FACULTY OF ENGINEERING AND TECHNOLOGY

OUTCOME BASED EDUCATION

CURRICULUM AND SYLLABUS

(2022 Regulation)

M. TECH. STRUCTURAL ENGINEERING REGULATION – 2022 (Full Time)

(For students admitted from the Academic Year 2022-23)

Department Vision

To achieve the pinnacle of success in the area of sustainable constructions and green technologies, thus stimulating economic growth and making the society a better place to live in

Department Mission

The mission of the Department of Civil Engineering is:

M1: To produce graduates who possess technical competence in their chosen specialty area of Structural Engineering with integrity and commitment

M2: To prepare them to serve and contribute as innovators, professional engineers, and leaders n the global community

Program Educational Objectives

The Program Educational Objectives of the Structural Engineering program are designed to produce skilled Engineers who could effectively contribute to the Structural Engineering profession with an ability to meet its current and future challenges

- **PEO 1**: To apply fundamental technical knowledge and skills to find creative solutions to technological challenges and problems in various areas of basic sciences and engineering.
- **PEO 2**: To analyze, design and use skills in order to formulate and solve Structural Engineering problems.
- **PEO 3**: To practice engineering in a responsible, professional and ethical manner and implementeco-friendly sustainable technologies for the benefit of industry and society.
- **PEO 4**: To create knowledge through research and development in Structural Engineering and allied fields and modernize the teaching levels.
- **PEO 5**: To make students professionally competent by enhancing their communication skills, team spirit, leadership and also to prepare them for lifelong learning through innovative and research activities.

PROGRAM OUTCOMES

PO1	Apply the knowledge of science, mathematics, and engineering principles for developing problem solving attitude.
PO2	Problem analysis: Identify, formulate and solve engineering problems in the domain of Structural Engineering field.
PO3	Use different software tools for Analysis and Design structural engineering domain.
PO4	Design and conduct experiments, analyse and interpret data, for development of simulation experiments.
PO5	Function as a member of a multidisciplinary team with sense of ethics, integrity and social Responsibility.
PO6	Functioning as a team in an ethical manner emphasizing on solving environmental, social and global challenges
PO7	Shaping managerial skills to become good decision makers, strategists and entrepreneurs
PO8	Apply reasoning informed by the contextual knowledge to access societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO9	Demonstrate knowledge and understanding of the engineering and management principles and apply these to once own work as a member and leader in a team to manage projects and multidisciplinary environments

LIST OF PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO 1: The ability to develop new materials, design and research projects in different fields of Structural Engineering using software and experimental techniques.

PSO 2: Ability to develop the teaching professionals and to engage in R&D works with ethical and societal responsibility.

PSO3: Ability to apply the knowledge in various structural engineering fields.

Mapping of Mission With PEOs

Mission/PEOs	PEO1	PEO2	PEO3	PEO4	PEO5
M1	2	3	3	3	2
M2	3	2	3	3	2

Mapping of PEOs with PSOs

PEO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
PEO1	3	2	3	3	3	2	1	1	3
PEO2	3	3	3	2	2	1	2	2	3
PEO3	1	2	2	2	3	2	2	3	3
PEO4	2	3	2	1	2	2	2	1	2
PEO5	2	3	2	1	3	3	2	2	2

Mapping of PEOs With POs

PEO/PSO	PSO1	PSO2	PSO3
PEO1	2	3	3
PEO2	3	2	3
PEO3	2	3	2
PEO4	3	2	3
PEO5	1	3	2

Correlation Strength: - 3: High, 2: Medium, 1: Low

Total Credits: 68

Credit for I & IV Semester: 68 Credit

Program Components

Basic Science (Mathematics) in	nclude acco	rding to program - 1
Program Core theory	-	4
Program Core Laboratory	-	4
Program Elective	-	5
Open Elective	-	1
Open Lab	-	-
Management paper	-	-
Foreign Language	-	-
Audit course	-	2
• Universal Human values	-	-
• Inter disciplinary theory	-	1
Inter disciplinary Lab	-	-
• ETL	-	-
Technical Skills	-	3
Soft skill	-	-
Project /mini project	-	2

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

M. Tech – Structural Engineering (Full Time) Curriculum and Syllabus 2022 Regulation

		I SE	MESTER					
S.No	Course Code	Course Title	Ty/Lb/ETL/ IE	L	T/SLr	P/R	C	Category
1.	EMMA22005	Advanced Engineering Mathematics for Structural Engineers	Ту	3	1/0	0/0	4	BS
2.	EMSE22001	Theory of Elasticity and Plasticity	Ту	3	1/0	0/0	4	PC
3.	EMSE22EXX	Program Elective – I	Ту	3	0/0	0/0	3	PE
4.	EMSE22EXX	Program Elective – II	Ту	3	0/0	0/0	3	PE
5.	EMSE22L01	Computer Aided Structural design - Laboratory	Lb	0	0/0	4/0	2	PC
6.	EMSE22L02	Advanced Concrete Laboratory	Lb	0	0/0	4/0	2	PC
7.	EMCC22001	Research Methodology and IPR	Ту	3	0/0	0/0	3	ID
8.	EMCC22IXX	Audit Course 1	IE	2	0/0	0	0	ID
		TOTAL		17	2	8	21	

Credits Sub Total: 21

		II SEM	IESTER					
S.No	Course Code	Course Title	Ty/Lb/ET L/IE	L	T/SLr	P/R	C	Category
1.	EMSE22002	FEM in Structural Engineering	Ту	3	1/0	0	4	PC
2.	EMSE22003	Structural Dynamics	Ту	3	0/0	0/0	3	PC
3.	EMSE22EXX	Program Elective – III	Ту	3	0/0	0/0	3	PE
4.	EMSE22EXX	Program Elective – IV	Ту	3	0/0	0/0	3	PE
5.	EMSE22L03	Structural Engineering Laboratory	Lb	0	0/0	4/0	2	PC
6.	EMSE22L04	Structural Engineering Design Studio	Lb	0	0/0	4/0	2	PC
7.	EMSE22I01	Term Paper`	IE	0	0/0	0/4	2	PC
8.	EMCC22IXX	Audit Course 2	IE	2	0/0	0	0	ID
		TOTAL		14	1	12	19	

Credits Sub Total: 19

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

	III SEMESTER										
S.No	Course Code	Course Title	Ty/Lb/ET L/IE	L	T/SLr	P/R	С	Category			
1.	EMSE22004	Experimental Techniques and Instrumentation	Ту	3	0/0	0/0	3	PC			
2.	EMSE22EXX	Program Elective – V	Ту	3	0/0	0/0	3	PC			
3.		Open Elective (NPTEL/SWAYAM/any MOOC Online courses approved by AICTE/UGC)	IE	3	0/0	0/0	3	PC			
4.	EMSE22102	Summer Internship	IE	0	0/0	4/0	2	PC			
5.	EMSE22L05	Dissertation Phase I	Lb	0	0/0	0/10	5	P			
		TOTAL		9	0	14	16				

Credits Sub Total: 16

	IV SEMESTER										
S.No	Course Code	Course Title	Ty/Lb/ET L/IE	L	T/SLr	P/R	C	Category			
1.	EMSE22L06	Dissertation Phase II	Lb	0	0/0	10/10	10	P			
2.	EMSE22103	Research Publication	IE	0	0/0	2/2	2	PC			
		TOTAL		0	0	24	12				

Credits Sub Total: 12

TOTAL CREDITS = 21 + 19 + 16 + 12 = 68

	PROGRAM ELECTIVE -I										
S.No	Course Code	Course Title	Ty/Lb/ET L/IE	L	T/SLr	P/R	С	Category			
1.	EMSE22E01	Theory of Thin Plates and Shells	Ту	3	0	0	3	PE			
2.	EMSE22E02	Theory and Applications of Cement Composites	Ту	3	0	0	3	PE			
3.	EMSE22E03	Theory of Structural Stability	Ту	3	0	0	3	PE			
4.	EMSE22E04	Soil Structure Interaction	Ty	3	0	0	3	PE			

	PROGRAM ELECTIVE -II											
S.No	Course Code	Course Title	Ty/Lb/E TL/IE	L	T/SLr	P/R	C	Category				
5.	EMSE22E05	Repair and Rehabilitation of Structures	Ту	3	0	0	3	PE				
6.	EMSE22E06	Structural Health Monitoring	Ту	3	0	0	3	PE				
7.	EMSE22E07	Structural Optimization	Ту	3	0	0	3	PE				
8.	EMSE22E08	Prefabricated Structures	Ту	3	0	0	3	PE				

	PROGRAM ELECTIVE -III										
S.No	Course Code	Course Title	Ty/Lb/E TL/IE	L	T/SLr	P/R	С	Category			
9.	EMSE22E09	Advanced Steel Design	Ту	3	0	0	3	PE			
10.	EMSE22E10	Design of Formwork	Ту	3	0	0	3	PE			
11.	EMSE22E11	Tall Structures	Ту	3	0	0	3	PE			
12.	EMSE22E12	Design of Masonry Structures	Ту	3	0	0	3	PE			

	PROGRAM ELECTIVE -IV													
S.No	Course Code	Course Title	Ty/Lb/E TL/IE	L	T/SLr	P/R	С	Category						
13.	EMSE22E13	Design of Advanced Concrete Structures	Ту	3	0	0	3	PE						
14.	EMSE22E14	Advanced Design of Foundations	Ту	3	0	0	3	PE						
15.	EMSE22E15	Advanced Structural Analysis	Ту	3	0	0	3	PE						
16.	EMSE22E16	Design of Industrial Structures	Ty	3	0	0	3	PE						

	PROGRAM ELECTIVE -V													
S.N	Course Code	Course Title	Ty/Lb/E TL/IE	L	T/SLr	P/R	С	Category						
17.	EMSE22E17	Design of Prestressed Concrete	Ty	3	0	0	3	PE						
18.	EMSE22E18	Structures Analysis of Laminated Composite	Ty	3	0	0	3	PE						
		Plates												
19.	EMSE22E19	Fracture Mechanics of Concrete	Ту	3	0	0	3	PE						
		Structures												
20.	EMSE22E20	Earthquake Resistance Structures	Ту	3	0	0	3	PE						

		AUDIT COURSE						
S.No	Course Code	Course Title	Ty/Lb/E TL/IE	L	T	P	С	Category
1	EMCC22I01	English for Research Writing	IE	2	0	0	0	ID
2	EMCC22I02	Disaster Management	IE	2	0	0	0	ID
3	EMCC22I03	Sanskrit for Technical Knowledge	IE	2	0	0	0	ID
4	EMCC22I04	Value Education	IE	2	0	0	0	ID
5	EMCC22I05	Constitution of India	IE	2	0	0	0	ID
6	EMCC22I06	Pedagogy Studies	IE	2	0	0	0	ID
7	EMCC22I07	Stress Management by Yoga	IE	2	0	0	0	ID
8	EMCC22I08	Personality Development through Life Enlightenment Skills	IE	2	0	0	0	ID
9	EMCC22I09	Research Publication Ethics	IE	2	0	0	0	ID

Credit distribution

SEMESTER	CREDITS
I	21
II	19
III	16
IV	12
TOTAL	68

SEMESTER-I

Course Code : EMMA22005	Course	Nam	e :	ADVA	NCED	ENG	NEERI	NG	Ty/	I		T/	P/R	C
EMMA22005	MATHE	MATICS	S FOR ST	ructi	URAL E	NGINEI	ERS		Lb/ ETL			S.Lr		
		site: UG							TY	3	3	1	0	4
L: Lecture T: T					_	oject R	Resear	ch C:	Credi	ts				
Ty/Lb/ETL: The		Embedde	d Theory	y and La	ıb									
OBJECTIVES:														
The student sho														
	To provi													
>	To teach													
	To enab		nowledg	ge of Es	timation	Theory	'.							
COURSE OUT														
CO1		erstand t												
CO2	To be a	ble to so	lve Cal	culus o	f variatio	on								
CO3	To unde	erstand t	he conc	epts of	One din	nension	al meth	ods						
CO4	To be a	ble to so	lve the	concep	ts of Tw	o dime	nsional	metl	nods					
CO5	To anal	yze the l	Estimati	ion The	ory									
Mapping of Cou	irse Outc	omes wit	th Progr	am Ou	tcomes (POs)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	8	PO9				
CO1	2	3	2	2	3	1	1		2	2				
CO2	3	2	1	2	2	2	2		2	3				
CO3	3	3	1	2	2	3	1		1	2				
CO4	3	2	2	2	1	2	2		2	1				
CO5	3	3	1	2	1	1	2		1	2				
COs / PSOs		PSO1			PSO2			PS	O3					
CO1		3		3					3					
CO2		3		3					2					
CO3		3		2					2					
CO4		3		3					3					
CO5		3		2			_		2					
3/2/1 Indicates S	Strength (Of Corre	elation, 3	3 – High	1, 2- Med	lium, 1-								
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter disciplinary	Skill component	Practical / Project					
	√													

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India

Course Code EMMA22005	Course MATHEN	Name MATICS I	: FOR	ADVANCED STRUCTURAL E	ENGINEERING NGINEERS	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
	Prerequis	ite: UG le	vel N	Mathematics 1 at 1 a		TY	3	1	0	4

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab

UNIT I TRANSFORM METHODS

12 hrs

Laplace Transform methods for one dimensional wave equation – Displacements in a string – Fourier Transform methods – One dimensional heat conduction problems in infinite and semi- infinite rod.

UNIT II CALCULUS OF VARIATIONS

12 hrs

Variation and its properties – Euler's equations – Functionals dependent on First and higher order derivatives – Functionals depend on functions of several independent variables – Problems with moving boundaries – Direct methods – Ritz and Kantorovich methods.

UNIT III ONE DIMENSIONAL RANDOM VARIABLES

12 hrs

Random variables – Probability function – Moments – Moment generating functions and their properties – Binomial, Poisson, Exponential, and normal distributions – Functions of a Random variable.

UNIT IV TWO DIMENSIONAL RANDOM VARIABLES

12 hrs

Joint distributions – Marginal and conditional distributions – Functions of two dimensional random variables – Correlation – Regression.

UNIT V ESTIMATION THEORY

12 hrs

Unbiased estimators – Method of moments – Maximum likelihood estimation – Curve fitting by Principle of least squares.

Total no. of hrs: 60

Reference Books:

- 1. Sneddon I.N., Elements of Partial Differential Equations, Dover Publications, (2006).
- 2. Sankara Rao K., Introduction to Partial Differential Equations (3rd ed.), PHI, (2010).
- 3. Gupta A.S., Calculus of variations with applications, Prentice Hall of India, (2004).
- 4. Richard Johnson A., Miller & Freund's Probability and statistics for Engineers (8th ed), Prentice Hall of India, (2009).
- 5. Richard Johnson A., Wichern .D.W, Applied Multivariate Statistical Analysis (6th ed), Prentice Hall of India, (2007).

Course EMSE			Course N ELAST	ICITY A	AND PL	ASTIC		TĽ	Lb/E	L	T/ SLr	P/R	C	
			Prerequi of mater		chanics	of Solid	s/Strength	Ty		3	1/0	0/0	4	
			l SLr : Su ded Theor			ng P : Pr	oject R : I	Researc	h C: C	Credi	itsT/L/E	ETL:	1	
OBJE	CTIV	ES: To u	nderstand	the conc	ept of 3	D stress	, strain an	alysis a	nd its	App	lication	s to si	mpleprob	lems
			ES (Cos) se, student		able to									
CO1	To r	emember	ing the ba	sics knov	wledge a	about the	e Elasticity	y and P	lasticit	ty				
CO2	Του	ınderstan	d the conc	ept of sti	ress, stra	in of 2D	and 3D f	or Elas	tic and	l pla	stic stru	ctures	3	
CO3		applying to blems of e		t of of e	lasticity	and equ	uip them w	vith the	knowl	ledge	e toinde	pende	ently hand	lle the
CO4	To a	nalyze th	e stress ar	nd strain	for Elas	ticity an	d Plasticit	у						
CO5	To i	nculcate t	he habit o	f researc	hing and	d practic	ing in the	field of	felasti	city	and Pla	sticity	,	
Mappi	ng of	Course (Outcomes	with Pr	ogram (Outcom	es (Pos)							
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PC	D8	PO9			
CO1		3	3	3	3	2	3	2	3		3			
CO2		3	3	3	3	3	3	3	3		3			
CO3		3	2	3	3	3	2	3	3		2			
CO4		3	3	2	2	3	3	2	2		3			
CO5		3	3	2	3	3	3	2	3		2			
COs/P	SOs	PS	O1	PSO2		PSO3			·					
CO1			3	3		1								
CO2			3	3		2								
CO3			3	3		3								
CO4			3	3		1								
CO5			3	2		2								
3/2/1 ir	ndicat	es streng	th of corr	elation,	3-]	High, 2	– Mediun	n, 1 – I	JOW					
Category	Basic Sciences		Engg Sciences	Humanities & Social Sciences	Program core		Program Electives		Open Electives		Inter disciplin	ary	Skill component	Practical / Project
					V									

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code : EMSE22001	Course Name : THEORY OF ELASTICITY AND PLASTICITY	Ty/Lb/E TL	L	T/ SLr	P/R	C
	Prerequisite: Mechanics of Solids/Strength of materials	Ty	3	1/0	0/0	4

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: CreditsT/L/ETL:

Theory / Lab / Embedded Theory and Lab

UNIT I: BASIC CONCEPTS

12 Hrs

Analysis of stress and strain - Equations of equilibrium and compatibility -Stress strain relationship - Generalized Hook's law

UNIT II: PLANE STRESS AND PLANE STRAIN 2D PROBLEMS

12 Hrs

Plane stress and plane strain -2D Problems in Cartesian coordinates- Airy's stress function - Problemsin 2D - Polar coordinate

UNIT III: TORSION 12 Hrs

Torsion of non-circular section - methods of analysis, St. Venant's theory - Torsion of elliptical sections Torsion of triangular sections - Prandtl's membrane analogy - Torsion of rolled profiles – torsion of thin rectangular section and hollow thin walled sections.

UNIT IV: ENERGY METHODS

12 Hrs

Energy methods - principle of virtual work - energy theorem - Rayleigh Ritz methods - Finite Difference method.

UNIT V: INTRODUCTION TO PROBLEMS IN PLASTICITY

12 Hrs

Physical assumption - criteria of yielding, yield surface, Flow rule (plastic stress strain relationship). Elastic plastic problems of beams in bending - plastic torsion.

Total No of Hours: 60

REFERENCES

- 1. Timoshenko, S. and Goodier T.N. "Theory of Elasticity", McGraw Hill Book Co., Newyork, II Edition 1988.
- 2. Sadhu Singh, "Theory of Elasticity", Khanna Publishers, New Delhi 1988.
- 3. Sadhu Singh, "Theory of Plasticity", Khanna Publishers, New Delhi 1988.
- 4. Chwo P.C. and Pagano, N.J. "Elasticity Tensor, Dyadic and Engineering applications", D.Van Nestrand Co., In Co., 1967.
- 5. Chenn, W.P. and Henry D.J. "Plasticity for Structural Engineers", Springer Verlag Newyork 1988.
- 6. Verma, PDS, "Theory of Elasticity", Vikas Publishing Pvt. Ltd. New Delhi -1997.

	e Code E22L(Course N AIDED S LABORA	TRUCTU TORY	RAL DE	T/ SLr	P/R	C					
			Prerequi structure		sign of C	Concrete		Lb	0	0/0	4/0		2
				pervised		_	oject R :]	Research (C: Credi	its			
					of comp	uter appl	ication of	fstructural	design				
			IES (Cos) se, student		able to								
CO1	To re	member t	he basic k	nowledg	ge about	theory o	f structur	es					
CO2	To un	nderstand	the structu	ıral com	ponents	and com	puter app	olication					
CO3	To an	alysis of	structural	compon	ents for	various l	oading co	onditions u	sing stru	ıctural.a	nalysis	softw	are
CO4	To de	esign the	building f	rames u	sing so	ftware to	ols						
CO5			analysis c	•									
Mapp COs/l		Course (PO1	Outcomes PO2	with Pr PO3	ogram (PO4	Outcome PO5	PO6	PO7	PO8	PO9			
CO _{3/1}	05	3	3	3	3	2	3	2	3	3			
CO2		3	3	3	3	3	3	3	3	3			
CO3		3	2	3	3	3	2	3	3	2			
CO4		3	3	2	2	3	3	2	2	3			
CO5		3	3	2	3	3	3	2	3	2			
COs/I	PSOs	PS	SO1	PS	SO2	P	SO3						
CO1			1		2		3						
CO2			2		1		2						
CO3			3		2		3						
CO4			1		2		3						
CO5			3		1	<u> </u>	2						
3/2/1 i	indicat	tes streng	th of corr	elation,	3 –	High, 2 -	– Mediur	n, 1 – Lov	V				- +
Category	Basic Sciences		Engg Sciences	Humanities & Social Sciences	Program core		Program Electives	Onen Flectives		Inter disciplin	ary	Skill component	Practical / Project
													1

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India

Course Code : EMSE22L01	Course Name: COMPUTER AIDED STRUCTURAL DESIGN- LABORATORY	Ty/Lb/E TL	L	T/ SLr	P/R	С
	Prerequisite: Design of Concrete structures	Lb	0	0/0	4/0	2

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory / Lab / Embedded Theory and Lab

LIST OF EXPERIMENTS

- 1. Analysis of Symmetrical Building Frames (Gravity Load Only) using STADD PRO Software.
- 2. Analysis of Symmetrical Building Frames (Wind Load Only) using STADD PRO Software.
- 3. Analysis of Symmetrical Building Frames (Earthquake Load Only) using STADD PRO Software.
- 4. Analysis of Un-Symmetrical Building Frames (Gravity Load Only) using STADD PRO Software.
- 5. Analysis of Un-Symmetrical Building Frames (Wind Load Only) using STADD PRO Software.
- 6. Analysis of Un-Symmetrical Building Frames (Earthquake Load Only) using STADD PRO Software.
- 7. Analysis of Symmetrical Building Frames (Gravity Load ,Wind Load Only) using Etabs Software.
- 8. Analysis of Symmetrical Building Frames (Earthquake Load Only) using Etabs Software. Plate
- 9. Analysis of Un-Symmetrical Building Frames (Gravity Load, Wind Load) using Etabs Software.
- 10. Analysis of Un-Symmetrical Building Frames (Earthquake Load Only) using Etabs Software.

Total No of Hours: 60 Hrs

REFERENCE:

- 1. STAADPro. Manual
- 2. Etabs. Manual
- 3. Dr. Krishnaraju.N, AdvancedR.C.Design, CBS Publishers & Distributors Pvt Ltd, 2012

Course C EMSE2			Course N LABOR			CED C	ONCRETE	E	Ty/Lb /ETL	L	T/ SLr	P/R	С
LIVISEZ	ZLUZ		Prerequis	site: Nee	d to stud	y Cond	rete techno	logy	Lb	0	0/0	4/0	2
			SLr : Sup				oject R : Re	esearch	C: Credit	S			I
OBJEC'	ΓΙVES:	This c	ourse prov	ides a th	orough	knowle	edge of mat	erial sel	ection the	oug	h the n	naterial	testing
based on	•												
			ES (Cos): e, students	will be a	ıble to								
CO1	Ability	to de	sign the co	ncrete st	ructures	and pe	erformance	of concr	ete				
CO2	Get the	e know	ledge abo	ut the Se	lf Comp	acting	concrete, m	inerals a	and chem	ical	admix	tures	
CO3	Specifi	ication	of Concre	ete Mater	rial testin	ng							
CO4	To des	sign th	e building	frames	using s	oftware	etools						
CO5	Apply	seismi	c analysis	concepts	s to struc	ctures u	sing Etabs						
Mapping	 g of Cou	rse O	utcomes v	vith Pro	gram O	utcom	es (Pos)						
COs/Pos	P	O 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO9		
CO1		3	3	3	3	2	3	2	3		3		
CO2		3	3	3	3	3	3	1	3		3		
CO3		3	2	3	3	1	2	3	3		2		
CO4		3	3	2	2	1	3	2	2		3		
CO5		3	3	2	3	3	3	2	1		2		
COs/PS	Os		O1	PSO2		PSO	3						
CO1			3	3		3							
CO2			3	2		3							
CO3			2	1		1							
CO4			3	3		3							
CO5	licatos si				3 _ High		Medium, 1	_ I .ow					
3/4/1 IIIQ	iicales si	a engt	n or corre	iauvii,	ə – mgi	u, 4 – 1	riculuili, 1	- LUW					
Category	Basic Sciences		Engg Sciences	Humanities & Social Sciences	Program core		Program Electives		Open Electives	Inter	disciplin ary	Skill component	Practical / Project
													√

Course Code :	Course Name : ADVANCED CONCRETE LABORATORY	Ty/Lb /ETL	L	T/ SLr	P/R	C
EMSE22L02	Prerequisite: Need to study Concrete technology	Lb	0	0/0	4/0	2
L : Lecture T : Tutoria	1 SLr : Supervised Learning P : Project R : Research	C: Cred	lits			

T/L/ETL: Theory / Lab / Embedded Theory and Lab

LIST OF EXPERIMENTS

- 1. Mix design of concrete as per IS, ACI & BS methods for high performance concrete.
- 2. Flow Characteristics of Self Compacting concrete.
- 3. Effect of minerals and chemical admixtures in concrete at fresh and hardened state with relevance to workability, strength and durability.
- 4. Permeability of Concrete.
- a. Rapid chloride Penetration Test,
 - a. Freeze and Thaw test,
 - b. Acid test
 - c. Alkali aggregate reaction test
 - d. VCC testing for fire resistance
 - e. Autoclaving

Total No. of Hours: 60

REFERENCES

- 1. Purushothaman, P, Reinforced Concrete Structure Structural Elements: Behaviour Analysis and Design, Tata Mc Graw Hill, New Delhi 1986.
- 2. Varghese, P.C., Limit State Design of Reinforced Concrete, Prentice Hall of India New Delhi, 1995.
- 3. Krishna Raju, N.Advanced Reinforced Concrete Design, CBS Publishers and New Delhi Distributors, 1986.
- 4. Neville, A.M., Properties of Concrete, Pitman Publishing Limited, London.
- 5. Shetty M.S., Concrete Technology, S.Chand and Company Ltd. Delhi.

Course Coc EMCC220			ırse Nam Research		odology	and IP	R	Ty/L ETI		L	T/SLr	P/R	C
		Pre	requisite	: core s	ubjects			Ту		3	0/0	0/0	3
Ty/Lb/: T	heory/L	ab L	Lecture	T : Tut	orial P	: Pract	tical/P	roject I	R : Re	search	C: Credits	s T/L Th	eory/Lab
OBJECTIVe concepts an	d ethics	which	will aid	to build	the nation	IPR st	atus.		creati	vity by	understand	ling the r	esearch
COURSE			` ′	•									
CO1			d research ng researc	•		ition by	Analy	zing res	search	related	l informatio	n and its	execution
CO2				•	rld is cont ept, and cr		•	nputer, Ir	nforma	tion To	echnology,	but tomo	rrow world
CO3	need	lless to	emphasi	s the ne		rmation	about				of individu Right to be		
CO4	inve	stment	in R & I), which							ther researc , and in turn		
Mapping	of Cou	rse Oı	utcomes	with P	rogram (Outco	mes (I	POs)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	3	PO	D9		
CO1	2	3	3	3	3	2	3		3	2	2		
CO2	2	3	3	3	3	2	3		3	2	2		
CO3	2	3	3	3	3	2	3		3	2	2		
CO4	2	3	3	3	3	2	3		3	2	2		
COs / PSOs		P	SO1			PSO2			P	SO3			
CO1			3			3				3			
CO2			3			3				3			
CO3			3			3				3			
CO4			3			3				3			
3/2/1 indic	ates Str	ength	of Corre	lation	3- High	, 2- M	edium	, 1-Low	7		I		
Category		Basic Sciences	Engg Sciences Humanities &	Social Sciences Program core	Program	Electives	Open Electives	∠ Inter disciplina	Skill component	Practical / Project			
								,					

(An ISO 21001 : 2018 Certified Institution)
Perivar E.V.R. High Road, Madurayoval, Chennai-95. Tamilnadu, Indi

Course Code : EMCC22001	Course Name: Research Methodology and IPR	Ty/Lb/ ETL	L	T/ SLr	P/R	С
	Prerequisite : None	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory / Lab / Embedded Theory and Lab

UNIT 1:SELECTION, ANALYSIS AND STATEMENT OF THE RESEARCH PROBLEM;

9 hrs

Literature Review and Formulation of Objectives – using the following Critical thinking Skills – Drawing a Concept map, Oral Communication, Debating, Questioning, Collaborating, Evaluation and Reasoning.

UNIT 2 :RESEARCH DESIGN 9 hrs

Types of Study, Types of Data, Measures of Variablility, Setting up the Hypotheses, data collection techniques and tools, sampling, Describing data – Charts and graphs; Data processing – Categorization, coding, summarization.

UNIT 3: DATA ANALYSIS AND REPORT WRITING:

9 hrs

Statistical measures, Regression and correlation, significance test; Report writing – Purpose, format, content, editing and evaluation. Using Citation tools; Report for specific purposes – Theses, Journals, Grant application. Oral presentation to an audience; use of project management digital tools and plagiarism checking.

UNIT 4: INTRODUCTION TO INTELLECTUAL PROPERTY

9 hrs

Types of intellectual property rights – Patent, Copyright, Trade Mark, Industrial Design, Geographical Indication, Trade Secrets - Traditional Knowledge. Elements of Patentability - Novelty, Non Obviousness (Inventive Steps), Industrial Application – Non patentable inventions – Process of patenting – National and International – Form and Fees for IP India

UNIT 5:PRIOR ART SEARCH, PATENT DRAFTING

9 hrs

Drafting patent Claims – Types of claims - Registration Procedure, Rights and Duties of Patentee; Patent infringement; Licensing – Franchising - Joint ventures; Non-Disclosure Agreements (NDAs) - Material Transfer Agreements (MTAs).

Total No. of Hours: 45

References:

- ❖ C. Vijayalakshmi and C. Sivapragasam (2011) Research Methods Tips and Techniques, , MJP Publishers
- Deboraj Rumsey (2010) Statistics Essentials for Dummies, Wiley Publishing Incorporated
- ❖ Bouchoux (2013) Intellectual Property, DELMAR CENGAGE Learning, USA
- ❖ V K Ahuja (2017) Law Relating to Intellectual Property Rights, LexisNexis Butterworths India

IMPORTANT WEB LINKS

- https://www.wipo.int/portal/en/index.html
- http://ipindia.nic.in/
- https://www.epo.org
- https://www.uspto.gov

SEMESTER-II

Course C EMSE2			ENGIN	EERIN	G		CTURA		Ty/Lb/ ETL	L	T/ SLr	P/R	C	
			Prerequiand Med				thematics		Ty	3	1/0	0/0		4
L : Lecti	ure T	: Tutori	al SLr:S				Project R	: Res	search C:	Cre	dits			
T/L/ETI	_ : T	heory / L	ab / Emb	edded T	heory ar	nd Lab								
OBJEC	TIV	ES: To	study the	energy	princip	les, fini	te elemen	t cor	ncept. Stre	ess a	nalysis	, mes	hing.	
	•		nd applica											
			MES (Cos		. 11 /									
			rse, studer											
CO1	То	introduc	e various	basic co	oncept of	f Fem								
CO2	То	develon	one, two	and thre	e dimen	sional e	lement nr	oneri	ies					
							•							
CO3	То	Solve co	ntinuum p	oroblem	s using	finite el	ement ana	alysis						
CO4	То	apply th	e finite El	ements	methods	s in Line	er and No	n- Li	ner Proble	ems				
CO5	То	apply th	e finite El	ements	methods	s in vari	ous Softw	are						
Mappin	g of	Course	Outcome	s with I	Progran	1 Outco	mes (Pos)						
COs/Po	s	PO1	PO2	PO3	PO4	PO5	PO6	PO	7 PO 8	3	PO9			
CO1		3	3	3	3	2	3	2	3		3			
CO2		3	3	3	3	3	3	3	3		3			
CO3		3	2	3	3	2	2	3	3		2			
CO4		3	3	2	2	3	3	2	2		3			
CO5		3	3	2	3	3	3	2	3		2			
COs/PS	Os		601	PSO2		PSO3								
CO1			3	3		3								
CO2			3	3		3								
CO3			3	2		2								
CO4			2	3		3								
CO5	ا		3 gth of cor	2	2 I	3	Madina	1	Love					
3/2/1 1110	uica	tes stren	gin or cor	relation	II, 3−1	nign, z	– Mealui	II, 1 -	- LOW					
Category	Basic Sciences		Engg Sciences	Humanities & Social Sciences	Program core		Program Electives		Open Electives	,	Inter disciplin	dı y	Skill component	Practical / Project
					√ 									

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India

Course Code : EMSE22002	Course Name : FEM IN STRUCTURAL ENGINEERING	Ty/Lb/ ETL	L	T/ SLr	P/R	С
	Prerequisite: Knowledge of Mathematics and Mechanics of Solids	Ту	3	1/0	0/0	4

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory / Lab / Embedded Theory and Lab

UNIT I: INTRODUCTION

12Hrs

Boundary Value Problem - Approximate Solution - Variation and Weighted Residual Methods - Ritz and Gale kin Formulations - Concepts of Approximation and Finite Elements - Displacement and Shape Functions - Weak Formulation - Minimum Potential Energy - Generation of Stiffness Matrix and Load Vector.

UNIT II: STRESS ANALYSIS

12 Hrs

Two Dimensional problems - Plane Stress, Plain Strain and Axi symmetric Problems - Triangular and Quadrilateral Elements - Natural Coordinates - Isoperimetric Formulation - Numerical Integration - Plate Bending and Shell Elements - Brick Elements - Elements for Fracture Analysis.

UNIT III: MESHING AND SOLUTION PROBLEMS

12 Hrs

Higher Order Elements - p and h Methods of refinement - IIL conditioned Elements - Discrimination Errors - Auto and Adaptive Mesh Generation Techniques - Error Evaluation.

UNIT IV: NONLINEAR AND VIBRATION PROBLEMS

12 Hrs

Material and Geometric No linearity - Methods of Treatment - Consistent System Matrices - Dynamic Condensation - Eigen Value Extraction.

UNIT V THERMAL ANALYSIS

12 Hrs

Application to Thermal analysis Problem

Total No of Hours: 60

REFERENCES

- 1. Bathe, K.J., Finite Elements Procedures in Engineering analysis, Prentice Hall Inc., New Delhi 1995.
- 2. Zienkiewicz, O.C, and Taylor, R.L., The Finite Elements Methods, Mc Graw Hill New Delhi, 1987.
- 3. Chandrupatla, R.T. and Belegundu, A.D., Introduction to Finite Elements in Engineering, 2nd Edition, Prentice Hall of India, New Delhi 1997.
- 4. Moaveni, S., Finite Element Analysis: Theory and Application with ANSYS, Prentice Hall Inc., New Delhi 1999.

Course C EMSE22			Course N DYNAM		TRUCT	URAL		Ty/Lb/ ETL	L	T SL		P/R	C
			Prerequiand Mec			of Math	ematics	Ту	3	0/	0	0/0	3
L : Lect	ure T :	Tutoria	ıl SLr : Su	pervised	l Learnir	ng P : Pr	oject R : I	Research	C: Cred	lits			
T/L/ETI	L: The	eory / La	ab / Embed	lded The	eory and	Lab							
OBJEC	TIVE	S: To s	study the	energy 1	orinciple	s, finite	element	concept.	Stress	anal	ysis, mes	shing. N	Vonlinear
problem			•	87 1	. 1	,		1		•	,	8	
1		11											
			IES (Cos)										
At the e	nd of t	the cours	se, student	s will be	able to								
CO1	Tor	amamba	ring the nr	inginles	of struc	turol dyr	namics the	orias					
CO2			ering the pr			<u> </u>							
	To u	nderstar	nd the fund	amental	knowle	dge of th	ne Structu	ıral dynaı	nics				
CO3	To a	pplying	the new co	oncept o	f structu	ral dvna	mics						
CO4			he study d					Multi-deg	ree of f	reedo	om systei	m using	·
	fund	amental	theory an	d equation	on of mo	tion.							
CO5			em for des	igning th	ne structi	ures for	wind, eart	thquake a	nd other	•			
		nic load		with D.	oarem (Jutoom	ne (Doe)						
			Dutcomes					DO5	DOO	D.C	<u> </u>		
COs/PC	JS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	19		
CO1		3	3	3	3	2	3	2	3	3			
CO2		3	3	3	3	3	3	3	3	3			
CO3		3	2	3	3	3	2	3	3	2			
CO4		3	3	2	2	3	3	2	2	3			
CO5		3	3	2	3	3	3	2	3	2			
COs/PS	Os	PS	SO1	PSO2		PSO3							<u> </u>
CO1			2	1		2							
CO2			1	2		3							
CO3			2	1		2							
CO4			1	2		3							
CO5			3	2		2							
3/2/1 inc	dicate	s streng	th of corr	elation	3 – Hig	gh, 2 – N	1edium, 1	l – Low					
													ect
	ces		ces	Humanities & Social Sciences	re			Open Electives					Practical / Project
	Basic Sciences		Engg Sciences	Humanities & Social Science	Program core			ecti	n		ent		1 / F
Category	c Sc		Sc	nami al S	ran.		Program Electives	n El	Inter disciplin		Skill component		tica
ate	asi		Jugg	fum oci	rog		rog Ject	pe1	Inter discij	ary	Skill		racı
	l m		Ш	S	ļ · · · ,		<u>г</u> д	0	L d	ಡ	တ ၁		Ь
					√								

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code : EMSE22003	Course Name : STRUCTURAL DYNAMICS	Ty/Lb/ ETL	L	T/ SLr	P/R	C
	Prerequisite: Knowledge of Mathematics and Mechanics of Solids	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory / Lab / Embedded Theory and Lab

UNIT I: INTRODUCTION

9 Hrs

Foundational objective of structural dynamic analysis - D Alembert's principle - Rayleigh-Ritz method - Energy methods - Types of prescribed loadings - Basic structural concepts - ductility - Hysteresis - Rigid body dynamics - Vectorial representation

UNIT II: BASIC PRINCIPLES OF MOTION

9 Hrs

Simple harmonic motion - Fourier transformations - Damping properties - Mass properties, Free and forced vibrations.

UNIT III: SINGLE DEGREE FREEDOM SYSTEMS

9 Hrs

Dynamic response to time dependent transient and steady state - Forcing functions - Damped & undamped response - Damping: vibration isolation, Response of time domain & Frequency domain.

UNIT IV: MULTI DEGREE FREEDOM SYSTEMS

9 Hrs

Two degrees of freedom systems - Orthogonal properties - Rayleigh's method, Stodola - Vianolla Method - Method of matrix iterations - Lumped mass matrix, Multi degree freedom system - Determination of frequency and modes - Transfer matrix response determination.

UNIT V: DYNAMIC ANALYSIS OF SYSTEMS WITH DISTRIBUTED PROPERTIES 9 Hrs

Flexural vibration of uniform beams - Numerical Evaluation of Dynamic Response - Central Difference Method - New Mark method - Earthquake response of linearly elastic buildings and linearly inelastic buildings - Dynamics of base isolated buildings.

Total No of Hours: 45

*Note: (Use of approved data books permitted)

REFERENCES

- 2. Clough R.W and Penzien, J., Dynamics of Structures, Mc Graw Hill, New Delhi 1975.
- 3. Paz Mario, Structural Dynamics, Academic Press, Los Angeles 1985.
- 4. Anderson R.A., Fundamentals of vibration, Amerind Publishing Co. New Delhi, 1972.
- 5. Roy R.Craig, Jr., Structural Dynamics An Introduction to computer methods, John Wiley & Sons, Los Angeles. 1981.

Course Co		- LABOR	RATORY		RAL ENGI			Ty/Lb/ ETL	L	T/ SLr	P/ R	С
		Prerequia Analysis		ed to stu	dy Structu	ıral		Lb	0	0/0	4/0	2
	re T : Tutoria bedded Theo		•	l Learnir	ng P : Proj	ect R : F	Researc	h C: Cred	litsT/L	ETL :	Theor	y /
OBJECT	TIVES: Stud	ent should	l aware c	of compu	iter applic	ation of	structu	ral design				
	E OUTCOM											
At the end	d of the cours	se, student	s will be	able to								
CO1	To Know a	bout the ba	asic knov	wledge o	of Concre	te struct	ures					
CO2	Conduct No	on destruct	ive tests	on exiti	ng Concre	ete struc	tures					
CO3	Apply Engi	neering Pr	rinciples	to under	rstand beh	aviour c	of struct	ural eleme	ents			
CO4	Design high	n Grade Co	oncrete a	nd study	the paran	neters at	ffecting	its Perfor	mance	e		
CO5	To create the			•	•		_					
	of Course C	Jutcomos	with Pr	ogram (Dutcomes	(Pos)						
COs/POs		PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO9		
CO1	3	3	3	3	2	3	2	3		3		
CO2	3	3	3	3	3	3	3	3		3		
CO3	3	2	3	3	3	2	3	3		2		
CO4	3	3	2	2	3	3	2	2		3		
CO5	3	3	2	3	3	3	2	3		2		
COs/PSC	Os PS	O 1	PSO2		PSO3							
CO1		1	2		2							
CO2		2	2		3							
CO3		2	3		1							
CO4 CO5		1	2		3							
	icates streng	th of corr	2 elation	3 _ Hin	3 sh. 2 – Me	dium 1	_ I .ow					
5/2/1 mu	icaics su tilg	01 (011	CIALIVII	5 – mg	;11, 2 — IVIC	diuiii, i	- LUW					ct
Category	Basic Sciences	Engg Sciences	Humanities & Social Sciences	Program core	Program Electives	Open Electives	Inter	disciplin ary			Skill	<u> </u>
												1

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code : EMSE22L03	Course Name: STRUCTURAL ENGINEERING - LABORATORY	Ty/Lb/ ETL	L	T/ SLr	P/R	C
	Prerequisite : Need to study Structural Analysis I & II	Lb	0	0/0	4/0	2
I . I 4 T . T . 4	1 CI C	1. C. C. 1	4TC/T	/DTI	т1	- /

 $L: Lecture\ T: Tutorial\ SLr: Supervised\ Learning\ P: Project\ R: Research\ C: Credits\ T/L/ETL: Theory\ /\ Lab\ /\ Embedded\ Theory\ and\ Lab$

LIST OF EXPERIMENTS

- 1. Study of behavior of RC Beams under flexure
- 2. Study of behavior of RC Beams under Shear a
- 3. Study of behavior of RC Beams under Torsion
- 4. Non-Destructive testing of concrete
- 5. Prefabricated modular Members
- 6. Study of Pre-Tensioning Concrete members
- 7. Study of Post Tensioning Concrete members

Total No of Hours: 60

REFERENCE:

- 1. R. Park and T. Paulay, "Reinforced Cement Concrete Structures", MISL-WILEY Series, Wiley India Pvt. Ltd, 2009.
- 2. M.S. Shetty, "Concrete Technology", Eighth edition, S Chand Publishing; 2018.
- 3. Relevant IS codes.

Course C EMSE2			Course N ENGINE				0		Ty/Lb/ ETL	L	T/ SLr	P/R	C
LWISE2	4LU	4	Prerequi	site: Des	ign of co	oncrete s	structures		Lb	0	0/0	4/0	2
			l SLr : Su ry and Lat	•	l Learnir	ng P : Pr	oject R : I	Researc	ch C: Cred	litsT/L	/ETL :	Theory	/
OBJECT	ΓΙVΙ	ES: Stude	ent should	aware o	f compu	ter appli	cation of	structu	ral design.				
			ES (Cos)										
At the en	d of	the cours	se, student	s will be	able to								
CO1	De	sign stee	l structure	s/compo	nents by	differe	nt design j	process	ses				
CO2	An	nalyze and	d design b	eams and	d colum	ns for sta	ability and	l streng	gth, and dri	ft			
CO3	Us	e the ava	ilable soft	ware for	dynami	c analys	is						
CO4	De	sign high	Grade Co	oncrete a	nd study	the para	ameters a	ffectin	g its Perfor	mance	:		
CO5			ne new inn					behavi	or				
Mapping	g of (Course C	Outcomes	with Pr	ogram (Outcome	es (Pos)						
COs/POs	s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO9		
CO1		3	3	3	3	2	3	2	3		3		
CO2		3	3	3	1	3	3	3	3		1		
CO3		3	2	1	3	2	2	1	1		2		
CO4		3	3	2	2	3	3	2	1		3		
CO5		2	3	2	3	2	3	2	3		2		
COs/PSO	Os	PS	O 1	PSO2		PSO3		•	<u> </u>				
CO1		-	1	2		2							
CO2			2	3		3							
CO3			1	2		3							
CO4			2	1		3							
CO5			1	1		2							
3/2/1 ind	icate	es streng	th of corr	elation	3 – Hig	h, 2 - N	1edium, 1	l– Low	7				
Category	Basic Sciences		Engg Sciences	Humanities & Social Sciences	Program core		Program Electives		Open Electives	Inter	ary	Skill component	Practical / Project
													V

(An ISO 21001 : 2018 Certified Institution)
Perivar E.V.R. High Road, Madurayoval, Chennai-95, Tamilnadu, India

Course Code : EMSE22L04	Course Name : STRUCTURAL ENGINEERINGDESIGN STUDIO	Ty/Lb/ ETL	L	T/ SLr	P/R	С
ENISEZZIOT	Prerequisite: Design of concrete structures	Lb	0	0/0	4/0	2

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: CreditsT/L/ETL: Theory /

Lab / Embedded Theory and Lab

LIST OF EXPERIMENTS

- 1. Program Using Arrays and Functions for Matrix Manipulation.
- 2. Programs to Draw Bending Moment and Shear Force Diagrams. Using Graphic in C
- 3. Program for Design of Slabs. Using Excel
- 4. Program for Design of Beams. Using Excel
- 5. Program for Design of Column and Footing Using Excel
- 6. Analysis of Truss Using STAAD Pro.
- 7. Analysis of Multistoried Space Frame, Using STAAD Pro.
- 8. Analysis of Bridge Deck Slab.

Total No of Hours: 60

REFERENCES:

- 1. Computer Aided Design by C.S.Krishnamoorthy and S.Rajeev.
- 2. Computational Structures by S.Rajasekharan.

Course Code : EMSE22I01	Course Name : TERM PAPER	Ty/Lb/ ETL	L	T/ SLr	P/R	C
	Prerequisite: Nil	IE	0	0/0	0/4	2

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: CreditsT/L/ETL: Theory /

Lab / Embedded Theory and Lab

A term paper is an elaborate research-based work on a particular topic in the domain of study. The student must choose a topic of his interest from the domain of study for a term paper. The term paper can be an original research article or review article. In case of review article, the student must refer atleast 50 research/review articles and critically review other researcher's work. The term paper may be 10 -20 pages in length. The general guidelines for writing the term paper as follows:

- 1. Abstract
- 2. Introduction to explain about the broad and general statement on the topic chosen.
- 3. Aim /Objective of the term paper.
- 4. Description of methodology, concepts and arguments.
- 5. Identify the research gap and suggest possible future works.
- 6. Conclusion

Three reviews will be conducted to monitor the progress of the work. At the end of the semester, presentation must be made by the student and Viva- Voce examination will be conducted by the internal Examiner duly appointed by the Head of the department and the students will be evaluated.

SEMESTER-III

Course C EMSE2			and Inst	rument	ation		echniques	Ty/L ETL	b/ L	T / S.L		P/ R	C
			Prerequis Analysis	site: Nee I & II	d to stud	dy Struc	tural	Ту	3	0/0) (0/0	3
			1 SLr : Su ded Theor			ng P : Pr	oject R : F	Research	C: Cred	litsT/L/I	ETL :		
OBJECT	TIVES	: To	learn the	princip	les of 1	measure	ments of	static ar	nd dyna	mic res	ponse	of	
			t the analy										
			ES (Cos)										
At the en	d of the	e cours	se, student	s will be	able to								
CO1	To le	arn ab	out measu	rements	of strair	ı, variati	on and wi	nd blow					
CO2	To U	nderst	and the va	rious de	vices tha	at are use	ed for vibr	ating sys	tems				
CO3	_		g the know										
CO4			the structu	•				nod and r	nodel ar	nalysis			
CO5			new thoug										
			Outcomes						7.00	7.0			
COs/POs	s P	01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9		
CO1		3	3	3	3	2	3	2	3	3			
CO2		3	3	3	3	3	3	3	3	3			
CO3		3	2	3	3	2	2	3	3	2			
CO4		3	3	2	2	3	2	2	2	3			
CO5		3	3	2	3	3	3	2	3	2			
COs/PSO	Os		O 1	PSO2		PSO3							
CO1			1	2		3							
CO2			3	2		1							
CO3			1	2		3							
CO4			3	2		2							
CO5			2	2		3	- 11 :	-					
3/2/1 ind	icates s	streng	th of corr	elation	ა – Hig	gh, 2 — N	1edium, 1	- Low					
Category	Basic Sciences		Engg Sciences	Humanities & Social Sciences	Program core		Program Electives	·.	Open Electives	Inter disciplin	ary	Skill	component Practical / Project
					V								

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India

Course Code : EMSE22004	Course Name: Experimental Techniques and Instrumentation	Ty/Lb/ ETL	L	T / S.Lr	P/R	С
	Prerequisite: Need to study Structural Analysis I & II	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL:

Theory / Lab / Embedded Theory and Lab

UNIT I: FORCES AND STRAIN MEASUREMENT

9 Hrs

Choice of Experimental stress analysis methods, Errors in measurements - Strain gauge, principle, types, performance and uses. Photo elasticity - principle and applications - Hydraulic jacks and pressure gauges

- Electronic load cells - Proving Rings - Calibration of Testing Machines - Longterm monitoring – vibrating wire sensors - Fibre optic sensors.

UNIT II: MEASUREMENT OF VIBRATION AND WIND FLOW

9 Hrs

Characteristics of Structural Vibrations – Linear Variable Differential Transformer (LVDT) – Transducers for velocity and acceleration measurements. Vibration meter – Seismographs – Vibration Analyzer – Display and recording of signals – Cathode Ray Oscilloscope – XY Plotter – wind tunnels – Flow meters – Venturimeter – Digital data Acquisition systems.

UNIT III: DISTRESS MEASUREMENTS AND CONTROL

9Hrs

Diagnosis of distress in structures – Crack observation and measurements – corrosion of reinforcement in concrete – Half cell, construction and use – damage assessment – controlled blasting for demolition – Techniques for residual stress measurements – Structural Health Monitoring.

UNIT IV: NON-DESTRUCTIVE TESTING METHODS

9 Hrs.

Load testing on structures, buildings, bridges and towers – Rebound Hammer – acoustic emission – ultrasonic testing principles and application – Holography – use of laser for structural testing – Brittle coating, Advanced NDT methods – Ultrasonic pulse echo, Impact echo, impulse radar techniques, GECOR, Ground penetrating radar (GPR).

UNIT IV: MODEL ANALYSIS

9 Hrs.

Laws – Laws of similitude – Model materials – Necessity for Model analysis – Advantages – Applications – Types of similitude – Scale effect in models – Indirect model study – Direct model tudy - Limitations of models – investigations – structural problems – Usage of influence lines in model studies.

Total No of Hours: 45

REFERENCES:

- 1. Dalley .J.W and Riley.W.F, "Experimental Stress Analysis", McGraw Hill Book Company, N.Y. 1991
- 2. Ganesan.T.P, "Model Analysis of Structures", University Press, India, 2000.
- 3. Ravisankar.K.and Chellappan.A., "Advanced course on Non-Destructive Testing and Evaluation of Concrete Structures", SERC, Chennai, 2007.

- 4. Sadhu Singh, "Experimental Stress Analysis", Khanna Publishers, New Delhi, 2006.
- 5. Sirohi.R.S., Radhakrishna.H.C, "Mechanical Measurements", New Age International (P) Ltd.

Course Code : EMOL22I01	Course Name : Open Elective (On Line Course through NPTEL/SWAYAM/Any MOOC	Ty/Lb/ ETL	L	T / S.Lr	P/R	C
	Prerequisite: Need to	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: CreditsT/L/ETL:

Theory / Lab / Embedded Theory and Lab

Students should register for the online course with a minimum course duration of 8 weeks through the online portals such as NPTEL/SWAYAM/Any MOOC in the beginning of the semester. The course can be core/interdisciplinary in such a way that the same course is not repeated during the course of his study. Students are expected to attend the online classes regularly and submit the weekly assignments before the due dates. Students should appear for the online examination and submit the certificate at the end of the semester. Internal examination will be conducted by the examiners duly appointed by the head of the department.

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code:	Course Name: SUMMER INTERNSHIP	Ty/Lb/	L	T/S.Lr	P/R	С
EMSE22102		ETL				
	Prerequisite: Nil	IE	0	0/0	4/0	2

 $L: Lecture \ T: Tutorial \quad SLr: Supervised \ Learning \ P: Project \ R: Research \ C: Credits \ T/L/ETL: Theory/Lab/Embedded \ Theory \ and \ Lab$

OBJECTIVES

Students must undergo three – week practical training in Civil engineering related organizations so that they Become aware of the practical applications of theoretical concepts studied in the classrooms. Students have to undergo three-week practical training in Civil Engineering related organizations of their choice but with the approval of the department. At the end of the training student will submit a report as per the prescribed format to the department.

Assessment process

This course is mandatory and a student has to pass the course to become eligible for the award of degree. The student shall make a presentation before a committee constituted by the department which will assess the student based on the report submitted and the presentation made. Marks will be awarded out of 100 and appropriate grades assigned as per the regulations

Course Code:	(Course Nar	ne : DISS	ERTAT	TION P	HASE I			Ty/Lb/	L	T/S.Lr	P/R	C
EMSE22L05									ETL				\perp
	P	rerequisite	: Nil						Lb	0	0/0	0/10	5
L : Lecture T : Theory and La		l SLr : Su	ipervised I	earning	P : Proje	ect R:R	esearch C	: Credit	s T/L/ETL	: Theor	ry/Lab/Emb	edded	
OBJECTIVE wholesome rethe benefit of	esearch	on it lead											
COURSE OU	TCOM	ES (COs)	: (3-5)										
CO1	V	Vork in a t	eam and	develop	multidis	sciplinar	y, resear	ch skills	3				
CO2	I	dentifying	the chall	enges ar	d issues	of the i	ndustry						
CO3	E	Explore in	novative i	deas in o	ivil eng	ineering	field						
CO4		Explore innovative ideas in civil engineering field Develop projects based on industrial and field requirements											
CO5		Develop de	_										
Mapping of C		•	C 1 3				quii oii						
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1	3	3	3	3	3	3	3	3	3				
CO2	3	3	2	3	3	3	3	2	3				
C03	3	3	3	3	3	3	3	3	3				
CO4	3	3	3	3	2	3	3	2	3				
CO5	3	3	3	2	3	2	3	2	3				
							3	2	3				
COs / PSOs		PSO1	PSO			O3							
CO1		2		2		3							
CO2		1		2	3								
C03	2			3	3								
CO4	1				2								
CO5		2		2	3								
3/2/1 Indicates	Strengt	h Of Corre	lation, 3 –	High, 2-	Medium	, 1- Low							
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
	Basic !	Engine	Humaniti Sciences	Progra	Progra	Open 1	Interd	Skill	Practic				

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India

Course Code:	Course Name : DISSERTATION PHASE I	Ty/Lb/	L	T/S.Lr	P/R	С
EMSE22L05		ETL				
	Prerequisite: Nil	Lb	0	0/0	10/0	5

 $L: Lecture \ T: Tutorial \quad SLr: Supervised \ Learning \ P: Project \ R: Research \ C: Credits \ T/L/ETL: Theory/Lab/Embedded \ Theory \ and \ Lab$

OBJECTIVE

The student shall be capable of identifying a problem related to the program of study and carry out wholesome research on it leading to findings which will facilitate development of a new/improved product, process for the benefit of the society.

M.Tech projects should be socially relevant and research oriented ones. Each student is expected to do an individual project. The project work is carried out in two phases – Phase I in III semester and Phase II in IV semester. Phase II of the project work shall be in continuation of Phase I only. At the completion of a project the student will submit a project report, which will be evaluated (end semester assessment) by duly appointed examiner(s). This evaluation will be based on the project report and a viva voce examination on the project. Student will be allowed to appear in the final viva voce examination only if he / she has submitted his / her project work in the form of paper for presentation / publication in a conference / journal and produced the proof of acknowledgement of receipt of paper from the organizers / publishers.

SEMESTER-IV

Course Code:	:	Course Nai	ne : DISS	SERTA	ΓΙΟΝ P	HASE I	Ι		Ty/Lb/	L	T / S.Lr	P/R	С
EMSE22L06									ETL				
		Prerequisite	: Nil						Lb	0	0/0	10/10	10
L : Lecture T : Theory and La		al SLr : Su	ipervised I	Learning	P : Proje	ect R:Re	esearch C	: Credit	s T/L/ETL	: Theor	ry/Lab/Emb	edded	<u> </u>
OBJECTIVE wholesome rethe benefit of	esearcl	n on it lead											
COURSE OU	TCOM	IES (COs)	: (3-5)										
CO1		Work in a	a team and	d develo	p multid	isciplina	ıry ,rese	arch ski	lls				
CO2		Identifyir	ng the cha	llenges a	and issue	es of the	industry	y					
CO3		Explore i	nnovative	ideas in	civil en	gineerin	g field						
CO4		Develop	projects b	ased on	industria	al and fie	eld requi	rement	S				
CO5		Develop	design pro	ojects ba	sed on i	ndustria	l require	ments.					
Mapping of C	Course	Outcomes v	vith Progr	am Outo	comes (P	Os)							
COs/POs	PC	D1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1	3	3	3	3	3	3	3	3	3				
CO2	3	3	2	3	3	3	3	2	3				
C03	3	3	3	3	3	3	3	3	3				
CO4	3	3	3	3	2	3	3	2	3				
CO5	3	3	3	2	3	2	3	2	3				
COs / PSOs		PSO1	PSO	D2	PSO	3							
CO1		2	2	2	3								
CO2		1	2	2	3								
C03		2		3	3								
CO4		1		1	2								
CO5		2	2	2	3								
3/2/1 Indicates	Streng	th Of Corre	lation, 3 –	High, 2-	Medium	, 1- Low							
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
	<u> </u>	<u> </u>	X H	P.	<u> </u>	0	1 1		<u>√</u>				

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India

Course Code:	Course Name: DISSERTATION PHASE II	Ty/Lb/	L	T/S.Lr	P/R	C
EMSE22L06		ETL				
	Prerequisite: Nil	Lb	0	0/0	10/10	10

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL: Theory/Lab/Embedded

Theory and Lab

OBJECTIVE

The student shall be capable of identifying a problem related to the program of study and carry out wholesome research on it leading to findings which will facilitate development of a new/improved product, process for the benefit of the society.

M. Tech projects should be socially relevant and research oriented ones. Each student is expected to do an individual project. The project work is carried out in two phases – Phase I in III semester and Phase II in IV semester. Phase II of the project work shall be in continuation of Phase I only. At the completion of a project the student will submit a project report, which will be evaluated (end semester assessment) by duly appointed examiner(s). This evaluation will be based on the project report and a viva voce examination on the project. Student will be allowed to appear in the final viva voce examination only if he / she has submitted his / her project work in the form of paper for presentation / publication in a conference / journal and produced the proof of acknowledgement of receipt of paper from the organizers / publishers.

(An ISO 21001 : 2018 Certified Institution)	
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnad	u, India.

Course Code:	Course Name: RESEARCH PUBLICATION	Ty/Lb/	L	T / S.Lr	P/R	C
EMSE22I03		ETL				
	Prerequisite: Nil	IE	0	0/0	2/2	2

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL:

Theory/Lab/EmbeddedTheory and Lab

OBJECTIVE

Students are supposed to prepare and publish the article based on either his term paper or area of research in peer reviewed referred journal. Code of research publication ethics should be followed. After publishing the article students should present a seminar in presence of department faculties and PG students. At the end of semester viva examination will be conducted by the examiners appointed by the Head of the department.

PROGRAM ELECTIVE -I

Prerequisite: Strength of Materials/ Structural Alalysis Ty 3 0/0 0/0	Course	e Code 22E01	I	ourse Na	me : THE	ORY O	F THIN	PLATE	S AND		Ty/Lb/ ETL	L	T/S.Lr	P/R	C
COURSE OUTCOMES (Cos) : At the end of the course, students will be able to			Pre	erequisit	e: Streng	th of M	I aterials	/ Struct	ural Ala	lysis	Ту	3	0/0	0/0	3
COUNSE OUTCOMES (Cos) : At the end of the course, students will be able to							g P : Pro	oject R:	Research	n C: Cre	dits				
At the end of the course, students will be able to	OBJE	CTIVE	ES: Stud	ly the be	haviour a	nd desig	gn of sh	ells, des	sign of p	lates.					
Ability to learn about behaviour and analysis of thin plates				,	,										
Ability to learn about behaviour and analysis of thin plates		end of	the cour	se, stud	ents will l	be able t	to								
Understand Isotropic and orthotropic plates, bending and twisting of plates; Numerical solutions. Study the behaviour and design of shells, design of plates		Abilit	y to lear	n about	behaviou	r and an	alysis o	f thin p	ates						
Study the behaviour and design of shells, design of plates	CO2	Under	stand Is	otropic a	and ortho	tropic p	lates, be	ending a	nd twist	ing of p	lates; Nu	merica	l solutions	h.	
To Analyze the Various Problems using different theories based on plate and shells	CO3	Study	the heh	aviour a	nd design	of shell	ls desig	n of nla	tes						
Mapping of Course Outcomes with Program Outcomes (POs)	CO4									ed on p	late and sl	nells			
COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 CO1 2 3 2 3 1 3 2 3 2 CO2 1 3 1 3 2 3 1 2 1 CO3 2 3 3 3 3 3 2 3 2 CO4 3 3 2 3 2 3 2 3 CO5 2 3 3 3 3 3 2 3 CO4 1 2 3 2 2 3 CO4 1 2 2 3 3 2 3 CO4 1 2 2 3 3 2 3 3/2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- Low 2 2 2 3 2 4 4 4 4 4 <	CO5	Toappl	y a new	knowle	dge relate	ed with	differen	t theorie	s based	on plat	e and shel	lls			
COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 CO1 2 3 2 3 1 3 2 3 2 CO2 1 3 1 3 2 3 1 2 1 CO3 2 3 3 3 3 3 2 3 2 CO4 3 3 2 3 2 3 2 3 CO5 2 3 3 3 3 3 2 3 CO4 1 2 3 3 2 2 3 CO4 1 2 2 3 3 2 3 CO4 1 2 2 3 3 2 3 3/2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- Low 2 2 2 3 Category 2 2 2	Mappi	 ing of C	ourse Oi	utcomes	with Prog	ram Ou	tcomes ((POs)							
CO1									PO7	PO8	PO9				
CO2															
CO3															
CO4 3 3 2 3 2 3 1 2 3 CO5 2 3 3 3 3 3 3 2 2 3 CO5/PSOS PSO1 PSO PSO3 CO1 1 2 3 CO2 3 2 2 CO3 3 2 2 2 CO3 3 2 2 2 CO4 1 2 2 2 CO5 2 2 3 3 3/2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- Low Category Radius R															
COs / PSOs PSO1 PSO PSO3															
CO1	CO5		2	3	3	3	3	3	2	2	3				
CO1	COs /]	PSOs		PSO1			PS	О3							
CO3	CO1			1			3	3							
Cotegory Category Category Category Description: Category Description: Category Category															
Cotegory Category Catego															
3/2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- Low Humanities and Sociences Sciences Program Core Open Electives Open Electives Practical / Project Practical / Project															
Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core Program Electives Open Electives Skill component Practical / Project		ndicates	Strength						337						
	3/2/11	naicaics	Strength	Orcom		- 111gii, 2	- Wicdiu	III, 1- LO	V						
	Categ	gory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core		Open Electives	Interdisciplinary	Skill component	Practical / Project				
							✓								

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code : EMSE22E01	Course Name: THEORY OF THIN PLATES AND SHELLS	Ty/Lb/ ETL	L	T/S.Lr	P/R	C
	Prerequisite: Strength of Materials/ Structural Alalysis	Ту	3	0/0	0/0	3
L: Lecture T: T	utorial SLr: Supervised Learning P: Project R: Resear	ch C:				

CreditsT/L/ETL: Theory / Lab / Embedded Theory and Lab

UNIT I: BENDING OF RECTANGULAR PLATES

9 Hrs

Introduction to plate theory - Small deflection of laterally loaded thin rectangular plates for pure bending. Navier's and Levy's solution for various lateral loading and boundary conditions (No derivation) - Numerical examples.

UNIT II: BENDING OF CIRCULAR PLATES

9 Hrs

Energy methods for rectangular and circular plates with clamped edges subjected to symmetric loadings.

UNIT III: CLASSIFICATION OF SHELLS

9 Hrs

Introduction to curved surfaces and classification of shells - Membrane theory of spherical shells - cylindrical shells - hyperbolic paraboloids - elliptic paraboloid and conoids.

UNIT IV: MEMBRANE THEORY

9 Hrs

Axially symmetric bending of shells of revolution - Closed cylindrical shells - water tanks, sphericalshells and Geckler's approximation - Bending theory of doubly curved shallow shells.

UNIT V: FLEXURE THEORY

9 Hrs

Design and detailing of folded plates with numerical examples Design and Detailing of simple shellproblems – spherical domes, water tanks, barrel vaults and hyperbolic paraboloid roofs

Total No of Hours: 45

- 1. Flugge, Stresses in shells, 2nd ed., Springer Verglag, Berlin, 1960
- 2. Sziland, R. Theory and Analysis of Plates (Classical and Numerical Methods) Prentice Hall, Ijc.New Jersy, 1974.
- 3. Billington, D.P. Thin Shell concrete structures 2nd ed. McGraw Hill Book Co., New York, 1965.
- 4. Ugural, Il. Theory and practice of shell structures, Wilhelm Ernst and John Berlin, 1968.
- 5. Timoshenko.S and Krieger.S.W., Theory of Plates and Shells, McGraw Hill Co., New York 1990.

BJECT uipmer COURS the end	re T : Ted Theo	Ma	requisite	e : Cor						ETL				C
BJECT uipmer COURS the end	ed Theo	utorial	COLICID		icrete '	Technol	ogy/ C	Composit	e	Ту	3	0/0	0/0	3
BJECT uipmer COURS the end	TIVES			upervised	Learnin	g P : Pro	oject R:	Researc	h C: C	reditsT/L/	ETL:	Theory / L	ab /	
course the end		•												
the end												cture and a	lso the	
the enc						es of str	uctures 1	from fou	ındatıon	to super	structu	re		
C O1														
				behaviou		mposite	materia	als – Fe	rrocem	ent. SIFC	ON an	nd		
F				ete by un										
C O2 C	Classify	the ma	terials as	s per ortho	otropic a	nd aniso	tropic b	ehaviou	r.					
C O3 E	Estimate	e strain	constant	s using th	eories a	pplicable	e to com	posite m	aterials	J.				
				ctural elei										
C O5 T	o creat	e e new	idea ab	out cemer	nt concre	ete in the	constru	action fi	eld.					
/Iapping	g of Cou	urse Ou	tcomes v	vith Progr	am Outo	comes (P	Os)							
COs/POs	S	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1		2	1	2	3	2	1	2	1	3				
CO2		3	2	1	2	3	2	3	2	2				
C03		1	2	3	1	2	3	2	3	3				
CO4		2	3	1	2	3	2	3	1	3				
CO5		1	2	3	2	3	1	3	2	2				
COs / PS	SOs		PSO1	PSC	D2	PS	O3							
CO1			3	2	2	3	3							
CO2			3	1		2	2							
203			2	3			[
CO4			3	2	2	3	3							
CO5			2	1	-		2							
/2/1 Ind	licates S	trength	Of Corre	lation, 3 –	High, 2-	Medium,	1- Low							
Categoi	ry	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
		Basi	Eng	Hun Scie	Prog	Prog	Ope	Inte	Sk	Prac				

Course Code :	Course Name: THEORY AND APPLICATIONS OF CEMENT COMPOSITES	Ty/Lb/ ETL	L	T / S.Lr	P/R	С
EMSE22E02	Prerequisite: Concrete Technology/ Composite	Ту	3	0/0	0/0	3

L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: CreditsT/L/ETL : Theory / Lab / Embedded Theory and Lab

UNIT I – INTRODUCTION

9 Hrs

Classification and Characteristics of Composite Materials- Basic Terminology, Advantages. Stress-Strain Relations- Orthotropic and Anisotropic Materials, Engineering Constants for Orthotropic Materials, Restrictions on Elastic Constants, Plane Stress Problem, Biaxial Strength, Theories for an Orthotropic Lamina.

UNIT II - MECHANICAL BEHAVIOUR

9 Hrs

Mechanics of Materials Approach to Stiffness - Determination of Relations between Elastic Constants, Elasticity Approach to Stiffness- Bounding Techniques of Elasticity, Exact Solutions - Elasticity Solutions with Continuity, Halpin, Tsai Equations, Comparison of approaches to Stiffness.

UNIT III - CEMENT COMPOSITES

9 Hrs

Types of Cement Composites, Terminology, Constituent Materials and their Properties, Construction Techniques for Fibre Reinforced Concrete - Ferrocement, SIFCON, Polymer Concretes, Preparation of Reinforcement, Casting and Curing.

UNIT IV - MECHANICAL PROPERTIES OF CEMENT COMPOSITES

9 Hrs

Behavior of Ferrocement, Fiber Reinforced Concrete in Tension, Compression, Flexure, Shear, Fatigue and Impact, Durability and Corrosion.

UNIT V - APPLICATION OF CEMENT COMPOSITES

9 Hrs

FRC and Ferrocement- Housing, Water Storage, Boats and Miscellaneous Structures. CompositeMaterials- Orthotropic and Anisotropic behaviour, Constitutive relationship, Elastic Constants.

Total No of Hours: 45 Hrs

- 1. Mechanics of Composite Materials, Jones R. M., 2nd Ed., Taylor and Francis, BSP Books, 1998.
- 2. Ferrocement Theory and Applications, Pama R. P., IFIC, 1980.
- 3. New Concrete Materials, Swamy R.N., 1stEd., Blackie, Academic and Professional, Chapman & Hall, 1983.

Course	e Code		ourse Na FABILI	ame : ТН ГҮ	EORY	OF STR	RUCTU.	RAL		Ty/Lb/ ETL	L	T/S.Lr	P/R	C
EMSE2	22E03	Pr II	erequis	ite: Need	to study	y Structu	ıral Ana	lysis I &		Ту	3	0/0	0/0	3
			rial SLr and Lat		ised Le	arning I	P : Proj	ect R : F	Researc	h C: Cre	dits T/	L/ETL : T	heory /	La
OBJE	CTIVE	S: To	study the	e concept	of buck	ling and	analysis	s of struc	ctural el	ements				
				s): (3-5)										
At the CO1				ents will b										
201	To lea	rn the c	lassical 1	methods o	of structi	ıral anal	ysis in c	olumns						
CO2	To und	derstand	d the met	thod of so	lving in	beams,c	olumns	and fran	nes and	plates				
CO3		. •	•	of virtual					-			•		
CO4		alyze the	e structu	res by cal	culating	forces a	and disp	lacemen	ts in str	ıctures dı	ie to gi	ven loads a	nd imp	ose
CO5			ne bendir	ng momer	ıt using	slope de	flection	momen	t distrib	ution and	l appro	ximate met	hods	
				es with P							11-0			
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1		2	1	2	3	2	1	2	1	3				
CO2		3	2	1	2	3	2	3	2	2				
C03		1	2	3	1	2	3	2	3	3				
CO4		2	3	1	2	3	2	3	1	3				
CO5		1	2	3	2	3	1	3	2	2				
COs /	PSOs		PSO1	PSC	D2	PS	SO3							
CO1			3	:	2		3							
CO2			3		1		2							
C03			2		3 2		1							
CO4			3	•	<u></u>		3							
CO5	1' 4	C.	2	1.4	J 11.		2	T						
3/2/1 11	ndicates	Streng		orrelation,	3 – H1g	n, 2- Me	edium, I	- Low						
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
Approv	al					V								

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India

	ETL			
Prerequisite: Need to study Structural Analysis I & Ty II	Гу 3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL: Theory / Lab / Embedded Theory and Lab

UNIT I: BUCKLING OF COLUMNS

9 Hrs

Concept of stability approaches to stability analysis - characteristics of stability problems - Columns - Buckling of columns with various end conditions, imperfect columns - Elastically supported columns - non-prismatic columns - Built-up columns - Inelastic buckling - Experimental study of column behaviour - Empirical column formulae - Buckling of bars on elastic foundations - Large deflection of buckled bars.

UNIT II: BUCKLING OF BEAM-COLUMNS AND FRAMES

9 Hrs

Beam-column theory - Application to buckling of frames.

UNIT III: TORSIONAL AND LATERAL BUCKLING

9 Hrs

Combined tensional and flexural buckling - Lateral Buckling - Lateral buckling of beams - pure bending of simply supported beam and cantilever - numerical solutions.

UNIT IV: BUCKLING OF PLATES

9 Hrs

Buckling of thin plates - various edge conditions, inelastic buckling - post buckling strength.

UNIT V: APPROXIMATE METHODS

9 Hrs

Energy methods - Iterative procedure and Finite element formulation.

Total No of Hours: 45

- 1. Allen, H.G., and Bulson, P.S., Background to Buckling, McGraw Hill Book Company, New Delhi 1980.
- 2. Smitses, Elastic Stability of Structures, Prentice Hall, New Delhi 1973.
- 3. Chajes, A. Principles of Structures Stability Theory, Prentice Hall, New Delhi 1974.
- 4. Ashwini Kumar, Stability Theory of Structures, Tata McGraw Hill Publishing Company Ltd., New Delhi, 1985.
- 5. Timoshenko, S., and Gere., Theory of Elastic Stability, McGraw Hill Book Company, New Delhi 1961
- 6. Brush and Almorth., Buckling of Bars, Plates and Shells, McGraw Hill Book Company, New Delhi

1	e Code	:	ourse Na	me: SOIL	STRUC	CTURE	INTERA	CTION		Ty/Lb/ ETL	L	T/S.Lr	P/R	С	
EMSI	E 22E04	Pr	erequisit	e : Basic	Concept	of Soil	Mechai	nics		Ту	3	0/0	0/0	3	
Lab /]	Embedd	led The	ory and I			C	3					L: Theory	/		
			TES (Co												
				ents will be ture inter											
CO1						•			4		1	L:1:4	4: .		
CO2	consol		engineer	ing prop	erues i	ike iie	ia dens	sity, sn	ear stre	engin, p	ermea	bility, com	ірасно	n and	
CO3			ır, UCC,	consolida	ation and	d triaxia	l compr	essive st	trength v	value of s	soil sar	mple			
CO4				oes of fra								*			
			• •	r stress- s				2			F - 5.				
CO5								ng stres	s- strair	charact	eristics	s of real soi	i1		
Mapp	ing of (Course Outcomes with Program Outcomes (POs)													
COs/I	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9					
CO1		3	2	3	2	3	2	3	3	3					
CO2		2	1	3	2	1	3	3	2	3					
C03		2	2	3	1	3	2	1	3	2					
CO4		3	2	3	1	2	3	2	1	2					
CO5		3	2	3	2	3	1	2	3	2					
COs /	PSOs	P	SO1	PS	O2	PS	SO3		•						
CO1			2		3		3								
CO2			1		1		3								
C03			3		2		2								
CO4			2		1		3								
CO5			3		3		2								
3/2/1]	Indicate	s Streng		orrelation	$\frac{1}{3}$ – Hi	gh, 2- M	ledium,	1- Low			1				
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project					
						V									
		L		L	1	1	1	L							

(An ISO 21001 : 2018 Certified Institution)

Course Code :	Course Name: SOIL STRUCTURE INTERACTION	Ty/Lb/ ETL	L	T/S.Lr	P/R	С
EMSE22E04	Prerequisite: Basic Concept of Soil Mechanics	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: CreditsT/L/ETL: Theory /

Lab / Embedded Theory and Lab

UNIT I: SOIL-FOUNDATION INTERACTION

9 Hrs

Introduction to soil-Foundation interaction problems, soil behaviour, Foundation behavior, Interface behaviour, Scope of soil foundation interaction analysis, soil response models, Winkler, Elastic continuum, two parameter elastic models, Elastic plastic behaviour, Time dependent behaviour

UNIT II: BEAM ON ELASTIC FOUNDATION- SOIL MODELS

9 Hrs

Infinite beam, two parameters, Isotropic elastic half space, Analysis of beams of finite length, Classification of finite beams in relation to their stiffness

UNIT III: PLATE ON ELASTIC MEDIUM

9 Hrs

Infinite plate, Winkler, Two parameters, isotropic elastic medium, Thin and thick plates, Analysis of finite plates, rectangular and circular plates, Numerical analysis of finite plates, simple solutions

UNIT IV: ELASTIC ANALYSIS OF PILE

9 Hrs

Elastic analysis of single pile, Theoretical solutions for settlement and load distributions, analysis of pile group, Interaction analysis, Load distribution in groups with rigid cap.

UNIT V: LATERALLY LOADED PILE

9 Hrs

Load deflection prediction for laterally loaded piles, Sub-grade reaction and elastic analysis, Interaction analysis, Pile raft system, Solutions through influence charts

Total No of Hours: 45

- 1. Selva durai, A.P.S.., Elastic Analysis of Soil Foundation Interaction, Elsevier, 1979
- 2. Poulos, H.G., and Davis, E.H., Pile Foundation Analysis and Design, John Wiley, Tata McGraw Hill Publishing Co. 2nd Edition, Berlin 1988.
- 3. Scott, R.F., Foundation Analysis, Prentice Hall, 1981 New Jercy
- 4. Structure Soil Interaction State of Art Report, Institution of Structural Engineers, New Delhi 1978
- 5. ACI 336, Suggested Analysis and Design Procedures for combined footings and Mats, American Concrete Institute, Delhi, 1988

PROGRAM ELECTIVE -II

					Periyar E.V	R. High Road, M	Maduravoyal, C	hennai-95. Tam	ilnadu, India.					
	e Code :		rse Nan	ne : REI RES	PAIR A	ND RE	CHABII	ITATI	ON OF	Ty/Lb/ ETL	L	T/S.Lr	P/R	C
EMSE	E22E05	Prer	equisite:	Basic Lev	vel Repai	r and Re	habilitat	ion of St	ructures	Ту	3	0/0	0/0	3
L : Le	cture T:	Tutoria	al SLr:	Supervise	d Learni	ing P : P	roject R	: Resea	rch C: C	L CreditsT/L	/ETL :	Theory / I	Lab	
	edded T			1		U	3					J		
OBJE	CTIVE	S :												
COUI	RSE OU	TCOM	IES (Co	s): (3-5))									
				ents will b										
CO1	Ability	to lear	rn about	the healt	h of str	ucture u	sıng sta	tic field	method	ls and dyn	namic	field		
CO2		41	1'	. 41 - 4	4	14	1:		1					
CO3				in the stru it repairs a										
CO4				n structur										
						•								
CO5	Sugge	st repan	rs and re	habilitatio	n measi	ires of th	ne struct	ure						
Mapp	ing of C	Course (Outcom	es with P	rogram	Outcon	nes (PO	s)						
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1		2	1	2	3	2	1	2	1	3				
CO2		3	2	1	2	3	2	3	2	2				
C03		1	2	3	1	2	3	2	3	3				
CO4		2	3	1	2	3	2	3	1	3				
CO5		1	2	3	2	3	1	3	2	2				
COs /	PSOs		PSO1	PS	02	PS	O3							
CO1			3		2		3							
CO2			3		1		2							
C03			2		3		1							
CO4			3		2	,	3							
CO5			2		1		2							
3/2/1 I	Indicates	Streng		rrelation,	3 – Hig	h, 2- Me	edium, 1	- Low	ı	Г				
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
		Щ	Ш	T. S	<u>L</u>	,		l l	N					
						V								

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code :	Course Name: REPAIR AND REHABILITATION OF STRUCTURES	Ty/Lb/ ETL	L	T / S.Lr	P/R	C
EMSE22E05	Prerequisite: Basic Level Repair and Rehabilitation of	Ту	3	0/0	0/0	3
	Structures					
TT COM	'1 GI G ' 1I ' D D ' D D 1 G	C 1' T /T /		TC1 / T	1 /	

 $L: Lecture\ T: Tutorial\ SLr: Supervised\ Learning\ P: Project\ R: Research\ C: Credits\ T/L/ETL: Theory\ /\ Lab\ /\ Embedded\ Theory\ and\ Lab$

UNIT I MAINTENANCE AND REPAIR STRATEGIES

9 Hrs

Maintenance, Repair and Rehabilitation, Facets of Maintenance, importance of Maintenance, Various aspects of Inspection, Assessment procedure for evaluating a damaged structure, causes of deterioration.

UNIT II SERVICEABILITY AND DURABILITY OF CONCRETE

9 Hrs

Quality assurance for concrete – Strength, Durability and Thermal properties, of concrete Cracks, different types, causes – Effects due to climate, temperature, Sustained elevated temperature, Corrosion - Effects of cover thickness and cracking.

UNIT III MATERIALS FOR REPAIR

9 Hrs

Special concretes and mortar, concrete chemicals, special elements for accelerated strength gain, Expansive cement, polymer concrete, sulphur infiltrated concrete, Ferro cement, Fibre reinforced concrete.

UNIT IV TECHNIQUES FOR REPAIR AND PROTECTION METHODS

9 Hrs

Rust eliminators and polymers coating for rebars during repair, foamed concrete, mortar and dry pack, vacuum concrete, Gunite and Shotcrete, Expoxy injection, Mortar repair for cracks, shoring and underpinning. Methods of corrosion protection, corrosion inhibitors, corrosion resistant steels, coatings and cathodic protection. Engineered demolition techniques for dilapidated structures – case studies

UNIT V REPAIR, REHABILITATION AND RETROFITTING OF STRUCTURES

9 Hrs

Repairs to overcome low member strength. Deflection, Cracking, Chemical disruption, weathering corrosion, wear, fire, leakage and marine exposure.

Total No of Hours: 45

TEXT BOOKS:

- 1. Denison Campbell, Allen and Harold Roper, "Concrete Structures, Materials,
- 2. Maintenance and Repair", Longman Scientific and Technical UK, 1991.
- 3. Allen R.T. & Edwards S.C, Repair of Concrete Structures, Blakie and Sons, UK, 1987

- 1. Shetty M.S., "Concrete Technology Theory and Practice", S.Chand and Company, 2008.
- 2. Dov Kominetzky.M.S., "Design and Construction Failures", Galgotia Publications Pvt. Ltd., 2001
- 3. Ravishankar.K., Krishnamoorthy.T.S, "Structural Health Monitoring, Repair and Rehabilitation of Concrete Structures", Allied Publishers, 2004.
- 4. CPWD and Indian Buildings Congress, Hand book on Seismic Retrofit of Buildings, Narosa Publishers, 2008.
- 5. Gambhir.M.L., "Concrete Technology", McGraw Hill, 2013

					Periyar E.V	.R. High Road, I	Maduravoyal, C	hennai-95. Tan	nilnadu, India.					
	e Code : E 22E06		ourse Na	me : STR RING	UCTUF	RAL HE	EALTH			Ty/Lb/ ETL	L	T/S.Lr	P/R	C
		Pr		e: Static a	nd Dyna	amic dis	tress/ Re	epair		Ту	3	0/0	0/0	3
I · I e	cture T		d Rehab		d Learni	inα P · P	roject R	· Resea	rch C· (TreditsT/L	/FTI ·	 : Theory / I	ah	
	edded T			ouper vise	a Dearm	ing i . i	roject ix	. Itosou	ion c.	oreans 17 L	"LIL.	Theory	240	
OBJE	CTIVE	S :												_
COLI	RSE OI	ITCON	IES (Co	(3-5))									
				nts will b										
CO1	Ability	y to lea	rn about	the healt	h of str	ucture u	sing sta	tic field	method	ls and dyr	namic	field		
	tests													
CO2	Diagn	osis the	distress	in the stru	cture un	derstand	ding the	causes a	and facto	ors.				
CO3	Stude	nts to kr	ow abou	it repairs	and reha	bilitatio	n measu	res of th	e structi	ıre				
CO4	Abilit	y to inv	estigation	n structur	al relate	d proble	ms							
CO5	Sugge	st repai	rs and re	habilitatio	n meası	ires of th	ne struct	ure						
Mapp	ing of C	Course	Outcom	es with P	rogram	Outcon	nes (PO	s)						
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1		2	1	2	3	2	1	2	1	3				
CO2		3	2	1	2	3	2	3	2	2				
C03		1	2	3	1	2	3	2	3	3				
CO4		2	3	1	2	3	2	3	1	3				
CO5		1	2	3	2	3	1	3	2	2				
COs/	PSOs		PSO1	PS	02	PS	SO3			I				
CO1			3		2	,	3							
CO2			3		1		2							
C03			2		3		1							
CO4			3		2		3							
CO5			2		1		2							
3/2/1 I	Indicate	s Streng	th Of Co	rrelation,	3 – Hig	h, 2- Me	edium, 1	- Low				į		
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
		<u>m</u>		N S	Ь	ļ.,		I I	N	Ь				
						$\sqrt{}$								

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India

Course Code : EMSE22E06	Course Name: STRUCTURAL HEALTH MONITORING	Ty/Lb/ ETL	L	T/S.Lr	P/R	C
	Prerequisite: Static and Dynamic distress/ Repair	Ty	3	0/0	0/0	3
	and Rehabilitation					
L: Lecture T: Tu	torial SLr: Supervised Learning P: Project R: Research C:	CreditsT/L	/ETL:	Theory / I	Lab	
/ Embedded Theo:	ry and Lab					

UNIT I: STRUCTURAL HEALTH

9 Hrs

Factors affecting Health of Structures - Causes of Distress - Regular Maintenance.

UNIT II: STRUCTURAL HEALTH MONITORING

9 Hrs

Concepts - Various Measures -Structural Safety in Alteration - Structural Audit - Assessment of Health of Structure - Collapse and Investigation - Investigation Management - SHM Procedures.

UNIT III TESTING 9 Hrs

Testing: Static Field Testing – Dynamic field testing - Stress history data - Dynamic load allowance tests - Ambient vibration tests - Forced Vibration Method - Dynamic response methods.

UNIT VI DYNAMIC FIELD TESTING

9 Hrs

Types of Dynamic Field Test- Stress History Data- Dynamic Response Methods- Hardware for Remote Data Acquisition Systems- Remote Structural Health Monitoring.

UNIT V INTRODUCTION TO REPAIRS AND REHABILITATIONS OF STRUCTURES 9 Hrs

Case Studies (Site Visits), piezo-electric materials and other smart materials, electro-mechanical impedance (EMI) technique, adaptations of EMI technique.

Total No of Hours: 45

- 1. Structural Health Monitoring, Daniel Balageas, Claus_Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2006
- 2. Health Monitoring of Structural Materials and Components_Methods with Applications, Douglas E Adams, John Wiley and Sons, 2007.
- 3. Structural Health Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group, London, UK, 2006.
- 4. Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007

		Сс	ourse Na	me: STR	UCTUF	RAL OP	TIMIZ	ATION		Ty/Lb/ ETL	L	T/S.Lr	P/R	C
ENISI	522E07			e: Need to	o study]	Linear a	nd Nonl	inear		Ту	3	0/0	0/0	3
L : Le	cture T :			Supervise	d Learni	ing P : P	roject R	: Resea	rch C:	CreditsT/l	L/ETL	: Theory /		
						υ	3					,		
OBJE	OURSE OUTCOMES (Cos) : the end of the course, students will be able to													
	end of t	he cour	se, stude	nts will be	e able to	1								
	Under	stand St	ructural	optimizat	ion base	d on Op	timal cr	iteria.						
	Comp	utation o	of deriva	tives of re	sponse	quantitie	es with r	espect to	o design	variables	S.			
CO3	Non-li	near pro	ogrammi	ng by diff	erent m	ethods.								
CO4	To imp	lement t	he optin	nization C	oncepts	for the s	structura	ıl engine	ering pr	oblems.				
CO5	To eval	uate dif	ferent m	ethods of	optimiz	ation.								
Mapp	ing of C	Course (Outcom											
COs/F	Prerequisite: Need to study Linear and Nonlinear Ty 3 0/0 0/0 3													
CO1	Prerequisite : Need to study Linear and Nonlinear Ty 3 0/0 0/0 3													
CO2		3	2		2	3	2	3	2					
C03			2											
CO4		2	3	1	2	3	2	3	1	3				
CO5		1	2	3	2	3	1	3	2	2				
COs/	PSOs		PSO1	PSC	D2	PS	O3							
CO1			3	2	2		3							
CO2														
C03														
CO4														
						· ·								
3/2/1 I	ndicates	s Streng	th Of Co	rrelation,	$3 - \overline{\text{Hig}}$	h, 2- Me	edium, 1	- Low						
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	ļ.,	Open Electives	Interdisciplinary	Skill component	Practical / Project				
						√ 								

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code : EMSE22E07	Course Name: STRUCTURAL OPTIMIZATION	Ty/Lb/ ETL	L	T/S.Lr	P/R	С
	Prerequisite: Need to study Linear and Nonlinear	Ту	3	0/0	0/0	3
	Structures	-				

L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: CreditsT/L/ETL : Theory / Lab / Embedded Theory and Lab

UNIT I INTRODUCTION

9 Hrs

Introduction to optimization - engineering applications of optimization - Formulation of structural optimization problems as programming problems - Optimization Techniques- Classical optimization techniques- single variable optimization- multivariable optimization with no constraints- unconstrained minimization techniques and algorithms constrained optimization solutions by penalty function techniques- Lagrange multipliers techniques and feasibility techniques.

UNIT II LINEAR PROGRAMMING

9 Hrs

Standard form of linear programming, geometry of linear programming problems-solution of a system of linear simultaneous equations- pivotal production of general systems of equations- simplex algorithms-revised simpler methods- duality in linear programming.

UNIT III NON-LINEAR PROGRAMMING

9 Hrs

One dimensional minimization methods- elimination methods-Fibonacci method- golden section methodinterpolation methods- quadratic and cubic methods-Unconstrained optimization methods-direct search methods-random search methods- descent methods

UNIT IV CONSTRAINED OPTIMIZATION TECHNIQUES

9 Hrs

Direct methods- the complex methods- cutting plane method-exterior penalty function methods for structural engineering problems- Formulation and solution of structural optimization problems by different techniques.

UNIT V GEOMETRIC AND DYNAMIC PROGRAMMING

9 Hrs

Geometric programming, conversion of NLP as a sequence of LP/ geometric programming- Dynamic programming conversion of NLP as a sequence of LP/ Dynamic programming

Total No of Hours: 45

REFERENCE:

- 1. Spunt, "Optimum Structural Design" Prentice Hall
- 2. S.S. Rao, "Optimization Theory and Practice"- Wiley Eastern Ltd.
- 3. Uri Krisch, "Optimum Structural Design"- McGraw Hill
- 4. Richard Bronson, "Operation Research" Schaum's Outline Series
- 5. Bhavikatti S.S.- "Structural optimization using sequential linear programming"- Vikas publishing house

					Periyar	E.V.R. High Roa	id, Maduravoya	, Chennai-95. T	amilnadu, Ind	lia.				
	e Code : E 22E08	Co	urse Na	me : PRE	FABRI	CATED	STRU	CTURE	S	Ty/Lb/ ETL	L	T/S.Lr	P/R	C
LIVIOI	22200			e: Need t		Concrete	e Techno	ology an	d	Ty	3	0/0	0/0	3
т.т.	otavas T			on Materi		D . D	uningt D	. D	-ala Cui	CreditsT/L	/ETI	The second /		
			ry and L		d Learm	ing P: P	rojeci K	. Resear	cn C.	realts 1/L	/EIL:	Theory /		
				design pr	inciples.	analysi	s and de	sign of e	lement	s				
						- analy 51	and de							
			ES (Cos	s) : ents will b	a a h la ta									
				iple of fa			20							
COI	10 lear	ii tiic ba.	sic princ	ipic or ia	oricated	structure	23							
CO ₂	To Und	lerstand	the conc	cept of St	ructural	prefabri	cated ele	ements						
CO3	To kno	w abnor	mal load	ls which a	re hazar	dous to j	prefabrio	cated stri	uctures					
CO4	To ana	lyze the	Structur	ral elemei	nts									
CO5	To fam	iliarize v	with join	ing techn	iques us	ed for pr	efabrica	tion						
				es with P										
COs/I	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1		3	2	1	2	3	3	2	2	3				
CO2		2	1	2	3	2	3	1	2	3				
C03		2	3	3	2	1	3	2	3	2				
CO4		1	2	3	2	3	2	1	2	1				
CO5		2	3	2	3	1	2	3	2	2				
COs /	PSOs	PS	SO1	PS	O2	PS	SO3							
CO1			1		2		3							
CO2			2		3		3							
C03			3		2		3							
CO4			2		3		2							
CO ₅			2		3		3							
3/2/1 1	Indicate	s Streng	th Of Co	rrelation,	3 – Hig	h, 2- Me	dium, 1	- Low						
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
								I	V 1	<u> </u>				

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India

Course Code : EMSE22E08	Course Name : PREFABRICATED STRUCTURES	Ty/Lb/ ETL	L	T / S.Lr	P/R	С
	Prerequisite: Need to study Concrete Technology and Construction Materials	Ту	3	0/0	0/0	3

L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: CreditsT/L/ETL : Theory / Lab / Embedded Theory and Lab

UNIT I: INTRODUCTION

9 Hrs

Concept of planning and layout of prefabricated plant. IS Code specification. Modular co-ordination, standardization, production, transportation, erection, stages of loading and coal provisions, safety factors, material properties, Deflection control, Lateral load resistance, Location and types of shear walls.

UNIT II: REINFORCED CONCRETE

9 Hrs

Prefabricated structures - Long wall and cross-wall large panel buildings, one way and two way prefabricated slabs, Framed buildings with partial and curtain walls

UNIT III: FLOORS, STAIRS AND ROOFS

9 Hrs

Types of floor slabs, analysis and design example of cored and panel types and two-way systems, staircase slab design, types of roof slabs and insulation requirements, Description of joints

UNIT IV: WALLS 9 Hrs

Types of wall panels, Blocks and large panels, Curtain, Partition and load bearing walls, types of wall joints, Leak prevention, joint sealants, sandwich wall panels.

UNIT V: ACCESSORIES AND PLUMPING

9 Hrs

Folded plate and hyper-prefabricated shells, Erection and jointing, joint design, Water leakage, damp proofing

Total No of Hours: 45

*Note: (Use of approved data books permitted)

- 1. B.Lewicki, Building with Large Prefabricates, Elsevier Publishing Company, Amsterdam/London/New York, 1966.
- 2. Koncz.T., Manual of Precast Concrete Construction, Vol.I II and III, Bauverlag, GMBH, 1971.
- 3. Structural Design Manual, Precast Concrete Connection Details, Society for the Studies in the use of Precase Concrete, Netherland Betor Verlag, London 1978.
- 4. Lasslo Mokk, Prefabricated Concrete for Industrial and Public Sectors, Akademiai Kiado, Budapest, 1964.
- 5. Murashev.V., Sigalov.E., and Bailov.V., Design of Reinforced Concrete Structures, Mir Publishers, London 1968.
- 6. CBRI, Building Materials and Components, 1990, India.
- 7. Gerostiza. C.Z., Hendrikson, C., Rehat D.R., Knowledge Based Process Planning for Constructionand Manufacturing, Academic Press, Inc., London 1989.

PROGRAM ELECTIVE-III

	e Code : E 22E09			me: ADV				IGN		Ty/Lb/ ETL	L	T / S.Lr	P/R	C
			erequisit ructures	e : Design	of steel	Structu	res			Ту	3	0/0	0/0	3
L : Leo	cture T :			Supervise	d Learni	ing P : P	roject R	: Resea	rch C:	CreditsT/L	LETL :	Theory /]	Lab	
	edded T													
			•	•		•				Various				Ste
					d of struc	ctural an	alysis a	nd Analy	sis and	design of	industr	rial structu	res.	
			IES (Co	s): ents will b	e ahle to									
CO1								21.1						
	To kno	ow the g	general p	rinciple o	f steel s	tructure	s in vari	ous field	l.					
C O2	To und	derstand	l the Var	ious types	s of con	nections	, Steel t	ransmiss	sion line	e towers.				
C O3	Analy	ze and d	lesign of	beam and	d columr	ı stabilit	v and str	rength						
C O 4														
C O 5	Design	i weide	d and bo	lted conne	ections a	nd Plast	ic Analy	/S1S						
				ructures &										
Mapp	ing of C	Course	Outcom	es with P	rogram	Outcon	nes (PO	s)						
COs/P	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
C O 1		1	2	3	3	2	3	3	2	3				
CO2		3	2	3	2	3	3	3	2	2				
C 03		3	2	3	1	2	3	2	1	3				
C O4		3	2	3	2	3	2	3	2	3				
C O 5		3	2	3	2	3	1	2	3	2				
COs /	PSOs	P	SO1	PS	O2	PS	803							
C O 1			1		2		3							
CO2			3		2		3							
C 03			3		3		3							
CO4 CO5			3		3 2		3							—
	ndiaata	Stuana			_	h 2 Ma		Lavy						
<u>)/∠/11</u>	nuicate	s streng		orrelation,	3 – H1g	11, Z- M€	zurum, 1	- LOW						
Cotos	147 7	ses	Science	and	e le	ctives	ves	nary	nent	roject				
Catego	эгу	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
		as	ng n	[,E 8	2	12	<u>a</u>	#	½	rg E				
		Bas	Eng	Hun	Pro	1	do	Inte	Ski	Pra				
		Bas	Eng	Hun	Pro	Pro	ďO	Inte	Ski	Pra				

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India

Course Code : EMSE22E09	Course Name: ADVANCED STEEL DESIGN	Ty/Lb/ ETL	L	T/S.Lr	P/R	C
	Prerequisite : Design of steel Structures	Ty	3	0/0	0/0	3
	Structures					
T T . T .	1 CI C 1I D D D D . 1	G G 1'	OD /T /ID/	TT TI		

L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: CreditsT/L/ETL : Theory / Lab / Embedded Theory and Lab

UNIT I GENERAL 9 Hrs

Beams subjected to biaxial bending - Built-up Purlins - Various types and design -Design of Wind girders-Beam-columns - With various support conditions-Design of foundations-with lateral forces.

UNIT II CONNECTIONS 9 Hrs

Bearing type joints - unstiffened and stiffened seat connections - moment resisting connection of brackets-bolted and welded-semi-rigid connections.

UNIT III TOWERS 9 Hrs

Basic structural configurations - free standing and guyed towers - loads on towers -wind loads - foundation design - design criteria for different configurations and transmission line towers

UNIT IV PLASTIC ANALYSIS

9 Hrs

Theory of plastic bending - Plastic hinge concept - Mechanism method - Application to continuous beams and portal frames-Plastic moment distribution - Analysis of Gable frames - instantaneous centre of rotation - Connections.

UNIT V INDUSTRIAL BUILDINGS AND PRE-ENGINEERED BUILDINGS

9 Hrs

Industrial buildings-braced and unbraced - Gable frames with gantry-Rigid industrial frames-Fire resistant design-Fatigue resistant design-Standard design loads - Advantages of pre engineered buildings - Framing systems for Pre Engineered steel buildings - Characteristics of Pre Engineered steel buildings

Total No of Hours: 45

REFERENCE:

- 1 Subramanian. N, "Design of Steel Structures: Theory and Practice", Oxford university Press, U.S.A, Third Edition, 2011.
- 2. Dugga l.S.K, "Design of Steel Structures", McGraw Hill New Delhi, 2010
- 3. Dayaratnam. P, "Design of Steel Structures," Chand. S, Limited, New Delhi. 2008.
- 4. John. E, Lothers, "Structural Design in Steel", Prentice Hall, 1999.
- 5. Neal. B.G, "Plastic Method of Structural Analysis", Taylor & Francis, Third Edition, 1985.
- 6. Edwin .H, Gaylord, Charles .N, Gaylord, James .E, Stallmeyer, "Steel Structures", McGraw Hill, New Delhi, 1980.
- 7. Ramchandra, "Design of Steel Structures", Vol I & II Standard Book House, Delhi, 1975.
- 8. Arya.S and Ajmani.J.L, "Design of Steel Structures", Nem Chand & Bros, Roorkee

Course EMSE	Code : 22E10			me: DESI			VORK			Ty/Lb/ ETL	L	T/S.Lr	P/R	C
		Pre	erequisit	e : Buildi	ng Mate	rials				Ту	3	0/0	0/0	3
				Supervise	d Learni	ing P : P	roject R	: Resea	rch C:	CreditsT/I	LETL :	Theory /	Lab	
		heory ar												
OBJE	CTIVE	S :To 1	ındersta	nd requir	ement o	f formw	vork and	d Judge	the for	mwork fa	ilures t	hroughcas	e studie	es
			IES (Co se, stude	s): nts will b	e able to	1								
CO1	To ren	nember	the basic	concept	about th	e constr	uction n	naterials						
CO2	To kno	ow the b	ehavior	of tall bu	ildings d	lue to va	rious ty	pes of lo	ads.					
CO3	To Sel	ect the	proper fo	ormwork,	accesso	ries and	materia	1.						
CO4	Design	n the for	m work	for Beam	s, Slabs,	column	s, Walls	and Fou	undatio	ns and spe	cial stru	actures.		
CO5				rk failure			-							
—— Mappi	ing of C	Course (Outcom	es with P	rogram	Outcon	nes (PO	s)						
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1		3	1	2	1	2	3	2	3	2				
CO2		2	3	2	1	3	2	3	3	2				
C03		2	3	2	3	2	3	3	2	3				
CO4		3	3	3	2	1	2	3	2	3				
CO5		1	2	2	3	2	3	2	3	2				
COs / 1	PSOs	PSO1		PSO2		PSO3								
CO1		1		2		3								
CO2		3		2		3								
C03		2		3		2								
CO4		3		3		3								
CO5	11		1.000		2 11.		1' 1	T						
3/2/1 11	ndicates	Streng		rrelation,	$\frac{3-\text{Hig}}{ }$	h, 2- Me	edium, I	- Low						
Catego	ry	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
		Ba	En	Hu So	Pro	Pr	Q	Int	Sk	Pr				

Course Code : EMSE22E10	Course Name: DESIGN OF FORMWORK	Ty/Lb/ ETL	L	T/S.Lr	P/R	С
	Prerequisite: Construction Materials	Ту	3	0/0	0/0	3
L : Lecture T : Tu	torial SLr: Supervised Learning P: Project R: Research C	: CreditsT/	L/ETL	: Theory /	'	

Lab / Embedded Theory and Lab

UNIT I: INTRODUCTION

9 Hrs

Requirements and Selection of Formwork.

UNIT II: FORMWORK MATERIALS

9 Hrs

Timber- Plywood- Steel- Aluminium- Plastic- and Accessories- Horizontal and Vertical Formwork Supports.

UNIT III: FORMWORK DESIGN

9 Hrs

Concepts- Formwork Systems and Design for Foundations- Walls- Columns- Slab and Beams.

UNIT IV: FLYING FORMWORK

9 Hrs

Table Form- Tunnel Form- Slip Form- Formwork for Precast Concrete- Formwork Management Issues — Pre- and Post-Award.

UNIT V: FORMWORK FAILURES

9 Hrs

Causes and Case studies in Formwork Failure-Formwork Issues in MultiStory Building Construction.

Total No of Hours: 45

- 1. Formwork for Concrete Structures, Peurify, Mc Graw Hill India, 2015.
- 2. Formwork for Concrete Structures, Kumar NeerajJha, Tata McGraw Hill Education, 2012.
- 3. IS 14687: 1999, False workfor Concrete Structures Guidelines, BIS.

	Code :	Co	ourse Na	me: TALI	L STRUC	CTURES	•			Ty/Lb/ ETL	L	T / S.Lr	P/R	C		
				e : Concre	ete techn	ology/ S	Structura	ıl		Ту	3	0/0	0/0	3		
т.	. T .		namics	Q	11	D . D		. D	1. C	О 1:4 . Т/I	/ETT	. Tl / I	. 1.			
		i i utoria heory ai		Supervise	a Learni	ng P : P	roject K	: Kesea	rcn C:	Credits 1/1	J/EIL	: Theory / L	ab			
				behaviou	r. analvs	is and de	esign of	tall stru	ctures.							
			IES (Co	s) : nts will b	e able to											
CO1				element			sis and	design								
	Under	stand the	e Design	philosop	hv. deta	ils types	of loadi	ding and performance of concrete								
C O2					•	• •		8 1								
CO3			ysis the stability tall structure buildings ural frequency of contentious elements													
C O 5	Evalua	iie a nai	urai meg	uency or	Content	ous cicii	ICIIIS									
203	Apply	a new t	echniqu	es for con	trolling	the vibra	ation of	the struc	tures							
Mapp	ing of C	Course (Outcom	es with P	rogram	Outcon	nes (PO	s)								
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9						
C O 1		3	1	2	1	2	2	1	3	2						
CO2		3	2	3	3	3	2	3	2	3						
C 03		2	3	2	3	2	3	2	3	2						
CO4		3	3	3	2	3	1	3	2	3						
C O5		3	2	3	3	2	3	3	3	2						
Os/	PSOs	PSO1		PSO2		PSO3										
C O 1		3		2		3										
CO2		2		3		2										
C 03		1		2		3										
C O4		2		2		3										
C O5		3		2		2										
3/2/1 I	ndicates	Streng		rrelation,	3 - Hig	h, 2- Me	edium, 1	- Low	1 1							
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project						
	Ba		ΙЩ	<u> </u>	<u> </u>	<u> </u>		I		<u> </u>						

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code : EMSE22E11	Course Name: TALL STRUCTURES	Ty/Lb/ ETL	L	T/S.Lr	P/R	С
	Prerequisite: Concrete technology/ Structural	Ту	3	0/0	0/0	3
	dynamics					
I · Lactura T · Tı	storial CIr : Cunaryigad I agraing D : Draiget D : Daggarah	C. Cradita	T/I /ET	T · Theor	x /	

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL: Theory

Lab / Embedded Theory and Lab

UNIT I: DESIGN CRITERIA

9 Hrs

Design philosophy- Loading- Sequential loading and materials - high performance Concrete - Fiber reinforced Concrete - Light weight Concrete - Design mixes.

UNIT II: LOADING AND MOVEMENT

9 Hrs

Gravity Loading: Dead and live load- methods of live load reduction-Impact- gravity loading, construction load

Wind loading: Static and dynamic approach- Analytical and wind tunnel experimental method.

Earthquake loading: Equivalent lateral force- modal analysis- combinations of loading working stress design-Limit state design- plastic design.

UNIT III: BEHAVIOUR OF VARIOUS STRUCTURAL SYSTEMS

9 Hrs

Factors affecting growth- Height and Structural form- High rise behaviour Rigid frames- braced frames- Infilled frames- shear walls- coupled shear walls- wall-frames- tubular- cores- futrigger - braced and hybrid mega system.

UNIT IV: ANALYSIS AND DESIGN

9 Hrs

Modeling for approximate analysis- Accurate analysis and reduction techniques- Analysis of building as total structural system considering overall integrity and major subsystem interaction- Anlysis for member forces-drift and twist- computerised general three dimensional analysis.

Structural Elements : Sectional shapes, properties and resisting capacity-design- deflection- cracking, prestressing-shear flow- Design for differential movement- creep and shrinkage effects- temperature effects and fire resistance.

UNIT V: STABILITY OF TALL BUILDINGS

9 Hrs

Overall buckling analysis of frames, wall-frames- Approximate methods- second order effects of gravity of loading- P-Delta analysis- simultaneous first-order and P-Delta analysis-Translational-Torsional instability- out of plum effects- stiffness of member in stability- effect of foundation rotation.

Total No of Hours: 45

- 1. Dr. Y.P.Gupta, Editor. Proceedings National Seminar on High Rise Structures Design and Construction practices for middle level cities Nov. 14-16, 1995, New Age International Limited, Publishers, Madras -20.
- 2. Wilf gang Schuller, High Rise Building Structures, John Wiley and Sons, New Jercy 1977.
- 3. Taranath B.S., Structural Analysis and Design of Tall Building, McGraw Hill, 1988.
- 4. Bryan stafford Smith, Alexcoull, Tall Building Structures, Analysis and Design, John Wiley and Sons, Inc New Jercy 1977

	e Code : E 22E12	С	Course Nai	me: DESI	GN OF I	MASON	RY STR	UCTUR	ES	Ty/Lb/ ETL	L	T/S.Lr	P/R	C		
ENISI		P	rerequisit	e : Design	of conc	rete stru	ictures I	& II		Ту	3	0/0	0/0	3		
				Supervise	d Learni	ng P : P	roject R	: Resea	rch C:	CreditsT/	L/ETL	: Theory /]	Lab			
			and Lab													
OBJE	CTIVE	S :To	study the	behaviou	r, analys	is and de	esign of	masonr	y structi	ıres						
			MES (Cos		11 .											
				nts will be strength an			ncrete r	naterials	and str	uctures						
CO1		U		•		•										
CO2		stand the behaviour of the masonry structures in various load conditions. ed about the design parameters using code provisions														
CO3			o design the masonry structures by applying different loads.													
CO4	Ability	by to design the masonry structures by applying different loads.														
CO5	To app	oly the	innovativ	e idea for	masonr	y structi	ıres									
Mapp	ing of C	Course	Outcome	es with Pi	rogram	Outcon	nes (PO	s)								
COs/P	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9						
CO1		3	2	2	1	2	3	2	3	2						
CO2		2	3	2	1	3	2	3	3	2						
C03		2	3	2	3	2	1	1	2	3						
CO4		3	3	3	2	1	2	3	2	3						
CO5		3	2	2	3	2	3	2	3	2						
COs /	PSOs	PSO	1	PSO2		PSO3				'						
CO1		1		2		3										
CO2		3		2		3										
C03		2		3		2										
CO4 CO5		3		3		3										
	ndic-+-	_	oth Of C		2 11:-		.din. 1	1								
3/2/11	naicates	s Stren		orrelation,	$\frac{3-\text{Hig}}{}$	n, 2- Me	eaium, I	- Low								
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project						
						√										

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India

Course Code : EMSE22E12	Course Name: DESIGN OF MASONRY STRUCTURES	Ty/Lb/ ETL	L	T / S.Lr	P/R	С
	Prerequisite: Design of concrete structures I & II	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: CreditsT/L/ETL: Theory /

Lab / Embedded Theory and Lab

UNIT I: MATERIALS, STRENGTH AND STABILITY

9 Hrs

Bricks, Stone and Block masonry units- strength, modulus of elasticity and water absorption of masonry materials – classification and properties of mortars. Defects and Errors in masonry construction – cracks in masonry, types, reason for cracking, methods of avoiding cracks.

Strength and stability of axially loaded masonry walls-effect of unit strength- mortar strength- joint thicknes,-rate of absorption- effect of curing- effect of ageing- workmanship- Compressive strength formulae based on elastic theory and empirical formulae

UNIT II: DESIGN CONSIDERATIONS:

9 Hrs

Types of walls, permissible compressive stress, stress reduction and shape modification factors, increase in permissible stresses for eccentric vertical and lateral load, permissible tensile stress and shear stresses.

Effective height of walls and columns, openings in walls, effective length, effective thickness, slenderness ratio, eccentricity, load dispersion, arching action in lintels. Problems on design considerations for solid walls, cavity walls, wall with pillars

UNIT III: DESIGN OF MASONRY SUBJECTED TO AXIAL LOADS:

9 Hrs

Design criteria, design examples of walls under UDL, solid walls, cavity walls, solid wall supported at the ends by cross wall, walls with piers.

Solid walls, cavity walls, solid wall supported at the ends by cross wall, walls with piers, design of wall with openings.

UNIT IV: DESIGN OF WALLS SUBJECTED TO ECCENTRIC LOADS:

9 Hrs

Design criteria – stress distribution under eccentric loads – problems on eccentrically loaded solid walls, cavity walls, walls with piers.

UNIT V: DESIGN OF LATERALLY AND TRANSVERSELY LOADED WALLS:

9 Hrs

Design criteria, design of solid wall under wind loading, design of shear wall – design of compound walls. Introduction to reinforced brick masonry, lintels and slabs.

Total No of Hours: 45

REFERENCES

1. Building Code Requirements for Masonry Structures (TMS 502-08/ACI 530-08/ASCE 5- 08)

2. Specifications for Masonry Structures (ACI 530.1-08/ASCE 6-08/TMS 602-08)

PROGRAM ELECTIVE-IV

	e Code			me: DESI			CED	code = 40°		Ty/Lb/ ETL	L	T/S.Lr	P/R	C			
EMSI	E 22E13			te : Design			ucture -	<u> </u>		Ty	3	0/0	0/0	3			
	_									~ 41 ==	V. (2002						
				Supervise eory and I		ning P : I	Project I	R : Rese	arch C	: CreditsT	/L/ETL	:					
OBJE	CTIVE	ES:To s	study the	behaviou	r, analy	sis and c	lesign o	f R.C. st	ructure	S.							
			MES (Co														
	end of	the cou	rse, stud	ents will b													
CO1	To rer	nember	the Kno	wledge al	out the	design o	detailing	ng of structural elements.									
CO2	To un plates		and abo	ut the design in different structural components like beams, columns, slabs, walls													
CO3			e details	of reinforced concrete structures.													
CO4	To des	sign the	RC stru	ctures in 1	the cons	truction	field.										
CO5	To int	roduce	the new	concept is	n reinfoi	rced con	crete sti	ructures									
Mapp	ing of C	Course	Outcom	es with P	rogram	Outco	mes (PC	Os)									
COs/I	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9							
CO1		3	3	2	3	3	3	3	3	3							
CO2		3	2	3	3	3	2	3	2	1							
C03		2	3	2	1	2	3	2	3	3							
CO4		3	3	3	3	3	3	3	2	1							
CO5		3	3	3	3	2	3	3	3	3							
COs /	PSOs	PSO1		PSO2	PSO2		PSO3										
CO1		3		3		3											
CO2		2		3		1											
C03		2		1		2											
CO4		3		3		3											
CO5		3		2		3											
3/2/1	Indicate	s Streng		orrelation	, 3 – Hig	gh, 2- M	ledium,	1- Low			1						
Category		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project							
						V											

(An ISO 21001 : 2018 Certified Institution)
Perivar E.V.R. High Road, Madurayoval, Chennai-95, Tamilnadu, India

	Course Name: DESIGN OF ADVANCED CONCRETE STRUCTURES	Ty/Lb/ ETL	L	T / S.Lr	P/R	C
EMSE22E13	Prerequisite : Design of concrete structure -I	Ту	3	0/0	0/0	3

UNIT I: OVERALL REVIEW

9 Hrs

Review of limit state design of beams - Slabs and columns according to IS 456-2000 - Calculation of deflection and crack width according to IS 456-2000.

UNIT II: DESIGN OF SPECIAL RC ELEMENTS

9 Hrs

Design of Slender columns - Design of R.C walls - Ordinary and shear walls - Design of Corbels - Deep – beams and grid floors.

UNIT III: FLAT SLABS AND FLAT PLATES

9 Hrs

Design of flat slabs and flat plates according to ACI method - Design of shear load - reinforcement and edge(spandrel) beams - Yield line theory and Hillerberg method of design of slabs.

UNIT IV: INELASTIC BEHAVIOUR OF CONCRETE BEAMS

9 Hrs

Inelastic behavior of concrete beams - moment - rotation curves - moment redistribution - Baker's method of plastic design - Design of cast-in-situ joints in frames.

UNIT V: DESIGN AND DETAILING OF STRUCTURES

9 Hrs

Detailing for ductility - Fire Resistance of buildings - Field control of concrete - Strengthening of existing structures - Design and detailing of structures according to different codes.

Total No of Hours: 45

- 1. Purushothaman, P, Reinforced Concrete Structure Structural Elements: Behaviour Analysis and Design, Tata Mc Graw Hill, New Delhi 1986.
- 2. Varghese, P.C., Limit State Design of Reinforced Concrete, Prentice Hall of India New Delhi, 1995.
- 3. Krishna Raju, N.Advanced Reinforced Concrete Design, CBS Publishers and New Delhi Distributors, 1986.

	Code :	I .	ourse Na	me:ADV	ANCEL	DESI	GN OF			Ty/Lb/ ETL	L	T/S.Lr	P/R	C
LIVISE		Pre	erequisit	e : Soil M	lechanic	s and Fo	oundatio	n		Ту	3	0/0	0/0	3
т.т	Т		gineerin		. 1 T	D . 1	D	D . D	1. C	С., 1.4.Т	r/r /remi	T . T1	/	
			ar SLr: ory and I		ed Learn	iing P : I	Project	k : Kese	arch C	Credits 1	/L/E11	L: Theory	/	
					ding of	advance	ed topics	s of soil	mechai	nics and c	lesign	of differen	ttypes o	of
founda														
			IES (Co	os): ents will b	sa abla t	2								
CO1				ic knowle			oundatio	ns						
C				ind the st										
CO ₃	Apply	the prin	ciples of	f soil med	hanics t	o decide	e upon tl	ne suitab	oility of	shallow o	or deep	foundation	ns	
CO4	To ana	lyze the	critical	failure m	odes of	retainin	g walls							
CO5	To eva	luate the	e load ca	arrying ca	pacity o	f variou	s shallo	w and d	eep fou	ndations				
Manni	ng of C	'nurse (Outcom	es with F	rngram	Outco	mes (Pf)e)						
							`		DC C	DCC.				
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1		3	3	2	3	2	3	1	3	2				
CO2		3	2	3	3	3	2	3	2	3				
C03		3	1	2	3	2	3	2	3	1				
CO4		2	3	3	3	3	3	3	2	3				
CO5		3	3	3	3	2	3	3	1	3				
COs /	PSOs	PSO1		PSO2		PSO3								
CO1		3		3		2								
CO2		3		2		3								
C03		2		3		1								
CO4		3		2		3								
CO5		1		3		1								
3/2/1 I	ndicate	s Streng		orrelation	$\frac{3-\text{Hig}}{1}$	gh, 2- M	ledium,	1- Low						
Catego	ory	iences	Engineering Sciences	ties and ciences	Core	Program Electives	ectives	siplinary	Skill component	Practical / Project				
		Basic Sciences	Enginee	Humanities and Social Sciences	Program Core	ļ	Open Electives	Interdisciplinary	Skill cor	Practica				
						√								

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, Indi

Course Code : EMSE22E14	Course Name: ADVANCED DESIGN OF FOUNDATIONS	Ty/Lb/ ETL	L	T/S.Lr	P/R	C
	Prerequisite : Soil Mechanics and Foundation Engineering	Ту	3	0/0	0/0	3

 $L: Lecture \ T: Tutorial \ SLr: Supervised \ Learning \ P: Project \ R: Research \ C: Credits T/L/ETL: Theory$

/ Lab / Embedded Theory and Lab

UNIT I: FOUNDATIONS: AN INTRODUCTION

9 Hrs

General considerations: Functions of foundations. Requisites of satisfactory foundations. Different types of foundations. Definition of shallow and deep foundation. Selection of type of foundation. Advantages and limitations of various types of foundations. Design considerations . Footings subjected to eccentric loading. Conventional procedure for proportioning footings for equal settlements. Open excavation: Open foundation excavations with unsupported slopes. Supports for shallow and deep excavations. Stress distribution in sheeting and bracing of shallow and deep excavations. Stability of bottom of excavations..

UNIT II: SHALLOW FOUNDATIONS

9 Hrs

Shallow Foundations: Definitions, Bearing Capacity of Footings; Terzaghi, Mayerhof and Skempton's analysis. Effect of Rising and Lowering of Water Table on Bearing Capacity; Settlement: Permissible, Total and Differential Settlements as per IS Code. Plate Load test, Standard Penetration and Cone Penetration Tests for Determining Allowable Bearing Pressure Raft foundations: Bearing capacity equations. Design considerations. Conventional design procedure for rigid mat. Uplift pressures. Methods of resisting uplift. Floating foundations.

UNIT III: PILE FOUNDATIONS

9 Hrs

Uses of piles. Classification of piles based on purpose and material. Determination of type and length of piles. Determination of bearing capacity of axially loaded. Single vertical pile. Static and dynamic formulae. Determination of bearing capacity by penetration tests and pile load tests (IS methods). Negative skin friction. Group action and pile spacing. Analysis of pile groups. Load distribution by Culmann's method. Caissons and piers: Open (well) caissons. Box (floating) caissons. Pneumatic caissons. Construction details and design considerations of well foundations. Drilled piers and their construction details.

UNIT IV: WELL FOUNDATIONS

9 Hrs

Introduction, Different shapes and characteristics of wells. Components of well foundation. Forces acting on well foundation. Sinking of wells. Causes and remedies of tilts and shifts.

UNIT V: MACHINE FOUNDATIONS

9Hrs

Machine Foundation: Design Criteria, Free and Forced Vibrations for Single Degree of Freedom systems, Undamped and Damped Case, Types of Machine Foundations.

Total No of Hours: 45

TEXT BOOKS

- 1. Khan I.H., "A Text Book of Geotechnical Engineering", Prentice-Hall of India Pvt. Ltd., Delhi, India
- 2. Kaniraj, S.R., "Design Aids in Soil Mechanics and Foundation Engineering", Tata Mc Graw Hill New Delhi.
- 3. Punmia B.C., Soil Mechanics & Foundations, Laxmi, 1988
- 4. N.J, USA. Teng W.C., Foundation Design, PHI, 1984 Terzaghi & Peck, Soil Mechanics in Engineering Practice, Asia Publishing
- 5. Arora K.R., Soil Mechanics & Foundation Engg., Standard Publications, 1987.

	e Code : E 22E15	\mathbf{A}	NALYS:							Ty/Lb/ ETL	L	T / S.Lr	P/R	C
		Pr &		te : Need	to study	Structur	al Analy	sis I		Ty	3	0/0	0/0	3
L : Le	cture T			Supervise	ed Learn	ing P : P	roject R	: Resea	rch C: 0	Credits				
				oedded Tl			3							
OBJE	CTIVE	E S :To a	nalyze s	tructural e	engineer	ing syste	ems by v	arious a	pproach	es				
COUI	RSE OU	JTCON	IES (Co	s):										
				ents will b										
CO1	To lea	ırn abou	t the fun	damental	concept	of stiffn	ess and	flexibili	ty matri	X				
CO2	To un	derstand	the kno	wledge a	bout sub	structure	es							
CO3	Get kr	nowledg	ge about	shear wal	l and ana	alyze the	concep	t of subs	tructure	techniqu	es			
CO4				structures										
CO5	I lag o	faamni	ıtar naalı	age for ur	doratan	dina nra	hlama							
Mapp	oing of (Course	Outcom	es with P	rogram	Outcon	nes (PO	s)						
COs/I	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1		1	2	2	3	3	2	3	3	2				
CO2		3	2	3	2	3	3	2	3	3				
C03		2	3	2	3	2	3	2	3	2				
CO4		3	2	1	2	3	3	2	3	3				
CO5		3	2	3	2	3	2	3	2	3				
COs /	PSOs	P	SO1	PS	SO2	PS	SO3		1					
CO1			2		3		3							
CO2			3		2		2							
C03			1		3		3							
CO4			3		2		2							
CO5			2		3		3							
3/2/1	Indicate	s Streng		orrelation	, 3 – Hig	h, 2- M	edium, 1	- Low						
			ıces			70								
		So.	cier	g Ss		ives	S	<u> </u>	l int	ject				
Catego	ory	nce	ng S	s ar	Core	lect	tive	lina	 	Pro				
		Scie	erii	nitie Sci	m C	m E	Elec	scip	luo 	al/				
		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program (Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
		Ba	En	H _U	Pro	Pro	Op	Int	Sk	Pre				
						1								
Approv	val													
-L110		1												

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code : EMSE22E15	Course Name : ADVANCED STRUCTURAL ANALYSIS	Ty/Lb/ ETL	L	T/S.Lr	P/R	С
	Prerequisite: Need to study Structural Analysis I	Ту	3	0/0	0/0	3
	& II					
I . I a strong T . Tu	etanial CI n. Carramina d I comina D. Ducia et D. Daccarda C.	Candita				

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory / Lab / Embedded Theory and Lab

UNIT I: FUNDAMENTAL CONCEPTS

9 Hrs

Static and Kinematic indeterminacy - Concepts of stiffness and flexibility - Energy concepts - Principle of minimum potential energy and minimum complementary energy - Development of element flexibility and element stiffness matrices for truss - beam and grid elements.

UNIT II: STIFFNESS METHOD (Systems Approach)

9 Hrs

Basis of stiffness method - Degrees of freedom - Force displacement relationships - Nodal stiffness.

UNIT III: FLEXIBILITY METHOD (Systems Approach)

9 Hrs

Flexibility coefficients - Basis of the method - Application to various types of structures.

UNIT IV: COMPUTER APPLICATION

9 Hrs

Computer Applications and use of Computer packages - Programming techniques and problems.

UNIT V: ANALYSIS BY SUBSTRUCTURE TECHNIQUE

9 Hrs

A special analysis procedure - static condensation and sub structuring - initial and thermal stresses - Shear walls - Necessity - structural behaviour of large frames with and without shear walls - approximate methods of analysis of shear walls.

Total No of Hours: 45

REFERENCES

- 1. Rajasekharan S. and Sankarasubramainian G., "Computational Structural Mechanics", Prentice Hall, India, 2001.
- 2. Manikaselvam Elements of Matrix Analysis and Elastic Stability, Khanna Publishers, New Delhi Sixth Edition-2009.
- 3. Negi, "Structural Analysis", Tata Mc Graw Hill Publishing Company 2007.
- 4. W. Weaver and J.H. Gere, "Matrix Analysis of Framed Structures", Van Nastran, 1980.
- 5. McGuire, W., and Gallagher, R.H., Matrix Structural Analysis, John Wiley and Sons, 1979.
- 6. John L.Meek., Matrix Structural Analysis, Mc Graw Hill Book Company, 1971.

	Code 222E16			me: DES l				TRUCT	URES	Ty/Lb/ ETL	L	T/S.Lr	P/R	C
		Pr	erequisit	e : Design	n of stee	1 Structi	ıres			Ту	3	0/0	0/0	3
L : Lec	cture T	: Tutori	al SLr:	Supervis	ed Learn	ing P : 1	Project 1	R : Rese	arch C	CreditsT	L/ETL	: Theory	/	
			ory and l											
OBJE	CTIVE	ES:The	objectiv	es of this	course	s to mal	ke stude	nts to le	arn prir	ciples and	d Desig	n ofindust	rial bui	lding
			MES (Co	os) : ents will b	oe able to	0								
CO1	To lea	arn prin	ciples of	Design o	f industi	rial build	ding							
CO2	To de	sign dif	ferent co	mponent	s of indu	ıstrial st	ructures	and to d	detail th	e structure	es			
CO3	To ev	aluate t	he perfo	mance of	the Pre	- engine	ered bu	ildings						
CO4									T.	CI.		1.77	·	
			rious str l foundat		uch as i	sunkers,	, Silos,	Cooling	lower	s, Chimne	eys, and	l Transmis	ssion I	owei
CO5				ictures fo	r function	nal requ	iremen	ts						
Manni				es with F										
							`		DOO	DO0				
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1		3	3	2	3	3	3	3	3	3				
CO2		3	2	3	3	3	2	3	1	3				
C03		2	3	2	3	2	3	2	3	2				
CO4		3	3	3	3	3	3	3	3	3				
CO5		3	3	3	3	2	3	3	3	3				
COs/	PSOs	PSO1	-	PSO2		PSO3								
CO1		3		3		3								
CO2		3		1		2								
C03		2		3		2								
CO4		3		2		1								
CO5		3		3		3								
3/2/1 I	ndicate	s Streng	gth Of C	orrelation	, 3 – Hig	gh, 2- M	ledium,	1- Low						
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
Approv	₇₀ 1					1								
, rbbion	uı													

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, Indi

Course Code : EMSE22E16	Course Name: DESIGN OF INDUSTRIAL STRUCTURES	Ty/Lb/ ETL	L	T / S.Lr	P/R	С
	Prerequisite : Design of steel Structures	Ту	3	0/0	0/0	3
L · Lecture T · Tu	torial SLr · Supervised Learning P · Project R · Research C	· CreditsT/	L/ETL	· Theory	1	

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: CreditsT/L/ETL: Theory

Lab / Embedded Theory and Lab

UNIT I INTRODUCTION

9 Hrs

Analysis of industrial building for Gravity and Wind load. Analysis and design of framing components namely, girders, trusses, gable frames

UNIT II GANTRY GIRDER

9 Hrs

Analysis and design of gantry girder, purlins, girts, bracings including all connections.

UNIT III TRANSMISSION TOWERS

9 Hrs

Analysis of transmission line towers for wind load and design of towers including all connections.

UNIT IV COLD FORMED STRUCTURES

9 Hrs

Forms of light guage sections, Effective width computation of unstiffened, stiffened, multiple stiffened compression elements of cold formed light guage sections. Concept of local buckling of thin elements. Limiting width to thickness ratio. Post buckling strength.

UNIT V PRE – ENGINEERED STRUCTURES

9 Hrs

Concept of Pre- engineered buildings, Design of compression and tension members of cold formed light guage sections, Design of flexural members (Laterally restrained / laterally unrestrained).

Total No. of Hours: 45

REFERENCES

- 1. Bureau of Indian Standards, IS 800-2007, IS 875-1987, IS-801-1975. Steel Tables, SP 6 (1) 1984
- 2. N Subramanian- "Design of Steel Structure" oxford Press
- 3. B.C. Punmia, A.K. Jain "Design of Steel Structures", Laxmi Publications, New Delhi.
- 4. . Ramchandra and Virendra Gehlot "Design of Steel Structures" Vol 1 and Vol.2, Scientific Publishers, Jodhpur
- 5. Duggal "Limit State Design of Steel Structures" TMH

PROGRAM ELECTIVE -V

					renyan	E.V.R. High Roa	,	n, onemnar 701	,					
	e Code : E 22E17			me: DESI ESTRUC		PRESTR	ESSED			Ty/Lb/ ETL	L	T/S.Lr	P/R	C
Livior		Pr	erequisit	e : Basic 1	nathema	itical cal	lumniati	on and d	lesign	Ту	3	0/0	0/0	3
L : Le	cture T :	Tutoria	al SLr:	Supervise	d Learni	ng P : P	roject R	: Resea	rch C:	CreditsT/L	/ETL :	Theory / I	Lab	
	edded T													
OBJE	CTIVE	S:Prin	ciple of p	prestressin	ıg, analy	sis and o	design o	f prestre	ssed co	ncrete stru	ctures			
			IES (Co											
				nts will b						•				
CO1						•			•	ite constru				
CO2	_					-	_		ural an	d shear stre	engths			
CO3	Evalua	te and a	nalyze tl	ne stresses	s under v	arious c	condition	1S						
CO4				ses for sin										
CO5	Studen	t should	l be able	to design	various	prestres	sed con	crete str	ıctural	elements				
Mapp	ing of C	Course	Outcom	es with P	rogram	Outcon	nes (PO	s)						
COs/F	<u> </u>	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1		3	3	2	3	3	3	3	3	1				
CO2		3	2	3	3	3	2	3	3	3				
C03		3	3	2	3	2	3	2	3	2				
CO4		3	3	3	3	2	1	3	3	3				
CO5		3	3	3	3	2	3	3	3	3				
COs /	PSOs	P	SO1	PS	O2		SO3							
CO1			3		3		2							
CO2			3		2		3							
C03			2		3 1		3 2							
CO5			3		3		3							
	Indicates	Streno	th Of Co	rrelation,			_	- Low						
3/2/11	патенте	Sucing				1, 2 1110		Low						
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
						√								

(An ISO 21001: 2018 Certified Institution)

Course Code : EMSE22E17	Course Name: DESIGN OF PRESTRESSED CONCRETESTRUCTURES	Ty/Lb/ ETL	L	T / S.Lr	P/R	C
	Prerequisite: Basic mathematical calumniation and	Ty	3	0/0	0/0	3
	design					
L : Lecture T : Tu	itorial SLr : Supervised Learning P : Project R : Research	C: Credits				

T/L/ETL: Theory / Lab / Embedded Theory and Lab

UNIT I INTRODUCTION AND CODAL PROVISIONS

9 Hrs

Principles of Prestressing - types and systems of prestressing, need for High Strength materials, Analysis methods losses, deflection (short-long term), camber, cable layouts. Behaviour under flexure - codal provisions (IS, British ACI), ultimate strength. Design of flexural members,

UNIT II DESIGN OF COMPRESSION MEMBERS

9 Hrs

Design for Shear, bond and torsion. Design of End blocks and their importance Design of tension members - application in the design of prestressed pipes and prestressed concrete cylindrical water tanks. Design of compression members with and without flexure - its application in the design piles, flagmasts and similar structures.

UNIT III COMPOSITE BEAMS

9 Hrs

Composite beams - analysis and design, ultimate strength - their applications. Partial prestressing - its advantages and applications.

UNIT IV CONTINUOUS BEAMS

9 Hrs

Application of prestressing in continuous beams, concept of linear transformation, concordant cable profile and cap cables.

UNIT V DESIGN OF SPECIAL STRUCTURES

9 Hrs

Special structures like prestressed folded plates, prestressed cylindrical shells, prestressed concrete poles.

Total No of Hours: 45

REFERENCES

- 1.T.Y.Lin, Design of Prestressed Concrete Structures, John Wiley and Sons, Inc Berlin, 3rd edition, 1981.
- 1.Leonhardt.F., Prestressed Concrete, Design and Construction, Wilhelm Ernst and Shon, Berlin, 2nd edition, 1964.
- 2. Prestressed Concrete by Krishna Raju, Tata McGraw Hill Publishing Co. 5th edition, 2012
- 4.Fundamentals of Prestressed Concrete by N.C.Sinha & S.K.Roy S.Chand & Co., New Delhi 2011.

	Code :			me:ANAI TE PLAT		F LAMI	NATED			Ty/Lb/ ETL	L	T/S.Lr	P/R	C
	22210			e : Applie		anics				Ту	3	0/0	0/0	3
· I ac	oturo T	Tutorio	1 SI r ·	Supervice	d Learn	ing D · D	roject P	· Pasaa	rch C: (TraditaT/I	/FTI ·	 Theory / I	ah	
		heory a		Supervise	u Leain	ilig i . i	rojeci ix	. Resca	ich C. v	CICUITS I/L	/LIL.	THEOLY / I	Lau	
				be able t	o analys	is of cor	nposite	plates by	using	various me	ethods of	of differen	tstructi	ıral
compo					3		1		, 8					
		TCOM	IES (Co	s):										
At the				nts will b										
C O 1	To rer	nember	the basi	c concept	about th	ne variou	is theori	es of me	chanics					
C O2	To un	derstand	d the con	cept of co	omposite	plates								
C O3	Analy	se the re	ectangula	ar compos	site plate	s using 1	the analy	tical me	ethods.					
C O4	Analy	se the c	omposite	e plates u	sing adv	anced fin	nite elen	nent met	hod					
C O5	Devel	op the c	omputer	program	s for the	analysis	of com	posite pl	lates.					
viappi	ing of C	Course (Outcom	es with P	rogram	Outcon	nes (PO	s)						
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
C O 1		3	3	2	3	3	3	3	3	1				
CO2		3	2	3	3	3	2	3	3	3				
C 03		2	3	2	3	2	3	2	3	2				
CO4		3	3	3	3	2	1	3	3	3				
CO5		3	3	3	3	2	3	3	3	3				
COs/	PSOs	P	SO1	PS	SO2	PS	SO3		l		ı			
C O1			3		3		2							
CO2			3		2		3							
C 03			3		3		3							
C O4			2		1		2							
CO5			3		3		3							
3/2/1 Iı	ndicates	s Streng		rrelation,	3 - Hig	h, 2- Me	edium, 1	- Low						
3/2/1 In									mponent	1 / Project				
		Basic Sciences Sciences	Engineering Sciences Of O	Humanities and Social Sciences	Program Core	Program Electives 4.4	Open Electives	Interdisciplinary w	Skill component	Practical / Project				

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code : EMSE22E18	Course Name: ANALYSIS OF LAMINATED COMPOSITE PLATES	Ty/Lb/ ETL	L	T/S.Lr	P/R	С
	Prerequisite : Applied Mechanics	Ту	3	0/0	0/0	3
I. I. L. actuma T. T.	stanial CI n. Cymawigad I saming D. Dugiaet D. Dassanah	L. Cradita				

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory / Lab / Embedded Theory and Lab

UNIT I INTRODUCTION

9 Hrs

Displacement Field Approximations for Classical Laminated Plate Theory (CLPT) and First Order Shear Deformation Theory (FSDT), Analytical Solutions for Bending of Rectangular Laminated Plates using CLPT.

UNIT II GOVERNING EQUATIONS.

9Hrs

Navier Solutions of Cross-Ply and Angle-Ply Laminated Simply Supported Plates, Determination of Stresses. Levy Solutions for Plates with Other Boundary Conditions, Analytical Solutions for Bending of Rectangular Laminated Plates Using FSDT.

UNIT III INTRODUCTION TO FINITE ELEMENT METHOD

9Hrs

Rectangular Elements, Formation of Stiffness Matrix, Formation of Load Vector, Numerical Integration, Post Computation of Stresses.

UNIT IV RECTANGULAR LAMINATED PLATES

9Hrs

Finite Element Solutions for Bending of Rectangular Laminated Plates using FSDT, Finite Element Model, C0Element Formulation, Post Computation of Stresses.

UNIT V RECTANGULAR COMPOSITE PLATES

9Hrs

Analysis of Rectangular Composite Plates using Analytical Methods...

Total No of Hours: 45

REFERENCES

1. Mechanics of Laminated Composites Plates and Shells, Reddy J. N., CRC Press.

~	~ .	1 =	• •			E.V.R. High Roa	CASC DESC	00	ramiinadu, ind		T =	T		
	e Code : E 22E19			ame: FR. TE STRUG			HANICS	o OF		Ty/Lb/ ETL	L	T/S.Lr	P/R	C
LWISE	L22E19			e : Need t			neory of	structur	es	Ty	3	0/0	0/0	3
г.т.	T										/ETI	T1 / I	- 1.	
	edded T			Supervise	a Learni	ing P : P	roject K	: Kesea	ren C:	CreditsT/L	/EIL:	I neory / I	∟ab	
		•		owledge	on the m	echanisi	ns of fa	ilure and	l non lin	ear fractur	e mech	nanics.		
			IES (Co											
				nts will b	e able to									
CO1	To lea	ırn the F	undame	ntals of F	racture N	Mechani	cs and f	racture c	racking	,				
CO2	Know	about t	he analy	sis and m	odel of 1	fracture	failure							
CO3	Abilit	y to kno	w Nonli	near Frac	ture Med	chanics								
CO4	Analy	se the n	nechanics	s of concre	ete structi	ıres in va	rious fie	ld.						
CO5	To im	part kno	wledge	on the me	echanism	ns of fail	ure and	non line	ar fracti	ure mechai	nics.			
Mann	ing of (Tourse 4	Outcom	og with D	MOGRAM-	Outson	205 (DQ	a)						
			_	es with P										
COs/P	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1		3	3	2	3	3	3	3	3	1				
CO2		3	2	3	3	1	2	3	2	3				
C03		3	3	2	3	2	3	2	3	2				
CO4		3	3	3	3	3	3	3	3	3				
CO5		3	3	3	3	2	3	3	1	3				
COs /	PSOs	P	SO1	PS	SO2	PS	SO3							
CO1			3		3		3							
CO2			3		3		1							
C03			2		2		2							
CO4 CO5			3		<u>2</u> 3		3							
	1	Cı				1 2 14		т						
3/2/11	naicate	s Streng		orrelation,	$\frac{3-\text{Hig}}{1}$	n, 2- Me	eaium, i	- Low						
			Engineering Sciences			es				#				
G .		es	Scie	and	ပ္	Program Electives	'es	nary	lent	Practical / Project				
Catego	ory	Basic Sciences	ing	Humanities and Social Sciences	Program Core	Ele	Open Electives	Interdisciplinary	Skill component	/ Pr				
		Sci	leeri	uniti 1 Sc	am	am	Ele	lisci	com	cal				
		asic	ngin	uma	ogr.	ogr.	pen	terd	dii	acti				
		Ř	Ē	H Sc	Pr		Ō	In	Š	Pr				
						\ \			1 1					

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Madurayoyal, Chennai-95, Tamilnadu, India

Course Code : EMSE22E19	Course Name: FRACTURE MECHANICS OF CONCRETE STRUCTURES	Ty/Lb/ ETL	L	T / S.Lr	P/R	С
	Prerequisite: Need to study failure theory of structures	Ту	3	0/0	0/0	3
L : Lecture T : Tu	torial SLr: Supervised Learning P: Project R: Research	C: Credits				

UNIT I: FUNDAMENTALS

9 Hrs

Fundamentals of Fracture Mechanics, Mechanisms of fracture and crack growth

UNIT II: FRACTURE CRACKING

T/L/ETL: Theory / Lab / Embedded Theory and Lab

9 Hrs

Cleavage fracture, ductile fracture, fatigue cracking, Environment assisted cracking, Quasi brittle materials.

UNIT III: FRACTURE ANALYSIS

9 Hrs

Service failure analysis, linear elastic fracture mechanics, Griffith's criteria, stress intensity factors, crack tip plastic zone, Erwin's plastic zone correction, R curves, compliance, J Integral, nonlinear analysis ,Review of concrete behaviour in tension and compression, Basic frameworks for modeling of quasibrittle materials.

UNIT IV: NON LINEAR FRACTURE MECHANICS

9 Hrs

Nonlinear Fracture Mechanics – Discrete crack concept/Smeared crack concept, Size effect, Plasticity models for concrete – Associated and non-associated flow, Failure surfaces for quasibrittle materials.

UNIT V: MODELS 9 Hrs

Concept of CTOD and CMD, Material models, crack models, band models, models based on continuum damage mechanics

Total No of Hours: 45

REFERENCES

- 1. Elementary engineering fracture mechanics David Broek Sijthoff & Noordhoff Alphen aan den Rijn Netherlands
- 2. Fracture mechanics of concrete structures Theory and applications Rilem Report Edited by L. Elfgreen Chapman and Hall 1989.
- 3. Fracture mechanics applications to concrete Edited by Victor, C. Li, & Z.P. Bazant ACI SP 118.
- 4. Valliappan S. "Continuum Mechanics Fundamentals" (1982), Oxford IBH, N D. New Delhi.
- 5. Venkataraman and Patel "Structural Mechanics with introduction to Elasticity and Plasticity" Mcgraw Hill, 1990. 6. Shanes "Introduction to Solid Mechanics II Edition, PH, 1989.

	Code 22E20	\mathbf{S}	TRUCT				ESIST	ANCE		Ty/Lb/ ETL	L	T / S.Lr	P/R	С
		Pr	rerequisi	te : Struc	tural Dy	namics				Ту	3	0/0	0/0	3
				Supervi			Project	t R : Re	search	C: Credit	S			
							nents of	static a	nd dyn:	amic resp	onse of	Structure	es and	
			of result		103 01 111	icasai cii		static a	na ayna	иние тевр	onse or	Structur	cs and	
COUR	RSE OU	UTCO	MES (C	os):										
At the				ents will										
CO1										notion ch				
CO2					•		•	•		ake resist		gn.		
CO3				•	_					mic force	S			
CO ₄	Desig	n vario	us beam	-column	joints as	s per du	ctility re	equirem	ents					
CO5	Anal	yze and	l design	unreinfo	ced and	reinfor	ced mas	onry an	d concr	ete shear	wall str	uctures		
Mappi	ing of (Course	Outcon	nes with	Prograi	m Outc	omes (I	POs)						
COs/P		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1		3	3	2	3	3	3	3	3	3				
CO ₂		3	2	3	3	3	2	3	3	3				
C03		3	3	2	3	2	3	2	3	3				
CO4		3	3	3	3	3	3	3	3	3				
CO5		3	3	3	3	2	3	3	3	3				
COs /	PSOs	PSO1		PSO2	I	PSO3	1		1					
CO1		3		3		3								
CO2		3		3		3								
C03		3		3		3								
CO4		3		3		3								
CO5		3		3		3								
3/2/1 I	ndicate	s Stren	gth Of C	orrelatio	n, 3 – H	igh, 2- 1	Medium	, 1- Lov	N					
						Ş				٠+				
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
			1., 3.		ļ. '	\ \ \	-	- 1		, ,				
						\ \ \								

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India

Course Code:	Course Name: EARTHQUAKE RESISTANCE	Ty/Lb/ ETL	L	T/	P/R	C
EMSE22E20	STRUCTURES	EIL		S.Lr		
	Prerequisite: Design of Reinforced Concrete and	Ту	3	0/0	0/0	3
	Masonry Buildings					
L: Lecture T: To	atorial SLr: Supervised Learning P: Project R: Research	C: Credit	S			
T/L/ETL : Theor	v / Lab / Embedded Theory and Lab					

UNIT I: HISTORICAL 9 Hrs

Elements of Engineering Seismology - Theory of Vibration - Response Spectrum-Indian Seismicity - Earthquake History - Behaviour of Structures in the past Earthquakes.

UNIT II: DESIGN CONCEPTS

9 Hrs

Seismic Design Concepts - Cyclic load behaviour of RC, Steel and Prestressed Concrete elements – Design spectrum - Principles of capacity design.

UNIT III: CODAL PROVISIONS

9 Hrs

Provisions of Seismic Code (IS 1893) - Building systems frames, shear walls, Braced Frames, Combinations - Torsion.

UNIT IV: DESIGN AND DETAILING

9 Hrs

Performance of Regular Buildings 3 D Computer Analysis of Building Systems (Theory Only) - Design and Detailing of frames - Shear walls and Frame walls.

UNIT V: SPECIAL PROBLEMS AND CASE STUDIES

9 Hrs

Structural Configuration - Seismic performance - Irregular Buildings - Soil performance, Modern Concepts — Base Isolation - Adoptive system - Case studies.

Total No of periods: 45

REFERENCE BOOKS

- 1. Earthquake Resistant Design of structures S. K. Duggal, Oxford University Press
- 2. Earthquake Resistant Design of structures Pankaj Agarwal and Manish Shrikhande, Prentice Hall of India Pvt. Ltd.
- 3. Seismic Design of Reinforced Concrete and Masonry Building T. Paulay and M.J.N. Priestly, John Wiley & Sons

AUDIT COURSE-1&2

		Audit Course I & II									
C N	Course	Course Name	TY/LB/	Teaching Scheme							
S.No	Code		IE	L	T/S.Lr	P/R	С				
1	EMCC22I01	English for Research paper Writing	IE	2	0/0	0/0	0				
2	EMCC22I02	Disaster Management	IE	2	0/0	0/0	0				
3	EMCC22I03	Sanskrit for Technical Knowledge	IE	2	0/0	0/0	0				
4	EMCC22I04	Value Education	IE	2	0/0	0/0	0				
5	EMCC22I05	Constitution of India	IE	2	0/0	0/0	0				
6	EMCC22I06	Pedagogy Studies	IE	2	0/0	0/0	0				
7	EMCC22I07	Stress Management by Yoga	IE	2	0/0	0/0	0				
8	EMCC22I08	Personality Development through Life Enlightenment Skills	IE	2	0/0	0/0	0				
9	EMCC22I09	Research Publication Ethics	IE	2	0/0	0/0	0				

Course Code: EMCC22I01		1			GLISH F ER WR			Ty/Lb/IE	L	T/S. Lr	P/R	С
		Prer	equisite:	Nil				IE	2	0/0	0/0	0
L : Lecture T :	Tutoria	ıl P:	Project	R : Res	earch C:	Credits	T/L: Theo	ory/Lab			I	-
Objectives To	know t	he art	of writir	ng the re	search pa	aper and	thesis					
•				_	-	-	time subn	nission.				
COURSE OU										to		
CO1							skills and	level of read	ability			
CO2	Learn	about	what to	write in	each sec	tion						
CO3	Under	stand 1	the skills	needed	when w	riting a T	Γitle					
Mapping of C	ourse (Outco	mes witl	n Progra	am Outc	omes (F	POs)					
COs/POs	I	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	8 P	PO9	
CO1		1	1	1	1	1	3	1	1		1	
CO2		1	1	1	1	1	3	1	1		1	
CO3		1	1	1	1	1	3	1	1		1	
COs / PSOs			PSO1			1	PSO2				PSO3	
CO1			1				1				1	
CO2			1				1				1	
G02			1				1				1	
CO3			1				1				1	
3/2/1 indicates	Streng	gth of	Correla	tion 3	– High,	2- Med	ium, 1- L	ow				
Category	Basic Sciences		Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	,	Soft Skills	Audit course
												~

(An ISO 21001 : 2018 Certified Institution)
Perivar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code: EMCC22I01	Course Name: ENGLISH FOR RESEARCH PAPER WRITING	Ty/Lb/IE	L	T/S. Lr	P/R	C
	Prerequisite: Nil	IE	2	0/0	0/0	0
L : Lecture T : Tutorial	P: Project R: Research C: Credits T/L: Theory/L	Lab				

Unit I 5 Hrs

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

Unit II 5 Hrs

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts .Introduction

Unit III 5 Hrs

Review of the Literature, Methods, Results, Discussion, Conclusions, the Final Check.

Unit IV 5 Hrs

Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction,

skills needed when writing a Review of the Literature

Unit V 5 Hrs

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions

Unit VI 5 Hrs

Useful phrases, how to ensure paper is as good as it could possibly be the first-time submission

TOTAL HOURS: 30

Reference Books:

- 1. Goldbort R (2016) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2016) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (2018), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook.
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2017

Course Code: EMCC22I02			rse Nan NAGEN	ne: DIS MENT	ASTE	R	Ty /l	Lb/IE	L	T/S .Lr	P/R	C	
		Prere	equisite:	Nil			-	ΙE	2	0/0	0/0	0	
L : Lecture T :	Tutorial	P:1	Project	R : Rese	earch C	: Credits	Γ/L: The	ory/Lab					
Objectives Le humanitarian re		mons	trate a c	ritical ui	ndersta	nding of k	ey conce	epts in di	saster	risk r	eductio	n and	
COURSE OU													
CO1	I		saster ris spective		tion and	d humanit	arian res	ponse po	licy a	nd pra	ictice fr	om	
CO2	Develo	op an	understa	anding o		ards of hu onflict situ		an respo	nse ar	nd prac	ctical re	levance	
CO3	Understand pro	stand ogran ork ir	stand the strengths and weaknesses of disaster management approaches, planning ogramming in different countries, particularly their home country or the countries										
Mapping of C	ourse Ou	ıtcom											
COs/POs	P	O1	PO2	PO3	PO4	PO5	PO6	PO7	PC) 8	PO9		
CO1	1		1	1	1	1	3	1	1		1		
CO2	1		1	1	1	1	3	1	1		1		
CO3	1		1	1	1	1	3	1	1		1		
COs / PSOs			PSO	1			PSO2				PSO3		
CO1			1				1				1		
CO2			1				1				1		
CO3			1				1				1		
3/2/1 indicates	Strengt	h of C	Correlat	tion 3	– High	, 2- Medi	um, 1- I	ow					
			SS.	ial					-	ca.			
Category	Basic Sciences		Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	International T. Constitution	Skill	Soft Skills	Audit course	

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code: EMCC22I02	Course Name: DISASTER MANAGEMENT	Ty/Lb/IE	L	T/S. Lr	P/R	C
	Prerequisite: Nil	IE	2	0/0	0/0	0
L : Lecture T : Tutorial	P: Project R: Research C: Credits T/L: T	heory/Lab				

Unit I

Introduction 5 Hrs

Disaster: Definition, Factors And Significance; Difference Between Hazard And Disaster; Natural And Manmade Disasters: Difference, Nature, Types And Magnitude.

Unit II 5 Hrs

Repercussions Of Disasters And Hazards:

Economic Damage, Loss OfHuman And Animal Life, Destruction Of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

Unit III 5 Hrs

Disaster Prone Areas In India:

Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards WithSpecial Reference To Tsunami; Post-Disaster Diseases And Epidemics

Unit IV 5 Hrs

Disaster Preparedness And Management : Preparedness: Monitoring of Phenomena Triggering A Disaster or Hazard; Evaluation of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental AndCommunity Preparedness.

Unit V 5 Hrs

Risk Assessment : Disaster Risk: Concept And Elements, Disaster Risk Reduction, Global And National Disaster Risk Situation. Techniques Of Risk Assessment, Global Co-Operation In Risk Assessment And Warning, People's Participation In Risk Assessment. Strategies for Survival.

Unit VI 5 Hrs

Disaster Mitigation : Meaning, Concept And Strategies Of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation And Non-Structural Mitigation, Programs Of Disaster Mitigation In India.

TOTAL HOURS: 30

SUGGESTED READINGS:

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "'NewRoyal book Company.
- 2. Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall OfIndia, New Delhi.
- 3. Goel S. L., Disaster Administration And Management Text And Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi.

Course Code: EMCC22I03	Course N KNOWI		SANSKE	RIT FO	R TI	ECHN	NICAL	1 -	Lb/I	L	T/S .Lr	P/R	С		
	Prerequis	site: Nil						I	Е	2	0/0	0/0	0		
L : Lecture T : Tu	itorial P	: Project	R : Rese	earch C:	Credi	ts T/L	: Theor	y/Lab							
Sanskrit to impro the memory power from ancient liter	OUTCOMES (COs): At the end of this course the students would be able to														
COURSE OUTC	Understanding basic Sanskrit language E OUTCOMES (COs): At the end of this course the students would be able to														
CO2	Ancient Sanskrit literature about science & technology can be understood														
CO3		ng a logical language will help to develop logic in students													
Mapping of Cou															
GO /PO	DO1	PO1 PO2 PO3 PO PO PO7 PO8 PO9													
COs/POs	PO1	PO2	PO3	PO 4	PO 5	PO 6	PO	' 1	PO8	109					
CO1	1	1	1	1	1	3	1	1		1					
CO2	1	1	1	1	1	3	1	1		1					
CO3	1	1	1	1	1	3	1	1		1					
COs / PSOs		PSO1				PSC)2				PS	SO3			
CO1		1				1						1			
CO2		1				1						1			
CO3		1				1						1			
3/2/1 indicates S	trength of	Correla	ation 3	– High,	2- M	edium	, 1- Lo	v							
Category		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Drogram Flectives		Open Electives	Practical / Project Internships / Technical Skill Soft Skills						
													/		

(An ISO 21001 : 2018 Certified Institution)
Perivar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code: EMCC22I03	Course Name: SANSKRIT FOR TECHNICAL KNOWLEDGE	Ty/Lb/IE	L	T/S.Lr	P/R	С					
	Prerequisite: Nil	IE	2	0/0	0/0	0					
L: Lecture T: Tutorial P: Project R: Research C: Credits T/L: Theory/Lab											

Unit I 10 hrs

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences

Unit II 10 hrs

Order, Introduction of roots, Technical information about Sanskrit Literature

Unit III 10 hrs

Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

TOTAL HOURS: 30

Reference Books:

- 1. "Abhyaspustakam" Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
- 2. "Teach Yourself Sanskrit" Prathama Deeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
- 3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

Course Code: EMCC22I04		urse Na		ALUE 1	EDUCA	ATION	Ту	/Lb/IE	L	T/S .Lr	P/R	С
	Pro	erequisite	e: Nil					IE	2	0/0	0/0	0
L : Lecture T : Tut	torial P:	Project 1	R : Rese	arch C:	Credits	s T/L: T	heory/Lal)	,			•
Objectives .												
Students wi	ill be able	to										
 Understand 	value of	educati	ion and	l self-	develo	pment						
Imbibe goo	d values	in stude	ents									
• Let the show												
COURSE OUTC					s cours	e the stu	idents w	ould be a	ble t	0		
CO1 Knowledge of self-development CO2 Learn the importance of Human values												
CO2 Learn the importance of Human values CO3 Developing the overall personality												
CO3	-			•								
Mapping of Cour	se Outcon	nes with	Progra	m Outo	comes (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8]	PO9		
CO1	1	1	1	1	1	3	1	1	1			
CO2	1	1	1	1	1	3	1	1	1			
CO3	1	1	1	1	1	3	1	1	1			
COs / PSOs			PS	01			1	PSO2			PSO3	3
CO1			1					1			1	
CO2			1					1			1	
CO3			1					1			1	
3/2/1 indicates St	rength of (Correlat	ion 3-	- High,	2- Med	dium, 1-	Low					
Category	Basic Sciences	Engineering Sciences	Humanities and Social	Sciences Program Core		Program Electives	Open Electives	Practical / Project	Internships / Technical	Skill	Soft Skills	Audit course
												/

(An ISO 21001 : 2018 Certified Institution)
Perivar E.V.R. High Road, Maduravoval, Chennai-95, Tamilnadu, India

Course Code: EMCC22I04	Course Name : VALUE EDUCATION	Ty/Lb/IE	L	T/S .Lr	P/R	C			
	Prerequisite: Nil	IE	2	0/0	0/0	0			
L : Lecture T : Tutorial	P: Project R: Research C: Credits T/L: The	P: Project R: Research C: Credits T/L: Theory/Lab							

Unit 1:

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles. Value judgments

Unit 2:

Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence,

Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism. Love for nature, Discipline

Unit 3:

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance. True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature

Unit 4:

Character and Competence –Holy books vs Blind faith. Self-management and Good health .Science of reincarnation. Equality, Nonviolence, Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively

TOTAL HOURS: 30

Reference:

1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

Course Code: EMCC22I05		IN	DIA	ame:	CC	NST	TTU	TION	OF	Ì	/Lb/ IE	L	T/S .Lr	P/R	C
			erequisi								E	2	0/0	0/0	0
L: Lecture T: Tut				R : Rese											
Objectives Under															
perspective. To ad															
and entitlement to															
nationalism To add										ement	of the	Bols	hevik l	Revoluti	on in
1917 and its impac										4 1				4 1	
COURSE															
CO1	arriva	al of (Gandhi	h of the in Indiai	n pol	itics.									ore the
CO2				ectual or									ormed	the	
				of socia											
CO3				mstance											
		CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of													
COA		ect elections through adult suffrage in the Indian Constitution.													
CO4		Discuss the passage of the Hindu Code Bill of 1956. Outcomes with Program Outcomes (POs)													
								` , ′							
COs/POs]	PO 1	PO2	PO3	PC)4	PO5	PO	6	PO7	PO	80	PO	9	
CO1		1	1	1	1		1	3		1		1	1		
CO2		1	1	1	1		1	3		1		1	1		
CO3		1	1	1	1		1	3		1		1	1		
CO4		1	1	1	1		1	3		1		1	1		
COs / PSOs			P	SO1]	PSO	2				PSO3	
CO1				1					1					1	
CO2				1					1					1	
CO3				1					1					1	
CO4				1					1					1	
3/2/1 indicates St	rength	of C	orrelat	ion 3	– Hiş	gh, 2-	- Me	dium, 1	- Lo	w					
Category		Basic Sciences	Engineering Sciences	Humanities and	Social Sciences	Program Core		Program Electives	Open Electives		Practical / Project	1	Internships / Technical Skill	Soft Skills	Audit course

(An ISO 21001 : 2018 Certified Institution)
Perivar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code: EMCC22105	Course Name : CONSTITUTION OF INDIA	Ty/Lb/ IE	L	T/S .Lr	P/R	C
	Prerequisite: Nil	IE	2	0/0	0/0	0
L : Lecture T : Tutorial	P: Project R: Research C: Credits T/L: Theor	y/Lab				

Unit 1: 6 hrs

History of Making of the Indian Constitution:

History Drafting Committee, (Composition & Working) Philosophy of the Indian Constitution: Preamble Salient Features

Unit 2:

Contours Of Constitutional Rights & Duties:

Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy and Fundamental Duties.

Unit 3: 6 hrs

ORGANS OF GOVERNANCE:

Parliament Composition, Qualifications and Disqualifications, Powers and Functions Executive President, Governor Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications Powers and Functions.

Unit 4: 6 hrs

Local Administration:

District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Pachayati raj: Introduction, PRI: ZilaPachayat. Elected officials and their roles, CEO ZilaPachayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

Unit 4: 6 hrs

Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

TOTAL HOURS: 30

Reference Books:

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

Course Code EMCC22106		Cor	urse N	lame :	PED	AGOG	Y S'	TUDI	ES	•	Lb/E L	L	T/S	P/R	C	
		Pre	requis	ite: Ni	1					I	Е	2	0/0	0/0	0	
L : Lecture T	: Tutori	al l	P : Pro	ject F	R : Rese	arch C:	Cre	edits T	/L: Tl	neory	//Lab			•		
Objectives S																
design and po						OfID, ot	her	agenc	ies an	d res	earch	ners.	5. Iden	tify critic	cal	
COURSE O				-		l of this		urso t	ho stu	dont	C WO	uld k	o abla	to know	17	
CO1		pedag	gogica	ıl prac											rooms in	
CO2		is the evidence on the effectiveness of these pedagogical practices, in what conditions, with what population of learners?														
CO3	How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?															
Mapping of 0	Course	Outo	comes	with 1	Prograi	m Outc	ome	es (PC	Os)							
COs/POs	PO	01	PO2	PO3	PO4	РО	5	PO6	PO7	P	08	PO9				
CO1	1		1	1	1	1		3	1		1	1				
CO2	1		1	1	1	1		3	1		1	1				
CO3	1		1	1	1	1		3	1		1	1				
COs / PSOs	8		PSC	D1				PSO	2				P	SO3		
CO1			1				1				1					
CO2			1					1				1				
CO3			1					1						1		
3/2/1 indicate	es Stren	gth o	of Co	relati	on 3-	- High,	2- N	Mediu	ım, 1-	Lov	V					
Category	Basic Sciences		Engineering	Sciences	Humanities and Social Sciences	Program Core	Drogram Flootives	Program Electives	Open Electives		Practical / Project		Internships / Technical Skill	Soft Skills	Audit course	
						<u></u>		<u></u>					<u></u>		/	

(An ISO 21001 : 2018 Certified Institution)
Perivar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code: EMCC22I06	Course Name: PEDAGOGY STUDIES	Ty/Lb/E TL	L	T/S. Lr	P/R	С	
	Prerequisite: Nil	IE	2	0/0	0/0	0	
L: Lecture T: Tutorial P: Project R: Research C: Credits T/L: Theory/Lab							

Unit I:

Introduction and Methodology:

6 hrs

Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education. Conceptual framework, Research questions. Overview of methodology and Searching.

Unit II:

Thematic overview: 6 hrs

Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education.

Unit III: Evidence on the effectiveness of pedagogical practices

6 hrs

Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies.

Unit IV: Professional development:

6 hrs

Alignment with classroom practices and follow-up support, Peer support, Support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes.

Unit V: Research gaps and future directions:

6 hrs

Research design, Contexts, Pedagogy, Teacher education, Curriculum and Assessment, Dissemination and research impact.

TOTAL HOURS: 30

Reference Books:

- 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.
- **2.** Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
- **3.** Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher Education research project (MUSTER) country report 1. London: DFID.
- **4.** Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.
- **5.** Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.
- 6. Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.

.

Course Cod EMCC2210				e: STRE IENT BY			Ty/L b/ET L	L	T/S .Lr	P/R		C	
		Prere Yoga		Basic Kno	owledge (of	IE	2	0/0	0/0		0	
L : Lecture 7	Γ : Tut	torial	P : Projec	ct R : Res	earch C:	Credits T	7/L: The	ory/La	b	1	1		
Objectives													
To Understa	nd the	Basic	Concepts	of Yoga									
To Gain kno	wledg	ge on As	shtanga y	roga									
To Acquire l	knowledge of Techniques and Practice of Yogasanas												
To Understa	To Understand stress and the causes. To Attain the knowledge about stress busting through yoga												
CO1	Unde	erstand	the Basic	Concepts	of Yoga								
CO2				Ashtanga y									
CO3			derstand stress and the causes										
CO4	Acat	iire kno	wledge o	of Technia	ues and F	Practice o	of Yogasa	anas					
CO5	Acquire knowledge of Techniques and Practice of Yogasanas Attain the knowledge about stress busting through yoga												
Mapping of Course Outcomes with Program Outcomes (POs)													
COs/POs		PO1 PO2 PO3 PO4 PO5			PO5	PO6	PO	7	PO8	PO9			
CO1	1	1	1	1	1	1	3	1		1	1		
CO2	1	1	1	1	1	1	3	1		1	1		
CO3	1	1	1	1	1	1	1	1		1	1		
CO4	1	1	1	1	1	1	3	1		1	1		
CO5	1	1	1	1	1	1	2	1		1	1		
COs / PSOs				PSO1				PSO2			PSO)3	
CO1				1				1			1		
CO2				1				1			1		
CO3				1				1			1		
CO4				1				1	_		1		
CO5				1				1			1		
3/2/1 indicat	tes St	rength	of Corre	lation 3	- High,	2- Mediu	ım, 1- L	ow		·			
Category		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project		Internships / Technical Skill	Soft Skills	Audit course	

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code: EMCC22I07	Course Name: STRESS MANAGEMENT BY YOGA	Ty/Lb /ETL	L	T/S .Lr	P/R	C	
	Prerequisite : Basic Knowledge of Yoga	IE	2	0/0	0/0	0	
L: Lecture T: Tutorial P: Project R: Research C: Credits T/L: Theory/Lab							

Unit 1: 6 hrs

What is stress - Symptoms of stress - Why is stress helpful - Why is stress harmful - Stress versus burnout - Main types of stress - Know your stressors - Tips to Manage Stress

Unit 2:

Strength, Weaknesses, Opportunities and Threats (SWOT) Analysis, Who am I, Attributes, Importance of Self Confidence, Self Esteem. Emotional Intelligence, What is Emotional Intelligence, emotional quotient why Emotional Intelligence matters, Emotion Scales. Managing Emotions

Unit 3: 6 hrs

What is Yoga – Definition and Its Branches - Hatha Yoga – Kundalini Yoga – Tantra Yoga – Kriya Yoga – Introduction To Ashtanga Yoga

Unit 4: 6 hrs

Mechanism of Stress related diseases: Psychic, Psychosomatic, Somatic and Organic phase. Role of Meditation & Pranayama on stress – physiological aspect of Meditation. Constant stress & strain, anxiety, conflicts resulting in fatigue among Executive. Contribution of Yoga to solve the stress related problems of Executive Unit 5:

Meaning and definition of Health – various dimensions of health (Physical, Mental, Social and Spiritual) – Yoga and health – Yoga as therapy. Physical fitness. Stress control exercise – Sitting meditation, Walking meditation, Progressive muscular relaxation, Gentle stretches and Massage.

TOTAL HOURS: 30

Reference Books:

- 1. Andrews, Linda Wasmer., (2005). Stress Control for peace of Mind. London: Greenwich Editions Lalvani, Vimla., (1998). Yoga for stress. London: Hamlyn
- 2. Nagendra, H.R., and Nagarathana, R., (2004). Yoga perspective in stress management. Bangalore: Swami Vivekananda Yoga Prakashana.
- 3. Nagendra, H.R., and Nagarathana, R., (2004). Yoga practices for anxiety & depression. Bangalore: Swami Sukhabodhanandha Yoga Prakashana.
- 4. Sukhabodhanandha, Swami., (2002). Stress Management. Banglore: Prasanna trust.
- 5. Udupa, K.N., (1996). Stress management by Yoga. NewDelhi: Motilal Banaridass Publishers Private Limited

Course Code EMCC22I08	:	DEVE		IENT T	HRO	ALITY OUGH I ILLS				/Lb/E FL	L	T/S .Lr	P/R	С		
		Prerec	uisite: 1	Vil						IE	2	0/0	0/0	0		
	L: Lecture T: Tutorial P: Project R: Research C: Credits T/L: Theory/Lab															
Objectives To learn to achieve the highest goal happily, To become a person with stable mind, pleasing personality and determination. To awaken wisdom in student																
COURSE OU																
CO1		Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and														
602		chieve the highest goal in life														
CO2		ne person who has studied Geeta will lead the nation and mankind to peace and prosperity														
CO3	CO3 Study of Neetishatakam will help in developing versatile personality of students.															
Mapping of Course Outcomes with Program Outcomes (POs)																
COs/POs	F	PO1	PO2	PO3	PO 4	PO5	PO6	P	PO7 PO8 PO			O9				
CO1		1	1	1	1	1	3		1	1		1				
CO2		1	1	1	1	1	3		1	1		1				
CO3		1	1	1	1	1	3		1	1		1				
COs / PSOs				PSO1					P	SO2			PSO3	ŀ		
CO1				1					1				1			
CO2				1						1			1			
CO3				1						1			1			
3/2/1 indicate	s Str	ength o	f Corre	lation	3 –	High, 2-	Mediu	m, 1-	Low							
		Se		pu	ces	o		es				III				
Category		Basic Sciences	Engineering Sciences	Humanities and	Social Sciences	Program Core	Program Electives	Open Electives	,	Practical / Project	Internships /	Technical Skill	Soft Skills	Audit course		
														/		

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India

	Course Code: EMCC22108	Course Name: PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS	Ty/Lb/E TL	L	T/S. Lr	P/R	C	
		Prerequisite: Nil	IE	2	0/0	0/0	0	
L: Lecture T: Tutorial P: Project R: Research C: Credits T/L: Theory/Lab								

Unit 1:

Neetisatakam-Holistic development of personality

Verses- 19,20,21,22 (wisdom) Verses- 29,31,32 (pride & heroism)Verses- 26,28,63,65 (virtue) Verses- 52,53,59(dont's)Verses-71,73,75,78(do's)

Unit 2: 10 hrs

Approach to day to day work and duties.

Shrimad BhagwadGeeta: Chapter 2-Verses 41, 47,48, Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 23, 35, Chapter 18-Verses 45, 46, 48.

Unit 3: 10 hrs

Statements of basic knowledge.

Shrimad BhagwadGeeta: Chapter2-Verses 56, 62, 68 Chapter 12 -Verses 13, 14, 15, 16,17, 18 Personality of Role model. Shrimad BhagwadGeeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Chapter 4-Verses 18, 38,39 Chapter18 – Verses 37,38,63.

TOTAL HOURS: 30

Reference Books:

- 1. "Srimad Bhagavad Gita" by Swami SwarupanandaAdvaita Ashram (Publication Department), Kolkata
- 2. Bhartrihari's Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

Course Code EMCC22109	:	Course Nan	ne : RESEA	RCH PUE	BLICATIO	N ETHICS	T / L/ ETP/IE	L	T /	S.Lr	P/R	C	
		Prerequisite:	core subjec	ts			IE	2		0/0	0/0	2	
T/L/: Theory	/Lab L :	Lecture T : T	utorial P:	Practical/P	Project R : I	Research C:	Credits T/I	The	ory/L	Lab			
OBJECTIVE	E:												
		nd the philoso	ophy of sci	ence and e	ethics, rese	earch integr	ity and pu	blica	ation	ethics.			
		esearch misc					•						
• To un	derstar	nd indexing a	nd citation	databases	s, open acc	ess publica	tions, rese	earch	met	rics (cita	tions,	h-	
		ct Factor, etc											
COURSE OU			• -				1.75.1.11						
CO1		derstand the											
CO2	Ge	t to know al	oout differ	rent types	of plagia	rism and	ways for	avoi	ding	plagiar	ism		
CO3		ow about be blication mi		es and gu	idelines	n publicat	tion ethics	s and	d also	o learns	to avo	oid	
CO4	Get to know about Violation of publication ethics, authorship and contributor ship and get to identify about Predatory publishers and journals.												
Get to know about various open sources database and research metrics like indexing, citation etc.,													
Mapping of C	Course	Outcomes wit	th Program	Outcomes	s (POs)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P	08	PO9			
CO1	2	3	3	3	3	2	3		3	2			
CO2	2	3	3	3	3	2	3		3	2			
CO3	2	3	3	3	3	2	3		3	2			
CO4	2	3	3	3	3	3 2	3		3	3			
CO5 COs / PSOs	2	3	3		3		3		3	2	22		
CO3/ F3O3			PSO	<u> </u>		J	PSO2			PSO			
CO2			2 2			3 3							
CO2			2			3 3 2							
CO4			2				3			3			
CO5			2				3			3			
1/2/3 indicate	es Stren	gth of Correl	ation 3- Hi	gh, 2- Med	ium, 1-Lo	W							
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project			Internships / Technical Skill	Soft Skills	Audit Course	
			<u> </u>									<u></u>	

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India

Course Code: EMCC22I09	Course Name: Research Publication Ethics	T / L/ ETP/IE	L	T / S.Lr	P/R	C		
	Prerequisite: Core subjects	IE	2	0/0	0/0	0		
T/L/: Theory/Lab L: Lecture T: Tutorial P: Practical/Project R: Research C: Credits T/L Theory/Lab								

Unit 1. Introduction 6 Hrs.

Introduction to philosophy: Definition, nature and scope, concept, branches - Ethics: Definition, moral philosophy, nature of moral judgments and reactions – Ethics with respect to Science and Research Intellectual honesty and research integrity.

Unit II: Scientific Conduct 6 Hrs.

Scientific misconducts: Falsification, Fabrication, and Plagiarism (FFP) Redundant Publications: Duplicate and over lapping publications, salami slicing – Selective reportingand misrepresentation of data.

Unit III: Publication Ethics -I

6 Hrs.

Publication ethics: Definition, introduction and importance – Best practices/standards setting initiatives and guidelines: COPE, WAME etc. Publication misconduct: definition, Concept, problems that lead to unethical behavior and vice-versa, types.

Unit IV: Publication Ethics – II

6 Hrs.

Violation of publication ethics, authorship and contributor ship – Identification of publication misconduct, complaints and appeals – Predatory publishers and journals – Subject specific ethicalissues, Complaints and appeals: examples and fraud from India and Abroad.

Unit V: Data Bases and Research Metrics

6 Hrs.

Open Access publication and Initiatives – Indexing databases – Citation databases, Web of Science, Scopus, etc. – Impact factor of journals as per Journal Citation report .SNIP, SJR, IPP, Cite Score - Metrics: hindex, gindex, i10 index, altmetrics – Conflict of interest.

References:

TOTAL HOURS: 30

- 1. Bird A 2006, Philosophy of Science, Routledge
- 2. MacIntyre & Alasdair, 1967, A Short History of Ethics, London.
- 3. Chaddah, P20 1 8, Ethics in Competitive Research: Do not get scooped; do not get plagiarized, ISBN: 9789387480865.
- 4. On Being a Scientist: A Guide to Responsible Conduct in Research, 2009, National Academy of Sciences, National Academy of Engineering and Institute of Medicine. 3rd edition, National Academies Press.
- 5. Resnik, D. B 201 1, what is ethics in research & why is it important. National Institute of Environmental Health Sciences,pp.1—10. https://www.niehs.nih.gov/research/reso_uuces/bioethics/whatis/index.cfm
- 6. Bcall, J 2012, Predatory publishers are corrupting open access, Nature, Vol. 489, no.7415,pp. 179—179. https://d0i.org/IO.1 03 8/48917%, Ethics in Science Education, 2019 Indian National Science Academy (INSA), Research and Governance,