	Engineering
15	Industrial
15	Structures
	Advanced
16	Environmental
	Engineering
	Repair and
17	Rehabilitation
17	of
	Structures
	Municipal Solid
18	Waste
	Management
19	Finite Element
17	Analysis
20	Pre Fabricated
20	Structures

I SEMESTER

Subject Co	de		Subie	ct Name :		Г	°v∕	Ι		T/SLr		P/R	С	
~		TF	CHNIC	AL ENGI	JSH	Ι	_b/			- / /0			-	
						E	TL							
EBEN2200)1	Prerequ	isite : H	igher Sec. 1	English]	Гу	2	2	0/0		0/0	2	
C: Credit	s, L: Le	cture,	Γ: Tuto	rial, SLr:	Super	rvised	l Le	arni	ng, I	P: Proble	em / Pra	nctical	-	
R: Resear	ch, Ty/	Lb/ET	L/IE: T	heory /La	ab/Emt	bedde	d Tl	heor	y an	d Lab/In	ternal	Evaluati	on	
OBJECTI	VES			5					2					
To refresh	and stim	ulate stu	dents' E	Inglish lear	ning thr	ough (Conte	ent Iı	ntegra	ated Lang	uage Lea	arning to	have an	
in-depth un	inderstanding of the components of English language and its use in communication that they are													
competent i	in inter-personal and academic communication for a successful career.													
COURSE	OUTCOMES (Cos)													
Students co	ompleting this course were able to													
CO1	Refresh and stimulate their English learning through Content Integrated Language Learning ming													
CO2	Have a	n in-de	pth und	lerstanding	of the	e com	pone	ents	of E	English la	inguage	and its	use in	
	communication.													
CO3	Strengthen their vocabulary and syntactic knowledge for use in academic and technical													
	communication													
CO4	Learn to negotiate meaning in inter-personal and academic communication for a successful career													
CO5	Engage	in organ	ized aca	demic and	professi	onal w	riting	g for	life-l	ong learni	ng and r	esearch		
Mapping o	of Course	e Outco	ne with	Program (Outcom	e (PO	s)							
Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO	7	PO8	PO9	PO10	PO11	PO12	
CO1	1	-	1	1	3	1	1		2	3	3	1	3	
CO2	-	1	-	2	3	2	1		1	3	3	-	3	
CO3	1	1	1	1	2	1	-		2	3	3	1	3	
CO4	1	2	1	1	3	-	1		-	2	2	1	2	
CO5	1	2	1	-	2	1	-		1	3	3	1	3	
3/2/1 Indica	ates Strer	igth Of (Correlati	on, 3 – Hig	h, 2- M	edium,	1- L	LOW			- 1			
			ses	cial		ŝ							t	
	ses		enc	So	fe	ive		/es		ary		ent	jec	
C	enc		Sci	nd	C	ect		ctiv		lin		noc	Pro	
Category	Sci		gu	s al enc	m	Ε		Шe		scip		luc	1/	
	ic		eri	itie Sci	gra	ran		en]		rdis		1 cc	tica	
	Bas		jine	Jan	Prc	130	þ	dC		nte		kil	ract	
			Eng	Ium		Pr		Ŭ		I			P	
			_											
				v	1									

30

Subject Code	Subject Name :	Ty/	L	T/SLr	P/R	С
	TECHNICAL ENGLISH	Lb/				
		ETL				
EBEN22001	Prerequisite : Higher Sec. English	Ту	2	0/0	0/0	2

Unit I Vocabulary Development:

Affixes: prefixes and suffixes and word formation-synonyms and antonyms-nominal compounds, expanding using numbers and approximation - preposition, prepositional phrases, preposition + relative pronoun- adjective: degrees of comparison, formation of adjectives, irregular comparatives- Infinitive and Gerunds

Unit II Grammar

Tenses- auxiliary and modal -voice: active, passive and impersonal passive - Questions: Wh-pattern, Yes/no questions, tag questions – adverbs and adverbial clauses- 'If' clause, 'cause and effect', 'purpose'- Concord: subjectverb agreement

Unit III Reading

Comprehension: extracting relevant information from the text, by skimming and scanning and inferring, identifying lexical and contextual meaning for specific information, identifying the topic sentence and its role in each paragraph, comprehension exercises - Note - making - Précis writing-instructions, suggestions and recommendations.

Unit IV Writing

Jumbled sentences - paragraph writing coherence devices- discourse markers. Essay writing- Letter writing, Informal and formal: seeking permission to undergo practical training, letter to an editor of a newspaper complaining about civic problems and suggesting suitable solutions

Unit V Visual Aids in Communication

Interpretation of diagrams - tables, flow charts, pie charts and bar charts, and their use in Business reports

Text book

Panorama: Content Integrated Language Learning for Engineers, M. Chandrasena Rajeswaran & R.Pushkala, Vijay Nicole Imprints Pvt. Ltd., Chennai

References

- 1. Bhatnagar & Bhatnagar, Communicative English for Engineers and Professionals, Pearson
- 2. Wren and Martin: Grammar and Composition, Chand & Co, 2006
- 3. https://learnenglish.britishcouncil.org
- 4. www.better-english.com/grammar/preposition.

6 Hrs

Total No of Hrs: 30

6 Hrs

6 Hrs

6 Hrs

6 Hrs

Subject Coc	le		Subje	ct Name :			Ty/	L		T/SLr		P/R	С	
			MATH	EMATICS	-I		Lb/							
]	ETL							
EBMA220	01	Prerea	uisite · H	igher secor	darv		Tv	3		1/0		0/0	4	
		Matha	matice	igner secor	idul y		1 y	5		1/0		0/0		
$\mathbf{C} = \mathbf{C} + \mathbf{i}$	тт	wrathe		· 1 OI	C		1 T	<u> </u>		D 11		. 1		
C: Credits	s, L: Le	ecture,	I: Iuto	orial, SLr:	Supe	ervise	a Le	earnii	ng, P	: Proble	m / Pra	actical		
R: Resear	ch, Ty/	Lb/E1	'L/IE: T	heory /La	ab/Em	bedd	ed T	heor	y and	l Lab/In	ternal l	Evaluati	on	
OBJECTI	VES			-										
• Ar	nly the	Rasic co	ncents in	Algebra										
- 11	pry the		neepts m	Ingeola										
• Us	e the Ba	sic con	epts in N	Iatrices										
• Ide	entify an	d solve	problems	in Trigono	ometry									
• Un	Understand the Basic concepts in Differentiation													
	lucibuli													
• Ap	Apply the Basic concepts in Functions of Several variables													
COUDCE	FOUTCOMES (Cos)													
COURSE	DURSE OUTCOMES (Cos)													
Students co	dents completing this course were able to													
CO1	Find the summation of given series of binomial ,exponential and logarithmic													
CO2	Transfo	rm a no	n-diagona	al matrix in	to an eq	quival	ent d	iagona	1 mat	rix using	orthogoi	nal		
	transfor	mation												
CO3	Find the	expans	ion of tri	gonometric	functio	on into	an i	nfinite	serie	s and sep	arate rea	l and ima	ginary	
	parts													
CO4	Find the	maxim	a and mi	nima of the	given f	unctio	on							
C05	Evaluat	e the pa	rtial/total	differentia	tion and	1 max	ma/r	ninim	of fi	inction of	several	variable		
Manning o	f Cours	• Outco	me with	Program	Outcom	10 (P()c)					, un		
							J S)	7	000	DOO	DO10	DO11	DO12	
COS/POS	POI	P02	PU3	P04	PU5	PU0	P)/	208	P09	P010	POII	P012	
COI	3	3	2	2	2	1		2	2	3	3	l	3	
CO2	3	3	1	2	3	2		1	2	3	1	2	3	
CO3	3	3	1	2	2	3		1	1	2	3	2	1	
CO4	3	2	2	2	1	2		2	2	2	3	2	2	
CO5	3	3	1	2	1	1		2	1	2	2	1	3	
3/2/1 Indica	ates Strei	ngth Of	Correlati	on, 3 –Higl	h, 2- Me	edium	, 1- I	LOW		· · ·				
		Ŭ	ŝ	al	Í									
			JCe	oci			es	~		Y		Ħ	ct	
	ore			ve		lar		ner	oje					
Catagory	en		Sc	nd	Ŭ		lec	Ċť		ilc		īod	$\mathbf{P}_{\mathbf{r}}$	
Calegory	C:		gu	s a	m	Ĺ	Ľ	Щe		ścij		E C	1/	
	i.		eri	tie	<u>61</u>		an	n]		sib		5	ica	
	SB		ne	ani	⁷ ro		50	be be		ter		cill	act	
	<u>م</u>		ngi.	i mí	Ц	6	Ĕ	0		In		\Pr_{r_i}		
			Eı	Ηu			,							
	√													
1					1						1		1	

Subject Code	Subject Name : MATHEMATICS-	Ty/	L	T/SLr	P/R	С
	I	Lb/				
		ETL				
EBMA2201	Prerequisite : Higher secondary Mathematics	Ту	3	1/0	0/0	4

UNIT I ALGEBRA

Binomial, Exponential, Logarithmic Series (without proof of theorems) – Problems on Summation, Approximation and Coefficients.

UNIT II MATRICES

Characteristic equation – Eigen values and Eigen vectors of a real matrix – Properties of Eigen values – Cayley - Hamilton theorem(without proof) – Orthogonal reduction of a symmetric matrix to Diagonal form.

UNIT III TRIGONOMETRY

Expansions of Sin n θ , Cos n θ in powers of Sin θ and Cos θ –Expansion of Tan n θ – Expansions of Sinⁿ θ and Cosⁿ θ in terms of Sines and Cosines of multiples of θ – Hyperbolic functions – Separation into real and imaginary parts.

UNIT IV DIFFERENTIATION

Basic concepts of Differentiation –Elementary differentiation methods –Parametric functions – Implicit function – Leibnitz theorem (without proof) – Maxima and Minima – Points of inflection.

UNIT V FUNCTIONS OF SEVERAL VARIABLES

Partial derivatives – Total differential – Differentiation of implicit functions – Taylor's expansion – Maxima and Minima by Lagrange's Method of undetermined multipliers – Jacobians.

Total No of Hrs: 60

Text & Reference Books:

- 1) Kreyszig E., Advanced Engineering Mathematics (10th ed.), John Wiley & Sons, (2011).
- 2) Grewal B.S., *Higher Engineering Mathematics*, Khanna Publishers, (2012).
- **3**) John Bird, *Basic Engineering Mathematics* (5th ed.), Elsevier Ltd, (2010).
- 4) Veerarajan T., *Engineering Mathematics (for first year)*, Tata McGraw Hill Publishing Co., (2008).
- **5)** P.Kandasamy, K.Thilagavathy and K. Gunavathy, *Engineering Mathematics Vol. I* (4th *Revised ed.*), S.Chand& Co., Publishers, New Delhi (2000).
- 6) sJohn Bird, *Higher Engineering Mathematics* (5th ed.), Elsevier Ltd, (2006).

12 Hrs

12 Hrs

12 Hrs

12 Hrs

12 Hrs

Subject Co	ode		Subje	t Name PH	: ENGINI IYSICS	EERIN	G	Ty Lt	7/ D/ T	L		T/SLr		P/R	C
EBPH22F	T1	Р	rereo	nisite :	Higher Se	c. Phys	ics	ET	L L	2		0/0		2/0	3
C: Credi	ts. L	: Lect	ure.	T: Tuto	rial. SL	: Sup	erv	vised	Lea	- rning	. P:	Proble	m / Pra	ctical	
R: Resea	rch.	Tv/L	b/ET	L/IE: T	heory /L	.ab/Em	ıbe	edded	l Th	eorv	and	Lab/In	ternal I	Evaluati	on
OBJECT	VES	<u>5</u>								j					
• C	Dutli	ne the	relat	ion bet	ween Sc	ience.	En	ngine	erin	g & '	[[]	nnology	<i>.</i>		
_								-8		5			, -		
• D)emo	onstra	te co	npeten	cy in un	derstar	ndi	ng ba	asic	conc	epts	5.			
• A	ppl	y fund	lame	ntal lav	vs of Phy	sics in	n Ei	ngine	eerir	ıg &	Tec	hnolog	y.		
• T	'o id	lentify	& so	olve pro	oblems u	sing pl	hys	sics c	conc	epts.					
• P	Produce and present activities associated with the course through effective technical														
C	communication														
COURSE Students or	OU'.	DUTCOMES (Cos)													
CO1	Do	Demonstrate competency in understanding basic concepts													
001	Demonstrate competency in understanding basic concepts.														
CO2	Utilize scientific methods for formal investigations & demonstrate competency														
	with experimental methods and verify the concept to content knowledge.														
CO3	Ida		andr	morrido	colution	a for a	-		ina	mah	0.000	2			
05	Ide	entity	and I	rovide	solution	s for e	ng	meer	ing	prod	em	5.			
CO4	Re	late th	e tec	hnical	concepts	to day	y to	o day	life	and	to p	ractical	l situati	ons.	
CO5	Th	ink an	alyti	cally to	interpre	t conc	ept	ts.							
Mapping	of Co	ourse (Dutco	ne with	Program	Outcor	me	(POs))						
Cos/POs		PO1	PO2	PO3	PO4	PO5	PO	06	PO7	PO)8	PO9	PO10	PO11	PO12
CO1		3	3	1	2	2		2	1			1	2		1
CO2		3	3	2	2	2		2	1			2	2	1	1
CO3		3	3	3	2	2		2	1	_	l 1		$\frac{2}{2}$	1	2
C04		3	3	2	1	1		2	1		2	1	2	1	<u> </u>
3/2/1 Indic	ates	Strengt	th Of	Correlati	on, 3 – Hi	gh, 2- N	Лed	lium, 1	1- Lo	w		1	2	1	1
		0		SS	ial										
		es		enc	Soc	e		ives		es		ary		ent	ject
		enc		Sci	nd es	Col		ect		ctiv		lina		uou	Pro
Category		Sci		ing	ss au ienc	am		υEl		Ele		scip		luio	al / 1
		sic		een	nitie Sci	0gr		gran		en		ardi erdi			ctica
		\mathbf{Ba}		ngin	mai	Pr		rog		OF		Inté		Ski	Prac
				Er	Hu			H							
		\checkmark													

Subject Code	Subject Name : ENGINEERING	Ty/	L	T/SLr	P/R	С
	PHYSICS	Lb/				
		ETL				
EBPH22ET1	Prerequisite : Higher Sec. Physics	ETL	2	0/0	2/0	3

UNIT I PROPERTIES OF MATTER

Elasticity - stress, strain and Hook's law - Poisson's ratio - three moduli of elasticity - twisting couple on a wire – Shafts – Solid & Hollow Shafts – Bending moment – Youngs Modulus Determination by Non Uniform Bending -I form of girders. viscosity - flow of liquid through a narrow tube: Poiseuille's law (Qualitative) - Ostwald's viscometer – Lubrication

Lab Component - 1. Coefficient of Viscosity determination using Poiseuille's Method

UNIT II ACOUSTICS & ULTRASONICS

Fundamentals of acoustics - reverberation- reverberation time - factors affecting acoustics. Ultrasonics -Production of ultrasonic waves - detection of ultrasonic waves + - acoustic grating - application of ultrasonic waves. Lab Component – 2. Ultrasonic Velocity Determination

UNIT III WAVE OPTICS

Huygen's principle - interference of light – wave front splitting and amplitude – air wedge - Newton's rings - Michelson interferometer and its applications - Fraunhofer diffraction from a single slit - diffraction grating Lab Component – 3. Spectrometer – Grating

UNIT IV LASER

Laser principle and characteristics - amplification of light by population inversion - properties of laser beams: monochromaticity, coherence, directionality and brightness - different types of lasers - Ruby laser-Nd-YAG laser-He-Ne laser-CO₂ laser - semiconductor laser - applications of lasers in science, engineering and medicine.

Lab Component – 4. Determination of Wavelength of the given Laser source & Particle Size Determination

UNIT V FIBER OPTIC COMMUNICATION

Total Internal Reflection – Propagation of Light in Optical Fibers – Numerical aperture and Acceptance Angle – Types of Optical Fibers (material, refractive index, mode) – Fiber Optical Communication system (Block diagram) – Attenuation–Transmitter, Receiver, Dispersion, Modulation/Demodulation Advantages of Fiber Optical Communication System – IMT, PMT, Wavelength Modulated & Polarization Modulated Sensors – Endoscope Applications.

Lab Component – 5. Determination of Numerical Aperture of Optical Fiber

TEXT BOOKS

- Brijlal, M. N. Avadhanulu & N. Subrahmanyam, Text Book of Optics, S. Chand Publications, 25th edition, 2012
- 2. R. Murugeshan, Electricity and Magnetism, S.Chand Publications, 10th edition, 2017
- 3. R. Murugeshan & Kiruthiga Sivaprasath, Modern Physics, S.Chand Publications, 2016

REFERENCE BOOKS

- 1. Dr. Senthil Kumar Engineering Physics I VRB Publishers, 2016
- 2. N Subrahmanyam & Brijlal, Waves and Oscillations, Vikas Publications, New Delhi, 1988
- 3. N Subrahmanyam & Brijlal, Properties of Matter, S. Chand Co., New Delhi, 1982
- 4. N Subrahmanyam & Brijlal, Text book of Optics, S. Chand Co., New Delhi, 1989
- 5. R. Murugeshan, Electricity and Magnetism, S. Chand & Co., New Delhi, 1995
- 6. Thygarajan K & Ajay Ghatak, Laser Theory and Applications, Macmillan, New Delhi, 1988
- 7. Dr. S. Muthukumaran, Dr.G.Balaji, S.Masilamani PHYSICS LABORATORY I & II by Sri Krishna Hitech Publishing Company Pvt.Ltd.

12 Hrs

12 Hrs

12 Hrs

12 Hrs

12 Hrs

Total No of Hrs: 60

Subject Co	ode	S	ubject	Name	ENGINE MISTRY	ERING	J	Ty/ Lb/		L		T/SLr		P/R	C
Subject et				I	ETL										
EBCH22H	ET1	Pre Ch	erequi emist	isite : H ry	ligher Sec		E	TL		2		0/0		2/0	3
C: Credi	ts, L: 1	Lectu	re, T	: Tutoi	ial, SLr	Supe	ervise	d L	earn	ing	. P:	Proble	m / Pra	nctical	•
R: Resea	rch. T	v/Lb/	ÉTL.	/IE: Tł	neory /L	ab/Em	bedd	r be	Theo	rv a	and	Lab/In	ternal	Evaluati	on
OBIECT	IVES	J' L o/		112, 11	1001 9 / 2		locuu		neo	<u> </u>			tornar i	L'uruuri	011
1 To deduce	re pract	ical an	nlicat	ion of t	heoretical	concen	its								
2. To provi	de and	insight	into f	fundame	ental conc	ents of	chemi	cal tl	herm	odvi	nam	ics			
3.To articu	late the	e water	treat	nent me	ethods	epts of	enenn	cui ti		ouji		105			
4. To impa	irt the k	nowled	dge in	electric	cal conduc	tance a	nd EN	IF							
5. To creat	e aware	eness a	bout t	the mod	ern Nano	compos	sites al	ong	with	con	cent	s of poly	mers		
6.To intro	duce analytical tools for characterization techniques.														
0110 11100															
COURSE	OUTCOMES (Cos)														
Students c	ompleting this course were able to														
CO1	Apply relevant instrumentation techniques to solve complex problems														
CO2	Recall	the f	fundar	nentals	and dem	onstrat	e by ı	inde	rstan	ding	g the	e first p	rinciple	s of Eng	ineering
	sciences.														
CO3	Examine the appropriate techniques to interpret data to provide valid conclusion														
CO4	Demo	nstrate	the	collabo	ration of	science	e and	Eng	ineer	ing	to 1	recognize	e the ne	ed for li	ife long
	learnii	ng.													
CO5	Analy	se the	impac	t of con	itextual kr	nowledg	ge to a	ccess	s the	heal	th ai	nd societ	y issues	•	
Mapping	of Cou	rse Ou	tcom	e with I	Program	Outcon	ne (PC)s)							
Cos/POs	PC	D1 F	PO 2	PO3	PO4	PO5	PO6	PO	07	PC	08	PO9	PO10	PO11	PO12
CO1	, í	3		3	3	3						2			
CO2	,	3	3				3								3
CO3	,	3		2	3										
CO4		3	3		3					3	3				3
CO5	í	3					2		3	2	2				3
3/2/1 Indic	ates St	rength	Of Co	orrelatio	n, 3 – Hig	h, 2- N	ledium	. 1-	Low						
		<u> </u>		S	ial										
		s		nce	oci			ß	s.	2		5		ut	sct
		lce		ciei	S S	ore		~ 1	ive			naı		inei	oje
Category		ier	i	Ň	and	D D	0	510	ect			ilq		odi	Pr
cutegory		Sc		ing	es a ien	an			Ele	i		sci		uo	al /
		sic		eer	Sc	120		Tal	en	5		rdi		Пс	tic
		Ba		line	nan	$\mathbf{P}_{\mathbf{r}}$		O O O D				Skil		rac	
												P.			
				-	Ħ										
	8	V													

Subject Code	Subject Name ENGINEERING	Ty/	L	T/SLr	P/R	С
	CHEMISTRY	Lb/				
		ETL				
EBCH22ET1	Prerequisite : Higher Sec.	ETL	2	0/0	2/0	3
	Chemistry					

UNIT -I

CHEMICAL THERMODYNAMICS

Introduction, Terminology in thermodynamics -System, Surrounding, State and Path functions, Extensive and intensive properties. Laws of thermodynamics - I and II laws-Need for the II law. Enthalpy, Entropy, Gibbs free energy, Helmholtz free energy - Spontaneity and its criteria. Maxwell relations, Gibbs -Helmholtz equation (relating E & A) and (relating H & G).

UNIT -II **TECHNOLOGY OF WATER**

Water quality parameters – Definition and expression. Analysis of water – alkalinity, hardness and its determination (EDTA method only). Boiler feed water and Boiler Troubles-Scales and sludges, Caustic embrittlement, Priming and Foaming and Boiler corrosion. Water softening processes - Internal conditioning, external conditioning -Demineralization methods. Desalination processes-RO and Electrodialysis.

Lab Component-1. Analyze the water quality parameters for the given water sample.

ANALYTICAL AND CHARACTERIZATION TECHNIQUES UNIT -III

Chromatographic techniques – column, thin layer and paper. Instrumentation-working with block diagram- UV-Visible Spectroscopy, IR Spectroscopy, Scanning electron microscope, Transmission electron microscope. Lab Component-2. Determination of Rf values of various components using thin layer chromatography.

3. Compute and interpret the structures of the given molecules using Chem Draw.

UNIT-IV **ELECTROCHEMISTRY** Conductance – Types of conductance and its Measurement. Electrodes and electrode potential, Nernst equation – EMF measurement and its applications-Electrochemical series- Types of electrodes- Reference electrodes-Standard

hydrogen electrode- Saturated calomel electrode- Determination of P^H using these electrode.

Lab Component-4. Studies on acid-base conductometric titration.

5. Determination of redox potentials using potentiometry

UNIT -V POLYMERS AND NANO COMPOSITES

Polymers-Introduction-Monomers - Functionality - Degree of polymerization-Tacticity. Classification- Plastics -Thermoplastics and thermosetting plastics, Compounding of plastics – Compression moulding, injection moulding and extrusion processes. Nano composites: particulates, clay and carbon nano tubes. Graphene nano composites and its applications.

Lab Component-6.Polymeric analysis using capillary viscometer

References

1. Jain &Jain*Engineering Chemistry* 17th Edition, Dhanpat Rai Publishing Company

2. Vasant R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar, Polymer Science, New Age International, 1986

3. B.K. Sharma, Polymer Chemistry, Goel Publishing House

4. Y. R. Sharma , *Elementary Organic Spectroscopy*, S. Chand& Company Ltd.

5. N.Krishnamurthy, K.Jeyasubramanian, P.Vallinayagam, Applied Chemistry, Tata McGraw-Hill Publishing Company Limited, 1999.

6.Chichester, polymer-clay-nano composites, John wiley (2000)

12 Hrs

12 Hrs

Total No of Hrs: 60

12 Hrs

12 Hrs

12 Hrs

Subject Cod	le S	ubject Na	ame : B	ASIC			T	y/	L		T/SLr		P/R	С
	Ε	LECTR	ICAL &	&			Ll	b/						
	E	LECTR	ONICS	ENGIN	EERIN	G	ET	Ľ						
EBEE22E1	<u>P</u>	rerequis	ite : No	ne			EI	Ľ	2		0/0		2/0	3
C: Credits	s, L: Le	cture, T	: Tuto	rial, SL	r: Sup	erv	vised	Learr	ning	, P:	Proble	m / Pra	ctical	
R: Resear	ch, Ty/l	_b/ETL	/IE: T	heory /l	Lab/En	nbe	eddeo	1 Theo	ory a	and	Lab/In	ternal H	Evaluatio	on
OBJECTIV	/ES													
• Ur	nderstar	d the co	oncept	s of cir	cuit ele	eme	ents,	circui	t lav	NS a	and cou	pled ci	rcuits.	
• Ga	in info	mation	on me	easurem	nent of	ele	ectric	al par	ame	eters	5.			
• Ac	quire k	nowled	ge on	conven	tional &	&n	on-co	onven	tion	al e	energy	product	ion.	
• Ide	entify b	asic the	oretica	al princ	iples be	ehi	ind th	ne wor	kin	g of	mode	n elect	ronic ga	dgets.
• De	emonstr	ate digi	tal ele	ctronic	circuits	s ai	nd as	semb	le si	mp	le devi	ces.		
COURSE (OUTCOMES (Cos)													
Students completing this course were able to														
CO1 Compute the electric circuit parameters for simple problems														
CO2	Elaborate the concepts of Electrical machines and measurement principles													
CO3	Identify conventional and Non-conventional Electrical power Generation, Transmission and													
	Distribu	tion							-					
CO4	Analyze	the wor	king pri	nciples a	nd chara	acte	eristics	s of ana	log	elec	tronic de	vices		
CO5	Underst	and basic	es of dig	gital elect	tronics a	nd	solvir	ıg prob	lems	and	l design	combinat	tional circ	uits
Mapping of	f Course	Outcom	e with	Progran	n Outcor	me	(POs)						
Cos/POs	PO1	PO2	PO3	PO4	PO5	PO	06	PO7	PC)8	PO9	PO10	PO11	PO12
CO1	3	3	3	3									2	1
CO2	3	3	3	2	2			2					2	
CO3	3	2	3	2	3			2			2			1
CO4	3	2		2				2					2	1
CO5	3	2	3	2	3						2		2	1
3/2/1 Indica	tes Stren	gth Of C	orrelatio	$\frac{5n, 3 - H}{T}$	1gh, 2- N	Med	lıum,	I-Low	' 					
Category	Sciences ing Sciences es and Socia iences iences Blectives Electives al / Project													
	Basic		Enginee	Humaniti Sc	Prog		Progra		open		Interd		Skill (Practic
		\checkmark					<u>.</u>							
Total No of Hrs: 60

- 1. D P Kothari, I J Nagrath, 2017, Basic Electrical Engineering, Second Edition, Tata McGraw-Hill Publisher
- 2. A.K. Sawhney, 2015 A Course in Electrical and Electronic Measurements and Instrumentation, Dhanpat Rai & CO publisher
- 3. B.L. Theraja, A.K. Theraja, Text Book of Electrical Technology: Volume 3: Transmission, Distribution and Utilization, S. Chand publisher
- 4. Morris Mano, M, 2016 Digital Logic and Computer Design, Prentice Hall of India
- 5. Millman and Halkias 2015, Electronic Devices and Circuits, Tata McGraw Hill

REFERENCE BOOKS:

1. R. Muthusubramanian, S. Salivahanan, K A Muraleedharan, Basic Electrical, Electronics and Computer Engineering, Second Edition, Tata McGraw-Hill publisher

Subject Code Subject Name : BASIC Ty/ L T/SLr P/R С **ELECTRICAL &** Lb/ **ELECTRONICS ENGINEERING** ETL EBEE22ET1 2 2/0 3 **Prerequisite : None** ETL 0/0

UNIT I **ELECTRIC CIRCUITS**

Electrical Quantities - Ohms Law - Kirchhoff's Law - Series and Parallel Connections - Current Division and Voltage Division Rule - Source Transformation – Wye (Y) – Delta (Δ), Delta (Δ) – Wye (Y) Transformation – Rectangular to Polar and Polar to Rectangular

Lab Components – Measurement of Electrical Quantities

MACHINES & MEASURING INSTRUMENTS UNIT II

Construction & Principle of Operation of DC motor & DC Generator – EMF equation of Generator – Torque Equation of Motor – Construction & Principle of operation of Transformer –Operating principles and Types of measuring instruments - Moving coil, Moving iron - Principle of Energy meter Lab Component – Measurement of Energy Using energy meter

BASICS OF POWER SYSTEM UNIT III

Generation of Electric Power (Thermal, Hydro, Wind and Solar) - Basic structure of Power system - Types of Transmission & Distribution Schemes – Representation of Substation.

Lab Component – Residential house wiring Stair case wiring

UNIT IV **ELECTRON DEVICES**

Semiconductor Materials: Silicon and Germanium - PN Junction Diode, Zener Diode - Characteristics and Applications - Bipolar Junction Transistor - JFET, SCR, MOSFET, IGBT - Characteristics and Applications -**Operating principle - Rectifiers and Inverters**

Lab Component - Resistor colour coding - Resistance Measurement

DIGITAL SYSTEM UNIT V

Number System – Binary, Decimal, Octal, Hexadecimal – Binary Addition, Subtraction, Multiplication & Division – Boolean Algebra – Reduction of Boolean Expressions – Logic Gates - De-Morgan's Theorem - Adder – Subtractor Lab Component - Soldering practice

Logic Gates

TEXT BOOKS:

12 Hrs

12 Hrs

12 Hrs

FORM NO.F/CDD/004 Rev.00 Date 20.03.2020

12 Hrs

Subject Code		C PROC	GRAMM	ING A	ND M	S OFF	ICE TOO	LS	Ty/		L [[/	P/R	С
									Lb/	,	S.	Lr		
									ETI	,				
EBCS22ET1	Prerec	uisite: N	il						ETI	-	1 0	/0	2/0	2
C: Cradita I	Loctu	r_{0} T T	torial S	Ir. Si	mornic	ad L or	rning D.	Droblom /	Droot	icol		/0		
C. Cleuits, L.	$T_{\rm L}$	10, 1. 10 /ETI /IE·	Theory	/Lab/I	Ipervis	dod Th	uning, r.	I ob/Intorn	ol Ev	oluot	ion			
	1 y/L0/	E1L/1E.	Theory	/Lau/1	Linded		leory and			aiuai	1011			
UDJECTIVE The student s	5 : bould	he mede	to.											
• Learn	a nrogr	amming 1	anguage											
• Learn	nrohler	n solving	techniqu	160										
• Write	program	ns in C ar	nd to solv	ico. ie the n	rohlem	c								
• Famili	program arize th	ns ni C ai e student	s in prep	aration	of doci	s. Imente	and preser	tations wit	h offic	e aut	omation	tools		
		IFS (CO	$\frac{s \ln prcp}{s \cdot \Delta fter}$	r Com	leting	the cor	und preser	tudent can	he ah	le to	omation	10015.		
COURSE OU	Under	rstand and	trace th		ition of	nrogra	ms written	in C langu	age					
						progra	ms written	in c iungu	u50.					
CO2	Write	the C co	de for a g	given al	gorithn	n.								
CO3	Apply	Arrays	and Func	ctions c	oncepts	s to wri	ite Progran	ns						
CO4	Apply	Structur	res and p	ointers	concep	ots for w	vriting Pro	grams						
CO5	To pe	rform doo	cumentat	ion , ac	countir	ng opera	ations and	presentatio	n skill	S				
Mapping of C	ourse (Outcome	s with P	rogran	1 Outco	omes (F	POs)				1 = = + =			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8]	PO9	PO10	PO	11 P	012
CO1	2	2	2	2	1	1	1	1		1	1	2		2
CO2	2	2	2	2	1	1	1	1		1	1	2		2
CO3	2	2	3	2	1	1	1	1		1	1	3		2
CO4	2	2	3	3	1	1	1	1		1	1	3		2
CO5	1	1	1	1	1	1	0	0		2	3	2		0
3/2/1 Indicates	s Stren	gth Of C	orrelatio	on, 3 –	High, 2	2- Medi	ium, 1- Lo	W						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical /	Project				
							V							

Subject Code	C PROGRAMMING AND MS OFFICE TOOLS	Ty/	L	Τ/	P/R	C
		Lb/		S.Lr		
		ETL				
EBCS22ET1	Prerequisite: Nil	ETL	1	0/0	2/0	2
UNIT I	Introduction	•		3 Hrs		

UNIT I

Basic Structure of C programme- Constants, Variables and data types, Keywords, Identifiers- Operators and expressions- executing a C Program

Decision making statements and looping statements **UNIT II**

Decision making with if statement, Simple if statement, else-if statement, Nesting if-else statement, The else if ladder, The switch statement, The goto statement, The while statement, The do while statement, The for statement, jumps in loops **UNIT III**

Arrays and Functions Introduction to Arrays- One dimensional arrays, Two dimensional array, and Multidimensional array- Introduction to Functions- calling a function, category of functions- arguments with return values, argument with no return valuesparameter passing Mechanism: Call by Value and Call by Reference. Recursion.

UNIT IV Structures & Pointers 3 Hrs Structures definition, giving values to members, Structure initialization, comparison of structure variables, Structure within structures, Understanding pointers, accessing the address of the variable, declaring and initializing pointer, accessing a variable through its pointer and arrays UNIT V 3 Hrs

Ms-Office Introduction to MS-Word- Menus- Introduction to MS-Excel: features of MS- Excel, spread sheet/worksheet, parts of MS-excel window, functions in excel sheet, chart, Introduction to MS-Power point

TEXT BOOKS:

- 1. E.Balaguruswamy, Programming in ANSI C
- 2. Padma Reddy ,Computer Concepts & 'C' Programming
- 3. ShobhaHangirke, Computer Application For Business

List of Experiments : C PROGRAMMING

- 1. Find the factorial of a given positive number using function.
- 2. Calculate X raised to y using function.
- 3. Find GCD and LCM of two given integer numbers using function.
- 4. Find the sum of N natural numbers using function.
- 5. Book information using Structure.
- Student information using Structure. 6.
- 7. Print the address of a variable and its value using Pointer
- 8. Find area and perimeter of a circle
- 9. Check whether the given number is palindrome or not
- 10. Check whether the given number is prime or not
- 11. Calculate sum of the digits of the given number
- 12. Display Fibonacci series up to N terms
- 13. Check whether a given character is alphabetic, numeric or special character
- 14. Count vowels and consonants in a given string
- 15. Find product of two matrices

MS-OFFICE

- 16. Preparing a news letter:
- 17. To prepare a newsletter with borders, two columns text, header and footer and inserting a graphic image and page layout.
- 18. Creating and editing the table
- 19. Printing envelopes and mail merge.
- 20. Using formulas and functions: To prepare a Worksheet showing the monthly sales of a company in different branch offices
- 21. Prepare a Statement for displaying Result of 10 students in 5 subjects

3 Hrs

3 Hrs

Total No of Hrs: 15

30 periods

Subject Coo	te S T	ubject O EN	Name : TREPI	O RE	RIENTA' NEURSH	TION IP &	I	Гу/ _b/	L		T/SLr		P/R	С
	Р	ROJE	ECT LA	B			ET	'L/IE						
EBCC22I0	1 P	rerequ	isite : N	on	e			E	1		0/0		1/0	1
C: Credit	s, L: Le	cture	e, T: Tı	ito	rial, SLr	: Sup	ervise	d Lea	urning	, P:	Proble	m / Pra	ctical	
R: Resear	ch, Ty/	Lb/E	TL/IE:	Т	heory /L	.ab/En	nbedde	ed Th	leory	and	Lab/In	ternal E	Evaluati	on
OBJECTI	VES													
• U	ndersta	nd ho	w entr	ep	reneursh	ip Ed	ucation	n trar	nsform	ns ir	ndividu	als into	success	sful
lea	aders.													
• Id	entify i	ndivi	dual p	ote	ential &S	have	career	drea	ums					
• U	ndersta	nd dif	fferenc	e l	between	ideas	& opp	ortur	nities					
• Id	entify c	ompo	onents	&	create a	ction	plan.							
• U:	se brain	storn	ning in	a	group to	gene	rate id	eas.						
COURSE	OUTCO	MES	(Cos)											
Students co	mpleting	this c	ourse w	ere	e able to									
COI	Develo	p a E	Busines	s j	plan & ii	nprov	e abili	ty to	recog	nize	e busine	ess opp	ortunity	
CO2	Do a se	elf-an	alysis	to	build an	entre	preneu	rial c	career	•				
CO3	Articul	ate a	n effec	tiv	ve elevat	or pite	ch.							
CO4	Analyz	e the	local	ma	arket env	rironm	nent &	dem	onstra	te tl	he abili	ty to fii	nd an	
	attracti	ve m	arket											
C05	Idantifi	u tha		- 4	altilla fo	n ontr		mahi	n 9- d		100			
0.05	Identif	y the	requir	eu	SKIIIS IO	rentre	eprene	ursm	րձս	eve	юр			
Mapping o	f Course	Outc	come wi	th	Program	Outco	me (PO	s)						
Cos/POs	PO1	PO	02 PC	3	PO4	PO5	PO6	PO7	7 PC	D8	PO9	PO10	PO11	PO12
CO1		2	2 2	,	3	2	2	2		2	2	2	2	1
CO2	3	2			3	2	3	2		3	3	3	2	2
CO3		3			2	2	2			3	2	2	3	
C04		2	2		3	2	2	3		3	$\frac{2}{2}$	2	3	1
3/2/1 Indica	ates Stren	gth O	f Correl	atio	on. 3 – Hi	2 gh. 2- N	Z Medium	. 1- L	ow	5	2	2	5	1
		gui o	So So		<u>, , , , , , , , , , , , , , , , , , , </u>	5, _ 1		,	0.11					
	S		snce		nd es	ø	Ves		es		ury		snt	ect
	suce		Scie		s ai enc	Cor	ecti		î ti v		linî		one	Proj
Category	Scie		ы 1 1 1 1 1		uitie Sci	E	E		Elec		cip		dui	1/I
	ic		čeri		nar ial	gr£	me.		en I		rdis		l cc	tica
	Bas		gine		Hur Soci	Prc	ьO	á	Opí		inte		Skil	ract
			Εnξ				P				Ι		U 1	Ь
											\checkmark			

Subject Code	Subject Name : ORIENTATION	Ty/	L	T/SLr	P/R	С
	TO ENTREPRENEURSHIP &	Lb/				
	PROJECT LAB	ETL/IE				
EBCC22I01	Prerequisite : None	IE	0	0/0	2/0	1

UNIT I CHARACTERISTICS OF A SUCCESSFUL ENTREPRENEUR

Introduction to entrepreneurship education - Myths about entrepreneurship - How has entrepreneurship changed the country – Dream it. Do it - Idea planes - Some success stories – Global Legends – Identify your own heroes.

ENTREPRENEURIAL STYLE UNITII

Entrepreneurial styles - Introduction, concept & Different types - Barrier to Communication - Body language speaks louder than words

UNIT III DESIGN THINKING

Introduction to Design thinking – Myth busters – Design thinking Process - Customer profiling – Wowing your customer – Personal selling – concept & process – show & tell concept – Introduction to the concept of Elevator Pitch

RISK MANAGEMENT UNIT IV

Introduction to risk taking & Resilience - Managing risks (Learning from failures, Myth Buster) - Understanding risks through risk takers – Why do I do? – what do I do?

UNIT V PROJECT

How to choose a topic – basic skill sets necessary to take up a project – creating a prototype – Pitch your project – Project presentation.

IDEA GENERATION, EVALUATION & PROJECT PRESENTATION

Reference Books& Website

- 1. Encyclopedia of Small Business (2011) (e book)
- 2. Oxford Handbook of Entrepreneurship (2014) (e book)
- 3. lms.learnwise.org

3 Hrs

3 Hrs

3 Hrs

3 Hrs

3 Hrs

15 Hrs

Total No of Hrs: 30

FORM NO.F/CDD/004 Rev.00 Date 20.03.2020

II SEMESTER

Subject Code:	Subjec	t Name :	MATH	EMAT	ICS-II			Ty/	L	T/	/]	P/R	C	
EBMA22003								Б	Lb/ TL/IF		S.L	.r		
	Prerequ	uisite: H	igher sec	condary	Mathema	atics			Ty	3	1/()	0/0	4
C: Credits, L: L	ecture.	T: Tuto	rial. SLr	: Super	rvised L	earning	. P: Pro	blem /	Practical					
R: Research, Ty	/Lb/ET	L/IE: Tł	neory /L	.ab/Emt	bedded 7	Theory a	and Lab	/Interr	al Evalua	tion				
OBJECTIVES :			v			<u> </u>								
The student sho	uld be n	nade to:												
To be able to under	stand bas	ic concep	ots in inte	gration										
To understand the c	concepts i	n multip	le integra	ıls										
To use the basic con	ncepts in	ordinary	differenti	ial equati	ons									
To be able to apply	concepts	of analy	tical geor	netry										
To be able to under	stand the	basic coi	ncept of v	vector cal	culus									
COURSE OUTC	COMES	(COs) :												
CO1	Integrat solid by	e the give revaluat	en functio	on by usir	ng methoo	ls of integ	gration an	id to fin	d the area u	nder ci	urve ar	nd the vo	olume	of a
CO2	Evaluat	e the mul	tiple inte	grals /are	a/volume	and to ch	nange the	order o	f integratior	ı				
CO3	Apply c	oncepts i	n Ordina	ry Differe	ential equ	ations and	d to solve	eulers	differential	equati	on			
CO4	Find eq	uation of	planes, li	nes and s	sphere an	d shortes	t distance	betwee	n skew line	s				
CO5	Verify g	green/stol	xes/gauss	divergen	ce theore	m								
Mapping of Cou	rse Out	comes w	ith Prog	gram Ou	utcomes	(POs)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10	PO11	PC)12
CO1	3	3	2	2	2	2	1	2	2		2	1		3
CO2	3	3	1	2	2	3	2	2	3		3	2		2
CO3	3	3	1	2	2	3	1	1	3		3	2		2
CO4	3	3	2	2	1	2	2	2	2		3	2		2
CO5	3	3	1	2	2	2	2	1	2		3	1		2
3/2/1 Indicates S	trength	Of Cori	relation,	3 – Hig	h, 2- Me	edium, 1	- Low							
3/2/1 Indicates S	trength හ	Of Cori	relation,	<mark>3 – Hig</mark> లై	h, 2- Me	edium, 1	- Low	ent						
3/2/1 Indicates S	trength sauces	Of Corr	s and break straight	3 – Hig	h, 2- Ме Е 8	edium, 1	- Fom	onent	۲۱ / ۲۱ / ۲۱ / ۲۱ / ۲۱ / ۲۱ / ۲۱ / ۲۱ /					
3/2/1 Indicates S	trength cciences	Of Cori	ciences and Sciences	3 – Hig Orec U	h, 2- Me	lectives	- Fom	mponent	ical / ject					
3/2/1 Indicates S Category	trength c Sciences	gineering ciences	anities and u Sciences u	3 – Hig Core	h, 2- Me lectives	n Electives	lisciplinary A07 -	component	actical / Project					
3/2/1 Indicates S Category	asic Sciences	Engineering Sciences	umanities and unanities unities and unit	3 – Hig rogram Core	Program Electives	pen Electives mip	terdisciplinary a	ill component	Practical / Project					
3/2/1 Indicates S Category	Basic Sciences	Engineering Sciences	Humanities and lag Social Sciences u	3 – Hig Program Core	Program Electives	Open Electives Inp	Interdisciplinary A	Skill component	Practical / Project					
3/2/1 Indicates S Category	Basic Sciences	Engineering Sciences	Humanities and parts Social Sciences u	3 – Hig Program Core	Program Electives	Open Electives mp	Interdisciplinary A	Skill component	Practical / Project					

Subject Code: EBMA22003	Subject Name : MATHEMATICS-II	Ty/ Lb/	L	T/ S Lr	P/R	C
		ETL/IE		0.11		
	Prerequisite: Higher secondary Mathematics	Ту	3	1/0	0/0	4

UNIT I

Basic concepts of Integration – Methods of Integration – Integration by substitution – Integration by parts – Definite integrals- Properties of definite integrals - Problems on finding Area and Volume using single integrals (simple problems).

UNIT II

MULTIPLE INTEGRALS

Double integral in Cartesian and Polar Co-ordinates - Change of order of integration - Triple integral in Cartesian Coordinates - Spherical Polar Co-ordinates - Change of variables (simple problems).

UNIT III ORDINARY DIFFERENTIAL EOUATIONS First order differential equations - Second and higher order linear differential equations with constant coefficients and with RHS of the form: e^{ax} , x^n , Sin ax, Cos ax, $e^{ax}f(x)$, x f(x) where f(x) is Sin bx or Cos bx – Differential equations with variable coefficients (Euler's form) (simple problems).

UNIT IV THREE DIMENSIONAL ANALYTICAL GEOMETRY 12 Hrs

VECTOR CALCULUS

Direction Cosines and Ratios - Equation of a straight line - Angle between two lines - Equation of a plane - Coplanar lines – Shortest distance between skew lines – Sphere – Tangent plane.

UNIT V

Scalar and Vector functions – Differentiation – Gradient, Divergence and Curl – Directional derivatives – Irrotational and Solenoidal fields-Line, Surface and Volume integrals - Green's, Stoke's and Gauss divergence theorems (statement only) – Verification.

Reference Books:

- 1) Kreyszig E., Advanced Engineering Mathematics (10th ed.), John Wiley & Sons, (2011).
- 2) Grewal B.S., *Higher Engineering Mathematics*, Khanna Publishers, (2012).
- 3) John Bird, *Basic Engineering Mathematics* (5th ed.), Elsevier Ltd, (2010).
- 4) Veerarajan T., *Engineering Mathematics (for first year)*, Tata McGraw Hill Publishing Co., (2008).
- 5) P.Kandasamy, K.Thilagavathy and K. Gunavathy, Engineering Mathematics Vol. I (4th Revised ed.), S.Chand& Co., Publishers, New Delhi (2000).
- 6) John Bird, *Higher Engineering Mathematics* (5th ed.), Elsevier Ltd, (2006).

INTEGRATION

12 Hrs

12 Hrs

12 Hrs

12 Hrs

Total No of Hrs: 60

Subject Co	de	Sul	bject	Name :	ENGIN	EERIN	G 1	Гу/	L		T/SLr		P/R	С
				MEC	HANICS			20/ I/IF						
EBPH2200)2	Pre	reauis	site : Ei	ngg. Phys	ics		L/IL	3	0	/0	0/0		3
C: Credit	s. L: Le	ectu	re. T	: Tuto	orial. SL	r: Sup	ervise	d Lea	arning	. P:	Proble	m / Pra	ctical	-
R: Resear	rch, Ty	/Lb/	ÉTL	/IE: T	heory /I	_ab/En	nbedde	d Th	neorv	and	Lab/In	ternal H	Evaluati	on
OBJECTI	VES				5									
• D	esign, d	cond	luct o	experi	ment an	d anal	yze dat	ta.						
• •	avalan	0 S c	iont	- ific of	tituda at	miara	and n	200		f m	atorial			
• 0	evelop	a sc		me au	inude at	micro		ano s	cale	1 111	ateriais	`		
• U	ndersta	nd t	he co	oncep	ts of Pro	perties	s of Ma	atter						
• A	pply th	e sci	ience	e of m	aterials	to Eng	ineerir	1g &	Tech	nolo	ogy			
COURSE Students of	OUTCO	ME	S (Co	os)	abla to									
CO1	Articu	lata	a sti	se were	oundatio	n in u	ndarata	ndir	a kin	amo	tice &	Kinatio	0	
001	Anticu	Tate	a su	long h	ounuan	m m u	nuersu	mun	ig kill		uies &	Killetie	3	
CO2	Identi	fy ar	nd us	se the	fundam	entals	of mec	hani	cs, sta	tic	and dy	namic e	quilibri	um
CO3	Enhan	ce t	he p	roblen	n solving	g skill	in stati	ics ai	nd dyı	nam	ics			
CO4	Devel	op a	naly	tical s	kills to i	dentif	y diffe	rent	types	of n	notion			
CO5	Articu	late	mod	lels to	acquire	know	ledge o	on m	athem	atic	al, ana	lytical s	skills	
Mapping of	of Cours	e Ou	tcom	e with	Program	Outco	me (PO	s)						
Cos/POs	PO1	Р	02	PO3	PO4	PO5	PO6	PO7	7 PC	28	PO9	PO10	PO11	PO12
CO1	3		3	2	2	2	1	1				2		1
CO2	3		3	1	2	2	1	1			1	2		1
CO3	3		3	3	3	2	2	2		1	-	2	1	1
CO4	3		3	3	3	2	2			1	3	2	1	1
$\frac{2}{2}$	3	agth	$\frac{2}{0fC}$	2 orrolati	$\frac{2}{2}$	$\frac{2}{1}$	l Madium		0.11	1	2	2	1	1
5/2/1 Indica		igin		s s	оп, 5 – п	ign, 2- N	viedium	, 1- L	ow					
	sec			ience	and	ore	tives		ves		nary		nent	oject
Category	ien		1	S S S	iies cier	ŭ	Elec		ecti		iilqi		ıodı	/ Pr
	S S			ling	anit I S	gran			ιEl		lisc		con	cal
	lasi			ine	lum ocia	Prog	2013	0	Del		iterc		kill	acti
	<u>н</u>			Eng	ΝΥ	Ι	Pro		0		In		S	\mathbf{Pr}
	√													

P/R

С

MECHANICS Lb/ ETL/IE EBPH22002 Prerequisite : Engg. Physics 0/1 0/0 Тy 2 3 **UNIT I STATICS** 9 Hrs STATICS OF PARTICLE: Introduction - units and Dimensions - Laws of mechanics - concurrent forces in

Ty/

L

a plane-resolution and Composition of forces – equilibrium of the particle-resultant force. Forces in space – Equilibrium of a particle in space – Rigid body - Moments and couples -moment of a force about a point and about an axis – Equilibrium of rigid bodies

UNIT II PROPERTIES OF SURFACE AND SOLIDS 9 Hrs

Subject Name : ENGINEERING

Determination of Area and volume - Determination and derivation of First moment of area (Centroid), Second moment of area (Moment of Inertia) geometrical area Mass moment of inertia and polar moment of inertia. Principal moments of inertia of plane areas

UNIT III

Subject Code

Introduction – Laws of Dry Friction – Coefficient of friction – friction of a body lying on an inclined plane. Application of friction-Ladder friction-Wedge friction-Screw friction.

FRICTION

UNIT IV DYNAMICS OF PARTICLES

KINEMATICS: Displacement, Velocity-Constant and variable Acceleration, their relationship – linear and curvilinear motion- Projectile motion, relative motion.

KINETICS: Linear and Curvilinear motion- Impulse and Momentum, Impact-collision of Elastic bodies. Newton's law-D'Alemberts principle.

UNIT V

KINEMATICS: Introduction-Rotation-Linear and Angular Velocity as well as acceleration. General plane motion-Absolute and Relative velocity in plane motion.

DYNAMICS OF RIGID BODIES

KINETICS: Relation between Translatory and Rotary motion of the body-Work energy equation of particles –D'Alemberts principle.

TEXT BOOKS & REFERENCE BOOKS

- 1) R.S.Khurmi. (2008), "A Textbook of Engineering Mechanics", S.Chand & co Ltd.
- 2) S.Rajasekaran et.al. (2009), "Fundamentals of Engineering Mechanics", Vikas Publishing House Pvt Ltd., 3rd Edition.
- 3) Arthur.P.Boresi,Richard.J.Schmidt, "Engineering Mechanics : Statics & Dynamics", Thomson Brooks/Cole, Chennai.
- 4) Palanichamy M.S., Nagan.S. (2001), "Engineering Mechanics Statics and Dynamics" Tata Mc Graw Hill.
- 5) Beer & Johnson et.al, (2010) "Vector Mechanics for Engineers (Statics and Dynamics)", Tata Mc Graw Hill.

9 Hrs

9 Hrs

9 Hrs

Total No of Hrs: 45

T/SLr

Subject Co	de	Subjec	t Name	: INDUS	TRIAL	T	y/	L	T/SL1		P/R	C
			CHEN	MISTRY			b/ L/IE					
EBCH220	02	Prerequi	site : Er	ngg. Cher	nistry	Ту		2	0/1	0/0		3
C: Credit	ts, L: Le	cture, 7	: Tuto	rial, SL	r: Supe	ervised	l Lear	ning	P: Prob	em / Pra	ctical	
R: Resea	rch, Ty/	Lb/ETI	L/IE: T	heory /I	Lab/Em	bedde	d The	eory a	nd Lab/l	nternal 1	Evaluati	on
OBJECTI	VES			•								
OBJECTIV	/ES :											
1. To unde	rstand and	l apply tl	ne basic	concepts	of fuels	and con	nbustio	on in a	utomobile	s.		
2. To analy	ze the mo	oisture ar	id protei	in in food	through	physica	al and o	chemi	cal method	s.		
3.To detect	t the indus	strial dev	elopmei	nt aiming	at job cr	reators.						
4.To demo	nstrate the	e operati	ons of p	ulp and p	aper Indu	ustry.						
5. To illust	rate the fu	indamen	$\frac{1}{2}$	ndustrial	wastewat	ter treat	ment.					
COURSE Students co	ourco	MES (C this cou	0S) rse were	able to								
CO1	Reprodu	ce the m	nderstan	ding of it	ndustry o	riented	chemi	cal sci	ence			
CO2	Analyze	the so	lutions	for indu	istry ba	sed pro	blems	for	sustainabl	e develo	oment fo	llowing
001	professio	onal ethic	cs.			F]	r	8
CO3	Apply a	ppropriat	e techni	iques for i	industria	l develo	pment	as a r	esource of	life long	learning.	
CO4	Develop	the reas	oning na	ature by t	he know	ledge ac	quired	l to as	sess the he	alth and s	afety issu	es.
CO5	Describe	e the tool	s used to	o apply tł	ne engine	eering ki	nowled	lge				
Mapping of	of Course	Outcon	ne with	Program	Outcon	ne (POs	5)				_	
Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PC	98 PO9	PO10	PO11	PO12
CO1	3	3					3					
CO2	3		3	3								3
CO3	3					2	3	_				3
CO4	3	-	3						3			2
CO5	3				3		3					3
3/2/1 Indic	ates Stren	gth Of C	orrelation	on, $3 - H$	igh, 2- M	ledium,	1- Lo	W		1		
			ces	– s		SS			>		÷.	t
	ces		ien	and	ore	tiv		ves	nar		nen	oje
Category	ien		Sc	ies cieı	Ŭ	llec		ecti	illq		odi	Pr
Category	Sc		ing	S.	ran	n E		Еľ	isci		no	al /
	asic		leel	uma cial	60	grai		Den	erd		II	ctic
	B		Igit	Hı So	$\mathbf{P}_{\mathbf{I}}$	rog		Ō	Inte		Sk	Pra
			Er			I						
	\checkmark							Ī				

Subject Code	Subject Name : INDUSTRIAL	Ty/	L	T/SLr	P/R	С
	CHEMISTRY	Lb/				
		ETL/IE				
EBCH22002	Prerequisite : Engg. Chemistry	Ту	2	0/1	0/0	3

UNIT – 1 FUELS & COMBUSTION

Fuels - classification, calorific value, GCV, NCV, Solid fuels-coal – varieties and ranking, analysis –Proximate Carbonisation of coal, Coke –manufacture, Beehive coke oven method, Otto Hoffmann method – recovering by - products - Liquid fuels – petrol –refining-cracking- thermal & catalytic, Synthetic petrol – Hydrogenation of coal (Fischer Tropsch Process and Bergius process) – Polymerization, Knocking properties of Gasoline –octane number, cetane number – Ignition lag, Leaded petrol, Reforming, Gaseous fuels- manufacture and uses Combustion - Flue gas analysis – Orsat apparatus.Alternative fuel-Electric vehicles

UNIT-2 FOOD ANALYSIS

Food analysis-Introduction. Moisture Analysis-Introduction-Moisture content of foods-Sample collection and handling-Forms of water in foods- Distillation procedure-Reflux distillation with immiscible solvent,-Physical methods-Direct method-Hydrometer, -Refractometry –Chemical method-Karl Fischer titration- Protein analysis-Kjeldahl method-Dumas combustion method.

UNIT – 3 APPLICATIONS IN PAPER INDUSTRY

Introduction-Manufacture of pulp-Mechanical process-Chemical process-Beating, Refining, Filling, Sizing and Colouring-Manufacture of paper-Calendering-Bagasse utilization in paper industry.

UNIT – 4 BUSINESS CHEMICALS

Toiletry formulations-Soaps and detergent, shampoo, Shaving cream, production. Preparation of cosmeticsmoisturizing cream, talcum powder, Nail enamel, Lipstick. Disinfectants- phenyl, hand sanitizer, bleach, caustic soda, naphthalene balls production.

UNIT – 5 INDUSTRIAL WASTES AND TREATMENT PROCESS

Introduction-Characteristics of industrial waste-Types of industrial wastes-Solid industrial wastes-Principles of industrial waste treatment-Treatment and disposal of industrial waste-Sanitary-Chemical analysis of industrial effluents or sewage-Method of treating industrial sludge.

References

- 1. Rama Rao Nadendla, Principles of Organic Medicinal Chemistry, New Age International (P) Limited, Publishers.
- 2. H.D.Belitz, W.Grosch, P.Schieberle, *Food Chemistry* Springer
- 3. Industrial chemistry by B.K.Sharma, Krisna Prakashan Media(P) Ltd, Publishers.
- 4. Industrial Chemistry C. S. Unnithan, T. Jayachandran & P. Udhayakala, Sree Lakshmi Publications 2010
- 5. John A.Tyrell, Fundamentals of Industrial Chemistry, , Wiley.
- 6. Ernest M. Flick, *Cosmetic and Toiletry Formulations*, 2nd Edition, Volume 8, Noyes Publications, William Andrew Publishing, LLC.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Total No of Hrs: 45

49

Subject Co	de S	Subject GRAP	t Name : PHICS	EN	IGINEH	RING	r	T L ET	°y∕ .b∕ L∕IE	L		T/SLr		P/R	C
EBME220	01 F	Prerequ	uisite : N	one	9			TY		2	(0/0	2/0		3
C: Credit	s, L: Le	ecture	e, T: Tu	tor	ial, SL	r: Su	per	vised	l Lea	arnin	g, P	: Proble	m / Pra	ctical	
R: Resear	ch, Ty/	Lb/E	TL/IE:	Th	neory /l	Lab/E	mb	edde	d Th	neory	and	l Lab/In	ternal I	Evaluatio	on
OBJECTI	VES				<u> </u>										
• To	o acqui	re kno	owledg	e ir	n geom	etrica	1 d	rawii	ng.						
• To	o expos	e the	studen	ts i	n com	outer a	aide	ed dr	aftin	ıg.					
COURSE	OUTCO	MES	(Cos)												
Students co	mpleting	g this c	course w	ere a	able to										
CO1	Utilize t	he cor	ncept of 1	Engi	ineering	Graph	ics	Tech	nique	s to di	aft le	etters, Nu	mbers, I	Dimension	ing in
	Indian S	tandai	rds										0		
CO2	Demons	trate t	he drafti	ng p	practice	visuali	zati	on and	d proj	jectioi	1 SK1	lls useful	for conv	eying idea	as in
<u> </u>	engineer	ing ap	oplication	1S.	-1	f		:							
<u>CO3</u>	Demons	basic	sketchin	g te	cnnique	s or en	gine	Dlar	equi	pmen	S.	And			
C04	Demons Droug th	trate ti	ional via		$\frac{115 \text{ OI PO}}{\text{f simple}}$	huildi	nes	, Plan	es an	u Son	us. F	And			
CO5 Monning o	f Course			w OI	Program	Outo	ng c	\mathbf{D}	ig. c)						
Cos/POs	PO1		PO PO	2	PO4	PO5	P	$\frac{10}{100}$	POT	7 1	809	PO9	PO10	PO11	PO12
CO1	3	3	3	,	2	2	2	00	107		00	3	3	1011	3
CO2	3	3	3		2	2	2					3	3		3
CO3	3	3	3		1	-	2					2	2		2
CO4	3	3	2		2		3			2		3	3		3
CO5	3	3	3		2	3	1			2		3	3		3
3/2/1 Indica	ates Strei	igth O	of Correl	atio	n, 3 – H	igh, 2-	Me	dium,	1- L	ow				1	
Category	Basic Sciences		Engineering Sciences		Humanities and Social Sciences	Program Core	5	Program Electives)	Open Electives		Interdisciplinary		Skill component	Practical / Project
			\checkmark												

Subject Code	Subject Name : ENGINEERING	Ty/	L	T/SLr	P/R	С
	GRAPHICS	Lb/				
		ETL/IE				
EBME22001	Prerequisite : None	TY	2	0/0	2/0	3

CONCEPTS AND CONVENTIONS (Not for examination)

Introduction to drawing, importance and areas of applications - BIS standards - IS: 10711 - 2001 : Technical products Documentation - Size and layout of drawing sheets - IS 9606 - 2001: Technical products Documentation -Lettering - IS 10714 & SP 46 - 2003: Dimensioning of Technical Drawings - IS : 15021 - 2001 : Technical drawings - Projections Methods - drawing Instruments, Lettering Practice - Line types and dimensioning - Border lines, lines title blocks Construction of polygons – conic sections – Ellipse, Parabola, Hyperbola and cycloids.

PROJECTION OF POINTS, LINES AND PLANE SURFACES UNIT I 12 Hrs

Projection of points and straight lines located in the first quadrant – Determination of true lengths and true inclinations – projection of polygonal surface and circular lamina in simple position only.

UNIT II **PROJECTION OF SOLIDS** 9 Hrs Projection of simple solids like prism, pyramid, cylinder and cone in simple position Sectioning of above solids in simple vertical position by cutting plane inclined to any one of the reference plane and perpendicular to the other.

UNIT III DEVELOPMMENT OF SURFACES 6 Hrs Development of lateral surfaces of simple and truncated solids – prisms, pyramids, cylinders, and cones.

UNIT IV	ISOMETRIC PROJECTION	6 Hrs
Principles of isometric	projection - isometric scale - isometric projections	of simple solids, like prisms pyramids,
cylinders and cones.		

UNIT V	ORTHOGRAPHICS PROJECTIONS	6 Hrs
Orthographic pro	jection of simple machine parts – missing views	
BUILDING DR	AWING	3 Hrs
Building compor	nents – front, Top and sectional view of a security shed.	
(Basic Auto CA	D commands to be taught- not for Examinations)	
		Total No of Hrs: 45

Note: First angle projection to be followed.

TEXT BOOKS

- 1. Bhatt, N.D. and Panchal, V.M. (2014) Engineering Drawing Charotar Publishing House
- 2. Gopalakrishnan, K.R. (2014) Engineering Drawing (Vol.I& II Combined) Subhas Stores, Bangalore.
- 3. Natrajan K.V., "A Text Book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2018.
- Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2008. 4.

3 Hrs

Subject	Code	e:	: Subject Name: SMART STRUCTURES AND									С	L	T/SLr	P/R
EBCE2	2001		SMA	RT	MATE	RIAI	LS								
			Prere	equ	isite: N	Jone						3	0	0	3
C: Credi	its, L:	: Lec	ture, T	: T	<i>'utorial</i>	, SL	r: Superv	vised L	earr	ning	, P: Pro	blem	Prac	tical	
R: Resea	arch, '	Ty/L	.b/ETL	_/IE	E: Theo	ry /I	Lab/Embe	edded 7	Theo	ory	and La	b/Inter	nal Ev	valuation	
OBJEC	TIVI	ES:													
• 7	This co	ourse	is desig	ned	to give	an in	sight into t	he lates	t dev	velop	ments r	egarding	g smart	materials a	nd their
use in stru	ctures	•													
COURS	SE OI	UTC	OME	S (COs):	(3 –	5)								
Students	com	pleti	ng the	co	urse we	ere a	ble to								
CO1	Unde	erstan	d variou	is sr	nart mat	erial	and its imp	ortance	in er	ngine	ering ap	plication	n		
CO2	Unde	erstand	d the ph	ysic	cal princ	iples	underlying	the beh	avio	r of s	mart ma	terials			
CO3	Analy	yse th	e engin	eeri	ng princ	iples	in smart se	nsor, ac	tuato	or and	d transdu	lcer Tec	hnolog	gies	
CO4	Use p	orinci	ples of 1	nea	suremen	ıt, sig	nal process	ing, driv	/e an	id co	ntrol tec	hniques	necess	ary to devel	ор
	smart	t struc	ctures ar	nd p	roducts										
CO5	Sugg	est in	nproven	nent	on the c	lesigr	ı, analysis,	manufa	cturi	ng ai	nd applie	cation is	sues in	volved in	
	integr	rating	g smart i	nate	erials and	d dev	ices with si	gnal pro	ocess	sing a	and cont	rol capa	bilities	to engineer	ing
Monnin	sinari a of			it p		ith l	Drogram	Outor	mo	с (D					
	g u v	<u>Cour</u> 201		,	PO3		1 Ugrain 14 PO5		P(<u>5 (1</u>)7	PO8	POQ	PO1	0 PO11	PO12
CO3/1 O3	-	3	-	-	3	2	3	-		-	-	-	-	-	-
CO2		3	-		3	-	-	-		-	-	-	-	-	-
CO3		-	3		2	3	3	-		-	-	-	-	-	-
CO4		-	-		3	3	-	-		-	-	-	-	-	-
CO5		3	3		3	3	-	-		-	-	-	-	-	-
H/M/L in	dicate	es stre	ength of	f co	rrelatio	n H	– High, M	– Medi	um,	L –	Low				
COs/PSO	s	PS	01	PS	502										
<u>CO1</u>		-	3		3										
CO2		-	3		3										
C03		-	3		3										
C04			3		3										
005	<i>.</i>	2	5		<u> </u>	ŝ	1)				S	2	<u>,</u>	ut	
~	nce	2	ing S	s ar										one	t /
ory	Cle		eer		ities		m (grat			lect	ini		ubo	tica ject
teg		2	gin		ani	4	gra	Tog			n E	disc		col	Pro
Cat	Sast	30	En	ı	Hun	3	Pro		-		Ope	lter		kill	Р
-		`			чо	2					-	É.		S	
	1						V			1					

L

С

T/SLr

P/R

EBCE22001 SMART MATERIALS Prerequisite: None 3 0 0 3 C: Credits, L: Lecture, T: Tutorial, SLr: Supervised Learning, P: Problem / Practical R: Research, Ty/Lb/ETL/IE: Theory /Lab/Embedded Theory and Lab/Internal Evaluation

Subject Name: SMART STRUCTURES AND

UNIT I **INTRODUCTION**

Subject Code:

Introduction to Smart Materials and Structures – Instrumented structures functions and response – Sensing systems – Self diagnosis – Signal processing consideration – Actuation systems and effectors.

UNIT II MEASURING TECHNIQUES

ACTUATORS

Strain Measuring Techniques using Electrical strain gauges, Types – Resistance – Capacitance – Inductance – Wheatstone bridges - Pressure transducers - Load cells - Temperature Compensation - Strain Rosettes.

UNIT III SENSORS

Sensing Technology – Types of Sensors – Physical Measurement using Piezo Electric Strain measurement – Inductively Read Transducers - The LVOT - Fiber optic Techniques. Chemical and Bio-Chemical sensing in structural Assessment – Absorptive chemical sensors – Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement.

Actuator Techniques – Actuator and actuator materials – Piezoelectric and Electrostrictive Material – Magnetostructure Material – Shape Memory Alloys – Electro orheological Fluids– Electro magnetic actuation – Role of actuators and Actuator Materials.

UNIT V SIGNAL PROCESSING AND CONTROL SYSTEMS 9 Hrs

Data Acquisition and Processing – Signal Processing and Control for Smart Structures – Sensors as Geometrical Processors - Signal Processing - Control System - Linear and Non- Linear.

TEXT BOOKS

UNIT IV

1. Brain Culshaw – Smart Structure and Materials Artech House – Borton. London-1996.

REFERENCES

- 1. L. S. Srinath Experimental Stress Analysis Tata McGraw-Hill, 1998.
- 2. J. W. Dally & W. F. Riley Experimental Stress Analysis Tata McGraw-Hill, 1998.

9 Hrs

9 Hrs

Total No of Hrs: 45

9 Hrs

Subject Cod	le		Subie	ct Name :		-	Γv/	L	1	T/SLr		P/R	С
Subject Cot		сомм	UNICA	TIVE E	NGLISI	H I	_b/	_		1,521			C
		00112112	Ι	LAB		ET	L/IE						
EBCC22I0	2	Prerequi	site : Pa	ss in Plus	2	1	IE	1		0/0		1/0	1
		English											
C: Credits	s, L: Le	cture, T	T: Tuto	orial, SL1	:: Sup	ervise	d Lea	arning	, P:	Problem	m / Pra	ctical	
R: Resear	ch, Ty/l	Lb/ETI	L/IE: T	heory /L	.ab/En	nbedde	ed Th	leory	and	Lab/Int	ternal E	Evaluati	on
OBJECTIV	VES												
• To	engage	student	ts in n	neaningfu	l oral	English	n com	ımunic	atior	n and o	rganized	l acaden	nic and
pro	ofessiona	l reading	and wr	iting for a	success	sful car	eer.						
COURSE (DUTCO	MES (C	os)										
Students con	mpleting	this cou	rse were	e able to							~ ~ ~ ~		
CO1	Engage	in meani	ngful or	al commu	inication	n in Eng	glish v	with wr	iting	as a sca	ffolding	activity.	
CO2	Have an commun	n in-dep lication.	th unde	erstanding	of the	comp	onents	s of E	nglis	h langu	age and	its use	in oral
CO3	Strength	en their	vocat	oulary an	d synta	actic k	nowle	edge f	or u	ise in a	academie	c and te	chnical
	commun	ication											
CO4	Learn to	negotiat	e mean	ing in inte	r-persoi	nal and	acade	mic co	mmu	inication	for a su	ccessful c	career.
CO5	Engage	in organi	zed aca	demic and	l profess	sional v	vriting	g for lif	e-lor	ng learnii	ng and r	esearch	
Mapping of	f Course	Outcon	ne with	Program	Outco	me (PO	s)						
Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	/ P0)8	PO9	PO10	PO11	PO12
CO1	1	-	1	1	3	2	1		1	3	3	-	3
<u>CO2</u>	2	1	1	1	3	3	1		2	3	3	1	2
<u>CO3</u>	1	1	1	1	2	1	-		2	3	3	1	3
C04	1	-	- 1	2	3	1	2 1		1	2	2	- 1	3
$\frac{203}{3/2/1}$ Indica	- tes Stren	nth Of C	orrelati	$\frac{2}{\text{on } 3 - \text{Hi}}$	$\frac{3}{\sigma h 2}$	I /Iedium	1 - I (ow	-	3	1	1	2
			s	011, <u>5</u> – 111	<u>g</u> 11, ∠- IV		, <u>1- L</u> (0 W					
Category	asic Sciences	aram Electives		pen Electives		erdisciplinary		ill component	ctical / Project				
	B		Engir	NHC Sol	P	Pro		Ō		Int		Sk	Pra

Subject Code	Subject Name :	Ty/	L	T/SLr	P/R	С
	COMMUNICATIVE ENGLISH	Lb/				
	LAB	ETL/IE				
EBCC22I02	Prerequisite : Pass in Plus 2 English	IE	1	0/0	1/0	1

Unit I

Unit II

Unit III

Authentic audios and videos

Prescribed Book: English Pronunciation in use - Mark Hancock,

Individual- Solo: Self introduction, Describing, anchoring, welcome address, vote of thanks, Pair & Group: Role play- formal -informal, narrating stories, film review, analysing newspaper headings and reports, interpreting Advertisement pamphlets

Group discussion, mock interviews, formal presentation, power point presentation Prescribed Book: J. C. Richards with J. Hull &S.Proctor, Interchange, Cambridge University Press, 2015.

Extensive, focused reading, Strategies for effective reading - Reading comprehensions – Note making- summarising- paraphrasing, Review Suggested reading: Short stories, news paper reports, film reviews

Unit IV Writing 6 Hrs Extensive writing practices – note taking, Cognitive and metacognitive strategies to inculcate a sense of organising ideas into coherent sentences and paragraphs, Formal letters, Business letters. Resume with covering letter

Unit V Non verbal communication/ charts, diagrams and table 6 Hrs

Interpretation of charts Flow chart, pie chart, bar diagram, table, tree diagram, etc.,

Prescribed Text:

1. J. C. Richards with J. Hull &S.Proctor, Interchange, Level 2, Cambridge University Press, 2021.

2. M. Chandrasena Rajeswaran & R.Pushkala, English - Communication Lab Work book

Reference

- 1. Hancock, Mark, English Pronunciation in Use; Cambridge Univ. Press, 2013
- 2. Dutt, K, Rajeevan, G & Prakash, CLN 2008, A Course on Communication Skills, 1st edn, Cambridge University Press, Chennai

Listening

6 Hrs

6 Hrs

6 Hrs

Total No of Hrs: 30

Speaking

Reading

Subject]	PYTHO	ON PRO	OGRA	MMIN	G		Ty/		L	T / S.L	r P/	С	
Code								Lb/				R		
								ETL/	IE					
EBCS22ET2	Prerequi	site: El	BCS22I	ET1				ETI		1	0/0	2/0	2	
C: Credits, L:	Lecture,	T: Tu	torial, S	SLr: S	upervis	sed Lea	arning,	P: Pr	oblen	n / Pra	ctical			
R: Research,	Ty/Lb/E7	ΓL/IE:	Theory	/Lab/	Embed	ded Th	eory a	nd La	b/Inte	ernal E	valuatio	n		
OBJECTIVE	: The stuc	lent sho	ould be	made to):									
				_				_						
Develo	op a basic	underst	anding	of prog	grammi	ng and t	the <i>Pytl</i>	hon pr	ogran	nming l	anguage			
• Write	programs	in Pyth	non to se	olve rea	al world	l proble	ms							
• See the	e value of	progra	mming	in a var	iety of	differer	t discip	olines,	espec	ially as	it relates	in engi	neering.	
COURSE OU	TCOME	S (COs) : Afte	r Com	pleting	the cou	irse, th	e stuc	lent c	an be a	ble to			
CO1	Rememb	er the s	vntax a	ind sem	antics	of nythe	n nrog	rammi	no la	າດເເລດອ				
CO2	Understa	and how	v function	onal and	d opera	tions ar	e to be	utilize	ed	154450				
CO3	Apply th	ne fund	amental	progra	mming	constru	ıcts like	e varia	bles.	conditio	onal logi	c. loopir	g, and	
	function	s to bu	ild basi	c progra	ams				,		8-	-, F	8,	
CO4	design of	bject-oi	riented j	progran	ns with	Python	classes	5						
CO5	Apply th	e know	ledge to	o solve	various	real wo	orld problems							
Mapping of C	ourse Ou	tcomes	with P	rogran	n Outco	omes (F	POs)	Os)						
				504				DOO		DOO	DO10	DO11	DO14	
COs/POs	PO1	PO4	PO5	PO6	PO 7	PO8		PO9	POI0	POII	POI2			
COs/POs CO1	PO1 3	PO2 3	PO3 3	PO4 2	PO5 2	PO6	PO 7	PO8	1	PO9	PO10 0	POII 1	PO12	
COs/POs CO1 CO2	PO1 3 3	PO2 3 2	PO3 3 2	PO4 2 2	PO5 2 2 2	PO6 1 1	PO7 1 1	PO8	 	1 1	0 0	1 1	PO12 1 1	
COs/POs CO1 CO2 CO3	PO1 3 3 3 3	PO2 3 2 2	PO3 3 2 2	PO4 2 2 2 2	POS 2 2 2 2	PO6 1 1 1	PO7 1 1 1 1	PO8	l l l	1 1 1	0 0 0	POII 1 1 1 1	PO12 1 1 1	
COs/POs CO1 CO2 CO3 CO4	PO1 3 3 3 3 3	PO2 3 2 2 3	PO3 3 2 2 3	PO4 2 2 2 2 2 2	POS 2 2 2 2 2 2 2	PO6 1 1 1 1 1	PO7 1 1 1 2)	PO9 1 1 2	POI0 0 0 0 0 0 0 0	POII 1 1 2	PO12 1 1 2	
COs/POs CO1 CO2 CO3 CO4 CO5	PO1 3 3 3 3 3 3 3	PO2 3 2 3 3 3	PO3 3 2 2 3 3	PO4 2 2 2 2 3	POS 2 2 2 2 2 2 2 2 2 2 2 2 2	PO6 1 1 1 1 1 1 1	PO7 1 1 2 2))	PO9 1 1 2 2	PO10 0 0 0 0 0 0 0 0	POII 1 1 2 2	PO12 1 1 2 2	
COs/POs CO1 CO2 CO3 CO4 CO5 3/2/1 Indicates	PO1 3 3 3 3 3 Strength	PO2 3 2 3 3 Of Corr	PO3 3 2 2 3 3 relation 3	PO4 2 2 2 2 3 , 3 – Hi	PO5 2 2 2 2 2 gh, 2- N	PO6 1 1 1 1 1 Medium	PO7 1 1 2 2 1, 1- Lo	PO8))	PO9 1 1 2 2	PO10 0 0 0 0 0 0 0	POII 1 1 2 2	PO12 1 1 2 2	
COs/POs CO1 CO2 CO3 CO4 CO5 3/2/1 Indicates	PO1 3 3 3 3 3 Strength	PO2 3 2 3 3 Of Corr	PO3 3 2 2 3 3 relation 3	PO4 2 2 2 3 , 3 – Hi	POS 2 2 2 2 gh, 2- M	PO6 1 1 1 1 1 Medium	PO7 1 1 2 2 h, 1- Lo	P08))	PO9 1 1 2 2	PO10 0 0 0 0 0 0	POII 1 1 2 2	POI2 1 1 2	
COs/POs CO1 CO2 CO3 CO4 CO5 3/2/1 Indicates	PO1 3 3 3 3 3 Strength	PO2 3 2 3 3 Of Corr	PO3 3 2 2 3 relation	PO4 2 2 2 3 , 3 – Hi	POS 2 2 2 2 2 2 3 gh, 2- N	PO6 1 1 1 1 1 1 Vedium	PO7 1 1 2 2 a, 1- Lo	P08) 	PO9 1 1 2 2	PO10 0 0 0 0 0 0	POII 1 1 2 2	POI2 1 1 2 2	
COs/POs CO1 CO2 CO3 CO4 CO5 3/2/1 Indicates	PO1 3 3 3 3 3 Strength	PO2 3 2 3 3 Of Corr	PO3 3 2 3 3 relation	PO4 2 2 2 3 , 3 – Hi	POS 2 2 2 2 2 gh, 2- N	PO6 1 1 1 1 1 1 Vedium	PO7 1 1 2 2 0, 1- Lo	PO8	ject	PO9 1 1 2 2	PO10 0 0 0 0 0 0	POII 1 1 2 2	POI2 1 1 2 2	
COs/POs CO1 CO2 CO3 CO4 CO5 3/2/1 Indicates Category	PO1 3 3 3 3 3 Strength	PO2 3 2 3 3 Of Corr	PO3 3 2 3 3 relation	PO4 2 2 2 3 , 3 – Hi	POS 2 2 2 2 2 gh, 2- N	PO6 1 1 1 1 Medium	PO7 1 1 2 2 1,1-Lo	source of the second se	Project	PO9 1 1 2	PO10 0 0 0 0 0 0	POII 1 1 2 2	POI2 1 1 2 2	
COs/POs CO1 CO2 CO3 CO4 CO5 3/2/1 Indicates Category	PO1 3 3 3 3 3 3 Strength	PO2 3 2 3 3 Of Corn	s and Social Soc	РО4 2 2 2 3 , 3 – Ні	POS 2 2 2 2 2 2 2 2 2 2 2 2 2	PO6 1 1 1 1 1 Medium	ciplinary ciplinary	mponent &	1 / Project	PO9 1 1 2	PO10 0 0 0 0 0 0	POII 1 1 2 2	POI2 1 1 2 2	
COs/POs CO1 CO2 CO3 CO4 CO5 3/2/1 Indicates Category	PO1 3 3 3 3 3 Strength sources	PO2 3 2 3 3 Of Corriences secures	PO332333111 <tr< td=""><td>PO4 2 2 2 3 , 3 – Hi</td><td>POS 2 2 2 2 2 2 gh, 2- N</td><td>PO6 1 1 1 1 1 1 Vedium</td><td>PO7 1 1 2 2 1-Lo</td><td>Component w</td><td>ical / Project</td><td>PO9 1 1 1 2 2</td><td>PO10 0 0 0 0 0 0</td><td>POII 1 1 2 2</td><td>POI2 1 1 2</td></tr<>	PO4 2 2 2 3 , 3 – Hi	POS 2 2 2 2 2 2 gh, 2- N	PO6 1 1 1 1 1 1 Vedium	PO7 1 1 2 2 1-Lo	Component w	ical / Project	PO9 1 1 1 2 2	PO10 0 0 0 0 0 0	POII 1 1 2 2	POI2 1 1 2	
COs/POs CO1 CO2 CO3 CO4 CO5 3/2/1 Indicates Category	PO1 3 3 3 3 3 Strength	PO2 3 2 3 3 Of Corn secures	PO33233ciencesSciences	PO4 2 2 2 3 , 3 – Hi	POS 2 2 2 2 2 2 2 gh, 2- N	Den Electives	PO7 1 1 2 2 , 1- Lo	kill component *	ractical / Project	PO9 1 1 1 2 2	PO10 0 0 0 0 0 0	POII 1 1 2 2	POI2 1 1 2	
COs/POs CO1 CO2 CO3 CO4 CO5 3/2/1 Indicates Category	PO1 3 3 3 3 3 3 Strength Bassic Sciences	PO2 3 2 3 3 Of Corn Sciences	Iumanities and Social Sciences Sciences	PO4 2 2 2 3 3 – Hi	Pos 2 3 3 4 4 4 5 4 5 4 5 5 4 5 4 5 5 6 5 6 5 6 6 7 7 7 6 7 7 7 7 7 7 7 7 7	PO6 1	Interdisciplinary	Skill component *	Practical / Project	PO9 1 1 1 2 2	PO10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	POII 1 1 2 2	POI2 1 1 2 2	
COs/POs CO1 CO2 CO3 CO4 CO5 3/2/1 Indicates Category	PO1 3 3 3 3 3 Strength Basic Sciences Basic Reserves	PO2 3 2 3 3 Of Corriences Engineering Sciences	Humanities and Social Social Social Sciences	PO4 2 2 2 3 , 3 – Hi	Program Electives	PO6 1 1 1 1 1 Medium	Interdisciplinary	Skill component •	Practical / Project	PO9 1 1 1 2 2	PO10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	POII 1 1 2 2	POI2 1 1 2	
COs/POs CO1 CO2 CO3 CO4 CO5 3/2/1 Indicates Category	PO1 3 3 3 3 3 Strength Bassic Sciences	PO2 3 2 3 3 Of Corn Engineering Sciences	Humanities and Social Sciences Sciences	PO4 2 2 2 3 3 – Hi	POS 2 3 4 4 4 5 4 4 5 4 5 4 4 5 4 5 4 5 5 6 6 6 7 7 6 7 7 7 6 7 7 7 7 7 7 7 7	PO6 1 1 1 1 1 1 Oben Electives	Interdisciplinary	Skill component *	Practical / Project	PO9 1 1 2 2	PO10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	POII 1 1 2 2	POI2 1 1 2 2	
COs/POs CO1 CO2 CO3 CO4 CO5 3/2/1 Indicates Category	PO1 3 3 3 3 3 Strength Basic Sciences	PO2 3 2 3 3 Corresses Engineering Sciences	Humanities and Social Social Sciences	PO4 2 2 2 3 , 3 – Hi	Pros	PO6 1 1 1 1 Medium	Interdisciplinary Interdisciplinary ↓	Skill component •	Practical / Project	PO9 1 1 2 2	PO10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	POII 1 1 2 2	PO12 1 1 2 2	

	PYTHON PROGRAMMING	Ty/	L	T/S.Lr	P/ R	С
Subject		Lb/				
Code		ETL/IE				
EBCS22ET2	Prerequisite: EBCS22ET1	ETL	1	0/0	2/0	2

UNIT I: INTRODUCTION

History of Python, Need of Python Programming, Applications Basics of Python Programming Using the REPL(Shell), Running Python Scripts, Variables, Assignment, Keywords, Input-Output, Indentation.

UNIT II: TYPES, OPERATORS AND EXPRESSIONS

Types - Integers, Strings, Booleans; Operators- Arithmetic Operators, Comparison (Relational) Operators, Assignment Operators, Logical Operators, Bitwise Operators, Membership Operators, Identity Operators, Expressions and order of evaluations Control Flow- if, if-elif-else, for, while, break, continue, pass.

UNIT III: FUNCTIONS

Defining Functions, Calling Functions, Passing Arguments, Keyword Arguments, Default Arguments, Variablelength arguments, Anonymous Functions, Fruitful Functions (Function Returning Values), Scope of the Variables in a Function - Global and Local Variables.

UNIT IV:LISTS, TUPLES, DICTIONARIES

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: selection sort, insertion sort, mergesort, histogram.

UNIT V: OBJECT ORIENTED PROGRAMMING OOP IN PYTHON

Classes, 'self variable', Methods, Constructor Method, Inheritance, Overriding Methods, Data hiding.

TEXT BOOKS:

- 1. Python Programming: A Modern Approach, Vamsi Kurama, Pearson.
- 2. Think Python:How to Think Like a Computer Scientist'', 2nd edition Updated for Python 3, Shroff/O'Reilly Publishers,Allen B. Downey
- 3. Learning Python, Mark Lutz, Orielly.

REFERENCE BOOKS:

- 1. Core Python Programming, W.Chun, Pearson.
- 2. Introduction to Python, Kenneth A. Lambert, Cengage.

List of Experiment : Python Programming.

- 1. Develop a python program to find the area and circumference of a circle.
- 2. Develop a python program to check if the number is positive or negative or zero using nested if else statement.
- 3. Develop a python program to find the GCD (Greatest Common Divisor) of two numbers.
- 4. Develop a Python program using function to compute the factorial of a given number.
- 5. Develop a Python program to find the sum of square of individual digits of a number using function.
- 6. Develop a Python program to find the largest digit from a number using function.
- 7. Develop a Python program to display only the positive elements of the list.
- 8. Develop a Python program to accept any number and print it in words.
- 9. Develop a Python program to subtract two matrices.
- 10. Develop a Python program to perform matrix multiplication.

9 Hrs

9 Hrs

9 Hrs efault

9 Hrs

9 Hrs

Total No of Hrs: 45

Subject C	ode:	Subjec	t Name:	ENV	/IRON	TAL	Ty/	L	T/SL		P/ R	C				
		SCIEN	ICE (AU	J DIT	COUR	RSE)		ETL /IE								
EBCC22I	.03	Prerequ	uisite: No	one				IE	1	0		1/0	0			
C: Credits	, L: Lec	ture, T: T	Tutorial,	SLr:	Superv	vised L	earni	ing, P: 1	Pro	blem /	Prace	tical	•			
R: Researce	ch, Ty/L	b/ETL/II	E: Theor	y /La	b/Embe	edded '	Theorem	ry and l	Lab	/Interr	nal Ev	valuati	on			
OBJECT	IVES:															
• To	acquire	knowled	lge of the	e Env	ironme	ent and	Ecos	system	& I	Biodiv	ersity					
• To	acquire	knowled	lge of the	e diff	erent ty	Envi	ironmeı	ntal	pollut	ion						
• To	know n	nore abou	it Natura	al Res	ources											
• To	gain un	derstandi	ing of so	cial i	ssues a	nd the	Envi	ronmen	ıt							
• To	attain f	amiliarity	of hum	an po	pulatio	n and	Envi	ronmen	t							
COURSE	OUTC	OMES (COs): (3	(3-5)												
Students c	ompleti	ng the co	urse wei	re abl	e to											
CO1	Know a	about Envi	ironment	and E	lcosyste	m & B	iodive	ersity								
CO2	Compre	ehend air,	water, S	oil, N	larine, 1	Noise, '	Therr	nal and	Nu	clear P	olluti	ons and	d Solid			
	Waste	manageme	ent and 1	dentif	y the 1r	nportar	ice of	natural	re	sources	s like	forest,	water,			
CO3	Discov	er water c	es onservati	on and	1 waters	shed m	nage	ment								
CO4	Identify	its prob	lems and	l conc	erns cl	imate c	hang	e, globa	ul w	varming	g, aci	d rain.	ozone			
	layer de	epletion et	c.,				0									
CO5	Explair	n family w	elfare pro	ogram	mes and	d role o	f info	rmation	tec	hnolog	y in h	uman I	health			
	and env	vironment		(1 D		0 /										
Mapping	of Coul	rse Outco	omes wi	$\frac{\text{th Pr}}{1004}$	ogram	Outco	mes	(POs)	,	DOO	DO	DO	DO 12			
COS/POS	POI	PO2	P03	PO4	P05	P06	P07	PO8)	P09	PO 10	PO 11	PO 12			
CO1						2	3	2					1			
CO2						2	3				2		1 1			
CO3						2	3	2			2		1			
C04						2	3	2			2		1			
H/M/L indic	ates stren	of corr	elation H	I – Hig		- Medium	L-I	ow			2		1			
TI/ NI/ L2 IIIdic		s s			, 11, 111 1		, ב ו	20 **								
	es	ence	nd Xes		e	ives		es		ıry	•	ent	ject			
Catalogue	enc	Sci	Scie es al lience de la lience							suilc		pone	Pro			
Category	Sci	ring	ming I Sc							isci	•	mo	al /			
	asic	neeı	uma vcial		rog	graı		pen		terd		ill c	ictic			
	В	Ingi	H		Ц	Pro		0		In		Sk	$_{2}$			
		Ц	√						+							

Subject Code:	Subject Name:	Ty/	L	T/SL	P/ R	С
	ENVIRONMENTAL SCIENCE	Lb/ ETL/IE				
	(AUDIT COURSE)					
EBCC22I03	Prerequisite: None	IE	1	0	1/0	0

UNIT I ENVIRONMENT AND ECOSYSTEM

Definition, Scope and Importance of environment – need for public awareness – concept, structure and function of an ecosystem- producers, consumers and decomposers – energy flow in the ecosystem. Biodiversity at national and local levels – India

ENVIRONMENT POLLUTION UNIT II

Definition - causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Nuclear hazards (g) E-Wastes and causes, effects and control measures

NATURAL RESOURCES UNIT III

Forest resources: Use and over-exploitation, deforestation. Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems. Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

From unsustainable to sustainable development – urban problems related to energy – water conservation, rain water harvesting, watershed management – resettlement and rehabilitation of people; its problems and concerns climate change, global warming, acid rain, ozone layer depletion, nuclear accidents, central and state pollution control boards-Public awareness.

HUMAN POPULATION AND THE ENVIRONMENT UNIT V

Population growth, variation among nations – population explosion, environment and human health – human rights – value education – HIV/AIDS – women and child welfare – role of information technology in environment and human health

(A) AWARENESS ACTIVITIES:

i) small group meetings about water management, promotion of recycle use, generation of less waste, avoiding electricity waste

ii) Slogan making event

iii) Poster making event

iv) Cycle rally

v) Lectures from experts

(B) ACTUAL ACTIVITIES:

i) Plantation

ii) Gifting a tree to see its full growth

iii) Cleanliness drive

iv) Drive for segregation of waste

- v) To live some big environmentalist for a week or so to understand his work
- vi) To work in kitchen garden for mess

vii) To know about the different varieties of plants

viii) Shutting down the fans and ACs of the campus for an hour or so

TEXT BOOKS

- 1. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education (2004).
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGrawHill, NewDelhi, (2006).

REFERENCES

- 1. Vairamani, S. and Dr. K. Sankaran. Elements of Environmental and Health Science. Karaikudi: KPSV Publications, 5th Edition, July 2013.
- 2. If thikarudeen, Etal, Environmental Studies, Sooraj Publications, 2005.
- 3. R.Murugesan, Environmental Studies, Millennium Publishers and Distributors, 2nd Edition, July. 2009.

3 Hrs

3 Hrs

3 Hrs

15 Hrs

FORM NO.F/CDD/004 Rev.00 Date 20.03.2020

III SEMESTER

Subject Code	Subjec	t Name :	Math	ematics	III for I	Mechani	ical and	Civil	Ty/	L	T /	P	/ R	С
EBMA22005	Engine	eers							Lb/		S.Lr			
									ETL/IE					
	Prereq	uisite: Fi	rst year	Engineer	ring Mat	hematics			Ту	3	1	()	4
L : Lecture T : 7	Futorial	S.Lr:	Supervis	ed Learr	ning P:	Project	R : Resea	arch C:	Credits					
Ty/Lb/ETL : Th	neory/La	b/Embeo	ided The	ory and	Lab	5								
OBJECTIVES	:													
The student sl	nould be	e made t	0:											
To be able to ap	ply the	concepts	in Diffe	rential E	quations	5								
To understand t	he conce	epts in F	ourier se	ries										
To analyze the	Problem	s in wav	e equation	ons										
To analyze the	problem	s in Heat	equation	ns.										
To understand t	he conce	epts in L	aplace a	nd Fouri	er Transf	forms								
COURSE OUT	ГСОМЕ	ES (COs)):											
CO1	To und	lerstand	the conce	epts of P	artial Di	fferentia	l equation	ns						
CO2	To be a	able to fi	nd fourie	er series	solutions	S								
CO3	To be a	able to a	oply the	concepts	s of PDE	in Wave	e and Hea	at probl	ems					
CO4	To be a	able to a	oply lapl	ace trans	sforms									
CO5	To be a	able to a	oply Fou	rier trans	sforms									
Mapping of Co	ourse Ou	utcomes	with Pr	ogram (Dutcome	es (POs)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PC	D10 I	PO11	PC)12
CO1	3	2	2	3	3	1	1	2	2		1	1		2
CO2	2	2	1	3	1	2	1	2	3		1	1		2
CO3	3	2	1	3	2	3	2	1	1		2	1		3
CO4	3	2	1	2	1	3	2	1	1		1	1		2
CO5	3	3	1	2	1	2	2	1	1		2	2		3
COs / PSOs		PSO1			PSO2						•			
~~.		-												
<u>CO1</u>		3			3									
CO2		3			3									
CO3		3			3									
CO4		3			3									
CO5	~	3			3									
3/2/1 Indicates	Strengt	th Of Co	rrelatio	n, 3 – H	igh, 2- N	/ledium,	1- Low		r – – – – –				1	
	S		bi SS	0	/es	ŝ	۲ _۲	nt	ect					
	JCe	ng s	an	Ore	ctiv	ive	ina	one	roje					
A	cier	eri ace	ties	n C	Ele	ect	ipli	ubc	/P					
gor	Š	cier Sier	amit 1 S	rar	m]	Ē	lisc	con	cal					
iteg	asic	Scing	um: cia	rog	gra	pen	erd	ill	ctic					
Ű	B		Hı So	P	lo	Ō	Int	\mathbf{Sk}	Pra					
	\checkmark													
		1			1	1							1	

FORM NO.F/CDD/004 Rev.00 Date 20.03.2020

Subject Code	Subject Name : Mathematics III for Mechanical and Civil	Ty/	L	T /	P/R	С
EBMA22005	Engineers	Lb/		S.Lr		
		ETL/IE				
	Prerequisite: First year Engineering Mathematics	Ту	3	1	0	4
L : Lecture T : 7	Tutorial S.Lr : Supervised Learning P : Project R : Research C	: Credits				
Ty/Lb/ETL : Th	neory/Lab/Embedded Theory and Lab					

UNIT I PARTIAL DIFFERENTIAL EQUATIONS

Formation of PDE by eliminating arbitrary constants and eliminating arbitrary functions – Solutions of standard types of first order equations – Lagrange's equation – Linear partial differential equations of second and higher order with constant coefficients.

UNIT II FOURIER SERIES

Dirichlet's conditions - General Fourier series - Half range Sine & Cosine series - Complex form of Fourier series -Parseval's identity - Harmonic Analysis.

UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Classification of second order linear partial differential equations – Solutions of one dimensional wave equation, onedimensional heat equation – Steady state solution of two dimensional heat equation (Cartesian coordinates only) – Fourier series solutions.

UNIT IV LAPLACE TRANSFORMS

Transforms of simple functions - Properties of Transforms - Inverse Transforms - Transforms of Derivatives and Integrals – Periodic functions – Initial and final value theorems – Convolution theorem – Applications of Laplace transforms for solving linear ordinary differential equations up to second order with constant coefficients and Linear simultaneous differential equations of first order with constant coefficients.

UNIT V FOURIER TRANSFORMS

Statement of Fourier integral theorem – Fourier transform pairs – Fourier Sine and Cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's theorem.

Total no. of hrs: 60

Reference Books:

- 1) Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).
- 2) Veerarajan T., Engineering Mathematics (for semester III), Tata McGraw Hill Publishing Co., (2005).
- 3) Singaravelu, Transforms and Partial Differential Equations, Meenakshi Agency, (2017).
- 4) Kreyszig E., Advanced Engineering Mathematics (9th ed.), John Wiley & Sons, (2011).
- 5) Grewal B.S., *Higher Engineering Mathematics*, Khanna Publishers, (2012).

12 Hrs

12 Hrs

12 Hrs

12 Hrs

Subject Cod EBCE22002	le: 2	Sub	oject Nai	me : MEC	HANIC	S OF SC	OLIDS			Ty/ Lb/	L	T / S.Lr	P/ R	С
										ETL/IE				
		Pre	requisite	: Engineeri	ng Mech	nanics				Ту	3	1/0	0/0	4
L : Lecture 7	Г : Tuto	rial	SLr : St	pervised I	Learning	P : Proje	ect R : R	Research	C: Cred	its				
T/L/ETL : T	heory/I	.ab/E	mbedded	d Theory a	nd Lab									
OBJECTIV	E :		. 1				1.6					.1 • 1•		
• 10	learn fu	ndan	nental co	ncepts of S	stress, St	rain and	deformation	tion of sc	old appl	ications of	bars and	thin cylin	ders	
• 10	know th	ne me	chanism	of load tra	inster in	beams, t	he induc	ed stress	resultan	ts and defor	rmations			
• 10 • To	analuza		ne effect	of torsion	on snatts	s and spr								
COURSEO		ME	$\frac{11000}{5}$	$\cdot (3, 5)$	onal state	e of sues	-8							
COL		rn th	e fundar	• (5- 5)	ents of s	trace and	strain in	the desi	an of va	rious struct	ural com	nonente a	nd mack	nines
	Tour	donati	ond the m		of load t	uess and	beener	the indu				ponenti ana		mes
02	To un	oly th	and the h	a and shoe	of load t	las to do	tormino i	the hendi	rg shor		nd doflor	of mations	lood in	
CO3	heam	pry u subie	ected to s	vstem of lo	n princip bads	les to de	termine	ine benui	ng, snea	u suesses a		tion prou		1
CO4	To an	alvze	the force	es in Truss	es using	different	methods	s and des	ign shaf	ts for the gi	ven load			
CO5	To eva	aluate	e the stre	sses due to	impact a	and sudd	enly app	lied load	s					
Mapping of	Cours	e Ou	tcomes v	with Progr	am Out	comes (I	POs)							
COs/POs	PO)1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1		3	3	3	3	1	2	1	1	1	1	1		3
CO2		3	3	3	3	1	2	1	1	1	1	1		3
C03		3	3	3	3	1	2	1	1	1	1	1		3
C04		3	3	3	3	1	2	1	1	1	1	1		3
C05		3	3	3	3	1	2	1	1	1	1	1		3
COs / PSOs		PS	01	PSC)2									
CO1		3	3	3										
CO2		3	3	3										
C03		3	3	3										
C04		3	3	3										
C05		3	3	3										
3/2/1 Indica	tes Str	ength	n Of Cor	relation, 3	8 – High,	, 2- Med	ium, 1- l	Low			1			
Category		Basic Science	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplina ry	Skill component	Practical / Project				
					\checkmark									

Subject Code:	Subject Name :	Ty/	L	Τ/	P/ R	С
EBCE22002	MECHANICS OF SOLIDS	Lb/		S.Lr		
		ETL/IE				
	Prerequisite: Engineering Mechanics	Ту	3	1/0	0/0	4
L : Lecture T : Tuto	rial SLr : Supervised Learning P : Project R : Research C: Cred	its				
T/L/ETL : Theory/L	ab/Embedded Theory and Lab					

UNIT I **INTRODUCTION TO FORCE CONCEPT**

Equivalent system of forces, rigid bodies, external & internal forces-Application of Statics of Particles-Free body Diagram Concurrent & Non Concurrent Forces - Principles of transmissibility- Equivalent forces & Varignon's theorem. Tension, Compression and Shear stress – Lateral Strain- Poisson's Ratio- Volumetric Strain – Deformation of Simple and Compound Bars - Elastic constants - Composite Sections .

UNIT II **CENTRE OF GRAVITY AND MOMENT OF INERTIA**

Areas and volumes - Centroid of simple areas and volumes by integration - Centroid of composite areas - Second moment of areas - Radius of Gyration - Parallel axis and Perpendicular axis theorems - Moment of Inertia of simple areas by Integration -Moment of Inertia of Composite Areas - Mass Moment of Inertia of thin plates and simple solids.

UNIT III **BENDING MOMENT & SHEAR FORCE**

Introduction to Bending and S.F- Beams and support conditions – types of supports – types of loads - shear forces and bending moment diagrams for simply supported beams, cantilevers and overhanging beams with all loads.

UNIT IV ANALYSIS OF STATICALLY DETERMINATE PLANE TRUSSES

Stability and equilibrium of plane frames – Perfect frames - Types of Trusses – Analysis of forces in trusses member – Method of joints – Method of Sections – Tension co-efficient method – Graphical method

UNIT V **BENDING STRESS IN BEAMS & TORSION OF SHAFTS**

Theory of simple bending-expression for bending stress-Section modulus-bending stress in symmetrical sections-Theory of torsion-Torsion of circular, hollow circular shafts and power -close coiled helical springs and leaf springs

Total No of Hours: 60

TEXT BOOKS

- 1. Rajput.R.K. "Strength of Materials", S.Chand and Co, New Delhi, 2007. 2.
- 2. Bhavikatti. S., "Solid Mechanics", Vikas publishing house Pvt. Ltd, New Delhi, 2010
- 3. Dr.R.K.Bansal A text book of Strength of Materials, Laxmi Publications, New Delhi 1996.
- 4. S. Ramamirutham and R.Narayanan, Strength of Materials, Dhanpat Rai Publications, New Delhi, 1989.

REFERENCES

- 1. Kazimi S.M.A. " Solid Mechanics ", Tata McGraw Hill Publishing Company, New Delhi, 1991.
- 2. Laudner T.J. and Archer R.R., "Mechanical of Solids in Introduction ",McGraw Hill International Editions
- 3. William A.Nash, "Theory and Problems of Strength of Material" Schaum's outline series, Mc Graw Hill International Editions 1994

12 Hrs

12 Hrs

12 Hrs

12 Hrs

Subject Code:	Su H	ubject Name : HLL AND ADVANCED SURVEYING							Ty/ Lb/	L	T / S.Lr	P/ R	C
EBCE22003									ETL/IE				
	Pre	erequisite	: None						Ту	3	0/0	0/0	3
L : Lecture T : T	Futorial	SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	: Credit	S			1	
T/L/ETL : Theo	ory/Lab/H	Embedded	l Theory ar	ld Lab									
OBJECTIVE :													
To intr	roduce th	ne princip	les of vario	ous surve	ying met	hods and	applicat	ions to (Civil Engine	ering pro	ojects		
COURSE OUT	COURSE OUTCOMES (COs) : (3-5) At the end of the course, the student will be able to:												
CO1	τ	Inderstan	d the princ	iples of t	oasic surv	vey instru	iments in	i civil er	ngineering f	ields, co	ncept of co	ontourin	g and
	tl	he ways o	f plotting.										
CO2	τ	Inderstan	d the conc	ept of ta	chometri	ic survey	ving, Cor	ntrol sui	veying, Su	rvey adj	ustments,	Astrono	mical
	S	urveying	and Photog	rammetr	ric.								
CO3	U	Inderstan	d the conce	pt Photo	grammet	ry, Total	station, I	Hydrogr	aphic surve	y and car	rtography.		
Mapping of Co	urse Ou	tcomes v	vith Progra	am Outc	omes (P	Os)	•		•				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	2	-	2	-	1	-	-	3	-	-		-
CO2	3	2	-	2	-	1	-	-	3	-	-		-
CO3	3	2	-	2	-	1	-	-	3	-	-		-
COs / PSOs	P	501	PSC)2									
CO1		3	3										
CO2		3	3										
CO3		3	3										
3/2/1 Indicates	Strengt	h Of Cor	relation, 3	– High,	2- Medi	um, 1- L	ow				-		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
				\checkmark									

Subject Code: EBCE22003	Subject Name : HILL AND ADVANCED SURVEYING	Ty/ Lb/ ETL/IE	L	T / S.Lr	P/ R	С
	Prerequisite: None	Ту	3	0/0	0/0	3
L : Lecture T : Tuto	rial SLr : Supervised Learning P : Project R : Research C: Credit	s				
T/L/ETL : Theory/L	ab/Embedded Theory and Lab					

Course Objective:

The main objectives of the course are

- To make students aware with different advance surveying methodologies applied to carry out large scale survey works as modern instruments have largely changed the approach to survey works with the principles being same.
- To prepare the students to handle the errors they are likely to come across any large scale survey works.

UNIT I : INTRODUCTION OF CHAIN SURVEYING COMPASS SURVEYING 8 Hrs

Definition - principles - classification - survey instruments - ranging and chaining - reciprocal ranging - setting perpendiculars –errors - traversing. Prismatic compass - surveyor's compass - bearing - systems and conversions - local attraction – magnetic declination - dip - adjustment of error

UNIT II TACHEOMETRIC SURVEYING

Introduction, purpose, principle & use of tacheometry, Instrument used & stadia hairs & Fixed hair methods of tacheometry, Tacheometry constant & Problems Anallatic lens theory, subtense bar, Field work in tacheometry. Reduction of readings, errors and precisions. Difference between Theodolite & Tacheometer.

UNIT III GEODETIC SURVEYING

Introduction & object of Geodetic Surveying, Principal & classification of triangulation system, Selection of base line and stations, Orders of triangulation-triangulation figures, Station marks and signals-marking signals, Examples on Phase error, Extension of base, reduction of centre, selection and marking of stations

UNIT IV CONTOURING AND CURVE SETTING

Contouring - methods –characteristics and uses of contours - plotting - calculation of areas and volumes- earth work volume- Types of curves used in roads and railway alignments-Notations of simple circular curve Designation of the curve-Setting simple circular curve by offsets from long chord and Rankines method of deflection angles

UNIT V FIELD ASTRONOMY

Introduction & Instruments & purpose, Astronomical terms, Time & conversion of time, Abbreviations, Determination of azimuth , Latitude and longitude & Examples of azimuth , Latitude and longitude

Total No of Hours: 45

Text Books

- 1. Arora, K.R., Surveying Vol. I, II & III, Standard Book House. New Delhi
- 2. Basak, N.N., Surveying and Levelling, Tata Mcgraw Hill, New Delhi
- 3. Agor, R., Surveying and Levelling, Khanna Publishers, New Delhi

Reference Books:

- 1. Duggal, S. K., Surveying Vol. I & II, Tata Mcgraw Hill, New Delhi
- 2. Subramanian, R., Surveying & Levelling, Oxford University Press, New Delhi
- 3. Punamia, B.C., Surveying Vol. I, II & III, Laxmi Publications
- 4. Kanetkar, T.P. and Kulkarni, S.V., Surveying and Levelling Vol. I & II, Pune VidhyarthiGruh

9 Hrs

8 Hrs

12 Hrs

8 Hrs

66

Subject Code: EBEE22ID7	Su	Subject Name : ENERGY CONSERVATION TECHNIQUES							Ty/ Lb/ ETL/IE	L	T / S.Lr	P/ R	C
	Pre	erequisite	: First Yea	r Physics					Ту	3	0/0	0/0	2
L : Lecture T : T T/L/ETL : Theo	Futorial ry/Lab/E	SLr : Su Imbedded	pervised L I Theory ar	earning nd Lab	P : Proje	ct R : R	esearch C	C: Credit	S				
OBJECTIVE :	•												
• To stud	ly the va	rious ener	rgy saving	and man	agement	techniqu	es applie	ed to bui	lding and c	onstructio	on with rel	evance	to
enviror	nment.												
COURSE OUT	COME	S (COs) :	: (3- 5) At	the end of	of the cou	urse the s	tudent sł	nall					
CO1	P	ossess kn	iowledge o	n basic e	nergy co	nservatio	on system	ıs					
CO2	τ	Inderstan	d the conce	ept of ene	ergy effic	iency an	d energy	conserv	ation meas	ures			
CO3	A	apply the	concept of	energy e	fficiency	for cons	structing	smart ar	nd green bu	ildings			
CO4	A	nalyze th	ne consump	otion of e	nergy by	conduct	ing energ	gy audit	and identify	y conserv	ative mea	sures	
CO5	Γ	Design energy efficient buildings											
Mapping of Co	urse Ou	tcomes w	vith Progr	am Outo	omes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	3	1	3	3	3	2	2	1	1	3		3
CO2	3	3	1	3	3	3	2	2	1	1	3		3
CO3	3	3	1	3	3	3	2	2	1	1	3		3
CO4	3	3	1	3	3	3	2	2	1	1	3		3
CO5	3	3	1	3	3	3	2	2	1	1	3		3
COs / PSOs	PS	501	PSC	02									
CO1		3	3										
CO2		3	3										
CO3		3	3										
<u>CO4</u>		3	3										
CO5	Strongt	3 b Of Com	molation 3	Uiah	2 Modi	um 1 T							
5/2/1 Indicates	Strengt		relation, 5	<u>– підіі,</u>	2- Mean	um, 1- L	.0w						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
							v						

Subject Code:	Subject Name :	Ty/	L	Τ/	P/ R	С			
EBEE22ID7	ENERGY CONSERVATION TECHNIQUES	Lb/ ETL/IE		S.Lr					
	Drono quicita, First Voor Dhusiog	Tu	2	0/0	0/0	2			
	Prerequisite: First Tear Physics	Тy	3	0/0	0/0	Z			
L : Lecture T : Tutor	ial SLr : Supervised Learning P : Project R : Research C: Credit	ts							
T/L/ETL : Theory/Lab/Embedded Theory and Lab									

UNIT I **INTRODUCTION**

Fundamentals of energy- Energy Production Systems-Heating, Ventilating and Airconditioning – Solar Energy and Conservation - Energy Economic Analysis - Energy conservation and audits - Domestic energy consumption savings - challenges - primary energy use in buildings - Residential - Commercial - Institutional and public buildings - Legal requirements for conservation of fuel and power in buildings.

ENVIRONMENTAL ASPECTS UNIT II

Energy and resource conservation - Design of green buildings - Evaluation tools for building energy -Embodied and operating energy – Peak demand – Comfort and Indoor Air quality – Visual and acoustical quality - Land, water and materials ...

UNIT III DESIGN

Natural building design consideration - Energy efficient design strategies - Contextual factors - Longevity and process Assessment – Renewable Energy Sources and design – Advanced building Technologies – Smart buildings – Economies and cost analysis.

UNIT IV SERVICES

Energy in building design – Energy efficient and environment friendly building – Thermal phenomena – thermal comfort - Indoor Air quality - Climate, sun and Solar radiation, - Psychometrics - passive heating and cooling systems - Energy Analysis - Active HVAC systems - Preliminary Investigation - Goals and policies - Energy audit -Types of Energy audit- Energy flow diagram - Energy consumption / Unit Production - Identification of wastage-Priority of conservative measures.

UNIT V **ENERGY MANAGEMENT**

Energy management of electrical equipment - Improvement of power factor - Management of maximum demand -Energy savings in pumps – Fans – Compressed air systems – Energy savings in Lighting systems – Air conditioning systems – Applications.

REFERENCES

- 1. Moore F., Environmental Control system Mc Graw Hill, Inc. 1994.
- 2. Brown, GZ, Sun, Wind and light: Architectural design strategies, John Wiley & Sons, 1985.
- 3. Cook, J. Award Winning passive Solar Design, Mc Graw Hill, 1984.
- 4. J.R. Waters, Energy conservation in Buildings: A Guide to part L of the Building Regulations, Blackwell Publishing, 2003.

9 Hrs

9 Hrs

9 Hrs

Total No. of Hours: 45

9 Hrs

Subject Code: EBME22ID2	S	ubject Nar	ne : COM	POSITE	MATE	RIALS			Ty/ Lb/	L	T / S.Lr	P/ R	С
	P	rerequisite	Industrial	Chemist	r 3/				EIL/IE Ty	3	0/0	0/0	2
L : Lecture T : 7	Tutorial	SLr : Su	pervised L	earning	P : Proie	ct R : Re	esearch C	: Credits	<u> </u>	5	0/0	0/0	2
T/L/ETL : Theo	rv/Lab/	Embedded	Theory an	d Lab	1 1 1 1 0 1 0			· create	, ,				
OBJECTIVE :	J		,										
Student	ts will l	earn											
Differe	nt com	posites and	their man	ufacturin	g method	ls							
 Design 	parame	eters of cor	nposites		0								
To gain	n knowl	ledge in ne	ed and app	lications	of comp	osite mat	erials						
COURSE OUTCOMES (COs) : (3- 5)													
CO1		Aware of d	lifferent co	mposites	and thei	r manufa	cturing n	nethods					
CO2		Know the mechanics and performance of composite materials											
C03	Understand the design parameters of composites												
Mapping of Co	of Course Outcomes with Program Outcomes (POs)												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	2	2	-	3	-	-	3	-	3	-	-		2
CO2	2	2	2	3	-	-	-	-	3	-	-		2
CO3	2	2	2	3	-	-	3	-	3	-	-		2
COs / PSOs	P	PSO1	PSC)2									
CO1		3	3										
CO2		3	3										
CO3		3	3										
3/2/1 Indicates	Streng	th Of Cor	relation, 3	– High,	2- Mediu	um, 1- L	ow			1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
							√						

Subject Code:	Subject Name :	Ty/	L	T / S.Lr	P/ R	0
EBME22ID2	COMPOSITE MATERIALS	Lb/				
		ETL/IE				
	Prerequisite: Industrial Chemistry	Ту	3	0/0	0/0	2
L : Lecture T : Tuto	rial SLr : Supervised Learning P : Project R : Research C: Credit	s				
T/L/ETL : Theory/L	ab/Embedded Theory and Lab					

UNIT-I INTRODUCTION

Limitations of Conventional Materials- Definition of Composite Materials- Types and Characteristics Applications.

UNIT- II MATERIALS

Fibers- Materials- Fiber Reinforced Plastics- Thermo set Polymers- Coupling Agents, Fillers and Additives- Metal Matrix and Ceramics Composites.

UNIT-III MANUFACTURING

 Fundamentals- bag moulding- compression moulding pultrusion- filament winding- other manufacturing processquality inspection and non-destructive testing.
 UNIT- IV MECHANICS AND PERFORMANCE 9 Hrs

Introduction to Micro-mechanics- Unidirectional Lamina-Laminates- Inter laminar Stress- Statics Mechanical Properties- Fatigue Properties- Impact Properties- Environmental Effects- Fracture Mechanics and Toughening mechanisms, Failure Modes

UNIT- V DESIGN

Failure Predictions- Design Considerations- Joint Design- Codes- Design Examples. Optimization of Laminated Composites- Application of FEM for Design.

Total No. of Hrs: 45

TEXT BOOKS

- 1. P.K.Mallick, (2006) "Fiber-Reinforced Composites", Monal Deklatr Inc., New York.
- B.D.Agrawal and L.J.Broutmam, (2006) "Analysis and Performance of Fiber Composites", John Wiley and Sons, New York.

REFERENCES

- 1. Micael hyer, (1998) "Stress Analysis of Fiber- Reinforced Composite Materials", Tata McGraw Hill.
- 2. Ronald Gibson, (2007) "Principles of Composite Material Mechanics", Tata McGraw Hill.

9 Hrs tics Aj

9 Hrs

9 Hrs

Subject Co EBCC22H	ode: E T1	Subject Name: UNIVERSAL HUMAN VALUES 2: UNDERSTANDING HARMONY								Ty/ Lb/ ETL/ IE	L	[/SLr	P/R	C
		Prerequis	ite: None	e, UHV	1 (Desi	rable)				ETL	1	0/0	2/0	2
L:Lecture	Γ:Tutorial	SLr: Supe	ervised L	earning	P:Proj	ect R:R	Resear	rchC	C:Cred	itsT/L/I	ETL: Th	eory/La	b/Embed	ded
Theory and	d Lab													
OBJECT Uuman V	IVES:		aa tha In	duction	Due ano	m stud	anta .		daat	on initic	1 avroa	una ta hu	mon vol	
through U	niversal Hi	iman Valu	$\log \ln \theta \ln \theta$ es $= 1 T^{2}$	uucuon vis expo	Progra	in, stud to be a	uome	nted	by th	an mua	ulsory f	ule to fit	illiali valt ester foun	dation
course.		annan vara	C 5 1 . 1 1	пэелре	5010 15	10 00 0	ugine	meu	. Oy tii	is comp	uisory i	un sente	Ster roun	uution
1. De	evelopmen	t of a holis	tic persp	ective b	ased or	n self- e	xplor	ation	n abou	it thems	selves (h	uman be	eing), fan	nily,
so	ciety and n	ature/exist	ence.				-							-
2. Ui	nderstandir	ng (or deve	loping cl	arity) o	f the ha	armony	in the	e hur	man b	eing, fa	mily, so	ciety an	d	
na 2 St	ture/existe	nce	£1											
3.5t	rengtnenin	g of self-re	tment an	d cours	ige to a	ct								
COURSE		(ES(COs)	(3-5) T	he stud	lents w	ill be a	ble to)						
	Relate self	and surroundings and identify responsibility in life												
CO2	Associate	e human relationship and nature to handle problems and provide sustainable solutions												
CO3	Develop ci	critical ability and engage in reflective and independent Thinking												
CO4	Show com	how commitment towards understanding of values												
CO5	Apply Hu	nan values	in day to	o day se	etting in	real lif	e							
Mapping	of Course	Outcomes	s with Pr	ogram	Outco	mes(PC)s)				-			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO)7	PO8	PO9	PO10	PO11	PO12	L
CO1	-	-	1	1	-	2	1		-	1	1	-	2	
CO2	-	-	2	2	1	2	3		1	-	2	-	2	
CO3	-	-	1	1	1	2	-		-	1	2	-	3	
CO4	-	-	2	-	1	1	1		3	1	1	-	3	
CO5	-	-	1	-	-	2	1		2	1	1	-	3	
COs/PSO	S		PSO1			PSO2								
CO1			3			3								
CO2			3			3								
CO3			3			3								
CO4			3			3								
CO5			3			3								
3/2/1indic	ates streng	gth of corr	elation3	-High	,2–Mec	lium,1-	- Lov	v						
Category	Basic Sciences	Engineering Sciences	Humanities	and Social Sciences	Program Core	Program	Electives		Onen	Electives	Interdiscipli	nary	Skill component	Practical / Project
			E F F S an H S S								V	(

Subject Code:	Subject Name: UNIVERSAL HUMAN VALUES 2:	Ty/	L	T/SLr	P/R	С
EBCC22ET1	UNDERSTANDING HARMONY	Lb/				
		ETL/				
		IE				
	Prerequisite: None, UHV1 (Desirable)	ETL	1	0/0	2/0	2
L:LectureT :Tutorial	SLr: Supervised Learning P:Project R:ResearchC:Cred	litsT/L	/ETL:	Theory/La	b/Embedd	ed
Theory and Lab						

UNIT I Introduction - Need, Basic Guidelines, Content and Process for Value Education

Purpose and motivation for the course, recapitulation from Universal Human Values-I - Self-Exploration-what is it? -Its content and process; 'Natural Acceptance' and Experiential Validation-as the process for self-exploration. -Continuous Happiness and Prosperity-A look at basic Human Aspirations - Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority - Understanding Happiness and Prosperity correctly-A critical appraisal of the current scenario – Method to fulfill the above human aspirations: understanding and living in harmony at various levels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on likingdisliking.

UNIT II

Understanding Harmony in the Human Being - Harmony in Myself!

Understanding human being as a co-existence of the sentient 'I' and the material 'Body'.- Understanding the needs of Self ('I') and 'Body' - happiness and physical facility. - Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer). - Understanding the characteristics and activities of 'I' and harmony in 'I' - Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail -Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available tome. Identifying from one's own life.

Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

UNIT III Understanding Harmony in the Family and Society- Harmony in Human-Human Relationship

Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect asthe foundational values of relationship -Understanding the meaning of Trust; Difference between intention and competence - Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship - Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and coexistence as comprehensive Human Goals - Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives.

UNIT IV

Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

Understanding the harmony in the Nature - Interconnectedness and mutual fulfilment among the four orders of naturereyclability and self-regulation in nature - Understanding Existence as Co-existence of mutually interacting units in all-pervasive space - Holistic perception of harmony at all levels of existence - Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

9 Hrs

9 Hrs

9 Hrs

UNIT V Implications of the above Holistic Understanding of Harmony on Professional Ethics

Natural acceptance of human values - Definitiveness of Ethical Human Conduct - Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order - Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems. - Case studies of typical holistic technologies, management models and production systems - Strategy for transition from the present state to Universal Human Order: ((a) At the level of individual: as socially and ecologically responsible engineers, technologists and managers, (b)At the level of society: as mutually enriching institutions and organizations - Sum up

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions e.g. To discuss the conduct as an engineer or scientist etc.

Total No. of Hrs: 45

Text Book

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Reference Books

- 1. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi.
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J C Kumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)
| Subject Code: | Sul | bject Nai | me : SUR | VEYING | LABO | RATOR | Y | | Ty/
Lb/ | L | T/S.Lr | P/ R | С |
|--------------------|----------------|----------------------|-----------------------------------|--------------|-------------------|----------------|-------------------|-----------------|---------------------|-----------|-------------|-------------|--------|
| EBCE22L01 | | | | | | | | | ETL/IE | | | | |
| | Pre | requisite | Hill and A | dvanced | l Surveyi | ng | | | Lb | 0 | 0/0 | 3/0 | 1 |
| L : Lecture T : T | Futorial | SLr : Su | pervised L | earning | P : Proje | ct R : Re | esearch C | : Credit | s | 11 | | | |
| T/L/ETL : Theo | ry/Lab/E | mbedded | l Theory an | d Lab | | | | | | | | | |
| OBJECTIVE : | | | | | | | | | | | | | |
| To trai | n the stuc | lents with | the praction | ical knov | vledge or | n basic su | rveying | methods | for constru | ction and | road purp | ose | |
| COURSE OUT | COMES | 5 (COs) : | (3-5) A | t the end | of the co | ourse, the | student | will be a | ble to: | | | | |
| CO1 | Prepare | e the surv | ey sheet ac | cording | to the me | thod use | d | | | | | | |
| CO2 | Apply | theoretica | al considera | ations in | field and | other en | gineering | g project | S | | | | |
| CO3 | Able to | survey | the area us | ing diffe | rent metl | hods of p | olane tabl | ling and | compass su | urvey and | l to adjust | the cor | npass |
| | travers | e graphic | ally | | | | | | | | | | |
| CO4 | Record | the redu | ced levels | using vai | nous met | hods of l | evelling | and mea | surement of | t horizon | tal & verti | cal angl | es by |
| C05 | Setting | out wor | ks for fou | ndation 1 | narking | use of s | tereoscol | pe for 3 | -D viewing | Co-ord | inate mea | uremen | ts hv |
| 005 | GPS ar | nd Traver | sing by To | tal statio | narking, | use of s | leieoseoj | je 101 5 | D viewing | ,, co oiu | mate mea | suremen | its by |
| Mapping of Co | urse Ou | tcomes w | vith Progra | am Outc | omes (P | Os) | | | | | | | |
| COs/POs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO | 12 |
| CO1 | 3 | 2 | 3 | 3 | 3 | 2 | 1 | 1 | 3 | 1 | 2 | | 3 |
| CO2 | 3 | 2 | 3 | 3 | 3 | 2 | 1 | 1 | 3 | 1 | 2 | | 3 |
| CO3 | 3 | 2 | 3 | 3 | 3 | 2 | 1 | 1 | 3 | 1 | 2 | | 3 |
| CO4 | 3 | 2 | 3 | 3 | 3 | 2 | 1 | 1 | 3 | 1 | 2 | | 3 |
| CO5 | 3 | 2 | 3 | 3 | 3 | 2 | 1 | 1 | 3 | 1 | 2 | | 3 |
| COs / PSOs | PS | 01 | PSC |)2 | | | | | | | | | |
| CO1 | | 3 | 3 | | | | | | | | | | |
| CO2 | | 3 | 3 | | | | | | | | | | |
| CO3 | | 3 | 3 | | | | | | | | | | |
| CO4 | | 3 | 3 | | | | | | | | | | |
| CO5 | | 3 | 3 | | | 4 1 | | | | | | | |
| 3/2/1 Indicates | Strength | Of Cor | relation, 3 | – High, | 2- Medn | 1m, 1- L | ow | | | | | | |
| Category | Basic Sciences | Engineering Sciences | Humanities and Social
Sciences | Program Core | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project | | | | |
| | | | | v | | | | | V | | | | |

Subject Code: Subject Name : SURVEYING LABORATORY Ty/ L T/S.Lr P/R С Lb/ EBCE22L01 ETL/IE Prerequisite: Hill and Advanced Surveying Lb 0 0/0 3/0 1 L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab

UNIT I **CHAIN SURVEYING**

Ranging – Chaining – Traverse

UNIT II **COMPASS SURVEYING**

Determination of distance between two inaccessible points with compass - Surveying of a given area by prismatic compass (closed traverse) and plotting after adjustment - Correction for Local Attraction by Prismatic Compass

UNIT III PLANE TABLE SURVEYING

Triangulation to find distance between inaccessible points with and without known scale - Three-Point Problem - Two-Point Problem.

UNIT IV LEVELLING

Study of levels and leveling staff – Fly leveling using dumpy level – Fly leveling using tilting level – Check leveling.

UNIT V THEODOLITE

Study of Theodolite Measurement of angles by reiteration and repetition - Measurement of vertical angles -Tangential system (using theodolite, leveling staff) - Stadia system (using theodolite, leveling staff) - Sub tense system (using theodolite, tape, cross staff, leveling staff)

Total No of Hrs: 45

TEXT BOOKS

- Punmia B.C., "Surveying ", Vols. III, Laxmi Publications, Mumbai, 1999 and I, II. 1.
- N.N Basak, "Surveying and Levelling ", Tata McGraw Hill Publishing Company Limited New Delhi, 2. 2004.

REFERENCES

- 1. Clark D., "Plane and Geodetic Surveying", Vols. II and C.B.S. Publishers, I and Distributors, New Delhi, Sixth Edition, 1991.
- 2. James M. Anderson and Edward M. Mikhail, "Introduction to Surveying", McGraw Hill Book Company, New Delhi, 1995

6 Hrs

6 Hrs

12 Hrs

12 Hrs

Subject Code: EBCE22L02		Subjo	ect Name :	GTH O ATORY	F MATE	ERIALS		Ty/ Lb/ ETL/IE	L	T / S.Lr	P/ R	C	
	P	rerequisite:	Mechanic	s of Solie	ds				Lb	0	0/0	3/0	1
L : Lecture T : 7	Futorial	SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	: Credit	s			•	·
T/L/ETL : Theo	ry/Lab/	/Embedded	Theory an	ld Lab									
OBJECTIVE :	T 1	1	C .1 .	.1 C			1						
• maaha	The of	objective o	f the stren	gth of m	aterials I	ab is to	demonstr	ate the	basic princi	ples in t	he area of	strengt	h and
the exi	nes or	inaterials a	formed to	measure	the pro	nerties (of the m	aterials	such as in	nact str	anoth ten	s. m m sile stre	noth
compre	essive s	trength. ha	rdness. duc	tility etc		perces	or the m	ateriais	such us m	ipuet su	engui, ten	she she	Jingeni,
COURSE OUT	COMI	ES (COs) :	(3-5)		*								
CO1		Measure te	nsile, shear	r and tors	sion capa	city of st	eel rods						
CO2		Understand	the tensile	e, shear a	nd torsic	nal capa	city of ste	eel rods					
CO3		Demonstra	te and co	nduct e	xperimer	nt to fin	d impac	t streng	gth, hardne	ss value	of meta	1 speci	mens,
		compressio	on of spring	gs and de	flection	of metal l	beams	· ·					
CO4		Analyze th	e Hardne	ss value	es of me	etals lik	e mild s	steel, b	rass, copp	er and	aluminui	n	
CO5		Evaluate th	e deflectio	n and im	pact valu	es of me	tal specii	mens					
Mapping of Co	urse O	utcomes w	ith Progra	am Outc	omes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	2	2	3	3	3	1	1	3	1	1		3
CO2	3	2	2	3	3	3	1	1	3	1	1		3
CO3	3	2	2	3	3	3	1	1	3	1	1		3
CO4	3	2	2	3	3	3	1	1	3	1	1		3
CO5	3	2	2	3	3	3	1	1	3	1	1		3
COS / PSOs	ł	2)2									
		3	3										
		3	3										
C04		3	3										
C05		3	3										
3/2/1 Indicates	Streng	th Of Cor	relation, 3	– High,	2- Mediu	um, 1- L	ow						
	0												
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
				\checkmark					✓				

Subject Code: EBCE22L02	Subject Name : STRENGTH OF MATERIALS LABORATORY	Ty/ Lb/ ETL/IE	L	T / S.Lr	P/ R	С
	Prerequisite: Mechanics of Solids	Lb	0	0/0	3/0	1
L : Lecture T : Tutor T/L/ETL : Theory/L	rial SLr : Supervised Learning P : Project R : Research C: Credit ab/Embedded Theory and Lab	S				

- 1. Tension test on mild steel rod
- 2. Compression test on wooden specimen
- 3. Double shear test on mild steel and aluminum rods
- 4. Torsion test on mild steel rod
- 5. Impact test on metal specimen
- 6. Hardness tests on metals like mild steel, brass, copper and aluminum
- 7. Deflection test on metal beam
- 8. Compression test on helical spring

Total No of Hours: 45

References:

1. Timoshenko S.P, &Young, D.H. Strength of Materials – East West Press Ltd. 3. Relevant 813 code. Venon john, Engineering Materials, 3rt Edition, McMillan Co.Ltd.,

Subject EBCT	ct Code: 22IL1	Sub	ject Na	me : W	ater Aı	nalysis]	Lab		Ty/ Lb/ ETL/IF		T / S.	Lr P/ I	R	C
		Prei	requisit	e: Cher	nical T	echnolo	ogy		Lb	0	0/0	2/0		1
L : Lec	ture T : T	 Futoria	l SLr	: Super	vised L	earning	P : Pro	ject R :	Resear	ch				
C: Cree	dits T/L/	ETL:1	Theory/	Lab/Em	bedded	Theory	and La	, ab/ Inte	rnal					
evaluat	tion		2											
OBJE	CTIVE:													
•	To redu	ice the	impurit	ies to a	certain	level th	at does	not cau	ise harn	n to huma	an health			
•	To redu	ice the	objectio	onable c	olour, c	odour, tu	urbidty	and ha	rdness.					
•	To mak	e wate	r safe fo	or drinki	ing and	usable a	applica	tion.						
COUR	RSE OUT	ГСОМ	ES (CO	(3-3)	- 5)									
CO1	Sampli	ng tech	niques	and san	ple for	the ana	lysis at	water	compon	ents				
<u>CO2</u>	Apply	analyti	cal tech	niques f	or spec	ific test	<u> </u>	·		1				
CO3	Compa	re adva	ance and	d conver	ntional	techniqi	ues for	specifi	c water	sample				
C04 C05	Apply	a range	r at prive	report o	n result	obtaine	ng or u d in gi	ven for	mate					
Mappi	ing of Co	ourse (Dutcom	es with	Progra	m Out	comes	(\mathbf{POs})	mate					
COs/PC)s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1		3	2	2	-	-	1	-	-	-	2	-		1
CO2		3	2	-	-	-	-	-	-	-	2	-		-
CO3		3	2	1	-	-	2	-	-	-	1	-		3
CO4		2	-	-	-	1	-	-	-	2	-	-		1
CO5		-	1	-	-		-	-	-	-	1	-		-
COs/P	SOs	PS	<u>501</u>	PS	<u>502</u>									
<u>CO1</u>			3	-	3									
$\frac{CO2}{CO3}$			<u>3</u> 2		3									
$\frac{003}{004}$			3 7		<u>5</u> 1									
C04			2		3									
$\frac{3}{2}$ In	dicates S	Strengt	- th Of C	orrelati	<u>-</u> ion. 3 –	High.	2- Med	ium. 1	- Low					
Categ	gory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
								\checkmark		\checkmark				

Subject Code:	Subject Name : Water Analysis Lab	Ty/	L	T/S.Lr	P / R	C
EBCT22IL1		Lb/				
		ETL/IE				
	Prerequisite: Chemical Technology	Lb	0	0/0	2/0	1
L : Lecture T : Tu	torial SLr : Supervised Learning P : Project F	R : Research (C: Cree	dits T/L/ET	Ľ:	
Theory/Lab/Embe	edded Theory and Lab/ Internal evaluation					

- Alkalinity, phenolphthalein Bicarbonate 1.
- 2.
- 3.
- 4.
- 5.
- Biochemical Oxygen Demand Chemical Oxygen Demand Carbonate calculation from pH & alkalinity EDTA titration method for calcium analysis 6.

Total No of Hrs: 30

Subject Code: EBCE22ET1	Sı	ıbject Naı	me : BUII	LDING	MATER	IALS			Ty/ Lb/ ETL/IE	L	T/S.Lr	P/ R	С
	Pr	erequisite	Industrial	l Chemis	try				ETL	1	0/0	2/0	2
L : Lecture T : 7	Futorial	SLr : Su	pervised L	earning	P : Proje	ct R:Re	esearch C	: Credit	S				
T/L/ETL : Theo	ory/Lab/	Embedded	l Theory an	ld Lab									
OBJECTIVE :													
• To imp	oart knov	wledge on	different n	naterials	and prop	erties							
• To und	lerstand	the engine	ering aspe	cts relate	d to build	lings							
COURSE OUT	COME	COs):	(3-5)										
At the end of th	e course	, the stude	ent will be a	able to:									
CO1]	dentify an	d character	rize build	ling mate	rials							
CO2	1	Understand	d the manu	facturing	process	of bricks	and cem	ent					
CO3		Fo have a o	clear under	standing	about fo	undation	and its ty	/pe					
Mapping of Co	urse O	utcomes w	vith Progra	am Outc	omes (P	Os)	_						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10) PO11	. PO	012
CO1	3	3	-	3	-	3	2	-	-	-	-		-
CO2	3	3	-	3	-	3	2	-	-	-	-		-
<u>CO3</u>	3	3	-	3	-	3	2	-	-	-	-		-
COs / PSOs	Р	<u>soi</u>	PSC)2									
COL		3	3										
<u>CO2</u>		3	3										
CO3	64	<u>3</u>	3	TT! - 1.		1 T							
3/2/1 Indicates	Strengt	th Of Cor	relation, 3	– High,	2- Medu	1m, 1- L	ow			T			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
				√					\checkmark				

Subject Code:	Subject Name :	Ty/	L	T/S.Lr	P/ R	С
EBCE22ET1	BUILDING MATERIALS	Lb/				
		ETL/IE				
	Prerequisite: Industrial Chemistry	ETL	1	0/0	2/0	2
L : Lecture T : Tuto	rial SLr : Supervised Learning P : Project R : Research C: Credit	s				

T/L/ETL : Theory/Lab/Embedded Theory and Lab **BRICKS, AGGREGATES AND CEMENT** UNIT I

Bricks - Classification - Manufacturing process - Test on bricks - Aggregate: Natural Stone Aggregate -Industrial By- product - Crushing strength, impact strength, and flakiness - Abrasion resistance - Grading sand - Bulking. Cement: Cement Ingredients - Manufacturing Process - Types - Testing of Cement

UNIT II MASONRY& MORTAR

Masonry - stone masonry - rubble and Ashlar masonry - Brick masonry - Bond - Definition need and scope -Types of bonds - English and Flemish bond - merits and demerits - composite masonry - solid and hollow block masonry-soil-cement bricks-Load bearing and non-load bearing walls- Codal provisions.Mortar - Preparation of Lime and Cement Mortar- Concrete - Ingredients - Manufacturing Process - Batching Plant - Ready Mix Concrete - Paints - Plastics - Glass

UNIT III SUB STRUCTURE AND SUPER STRUCTURE

Substructure - Setting Out of Foundation and Trenches - Excavation and Timbering - Foundation -Shallow Foundation – Deep Foundation. Super Structure.

UNIT IV FLOOR, ROOF & STAIR CASE

Floors - Types of floor - Details of concrete and terrazzo floors - Roofs - Types of Roofs - Types of Flat roofs sloping roofs -different types and usage - shell roofs - roof coverings-AC sheets-GI sheets-FRP roofs Water proofing treatment of roofs -tar felt treatment- chemical treatment- Types of weathering courses .Stair Case -Definition – Types of Stair – General Dimension and Requirements – Layout of Stair Case.

UNIT V **BUILDING SERVICES**

Damp Proofing- Acoustics Treatment - Thermal Insulation - Fire Protection - Ventilation - Earth Quake Protection- Integration of services in buildings - water supply & plumbing layout for a residential building elevators & escalators - planning & installation - basic components of the electrical system for a residence .

Total No of Hrs: 45

9 Hrs

PRACTICE SESSIONS

Include practice sessions for Assessment of physical properties of bricks such as absorption, shape and size, structure, soundness, Hardness, presence of soluble salts, Hardness, impact and water absorption test etc for stones, different types of bonds for bricks and stones, defects in timber

TEXT BOOKS

- 1. B.C.Punmia, Ashok Kumar Jain and Arun Kumar Jain, "Building Construction" Laxmi Publications (P) ltd., New Delhi.
- 2. Rangwala, 8th ed.1983. S.C. Engineering Materials, Charotar Publishing House, Arora S.P. and Bindra S.P., Building Construction, Planning Techniques and method of Construction, Dhanpat roy and Sons, 1997.

REFERENCES

- 1. Taylor, G.D. Materials of Construction, USA Longman Inc, 1989.
- 2. Arora and Bindra, Building Materials and Building Construction, Dhanpat Raj

9 Hrs

9 Hrs

9 Hrs

IV SEMESTER

Subject Code	Subje	ct Nam	e: St	atistica	al and N	Numeri	ical		Ty/	L	T/	F	P/R	С
EBMA22008	Meth	ods for	Mecha	anical a	and Civ	v il Eng i	ineers		Lb/		S.L	r		
]	ETL/IE					
	Prerec	juisite:	First ye	ear Eng	ineerin	g Math	ematics	;	Ту	3	1		0	4
L : Lecture T :	Tutoria	al S.L	r : Supe	ervised	Learnii	ng P:l	Project	R : R	esearch (C: Cr	edits			
Ty/Lb/ETL : T	heory/I	Lab/Em	bedded	Theor	y and L	ab	5							
OBJECTIVES	S :													
The student s	hould	be mad	le to:											
To be able to a	pply th	e conce	pts in S	Statistic	s									
To understand	the con	cepts in	n Proba	bility										
To understand	the con	cepts in	n Nume	rical m	ethods									
To be able to se	olve Al	gebraic	and Tr	anscen	dental e	equation	ns.							
To understand	the con	cepts in	n Interp	olation										
COURSE OU	TCOMES (COs) :													
CO1	To be	able to	analyz	e Statis	tical da	ta								
CO2	To be	able to	unders	tand pr										
CO3	To be able to understand the concepts in Numerica								ethods					
CO4	To be able to solve algebraic and Transcendental								ions					
CO5	To be	able to	apply	Interpo	lation c	oncepts	3							
Mapping of C	ourse (Dutcon	nes witl	h Prog	ram Ou	itcome	s (POs))						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	D10	PO11	P	012
CO1	3	3	2	2	3	1	1	1	2		2	1		3
CO2	3	3	1	3	2	2	1	1	2		1	2		2
CO3	2	3	1	2	2	3	3	1	1		2	2		3
CO4	2	3	1	1	1	3	3	1	1		2	1		2
CO5	3	2	1	3	1	2	3	1	1		2	2		2
COs / PSOs		PSO1			PSO2									
CO1		3			3									
CO2		3			3									
CO3		3			3									
CO4		3			3									
C05		3			3									
3/2/1 Indicates	s Stren	gth Of	Correl	ation	3 – Hig	h. 2- N	ledium	. 1- L	ow					
	s	8	p se	0	8		Ŋ	ut (
	nce	ng s	an	Ore	с s	ive	inaı	one	/					
y	ciei	eri e	ties	nC	ran ive	lect	ipl	npc	ica] ect					
gor	Š	gine Ciel	ani 1 S	rar	rog ect	Ε	lisc	con	acti roj					
ateξ	asic	N S	limi	rog	ЪЪ	pen	erd	ill (Pr: P					
Ŭ	Ä		Hı So	Р		Ō	Int	Sk						
	\checkmark													

Subject Code	Subject Name : Statistical and Numerical	Ty/	L	Τ/	P/R	С
EBMA22008	Methods for Mechanical and Civil Engineers	Lb/		S.Lr		
		ETL/IE				
	Prerequisite: First year Engineering Mathematics	Ту	3	1	0	4
L : Lecture T :	Tutorial S.Lr : Supervised Learning P : Project R :	Research (C: Cr	edits		
Ty/Lb/ETL : T	heory/Lab/Embedded Theory and Lab					

UNIT I **BASICS OF STATISTICS**

Variables - Uni-variate Data - Frequency Distribution - Measures of Central Tendency - Mean - Median - Mode - Quartiles - Measures of Dispersion - The Range - Quartile Deviation - Standard Deviation - Relative Measures of Dispersion - Coefficient of Variation - Quartile Coefficient of Variation.

UNIT II PROBABILITY AND RANDOM VARIABLE

Axioms of Probability – Conditional probability – Total probability – Baye's Theorem – Random variable – Probability mass function - Probability density function - Properties - Moments (Definition and simple problems).

UNIT III BASICS OF NUMERICAL METHODS

Curve fitting-Method of group averages-Principle of least square-Method of moments-Finite differences-Operators (Forward, Backward & Shifting) -Relationship between the operators.

UNIT IV SOLUTION OF EQUATIONS

Solution of Algebraic and Transcendental equations – Method of false position – Iteration method – Newton-Raphson method – Solution of Linear system of equations – Gauss Elimination method – Gauss-Jordan method – Iterative methods – Gauss-Jacobi method – Gauss-Seidel method – Matrix Inversion by Gauss-Jordan method.

UNIT V **INTERPOLATION**

Newton forward and backward differences - Central differences - Stirling's and Bessel's formulae -Interpolation with Newton's divided differences - Lagrange's method.

Total no. of hrs: 60

Reference Books:

- 1. Veerarajan T., Probability, Statistics and, Random Processes, Tata McGraw Hill Publishing Co., (2008).
- 2. Singaravelu, Probability and Random Processes, Meenakshi Agency, (2017).
- 3. Gupta S.C., Kapoor V.K., Fundamentals of Mathematical Statistics, S.Chand & Co., (2007).
- 4. Veerarajan T., Numerical Methods, Tata McGraw Hill Publishing Co., (2005).
- 5. Sastry S.S., Introductory Methods of Numerical Analysis, Prentice Hall of India, (2003).
- 6. Kandasamy P., Thilagavathy, Gunavathy K., Numerical Methods (Vol.IV), S.Chand & Co., (2008).

12 hrs

12 hrs

12 hrs

12 hrs

12 hrs

Subject Code: EBCE22004	S	ubject Nai	me : STREN	NGTH O	F MATI	ERIALS			Ty/ Lb/	L	T/S.Lr	P/ R	C
									ETL/IE				
	P	rerequisite	: Mechanic	s of solic	ls				Ту	3	1/0	0/0	4
L : Lecture T : 7 T/L/ETL : Theo	futorial rv/Lab/	l SLr : Su /Embedded	pervised L Theory ar	earning Id Lab	P : Proje	ct R : Re	esearch C	: Credit	s				
OBJECTIVE :	J		j										
To imp	art kno	wledge ab	out deflecti	ion in bea	ams by va	arious me	ethods						
To imp	art kno	wledge ab	out analyzi	ng the st	ructural e	lements	by energ	y concep	ots and find	ing stress	es and def	lection	
To imp	art kno	wledge abo	out behavio	or of colu	ımns, crit	ical load	s and des	sign of c	olumns				
COURSE OUT	COM	ES (COs) :	: (3-5) At	the end	of the co	urse, Stu	idents wi	ll have					
CO1		Thorough	knowledge	in analy	sis of ind	etermina	te beams	and use	of energy 1	method fo	or estimati	ng the s	lope
		and deflect	tions of bea	ams and t	russes								
CO2		To underst	and beams	and failu	are of ma	terials							
CO3		To apply the	he energy p	orinciples	s to solve	practical	l problem	ıs					
CO4		To analyze	indetermi	nate bear	ns for va	rious loa	ding cond	ditions					
CO5		To assess t	he behavio	or of colu	mns								
Mapping of Co	urse O	utcomes w	vith Progra	am Outc	omes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	3	3	3	1	2	1	1	1	1	2		3
CO2	3	3	3	3	1	2	1	1	1	1	2		3
CO3	3	3	3	3	1	2	1	1	1	1	2		3
CO4	3	3	3	3	1	2	1	1	1	1	2		3
<u>CO5</u>	3	3	3	3	1	2	1	1	1	1	2	_	3
COs / PSOs	ł	2501		52									
		3	3						_				
	-	3	3						_			_	
		3	3									_	
C04 C05		3	3										
3/2/1 Indicates	Streng	th Of Cor	relation, 3	– High,	2- Media	um, 1- L	ow						
Category	Basic Sciences	Basic Sciences Engineering Sciences Humanities and Social Sciences				Open Electives	Interdisciplinary	Skill component	Practical / Project				
				0.00									

Subject Code: EBCE22004	Subject Name : STRENGTH OF MATERIALS	Ty/ Lb/ ETL/IE	L	T/S.Lr	P/R	C
	Prerequisite: Mechanics of solids	Ту	3	1/0	0/0	4
L : Lecture T : Tuto T/L/ETL : Theory/I	rial SLr : Supervised Learning P : Project R : Research C: Credi ab/Embedded Theory and Lab	ts				

UNIT I **BENDING OF BEAMS**

Bending of Beams of Symmetrical and Unsymmetrical Sections – Box sections and its importance — Winkler Bach Formula - Shear Center Simple problems

ENERGY PRINCIPLES UNIT II

Strain energy and strain energy density - Strain energy in tension, shear, flexure and torsion - Castigliano's & Engessor's energy theorems- Principle of Virtual Work- Application of energy theorems for computing deflection in Determinate structures - Maxwell's reciprocal theorem.

UNIT II DEFLECTIONS

Methods of Deflection Determination of Deflection curve - computation of slopes and deflections in Determinate Beams - Double Integration method - Macaulay's method - Area Moment method - Conjugate Beam method.

UNIT IV INDETERMINATE BEAMS

Propped Cantilever and Fixed Beams - Fixed End Moments and Reactions for Standard cases of Loading -Continuous Beams - Theorem of Three Moments - Analysis of Continuous Beams - S.F. and B.M. Diagrams for Continuous Beams.

UNIT V **COLUMNS**

Eccentrically Loaded Short Columns Middle Third Rule - Core of Section - Columns of Unsymmetrical Sections - Rankine - Gordon Formula Eccentrically Loaded Long Columns. Theories of Failure - Principal Stress, Principal Strain, Shear Stress, Strain Energy and Distortion Energy Theories.

Total No of Hrs: 60

TEXT BOOKS

- 1. Rajput.R.K. "Strength of Materials", S.Chand and Co, New Delhi, 2007.
- 2. Bhavikatti. S., "Solid Mechanics", Vikas publishing house Pvt. Ltd, New Delhi, 2010.
- 3. R.S. Khurmi, "Engineering Mechanics of Solids ", Prentice Hall of India, New Delhi, 1997.
- 4. S.S Ratan, "Strength of Materials", Tata McGraw Hill Publishing Company, New Delhi, 2008

REFERENCES

- Laudner T.J. and Archer R.R., " Mechanical of Solids in Introduction ",McGraw Hill International 1. Editions, New Delhi, 1994..
- William A.Nash, "Theory and Problems of Strength of Material" Schaum's outline series, Mc Graw Hill 2. International Editions, New Delhi, 1994

13 Hrs

10 Hrs

11 Hrs

13 Hrs

Subject Code:	Su	bject Na FLU	me : ID MECH	ANICS	AND HY	YDRAU	LIC		Ty/ Lb/	L	T / S.Lr	P/ R	C		
EBCE22005			E	NGINE	ERING			E.	TL/IE				_		
	Pr	erequisite	: None					Ту		3	1/0	0/0	4		
L : Lecture T : '	Tutorial	SLr:Si	upervised I		P : Proj	ect R:F	Research	C: Credits	5						
	bry/Lad/.	Embedde	a Theory a	nd Lab											
OBJECTIVE :	: wythoir	nnortanco	applicati	on and in	tor rolati	onchin o	fvorious	proportio	s of fluid						
• To Kit	dy theor	ios thoso	, application the	hohovio	r and par	formana	of fluid	when the	s of fluid is f	lowing t	brough the	nina			
• 10 stu	dorstand	the utiliz	explain the	monsion	al analyse		ol in colv	i when the	ome in the	n field of	fluid maa	pipe.			
		$\frac{1}{1} \frac{1}{1} \frac{1}$	$\cdot (3 5)$	mension	ai allaiys	15 as a to		ing probl			Thuru mee	names.			
COURSE OU		$\frac{15(COS)}{100}$	(3-5)	sice of fl	uid mock	nonice on	dvariou	proporti	of fluid	0					
	נ ר	Counderst	and variou	sics of fi	on plana	and our	u various	s propertie	a concent	s	uon ou				
C02	נ ר	To apply the principles of fluid kinematics and dynamics													
C03	נ ר	To analyze boundary layer flow and flow through pipes													
C04	נ ר	To analyze		nodole li	bw allu lle	tod mode	gil pipes	prious dim	onsionlas	e numbo	re				
CU5 Manning of Co		utcomes with Program Outcomes (POs)													
COs/POs						DOS)	PO7	PO8	PO0	PO10	PO11	DO	12		
	3	3	3	3	2	3	107	100	103	1010	1	10	3		
	3	3	3	3	2	3	1	1	1	1	1		3		
C03	3	3	3	3	2	3	1	1	1	1	1		3		
C04	3	3	3	3	2	3	1	1	1	1	1		3		
C05	3	3	3	3	2	3	1	1	1	1	1		3		
COs / PSOs	P	501	PSC)2											
CO1		3	3												
CO2		3	3												
C03		3	3												
C04		3	3												
C05		3 3													
3/2/1 Indicates	Strengt	ength Of Correlation, 3 – High, 2- Medium, 1- Low													
Category	Basic Sciences	Basic Sciences Engineering Sciences A Humanities and Social Sciences Sciences Program Core Program Core Electives						Skill component	Practical / Project						
				\checkmark											

88

Subject Code: EBCE22005	Subject Name : FLUID MECHANICS AND HYDRAULIC ENGINEERING	Ty/ Lb/ ETL/IE	L	T / S.Lr	P/ R	C	
	Prerequisite: None	Ту	3	1/0	0/0	4	
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab							

FLUID STATICS AND PROPERTIES UNIT I

Definitions - Fluid and Fluid Mechanics - Dimensions and Units - Fluid properties -Viscosity, Compressibility, Surface tension and Capillarity, Continuum - concept of system and control volume- Pascal's law and Hydrostatic equation - buoyancy -meta centric height – pressure measurement – gauges and manometers.

UNIT II FLUID KINEMATICS AND DYNAMICS

Stream, streak and path lines - classification of flows - continuity equation - stream and potential functions -flow nets - velocity and acceleration measurement-Problems- Euler and Bernoulli's equations - application of Bernoulli's equation - discharge measurement -Hagen Poiseuille equation .

UNIT III FLOW THROUGH PIPES AND DIMENSIONAL ANALYSIS

Darcy Weisbach formula -Major and minor losses of flow in pipes – pipes in series and in parallel – Dimensional analysis - Buckingham π -theorem.

UNIT IV **UNIFORM AND RAPIDLY VARIED FLOW**

Open channel flow - types and regime of flow - velocity distribution in open channel - specific energy - critical flow and its computation - Uniform flow - velocity measurement - manning's and Chezy's formula determination of roughness coefficients - most economical sections- Rectangular, Circular and Trapezoidal channel sections .Hydraulic jump - types - energy dissipation - surges

UNIT V **PUMPS AND TURBINES**

Introduction – classification – Rotodynamic pumps: centrifugal pumps – work done – losses – spe12ific speed minimum speed to start the pump- multistage pumps- parallel and series- reciprocating pump -work done- slip -Pelton wheel turbine -work done-Francis turbine -work done- Kaplan turbine -work done.

Total No of Hrs: 60

TEXT BOOKS

- Dr.R. K. Bansal., "Fluid Mechanics and Hydraulic Machines", Laxmi Publications 2015. 1.
- Fox, Robert W. And McDonald, Alan T., "Introduction to Fluid Mechanics ",John Willey & sons 2.

REFERENCES

- 1. Streeter, Victor I. And Wylie, Benjamin E., "Fluid Mechanics ", McGraw-Hill Ltd., 1998.
- Natarajan M.K., "Principles of Fluids Mechanics", Anuradha Agencies, Kumbakonam, 1995 2.

12 Hrs

12 Hrs

12 Hrs

12 Hrs

Subject Code:	Subje	ct Nam	e						Ty/ Lb/	L	T/ SIr	P/ R	C
couc.	APPI	LICAT	IONS C	F IoT	IN CIV	IL ENG	JINEEI	RING	ETL/IE		5.L ľ		
EBEC22ID5													
	Prerec	uisite: l	Nil						Ту	3	0/0	0/0	2
L : Lecture T :	Tutoria	l_SLr	: Superv	vised Le	arning	P : Proj	ect R :	Researc	ch C: Credit	S			
T/L/ETL : The	ory/Lab	/Embed	lded Th	eory and	i Lab								
OBJECTIVE	:	c 1	. 1 1		-								
• Io stu	idy the I	tundame	entals al	bout lo l	riag								
• To stu	idy abou	design r	nethodo		gles d differ	ant IoT	hardwa	ro platfo	rme				
• To stu	idy the l	basics o	f IoT D	ata Ana	lytics ar	d supp	naiuwa	rvices	511115				
 To stu To stu 	idy inc i idv aboi	ut vario		ata Ana	lies and	industri	ial annli	cations					
COURSE OU	TCOM	ES (CC	(3 + 10 + 10 + 10 + 10 + 10 + 10 + 10 + 1	- 5)	nes and	maastri	ar appr	cations					
CO1	Stude	nt shall	have a	knowled	lge on f	undame	entals a	bout lo	Г				
CO2	Unde	rstand a	bout Io	T Acces	s Techr	ologies							
CO3	Apply	v the co	ncept of	f IoT for	· Civil E	Ingineer	ing pur	poses					
CO4	Analy	ze vari	ous data	for effe	ective d	ata man	agemen	t strates	ries				
CO5	Evalu	ate the	need for	r effecti	ve mana	gement	in cons	struction	n domain an	d use IoT	appropria	ately	
Mapping of C	ourse (Outcom	es with	Progra	m Outo	comes (]	POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	3	3	1	1	3	1	3	3	
CO2	3	3	3	3	3	3	1	1	3	1	3	3	
CO3	3	3	3	3	3	3	1	1	3	1	3	3	
CO4	3	3	3	3	3	3	1	1	3	1	3	3	
CO5	3	3	3	3	3	3	1	1	3	1	3	3	
COs / PSOs	PS	01	PS	02									
CO1	-	3	3	3									
CO2		3		3									
CO3		3		3									
CO4		3		3									
CO5		3		3									
3/2/1 Indicates	s Strenş	gth Of (Correla	tion, 3 -	– High,	2- Med	lium, 1-	Low	1	1	1	1	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
							\checkmark						

Subject Code: EBEC22ID5	Subject Name APPLICATIONS OF IoT IN CIVIL ENGINEERING	Ty/ Lb/ ETL/IE	L	T / S.Lr	P/ R	C
	Prerequisite: Nil	Ту	3	0/0	0/0	2
L : Lecture T : T/L/ETL : The	Tutorial SLr : Supervised Learning P : Project R : Researd ory/Lab/Embedded Theory and Lab	ch C: Credit	S			

9 Hrs

9 Hrs

9 Hrs

UNIT I **IOT AND CONSTRUCTION**

Fundamentals in IoT, - Sensors, wearbles, real time maps, applications in safety, resource management and budgeting

UNIT II IOT IN WASTE MANAGEMENT

Route optimization- Smart recycling- Data analysis- The Future of Waste Management - Smart Waste Management Platform - Benefits of Smart Waste Management

UNIT III **REMOTE MANAGEMENT TRENDS**

The Rise of Remote Management in Construction - Remote Management Tips For Construction Project Managers - future of construction management with remote technology (Need and technologies)

SAFETY MANAGEMENT IN CONSTRUCTION UNIT IV 9 Hrs

On-site AI - chatbot - IoT applications - Sensors and RFID - Enhance Safety through IoT integration - IoT-based application for construction site safety monitoring

UNIT V DATA MANAGEMENT FOR CONSTRUCTION INDUSTRY 9 Hrs

Advantages of good construction data management - Importance of Database Management in the Construction Industry – Building Information Modelling

Total No of Hrs: 45

Text books:

- 1. Biswaranjan Acharya, Satarupa Dey, Mohammed Zidan, IoT-Based Smart Waste Management for Environmental Sustainability, CRC Press
- Peter Waher, Learning Internet of Things, Packt Publishing 2.
- 3. Gren Gale, The Remote Project Manager
- 4. Rita Yi Man Li, Construction Safety Informatics, Springer Singapore
- Dr. Adv. Harshul Savla, Dr. Chandrahauns Chavan, Ar. Pallavi Patil, Building Information Modeling: 5. Global & Indian Perspective, Notion Press; 1st edition

Subject Code EBCC22I04	2:	Subject	ect Name : The Indian Constitution						`y/ b/ /IE	L	T / S.L	r R	/	С
		Prerequis	site: NIL					IE		2	0/0	0/	0	0
L : Lecture T T/L/ETL : Th	: Tutorial eory/Lab/E	SLr : Sup Embedded	ervised Lear Theory and	rning P Lab	: Project	R : Res	search	C: Crea	lits					
OBJECTIVE To pr To ur To Ki To ur COURSE OU	ES: ovide an ov iderstand th now the fun iderstand th UTCOME	verview of ne preambl ndamental ne functior S (COs) :	the history le and the barights, dutie nality of the After study	of the n asic stru es and th legislat ing this	naking of ctures of ne directiv ure , the s course t	Indian the Co ve prine execut the stu	Const nstituti ciples ive and dent w	itution ion. of state d the ju	policy diciary e able	, 7 to				
CO1	To provide	an overvi	n overview of the history of the making of Indian Constitution											
CO2	To underst	and the pr	eamble and	the basi	c structur	res of the	he Con	stitutio	n.					
CO3	To Know the fundamental rights, duties and the directive principles of state policy													
Mapping of O	Course Ou	tcomes wi	ith Progran	n Outco	omes (PC)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PC)10	PO11	PO)12
CO1	-	-	-	-	-	3	1	1	1		1	-		-
CO2	-	-	-	-	-	3	1	1	1		1	-		-
CO2	-	-	-	-	-	3	1	1	2		1	-		-
COs / PSOs	PSO1	1	PSO2					1						
CO1	2		2											
CO2	2		2											
CO3	2		2											
3/2/1 Indicate	es Strengtl	n Of Corr	elation, 3 –	High, 2	- Mediu	m, 1- I	LOW						1	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project					
							\checkmark							

Subject Code:	Subject Name : The Indian Constitution	Ty/	L	Τ/	P /	С
EBCC22I04		Lb/ ETL/IE		S.Lr	R	
				0.10		0
	Prerequisite: NIL	IE	2	0/0	0/0	0
L : Lecture T : Tutorial T/L/ETL : Theory/Lab/E	SLr : Supervised Learning P : Project R : Research C Embedded Theory and Lab	C: Credits		I	I	

UNIT 1	6 Hrs
The History of the Making of Indian Constitution, Preamble and the Basic Stru	ctures
UNIT 2	6 Hrs
Fundamental Rights and Duties, Directive Principles of State Policy	
UNIT 3	6 Hrs
Legislature, Executive and Judiciary	
UNIT 4	6 Hrs
Emergency Powers	
UNIT 5	6 Hrs
Special Provisions for Jammy and Kashmir, Nagaland and Other Designs, Am	andmanta

Special Provisions for Jammu and Kashmir, Nagaland and Other Regions, Amendments

Total no Hrs: 30

TEXT BOOKS:

1. D D Basu, Introduction to the Constitution of India, 20th Edn., LexisnexisButterworths, 2012.

REFERENCE BOOKS:

- 1. Rajeev Bhargava (ed), Ethics and Politics of the Indian Constitution, Oxford University Press, New Delhi, 2008.
- 2. Granville Austin, The Indian Constitution: Cornerstone of a Nation, Oxford University Press, Oxford, 1966.
- 3. Zoya Hassan, E. Sridharan and R. Sudarshan (eds), India's Living Constitution: Ideas, Practices, Controversies, Permanent Black, New Delhi, 2002.
- 4. Subhash C. Kashyap, Our Constitution, National Book Trust, New Delhi, 2011.

Subject Code: EBCC22I05	Subj know	ect Nai vledge	ne : The	India	n trac	litiona	al) ET	Гу/ Lb/ Ъ/IE	L	T / S.Lr	P/ R	C	
	Prere	quisite	NIL					IE		2	0/0	0/0	0	
L : Lecture T : T T/L/ETL : Theor	utorial y/Lab/	SLr : Embed	Supervis ded Theo	ed Lea ory and	rning l Lab	P : Pr	oject R	R : Res	search	C: Cre	edits			
OBJECTIVES:														
 To understand the Pre- colonial and Colonial Period, Indian Traditional Knowledge System To understand the Traditional Medicine, Traditional Production and Construction Technology To Know the History of Physics and Chemistry, Traditional Art and Architecture and Vastu Shashtra, Astronomy and Astrology To understand the Origin of Mathematics, Aviation Technology in Ancient India, Crafts and Trade in Ancient India 														
COURSE OUT		DMES (COs) : After studying this course the student would be able to												
CO1	To und	o understand the Pre- colonial and Colonial Period. Indian Traditional Knowledge												
	Systen	stem												
CO2	To uno	understand the Traditional Medicine, Traditional Production and Construction												
	Techn	echnology												
003	10 uno	and Tr	a the Orig	gin or	Mathe	matic	s, Avia	ition]	ecnn	ology 1	n Anci	ent India,		
Mapping of Cou	arse O		es with P	rogra	m Out	tcome	s (POs	;)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2	
CO1	-	3	3	1	-	2	-	-	-	2	-	1		
CO2	-	3	3	1	-	2	-	-	-	2	-	1		
CO2	-	3	3	1	-	2	-	-	-	2	-	1		
COs / PSOs	PSO1	PS	02											
CO1	2	2												
CO2	2	2												
CO3	2	2												
3/2/1 Indicates S	Strengt	th Of C	Correlati	on, 3 -	- High	, 2- N	Iediun	1, 1- I	JOW					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Chill commonant		Practical / Project				
							V							

Subject Code: EBCC22I05	Subject Name : The Indian traditional knowledge	Ty/ Lb/ ETL/IE	L	T / S.Lr	P/ R	C
	Prerequisite: NIL	IE	2	0/0	0/0	0
L : Lecture T : T T/L/ETL : Theor	Tutorial SLr : Supervised Learning P : Project R ry/Lab/Embedded Theory and Lab	: Research	C: Cre	edits		

UNIT I

Historical Background: TKS During the Pre- colonial and Colonial Period, Indian Traditional Knowledge System

UNIT II

Traditional Medicine, Traditional Production and Construction Technology

UNIT III 6 Hrs History of Physics and Chemistry, Traditional Art and Architecture and Vastu Shashtra, Astronomy and Astrology

UNIT IV

Origin of Mathematics, Aviation Technology in Ancient India, Crafts and Trade in Ancient India

UNIT V

TKS and the Contemporary World, TKS and the Indian Union, TKS and IT Revolution

TEXT BOOKS:

- 1. Amit Jha (2009), Traditional knowledge system in india, 1st Edition, Delhi University (North Campus)
- 2. Dr.A.K.Ghosh (2011), Traditional Knowledge of Household Products

6 Hrs

6 Hrs

6 Hrs

6 Hrs

Total no Hrs: 30

Subject Code:	Subj	Subject Name : MATHEMATICAL							Ty/	L	Τ/	P/ R	С
FRMA 2211 1	SOF	TWAR	E FOR (CIVIL	LENG	INEF	ERS		Lb/		S.Lr		
	_							F	TL/I				
	Prere	quisite:	Mathem	atics I	II				<i>ι</i> b	0	0/0	2/0	1
L : Lecture T : T	utorial	SLr : S	Supervis	ed Lea	urning	P:Pr	oject	R : Re	search	C: Cre	dits		
T/L/ETL : Theor	y/Lab/	Embedd	ed Theo	ry and	l Lab		-						
OBJECTIVES:													
• To know	about	fundam	entals of	MAT	LAB	and Sl	PSS to	ools					
To provid	de an c	overview	to prog	ram ci	urve fi	tting &	& solv	e Line	ear and	d Nonli	near Eq	uations	
• To under	stand t	the conc	ept and a	mport	tance c	of Fou	rier tr	anstor	ms				
• To gain F	knowle	edge to s	olve Civ	11 Eng	gineeri	ng pro	oblem	s					
COURSE OUT	COME	ES (COs) : After	stud	ying tl	nis co	urse t	the stu	dent	would l	be able	to	
CO1	Able t	o know	the fund	ament	als of l	MAT	LAB a	and SF	SS to	ols			
CO2	Able t	o progra	m curve	fitting	g, num	erical	diffe	rentiat	ion an	d integ	ration, s	solution	of
CO3	linear	equation	is in MA	$\frac{1LAI}{ns}$	3 and 3	SPSS	to sol	ve Civ	ion an	d funct	g probl	ems	R
03	and SPSS programming environment												D
CO4	Ability	Ability to perform analysis of experimental data with variables and compare the											
	analytical data with experimental data												
CO5	Ability to evaluate the relationship between variables and fit a line for various												
Monning of Cou	experi	mental a	ind resea	irch pi	arpose	s	a (D O						
									DOG	DO10	DO11	DO10	
COS/POS	POI	PO2	PO3	PO4	POS	PO6	PO/	PU8	PO9	POIU	POII	POIZ	
CO1	3	3	3	3	3	1	1	1	1	1	1	3	
CO2	3	3	3	3	3	1	1	1	1	1	1	3	
CO3	3	3	3	3	3	1	1	1	1	1	1	3	
CO4	3	3	3	3	3	1	1	1	1	1	1	3	
CO5	3	3	3	3	3	1	1	1	1	1	1	3	
COs / PSOs	PSO1	PSC)2										
CO1	3	3											
CO2	3	3											
CO3	3	3											
CO4	3	3											
CO5	3	3											
3/2/1 Indicates S	Streng	th Of Co	orrelatio	on, 3 -	- High	, 2- M	Iediu	m, 1- 1	Low				
	ses	50	und ces	re		/es	ary	tec	em				
	ienc	erin ces	es a tien	Co	am ves	ctiv	plin		IInd	ct			
Ŕ	Sc	ine	uniti Sc	ram	ogr ecti	Ele	isci			roje			
108	asic	Sc	uma	rog	Pr	pen	erd	E		Pr2 P			
Catte	B		Hı So	Ρ		Ō	Int	L.	AC 1				
Ŭ							\checkmark			\checkmark			

Subject Code:	Subject Name : MATHEMATICAL	Ty/	L	Τ/	P/ R	С
	SOFTWARE FOR CIVIL ENGINEERS	Lb/		S.Lr		
EBMA22IL1		ETL/I				
	Prerequisite: Mathematics III	Lb	0	0/0	2/0	1
L : Lecture T : T T/L/ETL : Theor	utorial SLr : Supervised Learning P : Project R : y/Lab/Embedded Theory and Lab	Research	C: Cre	dits		1

UNIT I INTRODUCTION TO SPSS

SPSS Environment: data editor, output viewer, syntax editor – Data view window – SPSS Syntax – Data creation – Importing data – Variable types in SPSS and Defining variables – Creating a Codebook in SPSS.

UNIT II DIAGRAMMATIC REPRESENTATION

Simple Bar diagram – Multiple bar diagram – Sub-divided Bar diagram - Percentage diagram - Pie Diagram – Frequency Table – Histogram – Scatter diagram – Box plot

UNIT III MEASURES OF CENTRAL TENDENCY AND DISPERSION

Measures of Central Tendency – Mean – Median – Mode – Quartiles – Measures of Dispersion – The Range – Mean deviation -Quartile Deviation – Standard Deviation – Relative Measures of Dispersion – Coefficient of Variation – Quartile Coefficient of Variation

UNIT IV CORRELATION AND REGRESSION

Bi-variate data – Applications of Correlation: Karl Pearson's Coefficient of Correlation – Rank Correlation: Spearman's Rank Correlation – Linear Regression.

UNIT V APPLICATIONS

Applications of SPSS in Civil Engineering

REFERENCES

- 1. Gupta S.C., Kapoor V.K., Fundamentals of Mathematical Statistics, S.Chand & Co., (2007).
- 2. Veerarajan T., Probability, Statistics and, Random Processes, Tata McGraw Hill Publishing Co., (2008).
- 3. Sabaine Landau and Barin.S Everitt, A Handbook of Statistical Analysis Using SPSS, Chapman& Hall/ CRC., (2003)
- 4. SPSS for Intermediate Statistics: Use and Interpretation, Nancy L. Leech et. al., Second edition published in 2005 by Lawrence Erlbaum Associates, Inc.
- 5. HOW TO USE SPSS ® A Step-By-Step Guide to Analysis and Interpretation, Brian C. Cronk, Tenth edition published in 2018 by Routledge.

6 Hrs

6 Hrs

6 Hrs

Total no Hrs: 30

6 Hrs

Subject Code: EBCE22L03	S	Subject N	Name : FL MACH	ame : FLUID MECHANICS & HYDRAULIC MACHINERY LABORATORY					Ty/ Lb/	L	T/S.Lr	P/ R	C
									ETL/IE				
	Pre	requisite	: Fluid Mee	chanics a	nd Hydra	ulic Eng	ineering		Lb	0	0/0	3/0	1
L : Lecture T : T	Futorial	SLr : Su	pervised L	earning	P:Proje	ct R : Re	esearch C	C: Credit	s				
T/L/ETL : Theo	ory/Lab/E	mbedded	l Theory an	ıd Lab									
OBJECTIVE :													
To lease	rn the ain	n, workin	g principle	, compor	nents and	function	of hydra	ulic equ	ipments.				
To get	hand-on	experien	ce in the op	peration of	of hydrau	lic mach	ines.						
COURSE OUT	COMES	5 (COs) :	: (3-5)										
CO1	Μ	leasure th	neoretical d	ischarge	in pipes,	Venturii	neter, ori	ificemet	er and notch	les			
CO2	U	nderstand	d the worki	ng princi	iple of or	ificemete	er, ventur	imeter, j	pumps and t	urbines			
CO3	D	emonstra	te and con	duct expe	eriment to	o find ch	aracterist	ic curve	s of various	pumps a	nd turbine	S	
CO4	C	ompare c	haracterist	aracteristic curves of various pumps and turbines									
CO5	E	valuate the major and minor energy losses in pipes											
Mapping of Co	urse Ou	tcomes v	vith Progra	am Outc	comes (P	Os)				1			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	2	3	3	3	3	1	1	3	1	1		3
CO2	3	2	3	3	3	3	1	1	3	1	1		3
CO3	3	2	3	3	3	3	1	1	3	1	1		3
CO4	3	2	3	3	3	3	1	1	3	1	1		3
CO5	3	2	3	3	3	3	1	1	3	1	1		3
COs / PSOs	PS	01	PSC)2									
<u>CO1</u>		3	3										
CO2		3	3										
CO3		3	3										
CO4		3	3										
<u>CO5</u>		3	3		L .								
3/2/1 Indicates	Strength	n Of Cor	relation, 3	– High,	2- Medi	um, 1- L	ow	1		1	1	-	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
				\checkmark					\checkmark				

Subject Code: EBCE22L03	Subject Name : FLUID MECHANICS & HYDRAULIC MACHINERY LABORATORY	Ty/ Lb/ ETL/IE	L	T / S.Lr	P/ R	С
	Prerequisite: Fluid Mechanics and Hydraulic Engineering	Lb	0	0/0	3/0	1
L : Lecture T : Tutor	rial SLr : Supervised Learning P : Project R : Research C: Credi	ts				
T/L/ETL : Theory/L	ab/Embedded Theory and Lab					
UNIT I i. Ven ii. Orifi	FLOW MEASUREMENT turimeter. ice meter.			12 Hrs		
UNIT II Estima	LOSSES IN PIPES tion of major energy and minor losses in pipes			9 Hrs		
UNIT III	PUMPS			12 Hrs		
Perform	nance characteristics of					
i.	Rated speed centrifugal pump.					
ii.	Gear pump.					
iii.	Reciprocating pump.					
UNIT IV Perform	TURBINES nance characteristics of Pelton wheel turbine and Francis turb	pine.		12 Hrs	5	
			Т	otal No of	'Hrs: 4	5

TEXT BOOKS

- Dr. R. K.Bansal., "Fluid Mechanics And Hydraulic Machines ", Lakshmi Publications (P) Ltd.New Delhi 1. 2005.
- Fox, Robert w. and Mcdonald, Alan T., "Introduction to Fluid Mechanics ",John Willey & Sons, New 2. Jersey

REFERENCES

- 1. Streeter, Victor L. And Wylie, Benjamin e., "Fluid Mechanics ", McGraw-Hill Ltd.New Delhi, 1998.
- Natarajan M.K., "Principles of Fluids Mechanics ", Anuradha agencies, Vidayal karuppur, kumbakonam, 1995 2.

Subject Code: EBCE22L04		S	ubject Nai	ne : AU	TOCAD	D labora	ntory		Ty/ Lb/	L	T/S.Lr	P/ R	С	
									ETL/IE					
	Pr	erequisite	: Nil						Lb	0	0/0	3/0	1	
L : Lecture T : 7	Futorial	SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	: Credit	s					
T/L/ETL : Theo	ory/Lab/I	Embedded	Theory an	d Lab										
OBJECTIVE :	To pro	vide the st	tudent with	an appre	eciation o	f the cap	abilities	and limi	tations of th	e AutoC	AD progra	ım.		
COURSE OUT	ГСОМЕ	LS (COs) : (3-5) Draw plan section and elevation for various structures												
CO1	Ι	Draw plan, section and elevation for various structures												
CO2	J	Inderstan	d geometrie											
CO3	F	Prepare the	e building p	olans sati	sfying th	e princip	les of pla	inning a	nd byelaws.					
CO4	F	Prepare de	tailed work	ting draw	vings of d	loors, wi	ndows, ro	oof truss	es and staire	cases				
CO5	A	Ability to manipulate drawings through editing and plotting techniques												
Mapping of Co	ourse Ou	itcomes w	vith Progra	am Outc	omes (P	Os)	1	1	-	1				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	
CO1	3	2	3	2	3	3	1	2	3	1	1		3	
CO2	3	2	3	2	3	3	1	2	3	1	1		3	
CO3	3	2	3	2	3	3	1	2	3	1	1		3	
CO4	3	2	3	2	3	3	1	2	3	1	1		3	
CO5	3	2	3	2	3	3	1	2	3	1	1		3	
COs / PSOs	P	SO1	PSC)2										
CO1		3	3											
CO2		3	3											
CO3		3	3											
CO4		3	3											
CO5		3	3											
3/2/1 Indicates	Strengt	h Of Cor	relation, 3	– High,	2- Media	um, 1- L	ow							
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project					
				\checkmark					\checkmark					

Subject Code: EBCE22L04	Subject Name : AUTOCADD laboratory	Ty/ Lb/ ETL/IE	L	T / S.Lr	P/ R	C			
	Prerequisite: Nil	Lb	0	0/0	3/0	1			
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab									

EXPERIMENTS

- Learn and use basic AutoCAD commands manage drawing using layers, colour and line types complete basic cad drawings, with borders, text and dimensions - use and edit text and text styles – Method of scales in various drawing - understand and the use of blocks.
- 2. Development of line plan for residential building. one for single storied building
- 3. Development of line plan for residential building. one for two storied building
- 4. Submission drawing for residential building including its planning and with area and parking statements and all other details as per the norms and local bye-laws.
- 5. Industrial buildings with roof truss.
- 6. To draw the 3D view of residential building.

Total No of Hrs: 45

TEXT BOOKS

- 1. Civil Engg. Drawing & House planning B.P.Verma, Khanna publishers, Delhi, 1990
- 2. Building drawing & detailing Dr. Balagopal & T.S.Prabhu, Spades publishers, Calicut, 1989.

REFERENCES

- 1. Building drawing Shah, Tata McGraw-Hill, New Delhi, 2000.
- 2. Building planning & drawing Dr. N.Kumaraswamy, A.Kameswara Rao, Charotar publishing house. Mumbai, 1997.
- 3. Shah, Kale and Patki, Building drawing, Tata McGraw-Hill New Delhi,,1998.

Subject Code	: Sul MA	bject Na ACHINI	ame : AR E LEARN	TIFICI NING L	AL INT ABORA	TELLIC TORY	GENCE	AND	Ty/ Lb/ ETL/IE	L	T/ S.Lr	P/ R	C
EBCS22IL4	Pre	erequisi	te: Arti	ficial	Intellige	nce A	nd Ma	chine	Lb	0	0/0	2/0	1
	Lea	arning	~ .					1.0					
L : Lecture T : $T_{\rm T}/L = T_{\rm T}$	Tutoria	l SLr:	Supervis	ed Leari	ung P:	Project	R : Res	earch C	C: Credits				
	. neory/L	Lad/EIIID		eory and	I Lab								
• Study	the cond	cents of	Artificial	Intellige	nce								
 Study Learn 	the met	e methods of solving problems using Artificial Intelligence.											
• Introd	uce the a	e the concepts of Expert Systems and machine learning											
COURSE OU		COMES (COs) : Students will able to:											
CO1	Write a R program to merge two given lists into one list, give								natrix into	one list	•		
CO2	Demor	istrate th	ne working	g of the	decision	tree bas	sed ID3	algorith	ım				
CO3	Write	Write a program to implement the naïve Bayesian classifier for								aining o	lata set		
	stored	tored as a .CSV file.											
CO4	Apply	EM algo	orithm to	cluster a	set of d	ata store	ed in a .C	CSV file	e				
CO5	Write	a progr	am to in	nplemen	t k-Nea	rest Ne	ghbor	algorith	nm to clas	sify th	e iris da	ata set	using
	Java/P	Java/Python ML library.											
Mapping of C	Course C	Jutcome	es with Pr	ogram	Outcom	es (POs	s)	-					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P01	1 PC	J12
COI	3	3	3	3	2	3	2	2	3	3	3	3	
CO2	3	3	3	3	2	3	2	2	3	3	3	3	
CO3	3	3	3	3	1	3	2	2	3	2	3	3	
C04	3	3	3	3	1	3	2	2	2	2	3	2	
$CO_{\rm S}$ / PSO _{\rm S}	5 DSO1	3	J DSO2	3	1	3	2	Z	3	Z	5	3	
CO1	3		3										
CO2	3		3										
CO3	3		3										
CO4	3		3										
CO5	3		3										
3/2/1 Indicate	s Streng	gth Of C	Correlatio	on, 3 – H	ligh, 2-	Mediun	n, 1- Lo	W					
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				
							√		V				

Subject Code:	Subject Name MACHINE LI	: ARTIFIC	CIAL INTELI LABORATO	LIGEN RY	ICE AND	Ty/ Lb/ ETL/IE	L	T/ S.Lr	P/ R	С		
EBCS22IL4	Prerequisite:	Artificial	Intelligence	And	Machine	Lb	0	0/0	2/0	1		
	Learning											
L : Lecture T : Tu	torial SLr : Supervised Learning P : Project R : Research C: Credits											
Ty/Lb/ETL : Theo	ory/Lab/Embedde	ed Theory a	nd Lab									

- 1. Write a R program to list containing a vector, a matrix and a list and give names to the elements in the list.
- 2. Write a R program to merge two given lists into one list.
- 3. Write a R program to convert a given matrix to a list.
- 4. Write a program to demonstrate the working of the decision tree based ID3 algorithm.
- 5. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file.
- 6. Apply EM algorithm to cluster a set of data stored in a .CSV file.
- 7. Write a program to implement k-Nearest Neighbor algorithm to classify the iris data set.

Total No. of Hrs: 30

Subject Code:	S	ubject Nai	me :						Ty/	L	T/S.Lr	P/ R	С	
EBCE22I01		TEC	HNICAL S	SKILL I	- MANU	JAL BUI	ILDING		Lb/					
				DRA	WING				ETL/IE					
	P	rerequisite	: Basic Eng	gineering	Graphics	8			IE	0	0/0	2/0	1	
L : Lecture T : T	Futorial	SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	: Credits	8	•				
T/L/ETL : Theo	ry/Lab/	Embedded	l Theory ar	nd Lab										
OBJECTIVE :														
To intr	oduce t	he students	s to draft th	e plan, e	levation a	and section	onal view	s of bui	ldings in ac	cordance	e with deve	lopmen	t and	
control	rules s	es satisfying orientation and functional requirements as per National Building Code.												
COURSE OUT	COM	MES (COs) : (3-5) At the end of the course, the student will be able to:												
CO1		Acquire knowledge on plan, elevation and section of buildings												
CO2		Understand	d the Princ	iples of a	site select	tion, orie	ntation o	f buildin	igs and dist	ribution of	of space			
CO3		Apply the	concept of	drafting	a plan pr	actically	while co	nstructir	ng a structur	e				
CO4		Analyze th	e dimensio	ons of op	enings in	various t	types of t	ouildings	s and draft a	a plan aco	cordingly			
CO5		Develop a	detailed pl	an from l	line sketc	h								
Mapping of Co	urse O	utcomes w	vith Progra	am Outc	omes (P	Os)	1	•	-	•				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	
CO1	3	3	2	3	3	2	1	1	1	1	1		3	
CO2	3	3	2	3	3	2	1	1	1	1	1		3	
CO3	3	3	2	3	3	2	1	1	1	1	1		3	
CO4	3	3	2	3	3	2	1	1	1	1	1		3	
CO5	3	3	2	3	3	2	1	1	1	1	1		3	
COs / PSOs	P	SO1	PSC	02										
CO1		3	3											
CO2		3	3											
CO3		3	3											
CO4		3	3											
CO5	C.	3	3			1 1								
3/2/1 Indicates	Streng	th Of Cor	relation, 3	– High,	2- Medi	um, 1- L	ow	1 1		1				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	▲ Program Core	Program Electives	Open Electives	Interdisciplinary	 Skill component 	Practical / Project					

Subject Code: EBCE22I01	Subject Name : TECHNICAL SKILL I - MANUAL BUILDING DRAWING	Ty/ Lb/ ETL/IE	L	T / S.Lr	P/ R	С					
	Prerequisite: Basic Engineering Graphics	IE	0	0/0	2/0	1					
L : Lecture T : Tuto	rial SLr : Supervised Learning P : Project R : Research C: Credits										
T/L/ETL : Theory/L	Γ/L/ETL : Theory/Lab/Embedded Theory and Lab										

Students should acquire skill in the domain/inter disciplinary area from government/private training centers/industries /University for a minimum period of 15 calendar days. The training can be through off line, online or mixed mode. Students are supposed to prepare Technical skill report at the end of the training and submit the report along with the certificate in proof of the training, during the viva voce examination conducted by the examiners duly appointed by the head of the department.

Experiments

- 1. Basic concept, purpose, function and types of building (Residential, Industrial and Institutional)
- 2. Principles of site selection, orientation of buildings and distribution of space.
- 3. Line plan. Development of plan from a line plan.
- 4. Details of Doors, windows, foundation and stair case etc.
- 5. Single storied residential building with flat and tiled roof.
- 6. Public buildings like office, dispensary, post office, bank etc.
- 7. Factory building with trusses supported on Brick walls and pillars.

Total No of Hrs: 30

TEXT BOOKS

- 1. Civil Engg. Drawing & House planning B.P.Verma, Khanna publishers, Delhi, 1990
- 2. Building drawing & detailing Dr. Balagopal & T.S.Prabhu, Spades publishers, Calicut, 1989.

REFERENCES

- 1. Building drawing Shah, Tata McGraw-Hill, New Delhi, 2000.
- 2. Building planning & drawing Dr. N.Kumaraswamy, A.Kameswara Rao, Charotar publishing house. Mumbai, 1997.
- 3. Shah, Kale and Patki, Building drawing, Tata McGraw-Hill New Delhi,,1998.
- 4. Balagopal T.S. Prabhu, Building drawing and detailing, Spades Publishers
- 5. Shah & Kale, Building Drawing, Tata McGraw Hill
- 6. B.P. Verma, Civil Engineering Drawing and housing Planning, Khanna Publishers

Subject		Subje	ct Name	:	OFT CI					Ty / LB	3/ L	Τ/	P /	C
Code: EBCC221	06			EMDI (OF I SP	AILL - I TTV SI	711 1 6			ETL/IE	C	S.Lr	R	
EDCC221	••	Drorog	uisita: T	echnical	Fnglish		unicativ	English	Lah	IF	0	0/0	2/0	1
I · Lecture	·Т·	Tutoria	$\frac{1}{1}$ SI r ·	Supervi	sed Lea	ning P	· Project		earch (T: Credit	<u> </u>	0/0	2/0	1
E : Lecture		1 atoma	I GEI.	Supervi	Bed Lea	ining i	. I lojeet	I() I()	ouron (erean	5			
T/L/ETL :	The	ory/Lab	/Embed	ded The	ory and l	Lab								
OBJECTI	VE	:	• , •							.1 • 1	•11	. • •	1. .	
• To create	e awa	areness	in stude	nts, vario	ous top c	companie	es helpin	g them 1	mprove	e their sk	ill set ma	atrix, lead	ling to	
• To holp a	a pos	dents be aware of various techniques of candidate recruitment and help them prepare CV's and resume.												
• To help s	stude	ent how to face various types of interview, preparing for HR, technical interviews.												
• To help s	stude	in now to face various types of interview, preparing for firs, technical interviews.												
COURSE		TCOM	ats improve their verbal reading, narration and presentation skills by performs various mock sessions. ECOMES (COs) • (3-5)Students will be able to											10115.
CO1	Be	aware o	of variou	$\frac{1}{10000000000000000000000000000000000$	mpanies	leading	to impro	vement	in skill	s among	st them.			
	D			1	. 1. (<u> </u>	1'1		1'	• • • • •		1 1	.1.1
CO2	ве	aware	of vario	us cand	idate rec	cruitmen	t technic	ques like	e group	alscuss	ion, inte	rviews a	na be	able to
CO3	Pre	pare C	r differe	esumes.	ofintery	iows and	l be prer	ared for	HR an	d technic	alintary	iows		
CO3	Prepare for different types of interviews and be prepared for HR and technical interviews.													
CO4 Manning	of C	ourse (ai, with			nes (PO	rornning	mock s	essions.				
COs/POs		PO1	PO2	PO3	PO4	PO5	PO6	s) PO7	PO8	PO9	PO10	PO11	PO	12
CO1		1	102	105	1	105	2	2	3	2	3	2	101	3
CO2		1	1	1	1	1	2	2	3	2	3	2		3
CO3		1	1	1	1	1	2	2	3	2	3	2		3
CO4		1	1	1	1	1	2	2	3	2	3	2		3
COs/PSC)s	PS	01	PS	02				-					-
CO1			3		3									
CO2			3		3									
CO3		-	3		3									
CO4			3	3	3									
3/2/1 India	cates	s Streng	gth Of C	Correlati	ion, 3 – 1	High, 2-	Mediu	n, 1- Lo	w					
			ses			s				L.				
		ses	ienc	and	ore	tive	ves	lary	lent	jeci				
Category		Prr Prr												
Category		c Sc	ring	anit 1 So	ran	mE	Ele	lisci	com	cal /				
		asic	nee: ne							actic				
		В	ingi	H S	Ц	Prc	0	In	Sţ	\Pr				
	ŀ		E											
				v					v					

Subject	Subject Name :	Ty / LB/	L	Τ/	P /	С					
Code:	SOFT SKILL - I	ETL/IE		S.Lr	R						
EBCC22I06	EMPLOYABILITY SKILLS										
	Prerequisite: Technical English, Communicative English Lab	IE	0	0/0	2/0	1					
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits											
T/L/ETL : The	T/L/ETL : Theory/Lab/Embedded Theory and Lab										

UNIT I

UNIT II

Creation of awareness of top companies / improving skill set matrix / Development of positive frame of mind / Creation of self-awareness.

Group discussions / Do's and don'ts – handling group discussions / what evaluators look for interpersonal relationships / Preparation of Curriculum Vitae / Resume.

UNIT III

Interview – awareness of facing questions – Do's and don'ts of personal interview / group interview, enabling students to prepare for different proce3dures such as HR interviews and Technical Interviews / self-introductions.

UNIT IV

Verbal aptitude, Reading comprehension / narration / presentation / Mock Interviews.

UNIT V

PRACTICAL SESSION

Practical session on Group Discussion and written tests on vocabulary and reading comprehension

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total No of Hrs: 30

6 Hrs

6 Hrs

6 Hrs

6 Hrs

V SEMESTER

Subject Code: EBCE22006	Sul	oject Nai	me : ENVI	RONMI	ENTAL]	ENGINI	EERING		Ty / LB/ ETL/IE	L	T / S.Lr	P/ R	C	
	Pre	requisite:	Engineeri	ng Chem	istry and	Industria	al Chemis	stry	Ту	3	1/0	0/0	4	
L : Lecture T : 7	Futorial	SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	: Credits	5					
T/L/ETL : Theo	ry/Lab/E	mbedded	l Theory an	ld Lab										
• OBJE	CTIVE :													
To imp	art know	ledge in t	fundament	al theory	and desig	gn of cor	ventiona	l water t	reatment fa	cilities.				
To imp	art know	ledge in	fundament	al theory	and desig	gn of cor	ventiona	l wastew	vater treatm	ent facili	ties.			
To imp	part kno	t knowledge on the principles used to design advanced wastewater treatments.												
To dev	velop th	elop the ability to solve a specific problem right from its identification till the successful solution of												
the sa	me	le												
COURSE OUT	COMES	OMES (COs) : (3- 5)												
CO1	Impart	Impart knowledge in fundamental theory and design of conventional water and wastewater treatment facilities											es	
CO2	Unders	Understand drinking water supply and waste water systems, including water transport, treatment and distribution											ution	
	and the	and the ability to design and evaluate water supply and waste water project alternatives												
CO3	Applyi	Applying water quality and waste water criteria and standards, and their relation to public health												
CO4	Analyz	e challen	ging practi	cal probl	ems and	find solu	tion by fo	ormulati	ng proper n	nethodolo	gy			
CO5	Evalua	Evaluate the methods of sewage disposal and formulate effective waste management strategies												
Mapping of Co	urse Ou	tcomes w	vith Progra	am Outc	omes (P	Os)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	
CO1	3	3	2	3	3	3	3	3	2	2	2		2	
CO2	3	3	2	3	3	3	3	3	2	2	2		2	
CO3	3	3	2	3	3	3	3	3	2	2	2		2	
CO4	3	3	2	3	3	3	3	3	2	2	2		2	
CO5	3	3	2	3	3	3	3	3	2	2	2		2	
COs / PSOs	PS	01	PSC	02										
CO1		3	3											
CO2		3	3											
CO3		3	3											
<u>CO4</u>		3	3											
CU5 3/2/1 Indicator	Strongth	<u>3</u> Of Corr	solution 3	High	2 Modin	um 1 T.	0.11/							
5/2/1 mulcates	Strength			– mgn,		uiii, 1- 1/								
Category	Basic Sciences	Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core		Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project						
				\checkmark										

Subject Code: Subject Name : ENVIRONMENTAL ENGINEERING Ty/LB/ L T/S.Lr **P/ R** С EBCE22006 ETL/IE Prerequisite: Engineering Chemistry and Industrial Chemistry 3 1/0 0/0 4 Ty L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab

UNIT I PLANNING FOR WATER SUPPLY SYSTEMS

Scope of environmental engineering – role of environmental engineer – Public water supply systems – objectives - design period - population forecasting - water demand - sources of water - sources selection - water quality characterization - sources of wastewater -estimation of storm runoff.

UNIT II WATER TREATMENT

Screening - types of screening - plain sedimentation - sedimentation with coagulation - settling & flotation filtration - disinfection

SEWAGE TREATMENT – PRIMARY TREATMENT UNIT III

Objectives - unit operations & processes - principles, functions and design of screen, grit chambers and primary sedimentation tanks.

UNIT IV : SEWAGE TREATMENT – SECONDARY TREATMENT

Secondary treatment – activated sludge process and trickling filter; other treatment methods – stabilization ponds and septic tanks - advances in sewage treatment.

UNIT V: SEWAGE DISPOSAL AND SLUDGE MANAGEMENT

Methods – dilution – self purification of surface water bodies – oxygen sag curve – land disposal – sewage farming – deep well injection – soil dispersion system. Thickening – sludge digestion – biogas recovery - drying beds - conditioning and dewatering - sludge disposal.

TEXT BOOKS

- Garg, S.K., Environmental Engineering, Vols. I &II, Khanna Publishers, New Delhi, 1994 1.
- C.S.Shah, Water Supply And Sanitation, Galgotia Publishing Company, New Delhi, 1994 2.

REFERENCES

- 1. Manual on Water Supply And Treatment, Ministry Of Urban Development, Government Of India, New Delhi, 1999.
- 2. Manual on sewerage and sewage treatment, CPHEEO, Ministry Of Urban Development, Government Of India, New Delhi, 1993.
- 3. H.S.Peavy, D.R.Rowe and George Tchobanoglous, Environmental Engineering, Mcgraw-Hill Book Company, New Delhi, 1995.

12 Hrs

12 Hrs

12 Hrs

Total No of Hrs: 60

12 Hrs
Subject Code: EBCE22007	S	ubject Nai	me: SOI	L MECI	HANICS				Ty / LB/ ETL/IE	L	T/S.Lr	P/ R	C	
	P	rerequisite	: Engineeri	ng Geolo)9V				Tv	3	1/0	0/0	4	
L : Lecture T : T	Futorial	SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	: Credit	- <u>,</u> S	-				
T/L/ETL : Theo	ory/Lab/	Embedded	Theory ar	nd Lab	5									
OBJECTIVE :														
Provid	e the de	escription a	and classif	ication o	f soil and	1 analysi	s of stres	sses in s	oils under d	lifferent	loading co	onditions	; To	
develo	p an ur	iderstandin	ig of the p	rinciples	of effec	tive stres	ss in satu	irated so	oils, and its	applicat	tion to one	dimens	sional	
		$\frac{110}{\text{ES}(\text{COs})}$	(3-5)											
COL		Provide th	ovide the description and classification of soil and Analysis of stresses in soils under different loading											
001		conditions	onditions.											
CO2		To unders	o understand the principles of effective stress in saturated soils and its application to one dimension											
001		compressio	impression and consolidation											
CO3		To apply th	apply the concept of shear strength of soil and slope stability for practical applications											
CO4		To analyze	appry the concept of shear strength of son and stope stability for practical appreations											
CO5		To evaluat	evaluate stress distribution in soil media using influence charts											
Mapping of Co	ourse O	utcomes v	comes with Program Outcomes (POs)											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	
C01	3	3	3	3	2	3	1	1	1	1	1		3	
CO2	3	3	3	3	2	3	1	1	1	1	1		3	
CO3	3	3	3	3	2	3	1	1	1	1	1		3	
CO4	3	3	3	3	2	3	1	1	1	1	1		3	
CO5	3	3	3	3	2	3	1	1	1	1	1		3	
COs / PSOs	F	PSO1	PSO	02										
CO1		3	3											
CO2		3	3											
CO3		3	3											
CO4		3	3											
CO5	64	3	3	TT! - 1-										
3/2/1 Indicates	Streng	th Of Cor	relation, 3	– Hign,	2- Medi	um, 1- L	ow	r – –		T				
Category	Basic Sciences	Engineering Sciences	Engineering Sciences Humanities and Social Sciences Brogram Core Program Core Program Core Program Electives Nedimention Program Electives Proces Skill component Project Project Project Project											

Subject Code:	Subject Name : SOIL MECHANICS	Ty / LB/	L	T/S.Lr	P/ R	С
EBCE22007		ETL/IE				
	Prerequisite: Engineering Geology	Ту	3	1/0	0/0	4
L : Lecture T : Tuto	rial SLr : Supervised Learning P : Project R : Research C: Credit	ts				
T/L/ETL : Theory/L	ab/Embedded Theory and Lab					

UNIT I: INTRODUCTION

Nature of soil - phase relationships - soil description and classification for engineering purposes - IS classification system - soil compaction - theory, comparison of laboratory and field compaction methods – factors influencing compaction.

UNIT II : SOILWATER AND WATER FLOW

Soil water - static pressure in water – capillary stresses- permeability measurement in the laboratory and field - factors influencing permeability of soil - seepage –introduction to flow nets - simple problems.

UNIT III: STRESS DISTRIBUTIONS AND SETTLEMENT

Effective stress concepts in solids - stress distribution in soil media - use of influence charts - components of settlement – factors influencing settlement of soil -immediate and consolidation settlement - Tergazhi's one-dimensional consolidation theory – computation of rate of settlement

UNIT IV: SHEAR STRENGTH

Shear strength of cohesive and cohesion less soils - Mohr - Coulomb failure theory - saturated soil mass – measurement of shear strength, direct shear - triaxial compression, UU, CU and CD Test.

UNIT V : SLOPE STABILITY

Slope failure mechanisms - types - infinite slopes - finite slopes - total stress analysis for saturated clay –method of slices - friction circle method - use of stability number .

TEXT BOOKS

- V.N.S. Moorthy, "soil mechanics and foundation engineering ", ubs publications and Distribution ltd, New Delhi, 1999.
- Gopal Ranjan and Rao A.S.R., "Basic and Applied Soil Mechanics ", Wiley eastern ltd., New Delhi (india), 1997.
- Arora K.R., "soil mechanics and foundation engineering ", standard publishers And distributors, New Delhi, 1997.

REFERENCES

- Holtz R.D. And kovacs W.D., "Introduction to geotechnical engineering ", Prentice-hall, New Delhi, 1995.
- Mccarthy D.F., "Essentials of soil mechanics and foundations ", Prentice-Hall, New Delhi, 97.
- Sutten B.H.C., "Solving problems in soil mechanics", Longman group scientific And technical, U.K. England, 1994
- Dass, B.M, "Principles of geotechnical engineering", Thompson books

12 Hrs

12 Hrs

12 Hrs

Total No of Hrs: 60

12 Hrs

Subject Code:	Sul	bject Nai	me :						Ty / LB/	L	T/S.Lr	P/R	С
EBCE22008			CONC	RETE 1	ECHNO	OLOGY			ETL/IE				
	Pre	requisite	Building	material	8				Ту	3	0/0	0/0	3
L : Lecture T : T	Tutorial	SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	C: Credits	5				
T/L/ETL : Theo	ry/Lab/E	mbedded	Theory an	d Lab									
OBJECTIVE :													
To nee To sol	understa ded for develo ution of	and varie construc p the al f the sar	bus construction of value r_{1}	uction p rious ty solve a	procedur pes of st specific	es from ructures c proble	sub stru from fo em righ	octure to oundation t from	o super stru on to super its identi	structure and structure fication	nd also the re n till the	e equip succe	ment ssful
COURSE OUT	COMES	S(COS):	(3-5) At	the end	of the co	viii de at					<u> </u>		
COI	for the	tand abou required	ut concrete strength	making	materials	, supple	mentary	cementa	tions mater	als and	design the	concret	e mix
CO2	Will ac	quire kno	wledge on	handling	g of diffe	rent type	s of cons	truction	equipments				
CO3	To take	up chall	enging pra	ctical pro	blems ar	d find so	olution by	y formula	ating prope	r method	ology		
Mapping of Co	urse Ou	tcomes w	with Progra	am Outc	omes (P	Us)	T	1		1	1		
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	3	2	-	-	2	-	-	-	-	2		-
CO2	3	3	3	-	-	2	-	-	-	-	2		-
CO3	3	3	2	-	-	2	-	-	-	-	2		-
COs / PSOs	PS	01	PSC)2									
CO1	-	3	3										
CO2	-	3	3										
CO3		3	3										
3/2/1 Indicates	Strength	of Cor	relation, 3	– High,	2- Media	ım, 1- L	ow				I	I	
		Sc	ial										
Category	Basic Sciences	Engineering Science	Humanities and Soci Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
				\checkmark									

Subject Code:	Subject Name :	Ty / LB/	L	T/S.Lr	P/ R	С	
EBCE22008	CONCRETE TECHNOLOGY	ETL/IE					
	Prerequisite: Building materials	Ту	3	0/0	0/0	3	
L : Lecture T : Tuto	rial SLr : Supervised Learning P : Project R : Research C: Credit	S					
T/L/ETL : Theory/Lab/Embedded Theory and Lab							

UNIT I CONCRETE MAKING MATERIALS

Manufacture and Components of Portland Cement- Hydration Process- Types of Cement, Aggregates - Classification and Properties Admixtures.

UNIT II MIX DESIGN

Properties of Fresh Concrete- Workability, Segregation and Bleeding of Concrete - Factors influencing Mix Proportions - I.S and ACI Methods of Mix Design.

UNIT III PROPERTIES OF HARDENED CONCRETE

Strength - Creep and Shrinkage - Durability of Concrete - Chemical Attack - Different Types of FRC - Properties and Applications.

UNIT IV SUB STRUCTURE CONSTRUCTION

Piling techniques – Sheet piles – Under water construction of Diaphragm wall and basement – Driving diaphragm walls – Driving well and caisson – Sinking coffer dam – Shoring for deep cutting – Well points – Dewatering and stand by plant equipment for underground open excavation

UNIT VSUPER STRUCTURE AND CONSTRUCTION EQUIPMENTS10 Hrs

Construction sequences in cooling Towers, Bunkers, Silos and Chimney – Pre- stressed construction – In situ pre-stressing in high rise structures – Erecting light weight components on tall structures. Types of earth work equipment's - Tractors, Motor graders, Scrappers - Equipment for compaction – Batching and mixing and concreting.

Total No of Hrs: 45

TEXT BOOKS

- 1. Shetty. M.S., Concrete Technology, S.Chand and Co, Pune, 1984
- 2. Arora S.P. And Bindra S.P., Building Construction, Planning Techniques and Method of Construction, Dhanpat Roy and Sons, New Delhi, 1997.
- 3. Peurifoy, R.L., Ledbetter, W.D And Schexnayder, C., 'Consruction Plaaning, Equipment and Methods' V Edition McGraw Hill, Singapore, 1995

REFERENCES

- 1. Krishnasamy. K.T., Concrete Technology, Dhanapt Rai New Delhi 1985
- 2. Neville, properties of concrete elbs, 1977.
- 3. Sharma S.C., Building Construction, Khanna Publishers, New Delhi. 1998

8 Hrs

10 Hrs

8 Hrs

Subject Code: EBOL22I01	Subject Name : Online Course (NPTEL/SWAYAM/Any Online MOOC APPROVED BY AICTE/UGC)	Ty / LB/ ETL/IE	L	T / S.Lr	P/ R	С
	Prerequisite: None	IE	1	0/0	1/0	1
L : Lecture T : Tuto T/L/ETL : Theory/L	rial SLr : Supervised Learning P : Project R : Research C: Credit .ab/Embedded Theory and Lab	ts				

Students should register for the online course with minimum course duration of 4 weeks through the online portals such as NPTEL/SWAYAM/Any MOOC in the beginning of the semester. A mentor will be assigned by the department for monitoring the students. Students are expected to attend the online classes regularly and submit the weekly assignments before the due dates. Students should appear for the online examination and submit the certificate at the end of the semester .Internal Examination will be conducted by the examiners duly appointed by the head of the department.

Subject Code: EBCE22L05	S	ubject Na ENVIRO	me : NMENTA	L ENG	INEERII	NG LAB	ORATO	DRY	Ty / LB/ ETL/IE	L	T / S.Lr	P/ R	C	
	Р	rerequisite	: Environn	nental Er	ngineering	g			Lb	0	0/0	3/0	1	
L : Lecture T : 7	Futorial	SLr : Su	pervised L	earning	P:Proje	ct R : Re	esearch C	C: Credit	S					
T/L/ETL : Theo	ry/Lab/	/Embedded	l Theory ar	nd Lab										
OBJECTIVE :														
To imp	part kno	owledge on	preparati	on of rea	gents, tes	ting vari	ous wate	r and wa	ste water qu	ality par	ameters.			
COURSE OUT	COM	ES (COs) :	COs) : (3-5)											
CO1		To get han	get hand-on experience in the operation of equipments like pH meter, TDS meter, turbidity meter, etc.											
CO2		To analyze	e water and	wastewa	ater volur	netricall	y and using	ng certai	n equipmen	ts				
CO3		The studer	nts complet	ing the c	ourse wil	l be able	to chara	cterize w	vastewater a	nd cond	uct treatabi	lity stuc	lies.	
Mapping of Co	urse O	utcomes w	vith Progra	am Outo	comes (P	Os)	<u> </u>	1						
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO	12	
CO1	3	3	2	-	3	-	3	3	2	-	2	_	-	
CO2	3	2	2	-	3	-	3	3	2	-	2		-	
CO3	3	2	2	-	3	-	3	3	2	-	2	_	-	
COs / PSOs	I	PSO1	PSC	02										
CO1		3	3											
CO2		3	3											
CO3		3	3											
3/2/1 Indicates	Streng	th Of Cor	relation, 3	– High,	2- Mediu	um, 1- L	ow			1				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project					
				\checkmark					\checkmark					

Subject Code: EBCE22L05	Subject Name : ENVIRONMENTAL ENGINEERING LABORATORY	Ty / LB/ ETL/IE	L	T / S.Lr	P/ R	С
	Prerequisite: Environmental Engineering	Lb	0	0/0	3/0	1
L : Lecture T : Tuto T/L/ETL : Theory/L	rial SLr : Supervised Learning P : Project R : Research C: Credit ab/Embedded Theory and Lab	S				

LIST OF EXPERIMENTS

- a) Determination of pH.
 b) Determination of Turbidity.
- 2. Determination of Hardness.
- 3. Determination of Alkalinity.
- 4. Determination of Residual Chlorine.
- 5. Estimation of Chlorides.
- 6. Estimation of Ammonia Nitrogen.
- 7. Estimation of Sulphate.
- 8. Determination of optimum coagulant dose.
- 9. Determination of specific conductivity.
- 10. Estimation of available chlorine in Bleaching Powder.
- 11. Determination of dissolved Oxygen.
- 12. Determination of suspended settleable, volatile and fixed solids
- 13. B.O.D. Test.
- 14. C.O.D. Test.

Total No of Hrs: 45

REFERENCE BOOKS

- 1. Trivedi and Goel Chemical and biological methods for water pollution studies. New Delhi, 2000.
- 2. A course Manual Water and wastewater analysis, National Environmental Engineering Research Institute, Nagpur publication.
- 3. Standard Methods for Examination of water and Waste water APHa, AWWA and WPCF, 1985 Edition.

Subject Code:	Sul	bject Nai	me :						Ty / LB/	L	T/S.Lr	P/ R	С		
EBCE22L06		1	SOIL ME	CHANI	CS LABO	ORATO	RY		ETL/IE						
	Pre	requisite	: Soil Mech	nanics					Lb	0	0/0	3/0	1		
L : Lecture T : T	Futorial	SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	: Credit	S						
T/L/ETL : Theo	ory/Lab/E	mbedded	Theory ar	id Lab											
OBJECTIVE :															
• To illu	strate sor	ne of the	principles	taught du	iring the	soil mecl	hanics co	urse.							
To imp	art know	rledge of	laboratory	and inde	x testing	methods	common	nly used	in Soil & fo	oundation	engineeri	ng.			
COURSE OUT	COME	S(COS):	: (3- 5)	day maa	antias of	the soils	lilea mat	an conto	nt anasifis		d Attarba	na limit			
	Linder	Showledge to determine index properties of the soils like water content, specific gravity and Atterberg limits													
	Unders	Understand Engineering properties like field density, shear strength, permeability, compaction and cons									onsolida	ation			
C03	Calcula	ite shear,	UCC, con	solidatio	n and tria	xial com	pressive	strength	value of so	il sample					
CO4	Test the soil to assess its ability to withstand the load														
CO5	Determ	ine the p	ermeability	y and coe	efficient c	of consoli	idation va	alues							
Mapping of Co	ourse Ou	tcomes w	vith Progra	am Outc	omes (P	Os)	1			-					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12		
CO1	3	2	2	3	1	3	1	1	3	1	1		3		
CO2	3	2	2	3	1	3	1	1	3	1	1		3		
C03	3	2	2	3	1	3	1		3		1		3		
CO4	3	2	2	3	1	3	1	1 1	3	1	1		3		
COS / PSOs	PS	<u></u>		$\frac{3}{12}$	1	5	1	1	5	1	1		5		
CO1		3	3	_											
CO2		3	3												
CO3		3	3												
CO4		3	3												
CO5		3	3												
3/2/1 Indicates	Strength	n Of Cor	relation, 3	– High,	2- Medi	um, 1- L	ow	1							
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project						
				\checkmark					\checkmark						

Subject Code: EBCE22L06	Subject Name : SOIL MECHANICS LABORATORY	Ty / LB/ ETL/IE	L	T / S.Lr	P/ R	С
	Prerequisite: Soil Mechanics	Lb	0	0/0	3/0	1
L : Lecture T : Tuto T/L/ETL : Theory/L	rial SLr : Supervised Learning P : Project R : Research C: Credit .ab/Embedded Theory and Lab	S				

LIST OF EXPERIMENTS

- 1. Specific gravity of soil solids
- 2. Grain size distribution Sieve analysis Hydrometer analysis
- 3. Atterberg limits test Liquid limit, Plastic limit and shrinkage limit tests
- 4. Field density Test
- 5. Determination of moisture Density relationship using standard proctor.
- 6. Permeability determination (constant head and falling head methods)
- 7. Direct shear test on cohesion less soil
- 8. Unconfined compression test in cohesive soil
- 9. Tri axial compression test in cohesion less soil
- 10. Laboratory Vane shear test in cohesive soil
- 11. One dimensional Consolidation test (Determination of coefficient of consolidation only)

Total No of Hrs: 45

REFERENCES

- 1. "Soil Engineering Laboratory Instruction Manual ", Published by the Engineering College Cooperative Society, Chennai, 1996.
- 2. Lambe T.W., "Soil Testing for Engineers", John Wiley and Sons, New York, 1990.
- *3. "I.S.Code of Practice (2720) Relevant Parts ", as amended from time to time.*

Subject Code: EBCE22I02	Su	bject Nai	me: TEC	HNICA	L SKILI	L II - SU	RVEY C	CAMP	Ty / LB/ ETL/IE	L	T / S.Lr	P/ R	С
	Pre	requisite	: Surveying	g laborato	ory				IE	0	0/0	2/0	1
L : Lecture T : 7	Futorial	SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	C: Credit	S				
T/L/ETL : Theo	ory/Lab/E	Embedded	l Theory an	ld Lab									
OBJECTIVE :													
• The stu	ident wil	l go to th	e outside s	ite so th	at they w	ill realize	e the prac	ctical dif	ficulties in t	taking sur	veys in fi	eld	
COURSE OUT	COME	S (COs) :	: (3- 5)The	student	will be a	ble to							
CO1	Knowl	nowledge on triangulation, trilateration, star observation and rectangulation											
CO2	Unders	stand the	usage of Tl	heodolite	, cross st	, tapes a	nd Plane tab	le					
CO3	Prepar	e contour	map for th	e given a	area								
CO4	Condu	ct LS and	l CS by usi	ng advan	ced equip	pment							
CO5	Survey	the give	n area to re	port on t	he feasib	ility of co	onstructi	ng highv	vay, hydraul	ic and oth	ner Civil s	tructure	S
Mapping of Co	urse Ou	tcomes w	vith Progra	am Outc	omes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	3	2	2	3	3	2	2		2			
CO2	3	3	2	3	3	2	2		2				
CO3	3	3	2	2	3	3	3	2	3	2	2		2
CO4	3	3	2	2	3	3	3	2	3	2	2		2
CO5	3	3	2	2	3	3	3	2	3	2	2		2
COs / PSOs	PS	501	PSC)2									
CO1		3	3										
CO2		3	3										
CO3		3	3										
CO4		3	3										
CO5		3	3										
3/2/1 Indicates	Strengtl	n Of Cor	relation, 3	– High,	2- Medi	um, 1- L	ow						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
				\checkmark				\checkmark					

Subject Code: EBCE22I02	Subject Name : TECHNICAL SKILL II - SURVEY CAMP	Ty / LB/ ETL/IE	L	T / S.Lr	P/ R	С
	Prerequisite: Surveying laboratory	IE	0	0/0	2/0	1
L : Lecture T : Tuto T/L/ETL : Theory/L	rial SLr : Supervised Learning P : Project R : Research C: Credit .ab/Embedded Theory and Lab	S				

Three weeks survey camp using Theodolite, cross staff, leveling staff, tapes and Plane table

- (i) Triangulation
- (ii) Trilateration
- (iii) Star observation to determine azimuth
- (iv) Rectangulation

* Will be accommodated during preceding winter vacation

Students should acquire skill in the domain/inter disciplinary area from government/private training centers/industries /University for a minimum period of 15 calendar days. The training can be through off line, online or mixed mode. Students are supposed to prepare Technical skill report at the end of the training and submit the report along with the certificate in proof of the training, during the viva voce examination conducted by the examiners duly appointed by the head of the department.

Total No of Hrs: 30

REFERENCES

- 1. Bannister A. and Raymond S., "Surveying", ELBS, Pune, Sixth Edition, 1992.
- 2. Heribert Kahmen and Wolfgang Faig, "Surveying", Walter de Gruyter, 1995.
- 3. Kanetkar T.P., "Surveying and Levelling", Vols. I and II, United Book Corporation, Pune, 1994.
- 4. Punmia B.C., "Surveying ", Vols. I, II and III, Laxmi Publications, New Delhi, 1999.
- 5. Clark D., "Plane and Geodetic Surveying", Vols. I and II, C.B.S. Publishers and Distributors, Delhi, sixth Edition, 1971.
- 6. James M. Anderson and Edward M. Mikhail, "Introduction to Surveying ", McGraw Hill Book Company, New Delhi, 1985.
- 7. Wolf P.R. "Elements of Photogrammetry", McGraw Hill Book Company, New Delhi, 1988

Subject Code:	Sub	oject Nai	ne :						Ty / LB/	L	T/S.Lr	P/ R	С
EBCE22ET2			REMO	TE SEN	SING A	ND GIS			ETL/IE		0.40	• /0	
	Pre	requisite	Engineeri	ng Geolo	gy, Engi	neering s	survey		ETL	1	0/0	2/0	2
L : Lecture T : T	utorial	SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	: Credit	8				
1/L/EIL : Theor	y/Lab/E	mbedded	Theory an	id Lab									
OBJECTIVE	:		0										
• Introdu	ice the p	principle	s of remo	te sensır	ig to stu	dents wi	no are be	eginner	s in this fie	ld.			
• Fundar	nental k	nowled	ge on the	physics of	of remot	e sensin	ıg.						ara
• Aerial	photog	raphic	technique	s, imag	e interp	pretation	technic	ques ,t	o create t	basic un	derstand	ing of	GIS
concep	its.												
• To dev	elop the	p the ability to solve a specific problem right from its identification till the successful solution of the											
same	COME	$MES(CO_{2}) \cdot (2, 5)$											
COURSE OUT		S(COS):	(3-5)	El				1			<u> </u>	· 1	
01	problem	numerate the concepts of Electro Magnetic energy, spectrum and spectral signature curves for practical oblems											
CO2	Unders	tand the	concepts of	f satellite	, sensors	and char	acteristic	s of diff	erent platfo	rms			
CO3	Apply t	the conce	pts of DBN	MS in GI	S								
CO4	Analyz	e raster	and vector	data an	d modeli	ng in G	IS, Appl	y GIS i	n land use,	disaster	managem	ent, ITS	s and
	resourc	e inform	ation system	m									
CO5	Take up	p challen	ging practi	cal probl	ems and	find solu	tion by fo	ormulati	ng proper m	nethodolo	gy		
Mapping of Co	urse Out	tcomes w	ith Progra	am Outc	omes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	3	3	3	3	2	1	1	1	1	1		3
CO2	3	3	3	3	3	2	1	1	1	1	1		3
CO3	3	3	3	3	3	2	1	1	1	1	1		3
CO4	3	3	3	3	3	2	1	1	1	1	1		3
CO5	3	3	3	3	3	2	1	1	1	1	1		3
COs / PSOs	PS	01	PSC)2									
CO1	3	3	3										
CO2		3	3										
CO3	1	3	3										
CO4		3	3										
CO5		3	3										
3/2/1 Indicates S	Strength	Of Cor	relation, 3	– High,	2- Mediu	um, 1- L	ow						
Category	Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core Program Electives Open Electives Interdisciplinary								Practical / Project				
				\checkmark					\checkmark				

Subject Code:	Subject Name :	Ty / LB/	L	T/S.Lr	P/ R	С		
EBCE22ET2	REMOTE SENSING AND GIS	ETL/IE						
	Prerequisite: Engineering Geology, Engineering survey	ETL	1	0/0	2/0	2		
L : Lecture T : Tuto	rial SLr : Supervised Learning P : Project R : Research C: Credit	S						
T/L/FTL · Theory/Lab/Embedded Theory and Lab								

UNIT I

INTRODUCTION TO REMOTE SENSING

Definition – components of remote sensing – , Energy sources and radiation principles, electromagnetic radiation (EMR) –EMR spectrum, active and passive remote sensing – platforms — visible, infra red (IR), near IR, middle IR, thermal IR and microwave – black body radiation - Planck's law – Stefan-Boltzman law.

UNIT II EMR INTERACTION WITH ATMOSPHERE AND EARTH MATERIALS

Atmospheric characteristics, scattering of EMR – Raleigh, MIE, non-selective and Raman scattering – EMR interaction with water vapour and ozone – atmospheric windows – significance of atmospheric windows – EMR interaction with earth surface materials – radiance, irradiance, incident, reflected, absorbed and transmitted energy – reflectance – specular and diffuse reflection surface- spectral signature – spectral signature curves – EMR interaction with water, soil and earth surface

UNIT III OPTICAL AND MICROWAVE REMOTE SENSING SYSTEMS

Satellites - classification – based on orbits – sun synchronous and geo synchronous – based on purpose – earth resource satellites, communication satellites, weather satellites, spy satellites, spectral, radiometric and spatial resolutions, Multispectral, thermal and hyper spectral sensing, along and across track scanners – description of sensors in land sat, spot, irs series – current satellites - radar – speckle - back scattering – side looking airborne radar – synthetic aperture radar – radiometer – geometrical characteristics

UNIT IV GEOGRAPHIC INFORMATION SYSTEM

GIS – components of GIS, data – spatial and non-spatial – maps – types of maps – projection – types of projection - raster and vector data structures – comparison of raster and vector data structure – GIS analysis using raster and vector data – DEM for Slope, Aspect, Flow direction, Flow pathways, Flow accumulation, Streams, Catchment area delineation, retrieval, reclassification, overlaying, buffering – data output.

UNIT V IMAGE PROCESSING AND APPLICATIONS OF RS & GIS

Visual interpretation of satellite images – elements of interpretation - interpretation keys, Digital Image Processing - application of remote sensing and GIS – urban applications - integration of GIS and remote sensing – Remote sensing applications for watershed management, Rainfall runoff modeling, Irrigation management, Flood mapping, Drought assessment, Environment and ecology, urban analysis –resources information systems.

PRACTICAL SESSIONS

Include practical sessions for Digitization - Point, Line, Polygon and Surface Data, Building topology – measuring distance and area, Adding attribute data – querying on attribute data, Onscreen digitization - Data Conversion – Vector to Raster, Raster to Vector, Generation of DEM: from contours, spot heights, Vector Analysis – Buffering, Overlay and Network analysis, Data Output: Bar charts, Map compilation

TEXT BOOKS,

Anji Reddy, Remote Sensing and Geographical Information Systems, B.S. Publications, New Delhi, 2001
 M.G. Srinivas (edited by), Remote Sensing Applications, Nervosa Publishing House, New Delhi, 2001.

REFERENCE

- 1. Lillesand T.M. And Kiefer R.W. Remote Sensing And Image Interpretation, John Wiley And Sons, Inc, New York, 1987.
- 2. Janza.F.J., Blue, H.M., Johnston, J.E., "Manual of Remote Sensing Vol.I American Society of Photogrammetry, Virginia, U.S.A, 1975.
- 3. Burrough P.A, Principle Of Gis For Land Resource Assessment, Oxford, 1990
- 4. QGIS-1.8-UserGuide, <u>http://docs.qgis.org/pdf/QGIS-1.8-UserGuide-en.pdf,2013</u>
- 5. Getting to Know ArcGIS for Desktop, ISBN: 9781589483088 2013
- 6. Understanding GIS: An ArcGIS Project Workbook, ISBN: 9781589482425 2011

9 HRS

9 HRS

9 HRS

Total No of Hours : 45

9 HRS

9 HRS

VI SEMESTER

Subject Code:	Sul	bject Nai	me : STRU	JCTURA	L ANA	LYSIS			Ty / LB/	L	T/S.Lr	P/ R	С
EBCE22009									ETL/IE				
	Pre	requisite	Mechania	es of Soli	ids, Stren	igth of m	aterials		Ту	3	1/0	0/0	4
L : Lecture T : 7	Futorial	SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	: Credit	S				
T/L/ETL : Theo	ory/Lab/E	mbedded	Theory an	ld Lab									
OBJECTIVE :													
This course in	troduces	students	to the c	lassical	methods	of stru	ctural a	nalysis,	i.e., metho	ods for o	calculating	g forces	and and
displacements i	in structu	res due	to given l	oads and	l impose	d deforn	nations. 1	Both de	terminate a	nd indete	erminate s	tructure	s are
covered.													
COURSE OUT	COMES	<u>s (COs) :</u>	<u>(3-5)</u>										
COL	Discove	r the beh	avior of arc	ches and	suspensio	on bridge	es under v	arious l	oads			•	
CO2	To unde	rstand the	e concept c	of slope d	leflection	method,	moment	distribu	ition method	and plas	stic analys	18	
C03	To apply	y the met	hod of tens	ion coeff	ficient to	determin	e the me	mber for	rces in space	e structur	es		
CO4	To analy	ze the st	ructures for	r moving	loads a	nd draw i	nfluence	line dia	grams				
CO5	To evalu	late the s	hape factor	and infl	uence lin	es of stat	ically de	terminat	e structures				
Mapping of Co	ourse Out	tcomes w	vith Progra	am Outc	omes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
COI	3	3	3	3	1	1	1	1	1	1	l		3
CO2	3	3	3	3	1	1	1	1	1	1	1		3
CO3	3	3	3	3	1	1	1	1	1	1	1		3
CO4	3	3	3	3	1	1	1	1	1	1	1		3
CO5	3	3	3	3	1	1	1	1	1	1	1		3
COs / PSOs	PS	01	PSC)2									
CO1		3	3										
CO2		3	3										
CO3	í.	3	3										
CO4		3	3										
CO5		3	3										
3/2/1 Indicates	Strength	n Of Cor	relation, 3	– High,	2- Mediu	um, 1- L	ow			1			
		s	al										
Catagory	Se	ence	Soci	ė	ves	es	uy	ent	ect				
Category	suc	Scie	es	Col	ecti	tiv	linå	one	Proj				
	Scie	5 B	s ar	n n	Ē	llec	cip	du	I / I				
	ic S	erii	ties	gra	am	n F	dis	0	ica				
	3 as	ine	ani	Pro	ogr	Dpe	nter	kill	act				
		Eng	m	. –	Pr		Ir	S	$\mathbf{P}_{\mathbf{f}}$				
		н	Η										
				v									

Subject Code:	Ty / LB/	L	T/S.Lr	P/ R	С	
EBCE22009		ETL/IE				
	Prerequisite: Mechanics of Solids, Strength of materials	Ту	3	1/0	0/0	4
L : Lecture T : Tuto T/L/ETL : Theory/L	rial SLr : Supervised Learning P : Project R : Research C: Credit .ab/Embedded Theory and Lab	S				

UNIT I **DEFLECTION OF DETERMINATE STRUCTURES**

Principles of virtual work for deflections - Deflections of pin-jointed plane frames and rigid Plane Frames. Introduction to analysis of space trusses using method of tension coefficients – Beams curved in plan.

SLOPE DEFLECTION AND MOMENT DISTRIBUTION METHOD UNIT II 12 Hrs

Analysis of continuous Beams – cantilever beams - Continuous beams and rigid frames (with and without sway) - Symmetry and Asymmetry -Portal Frames. Stiffness and carry over factors -Balance - Distribution and carryover of moments - Analysis of continuous Beams - Plane rigid frames with and without sway - Structural frames

UNIT III **MOVING LOADS AND INFLUENCE LINES (DETERMINATE)** 12 Hrs

Influence lines for reactions in statically determinate structures – influence lines for member forces in pin jointed frames - Influence lines for shear force and bending moment in beam sections

UNIT IV **ARCHES AND SUSPENSION BRIDGES**

Arches structural forms – Examples of arch structures – Types of arches – Analysis of three hinged, two hinged and fixed arches, parabolic and circular arches - Settlement and temperature effects

Analysis of suspension bridges – Un stiffened cables and cables with three hinged stiffening girders – Influence lines for three hinged stiffening girders.

UNIT V MATRIX METHOD FOR INDETERMINATE FRAMES AND PLASTIC ANALYSIS

12 Hrs

Total no of hrs: 60

Equilibrium and compatibility - Determinate Vs indeterminate structures -Indeterminacy - primary structure -Compatibility conditions - Analysis of indeterminate pin-jointed plane frames, continuous beams. Element and global stiffness and flexibility matrices- Co-ordinate transformations - transformations of stiffness matrices -Analysis of Continuous Beams.

TEXT BOOKS

- 1. R.Vaidyanathan, P.Perumal, Comprehensive Structural Analysis Vol 1 and vol.2, Laxmi Publications, 2004
- 2. Bhavikatti S.S Structural Analysis Vol 1 and vol.2, Vikas Publishing House Pvt. Ltd New Delhi
- 3. S.Ramamrutham, R.Narayan, Theory of structures, Dhanpatrai publications, 1993

REFERENCES

- 1. Analysis of Structures: Strength and Behaviors T.S. Thandavamoorthy, oxford University press, New Delhi. 2005.
- 2. Matrix analysis of framed structures – William Weaver, Jr & James M.Gere, CBS Publishers & Distributors, Delhi, 1995
- 3. Structural Analysis – A Matrix Approach – G.S.Pandit & S.P.Gupta, Tata McGraw-Hill, New Delhi, 1998
- 4. Manicka Selvam V.K., Elementary Matrix Analysis of Structures, Khanna Publishers Mumbai, 1990.
- 5. Coates R.C., Coutie M.G. and Kong F.K., Structural Analysis, ELBS and Nelson, Newjersey, 1990.

12 Hrs

Subject Code	: S	Subject Name:							Tv / LB/	L	T/S.Lr	P/R	C
		DE	ESIGN OF	CONCI	RETE ST	FRUCTU	URES		ETL/IE	2	1,0121	- / -	Ũ
EBCE22010	Р	rereauisite	Structura	l Analysi	is				Tv	3	1/0	0/0	4
L : Lecture T	: Tutoria	l SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	: Credit	s				_
T/L/ETL : The	eory/Lab	/Embedded	Theory an	d Lab	5								
OBJECTIVE	: The	purpose of	this study	is to imp	art comp	rehensive	e knowle	dge on t	he design of	reinforc	ed concret	e struct	ural
elements such	as beam	s, columns,	slabs and	footings.	Brings a	bout an u	understar	iding of	the behavio	r of reinf	forced cond	crete an	d the
design philoso	ophies												
COURSE OU	JTCOM	ES (COs) :	(3- 5)										
At the end of	the cours	e, the stude	ent will be a	able to:									
COI	Underst	tanding the	behavior o	of reinfor	ced conci	rete and t	the desig	n philos	ophies				
CO2	Applyii	ng the conc	ept of Con	crete des	ign to ma	king the	projects.						
CO3	Analyz	e and Pract	icing the de	esign con	cepts wit	th Indian	Standard	l codes					
CO4	Evaluat	the desig	n methods	for conc	rete elem	nents							
CO5	To crea	te compreh	ensive kno	wledge of	on the des	sign of re	inforced	concret	e structural o	elements	such as be	eams,	
	column	s, slabs and	l footings										
Mapping of (Course O	Outcomes w	vith Progra	am Outc	omes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	3	3	3	1	3	1	1	1	1	1		3
CO2	3	3	3	3	1	3	1	1	1	1	1		3
CO3	3	3	3	3	1	3	1	1	1	1	1		3
CO4	3	3	3	3	1	3	1	1	1	1	1		3
CO5	3	3	3	3	1	3	1	1	1	1	1		3
COs / PSOs	P	SO1	PSC)2									
CO1		3	3										
CO2		3	3										
CO3		3	3										
CO4		3	3										
CO5		3	3										
3/2/1 Indicate	es Streng	gth Of Cor	relation, 3	– High,	2- Mediu	um, 1- L	ow						
		es	tial		~								
Catagory	es	enc	Soc	e	ves	es	ary	ent	ject				
Calegory	ence	Scie	es	Coi	ecti	îti v	lina	one	Proj				
	Scie	136 US	s ar enc	m	Ē	Elec	cip	duu	1/1				
	ic 5	eri	itie Scie	gra	ram	en I	rdis	l cc	ica				
	Bas	jine	Jan	Prc	1g0	Opé	ntei	kil	ract				
		Eng	Iun		Pr		I	S	Ы				
				<u> </u>									
				V									

Subject Code:	Subject Name: DESIGN OF CONCRETE STRUCTURES	Ty / LB/ ETL/IE	L	T / S.Lr	P/ R	С	
EBCE22010	Prerequisite: Structural Analysis	Ту	3	1/0	0/0	4	
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab							

UNIT I INTRODUCTION, LIMIT STATE DESIGN OF BEAMS AND SLABS 12 Hrs

Properties of different grades of concrete and steel, Behavior of RC members, Permissible stresses - Stress block parameters, Stress strain relationship - Failure criteria Analysis - Introduction to IS 456-2000, SP: 16 - Design and detailing of singly reinforced & doubly reinforced beam - Design and detailing of one-way and two-way slab panels – Flat Slabs (Design of beams and slabs for combined shear, bending and torsion).

UNIT II LIMIT STATE DESIGN OF COLUMNS AND FOOTINGS

Basic assumptions - Design and detailing of reinforced concrete short columns of rectangular and circular cross sections under axial load - Column under compression and bi axial bending using IS 456:2000 - Design and detailing of isolated footing for column subjected to axial loads, Design and detailing of Axially and eccentrically loaded Rectangular footings, Design and detailing of Combined Rectangular footings for Two Columns.

UNIT III DESIGN OF STAIRCASE AND WATER TANK

Introduction to ductile detailing & provisions of IS 13920, Design of Staircases - Design of circular and rectangular water tanks resting on ground. Design of staging and foundations

UNIT IV RETAINING WALLS

Design of retaining walls - Cantilever and Counter fort retaining walls

UNIT V YIELD LINE THEORY AND INTRODUCTION TO BRICK MASONRY 12 Hrs

Application of virtual work method to square, rectangular, circular and triangular slabs, Design of masonry walls, and pillars as per NBC and IS codes

Total No of Hrs: 60

TEXT BOOKS

- 1. N.Krishna Raju "Design of Reinforced Concrete Structures", CBS publishers & Distributors. Latest Edition, IS456:200.
- 2. S.Ramamrudham ,Design of Reinforced Concrete Structures, Dhanpat Rai publishing company(p) Ltd New Delhi.
- 3. Varghese P C, Limit State Design of Reinforced Concrete, Prentice Hal of India, Private, Limited New Delhi, 1997.

REFERENCES

- 1. Ashok K. Jain Reinforced concrete- Limit state design- New chand & Bros, Roorkee 1997.
- 2. Dayarathnam.P, Brick and Reinforced Brick Structures, Oxford and IBH Publishing House, 1999.
- 3. IS: 456- 2000 "Indian Standard for Plain and reinforced concrete code of practice "Bureau of Indian Standard".
- 4. A.P Arul Manikam "Structural Engineering"
- 5. Design aids to IS 456-1978 (SP16).
- 6. SP 34 Handbook on Concrete Reinforcement and Detailing, BIS 1987.
- 7. IS 1905:1987, Code of practice for structural use of unreinforced masonry Bureau of Indian Standards.

12 Hrs

12 Hrs

Subject Code: EBCE22011	Sul	oject Nai	ne: FOU	INDATI	ON ENG	SINEER	ING		Ty / LB/ ETL/IE	L	T / S.Lr	P/ R	C
	Pre	requisite:	Soil Mech	nanics					Ту	3	1/0	0/0	4
L : Lecture T : T	Futorial	SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	C: Credit	s				
T/L/ETL : Theo	ry/Lab/E	mbedded	Theory an	ld Lab									
OBJECTIVE :													
• At the	end of the	is course	student ac	quires the	e capacity	y to inves	stigate the	e soil co	ndition and	to design	suitable f	oundati	on
COURSE OUT	COME	S(COS):	(3-5)										
	Discov	er the bel	havior and	nature of	the soil								
CO2	Unders	tand reas	on behind	the struct	ture and f	foundatio	on failure	;					
CO3	Apply	the princi	ples of soi	l mechan	ics to de	cide upoi	n the suit	ability o	f shallow or	deep for	indations		
CO4	To ana	lyze the c	ritical failu	ire mode	s of retai	ning wal	ls						
CO5	To eval	luate the	load carryi	ng capac	ity of var	rious shal	llow and	deep for	undations				
Mapping of Co	urse Ou	tcomes w	ith Progra	am Outc	omes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	3	3	3	2	3	3	1	1	1	2		3
CO2	3	3	3	3	2	3	3	1	1	1	2		3
CO3	3	3	3	3	2	3	3	1	1	1	2		3
CO4	3	3	3	3	2	3	3	1	1	1	2		3
CO5	3	3	3	3	2	3	3	1	1	1	2		3
COs / PSOs	PS	01	PSC)2									
CO1		3	3										
CO2		3	3										
CO3	,	3	3										
CO4	,	3	3										
CO5		3	3										
3/2/1 Indicates	Strength	of Cor	relation, 3	– High,	2- Mediu	um, 1- L	ow	r		1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
				✓									

Subject Code:	Subject Name : FOUNDATION ENGINEERING	Ty / LB/	L	T / S.Lr	P/ R	С			
EBCE22011		ETL/IE							
	Prerequisite: Soil Mechanics	Ту	3	1/0	0/0	4			
L : Lecture T : Tuto	rial SLr : Supervised Learning P : Project R : Research C: Credit	S							
T/L/ETL : Theory/Lab/Embedded Theory and Lab									

UNIT I: SOIL EXPLORATION

Scope and objectives – method of exploration – angering and boring – wash boring and rotary drilling – depth of boring – spacing of bore hole - sampling –representative and undisturbed - sampling – sampling techniques –split spoon sampler, thin tube sampler, stationary piston sampler - bore log and report – penetration tests (spt and scpt).

UNIT II: SHALLOW FOUNDATION

Introduction – location and depth of foundation – codal provisions – bearing capacity of shallow foundation on homogeneous deposits – terzaghi's formula and bis formula – factors affecting bearing capacity – problems- bearing capacity from in situ tests(spt, scpt and plate load) allowable bearing pressure – components of settlement – determination of settlement of foundation on granular and clay deposit – total and differential settlement – allowable settlement – codal provisions .

UNIT III : FOOTINGS AND RAFTS

Types of foundation – contact pressure distribution below footings, design of footings, Isolated footing, combined footings ,mat foundation - types - Applications-proportioning- floating foundation .

UNIT IV : PILE FOUNDATION

Types of piles and their function – factors influencing the selection of pile – carrying capacity of single pile in granular and cohesive soils – static formulae - dynamic formulae (engineering news and hiley's) – capacity from insitu tests (spt and scpt) – negative skin friction - uplift capacity – group capacity by different methods(feld's rule, converse-labarra formula and block failure criterion) – settlement of pile groups – interpretation of pile load test(routine test only) – forces on pile caps – under reamed piles – capacity under compression and uplift .

UNIT V: RETAINING WALLS

Plastic equilibrium in soils – active and passive states – rankine's theory – cohesionless, effect of water table and cohesive soil - coloumb's wedge theory – condition for critical failure plane - earth pressure on retaining walls of simple configurations – graphical methods (rebhann and culmann's method)– stability analysis of retaining walls.

Total No of Hrs: 60

TEXT BOOKS

- Arora, k.r. Soil Mechanics And Foundation Engineering, Standard Publishers And Distributors, New Delhi, 1997.
- Gopal Ranjan and Rao, A.S.R. Basic and Applied Soil Mechanics, Wiley Eastern Ltd., New Delhi (India), 1997.
- V.N.S. Moorthy, " Soil Mechanics And Foundation Engineering ", Ubs Publications And Distribution Ltd, New Delhi, 1999.

REFERENCES

- Bowles J.E. Foundation Analysis And Design, McGraw hill, 1994.
- Dass, B.M, "Principles Of Geotechnical Engineering", Thompson Books, Singapore ,5th edition, 2003
- Kaniraj, S.R," Design Aids In Soil Mechanics And Foundation Engineering", Tata Mcgraw Hill Publishing Company Ltd , New Delhi ,2002
- Swamisaran, "Analysis And Design Of Structures Limit State Design", Oxford Ibh Publishing Co Pvt Ltd. New delhi , 1998

12 Hrs

12 Hrs

12 Hrs

12 Hrs

12 Hrs

129

Subject Code: EBCE22L07		Subj	ect Name	: CONC	RETE L	ABORA	TORY		Ty / LB/ ETL/IE	L	Γ/S.Lr	P/ R	С
	Pı	rerequisite:	Building	Materials					Lb	0 (0/0	3/0	1
L : Lecture T : 7	Futorial	SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	: Credit	s				
T/L/ETL : Theo	ry/Lab/	Embedded	l Theory an	ıd Lab									
OBJECTIVE :													
• The of	ojective	of the co	ncrete lab	is to tes	t the bas	sic prope	erties ing	redients	of concrete	e, fresh a	nd harder	ned cor	icrete
properties.													
COURSE OUT	COMI	<u>ES (COs) :</u>	(3- 5)			<i>a</i>							
COI		Outline the	e importanc	ce of testi	ng of cei	nent, fine	e and coa	irse aggr	regates and 1	ts propert	ies		
CO2	ا	Understand	d the conce	pt of wor	rkability	and testi	ng of fres	h and h	ardened con	crete			
CO3]	Demonstra	te and con	duct expe	eriment o	n cemen	t, fine ag	gregates	, coarse agg	regates ar	nd concret	e	
CO4	(Compare the	he strength	properti	es of diff	erent gra	des of co	ncrete					
CO5		Assess the	different p	roperties	of ceme	nt, fine a	ggregates	s, coarse	aggregates	and conci	rete		
Mapping of Co	urse O	utcomes w	vith Progra	am Outc	omes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	2	2	3	1	3	1	1	3	1	1		3
CO2	3	2	2	3	1	3	1	1	3	1	1		3
CO3	3	2	2	3	1	3	1	1	3	1	1		3
CO4	3	2	2	3	1	3	1	1	3	1	1		3
CO5	3	2	2	3	1	3	1	1	3	1	1		3
COs / PSOs	P	SO1	PSC	02									
CO1		3	3										
CO2		3	3										
CO3		3	3										
CO4		3	3										
CO5		3	3										
3/2/1 Indicates	Streng	th Of Cor	relation, 3	– High,	2- Medi	um, 1- L	ow					-	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
				\checkmark					\checkmark				

Subject Code: EBCE22L07	Subject Name : CONCRETE LABORATORY	Ty / LB/ ETL/IE	L	T / S.Lr	P/ R	С		
	Prerequisite: Building Materials	Lb	0	0/0	3/0	1		
L : Lecture T : Tuto	rial SLr : Supervised Learning P : Project R : Research C: Credit	ts						
T/L/ETL : Theory/Lab/Embedded Theory and Lab								

LIST OF EXPERIMENTS

UNIT 1. 2. 3.	I : CEMENT Test for fineness Test for setting times including normal consistency test Mortar cube preparation and testing	15 Hrs
UNIT 1. 1. 2. 3.	II : AGGREGATES Sieve analysis test - Grade Curves Crushing Value - Test Test on Aggregates - Los Angeles Abrasive Testing Machine	15 Hrs
UNIT	III : CONCRETE:	15 Hrs
1. 2. 3. 4. 5. 6	Cube compression test Tension test of concrete - cylinder split test Flexural test on concrete specimen Test using Vee Bee consistometer Compaction factor test Mix design using test parameters and assessing the strength of concrete	
0.	with design using lest parameters and assessing the strength of concrete	

Total No of Hrs: 45

1. Shetty. M.S., Concrete Technology, S.Chand and Co, Pune, 1984

REFERENCES

TEXT BOOKS

- 1. Krishnasamy. K.T., Concrete Technology, Dhanapt Rai New Delhi 1985
- 2. Neville, properties of concrete elbs, 1977.

Subject Code:	5	Subject Na	ame : IRR	IGATI	ON AND	ENVIR	ONMEN	TAL	Ty / LB/	L	T/S.Lr	P/ R	С
EBCE22L08			ENG	NEERI	NG DRA	WING			ETL/IE				
	P	rerequisite	: Irrigation	Enginee	ring, Env	vironmen	tal Engin	eering	Lb	0	0/0	3/0	1
L : Lecture T : 7	Tutorial	SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	: Credit	S				1
T/L/ETL : Theo	ory/Lab/	Embedded	l Theory ar	nd Lab									
OBJECTIVE :													
• The p	urpose	of this co	urse is to	impart t	he know	ledge ab	out the d	lesign o	f irrigation	and env	vironmenta	l engine	eering
structu	ires.												
COURSE OUT	ГСОМІ	ES (COs)	: (3- 5)										
CO1		Hands-on	experience	in drawi	ng of irri	gation er	gineerin	g struct	ures				
CO2		Hands-on	experience	in drawi	ng of en	vironme	ntal engir	neering	structures				
CO3		To draw p	lan elevatio	on and se	ction of	structure	s						
Mapping of Co	ourse O	utcomes v	vith Progra	am Outo	comes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
C01	3	-	-	-	-	-	-	3	3	-	2		-
CO2	3	-	-	-	-	-	-	3	3	-	2		-
CO3	3	-	-	-	-	-	-	3	3	-	3		-
COs / PSOs	P	SO1	PSC	02									
CO1		3	3										
CO2		3	3										
CO3		3	3										
3/2/1 Indicates	Streng	th Of Cor	relation, 3	– High,	2- Medi	um, 1- L	ow		1				
		s	al										
	es	ence	Soci	e	ives	es	ary	ent	ject				
Category	ienc	s Sci	and	L Coi	Ilecti	ectiv	plina	pone	Pro				
Category	ic Sc	ering	ties a	gram	am E	n Ele	disci	com	ical /				
	Basi	ginee	nani	Pro	rogra	Ope	Inter	Skill	racti				
		En	Hur		P P								
												_	
				V					V				

Subject Code:	Subject Name : IRRIGATION AND ENVIRONMENTAL	Ty / LB/	L	T / S.Lr	P/ R	С				
EBCE22L08	ENGINEERING DRAWING	ETL/IE								
	Prerequisite: Irrigation Engineering, Environmental Engineering	Lb	0	0/0	3/0	1				
L : Lecture T : Tutor	rial SLr : Supervised Learning P : Project R : Research C: Credit	S								
Γ/L/ETL : Theory/Lab/Embedded Theory and Lab										

UNIT I **IMPOUNDING STRUCTURES**

Gravity dam, Tank Surplus Weir, Tank Sluice with tower road – Drawing showing plan, Elevation, half section including foundation details.

UNIT II CANAL TRANSMISSION STRUCTURES

Aqueducts – Syphon Aqueducts – Super passage – Canal siphon – Canal Drops- Drawing Showing plan, elevation and foundation details.

UNIT III **CANAL REGULATION STRUCTURES**

Canal head works- Canal Regulator - Canal escape- Proportional Distributors - Drawing showing detailed plan, elevation and foundation.

UNIT IV WATER SUPPLY AND TREATMENT

Design & Drawing of flocculate, clarifier - Rapid sand filter - House service connection for water supply and drainage.

UNIT V **SEWAGE TREATMENT & DISPOSAL**

Design and Drawing of screen chamber - Grit channel - Primary clarifier - Activated sludge process - Aeration tank - Secondary clarifiers - Sludge digester - Sludge drying beds - Waste stabilization ponds - Septic tanks and disposal arrangements - Manholes.

TEXT BOOKS

- Modi, P.N., "Environmental Engineering I & II", Standard Book House, Delhi 6 1.
- Sathyanarayana Murthy "Irrigation Design and Drawing" Published by Mrs L.Banumathi, Tuni east 2. Godavari District.A.P. 1998.
- 3. Sharma R.K. Irrigation Engineering and Hydraulic Structures Oxford and IBH Publishing co., New Delhi 2002.

REFERENCES

- Peary, H.S., ROWE, D.R., Tchobanoglous, G., "Environmental Engineering", McGrawHill Book 1. Co., New Delhi, 1995.
- Metcalf & Eddy, "Wastewater Engineering (Treatment and Reuse)", 4thedition, Tata McGraw-Hill, 2. New Delhi, 2003.
- 3. Garg S.K., "Irrigation Environmental Engineering and design StructuresI", Khanna Publishers, New Delhi, 17th Reprint, 2003.
- 4. Manual on Water Supply and Treatment, CPHEEO, Government of India, New Delhi, 1999
- 5. Manual on Sewerage and Sewage Treatment, CPHEEO, Government of India, New Delhi.

10 Hrs

10 Hrs

5 Hrs

Total No of Hrs: 45

10 Hrs

Subject Cod EBCC22I07	e: 5	Subject	ect Name : Soft Skill – II (Qualitative and quantitative skills)					nd	Ty / LB/ ETL/IE		ſ/ S.Lr	P/ R	C
	Pre	erequisi	te: Soft S	kills – l	[IE	0 ()/0	2/0	1
L : Lecture T	: Tutor	ial SL	r : Superv	vised Le	earning	P:Pro	ject R :	Resear	ch C: Crec	lits			
T/L/ETL : Th	neory/La	ıb/Embe	edded Th	eory and	d Lab								
OBJECTIV	IVE : The main objective is to strengthen the logical and arithmetic reasoning skills of the students.												
COURSE O	SE OUTCOMES (COs) : (3- 5)												
CO1	Recog	Recognize and apply arithmetic knowledge in a variety of contexts.											
CO2	Ability criticis	Ability to identify and critically evaluate philosophical arguments and defend them from criticism.											
CO3	Define	fine data and interpret information from graphs.											
Mapping of	Course	ourse Outcomes with Program Outcomes (POs)											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO)12
CO1	3	3	3	3	3	3	1	1	3	2	3		3
CO2	2	2	2	3	1	3	1	3	3	3	3		1
CO3	3	3	3	3	3	3	2	2	3	3	3		3
COs /	PS	01	PSC	02									
PSOs		2										_	
COI		3	3										
CO2		3	3										
CO3		3	3										
3/2/1 Indicat	es Strei	ngth Of	Correla	tion, 3	– High,	2- Med	lium, 1	- Low			1	<u> </u>	
Category	ciences	lg Sciences	and Social nces	m Core	Electives	lectives	ciplinary	mponent	/ Project				
	Basic S	Engineerin	Humanities Sciei	Prograi	Program	Open E	Interdisc	Skill cor	Practical				
								\checkmark					

Subject Code:	Subject Name : Soft Skill – II (Qualitative and	Ty/	L	T/	P/	С						
EDCC22107	quantitative skins)	LD/ ETL/IE		5.Lr	ĸ							
	Prerequisite: Soft Skills – I	IE	0	0/0	2/0	1						
L : Lecture T : T	L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits											
T/L/ETL : Theor	T/L/ETL : Theory/Lab/Embedded Theory and Lab											

UNIT I Logical Reasoning I

Logical Statements - Arguments - Assumptions - Courses of Action.

UNIT II Logical Reasoning II

Logical conclusions - Deriving conclusions from passages - Theme detection.

UNIT III Arithmetical Reasoning I

Number system – H.C.F & L.C.M – Problem on ages – Percentage – Profit & Loss – Ratio & Proportion – Partnership.

UNIT IV Arithmetical Reasoning II

Time & Work – Time & Distance – Clocks – Permutations & Combinations – Heights & Distances – Odd man out and Series.

UNIT V Data Interpretation

Tabulation – Bar graphs – Pie graphs – Line graphs.

PRACTICE SESSIONS

Include practice sessions to discuss in both basic written English and concepts of manipulating mathematics.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total No of Hrs: 30

Reference Book:

- 1. R.S.Agarwal, A modern approach to Logical Reasoning, S.Chand & Co., (2017).
- 2. R.S.Agarwal, A modern approach to Verbal and Non verbal Reasoning, S.Chand & Co., (2017).
- 3. R.S.Agarwal, Quantitative Aptitude for Competitive Examinations, S.Chand & Co., (2017).
- 4. A.K.Gupta, Logical and Analytical Reasoning, Ramesh Publishing House, (2014).
- 5. B.S.Sijwali, Indu sijwali, A new approach to Reasoning (Verbal and Non verbal), Arihant Publishers, (2014).

Subject Code:	Sub	oject Nan	ne : TECH	INICAL	SKILL	III			Ty / LB/	L	T/S.Lr	P/ R	С				
EBCE22I03	DE	TAILIN	G OF R.C	. AND S	TEEL S	TRUCT	URES		ETL/IE								
	Pre Pra	requisite: ctice	Design of	f Concre	te Structu	ires, Buil	ding Dra	wing	IE	0	0/0	2/0	1				
L : Lecture T : T	Futorial	SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	C: Credit	5	1 1							
T/L/ETL : Theo	ry/Lab/E	mbedded	Theory an	d Lab													
OBJECTIVE	To Impa	art knowl	edge on de	sign of v	arious str	ructural e	elements	in civil e	engineering								
COURSE OUT	COMES	OMES (COs) : (3-5)															
CO1	Acquir	cquire knowledge on detailing of RC and steel structural elements															
CO2	Able to	le to correlate theoretical knowledge with practical training															
CO3	Prepar	e detailin	g drawing	of RC an	d steel st	ructural	elements										
CO4	Analyz	ze the loa	d carrying	capacity	of structu	ural elem	ents for	the giver	1 loading								
CO5	May ex	xtend the	software k	nowledg	e for rese	earch pur	pose										
Mapping of Co	urse Ou	tcomes w	vith Progra	am Outc	omes (P	Os)		L	1	1							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO	12				
CO1	3	3	3	3	3	1	1	1	2	1	3		3				
CO2	3	3	3	3	3	1	1	1	2	1	3		3				
<u>CO3</u>	3	3	3	3	3	1	1	1	2	1	3		3				
CO4	3	3	3	3	3	1	1	1	2	1	3		3				
CO5	<u> </u>	3	3 DC(3	3	1	1	1	2	1	3		3				
COS / PSOs	PS	3)2													
CO2		3	3														
CO3	,	3	3														
CO4		3	3														
CO5		3	3														
3/2/1 Indicates	Strength	Of Cor	relation, 3	– High,	2- Mediu	ım, 1- L	ow										
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project								
				\checkmark				\checkmark									

Subject Code:	Subject Name : TECHNICAL SKILL III	Ty / LB/	L	T/S.Lr	P/ R	С			
EBCE22I03	DETAILING OF R.C. AND STEEL STRUCTURES	ETL/IE							
	Prerequisite: Design of Concrete Structures, Building Drawing	IE	0	0/0	2/0	1			
	Practice								
L : Lecture T : Tuto	rial SLr : Supervised Learning P : Project R : Research C: Credit	S							
T/L/ETL : Theory/Lab/Embedded Theory and Lab									

Students should acquire skill in the domain/inter disciplinary area from government/private training centres/industries /University for a minimum period of 15 calendar days. The training can be through off line, online or mixed mode. Students are supposed to prepare Technical skill report at the end of the training and submit the report along with the certificate in proof of the training, during the viva voce examination conducted by the examiners duly appointed by the head of the department.

Course Outline:

Student should learn about detailing of Reinforced concrete structures and steel structures detailing and quantity of steel calculation.

R.C.C MEMBER

- 1. One way slab
- 2. Two way slab
- 3. Cantilever slab
- 4. Beam
- 5. Column
- 6. Footing

STEEL STRUCTURES

- 1. Roof Trusses
- 2. Beam Column joint
- 3. Gantry Girder
- 4. Plate Girder

TEXT BOOKS

Total No of Hrs: 30

- 1. N.Krishna Raju "Design of Reinforced Concrete Structures", CBS publishers & Distributors. Latest Edition, IS456:200.
- 2. S.Ramamrudham ,Design of Reinforced Concrete Structures, Dhanpat Rai publishing company(p) Ltd New Delhi.
- 3. Bhavikatti.S.S, "Design of Steel Structures" By Limit State Method as per IS:800–2007, IK International Publishing House Pvt. Ltd., 2009
- 4. Duggal. S.K, "Limit State Design of Steel Structures", Tata McGraw Hill Publishing Company, 2005

REFERENCES

- 1. IS: 456- 2000 "Indian Standard for Plain and reinforced concrete code of practice "Bureau of Indian Standard".
- 2. Design aids to IS 456-1978 (SP16).
- 3. SP 34 Handbook on Concrete Reinforcement and Detailing, BIS 1987.
- 4. IS 800 :2007, General Construction In Steel Code of Practice, (Third Revision), Bureau of Indian Standards, New Delhi, 2007
- 5. Narayanan.R.et.al. "Teaching Resource on Structural Steel Design", INSDAG, Ministry of Steel Publications, 2002

Subject Code:	Su	bject Na	ject Name : MINI PROJECT / INTERNSHIP						Ty / LB/	L	T/S.Lr	P/ R	C
EBCE22104	D	••.	A T T						EIL/IE	0	0./0	2/0	1
	Pre	crequisite	: ALL	· ·	<u> </u>		1.0		IE	0	0/0	3/0	1
L: Lecture I:	I utorial	SLr : Su	ipervised L	earning	P : Proje	ct R : Re	esearch C	: Credit	S				
T/L/ETL : Theo	ory/Lab/E	mbedded	Theory an	id Lab									
OBJECTIVE :													
To dev	elop technical skill and practical learning in field work												
COURSE OUT	COME	S (COs) :	: (3-5)										
CO1	Studen	t will pos	ssess sound	knowled	dge and e	xperienc	e in cons	truction	field				
CO2	Studen	Student will be able to understand the practical aspects of construction domain											
CO3	Studen	tudent will be able to prepare report based on the experience gained											
CO4	Studen	t can corr	relate theor	etical kn	owledge	with prac	ctical exp	perience					
CO5	Studen	ts will be	able to de	velop nev	w ideolog	gies in co	nstructio	n field b	ased on the	experien	ce gained		
Mapping of Co	ourse Ou	tcomes w	vith Progra	am Outc	comes (P	1							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	3	3	3	3	3	3	3	3	3	3		3
CO2	3	3	3	3	3	3	3	3	3	3	3		3
CO3	3	3	3	3	3	3	3	3	3	3	3		3
CO4	3	3	3	3	3	3	3	3	3	3	3		3
CO5	3	3	3	3	3	3	3	3	3	3	3		3
COs / PSOs	PS	501	PSC	02									
CO1		3	3										
CO2		3	3										
CO3		3	3										
CO4		3	3										
CO5		3	3										
3/2/1 Indicates	Strengtl	1 Of Cor	relation, 3	– High,	2- Medi	um, 1- L	ow	1		1	1		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
				\checkmark				\checkmark					
						1							

Subject Code: EBCE22I04	Subject Name : MINI PROJECT / INTERNSHIP	Ty / LB/ ETL/IE	L	T / S.Lr	P/ R	C					
	Prerequisite: ALL	IE	0	0/0	3/0	1					
L : Lecture T : Tuto	L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits										
T/L/ETL : Theory/Lab/Embedded Theory and Lab											

INTERNSHIP:

Students are supposed to undergo internship in related Industries for a minimum period of 30 days cumulatively during the semester. They have to prepare a report on the Internship with a certificate in proof from competent authority in the industry. At the end of the semester Viva-Voce examination will be conducted by the Examiners duly appointed by the Head of the department and the students will be evaluated.

MINI PROJECT:

Students are supposed to do mini project in any one of the below mentioned domains:

- 1. Soil Investigation
- 2. Construction-different types of foundation, Highways and Embankments
- 3. Prestressing- Bridges
- 4. Industrial Structures- steel-fabrication and erection
- 5. Specification for various works- measurement and Billing
- 6. Architectural plan
- 7. Latest design and analysis civil Engineering software

Total No of Hrs: 45

VII SEMESTER

Subject Code:	Sub	oject Nan	ne :	OF STE	EL CTDI		FC		Ty / LB/	L	T/S.Lr	P/ R	С
EBCE22012			DESIGN	OF SIE	ELSIK	UCIUK	ES		ETL/IE				_
	Pre	requisite	: Structural	analysis					Ту	3	1/0	0/0	4
L : Lecture T : T T/L/ETL : Theo	rutorial ory/Lab/E	SLr : Su mbedded	Prevised L Theory ar	earning id Lab	P : Proje	ct R : Re	esearch C	: Credit	S				
OBJECTIVE	:												
To int	roduce t	he stude	nt to mate	rial beh	aviour a	nd Load	and Res	sistance	Factor De	sign met	hodology	7.	
• To des	ign and analyze tension members and compression members.												
COURSE OUT	SE OUTCOMES (COs) : (3-5)												
CO1	The stu	idents wo	ould have k	nowledg	e on the o	design of	structura	al steel n	nembers sub	jected to	compressi	ve, ten	sile
	and ber	and bending forces, as per current code.											
CO2	To und	erstand th	he connecti	ions and	their stru	ctural eff	ficiency						
CO3	Classif	y and des	sign the stru	uctural st	eel comp	onents o	f industri	al buildi	ing				
CO4	To ana	nalyze tension, compression and flexural members for the imposed load											
CO5	To dest	ign struct	ural systen	ns such a	s roof tru	sses and	gantry gi	irders					
Mapping of Co	ourse Ou	tcomes w	vith Progra	am Outc	omes (P	Os)							
COs/POs	PO1	1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										12	
CO1	3	3	3	3	1	3	1	1	2	1	2		3
CO2	3	3	3	3	1	3	1	1	2	1	2		3
CO3	3	3	3	3	1	3	1	1	2	1	2		3
CO4	3	3	3	3	1	3	1	1	2	1	2		3
CO5	3	3	3	3	1	3	1	1	2	1	2		3
COs / PSOs	PS	01	PSC)2									
CO1		3	3										
CO2	-	3	3										
CO3		3	3										
CO4		3	3										
CO5		3	3			4 1							
3/2/1 Indicates	Strength	n Of Cor	relation, 3	– High,	2- Medn	um, 1- L	ow						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
				v									

Subject Code:	Subject Name : DESIGN OF STEEL STRUCTURES	Ty / LB/ ETL/IE	L	T / S.Lr	P/ R	С			
EBCE22012	Prerequisite: Structural analysis	Ту	3	1/0	0/0	4			
L : Lecture T : Tuto	rial SLr : Supervised Learning P : Project R : Research C: Credit	S							
T/L/ETL : Theory/Lab/Embedded Theory and Lab									

UNIT I **INTRODUCTION**

Properties of steel – Structural steel sections – Limit State Design Concepts – Loads on Structures – Connections using rivets, welding, bolting – Design of bolted and welded joints – Eccentric connections - Efficiency of joints.

UNIT II TENSION MEMBERS

Types of sections – Net area – Net effective sections for angles and Tee in tension – Design of connections in tension members - Use of lug angles - Design of tension splice - Concept of shear lag

UNIT III COMPRESSION MEMBERS

Types of compression members – Theory of columns – Basis of current codal provision for compression member design - Slenderness ratio - Design of single section and compound section compression members - Design of laced and battened type columns - Design of column bases - Gusseted base

UNIT IV BEAMS

Design of laterally supported and unsupported beams – Built up beams – Beams subjected to uniaxial and biaxial bending – Design of plate girders - Intermediate and bearing stiffeners – Flange and web splices.

UNIT V **ROOF TRUSSES AND INDUSTRIAL STRUCTURES** 12 Hrs

Roof trusses – Roof and side coverings – Design of purlin and elements of truss; end bearing – Design of gantry girder.

TEXTBOOKS:

1. Gambhir. M.L., "Fundamentals of Structural Steel Design", McGraw Hill Education India Pvt. Ltd., 2013

2. Shiyekar. M.R., "Limit State Design in Structural Steel", Prentice Hall of India Pvt. Ltd, Learning Pvt. Ltd., 2 nd Edition, 2013.

3. Subramanian.N, "Design of Steel Structures", Oxford University Press, New Delhi, 2013.

REFERENCES:

1. Narayanan.R.et.al. "Teaching Resource on Structural Steel Design", INSDAG, Ministry of Steel Publications, 2002

2. Duggal. S.K, "Limit State Design of Steel Structures", Tata McGraw Hill Publishing Company, 2005 3. Bhavikatti.S.S, "Design of Steel Structures" By Limit State Method as per IS:800–2007, IK International Publishing House Pvt. Ltd., 2009

4. Shah.V.L. and Veena Gore, "Limit State Design of Steel Structures", IS 800–2007 Structures Publications, 2009.

5. IS 800 :2007, General Construction In Steel - Code of Practice, (Third Revision), Bureau of Indian Standards, New Delhi. 2007

Total No of Hrs: 60

12 Hrs

12 Hrs

12 Hrs

Subject Code:	Su	bject Na ESTI	me: MATION	AND Q	UANTIT	Y SURV	/EYING	r	Ty / LB/ ETL/IE	L	T / S.Lr	P/ R	С
EBCE22013	Pre	requisite	: None						Ty	3	1/0	0/0	4
L : Lecture T : T	Futorial	SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	C: Credit	s	1			
T/L/ETL : Theo	ory/Lab/E	mbedded	l Theory an	nd Lab									
OBJECTIVE :	1 .1 6		1										
To stuc	ly the ful	nctional p	olanning of	building	s as per s	tandards							
 To stud To stud 	ly the est	nortant si	pecification	ns necess	ary for th	nnation e works	in buildi	nas					
 To stud To stud 	ly the m	ncepts of	tenders an	d contrac	ts	ie works	in ounan	1155					
COURSE OUT	COME	OMES (COs) : (3- 5)											
At the end of the	is course	ourse the student shall be able to											
CO1	Prepar	Prepare various types of estimation and find out the quantity of works involved											
CO2	Unders	nderstand and Prepare specifications for various items of construction works											
CO3	Calcul	lculate the mortgage, lease and depreciation value of buildings											
CO4	Estima	imate the quantity of works involved in road works, water supply and sanitary works											
CO5	Carry	ry out analysis of rates and bill preparation											
Mapping of Co	urse Ou	tcomes v	vith Progra	am Outo	omes (P	Os)							
COs/POs	PO1	PO2	PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO10									12	
CO1	3	3	3	3	1	1	1	1	1	1	3		3
CO2	3	3	3	3	1	1	1	1	1	1	3		3
CO3	3	3	3	3	1	1	1	1	1	1	3		3
CO4	3	3	3	3	1	1	1	1	1	1	3		3
CO5	3	3	3	3	1	1	1	1	1	1	3		3
COs / PSOs	PS	501	PSC	02									
CO1		3	3										
CO2		3	3										
CO3		3	3										
CO4		3	3										
CO5		3	3										
3/2/1 Indicates	Strengtl	h Of Cor	relation, 3	– High,	2- Medi	um, 1- L	ow						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
				\checkmark									

Subject Code: Subject Name: Ty/LB/ L T/S.Lr P/R С ESTIMATION AND QUANTITY SURVEYING ETL/IE **EBCE22013** Prerequisite: None 3 1/0 0/0 4 Ty L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab

UNIT I ESTIMATION

Types of estimates- units of measurements-methods of estimates – advantages- estimation of load bearing and framed structures –estimate of quantities in residential building- calculation of quantities of brick work, RCC, PCC, white washing ,color washing and painting / varnishing – calculation of brick work and RCC works in arches – estimate of joineries for paneled and glazed doors ,windows, ventilators, handrails etc.

UNIT II ESTIMATE OF OTHER STRUCTURES

Estimating of septic tank, soak pit – Sanitary and water supply installations – Water supply pipe line – Sewer line – Tube well – Open well – Estimate of bituminous and cement concrete roads-estimation of retaining walls and culverts.

UNIT III SPECIFICATIONS AND TENDERS

Data –schedule of rates- analysis of rates-specifications-sources-detailed and general specifications – tenders- e-tender contracts- contracts types– preparation of tender notice and documents-arbitration and legal requirements

UNIT IV VALUATION

Necessity – basics of value engineering –capitalized value – depreciation and its methods – escalation _ value of building – calculation of standard rent – mortgage- lease.

UNIT V REPORT PREPARATION AND CASH FLOW

Principle of report preparation – report on estimate of residential building- commercial building -culvert – roads – water supply and sanitary installations – tube wells – open wells.

Total No of Hrs: 60

TEXT BOOKS

- 1. B.N.Dutta, Estimating And Costing In Civil Engineering –UBS publishers and distribution Pvt Ltd, 2003.
- 2. Mr. B.Kanagasabapathy, M/S. Ehilalarasi Kanagasabapathy, Practical Valuation Vol I, Thiruchirappalli, 1995.
- 3. Kohl, D.D and Kohli, R.C., "A Text Book of Estimating and Costing (Civil)", S.Chand & amp; CompanyLtd., 2004.
- 4. Rangwala, "Estimating, Costing and Valuation", Charotar Publishing House Pvt Ltd., 2012.

REFERENCES

- 1. G.S.Birdie, A Text Book On Estimating And Costing, Dhanpat Rai And Sons, New Delhi, 1995.
- 2. Mr. B.Kanagasabapathy, M/S. Ehilalarasi Kanagasabapathy, Fixation of Fair Rent, Thiruchirappalli, 1995.

12 Hrs

12 Hrs

12 Hrs

12 Hrs

Subject Code:	Sub	oject Nan	ne:						Ty / LB/	L	T/S.Lr	P/ R	С
			CONSTR	UCTION	N MANA	GEME	NT		ETL/IE				
EBCE22014													
	Pre	requisite	NONE						Ту	3	1/0	0/0	4
L : Lecture T : 7	Futorial	SLr : Su	pervised L	earning	P : Proje	ct R:Re	esearch C	: Credits	8				
T/L/ETL : Theo	ory/Lab/E	mbedded	l Theory an	ld Lab									
OBJECTIVE :													
To mail	ke the stu	dents aw	are of the v	various co	onstructio	on techni	ques and	practice	es.				
To intr	oduce a c	ice a concepts of projects formulation											
COURSE OUT	COMES	OMES (COs) : (3- 5)											
CO1	The stud	the student should be able to plan construction projects, schedule the activities using network diagrams											
CO2	Determi	rmine the cost of the project, control the cost of the project by creating cash flows and budgeting and to use											o use
	the proje	ject information as decision making tool											
CO3	Knowled	dge about different methods of planning											
CO4	Analyze	construc	construction documents for planning and management of construction processes										
CO5	Apply el	ectronic	ectronic based technology to manage the construction process										
Mapping of Co	ourse Ou	tcomes w	vith Progra	am Outc	omes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	РО	12
CO1	3	3	3	3	3	3	1	1	1	2	3		3
CO2	3	3	3	3	3	3	1	1	1	2	3		3
CO3	3	3	3	3	3	3	1	1	1	2	3		3
CO4	3	3	3	3	3	3	1	1	1	2	3		3
CO5	3	3	3	3	3	3	1	1	1	2	3		3
COs / PSOs	PS	01	PSC)2									
CO1		3	3										
CO2		3	3										
CO3		3	3										
CO4		3	3										
CO5		3	3										
3/2/1 Indicates	Strength	n Of Cor	relation, 3	– High,	2- Medu	1m, 1- L	ow			1			
		~	al										
	S	JCe	ocii		es	s	y	Ħ	sct				
Category	lice	cieı	1 S	ore	ctiv	ive	inar	inei	roje				
	cieı	ο Ω	and nce	m C	Ele	lect	ildi:	npc	P				
	ic S	erin	ties	grai	am	nΕ	disc	coi	cal				
	3 asi	inea	ami S	Pro	ogra	Dpe	ntero	kill	acti				
	I	gung	mn		Pr	0	Ir	S	Pr				
		H	H										
				v									
Subject Code:	Subject Name: CONSTRUCTION MANAGEMENT	Ty / LB/ ETL/IE	L	T / S.Lr	P/ R	C							
----------------------	---	--------------------	---	----------	------	---							
EBCE22014													
	Prerequisite: NONE	Ту	3	1/0	0/0	4							
L : Lecture T : Tuto	rial SLr : Supervised Learning P : Project R : Research C: Credit	S											
T/L/ETL : Theory/L	ab/Embedded Theory and Lab												

UNIT I NETWORK TECHNIQUES

Introduction to network techniques - Use of CPM and PERT for planning - Scheduling and control of construction work, bar charts Error in networks, Types of nodes and node numbering systems.

UNIT II CONSTRUCTION PLANNING 12 Hrs

Basic concepts in the development of construction plan - Planning for construction and site facilities using networks - Preparation of construction schedules for jobs, materials, and equipment using CPM.

UNIT III COST CONTROL OF CONSTRUCTION

Construction quality control and inspection - Significance of variability and estimation of risks - Construction cost control - Crashing of networks.

UNIT IV QUALITY AND SAFETY DURING CONSTRUCTION 12 Hrs

Importance of Quality and safety – Organizing for quality and safety – safety measures – Prevention of fire at construction site – Elements and organization of quality - Quality assurance techniques.

UNIT V MANAGEMENT INFORMATION SYSTEM 12 Hrs

Definition of MIS – Requirement of MIS – Database approach – Types of project information – Accuracy and use of information.

Total No of Hrs: 60

12 Hrs

12 Hrs

TEXT BOOKS

- 1. Chitkara, K.K "Consruction Project Management Planning "Scheduling And Control, Tata Mc Graw Hill Publishing Co., Newdelhi, 1998.
- 2. S. Seetharaman Construction Engineering & Management, Dhanpat Rai Publications ,Pune,1995.

REFERENCES

- 1. Construction Management Sangareddy And Meyyappan, Prathibha Publications, Cbe, 1994.
- 2. Moder. J., C. Phillips And Davis, "Project Management With Cpm, Pert And Precedence Diagramming, 1999.
- 3. Prasanna Chandra, " Project Management ", Tmh ,New Delhi,1997.

Subject Code:	Sul T	oject Nai RANSPO	ne : DRTATIO	N ENGI	NEERIN	IG			Ty / LB/ ETL /IE	L	T / S.Lr	P/ R	C
EBCE22015									ETE/IE				
	Pre	requisite	Soil Mech	nanics, Su	urveying				Ту	3	0/0	0/0	3
L : Lecture T : 7	Futorial	SLr : Su	pervised L	earning	P : Proje	ct R:Re	esearch C	: Credits	5				
T/L/ETL : Theo	ry/Lab/E	mbedded	Theory an	ld Lab									
OBJECTIVE :							_						
• To uno	derstand t	the aspec	ts of design	n, constru	iction and	d mainter	nance of	tracks fo	or the safe a	nd efficie	nt moven	ent of p	oublic
and go	ods.		.1. J f 41				- f II: -1		ant daalaa l	.			1-
• To hav	e an ove	obility to	ledge of tr	ie design	and cons	struction	of Highv	vay, airp	ort, docks, l	narbors a	nd ports a	s a who	e.
COURSE OUT	COMES	OMES (COs) : (3-5)											
CO1	Thorou	$\frac{1}{2}$ gh know	ledge on pl	anning a	lesign co	onstructio	on of hig	hwav ra	ilway airno	ort and do	cks		
	Ability	to undo	retand nla	nning of	onstructi	on and r	nointono		nets of high	hwave D	oilwove	Airport	and
02	Harbor	to unde	istanu pia	ming, co	onstructio	Jii aliu i	nannena	lice aspe	tets of high	liways, K	anways,	Anpon	, and
CO3	Ability	Ability to take up challenging practical problems and find solution								proper n	nethodolog	gy	
CO4	Analyz	Analyze the geometric aspects to plan the shortest route											
CO5	Evaluat	Evaluate the requirements for construction of docks and harbors											
Mapping of Co	urse Ou	tcomes w	vith Progra	am Outc	omes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	3	3	3	2	3	1	1	1	1	3		3
CO2	3	3	3	3	2	3	1	1	1	1	3		3
CO3	3	3	3	3	2	3	1	1	1	1	3		3
CO4	3	3	3	3	2	3	1	1	1	1	3		3
CO5	3	3	3	3	2	3	1	1	1	1	3		3
COs / PSOs	PS	01	PSC)2									
CO1		3	3										
CO2		3	3										
CO3		3	3										
CO4		3	3										
CO5		3	3										
3/2/1 Indicates	Strength	Of Cor	relation, 3	– High,	2- Mediu	1m, 1- L	ow			1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
				v									

Subject Code: EBCE22015	Subject Name : TRANSPORTATION ENGINEERING	Ty / LB/ ETL/IE	L	T / S.Lr	P/ R	С
	Prerequisite: Soil Mechanics, Surveying	Ту	3	0/0	0/0	3
L : Lecture T : Tuto T/L/ETL : Theory/L	rial SLr : Supervised Learning P : Project R : Research C: Credit ab/Embedded Theory and Lab	S				

UNIT I : HIGHWAY PLANNING AND ALIGNMENT

Significance of highway planning -History of road development in India - Classification of highways -Locations and functions - Factors influencing highway alignment - Soil suitability analysis - Engineering surveys for alignment, objectives, conventional and modern methods.

UNIT II: GEOMETRIC DESIGN OF HIGHWAYS

Typical cross sections of Urban and Rural roads - Cross sectional elements - Sight distances - Horizontal curves, Super elevation, transition curves, widening at curves - Vertical curves - Gradients, Special consideration for hill roads - Hairpin bends - Lateral and vertical clearance at underpasses.

UNITIII: RAILWAYS PLANNING CONSTRUCTION AND MAINTENANCE

Elements of permanent way - Rails, Sleepers, Ballast, rail fixtures and fastenings, - Track Stress, coning of wheels, creep in rails, defects in rails - Geometric design of railways, gradient, super elevation, widening of gauge on curves- Points and Crossings. Tunneling Methods, drainage and ventilation -Calculation of Materials required for track laying - Construction and maintenance of tracks - Modern methods of construction & maintenance

UNIT IV: AIRPORT PLANNING & DESIGN

Airport planning, components of airports, airport site selection Runway design- orientation, geometric design and correction for gradients Terminal area, airport layout, airport buildings, passenger facilities, parking area and airport zoning

UNIT V: HARBOUR ENGINEERING

Definition of terms - harbors, ports, docks, tides and waves. Harbors - requirements, classification - site investigation for locations, planning and layouts Terminal facilities - port buildings, warehouse, transit sheds, inter-modal transfer facilities, mooring accessories, navigational aids coastal structures piers, breakwaters, wharves, jetties, quays.

Total No of Hrs: 45

TEXT BOOKS

- Saxena Subhash C and Satyapal Arora, A Course In Railway Engineering, Dhanpat Rai And Sons, Delhi, 1. 1998.
- 2. Khanna S K, Arora M G and Jain S S, Airport Planning And Design, Nemchand And Brothers, Roorkee, 1994.
- 3. Khanna K And Justo C E G, Highway Engineering, Khanna Publishers, Roorkee, 2001.
- Kadiyali l r, Principles and Practice of Highway Engineering, Khanna technical Publications, Delhi 4.
- Dr K.P.Subramaniyam, Transportation Engineering, Scitech Publishers, Chennai 2003 5.

REFERENCES

- 1. IRC standards, 2002
- 2. Bureau of Indian Standards (bis) publications on highway materials, 1998
- 3. Rangwala, Railway Engineering, Charotar Publishing House, Mumbai, 1995

9 Hrs

9 Hrs

9 Hrs

10 Hrs

Subject Code: EBCE22L09	Su	ıbject Nan	ne: Struct	ural desi	ign studi	0			Ty / LB/ ETL/IE	L	T/S.Lr	P/ R	С
	Pr	erequisite	: Structural	Analysi	s				Lb	0	0/0	3/0	1
L : Lecture T : T T/L/ETL : Theo	Tutorial pry/Lab/	SLr : Su Embedded	pervised L I Theory ar	earning nd Lab	P : Proje	ct R : Re	esearch C	: Credit	S				
OBJECTIVE :													
Studen	t should	be aware	of comput	er applic	ation of s	structural	design						
COURSE OUT	COME	ES (COs)	: (3-5)										
CO1		Verify the	oretical for	mulas by	conduct	ing expe	riments						
CO2	1	Analyze statically determinate beams, trusses											
CO3	I	Develop p	rojects base	ed on ind	ustrial ar	nd field re	equireme	nts					
CO4]	Determine	deflection	s of bean	ns and fra	ames usir	ng classic	al meth	ods				
CO5	1	Analyze th	e bridge de	ecks for 1	noving lo	bads							
Mapping of Co	ourse O	utcomes v	vith Progr	am Outc	comes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	3	3	3	3	3	1	2	3	1	3		3
CO2	3	3	3	3	3	3	1	2	3	1	3		3
CO3	3	3	3	3	3	3	1	2	3	1	3		3
CO4	3	3	3	3	3	3	1	2	3	1	3		3
CO5	3	3	3	3	3	3	1	2	3	1	3		3
COs / PSOs	P	SO1	PSO	02									
CO1		3	3										
CO2		3	3										
CO3		3	3										
CO4		3	3										
CO5		3	3										
3/2/1 Indicates	Strengt	th Of Cor	relation, 3	– High,	2- Medi	um, 1- L	ow			-			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
				v					v				

Subject Code: EBCE22L09	Subject Name: Structural design studio	Ty / LB/ ETL/IE	L	T / S.Lr	P/ R	С
	Prerequisite: Structural Analysis	Lb	0	0/0	3/0	1
L : Lecture T : Tuto T/L/ETL : Theory/L	rial SLr : Supervised Learning P : Project R : Research C: Credit .ab/Embedded Theory and Lab	S				

LIST OF EXPERIMENTS

- 1. Program for Design of Slabs. Using Excel
- 2. Program for Design of Beams. Using Excel
- 3. Program for Design of Column and Footing Using Excel
- 4. Introduction to staad pro Joint, Member/Element, Mesh Generation with flexible user-controlled numbering
- 5. Analyse and design any beam with any loading type and any kind of supports.
- 6. Analyse and design of any 2D Frame with any loading type for any load sets.
- 7. Portal frame with 5 load combinations- Analysis
- 8. Analyse steel structures with truss elements.

Total No of Hrs: 45

TEXT BOOKS

- 1. N.Krishna Raju "Design of Reinforced Concrete Structures", CBS publishers & Distributors. Latest Edition, IS456:200.
- 2. S.Ramamrudham ,Design of Reinforced Concrete Structures, Dhanpat Rai publishing company(p) Ltd New Delhi.
- 3. Varghese P C, Limit State Design of Reinforced Concrete, Prentice Hal of India, Private, Limited New Delhi, 1997.
- 4. Bhavikatti.S.S, "Design of Steel Structures" By Limit State Method as per IS:800–2007, IK International Publishing House Pvt. Ltd., 2009
- 5. Duggal. S.K, "Limit State Design of Steel Structures", Tata McGraw Hill Publishing Company, 2005

REFERENCES

- 1. Dayarathnam.P, Brick and Reinforced Brick Structures, Oxford and IBH Publishing House, 1999.
- 2. IS: 456- 2000 "Indian Standard for Plain and reinforced concrete code of practice "Bureau of Indian Standard".
- 3. Design aids to IS 456-1978 (SP16).
- 4. SP 34 Handbook on Concrete Reinforcement and Detailing, BIS 1987.
- 5. IS 800 :2007, General Construction In Steel Code of Practice, (Third Revision), Bureau of Indian Standards, New Delhi, 2007
- 6. Narayanan.R.et.al. "Teaching Resource on Structural Steel Design", INSDAG, Ministry of Steel Publications, 2002

Subject Code:	S	ubject N	ame : TF	RANSPO	RTATIO	ON ENG	INEER	ING	Ty / LB/	L	T/S.Lr	P/ R	С	
EBCE22L10				LA	BORAT	ORY			ETL/IE					
	Pre	requisite:	: Transport	ation Eng	gineering				Lb	0	0/0	3/0	1	
L : Lecture T : 7	Futorial	SLr : Su	pervised L	earning	P : Proje	ct R:Re	esearch C	C: Credit	8	1 I				
T/L/ETL : Theo	ry/Lab/E	mbedded	l Theory an	d Lab										
OBJECTIVE :	The ob	jectives	of these lal	ooratory	experime	ents are t	o determ	ine spec	ific gravity	(bulk and	1 apparent), absor	ption	
capacity, and fin	neness mo	odulus of	a fine agg	regate sa	mple and	to plot a	gradatio	on curve	for the samp	ple.				
COURSE OUT	COMES	6 (COs) :	: (3- 5) At	the end o	of the cou	rse the st	tudent sh	all posse	esses					
CO1	Know a	bout the	different pi	operties	of materi	al used i	n constru	ction of	roads					
CO2	Underst	and the in	mportance	of aggre	gates use	d in high	way cons	struction						
CO3	Determi	ine the ch	aracteristic	cs of pav	ement ma	aterials	-							
CO4	Analyze	vze the deflection of pavement through Benklemann Beam appa							tus					
CO5	Evaluat	e the suit	ability of b	itumen to	be used	for road	construc	tion bas	ed on the te	sts carried	d out			
Mapping of Co	urse Ou	tcomes w	vith Progra	am Outc	omes (P	Os)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	
CO1	3	2	3	2	3	3	1	2	3	1	1		3	
CO2	3	2	3	2	3	3	1	2	3	1	1		3	
CO3	3	2	3	2	3	3	1	2	3	1	1		3	
CO4	3	2	3	2	3	3	1	2	3	1	1		3	
CO5	3	2	3	2	3	3	1	2	3	1	1		3	
COs / PSOs	PS	01	PSC)2										
<u>CO1</u>		3	3						_					
C02		5	3											
C03		2	3								-			
C05		3	3											
3/2/1 Indicates	Strength	Of Cor	relation, 3	– High,	2- Mediı	ım. 1- L	ow							
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project					
				\checkmark					\checkmark					

Subject Code:	Subject Name : TRANSPORTATION ENGINEERING	Ty / LB/	L	T/S.Lr	P/ R	С
EBCE22L10	LABORATORY	ETL/IE				
	Prerequisite: Transportation Engineering	Lb	0	0/0	3/0	1
L : Lecture T : Tuto T/L/ETL : Theory/L	rial SLr : Supervised Learning P : Project R : Research C: Credit .ab/Embedded Theory and Lab	S				

LIST OF EXPERIMENTS

- 1. CBR Test of Given soil sample.
- 2. Grading Of aggregates.
- 3. Water Absorption Test on aggregates
- 4. Abrasion test on aggregates.
- 5. Impact Test On aggregates
- 6. Bitumen tests
- 7. Benklemann Beam apparatus.

Total No of Hrs: 45

TEXT BOOKS

- 1. Khanna, S.K., Justo, C.E.G. and Veeraragavan, A., "Highway Materials and Pavement Testing", Nem Chand & Bros., Roorkee
- 2. G. Venkatappa Rao, K. Ramachandra Rao, Kausik Pahari and D.V. Bhavanna
- 3. Rao., "Highway Material Testing and Quality Control", I.K. International.
- 4. L.R.Kadiyali and N.B Lal., "Principles and Practices of Highway Engineering", Khanna Publishers.

REFERENCES

- 1. IRC standards, 2002
- 2. Bureau of Indian Standards (bis) publications on highway materials, 1998
- 3. Rangwala, Railway Engineering, Charotar Publishing House, Mumbai, 1995

									1				
Subject Code:	S	ubject Nan	ne: PROJ	ЕСТ РН	ASE-I				Ty / LB/	L	T / S.Lr	P/ R	С
EBCE22105									ETL/IE				
	Р	rerequisite	ALL						IE	0	0/0	3/3	2
L : Lecture T : 7	Futoria	l SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	C: Credit	S				
T/L/ETL : Theo	ry/Lab	/Embedded	Theory an	id Lab									
OBJECTIVE :													
To guid	de the	students su	ch a way t	hat the st	tudents c	arry out	a compre	ehensive	work on th	e choser	n topic whi	ch will	stand
them in	n good	stead as the	ey face real	life situa	ations.								
COURSE OUT	COM	ES(COs):	(3-5)	1	. 1. 1	1'		1 11					
		Work in a	team and d	evelop n	nultidisci	plinary, r	research s	SKIIIS					
CO2		Understand	1 how to 1d	entify the	e issues a	ind challe	enges of	industry	<u> </u>				
CO3		Prepare rep	port on the	applicati	on of em	erging te	chnologi	es in the	e Constructio	on indus	try		
CO4		Explore in	novative id	eas in ci	vil engine	eering de	sign field	1					
CO5		Develop de	elop design projects based on industrial and field requirements										
Mapping of Co	urse O	outcomes w	ith Progra	am Outc	comes (P	Os)		1					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	3	3	3	3	3	3	3	3	3	3		3
CO2	3	3	3	3	3	3	3	3	3	3	3		3
CO3	3	3	3	3	3	3	3	3	3	3	3		3
CO4	3	3	3	3	3	3	3	3	3	3	3		3
CO5	3	3	3	3	3	3	3	3	3	3	3		3
COs / PSOs		<u>PSO1</u>	PSC)2									
		3	3										
		3	3										
C03		3	3										
C04		3	3										
UUS 3/2/1 Indicates	Strong	3 ith Of Cor	selation 3	High	2- Medi	um 1. I	OW						
5/2/1 malcates	Streng			mgn,	2- Micui								
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
				•					•				

Subject Code: EBCE22I05	Subject Name: PROJECT PHASE-I	Ty / LB/ ETL/IE	L	T / S.Lr	P/ R	С
	Prerequisite: ALL	IE	0	0/0	3/3	2
L : Lecture T : Tuto T/L/ETL : Theory/L	rial SLr : Supervised Learning P : Project R : Research C: Credit .ab/Embedded Theory and Lab	S				

Students are expected to do the Project in a group of 3 to 4 students. They should identify the area/topic of the Project and should collect the literatures related to the project. Students intending to do Industrial projects will approach the industries with the support of the university, identify the industrial problem and finalize the project. In case of Industrial projects apart from Industry guide, a guide has to be appointed by the department. At the end of the Semester the students should submit their Project Phase - I report to the Department and Viva -Voce examination will be conducted by the examiners duly appointed by the Head of the department.

OBJECTIVE

To guide the students such a way that the students carry out a comprehensive work on the chosen topic which will stand them in good stead as they face real life situations

- The project work is to enable the students to work in convenient groups of not more than four members in a group on a project involving theoretical and experimental studies related to civil engineering. Every project work shall have a guide who is a member of the faculty of the university.
- Each student shall finally produce a comprehensive report covering background information, literature survey, problem statement, project work details and conclusions. This final report shall be typewritten form as specified in the guidelines.
- The continuous assessment and semester evaluation may be carried out as specified in the guidelines to be issued from time to time.

Total No of Hrs: 45

Subject Code:	Su	bject Nai	me :					Ty / LB/	L	T/S.Lr	P/ R	С		
				Foreign	Languag	ge			ETL/IE					
EBFL22IXX	Pre	requisite	: NIL						IE	1	0/0	1/0	1	
L : Lecture T : T	Futorial	SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	C: Credit	s			•		
T/L/ETL : Theo	ory/Lab/E	mbedded	Theory ar	nd Lab										
OBJECTIVE :														
To rec	ognize th	ne cultura	l values, pi	ractices, a	and herita	age of the	e foreign	country	, communic	ate effect	ively in a	foreign		
langua	ige and ir	nteract in	a culturall	y appropi	riate man	ner with	native sp	eakers o	of that langu	age.				
COURSE OUT	COME	S (COs) :	: (3- 5)											
CO1	Achiev	ve functio	onal profici	ency in l	istening,	speaking	, reading	, and wr	iting.					
CO2	Develo	op an insi	nsight into the nature of language itself, the process of language and culture acquisition.											
CO3	Decod	e, analyz	e, and inter	nterpret authentic texts of different genres.										
Mapping of Co	ourse Ou	tcomes w	vith Progr	am Outcomes (POs)										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO9	PO10	PO11	PO	12		
CO1	1	1	1	1	1	3	1	3	2	3	3		1	
CO2	2	1	1	1	1	3	1	3	3	3	3		1	
CO3	1	1	2	2	1	3	2	3	2	3	3		1	
COs / PSOs	PS	601	PSC	02				-						
CO1		3	3											
CO2		3	3											
CO3		3	3											
3/2/1 Indicates	Strengtl	n Of Cor	relation, 3	– High,	2- Medi	um, 1- L	ow							
		s	al											
	s	nce	oci		es	s	λ.	at	ğ					
Category	icei	ciei	S I S	ore	ctiv	ive	naı	neı	Oje					
	cier	Ň	and	υC	Шe	ect	ipli	odu	/ Pı					
	° Sc	ling	es	ran	m]	EI	isc	noc	al					
	asic	leel	Sc	rog	gra	pen	erd	ill c	ctic					
	Bá	ıgi	ma	La Chiller Chiller Chiller										
		Er	Hu											
			\checkmark											

Subject Code:	Subject Name :	Ty / LB/	L	T/S.Lr	P/ R	С
	Foreign Language	ETL/IE				
EBFL22IXX	Prerequisite: NIL	IE	1	0/0	1/0	1
L : Lecture T : Tuto	rial SLr : Supervised Learning P : Project R : Research C: Credit	S				
T/L/ETL : Theory/L	.ab/Embedded Theory and Lab					

Foreign language is introduced in the curriculum to make the students globally employable. Students should select and register for any one of the foreign languages from the given list. At the end of the course students should be able to read, write and converse the language in the basic level. At the end of the semester the assessment will be done through internal examination by the examiner duly appointed by the head of the department.

LIST OF FOREIGN LANGUAGES

- 1. French language
- 2. German language
- 3. Japanese language
- 4. Arabic language
- 5. Chinese language
- 6. Russian language
- 7. Spanish language

Total No of Hrs: 30

VIII SEMESTER

Subject Cod	le:	Sub	oject Nan	ne: TOTA	L QUAI	LITY M	ANAGE	MENT		Ty / LB/	L	T/	P/ R	C
EDCC22ID3	,									ETL/IE		S.Lr	0.10	
		Pre	requisite:	Nil				1.0		Ту	3	0/0	0/0	3
L : Lecture T T/L/ETL : T	: Tutori heory/La	al b/E	SLr : Su mbedded	Prevised L Theory ar	earning	P : Proje	ct R : Re	esearch C	: Credit	S				
OBJECTIV	E :													
The student	will lea	rn:												
	• T	o ac	quaint th	e students	with the	basic con	cept of T	otal Qua	lity (TQ)				
	• T	o un	derstand	the custon	ners' exp	ectations	and plan	TQM ac	cording	ly				
	• T	o gi	ve unders	stand Inter	mational	Quality O	Certificat	ion Syste	ems – IS	O 9000 and	other star	ndards		
	• T	o un	derstand	concepts r	elated to	quality c	of service	s in conte	emporar	y environm	ent			
COURSE O		AES	$\frac{6(COs)}{1}$: (3-5) St	udents w	$\frac{111}{2}$ be abl	e to							
COI	Unders	stand	d the Qua	ality Policie	es (Level	. 2)								
CO2	Unders	stand	d the Cor	ncepts of T	otal Qua	lity Mana	igement ((Level 2)						
CO3	Apply	Tota	al Quality	y Managen	nent tools	s in Indus	stry (Lev	el 3)						
CO4	Apply	the	Modern t	tools of Qu	ality Co	ntrol (Lev	vel 3)							
CO5	Acquir	ing	knowled	ge about M	Iodern Ti	rends and	l Concep	ts in Mar	nufacturi	ng Manage	ment (Lev	/el 2)		
Mapping of	Course	Out	tcomes w	vith Progra	am Outc	omes (P	Os)							
COs/POs	PO	1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3		-	2	3	3	-	-	3	3	2	3		2
CO2	-		3	2	-	-	3	-	3	2	3	-		2
CO3	3		2	-	2	2	-	3	2	-	2	2		2
CO4	-		-	3	3	3	-	3	2	2	2	2		2
CO5	3		3	3	3	3	3	-	2	3	2	2		2
COs / PSOs		PS	01	PSC	02	PS	03	PS	SO4					
CO1			-	2		-	3		3					
CO2		-	-	2		,	3		3					
CO3			-	2		-	3		3					
CO4			-	2		-	3		3					
CO5			-	2			3		3					
3/2/1 Indicat	tes Strei	igth	Of Cor	relation, 3	– High,	2- Medi	um, 1- L	ow			Ι			
Category	Basic Sciences		Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
								v						

Subject Code: Subject Name: TOTAL QUALITY MANAGEMENT Ty / LB/ L Τ/ P/R С EBCC22ID3 ETL/IE S.Lr 3 0/0 0/0 3 Prerequisite: Nil Ty L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab

UNIT-I QUALITY POLICY, PLANNING AND MANAGEMENT

Evolution of quality as a strategy- Definitions of quality, Quality Philosophies of Deming, Crosby and Miller, Service Vs product Quality, Customer focus, Quality and Business performance leadership for quality management, Quality planning, Designing for Quality and Manufacturing for Quality, Vision, Mission statements and Quality policy.

UNIT - II BASIC CONCEPTS F TOTAL QUALITY MANAGEMENT

Total Quality management- TQM models, human and system Components, Continuous Improvement Strategies, Deming wheel, Internal External Customer concept, Customer satisfaction Index, Customer retention, Team work and team building, Empowerment, TQM culture, Quality Circle, 5S principle, Top Management commitment.

UNIT - III QUALITY MANAGEMENT TOOLS

Quality management tools - Principles and applications of quality Function deployment, Failure Mode and Effect Analysis (FMEA), Taguichi Techniques, Basic tools- Statistical techniques and graphical tools and diagrams.

UNIT - IV VARIOUS CONCEPTS OF QC TECHNIQUES

Modern OC techniques - Japanese Production Related Techniques: Just in time (JIT) – Quality circles – Total productive maintenance (TPM) - Kaizen - Kanban - 5S concepts - Toyota production systems - JIDOKA -ANDON etc. Concepts on quality management systems (QMS - ISO 9000 - 2000) - Environmental Management Systems (EMS – ISO – 14000)

UNIT- V MODERN TREND AND CONCEPTS IN MANUFACTURING MANAGEMENT

9 Hrs

Modern Trend and Concept in Manufacturing Management: Business processes reengineering (BPR) - Lean / flexible - manufacturing systems - Six sigma concepts. Quality Leadership-Quality Awards - Quality Tools-Quality Function Deployment.

Total No of Hrs: 45

Reference Books:

- 1. Jill A. Swift, Joel E.Ross and Vincent K.Omachonu, Peinciples of Total Quality, St.Lucie Press, US, 1998.
- 2. Samuel K.Ho, TQM, An integrated approach, kogan page India Pvt Ltd, 2002
- 3. Dale H.N Besterfield et al, Total Quality management, Pearson Education Asia, 2001
- 4. RoseJ.E. Total Quality ManagementKogan page India Pvt Ltd, 1993.
- 5. Mullar Max,' Essentials of Materail Management, Amacom

9 Hrs

9 Hrs

9 Hrs

	~	1	DDO O		A CITE TT				m (7.5.)	· • ·	m (D/-	~
Subject Code: EBCE221 11	Su	ibject Nam	ne: PROJ	ECT PH	ASE-II				Ty / LB/	L	T/	P/ R	C
EDCE22L11									ETL/IE		S.Lr	10.00	
	Pr	erequisite:	ALL					~	Lb	0	0/0	12/12	8
L: Lecture $T:T$	l'utorial	SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	C: Credit	S				
1/L/EIL: Theo	ry/Lab/I	Embedded	Theory an	la Lab									
OBJECTIVE :													
The ol group	ojective on a pro	of project	work is to ving theore	enable t tical and	he studer experim	nts to wo ental stu	rk in con dies relat	venient ed to civ	groups of n vil engineeri	ot more ng.	than fou	r memł	ers in a
COURSE OUT	COME	ES (COs) :	(3-5) St	udents w	ill be abl	e to							
CO1	V	Work in a	team and d	evelop n	nultidisci	plinary, 1	research s	skills					
CO2	τ	Understand	l how to id	entify the	e issues a	and challe	enges of	industry					
CO3	I	Prepare rep	port on the	applicati	on of em	erging te	chnologi	es in the	Construction	on indust	ry		
CO4	I	Explore in	novative id	eas in civ	vil engine	eering de	sign field	1					
CO5	Ι	Develop de	esign proje	cts based	l on indus	strial and	field req	luiremer	nts				
Mapping of Co	urse Oi	utcomes w	ith Progra	am Outc	omes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 P	012
CO1	3	3	3	3	3	3	3	3	3	3	3		3
CO2	3	3	3	3	3	3	3	3	3	3	3		3
CO3	3	3	3	3	3	3	3	3	3	3	3		3
CO4	3	3	3	3	3	3	3	3	3	3	3		3
CO5	3	3	3	3	3	3	3	3	3	3	3		3
COs / PSOs	P	SO1	PSC)2									
CO1		3	3										
CO2		3	3										
CO3		3	3						_				
CO4		3	3						_				
CO5	<u></u>	3	3	TT! - 1.	2 M. P.								
3/2/1 Indicates	Strengt		relation, 5	– Hign,	2- Mean	um, 1- L	ow						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
				v					V				

Subject Code: EBCE22L11	Subject Name: PROJECT PHASE-II	Ty / LB/ ETL/IE	L	T / S.Lr	P/ R	C
	Prerequisite: ALL	Lb	0	0/0	12/12	8
L : Lecture T : Tuto T/L/ETL : Theory/L	rial SLr : Supervised Learning P : Project R : Research C: Credit .ab/Embedded Theory and Lab	S				

To make the students to make use of the knowledge and skill developed during their four years of study and to apply them for making an innovative product/process for the development of society and industries. Students are expected to do a Project work either in an Industry or at the University in the field of relevant Engineering /interdisciplinary /multi-disciplinary area in a group of 3 or 4 students. The work to be carried out in Phase II should be continuation of Phase I. Each group will be allotted a guide based on the area of Project work. In case of industrial Project external guide has to be allotted from Industry. Inter disciplinary/multi-disciplinary project can be done with students of different disciplines as a group. Monthly reviews will be conducted during the semester to monitor the progress of the project by the project review committee. Students have to submit the Project thesis at the end of the semester and appear for the Project Viva-Voce examination conducted by the examiners duly appointed by the Controller of Examination. In case of industrial project certificate in proof has to be included in the report along with the bonafide certificate.

OBJECTIVE

- The objective of project work is to enable the students to work in convenient groups of not more than four members in a group on a project involving theoretical and experimental studies related to civil engineering.
- Every project work shall have a guide who is a member of the faculty of the university.
- Fourteen periods per week shall be allotted in the time table for this important activity and this time shall be utilized by the students to receive directions from the guide, on library reading, laboratory work, computer analysis or field work as assigned by the guide and also to present in periodical seminars the progress made in the project.
- Each student shall finally produce a comprehensive report covering background information, literature survey, problem statement, project work details and conclusions.
- Final report shall be typewritten form as specified in the guidelines. The continuous assessment and semester evaluation may be carried out as specified in the guidelines to be issued from time to time.

PROGRAM ELECTIVE - I

Subject Co EBCE22E	ode: 01	S	ubject	Name : ENGII	: NEERI	NG GE	OLOG	Y		Ty/Lł ETL/)/ IE	L	T / S.Lr	P/ R	C
		Pı	rerequis	ite: No	ne					Ty		3	0/0	0/0	3
L : Lecture	e T : Tı	itoi	rial SI	r : Sup	ervised	Learnii	ng P:F	Project	R : Re	esearch	C: Credits				
T/L/ETL :	Theory	y/L	ab/Emb	edded	Theory	and Lat	5	U U							
OBJECTI	VE :														
• T	o unde	rsta	and the	importa	nce of g	geologia	cal knov	wledge	such a	as earth	, earthqual	te and t	o apply	this	
knowledge	in pro	jec	ts such	as dam	s, tunne	ls, bridg	ges, roa	ds, airp	ort an	d harbo	r as well a	s to cho	oose typ	es of	
foundation															
COURSE	OUT	C O 2	MES (O	C Os) : ((3- 5) A	At the er	nd of the	e course	e, the	student	will be ab	le to:			
CO1		Id	lentify a	nd clas	sify roc	k using	basic g	eologic	class	ification	n systems				
CO2		U	ndersta	nd geol	ogic co	ncepts a	ind appi	roaches	•						
CO3		Id	lentify t	he vario	ous lithe	ological	units a	nd its a	pplica	tions in	civil engi	neering			
CO4		A	nalyze t	the diffe	erent ro	cks and	minera	ls based	l on th	neir pro	perty				
CO5		E	valuate	the geo	ological	conditi	ions nec	cessary	for co	nstructi	ion of dam	s, tunn	els, buil	ding	s and
		ro	ad cutti	ngs				(7.0							
Mapping of	of Cou	rse	rse Outcomes with Program Outcomes (POs)												
COs/POs	<u>P0</u>	01	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	1	<u>PO9</u>	PO10	PO1		<u>°012</u>
<u>CO1</u>	3		2	2	3	3	3	2		1	1	1	2		3
<u>CO2</u>	3		2	2	3	3	3	2		1	1	1	2		3
<u>CO3</u>	3		2	2	3	3	3	2		1	1	1	2		3
<u>CO4</u>	3		2	2	3	3	3	2		1	1	1	2		3
<u>CO5</u>		DC	2	2	3	3	3	2		1	1	1	2	_	3
COS /		PS	01	PS	02										
<u>PSUs</u>		_	,		,									_	
) ,		<u>,</u>										
$\frac{CO2}{CO3}$			2		2									_	
$\frac{cos}{cos}$		-	3		2										
CO5		-	3		3										
3/2/1 India	ates S	tre	ngth O	f Corre	elation.	3 – His	gh, 2- N	1edium	, 1- L	/OW					
Category	s		0	d SS			ŝ	<u>y</u>	nt		sct				
	Basic Science		Engineering Sciences	Humanities an Social Science	Program Core	Program Electives	Open Elective	Interdisciplina	Skill compone		Practical / Projo				
						~									

Subject Code:	Subject Name :	Ty/Lb/	L	Τ/	P /	С
EBCE22E01	ENGINEERING GEOLOGY	ETL/IE		S.Lr	R	
	Prerequisite: None	Ту	3	0/0	0/0	3
L : Lecture T : T	utorial SLr : Supervised Learning P : Project R	: Research C: Credit	S			
T/L/ETL : Theor	y/Lab/Embedded Theory and Lab					

UNIT I GENERAL GEOLOGY

Geology in civil engineering - branches of geology - earth structure and composition - elementary knowledge on continental drift and plate tectonics. Seismo tectonics of the Indian plate, seismic zones of India, Weathering - work of rivers, wind, glaciers.

UNIT II MINERALOGY

Physical properties of minerals - study of rock forming minerals - quartz family. Feldspar family, augite, hornblende, biotite, muscovite, calcite, garnet - properties, behavior and engineering significance of clay minerals –fundamentals of process of formation of ore minerals - coal and petroleum - their origin and occurrence in India.

UNIT III PETROLOGY

Classification of Soil and Rock, Types of rock and origin: Igneous (extrusive and intrusive), sedimentary and metamorphic rocks, description occurrence, engineering properties of following rocks. Igneous rocks - granite, diorite, gabbro, pegmatite, dolerite and basalt sedimentary rocks sandstone, limestone, shale, conglomerate and breccia. Metamorphic rocks, quartzite, marble, slate, phyllite, gneiss and schist.

UNIT IV STRUCTURAL GEOLOGY AND GEOPHYSICAL METHOD

Strength Behavior of Soil and Rock, Stress and strain in rock, failure and shear failure of soil and rock, folds, faults and joints in rock, consequences of failure (earthquakes), Bearing on engineering construction. Seismic and electrical methods for civil engineering investigations.

UNIT V GEOLOGICAL INVESTIGATIONS IN CIVIL ENGINEERING

Geologic Mapping and Remote Sensing, Topographic maps, geologic maps, aerial photographs, LIDAR, SAR, interpretation for civil engineering projects - geological conditions necessary for construction of dams, tunnels, buildings, road cuttings, landslides - causes and preventions. Sea erosion and coastal protection.

Total No of Hrs: 45

TEXT BOOKS

- 1. Parbin singh, "Engineering and General geology ", S. K. Kataria & Sons, 2009
- 2. D. Venkat Reddy "Engineering Geology", Vikas publishing House New Delhi, 2010
- 3. Krynine and Judd, "Engineering Geology and Geotechniques ", McGraw Hill Book Company, New Delhi 1990.

REFERENCE

- 1. Legeet, "Geology and Engineering ", McGraw Hill Book Company, New Delhi
- 2. Blyth, "Geology for Engineers", elbs, Pune 1995

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code:	Su	Subject Name Ty/Lb/ L T / S.Lr P/ R C CLEANER PRODUCTION ETL/IE ETL/IE C											
EBCE22E02	Pre	requisite:			KODU				Tv	3	0/0	0/0	3
L : Lecture T : 7	Futorial	SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	C: Credits	5	-		0, 0	
T/L/ETL : Theo	ory/Lab/E	mbedded	Theory an	d Lab	5								
OBJECTIVE :													
• To dev	elop a ba	sic know	ledge abou	t the clea	aner prod	uction an	nd apply	the same	in the field	l applicati	on.		
• To edu	icate the	students	on comple	ete mana	gement p	orinciples	related	to Clear	ner Product	ion and C	Control of	Indu	strial
Pollution.	COME		(2.5)										
The students co	mpleting	leting the course will have an											
CO1	Unders	tanding	sustainabl	e develor	pment an	d cleaner	· product	ion conc	ept				
CO2	Applyin	g the con	cept of clea	ner Prod	luction		F		-r.				
CO3	Analyze	and impl	ement clea	aner prod	luction p	ogram							
CO4	Evaluate	the Proc	ess and equ	lipment of	optimizat	ion. reus	e. recove	erv. recvo	cle. raw ma	terial subs	stitution.		
CO5	To creat	e compre	ehensive k	nowledge	e to cond	luct was	te audit	in an in	dustry and	impleme	nt waste	minimiz	ation
	techniqu	es		U					2	1			
Mapping of Co	ourse Ou	e Outcomes with Program Outcomes (POs)											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12
CO1	3	3	3	3	3	3	3	1	1	1	3		3
CO2	3	3	3	3	3	3	3	1	1	1	3		3
CO3	3	3	3	3	3	3	3	1	1	1	3		3
CO4	3	3	3	3	3	3	3	1	1	1	3		3
CO5	3	3	3	3	3	3	3	1	1	1	3		3
COs / PSOs	PS	01	PSC)2									
CO1		3	3										
CO2		3	3										
CO3		3	3										
CO4		3	3										
CO5		3	3										
3/2/1 Indicates	Strengtl	n Of Cor	relation, 3	– High,	2- Mediu	ım, 1- L	ow						
		Se	ial										
Catagory	SS	ence	Soc	e	Ives	es	ury	ent	ject				
Category	ence	Scie	nd es	Coi	ecti	ctiv	lina	one	Proj				
	Sci	gu	s ai enc	am	ΕI	Elec	scip	fmc	[/]				
	sic	eeri	sci	ogr	ran	en]	rdis	ll co	tica				
	Ba	gin.	nan	$\mathbf{P}_{\mathbf{r}}$	rog	Op	Inte	Skil	rac				
		En	Hur		Ч				Ц				
					\checkmark								

Subject Code:	Subject Name	Ty/Lb/	L	T/S.Lr	P/ R	С	
	CLEANER PRODUCTION	ETL/IE			i .		
EBCE22E02	Prerequisite: NIL	Ту	3	0/0	0/0	3	
L : Lecture T : Tuto	rial SLr : Supervised Learning P : Project R : Research C: Credit	S					
T/L/ETL : Theory/Lab/Embedded Theory and Lab							

UNIT I **INTRODUCTION**

Sustainable Development - Indicators of Sustainability - Sustainability Strategies - Barriers to Sustainability -Cleaner Production (CP) in Achieving Sustainability - Environmental Policies and Legislations - Regulations to Encourage Pollution Prevention and Cleaner Production - Regulatory versus Market Based Approaches

UNIT II CLEANER PRODUCTION CONCEPT

Definition - Importance - Benefits - Promotion - Barriers - Role of Industry, Government and Institutions -Environmental Management Hierarchy - Source Reduction Techniques - Process and equipment optimisation, reuse, recovery, recycle, raw material substitution.

UNIT III CLEANER PRODUCTION PROJECT DEVELOPMENT AND IMPLEMENTATION

Overview of CP Assessment Steps and Skills, Preparing for the Site Visit, Information Gathering, and Process Flow Diagram, Material Balance, Establishing a Program - Organizing a Program - Preparing a Program Plan -Measuring Progress - Pollution Prevention and Cleaner Production Awareness Plan - Waste audit -Environmental Statement.

UNIT IV LIFE CYCLE ASSESSMENT

Elements of LCA - Life Cycle Costing - Eco Labelling - Design for the Environment - International Environmental Standards - ISO 14001 - Environmental audit.

UNIT V CASE STUDIES

Industrial applications of CP, LCA, EMS and Environmental Audits.

Total No of Hrs: 45

REFERENCES

- Paul L Bishop (2000) " Pollution Prevention: Fundamentals and Practice " McGraw-Hill International New 1. York.
- 2. World Bank Group (1998) "Pollution Prevention and Abatement Handbook"
- 3. "Towards Cleaner Production ", World Bank and UNEP, Washington D.C.
- 4. Prasad modak, C.Viswanathan and Mandar parasnis (1995)"Cleaner Production Audit ", Environmental System Reviews, No.38, Asian Institute of Technology, Bangkok.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Cod	e: S	Subject Name							Ty/Lb/ ETL/IE	L	T/ S.Lr	P/ R	C
EBCE22E03	3	BUILDI	NG TE	CHNO	LOGY	AND	HABIT	ГАТ					
			F	ENGIN	EERIN	IG							
	Ī	Prereguisi	te: none						Tv	3	0/0	0/0	3
	1	Terequisi	te. none						1 y	5	0/0	0/0	5
L : Lecture T	`: Tut	orial SL	r : Super	vised Le	earning	P : Proj	ect R :	Resear	ch C: Cred	lits			
T/L/ETL : TI	heory/	Lab/Emb	edded Th	neory and	d Lab								
OBJECTIV	E: 7	To select	appropria	ate const	ruction	material	ls and p	ractice	s in constru	uction f	ield.		
COURSE O	UTC	OMES (C	$\cos(1) = (3)$	5-5)									
After success	stul co	mpletion	of this co	ourse, th	e studer	its shoul	ld be ab	le to	another				
		Unders		the varie	ous mate	erials us	ed in bu	illding	constructio	on			
<u>CO2</u>		Applying	g the cond	cept of o	climate :	and its in	nfluence	$e_{1n} con$	nstruction				
003		building.	and Prac	ctice the	import	ance of	therma	l conti	ol, ventila	tion an	id air mo	vemen	t in
CO4		Evaluate	the desi	gn and a	pplicati	on meth	ods of g	geosynt	hetic mate	rials			
CO5		To create	e New Te	chnolog	y in Bui	ilding co	onstructi	ion					
Mapping of	Cour	se Outco	e Outcomes with Program Outcomes (POs)										
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10) PO11	PC	<u>)12</u>
	3	3	2	3	2	3	3	1	1	1	2		3
C02	3	3	2	3	2	3	3	1	1	1	2		3
CO4	3	3	2	3	2	3	3	1	1	1	2		3
CO5	3	3	2	3	2	3	3	1	1	1	2		3
COs /	I	PSO1	PS	02				1					
PSOs													
CO1		3	3	3									
CO2		3	3	3								_	
CO3		3	3	3									
<u>CO4</u>		3	3	3								_	
CO5		<u> </u>	f Comole	5 4	TI: ~h	2 M.J		τ					
3/2/1 Indica	les Su	rength U	Correla		– Hign,	Z- Med	1um, 1-	LOW					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
					√								

Subject Code: EBCE22E03	Subject Name BUILDING TECHNOLOGY AND HABITAT ENGINEERING	Ty/Lb/ ETL/IE	L	T / S.Lr	P/ R	C
	Prerequisite: none	Ту	3	0/0	0/0	3
L : Lecture T : T T/L/ETL : Theor	Sutorial SLr : Supervised Learning P : Project R : Resear ry/Lab/Embedded Theory and Lab Theory Theory	ch C: Cred	its			

UNIT I **BUILDING STONES**

Requirement of good building stone- characteristics - testing.Lime: Properties- Classifications -Manufacture -Testing of lime. Pozzolona: Natural and Artificial pozzolonas. Timber - Defects - Seasoning - Decay -Preservation, Tiles- Flooring and roofing tiles-specification-tests. Paints varnishes and distempers, Common constituents, types and desirable properties.

UNIT II MISCELLANEOUS MATERIALS

Insulating Materials - Thermal and sound insulating material desirable properties and type. Geosynthetics and its applications .Lintels -Arches - Stairs- different types and its components. Doors, Windows and Ventilations -Classification - Technical terms-Classification and Types

UNIT III ROOF

Types of roofs – wooden trusses .Finishing works - Plastering, pointing, painting, white washing, colour washing, distempering; Damp proofing ant termite treatment.

UNIT IV CLIMATE AND COMFORT

Global climatic factors - Elements of climates - Classification of tropical climates- site climate . The desirable conditions- Thermal comfort factors-Thermal comfort indices - Effective temperature

UNIT V THERMAL CONTROL

Means of thermal control - Mechanical control- structural control- ventilation and air movement

REFERENCES:

- 1. Gurucharan Singh, Building materials,,1996
- 2. Rangwala S. C, Engineering Materials, Charotar Publishing House, 1992, Anand
- 3. Punmia B. C, Building Construction, Laxmi Publications, 1999, New Delhi.
- 4. Rangwala S. C, Building Construction, Charotar Publishing House, 1992, Anand
- 5. Huntington W.C, Building Construction, John Wiley, 1959, New York.
- 6. Koenigsberger, Manual of Tropical Housing and Building, Orient Longman Ltd

9 Hrs

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Total No of Hrs: 45

Subject Code:	S	ubject Nai AR(ne CHITECT	URE AN	ND TOW		INING		Ty/Lb/ ETL/IE	L	T / S.Lr	P/ R	С
EBCE22E04	P	rerequisite	NONE						Tv	3	0/0	0/0	3
L : Lecture T : T	Futorial	SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	: Credit	<u>- </u>				<u> </u>
T/L/ETL : Theo	ory/Lab/	Embedded	Theory an	id Lab	5								
OBJECTIVE :													
To impart know	ledge o	n architec	tural desig	n of struc	ctures as	per the z	oning rea	gulation	s				
COURSE OUT	COM	ES (COs) :	(3- 5)										
After successful	l compl	etion of thi	s course, tl	ne studen	ts should	l be able	to						
CO1		Understand	ding archite	ectural de	esign of s	tructures							
CO2		Applying t	he concept	of land	requirem	ent as pe	er the zon	ing regu	lations				
CO3		Analyze ar	nd Practice	Landsca	pe design	1							
CO4		Manipulate	e Surveys	and anal	ysis of a t	town							
CO5		To create c	comprehens	sive know	wledge or	n the desi	ign of To	wn Plan	ning				
Mapping of Co	ourse O	utcomes w	vith Progra	am Outc	omes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	3	3	3	2	3	3	2	2	2	3		3
CO2	3	3	3	3	2	3	3	2	2	2	3		3
CO3	3	3	3	3	2	3	3	2	2	2	3		3
CO4	3	3	3	3	2	3	3	2	2	2	3		3
CO5	3	3	3	3	2	3	3	2	2	2	3		3
COs / PSOs	P	SO1	PSC	02									
CO1		3	3										
CO2		3	3										
CO3		3	3										
CO4		3	3										
CO5		3	3										
3/2/1 Indicates	Streng	th Of Cor	relation, 3	– High,	2- Medi	um, 1- L	ow						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
					V								

Subject Code:	Subject Name	Ty/Lb/	L	T / S.Lr	P/ R	С
	ARCHITECTURE AND TOWN PLANNING	ETL/IE				
EBCE22E04	Prerequisite: NONE	Ту	3	0/0	0/0	3
L : Lecture T : Tutor	rial SLr : Supervised Learning P : Project R : Research C: Credit	S				
T/L/ETL : Theory/Lab/Embedded Theory and Lab						

UNIT I ARCHITECTURAL DEVELOPMENT

Natural and built environment, historic examples, factors influence architectural development.

UNIT II PRINCIPLES OF ARCHITECTURAL DESIGN 9 Hrs

Design methods, primary elements, form, space, organization, circulation, proportion and scale, ordering principles

UNIT IIIFUNCTIONAL PLANNING OF BUILDINGS9 Hrs

Planning, designing and construction, general building requirements, permit and inspection (as per the National building Code)

UNIT IV EVOLUTION OF TOWNS

History and trends in town planning: origin and growth, historical development of town planning in ancient valley civilizations; Objects and necessary of town planning; Surveys and analysis of a town; New Concepts in town planning: Garden city movement, Linear city and Satellite city concepts, Neighborhood Planning

UNIT V PLANNING PRINCIPLES, PRACTICE AND TECHNIQUES 9 Hrs

Elements of City plan, Estimating future needs, Planning standards, Zoning - its definition, procedure and districts, height and bulk zoning, F. A. R., Master Plan; Concepts of Urban planning, Design and Landscaping.

Total No of Hrs: 45

TEXT BOOKS

- 1. B. Gallion and S. Eisner, The Urban Pattern: City planning and Design C B S publishers, 5th edition, 2005.
- 2. D. K. Francis Ching, Architectures: Form, Space and Order, John Wiley, 2nd edition 1996.

REFERENCES

- 1. National Building Code of India 2005, BIS, New Delhi.
- 2. S. Eisner, A. B. Gallion and S. Eisner, The Urban Pattern: City planning and Design, John Wiley 6th edition 1996.

9 Hrs

PROGRAM ELECTIVE – II

Subject Code:	Su	bject Nai	me:						TY / Lb/	L	T/S.Lr	P/ R	С
FBCF22F05	Due		Nega	HYDR	OLOGY				ETL/IE	2	0/0	0/0	2
$\mathbf{L} \cdot \mathbf{L}$ ecture $\mathbf{T} \cdot \mathbf{T}$	Pre Futorial	$\frac{\text{srequisites}}{\text{SL r} \cdot \text{Su}}$	none nervised I	earning	P · Proje	$rt \mathbf{R} \cdot \mathbf{R} \epsilon$	esearch ([.] Credit	<u>1y</u>	3	0/0	0/0	3
					1.110je			. Crean	3				
T/L/ETL : Theo	ory/Lab/E	mbedded	Theory an	id Lab									
OBJECTIVE :				-					_				
To get exposur	e in the	field of	hydrology;	To kno	w the ba	sic conc	epts in h	nydrolog	y. To stuc	ly the fea	atures of	precipit	ation,
evaporation and	i infiltrati	on; 10 le	arn basics,	estimation estimation	on, and n	lodeling	of runoff	;. 10 un	derstand esi	imation,	forecastin	g and co	ontrol
		S(COs)	$\frac{application}{(3-5)}$	is in nyu	lology								
COURSE OUT	The stu	idents wil	l gain knov	wledge of	n hydrolo	gic cycle	e, hydron	neteorol	ogy and for	mation of	precipitat	ion	
CO2	The stu	dents wil	l be able to	apply th	ne various	s method	s of field	measur	ements and	empirical	formulae	for	
	estimat	ing the va	arious losse	es of prec	cipitation	, stream t	flow, floo	od and f	lood routing	5			
CO3	Analyz	e and ma	nipulate th	e hydrolo	ogical me	asureme	nts						
CO4	Determ	ine the m	neteorologi	cal relate	ed data								
CO5	Create	comprehe	ensive know	wledge o	n concep	ts of grou	undwater	and hyc	lraulics of s	ubsurface	eflows		
Mapping of Co	ourse Ou	tcomes w	vith Progra	am Outc	omes (P	Os)	D 0 F	DOG		DO10			
COs/POs	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	POI0	POII	PO	12
CO1	3	3	3	3	3	3	3	1	1	1	3		3
CO2	3	3	3	3	3	3	3	1	1	1	3		3
CO3	3	3	3	3	3	3	3	1	1	1	3		3
CO4	3	3	3	3	3	3	3	1	1	1	3		3
CO5	3	3	3	3	3	3	3	1	1	1	3		3
COs / PSOs	PS	501	PSC)2									
CO1		3	3										
CO2		3	3										
CO3		3	3										
CO4		3	3										
CO5		3	3										
3/2/1 Indicates	Strengtl	1 Of Cor	relation, 3	– High,	2- Mediu	ım, 1- L	ow			1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
					v								

Subject Code:	Subject Name:	TY / Lb/	L	T / S.Lr	P/ R	С
	HYDROLOGY	ETL/IE				
EBCE22E05	Prerequisite: None	Ту	3	0/0	0/0	3
L : Lecture T : Tuto	rial SLr : Supervised Learning P : Project R : Research C: Credit	S				

T/L/ETL : Theory/Lab/Embedded Theory and Lab

UNIT I INTRODUCTION

Definition & Scope- Practical applications-Hydrological cycle – Transitory systems- formation, Types and forms of precipitation – Winds and their movement–Climate & weather season in India-Catchment area

UNIT II PRECIPITATION

Measurement of Precipitation-Recording & Non- Recording Rain Gauges-Intensity duration Analysis-Intensity frequency duration Analysis- Average depth of precipitation over an areas-Depth area duration analysis-Rain gauge network.

UNIT III EVAPORATION & INFILTRATION

Introduction- Evaporation process- Factors affecting Evaporation- Evaporation Estimation-Evaporation measurement- Evapo transpiration- Factors affecting infiltration-measurement of infiltration- Infiltration Equations

UNIT IV STREAM FLOW MEASUREMENT & HYDROGRAPH ANALYSIS 9 Hrs

Introduction-Measurement of stage-discharge measurement –area velocity method (Current meter method)moving boat method- Stage discharge relationships – Flow measurements – Features of hydrograph- base flow-Hydrograph separation

UNIT V GROUND WATER HYDROLOGY

Occurrence of ground water – Types of aquifer – Dupuit's assumptions – Darcy's law – Estimation of aquifer parameters – Pump tests.

REFERENCES

- 1. Jeya Rami Reddy.P,Hydrology, Laximi Publications, New Delhi, 2004.
- 2. Subramanya K., Hydrology, Tata McGraw Hill Co., New Delhi, 1994
- 3. Patra.K.C, Hydrology and Water Resources Engineering, Narosa Publications, 2008, 2 nd Edition, New Delhi.
- 4. Chow V.T., Maidment D.R., Mays L.W., " Applied Hydrology, McGraw Hill Publications, NewYork, 1995

9 Hrs

9 Hrs

tion of

Total No. of Hrs: 45

9 Hrs

EBCE22E06 Prerequisite: None Ty 3 0/0 0/0 3 L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab Image: Comparison of the organization of the organizatio organizatio organization of the organization of the o	3										
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab											
T/L/ETL : Theory/Lab/Embedded Theory and Lab											
OBJECTIVE											
To know the objectives, capability, and limitations of environmental impact assessment.											
To learn methodologies and legal aspects of environmental impact assessment;											
COURSE OUTCOMES (COs) : (3- 5)											
CO1 Understand and carry out scoping and screening of developmental projects for environmental and social											
assessments											
CO2 Explain different methodologies for environmental impact prediction and assessment											
CO3 Analyze environmental impact assessments and environmental management plans											
CO4 Evaluate the design methods of EIA											
CO5 Provide new methods and concepts in EIA											
Mapping of Course Outcomes with Program Outcomes (POs)											
COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
COI 3 3 3 3 3 3 1 1 1 3 3 COI 3 3 3 3 3 3 1 1 1 3 3											
CO2 3 3 3 3 3 3 1 1 1 3 3 $CO2$ 2 2 2 2 2 2 2 1 1 1 2 2											
CO3 3 3 3 3 3 3 1 1 1 3 3 $CO4$ 2 2 2 2 2 2 2 1 1 1 2 2											
CO4 5 5 5 5 5 5 1 1 1 5 5 $CO5$ 3 3 2 3 2 3 3 1 1 1 1 3 3											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
CO5 3 3											
3/2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- Low											
Category Control of Co											

Subject Code:	Subject Name:	TY / Lb/	L	T/S.Lr	P/ R	С				
	ENVIRONMENTAL IMPACT ASSESSMENT	ETL/IE								
EBCE22E06	Prerequisite: None	Ту	3	0/0	0/0	3				
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits										
T/L/ETL : Theory/Lab/Embedded Theory and Lab										

UNIT I **INTRODUCTION**

Impact of development on environment and Environmental Impact Assessment (EIA) and Environmental Impact Statement (EIS) – Objectives – Historical development – EIA capability and limitations – Legal provisions on EIA.

UNIT II **METHODOLOGIES**

Methods of EIA - Strengths, weaknesses and applicability - Appropriate methodology - Case studies.

UNIT III PREDICTION AND ASSESSMENT

Socio Economic Impact - Assessment of Impact on land, water and air, energy impact; Impact on flora and fauna; Mathematical models; public participation - Reports - Exchange of Information - Post Audit - Rapid EIA.

UNIT IV 9 Hrs MATHEMATICAL MODELS FOR ASSESSMENT

Use the mathematical models in EIA – Water quality, air quality and noise; assumptions and limitations.

UNIT V **ENVIRONMENTAL MANAGEMENT PLAN**

Plan for mitigation of adverse impact on environment – options for mitigation of impact on water, air and land, flora and fauna, addressing the issues related to the project affected people.

Total No. of Hrs:45

TEXT BOOKS

- 1. Canter, R.L. Environmental Impact Assessment, McGraw Hill Inc., New Delhi, 1996.
- 2. S.K.Shukla and P.R.Srivastava, Concepts in Environmental Impact Analysis, Common Wealth Publishers, New Delhi, 1992.

REFERENCES

- 1. John G.Rau and David C Hooten (Ed)., Environmental Impact Analysis Handbook, McGraw Hill Book Company, 1990.
- 2. Environmental Assessment Source book, Vol. I, II & III. The World Bank, Washington, D.C., 1991.
- 3. Judith Petts, Hand book of Environmental Impact Assessment Vol. I & II, Blackwell Science, 1999.

9 Hrs

9 Hrs

9 Hrs

Subject Code: EBCE22E07	Subject Name BRIDGE STRUCTURES							TY / Lb/ ETL/IE	L	T / S.Lr	P/ R	С	
		Prerequisite: Design of concrete structures							Ty	3	0/0	0/0) 3
L : Lecture T : 7	Tutorial	SLr : S	upervise	d Learn	ing P:P	roject R	: Resea	rch C	C: Credits				1
T/L/ETL : Theory/Lab/Embedded Theory and Lab													
OBJECTIVE :	:												
To make the stu	To make the student to know about various bridge structures, selection of appropriate bridge structures and design it for given site conditions												
tor given site conditions. COURSE OUTCOMES (COs) • (3- 5)													
At the end of the course, students will be able to													
CO1	Understand the basic concepts in proportioning and design of bridges in terms of aesthetics.												
	geograp	ohical loc	ation an	d functi	onality.	0	0					,	
CO2	Identif	y the sizi	ng of bri	idge elei	ments ie.,	develop	a clear	under	rstanding of c	once	ptual o	design	
CO3	Analyz	e the load	d flow n	nechanis	sm and id	entify loa	ads on b	ridge	S				
CO4	Evaluat sizing c	e the desi of its elem	ign of bi ients	ridges st	arting fro	om conce	ptual de	sign,	selecting suit	able	bridge	e, geome	etry to
CO5	To crea	te moder	n Bridge	e elemer	nts and stu	ructures i	n Projec	cts					
Mapping of Co	ourse Ou	itcomes	with Pr	ogram (Outcome	s (POs)						1	
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	8 PO9	PC)10	PO1	PO12
POs CO1	2	2	2	2	1	2	1	-	L 1		1	1	2
	3	2	3	2	1	2	1				1	1	2
C02	3	3	3	3	1	3	1				1	1	3
C03	3	3	2	3	1	3	1				1	1	3
C04	3	3	3	3	1	3	1	-			1	1	3
COS / PSOs	 PS	01	J PS	$\frac{1}{02}$	1	5	1				1	1	5
CO1	15	3	15	3									
CO2		3	-	3									
CO3		3		3									
CO4		3		3									
CO5		3		3									
3/2/1 Indicates	Strengt	h Of Coi	relatio	n, 3 – H	igh, 2- M	ledium, 1	1- Low		·	•			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	✓ Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				

	Subject Code: EBCE22E07	Subject Name BRIDGE STRUCTURES	TY / Lb/ ETL/IE	L	T / S.Lr	P/ R	С				
		Prerequisite: Design of concrete structures	Ту	3	0/0	0/0	3				
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits											
	T/L/ETL : Theory/Lab/Embedded Theory and Lab										

UNIT I **INTRODUCTION**

Design of through type steel highway bridges for IRC loading - Design of stringers, cross girders and main girders - Design of deck type steel highway bridges for IRC loading - Design of main girders.

UNIT II STEEL BRIDGES

Design of pratt type truss girder highway bridges - Design of top chord, bottom chord, web members - Effect of repeated loading - Design of plate girder railway bridges for railway loading - Wind effects - Design of web and flange plates - Vertical and horizontal stiffeners.

UNIT III **REINFORCED CONCRETE SLAB BRIDGES**

Design of solid slab bridges for IRC loading - Design of kerb - Design of tee beam bridges - Design of panel and cantilever for IRC loading.

UNIT IV REINFORCED CONCRETE GIRDER BRIDGES

Design of tee beam - Courbon's theory - Pigeaud's curves - Design of balanced cantilever bridges - Deck slab -Main girder - Design of cantilever - Design of articulation.

UNIT V PRESTRESSED CONCRETE BRIDGES

Design of prestressed concrete bridges - Preliminary dimensions - Flexural and torsional parameters -Courbon's theory - Distribution coefficient by exact analysis - Design of girder section - Maximum and minimum prestressing forces - Eccentricity - Live load and dead load shear forces - cable zone in girder - Check for stresses at various sections - Check for diagonal tension - Diaphragms - End block - Short term and long term deflections.

Total No. of Hrs: 45

TEXT BOOKS

1. Johnson Victor D., "Essentials of Bridge Engineering", Oxford and IBH Publishing Co., New Delhi, 1990.

2. Ponnuswamy S., " Bridge Engineering ", Tata McGraw Hill, New Delhi, 1996.

REFERENCES

1. Phatak D.R., "Bridge Engineering", Satya Prakashan, New Delhi, 1990.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code: EBCE22E08	Subject IRRIC	bject Name RRIGATION ENGINEERING							L	T / S.L	r	P/ R	C	
	Prerequisite: None								Ту	3	0/0		0/0	3
L : Lecture T : '	: Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits													
T/L/ETL : Theory/Lab/Embedded Theory and Lab														
OBJECTIVE : The student also shall know the irrigation management practices of the past, present And future. The structures involved the elementary hydraulic design of different Structures and the concepts of maintenance shall also form part. Finally, the student shall be in a position to conceive and plan any type of irrigation project.														
At the end of th	e course	students	will be	able to										
CO1	To know	w the irrig	pation m	anagem	ent pract	ices of th	e past.	prese	nt and future.					
CO2	The known and the	owledge of concepts	on the st of main	ructures	involved of irriga	l in the el tion struc	ementa tures	ry hy	draulic design	n of o	differ	ent str	ucture	s
CO3	To cond	ceive and	plan an	y type o	f irrigatio	on project	t							
Mapping of Co	ourse Ou	itcomes v	with Pro	ogram (Outcome	s (POs)	-	0				1		
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	8 PO9	PO)	PO	P	012
POs CO1	1	2	2		2					10)	11		
	1	2	2	2	2	-	-	-	· -		-	-		-
CO2	3	3	3	2	2	-	-	-	· -		-	-		-
CO_{3}/PSO_{3}	3 DC	2 01	Э ДС	2	2	-	-	-	· -		-	-		-
CO1	13	3	13	3										
CO2	-	, 3		, 2										
CO3	-	2		2										
3/2/1 Indicator	Strongt	, h Of Cor	rolation	, n 3 Ц	iah 2 M	Indium	1 I ow							
3/2/1 mulcates	Strengt		Telation	li, 5 – 11	ign, 2- w	ieuiuiii, .	1- LOW							
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project					
					\checkmark									

Subject Code: EBCE22E08	Subject Name IRRIGATION ENGINEERING	TY / Lb/ ETL/IE	L	T/ S.Lr	P/ R	C				
				5121						
	Prerequisite: None	Ту	3	0/0	0/0	3				
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits										
T/L/ETL : Theory/Lab/Embedded Theory and Lab										

UNIT I: INTRODUCTION

Irrigation - Need and mode of irrigation - Merits and demerits of irrigation - Crop and crop seasons consumptive use of water - Duty - Factors affecting duty - Irrigation Efficiencies - Planning and Development of irrigation projects.

UNIT II: IRRIGATION METHODS

Canal irrigation - Lift irrigation - Tank irrigation - Flooding methods - Merits and Demerits - Sprinkler irrigation – Drip irrigation.

UNIT III : DIVERSION AND IMPOUNDING STRUCTURES

Weirs – elementary profile of a weir – weirs on pervious foundations - Types of Impounding structures - Tanks, Sluices and Weirs – Gravity dams – Earth dams – Arch Dams – Spillways – Factors affecting location and type of dams – Forces on a dam – Hydraulic design of dams.

UNIT IV : CANAL IRRIGATION

Alignment of canals – Classification of canals – Canal drops – Hydraulic design of drops – Cross drainage works - Hydraulic design of cross drainage works - Canal Head works - Canal regulators - River Training works.

UNIT V: IRRIGATION WATER MANAGEMENT

Need for optimization of water use - Minimizing irrigation water losses - On farm Development works -Percolation ponds - Participatory irrigation management - Water Users associations - Changing paradigms in water management – Performance evaluation.

TEXT BOOKS

Asawa, G.L., "Irrigation Engineering", New Age International Publishers, New Delhi, 2000.

Sharma, R.K., and Sharma, T.K., "Irrigation Engineering", S.Chand and Company, New Delhi, 2000. * REFERENCES

- Basak, N.N., "Irrigation Engineering", Tata McGraw-Hill Publishing Co., New Delhi, 2000. Garg, S.K., "Irrigation Engineering," Laxmi Publications, New Delhi, 1999.
- *
- * Gupta, B.L., and Amir Gupta, "Irrigation Engineering", SatyaPraheshan, New Delhi

Total No of Hrs: 45

8 Hrs

9 Hrs

10 Hrs

9 Hrs

PROGRAM ELECTIVE – III

Subject Code:	Subje	ct Name	9						T / Lb/ ETL/IE	L	T/ SLr	P/ R	C
	PRES	TRESS	ED CO	NCREI	TE STR	UCTUF	RES		ETE/IE		5.11		
EBCE22E09													
	Prereq	Prerequisite: Design of Concrete Structures								3	0/0	0/0	3
L : Lecture T : 7	L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits												
1/L/EIL: Ineory/Lab/Embedded Theory and Lab OB IECTIVE -													
OBJECTIVE: • Drestrossing methods principles and concents are accentical for the basic concent of the subject													
• Prestressing methods, principles and concepts are essential for the basic concept of the subject.													
Analys	is of pre	estress a	nd the re	esultant	stresses	using di	ifferent	concept	s is dealt he	re;			- 10
Determ method	ination	OI IOSS	es in co	oncrete a	x Anch	orage z	one stre	esses in	end block	can be b	rought of	it using	3 13
	COME	S (COs	$) \cdot (3 - 5)$	0									
CO1	Stude	nt shall	have a k	nowled	ge on m	ethods o	of prestre	essing a	nd composit	te constru	ction		
CO2	Recog	gnize the	effects	of trans	fer and	develop	ment lei	ngth on t	flexural and	shear str	engths		
CO3	Evalu	ate and	analyze	the stres	sses und	er vario	us condi	itions			-		
CO4	Calcu	late pres	stress los	sses for	simple r	orestress	ed conc	rete gird	lers				
CO5	Stude	nt shoul	d be abl	e to desi	ign vario	ous prest	tressed of	concrete	structural e	lements			
Mapping of Co	urse Ou	utcomes	with P	rogram	Outcor	nes (PO	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2
CO1	3	3	3	3	2	1	1	1	1	1	1	3	
CO2	3	3	3	3	2	1	1	1	1	1	1	3	
CO3	3	3	3	3	2	1	1	1	1	1	1	3	
CO4	3	3	3	3	2	1	1	1	1	1	1	3	
CO5	3	3	3	3	2	1	1	1	1	1	1	3	
COs / PSOs	PS	01	PS	02									
CO1	,	3	3	3									
CO2		3		3									
CO3		3		3									
CO4		3		3									
CO5		3		3									
3/2/1 Indicates	Strengt	th Of Co	orrelatio	on, 3 – 1	High, 2-	Mediu	m, 1- Lo	ow	1	1	1	<u> </u>	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
Subject	Subject Name	T / Lb/	L	Τ/	P /	С							
--	---	---------	---	------	------------	---	--						
Code: EBCE22E09	PRESTRESSED CONCRETE STRUCTURES	ETL/IE		S.Lr	R								
	Prerequisite: Design of Concrete Structures	Ту	3	0/0	0/0	3							
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab													

UNIT I **INTRODUCTION – THEORY AND BEHAVIOUR**

Basic concepts - Advantages - Materials required - Systems and methods of pre -stressing - Analysis of sections - Stress concept - Strength concept - Load balancing concept - Effect of loading on the tensile stresses in tendons.

UNIT II DEFLECTION

Deflections - Factors influencing deflections - Calculation of deflections - Short term and long term deflections - Losses of pre-stress - Losses of prestress - types - losses due to elastic deformation of concrete - shrinkage of concrete - creep of concrete - friction - anchorage slip - Estimation of crack width

UNIT III DESIGN

Flexural strength – Simplified procedures as per codes – strain compatibility method – Basic concepts in selection of cross section for bending - stress distribution in end block, Design of anchorage zone reinforcement - Limit state design criteria.

UNIT IV **CIRCULAR PRESTRESSING**

General features & Design of prestressed concrete tanks – Prestressed concrete Poles, Shapes, Features & Design- Prestressed concrete sleepers – Development – Types- Design, Static & dynamic loads

UNIT V **COMPOSITE CONSTRUCTION**

Analysis for stresses - Estimate for deflections - Flexural and shear strength of composite members- General aspects - pretension pre-stressed bridge decks - Post tensioned pre-stressed bridge decks -Advantages over R.C.C bridges- Design Principles of post tensioned prestressed concrete slab bridge deck, T Beam slab bridge deck & Continuous two span beam deck

Total No of Hrs: 45

TEXT BOOKS

- 1. Krishna Raju N., Prestressed concrete, Tata McGraw Hill Company, New Delhi, 2011
- S.Ramamrutham, Prestressed concrete, Dhanpatrai Publishing company, 2014 2.
- Mallic S.K. and Gupta A.P., Prestressed concrete, Oxford and IBH Publishing Co.Pvt. Ltd. 1997. 3.
- Rajagopalan.N, Prestressed Concrete, Alpha Science, 2002. 4.

REFERENCES

- 1. Ramaswamy G.S., Modern Prestressed Concrete Design, Arnold Heinimen, New Delhi, 1990
- 2. Lin T.Y. Design of prestressed concrete structures, Asia Publishing House, Bombay 1995

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code:	Subject Name: TY / Lb/ L T / S.Lr P/ R C HOUSING PLANNING AND DESIGN ETL/IE Image: Comparison of the second sec									С			
EBCE22E10	P	rerequisite	Building	Drawing	Practice				Ту	3	0/0	0/0	3
L : Lecture T : 7	Futorial	SLr : Su	pervised L	earning 1	P : Projec	t R : Re	search C:	Credits					
T/L/ETL : Theo	ry/Lab/	Embedded	Theory an	d Lab									
OBJECTIVE :													
A house plan is	a set o	f construct	ion or wor	king drav	wings th	at define	all the c	onstruct	ion specific	ations of	a residen	tial Hou	ise A
truly successful	project	1s one whe	re project	goals are	identifie	s early oi	h and who	ere the 1	nterdepende	encies of a	ll building	g syster	ns are
	COMF	ES(COs):	(3-5)	inu progr	amming	phase.							
After successful	comple	etion of thi	s course, th	e student	ts should	be able t	0						
CO1		Understa	nding the	Plan the	e building	gs, as per	the law a	nd rules	and regulat	tions			
CO2		Applying t	he concept	of Housi	ing Plann	ing							
CO3		Analyze th	e slum clea	arance pr	oject and	prepare	plan for p	olot map	cost flow .				
CO4		Evaluate t	he design r	nethods f	for House	Plannin	g and des	ign					
CO5	'	To create a	ind identif	y the new	/ housing	projects							
Mapping of Co	urse O	utcomes w	ith Progra	am Outco	omes (PC	Ds)	D O F	DOG	200	DO10	D 044		
COs/POs	POI	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PO9	POIO	POII	PO	12
CO1	3	3	3	3	1	3	1	1	1	1	1		3
CO2	3	3 3 3 3		1	3	1	1	1	1	1		3	
CO3	3	3 3 3 3		3	1	3	1	1	1	1	1		3
CO4	3	3	3	3	1	3	1	1	1	1	1		3
CO5	3	3	3	3	1	3	1	1	1	1	1		3
COs / PSOs	P	SO1	PSC	02				•					
CO1		3	3										
CO2		3	3										
CO3		3	3										
CO4		3	3										
CO5		3	3										
3/2/1 Indicates	Streng	th Of Cori	relation, 3	– High, ź	2- Mediu	ım, 1- Lo)W						
Category	Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core		Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project					
					\checkmark								

Subject Code:	Subject Name:	TY / Lb/	L	T / S.Lr	P/ R	С
	HOUSING PLANNING AND DESIGN	ETL/IE				
EBCE22E10	Prerequisite: Building Drawing Practice	Ту	3	0/0	0/0	3
L : Lecture T : Tutor	rial SLr : Supervised Learning P : Project R : Research C: Credits	5				
T/L/ETL : Theory/L	ab/Embedded Theory and Lab					

UNIT I INTRODUCTION TO HOUSING

Definition of Basic Terms – House, Home, Household, Apartments - Objectives of National Housing Policies, Principle of Sustainable Housing, Housing Laws at State level, Local bodies' Bye-laws at Urban and Rural Level and Development Control Regulations, Institutions for Housing at National, State and Local levels.

UNITII HOUSING PROGRAMMES

Functions and Performance Evaluation.

Basic Concepts – Contents and Standards for Housing Programmes - Sites and Services, Neighbourhood, Open Development Plots, Apartments, Rental Housing, Co-operative Housing, Slum Housing Programme, Role of Public, Private and Non-Government Organisations.

UNIT III PLANNING AND DESIGN OF HOUSING PROJECTS 9 Hrs

Formulation of Housing Projects - Site Analysis, Layout Design, Design of Housing Units (Design Problems).

UNIT IV CONSTRUCTION TECHNIQUES AND COST-EFFECTIVE MATERIALS

9 Hrs New Constructions Techniques – Cost Effective Modern Construction Materials, Building Centers – Concept,

UNIT V HOUSING FINANCE AND PROJECT APPRAISAL

Appraisal of Housing Projects – Housing Finance, Cost Recovery – Cash Flow Analysis, Subsidy and Cross Subsidy, Pricing of Housing Units, Rents, Recovery Pattern (Problems).

Total No of Hrs: 45

TEXT BOOKS

- 1. Meera Mehta and Dinesh Mehta, Metropolitan Housing Markets, Sage Publications Pvt. Ltd., New Delhi, 1999.
- 2. Francis Cherunilam and Odeyar D Heggade, Housing in India, Himalaya Publishing House, Bombay, 1997.

REFERENCES

- 1. Development Control Rules for Chennai Metropolitan Area, CMA, Chennai, 200.
- 2. UNCHS, National Experiences with Shelter Delivery for the Poorest Groups, UNCHS (Habitat), Nairobi, 1994.
- 3. National Housing Policy, 1994, Government of India.

9 Hrs

9 Hrs

Subject Code:	S	ubject Nai INF	me DISTRIA	I. WAS	TE MA	NAGE	MENT		TY / Lb/ ETL/IE	L	T/S.Lr	P/ R	C	
EBCE22E11	Р	rerequisite	· Environm	ental En	gineering	r r			Tv	3	0/0	0/0	3	
L : Lecture T : 7	Futoria	1 SLr : Su	pervised L	earning	P : Proie	$rac{c}{c}t R : Re$	esearch C	: Credit	s		0,0	0,0		
T/L/ETL : Theo	ory/Lab	/Embeddec	l Theory ar	nd Lab	- J									
OBJECTIVE :														
To impart know	ledge o	on various e	environmer	ntal legis	lations									
To understand t	he treat	tment of ind	dustrial wa	stes										
To impart know	ledge o	on the pollu	tion potent	tial of ma	ajor indus	stries and	the meth	nods of c	controlling t	he same				
COURSE OUT	COM	$\overline{\text{MES}\left(\text{COs}\right):(3-5)}$							<u></u>					
After successful	l compl	pletion of this course, the students should be able to												
CO1		Suggest the industrial waste disposal methods on land and wa						d water	er environment					
CO2		Conduct waste audit in an industry and implement waste mini						minimi	zation techn	iques				
CO3		Analyze and Practice the waste management concepts								-				
CO4		Evaluate the methods for various aspects in waste management					gement							
CO5		Identify the impacts on environment due to various industrial						strial eff	luents					
Mapping of Co	ourse C	Outcomes with Program Outcomes (POs)												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	
CO1	3	3	3	3	3	3	3	1	1	1	3		3	
CO2	3	3	3	3	3	3	3	1	1	1	3		3	
CO3	3	3	3	3	3	3	3	1	1	1	3		3	
CO4	3	3	3	3	3	3	3	1	1	1	3		3	
CO5	3	3	3	3	3	3	3	1	1	1	3		3	
COs / PSOs]	PSO1	PSC	02										
CO1		3	3											
CO2		3	3											
CO3		3	3											
CO4		3	3											
CO5		3	3											
3/2/1 Indicates	Streng	gth Of Cor	relation, 3	– High,	2- Mediu	um, 1- L	ow	1		T	-			
Category	Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core				Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project					

186

Subject Code: Subject Name TY / Lb/ L T/S.Lr P/R С INDUSTRIAL WASTE MANAGEMENT **ETL/IE EBCE22E11** Prerequisite: Environmental Engineering 3 0/0 0/0 3 Ty L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

UNIT I INTRODUCTION

Types of industries and industrial pollution - Characteristics of industrial wastes - Population equivalent -Bioassay studies – effects of industrial effluents on streams, sewer, land, sewage treatment plants and human health - Hazardous Wastes - Environmental legislations related to prevention and control of industrial effluents and hazardous wastes - Pollution Control Boards.

UNIT II CLEANER PRODUCTION

Waste management Approach - Waste Audit - Volume and strength reduction - material and process modifications - Recycle, reuse and byproduct recovery - Applications.

UNIT III TREATMENT OF INDUSTRIAL WASTEWATER

Equalisation - Neutralisation - removal of suspended and dissolved organic solids - Chemical oxidation -Removal of dissolved inorganics - Combined treatment of industrial and municipal wastes - Residue management.

UNIT IV TREATMENT AND DISPOSAL OF HAZARDOUS WASTES 9 Hrs

Physic chemical treatment – solidification – incineration – Secured landfills – Legal Provisions.

UNIT V **CASE STUDIES**

Sources, Characteristics, waste treatment flow sheets for selected industries such as Textiles, Tanneries, Dairy, Sugar, Paper, distilleries, Steel plants, Refineries, fertilizer, thermal power plants.

Total No. of Hrs: 45

TEXT BOOKS

- 1. M.N.Rao & A.K.Dutta, Wastewater Treatment, Oxford IBH Publication, 1995.
- 2. W.W. Eckenfelder Jr., Industrial Water Pollution Control, McGraw-Hill Book Company, New Delhi, 1994.

REFERENCES

- 1. T.T.Shen, Industrial Pollution Prevention, Springer, 1999.
- 2. R.L.Stephenson and J.B.Blackburn, Jr., Industrial Wastewater Systems Hand book, Lewis Publisher, New York,
- 3. H.M.Freeman, Industrial Pollution Prevention Hand Book, McGraw Hill Inc., New Delhi, 1995.

9 Hrs

9 Hrs

9 Hrs

Subject Coc	le: Su	bject N	ame						TY/	L	Τ/	P /	С
EBCE22E1	2 C	OST E	FFECT	TVE B	UILDI	NGS			Lb/		S.Lr	R	
									ETL/IE				
	Pre	erequisit	e: Concr	rete and	Constru	ction Te	echnolog	gy	Ту	3	0/0	0/0	3
L : Lecture 7 T/L/ETL : T	「:Tutor heory/La	ial SL ab/Embe	r : Super edded Th	vised Lo leory an	earning d Lab	P : Proj	ect R :	Resear	ch C: Cred	its			
OBJECTIV	Е:	The go	al of lov	v-cost h	ousing	is to sav	ve mone	ey whil	e also mai	intainin	g buildin	gs qu	ality
without sacri	ificing th	ne streng	gth, perfo	ormance	and life	of the s	structure	e.					
COURSE O	UTCO	MES (C	Os) : (3	5-5)									
After succes	sful com	pletion	of this co	ourse, th	e studer	nts shou	ld be ab	le to					
CO1	Under	standi	ng the co	ost effec	tive tecl	hniques	and env	vironme	ntal friend	ly mate	rials in		
	constru	ction											
CO2	Apply	and Ide	ntify the	effects	of globa	l warmi	ng in co	onstruct	ion				
CO3	Analyz	e and Pr	actice th	e design	n of gree	<u>en buildi</u>	ing conc	epts an	d its benef	its in co	onstructio	n field	1
CO4	Evalua	te the d	esign me	thods for	or green	building	gs		<u></u>		L 4 1	.1	
CU5 Monning of	10 crea	Γο create comprehensive knowledge on the design of green buildings using modern technology											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC)12
CO1	3	3	3	3	3	3	3	1	105	1010	3		3
CO2	3	3	3	3	3	3	3	1	1	1	3		3
CO3	3	3	3	3	3	3	3	1	1	1	3		3
CO4	3	3	3	3	3	3	3	1	1	1	3		3
CO5	3	3	3	3	3	3	3	1	1	1	3		3
COs /	PS	01	PS	02	_	_							
CO1		3	3	3									
CO2		3	3	3									
CO3		3	3	3									
CO4	,	3	3	3									
CO5	,	3	3	3									
3/2/1 Indica	tes Stre	ngth Of	Correla	ation, 3	– High,	2- Med	lium, 1-	Low		1			
Category	Engineering Sciences Humanities and Social Sciences Program Core			Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
		\checkmark											

Subject Code:	Subject Name	TY/	L	Τ/	P /	С
EBCE22E12	COST EFFECTIVE BUILDINGS	Lb/		S.Lr	R	
		ETL/IE				
	Prerequisite: Concrete and Construction Technology	Ту	3	0/0	0/0	3
L : Lecture T : T	utorial SLr: Supervised Learning P: Project R: Resear	rch C: Cred	its			
T/L/ETL : Theorem	ry/Lab/Embedded Theory and Lab					

UNIT IINTRODUCTION TO COST EFFECTIVE CONSTRUCTION12HRS

Introduction to the concept of cost effective construction -Uses of different types of materials and their availability -Stone and Laterite blocks- Burned Bricks- Concrete Blocks- Stabilized Mud Blocks- Lime-Poszolana Cement- Gypsum Board- Light Weight Beams- Fiber Reinforced Cement Components- Fiber Reinforced Polymer Composite- Bamboo- Availability of different materials-Recycling of building materials – Brick- Concrete- Steel- Plastics - Environmental issues related to quarrying of building materials.

UNIT IITECHNOLOGIES & METHODS IN CONSTRUCTION12 HRS

Environment friendly and cost effective Building Technologies - Different substitute for wall construction Flemish Bond - Rat Trap Bond – Arches – Panels - Cavity Wall - Ferro Cement and Ferro Concrete constructions – different pre cast members using these materials - Wall and Roof Panels – Beams – columns - Door and Window frames - Water tanks - Septic Tanks - Alternate roofing systems - Filler Slab - Composite Beam and Panel Roof -Pre-engineered and ready to use building elements - wood products - steel and plastic -Contributions of agencies

UNIT III GLOBAL WARMING & THE RELEVANCE OF GREEN BUILDINGS 7 HRS

Global Warming – Definition - Causes and Effects - Contribution of Buildings towards Global Warming - Carbon Footprint – Global Efforts to reduce carbon Emissions - Green Buildings – Definition - Features-Necessity – Environmental benefit - Economical benefits- Health and Social benefits - Major Energy efficient areas for buildings – Embodied Energy in Materials- Green Materials - Comparison of Initial cost of Green V/s Conventional Building - Life cycle cost of Buildings.

UNIT IV GREEN BUILDING

Green Buildings – Definition - Features- Necessity – Environmental benefit - Economical benefits - Health and Social benefits - Major Energy efficient areas for buildings - Embodied Energy in Materials-Green Materials -Comparison of Initial cost of Green V/s Conventional Building - Life cycle cost of Buildings.

UNIT V GREEN DESIGN

Green Design – Definition - Principles of sustainable development in Building Design - Characteristics of Sustainable Buildings – Sustainably managed Materials - Integrated Lifecycle design of Materials and Structures (Concepts only)

Total No of Hours : 45

REFERENCES:

- 1. K S Jagadeesh, B V Venkatta Rama Reddy & K S Nanjunda Rao ,Alternative Building Materials and Technologies, New Age International Publishers.
- 2. Asko Sarja, Integrated Life Cycle Design of Structures, SPON Press.
- 3. D S Chauhan and S K Sreevasthava, Non conventional Energy Resources, New Age International Publishers.
- 4. Laurie Backer, Buildings How to Reduce Cost, Cost Ford.

7 HRS

7 HRS

_ _ _ _ _

PROGRAM ELECTIVE IV

Subject Code: FBCF22F13	Sut	oject Nai STRUC	ame: CTURAL DYNAMICS AND EARTH OUAKE					(F	TY / Lb/	L	T / S.Lr	P/ R	С		
EDCE22E15		SINC	I UNAL D	ENGIN	EERING		li QUAI	XL.	ETL/IE						
	Pre	requisite:	Structural	Analysi	8	-			Ту	3	0/0	0/0	3		
L : Lecture T : T	Futorial	SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	: Credit	8	11			1		
T/L/ETL : Theo	ory/Lab/E	mbedded	Theory an	d Lab	-										
OBJECTIVE :															
To develop syst	tematical	ly from l	pasic princ	iples of	structural	l dynami	cs the ch	naracteri	stic of dyna	mic beha	viour of	the strue	cture,		
namely, respons	se spectru	m			6										
To expose impo	rtant aspe	$\frac{1}{2}$	$\frac{1}{(3,5)}$	nes of ca	use of ea	rthquake	and mea	suremer	it of its effect	ets on the	structure	as loads	\$		
At the end of the	e course	student v	(3- 3) vill be able	to											
CO1	Underst	Inderstanding of the behavior of EQ resistant structures													
	Applyi	upplying the knowledge to analyze structures subjected to dynamic						namic lo	loading						
CO3	The kno	Applying the knowledge to analyze structures subjected to dynamic the knowledge to design the structures for seismic loading as per						per code	nrovisions						
CO4	Evaluat	Evaluate the design methods for EQ resistant structures							2 provisions						
C05	Identify	Identify, formulate and solve free and forced vibrations response o						se of str	uctural system	ems					
Manning of Co	ourse Out	Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12		
CO1	3	3	3	3	1	3	1	1	1	1	1		3		
CO2	3	3	3	3	1	3	1	1	1	1	1		3		
CO3	3	3	3	3	1	3	1	1	1	1	1		3		
CO4	3	3	3	3	1	3	1	1	1	1	1		3		
CO5	3	3	3	3	1	3	1	1	1	1	1		3		
COs / PSOs	PS	01	PSC)2											
CO1		3	3												
CO2		3	3												
CO3		3	3												
CO4		3	3												
CO5		3	3												
3/2/1 Indicates	Strength	Of Cor	relation, 3	– High,	2- Mediu	ım, 1- L	ow	,		T					
		ses	cial		s				L						
Category	ses	enc	So	re	ive	/es	ary	ent	jec						
category	ienc	Sci	nd ces	Co	lect	ctiv	plin	noq	Pro						
	Sci	ing	es a ienc	am.	пE	Ele	scij	om	al /						
	asic	leer	nitio Sc	tgoi	grai	oen	erdi	ill c	ctic						
	Ba ngin Pr			\mathbf{P}_{1}	Prog	Ő	Int	Ski	Pra						
	Hr Er				_										

Subject Code: Subject Name: TY / Lb/ L T/S.Lr P/R С **EBCE22E13** STRUCTURAL DYNAMICS AND EARTH QUAKE ETL/IE ENGINEERING Prerequisite: Structural Analysis Ty 3 0/0 0/0 3 L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab

UNIT I SINGLE DEGREE OF FREEDOM SYSTEMS

Formulation of equation of motion-free and forced vibrations-response to dynamic Loading-effect of damping

UNIT II MODAL ANALYSIS

Free and forced vibration of un-damped and damped MDOF systems- equation of Motions- evaluation of natural frequencies and modes

UNIT III INTRODUCTION TO EARTH QUAKE ENGINEERING

Elements of engineering seismology- characteristics of earth quake engineering- earth quake history- Indian seismicity.

UNIT IV BEHAVIOUR OF STRUCTURES AND SOIL

Performance of structures under past earth quakes- lessons learnt from past earth Quakes- behavior of soil under earth quake loading- soil liquefaction- soil structure Interaction effects.

UNIT V EARTH QUAKE RESISTANT DESIGN

Concept of Earth quake resistant design- provisions of seismic code IS-1893 (part I)- 2002- response spectrumdesign spectrum- seismic coefficient- design of buildings.

Total No of Hrs: 45

TEXT BOOKS

- 1. Clough R. W, and Penzien J, Dynamics of structures, Second Edition, Mc Graw-Hill International edition, New Delhi, 1993
- 2. Mario Paz, structural dynamics- theory and computations, Third Editions CBS Publishers, New Delhi, 1990.

REFERENCES

- 1. Minoru Wakabayashi, Design of earth quake resistant buildings, Mc Graw-Hill book company, New York 1986
- 2. Anil K Chopra, Dynamics Of Structures- Theory and applications to Earth quake engineering, Prentice hall inc, 2001

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code:	Sul	bject Nai	me:						TY / Lb/	L	T/S.Lr	P/ R	С
			DA	M ENG	INEER	ING			ETL/IE				
EBCE22E14	Pre	requisite	: Irrigation	Enginee	ering				Ту	3	0/0	0/0	3
L : Lecture T : 7	Futorial	SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	: Credit	8				
T/L/ETL : Theo	ory/Lab/E	mbedded	Theory an	id Lab									
OBJECTIVE :	wladaa	n tunas s	f dom ital	functions	and dagi	an nrinai	nlas						
	COMES	$\mathbf{S}(\mathbf{COs})$	(3-5)	unctions	and desi	gii princi	ipies.						
At the end of th	e course,	the stude	ent will be a	able to:									
CO1	Thoro	ugh kno	owledge o	on Dam	structu	res							
CO2	Apply	ing the concept for design of earth dams, gravity da					vity dan	ns and roc	k fill d	ams			
CO3	Analy	yse spillways and energy dissipation structures											
CO4	Calcu	lculate the load factors for Dam Structures											
CO5	To cre	o create comprehensive knowledge on the design of various ty							ous types o	of Dam	s		
Mapping of Co	urse Ou	tcomes w	vith Progra	am Outc	omes (P	Os)	•						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	3	3	3	1	3	1	1	1	1	1		3
CO2	3	3	3	3 3		3	1	1	1	1	1		3
CO3	3	3	3	3	1	3	1	1	1	1	1		3
CO4	3	3	3	3	1	3	1	1	1	1	1		3
COs / PSOs	3 DC	3		3	1	3	I	1	1	1	1	_	3
	PS	2)2									
		2	3										
C02		2	3										
C03		2	3										
C04		3	3										
3/2/1 Indicates	Strength	n Of Cor	relation, 3	– High,	2- Medi	um, 1- L	ow						
	0					,							
Category	Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core		Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project						
					v								

Subject Code:	Subject Name:	TY / Lb/	L	T/S.Lr	P/ R	С
	DAM ENGINEERING	ETL/IE				
EBCE22E14	Prerequisite: Irrigation Engineering	Ту	3	0/0	0/0	3
L : Lecture T : Tuto T/L/ETL : Theory/L	rial SLr : Supervised Learning P : Project R : Research C: Credit ab/Embedded Theory and Lab	S				

UNIT I **INTRODUCTION**

Types of Dam, merits and demerits, dam site selection, selection of dam, Forces acting on gravity Dam, Methods of analysis of gravity Dam, Modes of failure and stability requirements, Design criteria and factor of safety.

UNIT II **GRAVITY DAM**

Elementary profile of a gravity dam, Low and high gravity dams, Zoning of dams, Galleries in dams, Temperature control in mass concrete; gravity dams subjected to earthquakes.

UNIT III BUTTRESS AND ARCH DAMS

Buttress and Arch dams, Types, selection, merits and demerits, Elementary design Principles of Arch and Buttress dams.

UNIT IV EARTH DAM

Earth Dam their component and functions, causes of failure. Factors influencing the design of an earthdam. Design criteria for Earth Dam.

UNIT V **SPILLWAY**

Elementary idea of design for spillway and energy dissipaters.

TEXT BOOKS

R.S. Varshney "Concrete Dams", by 1982, NCB, Roorkee 1.

- 2. Design of Small Dams, USBR 1960, Calcutta, Oxford and IBH
- W.P. Creager, J. Justin, Daud Hinds, "Engineering for Dams" Vol. I-III, Wiley, N.Y., USA. 3.
- IS: 6512-1984, Criteria for Design of solid Gravity Dams. 4.
- IS:1893-1984, , Criteria for Earthquake resistant Design of structures. 5.

REFERENCES

1. NPTEL course materials from different IITs

Total No of Hrs: 45

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Cod	le:	e: Subject Name : TY / Lb/ L T / S.Lr P/ R C							C					
EBCE22E15	5	Prei	requisite:	Design of	Concret	e Structu	res. Desi	gn of Ste	el	Tv	3	0/0	0/0	3
_		Stru	ictures				,	8 ~		- 5				
L : Lecture T	: Tutor	ial	SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	C: Credit	S				
T/L/ETL : T	heory/L	ab/Ei	mbedded	l Theory an	nd Lab									
OBJECTIV	E:	.1	6.1			.1		. .						
This course of	teals wi	th so	me of the	e special as $(2, 5)$	spects wi	th respec	t to Civil	Enginee	ring stru	ictures in ind	dustries.			
At the end of	f this co	WES	(CUS) : the stude	: (3- 3) int shall be	able to									
CO1	Discus	uise as the	nlannin	g and funct	tional rec	wiremen	ts of Indi	istrial str	uctures					
	Apply	ing d	lesign co	ncepts and		ctional as	spects of	Industria	1 structu	res				
CO2	Apoly	ng u		tance of various construction materials for Industrial Construction										
CO4	Evalua	ate th	he design	design of RC structures in Industry										
C05	Discov	ver th	ne moder	rn technolo	ogy used	in Indust	, rial Struc	tures						
Mapping of	Course	Out	comes w	vith Progra	am Outc	omes (P	Os)							
COs/POs	PO1		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3		3	3	3	1	3	1	1	1	1	1		3
CO2	3		3	3	3	1	3	1	1	1	1	1		3
CO3	3		3	3	3	1	3	1	1	1	1	1		3
CO4	3		3	3	3 3 1 3				1	1	1	1		3
CO5	3		3	3	3	1	3	1	1	1	1	1		3
COs /]	PSO	1	PSC	02									
PSOs		2												
COI		3		3										
CO2		3		3										
CO3		3		3										
<u>CO4</u>		3		3										
CO5	4.0.5 64 -0.0	3	Of Carr	3	High	2 Mall								
3/2/1 Indica	les Stre	ngın	OI Cor	relation, 5	– Hign,	2- Mean	um, 1- L	ow I	[T			
Category	3000	ciences in Social			Core	ectives	tives	linary	onent	Project				
	Basic Scie Engineering S Humanities an Science				Program (Program Ele	Open Elect	Interdiscipl	Skill compo	Practical / P				
						\checkmark								
			·						•	·	·	l		

Subject Code:	Subject Name :	TY/Lb/	L	T/S.Lr	P/ R	С			
	INDUSTRIAL STRUCTURES	ETL/IE							
EBCE22E15	Prerequisite: Design of Concrete Structures, Design of Steel	Ту	3	0/0	0/0	3			
	Structures								
L : Lecture T : Tuto	rial SLr : Supervised Learning P : Project R : Research C: Credit	S							
T/L/ETL : Theory/Lab/Embedded Theory and Lab									

UNIT I PLANNING

Classification of Industries and Industrial structures – General requirements for industries like cement, chemical and steel plants – Planning and layout of buildings and components.

UNIT II	FUNCTIONAL REQUIREMENTS	9 Hrs
Lighting – Vent	ilation – Accounts – Fire safety – Guidelines from factories act.	
UNIT III	DESIGN OF STEEL STRUCTURES	9 Hrs
Industrial roofs	- Crane girders – Mill buildings – Design of Bunkers and Silos	
UNIT IV	DESIGN OF R.C. STRUCTURES	9 Hrs
Silos and bunker	rs – Chimneys – Principles of folded plates and shell roofs	
UNIT V	PREFABRICATION	9 Hrs
Principles of pre	fabrication – Prestressed precast roof trusses- Functional requirements for Precas	st concrete units

TEXT BOOKS

1. Reinforced Concrete Structural elements – P. Purushothaman

2. Pasala Dayaratnam – Design of Steel Structure - 1990

REFERENCES

- 1. Henn W. Buildings for Industry, Vols. I and II, London Hill Books, 1995
- 2. Handbook on Functional Requirements of Industrial buildings, SP32 1986, Bureau of Indian Standards, New Delhi 1990
- 3. Course Notes on Modern Developments in the Design and Construction of Industrial Structures, Structural Engineering Research Centre, Madras, 1982

9 Hrs

Total No. of Hrs: 45

Subject Code:	Su	bject Nai	me :						TY / Lb/	L	T / S.Lr	P/ R	С
		ADVAN	NCED EN	VIRON	MENTA	G	ETL/IE			0.10			
EBCE22E16	Pre	erequisite	: Environm	ental En	gineering		1.0		Ту	3	0/0	0/0	3
L : Lecture T :	Tutorial	SLr:Su	pervised L	earning	P : Proje	ct R : Re	esearch C	Credit	S				
1/L/EIL: Ined	ory/Lab/E	embedded	1 Theory an	id Lab									
OBJECTIVE	: de with e	ome of th	a special or	noonte i	n Enviror	montal I	Inginogri	na					
		$\frac{1}{S(CO_{c})}$	(3-5)	neepts n			Siigilieen	ing					
At the end of th	is course	the stude	ent shall be	able to									
CO1	Discuss	the plann	ing and fu	nctional 1	requireme	ents of E	Invironm	ental str	uctures				
CO2	Applyin	ig design	concepts, a	nd const	ructional	aspects of	of Enviro	nmental	structures				
CO3	Analyze	e the impo	ortance of v	arious co	onstructio	n materi	als for E	nvironm	ental structu	ires Cons	truction		
CO4	Evaluate	e the desi	ign of Env	ironment	al structu	ires							
CO5	Discove	r the mo	dern techno	ology use	d in Env	ironment	al Struct	tures					
Mapping of C	ourse Ou	tcomes w	vith Progra	am Outc	omes (P								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	3	3	3	3	3	3	1	1	1	3		3
CO2	3	3	3	3	3	3	3	1	1	1	3		3
CO3	3	3	3	3	3	3	3	1	1	1	3		3
CO4	3	3	3	3	3	3	3	1	1	1	3		3
CO5	3	3	3	3	3	3	3	1	1	1	3		3
COs / PSOs	PS	01	PSC)2									
CO1		3	3										
CO2		3	3										
CO3		3	3										
CO4		3	3										
CO5		3	3										
3/2/1 Indicates	Strengt	h Of Cor	relation, 3	– High,	2- Medi	um, 1- L	ow	1		1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
					V								

Subject Code:	Subject Name :	TY / Lb/	L	T/S.Lr	P/ R	С
	ADVANCED ENVIRONMENTAL ENGINEERING	ETL/IE				
EBCE22E16	Prerequisite: Environmental Engineering	Ту	3	0/0	0/0	3
L : Lecture T : Tuto	rial SLr : Supervised Learning P : Project R : Research C: Credit	ts				
T/L/ETL : Theory/L	ab/Embedded Theory and Lab					

UNIT I URBANISATION & POLLUTION

Consequences of urbanization, demand of resources by the public - Sources of Pollution to the urban environment: Status of pollution levels in major cities- Slum formation: Impact of slum on general quality of life on Urban elite – status of slum settlements in major cities.

UNIT II AIR & NOISE POLLUTION IN URBAN ENVIRONMENT

Air Pollution Sources: Nature of air pollution in the Urban environment due to human activities of industrialization, effect of air pollution on Urban Environment. Air pollution Indices for Assessment of status of Urban air quality. - Sources of noise pollution in Urban areas, effect ofnoise pollution on Urban environment, status of noise pollution in major cities.

UNIT III WATER AND LAND POLLUTION IN URBAN ENVIRONMENT

Water Demands and Pollution in Urban areas: Nature of water pollutants and assimilative capacity of natural Urban aquatic systems. Urban water quality indices – Sources of land pollution in urban areas: Impact of urban soil pollution on quality of living system – prediction of soil pollution indices.

UNIT IV MANAGEMENT OF URBAN ENVIRONMENT QUALITY

Land use planning – traffic management. Safe municipal water supply and planning of safe municipal water supply and drainage system – solid waste management including disposal – abatement of noise pollution – Provision of zones – regulation of settlements.

UNIT V CONSERVATION AND DISASTER MANAGEMENT

Natural Conservation: Planning of urbanization on ecological basis, preservation and development of green recovery areas. - Urban Disaster Management: Management of Industrial explosions, landslides, earthquakes, Floods and Management of epidemics.

Total No. of Hrs: 45

REFERENCES

- 1. Varshney, C.K., "Water Pollution and Management", Wiley Eastern Ltd., New Delhi, 1998.
- 2. Plowden, S., "The Cost of Noise", London, Metra, 1996.
- 3. Fallion, A.B. & E. Simon, "The Urban Pattern", Van Nistrand, New York.
- 4. M.J. Suess & S.R. Craxford, "Manual on Urban Air Quality", WHO, Copenhagen.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

PROGRAM ELECTIVE V

Subject Code:	Sul F	oject Nai REPAIR	ne AND REH	IABILI	ΓΑΤΙΟΝ	OF STI	RUCTU	RES	TY / Lb/ ETL/IE	L	T / S.Lr	P/ R	С
EBCE22E17	Pre	requisite	Concrete	and Cons	struction	Technolo	ogy		Tv	3	0/0	0/0	3
L : Lecture T : T	Futorial	SLr : Su	pervised L	earning	P : Proje	ct R:Re	esearch C	C: Credits	3	I I			
T/L/ETL : Theo	ory/Lab/E	mbedded	l Theory an	id Lab									
OBJECTIVE													
To make the stu	dents to	gain the k	nowledge	on qualit	y of conc	rete, dur	ability as	spects, ca	auses of det	erioration			
To make the s	tudents t	o gain t	he knowle	dge on	assessme	nt of di	stressed	structure	es renairin	g of stru	ctures an	d demo	lition
	tudents t	o guin t		uge on	u550551110	int of ut	suessea	structure	os, repairing	5 01 300	etures un	a acino	muon
procedures.													
COURSE OUT After successful	COMES complet	S (COs) : ion of thi	s (3-5) s course, th	ne studen	ts should	be able	to						
CO1	Sugges	t mainten	ance and r	epair stra	tegies								
CO2	Assess	the durat	oility of con	ncrete un	der vario	us climat	tic condi	tions					
CO3	Analyz	e the sui	table mater	rials for r	epair, reł	abilitatio	on and re	trofitting	techniques				
CO4	Evaluat	te the de	sign metho	ds for rej	pair, reha	bilitatior	and retr	ofitting t	echniques				
CO5	Apply 1	epair, rel	nabilitation	and retr	ofitting te	echnique	s for field	d project	S				
Mapping of Co	urse Ou	e Outcomes with Program Outcomes (POs) D1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	3	3	3	1	3	1	1	1	1	1		3
CO2	3	3	3	3	1	3	1	1	1	1	1		3
CO3	3	3	3	3	1	3	1	1	1	1	1		3
CO4	3	3	3	3	1	3	1	1	1	1	1		3
CO5	3	3	3	3	1	3	1	1	1	1	1		3
COs / PSOs	PS	01	PSC)2									
		3	3										
<u>CO2</u>	-	3	3								_		
CO3		3	3										
CO4		3	3						_				
CO5		3	3	*** 1		1 1							
3/2/1 Indicates	Strength	Of Cor	relation, 3	– High,	2- Medu	1m, 1- L	ow			r			
Category	Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core Program Electives Interdisciplinary Interdisciplinary Skill component Practical / Project												
					\checkmark								

200

Subject Code:	Subject Name REPAIR AND REHABILITATION OF STRUCTURES	TY / Lb/ ETL/IE	L	T / S.Lr	P/ R	С
EBCE22E17	Prerequisite: Concrete and Construction Technology	Ту	3	0/0	0/0	3
I I I I I T T T						

L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

UNIT I MAINTENANCE AND REPAIR STRATEGIES

Maintenance- Repair and Rehabilitation. Facts of Maintenance - Importance of Maintenance- Various aspects of Inspection- Assessment procedure for evaluating a damaged structure, Causes of deterioration.

UNIT II STRENGTH AND DURABILITY OF CONCRETE

Quality assurance for concrete – Strength, Durability and Thermal properties, of concrete - Cracks, different types, causes – Effects due to climate, temperature, Sustained elevated temperature, Corrosion - Effects of cover thickness.

UNIT III SPECIAL CONCRETES

Polymer concrete, Sulphur infiltrated concrete, Fibre reinforced concrete, High strength and High-performance concrete, Vacuum concrete, Self-compacting concrete, Whisper concrete Geopolymer concrete, Reactive powder concrete, Concrete made with industrial wastes.

UNIT IV TECHNIQUES FOR REPAIR AND PROTECTION METHODS

Non-destructive Testing Techniques, Epoxy injection, Shoring, Underpinning, Corrosion protection techniques – Corrosion inhibitors, Corrosion resistant steels, Coatings to reinforcement, Cathodic protection.

UNIT V RETROFITTING AND DEMOLITION TECHNIQUES

Strengthening of Structural elements, Repair of structures distressed due to corrosion, fire, Leakage, earthquake – Engineered demolition methods - Case studies.

Total No of Hrs: 45

TEXTBOOKS:

- 1. Shetty M.S., "Concrete Technology Theory and Practice", S. Chand and Company, 2008.
- 2. Gambhir. M.L., "Concrete Technology", McGraw Hill, 2013
- 3. Denison Campbell, Allen and Harold Roper, "Concrete Structures, Materials, Maintenance and Repair", Longman Scientific and Technical UK, 1991.

REFERENCES:

- 1. Ravi Shankar. K. Krishnamoorthy. T.S, "Structural Health Monitoring, Repair and Rehabilitation of Concrete Structures", Allied Publishers, 2004.
- 2. Dov Kominetzky. M.S., "Design and Construction Failures", Galgotia Publications Pvt. Ltd., 2001
- 3. CPWD and Indian Buildings Congress, Hand book on Seismic Retrofit of Buildings, Narosa Publishers, 2008.
- 4. Allen R.T. & Edwards S.C, Repair of Concrete Structures, Blakie and Sons, UK, 1987

0.11----

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code:	Su	bject Nai	me	WACTI		CEME	NТ		TY/Lb/	L	T/S.Lr	P/ R	С
EBCE22E18	N10	UNICIPA	AL SOLID	WASII	LIVIANA	GENIEI	N1		ETL/IE				
	Pre	requisite	: Environm	ental En	gineering	Ţ			Ty	3	0/0	0/0	3
L : Lecture T : 7	Futorial	SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	: Credits	3				
T/L/ETL : Theo	ory/Lab/E	Embedded	Theory an	nd Lab	5								
OBJECTIVE :													
The student is e	xpected t	to know a	bout the va	arious eff	ects and	legislatic	ons for th	e munici	ipal solid wa	aste.			
To understand t	he variou	is sources	s, character	ization, p	processin	g and the	disposal	method	s of munici	pal solid	wastes.		
COURSE OUT	COME	S (COs) :	: (3-5)										
After completio	on of the o	course, st	udent will	be able to): · · · · · ·								
CO1	Unders	tand the i	nature and	character	ristics of	municipa	al solid w	astes and	d the regula	tory requ	irements 1	regardin	g
<u>CO2</u>	Applyi	pai soliu	minimizati	ion nlan	and desig	n storage	e collect	ion tran	sport proce	ecina an	d disposal	of mun	icinal
	solid w	aste	mmmzau		and desig	sii storago	c, concer	1011, u ali	sport, proce	ssing an	u uisposai	or mun	icipai
CO3	Assess	the mana	gement co	ncepts in	MSW								
CO4	Determ	nine the P	rocessing t	echnique	s and Eq	uipment	in MSW	manage	ment				
CO5	Create, identify and design waste containment systems												
Mapping of Co	ourse Outcomes with Program Outcomes (POs)												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	3	3	3	3	3	3	1	1	1	3		3
CO2	3	3	3	3	3	3	3	1	1	1	3		3
CO3	3	3	3	3	3	3	3	1	1	1	3		3
CO4	3	3	3	3	3	3	3	1	1	1	3		3
CO5	3	3	3	3	3	3	3	1	1	1	3		3
COs / PSOs	PS	501	PSC)2									
CO1		3	3										
CO2		3	3										
CO3		3	3										
CO4		3	3										
CO5		3	3										
3/2/1 Indicates	Strengtl	n Of Cor	relation, 3	– High,	2- Mediu	um, 1- L	ow	1					
		ces	ocial		se		~	t	t				
Category	iences	Scien	und Sc ces	1 Core	llective	sctives	plinar	ponen	Proje				
	ic Sc	ering	ties ¿	gran	am E	n El¢	disci	com	ical /				
	Bas	'ngine	umani	Pro	Progr	Ope	Inter	Skill	Pract				
		Щ	H										
					\checkmark								

Subject Code: EBCE22E18	Subject Name MUNICIPAL SOLID WASTE MANAGEMENT	TY / Lb/ ETL/IE	L	T / S.Lr	P/ R	С			
	Prerequisite: Environmental Engineering	Ту	3	0/0	0/0	3			
L : Lecture T : Tuto T/L/ETL : Theory/L	orial SLr : Supervised Learning P : Project R : Research C: Credits /Lab/Embedded Theory and Lab								

UNIT I SOURCES AND TYPES

Sources and types of solid wastes in a Municipality; Quantity - factors affecting generation of solid wastes; characteristics – methods of sampling and characterization; Effects of improper disposal of solid wastes – public health effects. Principle of solid waste management - social & economic aspects; Public awareness; Role of NGOs; Legislation.

ON-SITE STORAGE & PROCESSING UNIT II

On-site storage methods - materials used for containers - on-site segregation of solid wastes - public health & economic aspects of storage - options under Indian conditions - Critical Evaluation of Options.

UNIT III **COLLECTION AND TRANSFER**

Methods of Collection - types of vehicles - Manpower - collection routes; transfer stations - selection of location, operation & maintenance; options under Indian conditions.

OFF-SITE PROCESSING UNIT IV

Processing techniques and Equipment; Resource recovery from solid wastes - composting, incineration, options under Indian conditions.

UNIT V DISPOSAL

Dumping of solid waste; sanitary landfills – site selection, design and operation of sanitary landfills.

Total No. of Hrs: 45

TEXT BOOKS

- 1. George Techobanoglous et.al., Integrated Solid Waste Management, McGraw Hill Publishers, 1993.
- B.Bilitewski, G.HardHe, K.Marek, A.Weissbach, and H.Boeddicker, Waste Management, Springer, 1994. 2.

REFERENCES

- 1. Manual on Municipal Solid Waste Management, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 200
- 2. R.E.Landreth and P.A.Rebers, Municipal Solid Wastes – problems and Solutions, Lewis Publishers, 1997
- 3. Bhide A.D. and Sundaresan, B.B., Solid Waste Management in Developing Countries; INSDOC, 1993.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code: EBCE22E19	Sul F	bject Nai INITE E	ne LEMENT	ANALY	SIS				TY / Lb/ ETL/IE	L	T / S.Lr	P/ R	С
	Pre	requisite:	Structural	analysis					Ту	3	0/0	0/0	3
L : Lecture T : 7	Futorial	SLr : Su	pervised Le	earning l	P : Projec	t R : Res	search C:	Credits					
T/L/ETL : Theo	ry/Lab/E	mbedded	Theory and	d Lab									
OBJECTIVE													
The objective is	to equip	students	with funda	mentals	of finite e	element p	rinciples	so as to	enable the	n to unde	rstand the	behavio	our of
various finite el	ements a	nd to be	able to sele	ect appro	priate ele	ements to	solve p	hysical a	nd enginee	ring prob	lems with	empha	sis on
structural and th	ermal en	gineering	application	ns.									
COURSE OUT	COMES	6 (COs) :	(3-5)										
After successful	complet	ion of thi	s course, th	e student	ts should	be able to	0						
CO1	Studen	ts will be	able to un	derstand	compute	er codes f	or any st	ructural j	problems us	sing FE te	chniques		
CO2	Apply	the conce	ept of the d	ifferentia	l equation	ns and th	eir relatio	onship in	the analysi	s of struc	tures		
CO3	Analyz	the nu	merical me	thods by	FEM con	ncept							
CO4	Evalua	te the log	gic and met	hods use	d in FEM	-							
CO5	To crea	ate compi	rehensive k	nowledg	e on FEM	<u>I analysis</u>	S						
Mapping of Co	urse Out	se Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
COS/POS	POI	PO2	P03	PO4	PO5	PO6	PO/	P08	PO9	PO10		PO	2
	3	3	3	3	1	3	1	1	1	1	1		3
C02	3	3	3	3	1	3	1	1	1	1	1		3
<u>CO3</u>	3	3	3	3		3		1	1	1	1		3
<u>CO4</u>	3	3	3	3	1	3	1	1	1	1	1		3
CO_{2} / PSO_{2}	3	3		3	1	3	1	1	1	1	1		3
	rs	3)2									
	-	3	3										
		3 2	3										
C03	-	3	3										
C04		3	3							-			
2/2/1 Indicator	Strongth	of Com	J colotion 3	Uigh /	2 Modiu	m 1 Lo							
5/2/1 mulcates	Strength		elation, 5	– nigii, 2		III, 1- L0							
Category	Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core Program Electives Open Electives Interdisciplinary Skill component Practical / Project												
					\checkmark								

Subject Code: EBCE22E19	Subject Name FINITE ELEMENT ANALYSIS	TY / Lb/ ETL/IE	L	T/S.Lr	P/ R	C			
	Prerequisite: Structural analysis	Ту	3	0/0	0/0	3			
L : Lecture T : Tutor	ial SLr : Supervised Learning P : Project R : Research C: Credits								
T/L/ETL : Theory/Lab/Embedded Theory and Lab									

UNIT I INTRODUCTION – VARIATIONAL FORMULATION

General filed problems in Engineering – Modelling – Discrete and Continuous models – Characteristics – Difficulties involved in solution – The relevance and place of the finite element method – Historical comments – Basic concept of FEM, Boundary and initial value problems – Gradient and divergence theorems – Functionals – Variational calculus – Variational formulation of VBPS. The method of weighted residuals – The Ritz method.

UNIT II FINITE ELEMENT ANALYSIS OF ONE DIMENSIONAL PROBLEMS 8 Hrs

One dimensional second order equations – discretisation of domain into elements – Generalised coordinates approach – derivation of elements equations – assembly of elements equations – imposition of boundary conditions – solution of equations – Cholesky method – Post processing – Extension of the method to fourth order equations and their solutions – time dependant problems and their solutions – example from heat transfer, fluid flow and solid mechanics.

UNIT III FINITE ELEMENT ANALYSIS OF TWO DIMENSIONAL PROBLEMS 9 Hrs

Second order equation involving a scalar-valued function – model equation – Variational formulation – Finite element formulation through generalised coordinates approach – Triangular elements and quadrilateral elements – convergence criteria for chosen models – Interpolation functions – Elements matrices and vectors – Assembly of element matrices –boundary conditions – solution techniques.

UNIT IV ISOARAMETRIC ELEMENTS AND FORMULATION

Natural coordinates inn 1, 2 and 3 dimensions – use of area coordinates for triangular elements in - 2 dimensional problems – Isoparametric elements in 1,2 and 3 dimensional – Largrangean and serendipity elements – Formulations of elements equations in one and two dimensions - Numerical integration.

UNIT V APPLICATIONS TO FIELD PROBLEMS IN TWO DIMENSION

Equations of elasticity – plane elasticity problems – axis symmetric problems in elasticity Bending of elastic plates –Time dependent problems in elasticity – Heat – transfer in two dimensions – incompressible fluid flow.

Total No. of Hrs: 45

TEXT BOOKS

1. J.N.Reddy, "An Introduction to Finite Element Method", McGraw-Hill Book Co., Intl. Edition, 1985.

REFERENCES

- 1. *Rienkiewics, "The finite element method, Basic formulation and linear problems", Vol.1, 4/e, McGraw-Hill,Book Co.*
- 2. S.S.Rao, "The Finite Element Method in Engineering", Pergaman Press, 1989.
- 3. C.S.Desai and J.F.Abel, "Introduction to the Finite Element Method", Affiliated East West Press 1972

8 Hrs

10 Hrs

Subject Code:	Sul	bject Nai	ne				EC		TY/Lb/	L	T/S.Lr	P/ R	С	
EBCE22E20			PREFAB	RICATE	D STR	UCTUR	ES		ETL/IE					
EDCE22E20	Pre	requisite	NIL						Tv	3	0/0	0/0	3	
L : Lecture T : 7	Futorial	SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	: Credit	<u>- </u>	0	0,0	0,0		
T/L/ETL : Theo	ory/Lab/E	mbedded	l Theory an	id Lab										
OBJECTIVE :														
To impart know	ledge to	students	on modular	construc	ction, ind	ustrialise	ed constru	uction an	nd design of	prefabri	cated elem	ents and	t	
construction me	thods.													
COURSE OUT	COMES	S(COs):	(3- 5)											
The student sha	II be able	to	Jana 4 and 4 la		-ff.		-1							
	Student	ts can und	ierstand th	te basics	of prefa	bricated e	elements							
C02	Apply	the consti	uction met	noas in p	brefabrica	ated elem	ients		11					
<u>CO3</u>	Assess	the utiliz	ation of vai	rious cod	le provisi	ons rega	rding pro	progressive collapse						
C04		tte the eff	1ciency of	prefabric	ated eler	nents.	the desig	n of max	folomicated at	miaturaa				
LU5 Manning of Co	10 Prac	tcomes y	vith Progra	prenensi am Oute	omes (P		the desig	n or pre	labricated st	ructures				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	
CO1	3	3	3	3	1	3	1	1	1	1	1	10	3	
CO2	3	3	3	3	1	3	1	1	1	1	1		3	
CO3	3	3	3	3	1	3	1	1	1	1	1		3	
CO4	3	3	3	3	1	3	1	1	1	1	1		3	
C05	3	3	3	3	1	3	1	1	1	1	1		3	
COs / PSOs	PS	01	PSC)2		-	_	_						
CO1		3	3											
CO2		3	3											
CO3		3	3											
CO4		3	3											
CO5		3	3											
3/2/1 Indicates	Strength	of Cor	relation, 3	– High,	2- Media	um, 1- L	ow							
		S	ial											
	S	suce	Soc	e	ves	Se	ry	nt	ect					
Category	nce	Scie	s p	Cor	ecti	tive	lina	one	roj					
	cie	50	an	m (Еľ	llec	cipl	du	/ F					
	ic S	erir	ties	gra	am	пE	dise	CO.	ical					
	3as	ine	ani	Pro	ogr	Dpe	nter	kill	act					
		Engi Humá					Ir	Š	$\mathbf{P}_{\mathbf{I}}$					
			Н											
					v									

206

T/S.Lr P/R Subject Code: Subject Name TY / Lb/ L С PREFABRICATED STRUCTURES ETL/IE **EBCE22E20** Prerequisite: NIL 3 0/0 0/0 3 Ty L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab

UNIT I **INTRODUCTION**

Need for prefabrication – Principles – Materials – Modular coordination – Standardization – Systems – Production - Transportation - Erection.

UNIT II PREFABRICATED COMPONENTS

Behaviour of structural components - Large panel constructions - Construction of roof and floor slabs - Wall panels - Columns - Shear walls.

UNIT III **DESIGN PRINCIPLES**

Disuniting of structures- Design of cross section based on efficiency of material used – Problems in design because of joint flexibility – Allowance for joint deformation.

UNIT IV JOINT IN STRUCTURAL MEMBERS

Joints for different structural connections – Dimensions and detailing – Design of expansion joints.

UNIT V **DESIGN FOR ABNORMAL LOADS**

Progressive collapse - Code provisions - Equivalent design loads for considering abnormal effects such as earthquakes, cyclones, etc., - Importance of avoidance of progressive collapse.

TEXT BOOKS

- 1. CBRI, Building materials and components, India, 1990
- Gerostiza C.Z., Hendrikson C. and Rehat D.R., Knowledge based process planning for construction and 2. manufacturing, Academic Press Inc., 1994

REFERENCES

- 1. Koncz T., Manual of precast concrete construction, Vols. I, II and III, Bauverlag, GMBH, 1971.
- Structural design manual, Precast concrete connection details, Society for the studies in the use of precast 2. concrete, Netherland Betor Verlag, 1978.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Total No. of Hrs: 45

OPEN ELECTIVES **OFFERED FROM** CIVIL ENGINEERING

Subject Cod	e:Subject Name :WATER POLLUTION AND TTS MANAGEMENTTY / Lb/L ETL/IET / S.Lr P/ R CC1Prerequisite: NILTy 30/00/03												С	
EBCE22OE	1	Prerequisite: NIL Ty 3 0/0												
	Pre	requisi	te: NIL						Ту	3 0	/0 ()/0	3	
L : Lecture T	: Tuto	rial S	Lr : Sup	oervised	l Learr	ing P	: Proje	ect R :	Research	h C: Cre	dits			
T/L/ETL : Th	neorv/I	.ab/Em	bedded	Theory	and L	ab								
OBJECTIV	E:			Incory	und E	ue								
To learn the f	fundam	ental c	oncepts	in the t	field of	water	polluti	ion and	l its man	agement	t			
COURSE O	UTCO	<u>MES (</u>	(COs):	(3-5)	At the	end of	the co	ourse,	Students	will be	able to			
COI	I o stu	dy the	various	Effects	of wa	ter pol	lution							
CO2	Apply	the m	tigation	measu	res to c	ontrol	of Wa	ter Po	llution					
CO3	To An	alyze	various	Water I	Pollutio	on cont	rol Ac	ts						
CO4	Evalua	ate the	role of	regulate	ory boo	g laws	against	water po	ollution					
C05	Practio	cing ne	w meth	ods in	water j	nagement								
Mapping of	Course	e Outc	omes wi	ith Pro	gram	Outcor	nes (P	Os)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	
<u>CO1</u>	3	3	3	3	3	3	3	1	1	1	3	_	3	
CO2 CO2	3	3	3	3	3	3	3	1	1	1	3		3	
<u>CO3</u>	3	3	3	3	3	3	3	1	1	1	3		3	
CO4 CO5	3	3	3	3	3	3	3	1	1	1	3		3	
$\frac{CO5}{COs/PSOs}$	3 DSO1	3	3 DS	3	3	3	3	1	1	1	3		3	
$\frac{\cos(1)}{\cos(1)}$	1 301	3	15	2										
CO2	-	3) }										
CO3	,	3		, }										
CO4	,	3		, }										
CO5	,	3		<u> </u>										
3/2/1 Indicat	tes Stre	ength (Of Corr	elation	. 3 – H	ligh, 2-	- Medi	ium, 1	- Low					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	▲ Open Electives	▲ Interdisciplinary	Skill component	Practical / Project					
						v	v							

Subject Code:	Subject Name : WATER POLLUTION AND ITS MANAGEMENT	TY / Lb/ ETL/IE	L	T / S.Lr	P/ R	С
EBCE22OE1						
	Prerequisite: NIL	Ту	3	0/0	0/0	3
L : Lecture T : T	Tutorial SLr : Supervised Learning P : Project R :	Research	C: C	redits		
T/L/ETL : Theo	ry/Lab/Embedded Theory and Lab					

UNIT I SOURCES & CHARACTERISTICS OF WATER POLLUTION

Water pollution-Sources & types of water pollution –Physical, chemical & biological –Effect of water pollution. Drinking water quality standards waste Water treatment –Primary, secondary, tertiary-water pollution prevention & control act – 1974.

UNIT II W ATER QUALITY & STANDARDS

Quality of surface waters, Water quality in flowing waters, Water quality in impounded waters, Groundwater quality, Water quality standard Microbiological quality of drinking water, and Chemical quality of drinking water

UNIT III **INDUSTRIAL ACTIVITY & MITIGATION MEASURES**

Role of water in different industries-Effluent discharge characteristics-Discharge Standards for Rivers and Streams-Role of stakeholders, Public NGOS, Government in Protection of Water bodies-Control Measures-Mitigation Measures for Industrial Water Contamination due to industries.

UNIT IV WATER POLLUTION REGULATIONS

Administrative regulation under recent legislations in water pollution control. Water (Prevention & control of pollution) Act 1974 as amended by Amendment Act 1988. Water (Prevention & control of pollution) Rules 1975 Water (Prevention & control of pollution) Cess Act. 1977 as amended by Amendment Act 1991.

UNIT V **ROLE OF REGULATORY BOARDS**

Sustainable Development, Rain Water Harvesting-Methods-Water Pollution-Causes and Effects-Role of Regulatory bodies and Local bodies-CPCB-TWAD Board - CMWSSB etc-Case Studies related to Effective Water Management

TEXT BOOKS

1. Fair.G.M, "Water and Waste water engineering Vol.I & II". John Wiley and sons, Newyork. 2010.

REFERENCES

1. Metcalf & Eddy, "Wastewater engineering, Treatment and Reuse", Tata MacGrawhill publications, 2008.

2. Eckenfelder, W.W., ""Industrial Water Pollution Control", McGraw-Hill, 2009.

3. Arceivala.S.J, "Wastewater Treatment for Pollution Control", Tata McGraw-Hill, 2008.

4. "Aruna Venkat Environmental Law and Policy", PHI learning private limited New Delhi, 2011.

5. Water Management In India,"Concept Publishing Company", New Delhi, 2004.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Total No. of Hrs: 45

Subject	Cod	e: Sut	ject N	lame						TY / L/	L	Γ/S.Lr	P/ R	С
FRCET	2 015'	, AII	R POL	LUTIO	NANI	D CON	TRO	Ĺ		ETL/IE				
EDCE2	20E	2												
		Pre	requisi	te: NIL						Ту	3 (0/0	0/0	3
L : Lect	ure T	: Tutor	rial S	Lr : Sup	ervised	l Learn	ing P	: Proje	ct R :	Research	C: Cre	edits		
T/L/ETI	L:Th	neory/L	ab/Em	bedded 7	Theory	and La	ab							
OBJEC	TIV	ES:												
To take	up th	e basic	concep	pts of air	pollut	ion.								
The con	tents	involve	ed the l	knowled	ge of c	auses c	of air p	ollutio	n					
The con	tents	involve	ed the l	cnowled	ge of h	ealth re	elated t	to air p	ollutio	n				
COURS	SE O	UTCO	MES (COs) : ((3-5) (On con	npletio	n of th	e cours	e the stu	dents w	vould ha	ve	
CO1		Under	standi	ing the l	behavi	or and	l Conce	epts of	air pol	lution				
CO2		Apply	the pri	inciples	to estir	nate th	e quan	tity of	air pol	lutants				
CO3		Analyz	ze and	develop	o contro	ol strate	egies	·	•					
CO4		Calcul	ate the	amount	of SC	4, CO	rious methods							
CO5		Create	new to	echnolog	gies for	Air C	oring							
Mappin	ng of (Course	Outco	omes wi	th Pro	Os)								
COs/PC)s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1		3	3	3	3	3	3	3	1	1	1	3		3
CO2		3	3	3	3	3	3	3	1	1	1	3		3
CO3		3	3	3	3	3	3	3	1	1	1	3		3
CO4		3	3	3	3	3	3	3	1	1	1	3		3
CO5		3	3	3	3	3	3	3	1	1	1	3		3
COs / P	SOs	PS	01	PS	02									
CO1			3	3	;									
CO2			3	3	;									
CO3			3	3	;									
CO4			3	3	;									
CO5			3	3	;									
3/2/1 In	dicat	es Stre	ngth (Of Corre	elation	, 3 – H	ligh, 2-	- Medi	um, 1-	Low				
	Category	Basic Sciences	Engineering Sciences	Humanities and Social Science	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
							\checkmark	\checkmark						

Subject Code: TY/L/L T/S.LrP/R C Subject Name ETL/IE AIR POLLUTION AND CONTROL **EBCE22OE2** Prerequisite: NIL 0/00/03 Τy 3 L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab

UNIT I **INTRODUCTION**

History of Air pollution and episodes, Sources of air pollution and types, Introduction to meteorology and transport of air pollution: Global winds, Headley cells, wind rose terrestrial wind profile, Effects of terrain and topography on winds, lapse rate, maximum mixing depths, plume rise

UNIT II TRANSPORT OF POLLUTION IN ATMOSPHERE

Plume behavior under different atmospheric conditions, Mathematical models of dispersion of air pollutants, Plume behavior in valley and terrains. Plume behavior under different meteorological conditions, Concept of isoplates

UNIT III **EFFECTS OF AIR POLLUTION**

Effects of Air Pollution on human beings, plants and animals and Properties. Global Effects-Green house effect, Ozone depletion, heat island, dust storms, Automobile pollution sources and control, Photochemical smog, Future engines and fuels

UNIT IV AIR POLLUTION CONTROL

Air Pollution control- at source-equipments for control of air pollution-For particulate matter-Settling chambers-Fabric filters-Scrubbers-Cyclones-Electrostatic precipitators, For Gaseous pollutants-control by absorption-adsorption-scrubbers-secondary combustion after burners, Working principles advantages and disadvantages, design criteria and examples.

UNIT V AIR OUALITY SAMPLING AND MONITORING

Stack sampling, instrumentation and methods of analysis of SO2, CO etc, legislation for control of air pollution and automobile pollution

Total No. of Hrs: 45

References:

- 1. H.C Parkins, Air Pollution Mc Graw Hill Publication
- 2. H.S. Peavy, D.R. Row & G. Tchobanoglous, Environmental Engineering, Mc Graw Hill International Edition
- 3. Martin Crawford, Air Pollution Control Theory, TMH Publ.

Web Materials:

- http://www.epa.gov 1.
- http://www.indiaenvironmentportal.org.in 2.
- 3. http://nptel.iitm.ac.in
- http://www.filtersource.com 4.
- https://dgserver.dgsnd.gov 5.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code: Subject Name EBCE22OE3 GREEN BUILDING AND VASTU CONCEPTS									TY / L/ ETL/IE	L	T / S.Lr	•	P/ R	С
	Prere	quisite	e: NIL						Ту	3	0/0		0/0	3
L : Lecture T : 1	Γutori	al SI	Lr : Su	ipervi	sed L	earnin	g P:	Project R :	Research C	: Credit	S	<u>.</u>		
T/L/ETL : Theo	ory/La	b/Emt	bedded	1 Theo	ory an	d Lab								
OBJECTIVE														
To expose the n	ecessi	ty of g	green l	buildi	ng an	d acqu	ire kn	lowledge or	n vastu-shas	tra				
COURSE OUT	CON	1ES (0	COs) :	: (3-	5) On	comp	letion	of the cour	se the stude	nts wou	ld have			
CO1	Students should be able to describe the importance and necessity of green building													
CO2	Students should be able to assess a building norms for green building													
CO3	Students should be able to analyze the materials and technologies to improve energy efficiency of													
<u>CO4</u>	build	ing	1 1 1	1.1	. 1		.1	1 '1 1'	• .	C	. 1 .			
CO4 CO5	Stude	ents sh	ould	$\frac{be}{1}$ able	$\frac{1}{1}$	etermi	ne the	building no	orms in tern	$\frac{1s \text{ of } va}{1 + V}$	stu-shastra			
CO5 Monning of Co	10 cr	eate co	ompre	enensi	ve kno		ge on	the Green t	buildings wi	th vast	nu concepts	S		
Mapping of Co	DO1		$\frac{1}{1}$ mes v	VILL P	rogra			les (PUs)	DOO		DO1	1 1	012	
COS/POS	2	PO2	PU3	PU4	PU5	2	PU /	1 1	r09 1			<u>1</u> P	2	
CO1	3	3	3	3	1	3	1	1	1	1	1		2	
CO_2	3	3	3	3	1	3	1	1	1	1	1		3	
CO3	2	2	2	2	1	2	1	1	1	1	1		3	
CO4	2	2	2	2	1	2	1	1	1	1	1		2	
C04 C05	2	2	2	2	1	2	1	1	1	1	1			
CO_{2} / PSO_{2}		01	2 DC	\sim	1	3	1	1	1	1	1		3	
$\frac{\text{COS/PSOS}}{\text{CO1}}$	2		PSU2											
$\frac{1}{1}$	2		2											
CO_2		<u> </u>	2											
CO_{1}		3	3											
C04 C05		3	3											
CUS 3/2/1 Indicates	Stron	J orth A	of Cor	, rolati	on 3	_ Hia	h 2-	Medium 1	- Low					
5/2/1 mulcates	Bulu		s S	I Clau	011, 5	Ing								
Category	Basic Sciences	Engineering Sciences	Humanities and Social Science	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project					
						√	~							

Subject Code: EBCE22OE3	Subject Name GREEN BUILDING AND VASTU CONCEPTS	TY / L/ ETL/IE	L	T / S.Lr	P/ R	C					
	Prerequisite: NIL	Ту	3	0/0	0/0	3					
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits											

T/L/ETL : Theory/Lab/Embedded Theory and Lab

UNIT I **INTRODUCTION OF GREEN BUILDING**

Concept of green building, History of green building, Need of green building in present scenario, Importance of green building Merits and demerits, Classification of green building, Assessment methods Global assessment and certification, Local assessment, LEED India GRIHA (Green Rating for Integrated Habitat Assessment)

UNIT II PRINCIPLES AND ELEMENTS OF DESIGN OF GREEN BUILDING

Sustainability: concept and reality 2. Climate responsive process of design: Climatic zones, design sequence, shelter or form, land form, vegetation, water bodies, street widths, open spaces, ground character, plan form, orientation, roof form 3. Shading devices and their effect 9 Hrs

UNIT III THERMAL COMFORT INSIDE THE BUILDING

Factors affecting, indices, cooling and heating requirement, Heat transmission through building sections, thermal performance of building sections, simple calculation for U value and insulation thickness . Day lighting. Ventilation

WATER CONSERVATION AND BUREAU OF ENERGY EFFICIENCY UNIT IV

3 R's for water conservation, rain water harvesting, low flow fixtures, grey water recycling Material conservation: concept of embodied energy, low energy materials, sustainable materials, alternative materials Concept of carbon emission and its reduction Functions, policies, guidelines, Energy Conservation Building Code, Study of existing green buildingsIntroduction to Energy efficiency softwares, carbon calculators

UNIT V VASTU CONCEPT

History, scientific approach, importance of shapes size and direction, vastu of a plot, elements of vastu for selecting a plot, vastu of a residence, vastu of existing building

Total No. of Hrs: 45

TEXT BOOKS

- 1. Climate responsive architecture (A design hand book for energy efficient buildings), Arvind Krishnana, Simos Yannas, Nick Baker, S V Szokolay, McGraw hill Education, Seventh reprint, 2013
- 2. Renewable Energy and Environment -A Policy Analysis for India, H, Ravindranath, K Usha Rao, B Nataraja n, P Monga, Tata McGraw Hill, 2000
- Energy and the Environment, JM Fowler, McGraw Hill, New York, 2nd Edition, 1984 3.

REFERENCE

- 1. Handbook on functional requirements of buildings (SP41), BIS, New Delhi, 1987
- 2. Energy Conservation building code (ECBC), Bureau of energy efficiency, 2011

9 Hrs

9 Hrs

9 Hrs

Subject Cod	e: Sub	oiect N	ame						TY / L/	L	Γ/S.Lr	P/ R	С
EBCE22OE	4 CL DE	IMAT VELO	E CHA PMEN	NGE A F	AND S	USTA	INABI	LE	ETL/IE				
	Pre	requisi	te: None	•					Tv	3 ()/0)/0	3
L : Lecture T	` : Tuto	rial S	SLr : Sur	pervise	d Lear	ning P	: Proie	ect R:	Researc	h C: Cr	edits		6
T/L/ETL : TI	neory/L	.ab/Em	bedded	Theory	and L	ab.	· j ·						
OBJECTIV	E												
To understan change on so	d the E ciety a	arth's nd its n	Climate nitigatio	Syster n meas	n and t sures.	he con	cept of	Globa	1 Warmin	ng, the	impact o	f clin	nate
COURSE O	UTCO	MES ((COs) :	(3-5)									
At the end o	f the co	ourse t	he stud	ent wi	ll be al	ole to	1.4 00						
$\frac{CO1}{CO2}$	Under	stand th	ne globa	l clima	te char	ige and	1 its eff	ects	tation on	d romic		otion	
02	measu	anu Ap res	opry the	concep		ciinate	chang	e adap	tation an	u vario	bus mitig	ation	
CO3	Assess	the co	ncept of	clean	energy	and er	nergy c	onserv	ation				
CO4	Evalua	te the	climate	change	adapta	ation a	nd vari	ious mi	itigation	measur	es		
$\frac{CO5}{100}$	Practic	the n	nitigatio	n proc	ess for	Sustai	nable d	evelop	ment				
Mapping of COs/POs	Course PO1	e Outc	omes w	ith Pro	ogram PO5	Outco PO6	mes (P PO7	'US) PO8	POQ	PO10	PO11	PO	12
CO5/1 O5	3	3	3	3	1	3	107	1	109	1 010	1011	10	3
CO2	3	3	3	3	1	3	1	1	1	1	1		3
CO3	3	3	3	3	1	3	1	1	1	1	1		3
CO4	3	3	3	3	1	3	1	1	1	1	1		3
CO5	3	3	3	3	1	3	1	1	1	1	1		3
COs / PSOs	PS	01	PS	02		-		_					-
CO1		3	3										
CO2		3	3										
CO3		3		3									
CO4		3	3	3									
CO5		3	3	}									
3/2/1 Indicat	tes Stre	ength (Of Corr	elatior	n, 3 – F	ligh, 2	- Medi	um, 1-	- Low				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	▲ Open Electives	▲ Interdisciplinary	Skill component	Practical / Project				

Subject Code: Subject Name TY/L/L T / S.LrP/R C ETL/IE CLIMATE CHANGE AND SUSTAINABLE EBCE22OE4 DEVELOPMENT Prerequisite: None Ty 3 0/0 0/0 3 L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab

UNIT I EARTH'S CLIMATE SYSTEM

Introduction-Climate in the spotlight - Climate Classification - Global Wind Systems -Cloud Formation and Monsoon Rains - Storms and Hurricanes - The Hydrological Cycle - Global Ocean Circulation -Solar Radiation -The Earth's Natural Green House Effect - Green House Gases and Global Warming - Carbon Cycle.

OBSERVED CHANGES AND ITS CAUSES UNIT II

Observation of Climate Change - Changes in patterns of temperature, precipitation and sea level rise - Observed effects of Climate Changes - Patterns of Large Scale Variability - Drivers of Climate Change - Climate Sensitivity and Feedbacks - The Montreal Protocol - UNFCCC - IPCC.

UNIT III **IMPACTS OF CLIMATE CHANGE**

9 Hrs Impacts of Climate Change on various sectors -Methods and Scenarios - Projected Impacts for Different Regions- Uncertainties in the Projected Impacts of Climate Change - Risk of Irreversible Changes.

9 Hrs **UNIT IV** CLIMATE CHANGE ADAPTATION AND MITIGATION MEASURES

Adaptation Strategy/Options in various sectors -Key Mitigation Technologies and Practices -Carbon sequestration - Carbon capture and storage (CCS)- Waste (MSW & Bio waste, Biomedical, Industrial waste - International and Regional cooperation.

UNIT V CLEAN TECHNOLOGY AND ENERGY

Clean Development Mechanism – Carbon Trading examples of future Clean Technology – Biodiesel – Natural Compost - Eco- Friendly Plastic - Alternate Energy - Hydrogen - Bio-fuels - Solar Energy – Wind – Hydroelectric Power.

Total No. of Hrs: 45

REFERENCES

1. Anil Markandya, Climate Change and Sustainable Development: Prospects for Developing Countries, Routledge, 2002

2. Heal, G. M., Interpreting Sustainability, in Sustainability: Dynamics and Uncertainty, Kluwer Academic Publ., 1998

3. Jepma, C.J., and Munasinghe, M., Climate Change Policy – Facts, Issues and Analysis, Cambridge University Press, 1998

4. Munasinghe, M., Sustainable Energy Development: Issues and Policy in Energy, Environment and Economy: Asian Perspective, Kleindorfor P. R. et. al (ed.), Edward Elgar, 1996

5. Dash Sushil Kumar, "Climate Change – An Indian Perspective", Cambridge University Press India Pvt. Ltd, 2007.

9 Hrs

9 Hrs

Subject Coo EBCE22OF	de: Sul IN 25 SY	bject N FELLI STEM	lame IGENT IS	ΓRAN	SPOR	TATI	ON		TY / L/ ETL/IE	LI	[/ S.Lr]	P/ R	С
	Pre	requisi	te: NIL						Ту	3 0	/0 0)/0	3
L : Lecture	Γ : Tuto	rial S	SLr : Sup	ervise	d Learr	ning P	: Proje	ct R:	Research	n C: Cre	dits		1
T/L/ETL : T	heory/L	.ab/Em	bedded	Theory	and L	ab							
OBJECTIV	E /E			J									
To expose th	ne recen	ıt advar	ncement	s in Tra	ansport	Syster	ns						
COURSE C	OUTCO	MES ((COs):	(3-5)	On cor	npletio	n of th	e cours	se the stu	dents w	ould hav	ve	
CO1	Know	Knowledge on the various principles and aspects of Intelligent Transport System											
CO2	Under	standir	ng Trans	portati	on syst	em and	d inters	section	manager	ment			
CO3	Analy	ze the	advance	d trans	port sy	vstem v	vith rou	ite gui	dance				
CO4	Manip	ulate t	he data	for the	Dynan	nic Tra	ffic As	signm	ent				
CO5	To cre	ate cor	nprehen	sive kn	owled	ge on t	he desi	gn of l	Intelligen	t transp	ort syste	em	
Manning of	^c Cours	e Outc	omes wi	th Pro	gram	Outco	mes (P	$\overline{\mathbf{Os}}$		F	j		
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	3	3	3	1	3	1	1	1	1	1		3
CO2	3	3	3	3	1	3	1	1	1	1	1		3
CO3	3	3	3	3	1	3	1	1	1	1	1		3
CO4	3	3	3	3	1	3	1	1	1	1	1		3
CO5	3	3	3	3	1	3	1	1	1	1	1		3
COs / PSOs	s PS	501	PSO2										
CO1		3	3										
CO2		3	3										
CO3		3	3									_	
CO4		3	3	<u> </u>									
$\frac{CO5}{2/2/1}$ In diag	400 54-	3 	Correct Correct		2 1	3 High 2 Modiu			Lorr				
5/2/1 Indica	ites Str	engin (JI COFF	elation	1, 3 – F	ugn, 2	- Meai	um, 1	- LOW				
legory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
Cat						\checkmark	\checkmark						

Subject Code: EBCE22OE5	Subject Name INTELLIGENT TRANSPORTATION SYSTEMS	TY / L/ ETL/IE	L	T / S.Lr	P/ R	С		
	Prerequisite: NIL	Ту	3	0/0	0/0	3		
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits								
T/L/ETL : Theo	bry/Lab/Embedded Theory and Lab							

UNIT I INTRODUCTION TO INTELLIGENT TRANSPORT SYSTEM 8 Hrs

Definition – Role and Responsibilities – Advanced Traveller Information System – Fleet Oriented ITS Services

- Electronic Toll Collection - Critical issues - Security - Safety 21

UNIT II ITS ARCHITECTURE AND HARDWARE 9 Hrs

Architecture – ITS Architecture Framework – Hardware Sensors – Vehicle Detection – Techniques – Dynamic Message Sign – GPRS – GPS – Toll Collection

UNIT III INTERSECTION MANAGEMENT

Video Detection – Virtual Loop - Cameras - ANPR – IR Lighting – Integrated Traffic Management – Control Centre – Junction Management Strategies

UNIT IVADVANCED TRANSPORT MANAGEMENT SYSTEM10 Hrs

ATMS – Route Guidance – Issues - Travel Information – Pre Trip and Enroute Methods – Historical – Current – Predictive Guidance – Data Collection – Analysis – Dynamic Traffic Assignment (DTA) – Components – Algorithm

UNIT V ADVANCED TRAVELLER AND INFORMATION SYSTEM 8 Hrs

Basic ATIS Concepts – Smart Route System – Data Collection – Process – Dessemination to Travelers – Evaluation of Information – Value of Information – Business Opportunities

Total No. of Hrs: 45

10 Hrs

REFERENCES

- 1. Intelligent Transport Systems, Intelligent Transportation Primer, Washington, US, 2001
- 2. Henry F.Korth, and Abraham Siberschatz, Data Base System Concepts, McGraw Hill, 1992
- 3. E.Turban, "Decision Support and Export Systems Management Support Systems", Maxwell Macmillan, 1998
- Sitausu S.Mittra, "Decision Support Systems Tools and Techniques", John Wiley, New York, 1986 5. Cycle W.Halsapple and Andrew B.Winston, "Decision Support Systems – Theory and Application", Springer Verlog, New York, 1987
| Subject Code | e: Su | bject N | lame | | | | | | TY/L/
eti/ie | L | T / S.Lr | P/ R | С |
|-------------------|----------------|--|--------------------------------|----------------|-------------------|--------------------------------------|-------------------|-----------------|---------------------|----------|------------|--------|----|
| EDCE22UE0 |) EN | VIRO | NMEN | г, не | ALTH | AND | SAFE | I'Y IN | | | | | |
| | IN | DUSTI | RIES | | | | | | | | | | |
| | Pre | erequisi | te: NIL | | | | | | Ty | 3 | 0/0 | 0/0 | 3 |
| L : Lecture T | : Tuto | orial S | SLr : Su | pervise | ed Lear | ning P | : Proje | ect R : | Research | n C: Cr | edits | | |
| T/L/ETL : Th | eorv/I | .ab/Em | bedded | Theor | v and I | ab | J | | | | | | |
| OBJECTIVE | E | 340,211 | | 111001 |) 4110 2 | | | | | | | | |
| To understand | d the b | basic ne | eds of s | safety | in hum | an heal | lth, env | vironm | ental safe | ety, ele | ctrical sa | fety, | |
| safety against | accid | lents an | d fire | | | | | | | | | | |
| safety in vario | ous inc | lustries | | | | | | | | | | | |
| COURSE OU | <u>JTCC</u> |)MES (| (COs): | <u>(3-5)</u> | C . | | • | | | | | | |
| | | earn the | e occupa | tional | safety | and hy | giene | 1 1 | . 1.1 | | •1 •1• | | |
| CO2 | A | pply an | d practi | ce the | workp | lace sat | tety an | d unde | rstand th | eir resp | onsibilit | у | |
| CO3 | | DSSESS 2 | in aware | eness o | n envir | onmen | t, heal | th and s | safety in | industr | ies | | |
| CO4 | E | valuate | the fra | me wo | ork with | n data I | or insp | pection | s and au | dits | | | |
| CO5 | T | o create | e compre | ehensi | ve knov | wledge | on the | Princi | ples and | metho | ods of ef | fectiv | 'e |
| Manning of (| ui
Cours | irraining in industries.
irrse Outcomes with Program Outcomes (POs) | | | | | | | | | | | |
| COs/POs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO | 12 |
| CO1 | 3 | 3 | 3 | 3 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | | 3 |
| CO2 | 3 | 3 | 3 | 3 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | | 3 |
| CO3 | 3 | 3 | 3 | 3 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | | 3 |
| CO4 | 3 | 3 | 3 | 3 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | | 3 |
| C04 | 3 | 3 | 3 | 3 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | | 3 |
| COS / PSOs |
 | <u>5</u> | PS | $\frac{1}{02}$ | 1 | 5 | 1 | 1 | 1 | 1 | 1 | | 5 |
| $\frac{CO3}{CO1}$ | I. | 2 | 10 | 2 | | | | | | | | | |
| CO1 | | <u> </u> | | 2 | | | | | | | | | |
| CO2 | | <u> </u> | |)
) | | | | | | | | | |
| | | <u> </u> | - |)
, | | | | | | | | | |
| | | 3 | - | 5 | | | | | | | | | |
| | C (| 3 | | 3 | | | | | | | | | |
| 3/2/1 Indicate | es Str | ength (| Of Corr | elatio | n, 3 – I | High, 2 | - Med | ium, 1 | - Low | | | | |
| Category | Basic Sciences | Engineering Sciences | Humanities and Social Sciences | Program Core | Program Electives | ▲ Open Electives | Interdisciplinary | Skill component | Practical / Project | | | | |
| | | | | | | • | | | | | | | |

Subject Code: EBCE22OE6	Subject Name ENVIRONMENT, HEALTH AND SAFETY IN	TY / L/ ETL/IE	L	T / S.Lr	P/ R	С
	INDUSTRIES					
	Prerequisite: NIL	Ту	3	0/0	0/0	3
L : Lecture T : 7	Tutorial SLr : Supervised Learning P : Project R :	Research	C: C	redits		
T/L/ETL : Theo	ry/Lab/Embedded Theory and Lab					

UNIT I INTRODUCTION

Need for developing Environment, Health and Safety systems in work places, Status and relationship of Acts, Regulations and Codes of Practice, Role of trade union safety representatives .International initiatives, Ergonomics and work place.

UNIT II **OCCUPATIONAL HEALTH AND HYGIENE**

Definition of the term occupational health and hygiene, Categories of health hazards, Exposure pathways and human responses to hazardous and toxic substances, Advantages and limitations of environmental monitoring and occupational exposure limits, Hierarchy of control measures for occupational health risks, Role of personal protective equipment and the selection criteria.

WORKPLACE SAFETY AND SAFETY SYSTEMS **UNIT III**

Features of the satisfactory design of work premises HVAC, ventilation. Safe installation and use of electrical supplies, Fire safety and first aid provision, Significance of human factors in the establishment and effectiveness of safe systems, Safe systems of work for manual handling operations, Control methods to eliminate or reduce the risks arising from the use of work equipment, Requirements for the safe use of display screen equipment, Procedures and precautionary measures necessary when handling hazardous substances, Contingency arrangements for events of serious and imminent danger.

UNIT IV TECHNIQUES OF ENVIRONMENTAL SAFETY 9 Hrs

Functions and techniques of risk assessment, inspections and audits, Investigation of accidents-Principles of quality management systems in health and safety management.

UNIT V **EDUCATION AND TRAINING**

Factors to be considered in the development of effective training programmes, Principles and methods of effective training, Feedback and evaluation mechanism.

Total No. of Hrs: 45

- 1. Environmental and Health and Safety Management by Nicholas P. Cheremisinoff and Madelyn L. Graffia, William Andrew Inc. NY, 1995
- 2. The Facility Manager's Guide to Environmental Health and Safety by Brian Gallant, Government Inst Publ. Effective Environmental, Health, and Safety Management Using the Team Approach by Bill Taylor, Culinary and Hospitality Industry Publications Services 2005

REFERENCES

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Co EBCE22O	ode: E7	Subject Name INDUSTRIAL POLLUTION PREVENTION AND CLEANER PRODUCTION						ON	TY / L/ ETL/IE	L	Г / S.Lr	P/ R	С	
		Pre	requisi	te: NIL						Ту	3 ()/0	0/0	3
L : Lecture T/L/ETL : '	T : T Theor	utoi ry/L	rial S ab/Em	Lr : Sup bedded '	erviseo Theory	l Learn and La	ning P ab	: Proje	ct R :	Research	C: Cre	edits		
OBJECTI	VE:						1.	1	a	D 1		10		
Get educate	ed on	con	nplete i	manager	nent pr	inciple	es relate	ed to th	e Clea	iner Prod	uction	and Con	trol	
			MES ($\overline{\mathbf{COs}}$:	(3-5)	On con	npletio	n of the	e cours	se the stu	dents w	yould ha	ve	
CO1		nder	stand	sustaina	ble dev	velopm	ent and	d clean	er pro	duction c	oncept	ould lid		
CO2	Ar	ply	the co	ncept of	cleane	r Prod	uction	for prac	ctical a	applicatio	ons			
CO3	Ar	naly	alyze, plan and implement cleaner production strategies											
CO4	Ev sul	alua bstit	luate the Process and equipment optimization, reuse, recovery, recycle, raw material stitution.											
CO5	To mi	o cre nim	create comprehensive knowledge on waste audit in industry and implement waste imization techniques											
Mapping o	of Co	urse	Outco	omes wi	th Pro	gram (Outcor	nes (P	Os)		1		-	
COs/POs	PC)1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1		3	3	3	3	1	3	1	1	1	1	1		3
CO2		3	3	3	3	1	3	1	1	1	1	1		3
CO3		3	3	3	3	1	3	1	1	1	1	1		3
CO4		3	3	3	3	1	3	1	1	1	1	1		3
CO5		3	3	3	3	1	3	1	1	1	1	1		3
COs / PSO	s	PS	01	PS	02									
CO1			3	3	}									
CO2			3	3										
CO3			3	3	}									
CO4			3	3	5									
CO5			3	3										
3/2/1 Indic	ates	Stre	ength (Of Corr	elation	, 3 – H	ligh, 2-	• Medi	um, 1-	- Low			T	
gory	Basic Sciences		Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
Cate							\checkmark	\checkmark						

- Paul L Bishop, "Pollution Prevention Fundamental and Practice", McGraw-Hill International, 2009. 1.
- 2. Prasad modak, C.Visvanathan and Mandarparasnis"Cleaner Production Audit", Environmental System Reviews, No.38, Asian Institute of Technology, Bangkok, 2005.
- 3. S.P.Mahajan, "Pollution Control In Process Industries", McGraw-Hill International, 2005.

REFERENCES

- 1. World Bank Group, "Pollution Prevention and Abatement Handbook-Towards Cleaner Production", World Bank and UNEP, Washington D.C, 2005.
- 2. Arceivala, S.J., "Wastewater Treatment for Pollution Control", Tata McGraw-Hill, 2008.

TEXT BOOKS

Environmental Standards-ISO 14001- Environmental audit.

equipment optimization, reuse, recovery, recycle Raw material substitution-Internet Information and Other CP Resources.

UNIT III **CONCEPT OF CLEANER PRODUCTION**

Overview of CP Assessment Steps and skills, Preparing for the site visit, Information Gathering, and process flow diagram, material balance, CP Option Generation Technical and Environmental feasibility analysis-Economic valuation of alternatives-total cost analysis Financing- Establishing a program-Organizing a program-preparing a program plan- Measuring progress Pollution prevention and cleaner production Awarenessplan-Waste audit-Environmental Statement

Prerequisite: NIL 3 0/0 0/0 Τy L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab

INDUSTRIAL POLLUTION PREVENTION

AND CLEANER PRODUCTION

UNIT I SUSTAINABLE DEVELOPMENT

Subject Name

Subject Code:

EBCE22OE7

Sustainability-Sustainability Sustainable Development-Indicators of Strategies-Barriers to Sustainability-Industrial activity and Environment. Industrialization and sustainable development Industrial Ecology-Cleaner Production (CP) in Achieving Sustainability-Prevention versus Control of Industrial Pollution Environmental Policies and Legislations Regulations to Encourage Pollution Prevention and Cleaner Production-Regulatory versus Market Based Approaches

Definition-Importance-Historical evolution Benefits-Promotion-Barriers-Role of Industry, Government and Institutions - Environmental Management Hierarchy Source Reduction Techniques-Process and

UNIT II **POLLUTION PREVENTION**

UNIT IV LIFE CYCLE ASSESSMENT

Elements of LCA-Life Cycle Costing Eco Labeling -Design for the Environment International

UNIT V **CASE STUDIES**

Industrial application of CP, LCA, EMS Environmental Audits.

Total No. of Hrs: 45

9 Hrs

9 Hrs

9 Hrs

9 Hrs

3

T/S.LrP/R C

TY/L/L

ETL/IE

9 Hrs

Subject Code: EBCE22OE	28	Sub FU	oject Na NDAMI	me ENTALS	OF NAI	NOSCII	ENCE			TY / L/ ETL/I E	L	T / S.Lr	P/ R	С
		Pre	requisite	: NIL						Ту	3	0/0	0/0	3
L : Lecture T	: Tuto	rial	SLr : S	upervised	Learnin	g P:Pr	oject R	: Researc	ch C: Cr	edits				1
T/L/ETL : T	heory/I	Lab/E	Embedde	ed Theory	and Lab									
OBJECTIV	E:	otad		nlata muina		atad ta ti	ha aaian	a of nor	mataria	l'a and ma	noration	ofNonon	otorial	
COURSE O		ME	000000000000000000000000000000000000	(3-5))n comp	letion of	the cou	rse the st	udents y	vould have	paration	of manon	laterials)
CO1	Under	stand	ding the	science of	f nano m	naterials	the cour		udents		·			
CO2	Applyi	ng th	ne conce	pt of nano	materia	ls to prac	ctical ap	plication	IS					
CO3	Analyz	e abi	ility to p	lan and in	plement	t nano n	naterials	in vario	us const	ruction app	olication	S		-
CO4	Evalua	te th	e Proces	ss and app	lication	of Nano	material	ls						
CO5	To crea	ate co	omprehe	nsive kno	wledge o	on applic	ations o	f Nano r	naterials	8				
Mapping of		e Ou	Itcomes	WITH Prog	gram Ot	Itcomes	(PUS)	D07	DOP	DO0		DO11		10
	PUI		PO2	PU3	P04	1	P00	FU/	PU8	1	POIU	POII 1	PU.	14
$\frac{\text{CO1}}{\text{CO2}}$	3		3	3	3	1	3	1	1	1	1	I		3
$\frac{\text{CO2}}{\text{CO3}}$	2		3	2	3	1	3	1	1	1	1	1		3 2
CO4	2		3	3	3	1	3	1	1	1	1	1		2 2
C04	3		3	3	3	1	3	1	1	1	1	1		3
COS / PSOs	5	PSO	 1	PS($\frac{3}{12}$	1	5	1	1	1	1	1		5
CO1		3	<u> </u>	3	-									
CO2		3		3										
CO3		3		3										
CO4		3		3										
CO5		3		3										
3/2/1 Indica	tes Str	engtl	h Of Co	rrelation,	3 – Hig	h, 2- Me	edium, 1	- Low		I				
ategory	Basic Sciences		Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
0							V	V						

Subject Code: EBCE22OE8	Subject Name FUNDAMENTALS OF NANOSCIENCE	TY / L/ ETL/I E	L	T / S.Lr	P/ R	C
	Prerequisite: NIL	Ту	3	0/0	0/0	3
L : Lecture T : Tuto	rial SLr : Supervised Learning P : Project R : Research C: C	Credits				

T/L/ETL : Theory/Lab/Embedded Theory and Lab

OBJECTIVE:

To learn about basis of nanomaterial science, preparation method, types and application

UNIT I **INTRODUCTION**

Nanoscale Science and Technology- Implications for Physics, Chemistry, Biology and Engineering-Classifications of nanostructured materials- nano particles- quantum dots, nanowiresultra-thinfilmsmultilayered materials. Length Scales involved and effect on properties: Mechanical, Electronic, Optical, Magnetic and Thermal properties. Introduction to properties and motivation for study (qualitative only).

UNIT II **GENERAL METHODS OF PREPARATION**

Bottom-up Synthesis-Top-down Approach: Co-Precipitation, Ultrasonication, Mechanical Milling, Colloidal routes, Self-assembly, Vapour phase deposition, MOCVD, Sputtering, Evaporation, Molecular Beam Epitaxy, Atomic Layer Epitaxy, MOMBE.

UNIT III NANOMATERIALS

Nanoforms of Carbon - Buckminster fullerene- graphene and carbon nanotube, Single wall carbon Nanotubes (SWCNT) and Multi wall carbon nanotubes (MWCNT)- methods of synthesis(arcgrowth, laser ablation, CVD routes, Plasma CVD), structure-property Relationships applicationsNanometal oxides-ZnO, TiO2,MgO, ZrO2, NiO, nanoalumina, CaO, AgTiO2, Ferrites. Nanoclaysfunctionalization and applications-Quantum wires, Quantum dots-preparation, properties and applications.

UNIT IV CHARACTERIZATION TECHNIQUES

X-ray diffraction technique, Scanning Electron Microscopy - environmental techniques, Transmission Electron Microscopy including high-resolution imaging, Surface Analysis techniquesAFM, SPM, STM, SNOM, ESCA, SIMS-Nanoindentation.

APPLICATIONS UNIT V

NanoInfoTech: Information storage- nanocomputer, molecular switch, super chip, nanocrystal, Nanobiotechlogy: nanoprobes in medical diagnostics and biotechnology, Nano medicines, Targetted drug delivery, Bioimaging - Micro Electro Mechanical Systems (MEMS), Nano Electro Mechanical Systems (NEMS)- Nanosensors, nano crystalline silver for bacterial inhibition, Nanoparticles for sunbarrier products - In Photostat, printing, solar cell, battery.

TEXT BOOKS

1. A.S. Edelstein and R.C. Cammearata, eds., "Nanomaterials: Synthesis, Properties and Applications", Institute of Physics Publishing, Bristol and Philadelphia, 1996.

2. N John Dinardo, "Nanoscale Charecterisation of surfaces & Interfaces", 2nd edition, Weinheim Cambridge, Wiley-VCH, 2000.

REFERENCES

1. G Timp, "Nanotechnology", AIP press/Springer, 1999.

2. Akhlesh Lakhtakia, "The Hand Book of Nano Technology, Nanometer Structure,

12 Hrs

7 Hrs

8 Hrs

9 Hrs

9 Hrs

Total No. of Hrs: 45

OPEN LABS OFFERED FROM CIVIL ENGINEERING

Subject Cod	e: Sul	: Subject Name : BUILDING DRAWING							Ty/Lb/	L	T / S.Lr	P/ R	С
EBCE22OL	1 PK	ACHO	CE USI	NG AU	JIOC	ADD			ETL/IE				
	Pre	requisi	te: Basio	Engir	eering	Graph	ics		Lb	0	0/0	3/0	1
L : Lecture T	' : Tuto	rial S	SLr : Sup	pervise	d Leari	ning P	: Proje	ect R :	Research	n C: Cr	redits		
T/L/ETL : Th	neory/L	.ab/Em	bedded	Theory	and L	ab							
OBJECTIV	E:		1 0		1				61			1	
To introduce	the stu	dents t	o draft t	he plan	i, eleva	tion an	id secti	onal vi	ews of b	uilding	s in acco	ordan	ce
Building Coo	ment a	na con	troi ruie	s satisi	ying or	ientati	on and	Tuncuo	onal requ	iremei	its as per	nau	onal
COURSE O	UTCO	MES ((COs):	(3-5)	At the	end of	f the co	urse f	ne studer	t will	be able to	. .	
CO1	Draw	plan, se	ection a	d elev	ation for	or vari	ous stri	ictures	ile studen				
CO2	Under	stand o	eometri	c const	ruction	$\frac{1}{1}$ and b	asic co	mman	ds in Aut	ocad			
CO3	Prepar	e the b	uilding	plans s	atisfvir	ng the i	princip	les of r	lanning	and by	elaws		
CO4	Prepar	e detai	led worl	king dr	awings	s of do	ors. wi	ndows.	roof trus	sses an	d stairca	ses	
CO5	Ability	Ability to manipulate drawings through editing and plotting techniques											
Mapping of	Course	Course Outcomes with Program Outcomes (POs)											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO	12
CO1	3	2	3	2	3	3	1	2	3	1	1		3
CO2	3	2	3	2	3	3	1	2	3	1	1		3
CO3	3	2	3	2	3	3	1	2	3	1	1		3
CO4	3	2	3	2	3	3	1	2	3	1	1		3
CO5	3	2	3	2	3	3	1	2	3	1	1		3
COs / PSOs	PS	01	PS	02									
CO1		3	3	3									
CO2		3	3	3									
CO3		3		3									
CO4		3	ĺ	3									
CO5		3	3	3					<u> </u>				
3/2/1 Indicat	tes Stro	ength (Of Corr	elation	n, 3 – F	ligh, 2	- Medi	ium, 1	- Low				
			ces										
			ien										
		ces	Sc		SS		>	t	t				
	sec	ien	al	ore	tive	ves	lary	nen)jeć				
	enc	Sc	oci	ŭ	lec	ćti	lir	por	Prc				
ıry	Sci	ng	S	am	Ξ	Ele	scij	lmc	ul /				
ego	sic	eri	anc	g	ran	en]	rdis	l co	tice				
Cate	Bas	jine	es	Pro	60.	ďC	nte	kil	raci				
Ŭ	, ,	Sup	niti		PI		Ţ	\mathbf{v}	P				
		Η	nai										
			Hui										
						\checkmark	\checkmark		\checkmark				

Subject Code: EBCE22OL1	Subject Name : BUILDING DRAWING PRACTICE USING AUTOCADD	Ty/Lb/ ETL/IE	L	T / S.Lr	P/ R	С		
	Prerequisite: Basic Engineering Graphics	Lb	0	0/0	3/0	1		
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits								
T/L/ETL : Theory/Lab/Embedded Theory and Lab								

EXPERIMENTS

- 1. Learn and use basic AutoCAD commands manage drawing using layers, colour and line types complete basic cad drawings, with borders, text and dimensions use and edit text and text styles Method of scales in various drawing understand and the use of blocks.
- 2. Development of line plan for residential building. one for single storied building
- 3. Development of line plan for residential building. one for two storied building
- 4. Submission drawing for residential building including its planning and with area and parking statements and all other details as per the norms and local bye-laws.
- 5. Industrial buildings with roof truss.
- 6. To draw the 3D view of residential building.

Total No of Hrs: 45 hrs

TEXT BOOKS

- 1. Civil Engg. Drawing & House planning B.P.Verma, Khanna publishers, Delhi, 1990
- 2. Building drawing & detailing Dr. Balagopal & T.S.Prabhu, Spades publishers, Calicut, 1989.

REFERENCES

- 1. Building drawing Shah, Tata McGraw-Hill, New Delhi, 2000.
- 2. Building planning & drawing Dr. N.Kumaraswamy, A.Kameswara Rao, Charotar publishing house. Mumbai, 1997.
- 3. Shah, Kale and Patki, Building drawing, Tata McGraw-Hill New Delhi,, 1998.

Subject Cod EBCE22OL2	e: Sul 2 GE AN	Subject Name : GEOGRAPHICAL INFORMATION SYSTE AND MAPPING LABORATORY						ΈM	T y/ Lb/ ETL/IE	L '	T / S.Lr	P/ R	С	
	Pre	requisit	te: None)					Lb	0	0/0	3/0	1	
L : Lecture T	: Tutor	rial SI	Lr : Supe	ervised	Learni	ng P:	Project	R : R	esearch C	: Credi	ts			
T/L/ETL : Th	neory/L	ab/Emt	bedded T	heory a	and Lab)								
OBJECTIV	Е:													
The exercises	are de	signed	to give p	ractica	l expos	ure to t	the stuc	lents to	o data inpu	ut, data	storage			
Data analyses	s and da	ata outp	ut capab	oilities of	of a sta	ndard (GIS sof	tware.						
COURSE O	UTCO	<u>MES (O</u>	<u>COs):(</u>	<u>3-5)</u>	At the e	end of t	the cou	rse, the	e student v	will be	able to:			
$\frac{CO1}{CO2}$	Ex	xplore r	napped of	lata										
$\frac{CO2}{CO2}$	Re	elate Gl	S with r	emote	sensing	g techno	ologies							
$\frac{CO3}{CO4}$	A	nalyze s	spatial d	ata, usi	ng GIS	analys	sis tools	8						
CO4 CO5	De	evelop	and man	age geo	odataba	ises								
05	Cı	reate ma	aps, ima	ges and	l apps t	o com	nunicat	te spat	ial data in	a mea	ningful v	vay to	1	
	ot	hers	•	1 D			(DO	<u> </u>						
Mapping of (Course	rse Outcomes with Program Outcomes (POs) PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
$\frac{COS/10S}{CO1}$	3	3	3	3	3	2	1	1 00	109	1 010	1011	10	3	
$\overline{CO2}$	3	3	3	3	3	2	1	1	1	1	1		3	
CO3	3	3	3	3	3	2	1	1	1	1	1		3	
CO4	3	3	3	3	3	2	1	1	1	1	1		3	
CO5	3	3	3	3	3	2	1	1	1	1	1	1 3		
COs / PSOs	PS	501	PS	02				1						
CO1		3	3	3										
CO2		3		3										
CO3		3		3										
CO4		3		3										
$\frac{\text{CO5}}{2/2/1}$	C1	3		3	2 11	1.0		1 1						
3/2/1 Indicat	es Stre	ength O	of Corre	lation,	3 – Hl	gn, 2- 1	viediui	m, 1- 1	LOW	1				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project					
						✓	✓		√					

Subject Code: EBCE22OL2	Subject Name : GEOGRAPHICAL INFORMATION SYSTEM AND MAPPING LABORATORY	T y/ Lb/ ETL/IE	L	T / S.Lr	P/ R	С
	Prerequisite: None	Lb	0	0/0	3/0	1
L : Lecture T : 7	Tutorial SLr : Supervised Learning P : Project R : F	lesearch C	: Cred	its		
T/L/ETL : Theo	ry/Lab/Embedded Theory and Lab					

LIST OF EXERCISES

- 1. Digitization Point, Line, Polygon and Surface Data
- 2. Building topology measuring distance and area
- 3. Adding attribute data querying on attribute data
- 4. Onscreen digitization Data Conversion Vector to Raster, Raster to Vector
- 5. Generation of DEM: from contours, spot heights
- 6. Vector Analysis Buffering, Overlay and Network analysis
- 7. Data Output: Bar charts, Map compilation

Total No. of Hrs: 45

REFERENCES

- 1. QGIS-1.8-UserGuide, http://docs.qgis.org/pdf/QGIS-1.8-UserGuide-en.pdf,2013
- 2. Getting to Know ArcGIS for Desktop, ISBN: 9781589483088 2013
- 3. Understanding GIS: An ArcGIS Project Workbook, ISBN: 9781589482425 2011

Subject Code EBCE22OL3	e: Sul 3 EN	ubject Name : ENVIRONMENTAL NGINEERING LABORATORY							Ty/Lb/ ETL/IE	L	T / S.Lr	P/ R	С
	Pre	requisi	te: None	;					Lb	0	0/0	3/0	1
L : Lecture T	: Tutor	rial S	Lr : Supe	ervised	Learni	ng P:	Project	R : Re	esearch C	: Credi	its		
T/L/ETL : Th	eory/L	ab/Eml	bedded T	heory '	and Lal	b							
OBJECTIVI	E :												
To impart kno	owledg	e on p	reparatio	n of rea	agents,	testing	y variou	s water	and was	te wate	r quality	paran	neters
COURSE O	UTCO	MES (COs): (3- 5)									
CO1	Pe	erform	common	enviro	nmenta	ıl exper	riments	relatin	g to wate	r and w	astewate	er qual	ity,
	an	d knov	which t	ests are	e appro	priate f	for give	n envir	onmental	proble	ems		
CO2	Aj	pply the	e laborat	orial re	sults to	proble	em iden	tificatio	on, quanti	ificatio	n, and ba	sic	
	en	vironm	nental de	sign an	d techn	ical sol	lutions						
CO3	Uı	ndersta	inderstand and use the water and wastewater sampling procedures and sample										
	pr	eservat	servations										
CO4	Ol	btain th	e necess	ary bac	kgrour	nd for s	ubsequ	ent cou	rses in er	vironn	nental en	gineer	ing
CO5	De	Demonstrate the ability to write clear technical laboratorial reports											
Mapping of (Course	Outco	Outcomes with Program Outcomes (POs)										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
COl	3	3	2	3	3	3	3	3	2	2	2		2
CO2	3	3	2	3	3	3	3	3	2	2	2		2
CO3	3	3	2	3	3	3	3	3	2	2	2		2
CO4	3	3	2	3	3	3	3	3	2	2	2		2
CO5	3	3	2	3	3	3	3	3	2	2	2		2
COs/PSOs	PS	<u>501</u>	PS	02									
COI		3		3									
CO2		3		3									
CO3		3		3									
CO4		3		3									
CO5	C t	3	2	<u>s</u>	<u> </u>								
3/2/1 Indicat	es Stre	ength C	Df Corre	lation,	<u>3 – Hi</u>	gh, 2-	Mediu	m, 1- L	ωW				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Science	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
						✓	√		_√				

Subject Code: EBCE22OL3	Subject Name : ENVIRONMENTAL ENGINEERING LABORATORY	Ty/Lb/ ETL/IE	L	T / S.Lr	P/ R	С		
	Prerequisite: None	Lb	0	0/0	3/0	1		
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits								
T/L/ETL : Theo	ry/Lab/Embedded Theory and Lab							

LIST OF EXPERIMENTS

1. a) Determination of pH.

b) Determination of Turbidity.2. Determination of Hardness.

- 3. Determination of Alkalinity.
- 4. Determination of Residual Chlorine.
- 5. Estimation of Chlorides.
- 6. Estimation of Ammonia Nitrogen.
- 7. Estimation of Sulphate.
- 8. Determination of optimum coagulant dose.
- 9. Determination of specific conductivity.
- 10. Estimation of available chlorine in Bleaching Powder.
- 11. Determination of dissolved Oxygen.
- 12. Determination of suspended settleable, volatile and fixed solids
- 13. B.O.D. Test.
- 14. C.O.D. Test.

Total No of Hrs: 45

REFERENCE BOOKS

- 1. Trivedi and Goel Chemical and biological methods for water pollution studies. New Delhi, 2000.
- 2. A course Manual Water and wastewater analysis. National Environmental Engineering Research Institute. Nagpur publication.
- 3. Standard Methods for Examination of water and Waste water APHa, AWWA and WPCF, 1985 Edition.