

# FACULTY OF ENGINEERING AND TECHNOLOGY

# **OUTCOME BASED EDUCATION**

# **CURRICULUM & SYLLABUS**

## **BACHELOR OF TECHNOLOGY CIVIL ENGINEERING – PART TIME**

DEPARTMENT OF CIVIL ENGINEERING

### DEPARTMENT OF CIVIL ENGINEERING B.Tech. Civil Engineering (Part Time)Curriculum – 2022 Regulation

### VISION OF THE DEPARTMENT OF CIVIL ENGINEERING

To achieve the pinnacle of success in the area of sustainable construction and green technologies, thus stimulating economic growth and making the society a better place to live in

### THE MISSION OF THE DEPARTMENT OF CIVIL ENGINEERING

M1: To produce graduates who possess technical competence in the field of Civil Engineering with integrity and commitment

M2: To prepare them to serve and contribute as professional engineers, innovators, leaders and entrepreneurs in the global community

### PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

The Program Educational Objectives of the department are:

**PEO 1:** To apply fundamental knowledge of basic sciences and engineering to find creative solutions to challenges in civil engineering

PEO 2: To analyze, design and apply skills to address civil engineering problems.

**PEO 3:** To practice civil engineering in a professional and ethical manner and to implement sustainable technologies for the benefit of industry and society.

**PEO 4:** To enhance knowledge through research and development in civil engineering using current technologies **PEO 5:** To produce professionally competent engineers by improving their software skills, communication skills, managerial skills and entrepreneurship quality to prepare them for lifelong learning

### PROGRAM SPECIFIC OUTCOMES (PSOs)

The Program Specific Objectives of the department is to produce professional Civil Engineers with the potential:

**PSO 1**: To analyze, design and apply technical knowledge with up-to-date skills to solve civil engineering complexities

**PSO 2**: To function as an individual or in a team to find sustainable solutions in civil engineering domain through research and development

### PROGRAM OUTCOMES (POs)

The general Program outcomes of Civil Engineering are as follows:

**1. Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

**2. Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

**3. Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

**4. Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

**5.** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

**6.** The Engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

**7. Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

**8. Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

**9. Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

**10. Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

**11. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

**12. Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.



## **Faculty of Engineering and Technology**

## **Regulation 2022 – Framework**

**Total Credits: 100** 

## Credit for I To VII Semester: 100 Credits

## **Program Components**

| Basic Science (Mathematics) i | nclude accor | rding to program - 2 |
|-------------------------------|--------------|----------------------|
| Program Core theory           | -            | 14                   |
| Program Core Laboratory       | -            | 7                    |
| Program Elective              | -            | 5                    |
| Open Elective                 | -            | -                    |
| Open Lab                      | -            | -                    |
| Management paper              | -            | 1                    |
| • Foreign Language            | -            | -                    |
| • Audit course                | -            | -                    |
| Universal Human values        | -            | -                    |
| • Inter disciplinary theory   | -            | -                    |
| • Inter disciplinary Lab      | -            | -                    |
| • ETL                         | -            | 2                    |
| Technical Skills              | -            | -                    |
| • Soft skill                  | -            | -                    |
| Project /mini project         | -            | 2                    |

|       |                      | I SEMI                                                   | ESTER        |   |       |     |   |          |
|-------|----------------------|----------------------------------------------------------|--------------|---|-------|-----|---|----------|
| S.NO. | <b>Course Code</b>   | Course Title                                             | Ty/Lb/ETL/IE | L | T/SLr | P/R | С | Category |
| 1     | EBMA22005            | Mathematics III For<br>Mechanical and Civil<br>Engineers | Ту           | 3 | 1/0   | 0/0 | 4 | BS       |
| 2     | EBCE22002            | Mechanics of Solids                                      | Ту           | 3 | 1/0   | 0/0 | 4 | PC       |
| 3     | EBCE22003            | Hill and advanced<br>Surveying                           | Ту           | 3 | 0/0   | 0/0 | 3 | PC       |
| 4     | EBCE22L01            | Surveying Laboratory                                     | Lb           | 0 | 0/0   | 3/0 | 1 | PC       |
| 5     | EBCE22EXX            | Program Elective I                                       | Ту           | 3 | 0/0   | 0/0 | 3 | PE       |
|       | Credits Sub Total 15 |                                                          |              |   |       |     |   |          |

## **Curriculum with Course codes for B.Tech (Civil Engineering – Part Time)**

|                   |                |                                                                            | II SEMESTEI  | R |       |     |   |          |
|-------------------|----------------|----------------------------------------------------------------------------|--------------|---|-------|-----|---|----------|
| S.NO.             | Course<br>Code | Course Title                                                               | Ty/Lb/ETL/IE | L | T/SLr | P/R | С | Category |
| 1                 | EBMA22008      | Statistical and Numerical<br>methods for Mechanical<br>and Civil Engineers | Ту           | 3 | 1/0   | 0/0 | 4 | BS       |
| 2                 | EBCE22004      | Strength of Materials                                                      | Ту           | 3 | 1/0   | 0/0 | 4 | PC       |
| 3                 | EBCE22005      | Fluid Mechanics and<br>Hydraulic Engineering                               | Ту           | 3 | 1/0   | 0/0 | 4 | PC       |
| 4                 | EBCE22L02      | Strength of Materials<br>Laboratory                                        | Lb           | 0 | 0/0   | 3/0 | 1 | PC       |
| 5                 | EBCE22L03      | Fluid Mechanics and<br>Hydraulic Machinery<br>Laboratory                   | Lb           | 0 | 0/0   | 3/0 | 1 | PC       |
| Credits Sub Total |                |                                                                            |              |   |       |     |   | 14       |

### Note:

### Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and lab/Internal evaluation L/T/SLr/P/R/C: Lecture/Tutorials/Supervised Learning/Practical/Research/Credit

|                   | III SEMESTER   |                              |              |   |       |     |   |          |  |  |  |
|-------------------|----------------|------------------------------|--------------|---|-------|-----|---|----------|--|--|--|
| S.NO.             | Course<br>Code | Course Title                 | Ty/Lb/ETL/IE | L | T/SLr | P/R | С | Category |  |  |  |
| 1                 | EBCE22006      | Environmental<br>Engineering | Ту           | 3 | 1/0   | 0/0 | 4 | PC       |  |  |  |
| 2                 | EBCE22007      | Soil Mechanics               | Ту           | 3 | 1/0   | 0/0 | 4 | PC       |  |  |  |
| 3                 | EBCE22008      | Concrete Technology          | Ту           | 3 | 0/0   | 0/0 | 3 | PC       |  |  |  |
| 4                 | EBCE22ET1      | Building Materials           | ETL          | 1 | 0/0   | 2/0 | 2 | PC       |  |  |  |
| 5                 | EBCE22L06      | Soil Mechanics<br>Laboratory | Lb           | 0 | 0/0   | 3/0 | 1 | PC       |  |  |  |
| Credits Sub Total |                |                              |              |   |       |     |   | 14       |  |  |  |

|       |                                                   | IV SEMI                             | ESTER        |   |       |     |   |          |  |
|-------|---------------------------------------------------|-------------------------------------|--------------|---|-------|-----|---|----------|--|
| S.NO. | Course<br>Code                                    | Course Title                        | Ty/Lb/ETL/IE | L | T/SLr | P/R | С | Category |  |
| 1     | EBCE22009                                         | Structural<br>Analysis              | Ту           | 3 | 1/0   | 0/0 | 4 | PC       |  |
| 2     | EBCE22010                                         | Design of<br>Concrete<br>structures | Ту           | 3 | 1/0   | 0/0 | 4 | PC       |  |
| 3     | EBCE22011                                         | Foundation<br>Engineering           | Ту           | 3 | 1/0   | 0/0 | 4 | PC       |  |
| 4     | EBCE22ET2                                         | Remote Sensing<br>and GIS           | ETL          | 1 | 0/0   | 2/0 | 2 | PC       |  |
| 5     | 5 EBCE22L07 Concrete<br>Laboratory Lb 0 0/0 3/0 1 |                                     |              |   |       |     |   |          |  |
|       | Credits Sub Total                                 |                                     |              |   |       |     |   |          |  |

Note:

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and lab/Internal evaluation L/T/SLr/P/R/C: Lecture/Tutorials/Supervised Learning/Practical/Research/Credit

|                   | V SEMESTER     |                                      |              |   |       |     |   |          |  |  |  |
|-------------------|----------------|--------------------------------------|--------------|---|-------|-----|---|----------|--|--|--|
| S.NO.             | Course<br>Code | Course Title                         | Ty/Lb/ETL/IE | L | T/SLr | P/R | С | Category |  |  |  |
| 1                 | EBCE22012      | Design of Steel Structures           | Ту           | 3 | 1/0   | 0/0 | 4 | PC       |  |  |  |
| 2                 | EBCE22013      | Estimation And Quantity<br>Surveying | Ту           | 3 | 1/0   | 0/0 | 4 | PC       |  |  |  |
| 3                 | EBCE22015      | Transportation<br>Engineering        | Ту           | 3 | 0/0   | 0/0 | 3 | PC       |  |  |  |
| 4                 | EBCE22L04      | AUTOCADD laboratory                  | Lb           | 0 | 0/0   | 3/0 | 1 | PC       |  |  |  |
| 5                 | EBCE22L09      | Structural design studio             | Lb           | 0 | 0/0   | 3/0 | 1 | PC       |  |  |  |
| Credits Sub Total |                |                                      |              |   |       |     |   | 13       |  |  |  |

|       | VI SEMESTER        |                            |              |   |       |     |   |          |  |  |  |
|-------|--------------------|----------------------------|--------------|---|-------|-----|---|----------|--|--|--|
| S.NO. | <b>Course Code</b> | Course Title               | Ty/Lb/ETL/IE | L | T/SLr | P/R | С | Category |  |  |  |
| 1     | EBCE22014          | Construction<br>Management | Ту           | 3 | 1/0   | 0/0 | 4 | PC       |  |  |  |
| 2     | EBCE22EXX          | Program Elective II        | Ту           | 3 | 0/0   | 0/0 | 3 | PE       |  |  |  |
| 3     | EBCE22EXX          | Program Elective III       | Ту           | 3 | 0/0   | 0/0 | 3 | PE       |  |  |  |
| 4     | EBCE22I05          | Project Phase – I          | IE           | 0 | 0/0   | 3/3 | 2 | Р        |  |  |  |
|       | Credits Sub Total  |                            |              |   |       |     |   | 12       |  |  |  |

Note:

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and lab/Internal evaluation L/T/SLr/P/R/C: Lecture/Tutorials/Supervised Learning/Practical/Research/Credit

|                   | VII SEMESTER       |                             |              |   |       |       |    |          |  |  |  |
|-------------------|--------------------|-----------------------------|--------------|---|-------|-------|----|----------|--|--|--|
| S.NO.             | <b>Course Code</b> | <b>Course Title</b>         | Ty/Lb/ETL/IE | L | T/SLr | P/R   | С  | Category |  |  |  |
| 1                 | EBCC22ID3          | Total Quality<br>Management | Ту           | 3 | 0/0   | 0/0   | 3  | ID       |  |  |  |
| 2                 | EBCE22EXX          | Program Elective IV         | Ту           | 3 | 0/0   | 0/0   | 3  | PE       |  |  |  |
| 3                 | EBCE22EXX          | Program Elective V          | Ту           | 3 | 0/0   | 0/0   | 3  | PE       |  |  |  |
| 4                 | EBCE22L11          | Project Phase – II          | Lb           | 0 | 0/0   | 12/12 | 8  | Р        |  |  |  |
| Credits Sub Total |                    |                             |              |   |       |       | 17 |          |  |  |  |

## **TOTAL CREDITS: 100**

Note:

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and lab/Internal evaluation L/T/SLr/P/R/C: Lecture/Tutorials/Supervised Learning/Practical/Research/Credit

|       | PROGRAM ELECTIVE I |                                             |                  |   |       |     |   |          |  |  |  |
|-------|--------------------|---------------------------------------------|------------------|---|-------|-----|---|----------|--|--|--|
| S.NO. | Course Code        | Course Title                                | Ty/Lb/<br>ETL/IE | L | T/SLr | P/R | С | Category |  |  |  |
| 1     | EBCE22E01          | Engineering Geology                         | Ту               | 3 | 0/0   | 0/0 | 3 | PE       |  |  |  |
| 2     | EBCE22E02          | Cleaner Production                          | Ту               | 3 | 0/0   | 0/0 | 3 | PE       |  |  |  |
| 3     | EBCE22E03          | Building Technology and Habitat Engineering | Ту               | 3 | 0/0   | 0/0 | 3 | PE       |  |  |  |
| 4     | EBCE22E04          | Architecture and Town<br>Planning           | Ту               | 3 | 0/0   | 0/0 | 3 | PE       |  |  |  |

## LIST OF PROGRAM ELECTIVES

|       | PROGRAM ELECTIVE II |                                    |                  |   |       |     |   |          |  |  |  |
|-------|---------------------|------------------------------------|------------------|---|-------|-----|---|----------|--|--|--|
| S.NO. | Course Code         | Course Title                       | Ty/Lb/<br>ETL/IE | L | T/SLr | P/R | С | Category |  |  |  |
| 1     | EBCE22E05           | Hydrology                          | Ту               | 3 | 0/0   | 0/0 | 3 | PE       |  |  |  |
| 2     | EBCE22E06           | Environmental Impact<br>Assessment | Ту               | 3 | 0/0   | 0/0 | 3 | PE       |  |  |  |
| 3     | EBCE22E07           | Bridge Structures                  | Ту               | 3 | 0/0   | 0/0 | 3 | PE       |  |  |  |
| 4     | EBCE22E08           | Irrigation Engineering             | Ту               | 3 | 0/0   | 0/0 | 3 | PE       |  |  |  |

|       | PROGRAM ELECTIVE III |                                    |                  |   |       |     |   |          |  |  |  |
|-------|----------------------|------------------------------------|------------------|---|-------|-----|---|----------|--|--|--|
| S.NO. | Course Code          | Course Title                       | Ty/Lb/<br>ETL/IE | L | T/SLr | P/R | С | Category |  |  |  |
| 1     | EBCE22E09            | Prestressed Concrete<br>Structures | Ту               | 3 | 0/0   | 0/0 | 3 | PE       |  |  |  |
| 2     | EBCE22E10            | Housing Planning and Design        | Ту               | 3 | 0/0   | 0/0 | 3 | PE       |  |  |  |
| 3     | EBCE22E11            | Industrial Waste Management        | Ту               | 3 | 0/0   | 0/0 | 3 | PE       |  |  |  |
| 4     | EBCE22E12            | Cost Effective Buildings           | Ту               | 3 | 0/0   | 0/0 | 3 | PE       |  |  |  |

|       | PROGRAM ELECTIVE IV |                                                 |                  |   |       |     |   |          |  |  |  |
|-------|---------------------|-------------------------------------------------|------------------|---|-------|-----|---|----------|--|--|--|
| S.NO. | Course Code         | Course Title                                    | Ty/Lb/<br>ETL/IE | L | T/SLr | P/R | С | Category |  |  |  |
| 1     | EBCE22E13           | Structural Dynamics and Earth Quake Engineering | Ту               | 3 | 0/0   | 0/0 | 3 | PE       |  |  |  |
| 2     | EBCE22E14           | Dam Engineering                                 | Ту               | 3 | 0/0   | 0/0 | 3 | PE       |  |  |  |
| 3     | EBCE22E15           | Industrial Structures                           | Ту               | 3 | 0/0   | 0/0 | 3 | PE       |  |  |  |
| 4     | EBCE22E16           | Advanced Environmental<br>Engineering           | Ту               | 3 | 0/0   | 0/0 | 3 | PE       |  |  |  |

|       | PROGRAM ELECTIVE V |                                         |                  |   |       |     |   |          |  |  |  |  |  |
|-------|--------------------|-----------------------------------------|------------------|---|-------|-----|---|----------|--|--|--|--|--|
| S.NO. | Course Code        | Course Title                            | Ty/Lb/<br>ETL/IE | L | T/SLr | P/R | С | Category |  |  |  |  |  |
| 1     | EBCE22E17          | Repair and Rehabilitation of Structures | Ту               | 3 | 0/0   | 0/0 | 3 | PE       |  |  |  |  |  |
| 2     | EBCE22E18          | Municipal Solid Waste<br>Management     | Ту               | 3 | 0/0   | 0/0 | 3 | PE       |  |  |  |  |  |
| 3     | EBCE22E19          | Finite Element Analysis                 | Ту               | 3 | 0/0   | 0/0 | 3 | PE       |  |  |  |  |  |
| 4     | EBCE22E20          | Pre Fabricated Structures               | Ту               | 3 | 0/0   | 0/0 | 3 | PE       |  |  |  |  |  |

| Course<br>Component    | Description | No. of<br>Courses | Credits | Total | Credit<br>Weightage<br>(%) | Contact<br>hours |
|------------------------|-------------|-------------------|---------|-------|----------------------------|------------------|
| Basic                  | Theory      | 2                 | 8       |       |                            | 120              |
| Science                | Lab         | 0                 | 0       | 8     | 8                          | 0                |
| Science                | ETL         | 0                 | 0       |       |                            | 0                |
| Engineering            | Theory      |                   |         |       |                            |                  |
| Engineering<br>Science | Lab         | -                 | -       | -     | -                          | -                |
| Science                | ETL         |                   |         |       |                            |                  |
| Humanities             | Theory      |                   |         |       |                            |                  |
| and Social             | Lab         | -                 | -       | -     | -                          | -                |
| Science                | ETL         |                   |         |       |                            |                  |
| D                      | Theory      | 14                | 53      |       |                            | 795              |
| Program<br>Core        | Lab         | 7                 | 7       | 64    | 64                         | 315              |
| Core                   | ETL         | 2                 | 4       |       |                            | 90               |
| Drogrom                | Theory      | 5                 | 15      |       |                            | 225              |
| Program<br>Electives   | Lab         | 0                 | 0       | 15    | 15                         | 0                |
| Liectives              | ETL         | 0                 | 0       |       |                            | 0                |
| Open                   | Theory      |                   |         |       |                            |                  |
| Elective               | Lab         | -                 | -       | -     | -                          | -                |
| Liecuve                | ETL         |                   |         |       |                            |                  |
| Inter-                 | Theory      | 1                 | 3       |       |                            | 45               |
| disciplinary           | Lab         | 0                 | 0       | 3     | 3                          | 0                |
| uiscipiniary           | ETL         | 0                 | 0       |       |                            | 0                |
| Skill<br>Component     |             | -                 | -       | -     | -                          | -                |
| Project                |             | 2                 | 10      | 10    | 10                         | 90               |
| Others if<br>any       |             | -                 | -       | -     | -                          | -                |
|                        |             | 33                |         | 100   | 100                        | 1680             |

## Table 1: Components of Curriculum and Credit distribution for Civil Engineering

Table 2:

## **Revision/modification done in syllabus content:**

| S.No | Course (Subject)<br>Code | Course (Subject)<br>Name                        | Concept/<br>topic if any,<br>removed in<br>current<br>curriculum | Concept/<br>topic added<br>in the new<br>curriculum                                                                                                                                                                       | % of<br>Revision/<br>Modification<br>done |
|------|--------------------------|-------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 1    | EBCE22003                | Hill and Advanced<br>Surveying                  | -                                                                | Curve<br>Setting,<br>Geodetic<br>surveying,<br>field<br>astronomy                                                                                                                                                         | 60%                                       |
| 2    | EBCE22005                | Fluid Mechanics<br>and Hydraulic<br>Engineering | Positive<br>displacement<br>pumps, air<br>vessels                | -                                                                                                                                                                                                                         | 20%                                       |
| 3    | EBCE22L09                | Structural Design<br>Studio                     | _                                                                | <ol> <li>Program<br/>for Design of<br/>Slabs. Using<br/>Excel</li> <li>Program<br/>for Design of<br/>Beams.</li> <li>Using Excel</li> <li>Program<br/>for Design of<br/>Column and<br/>Footing<br/>Using Excel</li> </ol> | 40%                                       |

Table 3:

# List of New courses/value added courses/life skills/Electives/interdisciplinary/courses focusing on employability/ entrepreneurship/ skill development.

| S.No | New courses<br>(Subjects)                 | Value added<br>courses | Life skill | Electives                                                   | Inter Disciplinary | Focus on<br>employability/<br>entrepreneurship/<br>skill development |
|------|-------------------------------------------|------------------------|------------|-------------------------------------------------------------|--------------------|----------------------------------------------------------------------|
| 1    | Advanced<br>Environmenta<br>1 Engineering |                        |            | Engineering<br>Geology                                      |                    | Hill and<br>Advanced<br>Surveying                                    |
| 2    | Fundamentals<br>of<br>nanoscience         |                        |            | Cleaner<br>Production                                       |                    | Total Quality<br>Management                                          |
| 3    |                                           |                        |            | Building<br>Technology<br>and Habitat<br>Engineering        |                    | Project Phase<br>– I                                                 |
| 4    |                                           |                        |            | Architecture<br>and Town<br>Planning                        |                    | Project Phase<br>– II                                                |
| 5    |                                           |                        |            | Hydrology                                                   |                    | Structural design studio                                             |
| 6    |                                           |                        |            | Environmenta<br>1 Impact<br>Assessment                      |                    |                                                                      |
| 7    |                                           |                        |            | Bridge<br>Structures                                        |                    |                                                                      |
| 8    |                                           |                        |            | Irrigation<br>Engineering                                   |                    |                                                                      |
| 9    |                                           |                        |            | Prestressed<br>Concrete<br>Structures                       |                    |                                                                      |
| 10   |                                           |                        |            | Housing<br>Planning and<br>Design                           |                    |                                                                      |
| 11   |                                           |                        |            | Industrial<br>Waste<br>Management                           |                    |                                                                      |
| 12   |                                           |                        |            | Cost<br>Effective<br>Buildings                              |                    |                                                                      |
| 13   |                                           |                        |            | Structural<br>Dynamics<br>and Earth<br>Quake<br>Engineering |                    |                                                                      |
| 14   |                                           |                        |            | Dam<br>Engineering                                          |                    |                                                                      |
| 15   |                                           |                        |            | Industrial<br>Structures                                    |                    |                                                                      |
| 16   |                                           |                        |            | Advanced                                                    |                    |                                                                      |

|    |   | Environmenta<br>l Engineering                    |
|----|---|--------------------------------------------------|
| 17 |   | Repair and<br>Rehabilitation<br>of<br>Structures |
| 18 |   | Municipal<br>Solid Waste<br>Management           |
| 19 |   | Finite<br>Element<br>Analysis                    |
| 20 | I | Pre<br>Fabricated<br>Structures                  |

# I SEMESTER

| Subject Code      | Subje                                      | ct Nam                                                            | e: M                              | athema        | atics II          | I for          |                   |                 | Ty/                 | L      | T/         | P    | / <b>R</b> | С   |  |
|-------------------|--------------------------------------------|-------------------------------------------------------------------|-----------------------------------|---------------|-------------------|----------------|-------------------|-----------------|---------------------|--------|------------|------|------------|-----|--|
| EBMA22005         | 0                                          | anical                                                            |                                   |               |                   |                |                   |                 | Ľb/                 |        | S.L        | r    |            |     |  |
|                   |                                            |                                                                   |                                   |               |                   |                |                   | ]               | ETL/IE              |        |            |      |            |     |  |
|                   | Prerec                                     | quisite:                                                          | First ye                          | ear Eng       | ineerin           | g Math         | ematics           |                 | Ту                  | 3      | 1          | (    | )          | 4   |  |
| L : Lecture T :   | Tutoria                                    | al S.L                                                            | r : Supe                          | ervised       | Learnin           | ng P:1         | Project           | R : R           | esearch C           | C: Cre | dits       |      |            |     |  |
| Ty/Lb/ETL : T     |                                            |                                                                   | -                                 |               |                   | 0              | 5                 |                 |                     |        |            |      |            |     |  |
| <b>OBJECTIVES</b> |                                            |                                                                   |                                   | •             |                   |                |                   |                 |                     |        |            |      |            |     |  |
| The student s     | hould                                      | be mad                                                            | le to:                            |               |                   |                |                   |                 |                     |        |            |      |            |     |  |
| To be able to a   | pply th                                    | e conce                                                           | pts in I                          | Differen      | ntial Eq          | uations        |                   |                 |                     |        |            |      |            |     |  |
| To understand     |                                            |                                                                   |                                   |               |                   |                |                   |                 |                     |        |            |      |            |     |  |
| To analyze the    |                                            |                                                                   | -                                 |               |                   |                |                   |                 |                     |        |            |      |            |     |  |
|                   |                                            | roblems in Heat equations.                                        |                                   |               |                   |                |                   |                 |                     |        |            |      |            |     |  |
|                   |                                            | e concepts in Laplace and Fourier Transforms                      |                                   |               |                   |                |                   |                 |                     |        |            |      |            |     |  |
|                   |                                            | COMES (COs):                                                      |                                   |               |                   |                |                   |                 |                     |        |            |      |            |     |  |
| CO1               |                                            | To understand the concepts of Partial Differential equations      |                                   |               |                   |                |                   |                 |                     |        |            |      |            |     |  |
| CO2               | To be                                      | To be able to find fourier series solutions                       |                                   |               |                   |                |                   |                 |                     |        |            |      |            |     |  |
| CO3               | To be                                      | To be able to apply the concepts of PDE in Wave and Heat problems |                                   |               |                   |                |                   |                 |                     |        |            |      |            |     |  |
| CO4               | To be                                      | To be able to apply laplace transforms                            |                                   |               |                   |                |                   |                 |                     |        |            |      |            |     |  |
| CO5               | To be                                      | To be able to apply Fourier transforms                            |                                   |               |                   |                |                   |                 |                     |        |            |      |            |     |  |
| Mapping of C      | ourse Outcomes with Program Outcomes (POs) |                                                                   |                                   |               |                   |                |                   |                 |                     |        |            |      |            |     |  |
| COs/POs           | <b>PO1</b>                                 | PO2                                                               | PO3                               | PO4           | PO5               | <b>PO6</b>     | <b>PO7</b>        | <b>PO8</b>      | PO9                 | PO     | <b>)10</b> | PO11 | PO         | D12 |  |
| CO1               | 3                                          | 2                                                                 | 2                                 | 3             | 3                 | 1              | 1                 | 2               | 2                   | ]      | 1          | 1    |            | 2   |  |
| CO2               | 2                                          | 2                                                                 | 1                                 | 3             | 1                 | 2              | 1                 | 2               | 3                   | ]      | 1          | 1    |            | 2   |  |
| CO3               | 3                                          | 2                                                                 | 1                                 | 3             | 2                 | 3              | 2                 | 1               | 1                   | 2      | 2          | 1    |            | 3   |  |
| CO4               | 3                                          | 2                                                                 | 1                                 | 2             | 1                 | 3              | 2                 | 1               | 1                   | 1      | 1          | 1    |            | 2   |  |
| CO5               | 3                                          | 3                                                                 | 1                                 | 2             | 1                 | 2              | 2                 | 1               | 1                   | 2      | 2          | 2    |            | 3   |  |
| COs / PSOs        |                                            | PSO1                                                              |                                   |               | PSO2              | •              |                   |                 |                     |        |            |      |            |     |  |
|                   |                                            |                                                                   |                                   |               |                   |                |                   |                 |                     |        |            |      |            |     |  |
| CO1               |                                            | 3                                                                 |                                   |               | 3                 |                |                   |                 |                     |        |            |      |            |     |  |
| CO2               |                                            | 3                                                                 |                                   |               | 3                 |                |                   |                 |                     |        |            |      |            |     |  |
| CO3               |                                            | 3                                                                 |                                   |               | 3                 |                |                   |                 |                     |        |            |      |            |     |  |
| CO4               |                                            | 3                                                                 |                                   |               | 3                 |                |                   |                 |                     |        |            |      |            |     |  |
| CO5               |                                            | 3                                                                 |                                   |               | 3                 |                |                   |                 |                     |        |            |      |            |     |  |
| 3/2/1 Indicates   | s Stren                                    | gth Of                                                            | Correl                            | ation, 3      | <u>3 – Hig</u>    | h, 2- N        | ledium            | , 1- L          | OW                  |        |            |      | 1          |     |  |
|                   | ŝ                                          |                                                                   | s d                               |               | es                | ε <b>ρ</b>     | Y                 | ıt              | ct                  |        |            |      |            |     |  |
|                   | Basic Sciences                             | ng<br>v                                                           | Humanities and<br>Social Sciences | Program Core  | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project |        |            |      |            |     |  |
| ~                 | ien                                        | eri                                                               | ies<br>cie                        | J C           | Ilec              | ecti           | pli               | odu             | Pr                  |        |            |      |            |     |  |
| ory               | Sc                                         | ngineerin<br>Sciences                                             | S.                                | an            | nE                | Ē              | sci               | on              | al /                |        |            |      |            |     |  |
| Category          | sic                                        | Engineering<br>Sciences                                           | ıma<br>ial                        | 120           | jrai              | en             | srdi              | ll c            | tic                 |        |            |      |            |     |  |
| Ca                | $\mathbf{Ba}$                              | ш                                                                 | Hu<br>Soc                         | $\mathbf{Pr}$ | rog               | Op             | Inté              | Ski             | rac                 |        |            |      |            |     |  |
|                   |                                            |                                                                   |                                   |               | Р                 |                | _                 | - 1             | Ч                   |        |            |      |            |     |  |
|                   | $\checkmark$                               |                                                                   |                                   |               |                   |                |                   |                 |                     |        |            |      |            |     |  |
|                   |                                            |                                                                   |                                   |               |                   |                |                   |                 |                     |        |            |      |            |     |  |

| Subject Code    | Subject Name : Mathematics III for Mechanical         | Ty/        | L    | Τ/   | P/R | С |
|-----------------|-------------------------------------------------------|------------|------|------|-----|---|
| EBMA22005       | and Civil Engineers                                   | Lb/        |      | S.Lr |     |   |
|                 |                                                       | ETL/IE     |      |      |     |   |
|                 | Prerequisite: First year Engineering Mathematics      | Ту         | 3    | 1    | 0   | 4 |
| L : Lecture T : | Tutorial S.Lr : Supervised Learning P : Project R : R | esearch C: | Crea | lits |     |   |
| Ty/Lb/ETL : T   | heory/Lab/Embedded Theory and Lab                     |            |      |      |     |   |

### UNIT I PARTIAL DIFFERENTIAL EQUATIONS

Formation of PDE by eliminating arbitrary constants and eliminating arbitrary functions – Solutions of standard types of first order equations – Lagrange's equation – Linear partial differential equations of second and higher order with constant coefficients.

### UNIT II FOURIER SERIES

Dirichlet's conditions – General Fourier series – Half range Sine & Cosine series – Complex form of Fourier series – Parseval's identity – Harmonic Analysis.

### UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Classification of second order linear partial differential equations – Solutions of one dimensional wave equation, one-dimensional heat equation – Steady state solution of two dimensional heat equation (Cartesian coordinates only) – Fourier series solutions.

### UNIT IV LAPLACE TRANSFORMS

Transforms of simple functions – Properties of Transforms – Inverse Transforms – Transforms of Derivatives and Integrals – Periodic functions – Initial and final value theorems – Convolution theorem – Applications of Laplace transforms for solving linear ordinary differential equations up to second order with constant coefficients and Linear simultaneous differential equations of first order with constant coefficients.

### UNIT V FOURIER TRANSFORMS

Statement of Fourier integral theorem – Fourier transform pairs – Fourier Sine and Cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's theorem.

### **Reference Books:**

- 1) Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).
- 2) Veerarajan T., Engineering Mathematics (for semester III), Tata McGraw Hill Publishing Co., (2005).
- 3) Singaravelu, Transforms and Partial Differential Equations, Meenakshi Agency, (2017).
- 4) Kreyszig E., Advanced Engineering Mathematics (9<sup>th</sup> ed.), John Wiley & Sons, (2011).
- 5) Grewal B.S., *Higher Engineering Mathematics*, Khanna Publishers, (2012).

## 12 Hrs

## 12 Hrs

### Total no. of hrs: 60

## 12 Hrs

**12 Hrs** 

12 Hrs

| Subject C   |                                                                    | ıbject N                                                                                                                   |                                      |             |                      |                   |                      |                    | Ty/                    | L        | T/        | P/     | С     |  |
|-------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------|----------------------|-------------------|----------------------|--------------------|------------------------|----------|-----------|--------|-------|--|
| EBCE220     | 02                                                                 |                                                                                                                            | MECI                                 | HANIC       | S OF S               | OLIDS             |                      |                    | Lb/<br>ETL/IE          |          | S.Lr      | R      |       |  |
|             | Pr                                                                 | erequisi                                                                                                                   | te: Engin                            | eering N    | Aechani              | cs                |                      |                    | Ty                     | 3        | 1/0       | 0/0    | 4     |  |
| L : Lecture |                                                                    |                                                                                                                            |                                      |             |                      |                   | ect R:               |                    |                        | lits     |           |        |       |  |
| T/L/ETL :   |                                                                    | ab/Embe                                                                                                                    | edded The                            | eory and    | l Lab                |                   |                      |                    |                        |          |           |        |       |  |
| OBJECTI     |                                                                    |                                                                                                                            |                                      |             |                      |                   |                      |                    |                        |          |           |        |       |  |
|             | o learn fur                                                        | ndament                                                                                                                    | al concep                            | ots of St   | ress, Str            | ain and           | deform               | ation of           | soild app              | lication | s of bars | and th | nin   |  |
|             | linders                                                            |                                                                                                                            |                                      |             |                      |                   |                      |                    |                        |          | 1.0       |        |       |  |
|             | o know the                                                         |                                                                                                                            |                                      |             |                      |                   |                      | ced stre           | ss resultai            | nts and  | deformat  | ions.  |       |  |
|             | o understa<br>o analyze a                                          |                                                                                                                            |                                      |             |                      | -                 | 0                    | 1000 tm            |                        |          |           |        |       |  |
|             |                                                                    |                                                                                                                            |                                      |             | iai state            | of stres          | s and p              | Tane tru           | sses                   |          |           |        |       |  |
|             |                                                                    | COMES (COs) : ( 3- 5)<br>earn the fundamental concepts of stress and strain in the design of various structural components |                                      |             |                      |                   |                      |                    |                        |          |           |        |       |  |
| CO1         | and mach                                                           |                                                                                                                            | amental                              | concept     | 5 01 500             | .55 anu 8         | 511 ann 111          | the ues            | ign of val             | 1003 50  | uctural O | mpor   | ients |  |
| <b>GO</b> • |                                                                    | inderstand the mechanism of load transfer in beams, the induced stress resultants and                                      |                                      |             |                      |                   |                      |                    |                        |          |           |        |       |  |
| CO2         | deformat                                                           |                                                                                                                            |                                      |             |                      |                   | ,                    |                    |                        |          |           |        |       |  |
| CO3         | To apply                                                           | pply the bending and shear principles to determine the bending, shear stresses and deflection                              |                                      |             |                      |                   |                      |                    |                        |          |           |        |       |  |
| 05          |                                                                    | oduced in a beam subjected to system of loads                                                                              |                                      |             |                      |                   |                      |                    |                        |          |           |        |       |  |
| CO4         | To analy                                                           | analyze the forces in Trusses using different methods and design shafts for the given load                                 |                                      |             |                      |                   |                      |                    |                        |          |           |        |       |  |
| CO5         | To evalu                                                           | ate the s                                                                                                                  | tresses du                           | ue to im    | pact and             | d sudde           | nly appl             | lied load          | ls                     |          |           |        |       |  |
| Mapping     |                                                                    |                                                                                                                            |                                      |             |                      | omes (l           |                      | -                  | -                      |          |           |        |       |  |
| COs/POs     | PO1                                                                | PO2                                                                                                                        | PO3                                  | PO4         | PO5                  | PO6               | <b>PO7</b>           | PO8                | PO9                    | PO10     | PO11      | PC     | )12   |  |
| CO1         | 3                                                                  | 3                                                                                                                          | 3                                    | 3           | 1                    | 2                 | 1                    | 1                  | 1                      | 1        | 1         |        | 3     |  |
| CO2         | 3                                                                  | 3                                                                                                                          | 3                                    | 3           | 1                    | 2                 | 1                    | 1                  | 1                      | 1        | 1         |        | 3     |  |
| C03         | 3                                                                  | 3                                                                                                                          | 3                                    | 3           | 1                    | 2                 | 1                    | 1                  | 1                      | 1        | 1         |        | 3     |  |
| C04         | 3                                                                  | 3                                                                                                                          | 3                                    | 3           | 1                    | 2                 | 1                    | 1                  | 1                      | 1        | 1         |        | 3     |  |
| C05         | 3                                                                  | 3                                                                                                                          | 3                                    | 3           | 1                    | 2                 | 1                    | 1                  | 1                      | 1        | 1         |        | 3     |  |
| COs / PSC   |                                                                    | 501                                                                                                                        | PSC                                  |             |                      |                   |                      |                    |                        |          |           | _      |       |  |
| CO1         |                                                                    | 3                                                                                                                          | 3                                    |             |                      |                   |                      |                    |                        |          | _         | _      |       |  |
| CO2         |                                                                    | 3                                                                                                                          | 3                                    |             |                      |                   |                      |                    |                        |          |           | _      |       |  |
| C03         |                                                                    | 3                                                                                                                          | 3                                    |             |                      |                   |                      |                    |                        |          | _         | _      |       |  |
| C04         |                                                                    | 3                                                                                                                          | 3                                    |             |                      |                   |                      |                    |                        |          |           |        |       |  |
| C05         |                                                                    | 3                                                                                                                          | 3                                    |             | L                    |                   |                      | _                  |                        |          |           |        |       |  |
| 3/2/1 India | ates Stre                                                          | ngth Of                                                                                                                    | Correla                              | tion, 3 -   | - High,              | 2- Med            | ium, 1-              | Low                |                        | 1        | - [       | -      |       |  |
| Category    | Category Sciences Strength O<br>Engineering<br>Sciences Strength O |                                                                                                                            | Humanities<br>and Social<br>Sciences | rogram Core | Program<br>Electives | Open<br>Electives | nterdisciplina<br>ry | Skill<br>component | Practical /<br>Project |          |           |        |       |  |
|             | Ba                                                                 | щ                                                                                                                          |                                      | Р           |                      |                   | Ir                   |                    |                        |          |           |        |       |  |

| Subject Code:<br>EBCE22002                                                                                                                                                                                                               | Subject Name :<br>MECHANICS OF SOLIDS | Ty/<br>Lb/<br>ETL/IE | L | T /<br>S.Lr | P/<br>R | С |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------|---|-------------|---------|---|--|--|--|--|
|                                                                                                                                                                                                                                          | Prerequisite: Engineering Mechanics   | Ту                   | 3 | 1/0         | 0/0     | 4 |  |  |  |  |
| Prerequisite: Engineering Mechanics       Ty       3       1/0       0/0       4         L : Lecture T : Tutorial       SLr : Supervised Learning P : Project R : Research C: Credits       T/L/ETL : Theory/Lab/Embedded Theory and Lab |                                       |                      |   |             |         |   |  |  |  |  |

### UNIT I INTRODUCTION TO FORCE CONCEPT

Equivalent system of forces, rigid bodies, external & internal forces-Application of Statics of Particles-Free body Diagram Concurrent & Non Concurrent Forces - Principles of transmissibility- Equivalent forces & Varignon's theorem. Tension, Compression and Shear stress – Lateral Strain- Poisson's Ratio- Volumetric Strain – Deformation of Simple and Compound Bars - Elastic constants – Composite Sections .

### UNIT II CENTRE OF GRAVITY AND MOMENT OF INERTIA

Areas and volumes - Centroid of simple areas and volumes by integration - Centroid of composite areas - Second moment of areas - Radius of Gyration - Parallel axis and Perpendicular axis theorems - Moment of Inertia of simple areas by Integration -Moment of Inertia of Composite Areas - Mass Moment of Inertia of thin plates and simple solids.

### UNIT III BENDING MOMENT & SHEAR FORCE

Introduction to Bending and S.F- Beams and support conditions – types of supports – types of loads - shear forces and bending moment diagrams for simply supported beams, cantilevers and overhanging beams with all loads.

### UNIT IV ANALYSIS OF STATICALLY DETERMINATE PLANE TRUSSES

Stability and equilibrium of plane frames – Perfect frames - Types of Trusses – Analysis of forces in trusses member – Method of joints – Method of Sections – Tension co-efficient method – Graphical method

### UNIT V BENDING STRESS IN BEAMS & TORSION OF SHAFTS

Theory of simple bending-expression for bending stress-Section modulus-bending stress in symmetrical sections-Theory of torsion-Torsion of circular, hollow circular shafts and power -close coiled helical springs and leaf springs

### **Total No of Hours: 60**

### TEXT BOOKS

- 1. Rajput.R.K. "Strength of Materials", S.Chand and Co, New Delhi, 2007. 2.
- 2. Bhavikatti. S., "Solid Mechanics", Vikas publishing house Pvt. Ltd, New Delhi, 2010
- 3. Dr.R.K.Bansal A text book of Strength of Materials, Laxmi Publications, New Delhi 1996.
- 4. S. Ramamirutham and R.Narayanan, Strength of Materials, Dhanpat Rai Publications, New Delhi, 1989.

### REFERENCES

- 1. Kazimi S.M.A. " Solid Mechanics ", Tata McGraw Hill Publishing Company, New Delhi, 1991.
- 2. Laudner T.J. and Archer R.R., " Mechanical of Solids in Introduction ",McGraw Hill International Editions
- 3. William A.Nash, "Theory and Problems of Strength of Material" Schaum's outline series, Mc Graw Hill International Editions 1994

### 12 Hrs

12 Hrs

12 Hrs

## 12 Hrs

12 Hrs

### 19

| Subject Code:<br>EBCE22003 |                | ıbject Naı<br>ILL ANI | me :<br>D ADVAN                   | CED SU       | RVEYI             | NG             |                   |                 | Ty/<br>Lb/<br>ETL/IE | L         | T / S.Lr    | P/ R     | C     |
|----------------------------|----------------|-----------------------|-----------------------------------|--------------|-------------------|----------------|-------------------|-----------------|----------------------|-----------|-------------|----------|-------|
|                            | Pr             | erequisite            | : None                            |              |                   |                |                   |                 | Ty                   | 3         | 0/0         | 0/0      | 3     |
| L : Lecture T : 7          |                |                       |                                   | earning      | P : Proje         | ct R : Re      | esearch C         | C: Credit       |                      |           |             |          |       |
| T/L/ETL : Theo             | ory/Lab/l      | Embedded              | Theory ar                         | nd Lab       |                   |                |                   |                 |                      |           |             |          |       |
| <b>OBJECTIVE :</b>         |                |                       |                                   |              |                   |                |                   |                 |                      |           |             |          |       |
|                            |                | 1 1                   |                                   |              |                   |                | 11                |                 | Civil Engine         | ering pro | ojects      |          |       |
| COURSE OUT                 |                |                       |                                   |              |                   |                |                   |                 |                      |           |             |          |       |
| CO1                        |                |                       | -                                 | iples of t   | pasic surv        | vey instru     | iments ir         | n civil er      | ngineering f         | ields, co | ncept of co | ontourin | g and |
|                            |                | -                     | f plotting.                       |              |                   |                |                   |                 |                      |           |             |          |       |
| CO2                        |                |                       |                                   | •            |                   | ic survey      | ving, Co          | ntrol sur       | veying, Su           | rvey adj  | ustments,   | Astrono  | mical |
|                            |                |                       | and Photog                        | -            |                   |                |                   |                 |                      |           |             |          |       |
| CO3                        |                |                       |                                   |              |                   |                | station, l        | Hydrogr         | aphic surve          | y and car | tography.   |          |       |
| Mapping of Co              |                |                       |                                   |              |                   |                |                   |                 |                      |           |             |          |       |
| COs/POs                    | PO1            | PO2                   | PO3                               | PO4          | PO5               | PO6            | PO7               | PO8             | PO9                  | PO10      | PO11        | PO       | 12    |
| CO1                        | 3              | 2                     | -                                 | 2            | -                 | 1              | -                 | -               | 3                    | -         | -           |          | -     |
| CO2                        | 3              | 2                     | -                                 | 2            | -                 | 1              | -                 | -               | 3                    | -         | -           |          | -     |
| CO3                        | 3              | 2                     | -                                 | 2            | -                 | 1              | -                 | -               | 3                    | -         | -           |          | -     |
| COs / PSOs                 | P              | SO1                   | PSC                               | 02           |                   |                |                   |                 |                      |           |             |          |       |
| CO1                        |                | 3                     | 3                                 |              |                   |                |                   |                 |                      |           |             |          |       |
| CO2                        |                | 3                     | 3                                 |              |                   |                |                   |                 |                      |           |             |          |       |
| CO3                        |                | 3                     | 3                                 |              |                   |                |                   |                 |                      |           |             |          |       |
| 3/2/1 Indicates            | Strengt        | h Of Cor              | relation, 3                       | – High,      | 2- Medi           | um, 1- L       | ow                |                 |                      | T         |             |          |       |
| Category                   | Basic Sciences | Engineering Sciences  | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project  |           |             |          |       |
|                            |                |                       |                                   | $\checkmark$ |                   |                |                   |                 |                      |           |             |          |       |

| Subject Code:<br>EBCE22003 | Subject Name :<br>HILL AND ADVANCED SURVEYING                                                | Ty/<br>Lb/<br>ETL/IE | L | T / S.Lr | P/ R | С |
|----------------------------|----------------------------------------------------------------------------------------------|----------------------|---|----------|------|---|
|                            | Prerequisite: None                                                                           | Ту                   | 3 | 0/0      | 0/0  | 3 |
|                            | rial SLr : Supervised Learning P : Project R : Research C: Credit ab/Embedded Theory and Lab | S                    |   |          |      |   |

### UNIT I: INTRODUCTION OF CHAIN SURVEYING COMPASS SURVEYING

Definition - principles - classification - survey instruments - ranging and chaining - reciprocal ranging - setting perpendiculars --errors - traversing. Prismatic compass - surveyor's compass - bearing - systems and conversions local attraction - magnetic declination - dip - adjustment of error

### UNIT II TACHEOMETRIC SURVEYING

Introduction, purpose, principle & use of tacheometry, Instrument used & stadia hairs & Fixed hair methods of tacheometry, Tacheometry constant & Problems Anallatic lens theory, subtense bar, Field work in tacheometry. Reduction of readings, errors and precisions. Difference between Theodolite & Tacheometer.

### UNIT III GEODETIC SURVEYING

Introduction & object of Geodetic Surveying, Principal & classification of triangulation system, Selection of base line and stations, Orders of triangulation-triangulation figures, Station marks and signals-marking signals, Examples on Phase error, Extension of base, reduction of centre, selection and marking of stations

### UNIT IV CONTOURING AND CURVE SETTING

Contouring - methods -characteristics and uses of contours - plotting - calculation of areas and volumes- earth work volume- Types of curves used in roads and railway alignments-Notations of simple circular curve Designation of the curve-Setting simple circular curve by offsets from long chord and Rankines method of deflection angles

### **UNIT V FIELD ASTRONOMY**

Introduction & Instruments & purpose, Astronomical terms, Time & conversion of time, Abbreviations, Determination of azimuth, Latitude and longitude & Examples of azimuth, Latitude and longitude

### **Total No of Hours: 45**

### **Text Books**

- 1. Arora, K.R., Surveying Vol. I, II & III, Standard Book House. New Delhi
- 2. Basak, N.N., Surveying and Levelling, Tata Mcgraw Hill, New Delhi
- 3. Agor, R., Surveying and Levelling, Khanna Publishers, New Delhi

### **Reference Books:**

- 1. Duggal, S. K., Surveying Vol. I & II, Tata Mcgraw Hill, New Delhi
- 2. Subramanian, R., Surveying & Levelling, Oxford University Press, New Delhi
- 3. Punamia, B.C., Surveying Vol. I, II & III, Laxmi Publications
- 4. Kanetkar, T.P. and Kulkarni, S.V., Surveying and Levelling Vol. I & II, Pune VidhyarthiGruh

# **12 Hrs**

9 Hrs

### 8 Hrs

# 8 Hrs

8 Hrs

| Subject Code:<br>EBCE22L01 |                |                                                                                                                       | me : SUR                          |              |                   |                | Y                 |                 | Ty/<br>Lb/<br>ETL/IE | L         | T / S.Lr    | P/ R    | C     |
|----------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------|-------------------|----------------|-------------------|-----------------|----------------------|-----------|-------------|---------|-------|
|                            |                | -                                                                                                                     | Hill and A                        |              | -                 | -              |                   |                 | Lb                   | 0         | 0/0         | 3/0     | 1     |
| L : Lecture T : 7          |                |                                                                                                                       | -                                 | -            | P : Proje         | ct R : Re      | esearch C         | C: Credit       | S                    |           |             |         |       |
| T/L/ETL : Theo             | -              | Embedded                                                                                                              | l Theory an                       | nd Lab       |                   |                |                   |                 |                      |           |             |         |       |
| <b>OBJECTIVE :</b>         |                |                                                                                                                       |                                   |              |                   |                |                   |                 |                      |           |             |         |       |
|                            |                |                                                                                                                       |                                   |              |                   |                |                   |                 | for constru          | ction and | d road purp | ose     |       |
| COURSE OUT                 | COME           | S (COs) :                                                                                                             | ( <b>3-5</b> ) A                  | t the end    | of the co         | ourse, the     | student           | will be a       | ble to:              |           |             |         |       |
| CO1                        | Prepare        | e the surv                                                                                                            | ey sheet ac                       | cording      | to the me         | ethod use      | d                 |                 |                      |           |             |         |       |
| CO2                        | Apply          | theoretica                                                                                                            | al consider                       | ations in    | field and         | other en       | gineering         | g project       | S                    |           |             |         |       |
| CO3                        | Able to        | ble to survey the area using different methods of plane tabling and compass survey and to adjust the compass          |                                   |              |                   |                |                   |                 |                      |           |             |         |       |
|                            |                | werse graphically                                                                                                     |                                   |              |                   |                |                   |                 |                      |           |             |         |       |
| CO4                        |                | ecord the reduced levels using various methods of levelling and measurement of horizontal & vertical angles by        |                                   |              |                   |                |                   |                 |                      |           |             |         |       |
|                            |                | heodolite<br>etting out works for foundation marking, use of stereoscope for 3-D viewing, Co-ordinate measurements by |                                   |              |                   |                |                   |                 |                      |           |             |         |       |
| CO5                        |                |                                                                                                                       |                                   |              |                   | use of s       | stereoscoj        | pe for 3        | -D viewing           | g, Co-ord | linate meas | suremen | ts by |
| Monning of Ca              |                |                                                                                                                       | sing by To                        |              |                   |                |                   |                 |                      |           |             |         |       |
| Mapping of Co              |                |                                                                                                                       |                                   |              |                   |                | DOZ               | DO9             | DOA                  | DO14      | <b>DO11</b> | DO      | 12    |
| COs/POs                    | PO1            | PO2                                                                                                                   | PO3                               | PO4          | PO5               | PO6            | <b>PO7</b>        | PO8             | <b>PO9</b>           | PO10      | PO11        | PO      |       |
| <u>CO1</u>                 | 3              | 2                                                                                                                     | 3                                 | 3            | 3                 | 2              | 1                 | 1               | 3                    | 1         | 2           |         | 3     |
| CO2                        | 3              | 2                                                                                                                     | 3                                 | 3            | 3                 | 2              | 1                 | 1               | 3                    | 1         | 2           |         | 3     |
| CO3                        | 3              | 2                                                                                                                     | 3                                 | 3            | 3                 | 2              | 1                 | 1               | 3                    | 1         | 2           |         | 3     |
| CO4                        | 3              | 2                                                                                                                     | 3                                 | 3            | 3                 | 2              | 1                 | 1               | 3                    | 1         | 2           |         | 3     |
| CO5                        | 3              | 2                                                                                                                     | 3                                 | 3            | 3                 | 2              | 1                 | 1               | 3                    | 1         | 2           |         | 3     |
| COs / PSOs                 |                | 501                                                                                                                   | PSC                               |              |                   |                |                   |                 |                      |           |             |         |       |
| CO1                        |                | 3                                                                                                                     | 3                                 |              |                   |                |                   |                 |                      |           |             |         |       |
| CO2                        |                | 3                                                                                                                     | 3                                 |              |                   |                |                   |                 |                      |           |             |         |       |
| CO3                        |                | 3                                                                                                                     | 3                                 |              |                   |                |                   |                 |                      |           |             |         |       |
| CO4                        |                | 3                                                                                                                     | 3                                 |              |                   |                |                   |                 |                      |           |             |         |       |
| CO5                        |                | 3                                                                                                                     | 3                                 |              |                   |                |                   |                 |                      |           |             |         |       |
| 3/2/1 Indicates            | Strength       | n Of Cor                                                                                                              | relation, 3                       | – High,      | 2- Medi           | um, 1- L       | ow                | · · · ·         |                      | 1         |             |         |       |
| Category                   | Basic Sciences | Engineering Sciences                                                                                                  | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project  |           |             |         |       |
|                            |                |                                                                                                                       |                                   | ✓            |                   |                |                   |                 | $\checkmark$         |           |             |         |       |

| Subject Code:        | Subject Name : SURVEYING LABORATORY                               | Ty/    | L | T/S.Lr | <b>P/ R</b> | С |
|----------------------|-------------------------------------------------------------------|--------|---|--------|-------------|---|
| EBCE22L01            |                                                                   | Lb/    |   |        |             |   |
|                      |                                                                   | ETL/IE |   |        |             |   |
|                      | Prerequisite: Hill and Advanced Surveying                         | Lb     | 0 | 0/0    | 3/0         | 1 |
| L : Lecture T : Tuto | rial SLr : Supervised Learning P : Project R : Research C: Credit | S      |   |        |             |   |
| T/L/ETL : Theory/L   | ab/Embedded Theory and Lab                                        |        |   |        |             |   |

### **UNIT I CHAIN SURVEYING**

Ranging – Chaining – Traverse

### UNIT II **COMPASS SURVEYING**

Determination of distance between two inaccessible points with compass - Surveying of a given area by prismatic compass (closed traverse) and plotting after adjustment - Correction for Local Attraction by Prismatic Compass

### UNIT III PLANE TABLE SURVEYING

Triangulation to find distance between inaccessible points with and without known scale - Three-Point Problem - Two-Point Problem.

### **UNIT IV** LEVELLING

Study of levels and leveling staff – Fly leveling using dumpy level – Fly leveling using tilting level – Check leveling.

### UNIT V THEODOLITE

Study of Theodolite Measurement of angles by reiteration and repetition - Measurement of vertical angles -Tangential system (using theodolite, leveling staff) - Stadia system (using theodolite, leveling staff) - Sub tense system (using theodolite, tape, cross staff, leveling staff)

### **Total No of Hrs: 45**

### **TEXT BOOKS**

- Punmia B.C., "Surveying ", Vols. III, Laxmi Publications, Mumbai, 1999 and I, II. 1.
- N.N Basak, "Surveying and Levelling ", Tata McGraw Hill Publishing Company Limited New Delhi, 2. 2004.

### REFERENCES

- 1. Clark D., "Plane and Geodetic Surveying ", Vols. II and C.B.S. Publishers, I and Distributors, New Delhi, Sixth Edition, 1991.
- 2. James M. Anderson and Edward M. Mikhail, "Introduction to Surveying", McGraw Hill Book Company, New Delhi, 1995

## 9 Hrs

6 Hrs

6 Hrs

### 12 Hrs

### **12 Hrs**

# **II SEMESTER**

| Subject Code<br>EBMA22008         | 5                     | ct Nam<br>ods for       |                                   |              |                      |                |                   |                                               | Ty/<br>Lb/             | L      | T<br>S.I   |      | /R | C        |
|-----------------------------------|-----------------------|-------------------------|-----------------------------------|--------------|----------------------|----------------|-------------------|-----------------------------------------------|------------------------|--------|------------|------|----|----------|
|                                   |                       |                         |                                   |              |                      |                |                   |                                               | ETL/IE                 |        |            |      |    | <u> </u> |
|                                   |                       | quisite:                | -                                 | -            |                      | -              |                   |                                               | Ту                     | 3      | 1          |      | 0  | 4        |
| L : Lecture T :                   |                       |                         |                                   |              |                      |                | Project           | R : R                                         | esearch C              | C: Cro | edits      |      |    |          |
| Ty/Lb/ETL : T                     |                       | Lab/Em                  | bedded                            | Theor        | y and L              | ab             |                   |                                               |                        |        |            |      |    |          |
| OBJECTIVES                        |                       |                         |                                   |              |                      |                |                   |                                               |                        |        |            |      |    |          |
| The student s                     |                       |                         |                                   |              |                      |                |                   |                                               |                        |        |            |      |    |          |
| To be able to a                   |                       |                         | <b>L</b>                          |              | S                    |                |                   |                                               |                        |        |            |      |    |          |
| To understand                     |                       |                         |                                   | •            | .1 1                 |                |                   |                                               |                        |        |            |      |    |          |
| To understand                     |                       |                         |                                   |              |                      |                |                   |                                               |                        |        |            |      |    |          |
| To be able to so<br>To understand |                       |                         |                                   |              |                      | equation       | ns.               |                                               |                        |        |            |      |    |          |
| COURSE OU                         |                       | -                       | -                                 | oration      |                      |                |                   |                                               |                        |        |            |      |    |          |
| COURSE OU<br>CO1                  |                       | able to                 |                                   | e Statio     | tical da             | ta             |                   |                                               |                        |        |            |      |    |          |
| CO2                               |                       | able to                 | 2                                 |              |                      |                | rv                |                                               |                        |        |            |      |    |          |
| CO3                               |                       | able to                 |                                   | -            |                      | ţ              | ţ                 | col ma                                        | thods                  |        |            |      |    |          |
| CO4                               |                       | able to                 |                                   |              |                      | <b>.</b>       |                   |                                               |                        |        |            |      |    |          |
| CO4                               |                       | able to                 |                                   | 0            |                      |                |                   | cqua                                          | .10115                 |        |            |      |    |          |
| Mapping of C                      |                       |                         |                                   | <b>^</b>     |                      |                |                   | <u>,                                     </u> |                        |        |            |      |    |          |
| COs/POs                           | PO1                   | PO2                     | PO3                               | PO4          | PO5                  | PO6            | PO7               | ,<br>PO8                                      | PO9                    | PO     | <b>D10</b> | PO11 | P( | 012      |
| CO1                               | 3                     | 3                       | 2                                 | 2            | 3                    | 1              | 1                 | 1                                             | 2                      |        | 2          | 1    |    | 3        |
| CO2                               | 3                     | 3                       | 1                                 | 3            | 2                    | 2              | 1                 | 1                                             | 2                      | -      | 1          | 2    |    | 2        |
| CO3                               | 2                     | 3                       | 1                                 | 2            | 2                    | 3              | 3                 | 1                                             | 1                      |        | 2          | 2    |    | 3        |
| CO4                               | 2                     | 3                       | 1                                 | 1            | 1                    | 3              | 3                 | 1                                             | 1                      |        | 2          | 1    |    | 2        |
| CO5                               | 3                     | 2                       | 1                                 | 3            | 1                    | 2              | 3                 | 1                                             | 1                      |        | 2          | 2    |    | 2        |
| COs / PSOs                        |                       | PSO1                    |                                   |              | PSO2                 |                |                   | I                                             |                        |        |            |      | 1  |          |
| CO1                               |                       | 3                       |                                   |              | 3                    |                |                   |                                               |                        |        |            |      |    |          |
| CO2                               |                       | 3                       |                                   |              | 3                    |                |                   |                                               |                        |        |            |      |    |          |
| CO3                               |                       | 3                       |                                   |              | 3                    |                |                   |                                               |                        |        |            |      |    |          |
| CO4                               |                       | 3                       |                                   |              | 3                    |                |                   |                                               |                        |        |            |      |    |          |
| CO5                               |                       | 3                       |                                   |              | 3                    |                |                   |                                               |                        |        |            |      |    |          |
| 3/2/1 Indicates                   | s Stren               | gth Of                  | Correl                            | ation, 3     | 3 – Hig              | h, 2- N        | ledium            | , 1- L                                        | ow                     |        |            |      |    |          |
| Category                          | Basic Sciences        | Engineering<br>Sciences | Humanities and<br>Social Sciences | Program Core | Program<br>Electives | Open Electives | Interdisciplinary | Skill component                               | Practical /<br>Project |        |            |      |    |          |
|                                   | <ul> <li>✓</li> </ul> |                         | 1                                 |              |                      |                |                   |                                               |                        |        |            |      |    |          |

| Subject Code | Subject Name : Statistical and Numerical                                                 | Ty/        | L     | Τ/    | P/R | С |
|--------------|------------------------------------------------------------------------------------------|------------|-------|-------|-----|---|
| EBMA22008    | Methods for Mechanical and Civil Engineers                                               | Lb/        |       | S.Lr  |     |   |
|              |                                                                                          | ETL/IE     |       |       |     |   |
|              | Prerequisite: First year Engineering Mathematics                                         | Ту         | 3     | 1     | 0   | 4 |
|              | Tutorial S.Lr : Supervised Learning P : Project R :<br>heory/Lab/Embedded Theory and Lab | Research ( | C: Cr | edits |     |   |

### UNIT I BASICS OF STATISTICS

Variables – Uni-variate Data – Frequency Distribution – Measures of Central Tendency – Mean – Median – Mode – Quartiles – Measures of Dispersion – The Range – Quartile Deviation – Standard Deviation – Relative Measures of Dispersion – Coefficient of Variation – Quartile Coefficient of Variation.

### UNIT II PROBABILITY AND RANDOM VARIABLE

Axioms of Probability – Conditional probability – Total probability – Baye's Theorem – Random variable – Probability mass function – Probability density function – Properties – Moments (Definition and simple problems).

### UNIT III BASICS OF NUMERICAL METHODS

Curve fitting-Method of group averages-Principle of least square-Method of moments-Finite differences-Operators (Forward, Backward & Shifting) -Relationship between the operators.

### UNIT IV SOLUTION OF EQUATIONS

Solution of Algebraic and Transcendental equations – Method of false position – Iteration method – Newton-Raphson method – Solution of Linear system of equations – Gauss Elimination method – Gauss-Jordan method – Iterative methods – Gauss-Jacobi method – Gauss-Seidel method – Matrix Inversion by Gauss-Jordan method.

### UNIT V INTERPOLATION

Newton forward and backward differences – Central differences – Stirling's and Bessel's formulae – Interpolation with Newton's divided differences – Lagrange's method.

### Total no. of hrs: 60

### **Reference Books:**

- 1. Veerarajan T., Probability, Statistics and, Random Processes, Tata McGraw Hill Publishing Co., (2008).
- 2. Singaravelu, Probability and Random Processes, Meenakshi Agency, (2017).
- 3. Gupta S.C., Kapoor V.K., Fundamentals of Mathematical Statistics, S.Chand & Co., (2007).
- 4. Veerarajan T., *Numerical Methods*, Tata McGraw Hill Publishing Co., (2005).
- 5. Sastry S.S., Introductory Methods of Numerical Analysis, Prentice Hall of India, (2003).
- 6. Kandasamy P., Thilagavathy, Gunavathy K., Numerical Methods (Vol.IV), S.Chand & Co., (2008).

### 12 hrs

12 hrs

# 12 hrs

### 12 hrs

# 12 hrs

| Subject Code:<br>EBCE22004 | S              | ubject Nai           |                                   | IGTH O       | F MATI            | ERIALS         |                   |                 | Ty/<br>Lb/<br>ETL/IE | L         | T / S.Lr       | P/ R     | C    |
|----------------------------|----------------|----------------------|-----------------------------------|--------------|-------------------|----------------|-------------------|-----------------|----------------------|-----------|----------------|----------|------|
|                            |                | rerequisite          |                                   |              |                   |                |                   |                 | Ту                   | 3         | 1/0            | 0/0      | 4    |
| L : Lecture T : T          |                |                      |                                   |              | P : Proje         | ct R : Re      | esearch C         | C: Credits      | 8                    |           |                |          |      |
| T/L/ETL : Theo             | ry/Lab/        | /Embedded            | Theory ar                         | id Lab       |                   |                |                   |                 |                      |           |                |          |      |
| <b>OBJECTIVE :</b>         | at 1 a         |                      |                                   |              |                   | <b>.</b>       | - 411 -           |                 |                      |           |                |          |      |
| -                          |                | wledge ab            |                                   |              | •                 |                |                   |                 | 4 1 1                | •         | 1 1.6          |          |      |
| -                          |                | -                    | •                                 | -            |                   |                | • •               | • •             |                      | ing stres | ses and def    | lection  |      |
| 1                          |                | wledge ab            |                                   |              | -                 |                |                   | 0               | olumns               |           |                |          |      |
| COURSE OUT                 |                |                      |                                   |              |                   |                |                   |                 | 6                    | .1 1      | <u> </u>       | .1 5     | 1    |
| CO1                        |                | and deflect          | -                                 | -            |                   | etermina       | ite beams         | s and use       | of energy i          | method    | for estimation | ng the s | lope |
| CO2                        |                | To underst           |                                   |              |                   | tariala        |                   |                 |                      |           |                |          |      |
|                            |                |                      |                                   |              |                   |                | 1                 |                 |                      |           |                |          |      |
| CO3                        |                | To apply th          | 0.1                               | -            |                   | -              | -                 |                 |                      |           |                |          |      |
| CO4                        |                | To analyze           |                                   |              |                   | rious loa      | ding con          | ditions         |                      |           |                |          |      |
| CO5                        |                | To assess t          |                                   |              |                   |                |                   |                 |                      |           |                |          |      |
| Mapping of Co              | urse O         | utcomes w            | vith Progr                        | am Outc      | omes (P           | Os)            |                   |                 |                      |           |                |          |      |
| COs/POs                    | PO1            | PO2                  | PO3                               | PO4          | PO5               | PO6            | PO7               | PO8             | PO9                  | PO10      | PO11           | PO       | 12   |
| CO1                        | 3              | 3                    | 3                                 | 3            | 1                 | 2              | 1                 | 1               | 1                    | 1         | 2              |          | 3    |
| CO2                        | 3              | 3                    | 3                                 | 3            | 1                 | 2              | 1                 | 1               | 1                    | 1         | 2              |          | 3    |
| CO3                        | 3              | 3                    | 3                                 | 3            | 1                 | 2              | 1                 | 1               | 1                    | 1         | 2              |          | 3    |
| CO4                        | 3              | 3                    | 3                                 | 3            | 1                 | 2              | 1                 | 1               | 1                    | 1         | 2              |          | 3    |
| CO5                        | 3              | 3                    | 3                                 | 3            | 1                 | 2              | 1                 | 1               | 1                    | 1         | 2              |          | 3    |
| COs / PSOs                 | ł              | <u>PSO1</u>          | PSC                               |              |                   |                |                   |                 |                      |           |                |          |      |
| <u>CO1</u>                 |                | 3                    | 3                                 |              |                   |                |                   |                 |                      |           |                |          |      |
| CO2                        |                | 3                    | 3                                 |              |                   |                |                   |                 |                      |           |                |          |      |
| CO3                        |                | 3                    | 3                                 |              |                   |                |                   |                 |                      |           |                |          |      |
| CO4                        |                | 3                    | 3                                 |              |                   |                |                   |                 |                      |           |                |          |      |
| CO5<br>3/2/1 Indicates     | Streng         | -                    |                                   |              | 2. Medi           | um 1. T        | <br>ow            |                 | 1                    | 1         | 1              |          |      |
| Ji 2/ I Mulcatts           | oueng          |                      |                                   | - 111gil,    | - 1910uli         | , 1- L         |                   |                 |                      |           |                |          |      |
| Category                   | Basic Sciences | Engineering Sciences | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project  |           |                |          |      |
|                            |                |                      |                                   | $\checkmark$ |                   |                |                   |                 |                      |           |                |          |      |

| Subject Code:<br>EBCE22004 | Subject Name :<br>STRENGTH OF MATERIALS                                                         | Ty/<br>Lb/<br>ETL/IE | L | T / S.Lr | P/ R | C |
|----------------------------|-------------------------------------------------------------------------------------------------|----------------------|---|----------|------|---|
|                            | Prerequisite: Mechanics of solids                                                               | Ту                   | 3 | 1/0      | 0/0  | 4 |
|                            | rial SLr : Supervised Learning P : Project R : Research C: Credit<br>ab/Embedded Theory and Lab | S                    |   |          |      |   |

### UNIT I BENDING OF BEAMS

Bending of Beams of Symmetrical and Unsymmetrical Sections – Box sections and its importance — Winkler Bach Formula - Shear Center Simple problems

### UNIT II ENERGY PRINCIPLES

Strain energy and strain energy density - Strain energy in tension, shear, flexure and torsion - Castigliano's & Engessor's energy theorems- Principle of Virtual Work- Application of energy theorems for computing deflection in Determinate structures – Maxwell's reciprocal theorem.

### UNIT II DEFLECTIONS

Methods of Deflection Determination of Deflection curve – computation of slopes and deflections in Determinate Beams - Double Integration method – Macaulay's method – Area Moment method –Conjugate Beam method.

### UNIT IV INDETERMINATE BEAMS

Propped Cantilever and Fixed Beams - Fixed End Moments and Reactions for Standard cases of Loading - Continuous Beams - Theorem of Three Moments - Analysis of Continuous Beams - S.F. and B.M. Diagrams for Continuous Beams.

### UNIT V COLUMNS

Eccentrically Loaded Short Columns Middle Third Rule - Core of Section - Columns of Unsymmetrical Sections - Rankine – Gordon Formula Eccentrically Loaded Long Columns. Theories of Failure - Principal Stress, Principal Strain, Shear Stress, Strain Energy and Distortion Energy Theories.

### **Total No of Hrs: 60**

### TEXT BOOKS

- 1. Rajput.R.K. "Strength of Materials", S.Chand and Co, New Delhi, 2007.
- 2. Bhavikatti. S., "Solid Mechanics", Vikas publishing house Pvt. Ltd, New Delhi, 2010.
- 3. R.S. Khurmi, "Engineering Mechanics of Solids ", Prentice Hall of India, New Delhi, 1997.
- 4. S.S Ratan, "Strength of Materials ", Tata McGraw Hill Publishing Company, New Delhi, 2008

## REFERENCES

- 1. Laudner T.J. and Archer R.R., " Mechanical of Solids in Introduction ",McGraw Hill International Editions, New Delhi, 1994..
- 2. William A.Nash, "Theory and Problems of Strength of Material" Schaum's outline series, Mc Graw Hill International Editions, New Delhi, 1994

### 11 Hrs

13 Hrs

13 Hrs

## 13 Hrs

## 10 Hrs

| Subject Code:   | S              | ubject Na               | me :<br>ID MECH                      |              |                      |                   |                       |                    | Ty/<br>Lb/             | L          | T/       | P/ R      | C  |
|-----------------|----------------|-------------------------|--------------------------------------|--------------|----------------------|-------------------|-----------------------|--------------------|------------------------|------------|----------|-----------|----|
| EBCE22005       |                | FLU                     |                                      | NGINE        |                      | DNAU              |                       |                    | LD/<br>FL/IE           |            | S.Lr     |           |    |
|                 | Р              | rerequisite             | : None                               |              |                      |                   |                       | Ту                 |                        | 3          | 1/0      | 0/0       | 4  |
| L : Lecture T : | Tutoria        | 1 SLr : Si              | upervised l                          | Learning     | P : Proj             | ect R : F         | Research              | C: Credit          | s                      |            |          |           |    |
| T/L/ETL : The   |                |                         |                                      |              | -                    |                   |                       |                    |                        |            |          |           |    |
| OBJECTIVE       |                |                         |                                      |              |                      |                   |                       |                    |                        |            |          |           |    |
|                 |                | importance              |                                      |              |                      | -                 |                       |                    |                        |            |          |           |    |
|                 | •              | ries those of           | -                                    |              | -                    |                   |                       |                    |                        | -          | -        |           |    |
| • To un         | derstan        | d the utiliz            | ation of di                          | mension      | al analys            | is as a to        | ol in solv            | ving probl         | ems in the             | e field of | fluid me | echanics. |    |
| COURSE OU       |                |                         |                                      |              |                      |                   |                       |                    |                        |            |          |           |    |
| CO1             |                | To learn al             | bout the ba                          | sics of f    | luid mech            | nanics an         | d variou              | s properti         | es of fluid            | s          |          |           |    |
| CO2             |                | To underst              | and variou                           | is forces    | on plane             | and curv          | ed surfa              | ces and th         | e concept              | s of buo   | yancy    |           |    |
| C03             |                | To apply the            | he principl                          | es of flu    | id kinem             | atics and         | dynamic               | es                 |                        |            |          |           |    |
| C04             |                | To analyze              | e boundary                           | layer flo    | ow and fl            | ow throu          | gh pipes              |                    |                        |            |          |           |    |
| C05             |                | To evaluat              | e various 1                          | nodels li    | ke distor            | ted mode          | els and va            | arious din         | nensionles             | s numbe    | rs       |           |    |
| Mapping of Co   | ourse (        | Outcomes v              | with Prog                            | ram Out      | tcomes (I            | POs)              |                       |                    |                        |            |          |           |    |
| COs/POs         | <b>PO1</b>     | PO2                     | PO3                                  | PO4          | PO5                  | PO6               | <b>PO7</b>            | PO8                | PO9                    | PO10       | PO1      | 1 PO      | 12 |
| CO1             | 3              | 3                       | 3                                    | 3            | 2                    | 3                 | 1                     | 1                  | 1                      | 1          | 1        |           | 3  |
| CO2             | 3              | 3                       | 3                                    | 3            | 2                    | 3                 | 1                     | 1                  | 1                      | 1          | 1        |           | 3  |
| C03             | 3              | 3                       | 3                                    | 3            | 2                    | 3                 | 1                     | 1                  | 1                      | 1          | 1        |           | 3  |
| C04             | 3              | 3                       | 3                                    | 3            | 2                    | 3                 | 1                     | 1                  | 1                      | 1          | 1        |           | 3  |
| C05             | 3              | 3                       | 3                                    | 3            | 2                    | 3                 | 1                     | 1                  | 1                      | 1          | 1        |           | 3  |
| COs / PSOs      | I              | PSO1                    | PSC                                  | 02           |                      | •                 |                       |                    |                        |            |          |           |    |
| CO1             |                | 3                       | 3                                    |              |                      |                   |                       |                    |                        |            |          |           |    |
| CO2             |                | 3                       | 3                                    |              |                      |                   |                       |                    |                        |            |          |           |    |
| C03             |                | 3                       | 3                                    |              |                      |                   |                       |                    |                        |            |          |           |    |
| C04             |                | 3                       | 3                                    |              |                      |                   |                       |                    |                        |            |          |           |    |
| C05             |                | 3                       | 3                                    |              |                      |                   |                       |                    |                        |            |          |           |    |
| 3/2/1 Indicates | Streng         | gth Of Cor              | relation, .                          | 3 – High     | , 2- Med             | ium, 1-           | Low                   |                    |                        |            |          |           |    |
| Category        | Basic Sciences | Engineering<br>Sciences | Humanities<br>and Social<br>Sciences | Program Core | Program<br>Electives | Open<br>Electives | Interdisciplina<br>ry | Skill<br>component | Practical /<br>Project |            |          |           |    |
|                 |                |                         |                                      |              |                      |                   |                       |                    |                        |            |          |           |    |

| Subject Code:<br>EBCE22005 | Subject Name :<br>FLUID MECHANICS AND HYDRAULIC<br>ENGINEERING                            | Ty/<br>Lb/<br>ETL/IE | L | T /<br>S.Lr | P/ R | C |
|----------------------------|-------------------------------------------------------------------------------------------|----------------------|---|-------------|------|---|
|                            | Prerequisite: None                                                                        | Ту                   | 3 | 1/0         | 0/0  | 4 |
|                            | rial SLr : Supervised Learning P : Project R : Research C:<br>.ab/Embedded Theory and Lab | Credits              |   |             |      |   |

### FLUID STATICS AND PROPERTIES UNIT I

Definitions - Fluid and Fluid Mechanics - Dimensions and Units - Fluid properties -Viscosity, Compressibility, Surface tension and Capillarity, Continuum - concept of system and control volume- Pascal's law and Hydrostatic equation - buoyancy -meta centric height – pressure measurement – gauges and manometers.

### UNIT II FLUID KINEMATICS AND DYNAMICS

Stream, streak and path lines - classification of flows - continuity equation - stream and potential functions -flow nets - velocity and acceleration measurement-Problems- Euler and Bernoulli's equations - application of Bernoulli's equation - discharge measurement -Hagen Poiseuille equation .

### UNIT III FLOW THROUGH PIPES AND DIMENSIONAL ANALYSIS

Darcy Weisbach formula -Major and minor losses of flow in pipes – pipes in series and in parallel – Dimensional analysis - Buckingham  $\pi$  -theorem.

### UNIT IV **UNIFORM AND RAPIDLY VARIED FLOW**

Open channel flow - types and regime of flow - velocity distribution in open channel - specific energy - critical flow and its computation - Uniform flow - velocity measurement - manning's and Chezy's formula determination of roughness coefficients - most economical sections- Rectangular, Circular and Trapezoidal channel sections .Hydraulic jump - types - energy dissipation - surges

### UNIT V **PUMPS AND TURBINES**

Introduction – classification – Rotodynamic pumps: centrifugal pumps – work done – losses – spe12ific speed minimum speed to start the pump- multistage pumps- parallel and series- reciprocating pump -work done- slip -Pelton wheel turbine -work done-Francis turbine -work done- Kaplan turbine -work done.

### Total No of Hrs: 60

### **TEXT BOOKS**

- 1. Dr.R. K. Bansal., "Fluid Mechanics and Hydraulic Machines", Laxmi Publications 2015.
- Fox, Robert W. And McDonald, Alan T., "Introduction to Fluid Mechanics ",John Willey & sons 2.

### REFERENCES

- 1. Streeter, Victor I. And Wylie, Benjamin E., "Fluid Mechanics", McGraw-Hill Ltd., 1998.
- Natarajan M.K., "Principles of Fluids Mechanics", Anuradha Agencies, Kumbakonam, 1995 2.

# 12 Hrs

12 Hrs

12 Hrs

## **12 Hrs**

12 Hrs

| Subject Code:      |                | Subj                 | ect Name                          | : STREN               | GTH O             | F MATI         | ERIALS            |                 | Ty/                 | L         | T/S.Lr     | <b>P</b> / <b>R</b> | С     |
|--------------------|----------------|----------------------|-----------------------------------|-----------------------|-------------------|----------------|-------------------|-----------------|---------------------|-----------|------------|---------------------|-------|
| EBČE22L02          |                | 0                    |                                   | LABOR                 | RATORY            | ľ              |                   |                 | Lb/<br>ETL/IE       |           |            |                     |       |
|                    | Pı             | rerequisite          | Mechanic                          | s of Soli             | ds                |                |                   |                 | Lb                  | 0         | 0/0        | 3/0                 | 1     |
| L : Lecture T : 7  |                |                      |                                   |                       |                   | ct R : Re      | esearch C         | C: Credits      |                     | ÷         | 0, 0       |                     |       |
| T/L/ETL : Theo     |                |                      |                                   |                       | 5                 |                |                   |                 |                     |           |            |                     |       |
| <b>OBJECTIVE :</b> |                |                      |                                   |                       |                   |                |                   |                 |                     |           |            |                     |       |
| •                  |                |                      |                                   |                       |                   |                |                   |                 | basic princi        |           |            |                     |       |
|                    |                |                      |                                   |                       |                   |                |                   |                 | hrough a se         |           |            |                     |       |
|                    |                |                      |                                   |                       |                   | operties       | of the m          | naterials       | such as in          | npact str | ength, ten | sile stre           | ngth, |
|                    |                |                      | rdness, du                        | ctility etc           | •                 |                |                   |                 |                     |           |            |                     |       |
| COURSE OUT         |                |                      |                                   | 1                     | •                 |                | 1 1.              |                 |                     |           |            |                     |       |
| CO1                |                |                      | ensile, shea                      |                       | -                 |                |                   |                 |                     |           |            |                     |       |
| CO2                | 1              | Understand           | d the tensil                      | e, shear a            | and torsic        | onal capa      | city of st        | eel rods        |                     |           |            |                     |       |
| CO3                |                |                      | te and co<br>on of spring         |                       |                   |                |                   | ct streng       | gth, hardne         | ss value  | e of meta  | l specir            | nens, |
| CO4                |                | Analyze th           | e Hardne                          | ss valu               | es of me          | etals lik      | e mild            | steel, b        | rass, copp          | er and    | aluminur   | n                   |       |
| CO5                | ]              | Evaluate th          | ne deflectio                      | on and in             | npact valu        | ues of me      | tal speci         | mens            |                     |           |            |                     |       |
| Mapping of Co      | ourse O        | utcomes w            | vith Progr                        | am Outo               | comes (P          | Os)            |                   |                 |                     |           |            |                     |       |
| COs/POs            | PO1            | PO2                  | PO3                               | PO4                   | PO5               | PO6            | <b>PO7</b>        | PO8             | PO9                 | PO10      | PO11       | PO                  | 12    |
| CO1                | 3              | 2                    | 2                                 | 3                     | 3                 | 3              | 1                 | 1               | 3                   | 1         | 1          |                     | 3     |
| CO2                | 3              | 2                    | 2                                 | 3                     | 3                 | 3              | 1                 | 1               | 3                   | 1         | 1          |                     | 3     |
| CO3                | 3              | 2                    | 2                                 | 3                     | 3                 | 3              | 1                 | 1               | 3                   | 1         | 1          |                     | 3     |
| CO4                | 3              | 2                    | 2                                 | 3                     | 3                 | 3              | 1                 | 1               | 3                   | 1         | 1          |                     | 3     |
| CO5                | 3              | 2                    | 2                                 | 3                     | 3                 | 3              | 1                 | 1               | 3                   | 1         | 1          |                     | 3     |
| COs / PSOs         | P              | <u>SO1</u>           | PSO                               |                       |                   |                |                   |                 |                     |           |            |                     |       |
| CO1                |                | 3                    | 3                                 |                       |                   |                |                   |                 |                     |           |            |                     |       |
| CO2                |                | 3                    | 3                                 |                       |                   |                |                   |                 |                     |           |            |                     |       |
| CO3                |                | 3                    | 3                                 |                       |                   |                |                   |                 |                     |           |            |                     |       |
| CO4<br>CO5         |                | 3                    | 3                                 |                       |                   |                |                   |                 |                     |           |            |                     |       |
| 3/2/1 Indicates    | Streng         | -                    | Ũ                                 |                       | 2. Medi           | um 1. T        | 0.000             |                 |                     | 1         |            |                     |       |
| Ji 2/ 1 mulcates   | Jueng          |                      |                                   | - 111gil,             | <u>- 1910ul</u>   |                |                   |                 |                     |           |            |                     |       |
| Category           | Basic Sciences | Engineering Sciences | Humanities and Social<br>Sciences | Program Core          | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project |           |            |                     |       |
|                    |                |                      |                                   | <ul> <li>✓</li> </ul> |                   |                |                   |                 | ✓                   |           |            |                     |       |

| Subject Code:<br>EBCE22L02 | Subject Name : STRENGTH OF MATERIALS<br>LABORATORY                | Ty/<br>Lb/<br>ETL/IE | L | T / S.Lr | P/ R | С |
|----------------------------|-------------------------------------------------------------------|----------------------|---|----------|------|---|
|                            | Prerequisite: Mechanics of Solids                                 | Lb                   | 0 | 0/0      | 3/0  | 1 |
| L : Lecture T : Tuto       | rial SLr : Supervised Learning P : Project R : Research C: Credit | ts                   |   |          |      |   |
| T/L/ETL : Theory/L         | ab/Embedded Theory and Lab                                        |                      |   |          |      |   |

- 1. Tension test on mild steel rod
- 2. Compression test on wooden specimen
- 3. Double shear test on mild steel and aluminum rods
- 4. Torsion test on mild steel rod
- 5. Impact test on metal specimen
- 6. Hardness tests on metals like mild steel, brass, copper and aluminum
- 7. Deflection test on metal beam
- 8. Compression test on helical spring

### **Total No of Hours: 45**

### **References:**

1. Timoshenko S.P, &Young, D.H. Strength of Materials – East West Press Ltd. 3. Relevant 813 code. Venon john, Engineering Materials, 3rt Edition, McMillan Co.Ltd.,

| Subject Code:<br>EBCE22L03 |                | Subject N            | ame : FL<br>MACH                          | UID ME<br>INERY |                   |                |                   | LIC             | Ty/<br>Lb/<br>ETL/IE | L           | T / S.Lr    | P/ R | C  |
|----------------------------|----------------|----------------------|-------------------------------------------|-----------------|-------------------|----------------|-------------------|-----------------|----------------------|-------------|-------------|------|----|
|                            |                |                      | Fluid Med                                 |                 |                   |                |                   |                 | Lb                   | 0           | 0/0         | 3/0  | 1  |
| L : Lecture T : 7          |                |                      |                                           |                 | P : Proje         | ct R : Re      | esearch C         | : Credits       | 8                    |             |             |      |    |
| T/L/ETL : Theo             | *              | Embedded             | l Theory ar                               | id Lab          |                   |                |                   |                 |                      |             |             |      |    |
| <b>OBJECTIVE</b> :         |                |                      |                                           |                 |                   |                |                   |                 |                      |             |             |      |    |
|                            |                |                      | g principle                               |                 |                   |                |                   | ulic equ        | ipments.             |             |             |      |    |
|                            |                |                      | $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ | peration of     | of hydrau         | lic mach       | ines.             |                 |                      |             |             |      |    |
| COURSE OUT<br>CO1          |                |                      |                                           | icohoraa        | in nince          | Vonturi        | matan an          | ficamet         | er and notch         |             |             |      |    |
| CO1<br>CO2                 | 1              | Understand           | the worki                                 | ng princi       | in pipes,         | ificomot       | neter, on         | imotor i        | oumps and t          | turbinos    |             |      |    |
| CO2<br>CO3                 |                |                      |                                           |                 |                   |                |                   |                 | s of various         |             | and turbing | c    |    |
| CO3                        |                |                      | haracterist                               |                 |                   |                |                   |                 | s or various         | pumps       |             | o    |    |
| C04                        |                |                      | ne major ar                               |                 |                   |                |                   | 11103           |                      |             |             |      |    |
| Mapping of Co              |                |                      |                                           |                 |                   |                | 1200              |                 |                      |             |             |      |    |
| COs/POs                    | PO1            | PO2                  | PO3                                       | PO4             | PO5               | <b>PO6</b>     | PO7               | PO8             | PO9                  | <b>PO10</b> | PO11        | PO   | 12 |
| CO1                        | 3              | 2                    | 3                                         | 3               | 3                 | 3              | 1                 | 1               | 3                    | 1           | 1           |      | 3  |
| CO2                        | 3              | 2                    | 3                                         | 3               | 3                 | 3              | 1                 | 1               | 3                    | 1           | 1           |      | 3  |
| CO3                        | 3              | 2                    | 3                                         | 3               | 3                 | 3              | 1                 | 1               | 3                    | 1           | 1           |      | 3  |
| CO4                        | 3              | 2                    | 3                                         | 3               | 3                 | 3              | 1                 | 1               | 3                    | 1           | 1           |      | 3  |
| CO5                        | 3              | 2                    | 3                                         | 3               | 3                 | 3              | 1                 | 1               | 3                    | 1           | 1           |      | 3  |
| COs / PSOs                 | Р              | SO1                  | PSC                                       | 02              |                   |                |                   |                 |                      |             |             |      |    |
| CO1                        |                | 3                    | 3                                         |                 |                   |                |                   |                 |                      |             |             |      |    |
| CO2                        |                | 3                    | 3                                         |                 |                   |                |                   |                 |                      |             |             |      |    |
| CO3                        |                | 3                    | 3                                         |                 |                   |                |                   |                 |                      |             |             |      |    |
| CO4                        |                | 3                    | 3                                         |                 |                   |                |                   |                 |                      |             |             |      |    |
| CO5                        |                | 3                    | 3                                         |                 |                   |                |                   |                 |                      |             |             |      |    |
| 3/2/1 Indicates            | Strengt        | th Of Cor            | relation, 3                               | – High,         | 2- Mediu          | um, 1- L       | ow                | , I             |                      | 1           |             | -    |    |
| Category                   | Basic Sciences | Engineering Sciences | Humanities and Social<br>Sciences         | Program Core    | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project  |             |             |      |    |
|                            |                |                      |                                           | $\checkmark$    |                   |                |                   |                 | $\checkmark$         |             |             |      |    |

|                    |                                                                 |        |   | •      | 1           |   |
|--------------------|-----------------------------------------------------------------|--------|---|--------|-------------|---|
| Subject Code:      | Subject Name : FLUID MECHANICS & HYDRAULIC                      | Ty/    | L | T/S.Lr | <b>P/ R</b> | С |
| EBCE22L03          | MACHINERY LABORATORY                                            | Lb/    |   | 1      |             |   |
|                    |                                                                 | ETL/IE |   |        |             |   |
|                    | Prerequisite: Fluid Mechanics and Hydraulic Engineering         | Lb     | 0 | 0/0    | 3/0         | 1 |
|                    | rial SLr : Supervised Learning P : Project R : Research C: Cred | its    |   |        |             |   |
| T/L/ETL : Theory/L | ab/Embedded Theory and Lab                                      |        |   |        |             |   |
|                    |                                                                 |        |   |        |             |   |
|                    |                                                                 |        |   |        |             |   |
| UNIT I             | FLOW MEASUREMENT                                                |        |   | 12 Hrs |             |   |
|                    |                                                                 |        |   |        |             |   |
| i. Ven             | turimeter.                                                      |        |   |        |             |   |
| ii. Orif           | ice meter.                                                      |        |   |        |             |   |
|                    |                                                                 |        |   |        |             |   |
|                    |                                                                 |        |   |        |             |   |
| UNIT II            | LOSSES IN PIPES                                                 |        |   | 9 Hrs  |             |   |
|                    |                                                                 |        |   |        |             |   |
| Estima             | tion of major energy and minor losses in pipes                  |        |   |        |             |   |
|                    |                                                                 |        |   |        |             |   |
|                    |                                                                 |        |   |        |             |   |
| UNIT III           | PUMPS                                                           |        |   | 12 Hrs |             |   |
|                    |                                                                 |        |   |        |             |   |
|                    | nance characteristics of                                        |        |   |        |             |   |
| i.                 | Rated speed centrifugal pump.                                   |        |   |        |             |   |
| ii.                | Gear pump.                                                      |        |   |        |             |   |
| iii.               | Reciprocating pump.                                             |        |   |        |             |   |
|                    |                                                                 |        |   |        |             |   |
|                    |                                                                 |        |   |        |             |   |
| <b>UNIT IV</b>     | TURBINES                                                        |        |   | 12 Hrs | 3           |   |
|                    |                                                                 |        |   |        |             |   |
| Perform            | nance characteristics of Pelton wheel turbine and Francis tur   | bine.  |   |        |             |   |
|                    |                                                                 |        |   |        |             |   |

### **Total No of Hrs: 45**

### **TEXT BOOKS**

- Dr. R. K.Bansal., "Fluid Mechanics And Hydraulic Machines ", Lakshmi Publications (P) Ltd.New Delhi 1. 2005.
- Fox, Robert w. and Mcdonald, Alan T., "Introduction to Fluid Mechanics ",John Willey & Sons, New 2. Jersey

### REFERENCES

- 1. Streeter, Victor L. And Wylie, Benjamin e., "Fluid Mechanics ", McGraw-Hill Ltd.New Delhi, 1998.
- Natarajan M.K., "Principles of Fluids Mechanics", McGraw-Hill Ltd.New Delhi, 1998. kumbakonam, 1995 2.

# **III SEMESTER**

| Subject Code:<br>EBCE22006 | Sul            | bject Nai            | me : ENVI                         | RONM         | ENTAL             | ENGINI         | EERING            |                 | Ty / LB/<br>ETL/IE  | L          | T / S.Lr    | P/ R       | C     |
|----------------------------|----------------|----------------------|-----------------------------------|--------------|-------------------|----------------|-------------------|-----------------|---------------------|------------|-------------|------------|-------|
|                            | Pre            | requisite            | : Engineeri                       | ng Chem      | istry and         | Industri       | al Chemi          | stry            | Ту                  | 3          | 1/0         | 0/0        | 4     |
| L : Lecture T : T          |                |                      |                                   |              |                   |                |                   |                 |                     | 1          |             | I          | 1     |
| T/L/ETL : Theorem          | ry/Lab/E       | mbedded              | Theory an                         | id Lab       | -                 |                |                   |                 |                     |            |             |            |       |
| • OBJEC                    | CTIVE :        |                      |                                   |              |                   |                |                   |                 |                     |            |             |            |       |
|                            |                |                      |                                   |              |                   |                |                   |                 | reatment fa         |            |             |            |       |
| -                          |                | -                    |                                   | •            |                   | -              |                   |                 | vater treatm        |            | ities.      |            |       |
| -                          |                | -                    | -                                 | -            |                   | -              |                   |                 | ater treatm         |            |             |            |       |
| • To dev                   | elop th        | e ability            | to solve                          | a specif     | ic proble         | em right       | t from it         | s identi        | fication ti         | ill the s  | uccessful   | solutio    | on of |
| the sau                    | me             |                      |                                   |              |                   |                |                   |                 |                     |            |             |            |       |
| <b>COURSE OUT</b>          | COMES          | S (COs) :            | : (3-5)                           |              |                   |                |                   |                 |                     |            |             |            |       |
| CO1                        | Impart         | knowled              | ge in funda                       | imental t    | heory and         | l design       | of conver         | ntional w       | ater and wa         | astewate   | r treatment | facilitie  | es    |
| CO2                        | Unders         | tand drin            | king water                        | supply       | and waste         | e water s      | ystems, i         | ncluding        | water trans         | sport, tre | atment and  | l distribu | ition |
|                            |                |                      | -                                 |              |                   |                |                   |                 | oject alterna       |            |             |            |       |
| CO3                        | Applyi         | ng water             | quality and                       | ł waste w    | vater crite       | eria and s     | standards         | , and the       | ir relation t       | o public   | health      |            |       |
| CO4                        |                |                      |                                   | -            |                   |                |                   |                 | ng proper n         |            |             |            |       |
| CO5                        |                |                      |                                   | -            | ÷                 |                | ate effect        | ive waste       | e managem           | ent strate | egies       |            |       |
| Mapping of Co              |                |                      | _                                 |              |                   |                |                   |                 |                     |            |             |            |       |
| COs/POs                    | PO1            | PO2                  | PO3                               | PO4          | PO5               | PO6            | <b>PO7</b>        | PO8             | PO9                 | PO10       | PO11        | PO         | 12    |
| CO1                        | 3              | 3                    | 2                                 | 3            | 3                 | 3              | 3                 | 3               | 2                   | 2          | 2           |            | 2     |
| CO2                        | 3              | 3                    | 2                                 | 3            | 3                 | 3              | 3                 | 3               | 2                   | 2          | 2           |            | 2     |
| CO3                        | 3              | 3                    | 2                                 | 3            | 3                 | 3              | 3                 | 3               | 2                   | 2          | 2           |            | 2     |
| CO4                        | 3              | 3                    | 2                                 | 3            | 3                 | 3              | 3                 | 3               | 2                   | 2          | 2           |            | 2     |
| CO5                        | 3              | 3                    | 2                                 | 3            | 3                 | 3              | 3                 | 3               | 2                   | 2          | 2           |            | 2     |
| COs / PSOs                 |                | 201                  | PSC<br>2                          |              |                   |                |                   |                 |                     |            |             |            |       |
| CO1                        |                | 3                    | 3                                 |              |                   |                |                   |                 |                     | -          |             |            |       |
| CO2<br>CO3                 |                | 3<br>3               | 3                                 |              |                   |                |                   |                 |                     |            |             |            |       |
| C03<br>C04                 |                | 3<br>3               | 3                                 |              |                   |                |                   |                 |                     |            |             |            |       |
| C04<br>C05                 |                | <u> </u>             | 3                                 |              |                   |                |                   |                 |                     |            |             |            |       |
| 3/2/1 Indicates S          |                | -                    | -                                 |              | 2- Medi           | um, 1- L       | ow                |                 | -1                  | 1          | I           | 1          |       |
|                            | 0.             |                      |                                   |              |                   |                |                   |                 |                     |            |             |            |       |
|                            |                | SS                   | ial                               |              |                   |                |                   |                 |                     |            |             |            |       |
|                            | Se             | Snot                 | Soc                               | e            | ves               | es             | ury               | ant             | ject                |            |             |            |       |
| Category                   | ence           | Scie                 | nd<br>es                          | Cor          | ecti              | ctiv           | line              | one             | Proj                |            |             |            |       |
|                            | Sci            | ng                   | ities and<br>Sciences             | am           | 1 El              | Elec           | scip              | łuc             | [ / Ir              |            |             |            |       |
|                            | Basic Sciences | eeri                 | nitie<br>Sci                      | Program Core | gran              | Open Electives | Interdisciplinary | Skill component | ,tice               |            |             |            |       |
|                            | Ba             | Engineering Sciences | Humanities and Social<br>Sciences | Pr           | Program Electives | Op             | Inte              | Ski             | Practical / Project |            |             |            |       |
|                            |                | En                   | μu                                |              | Ц                 |                |                   |                 | I                   |            |             |            |       |
|                            |                |                      |                                   |              |                   |                |                   |                 |                     |            |             |            |       |
|                            |                |                      |                                   | $\checkmark$ |                   |                |                   |                 |                     | 1          |             |            |       |
|                            |                |                      |                                   |              |                   |                |                   |                 |                     |            |             |            |       |

| Subject Code:                                                                          | Subject Name : ENVIRONMENTAL ENGINEERING                     | Ty / LB/ | L | T/S.Lr | P/ R | С |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------|----------|---|--------|------|---|
| EBCE22006                                                                              |                                                              | ETL/IE   |   |        |      |   |
|                                                                                        | Prerequisite: Engineering Chemistry and Industrial Chemistry | Ту       | 3 | 1/0    | 0/0  | 4 |
| L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits |                                                              |          |   |        |      |   |
| T/L/ETL : Theory/Lab/Embedded Theory and Lab                                           |                                                              |          |   |        |      |   |

### UNIT I PLANNING FOR WATER SUPPLY SYSTEMS

Scope of environmental engineering - role of environmental engineer - Public water supply systems - objectives - design period - population forecasting - water demand - sources of water - sources selection - water quality characterization - sources of wastewater -estimation of storm runoff.

### UNIT II WATER TREATMENT

Screening - types of screening - plain sedimentation - sedimentation with coagulation - settling & flotation filtration - disinfection

### UNIT III SEWAGE TREATMENT – PRIMARY TREATMENT

Objectives - unit operations & processes - principles, functions and design of screen, grit chambers and primary sedimentation tanks.

### **UNIT IV : SEWAGE TREATMENT – SECONDARY TREATMENT**

Secondary treatment - activated sludge process and trickling filter; other treatment methods - stabilization ponds and septic tanks - advances in sewage treatment.

### UNIT V: SEWAGE DISPOSAL AND SLUDGE MANAGEMENT

Methods - dilution - self purification of surface water bodies - oxygen sag curve - land disposal - sewage farming – deep well injection – soil dispersion system. Thickening – sludge digestion – biogas recovery - drying beds - conditioning and dewatering - sludge disposal.

### **TEXT BOOKS**

- Garg, S.K., Environmental Engineering, Vols. I &II, Khanna Publishers, New Delhi, 1994 1.
- C.S.Shah, Water Supply And Sanitation, Galgotia Publishing Company, New Delhi, 1994 2.

### REFERENCES

- 1. Manual on Water Supply And Treatment, Ministry Of Urban Development, Government Of India, New Delhi, 1999.
- 2. Manual on sewerage and sewage treatment, CPHEEO, Ministry Of Urban Development, Government Of India, New Delhi, 1993.
- 3. H.S.Peavy, D.R.Rowe and George Tchobanoglous, Environmental Engineering, Mcgraw-Hill Book Company, New Delhi, 1995.

### **12 Hrs**

### **12 Hrs**

## **Total No of Hrs: 60**

## **12 Hrs**

12 Hrs

## 12 Hrs

| Subject Code:<br>EBCE22007 | 5              | Subject Na           | me: SOI                                                                                    | L MECI       | HANICS            |                |                   |                 | Ty / LB/<br>ETL/IE  | L        | T / S.Lr    | <b>P/ R</b> | C        |  |
|----------------------------|----------------|----------------------|--------------------------------------------------------------------------------------------|--------------|-------------------|----------------|-------------------|-----------------|---------------------|----------|-------------|-------------|----------|--|
|                            | I              | Prerequisite         | : Engineeri                                                                                | ng Geolo     | ogy               |                |                   |                 | Ту                  | 3        | 1/0         | 0/0         | 4        |  |
| L : Lecture T :            |                | -                    | -                                                                                          | -            |                   | ct R : Re      | esearch C         | C: Credit       | 5                   |          |             |             | _        |  |
| T/L/ETL : The              |                |                      |                                                                                            |              | -                 |                |                   |                 |                     |          |             |             |          |  |
| <b>OBJECTIVE</b>           | :              |                      |                                                                                            |              |                   |                |                   |                 |                     |          |             |             |          |  |
|                            |                |                      |                                                                                            |              |                   |                |                   |                 | oils under d        |          |             |             |          |  |
|                            |                |                      |                                                                                            | rinciples    | of effec          | tive stres     | ss in satı        | urated so       | oils, and its       | applica  | tion to one | dimens      | sional   |  |
|                            |                | and consoli          |                                                                                            |              |                   |                |                   |                 |                     |          |             |             |          |  |
| COURSE OU                  | TCOM           |                      |                                                                                            | - 1          |                   |                |                   |                 | 2                   |          | 1.00        | 1           |          |  |
| CO1                        |                |                      | -                                                                                          | on and c     | classificat       | tion of s      | oil and A         | Analysis        | of stresses         | in soils | under ditt  | erent lo    | ading    |  |
|                            |                | conditions           |                                                                                            |              |                   |                |                   |                 |                     |          |             |             | <u> </u> |  |
| CO2                        |                |                      | -                                                                                          | -            |                   | tive stres     | ss in satu        | urated so       | oils and its        | applica  | tion to one | dimens      | sional   |  |
|                            |                |                      | mpression and consolidation                                                                |              |                   |                |                   |                 |                     |          |             |             |          |  |
| CO3                        |                |                      | apply the concept of shear strength of soil and slope stability for practical applications |              |                   |                |                   |                 |                     |          |             |             |          |  |
| CO4                        |                | To analyze           | o analyze the slopes using method of slices and friction circle method                     |              |                   |                |                   |                 |                     |          |             |             |          |  |
| CO5                        |                | To evaluat           | To evaluate stress distribution in soil media using influence charts                       |              |                   |                |                   |                 |                     |          |             |             |          |  |
| Mapping of Co              | ourse (        | Outcomes v           | vith Progr                                                                                 | am Outo      | comes (P          | Os)            |                   |                 |                     |          |             |             |          |  |
| COs/POs                    | PO1            | PO2                  | PO3                                                                                        | PO4          | PO5               | PO6            | PO7               | PO8             | PO9                 | PO10     | PO11        | PO          | 12       |  |
| CO1                        | 3              | 3                    | 3                                                                                          | 3            | 2                 | 3              | 1                 | 1               | 1                   | 1        | 1           |             | 3        |  |
| CO2                        | 3              | 3                    | 3                                                                                          | 3            | 2                 | 3              | 1                 | 1               | 1                   | 1        | 1           |             | 3        |  |
| CO3                        | 3              | 3                    | 3                                                                                          | 3            | 2                 | 3              | 1                 | 1               | 1                   | 1        | 1           |             | 3        |  |
| CO4                        | 3              | 3                    | 3                                                                                          | 3            | 2                 | 3              | 1                 | 1               | 1                   | 1        | 1           |             | 3        |  |
| CO5                        | 3              | 3                    | 3                                                                                          | 3            | 2                 | 3              | 1                 | 1               | 1                   | 1        | 1           |             | 3        |  |
| COs / PSOs                 |                | PSO1                 | PSO                                                                                        | 02           |                   |                |                   |                 |                     |          |             |             |          |  |
| CO1                        |                | 3                    | 3                                                                                          |              |                   |                |                   |                 |                     |          |             |             |          |  |
| CO2                        |                | 3                    | 3                                                                                          |              |                   |                |                   |                 |                     |          |             |             |          |  |
| CO3                        |                | 3                    | 3                                                                                          |              |                   |                |                   |                 |                     |          |             |             |          |  |
| CO4                        |                | 3                    | 3                                                                                          |              |                   |                |                   |                 |                     |          |             |             |          |  |
| CO5                        |                | 3                    | 3                                                                                          |              |                   |                | <u> </u>          |                 |                     |          |             |             |          |  |
| 3/2/1 Indicates            | s Streng       | gth Of Cor           | relation, 3                                                                                | – High,      | 2- Medi           | um, 1- L       | ow                |                 |                     |          |             |             |          |  |
|                            |                |                      |                                                                                            |              |                   |                |                   |                 |                     |          |             |             |          |  |
|                            |                | es                   | ial                                                                                        |              |                   |                |                   |                 |                     |          |             |             |          |  |
| Category                   | es             | enc                  | Soc                                                                                        | e            | ives              | es             | ary               | ent             | ject                |          |             |             |          |  |
| Category                   | enc            | Sci                  | es                                                                                         | Col          | ecti              | ctiv           | lina              | )0 U(           | Pro                 |          |             |             |          |  |
|                            | Sci            | ng                   | ities and<br>Sciences                                                                      | am           | EI                | Elec           | scip              | Juic            | 1/1                 |          |             |             |          |  |
|                            | Basic Sciences | eeri                 | itie<br>Sci                                                                                | Program Core | ran               | Open Electives | rdis              | l cc            | tica                |          |             |             |          |  |
|                            | Ba             | Engineering Sciences | Humanities and Soc<br>Sciences                                                             | Prí          | Program Electives | Op             | Interdisciplinary | Skill component | Practical / Project |          |             |             |          |  |
|                            |                | En                   | unE                                                                                        |              | Р                 |                |                   |                 | Ч                   |          |             |             |          |  |
|                            |                |                      |                                                                                            |              |                   |                |                   |                 |                     |          |             |             |          |  |
|                            |                |                      |                                                                                            | $\checkmark$ |                   |                |                   |                 |                     |          |             |             |          |  |
|                            |                |                      |                                                                                            | •            |                   |                |                   |                 |                     |          |             |             |          |  |

| Subject Code:        | Subject Name : SOIL MECHANICS                                     | Ty / LB/ | L | T/S.Lr | P/ R | С |
|----------------------|-------------------------------------------------------------------|----------|---|--------|------|---|
| EBCE22007            |                                                                   | ETL/IE   |   |        |      |   |
|                      | Prerequisite: Engineering Geology                                 | Ту       | 3 | 1/0    | 0/0  | 4 |
| L : Lecture T : Tuto | rial SLr : Supervised Learning P : Project R : Research C: Credit | S        |   |        |      |   |
| T/L/ETL : Theory/L   | ab/Embedded Theory and Lab                                        |          |   |        |      |   |

#### **UNIT I: INTRODUCTION**

Nature of soil - phase relationships - soil description and classification for engineering purposes - IS classification system - soil compaction - theory, comparison of laboratory and field compaction methods – factors influencing compaction.

#### **UNIT II : SOILWATER AND WATER FLOW**

Soil water - static pressure in water – capillary stresses- permeability measurement in the laboratory and field - factors influencing permeability of soil - seepage –introduction to flow nets - simple problems.

#### UNIT III: STRESS DISTRIBUTIONS AND SETTLEMENT

Effective stress concepts in solids - stress distribution in soil media - use of influence charts - components of settlement - factors influencing settlement of soil -immediate and consolidation settlement - Tergazhi's one-dimensional consolidation theory - computation of rate of settlement

#### UNIT IV: SHEAR STRENGTH

Shear strength of cohesive and cohesion less soils - Mohr - Coulomb failure theory - saturated soil mass – measurement of shear strength, direct shear - triaxial compression, UU, CU and CD Test.

#### **UNIT V : SLOPE STABILITY**

Slope failure mechanisms - types - infinite slopes - finite slopes - total stress analysis for saturated clay –method of slices - friction circle method - use of stability number .

#### **TEXT BOOKS**

- V.N.S. Moorthy, "soil mechanics and foundation engineering ", ubs publications and Distribution ltd, New Delhi, 1999.
- Gopal Ranjan and Rao A.S.R., "Basic and Applied Soil Mechanics ", Wiley eastern ltd., New Delhi (india), 1997.
- Arora K.R., "soil mechanics and foundation engineering ", standard publishers And distributors, New Delhi, 1997.

#### REFERENCES

- Holtz R.D. And kovacs W.D., "Introduction to geotechnical engineering ", Prentice-hall, New Delhi, 1995.
- Mccarthy D.F., "Essentials of soil mechanics and foundations ", Prentice-Hall, New Delhi, 97.
- Sutten B.H.C., "Solving problems in soil mechanics", Longman group scientific And technical, U.K. England, 1994
- Dass, B.M, "Principles of geotechnical engineering", Thompson books

## 12 Hrs

#### 12 Hrs compo

# 12 Hrs

**12 Hrs** 

#### Total No of Hrs: 60

| CONCRETE TECHNOLOGY       FTL/TE       Image: Second Sec                                                                                            | Subject Code:      | Sul               | bject Nai                                                                                | me :        |          |                   |                |                   |                 | Ty / LB/            | L       | T / S.Lr | P/ R | C  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|------------------------------------------------------------------------------------------|-------------|----------|-------------------|----------------|-------------------|-----------------|---------------------|---------|----------|------|----|
| L : Lecture T : Tutorial SL : Supervised Learning P : Project R : Research C: Credits<br>T/L/ETL : Theory/Lab/Embedded Theory and Lab<br>OBJECTIVE :<br>• To understand various construction procedures from sub structure to super structure and also the equipment needed for construction of various types of structures from foundation to super structure and also the equipment needed for construction of various types of structures from foundation to super structure and also the equipment needed for construction of various types of structures from foundation to super structure and also the equipment needed for construction of various types of structures from foundation to super structure and also the successful solution of the same<br>COURSE OUTCOMES (COS) : (3 - 5) At the end of the course, the student will be able to:<br>CO1 Understand about concrete making materials , supplementary cementations materials and design the concrete mix for the required strength<br>CO2 Will acquire knowledge on handling of different types of construction equipments<br>CO3 To take up challenging practical problems and find solution by formulating proper methodology<br>Mapping of Course Outcomes with Program Outcomes (PO3)<br>CO3 3 3 2 2 - 2 2 - 2 - 2 - 2 - 2 - 2 - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EBCE22008          |                   |                                                                                          | CONC        | RETE 1   | TECHNO            | DLOGY          |                   |                 | •                   |         |          |      |    |
| TL/ETL : Theory-Lab/Embedded Theory and Lab         OBJECTIVE :         • To understand various construction procedures from sub structure to super structure and also the equipment needed for construction of various types of structures from foundation to super structure and also the equipment needed for construction of various types of structures from foundation to super structure         COURSE OUTCOMES (COS) : (3-5) At the end of the course, the student will be able to:         COURSE OUTCOMES (COS) : (3-5) At the end of the course, the student will be able to:         COURSE OUTCOMES (COS) : (3-5) At the end of the course, the student will be able to:         COURSE OUTCOMES (COS) : (3-5) At the end of the course, the student will be able to:         COURSE OUTCOMES (COS) : (3-5) At the end of the course, the student will be able to:         COURSE OUTCOMES (COS) : (3-5) At the end of the course, the student will be able to:         COURSE OUTCOMES (COS) : (3-5) At the end of the course, the student will be able to:         CO1       Understand about concrete making materials , supplementary comentations materials and design the concrete making materials and find solution by formulating proper methodology         Mapping of Course of the required strength       PO1       PO1       PO11       PO12         COS/POS       PO1       PO1       PO11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | Pre               | requisite                                                                                | Building    | material | s                 |                |                   |                 | Ту                  | 3       | 0/0      | 0/0  | 3  |
| OBJECTIVE :         • To understand various construction procedures from sub structure to super structure and also the equipment needed for construction of various types of structures from foundation to super structure.         • To develop the ability to solve a specific problem right from its identification till the successful solution of the same         COURES OUTCOMES (COs) : (3 - 5) At the end of the course, the student will be able to:         COURSE OUTCOMES (COs) : (3 - 5) At the end of the course, the student will be able to:         COURSE OUTCOMES (COs) : (3 - 5) At the end of the course, the student will be able to:         COURSE OUTCOMES (COs) : (3 - 5) At the end of the course, the student will be able to:         CO2         Will acquire knowledge on handling of different types of construction equipments         CO3         To take up challenging practical problems and find solution by formulating proper methodology         Mapping of Course Outcomes with Program Outcomes (POs)         CO1       3       3       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       CO3       3       3       2       -       -       2       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L : Lecture T : T  | utorial           | SLr : Su                                                                                 | pervised L  | earning  | P : Proje         | ct R : Re      | esearch C         | : Credits       | 5                   |         |          |      | 1  |
| <ul> <li>To understand various construction procedures from sub structure to super structure and also the equipment needed for construction of various types of structures from foundation to super structure.</li> <li>To develop the ability to solve a specific problem right from its identification till the successful solution of the same</li> <li>COURSE OUTCOMES (COS): (3-5) At the end of the course, the student will be able to:</li> <li>Understand about concrete making materials, supplementary cementations materials and design the concrete mix for the required strength.</li> <li>CO2 Will acquire knowledge on handling of different types of construction equipments.</li> <li>CO3 To take up challenging practical problems and find solution by formulating proper methodology.</li> <li>Mapping of Course Outcomes with Program Outcomes (POS)</li> <li>CO3 0 1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12</li> <li>CO2 3 3 3 2 - 2 - 2 2 - 2 - 2 - 2 - 2 - 2</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T/L/ETL : Theorem  | ry/Lab/E          | mbedded                                                                                  | Theory an   | nd Lab   |                   |                |                   |                 |                     |         |          |      |    |
| needed for construction of various types of structures from foundation to super structure<br>To develop the ability to solve a specific problem right from its identification till the successful<br>solution of the sameCOURSE OUTCOMES (COs) : (3-5) At the end of the course, the student will be able to:COURSE OUTCOMES (COs) : (3-5) At the end of the course, the student will be able to:COURSE OUTCOMES (COs) : (3-5) At the end of the course, the student will be able to:COURSE OUTCOMES (COs) : (3-5) At the end of the course, the student will be able to:COURSE OUTCOMES (COs) : (3-5) At the end of the course, the student will be able to:COURSE OUTCOMES (COs) : (3-5) At the end of the course, the student will be able to:COURSE OUTCOMES (COs) : (3-5) At the end of the course, the student will be able to:CO2Will acquire knowledge on handing of different types of construction equipmentsCO3PO1PO1PO11PO12CO3PO3PO4PO5PO8PO9PO10PO11PO12CO3PO3PO4PO5PO6PO7PO8PO10PO11PO12CO3PO3PO4PO5PO6PO11PO10PO11PO12 <th< td=""><td><b>OBJECTIVE :</b></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>OBJECTIVE :</b> |                   |                                                                                          |             |          |                   |                |                   |                 |                     |         |          |      |    |
| COURSE OUTCOMES (COs) : (3-5) At the end of the course, the student will be able to:CO1Understand about concrete making materials , supplementary cementations materials and design the concrete mix for the required strengthCO2Will acquire knowledge on handling of different types of construction equipmentsCO3PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1PO1CO3332<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • To               | ded for<br>develo | construc<br>p the al                                                                     | tion of va  | rious ty | pes of st         | ructures       | from fo           | undatio         | n to super          | structu | re       | • •  |    |
| C01         Understand about concrete making materials , supplementary cementations materials and design the concrete mix for the required strength           C02         Will acquire knowledge on handling of different types of construction equipments         Construction equipments         Construction equipments           C03         To take up challenging practical problems and find solution by formulating proper methodology         P01         P02         P03         P04         P05         P06         P07         P08         P09         P010         P011         P012           C03         3         3         2         -         -         2         -         -         2         -         -         2         -         -         2         -         -         2         -         -         2         -         -         2         -         -         2         -         -         2         -         -         2         -         -         2         -         -         2         -         -         2         -         -         2         -         -         2         -         -         2         -         -         2         -         -         2         -         -         2         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                   |                                                                                          |             | .1 1     | 6.1               |                | . 1 .             |                 | 1 .                 |         |          |      |    |
| for the required strength         Note that types of construction equipments           C02         Will acquire knowledge on handling of different types of construction equipments           C03         To take up challenging practical problems and find solution by formulating proper methodology           Mapping of Course Outcomes with Program Outcomes (POs)         PO1         PO1         PO11         PO12           Cos/POs         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12           Cos/POs         PO1         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12           Cos         A         3         3         2         -         2         -         -         2         -         -         2         -         -         2         -         -         2         -         -         2         -         -         2         -         -         2         -         -         2         -         -         2         -         -         2         -         -         2         -         0 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                   |                                                                                          |             |          |                   |                |                   |                 |                     |         |          |      |    |
| CO2       Will acquire knowledge on handling of different types of construction equipments         CO3       To take up challenging practical problems and find solution by formulating proper methodology         Mapping of Course Outcomes with Program Outcomes (POs)       PO1       PO1       PO11       PO12         CO3       3       3       2       -       -       2       -       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CO1                |                   |                                                                                          |             |          |                   |                |                   |                 |                     |         |          |      |    |
| $\begin{tabular}{ c c c c c } \hline $$CO3$ & $$To take $$$$To take $$$$$$$$ restrict $$$$ restrict $$$ restrict $$ restrict $$$ restrict $$$ restrict $$$ restrict $$ restrict $$$ restrict $$ re$ |                    |                   |                                                                                          |             |          |                   |                |                   |                 |                     |         |          |      |    |
| COs/POs         POI         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12           CO         3         3         2         -         -         2         -         -         2         -         -         2         -         -         2         -         -         2         -         -         2         -         -         2         -         -         2         -         0         -         2         -         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | To take           | ke up challenging practical problems and find solution by formulating proper methodology |             |          |                   |                |                   |                 |                     |         |          |      |    |
| CO1         3         3         2         -         -         2         -         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         2         -         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th="">         1         <th1< th=""> <th1< th=""></th1<></th1<></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                   |                                                                                          |             |          |                   | ,              |                   | •               |                     |         |          |      |    |
| CO2       3       3       3       -       -       2       -       -       -       2       -         CO3       3       3       2       -       -       2       -       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 </td <td>COs/POs</td> <td>PO1</td> <td>PO2</td> <td>PO3</td> <td>PO4</td> <td>PO5</td> <td>PO6</td> <td>PO7</td> <td>PO8</td> <td>PO9</td> <td>PO10</td> <td>PO11</td> <td>PO</td> <td>12</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COs/POs            | PO1               | PO2                                                                                      | PO3         | PO4      | PO5               | PO6            | PO7               | PO8             | PO9                 | PO10    | PO11     | PO   | 12 |
| CO3       3       3       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       -       2       -       2       -       2       -       2       -       2       -       2       -       2       -       2       -       2       -       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO1                | 3                 | 3                                                                                        | 2           | -        | -                 | 2              | -                 | -               | -                   | -       | 2        |      | -  |
| COs / PSOs     PSO1     PSO2     Image: Second se                                                  | CO2                | 3                 | 3                                                                                        | 3           | -        | -                 | 2              | -                 | -               | -                   | -       | 2        |      | -  |
| CO1       3       3       Image: Colored col                                                                | CO3                | 3                 | 3                                                                                        | 2           | -        | -                 | 2              | -                 | -               | -                   | -       | 2        |      | -  |
| CO2     3     3     Image: Second s                                                  | COs / PSOs         | PS                | 01                                                                                       | PSC         | 02       |                   |                |                   |                 |                     |         |          |      |    |
| Constrained from the constraint of constraints       3       3       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <t< td=""><td>CO1</td><td></td><td>3</td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO1                |                   | 3                                                                                        | 3           |          |                   |                |                   |                 |                     |         |          |      |    |
| 3/2/1 Indicates Strength Of Correlation, 3 – High, 5- Medium, 1- Formation of the streng Sciences and Social Sciences and Social Sciences and Social Program Core       Basic Sciences (Sciences)         Category       Program Core       Program Core       Program Core       Program Core         Production       Program Core       Program Core       Program Core       Program Core         Production       Program Core       Program Core       Program Core       Program Core         Production       Program Core       Program Core       Program Core       Program Core         Production       Program Core       Program Core       Program Core       Program Core         Production       Program Core       Program Core       Program Core       Program Core         Production       Program Core       Program Core       Program Core       Program Core         Production       Program Core       Program Core       Program Core       Program Core         Production       Program Core       Program Core       Program Core       Program Core         Program Program Program Program Core       Program Core       Program Core       Program Core         Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CO2                |                   | 3                                                                                        | 3           |          |                   |                |                   |                 |                     |         |          |      |    |
| Category Cores Basic Sciences Basic Sciences Basic Sciences Concession Sciences Engineering Sciences Sciences Sciences Sciences Sciences Sciences Aumanities and Social Sciences Program Electives Program Electives Program Core Program Electives Program Core Program       | CO3                | ,                 | 3                                                                                        | 3           |          |                   |                |                   |                 |                     |         |          |      |    |
| Categorian Core Basic Sciences Basic Sciences Basic Sciences Sciences Sciences Sciences Program Core Program       | 3/2/1 Indicates    | Strength          | of Cor                                                                                   | relation, 3 | – High,  | 2- Medi           | um, 1- L       | ow                |                 |                     |         |          |      |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Category           | Basic Sciences    | Engineering Sciences                                                                     | Š           |          | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project |         |          |      |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                   |                                                                                          |             | √        |                   |                |                   |                 |                     |         |          |      |    |

| Subject Code:        | Subject Name :                                                    | Ty / LB/ | L | T/S.Lr | <b>P/ R</b> | C |
|----------------------|-------------------------------------------------------------------|----------|---|--------|-------------|---|
| EBCE22008            | CONCRETE TECHNOLOGY                                               | ETL/IE   |   |        |             |   |
|                      | Prerequisite: Building materials                                  | Ту       | 3 | 0/0    | 0/0         | 3 |
| L : Lecture T : Tuto | rial SLr : Supervised Learning P : Project R : Research C: Credit | S        |   |        |             |   |
| T/L/ETL : Theory/L   | ab/Embedded Theory and Lab                                        |          |   |        |             |   |

#### UNIT I CONCRETE MAKING MATERIALS

Manufacture and Components of Portland Cement- Hydration Process- Types of Cement, Aggregates - Classification and Properties Admixtures.

#### UNIT II MIX DESIGN

Properties of Fresh Concrete- Workability, Segregation and Bleeding of Concrete - Factors influencing Mix Proportions - I.S and ACI Methods of Mix Design.

#### UNIT III PROPERTIES OF HARDENED CONCRETE

Strength - Creep and Shrinkage - Durability of Concrete - Chemical Attack - Different Types of FRC - Properties and Applications.

#### UNIT IV SUB STRUCTURE CONSTRUCTION

Piling techniques – Sheet piles – Under water construction of Diaphragm wall and basement – Driving diaphragm walls – Driving well and caisson – Sinking coffer dam – Shoring for deep cutting – Well points – Dewatering and stand by plant equipment for underground open excavation

#### UNIT VSUPER STRUCTURE AND CONSTRUCTION EQUIPMENTS10 Hrs

Construction sequences in cooling Towers, Bunkers, Silos and Chimney – Pre- stressed construction – In situ pre-stressing in high rise structures – Erecting light weight components on tall structures. Types of earth work equipment's - Tractors, Motor graders, Scrappers - Equipment for compaction – Batching and mixing and concreting.

#### **Total No of Hrs: 45**

#### TEXT BOOKS

- 1. Shetty. M.S., Concrete Technology, S.Chand and Co, Pune, 1984
- 2. Arora S.P. And Bindra S.P., Building Construction, Planning Techniques and Method of Construction, Dhanpat Roy and Sons, New Delhi, 1997.
- 3. Peurifoy, R.L., Ledbetter, W.D And Schexnayder, C., 'Consruction Plaaning, Equipment and Methods' V Edition McGraw Hill, Singapore, 1995

#### REFERENCES

- 1. Krishnasamy. K.T., Concrete Technology, Dhanapt Rai New Delhi 1985
- 2. Neville, properties of concrete elbs, 1977.
- 3. Sharma S.C., Building Construction, Khanna Publishers, New Delhi. 1998

8 Hrs

10 Hrs

8 Hrs

| Subject Code:<br>EBCE22ET1           | Su             | bject Nai            |                                   | LDING        | MATER             | RIALS          |                   |                 | Ty/<br>Lb/<br>ETL/IE | L    | T/S.Lr | P/ R | C   |
|--------------------------------------|----------------|----------------------|-----------------------------------|--------------|-------------------|----------------|-------------------|-----------------|----------------------|------|--------|------|-----|
|                                      | Pre            | erequisite           | Industria                         | l Chemis     | try               |                |                   |                 | ETL                  | 1    | 0/0    | 2/0  | 2   |
| L : Lecture T : T<br>T/L/ETL : Theor |                |                      |                                   |              | P : Proje         | ct R : Re      | esearch C         | : Credits       |                      | 1 1  |        |      |     |
| <b>OBJECTIVE</b> :                   | 2              |                      |                                   |              |                   |                |                   |                 |                      |      |        |      |     |
|                                      |                |                      | different n<br>eering aspe        |              |                   |                |                   |                 |                      |      |        |      |     |
| COURSE OUT<br>At the end of the      | course,        | the stude            | nt will be                        |              |                   |                |                   |                 |                      |      |        |      |     |
| CO1                                  |                |                      | d character                       |              |                   |                |                   |                 |                      |      |        |      |     |
| CO2                                  |                |                      | d the manu                        |              |                   |                |                   |                 |                      |      |        |      |     |
| CO3                                  |                |                      | clear under                       |              |                   |                | and its ty        | /pe             |                      |      |        |      |     |
| Mapping of Co                        |                |                      |                                   |              |                   |                | _                 |                 |                      |      |        |      |     |
| COs/POs                              | PO1            | PO2                  | PO3                               | PO4          | PO5               | PO6            | <b>PO7</b>        | PO8             | PO9                  | PO10 | PO11   | PC   | 012 |
| CO1                                  | 3              | 3                    | -                                 | 3            | -                 | 3              | 2                 | -               | -                    | -    | -      |      | -   |
| CO2                                  | 3              | 3                    | -                                 | 3            | -                 | 3              | 2                 | -               | -                    | -    | -      |      | -   |
| CO3                                  | 3              | 3                    | -                                 | 3            | -                 | 3              | 2                 | -               | -                    | -    | -      |      | -   |
| COs / PSOs<br>CO1                    |                | <b>501</b><br>3      | PSC                               |              |                   |                |                   |                 |                      |      |        |      |     |
| CO1<br>CO2                           |                | <u> </u>             | 3                                 |              |                   |                |                   |                 |                      |      |        |      |     |
| CO2<br>CO3                           |                | <u> </u>             | 3                                 |              |                   |                |                   |                 |                      |      | _      |      |     |
| 3/2/1 Indicates S                    |                | -                    | -                                 | High         | 2- Modir          | um 1. I.       | OW/               |                 |                      |      |        |      |     |
| J/2/1 Indicates                      | Strengt        |                      |                                   | – mgn,       |                   | um, 1- 1/      |                   |                 |                      |      |        |      |     |
| Category                             | Basic Sciences | Engineering Sciences | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project  |      |        |      |     |
|                                      |                |                      |                                   | $\checkmark$ |                   |                |                   |                 | √                    |      |        |      |     |

| Subject Code:<br>EBCE22ET1 | Subject Name :<br>BUILDING MATERIALS                                                           | Ty/<br>Lb/<br>ETL/IE | L | T / S.Lr | P/ R | С |
|----------------------------|------------------------------------------------------------------------------------------------|----------------------|---|----------|------|---|
|                            | Prerequisite: Industrial Chemistry                                                             | ETL                  | 1 | 0/0      | 2/0  | 2 |
|                            | rial SLr : Supervised Learning P : Project R : Research C: Credi<br>ab/Embedded Theory and Lab | ts                   |   |          |      |   |

#### **BRICKS, AGGREGATES AND CEMENT** UNIT I

Bricks - Classification - Manufacturing process - Test on bricks - Aggregate: Natural Stone Aggregate -Industrial By- product – Crushing strength, impact strength, and flakiness – Abrasion resistance – Grading – sand - Bulking. Cement: Cement Ingredients - Manufacturing Process - Types - Testing of Cement

#### UNIT II **MASONRY& MORTAR**

Masonry - stone masonry - rubble and Ashlar masonry - Brick masonry - Bond - Definition need and scope -Types of bonds - English and Flemish bond - merits and demerits - composite masonry - solid and hollow block masonry-soil-cement bricks-Load bearing and non-load bearing walls- Codal provisions.Mortar - Preparation of Lime and Cement Mortar- Concrete - Ingredients - Manufacturing Process - Batching Plant - Ready Mix Concrete - Paints - Plastics - Glass

#### UNIT III SUB STRUCTURE AND SUPER STRUCTURE

Substructure - Setting Out of Foundation and Trenches - Excavation and Timbering - Foundation -Shallow Foundation – Deep Foundation. Super Structure.

#### **UNIT IV** FLOOR, ROOF & STAIR CASE

Floors - Types of floor - Details of concrete and terrazzo floors - Roofs - Types of Roofs - Types of Flat roofs sloping roofs -different types and usage - shell roofs - roof coverings-AC sheets-GI sheets-FRP roofs Water proofing treatment of roofs -tar felt treatment- chemical treatment- Types of weathering courses .Stair Case -Definition – Types of Stair – General Dimension and Requirements – Layout of Stair Case.

#### UNIT V **BUILDING SERVICES**

Damp Proofing- Acoustics Treatment - Thermal Insulation - Fire Protection - Ventilation - Earth Quake Protection- Integration of services in buildings - water supply & plumbing layout for a residential building elevators & escalators - planning & installation - basic components of the electrical system for a residence.

#### **Total No of Hrs: 45**

9 Hrs

#### **PRACTICE SESSIONS**

Include practice sessions for Assessment of physical properties of bricks such as absorption, shape and size, structure, soundness, Hardness, presence of soluble salts, Hardness, impact and water absorption test etc for stones, different types of bonds for bricks and stones, defects in timber

### **TEXT BOOKS**

- 1. B.C.Punmia, Ashok Kumar Jain and Arun Kumar Jain, "Building Construction" Laxmi Publications (P) ltd., New Delhi.
- 2. Rangwala, 8th ed.1983. S.C. Engineering Materials, Charotar Publishing House, Arora S.P. and Bindra S.P., Building Construction, Planning Techniques and method of Construction, Dhanpat roy and Sons, 1997.

### REFERENCES

- 1. Taylor, G.D. Materials of Construction, USA Longman Inc, 1989.
- 2. Arora and Bindra, Building Materials and Building Construction, Dhanpat Raj

#### 9 Hrs

#### 9 Hrs

9 Hrs

| Subject Code:      | Su             | bject Na                                                                                                                                                               | me :                              |              |                   |                |                   |                 | Ty / LB/            | L         | T/S.Lr      | P/R       | С  |  |
|--------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------|-------------------|----------------|-------------------|-----------------|---------------------|-----------|-------------|-----------|----|--|
| EBCE22L06          |                | i                                                                                                                                                                      | SOIL ME                           | CHANI        | CS LAB            | ORATO          | RY                |                 | ETL/IE              |           |             |           |    |  |
|                    | Pre            | erequisite                                                                                                                                                             | : Soil Mecl                       | nanics       |                   |                |                   |                 | Lb                  | 0         | 0/0         | 3/0       | 1  |  |
| L : Lecture T : T  |                |                                                                                                                                                                        |                                   |              | P : Proje         | ct R : Re      | esearch C         | C: Credits      | 5                   |           |             |           |    |  |
| T/L/ETL : Theo     | ory/Lab/E      | Embedded                                                                                                                                                               | l Theory ar                       | nd Lab       |                   |                |                   |                 |                     |           |             |           |    |  |
| <b>OBJECTIVE</b> : |                |                                                                                                                                                                        |                                   |              |                   |                |                   |                 |                     |           |             |           |    |  |
| • To imp           | oart know      | e some of the principles taught during the soil mechanics course.<br>cnowledge of laboratory and index testing methods commonly used in Soil & foundation engineering. |                                   |              |                   |                |                   |                 |                     |           |             |           |    |  |
| COURSE OUT         |                | MES (COs) : ( 3- 5)<br>owledge to determine Index properties of the soils like water content, specific gravity and Atterberg limits                                    |                                   |              |                   |                |                   |                 |                     |           |             |           |    |  |
| CO1                | Knowl          | edge to d                                                                                                                                                              | etermine I                        | ndex proj    | perties of        | the soils      | like wat          | er contei       | nt, specific        | gravity a | and Atterbe | rg limits | 3  |  |
| CO2                | Unders         | derstand Engineering properties like field density, shear strength, permeability, compaction and consolidation                                                         |                                   |              |                   |                |                   |                 |                     |           |             | tion      |    |  |
| CO3                | Calcula        | culate shear, UCC, consolidation and triaxial compressive strength value of soil sample                                                                                |                                   |              |                   |                |                   |                 |                     |           |             |           |    |  |
| CO4                | Test th        | the soil to assess its ability to withstand the load                                                                                                                   |                                   |              |                   |                |                   |                 |                     |           |             |           |    |  |
| CO5                | Determ         | ermine the permeability and coefficient of consolidation values                                                                                                        |                                   |              |                   |                |                   |                 |                     |           |             |           |    |  |
| Mapping of Co      | ourse Ou       | e Outcomes with Program Outcomes (POs)                                                                                                                                 |                                   |              |                   |                |                   |                 |                     |           |             |           |    |  |
| COs/POs            | PO1            | PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO1                                          |                                   |              |                   |                |                   |                 |                     |           |             |           | 12 |  |
| CO1                | 3              | 2                                                                                                                                                                      | 2                                 | 3            | 1                 | 3              | 1                 | 1               | 3                   | 1         | 1           |           | 3  |  |
| CO2                | 3              | 2                                                                                                                                                                      | 2                                 | 3            | 1                 | 3              | 1                 | 1               | 3                   | 1         | 1           |           | 3  |  |
| CO3                | 3              | 2                                                                                                                                                                      | 2                                 | 3            | 1                 | 3              | 1                 | 1               | 3                   | 1         | 1           |           | 3  |  |
| CO4                | 3              | 2                                                                                                                                                                      | 2                                 | 3            | 1                 | 3              | 1                 | 1               | 3                   | 1         | 1           |           | 3  |  |
| CO5                | 3              | 2                                                                                                                                                                      | 2                                 | 3            | 1                 | 3              | 1                 | 1               | 3                   | 1         | 1           |           | 3  |  |
| COs / PSOs         |                | 501                                                                                                                                                                    | PSO                               |              |                   |                |                   |                 | _                   | -         |             |           |    |  |
| CO1                |                | 3                                                                                                                                                                      | 3                                 |              |                   |                |                   |                 | _                   | -         |             |           |    |  |
| CO2                |                | 3                                                                                                                                                                      | 3                                 |              | -                 |                |                   |                 |                     | -         |             |           |    |  |
| CO3                |                | 3                                                                                                                                                                      | 3                                 |              | -                 |                |                   |                 |                     | -         |             |           |    |  |
| CO4<br>CO5         |                | 3<br>3                                                                                                                                                                 | 3                                 |              |                   |                |                   |                 |                     | -         |             |           |    |  |
| 3/2/1 Indicates    |                | -                                                                                                                                                                      | 2                                 |              | 2- Medi           | um 1. I        | OW                |                 |                     |           |             |           |    |  |
| J/2/1 mulcates     | Suengu         |                                                                                                                                                                        | 1 ciación, 5                      | – 111gll,    |                   | um, 1- L       | 0 W               | <u>т</u> т      |                     | Τ         |             |           |    |  |
| Category           | Basic Sciences | Engineering Sciences                                                                                                                                                   | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project |           |             |           |    |  |
|                    |                |                                                                                                                                                                        |                                   | $\checkmark$ |                   |                |                   |                 | $\checkmark$        |           |             |           |    |  |

| Subject Code:<br>EBCE22L06 | Subject Name :<br>SOIL MECHANICS LABORATORY                                                      | Ty / LB/<br>ETL/IE | L | T / S.Lr | <b>P/ R</b> | С |
|----------------------------|--------------------------------------------------------------------------------------------------|--------------------|---|----------|-------------|---|
|                            | Prerequisite: Soil Mechanics                                                                     | Lb                 | 0 | 0/0      | 3/0         | 1 |
|                            | rial SLr : Supervised Learning P : Project R : Research C: Credit<br>.ab/Embedded Theory and Lab | S                  |   |          |             |   |

#### LIST OF EXPERIMENTS

- 1. Specific gravity of soil solids
- 2. Grain size distribution Sieve analysis Hydrometer analysis
- 3. Atterberg limits test Liquid limit, Plastic limit and shrinkage limit tests
- 4. Field density Test
- 5. Determination of moisture Density relationship using standard proctor.
- 6. Permeability determination (constant head and falling head methods)
- 7. Direct shear test on cohesion less soil
- 8. Unconfined compression test in cohesive soil
- 9. Tri axial compression test in cohesion less soil
- 10. Laboratory Vane shear test in cohesive soil
- 11. One dimensional Consolidation test (Determination of coefficient of consolidation only)

#### Total No of Hrs: 45

#### REFERENCES

- 1. "Soil Engineering Laboratory Instruction Manual ", Published by the Engineering College Cooperative Society, Chennai, 1996.
- 2. Lambe T.W., "Soil Testing for Engineers", John Wiley and Sons, New York, 1990.
- *3. "I.S.Code of Practice (2720) Relevant Parts ", as amended from time to time.*

# IV SEMESTER

| Subject Code:      | Su             | bject Nai                                                                                                                                                              | me : STRU                         | JCTURA       | L ANA             | LYSIS          |                   |                 | Ty / LB/            | L           | T / S.Lr   | <b>P/ R</b> | C     |
|--------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------|-------------------|----------------|-------------------|-----------------|---------------------|-------------|------------|-------------|-------|
| EBCE22009          |                |                                                                                                                                                                        |                                   |              |                   |                |                   |                 | ETL/IE              |             |            |             |       |
|                    |                |                                                                                                                                                                        | : Mechanio                        |              |                   |                |                   |                 | Ту                  | 3           | 1/0        | 0/0         | 4     |
| L : Lecture T : 7  |                |                                                                                                                                                                        |                                   |              | P : Proje         | ct R : Re      | esearch C         | C: Credits      |                     |             |            |             |       |
| T/L/ETL : Theo     | <u> </u>       | mbedded                                                                                                                                                                | l Theory an                       | ld Lab       |                   |                |                   |                 |                     |             |            |             |       |
| <b>OBJECTIVE</b> : |                |                                                                                                                                                                        |                                   |              |                   |                |                   |                 |                     |             |            |             |       |
| This course in     |                |                                                                                                                                                                        |                                   |              |                   |                |                   | -               |                     |             |            |             |       |
| displacements i    | n structu      | ires due                                                                                                                                                               | to given l                        | oads and     | limpose           | d deform       | nations.          | Both det        | erminate a          | nd indet    | erminate s | tructure    | s are |
| covered.           |                |                                                                                                                                                                        |                                   |              |                   |                |                   |                 |                     |             |            |             |       |
| COURSE OUT         |                |                                                                                                                                                                        |                                   |              |                   |                |                   |                 |                     |             |            |             |       |
| CO1                |                |                                                                                                                                                                        | avior of arc                      |              |                   |                |                   |                 |                     |             |            | •           |       |
| CO2                |                |                                                                                                                                                                        |                                   |              |                   |                |                   |                 | tion method         |             |            | is          |       |
| CO3                |                | apply the method of tension coefficient to determine the member forces in space structures<br>analyze the structures for moving loads and draw influence line diagrams |                                   |              |                   |                |                   |                 |                     |             |            |             |       |
| CO4                |                |                                                                                                                                                                        |                                   |              |                   |                |                   |                 |                     |             |            |             |       |
| CO5                |                | o evaluate the shape factor and influence lines of statically determinate structures                                                                                   |                                   |              |                   |                |                   |                 |                     |             |            |             |       |
|                    |                | rse Outcomes with Program Outcomes (POs)                                                                                                                               |                                   |              |                   |                |                   |                 |                     |             |            |             |       |
| COs/POs            |                |                                                                                                                                                                        |                                   |              |                   |                |                   | <b>PO8</b>      | PO9                 | <b>PO10</b> | PO11       | PO          |       |
| CO1                | 3              | 3                                                                                                                                                                      | 3                                 | 3            | 1                 | 1              | 1                 | 1               | 1                   | 1           | 1          |             | 3     |
| CO2                | 3              | 3                                                                                                                                                                      | 3                                 | 3            | 1                 | 1              | 1                 | 1               | 1                   | 1           | 1          |             | 3     |
| CO3                | 3              | 3                                                                                                                                                                      | 3                                 | 3            | 1                 | 1              | 1                 | 1               | 1                   | 1           | 1          |             | 3     |
| CO4                | 3              | 3                                                                                                                                                                      | 3                                 | 3            | 1                 | 1              | 1                 | 1               | 1                   | 1           | 1          |             | 3     |
| CO5                | 3              | 3                                                                                                                                                                      | 3                                 | 3            | 1                 | 1              | 1                 | 1               | 1                   | 1           | 1          |             | 3     |
| COs / PSOs         | PS             | 601                                                                                                                                                                    | PSC                               | 02           |                   |                |                   | •               |                     |             |            |             |       |
| CO1                |                | 3                                                                                                                                                                      | 3                                 |              |                   |                |                   |                 |                     |             |            |             |       |
| CO2                |                | 3                                                                                                                                                                      | 3                                 |              |                   |                |                   |                 |                     |             |            |             |       |
| CO3                |                | 3                                                                                                                                                                      | 3                                 |              |                   |                |                   |                 |                     |             |            |             |       |
| CO4                |                | 3                                                                                                                                                                      | 3                                 |              |                   |                |                   |                 |                     |             |            |             |       |
| CO5                |                | 3                                                                                                                                                                      | 3                                 |              |                   |                |                   |                 |                     |             |            |             |       |
| 3/2/1 Indicates    | Strength       | n Of Cor                                                                                                                                                               | relation, 3                       | – High,      | 2- Media          | um, 1- L       | ow                |                 |                     |             |            |             |       |
| Category           | Basic Sciences | Engineering Sciences                                                                                                                                                   | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project |             |            |             |       |
|                    |                |                                                                                                                                                                        |                                   | $\checkmark$ |                   |                |                   |                 |                     |             |            |             |       |

| Subject Code:<br>EBCE22009 | Subject Name : STRUCTURAL ANALYSIS                                                              | Ty / LB/<br>ETL/IE | L | T / S.Lr | <b>P/ R</b> | С |
|----------------------------|-------------------------------------------------------------------------------------------------|--------------------|---|----------|-------------|---|
|                            | Prerequisite: Mechanics of Solids, Strength of materials                                        | Ту                 | 3 | 1/0      | 0/0         | 4 |
|                            | rial SLr : Supervised Learning P : Project R : Research C: Credit<br>ab/Embedded Theory and Lab | S                  |   |          |             |   |

#### UNIT I **DEFLECTION OF DETERMINATE STRUCTURES**

Principles of virtual work for deflections - Deflections of pin-jointed plane frames and rigid Plane Frames. Introduction to analysis of space trusses using method of tension coefficients – Beams curved in plan.

#### SLOPE DEFLECTION AND MOMENT DISTRIBUTION METHOD UNIT II 12 Hrs

Analysis of continuous Beams – cantilever beams - Continuous beams and rigid frames (with and without sway) - Symmetry and Asymmetry -Portal Frames. Stiffness and carry over factors -Balance - Distribution and carryover of moments - Analysis of continuous Beams - Plane rigid frames with and without sway - Structural frames

#### UNIT III **MOVING LOADS AND INFLUENCE LINES (DETERMINATE)** 12 Hrs

Influence lines for reactions in statically determinate structures – influence lines for member forces in pin jointed frames - Influence lines for shear force and bending moment in beam sections

#### UNIT IV **ARCHES AND SUSPENSION BRIDGES**

Arches structural forms – Examples of arch structures – Types of arches – Analysis of three hinged, two hinged and fixed arches, parabolic and circular arches - Settlement and temperature effects

Analysis of suspension bridges – Un stiffened cables and cables with three hinged stiffening girders – Influence lines for three hinged stiffening girders.

#### UNIT V MATRIX METHOD FOR INDETERMINATE FRAMES AND PLASTIC ANALYSIS

#### **12 Hrs**

Total no of hrs: 60

Equilibrium and compatibility - Determinate Vs indeterminate structures -Indeterminacy - primary structure -Compatibility conditions - Analysis of indeterminate pin-jointed plane frames, continuous beams. Element and global stiffness and flexibility matrices- Co-ordinate transformations - transformations of stiffness matrices -Analysis of Continuous Beams.

#### **TEXT BOOKS**

- 1. R.Vaidyanathan, P.Perumal, Comprehensive Structural Analysis Vol 1 and vol.2, Laxmi Publications, 2004
- 2. Bhavikatti S.S Structural Analysis Vol 1 and vol.2, Vikas Publishing House Pvt. Ltd New Delhi
- 3. S.Ramamrutham, R.Narayan, Theory of structures, Dhanpatrai publications, 1993

#### REFERENCES

- 1. Analysis of Structures: Strength and Behaviors T.S. Thandavamoorthy, oxford University press, New Delhi. 2005.
- 2. Matrix analysis of framed structures – William Weaver, Jr & James M.Gere, CBS Publishers & Distributors, Delhi, 1995
- 3. Structural Analysis – A Matrix Approach – G.S.Pandit & S.P.Gupta, Tata McGraw-Hill, New Delhi, 1998
- 4. Manicka Selvam V.K., Elementary Matrix Analysis of Structures, Khanna Publishers Mumbai, 1990.
- 5. Coates R.C., Coutie M.G. and Kong F.K., Structural Analysis, ELBS and Nelson, Newjersey, 1990.

## 12 Hrs

| Subject Code          | : Su           | bject Na                                                                   | me:                               |              |                   |                |                   |                 | Ty / LB/            | L          | T/S.Lr     | <b>P</b> / <b>R</b> | С     |
|-----------------------|----------------|----------------------------------------------------------------------------|-----------------------------------|--------------|-------------------|----------------|-------------------|-----------------|---------------------|------------|------------|---------------------|-------|
|                       |                | DF                                                                         | ESIGN OF                          | CONC         | RETE ST           | ructu          | URES              |                 | ETL/IE              |            |            |                     |       |
| EBCE22010             | Pre            | requisite                                                                  | : Structura                       | l Analys     | is                |                |                   |                 | Ту                  | 3          | 1/0        | 0/0                 | 4     |
| L : Lecture T         |                |                                                                            |                                   |              | P : Proje         | ct R : Re      | esearch C         | C: Credit       | s                   |            |            |                     |       |
| T/L/ETL : The         |                |                                                                            |                                   |              |                   |                |                   |                 |                     |            |            |                     |       |
| OBJECTIVE             |                |                                                                            |                                   |              |                   |                |                   |                 |                     |            |            |                     |       |
| elements such         |                | columns                                                                    | , slabs and                       | tootings.    | Brings a          | bout an i      | understar         | iding of        | the behavio         | r of reint | torced con | crete and           | 1 the |
| design philoso        |                | AES (COs) : ( 3- 5)                                                        |                                   |              |                   |                |                   |                 |                     |            |            |                     |       |
|                       |                | urse, the student will be able to:                                         |                                   |              |                   |                |                   |                 |                     |            |            |                     |       |
| CO1                   |                | erstanding the behavior of reinforced concrete and the design philosophies |                                   |              |                   |                |                   |                 |                     |            |            |                     |       |
| CO2                   | Applying       | ing the concept of Concrete design to making the projects.                 |                                   |              |                   |                |                   |                 |                     |            |            |                     |       |
| CO3                   | Analyze        | and Practicing the design concepts with Indian Standard codes              |                                   |              |                   |                |                   |                 |                     |            |            |                     |       |
| CO4                   | -              | the design methods for concrete elements                                   |                                   |              |                   |                |                   |                 |                     |            |            |                     |       |
| CO5                   |                |                                                                            |                                   |              |                   |                | inforced          | concret         | e structural o      | elements   | such as be | eams,               |       |
|                       | columns,       | slabs and                                                                  | l footings                        |              |                   |                |                   |                 |                     |            |            |                     |       |
|                       | Course Ou      | Dutcomes with Program Outcomes (POs)                                       |                                   |              |                   |                |                   |                 |                     |            |            |                     |       |
| COs/POs               | PO1            | PO2                                                                        |                                   |              |                   |                |                   |                 |                     |            |            |                     | 12    |
| CO1                   | 3              | 3 3 3 1 3 1 1 1 1 3                                                        |                                   |              |                   |                |                   |                 |                     |            | 3          |                     |       |
| CO2                   | 3              | 3                                                                          | 3                                 | 3            | 1                 | 3              | 1                 | 1               | 1                   | 1          | 1          |                     | 3     |
| CO3                   | 3              | 3                                                                          | 3                                 | 3            | 1                 | 3              | 1                 | 1               | 1                   | 1          | 1          |                     | 3     |
| CO4                   | 3              | 3                                                                          | 3                                 | 3            | 1                 | 3              | 1                 | 1               | 1                   | 1          | 1          |                     | 3     |
| CO5                   | 3              | 3                                                                          | 3                                 | 3            | 1                 | 3              | 1                 | 1               | 1                   | 1          | 1          |                     | 3     |
| COs / PSOs            | PSC            |                                                                            | PSC                               |              |                   |                |                   |                 |                     |            |            |                     |       |
| CO1                   | 3              |                                                                            | 3                                 |              |                   |                |                   |                 |                     |            |            |                     |       |
| CO2                   | 3              |                                                                            | 3                                 |              |                   |                |                   |                 |                     |            |            |                     |       |
| CO3                   | 3              |                                                                            | 3                                 |              |                   |                |                   |                 |                     |            |            |                     |       |
| CO4                   | 3              |                                                                            | 3                                 |              |                   |                |                   |                 |                     |            |            |                     |       |
| CO5<br>3/2/1 Indicate | 3<br>Strongt   |                                                                            | 3                                 |              | 2 Modi            | 1 T            |                   |                 |                     |            |            |                     |       |
| 5/2/1 mulcate         | sorengu        |                                                                            | relation, 5                       | – mgn,       | 2- Meun           | 1111, 1- L     |                   |                 |                     |            |            |                     |       |
| Category              | Basic Sciences | Engineering Sciences                                                       | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project |            |            |                     |       |
|                       |                |                                                                            |                                   | $\checkmark$ |                   |                |                   |                 |                     |            |            |                     |       |
| ·                     |                | •                                                                          | •                                 | •            |                   |                |                   |                 |                     |            |            |                     |       |

| Subject Code:        | Subject Name:<br>DESIGN OF CONCRETE STRUCTURES                    | Ty / LB/<br>ETL/IE | L | T / S.Lr | <b>P/ R</b> | С |
|----------------------|-------------------------------------------------------------------|--------------------|---|----------|-------------|---|
| EBCE22010            | Prerequisite: Structural Analysis                                 | Ту                 | 3 | 1/0      | 0/0         | 4 |
| L : Lecture T : Tuto | rial SLr : Supervised Learning P : Project R : Research C: Credit | S                  |   |          |             |   |
| T/L/ETL : Theory/L   | ab/Embedded Theory and Lab                                        |                    |   |          |             |   |

#### UNIT I INTRODUCTION, LIMIT STATE DESIGN OF BEAMS AND SLABS 12 Hrs

Properties of different grades of concrete and steel, Behavior of RC members, Permissible stresses - Stress block parameters, Stress strain relationship - Failure criteria Analysis - Introduction to IS 456-2000, SP: 16 - Design and detailing of singly reinforced & doubly reinforced beam - Design and detailing of one-way and two-way slab panels – Flat Slabs (Design of beams and slabs for combined shear, bending and torsion).

#### UNIT II LIMIT STATE DESIGN OF COLUMNS AND FOOTINGS

Basic assumptions - Design and detailing of reinforced concrete short columns of rectangular and circular cross sections under axial load - Column under compression and bi axial bending using IS 456:2000 - Design and detailing of isolated footing for column subjected to axial loads, Design and detailing of Axially and eccentrically loaded Rectangular footings, Design and detailing of Combined Rectangular footings for Two Columns.

#### UNIT III DESIGN OF STAIRCASE AND WATER TANK

Introduction to ductile detailing & provisions of IS 13920, Design of Staircases - Design of circular and rectangular water tanks resting on ground. Design of staging and foundations

#### UNIT IV RETAINING WALLS

Design of retaining walls - Cantilever and Counter fort retaining walls

#### UNIT V YIELD LINE THEORY AND INTRODUCTION TO BRICK MASONRY 12 Hrs

Application of virtual work method to square, rectangular, circular and triangular slabs, Design of masonry walls, and pillars as per NBC and IS codes

#### **Total No of Hrs: 60**

#### **TEXT BOOKS**

- 1. N.Krishna Raju "Design of Reinforced Concrete Structures", CBS publishers & Distributors. Latest Edition, IS456:200.
- 2. S.Ramamrudham ,Design of Reinforced Concrete Structures, Dhanpat Rai publishing company(p) Ltd New Delhi.
- 3. Varghese P C, Limit State Design of Reinforced Concrete, Prentice Hal of India, Private, Limited New Delhi, 1997.

#### REFERENCES

- 1. Ashok K. Jain Reinforced concrete- Limit state design- New chand & Bros, Roorkee 1997.
- 2. Dayarathnam.P, Brick and Reinforced Brick Structures, Oxford and IBH Publishing House, 1999.
- 3. IS: 456- 2000 "Indian Standard for Plain and reinforced concrete code of practice "Bureau of Indian Standard".
- 4. A.P Arul Manikam "Structural Engineering"
- 5. Design aids to IS 456-1978 (SP16).
- 6. SP 34 Handbook on Concrete Reinforcement and Detailing, BIS 1987.
- 7. IS 1905:1987, Code of practice for structural use of unreinforced masonry Bureau of Indian Standards.

12 Hrs

12 Hrs

| Subject Code:<br>EBCE22011 | Su             | bject Na                                                                    | me: FOU                           | JNDATI       | ON ENG            | GINEER         | ING               |                 | Ty / LB/<br>ETL/IE  | L         | T/S.Lr       | P/ R    | С          |  |
|----------------------------|----------------|-----------------------------------------------------------------------------|-----------------------------------|--------------|-------------------|----------------|-------------------|-----------------|---------------------|-----------|--------------|---------|------------|--|
|                            | Pre            | erequisite                                                                  | : Soil Mecl                       | hanics       |                   |                |                   |                 | Ту                  | 3         | 1/0          | 0/0     | 4          |  |
| L : Lecture T : 7          |                |                                                                             |                                   |              | P : Proje         | ct R : Re      | esearch C         | C: Credit       | s                   |           |              |         | _ <b>_</b> |  |
| T/L/ETL : Theo             |                | Embedded                                                                    | l Theory ar                       | nd Lab       |                   |                |                   |                 |                     |           |              |         |            |  |
| <b>OBJECTIVE :</b>         |                |                                                                             |                                   |              |                   |                |                   |                 |                     |           |              |         |            |  |
|                            |                |                                                                             |                                   | quires th    | e capacit         | y to inve      | stigate th        | e soil co       | ndition and         | to desig  | n suitable f | oundati | on         |  |
| COURSE OUT                 | 1              |                                                                             |                                   |              |                   |                |                   |                 |                     |           |              |         |            |  |
| CO1                        |                |                                                                             | havior and                        |              |                   |                |                   |                 |                     |           |              |         |            |  |
| CO2                        |                |                                                                             | son behind                        |              |                   |                |                   |                 |                     |           |              |         |            |  |
| CO3                        | Apply          | the princ                                                                   | iples of soi                      | 1 mechar     | nics to de        | cide upor      | n the suit        | ability o       | f shallow or        | r deep fo | undations    |         |            |  |
| CO4                        | To ana         | analyze the critical failure modes of retaining walls                       |                                   |              |                   |                |                   |                 |                     |           |              |         |            |  |
| CO5                        | To eva         | evaluate the load carrying capacity of various shallow and deep foundations |                                   |              |                   |                |                   |                 |                     |           |              |         |            |  |
| Mapping of Co              | ourse Ou       | Outcomes with Program Outcomes (POs)                                        |                                   |              |                   |                |                   |                 |                     |           |              |         |            |  |
| COs/POs                    | PO1            | PO2                                                                         | PO3                               | PO4          | PO5               | PO6            | PO7               | PO8             | PO9                 | PO10      | PO11         | PO      | 12         |  |
| C01                        | 3              | 3                                                                           | 3                                 | 3            | 2                 | 3              | 3                 | 1               | 1                   | 1         | 2            |         | 3          |  |
| CO2                        | 3              | 3                                                                           | 3                                 | 3            | 2                 | 3              | 3                 | 1               | 1                   | 1         | 2            |         | 3          |  |
| CO3                        | 3              | 3                                                                           | 3                                 | 3            | 2                 | 3              | 3                 | 1               | 1                   | 1         | 2            |         | 3          |  |
| CO4                        | 3              | 3                                                                           | 3                                 | 3            | 2                 | 3              | 3                 | 1               | 1                   | 1         | 2            |         | 3          |  |
| CO5                        | 3              | 3                                                                           | 3                                 | 3            | 2                 | 3              | 3                 | 1               | 1                   | 1         | 2            |         | 3          |  |
| COs / PSOs                 | PS             | 501                                                                         | PSO                               | 02           |                   |                |                   |                 |                     |           |              |         |            |  |
| CO1                        |                | 3                                                                           | 3                                 |              |                   |                |                   |                 |                     |           |              |         |            |  |
| CO2                        |                | 3                                                                           | 3                                 |              |                   |                |                   |                 |                     |           |              |         |            |  |
| CO3                        |                | 3                                                                           | 3                                 |              |                   |                |                   |                 |                     |           |              |         |            |  |
| CO4                        |                | 3                                                                           | 3                                 |              |                   |                |                   |                 |                     |           |              |         |            |  |
| CO5                        |                | 3                                                                           | 3                                 |              |                   |                |                   |                 |                     |           |              |         |            |  |
| 3/2/1 Indicates            | Strengt        | h Of Cor                                                                    | relation, 3                       | – High,      | 2- Medi           | um, 1- L       | ow                |                 |                     |           |              |         |            |  |
| Category                   | Basic Sciences | Engineering Sciences                                                        | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project |           |              |         |            |  |
|                            |                |                                                                             |                                   | $\checkmark$ |                   |                |                   |                 |                     |           |              |         |            |  |

52

## FORM NO.F/CDD/004 Rev.00 Date 20.03.2020

| Subject Code: | Subject Name : FOUNDATION ENGINEERING                                                           | Ty / LB/ | L | T/S.Lr | P/ R | С |
|---------------|-------------------------------------------------------------------------------------------------|----------|---|--------|------|---|
| EBCE22011     |                                                                                                 | ETL/IE   |   |        |      |   |
|               | Prerequisite: Soil Mechanics                                                                    | Ту       | 3 | 1/0    | 0/0  | 4 |
|               | rial SLr : Supervised Learning P : Project R : Research C: Credit<br>ab/Embedded Theory and Lab | ts       |   |        |      |   |

#### UNIT I: SOIL EXPLORATION

Scope and objectives – method of exploration – angering and boring – wash boring and rotary drilling – depth of boring – spacing of bore hole - sampling –representative and undisturbed - sampling – sampling techniques –split spoon sampler, thin tube sampler, stationary piston sampler - bore log and report – penetration tests (spt and scpt).

#### **UNIT II: SHALLOW FOUNDATION**

Introduction – location and depth of foundation – codal provisions – bearing capacity of shallow foundation on homogeneous deposits – terzaghi's formula and bis formula – factors affecting bearing capacity – problems- bearing capacity from in situ tests(spt, scpt and plate load) allowable bearing pressure – components of settlement – determination of settlement of foundation on granular and clay deposit – total and differential settlement – allowable settlement – codal provisions .

#### UNIT III: FOOTINGS AND RAFTS

Types of foundation – contact pressure distribution below footings, design of footings, Isolated footing, combined footings ,mat foundation - types - Applications-proportioning- floating foundation .

#### UNIT IV : PILE FOUNDATION

Types of piles and their function – factors influencing the selection of pile – carrying capacity of single pile in granular and cohesive soils – static formulae - dynamic formulae (engineering news and hiley's ) – capacity from insitu tests (spt and scpt) – negative skin friction - uplift capacity – group capacity by different methods( feld's rule, converse-labarra formula and block failure criterion ) – settlement of pile groups – interpretation of pile load test( routine test only) – forces on pile caps – under reamed piles – capacity under compression and uplift .

#### UNIT V: RETAINING WALLS

Plastic equilibrium in soils – active and passive states – rankine's theory – cohesionless, effect of water table and cohesive soil - coloumb's wedge theory – condition for critical failure plane - earth pressure on retaining walls of simple configurations – graphical methods (rebhann and culmann's method)– stability analysis of retaining walls.

#### Total No of Hrs: 60

### TEXT BOOKS

- Arora, k.r. Soil Mechanics And Foundation Engineering, Standard Publishers And Distributors, New Delhi, 1997.
- Gopal Ranjan and Rao, A.S.R. Basic and Applied Soil Mechanics, Wiley Eastern Ltd., New Delhi (India), 1997.
- V.N.S. Moorthy, " Soil Mechanics And Foundation Engineering ", Ubs Publications And Distribution Ltd, New Delhi, 1999.

#### REFERENCES

- Bowles J.E. Foundation Analysis And Design, McGraw hill, 1994.
- Dass, B.M, "Principles Of Geotechnical Engineering", Thompson Books, Singapore ,5th edition, 2003
- Kaniraj, S.R," Design Aids In Soil Mechanics And Foundation Engineering", Tata Mcgraw Hill Publishing Company Ltd , New Delhi ,2002
- Swamisaran, "Analysis And Design Of Structures Limit State Design", Oxford Ibh Publishing Co Pvt Ltd. New delhi , 1998

# 12 Hrs

12 Hrs

12 Hrs

#### 12 Hrs

| Subject Code:     | Sub            | oject Nai                                                                                             | me :                              |              |                   |                |                   |                 | Ty / LB/            | L        | T/S.Lr       | P/ R     | C      |  |
|-------------------|----------------|-------------------------------------------------------------------------------------------------------|-----------------------------------|--------------|-------------------|----------------|-------------------|-----------------|---------------------|----------|--------------|----------|--------|--|
| EBCE22ET2         |                | Ū                                                                                                     |                                   | TE SEN       | ISING A           | ND GIS         |                   |                 | ETL/IE              |          |              |          |        |  |
|                   | Pre            | requisite                                                                                             | Engineeri                         | ng Geolo     | ogy, Engi         | neering s      | urvey             |                 | ETL                 | 1        | 0/0          | 2/0      | 2      |  |
| L : Lecture T : T | utorial        | SLr : Su                                                                                              | pervised L                        | earning      | P : Proje         | ct R : Re      | esearch C         | : Credits       | 5                   |          |              |          |        |  |
| T/L/ETL : Theor   | y/Lab/E        | mbedded                                                                                               | l Theory an                       | d Lab        |                   |                |                   |                 |                     |          |              |          |        |  |
| <b>OBJECTIVE</b>  | :              |                                                                                                       |                                   |              |                   |                |                   |                 |                     |          |              |          |        |  |
| • Introdu         | ce the p       | orinciple                                                                                             | s of remo                         | te sensir    | ng to stu         | dents wl       | ho are be         | eginners        | in this fie         | eld.     |              |          |        |  |
|                   | -              | -                                                                                                     | ge on the j                       |              | -                 |                |                   | C               |                     |          |              |          |        |  |
| Aerial            | photog         | raphic                                                                                                | technique                         | s, imag      | e interp          | retation       | techni            | ques ,to        | o create l          | basic u  | nderstand    | ing of   | GIS    |  |
| concep            | ts.            |                                                                                                       |                                   |              |                   |                |                   |                 |                     |          |              |          |        |  |
| • To dev          | elop the       | e ability                                                                                             | to solve a                        | specific     | c problei         | m right f      | from its          | identifie       | cation till         | the suc  | cessful so   | lution c | of the |  |
| same              |                |                                                                                                       |                                   |              |                   |                |                   |                 |                     |          |              |          |        |  |
| COURSE OUT        |                |                                                                                                       |                                   |              |                   |                |                   |                 |                     |          |              |          |        |  |
| CO1               |                |                                                                                                       | oncepts of                        | Electro      | Magnetic          | energy,        | spectrum          | and spe         | ctral signat        | ure curv | es for pract | tical    |        |  |
|                   | probler        |                                                                                                       |                                   |              |                   |                |                   |                 |                     |          |              |          |        |  |
| CO2               |                | derstand the concepts of satellite, sensors and characteristics of different platforms                |                                   |              |                   |                |                   |                 |                     |          |              |          |        |  |
| CO3               | 11.2           | ply the concepts of DBMS in GIS                                                                       |                                   |              |                   |                |                   |                 |                     |          |              |          |        |  |
| CO4               | •              | alyze raster and vector data and modeling in GIS, Apply GIS in land use, disaster management, ITS and |                                   |              |                   |                |                   |                 |                     |          |              |          |        |  |
|                   |                |                                                                                                       | ation system                      |              |                   |                |                   |                 |                     |          |              |          |        |  |
| CO5               |                |                                                                                                       |                                   | 1            |                   |                | tion by f         | ormulati        | ng proper n         | nethodol | ogy          |          |        |  |
| Mapping of Cou    |                |                                                                                                       | -                                 |              |                   |                |                   |                 |                     |          |              | 1=-      |        |  |
| COs/POs           | PO1            | PO2                                                                                                   | PO3                               | PO4          | PO5               | PO6            | <b>PO7</b>        | PO8             | <b>PO9</b>          | PO10     | PO11         | PO       |        |  |
| CO1               | 3              | 3                                                                                                     | 3                                 | 3            | 3                 | 2              | 1                 | 1               | 1                   | 1        | 1            |          | 3      |  |
| CO2               | 3              | 3                                                                                                     | 3                                 | 3            | 3                 | 2              | 1                 | 1               | 1                   | 1        | 1            |          | 3      |  |
| CO3               | 3              | 3                                                                                                     | 3                                 | 3            | 3                 | 2              | 1                 | 1               | 1                   | 1        | 1            |          | 3      |  |
| CO4               | 3              | 3                                                                                                     | 3                                 | 3            | 3                 | 2              | 1                 | 1               | 1                   | 1        | 1            |          | 3      |  |
| CO5               | 3              | 3                                                                                                     | 3                                 | 3            | 3                 | 2              | 1                 | 1               | 1                   | 1        | 1            |          | 3      |  |
| COs / PSOs        |                | 01                                                                                                    | PSC                               |              | -                 |                |                   |                 |                     |          |              |          |        |  |
| CO1               |                | 3                                                                                                     | 3                                 |              |                   |                |                   |                 |                     |          |              |          |        |  |
| CO2               |                | 3                                                                                                     | 3                                 |              |                   |                |                   |                 |                     |          |              |          |        |  |
| CO3               |                | 3                                                                                                     | 3                                 |              |                   |                |                   |                 |                     |          |              |          |        |  |
| CO4               |                | 3                                                                                                     | 3                                 |              |                   |                |                   |                 |                     |          |              |          |        |  |
| CO5               |                | 3                                                                                                     | 3                                 |              | 2 M-P             |                |                   |                 |                     |          |              |          |        |  |
| 3/2/1 Indicates S | scrength       | OI Cor                                                                                                |                                   | – High,      | 2- Medu           | um, 1- L       | ow                | гт              |                     |          |              |          |        |  |
|                   |                | ses                                                                                                   | cial                              |              | s                 |                |                   |                 | 4                   |          |              |          |        |  |
|                   | Ses            | ienc                                                                                                  | So                                | ore          | live              | /es            | ary               | lent            | jec                 |          |              |          |        |  |
| Category          | ienc           | Sci                                                                                                   | und<br>ces                        | Cc           | llect             | sctiv          | plin              | por             | Prc                 |          |              |          |        |  |
| Cutogory          | Sc             | ring                                                                                                  | ities and<br>Sciences             | ram          | mE                | Ele            | isci              | mox             | al /                |          |              |          |        |  |
|                   | Basic Sciences | Engineering Sciences                                                                                  | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project |          |              |          |        |  |
|                   | B              | ngiı                                                                                                  | ıma                               | Р            | Pro               | Õ              | Int               | Sk              | Pra                 |          |              |          |        |  |
|                   |                | Ē                                                                                                     | Hr                                |              |                   |                |                   |                 |                     |          |              |          |        |  |
|                   |                |                                                                                                       |                                   | $\checkmark$ |                   |                |                   |                 | $\checkmark$        |          |              |          |        |  |
|                   |                |                                                                                                       |                                   |              |                   |                |                   |                 |                     |          |              |          |        |  |

| Subject Code:                                | Subject Name :                                        | Ty / LB/ | L | T/S.Lr | <b>P/ R</b> | С |  |  |
|----------------------------------------------|-------------------------------------------------------|----------|---|--------|-------------|---|--|--|
| EBCE22ET2                                    | <b>REMOTE SENSING AND GIS</b>                         | ETL/IE   |   |        |             |   |  |  |
|                                              | Prerequisite: Engineering Geology, Engineering survey | ETL      | 1 | 0/0    | 2/0         | 2 |  |  |
| L : Lecture T : Tuto                         | S                                                     |          |   |        |             |   |  |  |
| T/L/ETL : Theory/Lab/Embedded Theory and Lab |                                                       |          |   |        |             |   |  |  |

#### UNIT I

#### INTRODUCTION TO REMOTE SENSING

Definition – components of remote sensing – , Energy sources and radiation principles, electromagnetic radiation (EMR) –EMR spectrum, active and passive remote sensing – platforms — visible, infra red (IR), near IR, middle IR, thermal IR and microwave – black body radiation - Planck's law – Stefan-Boltzman law.

#### UNIT II EMR INTERACTION WITH ATMOSPHERE AND EARTH MATERIALS

Atmospheric characteristics, scattering of EMR – Raleigh, MIE, non-selective and Raman scattering – EMR interaction with water vapour and ozone – atmospheric windows – significance of atmospheric windows – EMR interaction with earth surface materials – radiance, irradiance, incident, reflected, absorbed and transmitted energy – reflectance – specular and diffuse reflection surface- spectral signature – spectral signature curves – EMR interaction with water, soil and earth surface

#### UNIT III OPTICAL AND MICROWAVE REMOTE SENSING SYSTEMS

Satellites - classification – based on orbits – sun synchronous and geo synchronous – based on purpose – earth resource satellites, communication satellites, weather satellites, spy satellites, spectral, radiometric and spatial resolutions, Multispectral, thermal and hyper spectral sensing, along and across track scanners – description of sensors in land sat, spot, irs series – current satellites - radar – speckle - back scattering – side looking airborne radar – synthetic aperture radar – radiometer – geometrical characteristics

#### UNIT IV GEOGRAPHIC INFORMATION SYSTEM

GIS – components of GIS, data – spatial and non-spatial – maps – types of maps – projection – types of projection - raster and vector data structures – comparison of raster and vector data structure – GIS analysis using raster and vector data – DEM for Slope, Aspect, Flow direction, Flow pathways, Flow accumulation, Streams, Catchment area delineation, retrieval, reclassification, overlaying, buffering – data output.

#### UNIT V IMAGE PROCESSING AND APPLICATIONS OF RS & GIS

Visual interpretation of satellite images – elements of interpretation - interpretation keys, Digital Image Processing - application of remote sensing and GIS – urban applications - integration of GIS and remote sensing – Remote sensing applications for watershed management, Rainfall runoff modeling, Irrigation management, Flood mapping, Drought assessment, Environment and ecology, urban analysis –resources information systems.

#### PRACTICAL SESSIONS

Include practical sessions for Digitization - Point, Line, Polygon and Surface Data, Building topology – measuring distance and area, Adding attribute data – querying on attribute data, Onscreen digitization - Data Conversion – Vector to Raster, Raster to Vector, Generation of DEM: from contours, spot heights, Vector Analysis – Buffering, Overlay and Network analysis, Data Output: Bar charts, Map compilation

#### TEXT BOOKS,

Anji Reddy, Remote Sensing and Geographical Information Systems, B.S. Publications, New Delhi, 2001
 M.G. Srinivas (edited by), Remote Sensing Applications, Nervosa Publishing House, New Delhi, 2001.

#### REFERENCE

- 1. Lillesand T.M. And Kiefer R.W. Remote Sensing And Image Interpretation, John Wiley And Sons, Inc, New York, 1987.
- 2. Janza.F.J., Blue, H.M., Johnston, J.E., "Manual of Remote Sensing Vol.I American Society of Photogrammetry, Virginia, U.S.A, 1975.
- 3. Burrough P.A, Principle Of Gis For Land Resource Assessment, Oxford, 1990
- 4. QGIS-1.8-UserGuide, <u>http://docs.qgis.org/pdf/QGIS-1.8-UserGuide-en.pdf,2013</u>
- 5. Getting to Know ArcGIS for Desktop, ISBN: 9781589483088 2013
- 6. Understanding GIS: An ArcGIS Project Workbook, ISBN: 9781589482425 2011

#### Total No of Hours : 45

#### 9 HRS

**9 HRS** 

9 HRS

#### 9 HRS

9 HRS

| Subject Code:      |                | Subj                      | ect Name                                                                                                                                                                   | : CONC       | RETE I            | ABORA          | TORY              |                 | Ty / LB/            | L           | T/S.Lr    | P/ R    | С      |  |  |
|--------------------|----------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|----------------|-------------------|-----------------|---------------------|-------------|-----------|---------|--------|--|--|
| EBCE22L07          | De             |                           | Building                                                                                                                                                                   | Ma4aula1.    |                   |                |                   |                 | ETL/IE<br>Lb        | 0           | 0/0       | 3/0     | 1      |  |  |
| L : Lecture T : T  |                |                           |                                                                                                                                                                            |              |                   | at D . D.      | accord C          | . Cradit        |                     | 0           | 0/0       | 3/0     | 1      |  |  |
| T/L/ETL : Theorem  |                |                           |                                                                                                                                                                            |              | r . rioje         |                | esearch           | . Clean         | 8                   |             |           |         |        |  |  |
| <b>OBJECTIVE :</b> | 1 y/ La0/1     | Emocuaca                  |                                                                                                                                                                            | lu Lau       |                   |                |                   |                 |                     |             |           |         |        |  |  |
|                    | iective        | of the co                 | ncrete lah                                                                                                                                                                 | is to tes    | t the ha          | sic prope      | erties ind        | redients        | of concret          | e fresh     | and harde | ned cor | ocrete |  |  |
| properties.        | jeenve         | or the co                 | nerete ido                                                                                                                                                                 | 15 10 10.    | st the ba         | sie prop       | inco me           | reutentis       | or concret          | c, nesn     |           |         | lerete |  |  |
| COURSE OUT         | COME           | <b>S</b> ( <b>CO</b> s) : | (3-5)                                                                                                                                                                      |              |                   |                |                   |                 |                     |             |           |         |        |  |  |
| CO1                | 0              | Dutline the               | importance                                                                                                                                                                 | ce of testi  | ng of cer         | nent, fin      | e and coa         | rse aggi        | regates and i       | its prope   | erties    |         |        |  |  |
| CO2                |                |                           |                                                                                                                                                                            |              |                   |                |                   |                 |                     |             |           |         |        |  |  |
| CO3                |                |                           | rstand the concept of workability and testing of fresh and hardened concrete<br>onstrate and conduct experiment on cement, fine aggregates, coarse aggregates and concrete |              |                   |                |                   |                 |                     |             |           |         |        |  |  |
| CO4                |                |                           | are the strength properties of different grades of concrete                                                                                                                |              |                   |                |                   |                 |                     |             |           |         |        |  |  |
|                    |                | -                         | -                                                                                                                                                                          |              |                   | -              |                   |                 | 1                   |             |           |         |        |  |  |
| CO5                |                |                           | -                                                                                                                                                                          | -            |                   |                | ggregate          | s, coarse       | aggregates          | and cor     | ncrete    |         |        |  |  |
| Mapping of Co      | urse Ou        | itcomes w                 | ith Progra                                                                                                                                                                 | am Outc      | omes (P           | Os)            |                   |                 |                     |             |           |         |        |  |  |
| COs/POs            | <b>PO1</b>     | PO2                       | PO3                                                                                                                                                                        | PO4          | PO5               | PO6            | <b>PO7</b>        | <b>PO8</b>      | <b>PO9</b>          | <b>PO10</b> | PO11      | PO      | 12     |  |  |
| CO1                | 3              | 2                         | 2                                                                                                                                                                          | 3            | 1                 | 3              | 1                 | 1               | 3                   | 1           | 1         |         | 3      |  |  |
| CO2                | 3              | 2                         | 2                                                                                                                                                                          | 3            | 1                 | 3              | 1                 | 1               | 3                   | 1           | 1         |         | 3      |  |  |
| CO3                | 3              | 2                         | 2                                                                                                                                                                          | 3            | 1                 | 3              | 1                 | 1               | 3                   | 1           | 1         |         | 3      |  |  |
| CO4                | 3              | 2                         | 2                                                                                                                                                                          | 3            | 1                 | 3              | 1                 | 1               | 3                   | 1           | 1         |         | 3      |  |  |
| CO5                | 3              | 2                         | 2                                                                                                                                                                          | 3            | 1                 | 3              | 1                 | 1               | 3                   | 1           | 1         |         | 3      |  |  |
| COs / PSOs         | P              | SO1                       | PSC                                                                                                                                                                        | 02           |                   |                |                   |                 |                     |             |           |         |        |  |  |
| CO1                |                | 3                         | 3                                                                                                                                                                          |              |                   |                |                   |                 |                     |             |           |         |        |  |  |
| CO2                |                | 3                         | 3                                                                                                                                                                          |              |                   |                |                   |                 |                     |             |           |         |        |  |  |
| CO3                |                | 3                         | 3                                                                                                                                                                          |              |                   |                |                   |                 |                     |             |           |         |        |  |  |
| CO4                |                | 3                         | 3                                                                                                                                                                          |              |                   |                |                   |                 |                     |             |           |         |        |  |  |
| CO5                |                | 3                         | 3                                                                                                                                                                          |              |                   |                |                   |                 |                     |             |           |         |        |  |  |
| 3/2/1 Indicates    | Strengt        | h Of Cor                  | relation, 3                                                                                                                                                                | – High,      | 2- Medi           | um, 1- L       | ow                |                 |                     |             |           |         |        |  |  |
| Category           | Basic Sciences | Engineering Sciences      | Humanities and Social<br>Sciences                                                                                                                                          | Program Core | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project |             |           |         |        |  |  |
|                    |                |                           |                                                                                                                                                                            | $\checkmark$ |                   |                |                   |                 | $\checkmark$        |             |           |         |        |  |  |

| Subject Code:<br>EBCE22L07                   | Subject Name : CONCRETE LABORATORY                                | Ty / LB/<br>ETL/IE | L | T / S.Lr | P/ R | C |  |  |
|----------------------------------------------|-------------------------------------------------------------------|--------------------|---|----------|------|---|--|--|
|                                              | Prerequisite: Building Materials                                  | Lb                 | 0 | 0/0      | 3/0  | 1 |  |  |
| L : Lecture T : Tuto                         | rial SLr : Supervised Learning P : Project R : Research C: Credit | S                  |   |          |      |   |  |  |
| T/L/ETL : Theory/Lab/Embedded Theory and Lab |                                                                   |                    |   |          |      |   |  |  |

#### LIST OF EXPERIMENTS

| UNIT I<br>1.<br>2.<br>3. | : CEMENT<br>Test for fineness<br>Test for setting times including normal consistency test<br>Mortar cube preparation and testing | 15 Hrs |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------|
| UNIT I                   | I : AGGREGATES                                                                                                                   | 15 Hrs |
| 1.                       | Sieve analysis test - Grade Curves                                                                                               |        |
| 2.                       | Crushing Value - Test                                                                                                            |        |
| 3.                       | Test on Aggregates - Los Angeles Abrasive Testing Machine                                                                        |        |
| UNIT I                   | II : CONCRETE:                                                                                                                   | 15 Hrs |
| 1.                       | Cube compression test                                                                                                            |        |
| 2.                       | Tension test of concrete - cylinder split test                                                                                   |        |
| 3.                       | Flexural test on concrete specimen                                                                                               |        |
| 4.                       | Test using Vee Bee consistometer                                                                                                 |        |
| 5.                       | Compaction factor test                                                                                                           |        |
|                          | Compaction factor test                                                                                                           |        |
| 6.                       | Mix design using test parameters and assessing the strength of concrete                                                          |        |

#### **TEXT BOOKS**

**Total No of Hrs: 45** 

1. Shetty. M.S., Concrete Technology, S.Chand and Co, Pune, 1984

#### REFERENCES

- 1. Krishnasamy. K.T., Concrete Technology, Dhanapt Rai New Delhi 1985
- 2. Neville, properties of concrete elbs, 1977.

# V SEMESTER

| Subject Code:     | Sul            | bject Nan                                                                                                                                               |                                   |              |                   |                       |                   |                 | Ty / LB/            | L         | T/S.Lr                                | P/ R      | C    |  |
|-------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------|-------------------|-----------------------|-------------------|-----------------|---------------------|-----------|---------------------------------------|-----------|------|--|
| EBCE22012         |                |                                                                                                                                                         | DESIGN                            |              |                   | UCTUR                 | ES                |                 | ETL/IE              |           |                                       |           |      |  |
|                   |                | -                                                                                                                                                       | : Structural                      | •            |                   |                       |                   |                 | Ту                  | 3         | 1/0                                   | 0/0       | 4    |  |
| L : Lecture T : 7 |                |                                                                                                                                                         |                                   |              | P : Proje         | ct R : Re             | esearch C         | C: Credit       | S                   |           |                                       |           |      |  |
| T/L/ETL : Theo    | ory/Lab/E      | mbeddec                                                                                                                                                 | Theory ar                         | nd Lab       |                   |                       |                   |                 |                     |           |                                       |           |      |  |
| OBJECTIVE         | :              |                                                                                                                                                         |                                   |              |                   |                       |                   |                 |                     |           |                                       |           |      |  |
| • To int          | roduce t       | he stude                                                                                                                                                | nt to mate                        | rial beh     | aviour a          | nd Load               | and Re            | sistance        | Factor De           | sign me   | ethodolog                             | у.        |      |  |
| • To des          | sign and       | analyze                                                                                                                                                 | tension n                         | nembers      | and cor           | npressio              | n memb            | ers.            |                     | U         | 0.                                    | •         |      |  |
| COURSE OUT        | 0              | 2                                                                                                                                                       |                                   |              |                   | 1                     |                   |                 |                     |           |                                       |           |      |  |
| CO1               |                |                                                                                                                                                         |                                   | nowledg      | e on the          | design of             | structur          | al steel n      | nembers sub         | piected t | o compress                            | ive. tens | sile |  |
| 001               |                |                                                                                                                                                         | ces, as per                       | -            |                   |                       |                   |                 |                     | .j        | · · · · · · · · · · · · · · · · · · · | ,         |      |  |
| CO2               |                | -                                                                                                                                                       | he connect                        |              |                   | ctural ef             | ficiency          |                 |                     |           |                                       |           |      |  |
| CO3               |                |                                                                                                                                                         |                                   |              |                   |                       |                   | ial buildi      | ing                 |           |                                       |           |      |  |
| CO4               |                | Classify and design the structural steel components of industrial building<br>To analyze tension, compression and flexural members for the imposed load |                                   |              |                   |                       |                   |                 |                     |           |                                       |           |      |  |
| C05               |                | •                                                                                                                                                       | -                                 |              | -                 |                       |                   |                 |                     |           |                                       |           |      |  |
|                   |                | b design structural systems such as roof trusses and gantry girders<br>e Outcomes with Program Outcomes (POs)                                           |                                   |              |                   |                       |                   |                 |                     |           |                                       |           |      |  |
| COs/POs           | PO1            | PO2                                                                                                                                                     | PO3                               | PO4          | PO5               | PO6                   | PO7               | PO8             | PO9                 | PO10      | PO11                                  | PO        | 12   |  |
| CO1               | 3              | 3                                                                                                                                                       | 3                                 | 3            | 105               | 3                     | 1                 | 1               | 2                   | 1010      | 2                                     |           | 3    |  |
| CO2               | 3              | 3                                                                                                                                                       | 3                                 | 3            | 1                 | 3                     | 1                 | 1               | 2                   | 1         | 2                                     |           | 3    |  |
| C02<br>C03        | 3              | 3                                                                                                                                                       | 3                                 | 3            | 1                 | 3                     | 1                 | 1               | 2                   | 1         | 2                                     |           | 3    |  |
| CO4               | 3              | 3                                                                                                                                                       | 3                                 | 3            | 1                 | 3                     | 1                 | 1               | 2                   | 1         | 2                                     |           | 3    |  |
| C05               | 3              | 3                                                                                                                                                       | 3                                 | 3            | 1                 | 3                     | 1                 | 1               | 2                   | 1         | 2                                     |           | 3    |  |
| COs / PSOs        |                | 501                                                                                                                                                     | PS                                |              | -                 | 5                     | -                 | -               |                     | 1         |                                       |           | 5    |  |
| CO1               |                | 3                                                                                                                                                       | 3                                 |              |                   |                       |                   |                 |                     |           |                                       |           |      |  |
| CO2               |                | 3                                                                                                                                                       | 3                                 |              |                   |                       |                   |                 |                     |           |                                       |           |      |  |
| CO3               |                | 3                                                                                                                                                       | 3                                 |              |                   |                       |                   |                 |                     |           |                                       |           |      |  |
| CO4               |                | 3                                                                                                                                                       | 3                                 |              |                   |                       |                   |                 |                     |           |                                       |           |      |  |
| CO5               |                | 3                                                                                                                                                       | 3                                 |              |                   |                       |                   |                 |                     |           |                                       |           |      |  |
| 3/2/1 Indicates   | Strengtl       | h Of Cor                                                                                                                                                | relation, 3                       | – High,      | 2- Medi           | um, <mark>1-</mark> L | ow                |                 |                     |           |                                       |           |      |  |
|                   |                |                                                                                                                                                         |                                   |              |                   |                       |                   |                 |                     |           |                                       |           |      |  |
|                   |                | ses                                                                                                                                                     | cial                              |              | s                 |                       |                   |                 | <u> </u>            |           |                                       |           |      |  |
| Category          | ses            | enc                                                                                                                                                     | Soc                               | re           | ive.              | /es                   | ary               | ent             | ject                |           |                                       |           |      |  |
| Caregory          | ienc           | Sci                                                                                                                                                     | nd<br>ces                         | CO           | lect              | sctiv                 | plin              | noq             | Pro                 |           |                                       |           |      |  |
|                   | Sci            | ing                                                                                                                                                     | ities and<br>Sciences             | ram          | nE                | Ele                   | iscij             | OM              | al /                |           |                                       |           |      |  |
|                   | Basic Sciences | Engineering Scienc                                                                                                                                      | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives        | Interdisciplinary | Skill component | Practical / Project |           |                                       |           |      |  |
|                   | B              | ngii                                                                                                                                                    | ıma                               | A.           | Pro               | Ō                     | Int               | Sk              | Pra                 |           |                                       |           |      |  |
|                   |                | Ш                                                                                                                                                       | Ηſ                                |              |                   |                       |                   |                 |                     |           |                                       |           |      |  |
|                   |                |                                                                                                                                                         |                                   | L _          |                   |                       |                   |                 |                     |           |                                       |           |      |  |
|                   |                |                                                                                                                                                         |                                   | $\checkmark$ |                   |                       |                   |                 |                     |           |                                       |           |      |  |
|                   |                |                                                                                                                                                         |                                   |              | 1                 | 1                     | 1                 | 1               |                     | 1         |                                       |           |      |  |

| Subject Code: | Subject Name :<br>DESIGN OF STEEL STRUCTURES                                                    | Ty / LB/<br>ETL/IE | L | T / S.Lr | P/ R | С |
|---------------|-------------------------------------------------------------------------------------------------|--------------------|---|----------|------|---|
| EBCE22012     | Prerequisite: Structural analysis                                                               | Ту                 | 3 | 1/0      | 0/0  | 4 |
|               | rial SLr : Supervised Learning P : Project R : Research C: Credit<br>ab/Embedded Theory and Lab | .S                 |   |          |      |   |

#### UNIT I **INTRODUCTION**

Properties of steel – Structural steel sections – Limit State Design Concepts – Loads on Structures – Connections using rivets, welding, bolting – Design of bolted and welded joints – Eccentric connections - Efficiency of joints.

#### **UNIT II TENSION MEMBERS**

Types of sections – Net area – Net effective sections for angles and Tee in tension – Design of connections in tension members - Use of lug angles - Design of tension splice - Concept of shear lag

#### **UNIT III COMPRESSION MEMBERS**

Types of compression members – Theory of columns – Basis of current codal provision for compression member design – Slenderness ratio – Design of single section and compound section compression members – Design of laced and battened type columns - Design of column bases - Gusseted base

#### **UNIT IV** BEAMS

Design of laterally supported and unsupported beams – Built up beams – Beams subjected to uniaxial and biaxial bending – Design of plate girders - Intermediate and bearing stiffeners – Flange and web splices.

UNIT V **ROOF TRUSSES AND INDUSTRIAL STRUCTURES 12 Hrs** 

Roof trusses – Roof and side coverings – Design of purlin and elements of truss; end bearing – Design of gantry girder.

#### Total No of Hrs: 60

#### **TEXTBOOKS:**

1. Gambhir. M.L., "Fundamentals of Structural Steel Design", McGraw Hill Education India Pvt. Ltd., 2013

2. Shiyekar. M.R., "Limit State Design in Structural Steel", Prentice Hall of India Pvt. Ltd, Learning Pvt. Ltd., 2 nd Edition, 2013.

3. Subramanian.N, "Design of Steel Structures", Oxford University Press, New Delhi, 2013.

### **REFERENCES:**

1. Narayanan.R.et.al. "Teaching Resource on Structural Steel Design", INSDAG, Ministry of Steel Publications, 2002

2. Duggal. S.K, "Limit State Design of Steel Structures", Tata McGraw Hill Publishing Company, 2005 3. Bhavikatti.S.S, "Design of Steel Structures" By Limit State Method as per IS:800–2007, IK International Publishing House Pvt. Ltd., 2009

4. Shah.V.L. and Veena Gore, "Limit State Design of Steel Structures", IS 800–2007 Structures Publications, 2009.

5. IS 800 :2007, General Construction In Steel - Code of Practice, (Third Revision), Bureau of Indian Standards, New Delhi. 2007

## 12 Hrs

## 12 Hrs

12 Hrs

| Subject Code:                                                | Sul                                | bject Nai<br>ESTI                                                                  | me:<br>MATION                                             | AND Q                  | UANTIT                    | Y SURV         | VEYING            | ŕ               | Ty / LB/<br>ETL/IE  | L        | T/S.Lr | P/ R | C        |  |  |
|--------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------|---------------------------|----------------|-------------------|-----------------|---------------------|----------|--------|------|----------|--|--|
| EBCE22013                                                    | Pre                                | erequisite                                                                         | : None                                                    |                        |                           |                |                   |                 | Ty                  | 3        | 1/0    | 0/0  | 4        |  |  |
| L : Lecture T : Tu<br>T/L/ETL : Theor                        | utorial                            | SLr : Su                                                                           | pervised L                                                |                        | P : Proje                 | ct R : Re      | esearch C         | C: Credits      | •                   | <u> </u> |        |      | <u> </u> |  |  |
| <b>OBJECTIVE :</b>                                           |                                    |                                                                                    |                                                           |                        |                           |                |                   |                 |                     |          |        |      |          |  |  |
| <ul><li>To study</li><li>To study</li><li>To study</li></ul> | y the est<br>y the im<br>y the cou | timate typ<br>portant sp<br>ncepts of                                              | blanning of<br>bes and terr<br>pecification<br>tenders an | ms involv<br>ns necess | ved in est<br>sary for th | imation        |                   | ngs             |                     |          |        |      |          |  |  |
| COURSE OUT<br>At the end of this                             |                                    |                                                                                    |                                                           | abla to                |                           |                |                   |                 |                     |          |        |      |          |  |  |
| CO1                                                          |                                    |                                                                                    | types of es                                               |                        | and find                  | out the c      | mantity o         | of works        | involved            |          |        |      |          |  |  |
| CO2                                                          |                                    |                                                                                    | Prepare sp                                                |                        |                           |                |                   |                 |                     |          |        |      |          |  |  |
| CO2<br>CO3                                                   |                                    |                                                                                    | ortgage, lea                                              |                        |                           |                |                   |                 | II WOIK5            |          |        |      |          |  |  |
| CO4                                                          |                                    |                                                                                    |                                                           |                        | -                         | -              | nd sanitary       | works           |                     |          |        |      |          |  |  |
| CO5                                                          |                                    | -                                                                                  | -                                                         |                        |                           | suppry         | na sumary         | WOIRD           |                     |          |        |      |          |  |  |
|                                                              | -                                  | ry out analysis of rates and bill preparation Outcomes with Program Outcomes (POs) |                                                           |                        |                           |                |                   |                 |                     |          |        |      |          |  |  |
| COs/POs                                                      | PO1                                | PO2                                                                                | PO3                                                       | PO4                    | PO5                       | PO6            | PO7               | PO8             | PO9                 | PO10     | PO11   | PO   | 12       |  |  |
| CO1                                                          | 3                                  | 3                                                                                  | 3                                                         | 3                      | 1                         | 1              | 1                 | 1               | 1                   | 1        | 3      |      | 3        |  |  |
| CO2                                                          | 3                                  | 3                                                                                  | 3                                                         | 3                      | 1                         | 1              | 1                 | 1               | 1                   | 1        | 3      |      | 3        |  |  |
| CO3                                                          | 3                                  | 3                                                                                  | 3                                                         | 3                      | 1                         | 1              | 1                 | 1               | 1                   | 1        | 3      |      | 3        |  |  |
| CO4                                                          | 3                                  | 3                                                                                  | 3                                                         | 3                      | 1                         | 1              | 1                 | 1               | 1                   | 1        | 3      |      | 3        |  |  |
| CO5                                                          | 3                                  | 3                                                                                  | 3                                                         | 3                      | 1                         | 1              | 1                 | 1               | 1                   | 1        | 3      |      | 3        |  |  |
| COs / PSOs                                                   | PS                                 | 501                                                                                | PSC                                                       | 52                     | T                         |                |                   |                 |                     |          |        |      |          |  |  |
| CO1                                                          |                                    | 3                                                                                  | 3                                                         |                        | T                         |                |                   |                 |                     |          |        |      |          |  |  |
| CO2                                                          |                                    | 3                                                                                  | 3                                                         |                        |                           |                |                   |                 |                     |          |        |      |          |  |  |
| CO3                                                          |                                    | 3                                                                                  | 3                                                         |                        |                           |                |                   |                 |                     |          |        |      |          |  |  |
| CO4                                                          |                                    | 3                                                                                  | 3                                                         |                        | <u> </u>                  |                |                   |                 |                     |          |        |      |          |  |  |
| CO5                                                          |                                    | 3                                                                                  | 3                                                         |                        |                           |                |                   |                 |                     |          |        |      |          |  |  |
| 3/2/1 Indicates S                                            | Strength                           | 1 Of Cor                                                                           | relation, 3                                               | – High,                | 2- Media                  | um, 1- L       | ow                | 1 1             |                     | 1        |        |      |          |  |  |
| Category                                                     | Basic Sciences                     | Engineering Sciences                                                               | Humanities and Social<br>Sciences                         | Program Core           | Program Electives         | Open Electives | Interdisciplinary | Skill component | Practical / Project |          |        |      |          |  |  |
| -                                                            |                                    | -                                                                                  | -                                                         | $\checkmark$           | -                         |                |                   |                 |                     |          |        |      |          |  |  |
| L                                                            |                                    |                                                                                    |                                                           |                        |                           |                |                   |                 |                     |          |        |      |          |  |  |

| Subject Code: | Subject Name:<br>ESTIMATION AND QUANTITY SURVEYING                                              | Ty / LB/<br>ETL/IE | L | T / S.Lr | <b>P/ R</b> | С |
|---------------|-------------------------------------------------------------------------------------------------|--------------------|---|----------|-------------|---|
| EBCE22013     | Prerequisite: None                                                                              | Ту                 | 3 | 1/0      | 0/0         | 4 |
|               | rial SLr : Supervised Learning P : Project R : Research C: Credit<br>ab/Embedded Theory and Lab | S                  |   |          |             |   |

#### UNIT I **ESTIMATION**

Types of estimates- units of measurements-methods of estimates - advantages- estimation of load bearing and framed structures -estimate of quantities in residential building- calculation of quantities of brick work, RCC, PCC, white washing ,color washing and painting / varnishing - calculation of brick work and RCC works in arches - estimate of joineries for paneled and glazed doors ,windows, ventilators, handrails etc.

#### **UNIT II** ESTIMATE OF OTHER STRUCTURES

Estimating of septic tank, soak pit – Sanitary and water supply installations – Water supply pipe line – Sewer line - Tube well - Open well - Estimate of bituminous and cement concrete roads-estimation of retaining walls and culverts.

#### UNIT III SPECIFICATIONS AND TENDERS

Data -schedule of rates- analysis of rates-specifications-sources-detailed and general specifications - tenders- etender contracts- contracts types- preparation of tender notice and documents-arbitration and legal requirements

#### **UNIT IV** VALUATION

Necessity - basics of value engineering -capitalized value - depreciation and its methods - escalation \_ value of building - calculation of standard rent - mortgage- lease.

#### UNIT V **REPORT PREPARATION AND CASH FLOW**

Principle of report preparation – report on estimate of residential building- commercial building -culvert – roads - water supply and sanitary installations - tube wells - open wells.

### Total No of Hrs: 60

### TEXT BOOKS

- 1. B.N.Dutta, Estimating And Costing In Civil Engineering -UBS publishers and distribution Pvt Ltd, 2003.
- Mr. B.Kanagasabapathy, M/S. Ehilalarasi Kanagasabapathy, Practical Valuation Vol I, Thiruchirappalli, 2. 1995.
- Kohl, D.D and Kohli, R.C., "A Text Book of Estimating and Costing (Civil)", S.Chand & amp; 3. CompanyLtd., 2004.
- Rangwala, "Estimating, Costing and Valuation", Charotar Publishing House Pvt Ltd., 2012. 4.

#### REFERENCES

- 1. G.S.Birdie, A Text Book On Estimating And Costing, Dhanpat Rai And Sons, New Delhi, 1995.
- 2. Mr. B.Kanagasabapathy, M/S. Ehilalarasi Kanagasabapathy, Fixation of Fair Rent, Thiruchirappalli, 1995.

# 12 Hrs

**12 Hrs** 

12 Hrs

## 12 Hrs

| Subject Code:      | Su             | bject Nai                                                                                                                                                       | me :                              |              |                   |                |                   |                 | Ty / LB/                       | L         | T/S.Lr    | <b>P/ R</b>  | С     |  |
|--------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------|-------------------|----------------|-------------------|-----------------|--------------------------------|-----------|-----------|--------------|-------|--|
| Subject Cour.      |                |                                                                                                                                                                 | DRTATIO                           | N ENGI       | NEERI             | NG             |                   |                 | Ty / LD/<br>ETL/IE             |           | 1 / 0.11  | 1/1          |       |  |
| EBCE22015          |                |                                                                                                                                                                 |                                   |              |                   |                |                   |                 |                                |           |           |              |       |  |
|                    |                | -                                                                                                                                                               | : Soil Mech                       |              | • •               |                |                   |                 | Ту                             | 3         | 0/0       | 0/0          | 3     |  |
| L : Lecture T : T  |                |                                                                                                                                                                 |                                   |              | P : Proje         | ct R : Re      | esearch C         | C: Credits      | 8                              | •         |           |              |       |  |
| T/L/ETL : Theorem  | ry/Lab/E       | mbedded                                                                                                                                                         | l Theory ar                       | nd Lab       |                   |                |                   |                 |                                |           |           |              |       |  |
| <b>OBJECTIVE</b> : |                |                                                                                                                                                                 |                                   |              |                   |                |                   |                 |                                |           |           |              |       |  |
|                    |                | the aspec                                                                                                                                                       | ts of desig                       | n, constru   | uction an         | d mainte       | nance of          | tracks fo       | or the safe a                  | nd effici | ent movem | ent of p     | ublic |  |
| and go             |                |                                                                                                                                                                 | 1.1                               |              |                   |                | of II: also       |                 |                                | 1 1       |           | <b>-</b> 1 1 | -     |  |
|                    |                |                                                                                                                                                                 |                                   |              |                   |                |                   |                 | ort, docks, i<br>till the succ |           |           |              | e.    |  |
| COURSE OUT         |                |                                                                                                                                                                 |                                   | eenie pro    |                   | gint monin .   |                   | incation        |                                | essiul se |           | le saine     |       |  |
| CO1                |                | , ,                                                                                                                                                             |                                   | lanning (    | design c          | onstructio     | on of hig         | hway ra         | ilway, airpo                   | ort and d | ocks      |              |       |  |
| <u>CO1</u>         |                | -                                                                                                                                                               | • •                               | -            | -                 |                |                   | •               |                                |           |           | Airport      | and   |  |
| 02                 | -              | Ability to understand planning, construction and maintenance aspects of highways, Railways, Airports and Harbor                                                 |                                   |              |                   |                |                   |                 |                                |           |           |              |       |  |
| CO3                |                | bility to take up challenging practical problems and find solution by formulating proper methodology                                                            |                                   |              |                   |                |                   |                 |                                |           |           |              |       |  |
|                    | •              | bility to take up challenging practical problems and find solution by formulating proper methodology<br>nalyze the geometric aspects to plan the shortest route |                                   |              |                   |                |                   |                 |                                |           |           |              |       |  |
| CO4                | •              |                                                                                                                                                                 |                                   |              |                   |                |                   |                 |                                |           |           |              |       |  |
| CO5                |                | Evaluate the requirements for construction of docks and harbors<br>se Outcomes with Program Outcomes (POs)                                                      |                                   |              |                   |                |                   |                 |                                |           |           |              |       |  |
|                    | -              |                                                                                                                                                                 | 0                                 |              |                   |                |                   |                 |                                |           |           |              |       |  |
| COs/POs            | PO1            | PO2                                                                                                                                                             | PO3                               | PO4          | PO5               | PO6            | PO7               | PO8             | PO9                            | PO10      | PO11      | PO           | 12    |  |
| CO1                | 3              | 3                                                                                                                                                               | 3                                 | 3            | 2                 | 3              | 1                 | 1               | 1                              | 1         | 3         |              | 3     |  |
| CO2                | 3              | 3                                                                                                                                                               | 3                                 | 3            | 2                 | 3              | 1                 | 1               | 1                              | 1         | 3         |              | 3     |  |
| CO3                | 3              | 3                                                                                                                                                               | 3                                 | 3            | 2                 | 3              | 1                 | 1               | 1                              | 1         | 3         |              | 3     |  |
| CO4                | 3              | 3                                                                                                                                                               | 3                                 | 3            | 2                 | 3              | 1                 | 1               | 1                              | 1         | 3         |              | 3     |  |
| CO5                | 3              | 3                                                                                                                                                               | 3                                 | 3            | 2                 | 3              | 1                 | 1               | 1                              | 1         | 3         |              | 3     |  |
| COs / PSOs         | PS             | 01                                                                                                                                                              | PSC                               |              |                   |                |                   |                 |                                |           |           |              |       |  |
| CO1                |                | 3                                                                                                                                                               | 3                                 |              |                   |                |                   |                 |                                |           |           |              |       |  |
| CO2                |                | 3                                                                                                                                                               | 3                                 |              |                   |                |                   |                 |                                |           |           |              |       |  |
| CO3                |                | 3                                                                                                                                                               | 3                                 |              |                   |                |                   |                 |                                |           |           |              |       |  |
| CO4                |                | 3                                                                                                                                                               | 3                                 |              |                   |                |                   |                 |                                |           |           |              |       |  |
| CO5                |                | 3                                                                                                                                                               | 3                                 |              |                   |                |                   |                 |                                |           |           |              |       |  |
| 3/2/1 Indicates    | Strength       | n Of Cori                                                                                                                                                       | relation, 3                       | – High,      | 2- Medi           | um, 1- L       | ow                | <u>г г</u>      |                                |           |           |              |       |  |
| Category           | Basic Sciences | Engineering Sciences                                                                                                                                            | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project            |           |           |              |       |  |
|                    |                |                                                                                                                                                                 |                                   | $\checkmark$ |                   |                |                   |                 |                                |           |           |              |       |  |

| Subject Code:<br>EBCE22015 | Subject Name :<br>TRANSPORTATION ENGINEERING                                                     | Ty / LB/<br>ETL/IE | L | T / S.Lr | P/ R | C |
|----------------------------|--------------------------------------------------------------------------------------------------|--------------------|---|----------|------|---|
|                            | Prerequisite: Soil Mechanics, Surveying                                                          | Ту                 | 3 | 0/0      | 0/0  | 3 |
|                            | rial SLr : Supervised Learning P : Project R : Research C: Credit<br>.ab/Embedded Theory and Lab | S                  |   |          |      |   |

#### **UNIT I : HIGHWAY PLANNING AND ALIGNMENT**

Significance of highway planning -History of road development in India - Classification of highways -Locations and functions - Factors influencing highway alignment - Soil suitability analysis - Engineering surveys for alignment, objectives, conventional and modern methods.

#### **UNIT II: GEOMETRIC DESIGN OF HIGHWAYS**

Typical cross sections of Urban and Rural roads - Cross sectional elements - Sight distances - Horizontal curves, Super elevation, transition curves, widening at curves - Vertical curves - Gradients, Special consideration for hill roads - Hairpin bends - Lateral and vertical clearance at underpasses.

#### UNITIII: RAILWAYS PLANNING CONSTRUCTION AND MAINTENANCE

Elements of permanent way - Rails, Sleepers, Ballast, rail fixtures and fastenings, - Track Stress, coning of wheels, creep in rails, defects in rails - Geometric design of railways, gradient, super elevation, widening of gauge on curves- Points and Crossings. Tunneling Methods, drainage and ventilation -Calculation of Materials required for track laying - Construction and maintenance of tracks - Modern methods of construction & maintenance

#### **UNIT IV: AIRPORT PLANNING & DESIGN**

Airport planning, components of airports, airport site selection Runway design- orientation, geometric design and correction for gradients Terminal area, airport layout, airport buildings, passenger facilities, parking area and airport zoning

#### **UNIT V: HARBOUR ENGINEERING**

Definition of terms - harbors, ports, docks, tides and waves. Harbors - requirements, classification - site investigation for locations, planning and layouts Terminal facilities - port buildings, warehouse, transit sheds, inter-modal transfer facilities, mooring accessories, navigational aids coastal structures piers, breakwaters, wharves, jetties, quays.

#### **Total No of Hrs: 45**

#### **TEXT BOOKS**

- Saxena Subhash C and Satyapal Arora, A Course In Railway Engineering, Dhanpat Rai And Sons, Delhi, 1. 1998.
- 2. Khanna S K, Arora M G and Jain S S, Airport Planning And Design, Nemchand And Brothers, Roorkee, 1994.
- 3. Khanna K And Justo C E G, Highway Engineering, Khanna Publishers, Roorkee, 2001.
- Kadiyali l r, Principles and Practice of Highway Engineering, Khanna technical Publications, Delhi 4.
- Dr K.P.Subramaniyam, Transportation Engineering, Scitech Publishers, Chennai 2003 5.

## REFERENCES

- 1. IRC standards, 2002
- 2. Bureau of Indian Standards (bis) publications on highway materials, 1998
- 3. Rangwala, Railway Engineering, Charotar Publishing House, Mumbai, 1995

#### 9 Hrs

#### 8 Hrs

#### 9 Hrs

**10 Hrs** 

| Subject Code:<br>EBCE22L04 |                | S                                                                                                                                                          | ubject Nai                        | me : AU'     | TOCAD             | D labora       | ntory               |                 | Ty/<br>Lb/<br>ETL/IE | L            | T / S.Lr     | P/ R | C |
|----------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------|-------------------|----------------|---------------------|-----------------|----------------------|--------------|--------------|------|---|
|                            | Pre            | requisite                                                                                                                                                  | : Nil                             |              |                   |                |                     |                 | Lb                   | 0            | 0/0          | 3/0  | 1 |
| L : Lecture T : 7          | Tutorial       | SLr : Su                                                                                                                                                   | pervised L                        | earning      | P : Proje         | ct R : Re      | esearch C           | C: Credit       | 8                    |              |              | •    |   |
| T/L/ETL : Theo             | ory/Lab/E      | Embedded                                                                                                                                                   | l Theory ar                       | id Lab       |                   |                |                     |                 |                      |              |              |      |   |
| OBJECTIVE :<br>COURSE OUT  |                |                                                                                                                                                            |                                   | an appre     | eciation of       | of the cap     | abilities           | and limi        | tations of th        | ne AutoC     | CAD progra   | ım.  |   |
| COURSE OUT                 |                |                                                                                                                                                            |                                   | d alayat     | ion for us        | miona atr      | noturos             |                 |                      |              |              |      |   |
| CO1<br>CO2                 |                | Draw plan, section and elevation for various structures           Understand geometric construction and basic commands in Autocad                          |                                   |              |                   |                |                     |                 |                      |              |              |      |   |
|                            |                |                                                                                                                                                            |                                   |              |                   |                |                     |                 |                      |              |              |      |   |
| CO3                        |                | Prepare the building plans satisfying the principles of planning and byelaws.                                                                              |                                   |              |                   |                |                     |                 |                      |              |              |      |   |
| CO4                        |                | Prepare detailed working drawings of doors, windows, roof trusses and staircases<br>Ability to manipulate drawings through editing and plotting techniques |                                   |              |                   |                |                     |                 |                      |              |              |      |   |
| CO5                        |                |                                                                                                                                                            |                                   |              |                   |                | and plott           | ing tech        | niques               |              |              |      |   |
| Mapping of Co              |                |                                                                                                                                                            |                                   |              | · · ·             |                | <b>D</b> O <b>F</b> | DOG             | DOA                  | <b>D</b> 010 | <b>D</b> 011 | DO   |   |
| COs/POs                    | PO1            | PO2                                                                                                                                                        | PO3                               | PO4          | PO5               | PO6            | <b>PO7</b>          | <b>PO8</b>      | PO9                  | PO10         | PO11         | PO   |   |
| CO1                        | 3              | 2                                                                                                                                                          | 3                                 | 2            | 3                 | 3              | 1                   | 2               | 3                    | 1            | 1            |      | 3 |
| CO2                        | 3              | 2                                                                                                                                                          | 3                                 | 2            | 3                 | 3              | 1                   | 2               | 3                    | 1            | 1            |      | 3 |
| CO3                        | 3              | 2                                                                                                                                                          | 3                                 | 2            | 3                 | 3              | 1                   | 2               | 3                    | 1            | 1            |      | 3 |
| CO4                        | 3              | 2                                                                                                                                                          | 3                                 | 2            | 3                 | 3              | 1                   | 2               | 3                    | 1            | 1            |      | 3 |
| CO5                        | 3              | 2                                                                                                                                                          | 3                                 | 2            | 3                 | 3              | 1                   | 2               | 3                    | 1            | 1            |      | 3 |
| COs / PSOs                 |                | 501                                                                                                                                                        | PSC                               |              |                   |                |                     |                 |                      |              |              |      |   |
| CO1                        |                | 3                                                                                                                                                          | 3                                 |              |                   |                |                     |                 |                      |              |              |      |   |
| CO2                        |                | 3                                                                                                                                                          | 3                                 |              |                   |                |                     |                 |                      |              |              |      |   |
| CO3                        |                | 3                                                                                                                                                          | 3                                 |              |                   |                |                     |                 |                      |              |              |      |   |
| CO4                        |                | 3                                                                                                                                                          | 3                                 |              |                   |                |                     |                 |                      |              |              |      |   |
| CO5                        |                | 3                                                                                                                                                          | 3                                 |              |                   |                |                     |                 |                      |              |              |      |   |
| 3/2/1 Indicates            | Strengtl       | n Of Cor                                                                                                                                                   | relation, 3                       | – High,      | 2- Medi           | um, 1- L       | ow                  |                 |                      |              |              |      |   |
| Category                   | Basic Sciences | Engineering Sciences                                                                                                                                       | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Interdisciplinary   | Skill component | Practical / Project  |              |              |      |   |
|                            |                |                                                                                                                                                            |                                   | $\checkmark$ |                   |                |                     |                 | ✓                    |              |              |      |   |

| Subject Code:<br>EBCE22L04                                                                                                             | Subject Name : AUTOCADD laboratory | Ty/<br>Lb/<br>ETL/IE | L | T / S.Lr | P/ R | С |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------|---|----------|------|---|--|--|--|
|                                                                                                                                        | Prerequisite: Nil                  | Lb                   | 0 | 0/0      | 3/0  | 1 |  |  |  |
| L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits<br>T/L/ETL : Theory/Lab/Embedded Theory and Lab |                                    |                      |   |          |      |   |  |  |  |

#### EXPERIMENTS

- Learn and use basic AutoCAD commands manage drawing using layers, colour and line types complete basic cad drawings, with borders, text and dimensions use and edit text and text styles Method of scales in various drawing understand and the use of blocks.
- 2. Development of line plan for residential building. one for single storied building
- 3. Development of line plan for residential building. one for two storied building
- 4. Submission drawing for residential building including its planning and with area and parking statements and all other details as per the norms and local bye-laws.
- 5. Industrial buildings with roof truss.
- 6. To draw the 3D view of residential building.

#### **Total No of Hrs: 45**

#### **TEXT BOOKS**

- 1. Civil Engg. Drawing & House planning B.P.Verma, Khanna publishers, Delhi, 1990
- 2. Building drawing & detailing Dr. Balagopal & T.S.Prabhu, Spades publishers, Calicut, 1989.

#### REFERENCES

- 1. Building drawing Shah, Tata McGraw-Hill, New Delhi, 2000.
- 2. Building planning & drawing Dr. N.Kumaraswamy, A.Kameswara Rao, Charotar publishing house. Mumbai, 1997.
- 3. Shah, Kale and Patki, Building drawing, Tata McGraw-Hill New Delhi,,1998.

| Subject Code:<br>EBCE22L09   | Su             | bject Nan                                                   | ne: Struct                        | ural des     | ign studi         | 0              |                   |                 | Ty / LB/<br>ETL/IE  | L    | T / S.Lr | P/ R     | C  |  |
|------------------------------|----------------|-------------------------------------------------------------|-----------------------------------|--------------|-------------------|----------------|-------------------|-----------------|---------------------|------|----------|----------|----|--|
|                              | Pre            | erequisite                                                  | : Structural                      | l Analysi    | S                 |                |                   |                 | Lb                  | 0    | 0/0      | 3/0      | 1  |  |
| L : Lecture T :              | Tutorial       | SLr : Su                                                    | pervised L                        | earning      | P : Proje         | ct R : Re      | esearch C         | C: Credit       | s                   |      |          |          |    |  |
| T/L/ETL : The                | ory/Lab/E      | Embedded                                                    | l Theory ar                       | nd Lab       |                   |                |                   |                 |                     |      |          |          |    |  |
| <b>OBJECTIVE</b><br>• Studer |                | he aware                                                    | of comput                         | er applic    | ation of s        | tructural      | design            |                 |                     |      |          |          |    |  |
| COURSE OU                    |                |                                                             |                                   | or uppire    | diton or .        | u uerara.      | uesign            |                 |                     |      |          |          |    |  |
| CO1                          |                |                                                             | oretical for                      | mulas by     | v conduct         | ing expe       | riments           |                 |                     |      |          |          |    |  |
| CO2                          | A              | nalyze st                                                   | atically de                       | terminate    | e beams, t        | trusses        |                   |                 |                     |      |          |          |    |  |
| CO3                          | E              | Develop projects based on industrial and field requirements |                                   |              |                   |                |                   |                 |                     |      |          |          |    |  |
| CO4                          | Γ              | Determine                                                   | deflection                        | s of bean    | ns and fra        | ames usir      | ng classic        | cal metho       | ods                 |      |          |          |    |  |
| CO5                          | A              | analyze th                                                  | e bridge de                       | ecks for 1   | moving lo         | oads           |                   |                 |                     |      |          |          |    |  |
| Mapping of Co                | ourse Ou       | itcomes v                                                   | vith Progr                        | am Outo      | comes (P          | Os)            |                   |                 |                     |      |          |          |    |  |
| COs/POs                      | PO1            | PO2                                                         | PO3                               | PO4          | PO5               | PO6            | <b>PO7</b>        | PO8             | <b>PO9</b>          | PO10 | PO11     | PO       | 12 |  |
| CO1                          | 3              | 3                                                           | 3                                 | 3            | 3                 | 3              | 1                 | 2               | 3                   | 1    | 3        |          | 3  |  |
| CO2                          | 3              | 3                                                           | 3                                 | 3            | 3                 | 3              | 1                 | 2               | 3                   | 1    | 3        |          | 3  |  |
| CO3                          | 3              | 3                                                           | 3                                 | 3            | 3                 | 3              | 1                 | 2               | 3                   | 1    | 3        |          | 3  |  |
| CO4                          | 3              | 3                                                           | 3                                 | 3            | 3                 | 3              | 1                 | 2               | 3                   | 1    | 3        |          | 3  |  |
| CO5                          | 3              | 3                                                           | 3                                 | 3            | 3                 | 3              | 1                 | 2               | 3                   | 1    | 3        |          | 3  |  |
| COs / PSOs                   | PS             | 501                                                         | PS                                | 02           |                   |                |                   |                 |                     |      |          |          |    |  |
| CO1                          |                | 3                                                           | 3                                 |              |                   |                |                   |                 |                     |      |          |          |    |  |
| CO2                          |                | 3                                                           | 3                                 |              |                   |                |                   |                 |                     |      |          |          |    |  |
| CO3                          |                | 3                                                           | 3                                 |              |                   |                |                   |                 |                     |      |          |          |    |  |
| CO4                          |                | 3                                                           | 3                                 |              |                   |                |                   |                 |                     |      |          |          |    |  |
| CO5                          |                | 3                                                           | 3                                 |              |                   |                |                   |                 |                     |      |          |          |    |  |
| 3/2/1 Indicates              | Strengt        | h <u>Of</u> Cor                                             | relation, 3                       | – High,      | 2- Medi           | um, 1- L       | ow                |                 |                     |      |          | <u> </u> |    |  |
| Category                     | ences          | Sciences                                                    | ıd Social<br>es                   | Core         | ectives           | ctives         | linary            | oonent          | Project             |      |          |          |    |  |
|                              | Basic Sciences | Engineering Sciences                                        | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project |      |          |          |    |  |
|                              |                |                                                             |                                   | $\checkmark$ |                   |                |                   |                 | $\checkmark$        |      |          |          |    |  |
|                              |                |                                                             |                                   |              |                   |                |                   |                 |                     | 1    |          |          |    |  |

| Subject Code:<br>EBCE22L09 | Subject Name: Structural design studio                                                          | Ty / LB/<br>ETL/IE | L | T / S.Lr | P/ R | С |
|----------------------------|-------------------------------------------------------------------------------------------------|--------------------|---|----------|------|---|
|                            | Prerequisite: Structural Analysis                                                               | Lb                 | 0 | 0/0      | 3/0  | 1 |
|                            | rial SLr : Supervised Learning P : Project R : Research C: Credit<br>ab/Embedded Theory and Lab | S                  |   |          |      |   |

#### LIST OF EXPERIMENTS

- 1. Program for Design of Slabs. Using Excel
- 2. Program for Design of Beams. Using Excel
- 3. Program for Design of Column and Footing Using Excel
- 4. Introduction to staad pro Joint, Member/Element, Mesh Generation with flexible user-controlled numbering
- 5. Analyse and design any beam with any loading type and any kind of supports.
- 6. Analyse and design of any 2D Frame with any loading type for any load sets.
- 7. Portal frame with 5 load combinations- Analysis
- 8. Analyse steel structures with truss elements.

#### **Total No of Hrs: 45**

#### **TEXT BOOKS**

- 1. N.Krishna Raju "Design of Reinforced Concrete Structures", CBS publishers & Distributors. Latest Edition, IS456:200.
- 2. S.Ramamrudham ,Design of Reinforced Concrete Structures, Dhanpat Rai publishing company(p) Ltd New Delhi.
- 3. Varghese P C, Limit State Design of Reinforced Concrete, Prentice Hal of India, Private, Limited New Delhi, 1997.
- 4. Bhavikatti.S.S, "Design of Steel Structures" By Limit State Method as per IS:800–2007, IK International Publishing House Pvt. Ltd., 2009
- 5. Duggal. S.K, "Limit State Design of Steel Structures", Tata McGraw Hill Publishing Company, 2005

#### REFERENCES

- 1. Dayarathnam.P, Brick and Reinforced Brick Structures, Oxford and IBH Publishing House, 1999.
- 2. IS: 456- 2000 "Indian Standard for Plain and reinforced concrete code of practice "Bureau of Indian Standard".
- 3. Design aids to IS 456-1978 (SP16).
- 4. SP 34 Handbook on Concrete Reinforcement and Detailing, BIS 1987.
- 5. IS 800 :2007, General Construction In Steel Code of Practice, (Third Revision), Bureau of Indian Standards, New Delhi, 2007
- 6. Narayanan.R.et.al. "Teaching Resource on Structural Steel Design", INSDAG, Ministry of Steel Publications, 2002

# **VI SEMESTER**

| Subject Code:   | Sul            | bject Nar                                                                                                                                                                                                                     | ne:                            |              |                   |                |                   |                 | Ty / LB/            | L        | T/S.Lr      | <b>P</b> / <b>R</b> | C  |
|-----------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------|-------------------|----------------|-------------------|-----------------|---------------------|----------|-------------|---------------------|----|
|                 |                |                                                                                                                                                                                                                               | CONSTR                         | UCTIO        | N MANA            | GEME           | NT                |                 | ETL/IE              |          |             |                     |    |
| EBCE22014       |                |                                                                                                                                                                                                                               |                                |              |                   |                |                   |                 |                     |          |             |                     |    |
|                 | Pre            | erequisite                                                                                                                                                                                                                    | : NONE                         |              |                   |                |                   |                 | Ту                  | 3        | 1/0         | 0/0                 | 4  |
| L : Lecture T : | Tutorial       | SLr : Su                                                                                                                                                                                                                      | pervised L                     | earning      | P : Proje         | ct R : R       | esearch C         | C: Credit       | s                   |          |             | •                   |    |
| T/L/ETL : The   | ory/Lab/E      | Embeddec                                                                                                                                                                                                                      | l Theory ar                    | nd Lab       |                   |                |                   |                 |                     |          |             |                     |    |
| OBJECTIVE       | :              |                                                                                                                                                                                                                               |                                |              |                   |                |                   |                 |                     |          |             |                     |    |
|                 |                | idents aw                                                                                                                                                                                                                     | are of the                     | various c    | onstructio        | on techni      | ques and          | practice        | es.                 |          |             |                     |    |
|                 |                |                                                                                                                                                                                                                               | of projects                    |              |                   |                | 1                 | I               |                     |          |             |                     |    |
| COURSE OU       |                |                                                                                                                                                                                                                               |                                |              |                   |                |                   |                 |                     |          |             |                     |    |
| CO1             | The stuc       | lent shou                                                                                                                                                                                                                     | ld be able t                   | o plan co    | onstructio        | on projec      | ts, sched         | ule the a       | ctivities usin      | ng netwo | ork diagran | ıs                  |    |
| CO2             | Determi        | the student should be able to plan construction projects, schedule the activities using network diagrams<br>etermine the cost of the project, control the cost of the project by creating cash flows and budgeting and to use |                                |              |                   |                |                   |                 |                     |          |             |                     |    |
|                 | the proje      | e project information as decision making tool                                                                                                                                                                                 |                                |              |                   |                |                   |                 |                     |          |             |                     |    |
| CO3             | Knowle         | owledge about different methods of planning                                                                                                                                                                                   |                                |              |                   |                |                   |                 |                     |          |             |                     |    |
| CO4             | Analyze        | yze construction documents for planning and management of construction processes                                                                                                                                              |                                |              |                   |                |                   |                 |                     |          |             |                     |    |
| CO5             | Apply e        | lectronic                                                                                                                                                                                                                     | based tech                     | nology to    | o manage          | the cons       | struction         | process         |                     |          |             |                     |    |
| Mapping of C    | ourse Ou       | tcomes v                                                                                                                                                                                                                      | vith Progr                     | am Outo      | comes (P          | Os)            |                   |                 |                     |          |             |                     |    |
| COs/POs         | PO1            | PO2                                                                                                                                                                                                                           | PO3                            | PO4          | PO5               | PO6            | PO7               | PO8             | PO9                 | PO10     | PO11        | PO                  | 12 |
| CO1             | 3              | 3                                                                                                                                                                                                                             | 3                              | 3            | 3                 | 3              | 1                 | 1               | 1                   | 2        | 3           |                     | 3  |
| CO2             | 3              | 3                                                                                                                                                                                                                             | 3                              | 3            | 3                 | 3              | 1                 | 1               | 1                   | 2        | 3           |                     | 3  |
| CO3             | 3              | 3                                                                                                                                                                                                                             | 3                              | 3            | 3                 | 3              | 1                 | 1               | 1                   | 2        | 3           |                     | 3  |
| CO4             | 3              | 3                                                                                                                                                                                                                             | 3                              | 3            | 3                 | 3              | 1                 | 1               | 1                   | 2        | 3           |                     | 3  |
| CO5             | 3              | 3                                                                                                                                                                                                                             | 3                              | 3            | 3                 | 3              | 1                 | 1               | 1                   | 2        | 3           |                     | 3  |
| COs / PSOs      | PS             | 501                                                                                                                                                                                                                           | PSO                            | 02           |                   |                |                   |                 |                     |          |             |                     |    |
| CO1             |                | 3                                                                                                                                                                                                                             | 3                              |              |                   |                |                   |                 |                     |          |             |                     |    |
| CO2             |                | 3                                                                                                                                                                                                                             | 3                              |              |                   |                |                   |                 |                     |          |             |                     |    |
| CO3             |                | 3                                                                                                                                                                                                                             | 3                              |              |                   |                |                   |                 |                     |          |             |                     |    |
| CO4             |                | 3                                                                                                                                                                                                                             | 3                              |              |                   |                |                   |                 |                     |          |             |                     |    |
| CO5             |                | 3                                                                                                                                                                                                                             | 3                              |              |                   |                |                   |                 |                     |          |             |                     |    |
| 3/2/1 Indicates | s Strengtl     | h Of Cor                                                                                                                                                                                                                      | relation, 3                    | – High,      | 2- Medi           | um, 1- L       | ow                |                 |                     |          |             |                     |    |
|                 |                |                                                                                                                                                                                                                               |                                |              |                   |                |                   |                 |                     |          |             |                     |    |
|                 |                | es                                                                                                                                                                                                                            | cial                           |              |                   |                |                   |                 |                     |          |             |                     |    |
|                 | es             |                                                                                                                                                                                                                               | Soc                            | e            | ives              | es             | ary               | ent             | ject                |          |             |                     |    |
| Category        | ence           | Scie                                                                                                                                                                                                                          | es                             | Col          | ecti              | ctiv           | lina              | one             | Pro                 |          |             |                     |    |
|                 | Sci            | ng                                                                                                                                                                                                                            | ities and<br>Sciences          | am           | ı El              | Ele            | scip              | łmc             | u/]                 |          |             |                     |    |
|                 | Basic Sciences | eeri                                                                                                                                                                                                                          | nitie<br>Sci                   | Program Core | ran               | Open Electives | rdi               | Skill component | tice                |          |             |                     |    |
|                 | Ba             | Engineering Scienc                                                                                                                                                                                                            | Humanities and Soc<br>Sciences | $P_{r_{t}}$  | Program Electives | Op             | Interdisciplinary | Skij            | Practical / Project |          |             |                     |    |
|                 |                | En                                                                                                                                                                                                                            | Hur                            |              | P P               |                |                   |                 | ц                   |          |             |                     |    |
|                 |                |                                                                                                                                                                                                                               |                                |              |                   |                |                   |                 |                     |          |             |                     |    |
|                 |                |                                                                                                                                                                                                                               |                                |              |                   |                |                   |                 |                     |          |             |                     |    |
|                 |                |                                                                                                                                                                                                                               |                                | $\checkmark$ |                   |                |                   |                 |                     |          |             |                     |    |

| Subject Code:<br>EBCE22014 | Subject Name:<br>CONSTRUCTION MANAGEMENT                          | Ty / LB/<br>ETL/IE | L | T / S.Lr | P/ R | С |
|----------------------------|-------------------------------------------------------------------|--------------------|---|----------|------|---|
|                            | Prerequisite: NONE                                                | Ту                 | 3 | 1/0      | 0/0  | 4 |
| L : Lecture T : Tuto       | rial SLr : Supervised Learning P : Project R : Research C: Credit | S                  |   |          |      |   |
| T/L/ETL : Theory/L         | ab/Embedded Theory and Lab                                        |                    |   |          |      |   |

#### UNIT I NETWORK TECHNIQUES

Introduction to network techniques - Use of CPM and PERT for planning - Scheduling and control of construction work, bar charts Error in networks, Types of nodes and node numbering systems.

## UNIT II CONSTRUCTION PLANNING 12 Hrs

Basic concepts in the development of construction plan - Planning for construction and site facilities using networks - Preparation of construction schedules for jobs, materials, and equipment using CPM.

## UNIT III COST CONTROL OF CONSTRUCTION

Construction quality control and inspection - Significance of variability and estimation of risks - Construction cost control - Crashing of networks.

### UNIT IV QUALITY AND SAFETY DURING CONSTRUCTION 12 Hrs

Importance of Quality and safety – Organizing for quality and safety – safety measures – Prevention of fire at construction site – Elements and organization of quality - Quality assurance techniques.

#### UNIT V MANAGEMENT INFORMATION SYSTEM 12 Hrs

Definition of MIS – Requirement of MIS – Database approach – Types of project information – Accuracy and use of information.

#### **Total No of Hrs: 60**

12 Hrs

**12 Hrs** 

### TEXT BOOKS

- 1. Chitkara, K.K "Consruction Project Management Planning "Scheduling And Control, Tata Mc Graw Hill Publishing Co., Newdelhi, 1998.
- 2. S. Seetharaman Construction Engineering & Management, Dhanpat Rai Publications ,Pune,1995.

#### REFERENCES

- 1. Construction Management Sangareddy And Meyyappan, Prathibha Publications, Cbe, 1994.
- 2. Moder. J., C. Phillips And Davis, "Project Management With Cpm, Pert And Precedence Diagramming, 1999.
- 3. Prasanna Chandra, " Project Management ", Tmh ,New Delhi,1997.

| Subject Code:                       | S              | ubject Nan                                                         | ne: PROJ                                                                            | ЕСТ РН       | ASE-I             |                |                   |                 | Ty / LB/            | L           | T / S.Lr    | P/ R    | С     |  |
|-------------------------------------|----------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------|-------------------|----------------|-------------------|-----------------|---------------------|-------------|-------------|---------|-------|--|
| EBCE22I05                           |                |                                                                    |                                                                                     |              |                   |                |                   |                 | ETL/IE              |             |             |         |       |  |
|                                     |                | Prerequisite                                                       |                                                                                     |              |                   |                |                   |                 | IE                  | 0           | 0/0         | 3/3     | 2     |  |
| L : Lecture T : T<br>T/L/ETL : Theo |                |                                                                    |                                                                                     |              | P : Proje         | ct R : Re      | esearch C         | C: Credits      | 5                   |             |             |         |       |  |
| <b>OBJECTIVE</b> :                  |                |                                                                    |                                                                                     |              |                   |                |                   |                 |                     |             |             |         |       |  |
|                                     |                | students su                                                        | ch a way t                                                                          | hat the s    | tudents c         | arry out       | a compre          | ehensive        | work on th          | e chosei    | n topic whi | ch will | stand |  |
| them in                             | n good         | stead as the                                                       | ey face real                                                                        |              |                   | -              | -                 |                 |                     |             | -           |         |       |  |
| COURSE OUT                          |                |                                                                    |                                                                                     |              |                   |                |                   |                 |                     |             |             |         |       |  |
| CO1                                 |                | Work in a team and develop multidisciplinary, research skills      |                                                                                     |              |                   |                |                   |                 |                     |             |             |         |       |  |
| CO2                                 |                | Understand                                                         | erstand how to identify the issues and challenges of industry                       |              |                   |                |                   |                 |                     |             |             |         |       |  |
| CO3                                 |                | Prepare rep                                                        | are report on the application of emerging technologies in the Construction industry |              |                   |                |                   |                 |                     |             |             |         |       |  |
| CO4                                 |                | Explore in                                                         | plore innovative ideas in civil engineering design field                            |              |                   |                |                   |                 |                     |             |             |         |       |  |
| CO5                                 |                | Develop design projects based on industrial and field requirements |                                                                                     |              |                   |                |                   |                 |                     |             |             |         |       |  |
| Mapping of Co                       | ourse C        | Outcomes w                                                         | vith Progr                                                                          | am Outo      | comes (P          | Os)            |                   |                 |                     |             |             |         |       |  |
| COs/POs                             | PO1            | PO2                                                                | PO3                                                                                 | PO4          | PO5               | PO6            | PO7               | PO8             | PO9                 | <b>PO10</b> | PO11        | PO      | 12    |  |
| CO1                                 | 3              | 3                                                                  | 3                                                                                   | 3            | 3                 | 3              | 3                 | 3               | 3                   | 3           | 3           |         | 3     |  |
| CO2                                 | 3              | 3                                                                  | 3                                                                                   | 3            | 3                 | 3              | 3                 | 3               | 3                   | 3           | 3           |         | 3     |  |
| CO3                                 | 3              | 3                                                                  | 3                                                                                   | 3            | 3                 | 3              | 3                 | 3               | 3                   | 3           | 3           |         | 3     |  |
| CO4                                 | 3              | 3                                                                  | 3                                                                                   | 3            | 3                 | 3              | 3                 | 3               | 3                   | 3           | 3           |         | 3     |  |
| CO5                                 | 3              | 3                                                                  | 3                                                                                   | 3            | 3                 | 3              | 3                 | 3               | 3                   | 3           | 3           |         | 3     |  |
| COs / PSOs                          | ]              | PSO1                                                               | PSO                                                                                 | 02           |                   |                |                   |                 |                     |             |             |         |       |  |
| CO1                                 |                | 3                                                                  | 3                                                                                   |              |                   |                |                   |                 |                     |             |             |         |       |  |
| CO2                                 |                | 3                                                                  | 3                                                                                   |              |                   |                |                   |                 |                     |             |             |         |       |  |
| CO3                                 |                | 3                                                                  | 3                                                                                   |              |                   |                |                   |                 |                     |             |             |         |       |  |
| CO4                                 |                | 3                                                                  | 3                                                                                   |              |                   |                |                   |                 |                     |             |             |         |       |  |
| CO5                                 |                | 3                                                                  | 3                                                                                   |              |                   |                |                   |                 |                     |             |             |         |       |  |
| 3/2/1 Indicates                     | Streng         | gth Of Cor                                                         | relation, 3                                                                         | – High,      | 2- Medi           | um, 1- L       | ow                |                 |                     |             |             |         |       |  |
| Category                            | Basic Sciences | Engineering Sciences                                               | Humanities and Social<br>Sciences                                                   | Program Core | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project |             |             |         |       |  |
|                                     |                |                                                                    |                                                                                     | $\checkmark$ |                   |                |                   |                 | $\checkmark$        |             |             |         |       |  |

| Subject Code:<br>EBCE22I05 | Subject Name: PROJECT PHASE-I                                                                    | Ty / LB/<br>ETL/IE | L | T / S.Lr | <b>P/ R</b> | С |
|----------------------------|--------------------------------------------------------------------------------------------------|--------------------|---|----------|-------------|---|
|                            | Prerequisite: ALL                                                                                | IE                 | 0 | 0/0      | 3/3         | 2 |
|                            | rial SLr : Supervised Learning P : Project R : Research C: Credit<br>.ab/Embedded Theory and Lab | S                  |   |          |             |   |

Students are expected to do the Project in a group of 3 to 4 students. They should identify the area/topic of the Project and should collect the literatures related to the project. Students intending to do Industrial projects will approach the industries with the support of the university, identify the industrial problem and finalize the project. In case of Industrial projects apart from Industry guide, a guide has to be appointed by the department. At the end of the Semester the students should submit their Project Phase - I report to the Department and Viva -Voce examination will be conducted by the examiners duly appointed by the Head of the department.

#### **OBJECTIVE**

To guide the students such a way that the students carry out a comprehensive work on the chosen topic which will stand them in good stead as they face real life situations

- The project work is to enable the students to work in convenient groups of not more than four members in a group on a project involving theoretical and experimental studies related to civil engineering. Every project work shall have a guide who is a member of the faculty of the university.
- Each student shall finally produce a comprehensive report covering background information, literature survey, problem statement, project work details and conclusions. This final report shall be typewritten form as specified in the guidelines.
- The continuous assessment and semester evaluation may be carried out as specified in the guidelines to be issued from time to time.

Total No of Hrs: 45

# VII SEMESTER

| Subject Co<br>EBCC22ID |          | Sub                                                                                         | oject Nan | ne: TOTA      | L QUAI   | LITY MA           | ANAGE          | MENT              |                 | Ty / LB/<br>ETL/IE  | L        | T /<br>S.Lr | P/ 1   | R | С |
|------------------------|----------|---------------------------------------------------------------------------------------------|-----------|---------------|----------|-------------------|----------------|-------------------|-----------------|---------------------|----------|-------------|--------|---|---|
|                        |          | Pre                                                                                         | requisite | Nil           |          |                   |                |                   |                 | Ty                  | 3        | 0/0         | 0/0    |   | 3 |
| L : Lecture '          | T : Tuto |                                                                                             | -         |               | earning  | P : Proje         | ct R : Re      | esearch C         | : Credits       | •                   |          |             |        |   |   |
| T/L/ETL: T             | heory/   | Lab/E                                                                                       | mbedded   | l Theory an   | nd Lab   |                   |                |                   |                 |                     |          |             |        |   |   |
| OBJECTIV               | /E :     |                                                                                             |           |               |          |                   |                |                   |                 |                     |          |             |        |   |   |
| The studen             | t will l | earn:                                                                                       |           |               |          |                   |                |                   |                 |                     |          |             |        |   |   |
|                        | •        | To ac                                                                                       | quaint th | e students    | with the | basic con         | cept of 7      | Total Qua         | lity (TQ        | )                   |          |             |        |   |   |
|                        |          |                                                                                             |           | the custon    | -        |                   | -              | -                 | -               | •                   |          |             |        |   |   |
|                        |          | -                                                                                           |           |               |          | - •               |                | •                 |                 | O 9000 and          |          | andards     |        |   |   |
| COUDER                 |          |                                                                                             |           |               |          |                   |                | s in cont         | emporar         | y environm          | ent      |             |        |   |   |
| COURSE (               |          |                                                                                             |           |               |          |                   | e to           |                   |                 |                     |          |             |        |   |   |
| CO1                    |          |                                                                                             |           | ality Policie |          |                   |                | (I . 10)          |                 |                     |          |             |        |   |   |
| CO2                    |          |                                                                                             |           | ncepts of T   |          |                   |                |                   |                 |                     |          |             |        |   |   |
| CO3                    |          | •                                                                                           |           | y Managen     |          |                   | •              | el 3)             |                 |                     |          |             |        |   |   |
| CO4                    |          | -                                                                                           |           | tools of Qu   | -        |                   |                |                   |                 |                     |          |             |        |   |   |
| CO5                    | -        | uiring knowledge about Modern Trends and Concepts in Manuf                                  |           |               |          |                   |                |                   |                 | ng Manage           | ment (Le | evel 2)     |        |   |   |
|                        |          | se Outcomes with Program Outcomes (POs)                                                     |           |               |          |                   |                |                   |                 | _                   | -        |             |        |   |   |
| COs/POs                | P        | 01                                                                                          | PO2       | PO3           | PO8      | PO9               | <b>PO10</b>    | PO                |                 | PO1                 |          |             |        |   |   |
| CO1                    |          | 3                                                                                           | -         | 2             | 3        | 3                 | -              | -                 | 3               | 3                   | 2        |             | 3      | 2 |   |
| CO2                    |          | -                                                                                           | 3         | 2             | -        | -                 | 3              | -                 | 3               | 2                   | 3        |             | -      | 2 |   |
| CO3                    |          | 3                                                                                           | 2         | -             | 2        | 2                 | -              | 3                 | 2               | -                   | 2        |             | 2      | 2 |   |
| CO4<br>CO5             |          | - 3                                                                                         | - 3       | 3             | 3        | 3                 | - 3            | 3                 | 22              | 2                   | 2        |             | 2<br>2 | 2 |   |
| COS / PSOs             | 5        |                                                                                             | 01        | PSC           | -        |                   | 03             | -<br>PS           | 504             | 5                   | 2        |             | 2      | 2 |   |
| CO1                    |          | -~-                                                                                         | -         | 2             |          |                   | 3              |                   | 3               |                     |          |             |        |   |   |
| CO2                    |          |                                                                                             | _         | 2             |          |                   | 3              |                   | 3               |                     |          |             |        |   |   |
| CO3                    |          |                                                                                             | _         | 2             |          |                   | 3              |                   | 3               |                     |          |             |        |   |   |
| CO4                    |          |                                                                                             | -         | 2             |          |                   | 3              |                   | 3               |                     |          |             |        |   |   |
| CO5                    |          |                                                                                             | _         | 2             |          |                   | 3              |                   | 3               |                     |          |             |        |   |   |
| 3/2/1 Indica           | ates Str | rength                                                                                      | Of Cor    | relation, 3   | – High,  | 2- Medi           | um, 1- L       | ow                |                 |                     | 1        |             |        |   |   |
| Category               |          | Basic Sciences<br>Engineering Sciences<br>Humanities and Social<br>Sciences<br>Program Core |           |               |          | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project |          |             |        |   |   |
|                        |          |                                                                                             |           |               |          |                   |                | $\checkmark$      |                 |                     |          |             |        |   |   |

| Subject Code: | Subject Name: TOTAL QUALITY MANAGEMENT                                                          | Ty / LB/ | L | Τ/   | <b>P</b> / <b>R</b> | С |
|---------------|-------------------------------------------------------------------------------------------------|----------|---|------|---------------------|---|
| EBCC22ID3     |                                                                                                 | ETL/IE   |   | S.Lr |                     |   |
|               | Prerequisite: Nil                                                                               | Ту       | 3 | 0/0  | 0/0                 | 3 |
|               | rial SLr : Supervised Learning P : Project R : Research C: Credit<br>ab/Embedded Theory and Lab | ts       |   |      |                     |   |

#### **UNIT-I QUALITY POLICY, PLANNING AND MANAGEMENT**

Evolution of quality as a strategy- Definitions of quality, Quality Philosophies of Deming, Crosby and Miller, Service Vs product Quality, Customer focus, Quality and Business performance leadership for quality management, Quality planning, Designing for Quality and Manufacturing for Quality, Vision, Mission statements and Quality policy.

## **UNIT – II BASIC CONCEPTS F TOTAL QUALITY MANAGEMENT**

Total Quality management- TQM models, human and system Components, Continuous Improvement Strategies, Deming wheel, Internal External Customer concept, Customer satisfaction Index, Customer retention, Team work and team building, Empowerment, TQM culture, Quality Circle, 5S principle, Top Management commitment.

## **UNIT - III QUALITY MANAGEMENT TOOLS**

Quality management tools - Principles and applications of quality Function deployment, Failure Mode and Effect Analysis (FMEA), Taguichi Techniques, Basic tools- Statistical techniques and graphical tools and diagrams.

## **UNIT - IV VARIOUS CONCEPTS OF QC TECHNIQUES**

Modern QC techniques - Japanese Production Related Techniques: Just in time (JIT) - Quality circles - Total productive maintenance (TPM) - Kaizen - Kanban - 5S concepts - Toyota production systems - JIDOKA -ANDON etc. Concepts on quality management systems (QMS - ISO 9000 - 2000) - Environmental Management Systems (EMS – ISO – 14000)

## UNIT- V MODERN TREND AND CONCEPTS IN MANUFACTURING MANAGEMENT

9 Hrs

Modern Trend and Concept in Manufacturing Management: Business processes reengineering (BPR) - Lean / flexible - manufacturing systems - Six sigma concepts. Quality Leadership-Quality Awards - Quality Tools-Quality Function Deployment.

#### Total No of Hrs: 45

#### **Reference Books:**

- 1. Jill A. Swift, Joel E.Ross and Vincent K.Omachonu, Peinciples of Total Quality, St.Lucie Press, US, 1998.
- 2. Samuel K.Ho, TQM, An integrated approach, kogan page India Pvt Ltd, 2002
- 3. Dale H.N Besterfield et al, Total Quality management, Pearson Education Asia, 2001
- 4. RoseJ.E. Total Quality ManagementKogan page India Pvt Ltd, 1993.
- 5. Mullar Max,' Essentials of Materail Management, Amacom

## 9 Hrs

9 Hrs

#### 9 Hrs

| Subject Code:<br>EBCE22L11 | S              | ubject Nan                                                                                                               | ne: PROJ                          | ЕСТ РН       | ASE-II            |                |                   |                 | Ty / LB/<br>ETL/IE          | L    | T /<br>S.Lr | P/ F   | ł     | C      |
|----------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------|-------------------|----------------|-------------------|-----------------|-----------------------------|------|-------------|--------|-------|--------|
| EDCEZZEII                  | D              | • • •                                                                                                                    |                                   |              |                   |                |                   |                 |                             | 0    |             | 10/1   | 10    | 0      |
| L : Lecture T : 7          |                | rerequisite                                                                                                              |                                   | oomine       | D . Deck-         | at D.D.        | anorah (          | Cradit          | Lb                          | 0    | 0/0         | 12/1   | 12    | 8      |
| T/L/ETL : Theo             |                |                                                                                                                          |                                   |              | P : Ploje         |                | esearch           | .: Credits      | <b>)</b>                    |      |             |        |       |        |
| <b>OBJECTIVE</b> :         |                |                                                                                                                          |                                   |              |                   |                |                   |                 |                             |      |             |        |       |        |
| group                      | on a pr        | oject invol                                                                                                              | ving theore                       | etical and   | l experim         | ental stu      |                   |                 | groups of n<br>il engineeri |      | than fo     | ur mei | mbers | s in a |
| COURSE OUT                 |                | , ,                                                                                                                      | . ,                               |              |                   |                |                   |                 |                             |      |             |        |       |        |
| CO1                        |                | Work in a                                                                                                                |                                   | -            |                   |                |                   |                 |                             |      |             |        |       |        |
| CO2                        |                | Understand                                                                                                               | d how to id                       | lentify th   | e issues a        | and chall      | industry          |                 |                             |      |             |        |       |        |
| CO3                        |                | Prepare rep                                                                                                              | port on the                       | applicati    | on of em          | ies in the     | Construction      | on indust       | ry                          |      |             |        |       |        |
| CO4                        |                | Explore innovative ideas in civil engineering design field<br>Develop design projects based on industrial and field requ |                                   |              |                   |                |                   |                 |                             |      |             |        |       |        |
| CO5                        |                | Develop de                                                                                                               | esign proje                       | cts based    | l on indu         | strial and     | quiremen          | ts              |                             |      |             |        |       |        |
| Mapping of Co              | ourse O        | utcomes w                                                                                                                | vith Progr                        | am Outc      | comes (P          | Os)            |                   |                 |                             |      |             |        |       |        |
| COs/POs                    | PO1            | PO2                                                                                                                      | PO3                               | PO4          | PO5               | PO6            | PO7               | PO8             | PO9                         | PO10 | PO          | 11     | PO1   | 2      |
| CO1                        | 3              | 3                                                                                                                        | 3                                 | 3            | 3                 | 3              | 3                 | 3               | 3                           | 3    |             | 3      |       | 3      |
| CO2                        | 3              | 3                                                                                                                        | 3                                 | 3            | 3                 | 3              | 3                 | 3               | 3                           | 3    |             | 3      |       | 3      |
| CO3                        | 3              | 3                                                                                                                        | 3                                 | 3            | 3                 | 3              | 3                 | 3               | 3                           | 3    |             | 3      |       | 3      |
| CO4                        | 3              | 3                                                                                                                        | 3                                 | 3            | 3                 | 3              | 3                 | 3               | 3                           | 3    |             | 3      |       | 3      |
| CO5                        | 3              | 3                                                                                                                        | 3                                 | 3            | 3                 | 3              | 3                 | 3               | 3                           | 3    |             | 3      |       | 3      |
| COs / PSOs                 | P              | PSO1                                                                                                                     | PSO                               |              |                   |                |                   |                 |                             |      |             |        |       |        |
| CO1                        |                | 3                                                                                                                        | 3                                 |              |                   |                |                   |                 |                             |      |             |        |       |        |
| CO2                        |                | 3                                                                                                                        | 3                                 |              |                   |                |                   |                 |                             | -    |             |        |       |        |
| CO3                        |                | 3                                                                                                                        | 3                                 |              |                   |                |                   |                 |                             |      |             |        |       |        |
| CO4                        |                | 3                                                                                                                        | 3                                 |              |                   |                |                   |                 |                             |      |             |        |       |        |
| CO5<br>3/2/1 Indicates     | Strong         | 3<br>th Of Cor                                                                                                           | 3<br>Relation 3                   |              | 2 Modi            |                |                   |                 |                             |      |             |        |       |        |
| 3/2/1 mulcates             | Streng         |                                                                                                                          | relation, 5                       | – mgn,       | 2- Meur           | um, 1- L       | 0.0               |                 |                             |      |             |        |       |        |
| Category                   | Basic Sciences | Engineering Sciences                                                                                                     | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project         |      |             |        |       |        |
|                            |                |                                                                                                                          |                                   | $\checkmark$ |                   |                |                   |                 | √                           |      |             |        |       |        |

| Subject Code:<br>EBCE22L11 | Subject Name: PROJECT PHASE-II                                                                   | Ty / LB/<br>ETL/IE | L | T /<br>S.Lr | P/ R  | C |
|----------------------------|--------------------------------------------------------------------------------------------------|--------------------|---|-------------|-------|---|
|                            | Prerequisite: ALL                                                                                | Lb                 | 0 | 0/0         | 12/12 | 8 |
|                            | rial SLr : Supervised Learning P : Project R : Research C: Credit<br>.ab/Embedded Theory and Lab | S                  |   |             |       |   |

To make the students to make use of the knowledge and skill developed during their four years of study and to apply them for making an innovative product/process for the development of society and industries. Students are expected to do a Project work either in an Industry or at the University in the field of relevant Engineering /interdisciplinary /multi-disciplinary area in a group of 3 or 4 students. The work to be carried out in Phase II should be continuation of Phase I. Each group will be allotted a guide based on the area of Project work. In case of industrial Project external guide has to be allotted from Industry. Inter disciplinary/multi-disciplinary project can be done with students of different disciplines as a group. Monthly reviews will be conducted during the semester to monitor the progress of the project by the project review committee. Students have to submit the Project thesis at the end of the semester and appear for the Project Viva-Voce examination conducted by the examiners duly appointed by the Controller of Examination. In case of industrial project certificate in proof has to be included in the report along with the bonafide certificate.

#### **OBJECTIVE**

- The objective of project work is to enable the students to work in convenient groups of not more than four members in a group on a project involving theoretical and experimental studies related to civil engineering.
- Every project work shall have a guide who is a member of the faculty of the university.
- Fourteen periods per week shall be allotted in the time table for this important activity and this time shall be utilized by the students to receive directions from the guide, on library reading, laboratory work, computer analysis or field work as assigned by the guide and also to present in periodical seminars the progress made in the project.
- Each student shall finally produce a comprehensive report covering background information, literature survey, problem statement, project work details and conclusions.
- Final report shall be typewritten form as specified in the guidelines. The continuous assessment and semester evaluation may be carried out as specified in the guidelines to be issued from time to time.

# PROGRAM ELECTIVE - I

| Subject Co   |                | Subject                                                                                  | Name                              | :            |                      |                |                   |                 | Ty/L     |                     | L        | Τ/      | P/     | '     | С  |
|--------------|----------------|------------------------------------------------------------------------------------------|-----------------------------------|--------------|----------------------|----------------|-------------------|-----------------|----------|---------------------|----------|---------|--------|-------|----|
| EBCE22E0     | 1              |                                                                                          | ENGI                              | NEERI        | NG GE                | OLOG           | ξY                |                 | ETL      | /IE                 |          | S.Lr    | R      |       |    |
|              | F              | Prerequis                                                                                | site: No                          | one          |                      |                |                   |                 | Ту       |                     | 3        | 0/0     | 0/     | 0     | 3  |
| L : Lecture  |                |                                                                                          |                                   |              |                      |                | Project           | R : R           | esearcl  | n C: Credit         | ts       |         |        |       |    |
| T/L/ETL : 7  |                | Lab/Emł                                                                                  | bedded '                          | Theory       | and Lat              | )              |                   |                 |          |                     |          |         |        |       |    |
| OBJECTIV     | /E:            |                                                                                          |                                   |              |                      |                |                   |                 |          |                     |          |         |        |       |    |
|              |                |                                                                                          |                                   |              |                      |                |                   |                 |          | n, earthqua         |          |         |        |       |    |
| knowledge    | in proje       | cts such                                                                                 | as dam                            | s, tunne     | ls, bridg            | ges, roa       | ds, airp          | ort an          | d harb   | or as well a        | as to cl | hoose t | ypes   | of    |    |
| foundation   |                |                                                                                          |                                   |              |                      |                |                   |                 |          |                     |          |         |        |       |    |
| COURSE (     |                |                                                                                          |                                   |              |                      |                |                   |                 |          |                     |          |         |        |       |    |
| CO1          |                |                                                                                          |                                   |              |                      |                |                   |                 | ificatio | on systems          |          |         |        |       |    |
| CO2          |                | Jndersta                                                                                 |                                   |              |                      |                |                   |                 |          |                     |          |         |        |       |    |
| CO3          |                | Identify the various lithological units and a Analyze the different rocks and minerals b |                                   |              |                      |                |                   |                 |          |                     | ineerin  | ıg      |        |       |    |
| CO4          |                |                                                                                          |                                   |              |                      |                |                   |                 |          |                     |          |         |        |       |    |
| CO5          |                |                                                                                          |                                   | ological     | conditi              | ions neo       | cessary           | for co          | nstruc   | tion of dar         | ns, tun  | nels, b | uildin | igs a | nd |
|              |                | road cuttings                                                                            |                                   |              |                      |                |                   |                 |          |                     |          |         |        |       |    |
|              |                | se Outcomes with Program Outcomes (POs)                                                  |                                   |              |                      |                |                   |                 |          |                     |          |         |        |       |    |
| COs/POs      | PO1            | PO2                                                                                      | PO3                               | PO4          | PO5                  | <b>PO6</b>     | <b>PO7</b>        | PO8             | 3        | PO9                 | PO1      | 10 PC   | )11    | PO    |    |
| CO1          | 3              | 2                                                                                        | 2                                 | 3            | 3                    | 3              | 2                 |                 | 1        | 1                   | 1        |         | 2      | 3     |    |
| CO2          | 3              | 2                                                                                        | 2                                 | 3            | 3                    | 3              | 2                 |                 | 1        | 1                   | 1        |         | 2      | 3     |    |
| CO3          | 3              | 2                                                                                        | 2                                 | 3            | 3                    | 3              | 2                 |                 | 1        | 1                   | 1        |         | 2      | 3     |    |
| CO4          | 3              | 2                                                                                        | 2                                 | 3            | 3                    | 3              | 2                 |                 | 1        | 1                   | 1        |         | 2      | 3     |    |
| CO5          | 3              | 2                                                                                        | 2                                 | 3            | 3                    | 3              | 2                 |                 | 1        | 1                   | 1        |         | 2      | 3     |    |
| COs /        | PS             | 501                                                                                      | PS                                | 02           |                      |                |                   |                 |          |                     |          |         |        |       |    |
| PSOs         |                |                                                                                          |                                   |              |                      |                |                   |                 |          |                     |          |         |        |       |    |
| CO1          |                | 3                                                                                        |                                   | 3            |                      |                |                   |                 |          |                     |          |         |        |       |    |
| CO2          |                | 3                                                                                        |                                   | 3            |                      |                |                   |                 |          |                     |          |         |        |       |    |
| CO3          |                | 3                                                                                        |                                   | 3            |                      |                |                   |                 |          |                     |          |         |        |       |    |
| CO4          |                | 3                                                                                        |                                   | 3            |                      |                |                   |                 |          |                     |          |         |        |       |    |
| CO5          |                | 3                                                                                        | -                                 | 3            |                      |                |                   |                 |          |                     |          |         |        |       |    |
| 3/2/1 Indica | ates Str       | ength O                                                                                  | f Corr                            | elation,     | 3 – Hig              | gh, 2- N       | Aedium            | 1, 1- L         | /OW      |                     |          |         |        |       |    |
| Category     | iences         | eering<br>eering<br>nces<br>nces<br>nces<br>ciences<br>ciences<br>ram<br>ives<br>ectives |                                   |              |                      |                |                   |                 |          | Project             |          |         |        |       |    |
|              | Basic Sciences | Engineering<br>Sciences                                                                  | Humanities and<br>Social Sciences | Program Core | Program<br>Electives | Open Electives | Interdisciplinary | Skill component |          | Practical / Project |          |         |        |       |    |
|              |                |                                                                                          |                                   |              | <ul><li>✓</li></ul>  |                |                   |                 |          | <u> </u>            |          |         |        |       |    |

| Subject Code:<br>EBCE22E01 | Subject Name :<br>ENGINEERING GEOLOGY                                            | Ty/Lb/<br>ETL/IE     | L | T /<br>S.Lr | P/<br>R | С |
|----------------------------|----------------------------------------------------------------------------------|----------------------|---|-------------|---------|---|
|                            | Prerequisite: None                                                               | Ту                   | 3 | 0/0         | 0/0     | 3 |
|                            | utorial SLr : Supervised Learning P : Project R<br>y/Lab/Embedded Theory and Lab | : Research C: Credit | s |             |         |   |

#### UNIT I GENERAL GEOLOGY

Geology in civil engineering - branches of geology - earth structure and composition - elementary knowledge on continental drift and plate tectonics. Seismo tectonics of the Indian plate, seismic zones of India, Weathering - work of rivers, wind, glaciers.

#### UNIT II MINERALOGY

Physical properties of minerals - study of rock forming minerals - quartz family. Feldspar family, augite, hornblende, biotite, muscovite, calcite, garnet - properties, behavior and engineering significance of clay minerals –fundamentals of process of formation of ore minerals - coal and petroleum - their origin and occurrence in India.

#### UNIT III PETROLOGY

Classification of Soil and Rock, Types of rock and origin: Igneous (extrusive and intrusive), sedimentary and metamorphic rocks, description occurrence, engineering properties of following rocks. Igneous rocks - granite, diorite, gabbro, pegmatite, dolerite and basalt sedimentary rocks sandstone, limestone, shale, conglomerate and breccia. Metamorphic rocks, quartzite, marble, slate, phyllite, gneiss and schist.

#### UNIT IV STRUCTURAL GEOLOGY AND GEOPHYSICAL METHOD

Strength Behavior of Soil and Rock, Stress and strain in rock, failure and shear failure of soil and rock, folds, faults and joints in rock, consequences of failure (earthquakes), Bearing on engineering construction. Seismic and electrical methods for civil engineering investigations.

#### UNIT V GEOLOGICAL INVESTIGATIONS IN CIVIL ENGINEERING

Geologic Mapping and Remote Sensing, Topographic maps, geologic maps, aerial photographs, LIDAR, SAR, interpretation for civil engineering projects - geological conditions necessary for construction of dams, tunnels, buildings, road cuttings, landslides - causes and preventions. Sea erosion and coastal protection.

#### TEXT BOOKS

- 1. Parbin singh, "Engineering and General geology ", S. K. Kataria & Sons, 2009
- 2. D. Venkat Reddy "Engineering Geology", Vikas publishing House New Delhi, 2010
- 3. Krynine and Judd, "Engineering Geology and Geotechniques ", McGraw Hill Book Company, New Delhi 1990.

#### REFERENCE

- 1. Legeet, "Geology and Engineering ", McGraw Hill Book Company, New Delhi
- 2. Blyth, "Geology for Engineers", elbs, Pune 1995

## 9 Hrs

9 Hrs

9 Hrs

9 Hrs

## 9 Hrs

Total No of Hrs: 45

| Subject Code:   | Su             | bject Na                              | me                         |              |                   |                |                   |                 | Ty/Lb/              | L          | T/S.Lr      | P/R      | С            |
|-----------------|----------------|---------------------------------------|----------------------------|--------------|-------------------|----------------|-------------------|-----------------|---------------------|------------|-------------|----------|--------------|
| zasjeet code.   | 5u             | ~j~~i (di                             |                            | NER P        | RODU              | CTION          |                   |                 | ETL/IE              |            | I, 5011     |          |              |
| EBCE22E02       | Pre            | erequisite                            |                            |              |                   |                |                   |                 | Ty                  | 3          | 0/0         | 0/0      | 3            |
| L : Lecture T : | Tutorial       | SLr : Su                              | pervised L                 |              | P : Proje         | ct R : R       | esearch C         | C: Credit       |                     |            |             |          |              |
| T/L/ETL : The   |                | Embedded                              | l Theory ar                | nd Lab       |                   |                |                   |                 |                     |            |             |          |              |
| OBJECTIVE       |                |                                       |                            |              |                   |                |                   |                 |                     |            |             |          |              |
|                 |                |                                       |                            |              |                   |                |                   |                 | e in the field      |            |             | T. d.    | ~ <b>4</b> 1 |
| Pollution.      | ucate the      | students                              | on comple                  | ete mana     | gement p          | principle      | s related         | to Clear        | ner Product         | ion and    | Control of  | Indu     | strial       |
| COURSE OU       | TCOME          | $\overline{\mathbf{S}(\mathbf{COs})}$ | (3-5)                      |              |                   |                |                   |                 |                     |            |             |          |              |
| The students co |                |                                       |                            | e an         |                   |                |                   |                 |                     |            |             |          |              |
| CO1             | 1 0            |                                       | sustainabl                 |              | pment an          | d cleane       | r product         | ion conc        | ept                 |            |             |          |              |
| CO2             |                | 0                                     | cept of clea               |              |                   |                | ±                 |                 | *                   |            |             |          |              |
| CO3             | Analyze        | and imp                               | lement cle                 | aner pro     | duction p         | rogram         |                   |                 |                     |            |             |          |              |
| CO4             |                |                                       |                            |              |                   |                | se, recove        | ery, recy       | cle, raw ma         | terial sul | ostitution. |          |              |
| CO5             | To crea        | te compr                              | 1                          | 1            | 1                 |                |                   | <u> </u>        | dustry and          |            |             | minimiz  | ation        |
|                 | techniqu       |                                       |                            | _            |                   |                |                   |                 |                     |            |             |          |              |
| Mapping of Co   | -              |                                       |                            | 1            |                   | ,              | DC-               | Dec             | DCC                 | Dett       | TOAL        |          |              |
| COs/POs         | PO1            | PO2                                   | PO3                        | PO4          | PO5               | PO6            | PO7               | PO8             | PO9                 | PO10       | PO11        | PO       | 12           |
| CO1             | 3              | 3                                     | 3                          | 3            | 3                 | 3              | 3                 | 1               | 1                   | 1          | 3           |          | 3            |
| CO2             | 3              | 3                                     | 3                          | 3            | 3                 | 3              | 3                 | 1               | 1                   | 1          | 3           |          | 3            |
| CO3             | 3              | 3                                     | 3                          | 3            | 3                 | 3              | 3                 | 1               | 1                   | 1          | 3           |          | 3            |
| CO4             | 3              | 3                                     | 3                          | 3            | 3                 | 3              | 3                 | 1               | 1                   | 1          | 3           |          | 3            |
| CO5             | 3              | 3                                     | 3                          | 3            | 3                 | 3              | 3                 | 1               | 1                   | 1          | 3           |          | 3            |
| COs / PSOs      | PS             | 501                                   | PSC                        | 02           |                   |                |                   |                 |                     |            |             |          |              |
| CO1             |                | 3                                     | 3                          |              |                   |                |                   |                 |                     |            |             |          |              |
| CO2             |                | 3                                     | 3                          |              |                   |                |                   |                 |                     |            |             |          |              |
| CO3             |                | 3                                     | 3                          |              |                   |                |                   |                 |                     |            |             |          |              |
| CO4             |                | 3                                     | 3                          |              |                   |                |                   |                 |                     |            |             |          |              |
| CO5             | _              | 3                                     | 3                          |              |                   |                |                   |                 |                     |            |             |          |              |
| 3/2/1 Indicates | Strengt        | h Of Cor                              |                            |              | 2- Medi           | um, 1- L       | /OW               |                 | 1                   | 1          | I           | <u> </u> |              |
|                 | - 3-           |                                       | - ,-                       |              |                   | , _            |                   |                 |                     | 1          | T           |          |              |
|                 |                |                                       | la                         |              |                   |                |                   |                 |                     |            |             |          |              |
|                 | ~              | nces                                  | Social                     |              | 'es               | s              | 2                 | ıt              | šč                  |            |             |          |              |
| Category        | ncet           | cieı                                  | s s<br>s                   | Jore         | ctiv              | ive            | inar              | ner             | roje                |            |             |          |              |
|                 | cier           | ο<br>Ω                                | anc                        | n C          | Ele               | lect           | ilqi              | npc             | $/P_1$              |            |             |          |              |
|                 | ic S           | erin                                  | ities and<br>Sciences      | graı         | am                | nE             | disc              | cor             | ical                |            |             |          |              |
|                 | Basic Sciences | Engineering Sciences                  | Humanities and<br>Sciences | Program Core | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project |            |             |          |              |
|                 | ш              | Jng                                   | um                         |              | Pr                |                | Ir                | S               | Pr                  |            |             |          |              |
|                 |                |                                       | H                          |              |                   |                |                   |                 |                     |            |             |          |              |
|                 |                |                                       |                            |              |                   |                |                   |                 |                     |            |             | _        |              |
|                 |                |                                       |                            |              | $\checkmark$      |                |                   |                 |                     |            |             |          |              |

| Subject Code:                                                                          | Subject Name       | Ty/Lb/ | L | T/S.Lr | <b>P/ R</b> | С |  |  |  |  |
|----------------------------------------------------------------------------------------|--------------------|--------|---|--------|-------------|---|--|--|--|--|
|                                                                                        | CLEANER PRODUCTION | ETL/IE |   |        |             |   |  |  |  |  |
| EBCE22E02                                                                              | Prerequisite: NIL  | Ту     | 3 | 0/0    | 0/0         | 3 |  |  |  |  |
| L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits |                    |        |   |        |             |   |  |  |  |  |
| T/L/ETL : Theory/Lab/Embedded Theory and Lab                                           |                    |        |   |        |             |   |  |  |  |  |

#### UNIT I INTRODUCTION

Sustainable Development - Indicators of Sustainability - Sustainability Strategies - Barriers to Sustainability - Cleaner Production (CP) in Achieving Sustainability - Environmental Policies and Legislations - Regulations to Encourage Pollution Prevention and Cleaner Production – Regulatory versus Market Based Approaches

#### UNIT II CLEANER PRODUCTION CONCEPT

Definition - Importance - Benefits - Promotion - Barriers - Role of Industry, Government and Institutions - Environmental Management Hierarchy - Source Reduction Techniques - Process and equipment optimisation, reuse, recovery, recycle, raw material substitution.

#### UNIT III CLEANER PRODUCTION PROJECT DEVELOPMENT AND IMPLEMENTATION

9 Hrs

Overview of CP Assessment Steps and Skills, Preparing for the Site Visit, Information Gathering, and Process Flow Diagram, Material Balance, Establishing a Program - Organizing a Program - Preparing a Program Plan -Measuring Progress - Pollution Prevention and Cleaner Production Awareness Plan - Waste audit -Environmental Statement.

#### UNIT IV LIFE CYCLE ASSESSMENT

Elements of LCA - Life Cycle Costing - Eco Labelling - Design for the Environment – International Environmental Standards - ISO 14001 - Environmental audit.

#### UNIT V CASE STUDIES

Industrial applications of CP, LCA, EMS and Environmental Audits.

#### **Total No of Hrs: 45**

#### REFERENCES

- 1. Paul L Bishop (2000) " Pollution Prevention: Fundamentals and Practice " McGraw-Hill International New York.
- 2. World Bank Group (1998) "Pollution Prevention and Abatement Handbook"
- *3. "Towards Cleaner Production ", World Bank and UNEP, Washington D.C.*
- 4. Prasad modak, C.Viswanathan and Mandar parasnis (1995)"Cleaner Production Audit ", Environmental System Reviews, No.38, Asian Institute of Technology, Bangkok.

## 9 Hrs

9 Hrs

al

9 Hrs

| Subject Code   | e: S           | ubject Na            | ame                                          |                                         |                   |                |                   |                 | Ty/Lb/              |            | Τ/        | <b>P</b> / | C        |
|----------------|----------------|----------------------|----------------------------------------------|-----------------------------------------|-------------------|----------------|-------------------|-----------------|---------------------|------------|-----------|------------|----------|
| EBCE22E03      | 1              | BUILDI               | NG TE                                        | CHNO                                    | LOGY              | AND            | HABIT             | TAT             | ETL/IE              |            | S.Lr      | R          |          |
|                |                |                      | F                                            | ENGIN                                   | EERIN             | IG             |                   |                 |                     |            |           |            |          |
|                | Р              | rerequisit           | e: none                                      |                                         |                   |                |                   |                 | Ту                  | 3          | 0/0       | 0/0        | 3        |
| L : Lecture T  | : Tuto         | orial SL             | r : Super                                    | vised Le                                | earning           | P : Proi       | ect R :           | Resear          | ch C: Cred          | lits       |           |            |          |
| T/L/ETL : Th   |                |                      | -                                            |                                         | _                 | 5              |                   |                 |                     |            |           |            |          |
| OBJECTIVE      | Е: Т           | o select a           | appropria                                    | te const                                | ruction           | materia        | ls and p          | ractices        | in constru          | action fie | eld.      |            |          |
| COURSE OU      | UTCO           | OMES (C              | (Os): (3)                                    | - 5)                                    |                   |                |                   |                 |                     |            |           |            |          |
| After successf |                | •                    |                                              |                                         |                   |                |                   |                 |                     |            |           |            |          |
| CO1            |                |                      |                                              |                                         |                   |                |                   |                 | constructio         | on         |           |            |          |
| CO2            |                | Applying             |                                              | -                                       |                   |                |                   |                 |                     |            |           |            |          |
| CO3            |                | Analyze building.    | and Prac                                     | ctice the                               | e import          | tance of       | therma            | l contr         | ol, ventila         | tion and   | l air mov | vemen      | ıt in    |
| CO4            |                |                      | the design and application methods of geosyn |                                         |                   |                |                   | geosynt         | hetic mate          | rials      |           |            |          |
| CO5            |                |                      |                                              | New Technology in Building construction |                   |                |                   |                 |                     |            |           |            |          |
| Mapping of (   | Cours          |                      |                                              | es with Program Outcomes (POs)          |                   |                |                   |                 |                     |            |           |            |          |
| COs/POs        | <b>PO1</b>     | PO2                  | PO3                                          | PO4                                     | PO5               | PO6            | <b>PO7</b>        | <b>PO8</b>      | PO9                 | PO10       | PO11      | PC         | )12      |
| <u>CO1</u>     | 3              | 3                    | 2                                            | 3                                       | 2                 | 3              | 3                 | 1               | 1                   | 1          | 2         |            | 3        |
| CO2            | 3              | 3                    | 2                                            | 3                                       | $\frac{2}{2}$     | 3              | 3                 | 1               | 1                   | 1          | 2         |            | 3<br>3   |
| CO3<br>CO4     | 3              | 3                    | 2                                            | 3                                       | 2                 | 3              | 3                 | 1               | 1                   | 1          | 2         | _          | <u>3</u> |
| C04<br>C05     | 3              | 3                    | $\frac{2}{2}$                                | 3                                       | 2                 | 3              | 3                 | 1               | 1                   | 1          | 2         |            | 3        |
| COs /          | -              | SO1                  | PS                                           | -                                       |                   | 5              | 5                 | 1               | -                   | -          |           |            |          |
| PSOs           |                |                      |                                              |                                         |                   |                |                   |                 |                     |            |           |            |          |
| CO1            |                | 3                    | 3                                            |                                         |                   |                |                   |                 |                     |            |           |            |          |
| CO2            |                | 3                    | 3                                            |                                         |                   |                |                   |                 |                     |            |           |            |          |
| CO3            |                | 3                    | 3                                            |                                         |                   |                |                   |                 |                     |            |           |            |          |
| CO4<br>CO5     |                | 3                    | 3                                            |                                         |                   |                |                   |                 |                     |            |           |            |          |
| 3/2/1 Indicate | es Str         | 5                    |                                              | ·                                       | _<br>_ High.      | 2- Med         | ium. 1-           | Low             |                     |            |           |            |          |
| C/2/1 Indicato |                |                      |                                              |                                         |                   |                |                   |                 |                     |            |           |            |          |
|                |                | ş                    | al                                           |                                         |                   |                |                   |                 |                     |            |           |            |          |
|                | s              | nce                  | Social                                       | a                                       | ves               | s              | ry                | nt              | ect                 |            |           |            |          |
| Category       | nce            | cie                  |                                              | Core                                    | ectiv             | tive           | ina               | one             | roj                 |            |           |            |          |
|                | Scie           | ng S                 | s an<br>ence                                 | l l                                     | Ele               | Ilec           | cipl              | du              | 1/F                 |            |           |            |          |
|                | Basic Sciences | čerii                | ities and<br>Sciences                        | Program Core                            | ram               | Open Electives | rdis              | l co            | tical               |            |           |            |          |
|                | Bas            | Engineering Sciences | Humanities and<br>Sciences                   | Prc                                     | Program Electives | Opé            | Interdisciplinary | Skill component | Practical / Project |            |           |            |          |
|                |                | Enį                  | Hur                                          |                                         | P                 |                | -                 | <b>U</b> 1      | Ч                   |            |           |            |          |
|                |                |                      | _                                            |                                         |                   |                |                   |                 |                     |            |           |            |          |
| F              |                |                      |                                              |                                         | $\checkmark$      |                |                   |                 |                     |            |           |            |          |
|                |                |                      |                                              | l                                       | •                 |                |                   |                 |                     |            |           |            |          |

| Subject Code:                                                                                                                          | Subject Name                                   | Ty/Lb/<br>ETL/IE | L | T /<br>S.Lr | P/<br>R | С |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------|---|-------------|---------|---|--|--|
| EBCE22E03                                                                                                                              | BUILDING TECHNOLOGY AND HABITAT<br>ENGINEERING |                  |   |             |         |   |  |  |
|                                                                                                                                        | Prerequisite: none                             | Ту               | 3 | 0/0         | 0/0     | 3 |  |  |
| L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits<br>T/L/ETL : Theory/Lab/Embedded Theory and Lab |                                                |                  |   |             |         |   |  |  |

#### UNIT I **BUILDING STONES**

Requirement of good building stone- characteristics - testing.Lime: Properties- Classifications -Manufacture -Testing of lime. Pozzolona: Natural and Artificial pozzolonas. Timber - Defects - Seasoning - Decay -Preservation, Tiles- Flooring and roofing tiles-specification-tests. Paints varnishes and distempers, Common constituents, types and desirable properties.

#### **UNIT II MISCELLANEOUS MATERIALS**

Insulating Materials - Thermal and sound insulating material desirable properties and type. Geosynthetics and its applications .Lintels -Arches - Stairs- different types and its components. Doors, Windows and Ventilations -Classification - Technical terms-Classification and Types

#### **UNIT III** ROOF

Types of roofs – wooden trusses .Finishing works - Plastering, pointing, painting, white washing, colour washing, distempering; Damp proofing ant termite treatment.

#### **UNIT IV** CLIMATE AND COMFORT

Global climatic factors - Elements of climates - Classification of tropical climates- site climate . The desirable conditions- Thermal comfort factors-Thermal comfort indices - Effective temperature

#### UNIT V THERMAL CONTROL

Means of thermal control - Mechanical control- structural control- ventilation and air movement

#### **REFERENCES:**

- 1. Gurucharan Singh, Building materials,,1996
- 2. Rangwala S. C, Engineering Materials, Charotar Publishing House, 1992, Anand
- 3. Punmia B. C, Building Construction, Laxmi Publications, 1999, New Delhi.
- 4. Rangwala S. C, Building Construction, Charotar Publishing House, 1992, Anand
- 5. Huntington W.C, Building Construction, John Wiley, 1959, New York.
- 6. Koenigsberger, Manual of Tropical Housing and Building, Orient Longman Ltd

## 9 Hrs

9 Hrs

## 9 Hrs

9 Hrs

#### 9 Hrs

**Total No of Hrs: 45** 

| Subject Code:     | 5              | Subject Na           | me<br>CHITECT                     | TIDE AT      |                   |                                  | NNINC             |                 | Ty/Lb/<br>ETL/IE    | L    | T/S.Lr | <b>P/ R</b> | С  |
|-------------------|----------------|----------------------|-----------------------------------|--------------|-------------------|----------------------------------|-------------------|-----------------|---------------------|------|--------|-------------|----|
| EBCE22E04         |                | Prerequisite         |                                   | UKE AI       |                   |                                  |                   |                 | Ty                  | 3    | 0/0    | 0/0         | 3  |
| L : Lecture T : ' |                |                      |                                   | earning      | P · Proie         | ct $\mathbf{R} \cdot \mathbf{R}$ | esearch (         | Credity         | •                   | 5    | 5/0    | 0/0         | 5  |
| T/L/ETL : Theo    |                |                      |                                   |              | 1.110je           |                                  | eseuren c         | . creata        | 2                   |      |        |             |    |
| <b>OBJECTIVE</b>  |                |                      |                                   |              |                   |                                  |                   |                 |                     |      |        |             |    |
| To impart know    | vledge         | on archited          | tural desig                       | n of strue   | ctures as         | per the z                        | zoning re         | gulations       | 5                   |      |        |             |    |
| COURSE OUT        |                |                      |                                   |              |                   | •                                |                   |                 |                     |      |        |             |    |
| After successfu   | l comp         |                      |                                   |              |                   |                                  |                   |                 |                     |      |        |             |    |
| CO1               |                |                      | ding archit                       |              | -                 |                                  |                   |                 |                     |      |        |             |    |
| CO2               |                | Applying             | the concept                       | of land      | requiren          | nent as pe                       | er the zor        | ning regu       | lations             |      |        |             |    |
| CO3               |                | Analyze a            | nd Practice                       | Landsca      | pe desig          | n                                |                   |                 |                     |      |        |             |    |
| CO4               |                | Manipulat            | e Surveys                         | and anal     | ysis of a         | town                             |                   |                 |                     |      |        |             |    |
| CO5               |                | To create            | comprehen                         | sive know    | wledge of         | wn Plan                          | ning              |                 |                     |      |        |             |    |
| Mapping of Co     |                |                      |                                   |              |                   |                                  | -                 |                 |                     |      |        |             |    |
| COs/POs           | PO1            |                      | PO3                               | PO4          | PO5               | PO6                              | PO7               | PO8             | PO9                 | PO10 | PO11   | PO          | 12 |
| CO1               | 3              | 3                    | 3                                 | 3            | 2                 | 3                                | 3                 | 2               | 2                   | 2    | 3      |             | 3  |
| CO2               | 3              | 3                    | 3                                 | 3            | 2                 | 3                                | 3                 | 2               | 2                   | 2    | 3      |             | 3  |
| CO3               | 3              | 3                    | 3                                 | 3            | 2                 | 3                                | 3                 | 2               | 2                   | 2    | 3      |             | 3  |
| CO4               | 3              | 3                    | 3                                 | 3            | 2                 | 3                                | 3                 | 2               | 2                   | 2    | 3      |             | 3  |
| CO5               | 3              | 3                    | 3                                 | 3            | 2                 | 3                                | 3                 | 2               | 2                   | 2    | 3      |             | 3  |
| COs / PSOs        |                | PSO1                 | PSO                               |              |                   |                                  |                   |                 |                     |      |        |             |    |
| CO1               |                | 3                    | 3                                 |              |                   |                                  |                   |                 |                     |      |        |             |    |
| CO2               |                | 3                    | 3                                 |              |                   |                                  |                   |                 |                     |      |        |             |    |
| CO3               |                | 3                    | 3                                 |              |                   |                                  |                   |                 |                     |      |        |             |    |
| CO4               |                | 3                    | 3                                 |              |                   |                                  |                   |                 |                     |      |        |             |    |
| CO5               |                | 3                    | 3                                 |              |                   | _                                |                   |                 |                     |      |        |             |    |
| 3/2/1 Indicates   | Stren          | gth Of Cor           | relation, 3                       | – High,      | 2- Medi           | um, 1- L                         | /OW               | <u> </u>        |                     | 1    |        |             |    |
| Category          | Basic Sciences | Engineering Sciences | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives                   | Interdisciplinary | Skill component | Practical / Project |      |        |             |    |
|                   |                |                      |                                   |              | $\checkmark$      |                                  |                   |                 |                     |      |        |             |    |

| Subject Code:                                                                                                                          | Subject Name<br>ARCHITECTURE AND TOWN PLANNING | Ty/Lb/<br>ETL/IE | L | T / S.Lr | P/ R | С |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------|---|----------|------|---|--|--|
| EBCE22E04                                                                                                                              | Prerequisite: NONE                             | Ту               | 3 | 0/0      | 0/0  | 3 |  |  |
| L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits<br>T/L/ETL : Theory/Lab/Embedded Theory and Lab |                                                |                  |   |          |      |   |  |  |

## UNIT I ARCHITECTURAL DEVELOPMENT

Natural and built environment, historic examples, factors influence architectural development.

#### UNIT IIPRINCIPLES OF ARCHITECTURAL DESIGN9 Hrs

Design methods, primary elements, form, space, organization, circulation, proportion and scale, ordering principles

## UNIT IIIFUNCTIONAL PLANNING OF BUILDINGS9 Hrs

Planning, designing and construction, general building requirements, permit and inspection (as per the National building Code)

#### UNIT IV EVOLUTION OF TOWNS

History and trends in town planning: origin and growth, historical development of town planning in ancient valley civilizations; Objects and necessary of town planning; Surveys and analysis of a town; New Concepts in town planning: Garden city movement, Linear city and Satellite city concepts, Neighborhood Planning

#### UNIT V PLANNING PRINCIPLES, PRACTICE AND TECHNIQUES 9 Hrs

Elements of City plan, Estimating future needs, Planning standards, Zoning - its definition, procedure and districts, height and bulk zoning, F. A. R., Master Plan; Concepts of Urban planning, Design and Landscaping.

#### **Total No of Hrs: 45**

9 Hrs

9 Hrs

#### TEXT BOOKS

- 1. B. Gallion and S. Eisner, The Urban Pattern: City planning and Design C B S publishers, 5th edition, 2005.
- 2. D. K. Francis Ching, Architectures: Form, Space and Order, John Wiley, 2nd edition 1996.

#### REFERENCES

- 1. National Building Code of India 2005, BIS, New Delhi.
- 2. S. Eisner, A. B. Gallion and S. Eisner, The Urban Pattern: City planning and Design, John Wiley 6th edition 1996.

# PROGRAM ELECTIVE – II

| Subject Code:      | Su            | bject Na                                                                                    | me:                        |              |                 |               |                 | [               | TY / Lb/            | L        | T/S.Lr       | P/ R     | С      |
|--------------------|---------------|---------------------------------------------------------------------------------------------|----------------------------|--------------|-----------------|---------------|-----------------|-----------------|---------------------|----------|--------------|----------|--------|
| Subject Cout.      | 5u            | ojeci indi                                                                                  |                            | HYDR         | OLOGY           |               |                 |                 | ETL/IE              |          | 1,0,11       | 1/1      |        |
| <b>EBCE22E05</b>   | Pre           | requisite                                                                                   | : None                     |              |                 |               |                 |                 | Ту                  | 3        | 0/0          | 0/0      | 3      |
| L : Lecture T : T  | Futorial      | SLr : Su                                                                                    | pervised L                 | earning      | P : Proje       | ct R : R      | esearch C       | C: Credits      | 8                   |          |              |          |        |
| T/L/ETL : Theo     | ory/Lab/E     | mbedded                                                                                     | l Theory ar                | nd Lab       |                 |               |                 |                 |                     |          |              |          |        |
| <b>OBJECTIVE :</b> |               |                                                                                             |                            |              |                 |               |                 |                 |                     |          |              |          |        |
| To get exposur     |               |                                                                                             |                            |              |                 |               |                 |                 |                     |          |              |          |        |
| evaporation and    | l infiltrati  | on; To le                                                                                   | arn basics,                | estimati     | on, and n       | nodeling      | of runof        | f;. To un       | derstand est        | imation, | forecastin   | g and co | ontrol |
| of flood; To fan   |               |                                                                                             |                            | ns in hyd    | rology          |               |                 |                 |                     |          |              |          |        |
| COURSE OUT<br>CO1  |               |                                                                                             |                            | wledge       | n hydrole       | oric evel     | e hydror        | neteorol        | ogy and for         | mation o | f precipitat | ion      |        |
| CO1<br>CO2         |               |                                                                                             | 0                          | 0            |                 | <b>U</b> .    |                 |                 | ements and          |          |              |          |        |
| 002                |               |                                                                                             |                            |              |                 |               |                 |                 | ood routing         |          | a iormulae   | 101      |        |
| CO3                |               |                                                                                             | nipulate th                |              |                 |               |                 |                 |                     | ·        |              |          |        |
| CO4                | Determ        | ine the n                                                                                   | neteorologi                | cal relate   | ed data         |               |                 |                 |                     |          |              |          |        |
| CO5                |               | reate comprehensive knowledge on concepts of groundwater and hydraulics of subsurface flows |                            |              |                 |               |                 |                 |                     |          |              |          |        |
|                    |               | e Outcomes with Program Outcomes (POs)                                                      |                            |              |                 |               |                 |                 |                     |          |              |          | 12     |
| COs/POs            | PO1           |                                                                                             |                            |              |                 |               |                 |                 |                     |          |              |          |        |
| CO1                | 3             | 3                                                                                           | 3                          | 3            | 3               | 3             | 3               | 1               | 1                   | 1        | 3            |          | 3      |
| CO2                | 3             | 3                                                                                           | 3                          | 3            | 3               | 3             | 3               | 1               | 1                   | 1        | 3            |          | 3      |
| CO3                | 3             | 3                                                                                           | 3                          | 3            | 3               | 3             | 3               | 1               | 1                   | 1        | 3            |          | 3      |
| CO4                | 3             | 3                                                                                           | 3                          | 3            | 3               | 3             | 3               | 1               | 1                   | 1        | 3            |          | 3      |
| CO5                | 3             | 3                                                                                           | 3                          | 3            | 3               | 3             | 3               | 1               | 1                   | 1        | 3            |          | 3      |
| COs / PSOs         | PS            | 501                                                                                         | PSC                        | 02           |                 |               |                 |                 |                     |          |              |          |        |
| CO1                |               | 3                                                                                           | 3                          |              |                 |               |                 |                 |                     |          |              |          |        |
| CO2                |               | 3                                                                                           | 3                          |              |                 |               |                 |                 |                     |          |              |          |        |
| CO3                |               | 3                                                                                           | 3                          |              |                 |               |                 |                 |                     |          |              |          |        |
| CO4                |               | 3                                                                                           | 3                          |              |                 |               |                 |                 |                     |          |              |          |        |
| CO5                |               | 3                                                                                           | 3                          |              |                 |               |                 |                 |                     |          |              |          |        |
| 3/2/1 Indicates    | Strength      | n Of Cor                                                                                    | relation, 3                | – High,      | 2-Media         | um, 1- L      | /OW             |                 |                     |          |              |          |        |
|                    |               |                                                                                             |                            |              |                 |               |                 |                 |                     |          |              |          |        |
|                    |               | es                                                                                          | ocial                      |              |                 |               |                 |                 |                     |          |              |          |        |
| Catagory           | es            | Engineering Sciences                                                                        | Soc                        | e            | ives            | es            | ary             | ent             | ject                |          |              |          |        |
| Category           | ence          | Scie                                                                                        |                            | Cor          | ecti            | ctiv          | linî            | )OD(            | Proj                |          |              |          |        |
|                    | Scie          | ng                                                                                          | ities and<br>Sciences      | am           | I El            | Elec          | scip            | duic            | [/]                 |          |              |          |        |
|                    | Basic Science | eeri                                                                                        | nitie<br>Sci               | Program Core | ran             | Open Elective | rdis            | Skill component | tica                |          |              |          |        |
|                    | Ba            | gine                                                                                        | Humanities and<br>Sciences | Pr           | Program Electiv | Op            | Interdisciplina | Skil            | Practical / Project |          |              |          |        |
|                    |               | En                                                                                          | Hur                        |              | P P             |               |                 |                 | ц                   |          |              |          |        |
|                    |               |                                                                                             |                            |              |                 |               |                 |                 |                     |          |              |          |        |
|                    |               |                                                                                             |                            |              | $\checkmark$    |               | 1               |                 |                     |          |              |          |        |
|                    |               |                                                                                             |                            |              |                 |               |                 |                 |                     |          |              |          |        |

| Subject Code:                                | Subject Name:                                                     | TY / Lb/ | L | T/S.Lr | P/ R | С |  |
|----------------------------------------------|-------------------------------------------------------------------|----------|---|--------|------|---|--|
|                                              | HYDROLOGY                                                         | ETL/IE   |   |        |      |   |  |
| EBCE22E05                                    | Prerequisite: None                                                | Ту       | 3 | 0/0    | 0/0  | 3 |  |
| L : Lecture T : Tuto                         | rial SLr : Supervised Learning P : Project R : Research C: Credit | S        |   |        |      |   |  |
| T/L/ETL : Theory/Lab/Embedded Theory and Lab |                                                                   |          |   |        |      |   |  |

#### UNIT I **INTRODUCTION**

Definition & Scope- Practical applications-Hydrological cycle – Transitory systems- formation, Types and forms of precipitation - Winds and their movement-Climate & weather season in India-Catchment area

#### PRECIPITATION UNIT II

Measurement of Precipitation-Recording & Non- Recording Rain Gauges-Intensity duration Analysis-Intensity frequency duration Analysis- Average depth of precipitation over an areas-Depth area duration analysis-Rain gauge network.

#### UNIT III **EVAPORATION & INFILTRATION**

Introduction- Evaporation process- Factors affecting Evaporation- Evaporation Estimation-Evaporation measurement- Evapo transpiration- Factors affecting infiltration-measurement of infiltration- Infiltration Equations

#### UNIT IV **STREAM FLOW MEASUREMENT & HYDROGRAPH ANALYSIS** 9 Hrs

Introduction-Measurement of stage-discharge measurement -area velocity method (Current meter method)moving boat method- Stage discharge relationships - Flow measurements - Features of hydrograph- base flow-Hydrograph separation

#### UNIT V **GROUND WATER HYDROLOGY**

Occurrence of ground water - Types of aquifer - Dupuit's assumptions - Darcy's law - Estimation of aquifer parameters - Pump tests.

#### **REFERENCES**

- 1. Jeya Rami Reddy.P, Hydrology, Laximi Publications, New Delhi, 2004.
- 2. Subramanya K., Hydrology, Tata McGraw Hill Co., New Delhi, 1994
- 3. Patra.K.C, Hydrology and Water Resources Engineering, Narosa Publications, 2008, 2 nd Edition, New Delhi.
- Chow V.T., Maidment D.R., Mays L.W., " Applied Hydrology, McGraw Hill Publications, NewYork, 1995 4.

## 9 Hrs

#### 9 Hrs

#### Total No. of Hrs: 45

9 Hrs

| Subject Code:     | Sul                                                                                                   | oject Nai                                                                  |                                   |              |                   |                |                   |                 | TY / Lb/            | L    | T/S.Lr | <b>P/ R</b> | С  |
|-------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------|--------------|-------------------|----------------|-------------------|-----------------|---------------------|------|--------|-------------|----|
| EDCEASEAC         |                                                                                                       |                                                                            | IRONME                            | NTAL I       | MPACT             | ASSES          | SMENT             |                 | ETL/IE              |      |        |             |    |
| EBCE22E06         |                                                                                                       | requisite                                                                  |                                   |              |                   |                |                   |                 | Ту                  | 3    | 0/0    | 0/0         | 3  |
| L : Lecture T : T | utorial                                                                                               | SLr : Su                                                                   | pervised L                        | earning      | P : Proje         | ct R : Re      | esearch C         | : Credit        | 8                   |      |        |             |    |
| T/L/ETL : Theorem | ry/Lab/E                                                                                              | mbedded                                                                    | l Theory ar                       | nd Lab       |                   |                |                   |                 |                     |      |        |             |    |
| OBJECTIVE         |                                                                                                       |                                                                            |                                   |              |                   |                |                   |                 |                     |      |        |             |    |
| To know the obj   | ectives,                                                                                              | capability                                                                 | y, and limit                      | ations of    | environ           | nental in      | npact ass         | essment.        |                     |      |        |             |    |
| To learn method   | ologies a                                                                                             | and legal                                                                  | aspects of                        | environr     | nental im         | pact asse      | essment;          |                 |                     |      |        |             |    |
| <b>COURSE OUT</b> |                                                                                                       |                                                                            |                                   |              |                   |                |                   |                 |                     |      |        |             |    |
| CO1               | Understand and carry out scoping and screening of developmental projects for environmental and social |                                                                            |                                   |              |                   |                |                   |                 |                     |      |        |             |    |
|                   | assessments                                                                                           |                                                                            |                                   |              |                   |                |                   |                 |                     |      |        |             |    |
| CO2               | Explain different methodologies for environmental impact prediction and assessment                    |                                                                            |                                   |              |                   |                |                   |                 |                     |      |        |             |    |
| CO3               |                                                                                                       | nalyze environmental impact assessments and environmental management plans |                                   |              |                   |                |                   |                 |                     |      |        |             |    |
| CO4               |                                                                                                       | valuate the design methods of EIA                                          |                                   |              |                   |                |                   |                 |                     |      |        |             |    |
| CO5               |                                                                                                       | rovide new methods and concepts in EIA                                     |                                   |              |                   |                |                   |                 |                     |      |        |             |    |
| Mapping of Co     |                                                                                                       |                                                                            |                                   |              |                   |                |                   |                 |                     |      |        |             |    |
| COs/POs           | PO1                                                                                                   | PO2                                                                        | PO3                               | PO4          | PO5               | PO6            | <b>PO7</b>        | PO8             | PO9                 | PO10 | PO11   | PO          | 12 |
| CO1               | 3                                                                                                     | 3                                                                          | 3                                 | 3            | 3                 | 3              | 3                 | 1               | 1                   | 1    | 3      |             | 3  |
| CO2               | 3                                                                                                     | 3                                                                          | 3                                 | 3            | 3                 | 3              | 3                 | 1               | 1                   | 1    | 3      |             | 3  |
| CO3               | 3                                                                                                     | 3                                                                          | 3                                 | 3            | 3                 | 3              | 3                 | 1               | 1                   | 1    | 3      |             | 3  |
| CO4               | 3                                                                                                     | 3                                                                          | 3                                 | 3            | 3                 | 3              | 3                 | 1               | 1                   | 1    | 3      |             | 3  |
| CO5               | 3                                                                                                     | 3                                                                          | 3                                 | 3            | 3                 | 3              | 3                 | 1               | 1                   | 1    | 3      |             | 3  |
| COs / PSOs        | PS                                                                                                    | 01                                                                         | PSC                               | 02           |                   |                |                   |                 |                     |      |        |             |    |
| CO1               |                                                                                                       | 3                                                                          | 3                                 |              |                   |                |                   |                 |                     |      |        |             |    |
| CO2               |                                                                                                       | 3                                                                          | 3                                 |              |                   |                |                   |                 |                     |      |        |             |    |
| CO3               |                                                                                                       | 3                                                                          | 3                                 |              |                   |                |                   |                 |                     |      |        |             |    |
| CO4               |                                                                                                       | 3                                                                          | 3                                 |              |                   |                |                   |                 |                     |      |        |             |    |
| CO5               |                                                                                                       | 3                                                                          | 3                                 |              |                   |                |                   |                 |                     |      |        |             |    |
| 3/2/1 Indicates   | Strength                                                                                              | Of Cor                                                                     | relation, 3                       | – High,      | 2- Mediu          | um, 1- L       | ow                | ,               |                     |      |        |             |    |
| Category          | Basic Sciences                                                                                        | Engineering Sciences                                                       | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project |      |        |             |    |
| _                 |                                                                                                       |                                                                            |                                   | 1            | $\checkmark$      | 1              | 1                 |                 |                     | 1    |        | 1           |    |

91

| Subject Code:                                | Subject Name:<br>ENVIRONMENTAL IMPACT ASSESSMENT                  | TY / Lb/<br>ETL/IE | L | T / S.Lr | P/ R | C |  |  |
|----------------------------------------------|-------------------------------------------------------------------|--------------------|---|----------|------|---|--|--|
| EBCE22E06                                    | Prerequisite: None                                                | Ту                 | 3 | 0/0      | 0/0  | 3 |  |  |
| L : Lecture T : Tuto                         | rial SLr : Supervised Learning P : Project R : Research C: Credit | S                  |   |          |      |   |  |  |
| T/L/ETL : Theory/Lab/Embedded Theory and Lab |                                                                   |                    |   |          |      |   |  |  |

#### UNIT I **INTRODUCTION**

Impact of development on environment and Environmental Impact Assessment (EIA) and Environmental Impact Statement (EIS) – Objectives – Historical development – EIA capability and limitations – Legal provisions on EIA.

#### **UNIT II METHODOLOGIES**

Methods of EIA - Strengths, weaknesses and applicability - Appropriate methodology - Case studies.

#### **UNIT III** PREDICTION AND ASSESSMENT

Socio Economic Impact - Assessment of Impact on land, water and air, energy impact; Impact on flora and fauna; Mathematical models; public participation - Reports - Exchange of Information - Post Audit - Rapid EIA.

#### **UNIT IV** MATHEMATICAL MODELS FOR ASSESSMENT 9 Hrs

Use the mathematical models in EIA – Water quality, air quality and noise; assumptions and limitations.

#### UNIT V **ENVIRONMENTAL MANAGEMENT PLAN**

Plan for mitigation of adverse impact on environment – options for mitigation of impact on water, air and land, flora and fauna, addressing the issues related to the project affected people.

## Total No. of Hrs:45

## **TEXT BOOKS**

- 1. Canter, R.L. Environmental Impact Assessment, McGraw Hill Inc., New Delhi, 1996.
- 2. S.K.Shukla and P.R.Srivastava, Concepts in Environmental Impact Analysis, Common Wealth Publishers, New Delhi, 1992.

## REFERENCES

- 1. John G.Rau and David C Hooten (Ed)., Environmental Impact Analysis Handbook, McGraw Hill Book Company, 1990.
- 2. Environmental Assessment Source book, Vol. I, II & III. The World Bank, Washington, D.C., 1991.
- 3. Judith Petts, Hand book of Environmental Impact Assessment Vol. I & II, Blackwell Science, 1999.

## 9 Hrs

# 9 Hrs

9 Hrs

| Subject Code:<br>EBCE22E07     |                                                                                                                                                                                 | Subject<br>BRID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t Name<br>GE STI | RUCTU    | IRES         |            |          |        | TY / Lb/<br>ETL/IE | L     | T/<br>S.Lr | P/<br>R |       | С  |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|--------------|------------|----------|--------|--------------------|-------|------------|---------|-------|----|
|                                |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |          | concrete     |            |          |        | Ту                 | 3     | 0/0        | 0/      | 0     | 3  |
| L : Lecture T :                | Tutorial                                                                                                                                                                        | SLr : S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | upervise         | ed Learn | ing P:F      | Project R  | : Resea  | arch C | : Credits          |       |            |         |       |    |
| T/L/ETL : The                  | •                                                                                                                                                                               | Embedde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d Theor          | y and L  | ab           |            |          |        |                    |       |            |         |       |    |
| OBJECTIVE                      |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |          |              |            |          |        |                    |       |            |         |       |    |
| To make the st                 |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | out vario        | us bridg | ge structu   | res, selec | tion of  | appro  | priate bridge      | struc | ctures     | and des | ign i | it |
| for given site c               |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2.5)            |          |              |            |          |        |                    |       |            |         |       |    |
| COURSE OU<br>At the end of the |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |          |              |            |          |        |                    |       |            |         |       |    |
| CO1                            |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |          |              | ioning an  | d desim  | n of h | ridges in tern     | ns of | aesthe     | etics   |       |    |
| COI                            |                                                                                                                                                                                 | phical loc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |          |              | ioning an  | u ucsigi | 1010   | inges in tern      | 15 01 | acstin     | cues,   |       |    |
| CO2                            |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |          |              | , develop  | a clear  | under  | standing of c      | once  | eptual     | design  |       |    |
| CO3                            |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                | -        | sm and id    | 1          |          |        | -                  |       | -          | U       |       |    |
| CO4                            | Evaluat                                                                                                                                                                         | aluate the design of bridges starting from conceptual design, selecting suitable bridge, geometry to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |          |              |            |          |        |                    |       |            | to      |       |    |
| -                              |                                                                                                                                                                                 | zing of its elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |          |              |            |          |        |                    |       |            |         |       |    |
| CO5                            |                                                                                                                                                                                 | o create modern Bridge elements and structures in Projects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |          |              |            |          |        |                    |       |            |         |       |    |
|                                |                                                                                                                                                                                 | rese Outcomes with Program Outcomes (POs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |          |              |            |          |        |                    |       |            |         |       |    |
| COs/<br>POs                    | PO1                                                                                                                                                                             | PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO1         PO           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 |                  |          |              |            |          |        |                    |       |            |         | 012   |    |
| CO1                            | 3                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                | 3        | 1            | 3          | 1        | 1      | 1                  |       | 1          | 1       |       | 3  |
| CO2                            | 3                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                | 3        | 1            | 3          | 1        | 1      |                    |       | 1          | 1       |       | 3  |
| CO3                            | 3                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                | 3        | 1            | 3          | 1        | 1      |                    |       | 1          | 1       |       | 3  |
| CO4                            | 3                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                | 3        | 1            | 3          | 1        | 1      | 1                  |       | 1          | 1       |       | 3  |
| CO5                            | 3                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                | 3        | 1            | 3          | 1        | 1      | 1                  |       | 1          | 1       |       | 3  |
| COs / PSOs                     | PS                                                                                                                                                                              | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PS               | 02       |              |            |          |        |                    |       |            |         |       |    |
| CO1                            |                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | 3        |              |            |          |        |                    |       |            |         |       |    |
| CO2                            |                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | 3        |              |            |          |        |                    |       |            |         |       |    |
| CO3                            |                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | 3        |              |            |          |        |                    |       |            |         |       |    |
| CO4                            |                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | 3        |              |            |          |        |                    |       |            |         |       |    |
| CO5                            |                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | 3        |              |            |          |        |                    |       |            |         |       |    |
| 3/2/1 Indicates                | s Strengt                                                                                                                                                                       | h Of Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rrelatio         | n, 3 – H | ligh, 2- N   | Iedium,    | 1- Low   |        |                    |       |            |         |       |    |
| Category                       | Basic Sciences<br>Engineering Sciences<br>Humanities and Social<br>Sciences<br>Program Core<br>Program Electives<br>Interdisciplinary<br>Skill component<br>Practical / Project |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |          |              |            |          |        |                    |       |            |         |       |    |
|                                |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |          | $\checkmark$ |            |          |        |                    |       |            |         |       |    |

| Subject Code:<br>EBCE22E07 | Subject Name<br>BRIDGE STRUCTURES                                               | TY / Lb/<br>ETL/IE | L | T /<br>S.Lr | P/<br>R | С |
|----------------------------|---------------------------------------------------------------------------------|--------------------|---|-------------|---------|---|
|                            | Prerequisite: Design of concrete structures                                     | Ту                 | 3 | 0/0         | 0/0     | 3 |
|                            | SLr : Supervised Learning P : Project R : Research C<br>Embedded Theory and Lab | C: Credits         |   |             |         |   |

## UNIT I INTRODUCTION

Design of through type steel highway bridges for IRC loading - Design of stringers, cross girders and main girders - Design of deck type steel highway bridges for IRC loading - Design of main girders.

## UNIT II STEEL BRIDGES

Design of pratt type truss girder highway bridges - Design of top chord, bottom chord, web members - Effect of repeated loading - Design of plate girder railway bridges for railway loading - Wind effects - Design of web and flange plates - Vertical and horizontal stiffeners.

## UNIT III REINFORCED CONCRETE SLAB BRIDGES

Design of solid slab bridges for IRC loading - Design of kerb - Design of tee beam bridges - Design of panel and cantilever for IRC loading.

## UNIT IV REINFORCED CONCRETE GIRDER BRIDGES

Design of tee beam - Courbon's theory - Pigeaud's curves - Design of balanced cantilever bridges - Deck slab - Main girder - Design of cantilever - Design of articulation.

## UNIT V PRESTRESSED CONCRETE BRIDGES

Design of prestressed concrete bridges - Preliminary dimensions - Flexural and torsional parameters -Courbon's theory - Distribution coefficient by exact analysis - Design of girder section - Maximum and minimum prestressing forces - Eccentricity - Live load and dead load shear forces - cable zone in girder –Check for stresses at various sections - Check for diagonal tension - Diaphragms - End block - Short term and long term deflections.

#### Total No. of Hrs: 45

## TEXT BOOKS

1. Johnson Victor D., "Essentials of Bridge Engineering", Oxford and IBH Publishing Co., New Delhi, 1990.

2. Ponnuswamy S., " Bridge Engineering ", Tata McGraw Hill, New Delhi, 1996.

## REFERENCES

1. Phatak D.R., "Bridge Engineering ", Satya Prakashan, New Delhi, 1990.

#### 9 Hrs

9 Hrs

9 Hrs

9 Hrs

## 0 Um

## 9 Hr

| Subject Code<br>EBCE22E08 | :              | Subject<br>IRRI      |                                   | N ENG        | INEERI            | NG             |                   |                 | TY / Lb/<br>ETL/IE  | L     | T /<br>S.Lr | P/<br>R   | C       |
|---------------------------|----------------|----------------------|-----------------------------------|--------------|-------------------|----------------|-------------------|-----------------|---------------------|-------|-------------|-----------|---------|
|                           |                |                      | isite: No                         |              |                   |                |                   |                 | Ту                  | 3     | 0/0         | 0/0       | 3       |
| L : Lecture T :           | Tutorial       | SLr : S              | upervise                          | ed Learr     | ing P:F           | Project R      | : Resea           | arch C          | C: Credits          |       |             |           |         |
| T/L/ETL : The             | eory/Lab/      | Embedde              | d Theor                           | y and L      | ab                |                |                   |                 |                     |       |             |           |         |
| OBJECTIVE                 | :              |                      |                                   |              |                   |                |                   |                 |                     |       |             |           |         |
| The student a             |                | know th              | e irriga                          | tion ma      | inagemen          | t practic      | es of th          | he pa           | st, present A       | and t | future.     | The str   | uctures |
| involved the e            |                |                      |                                   |              |                   |                |                   |                 |                     |       |             |           |         |
| Finally, the stu          |                |                      |                                   |              | eive and          | plan any       | type of           | irriga          | tion project.       |       |             |           | -       |
| COURSE OU                 |                |                      |                                   |              |                   |                |                   |                 |                     |       |             |           |         |
| At the end of t           |                |                      |                                   |              |                   |                |                   |                 |                     |       |             |           |         |
| CO1                       |                |                      |                                   |              |                   |                |                   |                 | nt and future.      |       |             |           |         |
| CO2                       |                | owledge of concepts  |                                   |              |                   |                |                   | ry hy           | draulic desig       | n of  | differen    | t structi | ires    |
| CO3                       |                | ceive and            |                                   |              |                   |                |                   |                 |                     |       |             |           |         |
| Mapping of C              |                |                      |                                   |              |                   |                |                   |                 |                     |       |             |           |         |
| COs/                      | PO1            | PO2                  | PO3                               | PO4          | PO5               | PO6            | <b>PO7</b>        | PO              | 8 PO9               | PO    | D 1         | <b>PO</b> | PO12    |
| POs                       |                |                      |                                   |              |                   |                |                   |                 |                     | 10    | ) 1         | 1         |         |
| CO1                       | 1              | 2                    | 2                                 | 2            | 2                 | -              | -                 | -               |                     |       | -           | -         | -       |
| CO2                       | 3              | 3                    | 3                                 | 2            | 2                 | -              | -                 | -               | - –                 |       | -           | -         | -       |
| CO3                       | 3              | 2                    | 3                                 | 2            | 2                 | -              | -                 | -               | - –                 |       | -           | -         | -       |
| COs / PSOs                | PS             | 01                   | PS                                | 02           |                   |                |                   |                 |                     |       |             |           |         |
| CO1                       |                | 3                    |                                   | 3            |                   |                |                   |                 |                     |       |             |           |         |
| CO2                       |                | 3                    |                                   | 3            |                   |                |                   |                 |                     |       |             |           |         |
| CO3                       |                | 3                    |                                   | 3            |                   |                |                   |                 |                     |       |             |           |         |
| 3/2/1 Indicate            | s Strengt      | h Of Co              | rrelatio                          | n, 3 – H     | ligh, 2- N        | ledium,        | 1- Low            |                 |                     |       |             |           |         |
|                           |                | r                    | T                                 | ·            | 8 /               | ,<br>T         | 1                 | 1               |                     | -     |             |           |         |
| Category                  | Basic Sciences | Engineering Sciences | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project |       |             |           |         |
|                           |                |                      |                                   |              | $\checkmark$      |                |                   |                 |                     |       |             |           |         |
|                           |                |                      |                                   |              |                   |                |                   |                 |                     |       |             |           |         |

| Subject Code:<br>EBCE22E08                   | Subject Name<br>IRRIGATION ENGINEERING               | TY / Lb/<br>ETL/IE | L | T /<br>S.Lr | P/<br>R | C |  |  |  |
|----------------------------------------------|------------------------------------------------------|--------------------|---|-------------|---------|---|--|--|--|
|                                              | Prerequisite: None                                   | Ту                 | 3 | 0/0         | 0/0     | 3 |  |  |  |
| L : Lecture T : Tutorial                     | SLr : Supervised Learning P : Project R : Research C | C: Credits         |   |             |         |   |  |  |  |
| T/L/ETL : Theory/Lab/Embedded Theory and Lab |                                                      |                    |   |             |         |   |  |  |  |

#### **UNIT I: INTRODUCTION**

Irrigation - Need and mode of irrigation - Merits and demerits of irrigation - Crop and crop seasons consumptive use of water - Duty - Factors affecting duty - Irrigation Efficiencies - Planning and Development of irrigation projects.

#### **UNIT II: IRRIGATION METHODS**

Canal irrigation - Lift irrigation - Tank irrigation - Flooding methods - Merits and Demerits - Sprinkler irrigation – Drip irrigation.

#### **UNIT III : DIVERSION AND IMPOUNDING STRUCTURES**

Weirs – elementary profile of a weir – weirs on pervious foundations - Types of Impounding structures - Tanks, Sluices and Weirs - Gravity dams - Earth dams - Arch Dams - Spillways - Factors affecting location and type of dams – Forces on a dam – Hydraulic design of dams.

#### **UNIT IV : CANAL IRRIGATION**

Alignment of canals – Classification of canals – Canal drops – Hydraulic design of drops – Cross drainage works - Hydraulic design of cross drainage works - Canal Head works - Canal regulators - River Training works.

#### **UNIT V: IRRIGATION WATER MANAGEMENT**

Need for optimization of water use - Minimizing irrigation water losses - On farm Development works -Percolation ponds - Participatory irrigation management - Water Users associations - Changing paradigms in water management – Performance evaluation.

#### **TEXT BOOKS**

Asawa, G.L., "Irrigation Engineering", New Age International Publishers, New Delhi, 2000.

Sharma, R.K., and Sharma, T.K., "Irrigation Engineering", S.Chand and Company, New Delhi, 2000. \* REFERENCES

- Basak, N.N., "Irrigation Engineering", Tata McGraw-Hill Publishing Co., New Delhi, 2000. Garg, S.K., "Irrigation Engineering," Laxmi Publications, New Delhi, 1999.
- \*
- \* Gupta, B.L., and Amir Gupta, "Irrigation Engineering", SatyaPraheshan, New Delhi

## 9 Hrs

## 8 Hrs

9 Hrs

#### **Total No of Hrs: 45**

10 Hrs

# PROGRAM ELECTIVE – III

| Subject            | Subie                                            | ct Name            | 9                          |                           |                   |                |                   |                 | T / Lb/             | L           | Τ/       | <b>P</b> / | С    |
|--------------------|--------------------------------------------------|--------------------|----------------------------|---------------------------|-------------------|----------------|-------------------|-----------------|---------------------|-------------|----------|------------|------|
| Code:              | Subje                                            | co i valliv        | 6                          |                           |                   |                |                   |                 | ETL/IE              | -           | S.Lr     | R          | Ŭ    |
|                    | PRES                                             | TRESS              | ED CO                      | NCRET                     | TE STR            | UCTU           | RES               |                 |                     |             | 5.11     | N          |      |
| <b>EBCE22E09</b>   |                                                  |                    |                            |                           |                   |                |                   |                 |                     |             |          |            |      |
|                    | Prereq                                           | uisite: I          | Design of                  | f Concre                  | ete Struc         | ctures         |                   |                 | Ту                  | 3           | 0/0      | 0/0        | 3    |
| L : Lecture T : 7  | Futorial                                         | SLr :              | Supervis                   | sed Lear                  | ning P            | : Projec       | t R : Re          | esearch (       | C: Credits          |             |          |            | _    |
| T/L/ETL : Theo     |                                                  |                    |                            |                           |                   | 5              |                   |                 |                     |             |          |            |      |
| <b>OBJECTIVE :</b> |                                                  |                    |                            |                           |                   |                |                   |                 |                     |             |          |            |      |
|                    |                                                  |                    |                            |                           |                   |                |                   |                 | ic concept o        |             | ject.    |            |      |
|                    |                                                  |                    |                            |                           |                   |                |                   |                 | s is dealt he       |             |          |            |      |
|                    |                                                  | of loss            | es in co                   | oncrete                   | & Anch            | orage z        | one stre          | esses in        | end block           | can be b    | rought o | ut usin    | g IS |
| method             |                                                  |                    |                            |                           |                   |                |                   |                 |                     |             |          |            |      |
| COURSE OUT         |                                                  |                    |                            |                           |                   | .1 1           | 6                 | · ·             | 1 .                 |             |          |            |      |
| CO1                |                                                  |                    |                            |                           | -                 |                | -                 | -               | nd composi          |             |          |            |      |
| CO2                | -                                                |                    |                            |                           |                   |                |                   | -               | flexural and        | shear str   | engths   |            |      |
| CO3                |                                                  |                    | analyze                    |                           |                   |                |                   |                 |                     |             |          |            |      |
| CO4                |                                                  |                    | stress los                 |                           |                   |                |                   |                 |                     | 1           |          |            |      |
| CO5                |                                                  |                    |                            |                           | *                 |                |                   | concrete        | structural e        | elements    |          |            |      |
|                    | urse Outcomes with Program OutcomPO1PO2PO3PO4PO5 |                    |                            |                           |                   |                |                   | DOP             | DOA                 | <b>DO10</b> | DO11     | DO1/       |      |
| COs/POs            |                                                  |                    |                            |                           |                   | PO6            | PO7               | PO8             | PO9                 | PO10        | PO11     | PO1        |      |
| CO1                | 3                                                | 3                  | 3                          | 3                         | 2                 | 1              | 1                 | 1               | 1                   | 1           | 1        | 3          |      |
| CO2                | 3                                                | 3                  | 3                          | 3                         | 2                 | 1              | 1                 | 1               | 1                   | 1           | 1        | 3          |      |
| CO3                | 3                                                | 3                  | 3                          | 3                         | 2                 | 1              | 1                 | 1               | 1                   | 1           | 1        | 3          | \$   |
| CO4                | 3                                                | 3                  | 3                          | 3                         | 2                 | 1              | 1                 | 1               | 1                   | 1           | 1        | 3          |      |
| CO5                | 3                                                | 3                  | 3                          | 3                         | 2                 | 1              | 1                 | 1               | 1                   | 1           | 1        | 3          | \$   |
| COs / PSOs         | PS                                               |                    | PS                         |                           |                   |                |                   |                 |                     |             |          |            |      |
| CO1                |                                                  |                    | 3                          |                           |                   |                |                   |                 |                     |             |          |            |      |
| CO2                |                                                  | 3                  |                            | 3                         |                   |                |                   |                 |                     |             |          |            |      |
| CO3                |                                                  | 3                  |                            | 3                         |                   |                |                   |                 |                     |             |          |            |      |
| CO4                |                                                  | 3                  |                            | 3                         |                   |                |                   |                 |                     |             |          |            |      |
| CO5                | -                                                | 3                  | -                          | 3                         |                   |                |                   |                 |                     |             |          |            |      |
| 3/2/1 Indicates    | Strengt                                          | h Of Co            | orrelatio                  | on, 3 – 1                 | High, 2-          | Mediu          | m, 1- L           | ow              |                     | Γ           | Γ        | 1          |      |
|                    |                                                  |                    | _                          |                           |                   |                |                   |                 |                     |             |          |            |      |
|                    |                                                  | ses                | Social                     |                           | s                 |                |                   |                 | ц.                  |             |          |            |      |
| Category           | ses                                              | enc                | So                         | fe                        | ive               | /es            | ary               | ent             | jec                 |             |          |            |      |
| 85                 | enc                                              | Sci                | nd<br>Ses                  | C                         | lect              | ctiv           | olin              | uod             | Prc                 |             |          |            |      |
|                    | Sci                                              | ing                | ities and<br>Sciences      | am                        | лE                | Ele            | scif              | luc             | / Ir                |             |          |            |      |
|                    | Basic Sciences                                   | eeri               | litie<br>Sci               | Program Core              | ran               | Open Electives | rdi               | ll ce           | tica                |             |          |            |      |
|                    | Ba                                               | Engineering Scienc | Humanities and<br>Sciences | $\mathbf{P}_{\mathbf{r}}$ | Program Electives | Op             | Interdisciplinary | Skill component | Practical / Project |             |          |            |      |
|                    |                                                  | En                 | Hur                        |                           | Р                 |                |                   |                 | ц                   |             |          |            |      |
|                    |                                                  |                    |                            |                           |                   |                |                   |                 |                     |             |          |            |      |
|                    |                                                  |                    |                            |                           | <b>√</b>          |                |                   |                 |                     |             |          |            |      |
|                    |                                                  |                    |                            |                           | ×                 |                |                   |                 |                     |             |          |            |      |

| Subject<br>Code:<br>EBCE22E09 | Subject Name PRESTRESSED CONCRETE STRUCTURES                                               | T / Lb/<br>ETL/IE | L | T /<br>S.Lr | P/<br>R | C |
|-------------------------------|--------------------------------------------------------------------------------------------|-------------------|---|-------------|---------|---|
|                               | Prerequisite: Design of Concrete Structures                                                | Ту                | 3 | 0/0         | 0/0     | 3 |
|                               | Tutorial SLr : Supervised Learning P : Project R : Research ry/Lab/Embedded Theory and Lab | C: Credits        |   |             |         |   |

#### UNIT I **INTRODUCTION – THEORY AND BEHAVIOUR**

Basic concepts - Advantages - Materials required - Systems and methods of pre -stressing - Analysis of sections - Stress concept - Strength concept - Load balancing concept - Effect of loading on the tensile stresses in tendons.

#### UNIT II DEFLECTION

Deflections - Factors influencing deflections - Calculation of deflections - Short term and long term deflections - Losses of pre-stress - Losses of prestress - types - losses due to elastic deformation of concrete - shrinkage of concrete - creep of concrete - friction - anchorage slip - Estimation of crack width

#### UNIT III DESIGN

Flexural strength – Simplified procedures as per codes – strain compatibility method – Basic concepts in selection of cross section for bending - stress distribution in end block, Design of anchorage zone reinforcement - Limit state design criteria.

#### UNIT IV **CIRCULAR PRESTRESSING**

General features & Design of prestressed concrete tanks – Prestressed concrete Poles, Shapes, Features & Design- Prestressed concrete sleepers – Development – Types- Design, Static & dynamic loads

#### UNIT V **COMPOSITE CONSTRUCTION**

Analysis for stresses - Estimate for deflections - Flexural and shear strength of composite members- General aspects - pretension pre-stressed bridge decks - Post tensioned pre-stressed bridge decks -Advantages over R.C.C bridges- Design Principles of post tensioned prestressed concrete slab bridge deck, T Beam slab bridge deck & Continuous two span beam deck

#### **Total No of Hrs: 45**

#### **TEXT BOOKS**

- 1. Krishna Raju N., Prestressed concrete, Tata McGraw Hill Company, New Delhi, 2011
- S.Ramamrutham, Prestressed concrete, Dhanpatrai Publishing company, 2014 2.
- Mallic S.K. and Gupta A.P., Prestressed concrete, Oxford and IBH Publishing Co.Pvt. Ltd. 1997. 3.
- Rajagopalan.N, Prestressed Concrete, Alpha Science, 2002. 4.

## REFERENCES

- 1. Ramaswamy G.S., Modern Prestressed Concrete Design, Arnold Heinimen, New Delhi, 1990
- 2. Lin T.Y. Design of prestressed concrete structures, Asia Publishing House, Bombay 1995

#### 9 Hrs

#### 9 Hrs

# 9 Hrs

9 Hrs

| Subject Code:                 | S              | ubject Nar                                      | ne:                               |              |                   |                |                   | ſ                                            | TY / Lb/            | L                                            | T/S.Lr      | <b>P/ R</b> | C      |
|-------------------------------|----------------|-------------------------------------------------|-----------------------------------|--------------|-------------------|----------------|-------------------|----------------------------------------------|---------------------|----------------------------------------------|-------------|-------------|--------|
|                               |                | •                                               | HOUSING                           | PLANN        | VING AN           | <b>JD DESI</b> | GN                |                                              | ETL/IE              |                                              |             |             |        |
| <b>EBCE22E10</b>              | P              | rerequisite:                                    |                                   |              |                   |                |                   |                                              | Ту                  | 3                                            | 0/0         | 0/0         | 3      |
|                               |                |                                                 |                                   |              |                   |                |                   |                                              |                     |                                              |             |             |        |
| L : Lecture T : T             |                |                                                 | -                                 | •            | P : Projec        | ct R : Re      | search C          | : Credits                                    |                     |                                              |             |             |        |
| T/L/ETL : Theo                | •              | /Embedded                                       | Theory an                         | d Lab        |                   |                |                   |                                              |                     |                                              |             |             |        |
| <b>OBJECTIVE :</b>            |                |                                                 |                                   |              |                   |                |                   |                                              |                     | -                                            |             |             |        |
| A house plan is               |                |                                                 |                                   |              |                   |                |                   |                                              |                     |                                              |             |             |        |
| truly successful              |                |                                                 |                                   |              |                   |                | n and wh          | ere the in                                   | nterdepende         | encies of                                    | all buildin | g systen    | ns are |
| coordinated con<br>COURSE OUT |                |                                                 |                                   | uia progi    | amming            | pnase.         |                   |                                              |                     |                                              |             |             |        |
| After successful              |                |                                                 |                                   | e studen     | ts should         | be able t      | 0                 |                                              |                     |                                              |             |             |        |
| CO1                           |                |                                                 |                                   |              |                   |                |                   | and rules                                    | and regulat         | tions                                        |             |             |        |
| CO2                           |                | Applying t                                      | 0                                 |              | -                 |                |                   |                                              |                     |                                              |             |             |        |
| <u>CO3</u>                    |                | 11 . 6                                          | 1                                 |              | 0                 | 5              | plan for 1        | plot man                                     | cost flow .         |                                              |             |             |        |
| <u>CO4</u>                    |                | Evaluate t                                      |                                   |              |                   |                |                   |                                              |                     |                                              |             |             |        |
| CO5                           |                | To create and identify the new housing projects |                                   |              |                   |                |                   |                                              |                     |                                              |             |             |        |
| Mapping of Co                 |                | Outcomes with Program Outcomes (POs)            |                                   |              |                   |                |                   |                                              |                     |                                              |             |             |        |
| COs/POs                       | PO1            | PO2                                             | PO3                               | PO4          | PO5               | PO6            | PO7               | PO8                                          | PO9                 | PO10                                         | PO11        | PO          | 12     |
| CO1                           | 3              | 3                                               | 3                                 | 3            | 1                 | 3              | 1                 | 1                                            | 1                   | 1                                            | 1           |             | 3      |
| CO2                           | 3              | 3                                               | 3                                 | 3            | 1                 | 3              | 1                 | 1                                            | 1                   | 1                                            | 1           |             | 3      |
| CO3                           | 3              | 3                                               | 3                                 | 3            | 1                 | 3              | 1                 | 1                                            | 1                   | 1                                            | 1           |             | 3      |
| CO4                           | 3              | 3                                               | 3                                 | 3            | 1                 | 3              | 1                 | 1                                            | 1                   | 1                                            | 1           |             | 3      |
| CO5                           | 3              | 3                                               | 3                                 | 3            | 1                 | 3              | 1                 | 1                                            | 1                   | 1                                            | 1           |             | 3      |
| COs / PSOs                    | F              | PSO1                                            | PSC                               | )2           |                   |                |                   | ·                                            |                     |                                              |             |             |        |
| CO1                           | 1              | 3                                               | 3                                 |              |                   |                |                   |                                              |                     |                                              |             |             |        |
| CO2                           | 1              | 3                                               | 3                                 |              |                   |                |                   |                                              |                     | 1                                            |             |             |        |
| CO3                           |                | 3                                               | 3                                 |              | <u> </u>          |                |                   |                                              | -                   |                                              |             |             |        |
| CO4                           |                | 3                                               | 3                                 |              | <u> </u>          |                |                   |                                              | -                   |                                              |             |             |        |
| CO5                           | 1              | 3                                               | 3                                 |              | <u> </u>          |                | <u> </u>          |                                              | 1                   |                                              |             |             |        |
| 3/2/1 Indicates               | Streng         | th Of Cori                                      | relation, 3                       | – High,      | 2- Mediu          | <u>, 1- Lo</u> | )w                |                                              |                     | <u>.                                    </u> |             |             |        |
|                               | 3              |                                                 |                                   |              |                   |                |                   |                                              |                     |                                              |             |             |        |
|                               | 1              | s                                               | al                                |              |                   |                |                   |                                              |                     |                                              |             |             |        |
|                               | ~              | lce                                             | ocia                              |              | se                | s              | y                 | Ħ                                            | ct                  |                                              |             |             |        |
| Category                      | lces           | cier                                            | S T S                             | ore          | ctiv              | ive            | nar               | ner                                          | oje                 |                                              |             |             |        |
|                               | yien           | š Sc                                            | and                               | 1 C          | ыlec              | ecti           | ipli              | odt                                          | / Pr                |                                              |             |             |        |
|                               | SS             | ring                                            | ities and<br>Sciences             | ran          | ml                | ١EI            | lisc              | con                                          | cal                 |                                              |             |             |        |
|                               | Basic Sciences | nee                                             | Sc                                | Program Core | Program Electives | Open Electives | Interdisciplinary | Skill component                              | Practical / Project |                                              |             |             |        |
|                               | Ä              | Engineering Sciences                            | Humanities and Social<br>Sciences | Ъ            | Pro               | 0              | Int               | Sk                                           | Pra                 |                                              |             |             |        |
|                               |                | Ē                                               | HL H                              |              |                   |                |                   |                                              |                     |                                              |             |             |        |
|                               |                | _                                               | <u> </u>                          |              | L                 | ļ              | <u> </u>          | <u>                                     </u> |                     | <u> </u>                                     |             |             |        |
|                               |                |                                                 |                                   |              | $\checkmark$      |                | <u> </u>          |                                              |                     |                                              |             |             |        |
|                               |                |                                                 |                                   |              |                   |                |                   |                                              |                     |                                              |             |             |        |

| Subject Code:                                | Subject Name:                                                      | TY / Lb/ | L | T/S.Lr | P/ R | С |  |
|----------------------------------------------|--------------------------------------------------------------------|----------|---|--------|------|---|--|
|                                              | HOUSING PLANNING AND DESIGN                                        | ETL/IE   |   |        |      |   |  |
| EBCE22E10                                    | Prerequisite: Building Drawing Practice                            | Ту       | 3 | 0/0    | 0/0  | 3 |  |
|                                              |                                                                    |          |   |        |      |   |  |
| L : Lecture T : Tuto                         | rial SLr : Supervised Learning P : Project R : Research C: Credits | 5        |   |        |      |   |  |
| T/L/ETL : Theory/Lab/Embedded Theory and Lab |                                                                    |          |   |        |      |   |  |

#### UNIT I INTRODUCTION TO HOUSING

Definition of Basic Terms – House, Home, Household, Apartments - Objectives of National Housing Policies, Principle of Sustainable Housing, Housing Laws at State level, Local bodies' Bye-laws at Urban and Rural Level and Development Control Regulations, Institutions for Housing at National, State and Local levels.

#### UNITII HOUSING PROGRAMMES

Basic Concepts – Contents and Standards for Housing Programmes - Sites and Services, Neighbourhood, Open Development Plots, Apartments, Rental Housing, Co-operative Housing, Slum Housing Programme, Role of Public, Private and Non-Government Organisations.

#### UNIT III PLANNING AND DESIGN OF HOUSING PROJECTS 9 Hrs

Formulation of Housing Projects - Site Analysis, Layout Design, Design of Housing Units (Design Problems).

#### UNIT IV CONSTRUCTION TECHNIQUES AND COST-EFFECTIVE MATERIALS

New Constructions Techniques – Cost Effective Modern Construction Materials, Building Centers – Concept, Functions and Performance Evaluation.

#### UNIT V HOUSING FINANCE AND PROJECT APPRAISAL

Appraisal of Housing Projects – Housing Finance, Cost Recovery – Cash Flow Analysis, Subsidy and Cross Subsidy, Pricing of Housing Units, Rents, Recovery Pattern (Problems).

#### **Total No of Hrs: 45**

#### **TEXT BOOKS**

- 1. Meera Mehta and Dinesh Mehta, Metropolitan Housing Markets, Sage Publications Pvt. Ltd., New Delhi, 1999.
- 2. Francis Cherunilam and Odeyar D Heggade, Housing in India, Himalaya Publishing House, Bombay, 1997.

#### REFERENCES

- 1. Development Control Rules for Chennai Metropolitan Area, CMA, Chennai, 200.
- 2. UNCHS, National Experiences with Shelter Delivery for the Poorest Groups, UNCHS (Habitat), Nairobi, 1994.
- 3. National Housing Policy, 1994, Government of India.

#### 9 Hrs

# 9 Hrs

9 Hrs

| Subject Code:     | S              | ubject Na                                                                                                               |                                   | <b>T TT</b> 746 |                   |                |                   |                 | TY / Lb/            | L       | T / S.Lr | P/ R | С  |
|-------------------|----------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------|-------------------|----------------|-------------------|-----------------|---------------------|---------|----------|------|----|
| EBCE22E11         | D              |                                                                                                                         | DUSTRIA                           |                 |                   |                | MENT              |                 | ETL/IE              | 2       | 0./0     | 0/0  | 2  |
| L : Lecture T : 7 |                |                                                                                                                         | : Environn                        |                 |                   |                | accorate (        | C. Cradit       | Ту                  | 3       | 0/0      | 0/0  | 3  |
| T/L/ETL : Theo    |                |                                                                                                                         | -                                 | •               | P : Proje         | CL K : K       | esearch           |                 | 8                   |         |          |      |    |
| OBJECTIVE :       | •              | Embeddee                                                                                                                | i Theory a                        | Id Ld0          |                   |                |                   |                 |                     |         |          |      |    |
| To impart know    |                | n vorious                                                                                                               | nuironmo                          | ntol logic      | lations           |                |                   |                 |                     |         |          |      |    |
| To understand t   |                |                                                                                                                         |                                   |                 | lations           |                |                   |                 |                     |         |          |      |    |
| To impart know    |                |                                                                                                                         |                                   |                 | nior indu         | stries and     | the met           | hods of a       | ontrolling t        | ha sama |          |      |    |
| COURSE OUT        |                |                                                                                                                         |                                   |                 | ijor maus         | strics and     |                   |                 | onuoning t          | ne same |          |      |    |
| After successful  |                |                                                                                                                         |                                   | he studer       | nts should        | l be able      | to                |                 |                     |         |          |      |    |
| CO1               |                | Suggest the industrial waste disposal methods on land and water environment                                             |                                   |                 |                   |                |                   |                 |                     |         |          |      |    |
| CO2               |                |                                                                                                                         |                                   |                 | -                 |                |                   |                 | zation techn        |         |          |      |    |
| CO3               |                |                                                                                                                         |                                   |                 |                   | -              |                   |                 |                     | ques    |          |      |    |
| <u>CO4</u>        |                | Analyze and Practice the waste management concepts         Evaluate the methods for various aspects in waste management |                                   |                 |                   |                |                   |                 |                     |         |          |      |    |
| C05               |                | Identify the impacts on environment due to various industrial effluents                                                 |                                   |                 |                   |                |                   |                 |                     |         |          |      |    |
| Mapping of Co     |                |                                                                                                                         |                                   |                 |                   |                | 040 1100          |                 |                     |         |          |      |    |
| COs/POs           | PO1            | PO2                                                                                                                     | PO3                               | PO4             | PO5               | PO6            | PO7               | PO8             | <b>PO9</b>          | PO10    | PO11     | PO   | 12 |
| CO1               | 3              | 3                                                                                                                       | 3                                 | 3               | 3                 | 3              | 3                 | 1               | 1                   | 1       | 3        |      | 3  |
| CO2               | 3              | 3                                                                                                                       | 3                                 | 3               | 3                 | 3              | 3                 | 1               | 1                   | 1       | 3        |      | 3  |
| CO3               | 3              | 3                                                                                                                       | 3                                 | 3               | 3                 | 3              | 3                 | 1               | 1                   | 1       | 3        |      | 3  |
| CO4               | 3              | 3                                                                                                                       | 3                                 | 3               | 3                 | 3              | 3                 | 1               | 1                   | 1       | 3        |      | 3  |
| CO5               | 3              | 3                                                                                                                       | 3                                 | 3               | 3                 | 3              | 3                 | 1               | 1                   | 1       | 3        |      | 3  |
| COs / PSOs        | ]              | PSO1                                                                                                                    | PSC                               | 02              |                   |                |                   |                 |                     |         |          |      |    |
| CO1               |                | 3                                                                                                                       | 3                                 |                 |                   |                |                   |                 |                     |         |          |      |    |
| CO2               |                | 3                                                                                                                       | 3                                 |                 |                   |                |                   |                 |                     |         |          |      |    |
| CO3               |                | 3                                                                                                                       | 3                                 |                 |                   |                |                   |                 |                     |         |          |      |    |
| CO4               |                | 3                                                                                                                       | 3                                 |                 |                   |                |                   |                 |                     | -       |          |      |    |
| <u>CO5</u>        | ~              | 3                                                                                                                       | 3                                 |                 |                   |                |                   |                 |                     |         |          |      |    |
| 3/2/1 Indicates   | Streng         | <u>gth Of Cor</u>                                                                                                       | relation, 3                       | – High,         | 2- Medi           | um, 1- L       | ow                | 1 1             |                     | 1       |          |      |    |
| Category          | Basic Sciences | Engineering Sciences                                                                                                    | Humanities and Social<br>Sciences | Program Core    | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project |         |          |      |    |
|                   |                |                                                                                                                         | 1                                 | 1               | $\checkmark$      | 1              | 1                 | 1               |                     | 1       | 1        | 1    |    |

| Subject Code:                                                                          | Subject Name                            | TY / Lb/ | L | T/S.Lr | <b>P/ R</b> | С |  |  |  |  |
|----------------------------------------------------------------------------------------|-----------------------------------------|----------|---|--------|-------------|---|--|--|--|--|
|                                                                                        | INDUSTRIAL WASTE MANAGEMENT             | ETL/IE   |   |        |             |   |  |  |  |  |
| EBCE22E11                                                                              | Prerequisite: Environmental Engineering | Ту       | 3 | 0/0    | 0/0         | 3 |  |  |  |  |
| L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits |                                         |          |   |        |             |   |  |  |  |  |
| T/L/ETL : Theory/Lab/Embedded Theory and Lab                                           |                                         |          |   |        |             |   |  |  |  |  |

#### UNIT I **INTRODUCTION**

Types of industries and industrial pollution - Characteristics of industrial wastes - Population equivalent -Bioassay studies - effects of industrial effluents on streams, sewer, land, sewage treatment plants and human health - Hazardous Wastes - Environmental legislations related to prevention and control of industrial effluents and hazardous wastes - Pollution Control Boards.

#### UNIT II **CLEANER PRODUCTION**

Waste management Approach - Waste Audit - Volume and strength reduction - material and process modifications - Recycle, reuse and byproduct recovery - Applications.

#### UNIT III TREATMENT OF INDUSTRIAL WASTEWATER

Equalisation - Neutralisation - removal of suspended and dissolved organic solids - Chemical oxidation -Removal of dissolved inorganics - Combined treatment of industrial and municipal wastes - Residue management.

#### **UNIT IV** TREATMENT AND DISPOSAL OF HAZARDOUS WASTES 9 Hrs

Physic chemical treatment – solidification – incineration – Secured landfills – Legal Provisions.

#### UNIT V **CASE STUDIES**

Sources, Characteristics, waste treatment flow sheets for selected industries such as Textiles, Tanneries, Dairy, Sugar, Paper, distilleries, Steel plants, Refineries, fertilizer, thermal power plants.

#### Total No. of Hrs: 45

#### **TEXT BOOKS**

- 1. M.N.Rao & A.K.Dutta, Wastewater Treatment, Oxford IBH Publication, 1995.
- 2. W.W. Eckenfelder Jr., Industrial Water Pollution Control, McGraw-Hill Book Company, New Delhi, 1994.

#### REFERENCES

- 1. T.T.Shen, Industrial Pollution Prevention, Springer, 1999.
- 2. R.L.Stephenson and J.B.Blackburn, Jr., Industrial Wastewater Systems Hand book, Lewis Publisher, New York,
- 3. H.M.Freeman, Industrial Pollution Prevention Hand Book, McGraw Hill Inc., New Delhi, 1995.

#### 9 Hrs

9 Hrs

9 Hrs

| Subject Cod<br>EBCE22E12                                                                                                                            |                                                                                     | bject N<br>OST E                                                                                  | ame<br>FFECT                      | TVE B         | UILDI             | NGS            |                   |                 | TY /<br>Lb/<br>ETL/IE |           | T /<br>S.Lr | P/<br>R | C     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------|---------------|-------------------|----------------|-------------------|-----------------|-----------------------|-----------|-------------|---------|-------|
|                                                                                                                                                     | Pre                                                                                 | erequisit                                                                                         | e: Concr                          | ete and       | Constru           | ction T        | echnolog          | gy              | Ту                    | 3         | 0/0         | 0/0     | 3     |
| L : Lecture T                                                                                                                                       | T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits              |                                                                                                   |                                   |               |                   |                |                   |                 |                       |           |             |         |       |
| T/L/ETL : Tł                                                                                                                                        | -                                                                                   |                                                                                                   |                                   | -             |                   |                |                   |                 |                       |           |             |         |       |
| OBJECTIV                                                                                                                                            | Е:                                                                                  | The go                                                                                            | al of lov                         | v-cost h      | ousing            | is to sa       | ve mone           | ey whil         | e also ma             | intaining | g building  | gs qu   | ality |
| without sacri                                                                                                                                       | ficing th                                                                           | ne streng                                                                                         | gth, perfo                        | rmance        | and life          | of the         | structure         | e.              |                       |           |             |         |       |
| COURSE O                                                                                                                                            | UTCO                                                                                | MES (C                                                                                            | <sup>c</sup> Os) : ( 3            | - 5)          |                   |                |                   |                 |                       |           |             |         |       |
| After success                                                                                                                                       | ful com                                                                             | pletion                                                                                           | of this co                        | ourse, th     | e studer          | nts shou       | ld be ab          | le to           |                       |           |             |         |       |
| CO1                                                                                                                                                 | Understanding the cost effective techniques and environmental friendly materials in |                                                                                                   |                                   |               |                   |                |                   |                 |                       |           |             |         |       |
|                                                                                                                                                     | construction                                                                        |                                                                                                   |                                   |               |                   |                |                   |                 |                       |           |             |         |       |
| CO2                                                                                                                                                 | Apply and Identify the effects of global warming in construction                    |                                                                                                   |                                   |               |                   |                |                   |                 |                       |           |             |         |       |
| CO3                                                                                                                                                 |                                                                                     | Analyze and Practice the design of green building concepts and its benefits in construction field |                                   |               |                   |                |                   |                 |                       |           |             |         |       |
|                                                                                                                                                     | Evaluate the design methods for green buildings                                     |                                                                                                   |                                   |               |                   |                |                   |                 |                       |           |             |         |       |
| CO5To create comprehensive knowledge on the design of green buildings using modern technologyMapping of Course Outcomes with Program Outcomes (POs) |                                                                                     |                                                                                                   |                                   |               |                   |                |                   |                 |                       |           |             |         |       |
| Mapping of<br>COs/POs                                                                                                                               |                                                                                     | PO2                                                                                               | 1                                 | Progra<br>PO4 | PO5               | PO6            |                   | DOP             | PO9                   | PO10      | <b>DO11</b> | DC      | )12   |
|                                                                                                                                                     | PO1                                                                                 |                                                                                                   | PO3                               |               |                   |                | <b>PO7</b>        | PO8             |                       |           | PO11        | PU      |       |
| CO1                                                                                                                                                 | 3                                                                                   | 3                                                                                                 | 3                                 | 3             | 3                 | 3              | 3                 | 1               | 1                     | 1         | 3           | _       | 3     |
| CO2                                                                                                                                                 | 3                                                                                   | 3                                                                                                 | 3                                 | 3             | 3                 | 3              | 3                 | 1               | 1                     | 1         | 3           | _       | 3     |
| CO3                                                                                                                                                 | 3                                                                                   | 3                                                                                                 | 3                                 | 3             | 3                 | 3              | 3                 | 1               | 1                     | 1         | 3           |         | 3     |
| CO4                                                                                                                                                 | 3                                                                                   | 3                                                                                                 | 3                                 | 3             | 3                 | 3              | 3                 | 1               | 1                     | 1         | 3           |         | 3     |
| CO5                                                                                                                                                 | 3                                                                                   | 3                                                                                                 | 3                                 | 3             | 3                 | 3              | 3                 | 1               | 1                     | 1         | 3           |         | 3     |
| COs /                                                                                                                                               | PS                                                                                  | 01                                                                                                | PS                                | 02            |                   |                |                   |                 |                       |           |             |         |       |
| CO1                                                                                                                                                 |                                                                                     | 3                                                                                                 | 3                                 |               |                   |                |                   |                 |                       |           |             |         |       |
| CO2                                                                                                                                                 | <i>.</i>                                                                            | 3                                                                                                 | 3                                 |               |                   |                |                   |                 |                       |           |             |         |       |
| CO3                                                                                                                                                 | <i>.</i>                                                                            | 3                                                                                                 | 3                                 |               |                   |                |                   |                 |                       |           |             |         |       |
| CO4                                                                                                                                                 |                                                                                     | 3                                                                                                 | 3                                 |               |                   |                |                   |                 |                       |           |             |         |       |
| CO5                                                                                                                                                 | <i>.</i>                                                                            | 3                                                                                                 | 3                                 |               |                   |                |                   |                 |                       |           |             |         |       |
| 3/2/1 Indicat                                                                                                                                       | tes Stre                                                                            | ngth Of                                                                                           | Correla                           | tion, 3       | – High,           | 2- Med         | lium, 1-          | Low             | 1                     |           |             |         |       |
| Category                                                                                                                                            | Basic Sciences                                                                      | Engineering Sciences                                                                              | Humanities and Social<br>Sciences | Program Core  | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project   |           |             |         |       |
|                                                                                                                                                     |                                                                                     |                                                                                                   |                                   |               | $\checkmark$      |                |                   |                 |                       |           |             |         |       |

| Subject Code:<br>EBCE22E12                                                                                                             | Subject Name<br>COST EFFECTIVE BUILDINGS           | TY /<br>Lb/<br>ETL/IE | L | T /<br>S.Lr | P/<br>R | C |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------|---|-------------|---------|---|--|--|--|
|                                                                                                                                        | Prerequisite: Concrete and Construction Technology | Ту                    | 3 | 0/0         | 0/0     | 3 |  |  |  |
| L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits<br>T/L/ETL : Theory/Lab/Embedded Theory and Lab |                                                    |                       |   |             |         |   |  |  |  |

#### INTRODUCTION TO COST EFFECTIVE CONSTRUCTION UNIT I **12HRS**

Introduction to the concept of cost effective construction -Uses of different types of materials and their availability -Stone and Laterite blocks- Burned Bricks- Concrete Blocks- Stabilized Mud Blocks- Lime-Poszolana Cement- Gypsum Board- Light Weight Beams- Fiber Reinforced Cement Components- Fiber Reinforced Polymer Composite- Bamboo- Availability of different materials-Recycling of building materials -Brick- Concrete- Steel- Plastics - Environmental issues related to quarrying of building materials.

#### UNIT II **TECHNOLOGIES & METHODS IN CONSTRUCTION 12 HRS**

Environment friendly and cost effective Building Technologies - Different substitute for wall construction Flemish Bond - Rat Trap Bond - Arches - Panels - Cavity Wall - Ferro Cement and Ferro Concrete constructions - different pre cast members using these materials - Wall and Roof Panels - Beams - columns - Door and Window frames - Water tanks - Septic Tanks - Alternate roofing systems - Filler Slab - Composite Beam and Panel Roof -Pre-engineered and ready to use building elements - wood products - steel and plastic -Contributions of agencies

#### UNIT III **GLOBAL WARMING & THE RELEVANCE OF GREEN BUILDINGS 7 HRS**

Global Warming - Definition - Causes and Effects - Contribution of Buildings towards Global Warming -Carbon Footprint - Global Efforts to reduce carbon Emissions - Green Buildings - Definition - Features-Necessity - Environmental benefit - Economical benefits- Health and Social benefits - Major Energy efficient areas for buildings – Embodied Energy in Materials- Green Materials - Comparison of Initial cost of Green V/s Conventional Building - Life cycle cost of Buildings.

#### **UNIT IV GREEN BUILDING**

Green Buildings - Definition - Features- Necessity - Environmental benefit - Economical benefits - Health and Social benefits - Major Energy efficient areas for buildings - Embodied Energy in Materials-Green Materials -Comparison of Initial cost of Green V/s Conventional Building - Life cycle cost of Buildings.

#### UNIT V **GREEN DESIGN**

Green Design - Definition - Principles of sustainable development in Building Design - Characteristics of Sustainable Buildings – Sustainably managed Materials - Integrated Lifecycle design of Materials and Structures (Concepts only)

#### **Total No of Hours : 45**

#### **REFERENCES:**

- K S Jagadeesh, B V Venkatta Rama Reddy & K S Nanjunda Rao ,Alternative Building Materials and 1. Technologies, New Age International Publishers.
- Asko Sarja, Integrated Life Cycle Design of Structures, SPON Press. 2.
- D S Chauhan and S K Sreevasthava, Non conventional Energy Resources, New Age International Publishers. 3.
- Laurie Backer, Buildings How to Reduce Cost, Cost Ford. 4.

# 7 HRS

7 HRS

# PROGRAM ELECTIVE IV

| Subject Code:                   | Su           | bject Na                                                                                                                                           | me:                        |              |                       |              |                   |              | TY / Lb/                  | L         | T/S.Lr      | P/R      | С      |
|---------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|-----------------------|--------------|-------------------|--------------|---------------------------|-----------|-------------|----------|--------|
| EBCE22E13                       | Ju           |                                                                                                                                                    | TURAL E                    | YNAM         | ICS ANI               | ) EART       | H QUAI            | KE           | ETL/IE                    |           | 1, 5,11     | 1, 1     |        |
|                                 |              |                                                                                                                                                    |                            | ENGIN        | EERING                |              | -                 |              |                           |           |             |          |        |
|                                 | Pre          | erequisite                                                                                                                                         | : Structural               | Analysi      | S                     |              |                   |              | Ту                        | 3         | 0/0         | 0/0      | 3      |
| L : Lecture T : T               |              |                                                                                                                                                    |                            |              | P : Proje             | ct R : Re    | esearch C         | C: Credit    | s                         |           |             |          |        |
| T/L/ETL : Theo                  | •            | mbedded                                                                                                                                            | l Theory ar                | nd Lab       |                       |              |                   |              |                           |           |             |          |        |
| <b>OBJECTIVE :</b>              |              |                                                                                                                                                    |                            |              |                       |              |                   |              |                           |           |             |          |        |
| To develop syst                 |              |                                                                                                                                                    | basic princ                | iples of     | structura             | l dynami     | ics the cl        | naracteri    | stic of dyna              | amic bel  | naviour of  | the stru | cture, |
| namely, respons                 |              |                                                                                                                                                    |                            |              | c                     |              |                   |              |                           |           |             |          |        |
| To expose impo                  |              |                                                                                                                                                    |                            | ries of ca   | use of ea             | rthquake     | and mea           | suremen      | nt of its effe            | cts on th | e structure | as loads | S      |
| COURSE OUT<br>At the end of the |              |                                                                                                                                                    |                            | to           |                       |              |                   |              |                           |           |             |          |        |
|                                 |              |                                                                                                                                                    |                            |              | 0                     |              |                   |              |                           |           |             |          |        |
| CO1                             |              | Understanding of the behavior of EQ resistant structures                                                                                           |                            |              |                       |              |                   |              |                           |           |             |          |        |
| CO2                             |              | Applying the knowledge to analyze structures subjected to dynamic loading                                                                          |                            |              |                       |              |                   |              |                           |           |             |          |        |
| CO3                             |              | The knowledge to design the structures for seismic loading as per code provisions                                                                  |                            |              |                       |              |                   |              |                           |           |             |          |        |
| CO4                             |              | Evaluate the design methods for EQ resistant structures<br>Identify, formulate and solve free and forced vibrations response of structural systems |                            |              |                       |              |                   |              |                           |           |             |          |        |
| CO5                             | -            |                                                                                                                                                    |                            |              |                       |              | ns respor         | nse of str   | uctural syst              | ems       |             |          |        |
| Mapping of Co                   |              |                                                                                                                                                    |                            | 1            |                       |              | 1 -               |              |                           |           |             |          |        |
| COs/POs                         | PO1          | PO2                                                                                                                                                | PO3                        | PO4          | PO5                   | PO6          | PO7               | PO8          | PO9                       | PO10      | PO11        | PO       |        |
| CO1                             | 3            | 3                                                                                                                                                  | 3                          | 3            | 1                     | 3            | 1                 | 1            | 1                         | 1         | 1           |          | 3      |
| CO2                             | 3            | 3                                                                                                                                                  | 3                          | 3            | 1                     | 3            | 1                 | 1            | 1                         | 1         | 1           |          | 3      |
| CO3                             | 3            | 3                                                                                                                                                  | 3                          | 3            | 1                     | 3            | 1                 | 1            | 1                         | 1         | 1           |          | 3      |
| CO4                             | 3            | 3                                                                                                                                                  | 3                          | 3            | 1                     | 3            | 1                 | 1            | 1                         | 1         | 1           |          | 3      |
| CO5                             | 3            | 3                                                                                                                                                  | 3                          | 3            | 1                     | 3            | 1                 | 1            | 1                         | 1         | 1           |          | 3      |
| COs / PSOs                      | PS           | 501                                                                                                                                                | PSC                        | 02           |                       |              |                   |              |                           |           |             |          |        |
| CO1                             |              | 3                                                                                                                                                  | 3                          |              |                       |              |                   |              |                           |           |             |          |        |
| CO2                             |              | 3                                                                                                                                                  | 3                          |              |                       |              |                   |              |                           |           |             |          |        |
| CO3                             |              | 3                                                                                                                                                  | 3                          |              |                       |              |                   |              |                           |           |             |          |        |
| CO4                             |              | 3                                                                                                                                                  | 3                          |              |                       |              |                   |              |                           |           |             |          |        |
| CO5                             |              | 3                                                                                                                                                  | 3                          |              |                       |              |                   |              |                           |           |             |          |        |
| 3/2/1 Indicates                 | Strengtl     | n Of Cor                                                                                                                                           | relation, 3                | – High,      | 2- Medi               | um, 1- L     | ow                |              |                           |           |             |          |        |
|                                 |              |                                                                                                                                                    |                            |              |                       |              |                   |              |                           |           |             |          |        |
|                                 |              | SS                                                                                                                                                 | ial                        |              | _                     |              |                   |              |                           |           |             |          |        |
| Catalan                         | es           | ences                                                                                                                                              | Social                     | <u>o</u>     | Program Electives     | es           | ľy                | ent          | ject                      |           |             |          |        |
| Category                        | nce          | Scie                                                                                                                                               |                            | Cor          | ecti                  |              | lina              | one          | roj                       |           |             |          |        |
|                                 | cie          | lg (                                                                                                                                               | s an                       | m (          | Elé                   | llec         | cipl              | dui          | 1 / F                     |           |             |          |        |
|                                 | ic S         | erir                                                                                                                                               | ities and<br>Sciences      | Program Core | am                    | 'nE          | dis               | С            | ical                      |           |             |          |        |
|                                 | Basic Scienc | Engineering Sci                                                                                                                                    | Humanities and<br>Sciences | Pro          | ogr                   | Open Electiv | Interdisciplinary | Skill compon | Practical / Pro           |           |             |          |        |
|                                 |              | Jug                                                                                                                                                | un                         |              | Pr                    |              | Ir I              | S            | $\mathbf{P}_{\mathbf{I}}$ |           |             |          |        |
|                                 |              |                                                                                                                                                    | H                          |              |                       |              |                   |              |                           |           |             |          |        |
|                                 |              |                                                                                                                                                    |                            |              | <ul> <li>✓</li> </ul> |              |                   |              |                           |           |             |          |        |
|                                 |              |                                                                                                                                                    |                            |              |                       |              |                   |              |                           |           |             |          |        |

| Subjec | t Code:                                                                                                                                | Subject Name:                                      | TY / Lb/ | L | T/S.Lr | P/ R | С |  |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------|---|--------|------|---|--|--|--|
| EBCE   | 22E13                                                                                                                                  | STRUCTURAL DYNAMICS AND EARTH QUAKE<br>ENGINEERING | ETL/IE   |   |        |      |   |  |  |  |
|        |                                                                                                                                        |                                                    |          |   |        |      |   |  |  |  |
|        |                                                                                                                                        | Prerequisite: Structural Analysis                  | Ту       | 3 | 0/0    | 0/0  | 3 |  |  |  |
|        | L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits<br>T/L/ETL : Theory/Lab/Embedded Theory and Lab |                                                    |          |   |        |      |   |  |  |  |

#### UNIT I SINGLE DEGREE OF FREEDOM SYSTEMS

Formulation of equation of motion-free and forced vibrations-response to dynamic Loading-effect of damping

## UNIT II MODAL ANALYSIS

Free and forced vibration of un-damped and damped MDOF systems- equation of Motions- evaluation of natural frequencies and modes

## UNIT III INTRODUCTION TO EARTH QUAKE ENGINEERING

Elements of engineering seismology- characteristics of earth quake engineering- earth quake history- Indian seismicity.

## UNIT IV BEHAVIOUR OF STRUCTURES AND SOIL

Performance of structures under past earth quakes- lessons learnt from past earth Quakes- behavior of soil under earth quake loading- soil liquefaction- soil structure Interaction effects.

## UNIT V EARTH QUAKE RESISTANT DESIGN

Concept of Earth quake resistant design- provisions of seismic code IS-1893 (part I)- 2002- response spectrumdesign spectrum- seismic coefficient- design of buildings.

#### **Total No of Hrs: 45**

## TEXT BOOKS

- 1. Clough R. W, and Penzien J, Dynamics of structures, Second Edition, Mc Graw- Hill International edition, New Delhi, 1993
- 2. Mario Paz, structural dynamics- theory and computations, Third Editions CBS Publishers, New Delhi, 1990.

## REFERENCES

- 1. Minoru Wakabayashi, Design of earth quake resistant buildings, Mc Graw-Hill book company, New York 1986
- 2. Anil K Chopra, Dynamics Of Structures- Theory and applications to Earth quake engineering, Prentice hall inc, 2001

#### 9 Hrs of dan

## 9 Hrs

9 Hrs

9 Hrs

| Subject Code:                 | Su             | bject Na                                                                       | me:                               |              |                   |                |                   |                 | TY / Lb/            | L    | T/S.Lr | P/ R | С  |
|-------------------------------|----------------|--------------------------------------------------------------------------------|-----------------------------------|--------------|-------------------|----------------|-------------------|-----------------|---------------------|------|--------|------|----|
|                               |                |                                                                                | DA                                | M ENG        | SINEER            | ING            |                   |                 | ETL/IE              |      |        |      |    |
| EBCE22E14                     |                |                                                                                | : Irrigatior                      |              |                   |                |                   |                 | Ту                  | 3    | 0/0    | 0/0  | 3  |
| L : Lecture T : '             |                |                                                                                |                                   |              | P : Proje         | ct R : Re      | esearch C         | C: Credit       | s                   |      |        |      |    |
| T/L/ETL : Theo                |                | mbedded                                                                        | l Theory ar                       | nd Lab       |                   |                |                   |                 |                     |      |        |      |    |
| <b>OBJECTIVE</b>              |                |                                                                                | <b>C</b> 1                        | <b>c</b>     |                   |                |                   |                 |                     |      |        |      |    |
| To impart a kno<br>COURSE OUT | owledge c      | on types $c$                                                                   | of dam, its $(3, 5)$              | functions    | and desi          | gn princ       | iples.            |                 |                     |      |        |      |    |
| At the end of th              |                |                                                                                |                                   | able to:     |                   |                |                   |                 |                     |      |        |      |    |
| CO1                           |                |                                                                                |                                   |              | structu           | ires           |                   |                 |                     |      |        |      |    |
| CO2                           |                | Thorough knowledge on Dam structures                                           |                                   |              |                   |                |                   |                 |                     |      |        |      |    |
|                               |                | Applying the concept for design of earth dams, gravity dams and rock fill dams |                                   |              |                   |                |                   |                 |                     |      |        |      |    |
| CO3                           | -              | Analyse spillways and energy dissipation structures                            |                                   |              |                   |                |                   |                 |                     |      |        |      |    |
| CO4                           | Calcu          | Calculate the load factors for Dam Structures                                  |                                   |              |                   |                |                   |                 |                     |      |        |      |    |
| CO5                           | To cre         | To create comprehensive knowledge on the design of various types of Dams       |                                   |              |                   |                |                   |                 |                     |      |        |      |    |
| Mapping of Co                 | ourse Ou       | tcomes v                                                                       | vith Progr                        | am Outc      | omes (P           | Os)            |                   |                 |                     |      |        |      |    |
| COs/POs                       | PO1            | PO2                                                                            | PO3                               | PO4          | PO5               | PO6            | PO7               | PO8             | PO9                 | PO10 | PO11   | PO   | 12 |
| CO1                           | 3              | 3                                                                              | 3                                 | 3            | 1                 | 3              | 1                 | 1               | 1                   | 1    | 1      |      | 3  |
| CO2                           | 3              | 3                                                                              | 3                                 | 3            | 1                 | 3              | 1                 | 1               | 1                   | 1    | 1      |      | 3  |
| CO3                           | 3              | 3                                                                              | 3                                 | 3            | 1                 | 3              | 1                 | 1               | 1                   | 1    | 1      |      | 3  |
| CO4                           | 3              | 3                                                                              | 3                                 | 3            | 1                 | 3              | 1                 | 1               | 1                   | 1    | 1      |      | 3  |
| CO5                           | 3              | 3                                                                              | 3                                 | 3            | 1                 | 3              | 1                 | 1               | 1                   | 1    | 1      |      | 3  |
| COs / PSOs                    | _              | <u>501</u>                                                                     | PSC                               |              |                   |                |                   |                 |                     |      |        |      |    |
| CO1                           |                | 3                                                                              | 3                                 |              |                   |                |                   |                 | _                   |      |        |      |    |
| CO2                           |                | 3                                                                              | 3                                 |              |                   |                |                   |                 |                     |      |        |      |    |
| CO3                           |                | 3                                                                              | 3                                 |              |                   |                |                   |                 |                     |      |        |      |    |
| CO4<br>CO5                    |                | <u>3</u><br>3                                                                  | 3                                 |              |                   |                |                   |                 |                     |      |        |      |    |
| 3/2/1 Indicates               |                | 5                                                                              | _                                 |              | 2- Medi           | um 1- L        | ow                |                 |                     |      |        |      |    |
| 5/2/1 mulcates                | Strengt        |                                                                                |                                   |              |                   |                | 0                 |                 |                     |      |        |      |    |
| Category                      | Basic Sciences | Engineering Sciences                                                           | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project |      |        |      |    |
|                               |                |                                                                                |                                   |              | $\checkmark$      |                |                   |                 |                     |      |        |      |    |

| Subject Code:                                | Subject Name:                                                                          | TY / Lb/ | L | T/S.Lr | <b>P/ R</b> | С |  |  |  |  |  |
|----------------------------------------------|----------------------------------------------------------------------------------------|----------|---|--------|-------------|---|--|--|--|--|--|
|                                              | DAM ENGINEERING                                                                        | ETL/IE   |   |        |             |   |  |  |  |  |  |
| EBCE22E14                                    | Prerequisite: Irrigation Engineering                                                   | Ту       | 3 | 0/0    | 0/0         | 3 |  |  |  |  |  |
| L : Lecture T : Tuto                         | L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits |          |   |        |             |   |  |  |  |  |  |
| T/L/ETL : Theory/Lab/Embedded Theory and Lab |                                                                                        |          |   |        |             |   |  |  |  |  |  |

#### UNIT I INTRODUCTION

Types of Dam, merits and demerits, dam site selection, selection of dam, Forces acting on gravity Dam, Methods of analysis of gravity Dam, Modes of failure and stability requirements, Design criteria and factor of safety.

#### UNIT II GRAVITY DAM

Elementary profile of a gravity dam, Low and high gravity dams, Zoning of dams, Galleries in dams, Temperature control in mass concrete; gravity dams subjected to earthquakes.

#### UNIT III BUTTRESS AND ARCH DAMS

Buttress and Arch dams, Types, selection, merits and demerits, Elementary design Principles of Arch and Buttress dams.

#### UNIT IV EARTH DAM

Earth Dam their component and functions, causes of failure. Factors influencing the design of an earthdam. Design criteria for Earth Dam.

UNIT V SPILLWAY

Elementary idea of design for spillway and energy dissipaters.

#### **TEXT BOOKS**

1. R.S. Varshney "Concrete Dams", by 1982, NCB, Roorkee

- 2. Design of Small Dams, USBR 1960, Calcutta, Oxford and IBH
- 3. W.P. Creager, J. Justin, Daud Hinds, "Engineering for Dams" Vol. I-III, Wiley, N.Y., USA.
- 4. IS: 6512-1984, Criteria for Design of solid Gravity Dams.
- 5. IS:1893-1984, , Criteria for Earthquake resistant Design of structures.

#### REFERENCES

1. NPTEL course materials from different IITs

#### 9 Hrs

## 9 Hrs

9 Hrs

9 Hrs

9 Hrs

#### **Total No of Hrs: 45**

| Subject Cod   | le:        | Sub            | oject Na             |                                   | STRIAT       | STRUC             | TURES          |                   |                 | TY / Lb/<br>ETL/IE  | L         | T/S.Lr | P/ R | C |
|---------------|------------|----------------|----------------------|-----------------------------------|--------------|-------------------|----------------|-------------------|-----------------|---------------------|-----------|--------|------|---|
| EBCE22E1      | 5          | Pre            | requisite            | : Design of                       |              |                   |                |                   | el              | Ту                  | 3         | 0/0    | 0/0  | 3 |
|               |            |                | ictures              | -                                 |              |                   |                | -                 |                 | -                   |           |        |      |   |
| L : Lecture 7 |            |                |                      |                                   |              | P : Proje         | ct R : Re      | esearch C         | C: Credit       | S                   |           |        |      |   |
| T/L/ETL : T   |            | .ab/E          | mbedded              | l Theory ar                       | nd Lab       |                   |                |                   |                 |                     |           |        |      |   |
| OBJECTIV      |            |                |                      |                                   |              | _                 |                |                   |                 |                     |           |        |      |   |
| This course   |            |                |                      |                                   | spects wi    | th respec         | t to Civil     | l Enginee         | ering stru      | ictures in in       | dustries. |        |      |   |
| COURSE O      |            |                |                      |                                   |              |                   |                |                   |                 |                     |           |        |      |   |
| At the end of |            |                |                      |                                   |              | •                 | ( C I 1        |                   |                 |                     |           |        |      |   |
| CO1           |            |                |                      | g and func                        |              | 1                 |                |                   |                 |                     |           |        |      |   |
| CO2           |            | -              | -                    | ncepts, and                       |              |                   | -              |                   |                 |                     |           |        |      |   |
| CO3           |            |                |                      |                                   |              |                   |                | s for Indu        | ustrial C       | onstruction         |           |        |      |   |
| CO4           |            |                |                      | n of RC str                       |              |                   |                |                   |                 |                     |           |        |      |   |
| CO5           |            |                |                      | rn technolo                       |              |                   |                | ctures            |                 |                     |           |        |      |   |
| Mapping of    |            | e Out          |                      |                                   |              |                   |                |                   |                 |                     |           |        |      |   |
| COs/POs       | <b>PO1</b> |                | PO2                  | PO3                               | PO4          | PO5               | <b>PO6</b>     | <b>PO7</b>        | <b>PO8</b>      | PO9                 | PO10      |        | PO   |   |
| CO1           | 3          |                | 3                    | 3                                 | 3            | 1                 | 3              | 1                 | 1               | 1                   | 1         | 1      |      | 3 |
| CO2           | 3          |                | 3                    | 3                                 | 3            | 1                 | 3              | 1                 | 1               | 1                   | 1         | 1      |      | 3 |
| CO3           | 3          |                | 3                    | 3                                 | 3            | 1                 | 3              | 1                 | 1               | 1                   | 1         | 1      |      | 3 |
| CO4           | 3          |                | 3                    | 3                                 | 3            | 1                 | 3              | 1                 | 1               | 1                   | 1         | 1      |      | 3 |
| CO5           | 3          |                | 3                    | 3                                 | 3            | 1                 | 3              | 1                 | 1               | 1                   | 1         | 1      |      | 3 |
| COs /         |            | PSO            | 1                    | PSC                               | 02           |                   |                |                   |                 |                     |           |        |      |   |
| PSOs          |            |                |                      |                                   |              |                   |                |                   |                 |                     |           |        |      |   |
| CO1           |            | 3              |                      | 3                                 |              |                   |                |                   |                 |                     |           |        |      |   |
| CO2           |            | 3              |                      | 3                                 |              |                   |                |                   |                 |                     |           |        |      |   |
| CO3           |            | 3              |                      | 3                                 |              |                   |                |                   |                 |                     |           |        |      |   |
| CO4           |            | 3              |                      | 3                                 |              |                   |                |                   |                 |                     |           |        |      |   |
| CO5           |            | 3              |                      | 3                                 |              |                   |                |                   |                 |                     |           |        |      |   |
| 3/2/1 Indica  | tes Stre   | ength          | Of Cor               | relation, 3                       | – High,      | 2- Medi           | um, 1- L       | ow                |                 |                     |           |        |      |   |
| Category      |            | Basic Sciences | Engineering Sciences | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project |           |        |      |   |
|               |            |                |                      |                                   |              | $\checkmark$      |                |                   |                 |                     |           |        |      |   |

9 Hrs

Total No. of Hrs: 45

| Subject Code:        | Subject Name :                                                   | TY/Lb/ | L | T/S.Lr | <b>P/ R</b> | С |
|----------------------|------------------------------------------------------------------|--------|---|--------|-------------|---|
|                      | INDUSTRIAL STRUCTURES                                            | ETL/IE |   |        |             |   |
| EBCE22E15            | Prerequisite: Design of Concrete Structures, Design of Steel     | Ту     | 3 | 0/0    | 0/0         | 3 |
|                      | Structures                                                       | -      |   |        |             |   |
| L : Lecture T : Tuto | rial SLr : Supervised Learning P : Project R : Research C: Credi | ts     |   |        |             |   |
| T/L/ETL : Theory/L   | ab/Embedded Theory and Lab                                       |        |   |        |             |   |

### UNIT I PLANNING

Classification of Industries and Industrial structures – General requirements for industries like cement, chemical and steel plants – Planning and layout of buildings and components.

| UNIT II           | FUNCTIONAL REQUIREMENTS                                                            | 9 Hrs       |
|-------------------|------------------------------------------------------------------------------------|-------------|
| Lighting – Vent   | ilation – Accounts – Fire safety – Guidelines from factories act.                  |             |
| UNIT III          | DESIGN OF STEEL STRUCTURES                                                         | 9 Hrs       |
| Industrial roofs  | - Crane girders - Mill buildings - Design of Bunkers and Silos                     |             |
| UNIT IV           | DESIGN OF R.C. STRUCTURES                                                          | 9 Hrs       |
| Silos and bunke   | rs – Chimneys – Principles of folded plates and shell roofs                        |             |
| UNIT V            | PREFABRICATION                                                                     | 9 Hrs       |
| Principles of pre | fabrication – Prestressed precast roof trusses- Functional requirements for Precas | st concrete |

Principles of prefabrication - Prestressed precast roof trusses- Functional requirements for Precast concrete units

### **TEXT BOOKS**

1. Reinforced Concrete Structural elements – P. Purushothaman

2. Pasala Dayaratnam – Design of Steel Structure - 1990

# REFERENCES

- 1. Henn W. Buildings for Industry, Vols. I and II, London Hill Books, 1995
- 2. Handbook on Functional Requirements of Industrial buildings, SP32 1986, Bureau of Indian Standards, New Delhi 1990
- 3. Course Notes on Modern Developments in the Design and Construction of Industrial Structures, Structural Engineering Research Centre, Madras, 1982

| Subject Code:    | Su             | bject Na             | me :                              |              |                   |                |                   |                 | TY / Lb/            | L        | T/S.Lr    | <b>P/ R</b> | C  |
|------------------|----------------|----------------------|-----------------------------------|--------------|-------------------|----------------|-------------------|-----------------|---------------------|----------|-----------|-------------|----|
|                  |                |                      | NCED EN                           |              |                   |                | NEERIN            | IG              | ETL/IE              |          |           |             |    |
| EBCE22E16        |                |                      | : Environm                        |              |                   |                |                   |                 | Ту                  | 3        | 0/0       | 0/0         | 3  |
| L : Lecture T :  |                |                      |                                   |              | P : Proje         | ct R : Re      | esearch C         | C: Credit       | S                   |          |           |             |    |
| T/L/ETL : The    |                | Embedded             | l Theory ar                       | nd Lab       |                   |                |                   |                 |                     |          |           |             |    |
| OBJECTIVE        |                |                      |                                   |              |                   |                |                   |                 |                     |          |           |             |    |
| This course dea  |                |                      |                                   | oncepts in   | n Enviroi         | nmental        | Engineer          | ing             |                     |          |           |             |    |
| COURSE OU        |                |                      |                                   |              |                   |                |                   |                 |                     |          |           |             |    |
| At the end of th |                |                      |                                   |              | •                 |                | - ·               | . 1 .           |                     |          |           |             |    |
| CO1              |                |                      | ing and fu                        |              | -                 |                |                   |                 |                     |          |           |             |    |
| CO2              |                |                      | -                                 |              |                   | -              |                   |                 | structures          |          |           |             |    |
| CO3              | Analyze        | e the impo           | ortance of v                      | various co   | onstructio        | on materi      | ials for E        | nvironm         | ental structu       | ires Con | struction |             |    |
| CO4              |                |                      | ign of Env                        |              |                   |                |                   |                 |                     |          |           |             |    |
| CO5              |                |                      | dern techno                       | 0,           |                   |                | tal Struc         | tures           |                     |          |           |             |    |
| Mapping of Co    |                |                      |                                   |              |                   |                |                   |                 |                     |          |           |             |    |
| COs/POs          | PO1            | PO2                  | PO3                               | PO4          | PO5               | PO6            | PO7               | PO8             | PO9                 | PO10     | PO11      | PO          | 12 |
| CO1              | 3              | 3                    | 3                                 | 3            | 3                 | 3              | 3                 | 1               | 1                   | 1        | 3         |             | 3  |
| CO2              | 3              | 3                    | 3                                 | 3            | 3                 | 3              | 3                 | 1               | 1                   | 1        | 3         |             | 3  |
| CO3              | 3              | 3                    | 3                                 | 3            | 3                 | 3              | 3                 | 1               | 1                   | 1        | 3         |             | 3  |
| CO4              | 3              | 3                    | 3                                 | 3            | 3                 | 3              | 3                 | 1               | 1                   | 1        | 3         |             | 3  |
| CO5              | 3              | 3                    | 3                                 | 3            | 3                 | 3              | 3                 | 1               | 1                   | 1        | 3         |             | 3  |
| COs / PSOs       |                | 01                   | PSC                               |              |                   |                |                   |                 |                     |          |           |             |    |
| CO1              |                | 3                    | 3                                 |              |                   |                |                   |                 |                     |          |           |             |    |
| CO2              |                | 3                    | 3                                 |              |                   |                |                   |                 |                     |          |           |             |    |
| CO3              |                | 3                    | 3                                 |              | -                 |                |                   |                 |                     |          |           | _           |    |
| CO4              |                | 3<br>3               | 3                                 |              |                   |                |                   |                 |                     |          |           |             |    |
| CO5              |                |                      | -                                 |              | 2 M.P.            |                |                   |                 |                     |          |           |             |    |
| 3/2/1 Indicates  | Strengt        | n Of Cor             | relation, 3                       | – High,      | 2- Medi           | um, 1- L       | ow                |                 |                     |          |           |             |    |
| Category         | Basic Sciences | Engineering Sciences | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project |          |           |             |    |
|                  |                |                      |                                   |              | $\checkmark$      |                |                   |                 |                     |          |           |             |    |

113

| Subject Code:        | Subject Name :                                                    | TY / Lb/ | L | T/S.Lr | <b>P/ R</b> | С |
|----------------------|-------------------------------------------------------------------|----------|---|--------|-------------|---|
|                      | ADVANCED ENVIRONMENTAL ENGINEERING                                | ETL/IE   |   |        |             |   |
| EBCE22E16            | Prerequisite: Environmental Engineering                           | Ту       | 3 | 0/0    | 0/0         | 3 |
| L : Lecture T : Tuto | rial SLr : Supervised Learning P : Project R : Research C: Credit | S        |   |        |             |   |
| T/L/ETL : Theory/L   | ab/Embedded Theory and Lab                                        |          |   |        |             |   |

### UNIT I URBANISATION & POLLUTION

Consequences of urbanization, demand of resources by the public - Sources of Pollution to the urban environment: Status of pollution levels in major cities- Slum formation: Impact of slum on general quality of life on Urban elite – status of slum settlements in major cities.

### UNIT II AIR & NOISE POLLUTION IN URBAN ENVIRONMENT

Air Pollution Sources: Nature of air pollution in the Urban environment due to human activities of industrialization, effect of air pollution on Urban Environment. Air pollution Indices for Assessment of status of Urban air quality. - Sources of noise pollution in Urban areas, effect ofnoise pollution on Urban environment, status of noise pollution in major cities.

### UNIT III WATER AND LAND POLLUTION IN URBAN ENVIRONMENT

Water Demands and Pollution in Urban areas: Nature of water pollutants and assimilative capacity of natural Urban aquatic systems. Urban water quality indices – Sources of land pollution in urban areas: Impact of urban soil pollution on quality of living system – prediction of soil pollution indices.

### UNIT IV MANAGEMENT OF URBAN ENVIRONMENT QUALITY

Land use planning – traffic management. Safe municipal water supply and planning of safe municipal water supply and drainage system – solid waste management including disposal – abatement of noise pollution – Provision of zones – regulation of settlements.

### UNIT V CONSERVATION AND DISASTER MANAGEMENT

Natural Conservation: Planning of urbanization on ecological basis, preservation and development of green recovery areas. - Urban Disaster Management: Management of Industrial explosions, landslides, earthquakes, Floods and Management of epidemics.

### Total No. of Hrs: 45

# REFERENCES

- 1. Varshney, C.K., "Water Pollution and Management", Wiley Eastern Ltd., New Delhi, 1998.
- 2. Plowden, S., "The Cost of Noise", London, Metra, 1996.
- 3. Fallion, A.B. & E. Simon, "The Urban Pattern", Van Nistrand, New York.
- 4. M.J. Suess & S.R. Craxford, "Manual on Urban Air Quality", WHO, Copenhagen.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

9 Hrs

# PROGRAM ELECTIVE V

| Subject Code:     |                | bject Nai                 | me<br>AND REH                     |              | F A TION          | OFST           | DICTI               | DES             | TY / Lb/<br>ETL/IE  | L         | T/S.Lr       | P/ R   | C      |
|-------------------|----------------|---------------------------|-----------------------------------|--------------|-------------------|----------------|---------------------|-----------------|---------------------|-----------|--------------|--------|--------|
| <b>EBCE22E17</b>  |                |                           | : Concrete                        |              |                   |                |                     | KES             | Ty                  | 3         | 0/0          | 0/0    | 3      |
| L : Lecture T : T |                |                           |                                   |              |                   |                |                     | : Credits       | 2                   | 5         | 0/0          | 0/0    | 5      |
| T/L/ETL : Theorem |                |                           | -                                 | -            |                   |                |                     |                 |                     |           |              |        |        |
| OBJECTIVE         |                |                           |                                   |              |                   |                |                     |                 |                     |           |              |        |        |
|                   |                |                           |                                   |              | c.                |                | 1 .1.               |                 | 6.1.                |           |              |        |        |
| To make the stu   | dents to g     | gain the k                | cnowledge                         | on qualit    | ty of conc        | crete, dur     | ability as          | spects, ca      | uses of det         | erioratio | n.           |        |        |
| To make the st    | tudents t      | to gain t                 | he knowle                         | dge on       | assessme          | nt of di       | stressed            | structure       | es, repairing       | g of str  | uctures an   | d demo | lition |
| procedures.       |                |                           |                                   |              |                   |                |                     |                 |                     |           |              |        |        |
| COURSE OUT        | COMES          | <b>S</b> ( <b>COs</b> ) : | : (3-5)                           |              |                   |                |                     |                 |                     |           |              |        |        |
| After successful  | complet        | ion of thi                | s course, th                      |              |                   | be able        | to                  |                 |                     |           |              |        |        |
| CO1               |                |                           | ance and r                        | -            | -                 |                |                     |                 |                     |           |              |        |        |
| CO2               |                |                           | oility of con                     |              |                   |                |                     |                 |                     |           |              |        |        |
| CO3               |                |                           |                                   |              |                   |                |                     |                 | techniques          |           |              |        |        |
| CO4               |                |                           | sign metho                        |              |                   |                |                     |                 |                     |           |              |        |        |
| CO5               |                |                           | habilitation                      |              |                   |                | s for field         | d project       | s                   |           |              |        |        |
| Mapping of Co     |                |                           |                                   |              |                   |                | <b>D</b> O <b>F</b> | DOG             | DOG                 | DOIO      | <b>D</b> 011 |        |        |
| COs/POs           | PO1            | PO2                       | PO3                               | PO4          | PO5               | <b>PO6</b>     | <b>PO7</b>          | PO8             | <b>PO9</b>          | PO10      | PO11         | PO     |        |
| CO1               | 3              | 3                         | 3                                 | 3            | 1                 | 3              | 1                   | 1               | 1                   | 1         | 1            |        | 3      |
| CO2               | 3              | 3                         | 3                                 | 3            | 1                 | 3              | 1                   | 1               | 1                   | 1         | 1            |        | 3      |
| CO3               | 3              | 3                         | 3                                 | 3            | 1                 | 3              | 1                   | 1               | 1                   | 1         | 1            |        | 3      |
| CO4               | 3              | 3                         | 3                                 | 3            | 1                 | 3              | 1                   | 1               | 1                   | 1         | 1            |        | 3      |
| CO5               | 3              | 3                         | 3                                 | 3            | 1                 | 3              | 1                   | 1               | 1                   | 1         | 1            |        | 3      |
| COs / PSOs        |                | 01                        | PSC                               | )2           |                   |                |                     |                 |                     |           |              |        |        |
| CO1               |                | 3                         | 3                                 |              |                   |                |                     |                 |                     |           |              |        |        |
| CO2               |                | 3                         | 3                                 |              |                   |                |                     |                 |                     |           |              |        |        |
| CO3               |                | 3                         | 3                                 |              |                   |                |                     |                 |                     |           |              |        |        |
| CO4               |                | 3                         | 3                                 |              |                   |                |                     |                 |                     |           |              |        |        |
| CO5               |                | 3                         |                                   | TT' 1        |                   |                |                     |                 |                     |           |              |        |        |
| 3/2/1 Indicates   | Strength       | n Of Cor<br>T             | relation, 3                       | – High,      | 2- Mediu          | um, 1- L       | ow                  | <u>г т</u>      |                     | T         |              | 1      |        |
| Category          | Basic Sciences | Engineering Sciences      | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Interdisciplinary   | Skill component | Practical / Project |           |              |        |        |
|                   |                |                           |                                   |              | $\checkmark$      |                |                     |                 |                     |           |              |        |        |

| Subject Code:        | Subject Name<br>REPAIR AND REHABILITATION OF STRUCTURES           | TY / Lb/<br>ETL/IE | L | T/S.Lr | P/ R | С |
|----------------------|-------------------------------------------------------------------|--------------------|---|--------|------|---|
| EBCE22E17            | Prerequisite: Concrete and Construction Technology                | Ту                 | 3 | 0/0    | 0/0  | 3 |
| L : Lecture T : Tuto | rial SLr : Supervised Learning P : Project R : Research C: Credit | ts                 |   |        |      |   |
| T/L/ETL : Theory/L   | ab/Embedded Theory and Lab                                        |                    |   |        |      |   |

### UNIT I MAINTENANCE AND REPAIR STRATEGIES

Maintenance- Repair and Rehabilitation. Facts of Maintenance - Importance of Maintenance- Various aspects of Inspection- Assessment procedure for evaluating a damaged structure, Causes of deterioration.

# UNIT II STRENGTH AND DURABILITY OF CONCRETE

Quality assurance for concrete – Strength, Durability and Thermal properties, of concrete - Cracks, different types, causes – Effects due to climate, temperature, Sustained elevated temperature, Corrosion - Effects of cover thickness.

### UNIT III SPECIAL CONCRETES

Polymer concrete, Sulphur infiltrated concrete, Fibre reinforced concrete, High strength and High-performance concrete, Vacuum concrete, Self-compacting concrete, Whisper concrete Geopolymer concrete, Reactive powder concrete, Concrete made with industrial wastes.

### UNIT IV TECHNIQUES FOR REPAIR AND PROTECTION METHODS

Non-destructive Testing Techniques, Epoxy injection, Shoring, Underpinning, Corrosion protection techniques – Corrosion inhibitors, Corrosion resistant steels, Coatings to reinforcement, Cathodic protection.

### UNIT V RETROFITTING AND DEMOLITION TECHNIQUES

Strengthening of Structural elements, Repair of structures distressed due to corrosion, fire, Leakage, earthquake – Engineered demolition methods - Case studies.

### **Total No of Hrs: 45**

### **TEXTBOOKS:**

- 1. Shetty M.S., "Concrete Technology Theory and Practice", S. Chand and Company, 2008.
- 2. Gambhir. M.L., "Concrete Technology", McGraw Hill, 2013
- 3. Denison Campbell, Allen and Harold Roper, "Concrete Structures, Materials, Maintenance and Repair", Longman Scientific and Technical UK, 1991.

### **REFERENCES:**

- 1. Ravi Shankar. K. Krishnamoorthy. T.S, "Structural Health Monitoring, Repair and Rehabilitation of Concrete Structures", Allied Publishers, 2004.
- 2. Dov Kominetzky. M.S., "Design and Construction Failures", Galgotia Publications Pvt. Ltd., 2001
- 3. CPWD and Indian Buildings Congress, Hand book on Seismic Retrofit of Buildings, Narosa Publishers, 2008.
- 4. Allen R.T. & Edwards S.C, Repair of Concrete Structures, Blakie and Sons, UK, 1987

# 9 Hrs

9 Hrs

9 Hrs

9 Hrs

9 Hrs

| Subject Code:<br>EBCE22E18 |                 | bject Na<br>UNICIPA  | me<br>AL SOLID                    | WASTI        | E MANA            | GEME           | NT                |                 | TY / Lb/<br>ETL/IE  | L         | T / S.Lr    | P/ R    | C      |
|----------------------------|-----------------|----------------------|-----------------------------------|--------------|-------------------|----------------|-------------------|-----------------|---------------------|-----------|-------------|---------|--------|
|                            | Pre             | erequisite           | : Environm                        | ental En     | gineering         | Ş              |                   |                 | Ту                  | 3         | 0/0         | 0/0     | 3      |
| L : Lecture T : T          | <b>Tutorial</b> | SLr : Su             | pervised L                        | earning      | P : Proje         | ct R : Re      | esearch C         | C: Credits      | 5                   |           |             | I       | I      |
| T/L/ETL : Theo             | ry/Lab/E        | Embedded             | Theory an                         | nd Lab       | -                 |                |                   |                 |                     |           |             |         |        |
| <b>OBJECTIVE :</b>         |                 |                      |                                   |              |                   |                |                   |                 |                     |           |             |         |        |
| The student is ex          | xpected (       | to know a            | bout the va                       | arious eff   | fects and         | legislatio     | ons for th        | e munici        | pal solid w         | aste.     |             |         |        |
| To understand th           |                 |                      |                                   | ization, p   | processin         | g and the      | disposal          | l method        | s of munici         | pal solid | wastes.     |         |        |
| COURSE OUT                 |                 |                      |                                   |              |                   |                |                   |                 |                     |           |             |         |        |
| After completion           | n of the o      | course, st           | udent will                        | be able to   | <b>):</b>         |                |                   |                 |                     |           |             |         |        |
| C01                        |                 |                      | nature and waste man              |              | ristics of        | municipa       | al solid w        | astes and       | d the regula        | tory req  | uirements r | egardin | g      |
| CO2                        |                 | ng waste             |                                   |              | and desig         | gn storag      | e, collect        | tion, tran      | sport, proce        | essing ar | nd disposal | of mun  | icipa  |
| CO3                        |                 |                      | igement co                        | nconte in    | MSW               |                |                   |                 |                     |           |             |         |        |
| <u>CO4</u>                 |                 |                      | rocessing t                       |              |                   | uinment        | in MSW            | manage          | ment                |           |             |         |        |
| C04<br>C05                 |                 |                      | y and desi                        | _            |                   | _              |                   | manage          | ment                |           |             |         |        |
|                            |                 |                      |                                   | 0            |                   |                | stems             |                 |                     |           |             |         |        |
| Mapping of Co<br>COs/POs   | PO1             | PO2                  | PO3                               | PO4          | PO5               | PO6            | PO7               | PO8             | PO9                 | PO10      | PO11        | PO      | 12     |
| CO1                        | 3               | 3                    | 3                                 | 3            | 3                 | 3              | 3                 | 1               | 1                   | 1         | 3           |         | 3      |
| CO1<br>CO2                 | -               | -                    |                                   |              |                   | -              |                   |                 |                     | -         | -           |         | -      |
| C02<br>C03                 | 3               | 3                    | 3                                 | 3            | 3                 | 3              | 3                 | 1               | 1                   | 1         | 3           |         | 3      |
|                            | 3               | 3                    | 3                                 | 3            | 3                 | 3              | 3                 | 1               | 1                   | 1         | 3           |         | 3      |
| CO4<br>CO5                 | 3               | 3                    | 3                                 | 3            | 3                 | 3              | 3                 | 1               | 1                   | 1         | 3           |         | 3<br>3 |
| COs / PSOs                 | -               | 501                  | PSC                               | -            | 5                 | 3              | 5                 | 1               | 1                   | 1         | 5           |         | 3      |
| COS/1505                   |                 |                      |                                   |              |                   |                |                   |                 |                     |           |             |         |        |
|                            |                 | 3                    | 3                                 |              |                   |                |                   |                 |                     |           |             |         |        |
| CO2                        |                 | 3                    | 3                                 |              |                   |                |                   |                 |                     |           |             |         |        |
| CO3                        |                 | 3                    | 3                                 |              |                   |                |                   |                 |                     | -         |             |         |        |
| <u>CO4</u>                 |                 | 3                    | 3                                 |              |                   |                |                   |                 |                     |           |             |         |        |
| CO5                        |                 | 3                    | 3                                 |              |                   | 1 T            |                   |                 |                     |           |             |         |        |
| 3/2/1 Indicates            | Strengtl        | n Of Cor             | relation, 3                       | – High,      | 2- Medi           | um, 1- L       | ow                | <u>г г</u>      |                     | 1         |             |         |        |
| Category                   | Basic Sciences  | Engineering Sciences | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project |           |             |         |        |
| +                          |                 |                      |                                   |              | $\checkmark$      |                |                   | +               |                     |           |             |         |        |
|                            |                 |                      |                                   |              | V                 |                |                   |                 |                     |           |             |         |        |

| Subject Code:<br>EBCE22E18 | Subject Name<br>MUNICIPAL SOLID WASTE MANAGEMENT                 | TY / Lb/<br>ETL/IE | L | T / S.Lr | P/ R | С |
|----------------------------|------------------------------------------------------------------|--------------------|---|----------|------|---|
|                            | Prerequisite: Environmental Engineering                          | Ту                 | 3 | 0/0      | 0/0  | 3 |
| L : Lecture T : Tuto       | rial SLr : Supervised Learning P : Project R : Research C: Credi | ts                 |   |          |      |   |
| T/L/ETL : Theory/I         | Lab/Embedded Theory and Lab                                      |                    |   |          |      |   |

### SOURCES AND TYPES UNIT I

Sources and types of solid wastes in a Municipality; Quantity - factors affecting generation of solid wastes; characteristics – methods of sampling and characterization; Effects of improper disposal of solid wastes – public health effects. Principle of solid waste management - social & economic aspects; Public awareness; Role of NGOs; Legislation.

### **ON-SITE STORAGE & PROCESSING** UNIT II

On-site storage methods – materials used for containers – on-site segregation of solid wastes – public health & economic aspects of storage – options under Indian conditions – Critical Evaluation of Options.

### UNIT III **COLLECTION AND TRANSFER**

Methods of Collection - types of vehicles - Manpower - collection routes; transfer stations - selection of location, operation & maintenance; options under Indian conditions.

### **OFF-SITE PROCESSING UNIT IV**

Processing techniques and Equipment; Resource recovery from solid wastes - composting, incineration, options under Indian conditions.

### UNIT V DISPOSAL

Dumping of solid waste; sanitary landfills - site selection, design and operation of sanitary landfills.

### Total No. of Hrs: 45

### **TEXT BOOKS**

- George Techobanoglous et.al., Integrated Solid Waste Management, McGraw Hill Publishers, 1993. 1.
- B.Bilitewski, G.HardHe, K.Marek, A.Weissbach, and H.Boeddicker, Waste Management, Springer, 1994. 2.

### REFERENCES

- 1. Manual on Municipal Solid Waste Management, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 200
- 2. R.E.Landreth and P.A.Rebers, Municipal Solid Wastes – problems and Solutions, Lewis Publishers, 1997
- 3. Bhide A.D. and Sundaresan, B.B., Solid Waste Management in Developing Countries; INSDOC, 1993.

### 9 Hrs

9 Hrs

9 Hrs

9 Hrs

### 9 Hrs

| Subject Code:      |                | oject Nar                                                                                                                                 |                                   |              |                   |                |                   |                 | TY / Lb/            | L         | T/S.Lr       | <b>P</b> / <b>R</b> | С      |  |
|--------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------|-------------------|----------------|-------------------|-----------------|---------------------|-----------|--------------|---------------------|--------|--|
| EBČE22E19          |                |                                                                                                                                           | LEMENT                            | ANALY        | SIS               |                |                   |                 | ETL/IE              |           |              |                     |        |  |
|                    | Pre            | requisite:                                                                                                                                | Structural                        | analysis     |                   |                |                   |                 | Ту                  | 3         | 0/0          | 0/0                 | 3      |  |
| L : Lecture T : T  | utorial        | SLr : Su                                                                                                                                  | pervised Le                       | earning 1    | P : Projec        | t R : Res      | search C:         | Credits         |                     |           |              |                     |        |  |
| T/L/ETL : Theor    | ry/Lab/E       | mbedded                                                                                                                                   | Theory and                        | d Lab        |                   |                |                   |                 |                     |           |              |                     |        |  |
| OBJECTIVE          |                |                                                                                                                                           |                                   |              |                   |                |                   |                 |                     |           |              |                     |        |  |
| The objective is   | to equip       | students                                                                                                                                  | with funda                        | mentals      | of finite e       | element p      | rinciples         | so as to        | enable ther         | n to und  | lerstand the | behavio             | our of |  |
| various finite ele | ements a       | nd to be                                                                                                                                  | able to sele                      | ect appro    | priate ele        | ements to      | solve pl          | hysical a       | and engineer        | ring pro  | blems with   | emphas              | sis on |  |
| structural and the | ermal eng      | gineering                                                                                                                                 | application                       | 18.          |                   |                |                   |                 |                     |           |              |                     |        |  |
| COURSE OUT         | COMES          | (COs) :                                                                                                                                   | (3-5)                             |              |                   |                |                   |                 |                     |           |              |                     |        |  |
| After successful   |                |                                                                                                                                           |                                   |              |                   |                |                   |                 |                     |           |              |                     |        |  |
| CO1                | Studen         | ts will be                                                                                                                                | able to une                       | derstand     | compute           | r codes f      | or any st         | ructural        | problems us         | ing FE t  | echniques    |                     |        |  |
| CO2                | Apply          | the conce                                                                                                                                 | pt of the di                      | fferentia    | l equation        | ns and the     | eir relatio       | onship in       | the analysi         | s of stru | ctures       |                     |        |  |
| CO3                | Analyz         | e the nu                                                                                                                                  | merical me                        | thods by     | FEM con           | ncept          |                   |                 |                     |           |              |                     |        |  |
| CO4                |                |                                                                                                                                           | ic and metl                       |              |                   |                |                   |                 |                     |           |              |                     |        |  |
| CO5                |                |                                                                                                                                           | ehensive k                        |              |                   |                | 8                 |                 |                     |           |              |                     |        |  |
| Mapping of Co      |                |                                                                                                                                           |                                   |              |                   |                |                   |                 |                     |           |              |                     |        |  |
| COs/POs            | PO1            | D1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12 |                                   |              |                   |                |                   |                 |                     |           |              |                     |        |  |
| CO1                | 3              | 3                                                                                                                                         | 3                                 | 3            | 1                 | 3              | 1                 | 1               | 1                   | 1         | 1            |                     | 3      |  |
| CO2                | 3              | 3                                                                                                                                         | 3                                 | 3            | 1                 | 3              | 1                 | 1               | 1                   | 1         | 1            |                     | 3      |  |
| CO3                | 3              | 3                                                                                                                                         | 3                                 | 3            | 1                 | 3              | 1                 | 1               | 1                   | 1         | 1            |                     | 3      |  |
| CO4                | 3              | 3                                                                                                                                         | 3                                 | 3            | 1                 | 3              | 1                 | 1               | 1                   | 1         | 1            |                     | 3      |  |
| CO5                | 3              | 3                                                                                                                                         | 3                                 | 3            | 1                 | 3              | 1                 | 1               | 1                   | 1         | 1            |                     | 3      |  |
| COs / PSOs         | PS             | 01                                                                                                                                        | PSC                               | )2           |                   |                |                   |                 |                     |           |              |                     |        |  |
| CO1                |                | 3                                                                                                                                         | 3                                 |              |                   |                |                   |                 |                     |           |              |                     |        |  |
| CO2                |                | 3                                                                                                                                         | 3                                 |              |                   |                |                   |                 |                     |           |              |                     |        |  |
| CO3                |                | 3                                                                                                                                         | 3                                 |              |                   |                |                   |                 |                     |           |              |                     |        |  |
| CO4                |                | 3                                                                                                                                         | 3                                 |              |                   |                |                   |                 |                     |           |              |                     |        |  |
| CO5                |                | 3                                                                                                                                         | 3                                 |              |                   |                |                   |                 |                     |           |              |                     |        |  |
| 3/2/1 Indicates    | Strength       | Of Corr                                                                                                                                   | elation, 3                        | – High, ź    | 2- Mediu          | m, 1- Lo       | W                 | ,               |                     | 1         |              |                     |        |  |
| Category           | Basic Sciences | Engineering Sciences                                                                                                                      | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project |           |              |                     |        |  |
|                    |                |                                                                                                                                           |                                   |              | $\checkmark$      |                |                   |                 |                     |           |              |                     |        |  |

| Subject Code:<br>EBCE22E19 | Subject Name<br>FINITE ELEMENT ANALYSIS                            | TY / Lb/<br>ETL/IE | L | T/S.Lr | P/ R | С |
|----------------------------|--------------------------------------------------------------------|--------------------|---|--------|------|---|
|                            | Prerequisite: Structural analysis                                  | Ту                 | 3 | 0/0    | 0/0  | 3 |
| L : Lecture T : Tutor      | rial SLr : Supervised Learning P : Project R : Research C: Credits |                    |   |        |      |   |
| T/L/ETL : Theory/L         | ab/Embedded Theory and Lab                                         |                    |   |        |      |   |

### UNIT I INTRODUCTION – VARIATIONAL FORMULATION

General filed problems in Engineering – Modelling – Discrete and Continuous models – Characteristics – Difficulties involved in solution – The relevance and place of the finite element method – Historical comments – Basic concept of FEM, Boundary and initial value problems – Gradient and divergence theorems – Functionals – Variational calculus – Variational formulation of VBPS. The method of weighted residuals – The Ritz method.

### UNIT II FINITE ELEMENT ANALYSIS OF ONE DIMENSIONAL PROBLEMS 8 Hrs

One dimensional second order equations – discretisation of domain into elements – Generalised coordinates approach – derivation of elements equations – assembly of elements equations – imposition of boundary conditions – solution of equations – Cholesky method – Post processing – Extension of the method to fourth order equations and their solutions – time dependant problems and their solutions – example from heat transfer, fluid flow and solid mechanics.

# UNIT III FINITE ELEMENT ANALYSIS OF TWO DIMENSIONAL PROBLEMS 9 Hrs

Second order equation involving a scalar-valued function – model equation – Variational formulation – Finite element formulation through generalised coordinates approach – Triangular elements and quadrilateral elements – convergence criteria for chosen models – Interpolation functions – Elements matrices and vectors – Assembly of element matrices –boundary conditions – solution techniques.

### UNIT IV ISOARAMETRIC ELEMENTS AND FORMULATION

Natural coordinates inn 1, 2 and 3 dimensions – use of area coordinates for triangular elements in - 2 dimensional problems – Isoparametric elements in 1,2 and 3 dimensional – Largrangean and serendipity elements – Formulations of elements equations in one and two dimensions - Numerical integration.

### UNIT V APPLICATIONS TO FIELD PROBLEMS IN TWO DIMENSION

Equations of elasticity – plane elasticity problems – axis symmetric problems in elasticity Bending of elastic plates –Time dependent problems in elasticity – Heat – transfer in two dimensions – incompressible fluid flow.

### Total No. of Hrs: 45

8 Hrs

10 Hrs

10 Hrs

### TEXT BOOKS

1. J.N.Reddy, "An Introduction to Finite Element Method", McGraw-Hill Book Co., Intl. Edition, 1985.

### REFERENCES

- 1. *Rienkiewics, "The finite element method, Basic formulation and linear problems", Vol.1, 4/e, McGraw-Hill,Book Co.*
- 2. S.S.Rao, "The Finite Element Method in Engineering", Pergaman Press, 1989.
- 3. C.S.Desai and J.F.Abel, "Introduction to the Finite Element Method", Affiliated East West Press 1972

| Subject Code:      | Sul            | bject Na             | me                                |              |                   |                |                   |                 | TY / Lb/            | L         | T/S.Lr      | <b>P</b> / <b>R</b> | С  |
|--------------------|----------------|----------------------|-----------------------------------|--------------|-------------------|----------------|-------------------|-----------------|---------------------|-----------|-------------|---------------------|----|
|                    |                |                      | PREFAB                            | RICATE       | ED STR            | UCTUR          | ES                |                 | ETL/IE              |           |             |                     |    |
| EBCE22E20          |                |                      |                                   |              |                   |                |                   |                 |                     |           |             |                     |    |
|                    |                | requisite            |                                   |              |                   |                |                   |                 | Ту                  | 3         | 0/0         | 0/0                 | 3  |
| L : Lecture T : T  | Tutorial       | SLr : Su             | pervised L                        | earning      | P : Proje         | ct R : R       | esearch C         | C: Credit       | s                   |           |             |                     |    |
| T/L/ETL : Theo     | ry/Lab/E       | mbedded              | l Theory ar                       | nd Lab       |                   |                |                   |                 |                     |           |             |                     |    |
| <b>OBJECTIVE :</b> |                |                      |                                   |              |                   |                |                   |                 |                     |           |             |                     |    |
| To impart know     |                | students             | on modula                         | r constru    | ction, ind        | lustrialis     | ed constr         | uction a        | nd design of        | prefabr   | icated elem | ents and            | b  |
| construction me    |                |                      |                                   |              |                   |                |                   |                 |                     |           |             |                     |    |
| COURSE OUT         |                |                      | : ( 3- 5)                         |              |                   |                |                   |                 |                     |           |             |                     |    |
| The student shal   |                |                      |                                   |              |                   |                |                   |                 |                     |           |             |                     |    |
| CO1                |                |                      | derstand th                       |              | *                 |                |                   |                 |                     |           |             |                     |    |
| CO2                | Apply t        | the constr           | ruction me                        | thods in p   | prefabric         | ated elen      | nents             |                 |                     |           |             |                     |    |
| CO3                | Assess         | the utiliz           | ation of va                       | rious coc    | le provisi        | ions rega      | rding pro         | ogressive       | e collapse          |           |             |                     |    |
| CO4                |                |                      | ficiency of                       |              |                   |                |                   |                 | -                   |           |             |                     |    |
| CO5                |                |                      |                                   |              |                   |                | the desig         | gn of pre       | fabricated st       | tructures | 3           |                     |    |
| Mapping of Co      |                | tcomes v             | vith Progr                        | am Outc      | comes (P          | Os)            |                   |                 |                     |           |             |                     |    |
| COs/POs            | PO1            | PO2                  | PO3                               | PO4          | PO5               | PO6            | <b>PO7</b>        | <b>PO8</b>      | PO9                 | PO10      | PO11        | PO                  | 12 |
| CO1                | 3              | 3                    | 3                                 | 3            | 1                 | 3              | 1                 | 1               | 1                   | 1         | 1           |                     | 3  |
| CO2                | 3              | 3                    | 3                                 | 3            | 1                 | 3              | 1                 | 1               | 1                   | 1         | 1           |                     | 3  |
| CO3                | 3              | 3                    | 3                                 | 3            | 1                 | 3              | 1                 | 1               | 1                   | 1         | 1           |                     | 3  |
| CO4                | 3              | 3                    | 3                                 | 3            | 1                 | 3              | 1                 | 1               | 1                   | 1         | 1           |                     | 3  |
| C05                | 3              | 3                    | 3                                 | 3            | 1                 | 3              | 1                 | 1               | 1                   | 1         | 1           |                     | 3  |
| COs / PSOs         |                | 01                   | PS                                | -            |                   |                | -                 |                 | -                   | -         |             |                     |    |
| CO1                |                | 3                    | 3                                 |              | 1                 |                | 1                 |                 |                     | 1         |             |                     |    |
| <b>CO2</b>         |                | 3                    | 3                                 |              |                   |                |                   |                 |                     |           |             |                     |    |
| CO3                |                | 3                    | 3                                 |              |                   |                |                   |                 |                     |           |             |                     |    |
| CO4                |                | 3                    | 3                                 |              | ł                 |                | 1                 |                 |                     | 1         |             |                     |    |
| CO5                |                | 3                    | 3                                 |              | ł                 |                | 1                 |                 |                     | 1         |             |                     |    |
| 3/2/1 Indicates    | Strength       | of Cor               | relation, 3                       | – High,      | 2- Medi           | um, 1- L       | ow                |                 |                     |           |             |                     |    |
|                    | 0              |                      | ,-                                |              |                   | ,              |                   |                 |                     |           |             |                     |    |
| Category           | Basic Sciences | Engineering Sciences | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Interdisciplinary | Skill component | Practical / Project |           |             |                     |    |
|                    |                |                      |                                   |              | $\checkmark$      |                |                   |                 |                     |           |             |                     |    |

| Subject Code:<br>EBCE22E20                                                             | Subject Name<br>PREFABRICATED STRUCTURES | TY / Lb/<br>ETL/IE | L | T / S.Lr | P/ R | С |
|----------------------------------------------------------------------------------------|------------------------------------------|--------------------|---|----------|------|---|
|                                                                                        | Prerequisite: NIL                        | Ту                 | 3 | 0/0      | 0/0  | 3 |
| L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits |                                          |                    |   |          |      |   |
| T/L/ETL : Theory/Lab/Embedded Theory and Lab                                           |                                          |                    |   |          |      |   |

### UNIT I INTRODUCTION

Need for prefabrication – Principles – Materials – Modular coordination – Standardization – Systems – Production – Transportation – Erection.

### UNIT II PREFABRICATED COMPONENTS

Behaviour of structural components – Large panel constructions – Construction of roof and floor slabs – Wall panels – Columns – Shear walls.

### UNIT III DESIGN PRINCIPLES

Disuniting of structures- Design of cross section based on efficiency of material used – Problems in design because of joint flexibility – Allowance for joint deformation.

### UNIT IV JOINT IN STRUCTURAL MEMBERS

Joints for different structural connections – Dimensions and detailing – Design of expansion joints.

### UNIT V DESIGN FOR ABNORMAL LOADS

Progressive collapse – Code provisions – Equivalent design loads for considering abnormal effects such as earthquakes, cyclones, etc., - Importance of avoidance of progressive collapse.

### **TEXT BOOKS**

- 1. CBRI, Building materials and components, India, 1990
- 2. Gerostiza C.Z., Hendrikson C. and Rehat D.R., Knowledge based process planning for construction and manufacturing, Academic Press Inc., 1994

### REFERENCES

- 1. Koncz T., Manual of precast concrete construction, Vols. I, II and III, Bauverlag, GMBH, 1971.
- 2. Structural design manual, Precast concrete connection details, Society for the studies in the use of precast concrete, Netherland Betor Verlag, 1978.

# 9 Hrs

9 Hrs

9 Hrs

9 Hrs

### 9 Hrs

### Total No. of Hrs: 45