

FACULTY OF ENGINEERING AND TECHNOLOGY

OUTCOME BASED EDUCATION

CURRICULUM AND SYLLABUS (2022 Regulation)

M. TECH. STRUCTURAL ENGINEERING REGULATION-2022(Part Time)

(For students admitted from the Academic Year2022-23)

Department Vision

To achieve the pinnacle of success in the area of sustainable constructions and green technologies, thus stimulating economic growth and making the society a better place to live in

Department Mission

The mission of the Department of Civil Engineering is:

M1: To produce graduates who possess technical competence in their chosen specialty area ofCivil Engineering with integrity and commitment

M2: To prepare them to serve and contribute as innovators, professional engineers, and leaders n the global community

Program Educational Objectives

The Program Educational Objectives of the Civil Engineering program are designed to produce skilled Engineers who could effectively contribute to the Civil Engineering profession with an ability to meet its current andfuture challenges

PEO 1: To apply fundamental technical knowledge and skills to find creative solutions to technological challenges and problems in various areas of basic sciences and engineering.

PEO 2: To analyze, design and use skills in order to formulate and solve Civil Engineering problems.

PEO 3: To practice civil engineering in a responsible, professional and ethical manner and implement eco- friendly sustainable technologies for the benefit of industry and society.

PEO 4: To create knowledge through research and development in Civil Engineering and allied fields and modernize the teaching levels.

PEO 5: To make students professionally competent by enhancing their communication skills, team spirit, leadership and also to prepare them for lifelong learning through innovative and research activities.

PROGRAMOUTCOMES

PO1	Apply the knowledge of science, mathematics, and engineering principles for developing problem solving attitude.
PO2	Problem analysis: Identify, formulate and solve engineering problems in the domain of Structural Engineering field.
PO3	Use different software tools for Analysis and Design structural engineering domain.
PO4	Design and conduct experiments, analyse and interpret data, for development of simulation experiments.
PO5	Function as a member of a multidisciplinary team with sense of ethics, integrity and social Responsibility.
PO6	Functioning as a team in an ethical manner emphasizing on solving environmental, social and global challenges
PO7	Shaping managerial skills to become good decision makers, strategists and entrepreneurs
PO8	Apply reasoning informed by the contextual knowledge to access societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO9	Demonstrate knowledge and understanding of the engineering and management principles and apply these to once own work as a member and leader in a team to manage projects and multidisciplinary environments

LISTOFPROGRAMSPECIFICOUTCOMES(PSOs)

PSO 1: The ability to develop new materials, design and research projects in differentfieldsofcivilengineeringusingsoftwareandexperimentaltechniques.

PSO 2: Ability to develop the teaching professionals and engage in R&D works with ethical andsocietalresponsibility.

PSO3: Ability to apply the knowledge in various structural engineering fields.

Mapping of Mission With PEOs

Mission/PEOs	PEO1	PEO2	PEO3	PEO4	PEO5
M1	2	3	3	3	2
M2	3	2	3	3	2

Mapp	ing of PE	Os with	PSOs	

PEO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
PEO1	3	2	3	3	3	2	1	1	3
PEO2	3	3	3	2	2	1	2	2	3
PEO3	1	2	2	2	3	2	2	3	3
PEO4	2	3	2	1	2	2	2	1	2
PEO5	2	3	2	1	3	3	2	2	2

Mapping of PEOs With POs

PEO/PSO	PSO1	PSO2	PSO3
PEO1	2	3	3
PEO2	3	2	3
PEO3	2	3	2
PEO4	3	2	3
PEO5	1	3	2

Correlation Strength :- 3: High , 2: Medium , 1 : Low

M.Tech – Structural Engineering (Part Time)

Curriculum and Syllabus

2022 Regulation

	I SEMESTER									
S.No	Course Code	Course Title	Ty/Lb/ETL/IE	L	T/SLr	P/R	С	Category		
1.	EMMA22005	Advanced Engineering Mathematics for Structural Engineers	Ту	3	1/0	0/0	4	BS		
2.	EMSE22001	Theory of Elasticity and Plasticity	Ту	3	1/0	0/0	4	PC		
3.	EMSE22L01	Computer Aided Structural design - Laboratory	Lb	0	0/0	4/0	2	PC		
4.	EMCC22001	ResearchMethodologyandIPR	Ту	3	0/0	0/0	3	ID		
5.	EMCC22IXX	Audit Course -I	IE	2	0/0	0	0	ID		
		TOTAL		11	2	4	13			

Credits Sub Total: 13

	II SEMESTER									
S.No	Course Code	Course Title	Ty/Lb/ETL/ IE	L	T/SLr	P/R	С	Category		
1.	EMSE22002	FEM in Structural Engineering Program	Ту	3	1/0	0/0	4	PC		
2.	EMSE22EXX	Program Elective–I	Ту	3	0/0	0/0	3	PE		
3.	EMSE22EXX	Program Elective –II	Ту	3	0/0	0/0	3	PE		
4.	EMSE22L02	Advanced Concrete Laboratory	Lb	0	0/0	4/0	2	PC		
5.	EMCC22IXX	Audit Course - II	IE	2	0/0	0/0	0	ID		
		TOTAL		11	1	4	12			

Credits Sub Total: 12

DEEMED TO BE UNIVERSITY University with Graded Autonomy Status

.G **EDUCATIONAL AND RESEARCH INSTITUTE**

D

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

	III SEMESTER									
S.No	Course Code	Course Title	Ty/Lb/ET L/IE	L	T/SLr	P/R	С	Category		
1.	EMSE22003	Structural Dynamics	Ту	3	0/0	0/0	3	PC		
2.	EMSE22EXX	Program Elective –III	Ту	3	0/0	0/0	3	PE		
3.	EMSE22EXX	Program Elective –IV	Ту	3	0/0	0/0	3	PE		
4.	EMSE22L03	Structural Engineering Laboratory	Lb	0	0/0	4/0	2	PC		
		TOTAL		9	0	4	11			

Credits Sub Total: 11

	IV SEMESTER								
S.No	Course Code	Course Title	Ty/Lb/ETL /IE	L	T/SLr	P/R	С	Category	
1.	EMSE22004	Experimental Techniques and Instrumentation	Ту	3	0/0	0/0	3	PC	
2.	EMSE22EXX	Program Elective –V	Ту	3	0/0	0/0	3	PE	
3.	EMSE22L04	Structural Engineering Design Studio	Lb	0	0/0	4/0	2	PC	
4.	EMSE22I01	Term Paper	IE	0	0/0	0/4	2	PC	
		TOTAL		6	0	8	10		

Credits Sub Total: 10

	V SEMESTER								
S.No	Course Code	Course Title	Ty/Lb/ET L/IE	L	T/SLr	P/R	С	Category	
1.	EMSE22005	Advanced Concrete Technology	Ту	3	1/0	0/0	4	PC	
2.	EMCC22OEX	Open Elective	Ту	3	0/0	0/0	3	ID	
3.	EMSE22L05	Dissertation Phase I	Lb	0	0/0	0/10	5	Р	
		TOTAL		6	1	10	12		

Credits Sub Total: 12

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

	VISEMESTER									
S.No	Course Code	Course Title	Ty/Lb/ET L/IE	L	T/SLr	P/R	С	Category		
1.	EMSE22L06	Dissertation Phase II	Lb	0	0	10/10	10	Р		
		TOTAL		0	0	20	10			

Credits Sub Total: 10

TOTAL CREDITS= 13+12+11+10+12+10= 68

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

	PROGRAM ELECTIVE-I										
S.No	Course Code	Course Title	Ty/Lb/ET L/IE	L	T/SLr	P/R	С	Category			
1.	EMSE22E01	Theory of Thin Plates and Shells	Ту	3	0	0	3	PE			
2.	EMSE22E02	Theory and Applications of Cement Composites	Ту	3	0	0	3	PE			
3.	EMSE22E03	Theory of Structural Stability	Ту	3	0	0	3	PE			
4.	EMSE22E04	Soil Structure Interaction	Ту	3	0	0	3	PE			

PROGRAM ELECTIVE-II													
S.No	Course Code	Course Title	Ty/Lb/E TL/IE	L	T/SLr	P/R	С	Category					
5.	EMSE22E05	Repair and Rehabilitation of Structures	Ту	3	0	0	3	PE					
6.	EMSE22E06	Structural Health Monitoring	Ту	3	0	0	3	PE					
7.	EMSE22E07	Structural Optimization	Ту	3	0	0	3	PE					
8.	EMSE22E08	Prefabricated Structures	Ту	3	0	0	3	PE					

PROGRAM ELECTIVE-III													
S.No	Course Code	Course Title	Ty/Lb/E TL/IE	L	T/SLr	P/R	С	Category					
9.	EMSE22E09	Advanced Steel Design	Ту	3	0	0	3	PE					
10.	EMSE22E10	Design of Formwork	Ту	3	0	0	3	PE					
11.	EMSE22E11	Tall structures	Ту	3	0	0	3	PE					
12.	EMSE22E12	Design of Masonry Structures	Ту	3	0	0	3	PE					

PROGRAM ELECTIVE-IV													
S.No Course Course Title Ty/Lb/E L T/SLr P/R C C													
13.	EMSE22E13	Design of Advanced Concrete	Ту	3	0	0	3	PE					
		Structures											
14.	EMSE22E14	Advanced Design of Foundations	Ту	3	0	0	3	PE					
15.	EMSE22E15	Advanced Structural Analysis	Ту	3	0	0	3	PE					
16.	EMSE22E16	Design of Industrial Structures	Ту	3	0	0	3	PE					

PROGRAM ELECTIVE-V Ty/Lb/E Course S.No **Course Title** L T/SLr P/R С Category Code TL/IE Design of Prestressed Concrete 17. 3 **EMSE22E17** Ty 0 0 3 PE Structures Analysis of Laminated Composite 18. **EMSE22E18** Ty 3 0 0 3 PE Plates Fracture Mechanics of Concrete 19. **EMSE22E19** 0 3 3 PE Ty 0 Structures 20. EMSE22E20 Earthquake Resistance Structures 3 0 0 3 PE Ty

	AUDIT COURSE													
S.No	Course Code	Course Title	Ty/Lb/E TL/IE	L	Т	Р	С	Category						
1	EMCC22I01	English for Research Writing	IE	2	0	0	0	ID						
2	EMCC22I02	Disaster Management	IE	2	0	0	0	ID						
3	EMCC22I03	Sanskrit for Technical Knowledge	IE	2	0	0	0	ID						
4	EMCC22I04	Value Education	IE	2	0	0	0	ID						
5	EMCC22105	Constitution of India	IE	2	0	0	0	ID						
6	EMCC22106	Pedagogy Studies	IE	2	0	0	0	ID						
7	EMCC22I07	Stress Management by Yoga	IE	2	0	0	0	ID						
8	EMCC22I08	Personality Development through Life Enlightenment Skills	IE	2	0	0	0	ID						
9	EMCC22109	Research Publication Ethics	IE	2	0	0	0	ID						

	OPENELECTIVE													
S.No	Course Code	Course Title	Ty/Lb/ET L/IE	L	Т	Р	С	Category						
1.	EMCC22OE1	Business Analytics	Ту	3	0	0	3	ID						
2.	EMCC22OE2	Industrial Safety	Ту	3	0	0	3	ID						
3.	EMCC22OE3	Cost Management of Engineering Projects	Ту	3	0	0	3	ID						
4.	EMCC22OE4	Composite Materials	Ту	3	0	0	3	ID						
5.	EMCC22OE5	Waste to Energy	Ту	3	0	0	3	ID						

Credit distribution

SEMESTER	CREDITS
Ι	13
II	12
III	11
IV	10
V	12
VI	10
TOTAL	68

SEMESTER-I

Course Code : EMMA22005	Course MATHE	Namo MATICS	e : S FOR ST	ADVA FRUCTI	NCED URAL EN	ENGI NGINEE	NEERIN RS	G	Ty/ Lb/ ETI]	[]	T/ S.Lr	P/	R	С
	Prerequi	site: UG	level Ma	athemat	ics				TY		3	1	0)	4
L : Lecture T : T	utorial S	.Lr : Sup	ervised	Learnin	g P:Pro	oject R :	Researc	ch C:	Credi	ts					
Ty/Lb/ETL : The	eory/Lab/E	Embedde	d Theory	/ and La	.b										
OBJECTIVES :		a da ta t													
I ne student sho	To movi	ade to:	Canaan	tofTm	former	tions									
	To provi		Concep 1 two di	n of The	morma	uons. ables									
	To enabl	le the ki	nowledg	re of Fs	timation	Theory	,								
COURSE OUT	COMES ($\overline{(COs)}$:	lowledg		imation	Theory	•								
CO1	To unde	erstand t	he Tran	sform r	nethods										
CO2	To be al	ble to so	lve Cal	culus of	f variatio	on									
CO3	To unde	erstand t	he conc	epts of	One din	nension	al meth	ods							
CO4	To be al	be able to solve the concepts of Two dimensional methods													
CO5	To anal	To analyze the Estimation Theory													
Mapping of Cou	rse Outco	Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	3	PO9					
CO1	2	3	2	2	3	1	1	2	2	2					
CO2	3	2	1	2	2	2	2	2	2	3					
CO3	3	3	1	2	2	3	1	1		2					
CO4	3	2	2	2	1	2	2	2	2	1					
CO5	3	3	1	2	1	1	2	1		2	_				
COs / PSOs		<u>PSO1</u>		2	PSO2			<u>PSC</u>	<u>)3</u>						
		3		3				3))						
CO_2		3		2				2)						
CO4		3		3					- }						
C05		3		2				2	2						
3/2/1 Indicates S	Strength (Of Corre	lation, 3	– High	, 2- Med	lium, 1-	Low				-1				
					es		ry	nt	ct						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electiv	Open Electives	Inter disciplina	Skill compone	Practical / Proje						
	$\overline{\mathbf{v}}$					_									

Course Code : EMMA22005	Course Name : ADVANCEDENGINEERINGMATHEMATICSFORSTRUCTURALENGINEERS	Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С								
	Prerequisite: UG level Mathematics	TY	3	1	0	4								
L : Lecture T : T	L : Lecture T : Tutorial S.Lr : Supervised Learning P : Project R : Research C: Credits													
Tv/Lb/ETL : The	orv/Lab/Embedded Theory and Lab													

UNIT I TRANSFORM METHODS

Laplace Transform methods for one dimensional wave equation – Displacements in a string – Fourier Transform methods – One dimensional heat conduction problems in infinite and semi- infinite rod.

UNIT II CALCULUS OF VARIATIONS

Variation and its properties – Euler's equations – Functionals dependent on First and higher order derivatives – Functionals depend on functions of several independent variables – Problems with moving boundaries – Direct methods – Ritz and Kantorovich methods.

UNIT III ONE DIMENSIONAL RANDOM VARIABLES

Random variables – Probability function – Moments – Moment generating functions and their properties – Binomial, Poisson, Exponential, and normal distributions – Functions of a Random variable.

UNIT IV TWO DIMENSIONAL RANDOM VARIABLES

Joint distributions – Marginal and conditional distributions – Functions of two dimensional random variables – Correlation – Regression.

UNIT V ESTIMATION THEORY

Unbiased estimators – Method of moments –Maximum likelihood estimation – Curve fitting by Principle of least squares.

Reference Books:

1. Sneddon I.N., Elements of Partial Differential Equations, Dover Publications, (2006).

2. Sankara Rao K., Introduction to Partial Differential Equations (3rd ed.), PHI, (2010).

3. Gupta A.S., Calculus of variations with applications, Prentice Hall of India, (2004).

4. Richard Johnson A., Miller & Freund's Probability and statistics for Engineers (8th ed), Prentice Hall of India, (2009).

5. Richard Johnson A., Wichern .D.W, Applied Multivariate Statistical Analysis (6th ed), Prentice Hall of India, (2007).

12 hrs

Total no. of hrs: 60

12 hrs

12 hrs

12 hrs

12 hrs

Course EMSE	Code 2200	: 1	Course N Plasticity	ame : The	eory of]	Elasticity	and and	Ty/ /E1	/Lb ГL	L	T/ SLr	P/1	R C	
			Prerequist of materia	ite :Mecha ıls	anics of s	Solids /St	rength	Ту		3	1/0	0/0	4	
L : Lect	ure T	: Tutoria	1 SLr : Sup	ervised L	earning	P : Projec	et R : Resea	rch C:	Cre	dits	1			
T/L/ET	L : Th	neory / La	b / Embedo	led Theor	y and La	ıb								
OBJEC		E S : To u	nderstand t	he concep	ot of 3D	stress, str	ain analysis	and it	s Ap	plica	ations to	o sim	ole	
	SE O	UTCOM	ES (Cos) :											
At the e	end of	the cours	se, students	will be al	ole to									
CO1	To r	emember	ing the basi	ics knowl	edge abc	out the El	asticity and	Plastic	city					
CO2	To u	Inderstand	d the conce	pt of stres	s, strain	of 2D an	d 3D for Ela	astic ai	nd p	lastic	structu	ires		
CO3	To a	pplying t	he concept	of of ela	sticity an	d equip t	hem with th	ne knov	vled	lge to	indepe	ndent	ly ha	ndle
	the p	oroblems	of elasticity	/	-						-			
CO4	Тоа	nalvze th	e stress and	l strain fo	r Elastici	ity and Pl	asticity							
CO5	O5 To inculcate the habit of researching and practicing in the field of elasticity and Plasticity													
Mapping of Course Outcomes with Program Outcomes (Pos)														
COs/PC	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P	08	PO9			
CO1		3	3	3	3	2	3	2	3		3			
CO2		3	3	3	3	3	3	3	3		3			
CO3		3	2	3	3	3	2	3	3		2			
CO4		3	3	2	2	3	3	2	2		3			
CO5		3	3	2	3	3	3	2	3		2			
COs/PS	SOs	PS	501	PSO2		PSO3								
CO1			3	3		1								
CO2			3	3		2								
CO3			3	3		3								
CO4			3	3		1								
CO5			3		TT, 1	2	• • •							
3/2/1 in	dicat	es streng	th of corre	lation 3	– High,	2 – Med	1um, $1 - Lo$	DW						t i
Category	Basic Sciences		Engg Sciences	Humanities & Social Sciences	Program core		Program Electives		Open Electives		Inter disciplin	ary	Skill	Practical / Projec

UNIT I: BASIC CONCEPTS

Theory / Lab / Embedded Theory and Lab

of materials

Analysis of stress and strain - Equations of equilibrium and compatibility -Stress strain relationship -Generalized Hook's law

UNIT II: PLANE STRESS AND PLANE STRAIN 2D PROBLEMS

Plane stress and plane strain -2D Problems in Cartesian coordinates- Airy's stress function - Problemsin 2D - Polar coordinate

UNIT III: TORSION

Course Code :

EMSE22001

Torsion of non-circular section - methods of analysis, St. Venant's theory - Torsion of elliptical sections Torsion of triangular sections - Prandtl's membrane analogy - Torsion of rolled profiles - torsion of thin rectangular section and hollow thin walled sections.

UNIT IV: ENERGY METHODS

Energy methods - principle of virtual work - energy theorem - Rayleigh Ritz methods - Finite Difference method.

UNIT V: INTRODUCTION TO PROBLEMS IN PLASTICITY

Physical assumption - criteria of yielding, yield surface, Flow rule (plastic stress strain relationship). Elastic plastic problems of beams in bending - plastic torsion.

REFERENCES

- 1. Timoshenko, S. and Goodier T.N. "Theory of Elasticity", McGraw Hill Book Co., Newyork, II Edition 1988.
- 2. Sadhu Singh, "Theory of Elasticity", Khanna Publishers, New Delhi 1988.
- 3. Sadhu Singh, "Theory of Plasticity", Khanna Publishers, New Delhi 1988.
- 4. Chwo P.C. and Pagano, N.J. "Elasticity Tensor, Dyadic and Engineering applications", D.Van Nestrand Co., In Co., 1967.
- 5. Chenn, W.P. and Henry D.J. "Plasticity for Structural Engineers", Springer Verlag Newyork 1988.
- 6. Verma, PDS, "Theory of Elasticity", Vikas Publishing Pvt. Ltd. New Delhi -1997.

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: CreditsT/L/ETL:

12 Hrs

12 Hrs

С

4

T/

SLr

1/0

3

P/R

0/0

12 Hrs

12 Hrs

Page 16

Total No of Hours: 60

Course EMS	e Code E22L	e : D1	Course N AIDED S DESIGN	Vame: CO STRUCT - LABOI	OMPUT URAL RATOR	TER Y		Ty/Lb/F TL		T/ SLr	P/R	С		
			structure	site: Des s	ign of C	oncrete		Lb	0	0/0	4/0	2	2	
L : Leo T/L/E	cture T TL : T	ີ : Tutoria heory / La	ıl SLr : Su ab / Embec	pervised lded The	l Learnin ory and	ng P : Pr Lab	oject R : l	Research	C: Cred	its	I			
OBJE	CTIV	ES : Stud	lent should	l aware c	of compu	uter appl	lication of	structural	design					
COUI	RSE O	UTCOM	ES (Cos)	:										
At the	end of	f the cours	se, student	s will be	able to									
CO1	To re	member t	he basic k	nowledg	e about	theory o	of structure	es						
CO2	To ur	nderstand	the structu	iral com	ponents	and con	nputer app	olication						
CO3	To ar	alysis of	structural	compone	ents for	various	loading co	onditions u	ising stru	ictural.a	nalysis	softwa	are	
CO4	To d	esign the	building f	rames us	sing so	ftware to	ools							
CO5	Appl	y seismic	analysis co	oncepts t	to struct	ures usir	ng Etabs							
Mapping of Course Outcomes with Program Outcomes (Pos)														
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1		3	3	3	3	2	3	2	3	3				
CO2		3	3	3	3	3	3	3	3	3				
CO_{3}		3	2	3	3 2	3	2	3	<u> </u>	2				
C04		3	3	2	2	3	3	2	2	2				
	2505	J PS	<u> </u>	 PS	$\frac{3}{302}$	_ Э Р	<u> </u>	2	5	2				
CO3/1		1.	1	1.	2	1	3							
CO2			2		1		2							
CO3			3		2		3							
CO4			1		2		3							
CO5			3		1		2							
3/2/1 i	ndicat	tes streng	th of corr	elation	3 – Hig	gh, 2 – N	Iedium , 1	l–Low						
Category	Basic Sciences		Engg Sciences	Humanities & Social Sciences	Program core		Program Electives	Onen Flantives	open racince	Inter disciplin	ary	Skill component	Practical / Project	
													\checkmark	

Course Code : : EMSE22L01	Course Name: COMPUTER AIDED STRUCTURAL DESIGN- LABORATORY	Ty/Lb/E TL	L	T/ SLr	P/R	С				
	Prerequisite: Design of Concrete structures	Lb	0	0/0	4/0	2				
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory / Lab / Embedded Theory and Lab										

LIST OF EXPERIMENTS

- 1. Analysis of Symmetrical Building Frames (Gravity Load Only) using STADD PRO Software.
- 2. Analysis of Symmetrical Building Frames (Wind Load Only) using STADD PRO Software.
- 3. Analysis of Symmetrical Building Frames (Earthquake Load Only) using STADD PRO Software.
- 4. Analysis of Un-Symmetrical Building Frames (Gravity Load Only) using STADD PRO Software.
- 5. Analysis of Un-Symmetrical Building Frames (Wind Load Only) using STADD PRO Software.
- 6. Analysis of Un-Symmetrical Building Frames (Earthquake Load Only) using STADD PRO Software.
- 7. Analysis of Symmetrical Building Frames (Gravity Load ,Wind Load Only) using Etabs Software.
- 8. Analysis of Symmetrical Building Frames (Earthquake Load Only) using Etabs Software. Plate
- 9. Analysis of Un-Symmetrical Building Frames (Gravity Load, Wind Load) using Etabs Software.
- 10. Analysis of Un-Symmetrical Building Frames (Earthquake Load Only) using Etabs Software.

Total No of Hours: 60

REFERENCE :

- 1. STAADPro. Manual
- 2. Etabs. Manual
- 3. Dr. Krishnaraju.N, AdvancedR.C.Design, CBS Publishers & Distributors Pvt Ltd, 2012

Course Co EMCC220	de: 01	C	ourse Res	e Namo earch	e : Metho	odology :	and]	(PR	Ty/L ETI	b /	L	T/SL	r P	?/R	С		
		Pr	ereq	uisite:	core s	ubjects			Ту		3	0/0	0	/0	3		
Ty/Lb/ : T	heory/	Lab L	L:Le	ecture '	T : Tut	orial P	: Pra	ctical/F	Project I	R : Re	search	C: Crea	dits T/I	. The	eory/Lab		
OBJECTI concepts an	VE: T d ethic	he goa s whic	l is to h wi	o emph ll aid to	asize th build t	e importa	nce c IPR	of innova status.	ation and	creati	vity by	understa	anding 1	he re	search		
COURSE	OUTC	OME	S (C	Os) : B	y doing	g this cou	rse st	tudents	will								
CO1	Un by	dersta follow	nd re ving r	search esearcl	probler h ethics	n formula	tion ł	by Analy	zing res	search	related	l informa	tion and	l its e	execution		
CO2	Un wil	dersta 1 be ru	nd th 1led b	at toda y ideas	y's wor s, conce	ld is contr pt, and cr	rolled	l by Con ity.	nputer, Ir	nforma	tion T	echnolog	gy, but t	omor	row world		
CO3	Un nee stu	dersta edless dents i	nding to en in gei	g that w nphasis neral &	when IP the need c engine	R would t ed of infor eering in p	ake s rmatio particu	uch imp on about ular.	ortant pla Intellect	ace in g tual Pro	growtł operty	n of indiv Right to	iduals & be pror	& nati noted	on, it is among		
CO4	Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.																
Mapping of Course Outcomes with Program Outcomes (POs)																	
COs/POs	PO1	PO2	P	03	PO4	PO5	PO6	PO7	PO8	;	Р	09					
CO1	2	3		3	3	3	2	3		3		2					
CO2	2	3		3	3	3	2	3		3		2					
CO3	2	3		3	3	3	2	3		3		2					
CO4	2	3		3	3	3	2	3		3		2					
COs / PSOs		•	PSO	1			PSO	2		P	SO3						
CO1			3				3				3						
CO2			3				3				3						
CO3			3				3				3						
CO4			3				3				3						
3/2/1 indic	ates S	trengt	h of	Correl	ation	3- High	, 2- N	Medium	, 1-Low								
Category		Basic Sciences	Engg Sciences	Humanities &	Program core	Program	Electives	Open Electives	 Inter disciplina 	Skill component	Practical / Project						

Course Code : Ty/Lb/ L **T**/ P/R **Course Name : Research Methodology EMCC22001** ETL SLr and IPR **Prerequisite : None** 3 0/0 0/0Ty

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL : Theory / Lab / Embedded Theory and Lab

UNIT 1:SELECTION, ANALYSIS AND STATEMENT OF THE RESEARCH PROBLEM;

Literature Review and Formulation of Objectives - using the following Critical thinking Skills - Drawing a Concept map, Oral Communication, Debating, Questioning, Collaborating, Evaluation and Reasoning.

UNIT 2 : RESEARCH DESIGN

Types of Study, Types of Data, Measures of Variablility, Setting up the Hypotheses, data collection techniques and tools, sampling, Describing data - Charts and graphs ; Data processing - Categorization, coding, summarization.

UNIT 3: DATA ANALYSIS AND REPORT WRITING:

Statistical measures, Regression and correlation, significance test; Report writing - Purpose, format, content, editing and evaluation. Using Citation tools; Report for specific purposes - Theses, Journals, Grant application. Oral presentation to an audience; use of project management digital tools and plagiarism checking.

UNIT 4 :INTRODUCTION TO INTELLECTUAL PROPERTY

Types of intellectual property rights - Patent, Copyright, Trade Mark, Industrial Design, Geographical Indication, Trade Secrets -Traditional Knowledge. Elements of Patentability - Novelty, Non Obviousness (Inventive Steps), Industrial Application - Non patentable inventions - Process of patenting - National and International - Form and Fees for IP India

UNIT 5:PRIOR ART SEARCH, PATENT DRAFTING

Drafting patent Claims - Types of claims - Registration Procedure, Rights and Duties of Patentee; Patent infringement; Licensing -Franchising - Joint ventures; Non-Disclosure Agreements (NDAs) - Material Transfer Agreements (MTAs).

References:

- C. Vijayalakshmi and C. Sivapragasam (2011) Research Methods Tips and Techniques, , MJP Publishers **
- Deborai Rumsey (2010) Statistics Essentials for Dummies, Wiley Publishing Incorporated \div
- Bouchoux (2013) Intellectual Property, DELMAR CENGAGE Learning, USA
- ♦ V K Ahuja (2017) Law Relating to Intellectual Property Rights, LexisNexis Butterworths India

IMPORTANT WEB LINKS

- https://www.wipo.int/portal/en/index.html $\dot{\cdot}$
- http://ipindia.nic.in/ \div
- https://www.epo.org $\dot{\cdot}$
- ••• https://www.uspto.gov

Total No of Hours : 45

Page 20

9 hrs

9 hrs

9 hrs

9 hrs

9 hrs

С

3

SEMESTER-II

Course C EMSE2	Code 220(e::)2	Course l ENGIN	Name : l EERIN	FEM IN G	N STRU	CTURA		Fy/Lb/ ETL	L	T/ SLr	P/R	C	
			Prerequi and Med	site: Kn chanics o	owledge of Solids	e of Ma	thematics		Ту	3	1/0	0/0		4
L : Lectu	ıre T	: Tutori	al SLr : S	upervis	ed Lear	ning P :	Project R	: Res	earch C:	Cre	dits			
I/L/EII	. : 1	heory / L	ab / Embe		heory an	nd Lab								
OBJEC	TIV	ES: To :	study the	energy	princip	les, fini	te elemen	t con	cept. Stre	ss a	inalysis	, mes	shing.	
Nonline	arpro	oblems an	nd applica	tions.										
At the en	nd o	f the cour	rse, studer) : nts will l	be able t	0								
CO1	То	introduc	e various	basic co	oncept of	f Fem								
CO2	То	develop	one, two	and thre	e dimen	sional e	element pr	opert	ies					
CO3	То	Solve co	ntinuum p	oroblem	s using	finite el	ement ana	lysis						
CO4	То	apply the	e finite El	ements	methods	s in Line	er and No	n- Lir	er Proble	ms				
CO5	То	apply the	e finite El	ements	methods	s in vari	ous Softw	vare	are					
Mappin	g of	Course	Outcome	s with P	rogran	1 Outco	mes (Pos)						
COs/Po	s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	7 PO8		PO9			
CO1		3	3	3	3	2	3	2	3		3			
CO2		3	3	3	3	3	3	3	3		3			
CO3		3	2	3	3	2	2	3	3		2			
CO4		3	3	2	2	3	3	2	2		3			
	0	<u> </u>	3	2	3	3 DCO2	3	2	3		2			
	Us	PS	2	PSO2		PSU3								
		•	3	3		3 1								
CO2		•	3	2		2								
CO4		,	2	3		3								
CO5		,	3	2		3								
3/2/1 inc	dica	tes stren	gth of cor	relation	13 – H	ligh, 2 -	- Medium	n, 1– I	Low					
				s					s					ject
	nce		nces	ss & ence	ore				tive				t	Pro
ory	Scie		Scie	nitie Scie	um c		um /es		Elec		lin		nen	cal /
Itego	sic		188	ıma	ogra		ogra ectiv] Jen		ter scip		ill mpc	actic
Ca	\mathbf{Ba}		En	Hı So	Pr		Pr		Of)	ul sib	3	Sk	Pr

Course Code : : Course Name : FEM IN STRUCTURAL Ty/Lb/ L **T**/ P/R С ENGINEERING **EMSE22002** ETL SLr Prerequisite: Knowledge of Mathematics Ty 3 1/0 0/04 and Mechanics of Solids L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL : Theory / Lab / Embedded Theory and Lab

UNIT I : INTRODUCTION

Boundary Value Problem - Approximate Solution - Variation and Weighted Residual Methods - Ritz and Gale kin Formulations - Concepts of Approximation and Finite Elements - Displacement and Shape Functions - Weak Formulation - Minimum Potential Energy - Generation of Stiffness Matrix and Load Vector.

UNIT II : STRESS ANALYSIS

Two Dimensional problems - Plane Stress, Plain Strain and Axi symmetric Problems - Triangular and Quadrilateral Elements - Natural Coordinates - Isoperimetric Formulation - Numerical Integration - Plate Bending and Shell Elements - Brick Elements - Elements for Fracture Analysis.

UNIT III: MESHING AND SOLUTION PROBLEMS

Higher Order Elements - p and h Methods of refinement - IIL conditioned Elements - Discrimination Errors - Auto and Adaptive Mesh Generation Techniques - Error Evaluation.

UNIT IV : NONLINEAR AND VIBRATION PROBLEMS

Material and Geometric No linearity - Methods of Treatment - Consistent System Matrices - Dynamic Condensation - Eigen Value Extraction.

UNIT V THERMAL ANALYSIS

Application to Thermal analysis Problem

REFERENCES

- 1. Bathe, K.J., Finite Elements Procedures in Engineering analysis, Prentice Hall Inc., New Delhi 1995
- 2. Zienkiewicz, O.C, and Taylor, R.L., The Finite Elements Methods, Mc Graw Hill New Delhi, 1987.
- 3. Chandrupatla, R.T. and Belegundu, A.D., Introduction to Finite Elements in Engineering, 2nd Edition, Prentice Hall of India, New Delhi 1997.
- 4. Moaveni, S., Finite Element Analysis : Theory and Application with ANSYS, Prentice Hall Inc., New Delhi 1999.

Total No of Hours: 60

12 Hrs

12 Hrs

12Hrs

12 Hrs

12 Hrs

Course C	Code : :		Course N LABOR	lame : A ATORY	DVANO	CED C	ONCRETH	E	Ty/Lb /ETL	L	T/ SLr	P/R	С
ENISE2	21.02		Prerequis	site: Nee	d to stud	y Conc	crete techno	logy	Lb	0	0/0	4/0	2
L : Lectu	re T : T	utorial	SLr : Sup	ervised]	Learning	g P : Pr	oject R : Re	search	C: Credit	S			
T/L/ETL	: Theor	ry / Lał	o / Embedo	led Theo	ory and L	lab							
OBJEC	FIVES:	This c	ourse prov	vides a th	orough	knowle	edge of mat	erial sel	ection the	ougl	h the r	naterial	testing
based on	specific	cation.											
COURS	E OUT	COM	ES (Cos) :		11.								
At the en	d of the	e course	e, students	will be a	ible to								
CO1	Ability	y to des	sign the co	ncrete st	ructures	and pe	erformance	of concr	rete				
CO2	Get the	e know	ledge abo	ut the Se	lf Comp	acting	concrete, m	inerals a	and chem	nical	admix	tures	
CO3	Specif	fication	of Concre	ete Matei	rial testir	ng							
CO4	To de	esign th	e building	frames	using so	oftware	e tools						
CO5	Apply	seismi	c analysis	concepts	s to struc	etures u	ising Etabs						
Mapping	g of Cou	urse O	utcomes v	vith Prog	gram O	utcom	es (Pos)						
COs/Pos	P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO9		
CO1		3	3	3	3	2	3	2	3		3		
CO2		3	3	3	3	3	3	1	3		3		
CO3		3	2	3	3	1	2	3	3		2		
CO4		3	3	2	2	1	3	2	2		3		
CO5		3	3	2	3	3	3	2	1		2		
COs/PS	Os	PS	01	PSO2		PSO.	3						
CO1		3	3	3		3							
CO2		3	3	2		3							
CO3		2	2	1		1							
CO4			3	3		3							
CO5		1	1	2		3							
3/2/1 ind	licates s	strengt	h of corre	lation 3	– High	1, 2 - N	Iedium, 1–	Low					
Category	Basic Sciences		Engg Sciences	Humanities & Social Sciences	Program core	Program core Program Electives Open Electives Inter disciplin ary Skill component Practical / Proje							Practical / Project

Course Code : :	Course Name : ADVANCED CONCRETE LABORATORY	Ty/Lb /ETL	L	T/ SLr	P/R	С
EMISE22LU2	Prerequisite: Need to study Concrete technology	Lb	0	0/0	4/0	2
L : Lecture T : Tutoria T/L/ETL : Theory / La	l SLr : Supervised Learning P : Project R : Research b / Embedded Theory and Lab	C: Cred	lits			

LIST OF EXPERIMENTS

- 1. Mix design of concrete as per IS, ACI & BS methods for high performance concrete.
- 2. Flow Characteristics of Self Compacting concrete.
- 3. Effect of minerals and chemical admixtures in concrete at fresh and hardened state with relevance to workability, strength and durability.
- 4. Permeability of Concrete.
- a. Rapid chloride Penetration Test,
 - a. Freeze and Thaw test,
 - b. Acid test
 - c. Alkali aggregate reaction test
 - d. VCC testing for fire resistance
 - e. Autoclaving

Total No. of Hours: 60

REFERENCES

- 1. Purushothaman, P, Reinforced Concrete Structure Structural Elements : Behaviour Analysis and Design, Tata Mc Graw Hill, New Delhi 1986.
- 2. Varghese, P.C., Limit State Design of Reinforced Concrete, Prentice Hall of India New Delhi, 1995.
- 3. Krishna Raju, N.Advanced Reinforced Concrete Design, CBS Publishers and New Delhi Distributors, 1986.
- 4. Neville, A.M., Properties of Concrete, Pitman Publishing Limited, London.
- 5. Shetty M.S., Concrete Technology, S.Chand and Company Ltd. Delhi.

SEMESTER-III

Course (EMSE22	Code 2003	::	Course N DYNAM	Name : S' ICS	TRUCT	URAL		Ty/Lt ETL)/ L	T SL	C/ P/	/R	С
			Prerequi and Mec	site: Kno hanics of	wledge f Solids	of Math	ematics	Ту	3	0/	/0 0.	/0	3
L : Lecti	ure T	: Tutoria	l SLr : Su	pervised	Learnir	ng P : Pr	oject R : F	Research	C: Cred	lits			
T/L/ETI	_ : Tł	neory / La	ab / Embeo	ided The	ory and	Lab							
OBJEC	TIV	ES: To s	study the	energy p	rinciple	s, finite	element	concept	. Stress	anal	ysis, mesh	ing. 1	Nonlinear
problem	s and	lapplicati	ions.	05 1	1	,		1				U	
COURS	SE O		ES (Cos)	:	ala 1 a 4 a								
At the el		the cours	se, student	s will be	able to								
CO1	To	remembe	ring the pr	rinciples	of struc	tural dy	namics the	ories					
CO2	То	understar	nd the fund	lamental	knowle	dge of tl	he Structu	ral dyna	mics				
CO3	То	applying	the new co	oncept of	fstructu	ral dyna	mics						
CO4	То	To analyze the study dynamic response of single and Multi-degree of freedom system using											
GO .	fundamental theory and equation of motion.												
005	b I o prepare them for designing the structures for wind, earthquake and other dynamic load												
Mappin	Iapping of Course Outcomes with Program Outcomes (Pos)												
COs/PC)s	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PC)9		
CO1		3	3	3	3	2	3	2	3	3			
CO2		3	3	3	3	3	3	3	3	3			
CO3		3	2	3	3	3	2	3	3	2			
CO4		3	3	2	2	3	3	2	2	3			
CO5		3	3	2	3	3	3	2	3	2			
COs/PS	Os	PS	01	PSO2		PSO3							
CO1			2	1		2							
CO2			1	2		3							
CO3			2	1		2							
CO4			1	2		3							
CO5			3	2		2							
3/2/1 inc	dicat	es streng	th of corr	elation	3 – Hig	sh, 2 – N	1edium, 1	-Low					
	S.			ŝ				s					ject
	nce		nces	s & ence	ore			tive			t t		Pro
ıry	Scie		Scie	nitie Scie	с Ш		es n	Elec	lin		nen		al/
tego	sic S		50	mar	gra		gra	en I	er cip]		I		ctic
Cat	Bat		Eng	Hu Soc	Prc		Prc Ele	Op	Int dis	ary	Ski con		Pra

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code : :	Course Name : STRUCTURAL	Ty/Lb/		T/	P/R	C
EMSE22003	DYNAMICS	ETL		SLr		
	Prerequisite: Knowledge of Mathematics and Mechanics of Solids	Ту	3	0/0	0/0	3
L : Lecture T : Tutoria T/L/ETL : Theory / La	l SLr : Supervised Learning P : Project R : R b / Embedded Theory and Lab	lesearch C	: Crec	lits		

UNIT I : INTRODUCTION

Foundational objective of structural dynamic analysis - D Alembert's principle - Rayleigh-Ritz method -Energy methods - Types of prescribed loadings - Basic structural concepts - ductility - Hysteresis - Rigid body dynamics - Vectorial representation

UNIT II: BASIC PRINCIPLES OF MOTION

Simple harmonic motion - Fourier transformations - Damping properties - Mass properties, Free and forced vibrations.

UNIT III: SINGLE DEGREE FREEDOM SYSTEMS

Dynamic response to time dependent transient and steady state - Forcing functions - Damped & undamped response - Damping: vibration isolation, Response of time domain & Frequency domain.

UNIT IV: MULTI DEGREE FREEDOM SYSTEMS

Two degrees of freedom systems - Orthogonal properties - Rayleigh's method, Stodola - Vianolla Method - Method of matrix iterations - Lumped mass matrix, Multi degree freedom system - Determination of frequency and modes - Transfer matrix response determination.

UNIT V: DYNAMIC ANALYSIS OF SYSTEMS WITH DISTRIBUTED PROPERTIES 9 Hrs

Flexural vibration of uniform beams - Numerical Evaluation of Dynamic Response - Central Difference Method - New Mark method - Earthquake response of linearly elastic buildings and linearly inelastic buildings - Dynamics of base isolated buildings.

Total No of Hours: 45

*Note: (Use of approved data books permitted)

REFERENCES

- 2. Clough R.W and Penzien, J., Dynamics of Structures, Mc Graw Hill, New Delhi 1975.
- 3. Paz Mario, Structural Dynamics, Academic Press, Los Angeles 1985.
- 4. Anderson R.A., Fundamentals of vibration, Amerind Publishing Co. New Delhi, 1972.
- 5. Roy R.Craig, Jr., Structural Dynamics An Introduction to computer methods, John Wiley & Sons, Los Angeles. 1981.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Course C EMSE2	ode : : 2L03		Course N ENGINE	lame: ST ERING	RUCTU – LABO	JRAL PRATORY		T E	y/Lb/ TL	L	T/ SLr	P/R	С
			Prerequis Analysis	site : Neo I & II	ed to stu	dy Structu	ıral	1	Lb	0	0/0	4/0	2
L : Lectu Lab / Em	re T : Tu bedded	utorial Theor	I SLr : Su y and Lab	pervised	Learnin	ng P : Proj	ect R : F	Research	C: Cred	itsT/I	L/ETL	: Theor	y /
OBJECT	TIVES :	: Stude	ent should	aware o	of compu	ter application	ation of	structura	al design				
COURS	EOUT	COM	ES (Cos)	:	11.								
At the en	d of the	cours	e, students	s will be	able to								
CO1	To Kn	now ał	bout the ba	asic know	wledge c	of Concre	te struct	ures					
CO2	Condu	ict No	on destruct	ive tests	on exiti	ng Concre	ete struct	tures					
CO3	Apply	' Engi	neering Pr	inciples	to under	stand beh	aviour o	f structu	ral eleme	ents			
CO4	Design	n high	Grade Co	oncrete a	nd study	the paran	neters at	fecting i	ts Perfor	manc	e		
CO5	To cre	eate th	e new inn	ovative	ideas rel	ated to str	uctural l	oehavior					
Mapping	g of Cou	irse O	utcomes	with Pro	ogram (Outcomes	(Pos)						
COs/PO	s PC	01	PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO)	
CO1		3	3	3	3	2	3	2	3		3		
CO2		3	3	3	3	3	3	3	3		3		
CO3		3	2	3	3	3	2	3	3		2		
CO4		3	3	2	2	3	3	2	2		3		
CO5		3	3	2	3	3	3	2	3		2		
COs/PSO)s	PS	01	PSO2		PSO3							
CO1		1	1	2		2							
CO2		2	2	2		3							
CO3		2	2	3		1							
CO4]	1	2		3							
<u>CO5</u>		2	2	2	<u> </u>	3		-					
3/2/1 ind	icates s	treng	th of corr	elation	3 - Hig	h, 2 – Me	dium, 1	– Low				1	.
Category	Basic Sciences		Engg Sciences	Humanities & Social Sciences	Program core	Program Electives	Open Electives	Inter	ary			Skill component	Practical / Projec
													V

Course Code : : EMSE22L03	Course Name: STRUCTURAL ENGINEERING – LABORATORY	Ty/Lb/ ETL	L	T/ SLr	P/R	С
	Prerequisite : Need to study Structural Analysis I & II	Lb	0	0/0	4/0	2
L : Lecture T : Tutoria Lab / Embedded Theor	1 SLr : Supervised Learning P : Project R : Resear ry and Lab	rch C: Credi	tsT/L/	/ETL	: Theory	<i>Ţ</i> /

LIST OF EXPERIMENTS

- 1. Study of behavior of RC Beams under flexure
- 2. Study of behavior of RC Beams under Shear a
- 3. Study of behavior of RC Beams under Torsion
- 4. Non-Destructive testing of concrete
- 5. Prefabricated modular Members
- 6. Study of Pre-Tensioning Concrete members
- 7. Study of Post Tensioning Concrete members

Total No of Hours: 60

REFERENCE :

- R. Park and T. Paulay, "Reinforced Cement Concrete Structures", MISL-WILEY Series, Wiley India Pvt. Ltd, 2009.
- 2. M.S. Shetty, "Concrete Technology", Eighth edition, S Chand Publishing; 2018.
- 3. Relevant IS codes.

SEMESTER-IV

Course C EMSE2	ode 2004	: :Course Name : Experimental TechniquesTy/Lb/LT /P/ RC4and InstrumentationETLS.LrVVVVV										
			Prerequis Analysis	site: Nee I & II	d to stud	dy Struc	tural	Ту	3	0/0	0/0	3
L : Lectur	re T	: Tutoria	l SLr : Su	pervised	Learnir	ng P : Pr	oject R : R	lesearch	C: Cred	itsT/L/ETL	:	
Theory /]	Lab	/ Embed	ded Theor	y and La	b							
OBJECT	IV	ES: To	learn the	princip	les of 1	neasure	ments of	static a	nd dyna	mic respon	se of	
Structure	s and	d carryou	t the analy	sis of re	sults				-	_		
COURSI	E OI	UTCOM	ES (Cos)	: (3 – 5)								
At the end	d of	the cours	e, student	s will be	able to							
CO1	То	learn ab	out measu	rements	of strain	n, variati	on and wi	nd blow				
CO2	То	Underst	and the va	rious dev	vices that	at are use	ed for vibr	ating sy	stems			
CO3	То	applying	g the know	ledge ab	bout measurements and techniques							
CO4	То	analyse	the structu	res by no	on-destr	structive testing method and model analysis						
CO5	То	create a	new thoug	ght about	the Ins	Instrumentation						
Mapping	g of (of Course Outcomes with Program Outcomes (Pos)										
COs/POs	5	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9		
CO1		3	3	3	3	2	3	2	3	3		
CO2		3	3	3	3	3	3	3	3	3		
CO3		3	2	3	3	2	2	3	3	2		
CO4		3	3	2	2	3	2	2	2	3		
CO5		3	3	2	3	3	3	2	3	2		
COs/PSC)s	PS	01	PSO2		PSO3			-	I		
CO1		-	1	2		3						
CO2			3	2		1						
CO3		-	1	2		3						
CO4		í	3	2		2						
CO5		, ,	2	2		3						
3/2/1 ind	icate	es streng	th of corr	elation	3 – Hig	gh, 2 − N	ledium, 1	- Low				
Category	Basic Sciences		Engg Sciences	Humanities & Social Sciences	Program core	Program Electives Open Electives Inter disciplin ary Skill component					Practical / Project	

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

STITUTE

Course Code : :	Course Name : Experimental Techniques	Ty/Lb/	L	T /	P/ R	С
EMSE22004	and Instrumentation	ETL		S.Lr		
	Prerequisite: Need to study Structural	Ту	3	0/0	0/0	3
	Analysis I & II					
L : Lecture T : Tutoria	1 SLr : Supervised Learning P : Project R : Res	earch C:	Credits	T/L/ETL	. :	
Theory / Lab / Embedd	ded Theory and Lab					

UNIT I: FORCES AND STRAIN MEASUREMENT

9 Hrs Choice of Experimental stress analysis methods, Errors in measurements - Strain gauge, principle, types, performance and uses. Photo elasticity - principle and applications - Hydraulic jacks and pressure gauges - Electronic load cells - Proving Rings - Calibration of Testing Machines - Longterm monitoring vibrating wire sensors - Fibre optic sensors.

UNIT II: MEASUREMENT OF VIBRATION AND WIND FLOW

Characteristics of Structural Vibrations - Linear Variable Differential Transformer (LVDT) -Transducers for velocity and acceleration measurements. Vibration meter - Seismographs - Vibration Analyzer – Display and recording of signals – Cathode Ray Oscilloscope – XY Plotter – wind tunnels – Flow meters - Venturimeter - Digital data Acquisition systems.

UNIT III : DISTRESS MEASUREMENTS AND CONTROL

Diagnosis of distress in structures - Crack observation and measurements - corrosion of reinforcement in concrete - Half cell, construction and use - damage assessment - controlled blasting for demolition -Techniques for residual stress measurements – Structural Health Monitoring.

UNIT IV: NON-DESTRUCTIVE TESTING METHODS

Load testing on structures, buildings, bridges and towers - Rebound Hammer - acoustic emission ultrasonic testing principles and application – Holography – use of laser for structural testing – Brittle coating, Advanced NDT methods - Ultrasonic pulse echo, Impact echo, impulse radar techniques, GECOR, Ground penetrating radar (GPR).

UNIT IV: MODEL ANALYSIS

Laws - Laws of similitude - Model materials - Necessity for Model analysis - Advantages -Applications – Types of similitude – Scale effect in models – Indirect model study – Direct model tudy -Limitations of models – investigations – structural problems – Usage of influence lines in model studies.

Total No of Hours: 45

REFERENCES:

- 1. Dalley .J.W and Riley.W.F, "Experimental Stress Analysis", McGraw Hill Book Company, N.Y. 1991
- 2. Ganesan.T.P, "Model Analysis of Structures", University Press, India, 2000.
- 3. Ravisankar.K.and Chellappan.A., "Advanced course on Non-Destructive Testing and Evaluation of Concrete Structures", SERC, Chennai, 2007.
- 4. Sadhu Singh, "Experimental Stress Analysis", Khanna Publishers, New Delhi, 2006.
- 5. Sirohi.R.S., Radhakrishna.H.C, "Mechanical Measurements", New Age International (P) Ltd.

9Hrs

9 Hrs.

9 Hrs.

9 Hrs

Course C	ode :	::	Course N ENGINE	Durse Name : STRUCTURALTy/Lb/LT/P/RCNGINEERING DESIGN STUDIOETLSLrSLrC									
ENISE2	2L04	4	Prerequi	site: Des	sign of c	oncrete	structures		Lb	0	0/0	4/0	2
L : Lectu	re T	: Tutoria	l SLr : Su	ipervised	l Learni	ng P : P	roject R :	Reseat	rch C: Cree	litsT/]	L/ETL :	Theory	
7 La07 Ei	moce			au									
OBJEC	FIVE	ES: Stude	ent should	aware o	f compu	iter appl	ication of	struct	ural design.				
COURS	ΕΟ	UTCOM	ES (Cos)	:									
At the en	d of	the cours	se, student	s will be	e able to								
CO1	De	sign stee	l structure	s/compo	onents by	y differe	ent design	proces	sses				
CO2	An	alyze an	d design b	eams an	d colum	ns for s	tability an	d stren	igth, and dr	ift			
CO3	Use	e the ava	ilable soft	ware for	dynami	mic analysis							
CO4	De	sign higł	n Grade Co	oncrete a	and stud	y the par	rameters a	ffectir	ng its Perfo	rmanc	e		
CO5	То	create th	ne new inn	ovative	ideas re	lated to	d to structural behavior						
Mapping	g of (Course (Outcomes	with Pr	ogram	Outcom	ies (Pos)						
COs/PO	s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO9		
CO1		3	3	3	3	2	3	2	3		3		
CO2		3	3	3	1	3	3	3	3		1		
CO3		3	2	1	3	2	2	1	1		2		
CO4		3	3	2	2	3	3	2	1		3		
CO5		2	3	2	3	2	3	2	3		2		
COs/PSO	Ds	PS	01	PSO2		PSO3							
CO1		-	1	2		2							
CO2			2	3		3							
CO3			1	2		3							
CO4			2	1		3							
$\frac{2}{2}$	insta	aatuona	l th of com	l	2 11:	2 ab 2	Madium	1 I a					
3/2/1 Ind	icate	es streng	th of corr	relation	з – ні <u>я</u>	gn, 2 – 1	viedium,	1– L0	w				-
Category	Basic Sciences		Engg Sciences	Humanities & Social Sciences	Program core		Program Electives		Open Electives	Inter	disciplin ary	Skill component	Practical / Projec
													\checkmark

Course Code : : EMSE22L04	Course Name : STRUCTURAL ENGINEERING DESIGN STUDIO	Ty/Lb/ ETL	L	T/ SLr	P/R	С
	Prerequisite: Design of concrete structures	Lb	0	0/0	4/0	2
L : Lecture T : Tutoria Theory / Lab / Embed	al SLr : Supervised Learning P : Project R : Res Ided Theory and Lab	earch C: Cr	edits	T/L/ET	Ľ:	

LIST OF EXPERIMENTS

- 1. Program Using Arrays and Functions for Matrix Manipulation.
- 2. Programs to Draw Bending Moment and Shear Force Diagrams. Using Graphic in C
- 3. Program for Design of Slabs. Using Excel
- 4. Program for Design of Beams. Using Excel
- 5. Program for Design of Column and Footing Using Excel
- 6. Analysis of Truss Using STAAD Pro.
- 7. Analysis of Multistoried Space Frame, Using STAAD Pro.
- 8. Analysis of Bridge Deck Slab.

Total No of Hours: 60

REFERENCES:

- 1. Computer Aided Design by C.S.Krishnamoorthy and S.Rajeev.
- 2. Computational Structures by S.Rajasekharan.

Course Code : : EMSE22I01	Course Name : TERM PAPER	Ty/Lb/ ETL	L	T/ SLr	P/R	С
	Prerequisite: Nil	IE	0	0/0	4/0	2
L : Lecture T : Tutoria Lab / Embedded Theo	l SLr : Supervised Learning P : Project R : Resear ry and Lab	rch C: Credi	tsT/L	/ETL :	Theory /	

A term paper is an elaborate research-based work on a particular topic in the domain of study. The student must choose a topic of his interest from the domain of study for a term paper. The term paper can be an original research article or review article. In case of review article, the student must refer atleast 50 research/review articles and critically review other researcher's work. The term paper may be 10 -20 pages in length. The general guidelines for writing the term paper as follows:

1. Abstract

2. Introduction to explain about the broad and general statement on the topic chosen.

3. Aim /Objective of the term paper.

4. Description of methodology, concepts and arguments.

5. Identify the research gap and suggest possible future works.

6. Conclusion

Three reviews will be conducted to monitor the progress of the work.At the end of the semester, presentation must be made by the student and Viva-Voce examination will be conducted by the internal Examiner duly Appointed by the Head of the department and the students will be evaluated.

SEMESTER-V

Course Code :	: (]	Course Nan FECHNO	ne: AD LOGY	VANCI	ED CON	ICRET	E		Ty/Lb/	L	T/S.Lr	P/R	C
ENISE22005	Pr	erequisite:	UG leve	l Concre	ete Tech	nology			Ty	3	1/0	0/0	4
L : Lecture T : Embedded The	Tutor eory a	ial SLr:S nd Lab	Supervised	d Learni	ng P : Pr	roject R	: Resear	rch C:	CreditsT/L	/ETL :	Theory / 1	Lab /	
OBJECTIVE:	Fostuc	lytheprope	rtiesof ma	aterials,t	estsandr	nixdesig	gnforcon	crete.					
COURSEOUT	COM	ES(COs) :	(3-5)										
CO1		To interpr	et proprie	ties cen	nent,agg	regate sa	and othe	r admiy	turesused	inconcr	rete		
CO2		Toassesst	hepropert	iesoffres	shandhai	rdenedco	oncrete						
CO3		Toperform	ndurabilit	ytestson	concrete	eandhav	e an insi	ght abo	out special	concret	tes		
CO4		To study j	properties	of spec	ial types	of conc	erete.						
CO5		To study	the proper	ties of c	onstitue	nt eleme	ents of c	oncrete	;				
MappingofCou	irseOu	itcomeswit	omeswithProgramOutcomes(POs)										
COs/POs	РО	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1	3	3	3	1	1	3	3	3	3				
CO2	3	3	3	1	1	3	3	3	3				
C03	3	3	3	1	1	3	3	3	3				
C04	3	3	3	1	1	3	3	3	3				
C05	3	3	3	1	1	3	3	3	3				
COs/PSOs		PSO1	PSC	02	PS	PSO3							
CO1		1	2			3							
CO2		2	2			3							
C03		3	2			3							
C04		2	2		1	l							
C05		1 1 1											
3/2/1 Indicates S	Strengt	th Of Correlation, 3 – High, 2- Medium, 1- Low											
egory	Basic Sciences	Engg Sciences	Humanities & Social Sciences										
Cat				✓									

UNIT I: CONCRETE INGREDIENTS

Lab / Embedded Theory and Lab

Composition of OPC - Manufacture - Modified Portland Cements - Hydration Process of Portland Cements -Structure of Hydrated Cement Pastes Mineral Admixtures - Slags - Pozzolanas and Fillers - Chemical Admixtures - Solutes - Retarders - Air Entraining Agents - Water Proofing Compounds - Plasticizers and Super Plasticizers Shape and Mechanical Properties - Absorption and Physical Durability - Chemical Stability - Packing Characteristics

UNIT II: FRESH CONCRETE

Workability - Mix Proportioning - Mixes incorporating Fly-ash, Silica fume, GGBS - Mixes for High Performance Concrete - Mix Design methods - variations in concrete strength.

UNIT III: HARDENED CONCRETE

Interfacial Transition Zone - Fracture Strength - Mechanical Properties - High Strength Concrete - Shrinkage -**Creep** – Other Properties

UNIT IV: DURABILITY OF CONCRETE

Basic Consideration - Stability of Constituents - Chemical Attack - Corrosion of Reinforcing Steel

UNIT V : SPECIAL CONCRETES

Manipulation of Strength of Concrete - Fibre Reinforced Concrete - Self Compacting Concrete - Polymer Concrete - Super Plasticized Concrete.

*Note: (Use of approved data books permitted)

REFERENCES

- 1. Nevile, A.M., Properties of Concrete, 4th edition, Longman, 1995.
- 2. Metha P.K.and Montreio *P.J.M.*, ConcreteStructure **Properties** and Materials, 2nd edition, Prentice Hall, 1998.
- 3. Mindass and Young, Concrete, Prentice Hall, 1999

DUCAT STITUTE (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India

Course Code : :	Course Name: ADVANCED	Ty/Lb/	L	T/S.Lr	P/R	С
EMSE22005	CONCRETE TECHNOLOGY	ETL				
	Prerequisite: UG level Concrete Technology	Ту	3	1/0	0/0	4
L : Lecture T : Tu	itorial SLr : Supervised Learning P : Project R : Research	C: Credits	T/L/E	TL : Theo	ry /	

12 Hrs

12 Hrs

12 Hrs

12 Hrs

Total No. of Hours: 60

Course Code : :	Co	urse Nar	ne : DISS	ERTAT	TON PI	HASE I			Ty/Lb/	L	T/S.Lr	P/ R	C
EMSE22L05									ETL				
	Pre	requisite	: Nil						Lb	0	0/0	0/10	5
L : Lecture T : T Theory and Lab	utorial	SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	: Credit	s T/L/ETL	: Theor	y/Lab/Emb	edded	
OBJECTIVE : wholesome reso the benefit of th	The stu earch or ne socie	udent sh n it lead ety.	all be cap ing to find	bable of lings wh	identify ich will	ving a p facilitat	roblem i e develo	related opment	to the pro of a new/i	gram o mprove	of study and and a product	nd carry , proces	7 out s for
COURSE OUT	COMES	S (COs) :	: (3- 5)										
CO1	Wo	ork in a t	eam and o	levelop	multidis	ciplinar	y, resear	ch skill	S				
CO2	Ide	Identifying the challenges and issues of the industry											
CO3	Exj	plore inr	novative i	deas in c									
CO4	De	velop pr	ojects bas	ed on in	dustrial	and field	d require	ements					
CO5	De	Develop design projects based on industrial requirements.											
Mapping of Cou	irse Ou	tcomes v	vith Progr	am Outc	omes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1	3	3	3	3	3	3	3	3	3				
CO2	3	3	2	3	3	3	3	2	3				
C03	3	3	3	3	3	3	3	3	3				
CO4	3	3	3	3	2	3	3	2	3				
CO5	3	3	3	2	3	2	3	2	3				
COs / PSOs		PSO1	PSC)2	PS	O3							
CO1		2	2	2		3							
CO2		1	2	2		3							
C03		2	3	5		3							
CO4		1	1		(<u>)</u>	2							
CO5		2	2	2		3							
3/2/1 Indicates S	trength	Of Corre	lation, 3 –	High, 2-	Medium,	1- Low							
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
									N				

Course Code : :	Course Name : DISSERTATION PHASE I	Ty/Lb/	L	T / S.Lr	P/R	С
EMSE22L05		ETL				
	Prerequisite: Nil	Lb	0	0/0	10/0	5
L : Lecture T : Tuto Theory and Lab	rial SLr : Supervised Learning P : Project R : Research C: Credit	ts T/L/ETL	: Theor	y/Lab/Embo	edded	

OBJECTIVE

The student shall be capable of identifying a problem related to the program of study and carry out wholesome research on it leading to findings which will facilitate development of a new/improved product, process for the benefit of the society.

M.Tech projects should be socially relevant and research oriented ones. Each student is expected to do an individual project. The project work is carried out in two phases – Phase I in III semester and Phase II in IV semester. Phase II of the project work shall be in continuation of Phase I only. At the completion of a project the student will submit a project report, which will be evaluated (end semester assessment) by duly appointed examiner(s). This evaluation will be based on the project report and a viva voce examination on the project. Student will be allowed to appear in the final viva voce examination only if he / she has submitted his / her project work in the form of paper for presentation / publication in a conference / journal and produced the proof of acknowledgement of receipt of paper from the organizers / publishers.

SEMESTER-VI

Course Code : :	Course Name : DISSERTATION PHASE II	Ty/Lb/	L	T / S.Lr	P/ R	С
EMSE22L06		ETL				
	Prerequisite: Nil	Lb	0	0/0	10/10	10

OBJECTIVE: The student shall be capable of identifying a problem related to the program of study and carry out wholesome research on it leading to findings which will facilitate development of a new/improved product, process for the benefit of the society.

COURSE OUTCOMES (COs) : (3- 5)

CO1		Work in a	team and	l develoj	p multid	isciplina	ary ,rese	arch ski	lls		
CO2		Identifyin	g the chal	llenges a	and issue	es of the	industry	ý			
CO3		Explore in	nnovative	ideas in	civil en	gineerin	ig field				
CO4		Develop p	projects ba	ased on	industria	al and fie	eld requi	rement	S		
CO5		Develop o	lesign pro	jects ba	sed on in	ndustria	l require	ments.			
Mapping of Co	ourse C	Outcomes w	vith Progr	am Outc	comes (P	Os)					
COs/POs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9		
CO1	3	3	3	3	3	3	3	3	3		
CO2	3	3	2	3	3	3	3	2	3		
C03	3	3	3	3	3	3	3	3	3		
CO4	3	3	3	3	2	3	3	2	3		
CO5	3	3	3	2	3	2	3	2	3		
COs / PSOs		PSO1	PSC)2	PSO:	3	1	1	1		
CO1		2	2	2	3						
CO2		1	2	2	3						
C03		2	3	3	3						
CO4		1	1		2						
CO5		2	2	2	3						
3/2/1 Indicates S	Strengt	h Of Corre	lation, 3 –	High, 2-	Medium,	, 1- Low					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project		
									\checkmark		

Course Code : :	Course Name : DISSERTATION PHASE II	Ty/Lb/	L	T/S.Lr	P/ R	С				
EMSE22L06		ETL								
	Prerequisite: Nil	Lb	0	0/0	10/10	10				
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab										

OBJECTIVE

The student shall be capable of identifying a problem related to the program of study and carry out wholesome research on it leading to findings which will facilitate development of a new/improved product, process for the benefit of the society.

M. Tech projects should be socially relevant and research oriented ones. Each student is expected to do an individual project. The project work is carried out in two phases – Phase I in III semester and Phase II in IV semester. Phase II of the project work shall be in continuation of Phase I only. At the completion of a project the student will submit a project report, which will be evaluated (end semester assessment) by duly appointed examiner(s). This evaluation will be based on the project report and a viva voce examination on the project. Student will be allowed to appear in the final viva voce examination only if he / she has submitted his / her project work in the form of paper for presentation / publication in a conference / journal and produced the proof of acknowledgement of receipt of paper from the organizers / publishers.

PROGRAM ELECTIVE-I

Course EMSE	e Code : 22E01	Co SF	ourse Na IELLS	me : THE	ORY O	F THIN	PLATE	S AND		Ty/Lb/ ETL	L	T/S.Lr	P/R	C	
		Pr	erequisit	e : Streng	th of M	[aterials	/ Struct	ural Ala	lysis	Ту	3	0/0	0/0	3	
L : Lec	ture T : '	Tutorial	SLr : S	upervised	Learning	g P:Pro	ject R :	Research	n C: Cre	dits				<u> </u>	
T/L/EI	L: Theo	ory/Lab/	Embedde	ed Theory a	ind Lab										
OBJE	CTIVE	CS: Stud	ly the be	haviour a	nd desig	gn of sh	ells, des	ign of p	lates.						
COUI At the	RSE OU	J TCON the cour	MES (Co rse. stud	os) : ents will l	be able t	0									
CO1	Ability	y to lear	n about	behaviou	r and an	alysis o	f thin pl	ates							
CO2	Under	stand Is	otropic :	and ortho	tropic p	ates. be	nding a	nd twist	ing of 1	plates: Nur	nerical	solutions			
CO3	Study	the beb	aviour a	nd design	ofshell	s desig	n of pla	tes	81				-		
CO4	To An	alyze t	he Vario	e Various Problems using different theories based on plate and shells											
CO5	Toapply	y a new	knowle	knowledge related with different theories based on plate and shells											
Mappi	ng of Co	ourse O	utcomes	with Prog	ram Ou	tcomes ((POs)								
COs/Po	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9					
CO1		2	3	2	3	1	3	2	3	2					
CO2		1	3	1	3	2	3	1	2	1					
C03		2	3	3	3	3	3	2	3	2					
CO4		3	3	2	3	2	3	1	2	3					
CO5		2	3	3	3	3	3	2	2	3					
COs / I	PSOs		PSO1	PS 2	0	PS	03								
CO1			1	2	2	(· · ·	3								
CO2			3	2	2	<i>(</i> 4	2								
C03			3	2	2		3								
CO4			1	2	2	2	2								
CO5			2	2	2		3								
3/2/1 II	ndicates	Strengtl	n Of Corr	elation, 3 -	– High, 2	- Mediu	m, 1- Lo	W					1		
Categ	Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core Program Electives Interdisciplinary Skill component Practical / Project														
						✓									

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code :	Course Name : THEORY OF THIN PLATES AND	Ty/Lb/	L	T/S.Lr	P/R	C
EMSE22E01	SHELLS	ETL				
	Prerequisite : Strength of Materials/ Structural Alalysis	Ту	3	0/0	0/0	3
L : Lecture T : T	utorial SLr : Supervised Learning P : Project R : Resear	ch C:				
CreditsT/L/ETL	: Theory / Lab / Embedded Theory and Lab					

UNIT I: BENDING OF RECTANGULAR PLATES

Introduction to plate theory - Small deflection of laterally loaded thin rectangular plates for pure bending. Navier's and Levy's solution for various lateral loading and boundary conditions (No derivation) - Numerical examples.

UNIT II : BENDING OF CIRCULAR PLATES

Energy methods for rectangular and circular plates with clamped edges subjected to symmetric loadings.

UNIT III : CLASSIFICATION OF SHELLS

Introduction to curved surfaces and classification of shells - Membrane theory of spherical shells - cylindrical shells - hyperbolic paraboloids - elliptic paraboloid and conoids.

UNIT IV : MEMBRANE THEORY

Axially symmetric bending of shells of revolution - Closed cylindrical shells - water tanks, sphericalshells and Geckler's approximation - Bending theory of doubly curved shallow shells.

UNIT V : FLEXURE THEORY

Design and detailing of folded plates with numerical examples Design and Detailing of simple shellproblems – spherical domes, water tanks, barrel vaults and hyperbolic paraboloid roofs

Total No of Hours: 45

REFERENCES

- 1. Flugge, Stresses in shells, 2nd ed., Springer Verglag, Berlin, 1960
- 2. Sziland, R. Theory and Analysis of Plates (Classical and Numerical Methods) Prentice Hall, Ijc.New Jersy, 1974.
- 3. Billington, D.P. Thin Shell concrete structures 2nd ed. McGraw Hill Book Co., New York, 1965.
- 4. Ugural, Il. Theory and practice of shell structures, Wilhelm Ernst and John Berlin, 1968.
- 5. Timoshenko.S and Krieger.S.W., Theory of Plates and Shells, McGraw Hill Co., New York 1990.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Course Code :	Cours CEMI	e Nai ENT (me : THI COMPOSI	EORY A	AND AF	PPLICA	FIONS (OF	Ty/Lb/ ETL	L	T/S.Lr	P/R	C
EMSE22E02	Prerec Mater	quisite ials	e : Con	crete	Fechnol	ogy/ C	omposit	e	Ту	3	0/0	0/0	3
L : Lecture T : Tuto	orial SI	Lr : Su	pervised	Learnin	g P : Pro	ject R :	Researc	h C: C	reditsT/L/	ETL:1	Theory / La	ab /	
Embedded Theory	and Lał)	-		-	-							
OBJECTIVES : T	o under	rstand	various c	construc	tion pro	cedures	from sul	o struct	ure to supe	er struct	ture and al	so the	
equipment needed t	for cons	structi	on of vari	ious typ	es of stru	uctures f	from fou	ndatior	n to super s	structur	e		
COURSE OUTC	OMES	(Cos	(3-5))									
At the end of the co	ourse, st	udent	s will be a	able to	•.		1 5			01 1	1		
CO1 Formulate	constit	tutive	behaviou	ir of co	mposite	materia	lls - Fe	rrocem	ent, SIFC	ON and	d		
CO2 Classify the	e materi	als as	per ortho	tropic a	nd aniso	r strain- tropic b	ehaviou	r.	lr				
CO3 Estimate stu	rain cor	stante	s using the	eories at	nlicable	e to com	nosite m	aterials	2				
CO1 Analyse an	d design	n stru	otural alar	nents m	ade of o	ement c	posite in						
CO4 Analyse and	u ucsigi	li sti uv		incints in			Jiiposiw	-5.					
CO5 To create e	new id	ea abo	out cemen	t concre	ete in the	e constru	iction fie	eld.					
Mapping of Course	e Outco	mes w	ith Progra	am Outc	omes (P	Os)							
COs/POs F	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1	2	1	2	3	2	1	2	1	3				
CO2	3	2	1	2	3	2	3	2	2				
C03	1	2	3	1	2	3	2	3	3				
CO4	2	3	1	2	3	2	3	1	3				
CO5	1	2	3	2	3	1	3	2	2				
COs / PSOs	PS	01	PSC	02	PS	O3							
CO1	3		2	2	3	3							
CO2	3		1		2	2							
C03	2		3		1	l							
CO4	3		2	2		3							
CO5	2		1		2	2							
3/2/1 Indicates Stren	ngth Of	Correl	ation, 3 – 1	High, 2-	Medium,	1- Low							
		ccs	ocial					It	ŗ				
Category	Co:on		and Sc	e	ctives	ves	inary	poner	Projec				
ienc	2 2.	an III	ties	Co	Ele	ectiv	cipl	om]	1/J				
Sc			anit	ram	ram	El(dis.	ll c	tica				
3asic		IST:	Hum Scier	Prog	Prog	Dper	nter	Ski	Prac				
		_											

Course Code :	Course Name : THEORY AND APPLICATIONS OF CEMENT COMPOSITES	Ty/Lb/ ETL	L	T / S.Lr	P/ R	С					
EMSE22E02	Prerequisite : Concrete Technology/ Composite	Ту	3	0/0	0/0	3					
	Materials										
L : Lecture T : Tut	: Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: CreditsT/L/ETL : Theory / Lab /										
Embedded Theory	mbedded Theory and Lab										

UNIT I – INTRODUCTION

Classification and Characteristics of Composite Materials- Basic Terminology, Advantages. Stress-Strain Relations- Orthotropic and Anisotropic Materials, Engineering Constants for Orthotropic Materials, Restrictions on Elastic Constants, Plane Stress Problem, Biaxial Strength, Theories for an Orthotropic Lamina.

UNIT II - MECHANICAL BEHAVIOUR

Mechanics of Materials Approach to Stiffness - Determination of Relations between Elastic Constants, Elasticity Approach to Stiffness- Bounding Techniques of Elasticity, Exact Solutions - Elasticity Solutions with Continuity, Halpin, Tsai Equations, Comparison of approaches to Stiffness.

UNIT III - CEMENT COMPOSITES

Types of Cement Composites, Terminology, Constituent Materials and their Properties, Construction Techniques for Fibre Reinforced Concrete - Ferrocement, SIFCON, Polymer Concretes, Preparation of Reinforcement, Casting and Curing.

UNIT IV - MECHANICAL PROPERTIES OF CEMENT COMPOSITES

Behavior of Ferrocement, Fiber Reinforced Concrete in Tension, Compression, Flexure, Shear, Fatigue and Impact, Durability and Corrosion.

UNIT V - APPLICATION OF CEMENT COMPOSITES

FRC and Ferrocement- Housing, Water Storage, Boats and Miscellaneous Structures. CompositeMaterials- Orthotropic and Anisotropic behaviour, Constitutive relationship, Elastic Constants.

Total No of Hours: 45 Hrs

REFERENCES

- 1. Mechanics of Composite Materials, Jones R. M., 2nd Ed., Taylor and Francis, BSP Books, 1998.
- 2. Ferrocement Theory and Applications, Pama R. P., IFIC, 1980.
- 3. New Concrete Materials, Swamy R.N., 1stEd., Blackie, Academic and Professional, Chapman & Hall, 1983.

9 Hrs

9 Hrs

9 Hrs

Cours	e Code	: C	ourse Na FABILI	ume : TH FY	EORY	OF STR	UCTU	RAL		Ty/Lb/ ETL	L	T / S.Lr	P/ R	С	
EMSE	22E03	Pi II	erequisi	ite : Need	to study	/ Structu	ral Ana	lysis I &	5	Ту	3	0/0	0/0	3	
L:Le	cture T edded 7	: Tuto רheory	rial SLr and Lat	: Superv	ised Lea	arning F	P : Proj	ect R : F	Researc	h C: Cred	lits T/I	L/ETL : T	heory /	Lab	
OBJE	CTIVE	S: To	study the	e concept	of buckl	ling and	analysis	s of strue	ctural el	ements					
COUR	RSE OU	TCON	IES (Co	s): $(3-5)$)										
At the CO1	end of t	the cour	se, stude	ents will b	e able to)		1							
	To lea	rn the c	lassical i	methods o	f structu	iral anal	ysis in c	olumns							
C02	To uno		the met	hod of sol	lving in	beams,c	olumns	as and frames and plates							
C03	To app	bly the	e structu	of virtual v	work to	forces a	nd displ	flection beams, columns and frames and plates							
04	deform	nations	c siluciu	ies by car	culating	iorees a	nu uispi	accinen	15 111 511	uctures du		cii ioaus a	na mpo	JSCU	
CO5	To eva	aluate the bending moment using slope deflection, moment distribution and approximate													
Mappi	ing of C	Course	Outcom	es with Pi	rogram	Outcon	nes (PO	s)							
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9					
CO1		2	1	2	3	2	1	2	1	3					
CO2		3	2	1	2	3	2	3	2	2					
C03		1	2	3	1	2	3	2	3	3 3					
CO4		2	3	1	2	3	2	3	1	3					
CO5		1	2	3	2	3	1	3	2	2					
COs /	PSOs		PSO1	PSG	02	PS	03								
CO1			3	2	2	3	3								
CO2			3	1	1	-	2								
C03			2		3		l								
C04			2		<u></u>) 								
$\frac{2}{2}$		C farmers			2 11:2		1	Larry							
3/2/11	ndicates	s Streng		Freiation,	3 - Hig	n, 2- Me	aium, i	- LOW							
Catego	ory	Basic Sciences	Engineering Science	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project					
Approv	al														

Course Code :	Course Name : THEORY OF STRUCTURAL	Ty/Lb/	L	T/S.Lr	P/ R	С
EMSE22E03	STABILITY	ETL				
	Prerequisite : Need to study Structural Analysis I &	Ту	3	0/0	0/0	3
	П					ĺ
L: Lecture T: T	utorial SLr : Supervised Learning P : Project R : Researc	ch C: Cred	its T/L	/ETL : T	heory /	Lab
/ Embedded The	orv and Lah				·	

UNIT I: BUCKLING OF COLUMNS

Concept of stability approaches to stability analysis - characteristics of stability problems - Columns -Buckling of columns with various end conditions, imperfect columns - Elastically supported columns non-prismatic columns - Built-up columns - Inelastic buckling - Experimental study of column behaviour - Empirical column formulae - Buckling of bars on elastic foundations - Large deflection of buckled bars.

UNIT II: BUCKLING OF BEAM-COLUMNS AND FRAMES 9 Hrs

Beam-column theory - Application to buckling of frames.

UNIT III: TORSIONAL AND LATERAL BUCKLING 9 Hrs

Combined tensional and flexural buckling - Lateral Buckling - Lateral buckling of beams - pure bending of simply supported beam and cantilever - numerical solutions.

UNIT IV: BUCKLING OF PLATES 9 Hrs

Buckling of thin plates - various edge conditions, inelastic buckling - post buckling strength.

UNIT V: APPROXIMATE METHODS

Energy methods - Iterative procedure and Finite element formulation.

Total No of Hours: 45

REFERENCES

- 1. Allen, H.G., and Bulson, P.S., Background to Buckling, McGraw Hill Book Company, New Delhi 1980.
- 2. Smitses, Elastic Stability of Structures, Prentice Hall, New Delhi 1973.
- 3. Chajes, A. Principles of Structures Stability Theory, Prentice Hall, New Delhi 1974.
- 4. Ashwini Kumar, Stability Theory of Structures, Tata McGraw Hill Publishing Company Ltd., New Delhi, 1985.
- 5. Timoshenko, S., and Gere., Theory of Elastic Stability, McGraw Hill Book Company, New Delhi 1961
- 6. Brush and Almorth., Buckling of Bars, Plates and Shells, McGraw Hill Book Company, New Delhi

9 Hrs

9 Hrs

л nrs

Course	e Code :	Co	urse Na	me: SOIL	STRUC	TURE	INTERA	CTION		Ty/Lb/ ETL	L	T/S.Lr	P/R	С
EMSE	22E04	Pre	erequisit	e : Basic (Concept	of Soil	Mecha	nics		Ту	3	0/0	0/0	3
L : Leo Lab / H OBJE	cture T : Embedd CTIVE	Tutoria ed Theo S :To st	al SLr : ory and I tudy abo	Supervise Lab out soil – I	ed Learn Foundat	ing P : 1	Project 1 raction p	R : Rese	arch C: s Analy	Credits7	r/L/ET	L : Theory lation	/	I
COUR At the	RSE OU end of t	TCOM	IES (Co se, stude	o s) : ents will b	e able to	0								
CO1	Under	stand S	oil struc	ture intera	action C	oncept a	and beha	viour						
CO2	Unders consoli	tand E dation	ngineer	ing prop	erties 1	ike fiel	ld dens	ity, sho	ear stro	ength, p	ermeab	ility, com	pactio	n and
CO3	Calcula	te shear	r, UCC,	consolida	tion and	l triaxia	l compre	essive st	rength	value of s	soil sam	nple		
CO4	Analy	ze diffe	erent typ	pes of fra	ame stru	icture fo	oundatio	on on st	tratified	natural	deposit	ts with		
<u> </u>	Linear	r and No	on-linear	r stress- st	rain cha	racteris	tics.			1 .	• ,•	<u> </u>	1	
C05	Evalu	ate actio	on of gr	oup of pi	le found	lation co	onsideri	ng stres	s- strair	i characte	eristics	of real soi	1	
Mappi	ing of C	Course	Outcom	tcomes with Program Outcomes (POs)										
COs/P	Os	PO1	PO2	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 2 3 2 3 2 3 3 3										
CO1		3	3 2 3 2 3 2 3 3 3											
CO2		2	1	3	2	1	3	3	2	3				
C03		2	2	3	1	3	2	1	3	2				
CO4		3	2	3	1	2	3	2	1	2				
CO5		3	2	3	2	3	1	2	3	2				
COs /	PSOs	PS	501	PS	02	PS	503							
CO1			2	3	3		3							
CO2			1	1	1		3							
C03			3		2		$\frac{2}{2}$							
CO4			2		l		3							
2/2/11	1. (<u></u>	3		<u>, 11.</u>	1 2 14	Z	1 T						
3/2/11	ndicates	s Streng	th Of Co	orrelation	, <u>3 – H</u> ış	gh, 2- M	ledium,	I-Low						
Catego	Categorial Sciences Humanities and Social Sciences Program Core					Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code :	Course Name: SOIL STRUCTURE INTERACTION	Ty/Lb/ ETL	L	T / S.Lr	P/ R	С	
EMSE22E04	Prerequisite : Basic Concept of Soil Mechanics	Ту	3	0/0	0/0	3	
L : Lecture T : Tu	torial SLr : Supervised Learning P : Project R : Research C	: CreditsT/	L/ETL	: Theory	/		
Lab / Embedded	neory and Lab						

UNIT I: SOIL-FOUNDATION INTERACTION

Introduction to soil-Foundation interaction problems, soil behaviour, Foundation behavior, Interface behaviour, Scope of soil foundation interaction analysis, soil response models, Winkler, Elastic continuum, two parameter elastic models, Elastic plastic behaviour, Time dependent behaviour

UNIT II: BEAM ON ELASTIC FOUNDATION- SOIL MODELS

Infinite beam, two parameters, Isotropic elastic half space, Analysis of beams of finite length, Classification of finite beams in relation to their stiffness

UNIT III: PLATE ON ELASTIC MEDIUM

Infinite plate, Winkler, Two parameters, isotropic elastic medium, Thin and thick plates, Analysis of finite plates, rectangular and circular plates, Numerical analysis of finite plates, simple solutions

UNIT IV: ELASTIC ANALYSIS OF PILE

Elastic analysis of single pile, Theoretical solutions for settlement and load distributions, analysis of pile group, Interaction analysis, Load distribution in groups with rigid cap.

UNIT V: LATERALLY LOADED PILE

Load deflection prediction for laterally loaded piles, Sub-grade reaction and elastic analysis, Interaction analysis,Pile raft system, Solutions through influence charts

Total No of Hours: 45

REFERENCES

- 1. Selva durai, A.P.S., Elastic Analysis of Soil Foundation Interaction, Elsevier, 1979
- 2. Poulos, H.G., and Davis, E.H., Pile Foundation Analysis and Design, John Wiley, Tata McGraw Hill Publishing Co. 2nd Edition, Berlin 1988.
- 3. Scott, R.F., Foundation Analysis, Prentice Hall, 1981 New Jercy
- 4. Structure Soil Interaction State of Art Report, Institution of Structural Engineers, New Delhi 1978.
- 5. ACI 336, Suggested Analysis and Design Procedures for combined footings and Mats, American Concrete Institute, Delhi, 1988

9 Hrs

9 Hrs

9 Hrs

PROGRAM ELECTIVE -II

Course	e Code :	Cour STR	rse Nam UCTUI	ne : REP RES	AIR A	ND RF	CHABII	ITATI	ON OF	Ty/Lb/ ETL	L	T / S.Lr	P/R	C
EMSI	E22E05	Prer	equisite:	Basic Lev	el Repai	r and Re	habilitati	ion of St	ructures	Ту	3	0/0	0/0	3
L : Le	cture T :	Tutoria	l SLr : S	Supervise	d Learni	ng P : P	roject R	: Resea	rch C: C	CreditsT/L	/ETL :	Theory /]	Lab	1
/ Emb	edded T	heory ar	nd Lab											
OBJE	CTIVE	S :												
COUI	RSE OU	тсом	ES (Cos	(3-5))									
At the	end of t	he cours	se, stude	nts will be the healt	e able to	icture 11	cina eta	tic field	method	s and dur	amic	field		
COI	tests		li abbut	the near		ucture u	sing sta		memou	s and dyn		neid		
CO2	Diagn	osis the	distress	in the stru	cture un	derstand	ling the	causes a	nd facto	rs.				
CO3	Studer	nts to kn	ow abou	t repairs a	nd reha	bilitation	n measu	res of th	e structu	re				
CO4	Ability	y to inve	estigation	n structura	l related	l proble	ms							
CO5	Sugge	st repair	s and rel	habilitatio	n measu	res of th	ne struct	ure						
Марр	ing of C	Course (Dutcom	es with Pr	ogram	Outcon	nes (PO	s)						
COs/I	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
CO^2		2 1 2 3 2 1 2 1 3 3 2 1 2 3 2 3 2 2												
C02		1	2	3	-	2	-	2	-	3				
C03		2	3	1	2	3	2	3	1	3				
CO5		1	2	3	2	3	1	3	2	2				
COs /	PSOs		PSO1	PSC)2	PS	03							
CO1			3	2	2		3							
CO2			3	1	l		2							
C03			2	3	3		1							
CO4			3	2	2		3							
CO5			2	1	l		2							
3/2/11	Indicates	s Streng	th Of Co	rrelation,	3 – Hig	h, 2- Me	edium, 1	- Low						
			Ices											
		s	cier	p s		ives	S	ry	nt	ject				
Catego	ory	nce	B S S	s an	ore	llect	tive	lina	one	Pro				
		Scie	erir	scie	U E	В	lec	scip	duic	al /				
		sic ?	gine	mar cial	gra	gra	en I	erdi	ll co	ictic				
		Ba	En	Hu So(Prc	Prc	Op	Inte	Ski	Pra				
						\checkmark								

- 1. Shetty M.S., "Concrete Technology Theory and Practice", S.Chand and Company, 2008.
- 2. Dov Kominetzky.M.S., "Design and Construction Failures", Galgotia Publications Pvt. Ltd., 2001
- 3. Ravishankar.K., Krishnamoorthy.T.S, " Structural Health Monitoring, Repair and Rehabilitation of Concrete Structures", Allied Publishers, 2004.
- 4. CPWD and Indian Buildings Congress, Hand book on Seismic Retrofit of Buildings, Narosa Publishers, 2008.
- 5. Gambhir.M.L., "Concrete Technology", McGraw Hill, 2013

Maintenance, Repair and Rehabilitation, Facets of Maintenance, importance of Maintenance, Various aspects of Inspection, Assessment procedure for evaluating a damaged structure, causes of deterioration.

UNIT I MAINTENANCE AND REPAIR STRATEGIES

UNIT II SERVICEABILITY AND DURABILITY OF CONCRETE

Course Name : REPAIR AND REHABILITATION OF

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: CreditsT/L/ETL: Theory / Lab /

Prerequisite: Basic Level Repair and Rehabilitation of

Quality assurance for concrete – Strength, Durability and Thermal properties, of concrete Cracks, different types, causes - Effects due to climate, temperature, Sustained elevated temperature, Corrosion - Effects of cover thickness and cracking.

UNIT III MATERIALS FOR REPAIR

STRUCTURES

Structures

Special concretes and mortar, concrete chemicals, special elements for accelerated strength gain, Expansive cement, polymer concrete, sulphur infiltrated concrete, Ferro cement, Fibre reinforced concrete.

UNIT IV TECHNIQUES FOR REPAIR AND PROTECTION METHODS 9 Hrs

Rust eliminators and polymers coating for rebars during repair, foamed concrete, mortar and dry pack, vacuum concrete, Gunite and Shotcrete, Expoxy injection, Mortar repair for cracks, shoring and underpinning. Methods of corrosion protection, corrosion inhibitors, corrosion resistant steels, coatings and cathodic protection. Engineered demolition techniques for dilapidated structures - case studies

UNIT V REPAIR, REHABILITATION AND RETROFITTING OF STRUCTURES 9 Hrs

Deflection, Cracking, Chemical disruption, weathering corrosion, Repairs to overcome low member strength. wear, fire, leakage and marine exposure.

TEXT BOOKS:

Course Code :

EMSE22E05

Embedded Theory and Lab

- 1. Denison Campbell, Allen and Harold Roper, "Concrete Structures, Materials,
- 2. Maintenance and Repair", Longman Scientific and Technical UK, 1991.
- 3. Allen R.T. & Edwards S.C, Repair of Concrete Structures, Blakie and Sons, UK, 1987

REFERENCES:

Tv/Lb/

ETL

Ty

T/S.Lr

0/0

L

3

P/R

0/0

С

3

9 Hrs

9 Hrs

Total No of Hours: 45

Course EMSE	e Code : E22E06Course Name : STRUCTURAL HEALTH MONITORINGTy/Lb/ ETLLT / S.LrP/ RCPrerequisite: Static and Dynamic distress/ RepairTy30/00/03													
		Pre	erequisit d Rehabi	e: Static a	nd Dyna	umic dist	tress/ Re	epair		Ту	3	0/0	0/0	3
L : Leo	cture T :	Tutoria	al SLr : S	Supervise	d Learni	ng P : P	roject R	: Resear	rch C: (CreditsT/L	/ETL :	Theory / 1	Lab	<u> </u>
/ Embe	edded T	heory a	nd Lab	*		C	U					-		
OBJE	CTIVE	S :												
COUF	RSE OU	TCOM	IES (Co	(3-5))									
At the	end of t	the course $\frac{1}{2}$ to leave	se, stude	the healt	e able to	icture ii	sina sta	tic field	method	ls and dyn	amic	field		
COI	tests	y to real	in about	the near	11 01 511	ucture u	sing sta		method	is and dyn		lield		
CO2	Diagn	osis the	distress	in the stru	cture un	derstand	ling the	causes a	nd facto	ors				
CO3	Studer	nts to kn	ow abou	t repairs a	ind reha	bilitation	n measu	res of th	e structi	ure				
CO4	Abilit	y to inve	estigation	n structura	al related	l proble	ms							
CO5	Sugge	st repair	rs and re	habilitatio	n measu	res of th	ne struct	ure						
Mapp	ing of C	Course (Outcomes with Program Outcomes (POs)											
COs/P	POs	PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 1 2 3 2 1 2 1 3											
CO1		2	2 1 2 3 2 1 2 1 3											
CO2		3	2	1	2	3	2	3	2	2				
C03		1	2	3	1	2	3	2	3	3				
CO4		2	3	1	2	3	2	3	1	3				
CO5		1	2	3	2	3	1	3	2	2				
COs /	PSOs		PSO1	PSC	02	PS	03		1	1				
CO1			3	2	2	Í	3							
CO2			3	1	1		2							
C03			2		3		1							
CO4			3		2		3							
2/2/11		Cture of			<u>, II:</u>		<u>.</u>	Larry						
3/2/11	naicates	s Streng		rrelation,	3 - Hig	n, 2- Me	aium, i	- LOW						
Category Corease Engineering Science Humanities and Social Sciences Program Core					Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project					
						N								

Course Code :	Course Name : STRUCTURAL HEALTH	Ty/Lb/	L	T/S.Lr	P/ R	С		
EMSE22E06	MONITORING	ETL						
	Prerequisite: Static and Dynamic distress/ Repair	Ту	3	0/0	0/0	3		
	and Rehabilitation							
L : Lecture T : Tu	torial SLr : Supervised Learning P : Project R : Research C:	CreditsT/L	/ETL :	Theory / I	Lab			
/ Embedded Theo	Embedded Theory and Lab							

UNIT I: STRUCTURAL HEALTH

Factors affecting Health of Structures - Causes of Distress - Regular Maintenance.

UNIT II: STRUCTURAL HEALTH MONITORING

Concepts - Various Measures -Structural Safety in Alteration - Structural Audit - Assessment of Health of Structure - Collapse and Investigation - Investigation Management - SHM Procedures.

UNIT III TESTING

Testing: Static Field Testing - Dynamic field testing - Stress history data - Dynamic load allowance tests - Ambient vibration tests - Forced Vibration Method - Dynamic response methods.

UNIT VI **DYNAMIC FIELD TESTING**

Types of Dynamic Field Test- Stress History Data- Dynamic Response Methods- Hardware for Remote Data Acquisition Systems- Remote Structural Health Monitoring.

INTRODUCTION TO REPAIRS AND REHABILITATIONS OF STRUCTURES 9 Hrs UNIT V

Case Studies (Site Visits), piezo-electric materials and other smart materials, electro-mechanical impedance (EMI) technique, adaptations of EMI technique.

Total No of Hours: 45

REFERENCES:

- 1. Structural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2006
- 2. Health Monitoring of Structural Materials and Components Methods with

Applications, Douglas E Adams, John Wiley and Sons, 2007.

- 3. Structural Health Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group, London, UK, 2006.
- 4. Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007

9 Hrs

9 Hrs

9 Hrs

Course EMSE	Code :	e: Course Name: STRUCTURAL OPTIMIZATION Ty/Lb/ L T/S.Lr P/R C D7												
		Pre Str	erequisite uctures	e : Need to	o study I	Linear a	nd Nonl	inear		Ту	3	0/0	0/0	3
L : Leo	ture T :	Tutoria	1 SLr : S	Supervise	d Learni	ng P : P	roject R	: Resear	rch C: C	CreditsT/L	/ETL :	Theory /		L
Lab / E	Embedd	ed Theo	ry and L	ab		e	5					2		
OBJE	CTIVE	S : To T	The object	ctive of th	is course	e is to m	ake stud	ents to l	earn pri	nciples of	optimi	zation,		
COUF At the	RSE OU end of t	TCOM	ES (Cos se, stude	s) : nts will be	e able to									
CO1	Unders	stand St	ructural	optimizati	on base	d on Op	timal cri	teria.						
CO2	Compu	utation o	of deriva	tives of re	sponse o	quantitie	s with r	espect to	design	variables.	1			
CO3	Non-li	near pro	grammi	ng by diff	erent me	ethods.		-	U					
CO4	To impl	ement t	he optim	nization C	oncepts	for the s	tructura	l engine	ering pr	oblems.				
CO5	To eval	uate diff	ferent m	ethods of	optimiza	ation.								
Mappi	ing of C	Course (Dutcome	es with Pi	ogram	Outcom	nes (POs	s)		-	1			
COs/P	Os	PO1	PO2	O2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 1 2 3 2 1 2 1 3										
CO1		2	1 2 3 2 1 2 1 3											
CO2		3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
C03		1	2	3	1	2	3	2	3	3				
CO4		2	3	1	2	3	2	3	l	3				
CO5		1	2	3	2	3	1	3	2	2				
COs /	PSOs		PSO1	PSC	02	PS	03							
CO1			3	2	2	3	3							
CO2			3	1	l	2	2							
C03			2	3	8	1	1							
CO4			3	2	2	3	3							
CO5			2			4	2							
3/2/1 I	ndicates	Streng	th Of Co	rrelation,	3 - Hig	h, 2- Me	dium, 1	- Low			1			
Catego	Basic Sciences Engineering Sciences Fumanities and Social Sciences Program Electives ✓ Program Electives Interdisciplinary						Skill component	Practical / Project						
						N								

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code :	Course Name: STRUCTURAL OPTIMIZATION	Ty/Lb/	L	T / S.Lr	P/ R	C
EMSE22E07		ETL				
	Prerequisite : Need to study Linear and Nonlinear	Ту	3	0/0	0/0	3
	Structures					
L : Lecture T : Tu	torial SLr : Supervised Learning P : Project R : Research	C: CreditsT	L/ET	L : Theory	7/	
Lab / Embedded	Theory and Lab					

UNIT I INTRODUCTION

Introduction to optimization - engineering applications of optimization - Formulation of structural optimization problems as programming problems - Optimization Techniques- Classical optimization techniques- single variable optimization- multivariable optimization with no constraints- unconstrained minimization techniques and algorithms constrained optimization solutions by penalty function techniques- Lagrange multipliers techniques and feasibility techniques.

UNIT II LINEAR PROGRAMMING

Standard form of linear programming, geometry of linear programming problems-solution of a system of linear simultaneous equations- pivotal production of general systems of equations- simplex algorithms-revised simpler methods- duality in linear programming.

UNIT III NON-LINEAR PROGRAMMING

One dimensional minimization methods- elimination methods-Fibonacci method- golden section methodinterpolation methods- quadratic and cubic methods-Unconstrained optimization methods-direct search methods-random search methods- descent methods

UNIT IV CONSTRAINED OPTIMIZATION TECHNIQUES

Direct methods- the complex methods- cutting plane method-exterior penalty function methods for structural engineering problems- Formulation and solution of structural optimization problems by different techniques.

UNIT V GEOMETRIC AND DYNAMIC PROGRAMMING

Geometric programming, conversion of NLP as a sequence of LP/ geometric programming- Dynamic programming conversion of NLP as a sequence of LP/ Dynamic programming

REFERENCE :

1. Spunt, "Optimum Structural Design"- Prentice Hall

2. S.S. Rao, "Optimization – Theory and Practice"- Wiley Eastern Ltd.

3. Uri Krisch, "Optimum Structural Design" - McGraw Hill

4. Richard Bronson, "Operation Research"- Schaum's Outline Series

5. Bhavikatti S.S.- "Structural optimization using sequential linear programming"- Vikas publishing house

9 Hrs

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Total No of Hours : 45

Cours EMSI	e Code : E 22E08	Co	Course Name : PREFABRICATED STRUCTURES Ty/Lb/ ETL L T/S.Lr P/R C Prerequisite : Need to study Concrete Technology and Ty 3 0/0 0/0 3												
		Pre Co	requisit nstructio	e : Need to on Materia	o study (als	Concrete	e Techno	logy an	d	Ту	3	0/0	0/0	3	
L : Le	cture T :	Tutoria	1 SLr : 5	Supervise	d Learni	ng P : P	roject R	: Resear	ch C:	CreditsT/L	/ETL :	Theory /	1		
Lab /]	Embedd	ed Theor	ry and L	ab											
OBJE	CTIVE	S :To St	udy the	design pri	nciples,	analysis	s and des	sign of e	lement	S					
COUI	RSE OU	TCOM	ES (Cos	s):	abla ta										
CO1	To lear	n the bas	sic princ	iple of fat	ricated	structure	es								
		. 1	1	1		0.1 .									
CO2	To Und	erstand	the conc	ept of Str		prefabrio	cated ele	ments							
CO3	To know	w abnori	nal load	s which a	re hazar	dous to p	orefabric	ated stru	uctures						
CO4	To ana	lyze the	Structur	al elemen	its										
CO5	To fami	iliarize v	vith join	ing techni	ques use	ed for pr	efabrica	tion							
Mapp	ing of C	Course C	Outcome	es with Pr	ogram	Outcom	nes (POs)							
COs/l	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9					
C01		3	3 2 1 2 3 3 2 2 3												
CO2		3 2 1 2 3 3 2 2 3 2 1 2 3 2 3 1 2 3													
C03		2	3	3	2	1	3	2	3	2					
CO4		1	2	3	2	3	2	1	2	1					
CO5		2	3	2	3	1	2	3	2	2					
COs /	PSOs	PS	501	PS	02	PS	503								
CO1			1	2	2		3								
CO2			2	3	3		3								
C03			3	2	2		3								
CO4			2	3	3		2								
CO5			2	3	3		3								
3/2/1	Indicates	s Strengt	h Of Co	rrelation,	3 – Hig	h, 2- Me	dium, 1-	- Low							
Categ	Basic Sciences Audent Basic Sciences Engineering Science Fundanties and Social Sciences Program Core Author Flectives Open Electives Author Flectives Program Core Program Core Program Core Program Flectives Program Flectives Program Flectives Program Flectives </td														

(An ISO 21001 : 2018 Certified Institution) Perivar E.V.R. High Road, Maduravoval, Chennai-95. Tamilnadu, India.

Course Code :	Course Name : PREFABRICATED STRUCTURES	Ty/Lb/	L	T/S.Lr	P/ R	С
EMSE22E08		ETL				
	Prerequisite : Need to study Concrete Technology and	Ту	3	0/0	0/0	3
	Construction Materials	-				
L : Lecture T : Tu	torial SLr : Supervised Learning P : Project R : Research C	: CreditsT/	L/ETL	: Theory /	r	
Lab / Embedded 7	Theory and Lab			-		

UNIT I: INTRODUCTION

Concept of planning and layout of prefabricated plant. IS Code specification. Modular co-ordination,

standardization, production, transportation, erection, stages of loading and coal provisions, safety factors, material properties, Deflection control, Lateral load resistance, Location and types of shear walls.

UNIT II: REINFORCED CONCRETE

Prefabricated structures - Long wall and cross-wall large panel buildings, one way and two way prefabricated slabs, Framed buildings with partial and curtain walls

UNIT III: FLOORS, STAIRS AND ROOFS

Types of floor slabs, analysis and design example of cored and panel types and two-way systems, staircase slab design, types of roof slabs and insulation requirements, Description of joints

UNIT IV: WALLS

Types of wall panels, Blocks and large panels, Curtain, Partition and load bearing walls, types of wall joints, Leak prevention, joint sealants, sandwich wall panels.

UNIT V: ACCESSORIES AND PLUMPING

Folded plate and hyper-prefabricated shells, Erection and jointing, joint design, Water leakage, damp proofing

Total No of Hours: 45

*Note: (Use of approved data books permitted)

REFERENCES

- 1. B.Lewicki, Building with Large Prefabricates, Elsevier Publishing Company, Amsterdam/ London/New York, 1966.
- 2. Koncz.T., Manual of Precast Concrete Construction, Vol.I II and III, Bauverlag, GMBH, 1971.
- 3. Structural Design Manual, Precast Concrete Connection Details, Society for the Studies in the use of Precase Concrete, Netherland Betor Verlag, London 1978.
- 4. Lasslo Mokk, Prefabricated Concrete for Industrial and Public Sectors, Akademiai Kiado, Budapest, 1964.
- 5. Murashev.V., Sigalov.E., and Bailov.V., Design of Reinforced Concrete Structures, Mir Publishers, London 1968.
- 6. CBRI, Building Materials and Components, 1990, India.
- 7. Gerostiza. C.Z., Hendrikson, C., Rehat D.R., Knowledge Based Process Planning for Constructionand Manufacturing, Academic Press, Inc., London 1989.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

PROGRAM ELECTIVE-III

Course EMSE	Code :	Co	urse Nai	me: ADV	ANCED) STEE	L DES	IGN		Ty/Lb/ ETL	L	T / S.Lr	P/R	C
LIVIOL	221.07	Pre Str	erequisite uctures	e : Design	of steel	Structu	res			Ту	3	0/0	0/0	3
L : Leo / Embe	ture T : dded T	Tutoria	l SLr : S d Lab	Supervised	d Learni	ng P : P	roject R	: Resear	rch C:	CreditsT/L	/ETL :	Theory / I	Lab	1
OBJE	CTIVE	S :Gen	eral prir	ciple in	the desi	gn of s	teel stru	ictures s	such as	Various	types	of connec	tions,	Steel
transm	ission li	ine towe	rs, Plast	ic method	of struc	c tural an	alysis ar	nd Analy	sis and	design of	industr	ial structu	res.	
COUF	RSE OU	ТСОМ	ES (Cos	s):										
At the	end of t	he cours	se, stude	nts will be	e able to									
CO1	To kno	ow the g	eneral p	rinciple of	f steel s	tructures	s in vari	ous field	l.					
CO2	To uno	lerstand	the Var	ious types	of con	nections	, Steel ti	ransmiss	sion line	e towers.				
CO3	Analyz	ze and d	esign of	beam and	column	stabilit	y and str	ength						
CO4	Design	n welded	l and bol	ted conne	ctions a	nd Plasti	ic Analy	rsis						
CO5	Design	n of Indu	strial st	ructures &	: Pre-En	gineered	l Buildi	ng						
Mappi	ing of C	Course (Outcome	es with Pr	ogram	Outcom	nes (POs	<u>s)</u>						
COs/P	Os	PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 2 3 3 2 3 3 2 3											
CO1		1	2 3 3 2 3 3 2 3											
CO2		3	2	3	2	3	3	3	2	2				
C03		3	2	3	1	2	3	2	1	3				
CO4		3	2	3	2	3	2	3	2	3				
CO5		3	2	3	2	3	1	2	3	2				
COs /	PSOs	PS	501	PS	02	PS	503		1	1	1			
CO1			1	2	2		3							
CO2			3	2	2		3							
C03			3	3	6		3							
<u>CO4</u>			$\frac{2}{2}$	3	<u>}</u>		$\frac{2}{2}$							
2/2/11	1. (<u> </u>		4	<u> </u>		J 1' 1	т.						
3/2/11	ndicates	Strengt	th Of Co	rrelation,	3 – H1g	h, 2- Me	dium, I	- Low						
Catego	ory	Basic Sciences Engineering Science Humanities and Social Sciences Program Core Program Electives Open Electives						Interdisciplinary	Skill component	Practical / Project				
						N								

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code :	Course Name: ADVANCED STEEL DESIGN	Ty/Lb/	L	T / S.Lr	P/ R	С
EMSE22E09		ETL				
	Prerequisite : Design of Steel Structures	Ту	3	0/0	0/0	3
	Structures					
L : Lecture T : Tu	ttorial SLr : Supervised Learning P : Project R : Research	C: Credits	T/L/E	TL : Theo	ry	

/ Lab / Embedded Theory and Lab

UNIT I GENERAL

Beams subjected to biaxial bending - Built-up Purlins - Various types and design -Design of Wind girders-Beam-columns - With various support conditions-Design of foundations-with lateral forces.

UNIT II CONNECTIONS

Bearing type joints - unstiffened and stiffened seat connections - moment resisting connection of brackets-bolted and welded-semi-rigid connections.

UNIT III TOWERS

Basic structural configurations - free standing and guyed towers - loads on towers -wind loads - foundation design - design criteria for different configurations and transmission line towers

UNIT IV PLASTIC ANALYSIS

Theory of plastic bending - Plastic hinge concept - Mechanism method – Application to continuous beams and portal frames-Plastic moment distribution - Analysis of Gable frames - instantaneous centre of rotation - Connections.

UNIT V INDUSTRIAL BUILDINGS AND PRE-ENGINEERED BUILDINGS 9 Hrs

Industrial buildings-braced and unbraced - Gable frames with gantry-Rigid industrial frames-Fire resistant design-Fatigue resistant design-Standard design loads – Advantages of pre engineered buildings - Framing systems for Pre Engineered steel buildings – Characteristics of Pre Engineered steel buildings

Total No of Hours: 45

REFERENCE :

1 Subramanian. N, "Design of Steel Structures: Theory and Practice", Oxford university Press, U.S.A, Third Edition, 2011.

2. Dugga l.S.K, "Design of Steel Structures", McGraw Hill New Delhi, 2010

3. Dayaratnam. P, "Design of Steel Structures," Chand. S, Limited, New Delhi. 2008.

4. John. E, Lothers, "Structural Design in Steel", Prentice Hall, 1999.

5. Neal. B.G, "Plastic Method of Structural Analysis", Taylor & Francis, Third Edition, 1985.

6. Edwin .H, Gaylord, Charles .N, Gaylord, James .E, Stallmeyer, "Steel Structures", McGraw Hill, New Delhi, 1980.

7. Ramchandra, "Design of Steel Structures", Vol I & II Standard Book House, Delhi, 1975.

8. Arya.S and Ajmani.J.L, "Design of Steel Structures", Nem Chand & Bros, Roorkee

9 Hrs

9 Hrs

9 Hrs

Course Code : FMSF22F10		Co	urse Nai	ne: DESI	GN OF	FORMV	VORK			Ty/Lb/ ETL	L	T / S.Lr	P/R	С
ENISE	221210	Pre	requisit	e : Buildir	rials			Ту	3	0/0	0/0	3		
L : Leo / Embe	ture T :	Tutoria heory an	1 SLr : S d Lab	Supervised	d Learni	ng P : P	roject R	: Resear	rch C: C	CreditsT/L	/ETL :	Theory / I	Lab	<u> </u>
OBJE	CTIVE	S :To u	Indersta	nd require	ment of	f formw	ork and	Judge	the form	nwork fai	lures t	hroughcas	e studie	s
COUR	RSE OU	тсом	ES (Cos	<u>1</u>				0				8		
At the	end of t	he cours	e, stude	nts will be	e able to									
CO1	To rem	Γο remember the basic concept about the construction materials.												
CO2	To kno	how the behavior of tall buildings due to various types of loads.												
CO3	To Sel	ect the p	proper fo	ormwork,	accesso	ries and	material							
CO4	Design	the form	n work f	for Beams	Slabs	column	s. Walls	and For	Indation	s and spec	ial stru	ictures		
CO5	To Judge the formwork failures through case studies													
Mapping of Course Outcomes with Program Outcomes (POs)														
COs/POs PO1 PO2			PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1		3	1	2	1	2	3	2	3	2				
CO2		2	3	2	1	3	2	3	3	2				
C03		2	3	2	3	2	3	3	2	3				
CO4		3	3	3	2	1	2	3	2	3				
CO5		1	2	2	3	2	3	2	3	2				
COs /	PSOs	PSO1		PSO2		PSO3								
CO1		1		2		3								
CO2		3		2		3								
<u>C03</u>		2		3		2								
$\frac{CO4}{CO5}$		$\frac{3}{2}$		2		3								
2/2/11	1. /	3	1.000	3	<u> </u>	3	1' 1							
3/2/11	ndicates	Strengt	h Of Co	rrelation,	3 – H1gl	h, 2- Me	dium, I	- Low						
Category		Basic Sciences	Engineering Science	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
						N								

Course Code : EMSE22E10	ode :Course Name: DESIGN OF FORMWORKTy/Lb/LE10ETL		L	T / S.Lr	P/R	C	
	Prerequisite : Construction Materials	0/0	0/0	3			
L : Lecture T : Tu Lab / Embedded 7	itorial SLr : Supervised Learning P : Project R : Resea Theory and Lab	arch C: CreditsT/	L/ETL	: Theory	/	1	
UNIT I: INT	RODUCTION				9 Hr	S	
Requirements	s and Selection of Formwork.						
UNIT II: FO	RMWORK MATERIALS				9 Hrs		
Timber- Plyw Supports.	vood- Steel- Aluminium- Plastic- and Accessories- Ho	orizontal and Vert	ical Fo	ormwork			
UNIT III: F	ORMWORK DESIGN				9 Hrs		
Concepts- Fo	rmwork Systems and Design for Foundations- Walls-	Columns- Slab an	d Bea	ms.			
UNIT IV: FI	LYING FORMWORK				9 Hr	S	
Table Form- Pre- and Post	Tunnel Form- Slip Form- Formwork for Precast Conc -Award.	crete- Formwork N	Manag	ement Issu	ues –		
UNIT V: FO	DRMWORK FAILURES				9 Hr	S	
Causes and C	ase studies in Formwork Failure- Formwork Issues in	MultiStory Buildi	ng Co	nstruction			
			Tat	al No of T	Iouwa	15	

REFERENCES

- 1. Formwork for Concrete Structures, Peurify, Mc Graw Hill India, 2015.
- 2. Formwork for Concrete Structures, Kumar NeerajJha, Tata McGraw Hill Education, 2012.
- 3. IS 14687: 1999, False workfor Concrete Structures Guidelines, BIS.

Course EMSE	Course Code : EMSE22E11		urse Nar	ne: TALL	STRUC	CTURES				Ty/Lb/ ETL	L	T / S.Lr	P/ R	С
		Pre dvr	requisite namics	e : Concre	te techn	ology/ S	structura	1		Ту	3	0/0	0/0	3
L : Leo	ture T :	Tutoria	1 SLr : S	Supervise	d Learni	ng P : P	roject R	: Resear	rch C:	CreditsT/L	/ETL :	Theory / I	lab	
/ Embe	edded T	heory an	d Lab											
OBJE	CTIVE	S :To st	udy the l	behaviour	, analysi	is and de	esign of	tall struc	ctures.					
COUR	RSE OU	ТСОМ	ES (Cos	s):										
At the	end of t	he cours	e, stude	nts will be	e able to	1	• •	. .						
CO1	To kno	o know the structural element behaviour, analysis and design												
CO2	Understand the Design philosophy, details types of loading and performance of concrete													
CO3	Ability	Ability to analysis the stability tall structure buildings												
CO4	Evalua	ite a nati	ural freq	uency of o	contentio	ous elen	nents							
CO5	Apply a new techniques for controlling the vibration of the structures													
Mappi	Mapping of Course Outcomes with Program Outcomes (POs)													
COs/POs PO1 PO2			PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1 3		3	1	2	1	2	2	1	3	2				
CO2		3	2	3	3	3	2	3	2	3				
C03		2	3	2	3	2	3	2	3	2				
CO4		3	3	3	2	3	1	3	2	3				
CO5		3	2	3	3	2	3	3	3	2				
COs /	PSOs	PSO1		PSO2		PSO3								
CO1		3		2		3								
CO2		2		3		2								
C03		1		2		3								
CO4		2		2		3								
CO5		3		2		2								
3/2/1 I	ndicates	s Strengt	h Of Co	rrelation,	3 – Higl	h, 2- Me	dium, 1	- Low						
Category		Basic Sciences	Engineering Science	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
					N									

Course Code :	Course Name: TALL STRUCTURES	Ty/Lb/	L	T/S.Lr	P/ R	C				
EMSE22E11		ETL								
	Prerequisite : Concrete technology/ Structural	Ту	3	0/0	0/0	3				
	dynamics									
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: CreditsT/L/ETL : Theory /										
Lab / Embedded Theory and Lab										

UNIT I: DESIGN CRITERIA

Design philosophy- Loading- Sequential loading and materials - high performance Concrete - Fiber reinforced Concrete - Light weight Concrete - Design mixes.

UNIT II: LOADING AND MOVEMENT

Gravity Loading: Dead and live load- methods of live load reduction-Impact- gravity loading, construction load

Wind loading: Static and dynamic approach- Analytical and wind tunnel experimental method.

Earthquake loading: Equivalent lateral force- modal analysis- combinations of loading working stress design-Limit state design- plastic design.

UNIT III: BEHAVIOUR OF VARIOUS STRUCTURAL SYSTEMS

Factors affecting growth- Height and Structural form- High rise behaviour Rigid frames- braced frames-Infilled frames- shear walls- coupled shear walls- wall-frames- tubular- cores- futrigger - braced and hybrid mega system.

UNIT IV: ANALYSIS AND DESIGN

Modeling for approximate analysis- Accurate analysis and reduction techniques- Analysis of building as total structural system considering overall integrity and major subsystem interaction- Anlysis for member forces-drift and twist- computerised general three dimensional analysis.

Structural Elements : Sectional shapes, properties and resisting capacity-design- deflection- cracking,prestressing-shear flow- Design for differential movement- creep and shrinkage effects- temperature effects and fire resistance.

UNIT V: STABILITY OF TALL BUILDINGS

Overall buckling analysis of frames, wall-frames- Approximate methods- second order effects of gravity of loading- P-Delta analysis- simultaneous first-order and P-Delta analysis-Translational-Torsional instability- out of plum effects- stiffness of member in stability- effect of foundation rotation.

Total No of Hours: 45

REFERENCES

- 1. Dr. Y.P.Gupta, Editor. Proceedings National Seminar on High Rise Structures Design and Construction practices for middle level cities Nov. 14 -16, 1995, New Age International Limited, Publishers, Madras -20.
- 2. Wilf gang Schuller, High Rise Building Structures, John Wiley and Sons, New Jercy 1977.
- 3. Taranath B.S., Structural Analysis and Design of Tall Building, McGraw Hill, 1988.
- 4. Bryan stafford Smith, Alexcoull, Tall Building Structures, Analysis and Design, John Wiley and Sons, Inc New Jercy 1977

9 Hrs

9 Hrs

9 Hrs

Course Code : EMSE22E12		Co	ourse Nai	me: DESI	GN OF N	MASON	RY STR	Ty/Lb/ ETL	L	T/S.Lr	P/ R	C		
20102		Pr	erequisit	e : Design	rete stru	ctures I	Ту	3	0/0	0/0	3			
L : Leo	cture T : edded T	Tutoria	al SLr : S nd Lab	Supervise	d Learni	ng P : P	roject R	: Resea	rch C:	CreditsT/L	/ETL :	Theory / I	Lab	
OBJE		$\frac{1001 \text{ J}}{\text{S}:\text{To s}}$	tudy the	behaviour	, analys	is and de	esign of	masonry	y structi	ures				
COUL	SE OI	TCON		<i>z</i>) •	, ,		0							
At the	end of t	he cour	se, stude	nts will be	e able to									
CO1	Knowledge about the strength and stability of concrete materials and structures													
CO2	Unders	stand th	nd the behaviour of the masonry structures in various load conditions.											
CO3	Learne	ed about	t the desi	gn parame	eters usi	ng code	provisio	ons						
CO4	Ability	v to desi	gn the n	nasonry st	ructures	by appl	ying dif	ferent lo	oads.					
CO5	To apply the innovative idea for masonry structures													
Mapping of Course Outcomes with Program Outcomes (POs)														
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1 3		3	2	2	1	2	3	2	3	2				
CO2		2	3	2	1	3	2	3	3	2				
C03		2	3	2	3	2	1	1	2	3				
CO4		3	3	3	2	1	2	3	2	3				
CO5		3	2	2	3	2	3	2	3	2				
COs /	PSOs	PSO1		PSO2		PSO3								
CO1		1		2		3								
CO2		3		2		3								
C03		2		3		2								
C04 C05		3		2		3								
3/2/11	ndicates	s Streng	th Of Co	rrelation	3 – Hig	h. 2- Me	dium 1	- Low						
<i></i>		- Suong	s s		- 1115	, 2 1010								
Category		Basic Sciences	Engineering Scienc	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code :	Course Name: DESIGN OF MASONRY STRUCTURES	Ty/Lb/	L	T / S.Lr	P/ R	С					
EMSE22E12		ETL									
	Prerequisite : Design of concrete structures I & II	Ту	3	0/0	0/0	3					
		-									
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: CreditsT/L/ETL : Theory /											
Lab / Embedded Theory and Lab											

UNIT I: MATERIALS, STRENGTH AND STABILITY

Bricks, Stone and Block masonry units- strength, modulus of elasticity and water absorption of masonry materials – classification and properties of mortars. Defects and Errors in masonry construction – cracks in masonry, types, reason for cracking, methods of avoiding cracks.

Strength and stability of axially loaded masonry walls-effect of unit strength- mortar strength- joint thicknes,-rate of absorption- effect of curing- effect of ageing- workmanship- Compressive strength formulae based on elastic theory and empirical formulae

UNIT II: DESIGN CONSIDERATIONS:

Types of walls, permissible compressive stress, stress reduction and shape modification factors, increase in permissible stresses for eccentric vertical and lateral load, permissible tensile stress and shear stresses.

Effective height of walls and columns, openings in walls, effective length, effective thickness, slenderness ratio, eccentricity, load dispersion, arching action in lintels. Problems on design considerations for solid walls, cavity walls, wall with pillars

UNIT III: DESIGN OF MASONRY SUBJECTED TO AXIAL LOADS:

Design criteria, design examples of walls under UDL, solid walls, cavity walls, solid wall supported at the ends by cross wall, walls with piers.

Solid walls, cavity walls, solid wall supported at the ends by cross wall, walls with piers, design of wall with openings.

UNIT IV: DESIGN OF WALLS SUBJECTED TO ECCENTRIC LOADS: 9 Hrs

Design criteria – stress distribution under eccentric loads – problems on eccentrically loaded solid walls, cavity walls, walls with piers.

UNIT V: DESIGN OF LATERALLY AND TRANSVERSELY LOADED WALLS: 9 Hrs

Design criteria, design of solid wall under wind loading, design of shear wall – design of compound walls. Introduction to reinforced brick masonry, lintels and slabs.

Total No of Hours: 45

REFERENCES

1. Building Code Requirements for Masonry Structures (TMS 502-08/ACI 530-08/ASCE 5- 08) 2.Specifications for Masonry Structures (ACI 530.1-08/ASCE 6-08/TMS 602-08)

9 Hrs

PROGRAM ELECTIVE-IV

Course FMSE	Code :	Co CO	urse Nai NCRET	me: DESI ESTRUC	GN OF . TURES	ADVAN	CED	Ty/Lb/ ETL	L	T / S.Lr	P/ R	C		
LINISE	22113	Pre	erequisit	e : Desigr	of con	crete stru	ucture -l		Ту	3	0/0	0/0	3	
L:Leo	ture T :	Tutoria	l SLr:	Supervise	d Learn	ing P : I	Project I	R : Rese	arch C:	CreditsT	 ′L/ETL	:		
Theory	/ Lab /	'Embed	ded The	ory and L	ab							-		
OBJE	CTIVE	S:To st	tudy the	behaviou	r, analys	sis and d	lesign of	f R.C. st	ructures	8.				
COUF At the	RSE OU	J TCOM	IES (Co se_stude	s): ents will h	e able to	h								
CO1	To ren	nember 1	the Kno	wledge at	out the	design d	letailing	of struc	tural el	ements.				
601	Толп	dersta	nd abo	ut the dea	sion in	differen	t struct	iral con	nonent	s like bea	ms co	lumns sl	ahs wa	alls
CO2	plates	s etc											1115	
CO3	To ana	alyze the details of reinforced concrete structures.												
CO4	To des	sign the l	RC strue	ctures in t	he const	truction	field.							
CO5	To int	To introduce the new concept in reinforced concrete structures												
Mapping of Course Outcomes with Program Outcomes (POs)														
COs/POs PO1 PO2			PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1		3	3	2	3	3	3	3	3	3				
CO2		3	2	3	3	3	2	3	2	1				
C03		2	3	2	1	2	3	2	3	3				
CO4		3	3	3	3	3	3	3	2	1				
CO5		3	3	3	3	2	3	3	3	3				
COs /	PSOs	PSO1		PSO2		PSO3								
CO1		3		3		3								
CO2		2		3		1								
C03		2		1		2								
CO4		3		3		3								
CO5		3		2		3								
3/2/1 I	ndicate	s Streng	th Of Co	prrelation,	3 – Hig	gh, 2- M	edium,	1- Low			1			
Category		Basic Sciences	Engineering Science	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
						N N								
(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code :	Course Name: DESIGN OF ADVANCED CONCRETE STRUCTURES	Ty/Lb/ ETL	L	T / S.Lr	P/ R	С
EMSE22E13	Prerequisite : Design of concrete structure -I	Ту	3	0/0	0/0	3

UNIT I: OVERALL REVIEW

Review of limit state design of beams - Slabs and columns according to IS 456-2000 - Calculation of deflection and crack width according to IS 456-2000.

UNIT II: DESIGN OF SPECIAL RC ELEMENTS

Design of Slender columns - Design of R.C walls - Ordinary and shear walls - Design of Corbels - Deep – beams and grid floors.

UNIT III: FLAT SLABS AND FLAT PLATES

Design of flat slabs and flat plates according to ACI method - Design of shear load - reinforcement and edge(spandrel) beams - Yield line theory and Hillerberg method of design of slabs.

UNIT IV: INELASTIC BEHAVIOUR OF CONCRETE BEAMS

Inelastic behavior of concrete beams - moment - rotation curves - moment redistribution - Baker's method of plastic design - Design of cast-in-situ joints in frames.

UNIT V: DESIGN AND DETAILING OF STRUCTURES

Detailing for ductility - Fire Resistance of buildings - Field control of concrete - Strengthening of existing structures - Design and detailing of structures according to different codes.

Total No of Hours: 45

REFERENCES

- 1. Purushothaman, P, Reinforced Concrete Structure Structural Elements: Behaviour Analysis and Design, Tata Mc Graw Hill, New Delhi 1986.
- 2. Varghese, P.C., Limit State Design of Reinforced Concrete, Prentice Hall of India New Delhi, 1995.
- 3. Krishna Raju, N.Advanced Reinforced Concrete Design, CBS Publishers and New Delhi Distributors, 1986.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Course EMSE	Code : 22E14	Code : Course Name:ADVANCED DESIGN OF 2E14 FOUNDATIONS Prerequisite : Soil Mechanics and Foundation								Ty/Lb/ ETL	L	T / S.Lr	P/R	C
		Pre En	erequisit gineerin	e : Soil M o	echanic	s and Fo	oundatio	n		Ту	3	0/0	0/0	3
L : Lec	ture T :	Tutoria	al SLr:	<u>s</u> Supervise	d Learn	ing P : I	Project I	R : Rese	arch C:	CreditsT	/L/ETL	: Theory	/	
Lab / E	mbedd	ed Theo	ry and I	Lab			j					j		
OBJE	CTIVE	S :To p	orovide u	understand	ling of a	advance	d topics	of soil	mechar	nics and d	esign c	of different	ttypes c	of
founda	tions													
COUR At the	SE OU end of t	TCOM	IES (Co se, stude	s) : ents will b	e able to)								
CO1	To rer	nember	the basi	c knowled	dge abou	ut the fo	undatio	ns						
CO2	Unders	tand rea	ison beh	ind the str	ructure a	and four	dation f	failure						
CO3	Apply 1	the prin	ciples of	f soil meel	hanics to	o decide	upon th	ne suitab	oility of	shallow o	r deep	foundatior	ıs	
CO4	To ana	lyze the	critical	failure mo	odes of 1	retaining	g walls							
CO5	To eval	luate the	e load ca	rrying ca	pacity of	f variou	s shallo	w and de	eep four	ndations				
Mappi	ng of C	Course (Outcom	es with P	rogram	Outco	nes (PC	Ds)						
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1		3	3	2	3	2	3	1	3	2				
CO2		3	2	3	3	3	2	3	2	3				
C03		3	1	2	3	2	3	2	3	1				
CO4		2	3	3	3	3	3	3	2	3				
CO5		3	3	3	3	2	3	3	1	3				
COs /]	PSOs	PSO1		PSO2		PSO3								
CO1		3		3		2								
CO2		3		2		3								
C03		2		3		1								
CO4		3		2		3								
CO5		1		3		1								
3/2/1 Ii	ndicates	s Streng	th Of Co	orrelation,	3 – Hig	gh, 2- M	edium,	1- Low						
Catego	ry	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	 Program Electives Open Electives Open Electives Interdisciplinary Skill component 		Practical / Project						
Approv	al													

Course Code :	Course Name: ADVANCED DESIGN OF	Ty/Lb/	L	T / S.Lr	P/ R	C				
EMSE22E14	FOUNDATIONS	ETL								
	Prerequisite : Soil Mechanics and Foundation	Ту	3	0/0	0/0	3				
	Engineering									
L : Lecture T : Tu	: Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: CreditsT/L/ETL : Theory									

/ Lab / Embedded Theory and Lab

FOUNDATIONS: AN INTRODUCTION **UNIT I:**

General considerations: Functions of foundations. Requisites of satisfactory foundations. Different types of foundations. Definition of shallow and deep foundation. Selection of type of foundation. Advantages and limitations of various types of foundations. Design considerations . Footings subjected to eccentric loading. Conventional procedure for proportioning footings for equal settlements. Open excavation: Open foundation excavations with unsupported slopes. Supports for shallow and deep excavations. Stress distribution in sheeting and bracing of shallow and deep excavations. Stability of bottom of excavations.

UNIT II: SHALLOW FOUNDATIONS

Shallow Foundations: Definitions, Bearing Capacity of Footings; Terzaghi, Mayerhof and Skempton's analysis. Effect of Rising and Lowering of Water Table on Bearing Capacity; Settlement: Permissible, Total and Differential Settlements as per IS Code. Plate Load test, Standard Penetration and Cone Penetration Tests for Determining Allowable Bearing Pressure Raft foundations: Bearing capacity equations. Design considerations. Conventional design procedure for rigid mat. Uplift pressures. Methods of resisting uplift. Floating foundations.

UNIT III: PILE FOUNDATIONS

Uses of piles. Classification of piles based on purpose and material. Determination of type and length of piles. Determination of bearing capacity of axially loaded. Single vertical pile. Static and dynamic formulae. Determination of bearing capacity by penetration tests and pile load tests (IS methods). Negative skin friction. Group action and pile spacing. Analysis of pile groups. Load distribution by Culmann's method. Caissons and piers: Open (well) caissons. Box (floating) caissons. Pneumatic caissons. Construction details and design considerations of well foundations. Drilled piers and their construction details.

UNIT IV: WELL FOUNDATIONS

Introduction, Different shapes and characteristics of wells. Components of well foundation. Forces acting on well foundation. Sinking of wells. Causes and remedies of tilts and shifts.

UNIT V: **MACHINE FOUNDATIONS**

Machine Foundation: Design Criteria, Free and Forced Vibrations for Single Degree of Freedom systems, Undamped and Damped Case, Types of Machine Foundations.

Total No of Hours: 45

TEXT BOOKS

- 1. Khan I.H., "A Text Book of Geotechnical Engineering", Prentice-Hall of India Pvt. Ltd., Delhi, India
- 2. Kaniraj, S.R., "Design Aids in Soil Mechanics and Foundation Engineering", Tata Mc Graw Hill New Delhi.
- 3. Punmia B.C., Soil Mechanics & Foundations, Laxmi, 1988
- 4. N.J, USA. Teng W.C., Foundation Design, PHI, 1984 Terzaghi & Peck, Soil Mechanics in Engineering Practice, Asia Publishing
- 5. Arora K.R., Soil Mechanics & Foundation Engg., Standard Publications, 1987.

9Hrs

9 Hrs

9 Hrs

9 Hrs

Course EMSE	e Code : 22E15	Co AN	urse Na IALYSI	me : ADV	ANCE	D STRU	CTUR	AL		Ty/Lb/ ETL	L	T / S.Lr	P/ R	C
		Pre	erequisit	e : Need to	o study S	Structura	al Analy	sis I		Ту	3	0/0	0/0	3
L:Leo	ture T :	Tutoria	1 1 SLr : 5	Supervise	d Learni	ng P : P	roiect R	: Resea	rch C: (Credits				
T/L/E	ΓL : The	eory / La	ıb / Emb	edded Th	eory and	l Lab								
OBJE	CTIVE	S :To ar	nalyze st	ructural e	ngineeri	ng syste	ms by v	arious a	pproach	es				
COUF At the	RSE OU end of t	TCOM	ES (Cos	s) : nts will be	e able to									
CO1	To lea	rn about	the fund	damental o	concept	of stiffn	ess and	flexibili	ty matri	x				
CO2	To unc	lerstand	the kno	wledge ab	out sub	structure	s							
CO3	Get kn	owledge	e about s	hear wall	and ana	lyze the	concept	t of subs	tructure	technique	es			
CO4	Analy	ze the sk	eleton s	tructures	using ma	atrix me	thods.							
CO5	Use of	comput	er packa	age for un	derstand	ling prol	olems							
Mappi	ing of C	Course C	Outcom	es with Pr	ogram	Outcon	nes (PO	s)						
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1		1	2	2	3	3	2	3	3	2				
CO2		3	2	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					3				
C03		2	3	2	3	2	3	2	3	2				
CO4		3	2	1	2	3	3	2	3	3				
CO5		3	2	3	2	3	2	3	2	3				
COs /	PSOs	PS	501	PS	02	PS	503							
CO1			2	3	3		3							
CO2			3	2	2		2							
C03			1	3	3		3							
CO4			3	2	2		2							
C05			2		3		3							
3/2/1 I	ndicates	Strengt	h Of Co	rrelation,	3 - Hig	h, 2- Me	dium, 1	- Low						
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
Approv	al					v								

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India. Course Name : ADVANCED STRUCTURAL Ty/Lb/ L T/S.Lr P/RCourse Code : C **EMSE22E15** ETL ANALYSIS Prerequisite : Need to study Structural Analysis I 3 0/0 0/03 Τv

ITUTE

& II L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory / Lab / Embedded Theory and Lab

UNIT I: FUNDAMENTAL CONCEPTS

Static and Kinematic indeterminacy - Concepts of stiffness and flexibility - Energy concepts - Principle of minimum potential energy and minimum complementary energy - Development of element flexibility and element stiffness matrices for truss - beam and grid elements.

UNIT II: STIFFNESS METHOD (Systems Approach) 9 Hrs

Basis of stiffness method - Degrees of freedom - Force displacement relationships - Nodal stiffness.

UNIT III: FLEXIBILITY METHOD (Systems Approach)

Flexibility coefficients - Basis of the method - Application to various types of structures.

UNIT IV: COMPUTER APPLICATION

Computer Applications and use of Computer packages - Programming techniques and problems.

UNIT V: ANALYSIS BY SUBSTRUCTURE TECHNIQUE

A special analysis procedure - static condensation and sub structuring - initial and thermal stresses - Shear walls - Necessity - structural behaviour of large frames with and without shear walls - approximate methods of analysis of shear walls.

Total No of Hours: 45

REFERENCES

- 1. Rajasekharan S. and Sankarasubramainian G., "Computational Structural Mechanics", Prentice Hall, India, 2001.
- 2. Manikaselvam Elements of Matrix Analysis and Elastic Stability, Khanna Publishers, New Delhi Sixth Edition-2009.
- 3. Negi, "Structural Analysis", Tata Mc Graw Hill Publishing Company 2007.
- 4. W.Weaver and J.H.Gere, "Matrix Analysis of Framed Structures", Van Nastran, 1980.
- 5. McGuire, W., and Gallagher, R.H., Matrix Structural Analysis, John Wiley and Sons, 1979.
- 6. John L.Meek., Matrix Structural Analysis , Mc Graw Hill Book Company, 1971.

9 Hrs

9 Hrs

9 Hrs

Course EMSE	Code : 22E16	Co	urse Na	me: DESI	GN OF 1	INDUST	RIAL S	TRUCT	URES	Ty/Lb/ ETL	L	T / S.Lr	P/ R	С
	22110	Pre	erequisit	e : Design	of stee	l Structu	ires			Ту	3	0/0	0/0	3
L : Lec	ture T :	Tutoria	al SLr:	Supervise	ed Learn	ing P : I	Project I	R : Rese	arch C:	CreditsT/	L/ETL	: Theory /	,	<u> </u>
	CTIVE	$\frac{1}{S}$:The	obiectiv	Lab es of this	course i	s to mal	ce stude	nts to le	arn prin	ciples and	Desig	n ofindusti	rial bui	lding
COUR	SE OI	TCOM	J IES (Co	<i>c</i>) .					1	1	0			
At the	end of t	he cour	se, stude	ents will b	e able to)								
CO1	To lea	rn princ	iples of	Design of	findustr	rial build	ling							
CO2	To des	sign diff	ferent co	mponents	s of indu	istrial st	ructures	and to c	letail th	e structure	s			
CO3	To eva	aluate th	e perfor	mance of	the Pre-	- engine	ered bui	ldings						
CO4	To de with r	sign vai equired	rious str foundat	uctures su ions.	ich as E	Bunkers,	Silos,	Cooling	Towers	s, Chimney	ys, and	Transmis	sion To	owers
CO5	To pla	ın indus	trial stru	ctures for	functio	nal requ	irement	ts						
Маррі	ng of C	Course (Outcom	es with P	rogram	Outco	mes (PC	Ds)						
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1		3	3	2	3	3	3	3	3	3				
CO2		3	2	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					3				
C03		2	3	2	3	2	3	2	3	2				
CO4		3	3	3	3	3	3	3	3	3				
CO5		3	3	3	3	2	3	3	3	3				
COs /]	PSOs	PSO1		PSO2		PSO3								
CO1		3		3		3								
CO2		3		1		2								
C03		2		3		2								
C04		3		2		1								
$\frac{2}{2}$	1:	3		3	2 11:	3	. 1	1 T						
3/2/1 11	ndicates	s Streng	trength Of Correlation, 3 – High, 2- Medium, 1- Low											
Catego	ry	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	 Program Electives Open Electives 		Interdisciplinary	Skill component	Practical / Project				
Approv	al					'								
1														

Course Code :	Course Name: DESIGN OF INDUSTRIAL STRUCTURES	Ty/Lb/	L	T / S.Lr	P/ R	С
EMSE22E16		ETL				
	Prerequisite : Design of steel Structures	Ту	3	0/0	0/0	3
L : Lecture T : Tu	torial SLr : Supervised Learning P : Project R : Research C	: CreditsT/	L/ETL	: Theory /	/	
Lab / Embedded	Theory and Lab					

UNIT I INTRODUCTION

Analysis of industrial building for Gravity and Wind load. Analysis and design of framing components namely, girders, trusses, gable frames

UNIT II GANTRY GIRDER

Analysis and design of gantry girder, purlins, girts, bracings including all connections.

UNIT III TRANSMISSION TOWERS

Analysis of transmission line towers for wind load and design of towers including all connections.

UNIT IV COLD FORMED STRUCTURES

Forms of light guage sections, Effective width computation of unstiffened, stiffened, multiple stiffened compression elements of cold formed light guage sections. Concept of local buckling of thin elements. Limiting width to thickness ratio. Post buckling strength.

UNIT V PRE – ENGINEERED STRUCTURES

Concept of Pre- engineered buildings, Design of compression and tension members of cold formed light guage sections, Design of flexural members (Laterally restrained / laterally unrestrained).

Total No. of Hours: 45

REFERENCES

1. Bureau of Indian Standards, IS 800-2007, IS 875-1987, IS-801-1975. Steel Tables, SP 6 (1) – 1984

2. N Subramanian- "Design of Steel Structure" oxford Press

3. B.C. Punmia, A.K. Jain "Design of Steel Structures", Laxmi Publications, New Delhi.

4. . Ramchandra and Virendra Gehlot "Design of Steel Structures "Vol 1 and Vol.2, Scientific Publishers, Jodhpur

5. Duggal "Limit State Design of Steel Structures" TMH

9 Hrs

9 Hrs

9 Hrs

9 Hrs

PROGRAM ELECTIVE -V

Course EMSE	e Code : 22E17	Co CC	urse Nat NCRET	me: DESI ESTRUC	GN OF I TURES	PRESTR	ESSED			Ty/Lb/ ETL	L	T/S.Lr	P/R	С
2		Pre	erequisit	e : Basic r	nathema	tical cal	umniati	on and d	lesign	Ту	3	0/0	0/0	3
L : Leo / Embe	cture T : edded T	: Tutoria heory ai	l SLr : S nd Lab	Supervise	d Learni	ng P : P	roject R	: Resea	rch C:	CreditsT/L	/ETL :	Theory / I	Lab	
OBJE	CTIVE	S:Princ	piple of p	prestressin	g, analy	sis and o	lesign o	f prestre	ssed co	ncrete strue	ctures			
COUF	RSE OU	TCOM	ES (Cos	s):										
At the	end of t	the cours	se, stude	nts will be	e able to	1 0								
COI	Studen	t shall h	ave a kn	owledge o	on metho	ods of pi	restressi	ng and c	ompos	ite construc	tion			
CO2	Recogn	nize the	effects o	of transfer	and dev	elopmen	nt length	on flex	ural and	d shear stre	ngths			
CO3	Evalua	te and a	nalyze tł	ne stresses	under v	various c	condition	ns						
CO4	Calcula	ate prest	ress loss	es for sim	ple pres	stressed	concrete	girders						
CO5	Studen	t should	be able	to design	various	prestres	sed con	crete stru	uctural	elements				
Mapp	ing of C	Course (Dutcom	es with Pi	ogram	Outcon	nes (PO	s)						
COs/P	'Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1		3	3	2	3	3	3	3	3	1				
CO2		3	2	3	3	3	2	3	3	3				
C03		3	3	2	3	2	3	2	3	2				
CO4		3	3	3	3	2	1	3	3	3				
CO5		3	3	3	3	2	3	3	3	3				
COs /	PSOs	P	501	PS	02	PS	503							
CO1			3	3	3		2							
CO2			3	2	2		3							
C03			3	3	5		3							
CO4 CO5			23		L		23							
3/2/11	ndicates	Streng	$\frac{1}{1000}$	rrelation	, 3 _ Hig	 h 2_ Me	J dium 1	- Low						
5/2/11	nuicates				<u>5 – mg</u>			- LOW						
Category		Basic Sciences	Engineering Science	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
						Ň								

Course Code : Course Name: DESIGN OF PRESTRESSED Ty/Lb/ L T / S.Lr P/ R EMSE22E17 CONCRETESTRUCTURES ETL 1 1 1 0/0 0/0 Prerequisite : Basic mathematical calumniation and design Ty 3 0/0 0/0 L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits 5 5 5

T/L/ETL : Theory / Lab / Embedded Theory and Lab

UNIT I INTRODUCTION AND CODAL PROVISIONS

Principles of Prestressing - types and systems of prestressing, need for High Strength materials, Analysis methods losses, deflection (short-long term), camber, cable layouts. Behaviour under flexure - codal provisions (IS, British ACI), ultimate strength. Design of flexural members,

UNIT II DESIGN OF COMPRESSION MEMBERS

Design for Shear, bond and torsion. Design of End blocks and their importance Design of tension members - application in the design of prestressed pipes and prestressed concrete cylindrical water tanks. Design of compression members with and without flexure - its application in the design piles, flagmasts and similar structures.

UNIT III COMPOSITE BEAMS

Composite beams - analysis and design, ultimate strength - their applications. Partial prestressing - its advantages and applications.

UNIT IV CONTINUOUS BEAMS

Application of prestressing in continuous beams, concept of linear transformation, concordant cable profile and cap cables.

UNIT V DESIGN OF SPECIAL STRUCTURES

Special structures like prestressed folded plates, prestressed cylindrical shells, prestressed concrete poles.

Total No of Hours: 45

REFERENCES

1.T.Y.Lin, Design of Prestressed Concrete Structures, John Wiley and Sons, Inc Berlin, 3rd edition, 1981.

1.Leonhardt.F., Prestressed Concrete, Design and Construction, Wilhelm Ernst and Shon, Berlin, 2nd edition, 1964.

2. Prestressed Concrete by Krishna Raju, Tata McGraw Hill Publishing Co. 5th edition, 2012

4. Fundamentals of Prestressed Concrete by N.C. Sinha & S.K. Roy S. Chand & Co., New Delhi 2011.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

9 Hrs

С

3

Course Code : Course Name: ANALYSIS OF LAMINATED T/S.Lr P/R Ty/Lb/ L С **COMPOSITE PLATES** ETL **EMSE22E18** Prerequisite : Applied Mechanics Ty 3 0/0 0/0 3 L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: CreditsT/L/ETL: Theory / Lab / Embedded Theory and Lab **OBJECTIVES**: Students will be able to analysis of composite plates by using various methods of differentstructural components. **COURSE OUTCOMES (Cos) :** At the end of the course, students will be able to To remember the basic concept about the various theories of mechanics **CO1** To understand the concept of composite plates **CO2** Analyse the rectangular composite plates using the analytical methods. **CO3 CO4** Analyse the composite plates using advanced finite element method **CO5** Develop the computer programs for the analysis of composite plates. Mapping of Course Outcomes with Program Outcomes (POs) **COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 CO1** 3 3 2 3 3 3 3 3 1 **CO2** 3 2 3 3 3 2 3 3 3 C03 2 2 2 2 3 3 2 3 3 **CO4** 3 3 3 3 2 3 3 3 1 **CO5** 3 3 3 3 2 3 3 3 3 COs / PSOs **PSO1** PSO₂ PSO₃ **CO1** 3 3 2 **CO2** 3 2 3 C03 3 3 3 **CO4** 2 1 2 **CO5** 3 3 3 3/2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- Low Sciences Program Electives Practical / Project Skill component Interdisciplinary Humanities and Social Sciences **Open** Electives **Basic Sciences** Program Core Category Engineering $\sqrt{}$

T/S.Lr Course Code : Course Name: ANALYSIS OF LAMINATED Ty/Lb/ L P/R С **COMPOSITE PLATES** ETL **EMSE22E18** Prerequisite : Applied Mechanics Ty 3 0/0 0/0 3 L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory / Lab / Embedded Theory and Lab

UNIT I INTRODUCTION

Displacement Field Approximations for Classical Laminated Plate Theory (CLPT) and First Order Shear Deformation Theory (FSDT), Analytical Solutions for Bending of Rectangular Laminated Plates using CLPT.

UNIT II GOVERNING EQUATIONS.

Navier Solutions of Cross-Ply and Angle-Ply Laminated Simply Supported Plates, Determination of Stresses. Levy Solutions for Plates with Other Boundary Conditions, Analytical Solutions for Bending of Rectangular Laminated Plates Using FSDT.

UNIT III INTRODUCTION TO FINITE ELEMENT METHOD 9Hrs

Rectangular Elements, Formation of Stiffness Matrix, Formation of Load Vector, Numerical Integration, Post Computation of Stresses.

UNIT IV RECTANGULAR LAMINATED PLATES

Finite Element Solutions for Bending of Rectangular Laminated Plates using FSDT, Finite Element Model, C0Element Formulation, Post Computation of Stresses.

UNIT V RECTANGULAR COMPOSITE PLATES

Analysis of Rectangular Composite Plates using Analytical Methods..

Total No of Hours: 45

REFERENCES

1. Mechanics of Laminated Composites Plates and Shells, Reddy J. N., CRC Press.

9Hrs

9 Hrs

9Hrs

Course EMSE	Code : 22E19	Co CC	urse Na NCRET	me: FRA E STRUC	ACTURE TURES	E MECI	HANICS	6 OF		Ty/Lb/ ETL	L	T / S.Lr	P/ R	С
		Pre	erequisit	e : Need to	o study f	failure th	neory of	structur	es	Ту	3	0/0	0/0	3
L : Lec	ture T :	Tutoria	1 SLr : S	Supervise	d Learni	ng P : P	roject R	: Resear	rch C:	CreditsT/L	/ETL :	Theory / I	Lab	<u> </u>
/ Embe	dded T	heory ar	nd Lab	1		0	5					2		
OBJE	CTIVE	S :To in	npart kn	owledge o	on the m	echanisr	ns of fa	ilure and	l non lir	near fractur	e mecł	nanics.		
COUR At the	SE OU	TCOM	ES (Cos	8) : nts will be	e able to									
CO1	To lea	Irn the F	undame	ntals of Fi	acture N	Aechani	cs and fi	racture c	racking	5				
CO2	Know	about t	ne analy	sis and mo	odel of f	racture f	failure							
CO3	Abilit	y to kno	w Nonli	near Fract	ure Mec	chanics								
CO4	Analy	se the m	echanics	of concre	te structu	ires in va	rious fie	ld.						
CO5	To im	part kno	wledge	on the me	chanism	s of fail	ure and	non line	ar fract	ure mechar	nics.			
Mappi	ng of C	Course (Outcome	es with Pr	ogram	Outcom	nes (PO	s)						
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1		3	3	2	3	3	3	3	3	1				
CO2		3	2	3	3	1	2	3	2	3				
C03		3	3	2	3	2	3	2	3	2				
CO4		3	3	3	3	3	3	3	3	3				
CO5		3	3	3	3	2	3	3	1	3				
COs /]	PSOs	PS	501	PS	02	PS	503							
CO1			3	3	3		3							
CO2			3	3	3		1							
C03			2	2	2		2							
CO4			$\frac{3}{2}$	2	2		$\frac{2}{2}$							
2/2/11	1. (<u> </u>	3	1) 		5	<u>т</u>						
3/2/1 11	idicates	s Streng	th Of Co	rrelation,	3 - Hig	h, 2- Me	dium, I	- Low						
Catego	ry	Basic Sciences	Engineering Science	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project				
						N N								

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code :	Course Name: FRACTURE MECHANICS OF	Ty/Lb/	L	T / S.Lr	P/ R	C
EMSE22E19	CONCRETE STRUCTURES	ETL				
	Prerequisite : Need to study failure theory of structures	Ту	3	0/0	0/0	3
L : Lecture T : Tu	torial SLr : Supervised Learning P : Project R : Research	C: Credits				
T/L/ETL : Theory	/ Lab / Embedded Theory and Lab					

UNIT I : FUNDAMENTALS

Fundamentals of Fracture Mechanics, Mechanisms of fracture and crack growth

UNIT II : FRACTURE CRACKING

Cleavage fracture, ductile fracture, fatigue cracking, Environment assisted cracking, Quasi brittle materials.

UNIT III : FRACTURE ANALYSIS

Service failure analysis, linear elastic fracture mechanics, Griffith's criteria, stress intensity factors, crack tip plastic zone, Erwin's plastic zone correction, R curves, compliance, J Integral, nonlinear analysis ,Review of concrete behaviour in tension and compression, Basic frameworks for modeling of quasibrittle materials.

UNIT IV : NON LINEAR FRACTURE MECHANICS

Nonlinear Fracture Mechanics - Discrete crack concept/Smeared crack concept, Size effect, Plasticity models for concrete – Associated and non-associated flow, Failure surfaces for quasibrittle materials.

UNIT V : MODELS

Concept of CTOD and CMD, Material models, crack models, band models, models based on continuum damage mechanics

Total No of Hours: 45

REFERENCES

1. *Elementary engineering fracture mechanics – David Broek – Sijthoff & Noordhoff – Alphen aan den* Rijn – Netherlands

2. Fracture mechanics of concrete structures – Theory and applications – Rilem Report – Edited by L. Elfgreen – Chapman and Hall – 1989.

3. Fracture mechanics – applications to concrete – Edited by Victor, C. Li, & Z.P. Bazant – ACI SP 118.

4. Valliappan S. "Continuum Mechanics Fundamentals" (1982), Oxford IBH, N D. New Delhi.

5. Venkataraman and Patel "Structural Mechanics with introduction to Elasticity and Plasticity" – Mcgraw Hill, 1990. 6. Shanes – "Introduction to Solid Mechanics – II Edition, PH, 1989.

(An ISO 21001 : 2018 Certified Institution)

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Course EMSE	e Code 2 22E20	: Co ST	Course Name: EARTHQUAKE RESISTANCE Ty/Lb/ ETL L T STRUCTURES T 2 0										P/ R	C
		Pro	erequisit	te : Struct	ural Dy	namics				Ту	3	0/0	0/0	3
L : Leo	cture T	: Tutori	al SLr :	Supervis	sed Lear	ning P :	Project	t R : Res	search	C: Credit	S	1	1	-1
T/L/E	$\frac{\Gamma L : Th}{CTW}$	eory / L	.ab / Em	bedded T	heory a	nd Lab						Cture atrans		
Carryo	UIIVI utthe ai	1 8 : 10 nalvsis o	of result	e principi s	les of m	easuren	nents of	static a	na ayna	amic resp	onse of	Structure	es and	
COUR	RSE OI	UTCON	AES (C	os):										
At the	end of	the cour	rse, stud	ents will	be able	to								
CO1	To stu	idy the	basic co	ncepts of	engine	ering se	ismolog	y and g	round n	notion ch	aracteris	tics		
CO2	To un	derstan	d the str	ength and	l capaci	ty desig	n princi	ples of	earthqu	ake resis	tant desi	gn.		
CO3	Abilit	y to kno	ow the v	arious ty	pes of b	uildings	under	static an	d dyna	mic force	s			
CO4	Desig	n variou	ıs beam	-column	joints as	s per du	ctility re	equirem	ents					
CO5	Anal	yze and	design	unreinfor	ced and	reinfor	ced mas	onry an	d concr	ete shear	wall str	uctures		
Mappi	ing of (Course	Outcon	nes with	Prograi	m Oute	omes (H	POs)						
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO1		3	3	2	3	3	3	3	3	3				
CO2		3	2	3	3	3	2	3	3	3				
C03		3	3	2	3	2	3	2	3	3				
CO4		3	3	3	3	3	3	3	3	3				
CO5		3	3	3	3	2	3	3	3	3				
COs /	PSOs	PSO1	1	PSO2	1	PSO3	1		1					
CO1		3		3		3								
CO2		3		3		3								
C03		3		3		3								
CO4		3		3		3								
CO5		3		3		3								
3/2/1 I	ndicate	s Streng	gth Of C	orrelation	n, 3 – H	igh, 2- I	Medium	, 1- Lov	V					
Category Core Sciences Activity Cores and Sciences Activity Cores and Program Core Social Sciences and Program Core			Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project						
Approv	val													

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL : Theory / Lab / Embedded Theory and Lab 9 Hrs

Ty/Lb/

ETL

Τy

Elements of Engineering Seismology - Theory of Vibration - Response Spectrum-Indian Seismicity - Earthquake History -Behaviour of Structures in the past Earthquakes.

UNIT II: DESIGN CONCEPTS

UNIT I: HISTORICAL

STRUCTURES

Masonry Building

Course Code :

EMSE22E20

Seismic Design Concepts - Cyclic load behaviour of RC, Steel and Prestressed Concrete elements - Design spectrum -Principles of capacity design.

UNIT III: CODAL PROVISIONS

Provisions of Seismic Code (IS 1893) - Building systems frames, shear walls, Braced Frames, Combinations - Torsion.

UNIT IV: DESIGN AND DETAILING

Performance of Regular Buildings 3 D Computer Analysis of Building Systems (Theory Only) - Design and Detailing of frames - Shear walls and Frame walls.

UNIT V: SPECIAL PROBLEMS AND CASE STUDIES

Structural Configuration - Seismic performance - Irregular Buildings - Soil performance, Modern Concepts - Base Isolation - Adoptive system - Case studies.

REFERENCE BOOKS

- 1. Earthquake Resistant Design of structures S. K. Duggal, Oxford University Press
- 2. Earthquake Resistant Design of structures Pankaj Agarwal and Manish Shrikhande, Prentice Hall of India Pvt. Ltd.
- 3. Seismic Design of Reinforced Concrete and Masonry Building T. Paulay and M.J.N. Priestly, John Wiley & Sons

Total No of periods: 45

Τ/

0/0

S.Lr

L

3

P/R

0/0

С

3

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Name: EARTHQUAKE RESISTANCE

Prerequisite : Design of Reinforced Concrete and

9 Hrs

9 Hrs

9 Hrs

AUDIT COURSE-1& 2

		Audit Course I & II					
C No	Course	Course Name	TY/LB/		Teaching	Scheme	
5.INO	Code		112	L	T/S.Lr	P/R	С
1	EMCC22I01	English for Research paper Writing	IE	2	0/0	0/0	0
2	EMCC22I02	Disaster Management	IE	2	0/0	0/0	0
3	EMCC22I03	Sanskrit for Technical Knowledge	IE	2	0/0	0/0	0
4	EMCC22I04	Value Education	IE	2	0/0	0/0	0
5	EMCC22I05	Constitution of India	IE	2	0/0	0/0	0
6	EMCC22I06	Pedagogy Studies	IE	2	0/0	0/0	0
7	EMCC22I07	Stress Management by Yoga	IE	2	0/0	0/0	0
8	EMCC22I08	Personality Development through Life Enlightenment Skills	IE	2	0/0	0/0	0
9	EMCC22I09	Research Publication Ethics	IE	2	0/0	0/0	0

Course Code: EMCC22I01		Cou RES	Course Name: ENGLISH FOR RESEARCH PAPER WRITING Prerequisite: Nil						Lb/IE	L	T/S. Lr	P/R	C	
		Prer	equisite:	Nil					IE	2	0/0	0/0	0	
L : Lecture T :	Tutoria	al P:	Project	R : Res	earch C:	Credits	T/L: The	ory/La	b					
Objectives To	know t	he art	of writin	g the re	search pa	aper and	thesis							
To	o Ensure	e the g	ood qual	ity of pa	aper at ve	ery first-	ime sub	missior	1.					
COURSE OU	TCOM	IES (C	COs): A	t the en	nd of this	course	the stud	ents w	ould be	able t	0			
CO1	Under	stand 1	that how	to impr	ove your	writing	skills and	d level	of reada	bility				
CO2	Learn	about	what to	write in	each sect	tion								
CO3	Under	stand t	he skills	needed	when wi	riting a T	ïtle							
Mapping of C	ourse (Outco	mes with	Progra	am Outc	omes (P	Os)							
COs/POs	1	PO1	PO2	PO3	PO4	PO5	PO6	F	PO7	PO8	3	PO9		
CO1		1	1	1	1	1	3		1	1		1		
CO2		1	1	1	1	1	3		1	1		1		
CO3		1	1	1	1	1	3		1	1		1		
COs / PSOs			PSO1			PSO2						PSO3		
CO1			1			1					1			
CO2			1				1					1		
CO3			1				1					1		
3/2/1 indicates	s Streng	gth of	Correla	tion 3	– High,	2- Medi	um, 1- I	LOW						
Category	- Category Category Humanities and Sociences Humanities and Sociences Category Category Category				Program Core	Program Electives		Open Diecuves	Practical / Project	Internships / Technical Skill		Soft Skills	Audit course	

Unit I

Course Code:

EMCC22I01

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

Unit II

Unit III

5 Hrs Review of the Literature, Methods, Results, Discussion, Conclusions, the Final Check.

Course Name: ENGLISH FOR RESEARCH

PAPER WRITING

L: Lecture T: Tutorial P: Project R: Research C: Credits T/L: Theory/Lab

Prerequisite: Nil

Unit IV

Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction,

skills needed when writing a Review of the Literature

Plagiarism, Sections of a Paper, Abstracts .Introduction

Unit V

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills areneeded when writing the Conclusions

Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission

Unit VI

Reference Books:

- 1. Goldbort R (2016) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2016) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (2018), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook.
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2017

5 Hrs

T/S.

Lr

0/0

L

2

P/R

0/0

С

0

Ty/Lb/IE

IE

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and

5 Hrs

5 Hrs

5 Hrs

5 Hrs

TOTAL HOURS: 30

Course Code: EMCC22I02		Cou MA	irse Nan NAGEN	ne: DIS AENT	SASTE	R	Ty/I	Lb/IE	L	T/S .Lr	P/R	C		
		Prer	equisite:	Nil			1	Е	2	0/0	0/0	0		
L : Lecture T : 7	Tutoria	1 P:	Project	R : Res	earch C	C: Credits	T/L: Th	eory/Lab)	1	1	I		
Objectives Lea humanitarian re	irn to d sponse.	emon	strate a c	critical u	Indersta	inding of I	key con	cepts in o	disas	ster ris	k reduc	tion and		
COURSE OUT	COM	ES (C	COs): A	t the en	d of th	is course	the stu	dents wo	ould	be ab	le to	-		
COI	Evalu multij	ate di ple pe	saster ris	sk reduc es.	tion and	d humanıt	tarian response policy and practice from							
CO2	Devel	lop an	underst	anding o	of stand	ards of hu	umanitarian response and practical							
CO3	Under	rstand	the stre	ngths an	d weak	nesses of	conflict situations. f disaster management approaches.							
	plann	ing ar	nd progra	amming	in diffe	erent coun	tries, pa	rticularl	y the	eir hon	ne coun	try or		
Mapping of Co	urse O	ouncou	mes with	n Progra	am Out	tcomes (P	'Os)							
COs/POs	1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P	08	PO9			
CO1	1		1	1	1	1	3	1	1		1			
CO2	1		1	1	1	1	3	1	1		1			
CO3	1		1	1	1	1	3	1	1		1			
COs / PSOs			PSO	1		I	PSO2		PSO3					
CO1			1				1				1			
CO2			1				1				1			
CO3			1				1				1			
3/2/1 indicates	Streng	th of	Correla	tion 3	– High	n, 2- Medi	ium, 1-	Low						
ategory		ICIICCS	ing Sciences	ies and Social	Core	Electives	ectives	/ Project		ps / Technical	ls	Itse		
Ŭ	Engineer	Humanit. Sciences	Program	Program	Open Ele	Practical		Internshi Skill	Soft Skil	Audit cou				

Unit I

Introduction

Disaster: Definition, Factors And Significance; Difference Between HazardAnd Disaster; Natural And Manmade Disasters: Difference, Nature, Types And Magnitude.

Unit II

Repercussions Of Disasters And Hazards:

Economic Damage, Loss OfHuman And Animal Life, Destruction Of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts. **Unit III** 5 Hrs

Disaster Prone Areas In India :

Course Code:

EMCC22I02

Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards WithSpecial Reference To Tsunami; Post-Disaster Diseases And Epidemics 5 Hrs

Unit IV

Disaster Preparedness And Management : Preparedness: Monitoring of Phenomena Triggering A Disaster or Hazard; Evaluation of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental AndCommunity Preparedness.

Unit V

Risk Assessment : Disaster Risk: Concept And Elements, Disaster Risk Reduction, Global And National Disaster Risk Situation. Techniques Of Risk Assessment, Global Co-Operation In Risk Assessment And Warning, People's Participation In Risk Assessment. Strategies for Survival.

Unit VI

Disaster Mitigation : Meaning, Concept And Strategies Of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation And Non-Structural Mitigation, Programs Of Disaster Mitigation In India.

SUGGESTED READINGS:

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "NewRoyal book Company.
- Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice 2. Hall OfIndia, New Delhi.
- 3. Goel S. L., Disaster Administration And Management Text And Case Studies", Deep &DeepPublication Pvt. Ltd., New Delhi.

Course Name: DISASTER

L : Lecture T : Tutorial P : Project R : Research C: Credits T/L: Theory/Lab

MANAGEMENT

Prerequisite: Nil

5 Hrs

С

0

T/S.

Lr

0/0

P/R

0/0

L

2

Ty/Lb/IE

IE

5 Hrs

5 Hrs

TOTAL HOURS: 30

Page 95

Course Code: EMCC22I03	Course I KNOWI	Name : S LEDGE	SANSKI	RIT FO	R TI	ECHN	ICAL	Ty/L E	.b/I	L	T/S .Lr	P/R	С
	Prerequis	site: Nil						IF	2	2	0/0	0/0	0
L : Lecture T : Tu	utorial P	: Project	R : Res	earch C:	Credi	ts T/L	: Theory	/Lab					
Objectives To g Sanskrit to improve the memory power from ancient liter COURSE OUTO	get a worki we brain fu er. The eng rature COMES ((ng know inctionin gineering C Os) : A	ledge in g , to dev scholars At the en	illustrion velop the s equippe id of this	us San e logic ed with s cours	skrit, † in ma n Sans se the	the scier thematic krit will student	tific la cs, scie be abl	nguag nce & e to ex d be a	e in othe plor	the wo er subjo re the h to	orld Lea: ects enh uge kno	rning of ancing wledge
CO1	Understa	nding ba	sic Sansl	krit lang	uage								
CO2	Ancient S	Sanskrit	literature	e about so	cience	& tec	hnology	can be	under	stoc	od		
CO3	Being a l	ogical la	nguage v	will help	to dev	elop l	ogic in s	tudent	8				
Mapping of Cou	rse Outco	mes wit	h Progra	am Outc	omes	(POs)							
COs/POs	PO1	PO2	PO3	PO 4	PO 5	PO 6	PO7	P	08]	PO9		
CO1	1	1	1	1	1	3	1	1		1			
CO2	1	1	1	1	1	3	1	1		1			
CO3	1	1	1	1	1	3	1	1	_	1			
COs / PSOs		PSO1				PSC	02				PS	603	
CO1		1				1		1					
CO2		1				1						1	
CO3		1				1						1	
3/2/1 indicates S	trength of	f Correla	tion 3	– High,	2- Me	edium	, 1- Lov	V	1				
Category	_	Humanities and Social Sciences	Program Core	Prooram Electives		Open precives	Practical / Project	-	Internships / Technical Skill	Soft Skills	Audit course		

Perivar E.V.R. High Road, Maduravoval, Chennai-95, Tamilnadu, India.

Course Code: EMCC22I03	Course Name : SANSKRIT FOR TECHNICAL KNOWLEDGE	Ty/Lb/IE	L	T/S.Lr	P/R	С			
	Prerequisite: Nil	IE	2	0/0	0/0	0			
L : Lecture T : Ti	orial P: Project R: Research C: Credits T/L: Theory/Lab								

Unit I

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences

Unit II

Order, Introduction of roots, Technical information about Sanskrit Literature

Unit III

Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

Reference Books:

1. "Abhyaspustakam" - Dr. Vishwas, Samskrita-Bharti Publication, New Delhi

2. "Teach Yourself Sanskrit" Prathama Deeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication

3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

10 hrs

10 hrs

10 hrs

TOTAL HOURS: 30

Course Code: EMCC22I04		Cou VAI	rse Nai LUE EI	me : DUCAT	ION	N			Ту	/Lb/IE	L	T/S .Lr	P/R	С	
		Prere	equisite	: Nil						IE	2	0/0	0/0	0	
L : Lecture T : Tut	orial	P : Pr	oject F	R : Rese	arch	C: Cred	its T/L:	Tl	neory/Lal	0					
Objectives .															
• Students wi	ll be a	ble t	0												
• Understand	value	ofee	ducati	on and	self	f- deve	lopme	nt							
Imbibe good	d value	ues in students													
• Let the shou	ıld kno	now about the importance of character													
COURSE OUTCO	OMES	(COs	s): At	the end	l of t	this cou	rse the	stu	dents w	ould be a	ble t	0			
COI	Knowle	edge	ot selt-	develop	men	1									
CO2	Learn t	the im	1portan		uman	$\frac{1}{1}$									
	Develo	ping	the ove	rall per	sonal										
Mapping of Cours	se Outo	come	s with 1	Prograi	m Ol	utcomes	(PUS)								
COs/POs	P	01	PO2	PO3	PO	04 PO	5 PC)6	PO7	PO8		PO9			
CO1	1		1	1	1	1	3		1	1	1				
CO2	1		1	1	1	1	3		1	1	1				
CO3	1		1	1	1	1	3		1	1	1				
COs / PSOs				PSC	D1				1	PSO2			PSO	3	
CO1				1						1		1			
CO2				1						1			1		
CO3				1						1			1		
3/2/1 indicates Str	ength (of Co	orrelati	on 3-	- Hig	gh, 2- M	edium,	, 1-	Low						
									i					1	
Category	Basic Sciences	Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core Program Electives						Open Electives	Practical / Project	Internships / Technical	Skill	Soft Skills	Audit course		

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles. Value judgments
Unit 2: 8 Hrs

Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism. Love for nature, Discipline

Unit 3:

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance. True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature

Unit 4:

Character and Competence –Holy books vs Blind faith. Self-management and Good health .Science of reincarnation. Equality, Nonviolence, Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively

TOTAL HOURS : 30

Reference:

1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

AND THE REAL PROPERTY AND	Dr. W.G.K.
	EDUCATIONAL AND RESEARCH INSTITUTE
Contraction of the Contraction	DEEMED TO BE UNIVERSITY
C summer for Factor	University with Graded Autonomy Status
	(An ISO 21001 : 2018 Certified Institution)
	Perivar E.V.R. High Road, Maduravoval, Chennai-95, Tamilnadu, India,

ourse Code: EMCC22I04	Course Name : VALUE EDUCATION	Ty/Lb/IE	L	T/S .Lr	P/R	С		
	Prerequisite: Nil	IE	2	0/0	0/0	0		
L : Lecture T : Tutorial	P: Project R: Research C: Credits T/L: Theory/Lab							

8 Hrs

8 Hrs

Course Code: EMCC22I05		Course Name : CONSTITUTION O				OF	Ty	/Lb/ IE	L	T/S .Lr	P/R	С				
		Pro	erequisi	te: Nil]	IE	2	0/0	0/0	0	
L : Lecture T : Tut	orial	P : I	Project	R : Rese	arch	C: C	redit	s T/L: T	heor	y/Lal)					
Objectives Unders	stand t	the pr	emises i	nformin	ig the	twin	n the	mes of li	bert	y and	freedo	m fro	om a ci	vil righ	S	
perspective. To add	dress t	the gr	owth of	Indian of	opinio	on re	gard	ing mod	ern I	Indiar	1 intelle	ctua	ls' con	stitutior	al role	
and entitlement to	civil a	and ec	onomic	rights a	s wel	ll as t	the e	mergenc	e of	natio	nhood	in th	e early	years o	f Indian	
nationalism To add	fress t	he ro	le of soc	alism i	n Ind	1a aft	ter th	e comm	ence	ement	of the	Bols	hevik ł	Revolut	on in	
191 / and its impac	t on th	he ini	tial draf	ting of t	he Ind	dian	Cons	stitution								
COURSE	$\frac{D}{D}$		ES (CO	s): At r	the e	nd of	t this	s course	the	stude	ents wo	uld	be able	e to kno	W	
COI	Disci	uss the growth of the demand for civil rights							ın I	India for the bulk of Indians before the						
CO2	Dian	al ol v		in indiai	i pon	af th	a free		ofo		ant tha	+ :f.	uma a d t	h a		
02	conce	entua	ss the intellectual origins of the framework of argument that informed the entualization of social reforms leading to revolution in India													
CO3	. Dise	cuss t	he circu	mstance	es sur	round	ding	the four	dati	on of	the Co	ngre	ss Soci	alist Pa	ťv	
	[CSP] und	er the le	adershi	p of J	awał	narla	l Nehru	and	the ev	entual	failu	re of th	e propo	sal of	
	direc	t elec	tions th	rough ac	lult sı	uffrag	ge in	the Ind	an C	Consti	tution.					
CO4	Discu	uss th	e passag	ge of the	Hind	du Co	ode I	Bill of 19	956.							
Mapping of Cour	se Ou	tcom	es with	Progra	m Oı	utcon	nes ((POs)								
COs/POs		PO	PO2	PO3	PO	94	POS	5 PO	5	PO7	/ P	08	PO	9		
		1														
CO1		1	1	1	1		1	3		1		1	1			
CO2		1	1	1	1		1	3		1		1	1			
CO3		1	1	1	1		1	3		1		1	1			
CO4		1	1	1	1		1	3		1		1	1			
COs / PSOs			Р	SO1				I	SO	2				PSO3		
CO1				1					1					1		
CO2				1					1					1		
CO3				1					1					1		
CO4				1					1					1		
3/2/1 indicates Str	ength	ı of C	orrelat	ion 3-	– Hig	gh, 2-	- Me	dium, 1	- Lo	w						
				_	s											
	ree ces ces															
IJ	ien	Ling.	ties .	cie	ŭ			ecti		\geq		al S	lls	ILSE		
080		Š	lee	ani		am.		am ive	Ξ		ica]		nici	Ski	COI	
. ate		asic	ligi	nm:) SCIE	ıfio.		ogi ect	pen		act oje		schi	t t	lit	
Ŭ	Ba B			Ō	,	Pr Pr		ΞĔ	š	Auc						
															~	

History of Making of the Indian Constitution: History Drafting Committee, (Composition & Working) Philosophy of the Indian Constitution: Preamble Salient Features

Unit 2: 6 hrs **Contours Of Constitutional Rights & Duties:**

Unit 3:

L : Lecture T : Tutorial

ORGANS OF GOVERNANCE: Parliament Composition, Qualifications and Disgualifications, Powers and Functions Executive President, Governor Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications Powers and Functions.

Unit 4:

Local Administration:

District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation.Pachayati raj: Introduction, PRI: ZilaPachayat. Elected officials and their roles, CEO ZilaPachayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

Unit 4:

Functioning.Chief Election Election Commission: Role and Commissioner and Election Commissioners.State Election Commission: Role and Functioning.Institute and Bodies for the welfare of SC/ST/OBC and women.

TOTAL HOURS: 30

Reference Books:

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

	(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu	, India.				
Course Code: EMCC22105	Course Name : CONSTITUTION OF INDIA	Ty/Lb/ IE	L	T/S .Lr	P/R	
	Prerequisite: Nil	IE	2	0/0	0/0	

P: Project R: Research C: Credits T/L: Theory/Lab

6 hrs

С

0

Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural

6 hrs

6 hrs

and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy and Fundamental Duties. 6 hrs

Course Code EMCC22I06	:	Co	Course Name : PEDAGOGY STUDI						Ty/L TI	b/E	L	T/S .Lr	P/R	С		
		Pre	requis	ite: N	il				IF	,	2	0/0	0/0	0		
L : Lecture T	: Tutor	ial	P : Pro	ject]	R : Rese	arch C: (Credits T	7/L: T	heory/	Lab						
Objectives St design and po evidence gaps	udents licy ma to guio	will l king de the	be able under e devel	e to: 4 taken lopme	. Review by the E ent.	v existin DfID, oth	g eviden er agenc	ce on cies an	the rev d rese	view t arche	topic rs. 5.	to info Identi	orm prog fy critica	ramme 11		
COURSE OU	JTCON	MES	(COs)): At	t the end	l of this	he stu	Idents	woul	ld be	able t	o know				
CO1	What develo	at pedagogical practices are being used by teach reloping countries?								ormal	and i	nform	al classro	ooms in		
CO2	What and w	hat is the evidence on the effectiveness of these p with what population of learners?								edagogical practices, in what conditions,						
CO3	How o guida	can te nce n	eacher nateria	ation (cu st suppor	rriculum t effectiv	and pra ve pedag	cticun ogy?	um) and the school curriculum and ?								
Mapping of (Course	Out	comes	with	Program	n Outco	omes (PC	Ds)	1							
COs/POs	PC	01	PO2	PO3	PO4	PO5	PO6	PO7	РО	PO8 PO9						
CO1	1	l	1	1	1	1	3	1	1	1 1						
CO2	1	l	1	1	1	1	3	1	1		1					
CO3	1	l	1	1	1	1	3	1	1		1					
COs / PSOs			PSC)1			PSO	2	PSO3							
CO1			1				1						1			
CO2			1				1						1			
CO3			1				1						1			
3/2/1 indicate	s Strer	ngth	of Cor	relat	ion 3-	- High, 2	2- Mediu	ım, 1-	· Low	1						
Category	Bacio Coiences	Dasic outcines	Engineering	Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives		Practical / Project	Internshins /	Technical Skill	Soft Skills	Audit course		

Unit I:

Introduction and Methodology:

Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education. Conceptual framework, Research questions. Overview of methodology and Searching.

Unit II:

Thematic overview:

Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education.

Unit III: Evidence on the effectiveness of pedagogical practices

Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies.

Unit IV: Professional development:

Alignment with classroom practices and follow-up support, Peer support, Support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes.

Unit V: Research gaps and future directions:

Research design, Contexts, Pedagogy, Teacher education, Curriculum and Assessment, Dissemination and research impact.

Reference Books:

- 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.
- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher Education research project (MUSTER) country report 1. London: DFID.
- 4. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.
- 5. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.
- 6. Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.
 - www.pratham.org/images/resource%20working%20paper%202.pdf.

Course Code: EMCC22I06	Course Name : PEDAGOGY STUDIES	Ty/Lb/E TL	L	T/S. Lr	P/R	С			
	Prerequisite: Nil	IE	2	0/0	0/0	0			
L : Lecture T : Tutoria	P : Project R : Research C: Credits T/L: Theory/Lab								

6 hrs

TOTAL HOURS: 30

6 hrs

6 hrs

6 hrs

6 hrs

Course Cod EMCC22107	e: 7	Cou MA	irse Nam NAGEN	e: STRE IENT BY	SS Y YOGA		Ty/Lb /ETL	L	T/S .Lr	P/R		С			
		Prere Yoga	quisite : l	Basic Kno	wledge o	of	IE	2	0/0	0/0		0			
L : Lecture T	: Tut	orial	P : Projec	t R : Rese	earch C: (Credits T	/L: Theo	ry/Lab	,	1	1				
Objectives															
To Understan	nd the	Basic (Concepts	of Yoga											
To Gain know	wledg	e on As	shtanga y Taabmigi	oga	antina of	Vacan									
To Understar	nd stre	ress and the causes. To Attain the knowledge about stress busting through yoga													
CO1	Unde	erstand	the Basic	Concepts	of Yoga										
CO2	Gain	knowle	edge on A	shtanga y	oga										
CO3	To U	ndersta	nd stress	and the ca	uses										
CO4	Acqu	iire kno	wledge o	f Techniq	ues and P	ractice o	e of Yogasanas								
CO5	Attai	n the ki	nowledge	about stre	ess bustin	h yoga									
Mapping of	Cour	rse Outcomes with Program Outcomes (POs)													
COs/POs		PO1	PO2	PO3	PO4	PO5	PO6	PO	7	PO8	PO9				
CO1	1	l	1	1	1	1	3	1		1	1				
CO2	1	l	1	1	1	1	3	1		1	1				
CO3	1	l	1	1	1	1	1	1		1	1				
CO4	1	l	1	1	1	1	3	1		1	1				
CO5	1	l	1	1	1	1	2	1		1	1				
COs / PSOs				PSO1				PSO2			PSO	3			
CO1				1				1			1				
CO2				1				1			1				
CO3				1				1			1				
CO4				1				1			1				
CO5				1				1			1				
3/2/1 indicat	es Str	rength	of Corre	lation 3	– High, 2	2- Mediu	ım, 1- Lo)W							
Category		Basic Sciences	Program Electives	Open Electives	Practical / Project		Internships / Technical Skill	Soft Skills	Audit course						

Course Code:

EMCC22I07

What is stress - Symptoms of stress - Why is stress helpful - Why is stress harmful - Stress versus burnout - Main types of stress - Know your stressors - Tips to Manage Stress

Course Name: STRESS

Yoga

MANAGEMENT BY YOGA

Prerequisite : Basic Knowledge of

L: Lecture T: Tutorial P: Project R: Research C: Credits T/L: Theory/Lab

Unit 2:

Strength, Weaknesses, Opportunities and Threats (SWOT) Analysis, Who am I, Attributes, Importance of Self Confidence, Self Esteem. Emotional Intelligence, What is Emotional Intelligence, emotional quotient why Emotional Intelligence matters, Emotion Scales. Managing Emotions 6 hrs

Unit 3:

What is Yoga – Definition and Its Branches - Hatha Yoga – Kundalini Yoga – Tantra Yoga – Kriya Yoga - Introduction To Ashtanga Yoga 6 hrs

Unit 4:

Mechanism of Stress related diseases: Psychic, Psychosomatic, Somatic and Organic phase. Role of Meditation & Pranayama on stress – physiological aspect of Meditation. Constant stress & strain, anxiety, conflicts resulting in fatigue among Executive. Contribution of Yoga to solve the stress related problems of Executive 6 hrs

Unit 5:

Meaning and definition of Health - various dimensions of health (Physical, Mental, Social and Spiritual) -Yoga and health – Yoga as therapy. Physical fitness. Stress control exercise – Sitting meditation, Walking meditation, Progressive muscular relaxation, Gentle stretches and Massage.

TOTAL HOURS: 30

Reference Books:

- 1. Andrews, Linda Wasmer., (2005). Stress Control for peace of Mind. London: Greenwich Editions Lalvani, Vimla., (1998). Yoga for stress. London: Hamlyn
- 2.1
- 3. Nagendra, H.R., and Nagarathana, R., (2004). Yoga practices for anxiety & depression. Bangalore: Swami Sukhabodhanandha Yoga Prakashana.
- 4. Sukhabodhanandha, Swami., (2002). Stress Management. Banglore: Prasanna trust.
- 5. Udupa, K.N., (1996). Stress management by Yoga. NewDelhi: Motilal **Banaridass Publishers Private Limited**

Ty/Lb

/ETL

IE

T/S

.Lr

0/0

 \mathbf{L}

2

P/R

0/0

Nagendra, H.R., and Nagarathana, R., (2004). Yoga perspective in stress	
management. Bangalore: Swami Vivekananda Yoga Prakashana.	
Nagandra H P and Nagarathana P (2004) Voga practices for anxiety	

6 hrs

6 hrs

С

0

Course Code: EMCC22108	: Cou DE EN	Course Name : PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS						Ty	/Lb/E TL	L	T/S .Lr	P/R	С	
	Prer	Prerequisite: Nil							IE	2	0/0	0/0	0	
L : Lecture T : Tutorial P : Project R : Research C: Credits T/L: Theory/Lab														
Objectives To learn to achieve the highest goal happily, To become a person with stable mind, pleasing personality and determination. To awaken wisdom in student														
COURSE OU	UTCOMES	5 (COs) :	At the	end o	of this c	ourse th	e stu	dents	s would	be a	ble to	know		
CO1	Study of a schieve the	Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve the highest goal in life												
CO2	The perso	The person who has studied Geeta will lead the nation and mankind to peace and prosper								erity				
CO3	Study of I	Study of Neetishatakam will help in developing versatile personality of students.												
Mapping of Course Outcomes with Program Outcomes (POs)														
COs/POs	PO1	PO2	PO3	PO 4	PO5	PO6	Р	PO 7	PO8	1	PO9			
CO1	1	1	1	1	1	3		1	1		1			
CO2	1	1	1	1	1	3		1	1		1			
CO3	1							1	1		1			
COs / PSOs		PSO1						PSO2				PSO3		
CO1			1				1					1		
CO2		1					1			1				
CO3			1				1				1			
3/2/1 indicates Strength of Correlation 3 – High, 2- Medium, 1- Low														
Category	Basic Sciences	Engineering Sciences	Humanities and	Social Sciences	Program Core	Program Electives	Open Electives	1	Practical / Project	Intomobine /	Technical Skill	Soft Skills	Audit course	
													\checkmark	

Neetisatakam- Holistic development of personality

Verses- 19,20,21,22 (wisdom) Verses- 29,31,32 (pride & heroism) Verses- 26,28,63,65 (virtue) Verses-52,53,59(dont's)Verses-71,73,75,78(do's)

Unit 2:

Approach to day to day work and duties.

Shrimad BhagwadGeeta: Chapter 2-Verses 41, 47,48, Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 23, 35, Chapter 18-Verses 45, 46, 48. Unit 3:

Statements of basic knowledge. Shrimad BhagwadGeeta: Chapter2-Verses 56, 62, 68 Chapter 12 -Verses 13, 14, 15, 16, 17, 18 Personality of Role model. Shrimad BhagwadGeeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Chapter 4-Verses 18, 38,39 Chapter18 – Verses 37,38,63.

TOTAL HOURS : 30

Reference Books:

- 1. "Srimad Bhagavad Gita" by Swami SwarupanandaAdvaita Ashram (Publication Department), Kolkata
- 2. Bhartrihari's Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

Course Code: Course Name : PERSONALITY Ty/Lb/ T/S. **EMCC22I08 DEVELOPMENT THROUGH LIFE** L P/R С ETL/IE Lr **ENLIGHTENMENT SKILLS** Prerequisite: Nil IE 2 0/0 0/0 0

L: Lecture T: Tutorial P: Project R: Research C: Credits T/L: Theory/Lab

10 hrs

10 hrs

10 hrs

nv Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code: EMCC22I09		Course Name : RESEARCH PUBLICAT					Ty / I ETL/	Lb/ I /IE	T /	′ S.Lr	P/ R	C			
	Prerequisite: core subjects						IE	2		0/0	0/0	2			
T/L/ : Theory	/: Theory/Lab L: Lecture T: Tutorial P: Practical/Project I							R : Research C: Credits T/L Theory/Lab							
OBJECTIVI	E:														
• To u	Γο understand the philosophy of science and ethics, research integrity and publication ethics.														
• To i	dentify research misconduct and predatory publications.														
• To u	inderstand indexing and citation databases, open access publications, research metrics														
(cita	tions, h-i	ndex, imp	act Factor	r, etc.).		•••									
COURSE O		<u>ES (COs) :</u>	By doing	this cours	e students	will	1.5	1 1							
COI	Unde	Understand the ethical issues related to Research and Publication													
CO2	Get to know about different types of plagiarism and ways for avoiding plagiarism														
CO3	Knov	v about b	est practi	ces and g	guideline	s in publ	ication	ethics	and	also lea	arns to	0			
	avoid	l Publicat	ion misc	onduct											
CO4	Get to	o know a	bout Vio	lation of	publicat	ion ethics	, autho	rship	and	contribu	itor sł	nip			
	and g	et to ider	ntify abou	ut Predato	ory publi	shers and	l journa	als.							
CO5	Get to	o know a	bout vari	ous open	sources	database	and re	search	met	trics like	е				
	index	ing, citat	ion etc.,	-											
Mapping of	Course O	utcomes w	ith Progra	am Outcor	mes (POs)										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P	08	PO9					
CO1	2	3	3	3	3	2	3		3	2					
CO2	2	3	3	3	3	2	3		3	2					
CO3	2	3	3	3	3	2	3		3	2					
CO4	2	3	3	3	3	3	3		3	3					
CO5	2	3	3	3	3	2	3		3	2					
COs / PSOs			PSO	1]	PSO2			PSC)3				
CO1			2			3 3									
CO2			2			3 3									
CO3			2			3 2									
CO4			2			3 3									
C05										3					
1/2/3 indicate	es Strengt	th of Corre	elation 3- I	High, 2- M	ledium, I-	Low									
Category	sciences	ering Sciences	ities and Social es	m Core	m Electives	llectives		al / Project		ıships / Technical Skill	ills	Course			
	Basic S	Engine	Human Science	Prograi	Prograt	Open E		Practic		Interr	Soft Sk	Audit C			

Unit 1. Introduction

Introduction to philosophy: Definition, nature and scope, concept, branches - Ethics: Definition, moral philosophy, nature of moral judgments and reactions - Ethics with respect to Science and Research Intellectual honesty and research integrity.

Unit II: Scientific Conduct

Scientific misconducts: Falsification, Fabrication, and Plagiarism (FFP) Redundant Publications: Duplicate and over lapping publications, salami slicing – Selective reporting and misrepresentation of data.

Unit III: Publication Ethics -I

Publication ethics: Definition, introduction and importance - Best practices/standards setting initiatives and guidelines: COPE, WAME etc. Publication misconduct: definition, Concept, problems that lead to unethical behavior and vice-versa, types.

Unit IV: Publication Ethics – II

Violation of publication ethics, authorship and contributor ship – Identification of publication misconduct, complaints and appeals - Predatory publishers and journals - Subject specific ethical issues, Complaints and appeals: examples and fraud from India and Abroad.

Unit V: Data Bases and Research Metrics

Open Access publication and Initiatives - Indexing databases - Citation databases, Web of Science, Scopus, etc. - Impact factor of journals as per Journal Citation report .SNIP, SJR, IPP, Cite Score - Metrics: hindex,gindex,i10index,altmetrics - Conflict of interest.

TOTAL HOURS: 30

2. MacIntyre & Alasdair, 1967, A Short History of Ethics, London.

- 3. Chaddah, P20 1 8, Ethics in Competitive Research: Do not get scooped; do not get plagiarized, ISBN: 9789387480865.
- 4. On Being a Scientist: A Guide to Responsible Conduct in Research, 2009, National Academy of Sciences, National Academy of Engineering and Institute of Medicine. 3rd edition, National Academies Press.
- 5. Resnik, D. B 2011, what is ethics in research & why is it important. National Institute of Environmental Health Sciences, pp.1-10. https://www.niehs.nih.gov/research/reso_uuces/bioethics/whatis/index.cfm

6. Bcall, J 2012, Predatory publishers are corrupting open access, Nature, Vol. 489,

no.7415,pp. 179-179. https://d0i.org/IO.1 03 8/48917%, Ethics in Science Education,

2019Indian National Science Academy (INSA), Research and Governance,

Universi	ty with Grad	ed Autonomy S	Status
(An ISO)	21001 : 2018	Certified Instit	ution)
		L Cl	m i i

Course Code:	Course Name : Research Publication Ethics	Ty / Lb/	L	T / S.Lr	P/ R	C
EMCC22I09		ETL/IE				
	Prerequisite: Core subjects	IE	2	0/	0/0	0
				0		
T/L/ : Theory/Lab L :]	Lecture T : Tutorial P : Practical/Project R : Research C: (Credits T/L	Theory	/Lab		

1. Bird A 2006, Philosophy of Science, Routledge

References:

6 Hrs.

6 Hrs.

6 Hrs.

6 Hrs.

6 Hrs.

OPEN ELECTIVES

M.Tech-StructuralEngineering-2022Regulation(PT)

Page 110

Course Code : EMCC22OE1		Co	ourse Na	ame BU	SINES	S ANA	LYTIC	2S	Ty / ETI	Lb/ _/IE	L	T / S.Lr	P/R	С
		Pre	erequisit	e: Nil					Т	Υ	3	0/0	0/0	3
L : Lecture T : '	Tutorial	1 P:1	Project	R : Rese	arch C:	Credits	s T/L: T	heory/L	ab				•	
Objectives : Onderstand the fole of obtainess analytics within an organization. Analyze data using statistical and datamining techniques and understand relationships between the underlying business processes of an organization. To gainunderstanding of how managers use business analytics to formulate and solve business problems and to supportmanagerial decision making. To become familiar with processes needed to develop, report, and analyze business dataUse decision-making tools/Operations research techniques. Mange business process using analytical and managementtools. Analyze and solve problems from different industries such as manufacturing, service, retail, software, banking afinance, sports, pharmaceutical, aerospace etc.COURSE OUTCOMES (COs) : At the end of this course the students would be able toCO1Students will demonstrate knowledge of data analytics Students will demonstrate the ability of thin critically in making decisions based on data and deep analytics.CO2Students will demonstrate the ability to use technical skills in predicative and prescriptive modeling t support business decision-making.											lata o gain an data. ment ing and f think ing to			
CO3	Stude	ents wi	ill demo	nstrate th	ne abilit	y to trai	nslate d	ata into	clear, ac	tionabl	e insig	hts		
Mapping of Course Outcomes with Program Outcomes (POs)														
COs/POs]	PO1 PO2 PO3 PO4 PO5 PO				PO6	PO7	PO8	PO9					
CO1		3	3 3 3			3	1	1	1	2				
CO2		3	3	3	3	3	1	1	1	2				
CO3	-	3	3	3	3	3	1	1	1	2				
COs / PSOs		PS	01	PS	02	PS	03	I						
C01		3		3		3								
CO2		3		3		3								
CO3		3		3		3								
3/2/1 Indicates	Strengt	h Of C	Correlati	ion, 3 – I	High, 2-	- Mediu	m, 1- L	ow						
Category	-	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project	Audit course			
							~							

Unit I Business analytics

Course Code :

EMCC22OE1

Overview of Business analytics, Scope of Business analytics, Business Analytics Process, Relationship of Business Analytics Process and organisation, competitive advantages of Business Analytics. Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modelling, sampling and estimation methods overview.

Course Name BUSINESS ANALYTICS

Unit II Trendiness and Regression Analysis

9hours Modelling Relationships and Trends in Data, simple Linear Regression. Important Resources, Business Analytics Personnel, Data and models for Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics Technology.

Unit III Organization Structures of Business analytics

Prerequisite: Nil

L: Lecture T: Tutorial P: Project R: Research C: Credits T/L: Theory/Lab

Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes. Descriptive Analytics, predictive analytics, predicative Modelling, Predictive analytics analysis, Data Mining, Data Mining Methodologies, Prescriptive analytics and its step in the business analytics Process, Prescriptive Modelling, nonlinear Optimization.

Unit IV Forecasting Techniques

Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with Casual Variables, Selecting Appropriate Forecasting Models. Monte Carlo Simulation and Risk Analysis: Monte Carle Simulation Using Analytic Solver Platform, New-Product Development Model, Newsvendor Model, Overbooking Model, Cash Budget Model.

Unit V Decision Analysis

Formulating Decision Problems, Decision Strategies with the without Outcome Probabilities, Decision Trees, The Value of Information, Utility and Decision Making - Recent Trends in : Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data journalism. Total no. of Hours: 45

Suggested reading

- Business analytics Principles, Concepts, and Applications by Marc J. Schniederjans, Dara G. Schniederjans, 1. Christopher M. Starkey, Pearson FT Press.
- 2. Business Analytics by James Evans, persons Education

Page 112

9hours

9hours

9hours

9hours

P/R

0/0

S.Lr

0/0

С

3

Τ/ Ty / Lb/ L

3

ETL/IE

ΤY

Course Code : :		Ca	ourse Na	ame IN	Ty /	Lb/ /IF	L	T / S.Lr	P/ R	2	С				
EMCC22OE2		Pre	erequisit	e: Nil					T	Y Y	3	0/0	0/0)	3
L : Lecture T : T	Futori	ial P:	Project	R : Rese	arch C:	Credits	5 T/L: T	heory/L	.ab				1		
Objectives . Un	derst	and pol	icies and	d protect	tions pu	t in plac	ce to en	sure pla	nt and fa	ctory v	vorker	protecti	on fro	om ha	azards
that could cause	e injur	y.		-		-		-				-			
COURSE OUT	CON	MES (C	COs): A	t the en	d of th	is cours	e the st	tudents	would b	e able	to				
CO1	The	differe	ent safety measures followed in the industry												
CO2	Und	lerstand	the fundamentals of safety policy												
CO3	Τoι	indersta	ind the periodic and preventive maintenance												
Mapping of Course Outcomes with Program Outcomes (POs)															
COs/POs		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9					
CO1		3	3	3	3	3	1	1	1	2					
CO2		3	3	3	3	3	1	1	1	2					
CO3		3	3	3	3	3	1	1	1	2					
COs / PSOs		PS	601	PS	02	PS	03								
CO1		3		3		3									
CO2		3		3		3									
CO3		3		3		3									
3/2/1 Indicates	Streng	gth Of (Correlati	ion, 3 – 1	High, 2-	Mediu	m, 1- L	ow	I			1			
Category		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project	Audit course				
		V													

Unit I Industrial safety

Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Unit II Fundamentals of maintenance Engineering

Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

Unit III Wear and Corrosion and their Prevention

Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

Unit IV Fault tracing

Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

Unit V Periodic and preventive maintenance

Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

Total no. of Hours: 45

Suggested reading:

- Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services. 1.
- Maintenance Engineering, H. P. Garg, S. Chand and Company. 2.
- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
- Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London. 4

9hours

9hours

9hours

9hours

9hours

Page 114

Perivar E.V.R. High Road, Maduravoval, Chennai-95, Tamilnadu, India

1	Course Code : EMCC22OE2	Course Name INDUSTRIAL SAFETY	Ty / Lb/ ETL/IE	L	T / S.Lr	P/ R	С
		Prerequisite: Nil	TY	3	0/0	0/0	3
]	L : Lecture T : Tutorial	P: Project R: Research C: Credits T/L: Theory/Lab)				

Course Code : EMCC22OE3		Co	ourse Na	ame CC El	OST MA NGINE	ANAGE CERINO	EMENT G PROJ	T OF JECTS	Ty / ETI	Lb/ _/IE	L	T / S.Lr	P/R	. (С
		Pro	erequisit	e: Nil					Т	Ϋ́Υ	3	0/0	0/0)	3
L : Lecture T : 7	Futoria	1 P:	Project	R : Rese	arch C:	Credits	s T/L: T	heory/L	.ab		1				
Objectives To	unders	tand t	he proce	ess of pla	nning a	nd cont	rolling	the budg	get of a p	roject	or busi	ness.			
COURSE OUT	ГСОМ	ES (C	COs): A	t the en	d of th	is cours	se the st	tudents	would b	e able	to				
CO1	under	rstand	Strategi	c Cost M	lanager	nent Pro	ocess								
CO2	Knov	v Cost concepts in decision-making in their projects													
CO3	To fa	miliar	iliarize Quantitative techniques for cost management												
Mapping of Course Outcomes with Program Outcomes (POs)															
COs/POs		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9					
CO1		3	3	3	3	2	1	1	1	2					
CO2		3	3	3	3	2	1	1	1	2					
CO3		3	3	3	3	2	1	1	1	2					
COs / PSOs]	PSO1	PSO1 PSO2		I	PSO3								
CO1			2	2		2									
CO2			2	,	2	2									
CO3			2	,	2		2								
3/2/1 Indicates	Strengt	th Of (Correlati	on, 3 – 1	High, 2-	Mediu	m, 1- L	ow	i						
Category		Basic Sciences Engineering Sciences		Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill component	Practical / Project	Audit course				
							~								

Unit I Overview of Cost Management Process

Introduction and Overview of the Strategic Cost Management Process

Unit II Concept of Cost

Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control - Provision of data for Decision-Making.

Unit III Project

Meaning, Different types, why to manage, cost overruns centers, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and non-technical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team:. Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

Unit IV Cost Behavior & Profit

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Breakeven Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity- Based Cost Management, -Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control- Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

Unit V Quantitative Techniques

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

Suggested reading:

- 1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting
- 3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
- 4. Ashish K. Bhattacharya, Principles & Practices of CostAccounting A. H. Wheeler publisher
- 5. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.

9hours

9hours

Total no. of Hours: 45

9hours

9hours

9hours

DUCATIONAL AND RESEARCH INSTITUTE DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Course Code : :	Course Name COST MANAGEMENT OF ENGINEERING PROJECTS	Ty / Lb/ ETL/IE	L	T / S.Lr	P/ R	С
EMCC22OE3	Prerequisite: Nil	TY	3	0/0	0/0	3
1.						

Course Code : EMCC22OE4		C	ourse N	ame: C	OMPC	SITE	MATE	RIALS	Ty / ETI	Lb/ L/IE	L	T / S.Lr	P/ F	2	С
		Pre	erequisit	e: Nil					Г	Ϋ́	3	0/0	0/	0	3
L : Lecture T : 7	Futori	al P:	Project	R : Rese	arch C:	Credits	T/L: T	heory/L	ab		I	1	1		
Objectives To	under	stand 1	nature of	f the con	posite	materia	l and ap	ply ther	n where	ver requ	uired				
COUPSE OUT	CON	AFS (C		t the on	d of th	6 001126	o tha st	udonte	would k	o oblo	to				
COURSE OUT	Und	erstand	the nati	ire type	s and th	annlica	tions of	f compo	site mate	erials	10				
CO2	Und	nderstand the synthesis of different types of metal matrix materials													
CO3	Und	erstand	id the polymeric composite materials and the characteristic feature of composite materials												
Mapping of Course Outcomes with Program Outcomes (POs)															
		PO1	1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9												
03/103		101	102	105	104	105	100	107	100	10)					
CO1		3	3	3	3	2	1	1	1	2					
CO2		3							1	2					
				-	_										
CO3		3	3	3	3	2	1	1	1	2					
COs / PSOs]	PSO1	PSO2		I	PSO3								
CO1			2	2		2									
CO2			2	2	2		2								
CO3			2	,	2	2									
3/2/1 Indicates	Streng	gth Of (Correlati	on, 3 – 1	High, 2-	Mediu	m, 1- L	ow	·				·		
Category		Basic Sciences Engineering Sciences		Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills	Audit course				
			~												

Course Code : EMCC22OE4	Course Name: COMPOSITE MATERIALS	Ty / Lb/ ETL/IE	L	T / S.Lr	P/R	C			
	Prerequisite: Nil	TY	3	0/0	0/0	3			
L : Lecture T : Tutorial P : Project R : Research C: Credits T/L: Theory/Lab									
-									

Unit I Introduction

Definition - Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

Unit II Reinforcements

Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Isostrain and Isostress conditions.

Unit III Manufacturing of Metal Matrix Composites

Casting - Solid State diffusion technique, Cladding - Hot isostatic pressing. Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

Unit IV Manufacturing of Polymer Matrix Composites

Preparation of Moulding compounds and prepregs - hand layup method - Autoclave method - Filament winding method -Compression moulding - Reaction injection moulding. Properties and applications.

Unit V Strength

Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

Suggested Reading:

- Material Science and Technology Vol 13 Composites by R.W.Cahn VCH, West Germany. 1.
- 2. Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R. Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2207.
- Hand Book of Composite Materials-ed-Lubin. 3.
- Composite Materials K.K.Chawla. 4.
- Composite Materials Science and Applications Deborah D.L. Chung. 5.
- 6. Composite Materials Design and Applications - Danial Gay, Suong V. Hoa, and Stephen W. Tasi

9hours

9hours

9hours

9hours

9hours

Total no. of Hours: 45

Course Code : EMCC22OE5	Course Code : EMCC22OE5				ASTE 1	Ty /	′ Lb/ L/IE	L	T / S.Lr	P/ F	2	С			
		Pre	ereauisit	e Nil						TY	3	0/0	0/	0	3
L : Lecture T : '	Tutori	al P:	Project	R : Rese	earch C:	Credits	5 T/L: T	heory/I	ab		5	0/0	0/	0	
Objectives To	under	stand 1	the conc	ept of pr	oducing	g energy	/ from t	he waste	e materia	al					
COURSE OUT		<u>1ES (C</u>	COs): A	At the en	d of th	is cours	se the st	tudents	would k	be able	to				
	Und	erstand	rstand the concepts and methods of biomass pyrolysis, gasification and combustion												
CO2	Und	erstand	id the production and characterization of biogas technology												
Mapping of Co	ourse	Outcoi	mes wit	h Progra	am Out	comes	(POs)	orogus		<i>'</i> 5J					
		DO1	DOO	DOO		DOF		DOF	DOG	DOA					
COs/POs		POI	PO2	PO3	PO4	P05	PO6	PO7	PO8	PO9					
CO1		3	3	3	3	2	1	1	1	2					
<u> </u>		3	3	3	3	2	1	1	1	2					
		5	5	5	5	2	1	1	1	2					
CO3		3	3	3	3	2	1	1	1	2					
COs / PSOs]	PSO1	PSO2 PSO3											
CO1			3	3			3								
CO2			3		3		3								
CO3			3		3		3								
3/2/1 Indicates	Streng	gth Of (Correlat	ion, 3 – 1	High, 2-	- Mediu	m, 1- L	ow	·			•			
Category		Basic Sciences Engineering Sciences		Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills	Audit course				
							~								

Conversion devices - Incinerators, gasifiers, digestors

Unit II Biomass Pyrolysis

Unit I Introduction

Pyrolysis - Types, slow fast - Manufacture of charcoal - Methods - Yields and application - Manufacture of pyrolytic oils and gases, yields and applications.

Unit III Biomass Gasification

Gasifiers - Fixed bed system - Downdraft and updraft gasifiers - Fluidized bed gasifiers - Design, construction and operation -Gasifier burner arrangement for thermal heating - Gasifier engine arrangement and electrical power - Equilibrium and kinetic consideration in gasifier operation.

Unit IV Biomass Combustion

Biomass stoves - Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

Unit V Biogas

Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants - Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

Suggested Reading:

- 1. Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.
- 2. Biogas Technology A Practical Hand Book Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.
- Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991. 3.
- 4. Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons, 1996.

DEPARTMENT OF CIVIL ENGINEERING

Course Code : EMCC22OE5	Course Name: WASTE TO ENERGY	Ty / Lb/ ETL/IE	L	T / S.Lr	P/ R	С
	Prerequisite: Nil	TY	3	0/0	0/0	3
L : Lecture T : Tutorial	P: Project R: Research C: Credits T/L: Theory/Lab)			-	

9hours

9hours

9hours

Total no. of Hours: 45

Introduction to Energy from Waste: Classification of waste as fuel - Agro based, Forest residue, Industrial waste - MSW -

9hours

9hours