

FACULTY OF ENGINEERING AND TECHNOLOGY

OUTCOME BASED EDUCATION

CURRICULUM & SYLLABUS (FT)

MASTER OF TECHNOLOGY CONSTRUCTION ENGINEERING AND MANAGEMENT

DEPARTMENT OF CIVIL ENGINEERING

Department Vision

To achieve the pinnacle of success in the area of sustainable constructions and green technologies, thus stimulating economic growth and making the society a better place to live in

Department Mission

The mission of the Department of Civil Engineering is:

M1: To produce graduates who possess technical competence in their chosen specialty area ofCivil Engineering with integrity and commitment

M2: To prepare them to serve and contribute as innovators, professional engineers, and leaders in the global community

Program Educational Objectives

The Program Educational Objectives of the Civil Engineering program are designed to produce skilled Engineers who could ffectively contribute to the Civil Engineering profession with an ability to meet its current and future challenges

PEO 1: To apply fundamental technical knowledge and skills to find creative solutions to technological challenges and problems in various areas of basic sciences and engineering.

PEO 2: To analyze, design and use skills in order to formulate and solve Civil Engineering problems.

PEO 3: To practice civil engineering in a responsible, professional and ethical manner and implement eco- friendlysustainable technologies for the benefit of industry and society.

PEO 4: To create knowledge through research and development in Civil Engineering and allied fields andmodernize the teaching levels.

PEO 5: To make students professionally competent by enhancing their communication skills, team spirit, and leadership, also to prepare them for lifelong learning through innovative and research activities.

Program Specific Objectives

PSO1: Acquiring sound knowledge on entire spectrum of activities associated with construction technology& management and develops ability to, evaluate analyze and integrate existing knowledge with the innovative knowledge.

PSO2: Understand the importance of societal, health, safety, legal and cultural considerations in carryingout construction projects

PSO3: Ability to use advanced software tools in Construction Project management.

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

PROGRAM OUTCOMES OF CONSTRUCTION ENGINEERING AND MANAGEMENT

PO1	Apply the Knowledge of mathematics, science, engineeringfundamentals, and engineering
	specialization to the solution of complex engineeringproblems
PO2	Having ability to design required material, men, equipment, costing and scheduling as per needs
	and Specifications
PO3	Demonstrate an ability to visualize and work using latest technology
PO4	Graduate will demonstrate skills to use modern construction engineering tools software
	andequipment.
PO5	Shaping managerial skills to become good decision makers, strategists and entrepreneurs
PO6	Functioning as a team in an ethical manner emphasizing on solving environmental, social and
	global challenges
PO7	Function effectively as an individual and as member or leader in diverse teams and in multidisciplinary
	settings
DOS	Demonstrate knowledge and understanding of the engineering and management principles and apply
100	these to once own work as a member and leader in a team to manage projects and multidiscipliners
	these to once own work as a memoer and reader in a team to manage projects and multidisciplinary
200	
PO9	Apply reasoning informed by the contextual knowledge to access societal, health, safety, legal and
	cultural issues and the consequent responsibilities relevant to the professional engineering practice

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Mapping of Mission with PEO's

Mission/PEOs	PEO1	PEO2	PEO3	PEO4	PEO5
M1	1	3	2	3	2
M2	2	2	1	3	3

Mapping of PEOs with POs

PEO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
PEO1	3	3	3	2	2	1	2	2	1
PEO2	2	2	3	3	3	2	1	1	1
PEO3	2	2	3	2	1	2	2	3	1
PEO4	2	3	2	1	2	2	2	1	2
PEO5	2	3	2	1	1	2	2	2	1

Mapping of PEOs with PSOs

PEO/PSO	PSO1	PSO2	PSO3
PEO1	2	3	2
PEO2	2	2	3
PEO3	2	3	2
PEO4	3	2	2
PEO5	3	2	2

Correlation Strength: - 3: High, 2: Medium, 1: Low

Faculty of Engineering and Technology

M. TECH. CONSTRUCTION ENGINEERING AND MANAGEMENT

Regulation 2022 – Framework

Total Credits: 68 Credit for I to IV Semester: 68 Credits

Program Components

•	Basic Science (Mathematics) include according to program - 1							
•	Program Core theory	-	4					
•	Program Core Laboratory	-	4					
•	Program Elective	-	5					
•	Open Elective	-	1					
•	Open Lab	-	0					
•	Management paper	-	0					
•	Foreign Language	-	0					
•	Audit course	-	2					
•	Universal Human values	-	0					
•	Inter disciplinary theory	-	1					
•	Inter disciplinary Lab	-	0					
•	ETL	-	0					
٠	Technical Skills	-	3					
•	Soft skill	-	0					
•	Project /mini project	-	2					

(An ISO 21001 : 2018 Certified institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Table 1: Components of Curriculum and Credit distribution For M.Tech-Construction Engineering Management (Full Time)

S.			No. of				Conta
Ν		-	Cours	Credi	Tot	Credit	ct
0	CATEGORY	Description	es	ts	al	Weightage	hours
1	CORE COURSES	Core Theory	4	14	22	32.35	210
		Core Lab	4	8			240
2	ELECTIVE COURSES	Department Core Electives/ Skill enhancement electives	5	15	15	22.05	225
3	OPEN ELECTIVES	Open Elective theory	1 3		3	4.41	45
		Open Elective Lab	0	0			0
4	INTERDISCIPLINA	Theory	3	3		4 4 1	105
4	RY/ ALLIED COURSES	Lab	0	0	3	4.41	0
	HUMANITIES &	Language 1 & 2	0	0			0
		English 1 & 2	0	0			0
		Soft Skills	0	0			0
		Life Skill	0	0			0
5	SOCIAL SCIENCES,	Foreign Language	0	0	0	0	0
5	LIFE SKILLS &SOFT SKILLS	Environmental Studies	0	0	Ŭ		0
		Management Papers	0	0			0
		Entrepreneurship Development	0	0			0
	PROJECTS/INTERN	Project	2	15			90
6	SHIP/	Core Skills	2	4	21	30.88	120
	CORE SKILL	Internship / NSS / NCC	1	2			60
7	ENGINEERING SCIENCES		1	4	4	5.88	60
8	ANY OTHER		-	-	-	-	-
	Total		38		68	100	1155

Table 2: Revision/modification done in syllabus content:

S. No	Course (Subject) Code	Course (Subject) Name	Concept/ topic if any, removed in current curriculum	Concept/ topic added in the new curriculum	% of Revision/ Modification done
1	EMCE22E03	SHORING, SCAFFOLDING AND FORMWORK	FORMWORK FOR BUILDINGS AND FAILURES TOPIC REMOVED	-	20%
2	EMCE22E05	ENERGY CONSERVATION TECHNIQUES IN BUILDING CONSTRUCTION	REMOVED INTRODUCTION PART	ADDED ENERGY RESOURCES AS A NEW UNIT	20%

Table 3:

List of New courses/value added courses/life skills/Electives/interdisciplinary/courses focusing on employability/ entrepreneurship/ skill development.

S.No	New courses (Subjects)	Value added courses	Life skill	Electives	Inter Disciplinary	Focus on employability/ entrepreneurship/ skill development
1	TQM in Construction	Research Publication		Advanced Concrete Technology	Research Publication Ethics	Open Elective (NPTEL/SWAYAM/Any MOOC Online courses approved by AICTE/UGC)
2	Modern Construction Materials lab			Resource Management and Control in Construction		Term Paper
3	Construction Software Laboratory			Shoring, Scaffolding and Formwork		Summer internship
4	Structural Health Monitoring (PART TIME Program)			Construction Equipment		
5				Energy Conservation Techniques in Building Construction		
6				Management Information System		
7				Economics and Finance Management in Construction		
8				Construction Personnel Management		
9				Contract Laws and Regulations		

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

10		Maintenance And	
10		Rehabilitation	
		Prefabrication	
		and	
11		Construction	
		Techniques	
		Modern	
12		Construction	
		Materials	
		Construction	
13		Planning,	
_		Scheduling	
		and Control	
14		Project Safety	
14		Management	
		TOL	
		TQM in	
15		Construction	

SEMESTER I											
S.No	Course	Course Name	Ty/Lb/IE	Teaching Ty/Lb/IE Scheme			Credits	Category			
	Coue			L	T/SLr	P/R					
1	EMMA22003	Applied Mathematics for Construction Engineers	Ту	3	1/0	0/0	4	BS			
2	EMCE22001	Project Formulation and Appraisal	Ту	3	1/0	0/0	4	PC			
3	EMCE22EXX	Program Elective I	Ту	3	0/0	0/0	3	PE			
4	EMCE22EXX	Program Elective II	Ту	3	0/0	0/0	3	PE			
5	EMCE22L01	Computer application Lab	Lb	0	0/0	4/0	2	PC			
6	EMCE22L02	Modern Construction Materials lab	Lb	0	0/0	4/0	2	PC			
7	EMCC22001	Research Methodology and IPR	Ту	3	0/0	0/0	3	ID			
8	EMCC22IXX	Audit Course – I	IE	2	0/0	0/0	0	ID			
		Total		17	2	8	21				

Credits Sub Total: 21

	SEMESTER II									
No	Course	course Course Name	Ty/Lb/IE	Teac	ching Scl	heme	Credits	Category		
	Code			L	T/SLr	P/R				
1	EMCE22002	Advanced Construction Techniques	Ту	3	1/0	0/0	4	PC		
2	EMCE22003	Computer Applications in Construction Engineering and Planning	Ту	3	0/0	0/0	3	PC		
3	EMCE22EXX	Program Elective III	Ту	3	0/0	0/0	3	PE		
4	EMCE22EXX	Program Elective IV	Ту	3	0/0	0/0	3	PE		
5	EMCE22L03	Advanced Construction EngineeringLaboratory	Lb	0	0/0	4/0	2	PC		
6	EMCE22L04	Construction Software Laboratory	Lb	0	0/0	4/0	2	PC		
7	EMCC22IXX	Audit Course -II	IE	2	0/0	0/0	0	ID		
8	EMCE22I01	Term paper	IE	0	0/0		2	PC		

Total

S.]

•

Credits Sub Total: 19

0/4

12

19

14

1

SEMESTER											
III											
Sl.N	Course	Course Name	Ty/Lb/I	Teac	ching Sc	heme	Credit	Categor			
0	Code		Ε	L	T/SL	P/R	S	У			
					r						
1	EMCE22004	Construction Project Management	Ту	3	0/0	0/0	3	PC			
2	EMCE22EXX	Program Elective V	Ту	3	0/0	0/0	3	PE			
3	EMOL22I01	Open Elective (NPTEL/SWAYAM/Any MOOC Online courses approved by AICTE/UGC)	IE	3	0/0	0/0	3	ID			
4	EMCE22I02	Summer Internship	IE	0	0/0	4/0	2	PC			
5	EMCE22L05	Dissertation Phase-I	Lb	0	0/0	0/10	5	Р			
		Total		9	0	14	16				

Credits Sub Total: 16

SEMESTER													
IV													
Sl.N	Course Code	Course Name	Ty/Lb	Tea	ching So	cheme	Credit	Categor					
0			/ IE	L	T/SL	P/R	S	У					
					r								
1	EMCE22L06	Dissertation Phase-II	Lb	0	0/0	10/1	10	Р					
						0		1					
2	EMCE22I03	Research Publication	IE	0	0/0	2/2	2	PC					
		Total		0	0	24	12						

Credits Sub Total: 12

TOTAL CREDITS: 68

Note:

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and lab/Internal evaluation

L/T/SLr/P/R/C: Lecture/Tutorials/Supervised Learning/Practical/Research/Credit

HS: Humanities and Social Science, ES: Engg. Science, BS: Basic Science, PC: Program core,

PE: Program Elective, OE: Open Elective, P: Project

LIST OF PROGRAM ELECTIVES

S.No	Course Code	Course Name	Ty/Lb/ETL /IE	L	T/SLr	P/R	С	Category
		ELEC	TIVE I					
1.	EMCE22E01	Advanced Concrete Technology	Ту	3	0/0	0/0	3	PE
2.	EMCE22E02	Resource Management and Control inConstruction	Ту	3	0/0	0/0	3	PE
3.	EMCE22E03	Shoring, Scaffolding and Formwork	Ту	3	0/0	0/0	3	PE

S.No	Course Code	Course Name	Ty/Lb/E TL /IE	L	T/SLr	P/R	С	Category
		ELECTIVE	Π					
1.	EMCE22E04	Construction Equipments	Ту	3	0/0	0/0	3	PE
2.	EMCE22E05	Energy Conservation Techniques in Building Construction	Ту	3	0/0	0/0	3	PE
3.	EMCE22E06	Management Information System	Ту	3	0/0	0/0	3	PE

S.No	Course	Course Name	Ty/Lb/E	L				Category
	Code		TL		T/SLr	P/R	C	
			/IE					
		ELECTIVE I	II					
1.	EMCE22E07	Economics and Finance Management	Ту	3	0/0	0/0	3	PE
		in Construction						
2.	EMCE22E08	Construction PersonnelManagement	Ту	3	0/0	0/0	3	PE
3.	EMCE22E09	Contract Laws and Regulations	Ту	3	0/0	0/0	3	PE

S.No	Course Code	Course Name	Ty/Lb/E TL /IE	L	T/SLr	P/R	С	Category
		ELECTIVE	IV					
1.	EMCE22E10	Maintenance And Rehabilitation of Structures	Ту	3	0/0	0/0	3	PE
2.	EMCE22E11	Prefabrication and Construction Techniques	Ту	3	0/0	0/0	3	PE
3.	EMCE22E12	Modern Construction Materials	Ту	3	0/0	0/0	3	PE

S.No	Course Code	Course Name	Ty/Lb/ ETL /IE	L	T/SLr	P/R	С	Category
	<u> </u>	ELECTIVE	V					
1.	EMCE22E13	Construction Planning, Scheduling and Control	Ту	3	0/0	0/0	3	PE
2.	EMCE22E14	Project Safety Management	Ту	3	0/0	0/0	3	PE
3.	EMCE22E15	TQM in Construction	Ту	3	0/0	0/0	3	PE

AUDIT COURSE 1&2													
S.No	Course Code	Course Name	Ty/Lb/ETL /IE]	Feachi Schem	ng Ie	Category					
				L	T/SLr	Р	С						
1	EMCC22I01	English for Research paper Writing	IE	2	0/0	0/0	0	ID					
2	EMCC22I02	Disaster Management	IE	2	0/0	0/0	0	ID					
3	EMCC22I03	Sanskrit for Technical Knowledge	IE	2	0/0	0/0	0	ID					
4	EMCC22I04	Value Education	IE	2	0/0	0/0	0	ID					
5	EMCC22I05	Constitution of India	IE	2	0/0	0/0	0	ID					
6	EMCC22I06	Pedagogy Studies	IE	2	0/0	0/0	0	ID					
7	EMCC22I07	Stress Management by Yoga	IE	2	0/0	0/0	0	ID					
8	EMCC22I08	Personality Development through Life Enlightenment Skills	IE	2	0/0	0/0	0	ID					
9	EMCC22I09	Research Publication Ethics	IE	2	0/0	0/0	0	ID					

SEMESTER-I

Course Code EMMA22003	Course CONS	e Namo STRU	e: API CTION	PLIED ENGIN	MATH IEERS	EM	ATIC	CS FO	R	T L	y/ b/	L	T/ S.Lr	P/R	C
	Prerequ Techni	uisite: U ques	JG level	Statistic	s and Op	otimi	zation	l		T	Y	3	1/0	0/0	4
	L : Lec	ture T	: Tutorial Theory/I	S.Lr :	Superv	ised l	Learni	ing P:	Proje	ct R	R : Re	esea	rch C: (Credits	
OBJECTIVES	The st	tudent s	should be	made to).	leory		Lao							
0202011125	Descr	ibe and	analyze	the stati	stical me	ethod	ls								
	To pro	ovide a	dequate b	oackgrou	ind of M	lathe	matics	s to dea	al with	Civ	il Er	ngin	eering I	Problem	ıs
	COUI	RSE OI	JTCOM	ES (COs):										
CO1	To be	able to	understa	and Rand	lom vari	able									
CO2	To be	able to	understa	und Estir	nation th	neory	7								
CO3	To Ui	ndersta	nd the rel	ation be	tween pi	robat	oility a	and stat	tistics						
CO4	To an	alyze D	Design of	Experin	nents										
CO5	To be	able to	solve Q	ueuing tl	heory pr	obler	ns								
	Mapp	ing of (Course O	utcomes	with Pr	ograi	m Out	tcomes	(POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PC	06	PO7	PO8]	PO9				
CO1	2	3	2	2	3	1	1	1	2		2				
CO2	3	2	1	2	2		2	2	2		3				
CO3	3	3	1	2	2	(**)	3	1	1		2				
CO4	3	2	2	2	1	2	2	2	2		1				
CO5	3	3	1	2	1]	1	2	1		2				
COs / PSOs		PSO1			PSO2				PSO3	3					
CO1		2			2				2						
CO2		2			2				2						
CO3		2			2				2						
CO4		2			2				2						
CO5	2 2								2						
	3/2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1-									Low					
gory	Basic Sciences	Engineering Sciences	Humanities and Social	Sciences Program Core	Program	Electives	Open Electives	Interdisciplinar	y Skill	component	Practical /	Project			
Cate	×*														

UNIT IRANDOM VARIABLES12 hrsRandom variables – Probability function – Moments – Moment generating functions and their properties – Binomial,
Poisson, Exponential, and normal distributions – Functions of a Random variable.12 hrs

UNIT II ESTIMATION THEORY

 $Unbiased\ estimators-Method\ of\ moments-Maximum\ likelihood\ estimation-Curve\ fitting\ by\ Principle\ of\ least\ squares.$

UNIT III TESTING OF HYPOTHESIS

 $Tests \ of \ Significance \ - \ Large \ Sample \ Tests \ - \ Mean \ - \ Proportions \ - \ Small \ Sample \ Tests \ - \ t, \ F, \ Chi-square \ Tests: Independence \ of \ Attributes, \ Goodness \ of \ Fit.$

UNIT IV DESIGN OF EXPERIMENTS

Analysis of Variance – One way classification – Two way classification – Design of Experiments – Completely Randomized Block Design – Randomized Block Design – Latin Square Design.

UNIT V QUEUING

Elementary concepts – Pure Birth and Death process – Single server Markovian models with infinite and finite capacity – Multi server Markovian models with infinite and finite capacity. **Total no. of hrs: 60**

Reference Books:

- 1) Richard Johnson A., *Miller & Freund's Probability and statistics for Engineers (8th ed)*, Prentice Hall of India, (2009).
- Richard Johnson A., Wichern .D.W, Applied Multivariate Statistical Analysis (6th ed), Prentice Hall of India, (2007).
- **3**) Gupta S.C., Kapoor V.K., *Fundamentals of Mathematical Statistics*, S.Chand & Co., (2007).
- 4) Soong T.T., Fundamentals of Probability and Statistics for Engineers, John Wiley & Sons, (2004).
- 5) Hamdy A. Taha, *Operations Research: An Introduction (9th ed.)*, Pearson, (2010).
- 6) Hillier, Lieberman, *Introduction to Operations Research* (8th ed.) (*IAE*), Tata McGraw Hill Publishing Co., (2005)

12 hrs

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Privar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code	Course Name: APPLIED MATHEMATICS FOR	Ty/	L	T /	P/R	С
EMMA22003	CONSTRUCTION ENGINEERS	Lb/		S.Lr		
		ETL				
	Prerequisite: UG level Statistics and Optimization Techniques	TY	3	1	0	4
	L : Lecture T : Tutorial S.Lr : Supervised Learning P : Project R :	Research	C: C	credits		
	Ty/Lb/ETL : Theory/Lab/Embedded Theory and Lab					

12 hrs

12 hrs

12 hrs

Course Code:	Co	urse Na	me: PH	ROJEC	T FOR	MULA	TION		Ty/Lb/	L	T/S.Lr	P/ R	С
EMCE22001	AN	ND API	PRAISAI	L					ETL				
	Prer	requisite	: Nil						Ту	3	1/0	0/0	4
L : Lecture T : Theory/Lab/En	Tutorial nbedded	SLr : S Theory a	Supervised and Lab	l Learnir	g P:Pr	oject R	: Resear	ch C: Cr	edits T/L/	ETL :			I
OBJECTIVE	:												
To s	tudy the	e projec	t financin	g, costii	ng and p	bayback	period	in const	ruction p	roject			
COURSE OU	гсомі	ES (COs):(3-5)										
CO1	Under	rstandin	g formula	tion co	ncepts, a	and asse	ess the c	osting o	of constru	iction]	projects		
CO2	Be fa	miliar v	with app	raisal a	nd unde	erstand	variou	s finano	cing tech	nique	S		
CO3	Unde	rstandi	ng risk a	nalysis	and its	implic	ations	to proje	ects				
CO4	To kn	ow the	role of pri	ivate sec	ctor part	icipatio	n in cor	structio	on Industr	ry.			
CO5	Learn	to form	ulate a pi	oject in	a susta	inable v	vay						
Mapping of Co	ourse O	utcomes	with Pro	gram Oı	itcomes	(POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1	2	1	2	3	1	3	3	2	2				
CO2	2	2	2	3	2	3	3	2	2				
CO3	2	2	2	3	1	3	3	2	2				
CO4	2	3	2	3	2	3	3	2	2				
CO5	2	3	2	3	1	1	3	2	2				
COs / PSOs	PS	501	PSC	02	PSC	03							
CO1		3	2	2	1	l							
CO2		3	2	2	1	[
CO3		3	2	2	1	[
CO4		3		3	1	l							
CO5		3	(°)	3	1	l							
3/2/1 Indicates	Strength	n Of Cor	relation, 3	– High,	2- Mediu	ım, 1- L	ow		I	1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
				Ý									
Approval													

Name: PROJECT FORMULATION Ty/Lb/

Course Code: EMCE22001	Course Name: PROJECT FORMULATION ANDAPPRAISAL	Ty/Lb/ ETL	L	T / S.Lr	P/ R	С
	Prerequisite: Nil	Ту	3	1/0	0/0	4

UNIT I: PROJECT FORMULATION

Generation and Screening of Project Ideas - Project identification – Preliminary Analysis, Market, Technical, Financial, Economic and Ecological - Pre-Feasibility Report and its Clearance, Project Estimates and Techno- Economic Feasibility Report, Detailed Project Report – Different Project Clearances required

UNIT II: PROJECT COSTING

Project Cash Flows - Time Value of Money - Cost of Capital

UNIT III: PROJECT APPRAISAL

NPV – BCR – IRR – ARR – Urgency – Pay Back Period – Assessment of Various Methods – Indian Practice of Investment Appraisal – International Practice of Appraisal – Analysis of Risk – Different Methods – Selection of a Project and Risk Analysis in Practice

UNIT IV: PROJECT FINANCING

Project Financing – Means of Finance – Financial Institutions – Special Schemes – Key Financial Indicators

UNIT V: PRIVATE SECTOR PARTICIPATION

Private sector participation in Infrastructure Development Projects - BOT, BOLT, BOOT - Technology Transfer and Foreign Collaboration - Scope of Technology Transfer

Total No. of Hours: 60

REFERENCES

- 1. Prasanna Chandra, Projects Planning Analysis Selection Implementation & Review Fourth Edition, TataMcGraw-Hill Publishing Company Ltd., New Delhi., 1995
- 2. Joy P.K., Total Project Management The Indian Context (Chapters 3 7), New Delhi, Macmillan IndiaLtd., 1992
- 3. United Nations Industrial Development Organisation (UNIDO) Manual for the preparation of IndustrialFeasibility Studies, (IDBI Reproduction) Bombay, 1987
- 4. Barcus, S.W. and Wilkinson. J.W., Hand Book of Management Consulting Services, McGraw Hill, NewYork, 1986.

12 Hrs

12 Hrs

12 Hrs

12 Hrs

12 Hrs

EMCE22L01 Prerequisite: Basic computer Skill for Engineers Ty 0 0 0 40 2 L: Letture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits Tr.LETL : TheoryLab/EmbeddedTheory and Lab Str: Supervised Learning P: Project R: Research C: Credits Tr.LETL : TheoryLab/EmbeddedTheory and Lab Str: Supervised Learning P: Project R: Research C: Credits Tr.LETL : TheoryLab/EmbeddedTheory and Lab Str: Supervised Learning P: Project R: Research C: Credits Tr.LETL : TheoryLab/EmbeddedTheory and Lab Str: Supervised Learning P: Project R: Research C: Credits Tr.LETL : TheoryLab/EmbeddedTheory and Lab Str: Supervised Learning P: Project R: Research C: Credits Tr.LETL : TheoryLab/EmbeddedTheory and Lab Str: Supervised Learning P: Project R: Research C: Credits Tr.LETL : TheoryLab/EmbeddedTheory and Lab Str: Supervised Learning P: Project R: Research C: Credits Tr.LETL : TheoryLab/EmbeddedTheory and Lab Str: Supervised Learning P: Project R: Research C: Credits Tr.LETL : TheoryLab/EmbeddedTheory and Lab Str: Supervised Learning P: Project R: Research C: Credits Tr.LETL : To Educate about QEPV Str: Supervised Learning P: Project R: Research C: Supervised Learning P: Research C: Supervised Learning P: Research C: Supervised Learning P: Research C:	Course Code:		Course Na	me: CO	MPUTI	ER API	PLICA	ΓΙΟΝ Ι	LAB	Ty/Lb/	L	T/S.Lr	P/ R	C
Prerequisite: Basic computer Skill for Engineers Ty 0 0.00 4.0 2 L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL : Theory/Lab/EmbeddedTheory and Lab Stressen C: Credits T/L/ETL : Stressen C: Crecredits T/L/ETL : Stressen C: Credits T/L/ETL :	EMCE22L01									ETL				
		P	rerequisite	e: Basic c	ompute	r Skill f	or Engi	neers		Ту	0	0/0	4/0	2
OBJECTIVE: This course gives an exposure to students in utilizing the sophisticated Spread sheets programs. Eximation Software and other package programs. COURSE OUTOWER (Cos): (3 5) COURDITIES (Cos): (3 5) COS TO understanding basics MS Access COS TO Educate about UEPROUTOWER(Cos) COS/POS POI PO2 PO8 PO8 PO9 O COS/POS PO1 PO2 PO8 Cos/PO3 PO1 PO2 PO3 PO1 PO1 PO1 PO1 PO1 PO1 <td>L : Lecture T : Theory/Lab/Er</td> <td>Tuto mbedo</td> <td>rial SLr : ledTheory</td> <td>Supervise and Lab</td> <td>d Learni</td> <td>ing P:F</td> <td>Project F</td> <td>R : Resea</td> <td>arch C:</td> <td>Credits T/</td> <td>L/ETL</td> <td><i>.</i>:</td> <td></td> <td>L</td>	L : Lecture T : Theory/Lab/Er	Tuto mbedo	rial SLr : ledTheory	Supervise and Lab	d Learni	ing P:F	Project F	R : Resea	arch C:	Credits T/	L/ETL	<i>.</i> :		L
COURSE OUTCOMES (COS) : (3 · 5) CO1 To know the basics of MS office CO2 To know the basics of MS office CO3 Understanding basics MS Access CO4 To understand the basics about -software & Hardware CO5 To Educate about QEPRO Mapping of Course Outcomes with Program Outcomes (PO5) PO6 PO7 PO8 PO9 Image: Colspan="4">Image: Colspan="4">Image: Colspan="4">Co3 1 Co CO3 PO1 PO2 PO3 PO6 PO7 PO8 PO9 Image: Colspan="4">Image: Colspan="4" Image: Colspa	OBJECTIVE programs,Est	: T imati	This cours on Softwa	e gives a are and ot	an expo	sure to kage pr	studen ograms.	ts in u	tilizing	g the soph	nistica	ted Sprea	d shee	ts
CO1 To know the basics of MS office CO2 To know the basics of MS office CO3 Understanding basics MS Access CO4 To understand the basics about –software & Hardware CO5 To Educate about QEPRO Mapping of Course Outcomes with Program Outcomes (POs) CO4 PO1 PO2 PO3 PO6 PO7 PO8 PO9 COs PO1 PO2 PO3 PO6 PO7 PO8 PO9 COs PO3 PO4 PO5 PO8 PO9 COs PO1 PO2 PO3 PO4 PO3 PO4 PO3 PO4 PO3 PO4 PO5 PO8 PO9 Colspan="4">Colspan="4">Colspan="4">Colspan= 40 Colspan= 40 Colspa= 40 Colspa	COURSE OU	тсо	MES (CO	s) : (3- 5)										
CO2 To have hands on experience on Spreadsheet CO3 Understanding basics MS Access CO4 To understand the basics about –software & Hardware CO5 To Educate about QEPRO Mapping of Course Outcomes with Program Outcomes (PO5) CO1 2 3 3 2 3 2 3 1 2 CO3 Outcomes with Program Outcomes (PO5) CO4 PO1 PO2 PO3 PO6 PO7 PO8 PO9 CO4 2 3 3 2 3 1 2 CO3 PO1 PO2 PO3 PO6 PO7 PO8 PO9 CO1 2 3 3 2 3 1 2 CO3 2 3 2 3 1 2 CO4	CO1		To know	the basic	s of MS	S office								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CO2		To have	hands on	experie	nce on S	Spreads	heet						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CO3		Underst	anding b	asics M	IS Acc	ess							
To Educate about QEPRO Mapping of Course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 Image: Course outcome set outcome set outcomes (POs) CO1 2 3 3 2 3 2 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 <td>CO4</td> <td></td> <td>To unde</td> <td>erstand th</td> <td>e basic</td> <td>s about</td> <td>-softw</td> <td>are & H</td> <td>Iardwa</td> <td>ire</td> <td></td> <td></td> <td></td> <td></td>	CO4		To unde	erstand th	e basic	s about	-softw	are & H	Iardwa	ire				
Mapping of Course Outcomes with Program Outcomes (POs) COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 Image: Colspansion of Course Cour	CO5		To Educ	cate abou	ıt QEPI	RO								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mapping of C	Course	e Outcome	es with Pro	ogram O	Outcome	es (POs)							
CO1 2 3 3 2 3 2 3 1 2	COs/POs	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO2 2 3 3 2 3 2 3 1 2 1 2 CO3 2 3 2 2 3 2 3 1 2 1 2 CO4 2 3 3 2 3 2 3 1 2 1 2 CO4 2 3 3 2 3 2 3 1 2 1 2 CO5 2 3 3 2 3 2 3 1 2 1 2 CO5 2 3 3 2 3 2 3 1 2 1 C04 3 3 2 3 2 1 1 2 1 C03 3 3 2 2 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 <th1< th=""> 1 1 1 <</th1<>	CO1	2	3	3	2	3	2	3	1	2				
CO3 2 3 2 2 3 2 3 1 2 CO4 2 3 3 2 3 2 3 1 2 CO4 2 3 3 2 3 2 3 1 2 CO5 2 3 3 2 3 2 3 1 2 CO5 2 3 3 2 3 1 2	CO2	2	3	3	2	3	2	3	1	2				
CO4 2 3 3 2 3 2 3 1 2 CO5 2 3 3 2 3 2 3 1 2 CO5 2 3 3 2 3 2 3 1 2 CO5 2 3 3 2 3 1 2	CO3	2	3	2	2	3	2	3	1	2				
CO5 2 3 3 2 3 2 3 1 2 1 2 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>	CO4	2	3	3	2	3	2	3	1	2				
COS / PSOS PSO1 PSO2 PSO3 Image: constraint of the state	CO5	2	3	3	2	3	2	3	1	2				
CO1332Image: Column Side of C	COs / PSOs		PSO1	PSC	02	PSO	03							
CO2332CO33321CO43321CO43321CO43321CO43321CO53321CategorySkill combonentSciencesValueLipcoreSciencesValue<	CO1		3	3	3	2	2							
CO3 3 3 2 C04 3 3 2 CO3 C05 3 3 2 CO3 Category Sciences Sciences Sciences Value A A A Category Still combonent Cone Sciences	CO2		3	3	3	2	2							
CO4 3 3 2 Co5 3 3 2 Co5 Category Sciences Basic Sciences Basic Sciences Category Sciences Sciences Sciences Value Program Electives Sciences Sciences Skill component Skill component Program Core Sciences	CO3		3	3	3	2	2							
Cos 3 3 5 Category Basic Sciences Basic Sciences Basic Sciences Category Sciences Sciences Sciences Program Electives Program Core Sciences Sciences Radiustrian Program Core Sciences Sciences Program Core Sciences Sciences Sciences Program Core Program Core Sciences Sciences	CO4		3	3	3	2	2							
Category Cores And Social Sciences Another Program Electives Program Core Program Core Sciences Scienc	CO5		3	3	3	2	2							
Category Cores Control of Cores Control of Control of Cores Control of Cores Control of Cores Control of Cores Cor				1		1					1	1		
	Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
Approval	Approval									~				

Course Code:	Course Name: COMPUTER APPLICATION LAB	Ty/Lb/	L	T/S.Lr	P/ R	С
EMCE22L01		ETL				
	Prerequisite: Basic computer Skill for Engineers	Ту	0	0/0	4/0	2

LIST OF EXPERIMENTS

- 1. Introduction about –software & Hardware.
- 2. Use of management software
- 3. Quantity takeoff, Preparation and delivery of the bid or proposal of an engineering construction project.
- 4. Design of a simple equipment information system for a construction project.

LIST OF EQUIPMENTS/ SOFTWARES/ TOOLS REQUIREMENTS

- 1. MS OFFICE
- 2. QEPRO
- 3. MS OFFICE SUIT
- 4. MS ACCESS
- 5. SPREADSHEETS

Total No. of Hours: 60

REFERENCES

- 1. Feigenbaum ., L., "Construction scheduling with primavera project planner" Prentice Hall Inc., 1999.
- 2. Paulson, B.R, "Computer Applications in construction," Mc Graw-hill, 1995.

Course Code:	C	Course Na	me: Mod	ern Co	Construction				Ty/Lb/	L	T/S.Lr	P/ R	C
EMCE22L02	N	Aaterials	lab						ETL				
	Р	rerequisite	e: Construe	ction Ma	terials				Lb	0	0/0	4/0	2
L : Lecture T :	Tutori	ial SLr :	Supervise	d Learni	ng P:P	Project I	R : Resea	arch C:	Credits T/	L/ETL	:		
Theory/Lab/Ei	mbedde	edTheory	and Lab										
OBJECTIVE	: To c	develop s	kills in M	lodern C	Construc	ction m	aterial						
COURSE OU	TCON	MES (CO	s) : (3- 5)										
CO1	В	Be able to	understar	nd the C	oncept	of Spec	ial Con	crete –	Foam Co	ncrete,	, Pervious	Conc	rete,
	Т	ransluce	nt Concre	te	_	_							
CO2	Т	o design	a concret	e mix –	Specia	l Concr	ete						
CO3	Т	o assess Modern material characteristics for both concrete and metals											
Mapping of C	ourse	Outcome	s with Pro	ogram O									
			DOG			- (- <i>o z</i>)	205	DOO	DOG		- 1		
COs/POs	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1	3	3	3	2	3	3	1	-	-				
CO2	3	3	2	2	2	3	1	-	-				
CO3	3	3	3		3	3	1	-	-				
COs / PSOs		PSO1	PSC	02	PS	03							
CO1		3	2	2	1	1							
CO2		3	2	2	1	l							
CO3		3	2	2	1	[
3/2/1 Indicates	Streng	gth Of Co	rrelation, 3	8 – High,	2- Med	ium, 1-	Low		1				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
									4				
Approval													

Course Code: EMCE22L02	Course Name: Modern Construction Materials lab	Ty/Lb/ ETL	L	T / S.Lr	P/ R	С
	Prerequisite: Construction Materials	Lb	0	0/0	4/0	2
L : Lecture T : Tut Theory/Lab/Embe	torial SLr : Supervised Learning P : Project R : Research C ddedTheory and Lab	Credits T	/L/ETL	.:		

Special Concrete – Foam Concrete, Pervious Concrete, Translucent Concrete

- 1. Basic test on material for special Concrete
- 2. Mix design of Special concretes.
- 3. Behavioral Characteristics of Special concrete
 - Workability test
 - Slump test
 - Strength of concrete
- 4. As per IS 1789 Metals- testing of rods-Steel, Aluminum, Alloys
 - Bend Test
 - Proof Stress
 - Elongation test
- 5. Case studies on any one modern materials

Total No. of Hours: 60

REFERENCES

- 1. Ganapathy, C. "Modern Construction Materials", Eswar Press, 2215.
- 2. Shan Somayaji, Civil Engineering Materials, 2nd Edition, Prentice Hall Inc., 2201
- 3. Mamlouk, M.S. and Zaniewski, J.P., Materials for Civil and Construction Engineers, Prentice Hall Inc., 1999
- 4. Derucher, K. Korfiatis.G. and Ezeldin, S., Materials for Civil and Highway Engineers, 4th Edition, PrenticeHall Inc., 1999
- 5. Aitkens, High Performance Concrete, McGraw-Hill, 1999

Course C EMCC22	ode: 001		Cour Meth	rse Nan odolog	ne: Res	search PR			Ty/Lb/ ETL	′ 1	L T/S	Lr	P/R	С
		-	Prer	equisite	e: core	subjects	S		Ty		3 0/	0	0/0	3
Ty/Lb/: T	Theor	ry/La	ıb L :	Lectur	e T : 1	Futorial	P : P	ractica	l/Proje	ct R	: Researc	h C:	Credit	s T/L
Theory/L	ab	•							C C					
OBJECT	IVE:	The	goal	is to em	phasiz	e the imp	ortance	e of inn	ovation	and c	reativity b	oy un	derstan	ding the
research c	once	pts ar	nd eth	ics which	ch will	aid to bu	ild the	nation	IPR sta	tus.				
COURSE	OU	FCO	MES	(COs) :	By do	ing this	course	studen	ts will					
CO1	U	nders	stand	research	i proble	em formu	ilation	by Ana	lyzing	resear	ch related	l info	rmatio	n and its
004	ey	kecuti	ion by	follow	ing res	earch eth	11CS	11 0		TC		1	1 1	
CO2	U	nders	stand	that toda	ay's we	orld is co	ontrolled	d by Co	mputer	, Intoi	mation T	echno	ology, ł	out
002			0W W		I be ru		$\frac{1}{1}$	$\frac{1}{1}$	nd crea	<u>11V119.</u>	·		1:: 1	-1- 0
003		nders	it is i	ng that '	when I	PK WOUL	a take s	of infor	portant	place	in growth Intellectu	1 OI 11 191 Pr	laiviau opertv	als & Right to be
	ni Di	comot	ted an	nong sti	idents	in genera	l & eng	vineerir	in na	rticula	r.	141 1 1	operty	Right to be
CO4	U	nders	stand	that IPR	nrote	ction prov	vides a	incent	ive to i	nvento	ors for fur	ther t	esearc	n work and
004	in	vestn	nent i	n R & I), whic	h leads t	o creati	on of n	ew and	better	products.	, and	in turn	brings
	ał	about, economic growth and social benefits.												
Mapping	of C	Cours	se Oı	itcome	s with	Progra	m Ou	tcomes	s (POs)				
COs/POs	PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9												
CO1	2	2 3 3 3 3 2 3 3 2												
CO2	2		3	3	3	3	2	3	3		2			
CO3	2		3	3	3	3	2	3	3		2			
CO4	2		3	3	3	3	2	3	3		2			
COs / PSOs	PSO	1					PSO2				Р	SO3		
CO1	3						3					2		
CO2	3						3					2		
CO3	3						3					2		
CO4	3						3					2		
3/2/1 indi	cates	s Stre	ngth	of Cor	relatio	n 3- H	ligh, 2-	Medi	ım, 1-l	Low	-			
									al					
			es	cia					inic					
Catagory			enc	$\mathbf{S}_{\mathbf{C}}$		es		ct	ech		~			
Category		es	Sci	nu	ė	ctiv	es	oje	/T cill		ıary			
		enc	ng	es a	Col	Ele	ctiv	/ Pr	uips Sł	S	plir			
		Sci	eeri	niti	S H	m	Ele	cal	nsh	kill	isci			
		erd fr Schennen ger ger ger han an a sic												
		Ba	En	Hu	Pro	Pro	Op	Pr_{c}	Ī	So	Int			
											1			

UNIT I: SELECTION, ANALYSIS AND STATEMENT OF THE RESEARCH PROBLEM 9 hrs

Literature Review and Formulation of Objectives - using the following Critical thinking Skills -Drawing a Concept map, Oral Communication, Debating, Questioning, Collaborating, Evaluation and Reasoning.

UNIT II: RESEARCH DESIGN

Types of Study, Types of Data, Measures of Variability, Setting up the Hypotheses, data collection techniques and tools, sampling, Describing data – Charts and graphs; Data processing – Categorization, coding, summarization.

UNIT III: DATA ANALYSIS AND REPORT WRITING

Statistical measures, Regression and correlation, significance test; Report writing – Purpose, format, content, editing and evaluation. Using Citation tools; Report for specific purposes – Theses, Journals, Grant application. Oral presentation to an audience; use of project management digital tools and plagiarism checking.

UNIT IV: INTRODUCTION TO INTELLECTUAL PROPERTY Types of intellectual property rights – Patent, Copyright, Trade Mark, Industrial Design, Geographical Indication, Trade Secrets - Traditional Knowledge. Elements of Patentability - Novelty, Non Obviousness (Inventive Steps), Industrial Application - Non patentable inventions - Process of

patenting - National and International - Form and Fees for IP India

UNIT V: PRIOR ART SEARCH. PATENT DRAFTING

Drafting patent Claims – Types of claims - Registration Procedure, Rights and Duties of Patentee; Patent infringement; Licensing - Franchising - Joint ventures; Non-Disclosure Agreements (NDAs) - Material Transfer Agreements (MTAs). **Total : 45**

References:

- ♦ C. Vijayalakshmi and C. Sivapragasam (2011) Research Methods Tips and Techniques, **MJP** Publishers
- Deboraj Rumsey (2010) Statistics Essentials for Dummies, Wiley Publishing Incorporated
- Bouchoux (2013) Intellectual Property, DELMAR CENGAGE Learning, USA
- V K Ahuja (2017) Law Relating to Intellectual Property Rights, LexisNexis Butterworths India **IMPORTANT WEB LINKS**
- https://www.wipo.int/portal/en/index.html
- http://ipindia.nic.in/
- https://www.epo.org
- https://www.uspto.gov *

9 hrs

9 hrs

С

3

9 hrs

9 hrs

Course Code Course Name Ty/Lb/ETL L T/SLr P/R EMCC22001 3 0/00/0 Research Methodology and IPR Ty

SEMESTER-II

Course Code:		Course	Na	me: ADV	ANCE	D				Ty/Lb/	L	T/S.Lr	P/ R	С
EMCE220	02	CONS	TR	UCTION	N TECI	HNIQU	JES			ETL				
		Prerequ	isite	e: Construe	ction Teo	chniques	5			Ту	3	1/0	0/0	4
L : Lecture T :	Tuto	rial S	Lr:	Supervise	d Learni	ng P:F	roject I	R : Resea	arch C:	Credits T/	L/ETL	:		
Theory/Lab/Er	nbed	dedTheo	ory	and Lab										
OBJECTIVE	: То	study a	nd	understar	id the la	test cor	structio	on techr	niques	applied to	engin	eering Co	nstruc	tion.
COURSE OU	тсо	MES (CO	s) : (3- 5)										
CO1		Under	sta	nding the	various	techni	ques in	volved	in sub	structure c	constru	iction.		
CO2		Under	sta	nding the	basics	and diff	ferent te	echniqu	es invo	olved in su	iper st	ructure co	nstruc	tion.
CO3		To kn	know the modern construction techniques involved in construction of special structures											
CO4		To un	inderstand basics of rehabilitation techniques and interpret and analyze them.											
CO5		Under	sta	nding late	est demo	olition a	and disr	nantling	g techr	iques				
Mapping of C	ours	e Outco	me	s with Pro	ogram O	utcome	s (POs)							
COs/POs	PC	D1 PC	02	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1	3	2		2	3	1	3	3	2	1				
CO2	3	2	2 2 3				3	3	2	1				
CO3	3	2		2	3	1	3	3	2	1				
CO4	3	2		2	3	1	3	3	2	1				
CO5	3	2		2	3	1	3	3	2	1				
COs / PSOs		PSO	1	PSC	02	PS	03							
CO1		3		2	,	() (3							
CO2		3		2			3							
CO3		3		2			3							
CO4		2		2		4	2							
CO5		2		2		(). ().	3							
3/2/1 Indicates	Strei	ngth Of	Co	rrelation, 3	8 – High,	2- Med	ium, 1-	Low						
Category	Basic Sciences	Engineering Sciences		Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
					1									
Approval														

REFERENCES

- 1. Robertwade Brown, Practical foundation engineering hand book, McGraw-Hill Publications, 1995
- **2.** Patrick Powers. J., Construction Dewatering: New Methods and Applications, John Wiley & Sons, 1992Jerry Irvine, Advanced Construction Techniques, CA Rocketr.

UNIT III: CONSTRUCTION OF SPECIAL STRUCTURES 12 Hrs Erection of lattice towers and rigging of transmission line structures – construction sequence in cooling

Vacuum dewatering of concrete flooring – concrete paving technology – techniques of construction for continuous concreting operation in tall buildings of various shapes and varying sections – launching techniques – suspended form work – erection techniques of tall structures, large span structures – launching techniques for heavy decks – insitu prestressing in high rise structures, aerial

towers, silos, chimney, sky scrapers, bow string bridges, cable stayed bridges - launching and pushing of box decks – Advanced construction techniques in offshore construction practice – construction sequence and methods in domes and prestressdomes - support structure for heavy equipment and conveyor and machinery in heavy industries - erection of articulated structures, braced domes and space decks.

UNIT IV: REHABILITATION TECHNIQUES

UNIT I: SUB STRUCTURE CONSTRUCTION

Mud jacking grout through slab foundation – Micro piling for strengthening floor and shallow profile – Pipeline laying-protecting sheet piles, screw anchors -sub grade water proofing under pining

UNIT V: DEMOLITION

Advanced techniques and sequence in demolition and dismantling. Demolition Techniques, Demolition by Machines, Demolition by Explosives, Advanced techniques using Robotic Machines, Demolition Sequence, Dismantling Techniques, Safety precaution in Demolition and Dismantling.

Total No. of Hours: 60

12 Hrs

12 Hrs

vith Graded Autonon (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code:	Course Name: ADVANCED	Ty/Lb/	L	T / S.Lr	P/ R	C
EMCE22002	CONSTRUCTION TECHNIQUES	ETL				
	Prerequisite: Construction Techniques	Ту	3	1/0	0/0	4
L : Lecture T : Tut	torial SLr : Supervised Learning P : Project R : Research C:	Credits T/	L/ETL	:		
Theory/Lab/Embe	ddedTheory and Lab					

Box jacking - pipe jacking - Under water construction of diaphragm walls and basement - Tunneling techniques - piling techniques - driving well and caisson - sinking cofferdam - cable anchoring and grouting - driving diaphragm walls, sheet piles - laying operations for built up offshore system shoring for deep cutting - large reservoir construction with membranes and earth system - well points

- dewatering and stand by plant equipment for underground open excavation.

UNIT II: SUPER STRUCTURE CONSTRUCTION FOR BUILDINGS

transporting handling erecting lightweight components on tall structures –

12 Hrs

12 Hrs

	•	Course Na	me: C	OMPU'	TER	CTIO		Ty/Lb/	L	T/S.Lr	P/ R	С		
Course Code:	: ¹]	ENGINE	ERING A	AND PI	LANNI	NG	N		ETL					
EMCE22003]	Prerequisit	e: Constru	ction Pla	nning a	nd Schee	luling		Ту	3	0/0	0/0	3	
L : Lecture T : Theory/Lab/Er	Tuto: mbedo	rial SLr : ledTheory	Supervise and Lab	ed Learni	ng P:H	Project	R : Rese	arch C:	Credits T/	L/ETL	:		<u></u>	
OBJECTIVE	: То	study an	d underst	and the	hardw	are and	l softw	are rec	quirements	of co	omputer,			
Programming	g and \mathbf{TCO}	schedulin	$\log \text{ techniq}$	ues app	lied to o	constru	ction en	igineer	ing.					
CO1		To know	about the	e prelim	inaries	of the c	ompute	er appli	ications for	: mana	igement p	roblen	15	
CO2		To under	stand the	optimiz	cation te	echniqu	es							
CO3		To under	stand the	develop	pment o	of softw	are for	invent	ory problei	ns				
CO4		To assess CPM	s the prog	ress of	a consti	ruction	project	via scł	neduling te	chniq	ues like P	ERT,		
CO5		Understa	nding oth	er simu	lation r	nodels	used in	constr	uction					
Mapping of C	Course	e Outcome	mes with Program Outcomes (POs)											
COs/POs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9					
CO1	3	3	2	3	3	3	3	-	-					
CO2	3	3	2	3	3	3	3	-	-					
C03	3	3	2	3	3	3	3	-	-					
CO4	3	3	2	3	3	3	3	-	-					
CO5	3	2	2	3	2	3	3	-	-					
COs / PSOs		PSO1	PSC	02	PS	03								
CO1		3	3	5	2	2								
CO2		3	3	5	4	2								
C03		3	3	5	2	2								
CO4		3	3	5	2	2								
CO5		3	3	5	2	2								
3/2/1 Indicates	s Strer	ngth Of Co	rrelation, 3	3 – High	, 2- Med	ium, 1-	Low							
Category	nces	ng Sciences	es and Social	Core	Electives	tives	mponent	/ Project						
	Basic Scie	Engineeri	Humaniti Sciences	Program (Program I	Open Elec	Skill co	Practical						
				×										
Approval														

Course Code:	Course Name: COMPUTER APPLICATIONS INCONSTRUCTION ENGINEERING AND PLANNING	Ty/Lb/ ETL	L	T / S.Lr	P/ R	С
EMCE22003	Prerequisite: Construction Planning and Scheduling	Ту	3	0/0	0/0	3
L : Lecture T : Tu	torial SLr : Supervised Learning P : Project R : Research C	: Credits T/	L/ETL	:		
Theory/Lab/Embe	ddedTheory and Lab					

UNIT I: INTRODUCTION

Introduction to System Hardware-Languages-Database Management-Spread Sheets-Applications

UNIT II: OPTIMIZATION TECHNIQUES

Linear, Dynamic and Integer Programming-Branch and Bound Techniques-Application to Production Scheduling, Equipment Replacement, Material Transportation and Work Assignment Problems-Software Development

UNIT III: INVENTORY PROBLEMS	9 Hrs
Deterministic and Probabilistic Inventory Models-Software Development	
UNIT IV: SCHEDULING APPLICATIONS	9 Hrs
PERT and CPM-Software Development - Use of Management Software	

UNIT V: OTHER PROBLEMS

Decision Making-Bayes Theory-Simulation Models

9 Hrs

9 Hrs

- ____

9 Hrs

Total No. of Hours: 45

REFERENCES

- 1. Bily E. Gillet., "Introduction to Operation Research" A Computer Oriented Algorithmic Approach, Tata McGraw-Hill, 1990.
- 2. Paulson, B.R., "Computer Applications in Construction", McGraw-Hill, 1995.
- 3. Feigenbaum., L., "Construction Scheduling With Primevera Project Planner", Prentice Hall Inc., 1999.

Course Code	:	Course Na	me: ADV	ANCE	D			Ty/Lb/	L	T/S.Lr	P/ R	С			
EMCE22L03		CONSTR LABORA	UCTION ATORY	NENGI	NEERI	ING			ETL						
		Prerequisit	e: Concret	e Lab					Lb	0	0/0	4/0	2		
L : Lecture T	: Tuto	rial SLr :	Supervise	d Learni	ing P: I	Project 1	R : Resea	arch C:	Credits T	/L/ETI	:]			
Theory/Lab/E	mbed	dedTheory	and Lab												
OBJECTIVE based onspec	: Thi	s course p tion.	rovides a	thorou	gh knov	vledge	of mate	rial sel	ection thr	ough	the materi	al testi	ing		
COURSE OU	JTCO	MES (CO	s) : (3- 5)												
CO1		To desig	n a high p	performation	ance co	ncrete r	nix as p	er cod	al provisi	ons					
CO2		To asses	assess the workability of normal concrete												
CO3		To analy methods	analyses the concrete for permeability and strength through non-destructive testi thods												
CO4		To asses	s the wor	kability	of Self	Compa	oncrete	e							
CO5		To asses	s the effe	ct of mi	nerals a	lmixtu	res in con	crete							
Mapping of C	Cours	e Outcome	s with Pro	ogram C	outcome	es (POs)									
COs/POs	PC	01 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9						
CO1	3	1	3	3	3	2	2	1	1						
CO2	2	3	3	3	3	2	2	1	1			-			
C03	3	3	2	3	3	2	2	1	1						
CO4	3	3	3	3	3	2	2	1	1						
CO5	3	2	3	3	2	2	2	1	1						
COs / PSOs		PSO1	PSC	02	PS	O3		l							
CO1		3	2			1									
CO2		3	2		÷	3									
C03		3	2			1									
CO4		2	2			1									
CO5		1	2		-	3									
3/2/1 Indicates	s Strei	ngth Of Co	rrelation, 3	3 – High	, 2- Med	lium, 1-	Low		1	1	I				
		\$	al												
		ience	l Soci		ves		ary	nent	oject						
Category	ences	ng Sc	es and	Core	Electi	ctives	iplina	oduu	/Pro						
	c Scie	neeri	anitio	ram (ram l	ı Elec	disc	ll co	tical						
	Basic	Engi	Hum Scier	Prog	Prog	Oper	Inter	Ski	Prac						
									\checkmark						
Approval										I	I				

Course Code:	Course Name: ADVANCED	Ty/Lb/	L	T/S.Lr	P/ R	С
EMCE22L03	CONSTRUCTIONENGINEERING LABORATORY	ETL				
	Prerequisite: Concrete Lab	Lb	0	0/0	4/0	2
L : Lecture T : Tut Theory/Lab/Embe	orial SLr : Supervised Learning P : Project R : Research C: ddedTheory and Lab	Credits T/	L/ETL	:		

LIST OF EXPERIMENTS

- 6. Mix design of concrete as per IS, ACI & BS methods for high performance concrete.
- 7. Flow Characteristics of Self Compacting concrete.
- 8. Effect of minerals and chemical admixtures in concrete at fresh and hardened state with relevance toworkability, strength and durability.
- 9. Permeability of Concrete.
 - Rapid chloride Penetration Test,
 - Freeze and Thaw test,
 - Acid test
 - Alkali aggregate reaction test

5. NON-DESTRUCTIVE TESTING LABORATORY

- 1. Ultrasonic Pulse velocity test
- 2. Rebound hammer test
- 3. Penetration resistance
- 4. Rebar locator
- 5. Core sampling
- 6. Corrosion identification

Total No. of Hours: 60

REFERENCES

- 1. Purushothaman, P, Reinforced Concrete Structure Structural Elements : Behaviour Analysis and Design
 - , Tata Mc Graw Hill, New Delhi 1986.
- 2. Varghese, P.C., Limit State Design of Reinforced Concrete, Prentice Hall of India New Delhi, 1995.
- 3. Krishna Raju, N.Advanced Reinforced Concrete Design, CBS Publishers and New Delhi Distributors, 1986.
- 4. Neville, A.M., Properties of Concrete, Pitman Publishing Limited, London.
- 5. Shetty M.S., Concrete Technology, S.Chand and Company Ltd. Delhi.

Course Code:	•	Course Na	me: CON	STRU	CTION	[Ty/Lb/	L	T/S.Lr	P/ R	C	
EMCE22L04	5	SOFTWA	RE LAE	BORAT	ORY				ETL				
]	Prerequisite	e: Nil						Lb	0	0/0	4/0	2
L : Lecture T : Theory/Lab/Fr	Tuto	rial SLr :	Supervise	d Learni	ng P:P	roject F	R : Resea	rch C:	Credits T/	L/ETL	.:		
	Th	·				4	- :- C -1		C - G -				
OBJECTIVE	: 11	is course	gives an	exposi	ire to s	tudent	s III SCI	ledull	ng Sonw	are s			
COURSE OU	тсо	MES (CO	s) : (3- 5)										
CO1		To know	the basic	s of sch	eduling	softwa	re						
CO2		To have 1	hands on	experie	nce on s	schedul	ing soft	ware li	ke MSP				
CO3		Understa	anding b	asics of	Prima	vera							
CO4		To unde	rstand th	e basic	s of Bu	ilding	Inform	ation	Modellin	g Tec	hniques		
CO5		Ability t	o apply i	Buildin	g Infor	mation	n Mode	lling 🛛	Fechnique	es in J	project		
Mapping of C	ourse	e Outcome	omes with Program Outcomes (POs)										
COs/POs	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1	3	2	3	-	-	-	-	3	1				
CO2	3	2	3	-	-	-	-	3	1				
C03	3	2	2	-	-	-	-	3	1				
CO4	3	2	3	-	-	-	-	3	1				
CO5	3	2	3	-	-	-	-	3	1				
COs / PSOs		PSO1	PSC)2	PS	03							
CO1		3	2	2	3	3							
CO2		3	2	2	(T)	3							
C03		3	2	2	3	3							
CO4		3	3	3	() ()	3							
CO5		3	3	3		3							
3/2/1 Indicates	Strer	ngth Of Con	rrelation, 3	3 – High,	2- Med	ium, 1-1	Low				I		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
Approval													

Course Code: EMCE22L04	Course Name: CONSTRUCTION SOFTWARE LABORATORY	Ty/Lb/ ETL	L	T / S.Lr	P/ R	С				
	Prerequisite: Nil	Lb	0	0/0	4/0	2				
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory/Lab/EmbeddedTheory and Lab										

LIST OF EXPERIMENTS

- 1. Scheduling f a small construction project using Primavera scheduling systems including reports and tracking.
- 2. Scheduling of a small construction project using tools like MS project scheduling systems including reports and tracking.
- 3. Simulation models for project risk analysis.
- 4. Building Information Modeling (BIM)

Total No. of Hours: 60

REFERENCES

- 1. Feigenbaum ., L., "Construction scheduling with primavera project planner" Prentice Hall Inc., 1999.
- 2. Paulson, B.R, "Computer Applications in construction," Mc Graw-hill, 1995.

Course Code : EMCE22I01	Course Name: TERM PAPER	Ty/Lb/ ETL	L	T / S.Lr	P/ R	С			
	Prerequisite : Nil	IE	0	0/0	0//2	2			
L : Lecture T : Tutorial S.Lr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory / Lab / Embedded Theory and Lab									

A term paper is an elaborate research-based work on a particular topic in the domain of study. The student must choose a topic of his interest from the domain of study for a term paper. The term paper can be an original research article or review article. In case of review article, the student must refer at least 50 research/review articles and critically review other researcher's work. The term paper may be 10 -20 pages in length. The general guidelines for writing the term paper as follows:

- 1. Abstract
- 2. Introduction to explain about the broad and general statement on the topic chosen.
- 3. Aim /Objective of the term paper.
- 4. Description of methodology, concepts and arguments.
- 5. Identify the research gap and suggest possible future works.
- 6. Conclusion

Three reviews will be conducted to monitor the progress of the work. At the end of the semester, presentation must be made by the student and Viva-Voce examination will be conducted by the internal Examiner duly appointed by the Head of the department and the students will be evaluated.

SEMESTER-III

Course Co	ode:	Co	urse Na	rse Name: CONSTRUCTION Ty/Lb/ L T/S.Lr P/R C											
EMCE22)04	PR	COJEC	T MAN	AGEM	ENT				ETL					
		Pre	requisite	e: Construc	ction Ma	nageme	ent			Ту	3	0/0	0/0	3	
L : Lecture Theory/La	e T : Tu b/Embe	torial dded	l SLr : ITheory	Supervise and Lab	d Learni	ng P:I	Project	R : Rese	arch C:	Credits T/	L/ETL	:			
OBJECTI	VE:T	o stu	udy the	various n	nanagen	nent tec	hnique	s for su	ccessfu	l complet	ion of	construct	ion pro	ject	
COURSE	OUTC	OM	ES (CO	s) : (3- 5)	e		1			I			1	5	
CO1	To id	entif	$\overline{\mathbf{v}}$ and \mathbf{a}	nalvze the	e role of	contra	ctors ar	nd proje	ect man	agers					
CO2	To in	pler	nent su	itable pla	nning te	chniqu	es and	differen	t delive	ery metho	d ofpr	oject.			
CO3	To pl	an si	uitable 1	managem	ent met	hods fo	or constr	ruction	project	s	1	5			
CO4	Unders	stand	ling pro	ject schee	duling f	or reso	urce ma	inageme	ent						
CO5	Ability	v to a	arrive at	various e	estimate	s invol	ved in a	n projec	t						
Mapping	of Cour	rse O	outcome	s with Pro	ogram O	utcome	es (POs)								
COs/POs	PO	D1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9					
CO1		3	3	3	3	3	3	2	3	1					
CO2		3	2	3	3	3	3	2	3	3					
CO3		2	3	2	3	2	3	1							
CO4		2	3	3	3	2	3	3	3	1					
CO5		2	3	2	3	2	3	3	3	1					
COs / PSO	s	:	PSO1	PSC	02	PS	03		•						
CO1			3	3	;		1								
CO2			2	1			1								
CO3			2	1			1								
CO4			3	1			3								
CO5			2	3	;		3								
3/2/1 Indic	ates Str	engt	h Of Co	rrelation, 3	8 – High,	2- Med	lium, 1-	Low							
Category	Basic Sciences		Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project					
Approval					\$										
Approval															

Introduction - Project Life Cycle Types of Construction - Selection of Professional Services-Construction Contractors - Financing of Constructed Facilities - Legal and Regulatory Requirements - Changing Environment of the Construction Industry - Role of Project Managers.

UNIT II: ORGANIZING FOR PROJECT MANAGEMENT

UNIT I: THE OWNERS' PERSPECTIVE

Project Management - Trends in Modern Management - Strategic Planning and Project Programming - Effects of Project Risks on Organization - Organization of Project Participants - Traditional Designer-Constructor Sequence - Professional Construction Management - Owner-Builder Operation - Turnkey Operation - Leadership and Motivationfor the Project Team

UNIT III: DESIGN AND CONSTRUCTION PROCESS

Design and Construction as an Integrated System - Innovation and Technological Feasibility -Innovation and economic Feasibility - Design Methodology - Functional Design - Physical Structures-Geo-technical Engineering Investigation - Construction Site Environment - Value Engineering

UNIT IV : LABOR, MATERIAL AND EQUIPMENT

Historical Perspective - Labor Productivity - Factors Affecting Job-Site Productivity - Labor Relations in Construction - Problems in Collective Bargaining - Materials Management - Material Procurement and Delivery - Inventory Control - Tradeoffs of Costs in Materials Management. - Construction Equipment - Choice of utilization

.Equipment and Standard Production Rates - Construction Processes Queues and Resource Bottlenecks

UNIT V: COST ESTIMATION

Costs Associated with Constructed Facilities - Approaches to Cost Estimation - Type of Construction Cost Estimates

- Effects of Scale on Construction Cost - Unit Cost Method of Estimation - Methods for Allocation of Joint Costs - Historical Cost Data - Cost Indices - Applications of Cost Indices to Estimating - Estimate Based on Engineer's Listof Quantities - Allocation of Construction Costs Over Time - Computer Aided Cost Estimation - Estimation of Operating Costs.

Total No. of Hours: 45

REFERENCES

- 1. Chris Hendrickson and Tung Au, Project Management for Construction Fundamental Concepts forOwners, Engineers, Architects and Builders, Prentice Hall, Pittsburgh, 2200.
- 2. Chitkara, K.K. Construction Project Management: Planning, Scheduling and Control, Tata McGraw-HillPublishing Company, New Delhi, 1998.
- 3. Frederick E. Gould, Construction Project Management, Wentworth Institute of Technology, Vary E. Joyce, Massachusetts Institute of Technology, 2200.
- 4. Choudhury, S, Project Management, Tata McGraw-Hill Publishing Company, New Delhi, 1988.
- 5. Ernest E. Ludwig, Applied Project Engineering and Management, Gulf Publishing Company

9 Hrs

9 Hrs

9 Hrs

9 Hrs

9 Hrs

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code: Ty/Lb/ T/S.Lr P/R**CONSTRUCTION** L С **Course Name: PROJECT MANAGEMENT EMCE22004** ETL 3 Prerequisite: Construction Management 0/0 0/0 3 Ty L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL: Theory/Lab/EmbeddedTheory and Lab

Course Code: EMOL22I01	Course Name: Open Elective (NPTEL/SWAYAM/Any MOOC Online courses approved by AICTE/UGC)	Ty/Lb/ ETL	L	T / S.Lr	P/ R	С
	Prerequisite: Nil	IE	3	0/0	0	3
L : Lecture T : Tu Theory/Lab/Embe	orial SLr : Supervised Learning P : Project R : Research C: ddedTheory and Lab	Credits T/	L/ETL	:		

Students should register for the online course with a minimum course duration of 8 weeks through the online portals such as NPTEL/SWAYAM/Any MOOC in the beginning of the semester. The course can be core/interdisciplinary in such a way that the same course is not repeated during the course of his study.

Students are expected to attend the online classes regularly and submit the weekly assignments before the due dates. Students should appear for the online examination and submit the certificate at the end of the semester. Internal examination will be conducted by the examiners duly appointed by the head of the department.

Course Code:	. (Course Na	me: SUM	IMER I	INTER	NSHI			Ty/Lb/	L	T/S.Lr	P/ R	С
EMCE22I02									ETL				
]	Prerequisit	e: UG Lev	el In pla	nt traini	ng			IE	0	0/0	4/0	2
L : Lecture T : Theory/Lab/Er	Tuto mbedo	rial SLr : dedTheory	Supervise and Lab	d Learni	ng P:I	Project	R : Rese	arch C:	Credits T/	L/ETL	.:		
OBJECTIVE	: St	tudents h	ave to u	ndergo	three -	- week	practi	cal trai	ning in (Civil	Engineeri	ng rel	ated
organizations	s so th	nat they be	come awa	are of th	e practi	ical app	lication	s of the	oretical c	oncep	ts studied	in the c	lass
COURSE OU	тсо	MES (CO	s) : (3- 5)										
CO1		Student y	vill nosse	ss soun	d know	ledge a	ndexne	rience	in core				
201		Student		33 50um									
CO2		Student of	can correl	ate theo	retical	knowle	dge wit	h practi	ical exper	ience			
CO3		Student v	will be ab	le to pre	epare re	port ba	sed on t	he expe	erience ga	ined			
CO4		To make	them unc	lerstand	the pra	actical o	lifficult	ies in tł	ne field				
CO5		To make	them und	lerstand	on hov	w to pre	pare the	e report	for a par	ticular	area of		
Mapping of C	ours	Specializ e Outcome	ation s with Pro	ogram C	outcome	es (POs)	1						
COs/POs	PO	I PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1	2	3	2	3	1	3	2	3					
<u>CO2</u>	-	3	2	3	1	3	3	2	3				
CO2	2	5	2	5	1	5	5	2	5				
C03	2	3	2	3	1	3	3	2	2				
CO4	3	3	2	3	1	3	3	2	2				
CO5	3	3	3	3	3	3	3	2	2				
COs / PSOs		PSO1	PSC	02	PS	03		1					
CO1		3	2	2		3							
CO2		2	2	2	:	3							
C03		2	2	2		3							
CO4		3	3	;		1							
CO5		3	3	1		1							
3/2/1 Indicates	Strei	ngth Of Co	rrelation, 3	Low	1								
Category	Basic Sciences	Engineering Sciences	Humanities and SocialSciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
								1					
Approval		· · ·	-										-

Course Code:	Course Name: SUMMER INTERNSHIP	Ty/Lb/	L	T/S.Lr	P/ R	С
EMCE22I02		ETL				
	Prerequisite: UG Level In plant training	IE	0	0/0	4/0	2
L : Lecture T : Tut Theory/Lab/Embe	torial SLr : Supervised Learning P : Project R : Research C dded Theory and Lab	Credits T	/L/ETL	.:		

OBJECTIVES

Students have to undergo three – week practical training in Civil engineering related organizations so that they

Become aware of the practical applications of theoretical concepts studied in the class rooms.

Students have to undergo three-week practical training in Civil Engineering related organizations of their choice butwith the approval of the department. At the end of the training student will submit a report as per the prescribed format to the department.

Assessment process

This course is mandatory and a student has to pass the course to become eligible for the award of degree. The student shall make a presentation before a committee constituted by the department which will assess the student based on the report submitted and the presentation made. Marks will be awarded out of 100 and appropriate grades assigned as per the regulations

Course Code: Course Name: DISSERTATION - PHASE I Ty/Lb/ L T/S.Lr P/R С ETL **EMCE22L05** Prerequisite: UG Project Work Lb 0 0/00/10 5 L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL: Theory/Lab/EmbeddedTheory and Lab **OBJECTIVE :** The student shall be capable of identifying a problem related to the program of study and carry out wholesome research on it leading to findings which will facilitate development of a new/improved product, process for he benefit of the society. COURSE OUTCOMES (COs) : (3-5) C01 Work in a team and develop multidisciplinary, research skills CO2 Identifying the challenges and issues of the industry CO3 Explore innovative ideas in civil engineering field CO4 Develop projects based on industrial and field requirements CO5 Develop design projects based on industrial requirements. Mapping of Course Outcomes with Program Outcomes (POs) COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 C01 2 3 2 3 3 2 3 3 3 2 3 3 3 2 3 CO₂ 2 3 2 3 2 3 3 CO3 1 3 3 3 CO4 3 2 3 3 3 3 2 1 3 3 3 CO5 1 3 3 2 3 COs / PSOs PSO1 PSO2 PSO3 CO1 3 2 3 CO2 3 2 1 CO3 3 3 1

3/2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- Low

3

2

2

3

CO4

CO5

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project		
									~		
Approval											

1

1

Course Code:	Course Name: DISSERTATION -PHASE I	Ty/Lb/	L	T/S.Lr	P/ R	С
EMCE22L05		ETL				
	Prerequisite: UG Project Work	Lb	0	0/0	0/10	5
L : Lecture T : Tu Theory/Lab/Embe	torial SLr : Supervised Learning P : Project R : Research C ddedTheory and Lab	Credits T	/L/ETL	.:		

OBJECTIVE:

The student shall be capable of identifying a problem related to the program of study and carry out wholesome research on it leading to findings which will facilitate development of a new/improved product, process for the benefit of the society.

M.Tech projects should be socially relevant and research oriented ones. Each student is expected to do an individual project. The project work is carried out in two phases – Phase I in III semester and Phase II in IV semester. Phase II of the project work shall be in continuation of Phase I only. At the completion of a project the student will submit a project report, which will be evaluated (end semester assessment) by duly appointed examiner(s). This evaluation will be based on the project report and a viva voce examination on the project. Student will be allowed to appear in the final viva voce examination only if he / she has submitted his / her project work in the form of paper for presentation / publication in a conference / journal and produced the proof of acknowledgement of receipt of paper from the organizers / publishers.

SEMESTER-IV

Course Code: Course Name: DISSERTATION PHASE II Ty/Lb/ L T/S.Lr P/R С ETL **EMCE22L06** Prerequisite: Dissertation Phase I 0 0/0 10/10 10 Lb L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory/Lab/EmbeddedTheory and Lab **OBJECTIVE:** The student shall be capable of identifying a problem related to the program of study and carry out wholesome research on it leading to findings which will facilitate development of a new/improved product, process for he benefit of the society. COURSE OUTCOMES (COs) : (3-5) CO1 Work in a team and develop multidisciplinary ,research skills CO2 Identifying the challenges and issues of the industry CO3 Explore innovative ideas in civil engineering field CO4 Develop projects based on industrial and field requirements CO5 Develop design projects based on industrial requirements. Mapping of Course Outcomes with Program Outcomes (POs) COs/POs PO1 PO2 PO3 PO6 PO7 PO8 PO4 PO5 PO9 CO1 3 2 3 3 2 3 3 3 1 CO₂ 1 1 3 2 3 1 3 3 1 C03 3 2 3 3 2 1 3 3 2 CO4 3 3 1 3 3 2 2 1 3 CO5 3 3 3 3 3 2 2 3 1 COs / PSOs PSO1 PSO2 PSO3 C01 1 2 3 CO2 2 3 1 C03 3 2 1 CO4 3 3 1 2 3 CO5 1 3/2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- Low **Humanities and Social Engineering Sciences** component Practical / Project rogram Electives nterdisciplinary Category **Basic Sciences Open Electives** Program Core Sciences Skill (Approval

Course Code:	Course Name: DISSERTATION PHASE II	Ty/Lb/	L	T/S.Lr	P/ R	С
EMCE22L06		ETL				
	Prerequisite: Dissertation Phase I	Lb	0	0/0	10/10	10
L : Lecture T : Tu Theory/Lab/Embe	torial SLr : Supervised Learning P : Project R : Research C: ddedTheory and Lab	Credits T	L/ETL	:		

OBJECTIVE

The student shall be capable of identifying a problem related to the program of study and carry out wholesome research on it leading to findings which will facilitate development of a new/improved product, process for the benefit of the society.

M.Tech projects should be socially relevant and research oriented ones. Each student is expected to do an individual project. The project work is carried out in two phases – Phase I in III semester and Phase II in IV semester. Phase II of the project work shall be in continuation of Phase I only. At the completion of a project the student will submit a project report, which will be evaluated (end semester assessment) by duly appointed examiner(s). This evaluation will be based on the project report and a viva voce examination on the project. Student will be allowed to appear in the final viva voce examination only if he / she has submitted his / her project work in the form of paper for presentation / publication in a conference / journal and produced the proof of acknowledgement of receipt of paper from the organizers / publishers.

Course Code:	Course Name: RESEARCH PUBLICATION	Ty/Lb/	L	T/S.Lr	P/ R	С
EMCE22102		ETL				
ENICE22105	Prerequisite: Nil	IE	0	0/0	2/0	2
L : Lecture T : Tu Theory/Lab/Embe	torial SLr : Supervised Learning P : Project R : Research C: eddedTheory and Lab	Credits T/	L/ETL	.:		

Students are supposed to prepare and publish the article based on either his term paper or area of research in peer reviewed referred journal. Code of research publication ethics should be followed. After publishing the article students should present a seminar in presence of department faculties and PG students. At the end of semester viva examination will be conducted by the examiners appointed by the Head of the department.

PROGRAM ELECTIVE -I

Course Code:		Course Na CONCRI	me: ADV ETE TE(ANCE CHNOI	D LOGY				Ty/Lb/	L	T/S.Lr	P/ R	С	
EMCE22E0			9	<u> </u>							0.10	0.40		
	\mathbf{P}_{1}	rerequisite:	Concrete	Technol	ogy				Ту	3	0/0	0/0	3	
L : Lecture T : Theory/Lab/Ei	Tuto nbedo	rial SLr : dedTheory	Supervise and Lab	d Learni	ng P:F	Project F	R : Resea	arch C:	Credits T/	/L/ETI	_:			
OBJECTIVE	: To	study the j	properties	of mate	erials, to	ests and	mix de	esign fo	or concret	e.				
COURSE OU	тсо	MES (CO	s) : (3- 5)											
CO1		To interp	ret the pr	operties	of cem	ent, agg	gregates	s and o	ther admi	xtures	s used in co	oncrete		
CO2		To assess	s the prop	erties of	f fresh a	and harc	lened co	oncrete	;					
CO3		To perfo	rm durabi	lity test	s on co	ncrete a	nd have	e an ins	sight abou	t spec	ial concre	tes		
CO4		To study	propertie	es of spe	cial typ	bes of co	oncrete.							
CO5		To study	the prope	erties of	constit	uent ele	ments o	of conc	erete					
Mapping of C	ourse	e Outcome	s with Pro	ogram O	utcome	s (POs)								
COs/POs	PC	01 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9					
CO1	3	1	2	1	2	3	2	1	2					
CO2	3	1	2 1 2 1 2 1 2											
CO3	3	2	1	2	1	2	2	2	1					
CO4	3	1	1	3	1	2	3	1	1					
CO5	3	2	1	1	2	1	3	2	1					
COs / PSOs		PSO1	PSC	02	PS	03								
CO1		3	1			2								
CO2		3	1		4	2								
CO3		3	1			2								
CO4		3	1		4	2								
CO5		3	1			2								
3/2/1 Indicates	Strei	ngth Of Co	rrelation, 3	8 – High,	2- Med	ium, 1- 1	Low							
Category	Basic Sciences	Engineering Sciences Humanities and Social Sciences Program Core Open Electives Interdisciplinary Practical / Project												
Approval														

Composition of OPC - Manufacture - Modified Portland Cements - Hydration Process of Portland Cements - Structure of Hydrated Cement Pastes Mineral Admixtures - Slags - Pozzolanas and Fillers - Chemical Admixtures

- Solutes - Retarders - Air Entraining Agents - Water Proofing Compounds - Plasticizers and Super Plasticizers Shape and Mechanical Properties – Absorption and Physical Durability – Chemical Stability – Packing Characteristics

UNIT II: FRESH CONCRETE

Workability – Mix Proportioning – Mixes incorporating Fly-ash, Silica fume, GGBS – Mixes for High PerformanceConcrete - Mix Design methods - variations in concrete strength.

UNIT III: HARDENED CONCRETE

Interfacial Transition Zone - Fracture Strength - Mechanical Properties - High Strength Concrete -Shrinkage - Creep - Other Properties

UNIT IV: DURABILITY OF CONCRETE

Basic Consideration - Stability of Constituents - Chemical Attack - Corrosion of Reinforcing Steel

UNIT V: SPECIAL CONCRETES

Manipulation of Strength of Concrete - Fibre Reinforced Concrete - Self Compacting Concrete -PolymerConcrete - Super Plasticized Concrete.

*Note: (Use of approved data books permitted)

REFERENCES

- 1. Nevile, A.M., Properties of Concrete, 4th edition, Longman, 1995.
- 2. Mehta P.K and Monteria P.J.M., Concrete Structure Properties and Materials, 2nd edition, Prentice Hall, 1998.
- 3. Mindass and Young, Concrete, Prentice Hall,

Course Code: ADVANCED Ty/Lb/ T/S.Lr **Course Name:** L CONCRETE TECHNOLOGY **EMCE22E01** ETL Prerequisite: Concrete Technology Τy 3 0/0

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL: Theory/Lab/EmbeddedTheory and Lab

UNIT I: CONCRETE INGREDIENTS

Total No. of Hours: 45

9 Hrs

9 Hrs

9 Hrs

P/R

0/0

С

3

9 Hrs

L : Lecture T : Tu Theory/Lab/Embe OBJECTIVE: To	Prerequisit orial SL ddedTheor o study the OMES (C To plan To mal To und	e: Construct y and Lab managem Os) : (3-5) , utilize an e optimum	ed Learni ent of v d manag	nning an ng P : F arious r	d Sched Project I resource	uling R : Resea es invol ¹	arch C: ved in	Ty Credits T/	3 L/ETI	0/0	0/0	3
L : Lecture T : Tut Theory/Lab/Embe OBJECTIVE: To	orial SL ddedTheor study the OMES (C To plan To mal To und	: : Supervise y and Lab e managem Os) : (3- 5) , utilize an ce optimum	ed Learni ent of v d manag	ng P : F arious r	Project I resource	R : Resea	arch C: ved in	Credits T	L/ETI		<u>I</u>	
OBJECTIVE: To	O Study the OMES (C To plan To mal To und	e managem Os) : (3- 5) a, utilize an ce optimum	ent of v	arious r	esource	es invol	ved in	constructi				
	OMES (C To plan To mal To und	Os) : (3- 5) a, utilize an re optimum	d manaş	ge the re					on.			
COURSE OUTC	To plan To mal To und	i, utilize an te optimum	d manag	ge the re								
CO1	To mal	e optimum	1	5	esource	s effect	ively					
CO2	To und		n decisio	on in hai	ndling r	naterial	s, equi	pment and	d time	;		
CO3		erstand the	concep	t of reso	ource al	locatior	n and le	evelling				
CO4	To study	and evalu	ate the r	resource	es - mate	erial, ec	luipme	nt, labor a	and tii	ne.		
CO5	To plan	and manag	e the res	sources	studied	above	using v	arious to	ols an	d techniqu	es like	;
Mapping of Cour	se Outcor	nes with Pr	ogram C	utcome	s (POs)	lent.						
COs/POs P	PO1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1	3 1	1	2	1	2	3	2	1				
CO2	3 1	1	2	1	2	1	2	1				
C03	3 1	2	1	2	1	2	2	2				
CO4	3 1	1	1	3	1	2	3	1				
CO5	3 1	2	1	1	2	1	3	2				
COs / PSOs	PSO1	PSG	52	PS	03							
CO1	1	2	2	1	1							
CO2	1	2		1	1							
C03	2	1	l	2	2							
CO4	1	1	l	3	3							
CO5	2	1		1	1							
3/2/1 Indicates Str	ength Of C	orrelation, 2	3 – High	, 2- Med	ium, 1-	Low						
Category social control contro	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
Approval				~								

Course Code: Course Name: RESOURCE MANAGEMENT AND T/S.Lr **P/ R** С **CONTROL IN CONSTRUCTION** ETL **EMCE22E02** Prerequisite: Construction Planning and Scheduling Ty 3 0/00/03 L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL: Theory/Lab/EmbeddedTheory and Lab

UNIT I: RESOURCE PLANNING

Resource Planning, Procurement, Identification, Personnel, Planning for material, Labour, time schedule and cost control, Types of resources, manpower, Equipment, Material, Money, Time.

UNIT II: RESOURCE MANAGEMENT AND UTILISATION

Systems approach in resource management, Characteristics of resources, Resources, Utilization, measurement of actual resources required, Tools for measurement of resources, Labour, Classes of Labour, Cost of Labour, Labour schedule, optimum use Labour.

UNIT III: MATERIALS AND EQUIPMENT

Material: Time of purchase, quantity of material, sources, Transportation, Delivery and Distribution. Equipment: Planning and selecting by optimistic choice with respect to cost, Time, Source and handling.

UNIT IV: TIME

Personnel time, Management and planning, managing time on the project, forecasting the future, Critical path measuring the changes and their effects. Cost control: Cash flow and cost control, objectives of cost, Time and quality.

UNIT V: RESOURCE ALLOCATION AND LEVELLING

Time-cost trade of, Computer application in resource leveling examples, resource list, resource allocation graph, Resource loading, Cumulative cost ETC - Value Management.

Total No. of Hours: 45

REFERENCES

- 1. Andrew, D., Szilagg, Hand Book of Engineering Management, 1982.
- 2. Glenn, A., Sea's and Reichard. H Clough, Construction Project Management, John Wiley and Sons, Inc. 1979.
- Harvey, A., Levine, Project Management using Micro Computers, Obsorne-McGraw-3. Hill C.A.Publishing Co., Inc. 1988.
- 4. James.A., Adrain , Quantitative Methods in Construction Management, American Elsevier PublishingCo., Inc., 1973.

Ty/Lb/ L

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Course Code:		Course Na	ame: SHO	ORING	, SCAF	FOLD	ING		Ty/Lb/	L	T/S.Lr	P/ R	С
EMCE22E0	3	AND FO	ORMWO	RK					ETL				
	Р	rerequisite	: Nil						Ту	3	0/0	0/0	3
L : Lecture T :	Tuto	rial SLr	: Supervise	ed Learni	ing P: F	Project I	R : Rese	arch C:	Credits T/	L/ETL	:		l
Theory/Lab/En	mbed	dedTheory	and Lab										
OBJECTIVE techniques	: To	study an	d understa	and the	various	types of	f scaffo	lding, 1	formwork	s, shoi	ring metho	ods and	1
COURSE OU	TCO	MES (CO	Ds) : (3- 5)	1									
CO1		To selec	t appropri	ate form	n materi	ials and	site eq	uipmer	ıt				
CO2		To analy	ze the str	esses or	ı formw	ork and	design	for the	e same				
CO3		To unde	rstand the	differe	nt types	of form	ns and i	ts failu	re mechar	nisms			
Mapping of C	Cours	e Outcom	es with Pr	ogram C	Outcome	es (POs)							
COs/POs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1	3	1	1	1	2	1	3	3					
CO2	3	1	1	1	2	1	2	1	1				
C03	3	1	1	2	1	2	1	2	2				
COs / PSOs		PSO1	PSO	52	PS	03							
CO1		3	1			2							
CO2		3	1			2							
CO3		3	2			1							
3/2/1 Indicates	s Strei	ngth Of Co	orrelation, 2	3 – High	, 2- Med	lium, 1-	Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
					1								
Approval													

Course Code: EMCE22E03	Course Name: SHORING, SCAFFOLDING AND FORMWORK	Ty/Lb/ ETL	L	T / S.Lr	P/ R	С
	Prerequisite: Nil	Ту	3	0/0	0/0	3
L : Lecture T : Tut Theory/Lab/Embe	torial SLr : Supervised Learning P : Project R : Research C: ddedTheory and Lab	Credits T/	L/ETL	:		

UNIT I : PLANNING, SITE EQUIPMENT AND PLANT FOR FORM WORK 9 Hrs

Planning – Standard units – Schedule for column formwork – Formwork elements – Planning at Tender stage –Development of basic system – Planning for maximum reuse – Economical form construction – Planning examples – Crane size, effective scheduling estimate – Recheck plan details – Detailing the forms. Crane arrangement – Sitelayout plan – Transporting plant – Formwork beams – Formwork ties – Wales – Scaffold frames - Form accessories – Vertical transport table form work.

UNIT II : FORM MATERIALS AND PRESSURES ON FORMWORK 9 Hrs

Lumber – Types – Finish – Sheathing boards - Working stresses – Repetitive member stress – Plywood – Types andgrades – Textured surfaces and strength – Reconstituted wood – Steel – Aluminum Form lining materials – Hardware and fasteners – Nails in Plywood – Bolts lag screw and connectors – Bolt loads .Pressures on Formwork - Concrete density – Height of discharge – Temperature – Rates of Placing – Consistency of concrete – Live loads and wind pressure – Vibration Hydrostatic Adjustment for nonstandard condition.

UNIT III: SHORES AND FORM DESIGN

 $\begin{array}{l} Simple \ wood \ stresses - Slenderness \ ratio - Allowable \ loads - Tubular \ steel \ shores \ - \ Patented \ shores \ - \ Site \ Preparation \ - \ Size \ and \ spacing \ - \ Steel \ Tower \ Frames \ - \ Safety \ practices \ - \ Horizontal \ shores \ shoring \ for \ multistoried \end{array}$

More concentrated shore loads - T-heads – Two tier wood shores – Ellis shores – Dayton sure grip and Baker
Roostshores – Safeway Symons shores – Beaver Advance shores - Dead shores – Raking and Flying shores
Basic simplification – Beam formulas – Allowable stresses – Deflection bending lateral stability – Shear,
Bearing – Examples in wall forms – Slab forms – Beam form – Ties, Anchors and Hangers – Column forms
– DOKA forms -Examples in each.

UNIT IV: FORMWORK FOR BUILDINGS AND FAILURES

Location of job mill – Storage – Equipment – Footings – Wall footing – Column footings Sloped footings – Slab ongrade and paving work – Highway and airport paving – Curb and Gutter forms – Wall forms – External vibration – Prefabricated panel systems – Giant forms curved wall forms – wall openings joints – Tolerance for walls – Erectionpractices – Column heads – Beam or girder forms – Beam pockets – Suspended forms – Suggested Tolerances –

9 Hrs

UNIT V: DOME FORMS, TUNNEL FORMS, SLIPFORMS AND SAFETY PRACTICE FORSCAFFOLDS 9 Hrs

Shells of translation and revolution - Hemispherical – Parabolic - Barrel vaults - Hyperbolic Parabolic Shells – Conidial Shells - Folded plates – Shell form design – Building the form – Placing concrete – Strength requirements– Tunnel forming components – Curb and Invert forms – Arch and Wall forms - Telescopic forms– Concrete placement methods – Cut and Cover construction – Continuous Advancing slope method -Bulk head method – General design considerations influence of placing equipment – Tolerances – Form construction for Shafts. Slip forms– Principles – Types – Advantage – Functions of various components – Planning of Slip form operations – Desirablecharacteristics of concrete – Common problems faced – Safety in slip forms - Special structures built with Slip formTechnique – Codal provisions – Types of scaffolds – Putlog and Independent scaffold – Single pole scaffolds – Fixing ties – Spacing of ties - Plan Bracing – Knots – Safety nets – General safety requirements – Precautions againstparticular hazards – Truss, Suspended – Gantry and system scaffolds.

Total No. of Hours: 45

REFERENCES

- 1. Robert L. Peurifoy and Garold D. Oberlender, "Formwork for Concrete Structures", Third Edition McGraw-Hill, 1996.
- 2. Hurd, M.K., "Formwork for Concrete", Special Publication No. 4 Sixth Edition, American ConcreteInstitute, Detroit, 1995.
- 3. Michael P. Hurst, "Formwork", Construction Press, London and New York, 1997.
- 4. Austin, C.K., "Formwork for Concrete", Cleaver Hume Press Ltd., London 1996.
- 5. Tudor Dinescu and Constantin Radulescu, "Slipform Techniques", Abacus Press, Turn Bridge Wells, Kent, 1992.
- 6. "Guide for Concrete Formwork", American Concrete Institute Detroit, Michigan, 1996.

PROGRAM ELECTIVE –II

Course Code:		Course Na	me:	-,	,,			,	Ty/Lb/	L	T/S.Lr	P/ R	С
EMCE22E0	4	CONSTR	UCTION	N EQUI	PMEN	TS			ETL				
	Pı	rerequisite:	Nil						Ту	3	0/0	0/0	3
L : Lecture T : Theory/Lab/Er	Tutor mbedc	rial SLr : ledTheory	Supervise and Lab	d Learni	ng P:F	Project F	R : Resea	arch C:	Credits T/	L/ETL	.:		
OBJECTIVE	: To	study the	various c	onstruct	ion equ	ipment	in cons	structio	n field.				
COURSE OU	TCO	MES (CO	s) : (3- 5)										
CO1		To mana depreciat	ge the var tion and co	rious co ost conti	nstructi ol	on equi	pment	and to	understan	d the c	concept of		
CO2		To under dewaterin	stand the	compor	nents ar pment	nd opera	ation of	earthw	ork tunne	eling, c	drilling,		
CO3		To know	the work	of mate	rial ha	ndling, a	aggrega	ite and	concretin	g equi	pment		
CO4		To introc	luce vario	ous cons	tructior	n equipr	nent for	r earth	work, mat	erial h	andling a	nd othe	er
CO5		To study	the work	ing of them	ne equij	oment n	nention	ed abo	ve and ap	ply sci	entific pr	inciple	s for
Mapping of C	ourse	Outcome	s with Pro	g them. ogram O	utcome	s (POs)							
COs/POs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1	3	1	2	1	2	3	2	1	2				
CO2	3	1	2	1	2	1	2	1	2				
C03	3	2	1	2	1	2	2	2	1				
CO4	3	1	1	3	1	2	3	1	1				
CO5	3	2	1	1	2	1	3	2	1				
COs / PSOs		PSO1	PSC	02	PS	03							
CO1		1	2		1								
C02		1	2			L							
C03		2	1			2							
C04		1	1		1) 							
3/2/1 Indicator	Stror	$\frac{2}{2}$	rrolation 3	Ligh	2 Mod	ium 1	[ow						
5/2/1 mulcates	Suci		irciation, .	o – mgn,	2- Micu	iuiii, 1-	LUW						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
Approval					А.								

UNIT I CONSTRUCTION EOUIPMENTS AND MANAGEMENT

Identification - Planning of equipment - Selection of Equipment - Equipment Management in Projects -MaintenanceManagement – Equipment cost – Operating cost – Cost Control of Equipment - Depreciation Analysis - Replacement of Equipment- Replacement Analysis - Safety Management

UNIT II EQUIPMENT FOR EARTHWORK

Fundamentals of Earth Work Operations - Earth Moving Operations - Types of Earth Work Equipment -Tractors, Motor Graders, Scrapers, Front end Waders – Dozer, Excavators, Rippers, Loaders, trucks and hauling equipment, Compacting Equipment, Finishing equipment.

Equipment for Dredging, Trenching, Drag line and clamshells, Tunneling – Equipment for Drilling and Blasting - Pile driving Equipment - Erection Equipment - Crane, Mobile crane - Types of pumps used in Construction - Equipment for Dewatering and Grouting – Equipment for Demolition. Under water concreting equipment's

UNIT IV ASPHALT AND CONCRETE PLANTS

Aggregate production-Different Crushers – Feeders - Screening Equipment - Handling Equipment - Batching and Mixing Equipment - Pumping Equipment - Ready mix concrete equipment, Concrete pouring equipment. Asphalt Plant, Asphalt Pavers, Asphalt compacting Equipment

UNIT V MATERIALS HANDLING EQUIPMENT

Forklifts and related equipment - Portable Material Bins - Material Handling Conveyors - Material Handling Cranes-Industrial Trucks.

Total No. of Hours: 45

REFERENCES

Course Code:

EMCE22E04

- 1. Peurifoy, R.L., Ledbetter, W.B. and Schexnayder, C., Construction Planning, Equipment and Methods. 5thEdition, McGraw-Hill, Singapore, 1995
- 2. Sharma S.C. Construction Equipment and Management, Khanna Publishers, New Delhi, 1988.
- 3. Deodhar, S.V. Construction Equipment and Job Planning, Khanna Publishers, New Delhi, 1988.
- 4. Dr.Mahesh Varma, Construction Equipment and its planning and Application, Metropolitan Book Company, New Delhi. 1983.

9 Hrs

UNIT III OTHER CONSTRUCTION EQUIPMENT

Course Name: Ty/Lb/ **CONSTRUCTION EOUIPMENTS** ETL

Тy Prerequisite: Nil 3 0/0L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL: Theory/Lab/EmbeddedTheory and Lab

versity with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

9 Hrs

9Hrs

9 Hrs

L

T/S.Lr

P/R

0/0

С

3

Course Code:	(Course Na	me: ENE	RGY C	ONSE	RVAT	ION		Ty/Lb/	L	T/S.Lr	P/ R	С
EMCE22E05	; 1 (TECHNI CONSTR	QUES IN UCTION	I BUILI N	DING				ETL				
	Pr	erequisite:	Energy C	Conserva	ation Te	echniqu	es		Ту	3	0/0	0/0	3
L : Lecture T :	Tutor	ial SLr :	Supervise	d Learni	ng P:F	Project I	R : Resea	arch C:	Credits T/	L/ETL	:		
Theory/Lab/Em	nbedd	ledTheory	and Lab										
OBJECTIVE: constructionw	To s vith re	tudy the velevance t	various en to enviror	ergy sav	ving and	d mana	gement	techni	ques appli	ied to b	ouilding a	nd	
COURSE OUT	TCO	MES (CO	s) : (3- 5)										
CO1		To Posse	ss knowle	edge on	basic e	nergy c	onserva	tion sy	vstems				
CO2		To Desig	n energy	efficien	t buildi	ngs							
CO3		To do en	ergy audi	t and ide	entify c	onserva	tive me	easures					
CO4		To study air condi	the sourc	es of en	ergy ar	nd energ	gy produ	uction	in relation	to he	ating, ven	tilating	g and
CO5		To study	the conce	epts und	erlying	energy	manag service	ement	by adopti	ng app	propriate c	lesign	
Mapping of Co	ourse	Outcomes with Program Outcomes (POs)											
COs/POs	РО	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1	1	1	1	2	1	2	3	2	1				
CO2	1	1	1	2	1	2	1	2	1				
CO3	1	1	2	1	2	1	2	2	2				
CO4	1	1	1	1	3	1	2	3	1				
CO5	1	1	2	1	1	2	1	3	2				
COs / PSOs		PSO1	PSC	02	PS	03							
CO1		1	2]	l							
CO2		1	2]	l							
CO3		2	1		2	2							
CO4		1	1			3							
CO5		2	1		1								
3/2/1 Indicates	Stren	gth Of Co	rrelation, 3	8 – High,	2- Med	ium, 1-	Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
Approval					Ŧ								

TECHNIQUES IN BUILDING EMCE22E05 ETL CONSTRUCTION 3 3 Prerequisite: Energy Conservation Techniques Ty 0/0 0/0L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL: Theory/Lab/EmbeddedTheory and Lab

Course Name: ENERGY CONSERVATION

UNIT I: ENERGY RESOURCES

Energy and Development, Units and Measurements, Conventional and Non-Conventional Sources of Energy, Fossil and Mineral Energy Resources, Details of Coal, Peat, Oil, Natural Gas and Nuclear Resources, Recovery of Fossil Fuels, Classification and Characterization of Fossil fuels, Basic of Solar, Wind, Bio, Hydro, Tidal, Ocean Thermal and other Renewable Energy Sources, Impact of Energy on Environment, Flow of Energy in Ecological System, Environmental Degradation due to energy, Control of Pollution from Energy.

UNIT II: ENVIRONMENTAL

Energy and resource conservation - Design of green buildings - Evaluation tools for building energy -Embodied and operating energy - Peak demand - Comfort and Indoor Air quality - Visual and acoustical quality - Land, water and materials - Airborne emissions and waste management.

UNIT III: DESIGN

Course Code:

Natural building design consideration – Energy efficient design strategies – Contextual factors – Longevity and process Assessment – Renewable Energy Sources and design – Advanced building Technologies – Smart buildings- Economies and cost analysis.

UNIT IV: SERVICES

Energy in building design – Energy efficient and environment friendly building – Thermal phenomena – thermal comfort - Indoor Air quality - Climate, sun and Solar radiation, - Psychometrics - passive heating and cooling systems - Energy Analysis - Active HVAC systems - Preliminary Investigation - Goals and policies – Energy audit– Types of Energy audit – Analysis of results – Energy flow diagram – Energy consumption / Unit Production - Identification of wastage- Priority of conservative measures - Maintenance of energy management program.

UNIT V: ENERGY MANAGEMENT

Energy management of electrical equipment - Improvement of power factor - Management of maximum demand –Energy savings in pumps – Fans – Compressed air systems – Energy savings in Lighting systems – Air conditioningsystems - Applications - Facility operation and maintenance - Facility modifications -Energy recovery dehumidifier – Waster heat recovery – Steam plants and distribution systems – Improvement of boiler efficiency - Frequency of blow down - Steam leakage - steam Flash and condense return.

REFERENCES

- 1. Moore F., Environmental Control system Mc Graw Hill, Inc. 1994.
- 2. Brown, GZ, Sun, Wind and light: Architectural design strategies, John Wiley & Sons, 1985.
- 3. Cook, J, Award Winning passive Solar Design, Mc Graw Hill, 1984.
- 4. J.R. Waters, Energy conservation in Buildings: A Guide to part L of the Building Regulations, Blackwell Publishing, 2203.

9 Hrs

9 Hrs

9 Hrs

Total No. of Hours: 45

9 Hrs

T/S.Lr

P/R

С

9 Hrs

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code:		Course Na	me MA	iui >0. iuiiii	iuuu, muiu	Tv/Lb/	L	T/S.Lr	P/R	С			
		INFORM		SYST	EM				-j, 2%		1,50	- /	Ũ
EMCE22E0	6			~ _ ~ _					ETL				
	Pr	rerequisite:	Nil						Ту	3	0/0	0/0	3
L : Lecture T :	Tuto	rial SLr :	Supervise	d Learni	ng P:F	Project F	R : Resea	arch C:	Credits T/	L/ETL	:		
Theory/Lab/Ei	mbedc	ledTheory	and Lab										
OBJECTIVE	: To	study the	concepts	of infor	mation	system	s and th	eir gen	eral appli	cation	IS.		
COURSE OU	TCO	MES (CO	s) : (3- 5)										
CO1		To under	stand the	evolutio	on of in	formati	on syste	ems					
<u>CO2</u>		To bring	about an	exposu	e to inf	ormatic	on syste	ms in a	formal n	nannei	•		
CO3		To study	the devel	opment	of info	rmatior	n system	ns ni e	. Tormar n	lainiei			
<u>C04</u>		To study	the mean	s of apr	lving i	nformat	ion system	tems m	odels to r	roject	managen	nent	
		10 study	the mean	is of upp	nying n	morma	.1011 3 y 3			лојсет	managen	liont	
C05		To introc	luce syste	m audit	and to	study it	ts featur	res.					
Mapping of C	ourse	e Outcome	s with Pro	ogram O	utcome	s (POs)			1	1			
COs/POs	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1	3	1	1	2	1	2	3	2	1				
CO2	3	1	1	2	1	2	1	2	1				
CO3	2	1	2	1	2	1	2	2	2				
CO4	3	1	1	1	3	1	2	3	1				
CO5	3	1	2	1	1	2	1	3	2				
COs / PSOs		PSO1	PSC	02	PS	O3							
CO1		1	2	2	1	l							
CO2		1	2		1	l							
CO3		2	1		4	2							
CO4		1	1			3							
CO5		2	1		1	l							
3/2/1 Indicates	Stren	ngth Of Co	rrelation, 3	8 – High,	2- Med	ium, 1-1	Low		1	1	•		
			al										
		nces	Soci		S		у	ant	ect				
Category	es	Scie	pud S	е	ctive	es	nar	one	roje				
	ence	ing	ies a	Cor	Elec	ctiv	ilqi	duic	I / P				
	Sci	neer	aniti Ices	ram	ram	ı Ele	disc	ll co	tical				
	3asic	Ingi	Hum	rog	rog	Dper	nter	Ski	rac				
	ЦЩ		F S	<u> </u>	7								
Approval					-1								
1 PP10 MI													

EMCE22E06 ETL 3 0/0 Prerequisite: Nil 0/0 Ty L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL: Theory/Lab/EmbeddedTheory and Lab

UNIT I: INTRODUCTION

Course Code:

Information Systems - Establishing the Framework - Business Models - Information System Architecture -**Evolutionof Information Systems.**

UNIT II: SYSTEM DEVELOPMENT

Modern Information System - System Development Life Cycle - Structured Methodologies - Designing Computer Based Methods, Procedures, Control - Designing Structured Programs.

UNIT III: INFORMATION SYSTEMS

Integrated Construction Management Information System - Project Management Information System -Functional Areas, Finance, Marketing, Production, Personnel - Levels, DSS, EIS, ES - Comparison, Concepts and Knowledge Representation - Managing International Information System.

UNIT IV: IMPLEMENTATION AND CONTROL

Course Name: MANAGEMENT

INFORMATION SYSTEM

Control - Testing Security - Coding Techniques - Defection of Error - Validating - Cost Benefit Analysis -Assessing the value and risk of Information System.

UNIT V: SYSTEM AUDIT

Software Engineering qualities - Design, Production, Service, Software specification, Software Metrics, Software quality assurance - Systems Methodology - Objectives - Time and Logic, Knowledge and Human Dimension - Software life cycle models - Verification and Validation.

REFERENCES

- 1. Kenneth C Laudon and Jane Price Laudon, Management Information Systems -Organisation and Technology, Prentice Hall, 1996.
- Gordon B. Davis, Management Information System: Conceptual Foundations, 2. Structure and Development, McGraw-Hill, 1974.
- 3. Joyce J Elam, Case series for Management Information Systems, Simon and Schuster, CustomPublishing, 1996.
- 4. Ralph H Sprague and Huge J Watson, Decision Support for Managers, Prentice Hall, 1996.
- Michael W. Evans and John J Marciniah, Software Quality assurance and Management, 5. John Wiley and Sons, 1987.
- 6. Card and Glass, Measuring Software Design quality, Prentice Hall, 1990.

9 Hrs

9 Hrs

9 Hrs

T/S.Lr

P/R

С

3

Tv/Lb/

L

9 Hrs

9 Hrs

Total No. of Hours: 45

PROGRAM ELECTIVE III

Course Code:		Course Na	me: ECC	ONOMI	CS AND)			Ty/Lb/	L	T/S.Lr	P/ R	С
EMCE22E0	7]	FINANCE	MENT I		стрис	TION			ETL				
	Pr	erequisite:	Nil		SINUC	TION			Tv	3	0/0	0/0	3
L : Lecture T :	Tuto	rial SLr :	Supervise	d Learni	ng P:F	Project I	R : Resea	arch C:	Credits T/	L/ETL			<u> </u>
Theory/Lab/En	mbedd	ledTheory	and Lab										
OBJECTIVE	: To	understan	d financi	ng and r	nanagir	ng princ	iples						
COURSE OU	COURSE OUTCOMES (COs) : (3- 5)												
CO1		To study money,c	the basic ash flow o	concep diagram	ots of C	onstruc	tion Eco	onomie	c and Fina	nce su	ich as tim	e value	e of
CO2		To comp	are altern	atives, p	proposa	ls and e	valuate	altern	ative inves	stmen	ts		
CO3		To mana	ge funds,	and und	lerstanc	the fur	ndamen	tals of	managem	ent ac	counting		
CO4		To study	the elem	ents of c	construc	ction ec	onomic	S					
CO5		To study	the need	for fina	ncial m	anagen	nent and	l mean	s of achiev	ving th	he same		
		Mapping of Course Outcomes with Program Outcomes (POs)											
COs/POs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1	3	1	1	1	2	1	2	3	2				
CO2	3	1	1	1	2	1	2	1	2				
CO3	3	1	1	2	1	2	1	2	2				
CO4	3	1	1	1	1	3	1	2	3				
CO5	3	1	1	2	1	1	2	1	3				
COs / PSOs		PSO1	PSC	02	PS	03							
CO1		3	2	2		3							
CO2		3	2	2	-	3							
CO3		3	2	2	-	3							
CO4		3	2	2		3							
CO5		3	2	2		3							
3/2/1 Indicates	Stren	igth Of Co	rrelation, 3	8 – High,	2- Med	ium, 1-	Low		-1	1			
Category	Sciences	sering Sciences	nities and Social es	ım Core	m Electives	Electives	isciplinary	component	cal / Project				
	Basic .	Engine	Huma Scienc Progra Open] Skill Practi										
					1								
Approval		1									I		

UNIT I BASIC PRINCIPLES

Time Value of Money - Cash Flow diagram - Nominal and effective interest- continuous interest . Single Payment Compound Amount Factor (P/F,F/P) – Uniform series of Payments (F/A,A/F,F/P,A/P)- Problemtime zero (PTZ)- equation time zero (ETZ). Constant increment to periodic payments – Arithmetic Gradient(G), Geometric Gradient (C).

UNIT II COMPARING ALTERNATIVES PROPOSALS

Comparing alternatives- Present Worth Analysis, Annual Worth Analysis, Future Worth Analysis, Rate of Return Analysis (ROR) and Incremental Rate of Return (IROR)Analysis, Benefit/Cost Analysis, BreakEven Analysis.

UNIT III EVALUATING ALTERNATIVE INVESTMENTS

Real Estate - Investment Property, Equipment Replace Analysis, Depreciation - Tax before and afterdepreciation – Value Added Tax (VAT) – Inflation.

UNIT IV FUNDS MANAGEMENT

Balance sheet - Project Finance - Sources of finance - Long-term and short -term finance, Working Capital Management, Inventory valuation, Mortgage Financing - International financial management-foreign currency management.

UNIT V FUNDAMENTALS OF MANAGEMENT ACCOUNTING

Management accounting, Financial accounting principles- basic concepts, Financial statements accounting ratios - funds flow statement – cash flow statement.

Total No. of Hours: 45

REFERENCES

- 1. 1.Blank, L.T., and Tarquin, a.J Engineering Economy, 4th Edn. Mc-Graw Hill Book Co., 1988
- 2. Collier C and GlaGola C Engineering Economics & Cost Analysis, 3nd Edn. Addison WesleyEducation Publishers., 1998.
- 3. Patel, B M Project management- strategic Financial Planning, Evaluation and Control, VikasPublishing House Pvt. Ltd. New Delhi, 2200
- 4. Shrivastava, U.K., Construction Planning and Management, 2nd Edn. Galgotia Publications Pvt.Ltd. New Delhi., 2201.
- 5. Steiner, H.M. Engineering Economic principles, 2nd Edn. Mc-Graw Hill Book, 199

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code:	Course Name: ECONOMICS AND FINANCE	Ty/Lb/	L	T/S.Lr	P/ R	С			
EMCE22E07	MANAGEMENT IN CONSTRUCTION	ETL							
	Prerequisite: Nil	Ту	3	0/0	0/0	3			
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory/Lab/EmbeddedTheory and Lab									

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Course Code:	Co M	ourse Na ANAGE	me: CON MENT	STRUC	TION I	PERSO		Ty/Lb/	L	T/S.Lr	P/ R	С	
EMCE22E0	8								ETL				
	Prei	requisite:	Nil						Ту	3	0/0	0/0	3
L : Lecture T :	Tutoria	al SLr :	Supervise	ed Learni	ng P:H	Project 1	R : Rese	arch C:	Credits T/I	L/ETL	•		
Theory/Lab/Ei	mbedde	dTheory	and Lab										
OBJECTIVE	: To st	udy the	various a	spects c	of manp	ower m	anagen	nent in	construction	on.			
COURSE OU	TCOM	IES (CO	s):(3-5)										
CO1	Тс pa	o know t rameter	he variou s	s proces	sses in 1	nanpov	ver plan	ining, a	and evaluat	te orga	nizationa	1	
CO2	То	o unders	tand hum	an beha	vior on	an orga	nizatio	n and	develop we	elfare 1	neasures		
CO3	To re:	o develo sources	p apprais	al and a	ssessme	ent tech	niques	for imp	proving pro	oductiv	vity of hu	nan	
CO4	To co	o bring a nditions	ibout awa	reness o	on funda	amental	s of hu	man be	ehavior und	ler var	ying stre	SS	
CO5	Тс	apply t	he studie	d behav	ior patt	ern to n	nanpow	er plai	nning in org	ganiza	tional		
	se	of training as a tool for improvement.											
Mapping of C	Course (Irse Outcomes with Program Outcomes (POs)											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1	3	1	1	2	1	2	3	2	1				
CO2	3	1	1	2	1	2	1	2	1				
C03	3	1	2	1	2	1	2	2	2				
CO4	3	1	1	1	3	1	2	3	1				
CO5	3	1	2	1	1	2	1	3	2				
COs / PSOs		PSO1	PSC	02	PS	03							
CO1		3	2		1	l							
CO2		3	2	2	1	[
C03		3	2		1								
CO4		3	2	2	1								
CO5		3	2	2	1	l							
3/2/1 Indicates	Streng	th Of Co	rrelation,	3 – High	, 2- Med	ium, 1-	Low						
Category	Sciences	ering Sciences	nities and Social es	m Core	m Electives	Electives	isciplinary	component	cal / Project				
	Basic 5	Engine	Humar Scienc	Progra	, Progra	Open I	Interd	Skill	Practi				
					1								
Approval													

Course Code:	Course Name: CONSTRUCTION DEDSONNEL MANACEMENT	Ty/Lb/	L	T/S.Lr	P/ R					
EMCE22E08	PERSONNEL WANAGEWIEN I	ETL								
	Prerequisite: Nil	Ту	3	0/0	0/0					
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL :										
Theory/Lab/EmbeddedTheory and Lab										

UNIT I: MANPOWER PLANNING

Manpower Planning process, Organizing, Staffing, directing, and controlling - Estimation, manpower requirement-Factors influencing supply and demand of human resources - Role of HR manager - Personnel Principles.

UNIT II: ORGANISATION

Organization - Span of Control - Organization Charts - Staffing Plan - Development and Operation of human resources - Managerial Staffing - Recruitment - Selection - Placement, Training and Development.

UNIT III: HUMAN BEHAVIOUR AND ORGANISATIONAL BEHAVIOUR 9Hrs

Basic individual psychology – Approaches to job design and job redesign – Self managing work teams – Intergroup- Conflict in organizations - Leadership-Engineer as Manager - al aspects of decision making -Significance of human relation and organizational – Individual in organization – Motivation – Personality and creativity – Group dynamics, Team working – Communication and negotiation skills.

UNIT IV: WELFARE MEASURES

Compensation - Safety and health - GPF - EPF - Group Insurance - Housing - Pension - Laws related to welfaremeasures.

UNIT V: MANAGEMENT AND DEVELOPMENT METHODS

Compensation -Wages and Salary, Employee benefits, Employee appraisal and assessment - Employee services - Safety and Health Management - Special Human resource problems - Productivity in human resources - Innovative approach to designing and managing organization - Managing New Technologies -Total Quality Management - Concept of quality of work life - Levels of change in the organizational Development - Requirements of organizational Development - System design and methods for automation and management of operations – Developing policies, practices and establishing process pattern – Competency up gradation and their assessment – New methods of training and development – Performance Management.

Total No. of Hours: 45

REFERENCES

- 1. Carleton Counter II and Jill Justice Coutler, The Complete Standard Handbook of Construction PersonnelManagement, Prentice-Hall, Inc., New Jersey, 1989.
- 2. Memoria, C.B., Personnel Management, Himalaya Publishing Co., 1992.
- 3. Josy. J. Familaro, Handbook of Human Resources Administration, McGraw-Hill International Edition, 1987.
- 4. Pringle Charles, Management Longenecker Emerricle Publishing Company, 1981.
- 5. R.S. Dwivedi, Human Relations and Organisational Behaviour, BH 1987.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

С

3

Course Code:	(Course Na	me: CON	TRAC	T LAV	VS ANI		Ty/Lb/	L	T/S.Lr	P/ R	С	
EMCE22E0	9	KEGULA	TIONS						ETL				
	Pı	rerequisite:	Nil						Ту	3	0/0	0/0	3
L : Lecture T :	Tuto	rial SLr :	Supervise	d Learni	ng P:F	Project I	R : Resea	arch C:	Credits T/	L/ETI	_:		
I neory/Lab/Ef	nbead	led I heory	and Lab										
OBJECTIVE	: To	study the	various t	ypes of	constru	iction c	ontracts	and th	eir legal a	aspect	s and prov	visions	
COURSE OU	TCO	MES (CO	s) : (3- 5)										
CO1		To comp	are and a	nalyze d	lifferen	t types o	of contr	acts in	construct	ion			
CO2		To achie	ve awarei	ness on a	arbitrati	ions and	d legal p	procedu	ures				
CO3		To under	stand the	legal re	equirem	ents an	d labor	regula	tions invo	lved i	n the exec	ution o	of a
CO4		To study	the elem	ents of c	conclud	ing, and	d admin	isterin	g contract	s			
CO5		To study	labor reg	ulations	s and th	eir imp	act on n	nanagi	ng of cont	racts			
Mapping of C	ourse	Outcomes with Program Outcomes (POs)											
COs/POs	РО	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1	3	1	1	2	1	2	3	2	1				
CO2	3	1	1	2	1	2	1	2	1				
CO3	3	1	2	1	2	1	2	2	2				
CO4	3	1	1	1	3	1	2	3	1				
CO5	3	1	2	1	1	2	1	3	2				
COs / PSOs		PSO1	PSC	02	PS	03							
CO1		3	2	2	1	1							
CO2		3	2		1	1							
CO3		1	2	2	C 4	2							
CO4		1	2		1	1							
CO5		2	1		2	2							
3/2/1 Indicates	Strer	ngth Of Co	rrelation, 3	8 – High,	2- Med	ium, 1-	Low	[]		1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
Approval					4								
11													

UNIT I: CONSTRUCTION CONTRACTS

Indian Contracts Act - Elements of Contracts - Types of Contracts - Features - Suitability - Design of Contract Documents - International Contract Document - Standard Contract Document - Law of Torts

UNIT II: TENDERS

Course Code:

EMCE22E09

Prequalification - Bidding - Accepting - Evaluation of Tender from Technical, Contractual and Commercial Points of View - Contract Formation and Interpretation - Potential Contractual Problems - World Bank Procedures and Guidelines - Tamil nadu Transparency in Tenders Act.

UNIT III: ARBITRATION

Comparison of Actions and Laws - Agreements - Subject Matter - Violations - Arbitration Act -Appointment of Arbitrators - Conditions of Arbitration - Powers and Duties of Arbitrator - Rules of Evidence - Enforcement of Award - Costs

UNIT IV: LEGAL REQUIREMENTS

Insurance and Bonding – Laws Governing Sale, Purchase and Use of Urban and Rural Land – Land Revenue Codes – Tax Laws – Income Tax, Sales Tax, Excise and Custom Duties and their Influence on Construction Costs

- Legal Requirements for Planning - Property Law - Agency Law - Local Government Laws for Approval - Statutory Regulations

UNIT V: LABOUR REGULATIONS

Social Security - Welfare Legislation - Laws relating to Wages, Bonus and Industrial Disputes, Labour Administration - Insurance and Safety Regulations - Workmen's Compensation Act - Indian Factory Act -Tamilnadu Factory Act - Child Labour Act - Other Labour Laws

Total No. of Hours: 45 Hrs

REFERENCES

- 1. Gajaria G.T., Laws Relating to Building and Engineering Contracts in India, M.M.Tripathi Private Ltd., Bombay, 1982
- 2. Tamilnadu PWD Code, 1986
- 3. Jimmie Hinze, Construction Contracts, 2nd Edition, McGraw-Hill, 2201
- 4. Joseph T. Bockrath, Contracts and the Legal Environment for Engineers and Architects, 6th Edition, McGraw-Hill, 2200

3 0/0 3 Prerequisite: Nil Ty 0/0 L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL: Theory/Lab/EmbeddedTheory and Lab

9 Hrs

9 Hrs

9 Hrs

T/S.Lr

P/R

С

L

9 Hrs

9 Hrs

vith Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India. **Course Name: CONTRACT LAWS AND** Ty/Lb/ REGULATIONS ETL

PROGRAM ELECTIVE –IV

Course Code:		Course N	ame: MAl	INTEN	ANCE	AND			Ty/Lb/	L	T/S.Lr	P/ R	С
EMCE22E1	0	REHAB STRUC	ILITATI(furfs	ON OF					ETL				
	P	rerequisite	e: Repair an	d Rehab	ilitation	of Struc	tures		Ту	3	0/0	0/0	3
I · Lecture T ·	Tuto	- rial SIr	· Supervise	d Loarni	$\mathbf{n}_{\mathbf{G}} \mathbf{D} \cdot \mathbf{E}$	Project I	· Pasas	arch C.	Credite T/				
Theory/Lab/Er	nbed	dedTheor	y and Lab		ing 1 . 1	Toject I		uen e.	credits 17				
OBJECTIVE	: To	study the	e maintena	nce and	repairi	ng tech	niques u	ised fo	r rehabilit	ation (of structur	es	
COURSE OU	TCO	OMES (CO	Ds) : (3- 5)										
CO1		To sugg	est mainte	nance a	nd repa	ir strate	gies						
CO2		To asse	ss the dura	bility of	concre	te due t	o vario	us clin	natic cond	itions			
CO3		To sugg	sest the sui	table ma	aterials	for repa	ir, reha	bilitati	on and ret	trofitti	ng technic	ques	
CO4		To stud Repair a	y about Du and Streng	rability thening	of Diff Measur	erent T res	ypes of	Buildi	ngs and a	bout tl	he Techni	ques fo	or
CO5		To know	w about the	e Phases	of Ma	intenan	ce						
Mapping of C	ours	e Outcom	es with Pro	ogram O	utcome	s (POs)							
COs/POs	PC	D1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1	1	1	3	3	2	3	3	3	3				
CO2	1	1	3	3	2	3	3	3	3				
CO3	1	1	3	3	2	3	3	3	3				
CO4	1	1	3	3	2	3	3	3	3				
CO5	1	1	3	3	2	3	3	3	3				
COs / PSOs		PSO1	PSC	02	PS	03							
CO1		3	2	2	3								
CO2		3	2	2		3							
CO3		3	2	2		3							
CO4		3	2			3							
CO5		3	2			3							
3/2/1 Indicates	Stre	ngth Of C	orrelation, 3	8 – High,	2- Med	ium, 1-	Low			1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
					Ą								
Approval													
AND REHABILITATION OF ETL **EMCE22E10 STRUCTURES** Prerequisite: Repair and Rehabilitation of Structures 3 0/0 0/0 Ty L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL: Theory/Lab/EmbeddedTheory and Lab

Course Name: MAINTENANCE

UNIT I: GENERAL

Course Code:

Quality assurance for concrete construction as built concrete properties strength, permeability, thermal properties and cracking.

UNIT II: INFLUENCE ON SERVICEBILITY AND DURABILITY 9 Hrs

Effects due to climate, temperature, chemicals, wear and erosion, Design and construction errors, corrosion mechanism, Effects of cover thickness and cracking, methods of corrosion protection, corrosion inhibitors, corrosionresistant steels, coatings, cathodic protection.

UNIT III: MAINTENANCE AND REPAIR STRATEGIES

Definitions: Maintenance, repair and rehabilitation, Facets of Maintenance importance of Maintenance Preventive measures on various aspects Inspection, Assessment procedure for evaluating a damaged structure causes of deterioration - testing techniques.

UNIT IV: MATERIALS FOR REPAIR

Special concretes and mortar, concrete chemicals, special elements for accelerated strength gain, Expansive cement, polymer concrete, Sulphur infiltrated concrete, Ferro cement, Fiber reinforced concrete.

UNIT V : **TECHNIQUES FOR REPAIR**

Rust eliminators and polymers coating for rebar's during repair foamed concrete, mortar and dry pack, vacuum concrete, Gunite and Shotcrete Epoxy injection, Mortar repair for cracks, shoring and underpinning.

REFERENCES

- Denison Campbell, Allen and Harold Roper, "Concrete Structures", Materials, 1. Maintenance and Repair, Longman Scientific and Technical UK, 1991.
- R.T.Allen and S.C.Edwards, "Repair of Concrete Structures", Blakie and Sons, UK, 1987. 2.

9 Hrs

9 Hrs

9 Hrs

Total No. of Hours: 45

9 Hrs

T/S.Lr

P/R

С

3

Ty/Lb/

L

Course Code:	: (Course Na	me: PRE	FABRI	CATIC	ON AN	D		Ty/Lb/	L	T/S.Lr	P/ R	С	
EMCE22E1	1	CONSTR	UCTION	N TECH	INIQU	ES			ETL					
	P	rerequisite:	Prefabrica	ated Stru	ctures				Ty	3	0/0	0/0	3	
L : Lecture T :	Tuto	rial SLr :	Supervise	d Learni	ng P:P	Project H	R : Resea	urch C:	Credits T/	L/ETL	:	L		
Theory/Lab/Er	mbed	dedTheory	and Lab	. 2001111		10,000 1								
OBJECTIVE	: A	t the end	of this c	course t	he stuc	lent sha	all be a	able to	understa	nd mo	odular co	nstruct	tion,	
Industrialized	1 con	struction a	and shall	be able	to desi	gn som	e of the	e prefa	bricated e	lemen	ts and als	o have	the	
knowledge of	f the	constructi	on metho	ds using	these e	element	S							
COURSE OU	тсо	MES (CO	s) : (3- 5)											
CO1		To under	stand the	concept	t of mo	dular co	ordinat	ion and	d pre cast	constr	uction tec	hnique	28	
CO2		To Learn	about the	e curing	technic	ques an	d applic	ations	of precast	eleme	ents			
CO3		To assess	s the qual	ity of pr	e-cast e	lement	s and su	iggest :	suitable re	pair te	echniques			
CO4		To under	stand asp	ects of a	quality	in cons	truction							
CO5		To study	about pre	ecast ap	plicatio	n								
Mapping of C	Course	e Outcome	s with Pro	ogram O	utcome	s (POs)								
COs/POs	PC	01 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9					
CO1	1	1	3	3	3	3	3	3	3					
CO2	1	1	1 3 3 3 3 3 3 1 3 2 3 2 3 2 3											
CO5	1	1	1 3 3 3 3 3 3 3 3											
CO3	1	1	3	3	3	3	3	3	3					
CO4	1	1	3	3	3	3	3	3	3					
CO5	2	2	2	2	3	1	1	1	1					
COs / PSOs		PSO1	PSC	02	PS	03								
CO1		3	1		3	3								
CO2		3	1			3								
CO5		3	1		3	3								
CO3		3	1		3	3								
CO4		3	1		3	3								
005		2	2		4	2								
3/2/1 Indicates	S Strei	rength Of Correlation, 3 – High, 2- Medium, 1- Low												
Category	Sciences	eering Sciences	mities and Social ces	am Core	am Electives	Electives	lisciplinary	l component	ical / Project					
	Basic	Engir Huma Scien Ski rr Progr												
					\checkmark									
Approval		1				L				1	<u> </u>			

UNIT-IV PRE-CAST APPLICATION 9 Hrs Pre-cast and pre-fabricating technology for low cost and mass housing schemes. Small pre-cast products like doorframes, shutters, Ferro-cement in housing - Water tank service core unit - Pre Engineered Building

(PEB)

UNIT-V QUALITY CONTROL

Quality control - Repairs and economical aspects on prefabrication.

REFERENCES:

- 1. Levitt. M., Precast concrete Materials, Manufacture Properties and Usage, Applied Science Publs. 1982,
- 2. Konex.T., Handbook of Pre-cast Construction, Vol.1.2&3.
- 3. Richardson, J.G., Pre-cast concrete Production, Cement and Concrete Association, London, 1973.
- 4. Madhava Rao.A-G., Modern Trends in Housing in Developing Countries, Oxford & UBH Publishing co., 1985. -
- 5. Lewicki.B., Building with Large Pre-fabrications, Elsevier Publishers.
- 6. Large Panel Prefabricated Constructions, Proc. of Advance Course conducted by SERC, Madras.
- 7. Bruggeling.A.S.G., & Huyghe.G.F., Prefabrication with Concrete, A.s.A., Balkema Publishers, Netherland, 1991.

Materials - Modular co-ordination, standardization and tolerances-system for prefabrication. Pre-cast concretemanufacturing techniques, Moulds -construction design, maintenance and repair.

INTRODUCTION

UNIT-I

UNIT-II PRE-CASTING TECHNIQUES

Pre-casting techniques - Planning, analysis and design considerations - Handling techniques - Transportation Storageand erection of structures.

UNIT-III CURING AND TESTING

Joints -Curing techniques including accelerated curing such as steam curing, hot air blowing etc., -Test on precastelements - skeletal and large panel constructions - Industrial structures.

Total No. of Hours: 45

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Course Code:	C	ourse Na	me: MOI	DERN					Ty/Lb/	L	T/S.Lr	P/R	C
EMCE22E12	2 C	ONSTR	UCTION	N MAT	ERIAI	LS			ETL				
	Pre	requisite:	Concrete	Technol	ogy				Ту	3	0/0	0/0	3
L : Lecture T :	Tutori	al SLr :	Supervise	d Learni	ng P:P	roject F	R : Resea	arch C: (Credits T/	L/ETL	.:		<u> </u>
Theory/Lab/Er	nbedde	edTheory	and Lab										
OBJECTIVE	:To st	udy and	understan	id the la	test con	structio	on mate	rials in	engineeri	ng Co	onstruction	1	
COURSE OU	TCON	AES (CO	s) : (3- 5)										
CO1	,	To know	the differ	rent type	es of co	ncrete a	and met	als use	d in the fi	eld			
CO2	,	To under	stand the	basics of	of comp	osite ar	nd water	rproofi	ng materi	als			
CO3	,	To analy	ses the us	e of sma	art and	intellige	ent mate	erials ir	n construc	tion fi	ield		
CO4	,	To know	about sm	art and	intellig	ent mat	erials						
CO5	,	To Study	v about di	fferent r	naterial	s used i	n const	ruction					
Mapping of C	ourse	Outcome	s with Pro	ogram O	utcome	s (POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO8	PO9					
CO1	3	1	1 3 3 1 3 3 3 3 0										
CO2	3	1	3	3	1	3							
C03	3	1	3	3	1	3	3	3	3				
CO4	3	1	3	3	1	3	3	3	3				
CO5	3	1	3	3	1	3	3	3	3				
COs / PSOs	I	PSO1	PSC	02	PS	03							
CO1	3		3		3	3							
CO2	3		3		3	3							
C03	3		3		3	3							
CO4	3		3		3	3							
CO5	3		3		3	3							
3/2/1 Indicates	Streng	gth Of Co	rrelation, 3	8 – High,	2- Med	ium, 1-1	Low				·		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
Approval													

T/S.Lr **Course Code:** P/R **Course Name: MODERN** Ty/Lb/ L **CONSTRUCTION MATERIALS** ETL **EMCE22E12** 3 Prerequisite: Concrete Technology Ty 0/0 0/0

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL: Theory/Lab/EmbeddedTheory and Lab

UNIT I: SPECIAL CONCRETES

Concretes, Behavior of concretes - Properties and Advantages of High Strength and High Performance Concrete –Properties and Applications of Fiber Reinforced Concrete, Self-compacting concrete, Alternate Materials to concreteon high performance & high Strength concrete.

UNIT II METALS Types of Steels – Manufacturing process of steel – Advantages of new alloy steels – Properties and advantages

UNIT III COMPOSITES

Types of Plastics – Properties & Manufacturing process – Advantages of Reinforced polymers – Types of FRP – FRP on different structural elements – Applications of FRP.

of aluminum and its products – Types of Coatings & Coatings to reinforcement – Applications of Coatings.

UNIT IV OTHER MATERIALS

Types and properties of Water Proofing Compounds - Types of Non-weathering Materials and its uses -Types of Flooring and Facade Materials and its application, concrete admixtures and construction chemicals.

UNIT V SMART AND INTELLIGENT MATERIALS

Types & Differences between Smart and Intelligent Materials – Special features – Case studies showing the applications of smart & Intelligent Materials.

Total No. of Hours: 45

REFERENCES

- 1. Ganapathy, C. "Modern Construction Materials", Eswar Press, 2215.
- 2. Shan Somavaji, Civil Engineering Materials, 2nd Edition, Prentice Hall Inc., 2201
- 3. Mamlouk, M.S. and Zaniewski, J.P., Materials for Civil and Construction Engineers, Prentice Hall Inc.,1999
- 4. Derucher, K. Korfiatis.G. and Ezeldin, S., Materials for Civil and Highway Engineers, 4th Edition, PrenticeHall Inc., 1999
- 5. Aitkens, High Performance Concrete, McGraw-Hill, 1999

9 Hrs

9 Hrs

9 Hrs

9 Hrs

9 Hrs

С

3

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

PROGRAM ELECTIVE – V

Course Code:		Course Na	me: CO	NSTRU	CTION	N			Ty/Lb/	L	T/S.Lr	P/ R	C
EMCE22E1	3	PLANNI	NG,SCH	EDULI	NG AN	ID			ETL				
	P	rerequisite:	DL Construct	tion Mar	agemen	t			Tv	3	0/0	0/0	3
I · Lecture T ·	Tuto	rial SIr ·	Supervise	d Learni	ng P·F	Project I	· Rese	arch C:	Credits T/	I /FTI			
Theory/Lab/En	mbed	dedTheory	and Lab		ing 1 . 1	Toject I	C. Reser	aen e. ·	creans 17				
OBJECTIVE	:To s	study and	understar	nd the co	oncept o	of sched	uling a	nd the t	echnique	s nece	ssary for		
construction COURSE OU	proje TCO	ct MES (CO	s) : (3- 5)										
CO1		Tounder	stand the	strategi	es for c	onstruc	tion pla	nning	and sched	uling			
001		10 under	stand the	strategi	03 101 0	onstruc	tion più	inning (and sened	uning			
CO2		To know	the conc	epts of o	cost con	trol and	l quality	y contro	ol in cons	tructio	n		
CO3		To use p	roject for	mulation	n techni	ques in	an orga	nizatic	n				
CO4		To study	the elem	ents of o	quality	control	and saf	ety of c	construction	on pro	jects		
CO5		To study	the elem	ents of o	construc	ction pla	anning	and sch	eduling a	nd to	apply app	ropriat	e
Mapping of C	ours	tools and e Outcome	techniqu s with Pro	es like i ogram C	network Dutcome	ts and c (POs)	oding s	ystems					
COs/POs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
COl	3	2	3	3	2	3	3	3	3			_	
	2	2											
02	3	2	3	3	2	3	3	3	3				
CO3	3	2	3	3	2	3	3	3	3				
CO4	3	2	3	3	2	3	3	3	3				
CO5	3	2	3	3	2	3	3	3	3				
COs / PSOs		PSO1	PSC	02	PS	03							
CO1		3	2	2		3							
CO2		3	2	2		3							
CO3		3	2	2	3	3							
CO4		3	2	2		3							
CO5		3	2	2	3	3							
3/2/1 Indicates	Strei	ngth Of Co	rrelation, 3	3 – High	, 2- Med	ium, 1-	Low						
		nces	Socia		Se		у	ent	ect				
Category	ces	s Scie	and	ore	ectiv	ves	linar	none	Proj				
	Scien	ering	uities es	m Cc	m El	Ilecti	iscip	com	cal /				
	asic ;	ngine	umar cienc	rogra	togra	pen I	Iterd	Skill	ractio				
	В												
Approval					-								
* *													

79

REFERENCES

- 1. Chitkara, K.K. Construction Project Management: Planning, Scheduling and Control, Tata McGraw-Hill Publishing Company, New Delhi, 1998.
- 2. Calin M. Popescu, Chotchai Charoenngam, Project Planning, Scheduling and Control in Construction: An Encyclopedia of terms and Applications, Wiley, New York, 1995.
- Chris Hendrickson and Tung Au, Project Management for Construction -3. Fundamental Concepts for Owners, Engineers, Architects and Builders, Prentice Hall, Pittsburgh, 2200.
- Moder, J., C. Phillips and E. Davis, Project Management with CPM, PERT and Precedence 4. Diagramming, Van Nostrand Reinhold Company, Third Edition, 1983.
- 5. Willis, E. M., Scheduling Construction Projects, John Wiley & Sons, 1986.
- 6. Halpin, D. W., Financial and Cost Concepts for Construction Management, John Wiley & Sons,

UNIT I: CONSTRUCTION PLANNING

CONTROL

Theory/Lab/EmbeddedTheory and Lab

Course Code:

EMCE22E13

Basic Concepts in the Development of Construction Plans - Choice of Technology and Construction Method - Defining Work Tasks - Defining Precedence Relationships Among Activities - Estimating Activity Durations - Estimating Resource Requirements for Work Activities - Coding Systems

UNIT II: SCHEDULING PROCEDURES AND TECHNIQUES

Prerequisite: Construction Management

Relevance of Construction Schedules - The Critical Path Method - Activity Float and Schedules - Presenting ProjectSchedules - Critical Path Scheduling for Activity-on-Node and with Leads, Lags, and Windows -Calculations for Scheduling with Leads, Lags and Windows - Resource Oriented Scheduling - Scheduling with Resource Constraintsand Precedences - Use of Advanced Scheduling Techniques - Scheduling with Uncertain Durations - Crashing and Time/Cost Tradeoffs -

UNIT III: COST CONTROL, MONITORING AND ACCOUNTING 9 Hrs

The Cost Control Problem - The Project Budget - Forecasting for Activity Cost Control - Financial Accounting Systems and Cost Accounts - Control of Project Cash Flows - Schedule Control - Schedule and Budget Updates - Relating Cost and Schedule Information.

UNIT IV: OUALITY CONTROL AND SAFETY DURING CONSTRUCTION 9 Hrs

Quality and Safety Concerns in Construction - Organizing for Quality and Safety - Work and Material Specifications

- Total Quality Control - Quality Control by Statistical Methods - Statistical Quality Control with Sampling by Attributes - Statistical Quality Control with Sampling by Variables - Safety

UNIT V: ORGANIZATION AND USE OF PROJECT INFORMATION 9 Hrs

Types of Project Information - Accuracy and Use of Information - Computerized Organization and Use of Information - Organizing Information in Databases - Relational Model of Databases - Other Conceptual Models of Databases - Centralized Database Management Systems - Databases and Applications Programs -Information Transfer and Flow.

Total No. of Hours: 45

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL:

	EDUCATIONAL AND RESEARCH INSTITUTE	
Change & California	DEEMED TO BE UNIVERSITY	****
gabet to Cage	University with Graded Autonomy Status	
	(An ISO 21001 : 2018 Certified Institution)	
	Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.	

Dr. M.G.R.

9 Hrs

9 Hrs

T/S.Lr

0/0

P/R

0/0

С

3

L

3

ETL

Ty

Course Code:	: (Course Name: PROJECT SAFETY MANAGEMENTTy/Lb/LT/S.LrP/RCETLETLIIIIII													
EMCE22E1	4 <u></u>	rerequisite	Nil						ETL Ty	3	0/0	0/0	3		
L : Lecture T : Theory/Lab/En	Tuto	rial SLr : dedTheory	Supervise and Lab	ed Learni	ng P:F	Project I	R : Resea	arch C:	Credits T	L/ETL	.:	0/0	5		
OBJECTIVE projects.	: To	study and	d understa	and the	various	safety o	concepts	s, requi	rements a	applied	1 to constr	uction			
COURSE OU	тсо	MES (CO	s):(3-5)												
CO1		To analy for it	ze the cau	use of co	onstruct	ion acc	idents a	nd eva	luate the	safety	programs	require	ed		
CO2		To asses	s the safet	ty in cor	nstructio	on conti	acts and	d desig	n for safe	ety pro	cedures				
CO3		To under	rstand the	role of	owners	and des	signers	for ens	uring pro	ject sa	fety				
CO4		To Estin	nate the va	arious sa	afety co	ncepts									
CO5		To Knov	v about C	ontractu	al Obli	gations	in safet	y indus	stries						
Mapping of C	Course	e Outcome	es with Pro	ogram O	outcome	s (POs)									
COs/POs	POI	l PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9						
CO1	3	2	2 3 3 3 3 3 3 3												
CO2	3	2	2	3	3	3	3	3	3						
C03	3	2	2	3	3	3	3	3	3						
C04	3	2	2	3	3	3	3	3	3						
C05	3	2	2	3	3	3	3	3	3						
COs / PSOs		PSO1	PSC)2	I	PSO3									
CO1		3	3	3	3	3									
CO2		3	3	3	3	3									
C03		3	3	3	3	3									
C04		3	3	3	3	3									
C05		3	3	3	3	3									
3/2/1 Indicates	Strer	ngth Of Co	rrelation, 3	3 – High	, 2- Med	ium, 1-	Low			1					
Category	Basic Sciences	Engineering Science Engineering Science Sciences Program Core Open Electives Open Electives Interdisciplinary Skill component													
Approval					Ý										
- PProven															

Accidents and their Causes – Human Factors in Construction Safety - Costs of Construction Injuries – Occupationaland Safety Hazard Assessment – Legal Implications

UNIT II: SAFETY PROGRAMMES

Problem Areas in Construction Safety – Elements of an Effective Safety Programme – Job-Site Safety Assessment – Safety Meetings – Safety Incentives

UNIT III: CONTRACTUAL OBLIGATIONS

Safety in Construction Contracts - Substance Abuse - Safety Record Keeping

UNIT IV: DESIGNING FOR SAFETY

Safety Culture – Safe Workers – Safety and First Line Supervisors – Safety and Middle Managers – Top ManagementPractices, Company Activities and Safety – Safety Personnel – Subcontractual Obligation – Project Coordination and Safety Procedures – Workers Compensation

UNIT V: OWNERS' AND DESIGNERS' OUTLOOK

Owner's responsibility for safely – Owner preparedness – Role of designer in ensuring safety – Safety clause in design document.

Total No. of Hours: 45

REFERENCES

Course Code:

- 1. Jimmy W. Hinze, Construction Safety, Prentice Hall Inc., 1997
- 2. Richard J. Coble, Jimmie Hinze and Theo C. Haupt, Construction Safety and Health Management, PrenticeHall Inc., 2201
- 3. Tamilnadu Factory Act

 EMCE22E14
 MANAGEMENT
 ETL

 Prerequisite: Nil
 Ty

Course Name: PROJECT SAFETY

 $\label{eq:Lecture T} L: Lecture \ T: Tutorial \qquad SLr: Supervised \ Learning \ P: Project \ R: Research \ C: \ Credits \ T/L/ETL: Theory/Lab/Embedded Theory and \ Lab$

UNIT I: CONSTRUCTION ACCIDENTS

9

9 Hrs

9 Hrs

9 Hrs

9 Hrs

9 Hrs

T/S.Lr

0/0

P/R

0/0

С

3

Ty/Lb/ L

3

Course Code:	:	Course Name: TQM IN CONSTRUCTION Ty/Lb/ L T/S.Lr P/R											С		
EMCE22E1	5		ETLETLerequisite: Total Quality ManagementTy30/00/03												
	P	rerequisite:	: Total Qua	ality Ma	nagemer	ıt			Ту	3	0/0	0/0	3		
L : Lecture T :	Tuto	rial SLr :	Supervise	d Learn	ing P:F	Project I	R : Resea	arch C:	Credits T/	L/ETL	:				
Theory/Lab/Ei	mbed	dedTheory	and Lab												
OBJECTIVE	: To halle	study and	d understa	and the v	various ent Proc	types of	f conce	ot of qu	uality in co	onstru	ction and	to have	e		
COURSE OU	TCO	MES (CO	(3-5)			- unio									
CO1		To realiz	the imp	ortance	of sign	ificance	e of qua	lity							
CO2		Manage	quality in	nproven	nent tea	ms									
CO3		Identify	requireme	ents of c	quality i	mprove	ement p	rogram	IS						
CO4		To Train	for achie	ving qu	ality as	pects in	constru	iction							
CO5		To Enha	nce the ki	nowledg	ge of ab	out six :	sigma ii	n TQM	[
Mapping of C	Cours	e Outcome	es with Pro	ogram C	Outcome	s (POs)									
COs/POs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9						
CO1	3	1													
CO2	3	1	1 1 3 2 3 3 3 3												
C03	3	1	1	3	2	3	3	3	3						
CO4	3	1	1	3	2	3	3	3	3						
CO5	3	1	1	3	2	3	3	3	3						
COs / PSOs		PSO1	PSC	02	PS	03									
CO1		3	3	3	3	3									
CO2		3	3	3		3									
C03		3	3	3		3									
CO4		3	3	3		3									
CO5		3	3	3		3									
3/2/1 Indicates	s Stre	ngth Of Co	rrelation, 3	3 – High	, 2- Med	ium, 1-	Low								
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project						
							1								
Approval															

EMCE22E15 ETL 3 0/0 Prerequisite: Total Quality Management Ty 0/03 L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL: Theory/Lab/EmbeddedTheory and Lab Hrs

Maduravoya

UNIT I: Concept of Quality:

Course Code:

Definition of quality as given by Deming, Juran, Crosb ntrol, Quality Assurance (QA/QC). Total quality control (TQC) and Total Quality Management (TQM), Need for TQM in construction industry. Organization necessary for implementation of quality, Quality manual-Contents, data required, preparation, responsibility matrix, monitoring for quality-PDCA Cycle. Quality aspects in every phase in the life cycle of Construction project.

UNIT II: Quality Control tools and statistical quality Control: 9 Hrs

Histogram, Pareto diagram, Fishbone diagram, Quality control chart-Testing required for quality control of construction material used in RCC Work- destructive and Nondestructive Test (NDT) Statistical Quality Control-Necessity, Benchmarking, Application of dispersion methods in quality control of construction activity.

UNIT III: Training and development of Human Resources

Training needs assessment, technical and managerial competencies necessary for achieving quality, preparation for training. Training on Project Rework Reduction Tool (PRRT) software- training for preparation of checklist necessary for RCC work, for commonly used formats.

UNIT IV: Six Sigma

Definition of six sigma, evolution – Historical aspects, probability distribution Six sigma ratings, Six sigma training, six sigma as an effective tool in TQM.

9Hrs **UNIT V: Study of ISO 9004- Quality System Standards**

Purpose of ISO Standards. Difference between ISO 9001 and ISO 9004. Certification process for ISO 9001. Certification bodies involved. Eight Principles of ISO-Basic meaning, applying these principles for an effective quality process in the organization. Management support and commitment necessary for achieving implementation for quality system standards.

Reference Books

- 1. International Standards Organization ISO 9001 and ISO 9004
- 2. Mantri Handbook A to Z of Construction Mantri Publications
- 3. Juran's Quality Handbook Joseph M. Juran, A. Blanton. Godfrey Mcgraw Hill International Edition (1998)
- 4. Probability and Statistics for Engineers Miller, Freund-Hall, Prentice India Ltd.

Course Name: TQM IN CONSTRUCTION Ty/Lb/ L T/S.Lr **P/ R**

				9
y,	difference	between	Quality	coi

9 Hrs

9 Hrs

Total No. of Hours: 45

С

Quality Control and Total Quality Management, P.L.Jain, Tata Mcgraw Hill Publ.

Audit Course I & II

	Audit Course I & II													
C No.	Course	Course Name	TY/LB/	,	Teaching	Scheme								
5. 1NO	Code		IE	L	T/S.Lr	P/R	С							
1	EMCC22I01	English for Research paper Writing	IE	2	0/0	0/0	0							
2	EMCC22I02	Disaster Management	IE	2	0/0	0/0	0							
3	EMCC22I03	Sanskrit for Technical Knowledge	IE	2	0/0	0/0	0							
4	EMCC22I04	Value Education	IE	2	0/0	0/0	0							
5	EMCC22I05	Constitution of India	IE	2	0/0	0/0	0							
6	EMCC22I06	Pedagogy Studies	IE	2	0/0	0/0	0							
7	EMCC22I07	Stress Management by Yoga	IE	2	0/0	0/0	0							
8	EMCC22I08	Personality Development through Life Enlightenment Skills	IE	2	0/0	0/0	0							
9	EMCC22I09	Research Publication Ethics	IE	2	0/0	0/0	0							

Dr.M.G.R. Educational and Research Institute (DEEMED TO BE UNIVERSITY) (An ISO Certified Institution) Differences with Gradied Autonomy Status Maduravoyal, Chennal - 6000 095

Course Code: EMCC22I01		Course Name: ENGLISH FOR RESEARCH PAPER WRITINGTy/Lb/IELT/S. LrP/R										С	
		Prer	equisite:	Nil					IE	2	0/0	0/0	0
L : Lecture T :	Tutoria	al P:	Project	R : Res	earch C:	Credits	T/L: 1	heory/La	ıb				<u> </u>
Objectives To	know t	he art	of writin	g the re	search p	aper and	thesis						
Te	o Ensure	e the g	ood qual	ity of pa	aper at v	ery first	-time s	ubmissio	n.				
COURSE OU	TCOM	IES (C	COs): A	t the er	nd of thi	s course	the st	udents w	ould be	able t	0		
CO1	Under	stand t	that how	to impr	ove you	r writing	skills	and level	of reada	bility			
CO2	Learn	about	what to v	write in	each sec	tion							
CO3	Under	stand t	the skills	needed	when w	riting a	Title						
Mapping of C	Course (Outco	mes with	Progra	am Outo	comes (1	POs)						
COs/POs]	PO1	PO2	PO3	PO4	PO5	PC	6 1	PO7	PO	8 1	PO9	
CO1		1	1	1	1	1	3		1	1		1	
CO2		1 1 1 1 1 3 1 1 1											
CO3		1	1	1	1	1	3		1	1		1	
COs / PSOs			PSO1				PS	02	I			PSO3	
CO1			1					l				1	
CO2			1				-	l				1	
CO3			1				-	l				1	
3/2/1 indicate	s Streng	gth of	Correlat	tion 3	– High,	, 2- Mec	lium, 1	- Low			1		1
Category	Racio Cojancas		Engineering Sciences	Humanities and Social Sciences	Program Core		1 IOBIAIII LICCUVCS	Open Electives	Practical / Project	Internships / Technical Skill		Soft Skills	Audit course
				1									

Unit I 5 Hrs

Course Name: ENGLISH FOR RESEARCH

PAPER WRITING

L : Lecture T : Tutorial P : Project R : Research C: Credits T/L: Theory/Lab

Prerequisite: Nil

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

Unit II

Course Code:

EMCC22I01

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts .Introduction

Unit III

Review of the Literature, Methods, Results, Discussion, Conclusions, the Final Check.

Unit IV

Key skills are needed when writing a Title, key skills are needed when writing an abstract, key skills are needed when writing an Introduction,

skills needed when writing a Review of the Literature

Unit V

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills areneeded when writing the Conclusions

Unit VI

Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission **TOTAL HOURS: 30**

Reference Books:

- 1. Goldbort R (2016) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2016) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (2018), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook.
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2017

L

2

Ty/Lb/IE

IE

5 Hrs

T/S.

Lr

0/0

P/R

0/0

С

0

5 Hrs

5 Hrs

5 Hrs

5 Hrs

Course Code: EMCC22I02Course Name: DISASTER MANAGEMENTTy/Lb/IELT/S .LrP/RC										C			
		Prer	equisite	Nil				Ι	E	2	0/0	0/0	0
L : Lecture T : 7	Futoria	1 P:	Project	R : Res	earch (C: Cree	lits '	T/L: Th	eory/Lal	5			
Objectives: Le and humanitaria	arn to in respo	demo onse. ES (C	nstrate a	critical	unders	standin	g of rse	key cou	ncepts in	disa	ster ri be ab	sk redu le to	ction
CO1	Evalu multi	ate di ple pe	saster ris	sk reduc es.	tion an	id hum	anit	arian re	sponse p	olicy	and p	oractice	from
CO2	Devel releva	lop an ance in	underst n specifi	anding of c types of	of stand of disas	dards o sters ai	f hu Id co	manitar onflict s	ian respo	onse 8.	and p	ractical	
CO3	Under plann the co	rstand ing ar ountrie	the stre d progra es they v	ngths ar amming vork in	nd weal in diff	knesse erent c	s of oun	disaster tries, pa	manage rticularl	ment y the	appro ir hom	oaches, ne coun	try or
Mapping of Co	ourse C	Outcor	nes witl	n Progra	am Ou	tcome	s (P	Os)					
COs/POs]	PO1	PO2	PO3	PO4	PO	5	PO6	PO7	P	3 8	PO9	
CO1	1 1 1 1 1 3 1 1 1												
CO2	1		1	1	1	1		3	1	1		1	
CO3	1		1	1	1	1		3	1	1		1	
COs / PSOs			PSO	1			P	SO2				PSO3	
CO1			1					1				1	
CO2			1					1				1	
CO3			1					1				1	
3/2/1 indicates	Streng	gth of	Correla	tion 3	– Hig	h, 2- N	Iedi	um, 1-	Low				
Category Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core Program Electives Program Electives Program Electives Program Sciences Soft Skills Soft Skills								Soft Skills	Audit course				
													\checkmark

Prerequisite: Nil IE 2 0/0 0/0 0 L: Lecture T: Tutorial P: Project R: Research C: Credits T/L: Theory/Lab **Objectives:** Learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.

Course Name: DISASTER

MANAGEMENT

Unit I

Introduction

Disaster: Definition, Factors and Significance; Difference between Hazardand Disaster; Natural and Manmade Disasters: Difference, Nature, Types And Magnitude.

Unit II

Repercussions of Disasters and Hazards:

Economic Damage, Loss OfHuman And Animal Life, Destruction Of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

Unit III

Disaster Prone Areas in India:

Course Code:

EMCC22I02

Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards WithSpecial Reference To Tsunami; Post-Disaster Diseases And Epidemics Unit IV 5 Hrs

Disaster Preparedness And Management: Preparedness: Monitoring of Phenomena Triggering A Disaster or Hazard; Evaluation of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental AndCommunity Preparedness.

Unit V

Risk Assessment: Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation In Risk Assessment. Strategies for Survival.

Unit VI

Disaster Mitigation: Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs Of Disaster Mitigation in India.

SUGGESTED READINGS:

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "'NewRoyal book Company.
- 2. Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall OfIndia, New Delhi.
- 3. Goel S. L., Disaster Administration And Management Text And Case Studies", Deep &DeepPublication Pvt. Ltd., New Delhi.

TOTAL HOURS: 30

T/S

.Lr

L

P/R

С

Ty/Lb/IE

Maduravoval, Chennai

5 Hrs

5 Hrs

5 Hrs

5 Hrs

5 Hrs

Course Code: EMCC22I03	Course Name : SANSKRIT FOR TECHNICAL KNOWLEDGETy/Lb/I ELT/S LrP/RCPrerequisite: NilIE20/00/00												С
	Prerequis	site: Nil						Ι	E	2	0/0	0/0	0
L : Lecture T : Tu	itorial P	: Project	R : Res	earch C:	Credi	ts T/L	: Theo	y/Lab	ľ				
Objectives To g Sanskrit to impro the memory powe from ancient liter COURSE OUTO	get a worki ve brain fu er. The eng ature	ng know inctionin gineering	ledge in g , to de scholars	illustrion velop the s equippe	us San e logic ed with	skrit, in ma n Sans se the	the scie themat krit wi studei	entific l ics, sci ll be ab	anguage ence & le to ex	e in to othe plore	the wo r subje e the h	rld Lear ects enha uge kno	ning of ancing wledge
CO1	Understa	nding ba	sic Sans	krit lang	uage								
CO2	Ancient	Sanskrit 1	iterature	e about so	cience	& tec	hnolog	y can b	e under	stoo	d		
CO3	Being a l	ogical la	nguage v	will help	to dev	elop l	ogic in	studen	ts				
Mapping of Cou	rse Outco	mes wit	h Progra	am Outc	omes	(POs))						
COs/POs	PO1	PO1 PO2 PO3 PO PO PO7 PO8 PO9 4 5 6 6 6 6 6 6 6 6 7											
CO1	1	1	1	4	5	6	1	1		1			
COI	1												
CO2	1	1	1	1	1	3	1	1		1			
CO3	1	1	1	1	1	3	1	1		1			
COs / PSOs		PSO1				PSC	02				PS	503	
CO1		1				1						1	
CO2		1				1						1	
CO3		1				1						1	
3/2/1 indicates S	trength of	Correla	tion 3	– High,	2- Me	edium	, 1- Lo	W					
Category	Basic Sciences Basic Sciences Engineering Sciences Engineering Sciences Humanities and Social Sciences Program Core Program Core Program Electives Program Core Program Electives Project Profil Project Soft Skills Soft Skills										Audit course		
													\checkmark

Course Code: Course Name : SANSKRIT FOR EMCC22I03 TECHNICAL KNOWLEDGE Ty/Lb/IE L T/S.Lr P/R С Prerequisite: Nil 2 0/0 0/0 0 ΙE L : Lecture T : Tutorial P : Project R : Research C: Credits T/L: Theory/Lab

Unit I

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences

Unit II

Order, Introduction of roots, Technical information about Sanskrit Literature

Unit III

Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

TOTAL HOURS: 30

Reference Books:

1. "Abhyaspustakam" - Dr. Vishwas, Samskrita-Bharti Publication, New Delhi

2. "Teach Yourself Sanskrit" Prathama Deeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication

3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

10 hrs

10 hrs

10 hrs

Course Code:	Cou	irse Na	me :				T			T/	D/D			
EMCC22104	Course Name : VALUE EDUCATIONTy/Lb/IEII/P/RCPrerequisite: NilIE20/00/00PutorialP : Project R : Research C: Credits T/L: Theory/LabVVV													
	Prei	equisite	: Nil					IE	2	0/0	0/0	0		
L : Lecture T : Tutori	al P:P	roject I	R : Resea	arch C	: Credi	its T/L: T	heory/La	b			•			
Objectives:														
• Students will l	be able	to												
 Understand va 	lue of e	ducati	on and	self-	deve	lopmen	t							
• Imbibe good v	alues ir	n stude	nts											
• Let the should	know a	about t	he imp	ortan	ce of	characte	er							
COURSE OUTCOM	<u>1ES (CO</u>	(s): At	the end	of thi	s cour	se the st	udents w	ould be a	ble to)				
CO1 Kr	owledge	of self-	develop	ment	1									
CO2 Le	arn the 11	nportan	ce of Hu	iman v	alues									
CO3 De	eveloping	the ove	erall pers	sonalit	У									
Mapping of Course	Outcome	itcomes with Program Outcomes (POs)												
COs/POs	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9												
CO1	1	1 1 1 1 3 1 1 1												
CO2	1	1	1	1	1	3	1	1	1					
CO3	1	1	1	1	1	3	1	1	1					
COs / PSOs			PSC	01]]	PSO2			PSO3	6		
CO1			1					1			1			
CO2			1					1			1			
CO3			1					1			1			
3/2/1 indicates Stren	gth of C	orrelati	on 3-	- High	, 2- M	edium, 1	- Low							
Category	Basic Sciences	Engineering Sciences	Humanities and Social	Sciences Droman Core	rigian core	Program Electives	Open Electives Practical / Project Internships / Technical Skill Soft Skills Audit course							
												\checkmark		

Course Code: EMCC22I04	Course Name : VALUE EDUCATION	Ty/Lb/IE	L	T/S .Lr	P/R	С				
	Prerequisite: Nil	IE	2	0/0	0/0	0				
L : Lecture T : Tutorial	: Project R : Research C: Credits T/L: Theory/Lab									

Unit 1:

Values and self-development -Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles. Value judgments 8 Hrs

Unit 2:

Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism. Love for nature, Discipline

Unit 3:

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labor. Universal brotherhood and religious tolerance. True friendship. Happiness Vs. suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature 8 Hrs

Unit 4:

Character and Competence –Holy books vs Blind faith. Self-management and Good health .Science of reincarnation. Equality, Nonviolence, Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively

TOTAL HOURS : 30

Reference:

1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

6 Hrs

8 Hrs

93

and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian															
nationalism To address the role of socialism in India after the commencement of the Bolshevik Revolution in															
1917 and its impact on the initial drafting of the Indian Constitution.															
COURSE OUTCOMES (COs): At the end of this course the students would be able to know															
CO1	Dis	inscuss the growth of the demand for civil rights in India for the bulk of Indians before the													
	arri	val of	Gandhi	in India	n polı	tics.			-						
CO2	Dis	iscuss the interfectual origins of the framework of argument that informed the													
	con	iceptualization of social reforms leading to revolution in India.													
CO3	. Di	iscuss the circumstances surrounding the foundation of the Congress Socialist Party													
	lCS	.or j under the readership of Jawanarial Nenru and the eventual failure of the proposal of irect elections through adult suffrage in the Indian Constitution													
<u>CO4</u>	Die	Discuss the passage of the Hindu Code Bill of 1956													
Manning of Course Outcomes with Program Outcomes (POs)															
Mapping of Course Outcomes with Program Outcomes (POS)															
COs/POs		PO 1	PO2	PO3	PO	94	PO5	PO6	PO	7 P	08	PO	9		
C01		1	1	1	1		1	2	1		1	1			
COI		1	1	1	1		1	5	1		1	1			
CO2		1	1	1	1		1	3	1		1				
CO3		1	1	1	1		1	3	1		1	1			
<u> </u>		1	1	1	1		1	3	1		1	1			
COs / PSOs			P	501			PSO2 PSO3							,	
C01				1			1					1			
CO2				1			1					1			
CO3				1					1				1		
CO4				1					1				1		
3/2/1 indicates St	rengt	th of C	Correlat	ion 3	– Hig	gh, 2-	Medi	um, 1-	Low						
	T	~		q	es			T	s			Π			
		lces	ad	s an	ence	ore			ive		~	Skil		a	
ıry		cier	i.i.	ties	Scie	Ū		- S	lect	1/		al	lls	urs	
egc		čŠ	nee	ani	al	ran		tive	Ш	tica	40	inic	Ski	00	
Cat		asi	ngi	[nm	oci	rog		lect	per ract		4	ech	oft	dit	
_	_	В	ЦÚ	2 H	Ň	P.	Ê	ГЦ	0	A A	+	= F	Ň	Au	
														 	
			-	-				-		-			-		

Unit 1:

Course Code:

EMCC22I05

L : Lecture T : Tutorial

History of Making of the Indian Constitution:

Course Name :

Prerequisite: Nil

INDIA

History Drafting Committee, (Composition & Working) Philosophy of the Indian Constitution: **Preamble Salient Features**

CONSTITUTION OF

P: Project R: Research C: Credits T/L: Theory/Lab

Ty/Lb/

IE

ΙE

Unit 2:

Contours of Constitutional Rights & Duties:

Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy and Fundamental Duties. 6 hrs

Unit 3: **ORGANS OF GOVERNANCE:**

Parliament Composition, Qualifications and Disqualifications, Powers and Functions Executive Council of Ministers, Judiciary, Appointment and Transfer of Judges, President,Governor **Oualifications** Powers and Functions.

Unit 4:

Local Administration:

District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Pachayati raj: Introduction, PRI: ZilaPachayat. Elected officials and their roles, CEO ZilaPachayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

Unit 4:

Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

Reference Books:

1. The Constitution of India, 1950 (Bare Act), Government Publication.

2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.

3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.

4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

6 hrs

6 hrs

TOTAL HOURS: 30

P/R

0/0

С

0

T/S

.Lr

0/0

L

2

6 hrs

6 hrs

Course Code EMCC22I06	Course Name : PEDAGOGY STUDIES							Ty/	/Lb/E TL	L	T/S .Lr	P/R	С		
		Pre	erequis	ite: Ni	1					IE	2	0/0	0/0	0	
L : Lecture T	: Tutor	ial	P: Prc	ject F	R : Rese	arch C:	Credits 7	Г/L: Т	heor	y/Lab					
Objectives Students will be able to: 4. Review existing evidence on the review topic to inform programme design and policy making undertaken by the DfID, other agencies and researchers. 5. Identify critical evidence gaps to guide the development.															
COURSE OUTCOMES (COs): At the end of this course the students would be able to know															
CO1	What devel	What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?													
CO2	What and w	tt is the evidence on the effectiveness of these pedagogical practices, in what conditions, with what population of learners?													
CO3	How guida	ance materials best support effective pedagogy?													
Mapping of Course Outcomes with Program Outcomes (POs)															
COs/POs	P	PO1 PO2 PO3 PO4				PO	PO6	PO7	7 1	PO8	PO9				
CO1		1	1	1	1	1	3	1		1	1	1			
CO2		1	1	1	1	1	3	1		1	1				
CO3		1	1	1	1	1	3	1		1	1				
COs / PSOs			PSC	01			PSO	2	PSO3						
CO1			1				1				1				
CO2			1				1				1				
CO3			1				1						1		
3/2/1 indicate	s Stre	ngth	of Cor	relati	on 3-	- High,	2- Medi	um, 1	- Lo	W					
Category Basic Sciences			Engineering	Sciences	Humanities and Social Sciences	Program Core Program Electives Open Electives		Practical / Project		Internships / Technical Skill		Soft Skills	Audit course		
														 	

Course Code: EMCC22I06	Course Name : PEDAGOGY STUDIES	Ty/Lb/E TL	L	T/S. Lr	P/R	С
	Prerequisite: Nil	IE	2	0/0	0/0	0
L : Lecture T : Tutoria	P: Project R: Research C: Credits T/L: Theorem	ry/Lab				

Unit I:

Introduction and Methodology:

Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education. Conceptual framework, Research questions. Overview of methodology and Searching.

Unit II:

Thematic overview:

Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education.

Unit III: Evidence on the effectiveness of pedagogical practices

Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies.

Unit IV: Professional development:

Alignment with classroom practices and follow-up support, Peer support, Support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes.

Unit V: Research gaps and future directions:

Research design, Contexts, Pedagogy, Teacher education, Curriculum and Assessment, Dissemination and research impact.

TOTAL HOURS: 30

Reference Books:

- 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.
- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher Education research project (MUSTER) country report 1. London: DFID.
- **4.** Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.
- 5. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.
- 6. Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.
 - www.pratham.org/images/resource%20working%20paper%202.pdf.

6 hrs

6 hrs

6 hrs

6 hrs

6 hrs

97

Course Co EMCC22I	de: 07	Co MA	urse Nai ANAGEI	ne: STR MENT B	ESS SY YOG	A	Ty/ Lb/ ET	L	T/S .Lr	P/R		С	
		Prere	equisite :	Basic Kı	nowledge	e of	IE	2	0/0	0/0		0	
TITI	T . T	Yoga			1	0.0.1	. т <i>л</i> . г	P 1	/T 1				
	1:1	utorial	P : Proj	ject K : K	lesearch	C: Credi	ts I/L:	I neor	y/Lab				
Objectives To Underst	1 -4	h . D ! .	Comment	to of Voo	-								
To Gain knowledge on Ashtenge voge													
To Gain knowledge on Ashtanga yoga To Acquire knowledge of Techniques and Practice of Veccesses													
To Acquire knowledge of Techniques and Practice of Yogasanas To Understand stress and the causes. To Attain the knowledge about stress busting through yoga													
CO1 Understand the Basic Concents of Voce													
	Gai	n know	ladga on	Ashtanga	Nogo	ga							
CO3	To	Underst	and stres	Asinaliga	causes								
CO4		uiro kn	view knowledge of Techniques and Departice of Vergeorenes										
CO5	Act	train the knowledge about stress busting through yoga											
CO5 Attain the knowledge about stress busting through yoga Mapping of Course Outcomes with Program Outcomes (POs)													
		DO1	DO3			DO5	DO6	DO	7	DUS	DO0		
CO5/FO5		rui	F02	103	104	105	100	ru	/	100	109		
CO1		1	1	1	1	1	3	1		1	1		
CO2		1	1	1	1	1	3	1		1	1		
CO3		1	1	1	1	1	1	1		1	1		
CO4		1	1	1	1	1	3	1		1	1		
CO5		1	1	1	1	1	2	1		1	1		
COs / PSOs				PSO1			PSO2 PSO3						
CO1				1				1			1		
CO2				I				I			l		
CO3				1				1			1		
CO4				1				1			1		
2/2/1 india	ator (Stuanat	of Com	l nolotion	2 II:a	6 2 M	dinna				1		
5/2/1 indica	ates a	strengt	a of Cor	relation	3 – Hig	n, 2- Me	alum, I	I- LO	w				
Category	,	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Proiect		Internships / Technical Skill	Soft Skills	Audit course	
												 ✓ 	

Prerequisite : Basic Knowledge of IE 2 0/0 0/0 Yoga L : Lecture T : Tutorial P : Project R : Research C: Credits T/L: Theory/Lab Unit 1: 6 hrs

What is stress - Symptoms of stress - Why is stress helpful - Why is stress harmful - Stress versus burnout - Main types of stress - Know your stressors - Tips to Manage Stress **Unit 2:** 6 hrs

Course Name: STRESS

MANAGEMENT BY YOGA

Strength, Weaknesses, Opportunities and Threats (SWOT) Analysis, Who am I, Attributes, Importance of Self Confidence, Self Esteem. Emotional Intelligence, What is Emotional Intelligence, emotional quotient why Emotional Intelligence matters, Emotion Scales. Managing Emotions Unit 3: 6 hrs

What is Yoga – Definition and Its Branches - Hatha Yoga – Kundalini Yoga – Tantra Yoga – Kriya Yoga – Introduction to Ashtanga Yoga

Unit 4:

Course Code:

EMCC22I07

Mechanism of Stress related diseases: Psychic, Psychosomatic, Somatic and Organic phase. Role of Meditation & Pranayama on stress – physiological aspect of Meditation. Constant stress & strain, anxiety, conflicts resulting in fatigue among Executive. Contribution of Yoga to solve the stress related problems of Executive

Unit 5:

Meaning and definition of Health - various dimensions of health (Physical, Mental, Social and Spiritual) – Yoga and health – Yoga as therapy. Physical fitness. Stress control exercise – Sitting meditation, Walking meditation, Progressive muscular relaxation, Gentle stretches and Massage. **TOTAL HOURS: 30**

Reference Books:

- 1. Andrews, Linda Wasmer., (2005). Stress Control for peace of Mind. London: Greenwich Editions Lalvani, Vimla., (1998). Yoga for stress. London: Hamlyn
- 2. Nagendra, H.R., and Nagarathana, R., (2004). Yoga perspective in stress management. Bangalore: Swami Vivekananda Yoga Prakashana.
- 3. Nagendra, H.R., and Nagarathana, R., (2004). Yoga practices for anxiety & depression. Bangalore: Swami Sukhabodhanandha Yoga Prakashana.
- 4. Sukhabodhanandha, Swami., (2002). Stress Management. Banglore: Prasanna trust.
- 5. Udupa, K.N., (1996). Stress management by Yoga. NewDelhi: Motilal **Banaridass Publishers Private Limited**

С 0

6 hrs

6 hrs

Ty/Lb

/ETL

T/S

.Lr

P/R

L

Dr.M.G.R. Educational and Research Institute (DEEMED TO BE UNIVERSITY) (An ISO Certified Institution) Entwards with cristing Automony States Maduravoyal, Chennal - 600 095

Course Code EMCC22I08	:	Course Name : PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS							Ty	/Lb/E TL	L	T/S .Lr	P/R	С	
	-	Prereq	uisite: 1	Nil						IE	2	0/0	0/0	0	
L : Lecture T : Tutorial P : Project R : Research C: Credits T/L: Theory/Lab												•			
Objectives To learn to achieve the highest goal happily, To become a person with stable mind, pleasing															
personality and determination. To awaken wisdom in student															
COURSE OUTCOMES (COs) : At the end of this course the students would be able to know															
COI	1 Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve the highest goal in life														
<u>CO2</u>	The r	cheve the highest goal in life be person who has studied Geeta will lead the nation and mankind to peace and prosperity													
CO3	Study	tudy of Neetishatakam will halp in developing versatile personality of students													
Mapping of Course Outcomes with Program Outcomes (POs)															
COs/POs	PO	01	PO2	PO3	4	PO5	PO6	Р	PO7 PO8			09			
CO1	1	l	1	1	1	1	3		1	1		1			
CO2	1	l	1	1	1	1	3		1	1		1			
CO3	1	l	1	1	1	1	3		1	1		1			
COs / PSOs				PSO1					P	SO2			PSO3		
CO1				1						1		1			
CO2				1						1		1			
CO3				1						1			1		
3/2/1 indicate	s Stre	ngth of	f Corre	lation	3 –]	High, 2-	Mediu	m, 1-	Low						
Category	Basic Sciences Engineering Sciences Humanities and Social Sciences					Program Core	Program Electives	Open Electives	1	Practical / Project	Internships /	Technical Skill	Soft Skills	Audit course	

Unit 1:

Neetisatakam-Holistic development of personality

Verses- 19,20,21,22 (wisdom) Verses- 29,31,32 (pride & heroism)Verses- 26,28,63,65 (virtue) Verses- 52,53,59(dont's)Verses-71,73,75,78(do's)

Unit 2:

Approach to day to day work and duties.

Shrimad BhagwadGeeta: Chapter 2-Verses 41, 47, 48, Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5, 13, 17, 23, 35, Chapter 18-Verses 45, 46, 48. 10 hrs

Unit 3:

Statements of basic knowledge.

Shrimad BhagwadGeeta: Chapter2-Verses 56, 62, 68 Chapter 12 -Verses 13, 14, 15, 16, 17, 18 Personality of Role model. Shrimad BhagwadGeeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Chapter 4-Verses 18, 38,39 Chapter 18 – Verses 37,38,63.

TOTAL HOURS: 30

Reference Books:

- 1. "Srimad Bhagavad Gita" by Swami SwarupanandaAdvaita Ashram (Publication Department), Kolkata
- 2. Bhartrihari's Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

Course Code: Course Name : PERSONALITY Ty/Lb/E T/S. **EMCC22I08 DEVELOPMENT THROUGH LIFE** L P/R С TL Lr **ENLIGHTENMENT SKILLS** Prerequisite: Nil 2 0/0 0/0 0 IE L : Lecture T : Tutorial P: Project R: Research C: Credits T/L: Theory/Lab

10 hrs

10 hrs

Dr.M.G.R. Educational and Research Institute (DEEMED TO BE UNIVERSITY) (An ISO Certified Institution) Oniversity with created Autonomy Status Maduravoyal , Chennal - 600 095

Course Code:	C P	ourse Nan UBLICAT	ne : RESE TION ETH	EARCH A HICS	ND		T ET	/ L/ P/IE	L	[/ S.Lr	P/ R	С
EMCC22I09	• P1	erequisite:	core subj	ects			Ι	E	2	0/0	0/0	2
T/L/ : Theory	/Lab L :]	Lecture T :	Tutorial	P : Pract	ical/Proje	ct R : Re	esearch (C: Crea	dits T	L Theory	Lab	
OBJECTIV	OBJECTIVE:											
• To 1	• To understand the philosophy of science and ethics, research integrity and publication ethics.											
• To :	o identify research misconduct and predatory publications.											
• To 1	• To understand indexing and citation databases, open access publications, research metrics											
(cita	(citations, h-index, impact Factor, etc.). COURSE OUTCOMES (COs) : By doing this course students will											
COURSE O	Lunderstand the ethical issues related to Research and Publication											
	Onderstand the ethical issues related to Research and Publication											
CO2	Get to know about different types of plagiarism and ways for avoiding											
<u> </u>	plagiarism											
COS	know about best practices and guidelines in publication ethics and also learns to avoid Publication misconduct											
CO4	Get to know about Violation of publication ethics, authorship and contributor											
04	ship and get to identify about Predatory publishers and iournals.											
CO5	Get to know about various open sources database and research metrics like											
005	indexing, citation etc.											
Mapping of Course Outcomes with Program Outcomes (POs)												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO	7	PO8	PO9		
005/105	101	102	100	101	100	100	10		100	107		
CO1	2	3	3	3	3	2	3		3	2		
CO2	2	3	3	3	3	2	3		3	2		
CO3	2	3	3	3	3	2	3		3	2	_	
C04	2	3	3	3	3	3	3		3	3		
	2	5	J DSO	ر ۱	5	2			5		73	
CO1			2	1		PS02 PS03						
			2				3			3		
CO3			2				3			2		
CO4			2				3			3		
CO5			2				3			3		
1/2/3 indicat	es Streng	th of Cori	relation 3-	- High, 2-	Medium	, 1-Low			I			
										III		
										Sk		
Category		ş	ial							iical		
Category		nce	Soci		s			t		chn		
	Si	Scie	or pu	0	tive		SS	ojec		/Te		
	ence	ng '	es ai	Core	Ilec		NH2	Pro		ips ,		rse
	Scie	eri	nitic es	m (mE	F	Elec	al /		nshi	kill	Cou
	sic	gine	mai	gra	gra		en	ictic		nter	ft S	dit
	Ba	En	Hu Sci	Prc	Prc	(0 C	\Pr_{c}		П	So	Au
												\checkmark

Course Code: Course Name : Research and Publication Ethics С **EMCC22I09** ETP/IE Prerequisite: Core subjects IE 2 0/00/0 0 T/L/: Theory/Lab L : Lecture T : Tutorial P : Practical/Project R : Research C: Credits T/L Theory/Lab

Unit 1. Introduction

Introduction to philosophy: Definition, nature and scope, concept, branches - Ethics: Definition, moralphilosophy, nature of moral judgments and reactions - Ethics with respect to Science and Research Intellectual honesty and research integrity.

Unit II: Scientific Conduct

Scientific misconducts: Falsification, Fabrication, and Plagiarism (FFP) Redundant Publications: Duplicate and over lapping publications, salami slicing – Selective reporting and misrepresentation of data.

Unit III: Publication Ethics -I

Publication ethics: Definition, introduction and importance – Best practices/standards setting initiatives and guidelines: COPE, WAME etc. Publication misconduct: definition, Concept, problems that lead to unethical behavior and vice-versa, types.

Unit IV: Publication Ethics – II

Violation of publication ethics, authorship and contributor ship – Identification of publication misconduct, complaints and appeals - Predatory publishers and journals - Subject specific ethicalissues, Complaints and appeals: examples and fraud from India and Abroad.

Unit V: Data Bases and Research Metrics

Open Access publication and Initiatives – Indexing databases – Citation databases, Web of Science, Scopus, etc. - Impact factor of journals as per Journal Citation report .SNIP, SJR, IPP, Cite Score -Metrics: h-index,gindex,i10index,altmetrics - Conflict of interest.

References:

- 1. Bird A 2006, Philosophy of Science, Routledge
- 2. MacIntyre & Alasdair, 1967, A Short History of Ethics, London.
- 3. Chaddah, P2018, Ethics in Competitive Research: Do not get scooped; do not get plagiarized, ISBN: 9789387480865.
- 4. On Being a Scientist: A Guide to Responsible Conduct in Research, 2009, National Academy of Sciences, National Academy of Engineering and Institute of Medicine. 3rd edition, National Academies Press.
- 5. Resnik, D. B 201 1, what is ethics in research & why is it important. National Institute pp.1—10. of Environmental Health Sciences. https://www.niehs.nih.gov/research/reso_uuces/bioethics/whatis/index.cfm
- 6. Bcall, J 2012, Predatory publishers are corrupting open access, Nature,

Vol. 489, no.7415,pp. 179-179. https://d0i.org/IO.1 03 8/48917%, Ethics

in Science Education, 2019Indian National Science Academy (INSA), Research and Governance,

6 Hrs.

6 Hrs.

6 Hrs.

6 Hrs.

6 Hrs.

TOTAL HOURS: 30

