

FACULTY OF ENGINEERING AND TECHNOLOGY

OUTCOME BASED CURRICULUM

Curriculum and Syllabus

BACHELOR OF TECHNOLOGY ELECTRONICS AND COMMUNICATION ENGINEERING (FULL TIME) 2022

DEPARTMENT OF

ELECTRONICS AND COMMUNICATION ENGINEERING

B.Tech ECE 2022 Regulation

DECLARATION

I, **Mrs.U.Jayalatsumi**, Head, Dept of Electronics and Communication Engineering hereby declare that this copy of the syllabus (B.Tech Electronics and Communication Engineering UG – Full Time 2022 Regulation) from page number 1 to 268 is the final version which is being taught in the class and uploaded in our University website. I assure that the Syllabus available in our University website is verified and found correct. The Curriculum and Syllabi have been approved by our Academic Council / Vice Chancellor.

Date:

Signature

VISION AND MISSION OF THE DEPARTMENT

VISION

• To achieve excellence in academics and research in evolving competent core areas of Electronics and Communication Engineering and to effectively respond to the demands of industry and R & D organizations.

MISSION

- M1: To accomplish academic excellence through valuable teaching-learning processes to meet requirements of the industry and society.
- M2: To prepare students to face the challenges in the field of electronics and communication engineering and prepare them as responsible engineers with ethical values.
- M3: To promote the zeal for innovation and creativity among students towards research and development.
- M4: To augment students with skills needed for employability, entrepreneurship and for pursuing higher studies.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO 1:** Graduates will apply their analytical skills to explore socially acceptable and economically feasible solutions for real-life problems using modern design tools.
- **PEO 2:** Graduates will work in a diverse environment with effective communication skills and ethical teamwork to address the needs of the organization and society.
- **PEO 3:** Graduates will continue to develop in their careers by engaging in lifelong learning and research.
- **PEO 4:** Graduates will succeed as entrepreneurs by exhibiting their leadership traits and innovative skills.

PROGRAM SPECIFIC OUTCOMES (PSOs)

Upon the completion of program, graduates will be able to

- **PSO1**: Recognize, adapt the knowledge of science, engineering and mathematics for providing solutions to techno-economical problems in real world.
- **PSO2**: Formulate logical approach to solve engineering problems in core area of Electronics and Communication Engineering.
- **PSO3**: Demonstrate inter-disciplinary subject knowledge in diverse fields of Engineering and Technology.
- **PSO4**: Apply the emerging technology and open source tool for life-long learning to face the challenges in society.

PROGRAM OUTCOMES (POs)

Engineering graduates will be able to:

- **PO-1** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO-2** Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO-3** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO-4** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO-5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO-6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO-7** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO-8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO-9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO-10** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO-11** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO-12** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

MISSION/ PEO	PEO1	PEO2	PEO3	PEO4
M1	3	2	2	1
M2	3	2	3	3
M3	2	3	2	1
M4	2	3	1	1

Mapping of MISSION with PEO

PEO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PEO1	3	3	3	3	1		1					2
PEO2	2	2	3	3	1			2	1			3
PEO3	2	3	3	3	3					1	1	
PEO4						2	3	2	3	3	3	1

Mapping of PEO with PO

PEO/PSO	PSO1	PSO2	PSO3	PSO4
PEO1	1	3		2
PEO2	2	3	1	2
PEO3	2	2		3
PEO4		1	3	3

Mapping of PEO with PSO

Strength of Correlation: 3-High, 2-Medium, 1-Low

B.Tech. Electronics and Communication Engineering

(Full Time)

		I SEMESTI	ER					
S.NO	SUBJECT CODE	SUBJECT NAME	TY/LB/ ETL/IE	L	T/ SLR	P/ R	С	CATEGORY
1	EBEN22001	Technical English	ΤY	2	0/0	0/0	2	HS
2	EBMA22001	Mathematics – I	TY	3	1/0	0/0	4	BS
3	EBPH22ET1	Engineering Physics	ETL	2	0/0	2/0	3	BS
4	EBCH22ET1	Engineering Chemistry	ETL	2	0/0	2/0	3	BS
5	EBME22ET1	Basic Mechanical & Civil Engineering	ETL	2	0/0	2/0	3	ES
		PRACTICALS*						
1	EBCS22ET1	C Programming and Ms Office Tools	ETL	1	0/0	2/0	2	ES
2	EBCC22I01	Orientation to Entrepreneurship & Project Lab	IE	1	0/0	1/0	1	ES

Curriculum – 2022 Regulation

Credits Sub Total: 18

		II SEMEST	ER					
S.NO	SUBJECT CODE	SUBJECT NAME	TY/LB/ ETL/IE	L	T/ SLR	P/ R	C	CATEGORY
1	EBMA22003	Mathematics – II	TY	3	1/0	0/0	4	BS
2	EBPH22001	Solid State Physics	TY	3	0/0	0/0	3	BS
3	EBCH22001	Technical Chemistry	TY	3	0/0	0/0	3	BS
4	EBME22001	Engineering Graphics	TY	2	0/0	2/0	3	ES
5	EBEC22001	Circuit Theory	TY	3	0/0	0/0	3	PC
		PRACTICA	LS*					
1	EBCC22I02	Communicative English Lab	IE	1	0/0	1/0	1	HS
2	EBCS22ET2	Python Programming	ETL	1	0/0	2/0	2	ES
3	EBCC22I03	Environmental Science (Audit Course)	IE	1	0/0	1/0	0	HS

Credits Sub Total: 19

C: Credits L: Lecture T: Tutorial S.Lr: Supervised Learning P: Problem / Practical R: Research Ty/Lb/ETL: Theory /Lab/Embedded Theory and Lab * Internal Evaluation

		III SEMESTR	ER					
S.NO	SUBJECT CODE	SUBJECT NAME	TY/LB/ ETL/IE	L	T/ SLR	P/ R	C	CATEGORY
1	EBEE22ID2	Electrical and Instrumentation Engineering	ΤY	3	0/0	0/0	3	ID
2	EBEC22002	Signals and Systems	TY	3	1/0	0/0	4	PC
3	EBEC22003	Digital Electronics	TY	3	1/0	0/0	4	PC
4	EBCS22ID2	C++ and Java Programming	TY	3	0/0	0/0	3	ID
		PRACTICA	LS*					
1	EBCC22ET1	Universal Human Values 2: Understanding Harmony	ETL	1	0/0	2/0	2	HS
2	EBCS22IL1	C++ and Java Programming Lab	LB	0	0/0	3/0	1	ID
3	EBEC22L01	Digital Electronics Lab	LB	0	0/0	3/0	1	PC
4	EBEC22ET1	Analysis of Solid State Devices	ETL	2	0/0	2/0	3	PC

Credits Sub Total: 21

		IV SEMESTER	ł					
S.NO	SUBJECT CODE	SUBJECT NAME	TY/LB/ ETL/IE	L	T/ SLR	P/ R	С	CATEGOR Y
1	EBMA22010	Probability and Random Process	TY	3	1/0	0/0	4	BS
2	EBEC22004	Electronic Circuits	TY	3	0/0	0/0	3	PC
3	EBEC22005	Control Systems Engineering	TY	3	1/0	0/0	4	PC
4	EBEC22006	Linear Integrated Circuits	TY	3	0/0	0/0	3	PC
5	EBEC22007	Analog Communication	ΤY	3	0/0	0/0	3	PC
6	EBCC22I04/ EBCC22I05	The Indian Constitution/ The Indian Traditional Knowledge (Audit Course)	IE	2	0/0	0/0	0	HS
		PRACTICALS	*					
1	EBEC22L02	Linear Integrated Circuits Lab	LB	0	0/0	3/0	1	PC
2	EBEC22L03	Electronic Circuits Lab	LB	0	0/0	3/0	1	PC
3	EBEC22L04	Digital Simulation Lab	LB	0	0/0	3/0	1	PC
4	EBEC22I01	Technical Skill I	IE	0	0/0	2/0	1	SC
5	EBCC22I06	Soft Skill I (Employability Skills)	IE	0	0/0	2/0	1	SC

Credits Sub Total: 22

C: Credits L: Lecture T: Tutorial S.Lr: Supervised Learning P: Problem / Practical R: Research Ty/Lb/ETL: Theory /Lab/Embedded Theory and Lab * Internal Evaluation

	V SEMESTER										
S.NO	SUBJECT CODE	SUBJECT NAME	TY/LB/ ETL/IE	L	T/ SL R	P/ R	C	CATEGORY			
1	EBEC22008	Communication Networks	TY	3	0/0	0/0	3	PC			
2	EBEC22009	Microprocessor and Microcontroller	TY	3	0/0	0/0	3	PC			
3	EBEC22010	Digital Signal Processing	TY	3	1/0	0/0	4	PC			
4	EBEC22EXX	Program Elective I	TY	3	0/0	0/0	3	PE			
5	EBXX22OEX	Open Elective I	TY	3	0/0	0/0	3	ID			
6	EBOL22I01	OnlineCourse(NPTEL/SWAYAM/ Any MOOC Online Course Approved By AICTE/UGC)	IE	1	0/0	1/0	1	ID			
	·	PRACTICALS*	•	•			•				
1	EBEC22L05	Communication Networks Lab	LB	0	0/0	3/0	1	PC			
2	EBEC22L06	Communication Lab - I	LB	0	0/0	3/0	1	PC			
3	EBEC22L07	Microprocessor and Microcontroller Lab	LB	0	0/0	3/0	1	PC			
4	EBEC22I02	Technical Skill II	IE	0	0/0	2/0	1	SC			
5	EBEC22ET2	Field and Wave Electromagnetics	ETL	2	0/0	2/0	3	РС			

Credits Sub Total: 24

		VI SEMESTER	R					
S.NO	SUBJECT CODE	SUBJECT NAME	TY/LB/ ETL/IE	L	T/ SL R	P/ R	С	CATEGORY
1	EBEC22011	Sensors and Robotics	TY	3	0/0	0/0	3	PC
2	EBEC22012	Digital Communication	ΤY	3	1/0	0/0	4	PC
3	EBEC22013	Digital Image Processing	TY	3	1/0	0/0	4	PC
4	EBEC22EXX	Program Elective II	ΤY	3	0/0	0/0	3	PE
5	EBXX22OEX	Open Elective II	TY	3	0/0	0/0	3	ID
		PRACTICALS	*					
1	EBEC22L08	Communication Lab II	LB	0	0/0	3/0	1	PC
2	EBEC22L09	Digital Image Processing Using Open CV Python Lab	LB	0	0/0	3/0	1	PC
3	EBEC22L10	Sensors And Robotics Lab	LB	0	0/0	3/0	1	PC
4	EBCC22I07	Soft Skill II (Qualitative And Quantitative Skills)	IE	0	0/0	2/0	1	SC
5	EBEC22I03	Technical Skill III	IE	0	0/0	2/0	1	SC
6	EBEC22I04	Mini Project/Internship	IE	0	0/0	3/0	1	SC

Credits Sub Total: 23

C: Credits L: Lecture T: Tutorial S.Lr: Supervised Learning P: Problem / Practical R: Research Ty/Lb/ETL: Theory /Lab/Embedded Theory and Lab * Internal Evaluation

		VII SEMESTER						
S.NO	SUBJECT CODE	SUBJECT NAME	TY/LB/ ETL/IE	L	T/ SLR	P/ R	С	CATEGORY
1	EBEC22014	Microwave and Optical Communication	TY	3	0/0	0/0	3	PC
2	EBEC22015	VLSI Design	TY	3	0/0	0/0	3	PC
3	EBEC22016	Embedded Systems	TY	3	0/0	0/0	3	PC
4	EBEC22017	Wireless Networks	TY	3	1/0	0/0	4	PC
5	EBEC22EXX	Program Elective III	TY	3	0/0	0/0	3	PE
		PRACTICALS ³	k					
1	EBXX22OLX	Open Lab	LB	0	0/0	3/0	1	ID
2	EBEC22L11	VLSIand Embedded System Design Lab	LB	0	0/0	3/0	1	PC
3	EBEC22L12	Microwave and Optical Communication Lab	LB	0	0/0	3/0	1	PC
4	EBEC22I05	Project Phase – 1	IE	0	0/0	3/3	2	Р
5	EBFL22IXX	Foreign Language	IE	1	0/0	1/0	1	HS

Credits Sub Total: 22

		VIII SEMESTER						
S.NO	SUBJECT CODE	SUBJECT NAME	TY/LB/ ETL/IE	L	T/ SLR	P/ R	С	CATEGORY
1	EBCC22ID2	Principles of Management and Behavioral Science	TY	3	0/0	0/0	3	ID
2	EBEC22EXX	Program Elective IV	TY	3	0/0	0/0	3	PE
3	EBEC22EXX	Program Elective V	TY	3	0/0	0/0	3	PE
		PRACTICALS [*]	k					
1	EBEC22L13	Project Phase – II	LB	0	0/0	12/ 12	8	Р

Credits Sub Total: 17

Credit Summary

Semester: 1 :18 Semester: 2 :19 Semester: 3 :21 Semester: 4 : 22 Semester: 5 : 24 Semester: 6 : 23 Semester: 7 : 22 Semester: 8 :17

Total Credits : 166

PROGRAM ELECTIVES

		ELECTIVE I – ELECTRONICS S	FREAM				
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/Lb/E TL/IE	L	T/ SLr	P/R	С
1	EBEC22E01	Semiconductor Devices And Its Applications	Ту	3	0/0	0/0	3
2	EBEC22E02	Real Time Operating Systems	Ту	3	0/0	0/0	3
3	EBEC22E03	Introduction To PLC	Ту	3	0/0	0/0	3

	ELECTIVE I – COMMUNICATION STREAM								
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/Lb/E TL/IE	L	T/ SLr	P/R	С		
1	EBEC22E04	Antenna and Wave Propagation	Ту	3	0/0	0/0	3		
2	EBEC22E05	Telecommunication Switching System	Ту	3	0/0	0/0	3		
3	EBEC22E06	Audio Signal Processing	Ту	3	0/0	0/0	3		

	ELECTIVE II – ELECTRONICS STREAM								
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/Lb/ET L/IE	L	T/ SLr	P/ R	С		
1	EBEC22E07	Intelligent Instrumentation	Ту	3	0/0	0/0	3		
2	EBEC22E08	Advanced Microprocessors	Ту	3	0/0	0/0	3		
3	EBEC22E09	Nano Electronics	Ту	3	0/0	0/0	3		
4	EBEC22E10	Computer Architecture and Parallel Processing	Ту	3	0/0	0/0	3		

	ELECTIVE II – COMMUNICATION STREAM								
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/Lb/ET L/IE	L	T/ SLr	P/ R	С		
1	EBEC22E11	Internet of Things and Its Applications	Ту	3	0/0	0/0	3		
2	EBEC22E12	Next Generation IP Networks	Ту	3	0/0	0/0	3		
3	EBEC22E13	Neural Networks and Its Applications	Ту	3	0/0	0/0	3		
4	EBEC22E14	Radar and Navigational Aids	Ту	3	0/0	0/0	3		

	voyal, Chennai-95.	Tamilnadu, India.

	ELECTIVE III – ELECTRONICS STREAM								
S.NO.	SUBJECT	SUBJECT NAME	Ty/Lb/	L	T/ SLr	P/R	С		
	CODE		ETL/IE						
1	EBEC22E15	Advanced Digital System	Ту	3	0/0	0/0	3		
2	EBEC22E16	Embedded Software Design	Ту	3	0/0	0/0	3		
3	EBEC22E17	Quantum Computing	Ту	3	0/0	0/0	3		
4	EBEC22E18	Power Electronics	Ту	3	0/0	0/0	3		

	ELECTIVE III – COMMUNICATION STREAM								
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/Lb/ ETL/IE	L	T/ SLr	P/R	С		
1	EBEC22E19	High Speed Switching Architecture	Ту	3	0/0	0/0	3		
2	EBEC22E20	Information Coding Techniques	Ту	3	0/0	0/0	3		
3	EBEC22E21	Optical Network and Switching Techniques	Ту	3	0/0	0/0	3		
4	EBEC22E22	Photonics	Ту	3	0/0	0/0	3		

	ELECTIVE IV – ELECTRONICS STREAM								
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL/IE	L	T/ SLr	P/R	С		
1	EBEC22E23	Device Modeling	Ту	3	0/0	0/0	3		
2	EBEC22E24	VLSI Technology	Ту	3	0/0	0/0	3		
3	EBEC22E25	Biomedical Instrumentation	Ту	3	0/0	0/0	3		

	ELECTIVE IV – COMMUNICATION STREAM								
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL/IE	L	T/ SLr	P/R	С		
1	EBEC22E26	Spread Spectrum Communication	Ту	3	0/0	0/0	3		
2	EBEC22E27	Network Management	Ту	3	0/0	0/0	3		
3	EBEC22E28	Satellite Communication	Ту	3	0/0	0/0	3		
4	EBEC22E29	Next Generation Communication	Ту	3	0/0	0/0	3		
5	EBEC22E30	Cognitive Radio	Ту	3	0/0	0/0	3		

	ELECTIVE V - ELECTRONICS STREAM								
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL/IE	L	T/ SLr	P/R	С		
1	EBEC22E31	Introduction To MEMS System Design	Ту	3	0/0	0/0	3		
2	EBEC22E32	Analysis and Design Of Analog IC's	Ту	3	0/0	0/0	3		
3	EBEC22E33	Cyber Physical System	Ту	3	0/0	0/0	3		
4	EBEC22E34	Digital Control System	Ту	3	0/0	0/0	3		

	ELECTIVE V – COMMUNICATION STREAM								
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL/IE	L	T/ SLr	P/R	С		
1	EBEC22E35	Electromagnetic Interference and Compatibility	Ту	3	0/0	0/0	3		
2	EBEC22E36	Advanced Concepts In Signal Processing	Ту	3	0/0	0/0	3		
3	EBEC22E37	Ultra Wide Band Communication	Ту	3	0/0	0/0	3		
4	EBEC22E38	Under Water Acoustic Signal Processing	Ту	3	0/0	0/0	3		

	COMMON ELECTIVE FOR BOTH STREAMS								
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL/IE	L	T/ SLr	P/R	С		
1	EBEC22E39	Cryptography and Network Security	Ту	3	0/0	0/0	3		
2	EBEC22E40	Introduction to Artificial Intelligence	Ту	3	0/0	0/0	3		
3	EBEC22E41	Machine Learning	Ту	3	0/0	0/0	3		
4	EBEC22E42	Fuzzy Logic and Systems	Ту	3	0/0	0/0	3		
5	EBEC22E43	Introduction to Discrete Mathematics	Ту	3	0/0	0/0	3		
6	EBEC22E44	Wireless Sensor Networks	Ту	3	0/0	0/0	3		
7	EBEC22E45	Database Management System	Ту	3	0/0	0/0	3		
8	EBEC22E46	Theory Of Computation	Ту	3	0/0	0/0	3		

EDUCATIONAL AND RESEARCH INSTITUTE	At A A
University with Graded Autonomy Status	
(An ISO 21001 : 2018 Certified Institution)	
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.	

	LIST OF OPEN ELECTIVES OFFERED TO OTHER DEPARTMENTS BY ECE											
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/Lb/ ETL/IE	L	T/ SLr	P/R	С					
1	EBEC22OE1	Internet of Things and Its Applications	Ту	3	0/0	0/0	3					
2	EBEC22OE2	Cellular Mobile Communication	Ту	3	0/0	0/0	3					
3		Satellite Technology And Remote Sensing Sytems	Ту	2	0/0	1/1	3					
4	EBEC22OE4	Fundamentals Of Sensors	Ту	3	0/0	0/0	3					
5	EBEC22OE5	Microprocessor Based System Design	Ту	3	0/0	0/0	3					
6	EBEC22OE6	Industry 4.0 Concepts	Ту	3	0/0	0/0	3					

	LIST OF OPEN LABS OFFERED TO OTHER DEPARTMENTS BY ECE											
S.NO.	S.NO. SUBJECT SUBJECT NAME Ty/Lb/ L T/SLr P/R C											
	CODE		ETL									
1	EBEC22OL1	Sensors and IOT Lab	Lb	0	0/0	3/0	1					
2	EBEC22OL2	Robotics Control Lab	Lb	0	0/0	3/0	1					
3	EBEC22OL3	Basics of MATLAB	Lb	0	0/0	3/0	1					

	LIST OF FOREIGN LANGUAGES											
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/Lb/ ETL	L	T/ SLr	P/R	С					
1	EBFL22I01	French	Ту	1	0/0	0/1	1					
2	EBFL22I02	German	Ту	1	0/0	0/1	1					
3	EBFL22I03	Japanese	Ту	1	0/0	0/1	1					
4	EBFL22I04	Arabic	Ту	1	0/0	0/1	1					
5	EBFL22I05	Chinese	Ту	1	0/0	0/1	1					
6	EBFL22I06	Russian	Ту	1	0/0	0/1	1					
7	EBFL22I07	Spanish	Ту	1	0/0	0/1	1					

LIST OF OPEN ELECTIVES OFFERED TO ECE BY OTHER DEPARTMENTS

COMPUTER SCIENCE AND ENGINEERING

S.NO	SUBJECT CODE	SUBJECT NAME	Ty/Lb / ETL	L	T/ SLr	P/R	С
1	EBCS22OE1	Cyber security & Forensics	Ту	3	0/0	0/0	3
2	EBCS22OE2	Artificial Intelligence	Ту	3	0/0	0/0	3
3	EBCS22OE3	Data Base Concepts	Ту	3	0/0	0/0	3
4	EBCS22OE4	Software Engineering	Ту	3	0/0	0/0	3

INFORMATION TECHNOLOGY

S.NO	SUBJECT CODE	SUBJECT NAME	Ty/Lb / ETL	L	T/ SLr	P/R	С
1	EBIT22OE1	Web Design	Ту	3	0/0	0/0	3
2	EBIT22OE 2	Digital Marketing	Ту	3	0/0	0/0	3
3	EBIT22OE3	Cyber Security Essentials	Ту	3	0/0	0/0	3
4	EBIT22OE4	Introduction to Multimedia	Ту	3	0/0	0/0	3

ELECTRICAL AND ELECTRONICS ENGINEERING

S.NO	SUBJECT CODE	SUBJECT NAME	Ty/Lb / ETL	L	T/ SLr	P/R	С
1	EBEE22OE1	Electrical Safety for Engineers	Ту	3	0/0	0/0	3
2	EBEE22OE2	Energy Conservation Techniques	Ту	3	0/0	0/0	3
3	EBEE22OE3	Electric Vehicle Technology	Ту	3	0/0	0/0	3
4	EBEE22OE4	Biomedical Instrumentation	Ту	3	0/0	0/0	3
5	EBEE22OE5	Industrial Instrumentation	Ту	3	0/0	0/0	3
6	EBEE22OE6	Solar Energy Conversion System	Ту	3	0/0	0/0	3
7	EBEE22OE7	Wind Energy Conversion System	Ту	3	0/0	0/0	3
8	EBEE22OE8	Energy Storage Technology	Ту	3	0/0	0/0	3
9	EBEE22OE9	Electrical Machines	Ту	3	0/0	0/0	3

CIVIL ENGINEERING

S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/Lb / ETL	L	T/ SLr	P/R	С
1	EBCE22OE1	Water Pollution and Its management	Ту	3	0/0	0/0	3
2	EBCE22OE2	Air Pollution Control	Ту	3	0/0	0/0	3
3	EBCE22OE3	Green Building and Vastu Concepts	Ту	3	0/0	0/0	3
4	EBCE22OE4	Climate Change and Sustainable Development	Ту	3	0/0	0/0	3
5	EBCE22OE5	Intelligent Transportation Systems	Ту	3	0/0	0/0	3
6	EBCE22OE6	Environment, Health and Safety in Industries	Ту	3	0/0	0/0	3
7	EBCE22OE7	Industrial Pollution Prevention and Cleaner Production	Ту	3	0/0	0/0	3
8	EBCE22OE8	Fundamentals of nanoscience	Ту	3	0/0	0/0	3

BIOTECHNOLOGY

S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/Lb / ETL	L	T/ SLr	P/R	С
1	EBBT22OE1	Food and Nutrition	Ту	3	0/0	0/0	3
2	EBBT22OE2	Human Physiology	Ту	3	0/0	0/0	3
3	EBBT22OE3	Clinical Biochemistry	Ту	3	0/0	0/0	3
4	EBBT22OE4	Bioprocess Principles	Ту	3	0/0	0/0	3
5	EBBT22OE5	Biosensors and Biomedical Devices in Diagnostics	Ту	3	0/0	0/0	3
6	EBBT22OE6	Basic Bioinformatics	Ту	3	0/0	0/0	3

CHEMICAL ENGINEERING

S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/Lb/	L	T /	P/R	С
			ETL		SLr		
1	EBCT22OE1	Fundamentals of Nanoscience	Ту	3	0/0	0/0	3
2	EBCT22OE2	Electrochemical Engineering	Ту	3	0/0	0/0	3
3	EBCT22OE3	Alternative Fuels And Energy System	Ту	3	0/0	0/0	3
4	EBCT22OE4	Petrochemical Unit Processes	Ту	3	0/0	0/0	3
5	EBCT22OE5	Principles of Desalination Technologies	Ту	3	0/0	0/0	3
6	EBCT22OE6	Piping Design Engineering	Ту	3	0/0	0/0	3
7	EBCT22OE7	E- Waste Management	Ту	3	0/0	0/0	3

Dr APJ Abdul Kalam Center For Research

S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/Lb/ ETL	L	T/ SLr	P/R	С
1	EBMG22OE1	Technical Entrepreneurship	ETL	2	0/1	2/0	3

MECHANICAL ENGINEERING

S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/Lb / ETL	L	T/ SLr	P/R	С
1	EBME22OE1	Industrial Engineering	Ту	3	0/0	0/0	3
2	EBME22OE2	Refrigeration and Air conditioning	Ту	3	0/0	0/0	3
3	EBME22OE3	Automobile Engineering	Ту	3	0/0	0/0	3
4	EBME22OE4	Industrial Robotics	Ту	3	0/0	0/0	3
5	EBME22OE5	Sustainable Energy	Ту	3	0/0	0/0	3
6	EBME22OE6	Composite Materials	Ту	3	0/0	0/0	3
7	EBME22OE7	Industry 4.0	Ту	3	0/0	0/0	3
8	EBME22OE8	Virtual and Augmented Reality	Ту	3	0/0	0/0	3

LIST OF OPEN ELECTIVES LABOFFERED TO ECE BY OTHER DEPARTMENTS

COMPUTER SCIENCE AND ENGINEERING

S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/Lb/ ETL	L	T/ SLr	P/R	С
1	EBCS22OL1	Artificial Intelligence Lab	Lb	0	0/0	3/0	1
2	EBCS22OL2	PHP/My SQL Programming Lab	Lb	0	0/0	3/0	1
3	EBCS22OL3	Database Lab	Lb	0	0/0	3/0	1

INFORMATION TECHNOLOGY

S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/Lb/ ETL	L	T/ SLr	P/R	С
1	EBIT22OL1	Visual Programming Lab	Lb	0	0/0	3/0	1
2	EBIT22OL2	Web Design Lab	Lb	0	0/0	3/0	1
3	EBIT22OL3	Digital content creation Lab	Lb	0	0/0	3/0	1
4	EBIT22OL4	Computer Network Lab	Lb	0	0/0	3/0	1
5	EBIT22OL5	PHP/My SQL Programming Lab	Lb	0	0/0	3/0	1

ELECTRICAL AND ELECTRONICS ENGINEERING

S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/Lb/ ETL	L	T/ SLr	P/R	С
1	EBEE22OL1	Transducer Lab	Lb	0	0/0	3/0	1
2	EBEE22OL2	PLC and SCADA Lab	Lb	0	0/0	3/0	1
3	EBEE22OL3	Electrical Maintenance Lab	Lb	0	0/0	3/0	1
4	EBEE22OL4	Power Electronics Lab	Lb	0	0/0	3/0	1
5	EBEE22OL5	Bio Medical Instrumentation Lab	Lb	0	0/0	3/0	1
6	EBEE22OL6	Electrical Machines Lab	Lb	0	0/0	3/0	1

MECHANICAL ENGINEERING

S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/Lb/ ETL	L	T/ SLr	P/R	С
1	EBME22OL1	Internal Combustion Engines and Steam Lab	Lb	0	0/0	3/0	1
2	EBME22OL2	ComputerAidedDesign and Simulation Lab	Lb	0	0/0	3/0	1
3	EBME22OL3	Engineering Metrology Lab	Lb	0	0/0	3/0	1
4	EBME22OL4	Automation Lab	Lb	0	0/0	3/0	1
5	EBME22OL5	Virtual and Augmented Reality Lab	Lb	0	0/0	3/0	1

CIVIL ENGINEERING

S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/Lb / ETL	L	T/ SLr	P/R	С
1	EBCE22OL1	Building Drawing Practice using Auto CADD	Lb	0	0/0	3/0	1
2	EBCE22OL2	Geographical Information System And Mapping Lab	Lb	0	0/0	3/0	1
3	EBCE22OL3	Environmental Engineering Laboratory	Lb	0	0/0	3/0	1

BIOTECHNOLOGY

S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/Lb/ ETL	L	T/ SLr	P/R	С
1	EBBT22OL1	Basic Biochemistry Lab	Lb	0	0/0	3/0	1
2	EBBT22OL2	Basic Bioprocess Lab	Lb	0	0/0	3/0	1
3	EBBT22OL3	Basic Microbiology Lab	Lb	0	0/0	3/0	1
4	EBBT22OL4	Basic Bioinformatics Lab	Lb	0	0/0	3/0	1

CHEMICAL ENGINEERING

S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/Lb/ ETL	L	T/ SLr	P/R	С
1	EBCT22OL1	Chemical Separation Lab	Lb	0	0/0	3/0	1
2	EBCT22OL2	Chemical Composition Analysis Lab	Lb	0	0/0	3/0	1
3	EBCT22OL3	Alternate Fuel Lab	Lb	0	0/0	3/0	1
4	EBCT22OL4	Food Testing Laboratory	Lb	0	0/0	3/0	1

REVISION/MODIFICATIONS DONE IN THE SYLLABUS

S. No	Course (Subject) Code	Course (Subject) Name	Concept/ topic if any, removed in current curriculum	Concept/topic added in the new curriculum	% of Revision/ Modification done
1	EBEC22001	Circuit Theory	Analysis of Multi Winding Coupled Circuits-Critical Coupling removed in Unit 5	An Introduction to Network Topology,Trees and General Nodal Analysis introduced in Unit 5	10% To appear for Competitive Examination
2	EBEC22005	Control Systems Engineering	StateSpaceAnalysis in Unit 5merged into Unit 1.Nichols Chart, andConstant M and Ncircles,Compensators, havebeen included asQualitative	Design of Controllers asa case study included in Unit 5	20%
3	EBEC22006	Linear Integrated Circuits		Added Active Filters- low pass, High pass- bandpass-band reject – switched capacitor filters from Unit 4 and Butterworth filters included in Unit 2 Added IC555 timer in Unit 2	ETL Converted into theory 30%
4	EBEC22008	Computer Networks			Nomenclature changed as Communicati on Networks
5	EBEC22L02	Linear Integrated Circuits Lab	Lab Experiments: • Design clipper and clamper circuit using IC 741. Lab Experiments: (PSPICE) • Design & obtain frequency response of first order HPF&LPF filters	Lab Experiments: (PSPICE) Calculation of Line and Load Regulation using IC 723. Construction of a 4- bit R-2R ladder type DAC Set Up of a 4-bit Successive Approximation Type ADC	ETL Converted into lab 30%

6	EBEC22009	Microprocessors and	Advanced 80386 Architecture,	Register organization, memory segmentation,	30%
		Microcontrollers	Addressing modes –	Signal descriptions of	
		whereeonuoners	Data types of 80386	8086-common	
			Data types of 80580		
			– Real address mode of	function signals, minimum mode and	
			80386 –	maximum mode	
			Segmentation,	system design, timing	
			paging , Salient	diagrams, Interrupts of	
			Features of	8086 Instruction	
			PENTIUM.	formats, Addressing	
			ARM Architecture	modes, instruction set,	
			-ARM programmer's	assembler	
			model- ARM	Directives. Macros,	
			development tools-	Simple programs	
			memory hierarchy-	involving Arithmetic,	
			ARM assembly	logical, branch and	
			language	call instructions.	
			programming-Simple	Sorting, evaluating	
			Examples-	arithmetic	
			Architectural support	expressions, string	
			for operating system-	manipulations	
			ARM instruction Set-	DC Motor speed	
			Embedded ARM	Control using PWM,	
			Applications	RTC and EEPROM	
				interface using	
				I2C protocol, Traffic	
				Light Interface,	
				Interfacing matrix	
				Keyboard, and (16x2)	
				LCD interfacing	
7	EBEC22010	Digital Signal	UNIT4(Multi rate	UNIT IV: Finite word	20%
		Processing	Signal Processing)	length effects	
8	EBEC22L07	Microprocessors		8085 Experiments	10%
		and		Added	
		Microcontroller			
		Lab			
9	EBEC22ET2	Field and Wave	Electromagnetics	Plane Wave	20%
		Electromagnetics	topic in Units 1 & 2	Propagation has been	
			have been	added	
			compressed into a		
			single Unit with		
			qualitative treatment		

10	FBFC22012	Digita1		Geometric	20%
10	EBEC22012	Digital Communication		Geometric Representation of signals – Generation, detection, PSD & BER of Coherent BPSK, BFSK & QPSK – QAM – Carrier Synchronization – Structure of Non- coherent Receivers –	20% To Study about the digital modulation scheme the contents have been included In Error control coding hamming codes plays a
				Principle of DPSK. Hamming codes	vital role hence it is added
11	EBEC22014	MICROWAVE AND OPTICAL COMMUNICATI ON	Unit 4- MICROWAVE CIRCUITS has been removed	Unit 5- MICROWAVE MEASUREMENTS has been moved to UNIT 4 and UNIT 5 OPTICAL FIBER LOSSES AND DESIGN has been introduced	Subject Renamed 30%
11	EBEC22015/E BEC22016	VLSI Design / Embedded Systems	Unit 5- PICMicrocontroller has been removed and framed with more content as another syllabus.	VHDL and VERILOG are presented as unit 4 and 5 separately.	A deep insight of VHDL and VERILOG code can be obtained.
12	EBEC22E07	Intelligent Instrumentation	Measurements, Instrumentation Topic in Unit 1		10%
13	EBEC22E08	Advanced Microprocessors	Implementation of Strings, Procedures, Macros, BIOS and DOS Services using X86 Assembly Language Programming, Memory and I/O Interfacing, Analog Interfacing and Industrial Control.	ARM Architecture -ARM programmer's model- ARM development tools- memory hierarchy - ARM assembly language programming-Simple Examples- Architectural support for operating system- ARM instruction Set-Embedded ARM Application	20%
14	EBEC22E09	Nano Electronics	UNIT1 Microelectronics towards biomolecule electronics Growth, fabrication,	UNIT I: Nano-scale electronics; Foundation of nanoelectronics; Size	50%

DETAILS OF NEW COURSES, ELECTIVES, INTER DISCIPLINARY, LIFE SKILL, COURSES FOCUSED ON EMPLOYABILITY, ENTREPRENEURSHIP, SKILL ETC.

S.NO.	New Courses (Subjects)	Value Added Courses	Life Skill	Electives	Interdisciplinary	Focus On Employability/ Entrepreneursh ip/Skill Development
1					Electrical and Instrumentation	
					Engineering	
2					C++ and Java	
					Programming	
3					C++ and Java Programming Lab	
4	Sensors and Robotics					
5	Sensors and Robotics Lab					
6				Photonics		Principles of Management and Behavioral Science
7				Next Generation		
8				Communication		
8				Introduction to Artificial		
				Intelligence		
9				Machine		
9				learning		
10				Fuzzy Logic		
10				and Systems		
11				Introduction to		
				Discrete		
				Mathematics		
12				Wireless Sensor		
				Networks		
13				Database		
				Management System		
14				Theory of Computation		

SEMESTER – I

Subject Co		Subject TECHN			GII	Ty.		L	T	/SLr	I	P/R	C
		IECHN	ICAL	ENGLI	БП								
EBEN2200		Prerequ English	isite : P	Pass in]	Plus 2			2		0/0	()/0	2
C: Credits,			Tutorial	SLr: 9	Supervi	sed Lear	nino	P∙ Pr	oble	m / Pra	octical		
R: Research												on	
OBJECTIV	•						j -						
To refresh a		nulate s	tudents'	Englis	h learni	ng throu	oh C	onten	t Inte	orated	Langua	oe Leari	ning to
have an in-													
that they are													••••••
COURSE (-				
Students co			· /	ere able	e to								
CO1 Refresh and stimulate their English learning through Content Integrated Language													
_		ing min			C	0		J		0			
CO2				derstand	ding of	the con	pone	ents o	f En	glish la	anguage	and its	use in
		nunicatio	-		J		*			-	00		
CO3	Stren	gthen th	eir voca	bulary	and syn	ntactic k	nowl	edge	for u	se in a	cademic	and tec	chnical
		nunicatio		-	•			-					
CO4	Learn	Learn to negotiate meaning in inter-personal and academic communication for a											
		ssful car		-		-							
CO5	Engage in organized academic and professional writing for life-long learning and												
	resear	rch											
Mapping of	f Cour	se Outc	ome wi	th Prog	gram O	utcome	(POs	s)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO'	7 P	08	PO9	PO10	PO11	PO12
CO1	1	-	1	1	3	1	1		2	3	3	1	3
CO2	-	1	-	2	3	2	1		1	3	3	-	3
CO3	1	1	1	1	2	1	-		2	3	3	1	3
CO4	1	2	1	1	3	-	1		-	2	2	1	2
CO5	1	2	1	-	2	1	-		1	3	3	1	3
COs/PSOs	5	PSC)1		PSC)2		I	PSO	3		PSO4	
CO1		3											
CO2		3											
CO3		3											
CO4		3											
CO5		3											
3/2/1 Indica	ates St	rength	Of Corr	elation	1, 3 – H	igh, 2- N	/lediu	um, 1	- Lov	W			
								Γ				T	
			•	0018		S			>				t
1	s		2	Humanities & Social Sciences		Program Electives	ş		Inter Disciplinary		Skill Component		Practical / Project
~	JCe	Ice	c	8 S	ore	lect	ive		plir		uou		Pro
ory	cier	ien		ue.	1 CC	ΠE	ect		scij		dup		1/1
Category	Basic Sciences	Engg Sciences	•	Humanıt Sciences	Program core	ran	Open Electives		Ū.		Co		ica
Ca	asic	188		um. ien	ıgo	1g0	Jen		ter		dill		act
	B	Er		H SC	Pr	\mathbf{Pr}	Ő		In		Sk		Pr
			\checkmark										
	1		1				1						

CATIONAL AND	RESEARCH INSTIT
DEEMED TO	BE UNIVERSITY
University with G	raded Autonomy Status
(Ap ISO 21001 · 2	018 Cortified Institution)

Dr_

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

M.G.R.

Subject Code	Subject Name : TECHNICAL ENGLISH	Ty/ Lb/ ETL/IE	L	T/SLr	P/R	С
EBEN22001	Prerequisite : Pass in Plus 2 English	Ту	2	0/0	0/0	2

UNIT I VOCABULARY DEVELOPMENT

EDU

Affixes: prefixes and suffixes and word formation-synonyms and antonyms-nominal compounds, expanding using numbers and approximation - preposition, prepositional phrases, preposition + relative pronounadjective: degrees of comparison, formation of adjectives, irregular comparatives- Infinitive and Gerunds

UNIT II GRAMMAR

Tenses- auxiliary and modal -voice: active, passive and impersonal passive - Questions: Wh-pattern, Yes/no questions, tag questions – adverbs and adverbial clauses- 'If' clause, 'cause and effect', 'purpose'- Concord: subject-verb agreement

UNIT III READING

Comprehension: extracting relevant information from the text, by skimming and scanning and inferring, identifying lexical and contextual meaning for specific information, identifying the topic sentence and its role in each paragraph, comprehension exercises - Note - making - Précis writing-instructions, suggestions and recommendations.

UNIT IV WRITING

Jumbled sentences - paragraph writing coherence devices- discourse markers. Essay writing- Letter writing, Informal and formal: seeking permission to undergo practical training, letter to an editor of a newspaper complaining about civic problems and suggesting suitable solutions

UNIT V VISUAL AIDS IN COMMUNICATION

Interpretation of diagrams - tables, flow charts, pie charts and bar charts, and their use in Business reports

Total Number of Hours: 30

TEXT BOOK

1. Panorama: Content Integrated Language Learning for Engineers, M. Chandrasena Rajeswaran & R.Pushkala, Vijay Nicole Imprints Pvt. Ltd., Chennai

REFERENCES

- 1. Bhatnagar & Bhatnagar, Communicative English for Engineers and Professionals, Pearson
- 2. Wren and Martin: Grammar and Composition, Chand & Co, 2006
- 3. https://learnenglish.britishcouncil.org
- 4. www.better-english.com/grammar/preposition.

6 Hrs

6 Hrs

6 Hrs

6 Hrs

Subject Code	e: Sul			AATHE					T	[y/Lb/ ETL/I	Ι			/R	C		
EBMA22001				her seco	ondary					Ту	3	1/0) 0	/0	4		
I · Lecture T		themat		ervised I	earnin	ng F) · Dr	oject	ject R : Research C: Credits								
Ty/Lb/ETL :								ojeci	к.	Resea	ii cii c.	cicuits					
OBJECTIVI		240/211		<i>*</i> 111001 j													
The student		be mad	e to:														
• To be a	able to u	indersta	nd con	cepts in A	Algebra	a											
				ts in Mat	•												
			-	ms in trig		etry											
	•			cepts in I	-	-											
• To be a	able to u	ındersta	nd the	concept	of Fuci	ntio	ns of	sever	al v	variabl	es						
COURSE O																	
CO1			ind the	summat	ion of	give	en ser	ries of	f bir	nomial	,expoi	nential a	nd				
	logarit																
CO2				m a non	diagon	al r	natriz	x into	an	equiva	lent di	agonal r	natrix u	ising	5		
		onal tra															
CO3				expansi		rigo	nome	etric f	ucti	on int	o an inf	finite se	ries and				
				ginary pa				1		C							
CO4				maxima									6.6		<u> </u>		
CO5		able to e l variabl		e the part	tial/tota	al di	mere	ntiatio	on a	ind ma	lx1ma/r	ninima (of funct	10n	OI		
Mapping of				h Drogr	om Ou	taa	mog										
COs/POs	PO1	PO2	PO3	PO4	PO5		<u>06</u>	PO7		PO8	PO9	PO10	PO11	P	012		
C01	3	3	2	2	2	-	1	2		2	3	3	1	1	3		
CO2	3	3	1	2	3		2	1		2	3	1	2		3		
CO3	3	3	1	2	2		3	1		1	2	3	2		1		
CO4	3	2	2	2	1		2	2		2	2	3	2		2		
CO5	3	3	1	2	1		1	2		1	2	2	1		3		
COs/PSOs		PSC)1		PSC)2				PSO3	3		PSO	4			
CO1		3			1					2			2				
CO2		3			1					2			2				
CO3		3			1					2			2				
CO4		3			1					2			2				
CO5		3			1					2			2				
3/2/1 Indicat	tes Strength Of Correlation, 3 – High, 2- Medium, 1-									Low	-						
Category	Basic Sciences	Engineering	Sciences	Humanities and Social Sciences	Program Core		Program Flactives	FIGUNCS	Open Electives		Inter Disciplinary	Skill Component	Dractical / Droiact				
	~	*															

Subject Code:	Subject Name :MATHEMATICS-I	Ty/Lb/ ETL/IE	L	T/ SLr	P/R	С
EBMA22001	Prerequisite: Higher secondary Mathematics	Ту	3	1/0	0/0	4

UNIT I **ALGEBRA**

Binomial, Exponential, Logarithmic Series (without proof of theorems) - Problems on Summation, Approximation and Coefficients.

UNIT II MATRICES

Characteristic equation – Eigen values and Eigen vectors of a real matrix – Properties of Eigen values – Cayley - Hamilton theorem(without proof) – Orthogonal reduction of a symmetric matrix to Diagonal form.

UNIT III TRIGONOMETRY

Expansions of Sin n \Box , Cos n \Box in powers of Sin \Box and Cos \Box -Expansion of Tan n \Box - Expansions of Sinⁿ \Box and \cos^{n} in terms of Sines and Cosines of multiples of \Box – Hyperbolic functions – Separation into real and imaginary parts.

UNIT IV DIFFERENTIATION

Basic concepts of Differentiation -Elementary differentiation methods -Parametric functions - Implicit function -Leibnitz theorem(without proof) - Maxima and Minima - Points of inflection.

UNIT V FUNCTIONS OF SEVERAL VARIABLES

Partial derivatives – Total differential – Differentiation of implicit functions – Taylor's expansion – Maxima and Minima by Lagrange's Method of undetermined multipliers – Jacobians.

Total Number of Hours: 60

TEXT & REFERENCE BOOKS:

- 1. Kreyszig E., Advanced Engineering Mathematics (10th ed.), John Wiley & Sons, (2011).
- 2. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).
- 3. John Bird, Basic Engineering Mathematics (5th ed.), Elsevier Ltd, (2010).
- 4. Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).
- 5. P.Kandasamy, K.Thilagavathy and K. Gunavathy, Engineering Mathematics Vol. I (4th Revised ed.), S. Chand & Co., Publishers, New Delhi (2000).
- 6. John Bird, Higher Engineering Mathematics (5th ed.), Elsevier Ltd. (2006).

12 Hrs

12 Hrs

12 Hrs

12 Hrs

Subject Co	da				autiavo	yal, Chenn		L	madu	T/		D/D	C	
Subject Co		ENGINEERING PHYSICS ETL/IE SLr												
EBPH22E		Prerequ				ETI ETI		2		0/0		2/0	3	
		Physics						_		0,0	-	_, •	•	
C: Credits,	L: Lec	ture, T:												
R: Research	n, Ty/L	.b/ETL/I	E: Theo	ory /Lab	/Embed	ded The	ory a	and L	_ab/In	ternal E	Evaluatio	on		
OBJECTI	VES													
• Outli	ine the	relation	betwee	n Scienc	ce, Engi	neering	& Te	echno	ology.					
						basic co								
	-	Indamental laws of Physics in Engineering & Technology. ify & solve problems using physics concepts.												
	-		-	-		-								
		.	ent act	ivities	associat	ted with	n th	e co	ourse	throug	h effec	tive teo	chnical	
		and present activities associated with the course through effective technical ication												
COURSE														
		leting this course were able to												
CO1		emonstrate competency in understanding basic concepts.												
CO2		lize scientific methods for formal investigations & demonstrate competency with												
CO3		perimental methods and verify the concept to content knowledge. entify and provide solutions for engineering problems.												
CO3						to day lit				cal situ	ations			
C04 C05		analyti							practi	cai situ	ations.			
Mapping o								c)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	$\frac{\mathbf{PO}}{\mathbf{PO}}$		PO8	PO9	PO10	PO11	PO12	
C01	3	3	100	2	100	100	10	· -	00	102	1010	1011	1012	
CO2	3	3		2	2						1			
CO3	3	2	2	2		2	1							
CO4	3					2	2		1				2	
CO5	3												1	
COs/PSO	S	PSC	01		PSO	2			PSO3	3		PSO4		
CO1		3			3				1					
CO2		3			2				1					
CO3		3			2				2			1		
CO4		3			2				2			2		
CO5		3			1				2			1		
3/2/1 Indic	ates St	rength	Of Cor	relation	1, 3 – H i	igh, 2- N	ledi	um, 1	1- Lo	W	1		1	
				s d				-			ant			
	ces	P 0	Engineering Sciences Bocial Science Program Core Program Electives Open Electives Inter Disciplinary Disciplinary											
	ien	ring		ties (cie	Ŭ	_ ~		ecti		าลr	dui			
Category	Basic Sciences	Engineering	Sciences	Humanities and Social Sciences	Program Core	Program Electives	Ē	Ĩ	:	Uisciplinary	Skill Component		Practical Project	
teg	asic	lgir	ien	um	ogr	ogr ecti		pen	Inter	ISCI	dill		Project	
Cai	Bź	Er	Sc	Hı Sc	Pr	Ε	Ċ	5	In .	ī	Sk		Pr Pr	
		,												
	\checkmark													

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95, Taminadu, India.

то

AND RESEARCH

Subject	Subject Name : ENGINEERING	Ty/Lb/	L	Τ/	P/R	С
Code	PHYSICS	ETL/IE		SLr		
EBPH22ET1	Prerequisite : Higher Sec. Physics	ETL	2	0/0	2/0	3

UNIT I PROPERTIES OF MATTER

Elasticity - stress, strain and Hook's law - Poisson's ratio - three moduli of elasticity - twisting couple on a wire – Shafts – Solid & Hollow Shafts – Bending moment – Youngs Modulus Determination by non uniform bending -I form of girders.

viscosity - flow of liquid through a narrow tube: Poiseuille's law (Qualitative)- Ostwald's viscometer – LubricationLab Component – 1. Coefficient of Viscosity determination using Poiseuille's Method.

UNIT II ACOUSTICS & ULTRASONICS

Fundamentals of acoustics - reverberation- reverberation time - factors affecting acoustics.Ultrasonics - Production of ultrasonic waves - detection of ultrasonic waves+ - acoustic grating - application of ultrasonic waves.Lab Component - 2. Ultrasonic Velocity Determination.

UNIT III WAVE OPTICS

Huygen's principle - interference of light – wave front splitting and amplitude – air wedge - Newton's rings - Michelson interferometer and its applications - Fraunhofer diffraction from a single slit - diffraction grating Lab Component – 3. Spectrometer – Grating

UNIT IV LASER

Laser principle and characteristics - amplification of light by population inversion - properties of laser beams: mono-chromaticity, coherence, directionality and brightness - different types of lasers - Ruby laser-Nd-YAG laser-He-Ne laser-CO₂ laser - semiconductor laser - applications of lasers in science, engineering and medicine.**Lab Component – 4. Determination of Wavelength of the given Laser source & Particle size determination.**

UNIT V FIBER OPTIC COMMUNICATION

Total Internal Reflection – Propagation of Light in Optical Fibers – Numerical aperture and Acceptance Angle – Types of Optical Fibers (material, refractive index, mode) – Fiber Optical Communication system (Block diagram) – Attenuation–Transmitter, Receiver, Dispersion, Modulation/Demodulation Advantages of Fiber Optical Communication System – IMT, PMT, Wavelength Modulated & Polarization Modulated Sensors – Endoscope Applications. Lab Component – 5. Determination of Numerical Aperture of Optical Fiber

TEXT BOOKS

- 1. Brijlal, M. N. Avadhanulu & N. Subrahmanyam, Text Book of Optics, S. Chand Publications, 25th edition, 2012
- 2. R. Murugeshan, Electricity and Magnetism, S.Chand Publications, 10th edition, 2017
- 3. R. Murugeshan & Kiruthiga Sivaprasath, Modern Physics, S.Chand Publications, 2016

REFERENCE BOOKS

- 1. Dr. Senthil Kumar Engineering Physics I VRB Publishers, 2016
- 2. N Subrahmanyam & Brijlal, Waves and Oscillations, Vikas Publications, New Delhi, 1988
- 3. N Subrahmanyam & Brijlal, Properties of Matter, S. Chand Co., New Delhi, 1982
- 4. N Subrahmanyam & Brijlal, Text book of Optics, S. Chand Co., New Delhi, 1989
- 5. R. Murugeshan, Electricity and Magnetism, S. Chand & Co., New Delhi, 1995
- 6. Thygarajan K & Ajay Ghatak, Laser Theory and Applications, Macmillan, New Delhi, 1988
- 7. Dr. S. Muthukumaran, Dr.G.Balaji, S.Masilamani PHYSICS LABORATORY I & II by Sri Krishna Hitech Publishing Company Pvt.Ltd.

12 Hrs

12 Hrs

12 Hrs

12 Hrs

12 Hrs

Total Number of Hours: 60

Subject C		bject Na	ne: EN		ering		T	y/Lb/]	L	T /	P/R	С
		IEMIST						TL/IE			SLr		
EBCH22E	ET1 Pro	erequisit	e : High	ier Sec.	Chemis	stry		ETL		2	0/0	2/0	3
C: Credits,	L: Lectur	e, T: Tut	orial, SI	r: Sup	ervised I	Learnin	g, P: F	roblen	n / P	ractical			
R: Researc	h, Ty/Lb/	ETL/IE: 7	Theory /	Lab/En	nbedded	Theory	and L	.ab/Int	erna	l Evalua	tion		
OBJECT	IVES												
• To c	leduce pra	ctical app	olication	of the	oretical c	oncepts							
	provide and	•				pts of cl	nemic	al ther	mod	ynamics	5		
	articulate the water treatment methods impart the knowledge in electrical conductance and EMF												
	-		-								a 1		
	reate awa					-		•	1 COI	ncepts o	t polyme	ers	
• 101	ntroduce a	nalytical	tools to	r chara	cterizatio	on techn	iques.	•					
COURSE			·										
Students co													
CO1	Apply re												
CO2	Recall th	ie fundar	nentals	and de	emonstra	te by u	nderst	tanding	g th	e first p	principles	s of Engi	ineering
CO2	sciences.	the opport		achnia	log to int	ormenat d	ata ta	mmorria	10.14	lideon	lucion		
CO3 CO4	Examine Demonst	A A	<u> </u>	^				<u> </u>				and for 1	fa long
C04	learning.	Tate the	conadoi	auon	JI SCIENC		Engin	eering	10	recogniz	le the ne		lie long
CO5	Analyse	the impac	rt of cor	textual	knowled	lge to a	cess	the he	alth :	and soci	etv issue	S	
Mapping											ety issue		
COs/PO		PO2	PO3	PO4	PO5	PO6	PO	7 PC) 8	PO9	PO10	PO11	PO12
CO1	3		3	3	3					2			
CO2	3	3				3							3
CO3	3		2	3									
CO4	3	3		3					3				3
CO5	3					2	3	4	2				3
COs/I	PSOs		PSO1		I	PSO2			PS	503		PSO	4
CC	01		3			3				1		1	
CC			3			2				2		1	
CC			1			2				3		2	
CC			1			1				3		3	
CC 3/2/1 India		 nath Af (1 Correla	tion 3	_ High	1 2- Med	ium ´	1- I ov	17	1		2	
<i>3/2/</i> 1 IIIuI					<u> </u>		iuiii, .	<u>1- LUv</u>					
	SS		nd Ses	d)		es			lent				
	ence	gu	ss a) Oré		tive	2	<u>-</u>	por				
y	Scie	eri es	litie Sci	m C	es u	Elec	ina		om		al /		
gor.	ic (sine	nar ial	grai	grau ctiv	žn F	ir Jinl	d to	II C		tic	ject	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Discinlinary		Skill Component		Practical	Project	
Ũ	_	~~ •1					- I	-	-1			-	
1													
	\checkmark												

32	

AND RESEARCH INSTITUTE University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95, Taminadu, India.

Subject Code	Subject Name: ENGINEERING CHEMISTRY	Ty/Lb/	L	Τ/	P/R	С
		ETL/IE		SLr		1
EBCH22ET1	Prerequisite : Higher Sec. Chemistry	ETL	2	0/0	2/0	3

UNIT I CHEMICAL THERMODYNAMICS

Introduction, Terminology in thermodynamics -System, Surrounding, State and Path functions, Extensive and intensive properties. Laws of thermodynamics – I and II laws-Need for the II law. Enthalpy, Entropy, Gibbs free energy, Helmholtz free energy - Spontaneity and its criteria. Maxwell relations, Gibbs -Helmholtz equation (relating E & A) and (relating H & G).

TECHNOLOGY OF WATER UNIT II

12 Hrs Water quality parameters - Definition and expression. Analysis of water - alkalinity, hardness and its determination (EDTA method only). Boiler feed water and Boiler Troubles-Scales and sludges, Caustic embrittlement, Priming and Foaming and Boiler corrosion. Water softening processes - Internal conditioning, external conditioning – Demineralization methods. Desalination processes-RO and Electrodialysis. Lab Component-1. Analyze the water quality parameters for the given water sample.

ANALYTICAL AND CHARACTERIZATION TECHNIQUES UNIT III

Chromatographic techniques - column, thin layer and paper. Instrumentation-working with block diagram-UV-Visible Spectroscopy , IR Spectroscopy , Scanning electron microscope , Transmission electron microscope. Lab Component-2.Determination of Rf values of various components using thin layer chromatography. 3. Compute and interpret the structures of the given molecules using Chem Draw.

UNIT IV ELECTROCHEMISTRY

Conductance - Types of conductance and its Measurement. Electrodes and electrode potential, Nernst equation – EMF measurement and its applications-Electrochemical series- Types of electrodes- Reference electrodes-Standard hydrogen electrode- Saturated calomel electrode-Determination of PH using these electrodes.

Lab Component-4. Studies on acid-base conductometric titration.

5. Determination of redox potentials using potentiometry

UNIT V POLYMERS AND NANO COMPOSITES

Polymers-Introduction-Monomers - Functionality - Degree of polymerization-Tacticity. Classification-Plastics – Thermoplastics and thermosetting plastics, Compounding of plastics – Compression moulding, injection moulding and extrusion processes. Nano composites: particulates, clay and carbon nano tubes. Graphene nano composites and its applications.

Lab Component-6.Polymeric analysis using capillary viscometer

Total Number of Hours: 60

REFERENCES

1. Jain & JainEngineering Chemistry 17th Edition, Dhanpat Rai Publishing Company.

- 2. Vasant R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar, Polymer Science, New Age International, 1986.
- 3. B.K. Sharma, Polymer Chemistry, Goel Publishing House.
- 4. Y. R. Sharma, Elementary Organic Spectroscopy, S. Chand & Company Ltd.
- 5. N.Krishnamurthy, K.Jeyasubramanian, P.Vallinayagam, Applied Chemistry, Tata McGraw-Hill Publishing Company Limited, 1999.
- 6. Chichester, polymer-clay-nano composites, John wiley (2000).

12 Hrs

12 Hrs

12 Hrs

Subject Co		Subject N ENGINE		BASIC	MECH	ANICA	AL & (CIVIL	Ty/Lb/ ETL/IE	L		[/] Lr	P/R	C
EBME22E		Prerequi							ETL	2			2/0	3
C: Credits,					pervise	d Learr	ning, P:	Problem				, .		
R: Research														
OBJECTI	VES			-			-							
		nd the fu	ndamer	ntals and	applicat	tions of	IC Eng	gines, pov	ver plants	man	ufact	turing r	roce	sses
	mechan				TT		- 2	, I	I			01		
• To ex	xpose th	ne studen	ts to th	e various	constru	ction n	naterial	s and the	ir applicat	ions.				
	xpose the students to the various construction materials and their applications. OUTCOMES (Cos)													
	mpleting this course were able to													
CO1		Demonstrate the working principles of power plants, IC Engines and boilers												
CO2		Utilize the concept of metals forming, joining process and apply in suitable machining process												
CO3			-			·	-							
CO4		Understand the various machining process in machine tool Utilize the concept of Building materials and construction able to perform concrete mix and												
		masonry types												
CO5	Demonstrate how Roads, Railways, dams, Bridges have been constructed													
Mapping o	of Cour	se Outco	me wi	th Progr	am Out	tcome ((POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	6 PO	7 PO8	8 PO9	PO	10	PO11	PO	012
CO1	3					2		3	3	(1)	3			3
CO2	3				1	2		1	2	2	2			2
CO3	3	3			1	1		1	2	2	2			2
CO4	3				1	1			2	2	2			2
CO5	3				1	1		1	2	2	2			2
COs/P	SOs		PSO	1		PSO2]	PSO3			PSC	94	
CO	1		2						3			2		
CO			1						3			2		
CO	3		1						3			2		
CO			2						3			3		
CO	5		2						3			3		
3/2/1 Indic	ates St	rength O	of Corr	elation,	3 – Hig	h, 2- M	ledium	, 1- Low						
Category	Basic Sciences	Engineering	Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Inter Disciplinary	Skill Component			Practical /	Project	
		~												

Subject Name : BASIC MECHANICAL & CIVIL ENGINEERING Prerequisite : Nil

UNIT I THERMAL ENGINEERING

Subject Code

EBME22ET1

Classification of internal combustion engine – Working of two stroke, four stroke petrol and diesel engines. Classification of Boilers – Cochran boiler – Locomotive boilers – Power plant classification – Working of Thermal and Nuclear power plant- Working of Solar-Wind - Tidal and Geothermal power plants. Lab component: Study of Boilers and IC engines

AND RESEARCH

DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

UNIT II MANUFACTURING PROCESS

Metal forming processes – Rolling, forging, drawing, extrusion and sheet metal operations- fundamentals only. Metal Joining processes – Welding - arc and gas welding, Soldering and Brazing. Casting process – Patterns -Moulding tools - Types of moulding - Preparation of green sand mould -Operation of Cupola furnace. Lab component: Sheet metal works,

Fitting- Cutting (T, V, L and dovetail joints)

UNIT III MACHINING PROCESS

Basics of metal cutting operations – Working of lathe- parts-Operations performed. Drilling machine – Classification – Radial drilling machine - Twist drill nomenclature. Milling machine-types-different operations performed.

Lab component: Lathe operation: Step turning and Taper turning Drilling operation- Making hole drilling

UNIT IV BUILDING MATERIALS AND CONSTRUCTION

Materials: Brick - Types of Bricks - Test on bricks - Cement – Types, Properties and uses of cement – Steel - Properties and its uses – Ply wood and Plastics.

Construction: Mortar – Ingredients – Uses – Plastering - Types of mortar - Preparation – Uses – Concrete – Types – Grades – Uses – Curing – Introduction to Building Components (foundation to roof) – Masonry – Types of masonry (Bricks & Stones)

Lab component: Carpentry: Joints (Tee halving, Cross Lap, Dovetail Joint) Plumbing works- Pipe connections

UNIT V ROADS, RAILWAYS, BRIDGES & DAMS

Roads – Classification of roads – Components in roads – Railways -Components of permanent way and their function – Bridges – Components of bridges – Dams – Purpose of dams – Types of dams.

Total Number of Hours: 60

TEXT BOOKS

1. S. Bhaskar, S. Sellappan, H.N.Sreekanth,, (2002), "Basic Engineering" -Hi-Tech Publications

2. K. Venugopal, V. Prabhu Raja, (2013-14), "Basic Mechanical Engineering", Anuradha Publications.

3. K.V. Natarajan (2000), Basic Civil Engineering, Dhanalakshmi Publishers

4. S.C. Sharma(2002), Basic Civil Engineering, Dhanpat Raj Publications

REFERENCES

1. PR.SL. Somasundaram, (2002), "Basic Mechanical Engineering" –, Vikas Publications.

2. S.C. Rangawala(2002), Building Material and Construction, S. Chand Publisher

P/R

С

T/

NSTITUTE

L

2

Ty/Lb/

ETL/IE

ETL

10 Hrs

12 Hrs

10 Hrs

14 Hrs

Subject Code		Subject Name : C PROGR OFFICE TOOLS			AMMING AND MS				Ty/L ETL		L	T/ SL		P/R	C
EBCS22ET1	Prere	equisite: Nil						ET	L	1	0/()	2/0	2	
C: Credits, L: Lecture, T: Tutorial, SLr: Supervised Learning, P: Problem / Practical															
R: Research,												ion			
OBJECTIVE	S:														
The student s	should b	e made	to:												
Learn a programming language.															
Learn problem solving techniques.															
• Write programs in C and to solve the problems.															
Familiarize the students in preparation of documents and presentations with office automation tools.															
COURSE OUTCOMES (COs) : After Completing the course, the student can be able to															
	Understand and trace the execution of programs written in C language.														
	Write the C code for a given algorithm.														
	Apply Arrays and Functions concepts to write Programs														
	Apply Structures and pointers concepts for writing Programs														
CO5To perform documentation , accounting operations and presentation skillsMapping of Course Outcomes with Program Outcomes (POs)															
COs/POs	1		T		PO5	<u> </u>	PC	7	DOP	DOO	DO	10	DO11	D	012
COS/POS CO1	PO1	PO2	PO3	PO4		PO6			PO8	PO9	PO		PO11	P	012
COI	2	2	2	2	1	1]	1	1	1		1	2		2
CO2	2	2	2	2	1	1	1	1	1	1		1	2		2
CO3	2	2	3	2	1	1	1	1	1	1		1	3		2
CO4	2	2	3	3	1	1]	1	1	1		1	3		2
CO5	1	1	1	1	1	1	()	0	2		3	2		0
COs/PSOs		PSO1			PSO2				PSO3			PSO4			
CO1		1			2			3			3				
CO2					2			3			3				
CO3								3			3				
CO4								3			3				
CO5			2					3			3				
3/2/1 Indicate	s Streng	th Of C	orrelati	on, 3 – 1	High, 2- I	Medium,	, 1-]	Low	r						
	ses		Sciences Humanities and Social Sciences		re	sctives	Program Electives		ves	Inter Disciplinary	Skill Component		Practical / Project		
	ien(ing)	ies cie _l	Co	Ele			Open Electives	cipl		npc		$/P_1$	
ıy	Sci	Basic Sciences Engineering Sciences		unit I S	am	am			EIC	Dis		Con		cal	
Ő	sic	gin	Sciences	uma cial	Program Core	ngc		5	Jen	er]		ill (acti	
Category	Ba	En	Sc	Hu So	Prc	Prc			5	Int		Sk	Pra		
J															
										V					

AND RESEA

with Graded Auton

E.V.R. High Road. Maduravoval. Chennai-95

sit

Subject Code	Subject Name : C PROGRAMMING AND MS	Ty/Lb/	L	Τ/	P/R	С
	OFFICE TOOLS	ETL/IE		SLr		
EBCS22ET1	Prerequisite: Nil	ETL	1	0/0	2/0	2

UNIT I **INTRODUCTION**

Basic Structure of C programme- Constants, Variables and data types, Keywords, Identifiers- Operators and expressions- executing a C Program

DECISION MAKING STATEMENTS AND LOOPING STATEMENTS UNIT II 9 Hrs

Decision making with if statement, Simple if statement, else-if statement, Nesting if-else statement, The else if ladder, The switch statement, The goto statement, The while statement, The do while statement, The for statement, jumps in loops.

UNIT III **ARRAYS AND FUNCTIONS**

Introduction to Arrays- One dimensional arrays, Two dimensional array, and Multidimensional array-Introduction to Functions- calling a function, category of functions- arguments with return values, argument with no return values- parameter passing Mechanism: Call by Value and Call by Reference. Recursion.

UNIT IV **STRUCTURES & POINTERS**

Structures definition, giving values to members, Structure initialization, comparison of structure variables, Structure within structures, Understanding pointers, accessing the address of the variable, declaring and initializing pointer, accessing a variable through its pointer and arrays.

UNIT V **MS-OFFICE**

Introduction to MS-Word- Menus- Introduction to MS-Excel: features of MS- Excel, spread sheet/worksheet, parts of MS-excel window, functions in excel sheet, chart, Introduction to MS-Power point

Total Number of Hours: 45

TEXT BOOKS:

- 1. E.Balaguruswamy, Programming in ANSI C
- 2. Padma Reddy ,Computer Concepts & 'C' Programming
- 3. ShobhaHangirke, Computer Application For Business

List of Experiments: C PROGRAMMING

- 1. Find the factorial of a given positive number using function.
- 2. Calculate X raised to y using function.
- 3. Find GCD and LCM of two given integer numbers using function.
- 4. Find the sum of N natural numbers using function.
- 5. Book information using Structure.
- 6. Student information using Structure.
- 7. Print the address of a variable and its value using Pointer
- 8. Find area and perimeter of a circle
- 9. Check whether the given number is palindrome or not
- 10. Check whether the given number is prime or not
- 11.Calculate sum of the digits of the given number
- 12. Display Fibonacci series up to N terms
- 13. Check whether a given character is alphabetic, numeric or special character
- 14.Count vowels and consonants in a given string
- 15. Find product of two matrices

36

9 Hrs

9 Hrs

9 Hrs

MS-OFFICE

Preparing a news letter:

- 16. To prepare a newsletter with borders, two columns text, header and footer and inserting a graphic image and page layout.
- 17.Creating and editing the table
- 18.Printing envelopes and mail merge.
- 19.Using formulas and functions: To prepare a Worksheet showing the monthly sales of a company in different branch offices
- 20.Prepare a Statement for displaying Result of 10 students in 5 subjects

Subject Cod	TC) ENT	ame :O					L		T/ SLr		P/R	C		
			T LAB												
EBCC22I01			ite : Nil					1		0/0		1/0	1		
C: Credits, L															
R: Research,	-	ETL/II	E: Theory	//Lab/.	Embedd	ed Theo	ry an	id Lal	o/Inte	rnal Ev	aluation				
OBJECTIV	ES														
• Unders	stand h	ow entr	epreneur	ship Eo	ducation	transfor	ms i	ndivi	duals	into su	ccessful l	eaders.			
• Identif	y indiv	v individual potential &S have career dreams													
• Unders	stand di	tand difference between ideas & opportunities													
• Identif	y comp	components & create action plan.													
• Use br	brainstorming in a group to generate ideas.														
COURSE O	E OUTCOMES (Cos)														
Students con	pleting	pleting this course were able to													
CO1	Devel	Develop a Business plan & improve ability to recognize business opportunity													
CO2	Do a s	self-ana	lysis to b	ouild ar	n entrepi	eneurial	care	er.			• •				
CO3	Articu	late an	effective	e elevat	or pitch	•									
CO4		Analyze the local market environment & demonstrate the ability to find an attractive market													
CO5 Identify the required skills for entrepreneurship & develop															
Mapping of Course Outcome with Program Outcome (POs)															
COs/POs												PO12			
CO1		2	2	3	2	2	2			2	2	2	1		
CO2	3	2		3	2	3	2		3	3	3	2	2		
CO3		2	2	2		3			3	3	3				
CO4		3	2	2	2	2			3	2	2	3			
CO5		2	2	3	2	2	3		3	2	2	3	1		
COs/PS	Os		PSO1]	PSO2			PS()3		PSO4			
CO1									3			2			
CO2									3			3			
CO3									3			3			
CO4									3			3			
CO5									3			3			
3/2/1 Indica	tes Stre	ength C	of Corre	lation,	3 – Hig	h, 2- M	ediuı	n, 1-	Low						
						2	It								
A		S	Engineering Sciences	Humanities and Social	Sciences Program Core	es n		es		Disciplinary	Skill Component		al /		
Category	ు	Sciences	Engineer Sciences	So	Sciences Program	Program Electives		Open Electives		Idi	lpo		Practical Project		
ateg	Basic	cie	rigi	l nn	cie	rog lec		Open Electiv	Inter D.	lisc	Skill Com		rac		
Ŭ	В	S	ЩŇ	н	P N	ЧШ		С Е	lr T		SO		A A		
											•				

39

EBCC22I01 IE 0/0 **Prerequisite : Nil** 1

CHARACTERISTICS OF A SUCCESSFUL ENTREPRENEUR UNIT I

Subject Name : ORIENTATION

TO ENTREPRENEURSHIP &

PROJECT LAB

Introduction to entrepreneurship education - Myths about entrepreneurship - How has entrepreneurship changed the country – Dream it. Do it - Idea planes - Some success stories – Global Legends – Identify your own heroes.

UNIT II **ENTREPRENEURIAL STYLE**

Entrepreneurial styles - Introduction, concept & Different types - Barrier to Communication - Body language speaks louder than words

UNIT III **DESIGN THINKING**

Introduction to Design thinking – Myth busters – Design thinking Process - Customer profiling – Wowing your customer – Personal selling – concept & process – show & tell concept – Introduction to the concept of **Elevator Pitch**

UNIT IV RISK MANAGEMENT

Introduction to risk taking & Resilience - Managing risks (Learning from failures, Myth Buster) -Understanding risks through risk takers – Why do I do? – what do I do?

UNIT V PROJECT

Subject Code

How to choose a topic – basic skill sets necessary to take up a project – creating a prototype – Pitch your project – Project presentation.

IDEA GENERATION, EVALUATION & amp; PROJECT PRESENTATION 15Hrs

REFERENCE BOOKS& WEBSITE

- 1. Encyclopedia of Small Business (2011) (e book)
- 2. Oxford Handbook of Entrepreneurship (2014) (e book)
- 3. *lms.learnwise.org*

Ty/Lb/

ETL/IE

L

T/

SLr

3 Hrs

P/R

1/0

3 Hrs

Total Number of Hours: 30

3 Hrs

3 Hrs

3 Hrs

1

С

SEMESTER – II

Subject Co	de:	Subject	Name : N	AATHEN	IATIC	S-II			Ty/Lt ETL		L	T/ SLr	P	2/R	C	
EBMA2200)3	Prerequ	isite: Hig	ther seco	ndary N	Math	ema	tics	Ту	7	3	1/0	0)/0	4	
L : Lecture	T : Tu	-	-						-		its				<u>.</u>	
Ty/Lb/ETL					•		5									
OBJECTIV	VES :															
The studer	nt sho	uld be m	ade to:													
• To be	able	to unders	tand basic	concepts	in integ	gratio	n									
• To ur	ndersta	and the co	oncepts in	multiple	integral	s										
To us	se the basic concepts in ordinary differential equations															
• To be	e able to apply concepts of analytical geometry															
• To be	be able to understand the basic concept of vector calculus															
	OUTCOMES (COs) :															
CO1	To be able to Integrate the given function by using methods of integration and to find the area															
	under curve and the volume of a solid by revaluation															
CO2	To be	To be able to evaluate the multiple integrals /area/volume and to change the order of integration														
CO3	To be	To be able to apply concepts in Ordinary Differential equations and to solveeulers differential														
	equation															
CO4	To be able to find equation of plannes, lines and sphere and shortest distance between skew lines															
CO5	To be able to verify green/stokes/gauss divergence theorem															
Mapping of	of Course Outcomes with Program Outcomes (POs)															
COs/POs	PO1	l PO2	PO3	PO4	PO5	PO	6	PO7	PO8	PO9	POI	10 P	PO11	PC	012	
CO1	3	3	2	2	2	2		1	2	2	2		1		3	
CO2	3	3	1	2	2	3		2	2	3	3		2		2	
CO3	3	3	1	2	2	3		1	1	3	3		2		2	
CO4	3	3	2	2	1	2		2	2	2	3		2		2	
CO5	3	3	1	2	2	2		2	1	2	3		1		2	
COs / PSO	s	PS	01		PSO2	2			PSO3 PSO4							
CO1		3			1				$\frac{1500}{2}$							
CO2		3			1			2 2								
CO3		3			1				2				2			
CO4		3			1				2				2			
CO5		3			1				2				2			
3/2/1 Indica	ates S	trength ()f Correla	ation, 3 –	High, 2	2- Me	ediu	m, 1- L	ωOW							
Cataoner	Category Basic Sciences Engineering Sciences		Humanities and Social Sciences	Humanities and Social Sciences Program Core		Program Electives		Open Electives	Open Electives Inter Disciplinary		Skill Component		Practical /	Project		
		\checkmark														

ND RESEA

Subject Code:	Subject Name : MATHEMATICS-II	Ty/Lb/ ETL/IE	L	T/ SLr	P/R	C
EBMA22003	Prerequisite: Higher secondary Mathematics	Ту	3	1/0	0/0	4

UNIT I **INTEGRATION**

Basic concepts of Integration – Methods of Integration– Integration by substitution – Integration by parts – Definite integrals- Properties of definite integrals - Problems on finding Area and Volume using single integrals (simple problems).

UNIT II **MULTIPLE INTEGRALS**

Double integral in Cartesian and Polar Co-ordinates - Change of order of integration - Triple integral in Cartesian Co-ordinates - Spherical Polar Co-ordinates - Change of variables (simple problems).

ORDINARY DIFFERENTIAL EQUATIONS UNIT III

First order differential equations - Second and higher order linear differential equations with constant coefficients and with RHS of the form: e^{ax} , x^n , Sin ax, Cos ax, $e^{ax}f(x)$, x f(x) where f(x) is Sin bx or Cos bx – Differential equations with variable coefficients (Euler's form) (simple problems).

THREE DIMENSIONAL ANALYTICAL GEOMETRY UNIT IV

Direction Cosines and Ratios - Equation of a straight line - Angle between two lines - Equation of a plane -Co-planar lines – Shortest distance between skew lines – Sphere – Tangent plane.

UNIT V **VECTOR CALCULUS**

Scalar and Vector functions - Differentiation - Gradient, Divergence and Curl - Directional derivatives -Irrotational and Solenoidal fields- Line, Surface and Volume integrals - Green's, Stoke's and Gauss divergence theorems (statement only) – Verification.

Total Number of Hours: 60

REFERENCE BOOKS:

1. Kreyszig E., Advanced Engineering Mathematics (10th ed.), John Wiley & Sons, (2011).

- 2. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).
- 3. John Bird, Basic Engineering Mathematics (5th ed.), Elsevier Ltd, (2010).
- 4. Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).

12 Hrs

12 Hrs

12 Hrs

12 Hrs

NSTITUTE

Subject Co	ode	Subjec	t Name	: SOLII) STAT	E PHY	SICS	Ty/Lb/		T/SLr	P/R	С		
	1	D	•••					ETL/I		0.10	0.10			
EBPH2200				Engg. Ph		1 7	·	Ty	3	0/0	0/0	3		
C: Credits,														
R: Researc		LD/ETL	TE: The	ory /Lab	/Embed	ded The	eory and	1 Lab/Int	ernal E	zvaluatio	on			
OBJECTI														
• Deve	evelop a Scientific attitude at micro and nano scale of materials													
• Und	derstand the concepts of Modern Physics													
• App	Apply the science of materials to Engineering & Technology													
COURSE OUTCOMES (Cos)														
Students completing this course were able to														
CO1	Enab	Enable the student to employ the classical & quantum theories & Laws in general												
CO2	Critic	ritically evaluate to build models to understand the solid state fundamentals												
CO3		ormulate & understand the behaviour of solid state devices												
CO4	Artic	ulate th	e physic	al prope	rties of	condens	sed mat	ter						
CO5		nterpret the role of solid state physics in the advanced technological developments												
Mapping of Course Outcome with Program Outcome (POs)														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	2	2	2	1	1			2		1		
CO2	3	3	1	2	2	1	1		1	2		1		
CO3	3	3	3	3	2	2	2	1		2	1	1		
CO4	3	3	3	3	2	2	1	1	3	2	1	1		
CO5	3	2	2	2	2	1	1	1	2	2	1	1		
COs/PSOs	5	PSC)1		PSO	2		PSO3		PSO4				
CO1		3			3			3			2			
CO2		3			3			3			2			
CO3		2			3			3			2			
CO4		1			3			3			1			
CO5		2			2			2			2			
3/2/1 Indic	ates S	trength	Of Cor	relation	, 3 – H i	igh, 2- I	Aediun	1, 1- Lov	V	·				
					ĺ									
	Basic Sciences	හ		s I	Core			пy		ıt				
	cie) Srin	S	itie cia s		u Sč	SS	ina		ner		- Ir		
ry	c S	Engineering	Sciences	Humanities and Social Sciences	Program (Program Electives	Open Electives	Inter Disciplina		Skill Component		Practical Project		
oge	asi	ngi	cie	nd Did	log	rog lect	Open Electi	Inter Disci		Skill Com		Practica Project		
Category	В	Щ	Š	х а Н	P	Ρ	О Е	Ir D		S		P P		
		,												
	\checkmark													
												1		

Subject Code	Subject Name : SOLID STATE PHYSICS	Ty/Lb/	L	T/SLr	P/R	С	
		ETL/IE					
EBPH22001	Prerequisite: Engg. Physics	Ту	3	0/0	0/0	3	Ì

UNIT I **CRYSTAL STRUCTURE**

Space Lattice – Unit cell – Bravais lattice – Lattice planes – Miller indices – Calculation of number of atoms per unit cell - Atomic radius - Coordination number - Packing factor for SC, BCC, FCC and HCP structures - Ceramic Materials & Graphite Structures - Crystal Growth Techniques (Slow Evaporation Method & Melt Growth)

CONDUCTORS & SUPER CONDUCTORS UNIT II

Qualitative analysis of Free electron theory – Electrical & Thermal Conductivity (Derivation) - Fermi energy & its importance - Qualitative analysis of conductors, semiconductors & insulators - Important electrical materials. Superconductors - Transition temperature - BCS theory - Properties of super conductors - Types -Low & High temperature superconductors - AC & DC Josephson effect - SQUIDS, Magnetic Levitation -Applications of super conductors

SEMICONDUCTOR PHYSICS UNIT III

Bonds in Semiconductors - Types - Importance of Germanium & Silicon - Other Commonly Used Semiconducting materials - Carrier concentration in Intrinsic Semiconductors (Electron and Hole Density) -Band Gap Determination - Carrier Transport in Semiconductors - Drift, Mobility and Diffusion - Hall effect - Determination of Hall Coefficient and its Applications - Dilute Magnetic Semiconductors (DMS) & their Applications construction, working and characteristics of semiconductor diode, Zener diode, transistor (n-p-n and p-n-p transistor), Transistor characteristics (CB, CE, CC), JFET (Construction and its characteristics).

MAGNETIC & DIELECTRIC PHYSICS UNIT IV

Magnetic Materials: Types – Comparison of Dia, Para and Ferro Magnetism – Heisenberg's interpretation – Domain theory – Hysteresis – Soft and Hard Magnetic Materials – Application of Magnetic Resonance Imaging – Important Magnetic, Insulating & Ferro electric materials.

Dielectric Materials: Electrical Susceptibility - Dielectric Constant - Concept of Polarization - Frequency and Temperature Dependence of Polarization - Dielectric loss - Dielectric breakdown - Commonly used Dielectric materials and their practical applications.

OPTO ELECTRONICS UNIT V

Properties & Classification of Optical Materials - Absorption in Metals, Insulators & Semiconductors -Composite Materials – Nano Materials – Bio Materials – MEMS – NEMS – LED's – Organic LED's – LCD's - Laser diodes - Photodetectors - Tunneling - Resonant Tunneling Diodes (RTD's) - Carbon Nanotubes - Various Ttypes of Optical Materials with Properties.

Total Number of Hours: 45

TEXT BOOKS & REFERENCE BOOKS

1. V. Rajendran&Mariakani "Materials Science", Tata McGraw Hill (2004).

- 2. P.K.Palanisamy, "Materials science", Scitech Publication(2002).
- 3. Dr. SenthilKumar, "Engineering Physics II" VRB Publishers (2016).
- 4. V. Arumugam, Materials Science", Anuradha Agencies, (2003 Edition).

5. Pillai S.O., "Solid State Physics", New Age International, (2005).

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Co	de		bject N IEMIS		: TEC		NICAL	ıravoyal, C		T	y/Lb/ TL/IE	L		SLr	P/R	C
EBCH2200)1	Pre	ereanis	site: F	Engg. (Che	emistry	,			Ty	3	()/0	0/0	3
C: Credits,									ıg, l						0,0	
R: Research							*		<u> </u>							
OBJECTIV	VES															
		the a	applica	tion o	of semi	con	ductors	s in optic	s an	d so	lar cells					
	•	yze the radical improvement in electrical energy storage devices.														
	-	erstand the degradation of electrical fittings and metallic joints.														
• To so	lve ch	e chemical problems by simulation.														
• To di	fferen	erentiate the various engineering materials by understanding its properties.														
	COUTCOMES (Cos)															
		pleting this course were able to														
CO1		Paraphrase the engineering knowledge by identifying proper chemical science technique.														
CO2		Interpret appropriate solution for complex problems by using modern engineering and												and IT		
		tools.														
CO3		Retrieve and show the design solutions for safety and sustainable development.														
CO4		Integrate the electrical and electronic concepts with professional ethics.														
CO5 Articulate the technological changes recognizing the need for lifelong learning.																
	pping of Course Outcome with Program Outcome (POs)												D 010			
Cos/POs	PO	1	PO2	PO	3 PC)4	PO5	PO6	P	07	PO8	PO	9	PO10	PO11	PO12
CO1	3			2		<u>,</u>	3	_								
CO2	3			3		3 3	3			3	2		_			
CO3	3			3		5				3	3					2
CO4 CO5	3			3						3	3					$\frac{3}{2}$
COS/PSC	-		DC	501			D	502		5	PS	03			PSO4	
COS/15C	75			3			1.	2			15				3	
C01 C02				3				2							3	
CO2 CO3				3				2						_	3	
CO4				3				2							3	
C05				3				2							3	
3/2/1 Indica	ates S	tren			relatio	n, 3			diui	m, 1						
Category	Basic Sciences Engineering Sciences Humanities and Social Sciences			Program Core	Program Electives	Open Electives		Inter Disciplinary		Skill	Component		Practical / Project			
	\checkmark															

semiconductors-Intrinsic-Extrensic semiconductors -Mobility of electrons and Holes -Fermi level in Semiconductors- Industrial application of Semiconductors-Semiconductors in Optics - LEDs, OLEDs, Semiconductors in solar cells- Types - First generation solar cells - Single crystalline and poly crystalline solar cells -Czochralski Process of single crystalline silicon synthesis

Semiconductors - Introduction - holes and electrons-Band theory-properties of semi conductors-Types of

UNIT II ELECTROCHEMICAL CELLS AND BATTERY TECHNOLOGY 9 Hrs

Electrochemical cells: Galvanic cell (Daniel cell);Batteries: Classification of batteries, primary batteries (dry cells) and secondary batteries -nickel-cadmium ,lead-acid battery, Solid state batteries - Lithium battery, Lithium Sulphur battery, Fuel cells.

UNIT III DEVICECORROSION

UNIT I

Introduction - chemistry of IC and PCB- causes of corrosion on IC, PC-miniaturization, complex material utilization, production and service factors --environmental contamination (airborne contaminants) - Forms of corrosion - anodic, cathodic corrosion- Electrical Contact and metallic joints degradation- fretting corrosion corrosion costs - corrosion protection of computer hardware.

UNIT IV **COMPUTATIONAL CHEMISTRY**

CHEMISTRY OF SEMICONDUCTORS

Introduction, Software tools available for chemistry and its applications, Chem Draw- Designing a Chemical Structure- Shortcuts and Hotkeys on designing a chemical structure, Biopolymer Drawing, Advanced drawing Techniques. Structure Analysis, Creating 3D Models, Estimating and displaying Proton and carbon-13 NMR chemical shifts, Creating TLC Plates to find Rf values, Chem Draw/Excel functions.

UNIT V MODERN ENGINEERING MATERIALS FOR ELECTRONIC DEVICES 9 Hrs

Alloys and Need for Alloys - Modern Electronic grade alloys-Applications in electrical components, transducers, electromagnetic shielding of computers, telecommunications equipment and rocket motor casings. Thin films- Preparation by the Sol-Gel Method-Application of thin films.

Total Number of Hours: 45

REFERENCES

- 1. Oleg Roussak & H. D. Gesser, Applied Chemistry: A Textbook for Engineers and Technologists, Springer.
- 2. Samuel Glasstone, An Introduction of Electrochemistry, Franklin Classics Trade Press.
- 3. Kharton V.V, Solid state electrochemistry II: Electrodes, interfaces and ceramic membranes, Wilev
- 4. Jain and Jain, Engineering Chemistry, Dhanpat Rai Publishing Company.
- 5. Chemdraw 16.0 User Guide , Perkin Elmer Informatics Inc.
- 6. Rolf E. Hummel, Electronic Properties of Materials, Springer

Subject Code Subject Name : TECHNICAL Ty/Lb/ T/SLr P/R L С CHEMISTRY **ETL/IE EBCH22001 Prerequisite: Engg. Chemistry** 3 0/0 0/0 3 Ty

9 Hrs

9 Hrs

Subject Subject Name : ENGINEERING Ty/Lb/ L T/SLr P/R											C					
Code			Ject N APHI		ENGI	NEEKI	NG			y/LD/ TL/IE	L	1/SLf	F/K	C		
EBME2	2001	_			Jil					ETL	2	0/0	2/0	3		
C: Credi						Superv	ised Lea	arning					-10			
R: Resea													ion			
OBJEC	TIVE	Ś														
• T	o acqu	uire kr	nowled	dge in	geometr	ical dra	wing.									
	• To expose the students in computer aided drafting.															
COURSE OUTCOMES (Cos)																
	Students completing this course were able to															
CO1	CO1 Utilize the concept of Engineering Graphics Techniques to draft letters, Numbers,															
	Dimensioning in Indian Standards															
CO2																
			in engineering applications. ify basic sketching techniques of engineering equipments													
CO3																
CO5Draw the sectional view of simple building drawing.Mapping of Course Outcome with Program Outcome (POs)																
COs/PC														PO12		
C03/1C	/5 1	3	3	3	2	2	2	10/	,	100	3	3	1011	3		
CO2		3	3	3	2	2	2				3	3		3		
CO3		3	3	3	1		2				2	2		2		
CO4		3	3	2	2		3			2	3	3		3		
CO5		3	3	3	2	3	1			2	3	3		3		
COs	/PSOs	s		PSO	1		PSO2			P	503		PSO4			
C	01			2			2				3		2			
C	202			1			2				3		1			
-	03			2			2				3		2			
	04			1			2				3		1			
	05			2			2		<u> </u>		3		2			
3/2/1 In	dicate	es Stre	ngth	Of Co	rrelatio	n, 3 – I	ligh, 2-	Medi	iun	n, 1- L	OW					
			- F.C			ore										
			ing		ies ial	Core			~	arv	,	ent				
		ces	leei	ces	anit Soc	am	am ive		ive	plir		noc		ical ct		
gor	Basic	Sciences	Engineer	Sciences	Humaniti and Soci Sciences	Program	Program Electives	Open	Electives	Inter Disciplinary		Skill Component		Practical Project		
Category	Ba	Sc	En	sc	Hh an Sc	$\mathbf{P}_{\mathbf{r}}$	Pr El(0 D	Ē	Inter Disci		Skill Com		$P_{r_{t}}$		
0																
L																

PROJECTION OF SOLIDS

Projection of simple solids like prism, pyramid, cylinder and cone in simple position Sectioning of above solids in simple vertical position by cutting plane inclined to any one of the reference plane and perpendicular to the other.

Projection of points and straight lines located in the first quadrant – Determination of true lengths and true

Introduction to drawing, importance and areas of applications – BIS standards – IS: 10711 – 2001 : Technical products Documentation - Size and layout of drawing sheets - IS 9606 - 2001: Technical products Documentation – Lettering – IS 10714 & SP 46 – 2003: Dimensioning of Technical Drawings – IS : 15021 – 2001 : Technical drawings - Projections Methods - drawing Instruments, Lettering Practice - Line types and dimensioning – Border lines, lines title blocks Construction of polygons – conic sections – Ellipse, Parabola,

UNIT III **DEVELOPMMENT OF SURFACES**

GRAPHICS

Prerequisite : Nil

CONCEPTS AND CONVENTIONS (Not for examination)

EBME22001

Hyperbola and cycloids.

UNIT I

UNIT II

Development of lateral surfaces of simple and truncated solids – prisms, pyramids, cylinders, and cones.

PROJECTION OF POINTS, LINES AND PLANE SURFACES

inclinations – projection of polygonal surface and circular lamina in simple position only.

UNIT IV ISOMETRIC PROJECTION 9 Hrs Principles of isometric projection - isometric scale - isometric projections of simple solids, like prisms pyramids, cylinders and cones.

UNIT V **ORTHOGRAPHICS PROJECTIONS**

Orthographic projection of simple machine parts – missing views

BUILDING DRAWING

Building components – front, Top and sectional view of a security shed. (Basic Auto CAD commands to be taught- not for Examinations)

Total Number of Hours: 60

Note: First angle projection to be followed. **TEXT BOOKS**

1. Bhatt, N.D. and Panchal, V.M. (2014) Engineering Drawing Charotar Publishing House

2. Gopalakrishnan, K.R. (2014) Engineering Drawing (Vol.I& II Combined) Subhas Stores, Bangalore.

- 3. Natrajan K.V., "A Text Book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2018.
- 4. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2008.

ETL/IE ETL

2

0/0

5 Hrs

2/0

3

10 Hrs

12 Hrs

9 Hrs

7 Hrs

47

Subject Code:	Subje	ct Nam	e : CIR	CUIT T	HEORY	Z			-	/ Lb/ L/IE		Ր/ Lr	P/ R	C	
EBEC22001	Proro	anisito	Mathe	matical	Knowle	վոր	Rac	ic		L/IE Fy		<u>)/0</u>	<u>к</u> 0/0	3	
		rical Co				uge	, Das	IC .		L Y		<i>"</i>	0/0	5	
L : Lecture T :					rning P	: P	roject	R : R	esearch C	C: Credi	ts				
T/L/ETL : The	eory/Lab	/Embed	ded Th	eory and	Lab										
OBJECTIVE															
• To unde		the conc	ept of	circuit el	lements	lun	nped	circuit	s, wavefo	orms, c	ircuit la	ws and	netv	vork	
reductio		. • 1	. 1		1 1	1	1	1 • 1	1 ·		1.4				
		the electrical network using mesh and nodal analysis by applying network theorems methods of circuits analysis in time domain and frequency domain													
	methods of circuits analysis in time domain and frequency domain erstand the concept of resonance in Series and parallel circuits and to know the concepts of														
	erstand the concept of resonance in Series and parallel circuits and to know the concepts of circuits.														
1	d circuits. ing equations to solve circuits in steady state and transient state														
	g equations to solve circuits in steady state and transient state TCOMES (COs) : (3-5)														
The student wi	ll be able to														
CO1	÷	analyze and solve a given electrical networks using mesh and nodal analysis.													
CO2	Done the	one their inferences to analyze circuits analysis in time domain and frequency domain.													
CO3	Unders	Inderstand the concept of circuits, network theorems and various circuit laws.													
CO4	Apply	Apply their understanding to derive the analyze the equations with respect to solving circuit													
	transie	transients. Demonstrate their skills in understanding the concept of various resonance and coupled circuits													
CO5	Demon	strate th	eir skil	ls in unde	erstandin	ıg tl	ne con	ncept c	of various	resonat	nce and	couple	d circ	uits	
Mapping of Course Outcomes with Program Outcomes (POs)															
COs/POs	PO1	PO2	PO3	PO4	PO5	P	06	PO7	PO8	PO9	PO10	PO1	1 P	012	
CO1	3	3	3	3	3		2	3	3	3	3	3		3	
CO2	3	3	3	3	3		2	3	3	3	3	3		3	
CO3	3	3	3	3	3		2	3	3	3	3	3		3	
CO4	3	3	3	3	3		2	3	3	3	3	3		3	
CO5	3	3	3	3	3		2	3	3	3	3	3		3	
COs / PSOs		PSO1			PSO2				PSO3			PSO 2)4		
CO1		3			3				3			3			
CO2 CO3		3			3				3			3			
CO3		3			3				3			3			
C05		3			3				3			3			
3/2/1 indicates	s Streng		orrelat	ion 3-1		Me	dium	,1-Lov							
		,						,							
							Se			y			t,		
	S		nd ces	0		tiv		S	nar	len		ojeć			
ý	snce	ള		Humanities and Social Sciences Program Core Program Electives				itiv	ipli	Skill Component Practical / Project		$\Pr($			
105	Scie	erii	es	m E n C sci			Open Electives			om o		al /			
Category	ic S	ine	enc	nar ial	gra		graı		n F	r D			ctic		
0	Basic Sciences	Engineering	Sciences	Hur Soc	Pro		Pro		Opé	Inte	Skil		Pra		
			- 4	~ •1			_		-	<u> </u>			_		

ECE 2022 Regulation	
---------------------	--

022 Regulation	
----------------	--

And a second band and Alexandroid and Alexandr	EDUCATIONAL AND RESEARCH INSTITUTE DEEMED TO BE UNIVERSITY UNIVERSITY With Claracol Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95, Tamilnadu, India.	A A A	AT OF LUE

Subject	Subject Name : CIRCUIT THEORY	Ty / Lb/	L	Τ/	P /	С
Code:		ETL/IE		SLr	R	
EBEC22001	Prerequisite: Mathematical Knowledge, Basic	Ту	3	0/0	0/0	3
	Electrical Concepts					

UNIT I **BASIC CIRCUIT CONCEPTS**

V-I Relationships Of R, L And C – Independent Sources – Dependent Sources – Kirchhoff's Laws - Simple Resistive Circuits - Network Reduction - Voltage Division - Current Division - Source Transformation. Formation of Matrix Equations and Analysis Using Mesh-Current and Node-Voltage Methods.

AC FUNDAMENTALS UNIT II

AC Quantity, Phasor Representation - Analysis Of Simple Series And Parallel Circuits - Power And Power Factor – Analysis Mesh Current And Node Voltage Methods – Series Resonance And Parallel Resonance

NETWORK THEOREM AND DUALITY UNIT III

Useful Circuit Analysis techniques - Linearity and superposition, Thevenin and Norton Equivalent Circuits, Maximum Power Transfer, Super position theorem –principle of duality.

UNIT IV TRANSIENT ANALYSIS

Transient Concepts-Behavior Of Circuit Elements Under Switching Conditions and Their Representation-Forced and Free Response of RL, RC And RLC Circuits with D.C. And Sinusoidal Excitations Using Laplace Transform Method – Natural Frequency and Damping Factor.

UNIT V **COUPLED CIRCUITS AND TOPOLOGY**

Mutual Inductance – Coefficient Of Coupling – Ideal Transformer – Single & Double Tuned Circuits – An introduction to Network Topology, Trees and General Nodal analysis

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXTBOOKS:

- 1. A.Sudhakar & Shyanmugam S.Palli "Circuits & Network Analysis & Synthesis", 4th Edition, Tata McGraw Hill, 2010
- 2. Bruce Carlson, "Circuits: Engineering Concepts and Analysis of Linear Electric Circuits", Thomson Learning, 1st Edition, 2002

3. M.L Soni & J.C. Gupta, "Electric Circuit Analysis", Dhanpat Rai & Sons, New Delhi, 1999.

REFERENCE BOOKS:

- 1. Hyatt, W.H. Jr and Kimmerly, J.E., "Engineering Circuits Analysis", McGraw Hill International Editions, 1993.
- 2. Edminister, J.A., "Theory and Problems of Electric Circuits", Schaum's Outline Series McGraw Hill Book Company, 2nd Edition, 1983.
- 3. Paranjothi S.R., "Electric Circuit Analysis", New Age International Ltd., Delhi, 2nd Edition, 2000.
- 4. Artice.M. Davis, "Linear Circuits Analysis", Thomson Learning 2002
- 5. 5. H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw-Hill, New Delhi, 2010
- 6. Roy Choudhury, "Networks and Systems", New Age International Ltd, 1992

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Cod	(Subject Na COMMUN LAB		VE EN	GLISH	Ty/Lb/ ETL/IF		L	T/	SLr	P	/R	C			
EBCC22I02		Prerequisit English	te : Pass	in Plus	s 2	IE		1	()/0	1	/0	1			
C: Credits, L		0	rial. SL	r: Super	vised Le	arning. P:	Pro	blen	n / Pract	ical						
R: Research,											ı					
OBJECTIV	ES															
		udents in 1				communi	cati	on a	nd orgar	nized ac	cademic a	and profe	essional			
		riting for a		sful care	eer.											
COURSE O		•	,	11 /												
Students con						n in En ali					ffalding a					
CO1		ge in meani											in oral			
CO2		an in-dep unication.	unde	astanuli	ig of the	e compor	ients	5 01	English	i laligu	age and	ns use	m orai			
CO3			r vocał	ularv #	and synt	actic kno	owle	edge	for us	e in a	academic	and te	chnical			
	-	Strengthen their vocabulary and syntactic knowledge for use in academic and technical communication														
CO4	Learn	Learn to negotiate meaning in inter-personal and academic communication for a successful career.														
CO5		ngage in organized academic and professional writing for life-long learning and research														
Mapping of	Engage in organized academic and professional writing for life-long learning and research Course Outcome with Program Outcome (POs)															
Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO	D7	PO8	PO9	PO10	PO11	PO12			
CO1	1	-	1	1	3	2]	1	1	3	3	-	3			
CO2	2	1	1	1	3	3]	1	2	3	3	1	2			
CO3	1	1	1	1	2	1	-	-	2	3	3	1	3			
<u>CO4</u>	1	-	-	2	3	1		2	1	2	2	-	3			
CO5	-	1	1	2	3	1]	1	-	3	1	1	2			
COs/PS			PSO1		P	SO2			<u>PSC</u>)3		PSO4				
<u>CO1</u>			1			1			3			3				
CO2			2			1			3			$\frac{2}{3}$				
CO3			1			1										
CO4 CO5			1			1			3			3				
3/2/1 Indicat		ength Of C	Correlat	ion. <u>3</u> –	High. 2-	Medium	. 1-	Low	-		I	2				
S, Z, Z Indica					<u></u>		, -	201	-							
Category	Basic Sciences	Engineering Sciences	Engineering Sciences Humanities and Social Sciences Program Core				Open Electives		Inter Disciplinary		Skill Component		Practical / Project			
				\checkmark												

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Taminadu, India.

ND RESEA

Subject Code	Subject Name : COMMUNICATIVE ENGLISH	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С
	LAB					
EBCC22I02	Prerequisite : Pass in Plus 2 English	IE	1	0/0	1/0	1

UNIT I LISTENING

Authentic audios and videos

Prescribed Book: English Pronunciation in use - Mark Hancock,

SPEAKING UNIT II

Individual- Solo: Self introduction, Describing, anchoring, welcome address, vote of thanks, Pair & Group: Role play- formal -informal, narrating stories, film review, analysing newspaper headings and reports, interpreting Advertisement pamphlets

Group discussion, mock interviews, formal presentation, power point presentation

Prescribed Book: J. C. Richards with J. Hull &S.Proctor, Interchange, Cambridge University Press, 2015.

UNIT III READING

Extensive, focused reading, Strategies for effective reading - Reading comprehensions - Note making- summarising- paraphrasing, Review

Suggested reading: Short stories, news paper reports, film reviews

UNIT IV WRITING

Extensive writing practices – note taking, Cognitive and metacognitive strategies to inculcate a sense of organising ideas into coherent sentences and paragraphs, Formal letters, Business letters. Resume with covering letter

UNIT V NON VERBAL COMMUNICATION/ CHARTS, DIAGRAMS AND TABLE 6 Hrs

Interpretation of charts Flow chart, pie chart, bar diagram, table, tree diagram, etc.,

Total Number of Hours: 30

PRESCRIBED TEXT:

1. J. C. Richards with J. Hull &S.Proctor, Interchange, Level 2, Cambridge University Press, 2021.

2. M. Chandrasena Rajeswaran & R.Pushkala, English - Communication Lab Work book

REFERENCE

1. Hancock, Mark, English Pronunciation in Use; Cambridge Univ. Press, 2013

2. Dutt, K, Rajeevan, G & Prakash, CLN 2008, A Course on Communication Skills, 1st edn, Cambridge University Press, Chennai

6 Hrs

6 Hrs

6 Hrs

Subject Code			me : P MMIN(N					/ Lb/ `L/IE	L	T / S.L	r P/ R	C		
EBCS22ET2		equisit ce Tool		rogran	ımi	ng and Ms	5		E	TL	1	0/0	2/0	2		
C: Credits, L: I	-			Lr: Su	perv	vised Learn	ing.	P: Pr	oblen	n / Pract	ical					
R: Research, T												ı				
OBJECTIVE	:The st	udent sl	hould b	e made	to:											
Develo	op a basic understanding of programming and the Python programming language															
• Write p	programs in Python to solve real world problems e value of programming in a variety of different disciplines especially as it relates in engineering															
	e value of programming in a variety of different disciplines, especially as it relates in engineering.															
	FCOMES (COs) : After Completing the course, the student can be able to															
CO1		Remember the syntax and semantics of python programming language Understand how functional and operations are to be utilized														
CO2																
CO3		Applythe fundamental programming constructs like variables, conditional logic, looping, and functions to build basic programs design object-oriented programs with Python classes														
CO4	design	lesign object-oriented programs with Python classes														
CO5	Apply	Apply the knowledge to solve various real world problems														
Mapping of C	ourse (Apply the knowledge to solve various real world problems purse Outcomes with Program Outcomes (POs)														
COs/POs	PO1	PO2	PO3	PO4	PO	D5 PO	6	PC)7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	2		2 1		1		1	1	0	1	1		
CO2	3	2	2	2		2 1		1		1	1	0	1	1		
CO3	3	2	2	2		2 1		1		1	1	0	1	1		
CO4	3	3	3	2		2 1		2		0	2	0	2	2		
CO5	3	3	3	3	4	2 1		2		0	2	0	2	2		
COs/PSO	S		PSO1			PSO	2			PSO	3		PSO	1		
CO1			2			2				3			2			
CO2			2			2				3			2			
CO3			1			2				3			2			
CO4			1			2				3			1			
CO5			3			2				3			3			
3/2/1 indicates	Streng	gth of C	Correla	tion 3	3- H	ligh, 2- Me	ediur	n, 1-]	Low							
Category	Basic Sciences	Engineering	Sciences	Humanities and Social	Humanities and Social Sciences Program Core Program Electives				Open Electives		Inter Disciplinary	Skill Commonent		Project		
		~														

חו			

EDUCATIONAL AND RESEARCH INSTITUTE

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) iyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code	Subject Name : PYTHON	Ty / Lb/	L	T / SLr	P/ R	С
	PROGRAMMING	ETL/IE				
EBCS22ET2	Prerequisite: C Programming and Ms	ETL	1	0/0	2/0	2
	Office Tools					

UNIT I INTRODUCTION

History of Python, Need of Python Programming, Applications Basics of Python Programming Using the REPL(Shell), Running Python Scripts, Variables, Assignment, Keywords, Input-Output, Indentation.

UNIT II TYPES, OPERATORS AND EXPRESSIONS

Types - Integers, Strings, Booleans; Operators- Arithmetic Operators, Comparison (Relational) Operators, Assignment Operators, Logical Operators, Bitwise Operators, Membership Operators, Identity Operators, Expressions and order of evaluations Control Flow- if, if-elif-else, for, while, break, continue, pass.

UNIT III FUNCTIONS

Defining Functions, Calling Functions, Passing Arguments, Keyword Arguments, Default Arguments, Variable-length arguments, Anonymous Functions, Fruitful Functions (Function Returning Values), Scope of the Variables in a Function - Global and Local Variables.

UNIT IV LISTS, TUPLES, DICTIONARIES

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: selection sort, insertion sort, mergesort, histogram.

UNIT V OBJECT ORIENTED PROGRAMMING OOP IN PYTHON

Classes, 'self variable', Methods, Constructor Method, Inheritance, Overriding Methods, Data hiding.

Total Number of Hours: 45

TEXT BOOKS:

- 1. Python Programming: A Modern Approach, VamsiKurama, Pearson.
- 2. Think Python:How to Think Like a Computer Scientist'', 2nd editionUpdated for Python 3, Shroff/O'Reilly Publishers,Allen B. Downey
- 3. Learning Python, Mark Lutz, Orielly.

REFERENCE BOOKS:

- 1. Core Python Programming, W.Chun, Pearson.
- 2. Introduction to Python, Kenneth A. Lambert, Cengage.

List of Experiment : Python Programming.

- 1. Develop a python program to find the area and circumference of a circle.
- 2. Develop a python program to check if the number is positive or negative or zero using nested if else statement.
- 3. Develop a python program to find the GCD(Greatest Common Divisor) of two numbers.
- 4. Develop a Python program using function to compute the factorial of a given number.
- 5. Develop a Python program to find the sum of square of individual digits of a number using function.
- 6. Develop a Python program to find the largest digit from a number using function.
- 7. Develop a Python program to display only the positive elements of the list.
- 8. Develop a Python program to accept any number and print it in words.
- 9. Develop a Python program to subtract two matrices.
- 10. Develop a Python program to perform matrix multiplication.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

9 Hrs

53

Subject (Code:	1	et Name	: ENV	RONM	ENTAL		7 / Lb/ FL/IE	L	T/SLr	P/R	С				
		SCIE	NCE				E.	I L/IE								
EBCC22	2103	Prereg	uisite: 1	Nil				Audit arse-IE	1	0/0	1/0	0				
	s, L: Lectu				·		0									
R: Resear	rch, Ty/Lb	/ETL/IE:	Theory	/Lab/E	mbeddec	l Theory	and L	ab/Intern	al Evalua	ation						
OBJECT	TIVES:															
	acquire kr															
	acquire kr					f Enviro	nmenta	l pollutio	on							
-	know mor					г .										
	gain under															
	attain fam E OUTCO	•			tion and	Environ	ment									
			· · ·	,												
CO1	completing the course were able to Know about Environment and Ecosystem & Biodiversity Comprehend air, water, Soil, Marine, Noise, Thermal and Nuclear Pollutions and Solid Waste															
CO1 CO2									clear Po	Ilutions	and Solid	Waste				
002	management and identify the importance of natural resources like forest, water, and food resources															
CO3	Ŭ	scover water conservation and watershed management														
CO4		Identify its problems and concerns climate change, global warming, acid rain, ozone layer depletion														
	etc.,	·,														
CO5	Explain family welfare programmes and role of information technology in human health and															
	environm	ent														
	g of Cours	1	nes with		am Out	comes (POs)		-							
COs/POs	s PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12				
CO1						2	3	2				1				
CO2						2	3			2		1				
CO3						2	3	2				1				
CO4						2	3	2		2		1				
CO5						2	3			2		1				
COs	/PSOs		PSO1			PSO2]	PSO3		PSO	4				
C	01		2						1		2					
	02		2						1		2					
	03		2						1		2					
C	04	_	2						1		2					
	05		2						1		2					
01014		11 0			TT+ -	• •	• •	T								
3/2/1 ind	icates stre	ngth of o	correlat	ion 3	– High, 2	2 – Med	ium, 1	- Low			1					
3/2/1 ind		ngth of o	correlat	ion 3	– High, 2		ium, 1									
3/2/1 ind	icates stre	ngth of o		ion 3	– High, 2				ary		ant	ect				
3/2/1 ind	icates stre								olinary		onent	roject				
	icates stre	ng							sciplinary		mponent	l / Project				
	icates stre	ng							Disciplinary		Component	ical / Project				
3/2/1 ind	icates stre	ng							ter Disciplinary		cill Component	actical / Project				
		Engineering Sciences	Humanities and Social Sciences		Program Core	Program Electives	Open Electives		Inter Disciplinary		Skill Component	Practical / Project				
	icates stre	ng							Inter Disciplinary		Skill Component	Practical / Project				
	icates stre	ng							Inter Disciplinary		Skill Component	Practical / Project				

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) 'iyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

AND RESEARC

NSTITUTE

Subject Code:	Subject Name: ENVIRONMENTAL SCIENCE	Ty / Lb/ ETL/IE	L	T/SLr	P/R	С
EBCC22I03	Prerequisite: Nil	Audit Course-IE	1	0/0	1/0	0

ENVIRONMENT AND ECOSYSTEM UNIT I

Definition, Scope and Importance of environment - need for public awareness - concept, structure and function of an ecosystem- producers, consumers and decomposers - energy flow in the ecosystem. Biodiversity at national and local levels - India

ENVIRONMENT POLLUTION UNIT II

Definition – causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Nuclear hazards (g) E-Wastes and causes, effects and control measures

UNIT III NATURAL RESOURCES

Forest resources: Use and over-exploitation, deforestation. Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems. Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems.

SOCIAL ISSUES AND THE ENVIRONMENT UNIT IV

From unsustainable to sustainable development – urban problems related to energy – water conservation, rain water harvesting, watershed management - resettlement and rehabilitation of people; its problems and concerns climate change, global warming, acid rain, ozone layer depletion, nuclear accidents, central and state pollution control boards- Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

Population growth, variation among nations – population explosion, environment and human health – human rights - value education - HIV/AIDS - women and child welfare - role of information technology in environment and human health

(A) AWARENESS ACTIVITIES

i) small group meetings about water management, promotion of recycle use, generation of less waste, avoiding electricity waste

ii) Slogan making event

- iii) Poster making event
- iv) Cycle rally

v) Lectures from experts

(B) ACTUAL ACTIVITIES:

i) Plantation

- ii) Gifting a tree to see its full growth
- iii) Cleanliness drive
- iv) Drive for segregation of waste
- v) To live some big environmentalist for a week or so to understand his work
- vi) To work in kitchen garden for mess
- vii) To know about the different varieties of plants
- viii) Shutting down the fans and ACs of the campus for an hour or so

Total Number of Hours: 30

TEXT BOOKS

1. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education (2004).

3 Hrs

3 Hrs

3 Hrs

9 Hrs

3 Hrs

55

2. Benny Joseph, 'Environmental Science and Engineering', Tata McGrawHill,NewDelhi, (2006). *REFERENCES*

- 1. Vairamani, S. and Dr. K. Sankaran. Elements of Environmental and Health Science.Karaikudi: KPSV Publications, 5th Edition, July 2013.
- 2. If thik arudeen, Etal, Environmental Studies, Sooraj Publications, 2005.
- 3. R.Murugesan, Environmental Studies, Millennium Publishers and Distributors, 2nd Edition, July, 2009.

SEMESTER – III

Subject Code:				LECTR ION EN			G	Ty/Lł ETL/I		L	T/SL	r I	P/R	С	
EBEE22ID2	Prer	equisite	e: Circu	it Theo	ry			Ту		3	0/0)	0/0	3	
L : Lecture T :	Tutorial	S.Lr	: Superv	vised Lea	arning	P:Pro	ject R : H	Research C	C: Credi	its					
Ty/Lb/ETL : T							5								
OBJECTIVE															
The student s	hould b	e made	to:												
								ters and te	sting of	f D.C	C. mac	chines.			
							of transfor								
								of AC rota		chin	les.				
								machines.							
								suring instr							
		ional details and principle of operation electronic measuring instruments													
		COMES (COs) : ustrate the working principle of DC machines.													
CO1	Illustra	ustrate the working principle of DC machines. nalyze the losses, efficiency and voltage regulation of transformers.													
CO2	Analyz	e the los	sses, eff	iciency a	and vol	tage re	gulation o	of transform	ners.						
CO3								application							
CO4	Explain	xplain the types and operating principles of electrical measuring instruments													
CO5	Interpret the features of various electronic instruments														
Mapping of C	ourse O	utcome	s with l	Progran	n Outc	omes (POs)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PC)10	PO11	PO	012	
CO1	3	3	3	3	2	2	2	1	2	2	2	2		1	
CO2	3	3	3	3	2	2	2	1	2		1	2		1	
CO3	3	3	2	3	3	3	2	2	2		2	3		2	
CO4	3	2	3	3	3	3	2	2	3		2	3		3	
CO5	3	3	3	3	3	3	2	2	3	1	2	3		2	
COs / PSOs		PSO1			PSO2			PSO3				PSO4			
CO1		3			3			3				2			
CO2		3			3			3				2			
CO3		3			3			2				2			
CO4		3			3			2				2			
CO5		2			3			2				3			
3/2/1 Indicates	s Streng	<u>th Of C</u>	Correlat	ion, 3 –	High,	2- Med	lium, 1- I	LOW			<u> </u>				
Category	Basic Sciences	Fnoineerino	Sciences	Humanities and Social Sciences	Program Core		Program Electives Open Electives Inter Disciplinary Skill Component						Practical /	riujeci	
		No. No. No. No. No. No. No. No. No. No. No. No.													

D.C MACHINES UNIT I

Introduction - Constructional Features- Motor and Generator mode - EMF and Torque equation - Starting and Speed Control-Testing And Efficiency – Losses in DC Machines -Brushless DC Motors- Universal Motor – Stepper Motor - Servo Motor - Tachogenerator - Linear Induction Motor

UNIT II TRANSFORMERS

Introduction - Ideal and Practical Transformer - EMF Equation - Phasor diagram- Per Unit System -Equivalent circuit- Testing- - Losses and Efficiency - Voltage Regulation - Three Phase Transformers - Auto Transformers, Advantages- Harmonics.

UNIT III AC ROTATING MACHINES

Principle of operation of three-phase induction motors – Construction – Types – Single phase Induction motors -Construction- Types-starting methods. Alternator: Working principle-Equation of induced EMF Synchronous motors- working principle-starting methods – Torque equation.

UNIT IV MEASUREMENTS USING ELECTRICAL INSTRUMENTS

Functional elements of an instrument-Standards and calibration- Operating Principle -types - Moving Coil and Moving Iron meters-Measurement of three phase power -Energy Meter- Instrument Transformers-CT and PT-DSO- Block diagram- Data acquisition

UNIT V MEASUREMENTS USING ELECTRONIC INSTRUMENTS

Electronic Instruments: CRO: -Measurements of Voltage & Frequency, Function generator:- Frequency Measurements in Various Range and Wave Form : Power Supply: -Fixed and Variable :Multi-meter:-Measurement of Voltage, Current, Frequency, R,L,C : IC tester:-Linear ICs and Non Linear ICs Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

TEXT BOOKS:

- 1. Mulukutla.S.Sarma, "Electric Machines, Stead state theory and dynamic Performance", 2nd Edition Thomson Learning 1997
- 2. S.K Bhattacharya, "Electrical Machines", 3rd Edition Tata McGraw Hill Publications 2008.
- 3. A.K. Sawhney, Puneet Sawhney 'A Course in Electrical & Electronic Measurements & Instrumentation', Dhanpat Rai and Co, New Delhi, 2015.

REFERENCES:

- 1. I.J. Nagrath & D.P. Kothari, "Electrical Machines", Tata McGraw Hill Publications, Second Edition 1997.
- 2. Nasar S.A, "Electrical Machines & Power Systems", TMH Publications
- 3. I McKenzie Smith, "Hughes Electrical Technology", Revised Low price Edition, Pearson Education, Seventhedition.
- 4. Irving I.Kosow, "Electric Machinery and Transformers", PHI, Second Edition, 2001

58

EDUCAT INSTIT ND RESEA aity with Grade Peri

(An ISO 21001 :	2018 Certified Institution)
yar E.V.R. High Road, Mad	luravoyal, Chennai-95. Tamiĺnadu, India

Subject Code:	Subject Name : ELECTRICAL AND INSTRUMENTATION ENGINEERING	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	
EBEE22ID2	Prerequisite: Circuit Theory	Ту	3	0/0	0/0	3	

9 Hrs

9 Hrs

9 Hrs

Total Number of Hours: 45

9 Hrs

Subjec	t Code	: S	Subject N	lame: S	SIGNAL	S AND	SYSTE	MS	Ty / ETI		L	T/ SLi		R	С	
EBEC	22002	F	Prerequis	site: Ma	themati	cs I & I	I		T		3	1/0)	4	
			ial SLr					tR:Re			lits					
			b/Embed				-									
OBJE	CTIVE	:														
	-		presentat					-	-							
	•		nalysis of			•	•	-			nsfor	ms.				
			nalysis of			stems us	sing DF1	and Z	transfori	ns.						
			MES (CC	(3)	- 5)											
The stu				. 1 .1			1									
CO1		assify continuous and discrete time signals and systems. halyze continuous signals and its spectrum with transforms.														
CO2	•		e the response of continuous time systems with transforms and state variable approach.													
CO3																
CO4	Analy	lyze discrete signals and its spectrum with transforms.														
CO5	Determine the response of discrete time systems with transforms and state variable approach.															
Mapping of Course Outcomes with Program Outcomes (POs)																
COs/	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	010	PO11	PC)12	
CO)1	3	3	3	3	3		2				2	2		2	
CO	2	3	3	3	3	3		2				2	2		2	
CO		3	3	3	3	3		2				2	2	_	2	
CO		3	3	3	3	3		2				2	2		2	
CO		3	3	3	3	3		2	Daoa			2	2		2	
COs /			PSO1	L		PSO2		-	PSO3				PSO4			
	$\frac{\mathbf{D}\mathbf{I}}{\mathbf{D}2}$		3			$\frac{2}{2}$							1			
	<u>)</u>)3		3			$\frac{2}{2}$							1			
	<u>)</u> 04		3			2							1			
C			3			2							1			
		tes Str	ength of	Correl	ation I	H- High	M-Me	dium, I	L-Low							
	Category Basic Sciences Engineering Sciences Sciences Social Sciences Program Core Program					Program Flectives	Onen Electives		Inter Disciplinary		Skill Component	/ I:	Project	,		

60

CATIONAL AND RESEARCH INSTITUTE DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India. EDUCAT

Subject Code:	Subject Name: SIGNALS AND SYSTEMS	Ty / Lb/	L	Τ/	P/R	С
		ETL/IE		SLr		
EBEC22002	Prerequisite: Mathematics I & II	Ту	3	1/0	0/0	4

CLASSIFICATION OF SIGNALS AND SYSTEMS UNIT I

Continuous Time Signals (CT signals), Discrete Time Signals (DT Signals) -Standard signals Step, Ramp, Pulse, Impulse, Exponential, and Sinusoids, Operations on signals . Classification of CT and DT signals -Periodic and aperiodic, Deterministic and Random signals, Energy & Power signals, Classification of Systems -CT Systems and DT Systems -Linear & Nonlinear, Time-variant & Time-invariant, Causal & Noncausal, Stable & Unstable - Linear Time Invariant Systems(LTI).

UNIT II ANALYSIS OF C.T SIGNALS

12 Hrs Fourier Series Analysis, Trigonometric Fourier Series and Exponential Fourier Series -Dirichlet's conditions -Spectrum of C.T. Signals, Fourier Transform and Laplace Transform - Properties of Fourier Transform -Inverse Laplace Transform - Applications in Signal Analysis.

UNIT III LTI – CT SYSTEMS

Differential Equation, Block Diagram Representation, Impulse Response, Step Response, Convolution Integral, Frequency Response, Concept of Region of Convergence (ROC) for Laplace Transforms, Properties of L.T., Relation between L.T and F.T of a signal - Fourier and Laplace Transforms in Signal Analysis, State Equations and Matrix.

UNIT IV **ANALYSIS OF D.T. SIGNALS**

Spectrum of D.T. Signals, Discrete Time Fourier Transform (DTFT), Discrete Fourier Transform (DFT), Properties of DFT, Properties of Z – Transform in Signal Analysis, Inverse Z-Transform.

UNIT V LTI – DT SYSTEMS

12 Hrs Difference Equations, Block Diagram Representation, Impulse Response, Finite impulse response (FIR) and Infinite impulse response (IIR) Convolution, Frequency Response, Z - Transform Analysis, Realization of Digital Filters - Direct Form-I, Direct Form-II, Transposed, Parallel, Cascade Structure, State Variable Equation and Matrix.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

TEXTBOOKS:

1. Alan V Oppenheim, "Signals and Systems", Prentice Hall of India Pvt. Ltd, 2nd Edition, 1997.

2. Simon Haykin and Barry Van Veen," Signals and Systems", John Wiley and Sons, Inc., 1999

3. Hwei P. Hsu, Schaum's Outline Series, "Signals and Systems", Mc Graw Hill Companies, 2nd Edition. **REFERENCE BOOKS:**

- 1. Douglas K Lindner, "Signals and Systems", McGraw Hill International, 1999.
- 2. Roger E. Zeimer et al, "Signals and Systems": Continuous and Discrete, McMillan, 2nd Edition, 1990
- 3. Robert A. Gabel and Richard A. Roberts, "Signals and Linear Systems", John Wiley, 3rdEdition, 1987

12 Hrs

Total Number of Hours: 60

12 Hrs

Subject Code:	Subj	ect Nam	e : DIG	ITAL E	LECTR	RONICS		T y/ L ETL/I		T/SL	r P/R	C		
EBEC22003	Prer	equisite:	None					Ту	3	1/0	0/0	4		
L : Lecture T T/L/ETL : Th						: Projec	t R:R	esearch (C: Credi	ts				
OBJECTIVI														
in digit	al syster	ns.		-		-		tals, Boo	-		its appli	cations		
								circuits us and asyr			ntial aira	nite		
				tors mem						us sequei		uns.		
-				uits invo				0.						
COURSE O						U	<u> </u>	0						
The Student v	vill be al	ble to												
CO1	given B	oolean f	unction	s.				luskey m	nethodol	ogy to m	inimize	the		
CO2	Design	and imp	lement o	combinat	ional log	gic circu	its.							
CO3	Design	and anal	yze the	synchron	nous seq	uential c	ircuits.							
CO4	Design	esign and analyze the asynchronous sequential circuits ompare different types of logic families based on their characteristics and summarize types of												
CO5					families	s based o	on their	character	ristics a	nd summ	arize typ	bes of		
		nductor 1												
Mapping of	Course	Outcom	es with	Progran	n Outco	mes (PC)s)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	2	3	3	2	-	-	-	-	-		
CO2	3	3	3	2	3	3	2	-	-	-	2	2		
CO3	3	3	3	2	3	3	2	-	-	-	2	2		
<u>CO4</u>	3	3	3	2	3	3	2	-	-	-	2	2		
CO5 COs / PSOs	3	1 PSO 2	1	1	1 PSO2	3	2	PSO3	-	-	- PSO4	2		
			1			4								
CO1 CO2		3			3			$\frac{2}{2}$			$\frac{2}{2}$			
C02 C03		3			3			2			2			
CO4		3			3			2			2			
CO5		2			2			2			2			
3/2/1 indicate	es Stren	gth of C	orrelat	ion 3-1	High,2-	Mediun	n,1-Lov	V		-				
			,											
		ses	-	0016										
		ien		Ň		ves			ury	nt	sct			
Ś	ces	Sc		anc	ore	ecti		ves	lina	one	roj	2		
IOg	zien	ing	.	ties 3	Ŭ	E		ecu	scip	du	I/P			
Category	c Sc	nee		lanı	ram	ram	Ĩ	E	Di	Co	ical			
\bigcirc	Basic Sciences	Engineering Sciences		Humanities and Social Sciences	Program Core	Program Electives		Upen Electives	Inter Disciplinary	Skill Component	Practical / Project			
	В	Ш		ΣŇ	Ð	P	(0	I	S	P			
					\checkmark									

Subject	Subject Name : DIGITAL ELECTRONICS	T y/ Lb/	L	T/SLr	P/R	С	l
Code:		ETL/IE					l
EBEC22003	Prerequisite: None	Ту	3	1/0	0/0	4	1

UNIT I DIGITAL FUNDAMENTALS

Number Systems – Decimal, Binary, Octal, Hexadecimal, 1 s and 2 s complements, Codes –Binary, BCD, Excess 3, Gray, Alphanumeric codes, Boolean theorems, Logic gates, Universal gates, Sum of products and product of sums, Minterms and Maxterms, Minimization using Karnaugh map, and Quine-McCluskey method.

UNIT II COMBINATIONAL LOGIC

Design of Combinational Logic Circuits – Half adder – Full adder, Half Subtractor,Full Subtractor–Binary parallel adder-Carry lookahead adder-BCD adder– Code Converters – Multiplexer – Demultiplexer- Encoder – Decoder – Magnitude comparator

UNIT III SYNCHRONOUS SEQUENTIAL CIRCUITS

Flip flops – SR, JK, T, D, Master/Slave FF – operation and excitation tables, Triggering of FF, – Design - Moore/Mealy models, state minimization, state assignment,State Reduction techniques- Design of Counters-Ring Counters, Shift registers, analysis of clocked sequential circuits.

UNIT IV ASYNCHRONOUS SEQUENTIAL CIRCUITS

Design of asynchronous sequential circutis-Stable and Unstable states, output specifications, cycles and races, state reduction, race free assignments, Hazards, Essential Hazards, Design of Hazard free circuits.

UNIT V LOGIC FAMILIES

Basic memory structure – ROM -PROM – EPROM – EEPROM –EAPROM, RAM – Static and dynamic RAM - Programmable Logic Devices – Programmable Logic Array (PLA) -Programmable Array Logic (PAL) – Field Programmable Gate Arrays (FPGA) – Implementation of combinational logic circuits using PLA, PAL.Digital logoc families, propagation delay, power dissipation, fan-out and fan-in, noise margin, logic families and their characteristics- TTL, ECL, CMOS-Operation and its Characteristics.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 60

TEXTBOOKS:

- 1. Charles H. Roth, "Fundamentals of Logic Design", cengageLearning, 5th Edition
- 2. FLOYD:"Digital Fundamentals", 10th Edition Universal Book Stall, New Delhi.1993
- 3. Morris Mano, "Digital Electronics and Design", Prentice Hall of India, 2000.
- 4. A.AnandKumar Fundamentals of Digital Circuits^{II}, 4th Edition, PHI Learning Private Limited, 2016.
- 5. Soumitra Kumar Mandal Digital Electronics, McGraw Hill Education Private Limited, 2016.

REFERENCE BOOKS:

- 1. John F.Wakerly, "Digital Design", Fourth Edition, Pearson/PHI, 2008
- 2. Jayadeep Chakravarthy "Digital electronics and logic design", Universities press. (2012)
- 3. John.M Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.
- 4. Charles H.Roth. "Fundamentals of Logic Design", 6th Edition, Thomson Learning, 2013.
- 5. Donald P.Leach and Albert Paul Malvino, "Digital Principles and Applications", 6th Edition, TMH, 2006.
- 6. Donald D.Givone, "Digital Principles and Design", TMH, 2003

12 Hrs

12 Hrs

12 Hrs

12 Hrs

12 Hrs

62

Subject	Code			ime : C- MMINO	++ AND	JAVA				Ty E	/Lb/ FL	L	T/SLr	P/R	2	С
EBCS22	2ID2	Pre To	-	te: C Pr	ogramn	ning and	I MS	5 Of	fice	Г	'y	3	0/0	0/0)	3
L : Lectu	ire T			· Superv	ised Lea	rning P	· Pro	niect	R · F	Research	$C \cdot C$	redit	2			
T/L/ETL				.		•		ojeci		Coscuren	с. с	1 cuit.	5			
OBJEC																
• To	o intro	duce the	e Object	Oriente	d Progra	mming o	conce	epts	using	C++ an	d JA'	VA				
					orogramm						in so	lving	problem	IS.		
			-		ception h	0				0						
		yze bas	ic data	structure	es as we	ll as pro	ograr	mmi	ng teo	chniques	and	algo	rithms tl	nat op	erate	es on
	em.	TACL			-											
COURS				(3-):(3-)	5)											
The Stud				. 1 . 0						• • •	1.		1.1.			
CO1					C++ pro	ogrammi	ng si	uch	as var	iables, c	ondit	ional	and itera	ative		
CO2		ution, n			an to an	acto me			and a	valuata	tha		nto of i	nhanita		and
CO2		morphis			on to cr	eate pro	Igraf	1115 8	and e	valuate	uie (lonce	pts of 1	merita	unce	ana
CO3			<i>Sy</i> the basic concepts of Java programming													
CO4		gn and development of programs for File and exceptions handling using JAVA														
	CO4Design and development of programs for File and exceptions nanding using JAVACO5Evaluate the concepts data structures and corresponding algorithms															
CO5 Evaluate the concepts data structures and corresponding algorithms Mapping of Course Outcomes with Program Outcomes (POs)																
COs/P	-	PO1	PO2	PO3	PO4	PO5	PC		PO7	PO8		09	PO10	PO11	F	PO12
C01		1	1	3	3	2	3		2	100		2	1010	3		2
CO2		2	3	3	3	3	3		3			3	1	3		2
CO3	;	2	3	3	3	3	3	3	3			3	1	3		2
CO4	ŀ	2	3	3	3	3	3	3	3			3	1	3		2
CO5	5	2	3	3	3	3	3	3	3			3		3		2
COs / P	SOs		PSO1	1		PSO2				PSO	3			PSO ₄	1	
CO1	L		2			2				3				3		
CO2	2		3			1				3				3		
CO3	3		3			1				3				3		
CO4			3			1				3				3		
CO5			2			1				3				3		
H/M/L i	ndica	tes Stre	ngth of	Correla	ation H	I- High,	M-]	Mec	<u>lium,</u>	L-Low			- [
		Sc		-	nd	0				SS			Skill Component			
		Basic Sciences	<u> 1</u> 8		Humanities and Social Sciences	Core				itiv		Ŋ	por			
	ory	Scie	erii	es :	Sc	u C		Е	es	Ilec		lina	om		al /	
	Category	ic S	Engineering	Sciences	nar ial	Program Core Program Electives Open Electives					\$	Disciplinary	1 C		Practical	Project
	Cat	Bas	gui.	SCI(Soc	Pro		Pro	T T	Jp€	Intou	Dis(<u>ški</u> l		Prac	Pro
	-	Ι							-	<u> </u>					H	
												\checkmark				

Subject Code: Ty /Lb/ Subject Name : C++ AND JAVA PROGRAMMING ETL EBCS22ID2 **Prerequisite: C Programming and MS Office** Ty Tools

UNIT I **INTRODUCTION TO C++**

Programming Paradigms - Key Concepts of OOP - Advantages of OOP - Usage of OOP - Evolution of C++ -Input and Output in C++-Streams-Stream classes-Keywords, Identifiers, Variables, Operators, Expressions and Control Structures: If, If. Else, Switch - Repetitive Statements- for, while, do...while - arrays

UNIT II **CLASSES, INHERITANCE & TEMPLATES**

Main Function - Parts of function - Parameters Passing in Functions - Function Overloading - Constructors and Destructors- types -Operator Overloading - Inheritance - Pointers - Virtual Functions and Polymorphism

UNIT III **INTRODUCTION TO JAVA**

Introduction to Java : Basics of Java programming- Data types- Variables -Operators -Control structures Decision making- Looping control- Math class-string class-Arrays in java

UNIT IV FILE AND EXCEPTION HANDLING

File handling in java- Character stream – Java File class methods – File operations –Exception handling-Exceptions Methods-Catch-throw-Finally

DATASTRUCTURES USING JAVA UNIT V

Array-One Dimensional - Two Dimensional-Linked list-Single-Doubly-circular- Stack- Queue- Trees – Graphs

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

T/SL

r

0/0

L

3

P/R

0/0

С

3

9 Hrs

9 Hrs

9 Hrs

TEXTBOOKS:

- 1. The Complete Reference C++, 4th Edition, Herbert Schildt, Tata McGraw Hill..
- 2. Java Fundamentals A comprehensive Introduction, Herbert Schildt and Dale Skrien, TMH.
- 3. The C++ Programming Language, 3rd Edition, B. Stroutstrup, Pearson Education.

4. Weiss, Mark Allen (2012). Data Structures and Algorithm Analysis in Java. 3rd ed. Prentice Hall

REFERENCE BOOKS:

- 1. OOP in C++, 3rd Edition, T. Gaddis, J. Walters and G. Muganda, Wiley Dream Tech Press.
- 2. Object Oriented Programming in C++, 3rd Edition, R. Lafore, Galigotia Publications Pvt Ltd.
- 3. Java for Programmers, P. J. Deitel and H. M. Deitel, Pearson education (OR) Java: How to Program P. J. Deitel and H. M. Deitel, PHI.
- 4. Object Oriented Programming through Java, P. Radha Krishna, Universities Press.
- 5. Data Structures and Algorithms in Java, Robert Lafore, Sams Publishing.

AND RESEARCH INSTITUTE ME University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

64

9 Hrs

Subject (Code:	Subject N VALUES					AOI	NY	Ty / ETI		L	T/ SL	- P	/R	С
EBCC2	2ET1	Prerequi	site: No	ne					ЕТ	Ч.	1	0/	0 2/	/0	2
T -	Loctur	eT :Tutoria			ad Loarn	ing D.Dr	oiac	t D.				0/	• _ ,	•	-
L	Letur			-	ib/Embed	•	•			ic.cie	uns				
OBJECT															
		Courses:]	•			•			•			-			
		Jniversal H ion course.		values	-1. This	exposu	re 1	s to	be augr	nented	by	this c	compuls	sory	full
		ent of a hol		spective	e based or	n self- ez	xplo	ratio	n about	themse	lves	(hum	anbein	g).	
		iety and na					-p-0					(110111		⊃⁄'	
		ling (or de	veloping	clarity) of the ha	armony i	in th	e hu	man bei	ng, fan	nily,	societ	ty and		
	ire/exis														
	-	ing of self-				- 1									
	<u> </u>	ent of com			5		1.1								
COURS CO1		COMES(Comments) e self and s	/ (,					life						
CO1 CO2		iate humar								rovide	cilet	ainah	le solut	ions	
CO2		op critical										amao	ic solut	10113	
CO4		1	mitment towards understanding of values												
CO5	<u> </u>														
COS Apply Human values in day to day setting in real life Mapping of Course Outcomes with Program Outcomes(POs)															
COs/POs	-		PO3	PO4	PO5	PO6		07	PO8	PO9	Р	010	PO11	P	012
CO1			1	1		2		1		1		1			2
CO2			2	2	1	2		3	1			2			2
CO3			1	1	1	2				1		2			3
CO4			2		1	1		1	3	1		1			3
CO5			1			2		1	2	1		1			3
COs/P	SOs		PSO1		P	502			PSC)3			PSO	4	
CO									1				100	-	
CO									1						
CO									1						
CO									1						
CO									1						
		rengthofc	orrelati	0n3_H	igh 2_M	edium 1	- La) NW	1						
<i>5/2/</i> IIIu	cattost						L	,							
			00	3		es				×			it l		
	BasicSciences	EnggSciences	ies		-	ctiv		es		Inter Disciplinary		Skill Component	Practical / Project		
lin	cier	cien	Humanities	5	Jore	Ele		ctiv		ilqi		Iodi	/ Pr		
Category	icS	SgS	um; cial	74	ImC	ProgramCore ProgramElectives Open Electives				Disc		Con	cal /		
Cat	Bas	Eng	ΗS	&SocialSciences rogramCore ProgramElectives						er I		ill (actic		
			Ř	2	Prc	P		Op		Int		Sk	Pré		
								1							
				v											

(An ISO 210	01 : 2018 Certified	Institution)
iyar E.V.R. High Road,	Maduravoyal, Chenr	1ai-95. Tamilnadu, India.

Subject Code:	Subject Name: UNIVERSAL HUMAN VALUES 2: UNDERSTANDING HARMONY	Ty / Lb/ ETL/IE	L	T/ SLr	P/R	С
EBCC22ET1	Prerequisite: None	ETL	1	0/0	2/0	2

UNIT I **INTRODUCTION - NEED, BASIC GUIDELINES, CONTENT AND PROCESS** 9 Hrs FOR VALUE EDUCATION

Purpose and motivation for the course, recapitulation from Universal Human Values-I. - Self-Explorationwhat is it? - Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-Continuous Happiness and Prosperity- A look at basic Human Aspirations exploration. -Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority.- Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario - Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking.

UNIT II UNDERSTANDING HARMONY IN THE HUMAN BEING - HARMONY IN 9 Hrs **MYSELF!**

Understanding human being as a co-existence of the sentient 'I' and the material 'Body'. - Understanding the needs of Self ('I') and 'Body' - happiness and physical facility.- Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer). - Understanding the characteristics and activities of 'I' and harmony in 'I'. - Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail. - Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available tome. Identifying from one's own life.

Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

UNIT III UNDERSTANDING HARMONY IN THE FAMILY AND SOCIETY- HARMONY 9 Hrs **IN HUMAN-HUMAN RELATIONSHIP**

Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship - Understanding the meaning of Trust; Difference between intention and competence - Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship - Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals -Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives.

UNIT IV UNDERSTANDING HARMONY IN THE NATURE AND EXISTENCE WHOLE 9 Hrs **EXISTENCE AS COEXISTENCE**

Understanding the harmony in the Nature - Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature. - Understanding Existence as Co-existence of mutually interacting units in all-pervasive space. - Holistic perception of harmony at all levels of existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

UNIT V IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF 9 Hrs HARMONY ON PROFESSIONAL ETHICS

Natural acceptance of human values - Definitiveness of Ethical Human Conduct - Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order

Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems. -

Case studies of typical holistic technologies, management models and production systems - Strategy for transition from the present state to Universal Human Order: (a) At the level of individual: as socially and ecologically responsible engineers, technologists and managers, (b) At the level of society: as mutually enriching institutions and organizations

Sum up. Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions e.g. To discuss the conduct as an engineer or scientist etc.

Total Number of Hours: 45

TEXT BOOK

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

REFERENCE BOOKS

- 1. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- *3. The Story of Stuff (Book).*
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi.
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J C Kumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

Subject	Code		oject Na OGRAI		C++ AN LAB	D JAVA			Ty /Lb/ ETL/IF		T/SLr	P/R	С
EBCS22	2IL1	Pre To	-	te: C Pro	ogramm	ung and	MS Of	fice	Lb	0	0/0	3/0	1
L : Lectu T/L/ETI							: Projec	t R:R	esearch C	C: Credi	ts		
OBJEC		-			cory and	Luo							
			nt learn t	he prog	amming	languag	e.						
								ving prol	olems usi	ng C++	- and java	a.	
					ntals cor	•		U I		U	5		
COURS	SE O	UTCON	IES (CO	Ds):(3-	· 5)								
The Stuc	lents	will be a	able to										
CO1	Und	lerstand	OOP co	ncepts a	nd basic	s of C++	- and Jav	va progra	amming.				
CO2									e and fun	octions			
CO3			<u> </u>	<u> </u>	ethods a		Ŭ	concepts					
CO4					l excepti								
Mappin										PO9	1	1	
COs/P		PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8									PO10	PO11	PO12
CO1		3	3	3	3	3	2	2		3		3	2
CO2		3	3	3	3	3	2	2		3	1	3	2
CO3		3	3	3	3	3	2	2		3	1	2	2
CO4		2	2	3	3	3	2	3		3		2	2
COs / P			PSO1			PSO2			PSO3			PSO4	
<u>CO1</u>			2			2			3			3	
CO2			3			1			3			3	
CO3			3			1			3			3	
CO4			3			1			3			3	
CO5			2	ala4! 7) TT ² -1	<u>ا</u> ۱۰ م	1 T		3			3	
3/2/1ind	iicate	sstrengt	noicorr	elations	» –нign,	z–iviedi	<u>um,1–1</u>	JOW				I	
	Category	Basic Sciences	Engineering Sciences	Humanities and		Program Core	Program Electives	Onen Electives		Inter Disciplinary	Skill Component	Practical / Project	
										\checkmark			

Subject Code:	Subject Name : C++ AND JAVA PROGRAMMING LAB	Ty /Lb/ ETL/IE	L	T/SLr	P/R	С
EBCS22IL1	Prerequisite: C Programming and MS Office Tools	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS USING C++

- 1. Program to check whether the given number is palindrome or not
- 2. Program to search an element in a given list
- 3. Program to find factorial of a given number using recursion
- 4. Program to demonstrate call by value, call by address and call by reference.
- 5. Program to demonstrate function overloading.
- 6. Program to demonstrate Constructor Destructor program
- 7. Program to demonstrate the concept of different inheritance

LIST OF EXPERIMENTS USING JAVA

- 1. Write a Java program that prompts the user for an integer and then prints out all the prime numbers up to that Integer
- 2. Write a java program to find the Fibonacci series using recursive and non recursive functions.
- 3. Write a Java program to add two given matrices
- 4. Write a Java program to demonstrate I/O streams
- 5. Write a Java program to demonstrate class and methods
- 6. Write a Java program that reads on file name from the user, then displays information about whether the file exists, whether the file is readable, whether the file is writable, the type of file and the length of the file in bytes
- 7. Write a Java program to implement the concept of exception handling

Total Number of Hours: 45

	(An	ISO 210	01 : 2018 Cei	rtified Instit	ution)	
ar	E.V.R. Hi	igh Road,	Maduravoyal,	Chennai-95.	Tamilnadu,	India

Subject Co	ode:	Subj	ect Nai	me: D	IGITAL	ELECT	RONIC	S LAB	Ty / I ETL/		L	T/SL r	P/R	С
EBEC22L				e: None					Lb		0	0/0	3/0	1
L : Lecture T/L/ETL :							Project	R : Rese	arch C:	Credi	ts			
OBJECTI	IVE : lesign a OUT(and dev COME	velop a S (CO	progran	nmable d		cuit for p	oractical	applicati	ions				
				tal circ	nite									
			<u> </u>		es and fli	n flons								
					al circuits		time apr	olication	s					
Mapping of	1		0	1			11		5					
COs/POs			PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9	PO10	PO11	PO12
CO1		3	1	3	2	2	1	1		1				1
CO2		3	2	3	2	2						1		
CO3		3				2	1	1		2				1
COs / PSC	Os		PSO1		PSO2			PSO3	1			PSO4		
CO1			3			3							3	
CO2			3			3							3	
CO3			3			3							3	
3/2/1indica	atesstr	engtho	ofcorre	lation3	-High,2-	-Mediu	n,1– Lo	W				1		
Category	Basic Sciences		Engineering Sciences	Humanities and	Social Sciences	Program Core	Program Electives	Open Electives	4	Inter Disciplinary		Skill Component	Practical / Project	

Subject Code:	Subject Name : DIGITAL ELECTRONICS LAB	Ty / Lb/ ETL/IE	L	T/SL r	P/R	С
EBEC22L01	Prerequisite: None	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS:

- 1. Verification of Truth tables of Logic Gates
- 2. Implementation of Boolean function
- 3. Implementation of Half and full Adders
- 4. Implementation of Half and full Subtractors
- 5. Implementation of Multiplexers
- 6. Implementation of Demultiplexers
- 8. Implementation of Encoder
- 9. Implementation of Decoders
- 10. Verification of Flip Flops
- 11.Implementation of Shift Registers
- 12.Implementation of Counters
- 13.Study of A to D Converters

Total Number of Hours: 45

Subject			Subject I	Name :	ANAL	YSIS OI		DT	y / Lb/ TL/IE	L	T/	P/R	C	
Code: EBEC22ET1 I			STATE DEVICES Prerequisite: None						ETL	2	SLr 0/0	2/0	3	
					le				EIL	2	0/0	2/0	3	
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits														
	T/L/ETL : Theory/Lab/Embedded Theory and Lab													
OBJECTI	VES :													
• To leas	rn the tl	heor	ry of sen	niconduc	ctor dev	ices such	n as dioc	les and z	zener die	ode				
						lar juncti								
	 To understand the construction and operation of FET and MOSFET and their biasing. To study behavior of power electronic devices like SCR, UJT, etc and photo devices. 													
	-		-						-	oto devi	ces.			
• To study the small signal model and analysis of transistors and FET														
	COURSE OUTCOMES (COs) : (3- 5)													
	The students will be able to													
CO1	Learn semiconductor devices like diodes and zener diode													
CO2	Know working and biasing of bipolar junction transistors.													
CO3	Understand the construction and operation of FET and MOSFET													
CO4	Study the behavior of power electronic and photo electronic devices.													
CO5														
Mapping o											1	1		
COs/POs			PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11		
CO1	3		2	2		2		1					1	
CO2	2		2	2	3		1						1	
CO3	3		3	3	3	2	2						1	
CO4	3		2	2	2	2		2					1	
CO5	3		3	2	2	2	2						2	
COs / PSOs		PSO1			PSO2			P	PSO3		PSO4			
<u>CO1</u>		3			2							2		
<u>CO2</u>		3			2				2			2		
CO3	CO3 CO4		3		2				2			3		
	<u>C04</u> C05		3		2 3							3 3		
	ates Str	eno	-	orrelatio)n 3-	-	Mediu	1. n. 1-Lo	w			3		
3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low														
							program electives			2		4	Ļ	
	S	Engineering Sciences Humanities and				`	lect				lent		וויי	
	nce				Ore		n ej	ves		Inter Disciplinary	hon		LIC	
Category	cie						ran	ecti	open electives		Skill Component		- II	
teg	S S	nce al nce			Program Core		rog	n elu		Ą	IC	1.0		
Ca	Basic Sciences	Engineer Sciences			004		d	pen	pen		kill		riacucal / riujecu	
1	щ	Š Ē		N H	Ĺ.	-		0		II	S		4	
						/								
						~								
University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

AND RESEARC

NSTITUTE

Subject	Subject Name : ANALYSIS OF SOLID	Ty / Lb/	L	Τ/	P/R	С
Code:	STATE DEVICES	ETL/IE		SLr		
EBEC22ET1	Prerequisite: None	ETL	2	0/0	2/0	3

UNIT I SEMICONDUCTOR DIODE

Theory of PN Junction Diode – VI characteristics – Static and Dynamic Resistance – Effect of Temperature on Diodes - Space Charge and Diffusion Capacitance - Zener Diode - Avalanche and Zener Break Down Mechanisms - Zener Diode as a Voltage Regulator.

Experiments: Characteristics of P-N Junction & Zener Diode

UNIT II BJT & BIASING

Principles of Transistor Action - Current Components - Cut Off, Active & Saturation Region - I/P& O/P characteristics CE, CB and CC. Small Signal Large Signal '\beta', Break Down & Switching Characteristics - Transistor Biasing - Bias Stabilization - Bias Compensation - Thermal Runaway - Design with Heat Sink. Experiments: I/P & O/P Characteristics of BJT

UNIT III **FET& MOSFET**

Construction Feature & Working Principles of JFET, MOSFET Depletion and Enhancement Mode, Biasing of FET, and MOSFETS, Transmission Gate using CMOS.

Experiments: Characteristics of JFET, MOSFET Characteristics

UNIT IV POWER DEVICES

Charge Transfer Device, UJT, SCR, Diac, Triac, GTO, MCT and Introduction to Gallium Arsenide Devices, FinFET, LDR, Photo Voltaic cell, Varactor diode. **Experiments: Characteristics of SCR and UJT**

UNIT V SMALL SIGNAL MODEL

Small Signal Model of Transistor- Analysis of Amplifiers using Small Signal Model. Common Emitter, Common Base, Common Collector, Common Source, Common Drain, Common Gate, Multistage Amplifiers. Experiments: Analysis of BJT in CB,CE and CC Configuration

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 60

TEXTBOOKS:

- 1. Nandita Das Gupta, Amitava Das Gupta, "Semiconductor Devices", Prentice Hall of India, 2005
- 2. Sedra and Smith, "Microelectronic Circuits", Oxford University Press, 2004
- 3. Mohammed Gausi and Spencer, "Introduction to Electronics Circuit Design", Pearson Education, 2004 **REFERENCE BOOKS:**
 - 1. Boylestad, Robert. L and NashelskyLouis, " Electronic Devices and Circuit theory", Prentice Hall of India,6th Edition, 2001
 - 2. William & Harris, "Electronic Devices and Circuits", Tata McGraw Hill International Editions, 2000
 - 3. MillmanHalkias, "Electron Devices", Tata McGraw Hill, 2000.
 - 4. Donald Neamam, "Microelectronics", Tata McGraw Hill, 2007.
 - 5. Sedra Smith, "Micro Electronic Circuits" Fifth edition,201

12 Hrs

12 Hrs

12 Hrs

12 Hrs

$\mathbf{SEMESTER}-\mathbf{IV}$

Subject Co	de		Name : 1 DM PROC		BILITY	Y AND		Ty/I ETL			[/ Lr	P/R	C
EBMA220			isite: Ma					T	/		/0	0/0	4
L : Lecture						•	oject R	: Researc	ch C: C	redits			
Ty/Lb/ETL			Embedde	d Theory	y and La	ıb							
OBJECTI													
The stude											_		
			basic conc	epts in t	he Proba	ability li	ke Inder	endent e	vents, 1	nutually	exclu	sive	
		l so on.				1.9							
			various St										
	nders	tand the	Basic cond	cepts in I	Random	process	like Poi	sson pro	cess, M	larkov p	rocess	and so	0
on.	1.	(1-(1		1. A /	1	(`	C		_				
		stand the concepts like Auto correlation and Cross correlation											
		tand the concepts like Cross spectral density COMES (COs):											
						-1-1-114							
CO1 CO2		To understand the Basic concepts in Probability											
		To understand the Basic concepts in Probability distributions To understand the Basic concepts in Random process											
CO3						-							
CO4			d the Basi	A									
CO5			d the Basi		^		2						
Mapping o								DOO	DOG	DO10	DOI	1 D	010
COs/POs	PO 1			PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1		012
CO1	3	3	2	3	2	1	2	1	1	2	2		<u>3</u> 3
CO2	<u> </u>	3	2	$\frac{3}{2}$	1	2		1 2	1	2	2		<u> </u>
CO3 CO4	3	3	2	3	2	1	1 2	1	1 2	2	1		2
C04 C05	$\frac{3}{2}$	3	1	3	2	1	2	2	1	1	$\frac{1}{2}$		2
COs / PSC		-	PSO1		PSC	-		PSO:	-		PS	04	3
	J 8	1							5				
<u>CO1</u>			1		3			1			2		
CO2			2		2			1			3		
<u>CO3</u>			1		2			2			3		
<u>CO4</u>			2		3			2			3		
CO5	- 4 4	C4		la4 ¹ c ^	<u>3</u>		1	Larr			2	,	
3/2/1 Indica	ates S	scrength	UI Corre		- High	1, 2- Me	aium, I	- LOW		<u> </u>			
Category	-	Basic Sciences	Engineering Sciences	Humanities and Social	Sciences Program Core	Prooram	Electives	Open Electives	Inter Disciplinary	Skill	Component	Practical / Project	2
		\checkmark											

Subject Code	Subject Name : PROBABILITY AND RANDOM PROCESS	Ty/Lb/ ETL/IE	L	T/ SLr	P/R	С
EBMA22010	Prerequisite: Mathematics I & II	Ту	3	1/0	0/0	4

UNIT I RANDOM VARIABLES

Baye's Theorem – Applications – Random Variables – Distribution functions – Moments – Moment Generating functions – Chebychev's Inequality (Statement and Applications only) – Function of Random Variables.

UNIT II STANDARD DISTRIBUTIONS

Marginal and Conditional Distributions – Applications of Discrete Distributions: Binomial – Poisson – Geometric – Applications of Continuous distributions: Uniform – Exponential– Normal distributions – Central Limit theorem (Statement and Applications only).

UNIT III RANDOM PROCESS

Stationary Process – Ergodic Process – Poisson Process – Applications: Birth and Death Process – Markov Process – Markov Chains.

UNIT IV CORRELATION

Auto Correlation – Auto Covariance – Cross Correlation – Cross Covariance.

UNIT V LINEAR SYSTEMS - APPLICATIONS

Spectral Density – Cross Spectral Density – Applications to Linear Systems with Random Inputs and Outputs.

REFERENCE BOOKS:

- 1. Veerarajan T., Probability, Statistics and, Random Processes, Tata McGraw Hill Publishing Co., (2008).
- 2. Singaravelu, Probability and Random Processes, Meenakshi Agency, (2017).
- 3. Gupta S.C., Kapoor V.K., Fundamentals of Mathematical Statistics, S.Chand & Co., (2007).
- 4. Richard Johnson A., Miller & Freund's Probability and statistics for Engineers (9thed), Prentice Hall of India, (2016).

12 Hrs

12 Hrs

12 Hrs

12 Hrs

Total Number of Hours: 60

Subject Code:		Subje	ct Name: I	ELECT					T	y / Lb/ TL/IE		T/ SLr	P/R	C
EBEC2200)4	Prere	quisite: Ar	nalysis o	f Solid	State D	evices			Ту	3	0/0	0/0	3
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							~ ~				
L : Lecture T/L/ETL : 7						•	Project	R : Res	search C	: Credits	5			
OBJECTI			Emocadea	Theory		,								
On complet			ourse the s	tudent w	ill unde	erstand								
			and operat		ctifiers									
			ier circuits											
		f oscill	ators nultivibrate	ore										
			amplifiers											
COURSE														
The Studen	ts will	be ab	le to											
CO1			ious types											
CO2			ferent amp											
CO3			he feedbac					desired	l freque	ncy.				
CO4 CO5			ne delay an construct	<u> </u>				nnliga	iona					
Mapping o								<b>.</b> .	.10115.					
COs/POs		01	PO2	PO3	PO4		PO6	, PO7	<b>PO8</b>	PO9	PO10	PO	1 P	<b>PO12</b>
CO1		3	3	3	3	2	2	1	2	3	2	3		3
CO2		3	3	3	3	3	2	2	3	2	2	3		3
CO3		3	3	3	3	3	1	1	2	3	3	3		2
CO4		3	3	3	3	3	1	1	1	3	3	2		2
CO5		3	3	2	3	3	1	2	1	3	2	1		3
COs / PS	SOs		PSO1			PSO2			PSO:	3		PSC 2		
CO1 CO2			3			3			23			3		
CO2 CO3			3			$\frac{2}{2}$			3			2		
CO3			3			3			2			1		
CO5			3			3			3			3		
H/M/L ind	icates	Stren	gth of Cor	relation	<b>3-</b> H	ligh, 2-	Mediu	m, 1-L	DW					
							ves			Σ.	It		ščt	
	ces			Humanities and Social Sciences	re		Program Electives	ves		Inter Disciplinary	Skill Component		Practical / Project	
	ien(		ing	ies cieı	Co		Ele	) iti		cip]	npc		/ <b>P</b> .	
ory	Sc		leel	anit 1 S	am		am	Ele		Dis	Col		ical	
Category	Basic Sciences		Engineering Sciences	umi	Program Core		1g0	Open Electives		ter	dille		acti	
Ca	B		ХЕ	H S	Pr		$\mathbf{P_{I}}$	Ō	·	In	Sţ		Pı	
					~									



**REGULATEDPOWER SUPPLIES** 

Subject Name: ELECTRONIC CIRCUITS

**Prerequisite: Analysis of Solid State Devices** 

Linear mode power supply - Rectifiers: Half-wave rectifier - Full-wave rectifier - Bridge rectifier - Filters: L, C, LC and CLC filter - Voltage regulators - series and shunt - Over load protection - Switched mode power supply (SMPS) –IC voltage regulators.

AND RESEARCH

DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Perlyar E.V.R. High Road, Maduravoyal, Chennal-95. Tamlinadu, India.

#### UNIT II FEEDBACK AMPLIFIERS

Basic concept of feedback - Gain with feedback - Feedback factor - General characteristics of negative feedback amplifiers - Effect of negative feedback on input and output resistance; topologies of feedback amplifiers - Analysis of series-shunt, series-series, shunt-series and shunt-shunt feedback amplifiers - Nyquist criterion for stability of feedback amplifiers - Gain and phase margin.

#### UNIT III **OSCILLATORS**

Subject

UNIT I

**EBEC22004** 

Code:

Classification of Oscillators - Barkhausen criterion for oscillation - RC phase shift, Wien bridge and Twin-T oscillator - General form of LC oscillator - Hartley, Colpitts and Clapp oscillator - Ring oscillators - Crystal oscillators - Equivalent circuit of crystal - Miller and Pierce crystal oscillator - Frequency stability of oscillator.

#### UNIT IV WAVE SHAPING AND MULTIVIBRATOR CIRCUITS

RC differentiator and integrator - Diode clippers and clampers - Multivibrators - Collector-coupled astable multivibrator, monostable multivibrator and bistable multivibrator - Triggering methods for bistable multivibrators - Schmitt trigger - UJT relaxation oscillator.

#### UNIT V POWER AMPLIFIERS AND TUNED AMPLIFIERS

BJT Power amplifiers - Class A - Class A - Class AB - Class C - MOSFET Power amplifiers - Tuned amplifiers- Q of tank circuits- Single tuned amplifier-Frequency response - Double tuned amplifier - Effect of cascading single tuned and double tuned amplifiers on bandwidth - Stagger tuned amplifiers - Comparison of tuned amplifiers .

## Practical component P: Include case studies / application scenarios

## Research component R: Future trends / research areas / Comparative Analysis

# **Total Number of Hours: 45**

# **TEXT BOOKS**

- 1. Adel S. Sedra, Kenneth C. Smith, Microelectronic Circuits, Oxford University Press, Seventh Edition, 2016.
- 2. Salivahanan S and Suresh Kumar N, Electronic Devices and Circuits, McGraw Hill Education, Fourth Edition. 2017.

# **REFERENCE BOOKS**

- 1. Millman J, Halkias C and Chetan D. Parikh, Integrated Electronics, McGraw Hill Education (India) Private Ltd., Second Edition, 2015.
- 2. Robert L. Boylestad and Louis Nashelsky, Electronic Devices and Circuit Theory, Pearson Education, Eleventh Edition, 2016.
- 3. Millman J, Taub H and Suryaprakash Rao Mothiki, Pulse Digital and Switching Waveforms, McGraw Hill Education (India) Private Ltd., Third Edition, 2011.
- 4. David A. Bell, Solid State Pulse Circuits, Prentice Hall of India, Fourth Edition, 1992.
- 5. David A. Bell, Electronic Devices and Circuits, Oxford University Press, Fifth Edition, 2017.

#### **T**/ P/R SLr 0/0 0/0

INSTITUTE

Ty / Lb/

ETL/IE

Ty

L

3

# 9 Hrs

9 Hrs

9 Hrs

9 Hrs

# 9 Hrs

С

3



Subject Code		bject Na IGINEF		ONTRO	DL SY	STEM	S		Ty / ETI	Lb/ L/IE	L	T/SLr	P/F	C C
EBEC22005	Pro	erequisi	ite: Mat	hematio	cs I & ]	I			Ту		3	1/0	0/0	4
L : Lecture T :	: Tutoria	al SLr	: Super	vised Le	arning	P : Proj	ect R	: Re	esearc	n C: Cr	edits			
T/L/ETL : The	eory/Lal	o/Embeo	dded Th	eory and	l Lab									
OBJECTIVE	<b>S</b> :													
To learn					•									
To unde														
• To learn										olot.				
• To chec		•		•	0			ique	s.					
To study					e need	of conto	llers.							
COURSE OU			(3):(3)	- 5)										
The student w			1 avetar	na vaina	blook	diamana	anda	iana	1 flow	ananh				
CO1 CO2						diagram or standa								
CO2 CO3	•					loop sys	<b>^</b>				in			
C03 C04						given sys			equent	y uoma	ıIII <b>.</b>			
C04 C05									enone	e of the	system	and iden	tify th	e need of
005		nt types			i uic ic	quirea a	ynann		spons		system		ury ur	
Mapping of C					m Out	comes (]	POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO</b> 2	7	PO8	PO9	<b>PO10</b>	PO1	1	PO12
C01	3	3	3	3	3	2	2		1	107	1010	2	-	1
CO2	3	3	3	3	3	1						1		1
CO3	3	3	3	3	3	2	1					1		1
CO4	3	3	3	3	3	2						2		1
CO5	3	3	3	3	3	1			1			2		1
COs / PSOs		PSO	l	·	PS	02			I	SO3		•	PSO ₄	1
CO1		3				3				2			2	
CO2		3				3				2			2	
CO3		3				3				2			2	
CO4		3				3				2			2	
CO5		3				3				2			2	
3/2/1 indicate	s Stren	gth of C	Correlat	ion 3-	High,2	2- Medi	um, 1	-Lov	W					
		s												
		Engineering Sciences					ş							<u>ц</u>
	s	ciei		es			Program Electives		s		ıary	ent		Practical / Project
	JCe	ы N	)	s an	ore		lect		ive		din	ono		Pro
Jry	cier	rin;		ties Scie	Ŭ		ΠEI		ect		scij	du		1/1
Category	Basic Sciences	nee		Humanities and Social Sciences	Program Core		ran		Open Electives		Inter Disciplinary	Skill Component		ica
Cat	asi	ngi	)	um oci;	00	)	00		per		iter	kill		ract
_	В	Б		Ϋ́Η	$\mathbf{P}_{\mathbf{I}}$		P		0		In	S		P
					•									

Subject Code:	Subject Name : CONTROL SYSTEMS ENGINEERING	Ty / Lb/ ETL/IE	L	T/SLr	P/R	C
EBEC22005	Prerequisite: Mathematics I & II	Ту	3	1/0	0/0	4

AND RESEARCH

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95, Taminadu, India.

INSTITUTE

#### UNIT I SYSTEM REPRESENTATION & STATE SPACE ANALYSIS

Control Systems – Basic elements in control systems – Open and Closed loop systems – Mathematical models of physical systems – Transfer function – Block diagram reduction techniques – Signal flow graph- Concepts of state variables -Solution of state equations- Conversion of transfer function to state space model.

#### UNIT II TIME RESPONSE

Standard Test Signals-Time Domain study of first order and second order feedback control systems -Time domain Specifications - I and II order System Response - Error Coefficients - Generalized Error Series -Steady State Error

#### UNIT III **FREQUENCY RESPONSE**

Frequency Domain Specifications -Correlation between Frequency Domain and Time Domain Specifications-Bode plot - Polar plot - Introduction to Closed Loop Frequency Response- Constant M and N circles -Nichols chart (Qualitative approach)

#### UNIT IV STABILITY OF CONTROL SYSTEM

Characteristics Equation - Location of Roots in S plane for stability - Routh Hurwitz Criterion - Root Locus Construction - Effect of Pole, Zero Addition - Gain Margin and Phase Margin - Nyquist Stability Criterion-Concept of Controllability & Observability.

#### UNIT V **COMPENSATORS AND CONTROLLERS**

Compensator-Types -Lag, Lead and Lag-Lead Compensators (Qualitative approach)- Controllers -Need -Types-P, I, D – Effect of PI, PD and PID controller- Intelligent controllers (Case Study)

#### Practical component P: Include case studies / application scenarios Research component R: Future trends / research areas / Comparative Analysis

## **Total Number of Hours: 60**

## **TEXTBOOKS:**

- 1. K. Ogata, "Modern Control Engineering", 4th edition, Pearson Education, New Delhi, 2003 / PHI.
- 2. I.J. Nagrath& M. Gopal, "Control Systems Engineering", New Age International Publishers, 2003.

3. B.C. Kuo, "Automatic Control Systems", Prentice Hall of India Ltd., New Delhi, 7thEdition, 1995. **REFERENCES:** 

- 1. M. Gopal, "Control Systems, Principles & Design", Tata McGraw Hill, New Delhi, 2002.
- 2. M.N. Bandyopadhyay, "Control Engineering Theory and Practice", Prentice Hall of India, 2003.
- 3. A.Nagoorkani, "Control System Engineering" RBA Publications.
- 4. Stefani, Shanian, Savant, Hostetter, "Design of Feedback Control Systems", 4thEdition, Oxford university press 2002.

12 Hrs

# 12 Hrs

## 12 Hrs

12 Hrs

# 12 Hrs

#### 79



Subject C	ode:		ubject	Name :	LINEA			TED []	Гу / Lb/	L	T/S	<b>P</b> /	С
			IRCUI					]	ETL/IE		Lr	R	
<b>EBEC2200</b>	)6				nalysis o		State		Ту	3	0	0	3
					l Electro							Ũ	e
L : Lecture					rvised Le		? : Proje	ct R : R	lesearch (	C: Crec	lits		
T/L/ETL :		•	/Embec		neory and	Lab							
<b>OBJECT</b>			haaiaa a	£ 1:			:4.0						
					r integrate of operati								
	0	n comparators, signal generators and timers. ss analog multiplier and PLL.											
						and Da	ata conv	erters					
		he the concepts of IC regulators and Data converters. <b>ΓCOMES (COs) : ( 3- 5)</b>											
		ill be able to											
CO1		cognize the basics of linear IC's and characteristics of operational amplifier											
CO2		press various applications of op-amp.											
CO3	-	-			signal ge	· •	s using o	op-amp					
CO4	An	nalyze the characteristics of Analog multipliers and PLL.											
CO5		xamine IC regulators and implement data convertors for real time application.											
Mapping													
COs/Pos	5	PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12
CO1		3	3	3	3	3	3	3	1	2	1	2	2
CO2		3	3	3	3	3	3	3	1	2	1	2	2
CO3		3	3	3	3	3	2	2	1	3	1	1	2
CO4		3	3	3	3	3	3	3	1	2	1	2	1
CO5		3	3	3	3	3	3	3	1	2	1	2	2
COs/PSC	)s		PS	01		PSC	02		PSO	)3		PSC	)4
C01			3	-		3			3	-		3	
CO2			3			3			3			3	
CO3			3			3			3			3	
CO4			3			2			2			2	
CO5			3			3			2			2	
3/2/1 india	cates	Streng	gth of C	orrela	tion 3-	High, 2	2- Medi	um, 1-1	Low	-	·	•	
ý		lces	50	,	s and nces	ore	Program Electives		ives	Inter Disciplinary	Skill Component		Practical / Project
gor		cier	ering	es	nities Scie	Program Core	am El		Open Electives	Disci	Comp		Ical / ]
Category		Basic Sciences	Engineering	Sciences	Humanities and Social Sciences	Progr	Progr	0	Open	Inter	Skill	•	Pract



Subject Code:	Subject Name : LINEAR INTEGRATED CIRCUITS	Ty / Lb/ ETL/IE	L	T/S Lr	P/ R	С
EBEC22006	Prerequisite: Analysis of Solid State Devices, Digital Electronics	Ту	3	0	0	3

#### UNIT I INTRODUCTION TO INTEGRATED CIRCUITS

Integrated circuit and its classification, Introduction to Operational amplifier-General operational amplifier stages-Internal circuit diagram of IC 741, Ideal Op-Amp , DC & AC Characteristics, Slew rate and methods of improving slew rate, CMRR, PSRR, Frequency Response and Compensation techniques

#### UNIT II APPLICATIONS OF OPAMP IC741

Scale changer, Voltage follower, Inverting and Non-Inverting amplifiers ,V-to-I and I-to-V converters, Summer and Subtractor – Multiplier and Divider – Differentiator and Integrator – Instrumentation Amplifier, Op- Amp Circuits using Diodes, Precision Rectifier – Clipper and Clamper – Sample and Hold Circuit – Log and Antilog Amplifiers.RC Active filters-low pass and High pass-Band pass and Band reject-Switched capacitor and Butterworth filters

### UNIT III COMPARATORS AND SIGNAL GENERATORS

applications of Comparators – Regenerative Comparators (Schmitt Trigger) – Sine wave generator, Square Wave Generator (Astable Multivibrator) – Monostable Multivibrator –Triangular Wave Generator – Saw Tooth Wave Generator – IC 555 Timer

#### UNIT IV ANALOG MULTIPLIER AND PLL

Analog Multiplier using Emitter Coupled Transistor Pair – Gilbert Multiplier cell – Variable transconductance technique, analog multiplier ICs and their applications, PLL Basic Principles, Monolithic PLL IC 565, Functional blocks of PLL-Phase Detector -Comparator-Analog and Digital Voltage Controlled Oscillator, Applications of PLL-AM detection-FM detection-FSK modulation and demodulation-Frequency synthesizing

#### UNIT V IC REGULATORS AND DATA CONVERTERS

IC voltage regulators: Introduction, Fixed voltage regulators, SMPS, current limiting and current feedback techniques using IC723.DA converters- DAC Specifications -Weighted resistor type,R-2R Ladder type, A/D converters-ADC Specifications --Counter ramp type, Successive Approximation, Dual slope, Flash type, High Speed A/D Converters.

#### **Practical component P : Include case studies / application scenarios Research component R : Future trends / research areas / Comparative Analysis**

#### **Total Number of Hours: 45**

#### TEXT BOOKS:

- 1. James. M. Fiore, "Operational Amplifiers and Linear Integrated Circuits", First Edition, Thomson Learning.
- 2. Roy Choudhury and Shail Jain, "Linear Integrated Circuits", Wiley Eastern Ltd., 1991.
- 3. Coughlin and Dirscol, "*Operational Amplifiers and Linear Integrated Circuits*", Prentice Hall of India Pvt., Ltd., 1992

#### **REFERENCE BOOKS:**

- 1. Millman and Halkias, "Integrated Electronics", McGraw Hill, 1992.
- 2. Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", Third Edition, TMH, 2002.
- 3. Ramakant A. Gayakwad, "Op amp and Linear Integrated Circuits", Fourth edition, PH

# 81

#### 9 Hrs

# 9 Hrs

#### 9 Hrs

9 Hrs



Subject			ıbject N						Ty/L				C
Code:	<b>AF</b>					CATION			ETL		Lr	R	
EBEC220			erequis						Ту	3	0/0	0/0	3
L : Lecture T/L/ETL :						earning 1 Lab	P:Proj	ect R :	Researc	ch C: C	redits		
OBJECTI													
			ıs Ampl	itude m	odulatio	n and der	nodulati	ion syst	ems.				
						e perforn				er.			
						y with so							
COURSE						, 			0				
The Studer	nts v	vill be a	ble to										
CO1	Id	lentify the	he types	of Nois	se and ex	press the	need fo	or modu	lation.				
CO2						le modul				on tech	nique.		
CO3	A	rticulate	e the ger	eration	& demo	dulation	of FM s	systems					
CO4	A	nalyze t	he analo	og to dig	gital con	version n	nethods.						
CO5	In	nplemer	nt the co	ding teo	chniques	and calcu	late the	e chann	el capac	ity.			
Mapping	g of (	Course	Outcon	nes with	n Progra	m Outco	mes (P	Os)					
COs/PO	S	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	PO11	PO12
CO1		3	3	2	1	3	2	3	1	2	3	1	2
CO2		3	3	3	3	3	2	2	2	2	2	3	3
CO3		3	3	3	3	3	2	2	1	2	2	3	3
<b>CO4</b>		3	3	3	3	3	1	2	1	2	2	3	3
CO5		3	3	3	3	3	1	2	3	1	2	2	3
COs/PSO	)s		PSO1			PSO2			PSO3			PSO4	
C01			3			2			2			3	
CO2			3			3			3			3	
CO3			3			3			3			3	
CO4			3			2			2			3	
CO5		<b>a</b> :	3		<u> </u>	2			3			2	
3/2/1 indi	icate	es Stren	igth of (	Correla	tion 3-	High, 2	- Mediu	ım, 1-L	<b>OW</b>				
Category		Basic Sciences	Engineering		Social Sciences	Program Core	Program	Electives	Open Electives	Inter Disciplinary	Skill Component	Dractical / Droiact	
						$\checkmark$							



#### University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India. Subject Ty/Lb/ T/S **P**/ С Subject Name : L Code: ANALOG COMMUNICATION ETL/IE Lr R **EBEC22007 Prerequisite:** None Ty 3 0/00/0 3

ND RESEA

NSTITUTE

#### UNIT I INTRODUCTION TO COMMUNICATION SYSTEMS AND NOISE

Basic Communication Systems - Need for Modulation in Communication Systems - Noise - Sources of Noise - Types of Noise - External Noise - Thermal Agitation - Shot Noise - Noise Figure - Signal to Noise Ratio -Equivalent Noise Resistance, Amplitude Modulation and demodulation- Frequency Spectrum - power relations in Amplitude Modulation.

#### **CONTINUOUS MODULATION SYSTEMS** UNIT II

Balanced Modulator, DSB - SC, SSB and VSB - Modulation and Demodulation - AM Transmitter, Receiver-Types, AM receivers.

#### UNIT III ANGLE MODULATION

Frequency modulation – Mathematical representation of FM – Frequency Spectrum – Phase Modulation – Noise triangle - Pre-emphasis, de- emphasis- Comparison of Wide band and Narrow band FM, AFC -Stereophonic FM multiplex system – Generation of FM - FM receivers - Communication receivers.

#### ANALOG TO DIGITAL CONVERSION **UNIT IV**

Sampling Theorem - PAM- Quantization of signal - Quantization Error - PWM, PPM - Introduction to digital modulation systems - ASK, FSK, PSK - Transmitter and receiver.

#### UNIT V **INFORMATION THEORY AND CODING**

Introduction - Information - Entropy - Information rate, Classification of codes, Kraft McMillan inequality --Source coding theorem - Shannon, Fano coding - Huffman coding, Joint and conditional entropies-Channel capacity -- Mutual information.

# Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

# Total Number of Hours: 45

# **TEXTBOOKS :**

- 1. Roy Blake, "Electronic Communication Systems", Thomson Learning 2nd Edition, 2002.
- 2. George Kennedy: "Electronic Communication Systems", Tata McGraw Hill publications, 1992.
- 3. R Bose, "Information theory, Coding and Cryptography", TMH 2007.

# **REFERENCE BOOKS:**

- 1. K.C.Raveendranath, "Communication system modeling and simulation using matlab& Simulink" universities press, 2011.
- 2. Taub & Schilling," Principles of Communication", Tata McGraw Hill, 1986 3. Simon Haykins, "Principles of Communications", Prentice Hall of India. 2001

# 9 Hrs

#### 9 Hrs

## 9 Hrs

# 9 Hrs



Subject Cod	le: S	Subject	Name :	THI	E IND	IAN CO	ONST	TTUT	ION	TY / I ETL/			T/SL r	P/R		С
EBCC22I04	F	Prerequ	isite: N	one						Audit course IE		2	0/0	0/0		0
L : Lecture 7							• : Proj	ject R	: Res	earch C:	Credits					
T/L/ETL : T		ab/Emb	edded T	heor	y and I	Lab										
OBJECTIV			6 (1 1	• .	6.1	1.	CT 1	· .	·•							
• To pro		overviev ltheprea														
										n. f state po	licy					
• To une																
COURSE O						0	,. ,.			J	2					
The Students																
		overvie					•									
CO2 To a	ındersta	and prea	mble an	d the	basic	structur	res oft	heCon	stituti	on						
CO3 To	Know th	ne funda	mental 1	rights	s, dutie	es and th	he dire	ective p	orinci	ples of st	ate poli	су				
Mapping of						n Outco	mes (l	POs)								
COs/POs	PO	1 PO	2 <b>PO</b>	3 1	PO4	PO5	PO6	6 PC	)7	PO8	PO9	PO	<b>D10</b>	PO11	PO	)12
CO1	1	1			1	1	3		1	1	1		1	1		1
<u>CO2</u>	1	1			1	1	3		1	1	1		1	1		1
CO3	1	1	-		1	1	3		1	1	2		1	1		1
COs / PSO	\$	PS				PSC	<u>J2</u>			PSO 2	3			PSO	4	
CO1 CO2			1 1			1				2				1		
CO2 CO3			1			1	L			2				1		
3/2/1 indicat	tes Stre	ngth of	1 Correla	ation	3- I		· Medi	ium.1-	Low	2				1		
Category	Basic Sciences	Εησο	Sciences	Humanities	& Social Sciences	Program Core		Program Electives	Ē	Open Electives	Inter Disciplinary		Skill Component		Practical / Project	
					~											



	(A	n is	0 210	01:2	018 Ce	rtified I	Instit	ution)	
ar	E.V.R.	High	Road,	Madu	ravoyal,	Chenna	ai-95.	Tamilnadu,	Ind

Subject Code:	Subject Name : THE INDIAN CONSTITUTION	TY/Lb/	L	T/SL	P/R	С
_		ETL/IE		r		
EBCC22I04	Prerequisite: None	Audit	•	0.40	0.40	•
		course-	2	0/0	0/0	0
		IE				

<b>UNIT I</b> The historyofthemaking of Indian constitution, preamble and the basic structures	6 Hrs
<b>UNIT II</b> Fundamental rights andduties, directive principles of state policy	6 Hrs
UNIT III Legislature, Executive and Judiciary	6 Hrs
UNIT IV Emergencypowers	6 Hrs
UNIT V Special provisions for Jammu and Kashmir, Nagaland and other regions, amendments	6 Hrs

#### **Total Number of Hours: 30**

#### **TEXT BOOKS:**

1. D DBasu, Introductionto the Constitution of India, 20th Edn., Lexisnexis Butterworths, 2012.

#### **REFERENCE BOOKS:**

- 1. Rajeev Bhargava(ed), Ethics and Politics of the Indian Constitution, Oxford University
- 2. Press, NewDelhi, 2008.
- 3. GranvilleAustin, TheIndianConstitution: CornerstoneofaNation, OxfordUniversityPress, Oxford, 1966.
- 4. Zoya Hassan, E. Sridharan and R. Sudarshan (eds), India's Living Constitution: Ideas,
- 5. Practices, Controversies, Permanent Black, NewDelhi, 2002.
- 6. SubhashC.Kashyap, OurConstitution, NationalBookTrust, NewDelhi, 2011.



Subject	t Coo			ame : T ONAL			E		TY/2 ETL/		L	T/SL r	P/H	2	С	
EBCC2	22105	5 Pr	erequis	ite: Noi	ne				Audit cours IE		2	0/0	0/0		0	
L : Lect	ure	Γ : Tutor	ial SL	r : Super	rvised L	earning	P:Pr	oject ]	R : Rese	arch C:	: Cre	edits				
T/L/ET	L : T	heory/L	ab/Embe	edded Tl	heory ar	nd Lab		-								
OBJEC	CTIV	'ES :														
• T	o un	derstand	the Pre	- colonia	al and C	olonial	Period,	India	n Traditi	onal K	now	ledge	System	ı		
		derstand												gy		
		now the ]					ry, Tra	litiona	l Art an	d Archi	itect	ure and	d			
		Shashtra														
			stand the Origin of Mathematics, Aviation Technology in Ancient India, Crafts and Trade at India													
		cient India														
	SE OUTCOMES (COs) : ( 3- 5)															
			will be able to													
CO1			derstand the Pre- colonial and Colonial Period, Indian Traditional Knowledge System derstandtheTraditional Medicine, Traditional Production and Construction Technology													
CO2																
CO3		understa		•	Mathen	natics, A	Aviatio	n Tech	nology i	n Anci	ent ]	India, (	Crafts	and		
		de in An														
Mappi	ng of	Course	Outcor	nes with	n Progra	am Out	comes	(POs)								
COs/I	POs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	PC	)10	PO11	P	012	
CO	1	1	3	3	1	1	2	1	1	1		2	1		1	
CO	2	1	3	3	1	1	2	1	1	1		2	1		1	
CO	3	1	3	3	1	1	2	1	1	1		2	1		1	
COs /P	SOs		PSO1			PSO2			PSC	)3			PSO	4		
CO	1		1			1			2				1			
CO	2		1			1			2				1			
CO			1			1			2				1			
3/2/1 in	dica	tes Stre	ngth of	Correla	tion 3	- High,	2- Me	dium,	1-Low							
							es			y		t		ct		
	Category			ties		1 Core	Program Electiv		ectives	Inter Disciplinar		Skill Componen		Practical / Project		
	Cate	Basic Sciences	Engg Sciences	Humanities	&Social Sciences	Program Core	Program		Open Electives	Inter Di		Skill Co		Practica		
					$\checkmark$											



(An I	SO 21001 : 201	18 Certified In	stitution)	
riyar E.V.R. Hig	h Road, Madura	woyal, Chennai	-95. Tamilnadu,	Ind

Subject Code:	Subject Name : THE INDIAN TRADITIONAL KNOWLEDGE	TY / Lb/ ETL/IE	L	T/SL r	P/R	С
EBCC22I05	Prerequisite: None	Audit course- IE	2	0/0	0/0	0

## UNIT I

6 Hrs

Historical background: TKS during the pre- colonial and colonial period, Indian traditional knowledge system

<b>UNIT II</b> Traditional medicine, traditional production and construction technology	6 Hrs
<b>UNIT III</b> History of physics and chemistry, traditional art and architecture and vastushashtra, astronomy and astrology	6 Hrs
<b>UNIT IV</b> Origin of mathematics, aviation technology in ancient India, crafts and trade in ancient India	6 Hrs
<b>UNIT V</b> TKS and the contemporary world, tks and the Indian union, tks and it revolution.	6 Hrs
Total Number of Hou	ma. 20

#### **Total Number of Hours: 30**

#### **TEXT BOOKS:**

- 1. Amit Jha (2009), Traditional knowledge system in india, 1st Edition, Delhi University (North Campus)
- 2. Dr.A.K.Ghosh (2011), Traditional Knowledge of Household Products



Subject Co	de:	•	et Name : UITS LA		R INTI	EGRAT	`ED	Ty /Lb/ ETL /IE	L	T/SLr	P/R	C				
EBEC22L0	2	Prere	equisite:	Analysis	of Solid	d State	Devices		<b>)</b> 0	0/0	3/	0 1				
	-		al Electro					, 2.		0/0	C,	•				
L : Lecture	Γ : Tu	orial	SLr : Su	pervised	Learnir	ng P : Pi	oject R	: Resear	ch C:C	redits	•					
T/L/ETL : T	'heory	/Lab/Er	nbedded	Theory ar	nd Lab											
OBJECTI	VES :															
• To me	easure	differe	nt parame	eters of op	peration	al ampl	ifier									
• To ex	amine	the var	ious appl	ications o	of op-an	np										
• To ill	ustrate	rate the characteristics of comparators and signal generators														
		ruct different types of filters using op-amp														
		riment voltage regulator and Data converters														
	•	TIMENT Voltage regulator and Data converters														
		<b>UTCOMES (COs) : ( 3- 5)</b> will be able to														
C01		Measure the parameters of an operational amplifier														
CO2	Ex	Experiment various applications of operational amplifier.														
CO3	De	sign co	mparators	and sign	al gene	rators u	sing op-	amp								
CO4	Ch	aracteri	ze voltage	e regulato	ors and I	Data co	nverters									
Mapping of	of Cou	rse Ou	tcomes w	ith Prog	ram O	utcome	s (POs)									
COs/POs	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	PO8	PO9	<b>PO10</b>	PO11	<b>PO12</b>				
CO1	3	3	3	3	3	3	3	1	3	1	3	3				
CO2	3	3	3	3	3	3	3	1	2	1	3	3				
CO3	3	3	3	3	3	3	3	1	3	1	2	2				
CO4	3	3	3	3	3	2	2	1	2	1	1	2				
COs / PSO	s	PS	501		PSO	2		PSO:	PSO3 PSO4							
C01			3		3			3			3					
CO2			3		3			3			3					
<u>CO3</u>			3		2			3			2					
CO4		4 41	3		3			2			2					
3/2/1 indic	ates S	trength	of Corr	elation	<u>3- H</u>			n, 1-Low	' 	I	1					
Category	Basic Sciences		Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	)	Open Electives	Inter Disciplinary	Skill Component	Dractical / Draiact	110000				
											$\checkmark$					



Subject Code:	Subject Name : LINEAR INTEGRATED CIRCUITS LAB	Ty /Lb/ ETL/IE	L	T/SLr	P/R	C
EBEC22L02	Prerequisite: Analysis of Solid State Devices, Digital Electronics Lab	Lb	0	0/0	3/0	1

#### LIST OF EXPERIMENTS

- 1. Measure input bias current; input offset current and input offset voltage of the given op-amp
- 3. Design voltage follower circuit and measure Slew Rate & CMRR
- 4. Design an inverting and non-inverting amplifier for required gain using Ic741
- 5. Design and realize adder and subtractor using IC741
- 6. Design integrator and differentiator using IC741
- 7. Design Schmitt trigger using ic741 for given values of UTP & LTP
- 8. Design Monostable multivibrator for required pulse width using IC741.
- 9. Design Astable multivibrator for required frequency and duty cycle using ic741
- 10.Design & obtain frequency response of first order HPF & LPF filters using P-SPICE
- 11.Calculate line, load regulation for a voltage regulator using IC723 using P-SPICE
- 12.Construct a 4-bit R-2R ladder type DAC using P-SPICE

13.Set up a 4-bit successive approximation type ADC and study its performance using P-SPICE

#### **Total Number of Hours: 45**

#### **REFERENCES:**

1. Lab manual, Department of ECE, DR.MGR UNIVERSITY.



Subject C	ode:		ect Nam CUITS I		CTRO	NICS	5		Ty /Lb/ ETL/IE	L	T/SL r	P/R	C		
EBEC22L03	3	Prer Devi	equisite: ces	Analys	is of Sol	lid St	ate		Lb	0	0/0	3/0	1		
L : Lecture		torial	SLr : S						ject R	: Rese	earch				
C:Credits T		L : The	ory/Lab/	Embedde	ed Theor	ry an	d La	b							
OBJECTI															
		nands on experience in designing electronic circuits.													
		arize students with the implementation of basic analog circuits using discrete components.													
		ve characteristics of electronic circuits.													
		TCOMES (COs) : ( 3- 5)													
The Studen															
CO1			and Veri												
CO2		0	plifiers a			0		istors							
CO3			ıltivibrat				iers								
CO4		2	work the												
Mapping o	f Cou	rse Out	comes w	ith Prog	gram O	utcor	nes	(POs)	1						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO	6	<b>PO7</b>	PO8	<b>PO9</b>	PO10	PO11	PO12		
CO1	3	3	3	2	2	2		1	3	2	2	3	2		
CO2	3	2	3	2	2	1		2	2	1	2	2	1		
CO3	2	3	3	3	1	1		1	1	2	2	2	2		
CO4	2	3	2	3	3	2		1	1	2	1	2	3		
COs /PSOs		PSC	)1		PSO2	2			PSO3			PSO4			
CO1		3			3				2			3			
CO2		3			3				3			2			
CO3		3			2				3			2			
CO4		2			2				2			2			
3/2/1 indica	ates St	rength	of Corr	elation	3- H	igh, 2	2- M	lediur	n, 1-Low		I				
Category	Basic Sciences Engineering Sciences Humanities and Social Sciences				Program Core		Program Electives		Open Electives	Inter Disciplinary	Skill Component		Practical / Project		
													~		



	001 : 2018 Ce			
eriyar E.V.R. High Road,	Maduravoyal,	Chennai-95.	Tamilnadu,	India

Subject Code:	Subject Name : ELECTRONICS CIRCUITS LAB	Ty /Lb/ ETL/IE	L	T/SL r	P/R	C
EBEC22L03	Prerequisite: Analysis of Solid State Devices	Lb	0	0/0	3/0	1

### LIST OF EXPERIMENTS

- 1. Verification of Half-Wave Rectifier
- 2. Verification of Full-Wave Rectifier
- 3. Shunt Voltage Regulator
- 4. Frequency Response of Rc Coupled Amplifier.
- 5. Hartley and Colpitts Oscillators
- 6. Wien Bridge Oscillator
- 7. Waveshapping Circuits Clipper And Clamper
- 8. Monostable Multivibrator Circuit
- 9. Astable Multivibrator Circuit
- 10.Class A Power Amplifier
- 11. Verification of Network Theorems
- 12.Mesh and Node Analaysis

**Total Number of Hours: 45** 



Subject	Cod	de: Subject Name : DIGITAL SIMULATION Ty / Lb/ L T/SL P/R C LAB TL/IE r P/R C														С	
		1			<u>.</u>		10.										
EBEC2				-		gnals an					Lb		0	0/(	) 3/0		1
L : Lectu T/L/ETI								P :	Proje	ect R :	Researc	h C: Cı	redit	S			
OBJEC	TIV	ES :															
		ogrammatically generate different types of signals using MATLAB.															
		rform sampling and generate waveforms.															
		enerate time series perform convolution check stability perform DFT and IDFT computation using															
	ATLAB.																
	rogram and analyze behavior of different types of systems using MATLAB. SE OUTCOMES (COs) : ( 3- 5)																
The Stud					s) . ( J.	- 3)											
CO1				erent ty	nes of s	ignals.											
CO2						ate wav	eforms.										
CO3					-				n an	d che	eck stab	ility p	erfor	m DI	FT and	d ID	DFT
			ation.		, <b>I</b> .							<b>J</b> I					
CO4	Pro	gran	n and a	analyze	behavi	or of di	fferent t	ype	s of	system	ns using N	MATLA	AB.				
Mappin	g of (	Cou	rse Ou	utcome	s with	Program	m Outc	om	es (P	POs)							
COs/P	Os	I	PO1	PO2	PO3	PO4	PO5	PO	<b>)</b> 6	<b>PO7</b>	PO8	<b>PO9</b>	PO	010	PO11	PC	<b>D12</b>
CO	1		3	2	1	2	3	1	2	2	1	1		1	1		1
CO	2		3	2	1	2	3		2	2	1	1		1	1		1
CO	3		3	2	2	2	3		2	2	3	2		2	2		2
CO			3	3	2	2	3		2	2	2	2		2	3		2
COs /		s		<b>PSO</b>	1		PSC	)2			PSC	)3			PSO4	4	
CC				2			2				1				1		
CC				2			2				1				1		
CC				3			3				2				2		
CC				3			3		<u>, 1</u> ,		3				3		
3/2/1 in	dicat	es S	trengt	n of Co	orrelati	ion 3-	High, 2	2- N	ledi	um, 1-	Low	-					
					р	es					s	ary		ent			
		lces		00	s and	Sciences	ore				ives	Inter Disciplinary		onent			
	v srin Scies ss										lect	scif		dux		$\mathbf{l}$	
	gor	C N		nee	ani	al	ran		ran	μve	ЪЕ	D		Ŭ		tica	2
	Category	Basic Scier		Engineering Sciences	Humanities	Social	Program Core		Program	Electives	Open Elect	lter		Skill Comp		Proceed Project	5
	U	В		ЦŇ	H	Ś	d'		d' r	Ľ	U U	Ir		S		ם ם	-
																1	
																•	



Subject Code:	Subject Name : DIGITAL SIMULATION LAB	Ty / Lb/ ETL/IE	L	T/SL r	P/R	C
EBEC22L04	Prerequisite: Signals and Systems	Lb	0	0/0	3/0	1

#### SIGNALS AND SYSTEMS

- 1. Generation of Signal Sequence
- 2. Sampling & Waveform Generation
- 3. Representation of Time-Series; Computation Of Convolution
- 4. Stability of LTI System.
- 5. Dft & Idft Computation

#### **CONTROL SYSTEM**

- 6. Impulse Response of First and Second Order Systems
- 7. Time Domain Specifications for Closed Loop Transfer Function.
- 8. Bode Plot and Polar Plot For Open Loop System
- 9. Stability Check Using Routh-Hurwitz Criterionbode Plot and Root Locus.
- 10. Determination of Controlability, Observabilty and Transfer Function from State Model

**Total Number of Hours: 45** 

#### **REFERENCES:**

1. Lab manual, Department of ECE, DR.MGR UNIVERSITY.



Periyar	E.V.R.	High	Road,	Maduravoya	l, Chenna	i-95.	Tamilnadu,	India.

Subject Code	e: Su	bject N	Name :	TECH	NICAI	L SKIL	L-1		y / Lb/ TL/IE	L	T/SL r	P/R	C
EBEC22I01	Pr	erequi	site: No	one				I		0	0/0	2/0	1
L : Lecture T	: Tuto	rial S	Lr : Suj	pervised	l Learn	ing P:	Projec	t R : R	esearch (	C: Crea	lits		
T/L/ETL : Th							-						
OBJECTIVI	E: The	objecti	ve is to	develo	p the te	chnical	l skill o	f the stu	idents.				
COURSE O				· · · ·									
CO1								of study					
CO2						ill requ	iiremer	nts of t	he emp	loyer	or indu	stry a	nd the
			of the st										
CO3			employ										
Mapping of			1		0		· ``			1			
COs/POs	PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	PO9	<b>PO1</b>		1 I	PO12
CO1	2	3	3	3	3	3	2	2	3	2	3		2
CO2	3	3	2	3	3	3	2	2	3	3	3		3
CO3	3	3	3	3	3	3	2	2	3	3	3		3
COs /PSOs		PSO	1		PS			P	SO3			PSO4	
CO1		3			3				3			2	
CO2		3			2				3			3	
CO3		2			3				2			3	
3/2/1 indicate	es Stre	ngth o	f Corre	lation	<u>3- Hi</u>	<b>gh, 2-</b> I	Mediu	<u>n,1-Lov</u>	N				
Category	Basic Sciences	Engineering Sciences	0	Humanities and Social Sciences	Program Core	,	Program Electives	Open Electives	;	Inter Disciplinary	Skill Component	-	Practical / Project



Subject Code:	Subject Name : TECHNICAL SKILL- 1	Ty / Lb/	L	T/SL	P/R	C
		ETL/IE		r		
EBEC22I01	Prerequisite: None	IE	0	0/0	2/0	1

Students should acquire skill in the domain/inter disciplinary area from government/private training centers/industries /University for a minimum period of 15 calendar days. The training can be through off line, online or mixed mode. Students are supposed to prepare Technical skill report at the end of the training and submit the report along with the certificate in proof of the training, during the viva voce examination conducted by the examiners duly appointed by the head of the department.



Subject	Code				SOFT					Ty/		L	T/S	Lr	P/R		С
EDCCA	<b>ATO</b> (	\ \			LITY S	KILL	S)			ETI	L/IE	0			• 10		
EBCC2			erequis			1 T	· D	<b>D</b> '	. T		1	0		)/0	2/0		1
L : Lectu T/L/ETI								: Proje	ect i	$\mathbf{x}$ : Res	earch	C: C	redits	S			
		•	au/EIIIt	equed	Theory		aD										
<b>OBJEC</b>			ranacc	in stude	ents, va	rious t	on com	nonio	a hal	ning tl	nom in	onros	va th	air cl	rill cot	ma	triv
					e frame			pame	s nei	iping u		lipio	vetno		III set	ша	unx,
					of vario			s of c	andi	idate re	ecruitr	nent	and	heln	them	pre	enare
		nd resu		u ware	or vario		iiiique		unui		oor altr	none	una	noip	them	P10	pure
• Te	o help	studer	nt how	to face	various	types	of inter	view,	pre	paring	for HI	R, tec	hnica	al int	erviev	vs.	
					eir verb												rious
m	ock s	essions					-			-				-			
COURS	SE OU	UTCO	MES (	COs):	( <b>3- 5</b> )T	The Stu	dents v	vill be	able	e to							
CO1	Gair	the kr	nowledg	ge of va	arious to	op com	panies	leadir	ng to	impro	vemer	nt in	skills	amo	ngst t	hem	n.
CO2	Dev	eloping	y variou	is cand	lidate re	ecruitm	nent teo	hnia	ies l	ike gro	oup di	scuss	sion.	inter	views	and	d be
001		· · ·	-		resume			1-		0			,				
CO3					s of inte		s and b	e prep	ared	for H	R and	techi	nical	inter	views		
CO4					tten and												
Mappin																	
COs/P		<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	PO		PO8	PO9	P	<b>D10</b>	PC	)11	PO	012
CO1		1	2	1	1	2	2	2		3	3		2		2		3
CO2		2	1	2	1	1	2	2		3	3		2		2		3
CO3		1	3	1	3	1	2	2		3	3		2		2		3
CO4		3	1	1	1	1	2	2		3	3		2		2		3
COs / P	SOs		PSO	1		PS	02			PS	03				PSO4	Ļ	
CO	1		2			1	2				3				1		
CO2	2		3				3				3				2		
CO3			2				3				3				2		
CO4			3				2				3				2		
3/2/1 inc	dicate	es Strei	ngth of	Corre	lation	3- Hi	i <b>gh, 2-</b> ]	Medi	um,1	l-Low	<u> </u>						
			s														
			nce					Ś				~					
		s	cie		es			ive		s		ıary		ent		ject	
	<u>S</u>	JCe	Š.		s an	ore		lect		ive		nilc		NON		Pro	
	Category	Basic Sciences	Engineering Sciences		Humanities and Social Sciences	Program Core		Program Electives		Open Electives		Inter Disciplinary		Skill Component		Practical / Project	
	,ate	Š	nee		ani al (	ran		ran		I EI		Di		C C		tica	
	C	asic	ngi		um oci	00	)	goi		per		iter		kill		ract	
		В	Ē		Ϋ́	$\mathbf{P}_{\mathbf{I}}$		Ρ		0		In		$\mathbf{S}$		Ρ	
1													Γ	$\checkmark$			
1														•			



(An ISO 21001 : 2018 Certified Instit	
iyar E.V.R. High Road, Maduravoyal, Chennai-95	. Tamilnadu, Indi

Subject Code:	Subject Name : SOFT SKILL – I (EMPLOYABILITY SKILLS)	Ty / Lb/ ETL/IE	L	T/SLr	P/R	С
EBCC22I06	Prerequisite: None	IE	0	0/0	2/0	1

#### **UNIT I**

Creation of awareness of top companies / improving skill set matrix / Development of positive frame of mind / Creation of self-awareness.

### UNIT II

Group discussions / Do's and don'ts - handling group discussions / what evaluators look for interpersonal relationships / Preparation of Curriculum Vitae / Resume.

### **UNIT III**

Interview - awareness of facing questions - Do's and don'ts of personal interview / group interview, enabling students to prepare for different proce3dures such as HR interviews and Technical Interviews / self-introductions.

#### **UNIT IV**

Verbal aptitude, Reading comprehension / narration / presentation / Mock Interviews.

#### UNIT V

Practical session on Group Discussion and written tests on vocabulary and reading comprehension

#### Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

**Total Number of Hours: 30** 

# 6 Hrs

# 6 Hrs

# 6 Hrs

# 6 Hrs



#### SEMESTER -V

Subject Cod		ıbject N ETWOI		COMM	UNICA	TIO	N		7 / Lb/ FL/IE	L	T/SL r	P/R	C
EBEC22008	8 Pr	erequis	ite: No	ne				Ту	7	3	0/0	0/0	3
L : Lecture T T/L/ETL : T							Project	R : Rese	earch C:	Credits	1		1
OBJECTIV	ES :												
• To uno													
								es and pr	otocols				
		the stud											
		IEEE sta		<b>.</b> .		-		•	aturante		onto		
			-		with di	meren	i protoc	ols and r	letwork	compon	lents.		
COURSE O			COs): (	3-5)									
The Students					6.1.4		• ,•	10	011				
C01	_			<u> </u>		comm	unicatio	on and O	SI layer	s.			
CO2		ze data				1.		TANT					
CO3	_	un diffe			_				. 1				
CO4 CO5								VAN pro	tocols				
Mapping of		onstrate			<b>A A</b>		•	a)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			PO9	<b>PO10</b>	PO11	PC	)12
CO3/103	3	102	1	1	105	1	107	3	3	2		10	/12
CO2	3	3	1	1	2	1	1	1	5		2		
CO3	2	2	2	1	3	2	2	2					3
CO4	3	1	2	2	2	2	2	2	2				3
CO5	3	2	1	2	1	3	2	1	2	2	2		
COs / PSOs	5	PSO	)1		PS	02		PS	503		PS	04	
CO1		3			3	5			1			3	
CO2		3			2				3			1	
CO3		1			3				2			2	
<b>CO4</b>		1			1				1			1	
CO5		2			2		<u></u>		3			1	
3/2/1 indicat	tes Stre	ngth of	Correl	ation	5- Hig	n, 2- N	/ledium	1, I-LOW	1		T		
				- s						Ì	nt	ect	
	ces			Humanities and Social Sciences	Ie			ves	Inter Disciplinary		Skill Component	Practical / Projec	
	Basic Sciences	Engineering		ies cie	Program Core			Open Electives	cin	5	npc	/P	
ory	Sc	eer	ces	l S	am		am ves	Ele	Dis		Col	cal	
Category	sic	gin	Sciences	cia	ogr		Program Electives	ben	er		ill (	acti	
$C_{a}$	$\mathbf{Ba}$	En	Sc	Hu So	$\mathbf{P}_{\mathbf{r}}$		Ε	Of	Int		Sk	$\mathbf{P}_{\mathbf{r}}$	
					~	/							

#### UNIT I **DATA COMMUNICATION**

**Prerequisite:** None

**NETWORKS** 

Introduction, Basic concepts, OSI Reference Model, Transmission of Digital Data -Electrical Interface, Modems-Transmission rate-modem standards-Guided Media-Twisted –pair Cable-Coaxial cable-Performance- Error Detection and Correction (CRC) - Time and Frequency domains Signals

#### UNIT II DATA LINK CONTROL AND PROTOCOLS

Subject Name : COMMUNICATION

Flow Control and Error Control, Stop And Wait - Sliding Windows- Automatic Repeat (ARQ), Asynchronous Protocols - X Modem, Y Modem, Synchronous Protocols - Character Oriented and Bit Oriented Protocols (HDLC).

#### UNIT III LOCAL AREA NETWORKS

IEEE 802 Standards, LLC, MAC Layer Protocols -CSMA/CD Ethernet, Token Bus, Token Ring, FDDI, Distributed Queue Dual Bus, Switched Multimegabit Data Service

#### UNIT IV WIDE AREA NETWORKS

Switching, Duties of the Transport Layer, ATM Protocol -Architecture Header Structure, Function of AAL Layer, Internetworking Devices, Repeater, Bridge, Routers and Gateways, Routing Algorithms- Link Stateand Distance Vector routing.

#### UNIT V **UPPER OSI LAYERS**

Session Layer - Presentation Layer - Translation, Brief Introduction to Encryption / Decryption, Authentication -Data Compression, Application Layer Protocols, MHS, File Transfer , Virtual Terminal, Common Management Information Protocol.

## Practical component P : Include case studies / application scenarios

# **Research component R : Future trends / research areas / Comparative Analysis**

# **Total Number of Hours: 45**

# **TEXT BOOKS :**

Subject

**EBEC22008** 

Code:

- 1. Behrouz A. Forouzan, "Data Communication and Networking", Tata McGraw Hill, 5th Edition, 2013.
- 2. William A, Shay, "Understanding Data Communications and Networks", Thomson Learning, 3rd Edition 2003.
- 3. Gallo, "Computer Communications and Networking Technologies", Thomson Learning, 1st edition 2001.

# **REFERENCE BOOKS:**

- 1. William Stallings, "Data and Computer Communication", Prentice Hall of India, Fifth Edition 1997.
- 2. Andrew S. Tanenbaum, "Computer Networks", prentice hall of India, Third Edition 1996.
- 3. Fred Hallsall, "Data Communication Computer Networks and Open System", Addison Wesley, 1992

# 9 Hrs

#### 9 Hrs

# 9 Hrs

С

3

T/SL

r

0/0

L

3

P/R

0/0

# 9 Hrs

9 Hrs



Ty / Lb/

**ETL/IE** 

Ty



Subject		Subjec	t Nomo	: MICR		CESSO	D	Tr	/Lb/E	L	Τ/	<b>P</b> /	С
Code:		•		CONTR			N	-	/IE	L	S	R	C
couc.			nexo		OLLEI				/112		Lr	<b>I</b>	
<b>EBEC2200</b>	9	Prereq	uisite: I	Digital E	lectron	ics		T	у	3	0/0	0/0	3
L : Lecture								: Resear	ch C:				•
Credits T/I		Theory	/Lab/Er	nbedded	Theory	and Lat	)						
OBJECTI													
				erstandin									
				uage pro		ing using	g concep	ots like a	ssemble	er direc	tives,		
▲				e interrug	•	e progra	mmina	and inter	facing	echnia	1166		
				d assemb									
				terfacing									
COURSE (										<u></u>			
The students			· · ·										
CO1	Deve	lop prog	grams in	8086 mi	icroproc	essor by	unders	tanding i	ts archi	tecture	and		
		ction se											
CO2	Under	stand th	e progra	mming r	nodel of	f micro j	processo	ors and m	nicrocor	ntroller	S		
CO3	Show	their a	bility to	interface	e periphe	erals wit	h micro	processo	rs				
CO4	Deve	lop prog	grams in	8051 mi	icrocont	roller by	unders	tanding i	its archi	tecture	and in	nstruc	ction
	set							C					
CO5	Desig	gn vario	us interf	acing un	its with	8051 m	icrocont	roller ba	sed sys	tems			
Mapping of	f Cours	se Outc	omes wi	th Prog	rom Au	400-000			-				
				un i i ugi	l ann Uu	ucomes	(PUS)						
	PO1	PO2	PO3	PO4	PO5	PO6	(POS) PO7	PO8	PO9	PO10	) PO	11	PO12
		<b>PO2</b> 2						PO8	<b>PO9</b> 2	2	<b>PO</b>		<b>PO12</b>
COs/POs CO1 CO2	<b>PO1</b> 3 3	PO2           2           2	<b>PO3</b> 3 2	PO4           2           2	PO5			PO8	2 2	2 3	2	2	1 2
COs/POsCO1CO2CO3	PO1 3 3 3 3	PO2           2           2           3	PO3         3         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3	PO4           2           2           2           2	<b>PO5</b> 2 2	<b>PO6</b> 1 1		PO8	2 2 2	2 3 3		2	1 2 2
COs/POs CO1 CO2 CO3 CO4	PO1 3 3 3 2	PO2           2           3           2	PO3         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3	PO4           2           2           2           2           2           2	PO5 2 2 3	PO6           1           1           3		PO8	2 2 2 3	$\begin{array}{c} 2\\ 3\\ 3\\ 3\\ 3 \end{array}$		2 2 2 3	1 2 2 2
COs/POsCO1CO2CO3CO4CO5	PO1 3 3 3 2 3 3	PO2           2           3           2           3           3	<b>PO3</b> 3 2 3	PO4           2           2           2           2           2           2           2           2           2	PO5           2           2           3           2	<b>PO6</b> 1 1	PO7		2 2 2	2 3 3 3 2		2 2 2 3	1 2 2
COs/POsCO1CO2CO3CO4CO5COs/PSOs	PO1 3 3 3 2 3 3	PO2           2           3           2           3           PSO1	PO3         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3	PO4           2           2           2           2           2           2	PO5 2 2 3 2 02	PO6           1           1           3	PO7	603	2 2 2 3	2 3 3 3 2	2 1 2 2 3 3 2 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 3 1	1 2 2 2
COs/POs CO1 CO2 CO3 CO4 CO5 COs/PSOs CO1	PO1 3 3 3 2 3 3	PO2           2           3           2           3           PSO1           3	PO3         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3	PO4           2           2           2           2           2           2           2           2           2	PO5 2 2 3 2 02 3	PO6           1           1           3	PO7	<b>603</b> 3	2 2 2 3	2 3 3 3 2	2 1 2 2 3 3 1 2 2 3 1 2 3 1 2 3 1 2 3 1 3 3 1 3 3 1 3 1	2	1 2 2 2
COs/POs           CO1           CO2           CO3           CO4           CO5           COs/PSOs           CO1           CO2	PO1 3 3 3 2 3 3	PO2           2           3           2           3           PSO1           3           3	PO3         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3	PO4           2           2           2           2           2           2           2           2           2	PO5 2 2 3 2 02 3 2	PO6           1           1           3	PO7	<b>3</b> <b>3</b> <b>2</b>	2 2 2 3	2 3 3 3 2	2 1 2 2 3 3 1 2 2 3 1 2 3 1 2 3 1 2 3 1 3 3 1 3 3 1 3 1	2 2 3 1	1 2 2 2
COs/POs           CO1           CO2           CO3           CO4           CO5           COs/PSOs           CO1           CO2           CO3	PO1 3 3 3 2 3 3	PO2           2           3           2           3           PSO1           3           2           3           2	PO3         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3	PO4           2           2           2           2           2           2           2           2           2	PO5 2 2 3 2 02 3 2 2 2	PO6           1           1           3	PO7	303 3 2 3	2 2 2 3	2 3 3 3 2	2 1 2 3 3 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3 3 1 2 2 2 2	2 2 2 3 3 1 2 2 2 2	1 2 2 2
COs/POs           CO1           CO2           CO3           CO4           CO5           COs/PSOs           CO1           CO2           CO3           CO4           CO5           COs/PSOs           CO1           CO2           CO3           CO4	PO1 3 3 3 2 3 3	PO2           2           3           2           3           PSO1           3           2           3           2           3           2           3           2           3	PO3         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3	PO4           2           2           2           2           2           2           2           2           2	PO5 2 2 3 2 02 3 2 2 3	PO6           1           1           3	PO7	<b>503</b> 3 2 3 3 3	2 2 2 3	2 3 3 3 2	2 1 2 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 2 1 1 1 2 2 2 3 1 1 1 2 2 1 1 1 1	2 2 3 2 2 2 3	1 2 2 2
COs/POs           CO1           CO2           CO3           CO4           CO5           COs/PSOs           CO1           CO2           CO3           CO4           CO5           COs/PSOs           CO1           CO2           CO3           CO4           CO5           CO5           CO3           CO4           CO3           CO4           CO5	PO1 3 3 3 2 3 I I I I I I I I I I I I I I I	PO2           2           2           3           2           3           2           3           2           3           3           3           3           3           3           3           3           3	PO3 3 2 3 2 2	PO4           2           2           2           2           2           2           PS0	PO5 2 2 3 2 02 3 2 3 2 3 2 3 2	PO6       1       3       1	PO7	<b>3</b> 3 3 3 3 3	2 2 2 3	2 3 3 3 2	2 1 2 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 2 1 1 1 2 2 2 3 1 1 1 2 2 1 1 1 1	2 2 2 3 3 1 2 2 2 2	1 2 2 2
COs/POs           CO1           CO2           CO3           CO4           CO5           COs/PSOs           CO1           CO2           CO3           CO4           CO5           COs/PSOs           CO1           CO2           CO3           CO4	PO1 3 3 3 2 3 I I I I I I I I I I I I I I I	PO2           2           2           3           2           3           2           3           2           3           3           3           3           3           3           3           3           3	PO3 3 2 3 2 2	PO4           2           2           2           2           2           2           PS0	PO5 2 2 3 2 02 3 2 3 2 3 2 3 2	PO6 1 1 1 1 1 1	PO7 PS	<b>3</b> 3 3 3 3 3	2 2 2 3	2 3 3 3 2	2 1 2 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 2 1 1 1 2 2 2 3 1 1 1 2 2 1 1 1 1	2 2 3 2 2 2 3	1 2 2 2
COs/POs           CO1           CO2           CO3           CO4           CO5           COs/PSOs           CO1           CO2           CO3           CO4           CO5           COs/PSOs           CO1           CO2           CO3           CO4           CO5           CO5           CO3           CO4           CO3           CO4           CO5	PO1 3 3 3 2 3 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	PO2           2           2           3           2           3           2           3           2           3           3           3           3           3           3           3           3           3	PO3 3 2 3 2 2	PO4           2           2           2           2           2           2           PS0	PO5 2 2 3 2 02 3 2 3 2 3 2 3 2	PO6 1 1 1 1 1 1	PO7 PS	<b>3</b> <b>3</b> <b>3</b> <b>3</b> <b>3</b> <b>1-Low</b>	2 2 3 2	2 3 3 2 1	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 3 2 2 2 2 3 3 3 3	1 2 2 2 2
COs/POs           CO1           CO2           CO3           CO4           CO5           COs/PSOs           CO1           CO2           CO3           CO4           CO5           COs/PSOs           CO1           CO2           CO3           CO4           CO5	PO1 3 3 3 2 3 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	PO2 2 2 3 2 3 PSO1 3 3 2 3 rength	PO3 3 2 3 2 2 0 0 f Corr	PO4 2 2 2 2 2 PS0 elation	PO5 2 2 3 2 02 3 2 3 2 3 2 3 3 - Hig	PO6 1 1 1 1 1 1	PO7 PS	<b>3</b> <b>3</b> <b>3</b> <b>3</b> <b>3</b> <b>1-Low</b>	2 2 3 2	2 3 3 2 1	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 3 2 2 2 2 3 3 3 3	1 2 2 2 2
COs/POs           CO1           CO2           CO3           CO4           CO5           COs/PSOs           CO1           CO2           CO3           CO4           CO5           COs/PSOs           CO1           CO2           CO3           CO4           CO5           3/2/1 indic	PO1 3 3 3 2 3 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	PO2 2 2 3 2 3 PSO1 3 3 2 3 rength	PO3 3 2 3 2 2 0 0 f Corr	PO4 2 2 2 2 2 PS0 elation	PO5 2 2 3 2 02 3 2 3 2 3 2 3 3 - Hig	PO6 1 1 1 1 1 1	PO7 PS	<b>3</b> <b>3</b> <b>3</b> <b>3</b> <b>3</b> <b>1-Low</b>	2 2 3 2	2 3 3 2 1	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 3 2 2 2 2 3 3 3 3	1 2 2 2 2
COs/POs           CO1           CO2           CO3           CO4           CO5           COs/PSOs           CO1           CO2           CO3           CO4           CO5           COs/PSOs           CO1           CO2           CO3           CO4           CO5           3/2/1 indic	PO1 3 3 3 2 3 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	PO2 2 2 3 2 3 PSO1 3 3 2 3 rength	PO3 3 2 3 2 2 0 0 f Corr	PO4 2 2 2 2 2 PS0 elation	PO5 2 2 3 2 02 3 2 3 2 3 2 3 3 - Hig	PO6 1 1 1 1 1 1	PO7 PS	<b>3</b> <b>3</b> <b>3</b> <b>3</b> <b>3</b> <b>1-Low</b>	2 2 3 2	2 3 3 2 1	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 3 2 2 2 2 3 3 3 3	1 2 2 2 2
COs/POs           CO1           CO2           CO3           CO4           CO5           COs/PSOs           CO1           CO2           CO3           CO4           CO5           COs/PSOs           CO1           CO2           CO3           CO4           CO5           3/2/1 indic	PO1 3 3 3 2 3 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	PO2 2 2 3 2 3 PSO1 3 3 2 3 rength	PO3 3 2 3 2 2 0 0 f Corr	PO4 2 2 2 2 2 PS0 elation	PO5 2 2 3 2 02 3 2 3 2 3 2 3 3 - Hig	PO6 1 1 1 1 1 1	PO7 PS	<b>3</b> <b>3</b> <b>3</b> <b>3</b> <b>3</b> <b>1-Low</b>	2 2 3 2	2 3 3 2 1	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 3 2 2 2 2 3 3 3 3	1 2 2 2 2
COs/POs           CO1           CO2           CO3           CO4           CO5           COs/PSOs           CO1           CO2           CO3           CO4           CO5           COs/PSOs           CO1           CO2           CO3           CO4           CO5	PO1 3 3 3 2 3 I I I I I I I I I I I I I I I	PO2 2 2 3 2 3 PSO1 3 3 2 3 rength	PO3 3 2 3 2 2	PO4           2           2           2           2           2           2           PS0	PO5 2 2 3 2 02 3 2 3 2 3 2 3 2 3 - Hig	PO6       1       3       1	PO7 PS	<b>3</b> 3 3 3 3 3	2 2 2 3	2 3 3 3 2	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 3 2 2 2 3	1 2 2 2 2
COs/POs           CO1           CO2           CO3           CO4           CO5           COs/PSOs           CO1           CO2           CO3           CO4           CO5           COs/PSOs           CO1           CO2           CO3           CO4           CO5           3/2/1 indic	PO1 3 3 3 2 3 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	PO2 2 2 3 2 3 PSO1 3 3 2 3 rength	PO3 3 2 3 2 2 0 0 f Corr	PO4 2 2 2 2 2 PS0 elation	PO5 2 2 3 2 02 3 2 3 2 3 2 3 3 - Hig	PO6 1 1 1 1 1 1	PO7 PS	<b>3</b> <b>3</b> <b>3</b> <b>3</b> <b>3</b> <b>1-Low</b>	2 2 3 2	2 3 3 2 1	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 3 2 2 2 2 3 3 3 3	1 2 2 2 2
COs/POs           CO1           CO2           CO3           CO4           CO5           COs/PSOs           CO1           CO2           CO3           CO4           CO5           COs/PSOs           CO1           CO2           CO3           CO4           CO5           3/2/1 indic	PO1 3 3 3 2 3 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	PO2 2 2 3 2 3 PSO1 3 3 2 3 rength	PO3 3 2 3 2 2 0 0 f Corr	PO4 2 2 2 2 2 PS0 elation	PO5 2 2 3 2 02 3 2 3 2 3 2 3 3 - Hig	PO6 1 1 1 1 1 1	PO7 PS	<b>3</b> <b>3</b> <b>3</b> <b>3</b> <b>3</b> <b>1-Low</b>	2 2 3 2	2 3 3 2 1	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 3 2 2 2 2 3 3 3 3	1 2 2 2 2

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) teriyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

ND RESEARC

NSTITUTE

Subject	Subject Name : MICROPROCESSOR	Ty/Lb/E	L	<b>T</b> /	<b>P</b> /	С
Code:	AND MICROCONTROLLER	TL/IE		S	R	
				-		
				Lr		

#### THE 8086 MICROPROCESSOR UNIT I

EDUCAT

Introduction To 8085 Micro Processor 8086 architecture- functional diagram, Register organization, memory segmentation, Signal descriptions of 8086-common function signals, minimum mode and maximum mode system design, timing diagrams, Interrupts of 8086.

#### **INSTRUCTION SET AND ASSEMBLY LANGUAGE PROGRAMMING OF 8086** 9 Hrs UNIT II

Instruction formats, Addressing modes, instruction set, assembler directives. Macros, Simple programs involving Arithmetic, logical, branch and call instructions. Sorting, evaluating arithmetic expressions, string manipulations

#### UNIT III PERIPHERALS AND INTERFACING

Programmable Peripheral Interface (8255), Serial Communication Interface (8251), Keyboard display controller (8279), Programmable Interval Timer/counter (8254), Programmable interrupt controller (8259), DMA controller(8257), ADC and DAC Interface.

#### **8051 MICROCONTROLLER** UNIT IV

Comparison between Microprocessor and Microcontroller, 8051 - Architecture, Instruction set, Addressing modes, Assembly language programming, I/O Ports, Timers / counters, serial communication, Interrupt, Special Function Registers (SFRs).

#### UNIT V MICROCONTROLLER BASED SYSTEM DESIGN

Interfacing High power devices-Stepper Motor, DC Motor speed Control using PWM, RTC and EEPROM interface using I2C protocol, Traffic Light Interface, Interfacing matrix Keyboard and (16x2) LCD interfacing

# Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

#### **Total Number of Hours: 45**

#### **TEXT BOOKS:**

- 1. R.S. Gaonkar,"Microprocessor Architecture Programming and Application, with 8085", Wiley Eastern Ltd., New Delhi, 2013.
- 2. A K Ray, K M Bhurchandi, Advanced Microprocessors and Peripherals, TMH, 2007.
- 3. Krishna Kant, "Microprocessors and Microcontrollers, Architecture, programming and system design using 8085, 8086, 8051 and 8096", PHI 2007.
- 4. Muhammad Ali Mazidi, Janice GillispieMazidi, RolinD.MCKinlay "The 8051Microcontroller and Embedded Systems", Second Edition, Pearson Education 2008.

## **REFERENCES:**

- 1. Douglas V Hall, "Microprocessor and Interfacing, Programming and hardware", TMH, 2006.
- 2. Kenneth J. Ayala, "The 8086 Microprocessor: Programming & Interfacing the PC", Delmar Publishers, 2007.
- 3. Steve furber "ARM Systems on chip Architecture", Second Edition Addison Wesley trade computer publication,2000.
- 4. John .B.Peatman "Design with PIC Microcontrollers", Pearson Education, 3rd Edition, 2004.

# 9 Hrs

9 Hrs

9 Hrs

# 9 Hrs

# 101



Subject	Sul			DIGIT						/Lb/		T/SL	P/I	2	С
Code:		OCES		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	AL BI	JINAL			-	L/IE		r	1/1	×	C
EBEC22010				nals an	d Syst	ems			Ty	_,	3	1/0	0/0	)	4
L : Lecture T		-	0				: Proie	ct	v	esearch	C: Cre	dits			
T/L/ETL : Th							J								
OBJECTIV				2											
To lease	rn the co	oncepts	of Fou	rier tra	nsform	and it	's App	lica	tions.						
• To und	lerstand	the de	sign tec	hnique	s of dig	gital III	R filter	s							
To lease	rn the co	oncepts	and de	sign teo	chnique	es of di	igital F	FIR	filters	<b>.</b>					
To und	lerstand	the co	ncepts a	and app	lication	ns of N	Iulti –	rate	e samp	oling.					
To intr	oduce t	he arch	itecture	e of Dig	ital Sig	gnal Pr	ocesso	rs.							
COURSE O			C <b>O</b> s):	(3-5)											
The students															
CO1				nsform											
CO2				dge of	designi	ng IIR	filters	•							
CO3	Learn	to desi	gn FIR	filters.											
CO4				ord leng											
CO5	Descr	ibe the	module	es in the	e archit	ecture	of digi	ital	signal	proces	ssor.				
Mapping of	Course	Outco	mes wi	ith Pro	gram (	Outcor	nes (P	Os)	)						
COs/POs	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	PO7	7	PO8	PO9	PO10	<b>PO1</b>	1	PO	12
CO1	3	3	3	3	3	2	1			1	1	2		2	
CO2	3	3	3	3	3	2	2			2	2	1		2	
CO3	3	3	3	3	3	2	1			1	1	2		1	
CO4	3	3	3	3	3	1	2			2	1	2		2	
CO5	3	3	3	2	2	2	1			2	2	2		2	
COs / PSOs		PSO	1		PS	02			Р	SO3			PSO	4	
CO1		3				3				2			3		
CO2		3				3				2			2		
CO3		3				3				1			3		
CO4		3				3				1			2		
CO5		2				2				3			1		
H/M/L indic	ates St	rength	of Cor	relatio	n 3-1	High, 2	2- Med	liur	m, 1-I	JOW					
Category	Basic Sciences	Engineering	Sciences	Humanities and Social Sciences	Program Core		Program Electives		Open Electives	:	Inter Disciplinary	Skill Component		Practical /	riojeci
					~										

# B.Tech ECE 2022 Regulation

# DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject	Subject Name : DIGITAL SIGNAL	Ty /Lb/	L	T/SL	P/R	С
Code:	PROCESSING	ETL/IE		r		
EBEC22010	Prerequisite: Signals and Systems	Ту	3	1/0	0/0	4

AND RESEARCH INSTITUTE

#### **DFT AND FFT** UNIT I

Discrete Fourier Transform (DFT) - Properties-Convolution of Sequences - Linear Convolution - Circular Convolution - Introduction to Radix-2 FFT- Properties - DIT (FFT)-DIF (FFT) - Algorithms of Radix-2FFT-Computing Inverse DFT by doing a direct DFT.

#### **DESIGN OF IIR FILTER UNIT II**

FDUCATIONAL

IIR Filters- Properties of IIR Filters - Analog Low pass Filter Design - Butterworth Filter - Chebyshev Filter - Design of IIR Filters from Analog filters - Approximation of Derivatives - Impulse Invariance - Bilinear Transformation - The Matched z- Transformation - Frequency Transformation.

#### UNIT III **DESIGN OF FIR FILTER**

FIR Filters - Characteristics of FIR Filters with Linear Phase-Properties of FIR Filters-Design of FIR Filters using Windows-Fourier Series Method-Frequency sampling Method

#### FINITE WORD LENGTH EFFECTS **UNIT IV**

Fixed point and floating-point number representations - Comparison - Truncation and Rounding errors -Ouantization noise - derivation for quantization noise power - coefficient quantization error - Product quantization error - Overflow error Limit cycle oscillations- Zero- Input Limit cycle oscillations- Overflow Limit cycle oscillations- Signal Scaling.

#### UNIT V **OVERVIEW OF DIGITAL SIGNAL PROCESSOR**

Overview of Digital Signal Processors - Application of Digital Signal Processor - Memory Architecture of DSP Processor - Von Neumann Architecture - Harvard Architecture - Architecture of TMS32C5X Processor – Addressing modes – Pipelining.

## Practical component P : Include case studies / application scenarios

#### Research component R : Future trends / research areas / Comparative Analysis

#### **Total Number of Hours: 60**

## **TEXTBOOKS**:

- 1. John . G. Proakis and Dimitris C.Manolakis, "Digital Signal Processing Principles, Algorithms and Applications", Pearson Education, Third edition 2006.
- 2. Sanjit k.Mitra "Digital signal processing", A Computer Based Approach, Tata McGraw Hill, New delhi,2001.
- 3. A.V.Oppenheim, R.W. Schafer and J.R. Buck, "Discrete Time Signal Processing", 8th Indian reprint, Pearson 2004.

#### **REFERENCE BOOKS:**

- 1. Ashok Ambardar, "Analog and Digital Signal Processing", 2nd Edition, Thomson Learning 2000.
- 2. Ashok Ambardar, "Analog and Digital Signal Processing A Modern Introduction", 1st edition Thomson Learning 2006

#### 12 Hrs

12 Hrs

12 Hrs

## 12 Hrs



Subject	Subject Name ONLINE COURSE	Ty /Lb/	L	T/SL	P/R	C
Code:		ETL/IE		r		
EBOL22I01	Prerequisite: None	IE	1	0/0	1/0	1

Students should register for the online course with a minimum course duration of 4 weeks through the online portals such as NPTEL/SWAYAM/Any MOOC in the beginning of the semester. A mentor will be assigned by the department for monitoring the students.

Students are expected to attend the online classes regularly and submit the weekly assignments before the due dates. Students should appear for the online examination and submit the certificate at the end of the semester .Internal Examination will be conducted by the examiners duly appointed by the head of the department.



Subject Co	ode:			Name : DRKS	COMN LAB	MUNIC	CATIO	ON		Ty/ ETI		L	T/ Li		R	С		
EBEC22L	05	P	rerequ	isite: C	++ and	l Java 🛛	Progra	amm	ing	Lb		0	0/0	3/	0	1		
			ab							ct R : Research C: Credits T/L/ETL :								
L : Lecture						Learni	ng P :	Proje	ect R	: Rese	earch (	C: Cr	redits	T/L/ETL	:			
Theory/Lab			Theor	y and I	Lab													
OBJECTI			11 1 1.	1	1				4 1									
					nplemer nplemer			<u> </u>			uting	algor	ithm	0				
					depend							aigoi	111111	8				
COURSE	OUT	СОМ	ES (CO	$\overline{Os}$ : (2)	3-5)	•												
After com						nulator	. Stud	ents	will I	be abl	e to							
C01	_				e chara		-					with	n no	des.				
CO2					veen dif													
CO3			-		messag					a netw	ork.							
CO4				<u> </u>	variou	,			<u> </u>									
CO5	Use	the si	mulatio	on tools	like N	S2, Net	Sim, C	OPNE	ET et	c.								
Mapping of	of Cou	urse C	Outcom	nes witl	n Progr	am Ou	itcome	es (P	Os)									
COs/PC	)s P	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	PC	<b>)7</b> ]	PO8	PO9	PO	<b>D10</b>	PO11	PO	012		
CO1		3	3	3	2	3	2	3		3	3		3	3		3		
CO2		3	3	3	2	3	2	3		2	3		3	2		3		
CO3		3	3	3	2	3	2	2	2		3		3	2		3		
<b>CO4</b>		3	3	3	2	3		2	2		2		3	2		3		
CO5		3	3	3	2	3				3	2		2	3		3		
COs /PSO	s		PSO1		·   · · ·	PSC	)2			PS	PSO4							
CO1			3			3								2				
CO2			3			2				3								
CO3			3			2								3				
CO4			2			3				2								
CO5		<b>N</b> .	2			3				2								
3/2/1 indic	ates S	streng	gth of C	Correla	tion	3- Hig	gh,2- N	ledi	um, I	l-Low	<u> </u>			1				
Category		Basic Sciences	Engineering	Sciences	Humanities and Social Sciences	Program Core		Program Electives		Open Electives		Inter Disciplinary		Skill Component	Dractical / Droiact	I lavuval / I lujvvi		
															~	/		



(An ISO 2	1001 : 2018 Certifie	ed Institution)
riyar E.V.R. High Ro	ad, Maduravoyal, Che	nnai-95. Tamilnadu, India

Subject Code:	Subject Name :COMMUNICATION NETWORKS LAB	Ty/ Lb/ ETL/IE	L	T/S Lr	P/R	С
EBEC22L05	Prerequisite: C++ and Java Programming Lab	Lb	0	0/0	3/0	1

#### LIST OF EXPERIMENTS

#### **Using NS2/OPNET**

- 1. Simulate Three Nodes Point-To-Point Networks With A Duplex Link Between Them. Set The Queue Size And Vary The Bandwidth And Find The Number Of Packets Dropped.
- Apply Tcp Agent Between N0 To N3 And Udp N1 To N3. Apply Relevant Applications Over Tcp And Udp Agents Changing The Parameters And Determine The Number Of Packets Sent By Tcp/Udp.
- 3. Simulate The Different Type Of Internet Traffic Such As Ftp And Telnet Over A Network And Analyze The Throughput.
- 4. Simulate A Transmission Of Ping Message Over A Network Topology Consisting Of 6 Nodes And Find The Number Of Packets Dropped Due To Congestion.
- 5. Simulate An Ethernet Lan Using N Nodes Change Error Rate And Data Rate And Compare The Throughput.
- 6. Simulate An Ethernet Lan Using N Nodes And Set Multiple Traffic Nodes And Determine The Collision Across Different Nodes.
- 7. Simulate An Ethernet Lan Using N Nodes And Set Multiple Traffic Nodes And Plot Congestion Window For Different Source/Destination

Using C/C++

- 1. Write A Program For Error Detecting Code Using Crc-Ccitt (16bit)
- 2. Write A Program For Distance Vector Algorithm To Find Suitable Path For Transmission
- 3. Write A Program For Simple Rsa Algorithm To Encrypt And Decrypt The Data
- 4. Write A Program For Hamming Code Generation For Error Detection/Correction

#### **Total Number of Hours: 45**

#### **REFERENCES**:

1. Lab manual, Department of ECE, DR.MGR UNIVERSITY.



Subject Code:	Sul	Subject Name : COMMUNICATION LAB - I								Ty /Lb/ ETL/IE	L	T/SL r	· P/I	R	С	
EBEC22L06		erequisi								7p	0	0/0	) 3/(	0	1	
L : Lecture T							Proje	ect	R : Res	search C	C: Cre	edits				
T/L/ETL : Th	neory/La	ab/Emb	edded 7	Theory	and La	b										
OBJECTIV																
• To des						, Multi	rate	sign	nal proc	essing,	adap	tive fil	ters and	d fast	t	
	r transfo															
	asure sig	<u> </u>					-		•	aın.						
• To per	form mo				lation	or vario	bus si	gna	us.							
The Students				3-3)												
CO1				nds of	digital	filter p	erfor	n M	fulti ra	te siona	l proc	essino	and ne	erfor	m	
	Fast Fo	Implement various kinds of digital filter perform Multi rate signal processing and perform Fast Fourier Transform using DSP processors.														
CO2								ain	and fre	equency	dom	ain.				
CO3	Perfor	Measure various signal parameters in time domain and frequency domain. Perform modulation and demodulation of various signals.														
Mapping of									2							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO		) PO8	PO9	<b>PO10</b>		PO11	PC	)12	
005/105			105				10	'					1 UII	•	/12	
CO1	3	3	3	3	3	2	2		2	2	2		2			
CO2	3	3	3	3	3	2	2		2	2	2		2			
CO3	3	3	3	3	3	2	2		2	2	2			2		
COs / PSOs		PSO1	_		PSO					503			PSO	4		
C01		3		_	3					3			2			
CO2		3			3				3					2		
CO3		3	<u>a</u>		3				3 2							
3/2/1 indicat	es Strei	ngth of	Corre	ation	3- Hig	gn,2- N	lediu	m,	1-Low							
		s		ial												
		Sciences		es and Social			ş							<u>ц</u>		
	s	cie		p			ive		S		a y	ent		ject		
gory	Basic Sciences Engineering Scien Humanities and S Sciences Program Core Program Electives Open Electives Inter Disciplinary Inter Disciplinary Skill Component															
egc									lect		sci		-	/		
Cate	S.	nee		ani nces ram					ЪЕ	Ë	Z	Ŭ		tica		
	Basic Sci	Engineeri		Humaniti Sciences Program Program			Open Ele		III	kill		Practical				
	В	Ш		N I	Ъ.		Р		0		T	Š		Ъ		
														$\checkmark$	r	



Subject	Subject Name : COMMUNICATION LAB - I	Ty /Lb/	L	T/SL	P/R	С
Code:		ETL/IE		r		
EBEC22L06	Prerequisite: Analog Communication	Lb	0	0/0	3/0	1

#### LIST OF EXPERIMENTS

- 1. Design and Testing Of Amplitude Modulation and Demodulation.
- 2. Design and Testing Of Frequency Modulation and Demodulation.
- 3. Design And Testing Of Pre-Emphasis And De-Emphasis Circuits
- 4. Verification Of Sampling Theorem
- 5. Pulse Amplitude Modulation And Demodulation
- 6. Pulse Width Modulation And Demodulation
- 7. Pulse Position Modulation And Demodulation
- 8. Determination of the Frequency of Unknown Signals: Using CRO and Lissajous Patterns.
- 9. To Study Time Division Multiplexing
- 10. Delta Modulation

**Total Number of Hours: 45**


Subject Code:		Subject AND M					R		/ Lb/ L/IE	L	, T/S Lr	P/R	C		
EBEC22L07		Prerequ	isite: Di	gital El	ectroni	cs Lab		Lt	)	0	0/0	3/	0 1		
L : Lecture T : T/L/ETL : Theo						: Proje	ct R	R : Res	search C	C: Cred	its	I			
OBJECTIVE															
		nbly Lan	0 0	0				0	<b>.</b>			8086.			
		nbly Lan						ogical	operat	ions in	8051.				
		string ma various p						ing 8(	186/805	1					
COURSE OU					cing tet	Innque	-5 us	ing ot	180/805	1					
The Students w				.)											
C01		Write ass	embly la	nguage	progran	nming i	n 80	85/8	086 mi	croproc	cessor				
CO2	Ι	nterface	periphera	als with	8086 m	icropro	ocess	or/80	51 Mici	rocontr	oller				
CO3	D	evelop pi	ograms	using 80	51 Mic	roconti	oller	r.							
		e Outcomes with Program Outcome													
COs/POs	<b>PO1</b>	PO2	PO3	PO4 PO5 PO6			]	PO7	PO8	PO9	<b>PO10</b>	<b>PO11</b>	PO12		
CO1	3	3	3	3 3						2	3	3	3		
CO2	3	3	3	3	3	2				2	3	3	3		
CO3	3	3	3	3	3	2				2	3	3	2		
COs /PSOs			501			02			PSC	)3		PSC	)4		
C01		3			3				3			3			
CO2		3			3				2						
CO3		3			3				3			3			
3/2/1 indicates	Stren	gth of C	orrelatio	on 3-1	High,2-	Mediu	ım,1	-Low							
Category		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Decomon Cores	Program Core		ives				Inter Disciplinary	-	Skill Component	Practical / Project



Subject Code:	Subject Name :MICROPROCESSOR AND MICROCONTROLLER LAB	T y/ Lb/ ETL/IE	L	T/ SLr	P/R	C	
EBEC22L07	Prerequisite: Digital Electronics Lab	Lb	0	0/0	3/0	1	

### LIST OF EXERCISES USING 8085/8086 Kits:

1. Basic Arithmetic, Logical operations and move a data block without overlap.

### LIST OF EXERCISES USING 8086 kits / MASM

- 2. Decimal Arithmetic, Code conversion, and Matrix operations.
- 3. String manipulations.
- 4. Sorting and Searching

### PERIPHERALS AND INTERFACING EXPERIMENTS

- Traffic light control 5.
- Stepper motor control 6.
- 7. Key board and Display
- 8. Serial interface
- 9. Parallel interface
- 10. A/D and D/A interface and Waveform Generation

### LIST OF EXERCISES USING 8051 kits

- 11. Basic Arithmetic, Logical operations, Square and Cube program
- 12. Find 2s complement of a number
- 13. Conversion of packed BCD to unpacked BCD

**Total Number of Hours: 45** 

### **REFERENCES:**



Periyar E.V.R. High	Road, Maduravoyal,	Chennai-95.	Tamilnadu,	India.

Subject Cod	le: Su	bject N	ame : '	<b>FECH</b>	NICAI	- SKII	L-II		Ty / ETI	' Lb/ L/IE	L	T/S r	L	P/R	C
EBEC22I02	Pr	erequis	ite:No	ne					IE		0	0	/0	2/0	1
L : Lecture T	: Tutori	ial SL	r : Sup	ervised	Learni	ng P:	Projec	t R	: Rese	earch C	: Cre	edits			
T/L/ETL : TI	heory/La	ıb/Emb	edded 7	Theory	and La	b									
OBJECTIV					the tec	hnical	skill of	f the	e stude	nts.					
COURSE O															
CO1	Develop				-				-						
CO2	Bridge				ne skill	l requi	remen	ts c	of the	emplo	yer	or in	ndustr	y ai	nd the
	compete														
CO3	Enhanc	e the er	nployał	oility of	the stu	idents.									
Mapping of		Course Outcomes with Program Outcon													
COs/Pos	<b>PO1</b>							7	<b>PO8</b>	PO9	P	010	0 PO11		PO12
CO1	3	3	3	3	3	3	2		2	3		2	3		2
CO2	3	3	2 3	3	3	3	2		2	3		3	3		3
CO3	3	3	3	3	3	2		2	3	3 3		3		3	
COs / PSOs		PSO1	-		PSC				PSO3 PSO4						
CO1		3			3									2	
CO2		3			2				(*)		3				
CO3		2			3				2 3						
3/2/1 indicat	tes Strer	ngth of	Correl	ation	3- Hig	<u>gh, 2- N</u>	Aediur	n,1-	-Low						
Category	Basic Sciences	siences		Humanities and Social Sciences	Program Core		Program Electives		Open Electives	Inter Discinlinary	Inter Disciplinary		Skill Component		Practical / Project
													$\checkmark$		



Subject Code:	Subject Name : TECHNICAL SKILL -II	Ty / Lb/	L	T/SL	P/R	С
		ETL/IE		r		
EBEC22I02	Prerequisite:None	IE	0	0/0	2/0	1

Students should acquire skill in the domain/inter disciplinary area from government/private training centers/industries /University for a minimum period of 15 calendar days. The training can be through off line, online or mixed mode. Students are supposed to prepare Technical skill report at the end of the training and submit the report along with the certificate in proof of the training, during the viva voce examination conducted by the examiners duly appointed by the head of the department.



T2			UMAG	NETI	CS	WAVI		ЕТ	L/IE		]	r		2	С
12		-		athem	atics II,	Solid		ЕТ	Ľ	2	0	/0	2/0	)	3
						: Proje	ect R	R : R	esearch	C: Cı	redit	S			
nderstan nalyse th tudy 5G	e differ wireless	ent type s chann	es of tra el mode	ansmis		es									
		,	. ,	dents	will be a	able to	)								
								s and	magne	tostat	ics				
Demons	trate the	e signif	icance of	of Tele	egrapher	's equ	atior	ıs							
Analyse	the imp	oedance	match	ing usi	ing diffe	erent n	netho	ods							
Illustrate	e the dif	ferent p	polarisa	tion m	ethods a	adopte	ed								
Apply rl	he wave	guide p	orinciple	e in re	al time a	applica	ation	S							
of Cours	e Outco	omes w	ith Pro	nes (P	Os)					-					
PO1	PO2	PO3	PO4				P P	08	PO9	PO	10	PO	11	PO	12
			1			1			2				1		
									2	2	2	2			
			-			1	_	1							
									2		<u> </u>	2		1	
_		-		-	-			-							
	3				2								3		
	3				2								3		
	3				3								3		
	3				3								3		
	-				-								3		
licates S	trength of Correlation H- High, M- Me						lediu	ım, I	L-Low						
Basic Sciences	Engineering	Sciences	Humanities and Social Sciences Program Core Program Elective					Open Electives	Liccuves	Inter Disciplinary		Skill Component		Practical /	110,001
	Theory/I VE: understan nalyse th tudy 5G OUTCC ompletic Underst Demons Analyse Illustrat Apply rl of Cours PO1 3 3 3 3 s s licates S	T: Tutorial S Theory/Lab/Eml VE: Inderstand the Ba nalyse the differ tudy 5G wireless OUTCOMES ( ompletion of the Understand the Demonstrate the Analyse the imp Illustrate the diff Apply rhe wave of Course Outco PO1 PO2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3	e T : Tutorial SLr : Sur Theory/Lab/Embedded         Theory/Lab/Embedded         VE :         inderstand the Basics of inalyse the different type         tudy 5G wireless chann         OUTCOMES (COs) :         ompletion of the course         Understand the fundam         Demonstrate the signif         Analyse the impedance         Illustrate the different program         of Course Outcomes w         PO1       PO2         PO3       3         3       3         3       3         3       3         3       3         3       3         3       3         3       3         3       3         3       3         3       3         3       3         3       3         3       3         3       3         3       3         3       3         3       3         3       3         3       3         3       3         3       3         3       3         3       3 <td>Theory/Lab/Embedded Theory <b>VE</b>: Inderstand the Basics of electron nalyse the different types of trace tudy 5G wireless channel mode <b>OUTCOMES</b> (<b>COs</b>): (3-5) ompletion of the course the stur Understand the fundamental pro- Demonstrate the significance of Analyse the impedance match Illustrate the different polarisa Apply rhe waveguide principle <b>PO1 PO2 PO3 PO4</b> 3 3 1 3 2 3 2 3 3 3 2 <b>PSO1</b> <b>Ilicates Strength of Correlation</b> <b>Solution</b></td> <td>e T : Tutorial       SLr : Supervised Lear         Theory/Lab/Embedded Theory and L         VE :         inderstand the Basics of electromagnerinalyse the different types of transmistrudy 5G wireless channel models         OUTCOMES (COs) : (3-5)         ompletion of the course the students         Understand the fundamental postular         Demonstrate the significance of Tele         Analyse the impedance matching usi         Illustrate the different polarisation m         Apply rhe waveguide principle in reaction         of Course Outcomes with Program         PO1       PO2       PO3       PO4       PO5         3       3       1       2         3       3       3       3       3         3       3       3       3       3         3       3       3       3       3         3       3       3       3       3         3       3       3       3       3         3       3       3       3       3         Apply rhe waveguide principle       pros       3       3         3       3       3       3       3         3       3       3       3       3</td> <td>T : Tutorial       SLr : Supervised Learning P : Project Theory/Lab/Embedded Theory and Lab         VE :       Inderstand the Basics of electromagnetics inalyse the different types of transmission lines tudy 5G wireless channel models         OUTCOMES (COs) : (3-5)       Ompletion of the course the students will be able to Understand the fundamental postulates of electross         Demonstrate the significance of Telegrapher's equidants       Analyse the impedance matching using different r         Illustrate the different polarisation methods adopted       Apply rhe waveguide principle in real time application         of Course Outcomes with Program Outcomes (PO1       PO2       PO3       PO4       PO5       PO6       PO7         3       3       1       2       2       1       1       1         3       2       3       3       1       2       2       1         3       3       3       1       2       2       1       1         3       3       3       1       2       2       1       1       1       1         3       3       3       1       2       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td> <td>a T : Tutorial SLr : Supervised Learning P : Project F         Theory/Lab/Embedded Theory and Lab         VE :         understand the Basics of electromagnetics         nalyse the different types of transmission lines         tudy 5G wireless channel models         OUTCOMES (COs) : (3-5)         ompletion of the course the students will be able to         Understand the fundamental postulates of electrostatic:         Demonstrate the significance of Telegrapher's equation         Analyse the impedance matching using different method         Illustrate the different polarisation methods adopted         Apply rhe waveguide principle in real time application         of Course Outcomes with Program Outcomes (POS)         PO1       PO2       PO3       PO4       PO5       PO6       PO7       P         3       3       3       3       3       3       3       3         3       3       3       3       3       3       3       3         3       3       3       3       3       3       3       3       3         Illustrate the different polarisation methods adopted       PO1       PO2       PO3       PO4       PO5       PO6       PO7       P         3       3</td> <td>2 T : Tutorial       SLr : Supervised Learning P : Project R : Retriev/Lab/Embedded Theory and Lab         VE :         inderstand the Basics of electromagnetics         nalyse the different types of transmission lines         tudy 5G wireless channel models         OUTCOMES (COs) : (3-5)         ompletion of the course the students will be able to         Understand the fundamental postulates of electrostatics and         Demonstrate the significance of Telegrapher's equations         Analyse the impedance matching using different methods         Illustrate the different polarisation methods adopted         Apply rhe waveguide principle in real time applications         of Course Outcomes with Program Outcomes (POs)         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8         3       3       3       1       1       1       1         3       2       3       3       3       3       3       3         3       3       3       2       3       3       3       3       3         Mathematical postulates of electrostatics and Demonstrate the significance of Telegrapher's equations       PO6       PO7       PO8         3       3       <t< td=""><td>a) T: Tutorial       SLr: Supervised Learning P: Project R: Research Theory/Lab/Embedded Theory and Lab         VE :         Inderstand the Basics of electromagnetics         nalyse the different types of transmission lines         tudy 5G wireless channel models         OUTCOMES (COs) : (3-5)         ompletion of the course the students will be able to         Understand the fundamental postulates of electrostatics and magne         Demonstrate the significance of Telegrapher's equations         Analyse the impedance matching using different methods         Illustrate the different polarisation methods adopted         Apply rhe waveguide principle in real time applications         Of Course Outcomes with Program Outcomes (POS)         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9         3       3       3       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td><td>T : Tutorial       SLr : Supervised Learning P : Project R : Research C: Cr         Theory/Lab/Embedded Theory and Lab         VE :         mderstand the Basics of electromagnetics         nalyse the different types of transmission lines         tudy 5G wireless channel models         OUTCOMES (COs) : (3-5)         ompletion of the course the students will be able to         Understand the fundamental postulates of electrostatics and magnetostat         Demonstrate the significance of Telegrapher's equations         Analyse the impedance matching using different methods         Illustrate the different polarisation methods adopted         Apply rhe waveguide principle in real time applications         of Course Outcomes with Program Outcomes (POs)         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO         3       3       3       1       1       2       2       1       2         3       3       3       3       3       2       3       3       2       3         State of the function methods adopted         Apply rhe waveguide principle in real time applications       3       3       2       3       <td< td=""><td>T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credit Theory/Lab/Embedded Theory and Lab VE : inderstand the Basics of electromagnetics nalyse the different types of transmission lines tudy 5G wireless channel models OUTCOMES (COs) : (3 - 5) ompletion of the course the students will be able to Understand the fundamental postulates of electrostatics and magnetostatics Demonstrate the significance of Telegrapher's equations Analyse the impedance matching using different methods Illustrate the different polarisation methods adopted Apply rhe waveguide principle in real time applications of Course Outcomes with Program Outcomes (POS) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 3 3 3 1 2 2 3 1 1 1 1 2 2 3 3 3 3 2 3 2 3 1 2 2 3 1 1 1 1 2 2 3 3 3 3 2 3 2 3 1 1 1 1 2 2 3 3 3 3 2 3 3 3 1 2 2 3 1 1 1 1 2 2 3 3 3 3 3 2 3 3 3 3 2 5 PSO1 PSO2 PSO3 a 3 3 3 2 3 3 3 3 2 5 PSO1 PSO2 PSO3 a 3 3 3 3 2 5 PSO1 PSO2 PSO3 a 3 3 3 3 2 5 PSO1 PSO2 PSO3 a 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 bitcates Strength of Correlation H- High, M- Medium, L-Low $\frac{200 \text{ min}_{\text{EU}} = 200 \text{ min}_$</td><td>T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits Theory/Lab/Embedded Theory and Lab VE : inderstand the Basics of electromagnetics nalyse the different types of transmission lines tudy 5G wireless channel models OUTCOMES (COs) : (3 - 5) ompletion of the course the students will be able to Understand the fundamental postulates of electrostatics and magnetostatics Demonstrate the significance of Telegrapher's equations Analyse the impedance matching using different methods Illustrate the different polarisation methods adopted Apply rhe waveguide principle in real time applications of Course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO 3 3 3 1 2 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2</td><td>T: Tutorial       SLr: Supervised Learning       P: Project       R: Research       C: Credits         Theory/Lab/Embedded       Theory and Lab       VE:       Inderstand the Basics of electromagnetics         nalyse the different types of transmission lines       tudy 5G wireless channel models       OUTCOMES (COs) : (3-5)         OUTCOMES (COs) : (3-5)       ompletion of the course the students will be able to       Understand the fundamental postulates of electrostatics and magnetostatics         Demostrate the significance of Telegrapher's equations       Analyse the impedance matching using different methods         Illustrate the different polarisation methods adopted       Apply rhe waveguide principle in real time applications         of Course Outcomes with Program Outcomes (POs)       PO1       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11         3       3       3       1       1       2       1       1       2       1       1       1       2       1       1       1       2       1       1       1       2       1       1       1       2       1       1       1       2       1       1       1       2       1       1       1       2       1       1       1       &lt;</td><td>T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits Theory/Lab/Embedded Theory and Lab VE : inderstand the Basics of electromagnetics malyse the different types of transmission lines tudy 5G wireless channel models OUTCOMES (COs) : (3 - 5) ompletion of the course the students will be able to Understand the fundamental postulates of electrostatics and magnetostatics Demonstrate the significance of Telegrapher's equations Analyse the impedance matching using different methods Illustrate the different polarisation methods adopted Apply the waveguide principle in real time applications of Course Outcomes with Program Outcomes (POS) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO 3 3 3 1 2 2 3 1 1 1 1 2 2 1 1 1 3 2 3 2 3 2 3 1 3 1 2 2 2 1 1 3 3 3 3 3 3 1 2 3 3 3 3 1 2 2 3 1 1 1 1 3 2 3 2 3 2 3 1 3 3 3 3 3 3 3 3 3 3 3 3</td></td<></td></t<></td>	Theory/Lab/Embedded Theory <b>VE</b> : Inderstand the Basics of electron nalyse the different types of trace tudy 5G wireless channel mode <b>OUTCOMES</b> ( <b>COs</b> ): (3-5) ompletion of the course the stur Understand the fundamental pro- Demonstrate the significance of Analyse the impedance match Illustrate the different polarisa Apply rhe waveguide principle <b>PO1 PO2 PO3 PO4</b> 3 3 1 3 2 3 2 3 3 3 2 <b>PSO1</b> <b>Ilicates Strength of Correlation</b> <b>Solution</b>	e T : Tutorial       SLr : Supervised Lear         Theory/Lab/Embedded Theory and L         VE :         inderstand the Basics of electromagnerinalyse the different types of transmistrudy 5G wireless channel models         OUTCOMES (COs) : (3-5)         ompletion of the course the students         Understand the fundamental postular         Demonstrate the significance of Tele         Analyse the impedance matching usi         Illustrate the different polarisation m         Apply rhe waveguide principle in reaction         of Course Outcomes with Program         PO1       PO2       PO3       PO4       PO5         3       3       1       2         3       3       3       3       3         3       3       3       3       3         3       3       3       3       3         3       3       3       3       3         3       3       3       3       3         3       3       3       3       3         Apply rhe waveguide principle       pros       3       3         3       3       3       3       3         3       3       3       3       3	T : Tutorial       SLr : Supervised Learning P : Project Theory/Lab/Embedded Theory and Lab         VE :       Inderstand the Basics of electromagnetics inalyse the different types of transmission lines tudy 5G wireless channel models         OUTCOMES (COs) : (3-5)       Ompletion of the course the students will be able to Understand the fundamental postulates of electross         Demonstrate the significance of Telegrapher's equidants       Analyse the impedance matching using different r         Illustrate the different polarisation methods adopted       Apply rhe waveguide principle in real time application         of Course Outcomes with Program Outcomes (PO1       PO2       PO3       PO4       PO5       PO6       PO7         3       3       1       2       2       1       1       1         3       2       3       3       1       2       2       1         3       3       3       1       2       2       1       1         3       3       3       1       2       2       1       1       1       1         3       3       3       1       2       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	a T : Tutorial SLr : Supervised Learning P : Project F         Theory/Lab/Embedded Theory and Lab         VE :         understand the Basics of electromagnetics         nalyse the different types of transmission lines         tudy 5G wireless channel models         OUTCOMES (COs) : (3-5)         ompletion of the course the students will be able to         Understand the fundamental postulates of electrostatic:         Demonstrate the significance of Telegrapher's equation         Analyse the impedance matching using different method         Illustrate the different polarisation methods adopted         Apply rhe waveguide principle in real time application         of Course Outcomes with Program Outcomes (POS)         PO1       PO2       PO3       PO4       PO5       PO6       PO7       P         3       3       3       3       3       3       3       3         3       3       3       3       3       3       3       3         3       3       3       3       3       3       3       3       3         Illustrate the different polarisation methods adopted       PO1       PO2       PO3       PO4       PO5       PO6       PO7       P         3       3	2 T : Tutorial       SLr : Supervised Learning P : Project R : Retriev/Lab/Embedded Theory and Lab         VE :         inderstand the Basics of electromagnetics         nalyse the different types of transmission lines         tudy 5G wireless channel models         OUTCOMES (COs) : (3-5)         ompletion of the course the students will be able to         Understand the fundamental postulates of electrostatics and         Demonstrate the significance of Telegrapher's equations         Analyse the impedance matching using different methods         Illustrate the different polarisation methods adopted         Apply rhe waveguide principle in real time applications         of Course Outcomes with Program Outcomes (POs)         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8         3       3       3       1       1       1       1         3       2       3       3       3       3       3       3         3       3       3       2       3       3       3       3       3         Mathematical postulates of electrostatics and Demonstrate the significance of Telegrapher's equations       PO6       PO7       PO8         3       3 <t< td=""><td>a) T: Tutorial       SLr: Supervised Learning P: Project R: Research Theory/Lab/Embedded Theory and Lab         VE :         Inderstand the Basics of electromagnetics         nalyse the different types of transmission lines         tudy 5G wireless channel models         OUTCOMES (COs) : (3-5)         ompletion of the course the students will be able to         Understand the fundamental postulates of electrostatics and magne         Demonstrate the significance of Telegrapher's equations         Analyse the impedance matching using different methods         Illustrate the different polarisation methods adopted         Apply rhe waveguide principle in real time applications         Of Course Outcomes with Program Outcomes (POS)         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9         3       3       3       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td><td>T : Tutorial       SLr : Supervised Learning P : Project R : Research C: Cr         Theory/Lab/Embedded Theory and Lab         VE :         mderstand the Basics of electromagnetics         nalyse the different types of transmission lines         tudy 5G wireless channel models         OUTCOMES (COs) : (3-5)         ompletion of the course the students will be able to         Understand the fundamental postulates of electrostatics and magnetostat         Demonstrate the significance of Telegrapher's equations         Analyse the impedance matching using different methods         Illustrate the different polarisation methods adopted         Apply rhe waveguide principle in real time applications         of Course Outcomes with Program Outcomes (POs)         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO         3       3       3       1       1       2       2       1       2         3       3       3       3       3       2       3       3       2       3         State of the function methods adopted         Apply rhe waveguide principle in real time applications       3       3       2       3       <td< td=""><td>T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credit Theory/Lab/Embedded Theory and Lab VE : inderstand the Basics of electromagnetics nalyse the different types of transmission lines tudy 5G wireless channel models OUTCOMES (COs) : (3 - 5) ompletion of the course the students will be able to Understand the fundamental postulates of electrostatics and magnetostatics Demonstrate the significance of Telegrapher's equations Analyse the impedance matching using different methods Illustrate the different polarisation methods adopted Apply rhe waveguide principle in real time applications of Course Outcomes with Program Outcomes (POS) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 3 3 3 1 2 2 3 1 1 1 1 2 2 3 3 3 3 2 3 2 3 1 2 2 3 1 1 1 1 2 2 3 3 3 3 2 3 2 3 1 1 1 1 2 2 3 3 3 3 2 3 3 3 1 2 2 3 1 1 1 1 2 2 3 3 3 3 3 2 3 3 3 3 2 5 PSO1 PSO2 PSO3 a 3 3 3 2 3 3 3 3 2 5 PSO1 PSO2 PSO3 a 3 3 3 3 2 5 PSO1 PSO2 PSO3 a 3 3 3 3 2 5 PSO1 PSO2 PSO3 a 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 bitcates Strength of Correlation H- High, M- Medium, L-Low $\frac{200 \text{ min}_{\text{EU}} = 200 \text{ min}_$</td><td>T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits Theory/Lab/Embedded Theory and Lab VE : inderstand the Basics of electromagnetics nalyse the different types of transmission lines tudy 5G wireless channel models OUTCOMES (COs) : (3 - 5) ompletion of the course the students will be able to Understand the fundamental postulates of electrostatics and magnetostatics Demonstrate the significance of Telegrapher's equations Analyse the impedance matching using different methods Illustrate the different polarisation methods adopted Apply rhe waveguide principle in real time applications of Course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO 3 3 3 1 2 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2</td><td>T: Tutorial       SLr: Supervised Learning       P: Project       R: Research       C: Credits         Theory/Lab/Embedded       Theory and Lab       VE:       Inderstand the Basics of electromagnetics         nalyse the different types of transmission lines       tudy 5G wireless channel models       OUTCOMES (COs) : (3-5)         OUTCOMES (COs) : (3-5)       ompletion of the course the students will be able to       Understand the fundamental postulates of electrostatics and magnetostatics         Demostrate the significance of Telegrapher's equations       Analyse the impedance matching using different methods         Illustrate the different polarisation methods adopted       Apply rhe waveguide principle in real time applications         of Course Outcomes with Program Outcomes (POs)       PO1       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11         3       3       3       1       1       2       1       1       2       1       1       1       2       1       1       1       2       1       1       1       2       1       1       1       2       1       1       1       2       1       1       1       2       1       1       1       2       1       1       1       &lt;</td><td>T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits Theory/Lab/Embedded Theory and Lab VE : inderstand the Basics of electromagnetics malyse the different types of transmission lines tudy 5G wireless channel models OUTCOMES (COs) : (3 - 5) ompletion of the course the students will be able to Understand the fundamental postulates of electrostatics and magnetostatics Demonstrate the significance of Telegrapher's equations Analyse the impedance matching using different methods Illustrate the different polarisation methods adopted Apply the waveguide principle in real time applications of Course Outcomes with Program Outcomes (POS) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO 3 3 3 1 2 2 3 1 1 1 1 2 2 1 1 1 3 2 3 2 3 2 3 1 3 1 2 2 2 1 1 3 3 3 3 3 3 1 2 3 3 3 3 1 2 2 3 1 1 1 1 3 2 3 2 3 2 3 1 3 3 3 3 3 3 3 3 3 3 3 3</td></td<></td></t<>	a) T: Tutorial       SLr: Supervised Learning P: Project R: Research Theory/Lab/Embedded Theory and Lab         VE :         Inderstand the Basics of electromagnetics         nalyse the different types of transmission lines         tudy 5G wireless channel models         OUTCOMES (COs) : (3-5)         ompletion of the course the students will be able to         Understand the fundamental postulates of electrostatics and magne         Demonstrate the significance of Telegrapher's equations         Analyse the impedance matching using different methods         Illustrate the different polarisation methods adopted         Apply rhe waveguide principle in real time applications         Of Course Outcomes with Program Outcomes (POS)         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9         3       3       3       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	T : Tutorial       SLr : Supervised Learning P : Project R : Research C: Cr         Theory/Lab/Embedded Theory and Lab         VE :         mderstand the Basics of electromagnetics         nalyse the different types of transmission lines         tudy 5G wireless channel models         OUTCOMES (COs) : (3-5)         ompletion of the course the students will be able to         Understand the fundamental postulates of electrostatics and magnetostat         Demonstrate the significance of Telegrapher's equations         Analyse the impedance matching using different methods         Illustrate the different polarisation methods adopted         Apply rhe waveguide principle in real time applications         of Course Outcomes with Program Outcomes (POs)         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO         3       3       3       1       1       2       2       1       2         3       3       3       3       3       2       3       3       2       3         State of the function methods adopted         Apply rhe waveguide principle in real time applications       3       3       2       3 <td< td=""><td>T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credit Theory/Lab/Embedded Theory and Lab VE : inderstand the Basics of electromagnetics nalyse the different types of transmission lines tudy 5G wireless channel models OUTCOMES (COs) : (3 - 5) ompletion of the course the students will be able to Understand the fundamental postulates of electrostatics and magnetostatics Demonstrate the significance of Telegrapher's equations Analyse the impedance matching using different methods Illustrate the different polarisation methods adopted Apply rhe waveguide principle in real time applications of Course Outcomes with Program Outcomes (POS) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 3 3 3 1 2 2 3 1 1 1 1 2 2 3 3 3 3 2 3 2 3 1 2 2 3 1 1 1 1 2 2 3 3 3 3 2 3 2 3 1 1 1 1 2 2 3 3 3 3 2 3 3 3 1 2 2 3 1 1 1 1 2 2 3 3 3 3 3 2 3 3 3 3 2 5 PSO1 PSO2 PSO3 a 3 3 3 2 3 3 3 3 2 5 PSO1 PSO2 PSO3 a 3 3 3 3 2 5 PSO1 PSO2 PSO3 a 3 3 3 3 2 5 PSO1 PSO2 PSO3 a 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 bitcates Strength of Correlation H- High, M- Medium, L-Low $\frac{200 \text{ min}_{\text{EU}} = 200 \text{ min}_$</td><td>T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits Theory/Lab/Embedded Theory and Lab VE : inderstand the Basics of electromagnetics nalyse the different types of transmission lines tudy 5G wireless channel models OUTCOMES (COs) : (3 - 5) ompletion of the course the students will be able to Understand the fundamental postulates of electrostatics and magnetostatics Demonstrate the significance of Telegrapher's equations Analyse the impedance matching using different methods Illustrate the different polarisation methods adopted Apply rhe waveguide principle in real time applications of Course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO 3 3 3 1 2 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2</td><td>T: Tutorial       SLr: Supervised Learning       P: Project       R: Research       C: Credits         Theory/Lab/Embedded       Theory and Lab       VE:       Inderstand the Basics of electromagnetics         nalyse the different types of transmission lines       tudy 5G wireless channel models       OUTCOMES (COs) : (3-5)         OUTCOMES (COs) : (3-5)       ompletion of the course the students will be able to       Understand the fundamental postulates of electrostatics and magnetostatics         Demostrate the significance of Telegrapher's equations       Analyse the impedance matching using different methods         Illustrate the different polarisation methods adopted       Apply rhe waveguide principle in real time applications         of Course Outcomes with Program Outcomes (POs)       PO1       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11         3       3       3       1       1       2       1       1       2       1       1       1       2       1       1       1       2       1       1       1       2       1       1       1       2       1       1       1       2       1       1       1       2       1       1       1       2       1       1       1       &lt;</td><td>T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits Theory/Lab/Embedded Theory and Lab VE : inderstand the Basics of electromagnetics malyse the different types of transmission lines tudy 5G wireless channel models OUTCOMES (COs) : (3 - 5) ompletion of the course the students will be able to Understand the fundamental postulates of electrostatics and magnetostatics Demonstrate the significance of Telegrapher's equations Analyse the impedance matching using different methods Illustrate the different polarisation methods adopted Apply the waveguide principle in real time applications of Course Outcomes with Program Outcomes (POS) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO 3 3 3 1 2 2 3 1 1 1 1 2 2 1 1 1 3 2 3 2 3 2 3 1 3 1 2 2 2 1 1 3 3 3 3 3 3 1 2 3 3 3 3 1 2 2 3 1 1 1 1 3 2 3 2 3 2 3 1 3 3 3 3 3 3 3 3 3 3 3 3</td></td<>	T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credit Theory/Lab/Embedded Theory and Lab VE : inderstand the Basics of electromagnetics nalyse the different types of transmission lines tudy 5G wireless channel models OUTCOMES (COs) : (3 - 5) ompletion of the course the students will be able to Understand the fundamental postulates of electrostatics and magnetostatics Demonstrate the significance of Telegrapher's equations Analyse the impedance matching using different methods Illustrate the different polarisation methods adopted Apply rhe waveguide principle in real time applications of Course Outcomes with Program Outcomes (POS) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 3 3 3 1 2 2 3 1 1 1 1 2 2 3 3 3 3 2 3 2 3 1 2 2 3 1 1 1 1 2 2 3 3 3 3 2 3 2 3 1 1 1 1 2 2 3 3 3 3 2 3 3 3 1 2 2 3 1 1 1 1 2 2 3 3 3 3 3 2 3 3 3 3 2 5 PSO1 PSO2 PSO3 a 3 3 3 2 3 3 3 3 2 5 PSO1 PSO2 PSO3 a 3 3 3 3 2 5 PSO1 PSO2 PSO3 a 3 3 3 3 2 5 PSO1 PSO2 PSO3 a 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 bitcates Strength of Correlation H- High, M- Medium, L-Low $ \frac{200 \text{ min}_{\text{EU}} = 200 \text{ min}_$	T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits Theory/Lab/Embedded Theory and Lab VE : inderstand the Basics of electromagnetics nalyse the different types of transmission lines tudy 5G wireless channel models OUTCOMES (COs) : (3 - 5) ompletion of the course the students will be able to Understand the fundamental postulates of electrostatics and magnetostatics Demonstrate the significance of Telegrapher's equations Analyse the impedance matching using different methods Illustrate the different polarisation methods adopted Apply rhe waveguide principle in real time applications of Course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO 3 3 3 1 2 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2	T: Tutorial       SLr: Supervised Learning       P: Project       R: Research       C: Credits         Theory/Lab/Embedded       Theory and Lab       VE:       Inderstand the Basics of electromagnetics         nalyse the different types of transmission lines       tudy 5G wireless channel models       OUTCOMES (COs) : (3-5)         OUTCOMES (COs) : (3-5)       ompletion of the course the students will be able to       Understand the fundamental postulates of electrostatics and magnetostatics         Demostrate the significance of Telegrapher's equations       Analyse the impedance matching using different methods         Illustrate the different polarisation methods adopted       Apply rhe waveguide principle in real time applications         of Course Outcomes with Program Outcomes (POs)       PO1       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11         3       3       3       1       1       2       1       1       2       1       1       1       2       1       1       1       2       1       1       1       2       1       1       1       2       1       1       1       2       1       1       1       2       1       1       1       2       1       1       1       <	T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits Theory/Lab/Embedded Theory and Lab VE : inderstand the Basics of electromagnetics malyse the different types of transmission lines tudy 5G wireless channel models OUTCOMES (COs) : (3 - 5) ompletion of the course the students will be able to Understand the fundamental postulates of electrostatics and magnetostatics Demonstrate the significance of Telegrapher's equations Analyse the impedance matching using different methods Illustrate the different polarisation methods adopted Apply the waveguide principle in real time applications of Course Outcomes with Program Outcomes (POS) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO 3 3 3 1 2 2 3 1 1 1 1 2 2 1 1 1 3 2 3 2 3 2 3 1 3 1 2 2 2 1 1 3 3 3 3 3 3 1 2 3 3 3 3 1 2 2 3 1 1 1 1 3 2 3 2 3 2 3 1 3 3 3 3 3 3 3 3 3 3 3 3	

DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95, Tamilnadu, India.

Subject	Code:	Subject Name : FIELD AND WAVE ELECTROMAGNETICS	TY Lb/ ETL/IE	L	T/SL r	P/R	С	
EBEC22	ET2	Prerequisite: Mathematics II, Solid State Physics	ETL	2	0/0	2/0	3	

AND RESEARCH INSTITUTE

#### UNIT I **ELECTROMAGNETICS**

EDUCATION

Introduction to Electrostatics and Magnetostatics-Fundamental Laws- Boundary Conditions- Analogy between the parameters-Divergence and Curl Equations-Maxwell's Equations - Poynting Vector and Theorem.

### Experiments: Octave Simulation of Laplace Equations, Transmission Line Analysis Using Virtual Neywork Analyser.

### UNIT II TRANSMISSION LINES

Introduction-Wave Equations of Lossless Lines- Finite Difference Method-Laplace's equations and Telegrapher's Equations-Octave Simulation.

Experiments: Octave Simulation of Wave Equations and Telegrapher's Equations.

#### UNIT III LOSSY TRANSMISSION LINES

Transmission Lines with Losses-Reflections and Reflection Coefficient -Voltage Reflection Coefficient and Standing Wave Ratio - Graphical Representation of Reflection Coefficient - Impedance Matching using Smith Chart - Impedance Matching Demonstration using VNA - Octave Simulation.

Experiments: Octave Simulation of Transmission Lines with Losses, Octave Simulation of **Electromagnetic Wave Equations.** 

#### UNIT IV POLARISATION

Polarisation of Electromagnetic Waves - Electromagnetic Waves in Conducting Media - Plane Waves-Plane Waves at normal incidence - Plane Waves at oblique incidence -Perpendicular Polarisation-Dielectric Conductor Interface-Octave Simulation.

Experiments: Octave Simulation of Different Types of Polarisation, Octave Simulation of Perpendicular Polarisation.

#### UNIT V WAVEGUIDES

Parallel Plate Waveguide- Rectangular Waveguide-Phase Velocity and Group Velocity-Modes and Field Pattern in Waveguides - Cavity Resonators- Octave Simulation-Real Time Applications.

Experiments: Octave Simulation of Rectangular Waveguide Modes, Octave Simulation of a Parallel Plate Waveguide.

Practical component P : Include case studies / application scenarios Research component R : Future trends / research areas / Comparative Analysis

**Total Number of Hours: 60** 

### **TEXT BOOKS:**

1. David K.Cheng,'Field and Wave Electromagnetics", Pearson Education, 2 ed.

2. William Hayt," Engineering Electromagnetics", Tata McGraw Hill

### **REFERENCES:**

1. "Transmission Lines and Networks"; Umesh Sinha, Sathya Prakasam

1. 2.R.K. Shevgaonkar, "Electromagnetic waves"

# 12 Hrs

12 Hrs

## 12 Hrs

# 12 Hrs



SEMESTER -VI

Subject C	ode		•	ubject Name : SENSORS AND OBOTICS, rerequisite: Basic Mechanical & Civil ngineering , Electrical and Instrument								7 / Lb/ 1/IE	L	T/S	SL	P/R	C
EBEC220	)11	E		ring , F						<b>tio</b>	n TY	7	3	0/0	)	0/0	3
L : Lectur									: Proj	ect	R : Re	search (	C: Cr	edits	5		
T/L/ETL : OBJECT			Lab/En	nbeddec	l The	eory	and La	ab									
			the ba	sic conc	epts	s. par	ts of re	obots a	nd tvr	oes	of robo	ts.					
				t familia													
				nowled	-		ors and	their a	applica	atio	ns in ro	bot.					
COURSE				· /	:(3-	- 5)											
The studer				o ortance	ofr	ohot	ios in t	odovo	nd fut	1110	goode	product	ion				
			-							ure	goous	product	1011.				
CO2 CO3				bot con le of ma						·c							
CO3				fundan							s chara	cteristic	s				
C04 C05				orking o									5				
Mapping																	
COs/POs		01	PO2	PO3	PO4 PO5 PO6 PO7				PO8	PO9	PC	)10	PO	011	PO12		
CO1		3	2	2	3 2 2			2	3						1		3
CO2		3	3	3	3	3	2	2	3			1			1		3
CO3		3	2	3	3	3	2	2	3			1					3
<b>CO4</b>		3	3	3	2	2	2	2	3								3
CO5		3	3	3	3	3	2	2	3					1			3
COs / PS	Os		PSC	01			PS	02			P	503				PSO	94
<u>CO1</u>			3					2				3				3	
<u>CO2</u>			3					2				3				3	
CO3 CO4			3					2 3				3 3				3	
<u> </u>			3					3				3				3	
H/M/L in	dica	tes S			rrel	atio			<b>M-</b> M	ſedi	ium, L			I		-	
C	Category	Basic Sciences	Envineerino Sciences		Humanities and Social	Sciences	Program Core		Program Electives		Open Electives	Inter Discinlinary			Skill Component		Practical / Project
							~	(									

### UNIT I INTRODUCTION TO ROBOTICS

ROBOTICS

Engineering

Subject Name : SENSORS AND

Prerequisite: Basic Mechanical & Civil

**Engineering**, Electrical and Instrumentation

Robot - Definition - Law of Robotics - Robot Anatomy - Co ordinate Systems- Robot Classification- Wrist configuration-Technical Specifications of Robot - Robot Parts and their Functions-Need for Robots-Different Applications.

### **UNIT II ROBOT DRIVES AND POWER TRANSMISSION SYSTEMS**

Robot drive mechanisms- hydraulic - electric -pneumatic drives- servomotor- stepper motor- Mechanical transmission method - Gear transmission - Rotary-to-Rotary motion conversion, Rotary-to-Linear motion conversion.

### **UNIT III** MANIPULATORS AND END EFFECTORS

Construction of Manipulators- Electronic and Pneumatic manipulators-Classification of End effectors -Tools as end effectors -Mechanical grippers- -Magnetic grippers-Vacuum grippers-hydraulic grippers -Gripper force analysis

### UNIT IV **BASICS OF SENSOR**

Sensor definition- Sensor Systems - Sensor Characteristics- - Sensor Classification-Types of sensors -Transducer and actuators

### UNIT V **APPLICATION OF SENSORS**

Mechanical sensors- Temperature sensor- pressure sensor- optical sensors- proximity sensors-biosensors-Role of sensors in robotics and automation.

### Practical component P : Include case studies / application scenarios Research component R : Future trends / research areas / Comparative Analysis

## **Total Number of Hours: 45**

## **TEXT BOOKS:**

**Subject Code:** 

**EBEC22011** 

- 1. Deb S. R. and Deb S., "Robotics Technology and Flexible Automation", Tata McGraw Hill Education Pvt. Ltd, 2010.
- 2. John J.Craig, "Introduction to Robotics", Pearson, 2009. 3. Mikell P. Groover et. al., "Industrial Robots - Technology, Programming and Applications", McGraw Hill, New York, 2008.
- 3. Jacob Fraden, "Handbook Of Modern Sensors Physics, Designs, And Applications" 2. Jon S. Wilson," Sensor Technology Handbook 3. S J Prosser, E. Lewis ,"Sensor and their Applications XII" **CRC** Press

## **REFERENCES:**

- 1. Richard D Klafter, Thomas A Chmielewski, Michael Negin, "Robotics Engineering An Integrated Approach", Eastern Economy Edition, Prentice Hall of India Pvt. Ltd., 2006.
- 2. Fu K S, Gonzalez R C, Lee C.S.G, "Robotics : Control, Sensing, Vision and Intelligence", McGraw Hill, 1987
- 3. Ian Sinclair, "Sensors and Transducers" eBook ISBN: 9780080516998
- 4. H.Rosemary Taylor, "Data acquisition for sensor systems", Chapman & Hall, 1997. 5. Ramon Pallas-Areny, John G. Webster, "Sensors and signal conditioning" John Wiley & Sons, 2001.

# 9 Hrs

# 9 Hrs

### 9 Hrs

## 9 Hrs

# 9 Hrs

## 116



TY / Lb/

**ETL/IE** 

TY

T/SL

r

0/0

L

3

P/R

0/0

С

3

n) nilnadu, India.



		Subject Name : DIGITAL     TY / Lb/     L     T/SL     P/R     C       COMMUNICATION     ETL/IE     r     C											
Subject Cod					<b>AL</b>					L		P/R	
EDEC22012					7							0.10	
EBEC22012				Rando		nunicati	ion,	Т	Ľ	3	1/0	0/0	9 4
L : Lecture			-				D · Dro	ioot P	· Docon	$roh C \cdot ($	Tradita		
T/L/ETL : T							r . FIQ		. Kesea	ich C. C			
OBJECTIV			Incuuc		y and	Lau							
• To stu		ection.	estimat	tion and	d disc	uss the	proces	s of sa	mpling.	quantiz	zation ar	nd cod	ing that
						ion of a				1			0
• To un	derstar	nd the	concept	ts of di	fferei	nt digita	l modu	ilation	technic	jues and	d their a	pplica	tions in
our da	y to da	y life	-			-				-			
• To lea											ding and	d deco	oding of
						nsmissio		-		els.			
COURSE C													
CO1				ng proc	ess in	n real-tir	ne syst	tems a	nd recor	nstruct t	he signal	l with	the
		ation of			• • •								
CO2						on and i				1 .	C .1		C .1
CO3				es to d	evelo	p variou	is mod	ulation	techno	ologies 1	for the s	tate of	t the art
		nunicat		al. 11- '			a	-	de E-	d = 4 = - 4 :	~ 4k -		dia:4-1
CO4				SKIIIS 1	n gei	herating	a unic	que co	de for	detectin	ig the er	ror ir	a digital
CO5		unicat		ondina	to in	provo th	o diai	tal aar	munia	tion off	Tining	in a m	ultinoth
05		pply their understanding to improve the digital communication efficiency in a multipath vironment.											
Mapping of				vith Pr	ogra	m Quiter	mos (	P()					
COs/POs	PO1	PO2	PO3	PO4	POS		PO7	PO	B PO9	PO1	0 PO	11	PO12
C01	3	3	3	3	3	3	1	1	3	3	2		1
CO2	3	3	3	3	3	3	1	1	3	3	2		1
CO3	3	3	3	3	3	3	2	1	3	3			3
CO4	3	3	3	3	3	2	2		2	3	1		3
CO5	3	3	3	3	3	2	1	1	3	3			3
COs /PSOs	-	PSC	-			SO2		<u> </u>	PSO3	_		PSO ₄	
CO1		3				3			1			1	
CO2		3				1			1			2	
CO3		3				3			1			2	
CO4		3				3			1			1	
CO5		3				3			1			2	
3/2/1 indicat	tes Str	ength o	of Corr	elatior	n 3-	High, 2	- Med	ium, 1	-Low				
									y			ц,	
	S			e ces					ŝ	Inter Disciplinary	Skill Component		Practical / Project
	nce	٥	٥	Humanities and Social Sciences Program Core Program Electives						üldi	noq		Pr(
, Include the second seco	Basic Sciences	Engineering	s	m E C itie						isci	luic		/ la
Category	cS	inec	Sciences	ial 1 gran			E E		ĹD	I C		tic	
Cat	asi	ign	cie o	Humanities and Social Sciences Program Core		rog		24	nteı	kill		rac	
	Щ	Щ	N N	Pr Pr			Ч		,	I	S		Ч
						~							
								1			1	1	

CATIONAL AND RESEARCH INSTITUTE DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code	Subject Name : DIGITAL	TY / Lb/	L	T/SL	P/R	С	ĺ
	COMMUNICATION	ETL/IE		r			
EBEC22012	Prerequisite: Analog Communication,	TY	3	1/0	0/0	4	
	Probability and Random Process						ĺ

#### UNIT I DETECTION, ESTIMATION AND SAMPLING PROCESS

Model of Digital Communication System, Gram Schmidt Orthogonalization Procedure, Matched Filters, Correlation Receivers, Error Probability, Maximum Likelihood Estimation, Linear Prediction and Prediction Filters, Sampling Theorem, Quadrature Sampling of Band-Pass Signals, Reconstruction of a message from its samples

#### WAVEFORM CODING TECHNIQUES AND BASEBAND SHAPING UNIT II

PCM and TDMA Principles, Channel Noise and Error Probability, Quantization Noise and SNR. Differential Pulse Code Modulation and Delta Modulation, Speech Coding at Low Bit Rates, Power Spectra of PAM Signals, Inter Symbol Interference, Nyquist Criterion for distortionless baseband transmission, Correlative Coding and Precoding, Eye Patterns and Equalization Techniques.

#### UNIT III **DIGITAL MODULATION SCHEME**

Geometric Representation of signals – Generation, detection, PSD & BER of Coherent BPSK, BFSK & QPSK – QAM – Carrier Synchronization – Structure of Non-coherent Receivers – Principle of DPSK.

### UNIT IV **ERROR CONTROL CODING**

Need for Coding, Types of Codes, Hamming codes, Linear Block Codes, Cyclic Codes, Convolution Codes, Maximum, Likelihood Decoding of convolutional Codes, Distance Properties and Sequential Decoding of convolutional Codes, Trellis coding, Viterbi coding.

#### UNIT V SPREAD SPECTRUM SYSTEMS

Generation of Pseudo Noise Sequences, Correlation Properties, Direct Sequence Spread Spectrum Systems, Frequency Hop System, Signal Space Dimension and Processing Gain, Probability of Error, Antijam and Multipath Performance.

### Practical component P: Include case studies / application scenarios Research component R: Future trends / research areas / Comparative Analysis

## **Total Number of Hours: 60**

### **TEXTBOOKS:**

- 1. Simon Haykin, "Digital communications", John Wiley & Sons, 1988.
- 2. John. G. Proakis, "Digital Communication", McGraw Hill Inc., Third Edition, Malaysia, 1995.
- 3. B.P. Lathi, "Modern Digital and Analog communication system", Oxford publications, Third edition.

### **REFERENCE BOOKS:**

- 1. Roy Blake, "Electronic Communication systems", Thomson Learning, 2nd edition 2002.
- 2. M.K. Simen, "Digital Communication Techniques Signal Design & Detection", Prentice Hall of India. 1999.
- 3. Bernard Sklar, "Digital Communication: Fundamentals and Applications", Prentice Hall, 2011 Edition.
- 4. UpamanyuMadhow, "Fundamentals of Digital Communication", Cambridge University Press, 2008
- 5. Robert G. Gallager, "Principles of Digital Communication", Cambridge University Press 2008.

12 Hrs

12 Hrs

12 Hrs

### 12 Hrs

12 Hrs





Subject Code:		t Name ESSINC		TAL II	MAGE				/ Lb/ L/IE	L	Г/SL r	P/R	2	С	
EBEC22013	Prerec	uisite: I	Digital S	Signal I	Process	sing		TY		3	1/0	0/	0	4	
L : Lecture T : T/L/ETL : The					0	P : Pro	ject R	: Researc	ch C: Cr	edits					
<b>OBJECTIVE</b>	:														
• To prov				dents tl	he fund	lament	als of I	Digital I	mage P	rocess	sing s	ysten	n an	d its	
breadth a	-			.1		c ·		,.		1.		. 1	1		
• To enabl are used				with pr	rinciples	s of im	age acq	uisition	system	and ir	nagin	g tech	nolo	ogies	
<ul><li>To provi</li></ul>				to stu	lents o	n varic	us unit	arv form	of Ima	oe tra	ansfor	ms te	chni	aues	
and its p		-	-	to sta	acting of	ii vaiio	us unit	ary 10111		.50 110			CIIII	ques	
• To anal				requend	cy don	nain e	nhancer	nent tec	hniques	and	stud	ents	to a	upply	
appropri			o perfo	rm ima	ige enh	ancem	ent, im	age rest	oration,	imag	e seg	menta	ation	and	
image co														_	
• To Desig												, Visi	on b	ased	
sensing a				iles, rei	note sei	nsing, a	and med	lical ima	ige diag	nostic	s etc.				
The students w			5).												
CO1		the elen	nents of	visual	percept	ion an	d recogi	nizing in	nage sen	sing a	and ac	auisit	ion.		
CO2	-	y the var			<u> </u>		•	•	•			1			
CO3	Discus	s the ima	ige enha	anceme	nt techi	niques,	definin	g differe	nt kinds	s of fil	tering	ç.			
CO4		cognizing the various image degradation models and categorizing image restoration													
~~~ <b>~</b>	metho												1 5		
CO5		ate vari		age co	mpressi	ion tec	hniques	s and in	iterpret	the f	undar	nenta	I Py	thon	
Mapping of C	•	and sem		Program	n Qute	omes (POs)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	POI	10 F	PO11	Р	012	
CO1	3	3	2	2	3	1	2	100	2.07			2	-	3	
CO2	3	3	3	2	3	1	3					2		3	
CO3	3	3	3	2	3	1	3					2		3	
CO4	3	3	3	3	3	1	3			1		2		3	
CO5	3	3	3	3	3	1	3			1		2		3	
COs / PSOs		PSO1			PSC			PS				PSO)4		
<u>CO1</u>		3			2				3 3			3			
CO2 CO3									3			3			
<u> </u>	2 2							$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
<u>C04</u>		$\begin{array}{c c} 2 & 2 \\ \hline 3 & 2 \end{array}$										3			
3/2/1 indicates	Streng	th of Co	rrelatio	on 3-	High, 2	2- Med	ium, 1-	Low							
Category	Basic Sciences	Engineering Sciences	Humanities	and Social Sciences	Program Core	Program	Electives	Open Electives	Inter Disciplinary	(murdage a	Skill Component		Practical / Proiect	***	
					~										

Subject	Subject Name : DIGITAL IMAGE	TY/Lb/	L	T/SL	P/R	С	
Code:	PROCESSING	ETL/IE		r			
EBEC22013	Prerequisite: Digital Signal Processing	TY	3	1/0	0/0	4	

DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) iyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India

ND RESEARCH

INSTITUTE

UNIT I **DIGITAL IMAGE FUNDAMENTALS**

Need for DIP- Fundamental steps in DIP – Elements of visual perception -Image sensing and Acquisition -Image Sampling and Quantization - Relationships between pixels - Color image fundamentals - RGB, HSI models

IMAGE TRANSFORMS & IMAGE COMPRESSION UNIT II

Two dimensional Fourier Transform- Properties - Fast Fourier Transform - Inverse FFT Discrete cosine transform and KL transform. Need for data compression, Huffman, Run Length Encoding, Shift codes, Arithmetic coding, JPEG standard, MPEG.

IMAGE ENHANCEMENT UNIT III

Spatial Domain: Basic Gray level Transformations - Histogram Processing - Basics of Spatial Filtering-Smoothing and Sharpening Spatial Filtering, Frequency Domain: Smoothing frequency domain filterssharpening frequency domain filters- Homomorphic filtering

UNIT IV **IMAGE RESTORATION & SEGMENTATION**

Overview of Degradation models –Unconstrained and constrained restorations-Inverse Filtering- Wiener Filter - Feature Extraction Detection of discontinuities - Edge linking and Boundary detection-Thresholding--Edge based segmentation-Region based Segmentation-- Use of motion in segmentation.

UNIT V **APPLICATIONS**

Pattern, Signature, Character Recognition- Texture and Shape Analysis- Biometric and Biomedical Image Processing-Remote Sensing Applications.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 60

TEXT BOOKS:

- 1. Rafael C.Gonzalez& Richard E.Woods Digital Image Processing Pearson Education- 3/e Reprint 2014.
- 2. Anil.K.Jain Fundamentals of Digital Image Processing- Pearson Education, 9th Reprint, 2002. **REFERENCES:**
 - 1. B.Chanda&D.Dutta Majumder Digital Image Processing and Analysis Prentice Hall of India – 2006.
 - William K. Pratt Digital Image Processing John Wiley & Comp. Sons, 4/e, 2007 2.
 - 3. Tinku Acharya, Ajoy K. Ray Image Processing: Principles and Applications- John Wiley& Sons, 2005.

12 Hrs

12 Hrs

120

12 Hrs

12 Hrs

Subject Co	de:	Subject	t Name	: COM	IMUN	ICATI	ON LAI		TY /Lb/ TL/IE	L	T/SL r	P	/R	C	
EBEC22L0	8 P	rerequi	site: Co	oommu	nicatio	on Lab	Ι	L	b	0	0/0	3/0)	1	
L : Lecture							Project	R : Rese	arch C:	Credit	5				
T/L/ETL : 7	Theory/I	_ab/Em	bedded	Theory	and La	ab									
OBJECTIV	VES :														
							on techni	iques.							
	study th														
	study th				ormatio	on codi	ng.								
COURSE ((3-5)											
The Student					4 4	1	- f 1			•					
CO1			-			-		e state of a	art of cor	nmunı	cation.				
CO2															
CO3	-		error correcting codes for transmitting signals. the sampling process and reconstruct the signal												
		rse Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO2	PO3	PO4 3			PO7	PO8	PO9						
CO1 CO2	3	3 3 3			3	2	2		3	1	2			3	
	3	3	3	3	-	2			3		2		3		
CO3		PSO	_	5	3 PS		2	PSC	_	1		2 SO4		<u>)</u>	
COs /PSOs CO1		<u> PSU</u> 3	1		<u> PS</u>			<u> PSC</u> 3	13		P	<u>304</u>	•		
CO1 CO2		3						3				3			
CO2 CO3		3						3				3			
3/2/1 indica	tes Str	-	f Corre	lation	-		 Medium	n, 1-Low				5			
		-ingen 0				·		., 1 2011		<u> </u>					
Category	Basic Sciences	Engineering Sciences	0	Humanities and Social Sciences	Program Core)	Program Electives	Open Electives	Inter Disciplinary		Skill Component		Practical / Project		
													v		

Subject Code:	Subject Name : COMMUNICATION LAB II	TY /Lb/ ETL/IE	L	T/SL r	P/R	С
EBEC22L08	Prerequisite: Communication Lab II	Lb	0	0/0	3/0	1

- 1. Ask Generation and Detection
- 2. Fsk Generation and Detection
- 3. Psk Generation and Detection
- 4. Bpsk Generation and Detection
- 5. Dpsk Generation and Detection
- 6. Block/Hamming Codes.
- 7. Pn Sequence Generator.
- 8. Pulse Code Modulation and Demodulation
- 9. Study Of Line Coding and Decoding Techniques
- 10. Design & Testing Of Eye Pattern

Total Number of Hours: 45

REFERENCES:

			-		8	, Madura	avoyai, e		20.1		-						
Subject	Cod		bject N			OGEG	ana		a	TY		L	T/S	Lr	P/R		С
				L IMA V PYT			SING	USIN	G	Lb/ FT	L/IE						
EBEC2	21.09						nming,	Digi	tal	Lb							
				ocessin		8	8,	8-				0	0)/0	3/0		1
L : Lect	ure T	: Tuto	rial S	Lr : Sup	pervised	l Learn	ing P:	Proje	ct R	: Res	earch	C: Ci	redits	5			
T/L/ET	L : Tł	neory/L	ab/Emt	bedded	Theory	and La	ab										
OBJEC																	
				digital	U		0										
							cessing			•							
						a in aig	gital im	age pr	ocess	sing							
			DMES (COs) : (3- 5) e able to														
CO1				fferent modalities and current techniques in image acquisition and to work in open													
			using python programming														
CO2			thematical principles of digital image enhancement (contrast, gradients, noise)														
CO3	Des	cribe a	nd appl	d apply the concepts of feature detection and contour finding algorithms.													
Mappir	ng of	Course	e Outco	Outcomes with Program Outcomes (POs)													
COs/P	Os	PO1	PO2	PO3	PO4	PC	D10	P	D11	PO	12						
CO	1	2	2	3	3	3 3					1		2				
CO2	2	3	3	3	3	3					1		2				
CO	3	3	3	3	3	3					1		2				
COs / F	SOs		PSO	1		PS	SO2			PS	03				PSO ₄	1	
CO			3				3				2				2		
CO	2		3				3				2				2		
CO			3				3				2				2		
3/2/1 in	dicat	es Stre	ngth of	f Corre	lation	3- H i	i gh, 2- I	Mediu	ım, 1	-Low	7		,				
					al												
			Sciences		Social												
			zien					ive		~		nary		ant		oject	
		seo			an	ore		ecti		ives				one		Proj	
	ory	cien	ring		Humanities and Sciences	Ŭ		Program Electives		Open Electiv		scip		Skill Component		Practical / Pr	
	Category	c Sc	nee		Humanit Sciences	ram		ran		ЦШ		Di		Co		ica	
	Ca	Basic Sciences	Engineering Engineering Humanities a Sciences Program Elec Program Elec Open Electiv Open Electiv Skill Compo Skill Compo														
		B	A HÀ LÀ														
																V	

Subject Code:	Subject Name :	TY/	L	T/SLr	P/R	С
	DIGITAL IMAGE PROCESSING USING	Lb/				
	OPEN CV PYTHON LAB	ETL/IE				
EBEC22L09	Prerequisite: Python Programming, Digital	Lb	•	0/0	2/0	1
	Signal Processing		U	0/0	3/0	1

- 1. Image Processing in Open CV
- 2. Changing Color-Space
- 3. Image Thresholding
- 4. Geometric Transformations of Images
- Smoothing images 5.
- 6. Morphological Transformations
- 7. Image Gradients
- Canny Edge Detection 8.
- 9. Image Pyramids
- 10. Contours in Open CV
- 11. Histograms in Open CV
- 12. Image Transforms in Open CV
- 13. Feature Detection and Description
- 14. Camera Calibration and 3d Reconstruction

Total Number of Hours: 45

REFERENCES:

(An ISO 210	01 : 2018 Certified	Institutio	n)	
eriyar E.V.R. High Road,	Maduravoyal, Chenn	ai-95. Tan	iilnadu, In	Idia

Subject	Cod		ubject N AB	ame :	SENS	OR AN	ND RO	BOTIC	L	Y / b/ FL/IE	L	T/S	SLr	P/R	2	С
EBEC2	2L1(rerequis licrocon			cessor	and		L	b	0	0/	/0	3/0)	1
L : Lect	ure T					l Learn	ing P:	Project	R : Res	search (C: Cr	edits	;			
T/L/ETI	L:Tl	heory/l	Lab/Emb	edded '	Theory	and La	ıb									
OBJEC																
			d the dif			•			•							
			deep kn			ors and	their ap	oplicatio	ns in ro	bot						
COURS			e able to	,	(3-5)											
					motor	driver	IC and	aoncor -	nodula							
CO1 CO2			ple robo grammi							ith ardu	ino					
CO2 CO3									vices w	itii ai'uu	mo					
CO3		0		or control using timer and delay formance of robots by integrating with different sensors												
Mappin										10 001100						
COs/PC	<u> </u>	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10	PO	11	PC	D12
CO1		3	3	3	2	2	2	2		3	1					2
CO2		3	3	3	3	3 1 2			3	1				2		
CO3		3	3	3	2	3	2	2		3	1	l				2
CO4		3	3	3	3	3	1	2		3	1	l				2
COs / P	SOs		PSO	1		PS	02		PS	503	1]	PSO ²	1	
CO	1		3			/ 4	2			3				3		
CO	2		3				2			3				3		
CO3	3		3				2			3				3		
CO			3				2			3				3		
CO		~	3			-	2			3				3		
3/2/1 in	dicat	es Str	ength of	Corre	lation	3- Hi	gh, 2- I	Medium	<u>, 1-Lov</u>	7						
	Category Basic Sciences Engineering Sciences					Program Core	,	Program Electives	Open Electives		Inter Disciplinary		Skill Component		Practical / Project	~
															\checkmark	

Subject Code:	Subject Name : SENSOR AND ROBOTICS LAB	TY / Lb/ ETL/IE	L	T/SLr	P/R	С
EBEC22L10	Prerequisite: Microprocessor and Microcontroller Lab	Lb	0	0/0	3/0	1

- 1. Simple Robot Circuit
- 2. Bulid Light Tracking Robot
- 3. Line Follower Robot
- 4. Interfacing to Switch Bar Graph LED
- 5. Lcd Interfacing to Display Integer Alphanumeric Characters
- 6. Pwm Control of Dc Motor
- 7. Material Handling Using Motosim
- 8. Surface Deburring Using Motosim
- 9. Ultrasonic Proximity Sensor For Distance Measurement
- 10. Temperature LM 35 Temperature Sensor
- 11. Humidity Measurement Using DHT-11 Humidity Sensor
- 12. Automatic Irrigation System

Total Number of Hours: 45

REFERENCES:

Subject Co	de:		t Name : ITATIVE S				IVE		/ Lb/ L/IE	L	T/S r	L P	/R	C			
EBCC22I0	7	Prereq	uisite: No	ne				IE		0	0/0	2/0)	1			
L : Lecture '							Project	R : Res	earch C	C: C	redits						
T/L/ETL : T				•													
OBJECTIV	/E: 1	'he main	objective	is to str	rengther	n the log	gical an	d arithr	netic re	easo	ning s	skills of	the				
students.																	
COURSE (
CO1		<u> </u>	nd apply a			<u> </u>											
CO2		ity to id cism.	entify and	critical	ly evalu	ate phi	losophi	cal argu	iments	and	defer	nd them	fron	1			
CO3			and intern	ret info	rmation	from o	ranhs										
			data and interpret information from graphs. Outcomes with Program Outcomes (POs)														
COs/POs	PO		PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1	3	3	3	3	3	3	1	1	3	1	2	3		3			
CO2	2	2	2	3	1	3	1	3	3		3	3		1			
CO3	3	3	3	3	3	3	2	2	3		3	3		3			
Cos / PSOs		PSC	D1	PSO2					03			PSC)4				
CO1		2			2			3				3					
CO2		3			2			2				3					
CO3		1			2			1				1					
3/2/1 indica	tes S	trength	of Correl	ation	3- Hig	h, 2- M	edium,	1-Low									
Category		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core		Program Electives	Open Electives	Inter Discinlinery			Skill Component	Practical / Project	,			
											•						

			01 : 2018 Cei			
riyar	E.V.R. Hi	gh Road,	Maduravoyal,	Chennai-95.	Tamilnadu,	Indi

Subject Code:	Subject Name : SOFT SKILLS – II QUALITATIVE AND QUANTITATIVE SKILLS	TY / Lb/ ETL/IE	L	T/SL r	P/R	С	
EBCC22I07	Prerequisite: None	IE	0	0/0	2/0	1	

UNIT 1 Logical Reasoning I

Logical Statements - Arguments - Assumptions - Courses of Action.

UNIT 2 Logical Reasoning II

Logical conclusions - Deriving conclusions from passages - Theme detection.

UNIT 3 **Arithmetical Reasoning I**

Number system - H.C.F & L.C.M - Problem on ages - Percentage - Profit & Loss - Ratio & Proportion -Partnership.

UNIT 4 **Arithmetical Reasoning II**

Time & Work - Time & Distance - Clocks - Permutations & Combinations - Heights & Distances - Odd man out and Series.

UNIT 5 **Data Interpretation**

Tabulation – Bar graphs – Pie graphs – Line graphs.

Total Number of Hours: 30

Reference Book:

- 1. R.S.Agarwal, A modern approach to Logical Reasoning, S.Chand& Co., (2017).
- 2. R.S.Agarwal, A modern approach to Verbal and Non verbal Reasoning, S.Chand& Co., (2017).
- 3. R.S.Agarwal, Quantitative Aptitude for Competitive Examinations, S.Chand& Co., (2017).
- 4. A.K.Gupta, Logical and Analytical Reasoning, Ramesh Publishing House, (2014).
- 5. B.S.Sijwali, Indusijwali, A new approach to Reasoning (Verbal and Non verbal), Arihant Publishers, (2014).

6Hrs

6Hrs

6Hrs

6Hrs

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tan	ilnadu, India.

Subject Cod	le:	Subj	ject N	lame :	TE(CHNI	CAL SF	KILL	- I	II		/ Lb/ L/IE	L	T/SLr	P /	R	С
EBEC22I03	,	Prer	requis	ite:No	ne						IE		0	0/0	2/	0	1
L : Lecture 7	[: Tu	itoria	1 SI	r : Sup	bervi	sed Le	arning	P:P	rojec	ct R	: Resea	rch C:	Credit	s		I	
T/L/ETL : T																	
OBJECTIV							e techn	ical s	kill	of th	e studer	nts.					
COURSE O																	
CO1		-				-	ired in				-						
CO2					en tl	he skill	require	emen	ts of	the	employ	er or in	dustr	y and the	cor	npete	ncy
			dents.														
CO3		hance the employability of the students.															
			se Outcomes with Program Outcomes (POs) I PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
COs/POs	PO		PO2	PO3		PO4	PO5	PO	5 F	PO7	PO8	PO9	PO1	0 PO1	1	PO	12
CO1	2		3	3		3	3	3		2	2	3	2	3		2	
CO2	3		3	2		3	3	3		2	2	3	3	3		3	
CO3	3		3	3		3	3	3		2	2	3	3	3			
COs / PSOs	S		PSC)1			PSO	2				03]	PSO	94	
CO1			3				3					3			2		
CO2			3				2					3			3		
CO3		~	2				3			<u> </u>		2			3		
H/M/L india	cates	Stre	ngth	of Cor	rela	tion	H- Hig	<u>h, M</u>	·Me	ediur	n, L-Lo)W					
Category	Basic Sciences		Engineering Sciences		Humanities and Social	Sciences	Program Core		Program Electives		Open Electives	Inter Disciplinary	•	Skill Component		Practical / Project	
														\checkmark			

Subject Code:	Subject Name : TECHNICAL SKILL - III	TY / Lb/	L	T/SLr	P/R	С
		ETL/IE				
EBEC22I03	Prerequisite:None	IE	0	0/0	2/0	1

Students should acquire skill in the domain/inter disciplinary area from government/private training centers/industries /University for a minimum period of 15 calendar days. The training can be through off line, online or mixed mode. Students are supposed to prepare Technical skill report at the end of the training and submit the report along with the certificate in proof of the training, during the viva voce examination conducted by the examiners duly appointed by the head of the department.

eriyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, Ind	ia.

Subject Code		oject Na FERNS		AINI PF	ROJEC	T /			/ Lb/ L/IE	L	T/S Lr		C C			
EBEC22I04				e Cours	ses			IE		0	0		1			
L : Lecture T T/L/ETL : Th							roject	R : Res	earch C	-	-	5/0				
OBJECTIVI				of the Ir	plant ti	raining	is to pr	ovide a	short-te	erm v	vork	experien	ice in an			
Industry/ Con	<u> </u>	<u> </u>														
COURSE O			· · ·													
CO1												omain of	study.			
	CO2 To acquire skills and knowledge for a smooth transition into the career.CO3 To gain field experience and get linked with the professional network.															
	To gain field experience and get linked with the professional network. Course Outcomes with Program Outcomes (POs)															
		irse Outcomes with Program Outcomes (POs)														
COs/POs	PO1	O1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1	2	1 1 1 1 3 3 3 3 3 3 3														
CO2	3	2 3 3 2 3 3 3 3 3 3 2														
CO3	3	3 3 3 2 3 3 3 3 3 2														
COs / PSOs		PSO1			PSO	2			03			PSO	4			
CO1		2			3							3				
CO2		2			3				2			3				
CO3		-			-				3			2				
3/2/1 indicate	es Strer	ngth of	Correl	ation (3- High	h , 2- Me	edium,	1-Low								
CO3 3 3 5 Engineering Sciences Alter Basic Sciences Basic Sciences Basic Sciences Basic Sciences Alter Program Core Sciences Sciences Sciences Sciences Alter Program Core Program Core Sciences Sciences Sciences Sciences Alter Drogram Electives Sciences Sciences Sciences Sciences Sciences Practical / Project Project Project Project Project Sciences Sciences																
											•	\checkmark				

Subject Code:	Subject Name : MINI PROJECT /	TY/Lb/	L	T/S	P/R	С
	INTERNSHIP	ETL/IE		Lr		
EBEC22I04	Prerequisite: Core Courses	IE	0	0	3/0	1

MINI PROJECT:

Students will have an opportunity to expose their knowledge and talent to make an innovative project. Students are supposed to do innovative projects useful to industries/society in the area of relevant Engineering, inter and multi-disciplinary areas, under the guidance of a staff member. They have to prepare a project report and submit to the department.

At the end of the semester Viva-Voce examination will be conducted by the internal Examiner duly appointed by the Head of the department and the students will be evaluated.

INTERNSHIP:

Students are supposed to undergo internship in related Industries for a minimum period of 30 days cumulatively during the semester. They have to prepare a report on the Internship with a certificate in proof from competent authority in the industry. At the end of the semester Viva-Voce examination will be conducted by the Examiners duly appointed by the Head of the department and the students will be evaluated.

SEMESTER- VII

Subject	Cod		•		MICRO AMUN			ND		Ty / ETL		L	T/SI	r	P/R	C	
EBEC2	2014				ansmis			nd			/112	3	0/0	,	0/0	3	
EDEC2	2017		-		itenna a			mu		Тy		5	0/0	·	0/0	5	
			pagati		itenna i	inu vve											
L:Lect	ure T	: Tutoria			ervised	Learnir	ισ Ρ	: Proi	ect	R : Res	earch (: Cre	dits				
		neory/Lal						· •J									
OBJEC		•			5												
• T	'o lea	rn the wo	rking c	of micro	owave p	assive	devic	es an	d ge	nerator	s.						
		dy the op									ations i	in circ	cuits.				
		rn the im				ber link	c and	its lo	sses.								
		UTCOM		Os):(3-5)												
			Il be able to the characteristics of microwave passive devices using Scattering matrix														
C01		-					<u> </u>					ring r	natrix				
CO2		-	ne principle of generators in developing microwave signals strate the characteristics of microwave solid state devices.														
CO3																	
CO4			he parameters of transmission lines in microwave circuits. and the fiber optical communication system and investigate the losses in it														
CO5																	
			rse Outcomes with Program Outcomes (POs) D1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
COs/P		PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO		3	3	2	3	3	1		2	1	1	1		1		1	
CO2		2	3	3	3	3	1		1	1	2	2		1		1	
CO3		3	2	2	2	3	1		2	1	1	1		1	_	1	
CO4		3	$\frac{2}{3}$	2	23	23	3		1	1 1	3	1		1 1		2 3	
COS COS/P		3	-	3	3		-		1	-	-	2		-		3	
COS/P			PSO1			PSC 2	02				03				04		
			1			23					L				2 2		
			1			2					L				1		
			1			3									2		
CO			1			3					<u>-</u> l				3		
		es Streng		Correl	ation	3- Hig	h.2- N	Mediı	ım		•			<u> </u>	-		
			·			8			,	//							
								S			1				t		
		S			nd			tive		SS	lary	•	lent		jec		
	ý	nce	ß		ienc	ore		llec		tive	plir	4	hon		Prc		
	Category	Scie	erir	GS	uitie Sci	n C		шE		Ilec	isci		om]		al /		
	Jate	ic S	ine	snce	nar ial	graı		graı		'nE	L D		Ū		Stic		
	0	Basic Sciences	Engineering	Sciences	Humanities and Social Sciences	Program Core		Program Electives		Open Electives	Inter Disciplinary		Skill Component		Practical / Project		
					, , *4										+		
						\checkmark											

Subject Code:	Subject Name :MICROWAVE AND	Ty / Lb/	L	T/SL	P/R	С
	OPTICAL COMMUNICATION	ETL/IE		r		
EBEC22014	Prerequisite: Transmission Lines and	Ту	3	0/0	0/0	3
	Waveguides, Antenna and Wave					
	Propagation					

UNIT I MICROWAVE PASSIVE DEVICES

Transmission Lines for use at Microwave Frequencies - Attenuators, Directional Couplers, Terminators, Phase Shifters, Faraday Rotation Isolators and Circulators, Field Displacement Isolators, Microwave Filters, Frequency Meters, Hybrid Junctions - Scattering Analysis.

Limitations of Conventional Tubes at Very High Frequencies - Velocity - Modulated Tubes, Two -

MICROWAVE GENERATOR UNIT II

Cavity Klystron Amplifiers, Reflex Klystron Oscillators - Periodic Slow Wave Structures and their Use in Travelling Wave Tube Amplifiers, Focusing Techniques, TWTA Performance Characteristics - Electron Motion in Crossed Electric and Magnetic Fields - Magnetron Oscillators, Hartree Equation Rieke Diagram and Performance Charts.

Varactor Diodes, Manley - Rowe Relations, Low Noise Parametric Amplifiers - Transferred -

MICROWAVE SOLID-STATE DEVICES UNIT III

Electron Devices and Their Operation, Cavity - Controlled Modes, LSA Mode-Avalanche - Transit Time Devices and Their Operation, TRAPATT Mode, BARITT mode, PIN Diodes and Their use as Attenuators and Switches.

Slotted - Line Techniques - Measurements of Wavelength - Measurement of Low and High VSWR -

UNIT IV MICROWAVE MEASUREMENTS

Measurement of Frequency and Frequency Meters - Measurement of Insertion Loss and Attenuation by Substitution Methods - Measurement of Low and High Powers at Microwave Frequencies -Modern Measurement Techniques using Automatic Network Analyzer and Spectrum Analyzer.

OPTICAL FIBER, LOSSES AND DESIGN UNIT V

The General System - Evolution of Fiber Optical System - Elements of an Optical FiberTransmission Link – Cylindrical Fiber – Single Mode Fibers and Multimode Fibers - Fiber Splicingand Connectors. Absorption Losses, Scattering Losses - Bending Losses - Core and Cladding Losses- Signal Distortion in SM Fibers - Point to Point Links - System Design Consideration - Link PowerBudget - Rise Time Budget

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXTBOOKS:

- 1. Annapurna Das, Sisir. K. Das, "Microwave Engineering", Tata McGraw Hill Co., Ltd., 1999. Reprint 2001.
- 2. Samuel Y. Liao: "Microwave Devices and Circuits", Prentice Hall of India 3rd Edition (2003)
- 3. SubalKar, "Microwave Engineering", Universities press(India) private limited 1st Edition (2016)
- 4. Gerd Keiser,"Optical Fiber Communication System", McGraw Hill International,3rd Edition 2000

REFERENCE BOOKS:

- 1. D.M. Pozer, "Microwave Engineering", Addison Wesley, 1998.
- 2. R.E. Collins: "Foundations for Microwave Engineering", IEEE Press Second Edition (2002)
- 3. David K. Cheng," Field and Waves in Electromagnetism", Pearson Education, 1989.
- 4. John M.Senior, "Optical Fiber Communication-Principles and Practice", Prentice Hall of India, 1996

9 Hrs

9Hrs

9 Hrs

9 Hrs

Subject	Subi	ect Nan	ne : Vl	LSI DE	SIGN				TY	/ Lb/	L	T/SI	L P /	R	С
Code:	Subj	eet i (uii							ETI		-	r			Ŭ
EBEC22015	Prer	equisite	: Ana	vsis of	Solid	State I)evic	es.	TY	-	3	0/	0 0/0)	3
		al Elect						-~;			Ũ	0/	0 0/ 0	•	U
L : Lecture T :					Learnii	ng P:I	Proje	ct R	R : Resea	arch C:	Cre	dits			4
T/L/ETL : The							U								
OBJECTIVE	:														
• To learn	the bas	ics of M	IOS TI	ansisto	rs.										
To study	the des	sign of c	ombin	ational	logic	circuit u	ising	CM	10S.						
To learn	CMOS	sequen	tial log	gic circu	its de	sign.									
• To learn	the con	cepts of	mode	ling a d	igital	system	using	g HI	DL.						
To study	the bas	sics of P	IC mic	crocontr	oller.	-		-							
COURSE OU	ГСОМ	ES (CC	(s) :												
The students w															
CO1	To ga	ain soun	d knov	vledge a	about	he basi	c CN	ЛOS	Circuit	s					
CO2		lysis and design of different combinational ciecuits.													
CO3	Iden	ntify the techniques involved in the analysis and synthesis of sequencial circuits.													
CO4	Expe	rtise in digital system design using VHDL & Verilog.													
CO5	Unde	erstand the basics of 16F877 PIC Microcontroller.													
	ourse C	Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO	D7	PO8	PO9	P	010	PO11	P	PO12
CO1	3	2	1	2			4	2	2	2		3	2		3
CO2	3	3	3	3	3	2	2	2		3		2	3		2
CO3	3	3	3	3	3	2				3		2	3		2
CO4	3	2	3	2	3	2				3		2	2		2
CO5	3	-	3	2	3	2				2		2	2		3
COs / PSOs		PSO1			PS	02			PS	03			PS	04	
CO1		3			3				2	2			2	,	
CO2		3							2				2		
CO3		3			2				2				2		
CO4		3			2				2	2			3		
CO5		3							-				3		
3/2/1 indicates	Streng	gth of C	orrela	tion 3	1-Low										
	s								S						
	Basic Sciences	а		s	Sciences Program Core				Open Electives		Ń		it		
ъ.	cie	brin (s	itie cial	s C		U	S	lect		naı		nen	1/	
Category	C N	Engineering	Sciences	Humanities and Social	Sciences Program		Program	Electives	ЦЦ		Disciplinary		Component	Practical	ect
ate	asia	ngi	ciel	nm	ciei)	rog	leci	lei	Inter	isc	Urill Skill	om	ract	Project
U U	В	Щ	Ň	Har	ъ Ч		Ъ.	긔	0	In		5	d U	P	Ч

DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) eriyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamiinadu, India.

AND RESEARCH

Subject	Subject Name :VLSI DESIGN	TY/Lb/	L	T/SL	P/R	С
Code:		ETL/IE		r		
EBEC22015	Prerequisite: : Analysis of Solid State Devices,	TY	3	0/0	0/0	3
	Digital Electronics					

UNIT I MOS TRANSISTOR THEORY

EDUCATION

Introduction - NMOS and PMOS transistor, Threshold voltage, Body effect, MOS device - Basic DC equations ,Second order effects, MOS models, Small signal AC characteristics, Complementary CMOS Inverter, Power dissipation and scaling of MOS transistors.

UNIT II **DESIGNING COMBINATIONAL LOGIC CIRCUITS**

Static CMOS design - Complementary CMOS, Propagation Delay and Power Consumption in static CMOS, Pseudo NMOS Logic, Pass Transistor Logic, Transmission gates, Dynamic CMOS Design - Basic principle, Speed and Power dissipation of Dynamic logic, Signal integrity issues in dynamic design, CMOS Domino logic, np CMOS logic.

UNIT III **DESIGNING SEQUENTIAL LOGIC CIRCUITS**

Introduction – Timing metrics for sequential circuits, Classification of memory elements, Static latches and registers – The bi-stability principle, Multiplexer based latch, Master slave edge triggered register, Static SR flip flop, Dynamic latches and registers – Dynamic transmission gate edge triggered registers, clocked CMOS register.

UNIT IV **VHDL PROGRAMMING**

VHDL background - VHDL requirement, Elements of VHDL- Importance of HDL- typical design flowoperators, Basic concepts in VHDL, Structural modeling, Behavioral modeling and Dataflow modeling in VHDL and Simple programs-VHDL code for half adder and full adders, half and full subtractors, multiplexers, demultiplexers, decoders, encoders, 2-bt comparator, shift registers.

UNIT V **VERILOG PROGRAMMING**

Verilog HDL - Basic concepts and popularity of Verilog HDL - Verilog requirements, Gate Level modeling, Dataflow modeling and Behavioral modeling - Simple programs -Verilog code for half adder and full adder, half and full subtractor, multiplexers, demultiplexers, decoders, encoders, 2-bt comparator, shift registers.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXTBOOKS :

- 1. Neil H.E. Weste, Kamran Eshraghian, "Principles of CMOS VLSI Design A system perspective", second edition, Addison Wesley, 1997.
- 2. Jan M.Rabaey, Ananth Chandrakasan, Borivoje Nikolic, " Digital Integrated Circuits : A Design perspective", second edition, Prentice Hall of India, 2003.
- 3. Zainalabedin Navabi, "VHDL Analysis and modeling of Digital Systems", Second edition, Mcgraw - Hill International Editions, 1998.

REFERENCE BOOKS:

- 1. A. Pucknell, Kamran Eshraghian, "Basic VLSI Design", Third Edition, Prentice Hall of India, 2007.
- 2. R.Jacob Baker, Harry W.Li, David E. Boyce, "CMOS circuit design, Layout and Simulation", Prentice Hall of india, 2005.
- 3. J.Baskar, "A VHDL Primer", Third edition, Pearson Education, 2004.
- 4. Samir Palnitkar, "Verilog HDL, A Guide to Digital Design and Synthesis", second edition, Pearson Education,2003.
- 5. pic-microcontroller.com / free- ebook- pic-microcontrollers.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject		5	Subject	Name :	EMBE	DDED S	YSTEM	S	TY/Lt)/	L T/	S P	′ C			
Code:									ETL/I	E	Lı	· R				
EBEC2	2016]	Prerequ	uisite: M	licropro	cessor ar	nd		TY		3 0/0	0/0	3			
]	Microco	ontrolle	r											
L : Lec	ture '	T : Tut	orial S	SLr : Su	pervised	Learning	P:Proj	ect R :	Research	h C:						
Credits	T/L/	ETL :	Theory	/Lab/En	nbedded	Theory an	nd Lab									
OBJE	CTIV	/E :														
			he stude	ents to le	earn the	design iss	ues in m	icrocol	ntrollers	and the	ir perfor	mance				
	etrics															
						ents of em		ontroll	ers based	l on the	charact	eristics				
			<u> </u>			acing circ	uits									
				(COs) :	(3-5)											
			be able		of Of	51 and 6										
CO1 CO2						051 and 68			ntroller.							
CO2 CO3																
CO3	Apply interrupt routines for the measurement of period, frequency															
C04 C05	Demonstrate the interfacing of microcontrollers with peripheral devices															
	÷															
COs/Po	<u> </u>															
COS/10	6															
CO1 CO2																
CO2		2	3	2	2		1			1	2	2	2			
CO4		1	3	3	3		1			1	2	2	2			
CO5		1	2	3	3		2			1	2	3	2			
COs /P	SOs	-	– PSC	-		PSO2			PSO3	-		PSO ₂				
CO			3			2			2			150				
CO			3			3										
CO			2			2			2			3				
CO			2			2			2							
CO			2			2			2			1				
3/2/1 ir	ndica	tes Sti	rength o	of Corre	elation	3- High,	2- Med	ium, 1	Low							
							ş						<u>ل</u>			
		s			pu ss		ive		\mathbf{s}	lary	ent		Jec			
		JCe	5	a	s an nce	ore	lect		ive	lin	on					
	ıry	cier	ri.	~	ties	Ŭ	ΠE		ect	scij	du		[/]			
	Lategory	Basic Sciences	Enoineerino	Sciences	Humanities and Social Sciences	Program Core	Program Electives		Open Electives	Inter Disciplinary	Skill Component		Practical / Project			
t t	at	asic	iot	cier	um oci{	igo.	0g1		per	Iter	cill		ract			
	-	В	ц.	Ň	Н S	Pı	Pı		0	In	SI	ç	Σ			
						\checkmark										
1										1						

UNIT I 68HC11 AND 8051 MICROCONTROLLER

Microcontroller

Embedded Computer systems: - Applications, Software issues, Memory Mapped Architecture, 68HC11 Architecture and Different Addressing Modes, Study of Intel 8051 Microcontroller Architecture and Instruction Set

AND RESEARC

DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Perlyar E.V.R. High Road, Maduravoyal, Chennal-95. Tamlinadu, India.

Subject Name : EMBEDDED SYSTEMS

Prerequisite: Microprocessor and

UNIT II PIC MICROCONTROLLER

EDUCAT

Subject

EBEC22016

Code:

Introduction - PIC16F877 Micro controller overview - Architecture of PIC Micro Controllers - Pipelining -Program Memory considerations - Register File Structure- I/O Ports and Timers .

PROGRAMMING AND INTERFACING UNIT III

Programming of PIC Micro Controllers- Instruction Set of PIC Micro Controllers, Simple Assembly language and C Program for PIC Microcontroller, Capture/ Compare and PWM module, Serial communication module, Analog module interfacing

UNIT IV **INTERUPPTS AND PERIPHERALS**

68HC11 Interrupt system- Interrupts Polled Versus Vectored Interrupts -Assembler Directives -Serial Communication - UART -A/D Converter Module-Pulse Width Modulation - 6811 Timing Generation and Measurements: MC6811 Input Capture, Output Compare, Square Wave Generation Frequency Measurements.

UNIT V **I/O DEVICES AND INTERFACING**

Serial I/O devices: RS232 Specifications, Communication Protocols, MC6811 SCI ad SPI. Parallel port Interfaces: Input Switches and Keyboard, output LED, Stepper Motor. Memory Interfacing: Address Switching, Memory Interface, examples for MC6H16, Introduction to High speed I/O Interfacing.

Practical component P: Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

TEXT BOOK:

- 1. Muhammad Ali Mazidi, Janice GillispieMazidi, RolinD.MCKinlay "The 8051Microcontroller and Embedded Systems", Second Edition, Pearson Education 2008.
- 2. Jonathan.W.Valvano, "Embedded Microcomputer system", Brooks/COLE Thomson learning series 3. John B Peatman "Design with PIC Microcontroller" Latest Edison

REFERENCES:

- 1. Mazidi, M.A., "PIC Microcontroller" Rollin Mckinlay, Danny causey Printice Hall of India, 2007
- 2. MykePredko TMH. "Programming and customizing the Microcontroller"

P/

R

0/0

T/S

Lr

0/0

L

3

TY/Lb/

ETL/IE

TY

9 Hrs

Total Number of Hours: 45

9 Hrs

С

3

9 Hrs

9 Hrs

9 Hrs

Subject	Sul	oject N	ame : V	VIREI	LESS N	ETW	ORKS	-95.7	TY		L	T/SL	P/R		С	
Code:									Lb	/ 'L/IE		r				
EBEC22017	7 Pre	erequis	ite: Co	mmuni	cation	Netwo	orks				3	1/0	0/0		4	
L : Lecture								ct F	R : Re	esearch	C: Cre	dits				
T/L/ETL : T						•	5									
OBJECTIV	'ES :															
	give a de	-	0									applicat	ions.			
	tudy ab															
	indersta				r netwo	orks and	1 its M	AC	& Ro	outing	protoco	ls.				
COURSE C The Student				(3-5)												
CO1		stand th		ents of	WI AN	and P	ΔN									
CO1 CO2		Ty and A		-				aa n a	atuvor	lzo						
		•	•													
CO3	-	n MAC	-			-								<u>.</u>		
CO4		assify the different network routing protocols and potray their significance in the field of ireless networks.														
CO5		arn the architecture of wireless sensor networks and the method of data transmission IN														
	SENS	ENSOR NETWORKS														
		rse Outcomes with Program Outcomes (POs)														
COs/POs	PO1	O1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
C01		3 3 3 3 2 2 2 2 2 2 2														
CO2		3 3 3 3 2 2 2 2 2 2 2														
CO3	3	3	3	3	3	2	2	2		2	2	2	2			
CO4 CO5	3	3	3	3	3	22	2	2		2	2	2	2			
COs /PSOs	-	PSO	-		-	502	2	Z		2 SO3	2	Z	PSO			
CO1		2	1		10	1			1	2			3	-		
CO1 CO2		3				3				2			3			
C02		3				3				3			2			
CO4		3				3				3			2			
CO5		2				1				1			3			
3/2/1 indica	tes Stre		f Corre	lation	3- H	igh, 2-	Mediu	ım, İ	1-Lo	W						
								-								
		s		ial												
		nce		Soc			s							_ `		
	s	ciel		, pi			ive		s		lary	ent		ject		
Ţ	nce	ы S	0	s ar	ore		lect		ive		plir)0D		Pro		
Category	cie) rin		itie s			nΕ		lect		isci	luic		1 / I		
Cat	c S	inee		nce	ran		grat		nΕ		Ď	ΙC		tice		
-	Basic Sciences	Engineering Sciences	0	Humanities and Social Sciences	Program Core	J	Program Electives		Open Electives		Inter Disciplinary	Skill Component		Practical / Project		
	ш	Щ		чv			F		0		Ī	S		Ц		
						/										

Subject	Subject Name : WIRELESS NETWORKS	TY/	L	T/SL	P/R	С
Code:		Lb/		r		
		ETL/IE				
EBEC22017	Prerequisite: Communication Networks	TY	3	1/0	0/0	4

UNIT I WIRELESS LANS AND PANS

Introduction - FUNDAMENTALS OF WLANS- Technical Issues - Differences Between Wireless and Wired Transmission, Use of WLANs, Design Goals- Network Architecture - Infrastructure Based Versus Ad Hoc LANs, Components in a TypicalIEEE802.11 Network, Services Offered by a TypicalIEEE802.11 Network- IEEE802.11 STANDARD- Physical Layer, Basic MAC Layer Mechanisms- HIPERLAN standard-Bluetooth

UNIT II AD HOC WIRELESS NETWORKS

INTRODUCTION - Cellular and Ad Hoc Wireless Networks - definition, characteristics features, Applications of Ad Hoc Wireless Networks- Issues in ad hoc wireless networks - Ad Hoc wireless internet.

UNIT III MEDIUM ACCESS PROTOCOLS

MAC Protocols: design issues, Design goals of a MAC protocol For Ad Hoc wireless networksand classification of MAC protocols -Contention based protocols- with reservation, with scheduling mechanisms, protocols using directional antennas. IEEE standards: 802.11a, 802.11b, 802.11g, 802.15, 802.16.

UNIT IV **NETWORK PROTOCOLS**

Routing Protocols: Design issues, goals and classification of Routing Protocols - Proactive Vs reactive routing, Table-driven routing protocols: Destination sequence Distance – Vector routing Protocol, wireless Routing Protocol - On-demand routing protocols: Dynamic source Routing protocol, Ad Hoc on Demand Distance - vector Routing protocol - Hybrid Routing protocol : Core extraction distributed Ad Hoc routing protocol, Zone routing protocol - Power-aware routing protocols: Power – aware routing metrics.

UNIT V WIRELESS SENSOR NETWORKS

Introduction - Sensor Network Architecture - Data Dissemination - Data Gathering - MACPROTOCOLS for Sensor Networks - Location Discovery - Quality of a Sensor Network

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 60

TEXT BOOKS:

- 1. C.Siva Ram Murthy and B.S.Manoj, Ad hoc Wireless Networks Architectures andprotocols, 2nd edition, Pearson Education. 2007
- 2. Charles E. Perkins, Ad hoc Networking, Addison Wesley, 2000

REFERENCES:

- 1. Stefano Basagni, Marco Conti, Silvia Giordano and Ivan stojmenovic, Mobilead hocnetworking, Wiley-IEEE press, 2004. Mohammad Ilyas, The handbook of adhoc wireless networks, CRC press, 2002.
- 2. T. Camp, J. Boleng, and V. Davies "A Survey of Mobility Models for Ad Hoc Network
- 3. Research," Wireless Commun. and Mobile Comp., Special Issue on Mobile Ad HocNetworking Research, Trends and Applications, vol. 2, no. 5, 2002, pp. 483–502.
- 4. A survey of integrating IP mobility protocols and Mobile Ad hoc networks, FekriM.Abduljalil and Shrikant K. Bodhe, IEEE communication Survey and tutorials, v no.12007
- 5. V.T. Raisinhani and S.Iyer "Cross layer design optimization in wireless protocolstacks" Comp. communication, vol 27 no. 8, 2004.
- 6. V.T.Raisinhani and S.Iyer, "ÉCLAIR; An Efficient Cross-Layer Architecture forwireless protocol stacks", World Wireless cong., San francisco, CA, May 2004.
- 7. V.Kawadia and P.P.Kumar, "A cautionary perspective on Cross-Layer design," IEEEW ireless commn.

12 Hrs

12 Hrs

12 Hrs

12 Hrs

12 Hrs

Subject	Cod			Name : T I DESI			MBED	DED		TY Lb/ ET		L	T/S	Lr	P/R	2	С
EBEC2	2L11		icropro	site: Di ocessor	0			·		Lb		0	0/	0	3/0		1
L : Lect T/L/ET	L:Th	: Tuton neory/L	rial S	Lr : Sup bedded '				Projec	t R	: Res	earch (C: C	redits	5			
•	To de To de	esign ai esign ai	nd simu	late con late sec DAC, I	quential	logic c	ircuits.		-			rolle	er.				
	dents	will be	COMES (COs) : (3-5) be able to & implement combinational circuits like adder, multiplexer, de multiplexer etc., ct sequential circuits like FEs, counters, shift registers														
CO1 CO2 CO3	Con	struct s	act sequential circuits like FFs, counters, shift registers. gate I/O devices, ADC, DAC, motors with microcontroller.														
Mappin	ng of (Course	se Outcomes with Program Outcomes (POs)														
COs/P		PO1	D1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10														D12
		3	2	2	2	2		1							2		
CO2 CO3		3	22	3	3	3									$\frac{2}{2}$		
COs / P			PSO	1		PS	02			PS	03				- PSO4	4	
CO			3								2				2		
CO			3			2					3				1		
CO			3			2					3				2		
H/M/L	indic	ates St	rength	of Cor	relatio	n 3- I	High, 2	- Medi	um,	1-Lo)W						
	All Category 3- High, 5- Medium, 1-Fom Basic Sciences Engineering Sciences Engineering Sciences Humanities and Social Sciences Program Core Sciences Program Electives Program Core Sciences Inter Disciplinary Open Electives Skill Component																
	-															\checkmark	

eriyar 🛛	E.V.R. F	ligh F	load,	Madura	ivoyal,	Chennai	-95.	Tamilnadu,	India

Subject Code:	Subject Name : VLSI AND EMBEDDED	TY/	L	T/SLr	P/R	С
	SYSTEM DESIGN LAB	Lb/				
		ETL/IE				
EBEC22L11	Prerequisite: : Digital Electronics Lab,	Lb	0	0/0	3/0	1
	Microprocessor and Microcontroller					
	Lab					

SIMULATION OF DIGITAL CIRCUITS USING Verilog

- 1. Design and Verification of Adder and Subtractor
- 2. Design and Verification of Multiplexer, Demultiplexer, Encoder, Decoder.
- 3. Design and Verification of Magnitude Comparator with 4 Bits.
- 4. Design and Verification of Jk, D, T and Sr Flip Flops
- 5. Design and Verification of Synchronous & Asynchronous Counters.
- 6. Design and Verification of Shift Registers (Right / Left).

INTERFACING WITH PIC MICROCONTROLLER

- 7. ADC Interface with LM 35.
- 8. Stepper Motor Interface
- 9. Traffic Light Controller Interface
- 10. DC Motor Interface
- 11. LCD Display Interface.
- 12. LED Interface

Total Number of Hours: 45

REFERENCES:

Subject	Cod	e: Subject Name : MICROWAVE AND OPTICAL COMMUNICATION LAB						Ty / I ETL/		L	T/S	Lr	P/R		С				
EBEC22L12 Prerequisite: Fie									TY		0	0)/0	3/0		1			
			Electromagnetics									U	U	0	5/0		1		
L : Lect	L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits																		
T/L/ET								5											
OBJEC	TIVI	ES :																	
• T	o hav	e a deta	iled pra	actical s	study of	f micro	wave d	iodes											
• To study the optical devices and to use in the appropriate application.																			
To establish the fiber optical communication link																			
COURS					(3-5)														
The Stu	dents	will be	able to																
CO1	CO1 Demonstrate the ability to design and conduct microwave experiments, analyze and interpret																		
	data																		
CO2			onstrate the skills to use modern engineering tools, software and equipments to analyze																
		ign problems.																	
CO3				nd to le	arn abo	ut mea	sureme	nt of fi	ber	optic p	oarame	eters							
Mappir										I									
COs/I			PO2	PO3	PO4	PO5		PO7		PO8	PO9	PO	D10	0 PO11		PO12			
CO	1	3	3	3	3	3	3	3			2	1			2		2		2
CO2		3	3	3	3	3	3	3			2	1			2		2		
CO3		3	3	3	3	3	3	3			2				2		2		
COs / P			PSO	1		PS				PSO3				PSO4					
CO			3			3				3			2						
CO2			3			3				3				2					
CO			3			2				2				2					
3/2/1 in		es Strei	ngth of	Corre	lation	3- Hi	gh, 2- N	Mediur	m, 1	-Low			1						
					-														
Category		Basic Sciences	Engineering Sciences		Humanities and Social Sciences	Social Sciences Program Core		Program Electives		Open Electives		Inter Disciplinary		Skill Component		Practical / Project			
															~				

Subject Code:	Subject Name : MICROWAVE AND OPTICAL COMMUNICATION LAB	TY / Lb/ ETL/IE	L	T/SLr	P/R	С
EBEC22L12	Prerequisite: Field and Wave Electromagnetics	TY	0	0/0	3/0	1

- 1. Reflex Klystron Mode Characteristics.
- 2. Measurement of Guide Wavelength
- Measurement of VSWR and Impedance of Unknown Loads, Including Measurement of High VSWR.
- 4. Measurement of the Coupling and the Directivity of Waveguide Directional Couplers.
- 5. Measurement of Insertion Loss and Isolation of Non Reciprocal Ferrite Devices.
- 6. Study of Tee Junction (E-Plane, H-Plane And E-H Plane Tees.)
- 7. Measurement of The Gain and Radiation Pattern of a Waveguide Horn Antenna
- 8. Study of Gunn Oscillator Characteristics.
- 9. Study of A Fiber-Optic Communication Link.
- 10. Characteristics of Led and Pin Diode
- 11. Characteristics of Laser Diode
- 12. Characteristics of Avalanche Photodiode
- 13. Measurements of Fiber Parameters : Numerical Aperture, Attenuation

Total Number of Hours: 45

REFERENCES:

Subje	ct Co	de:	Subj	ubject Name : PROJECT PHASE - I rerequisite: Core Courses							TY/I		L	T/SI	P/R		С
											ETL/I	E		r			
EBEC	22105	5	Prer	equisite:	Coi	re Cou	rses	6			IE		0	0/0) 3/3	3	2
L:Leo	cture '	T : T	'utorial	SLr : S	upe	rvised	Lea	rning P	: Proj	ect R	R : Resea	arch C	: Cred	lits			
T/L/E	ΓL : Τ	Theor	y/Lab	/Embedde	d T	heory	and	Lab									
				bjective of													
				a problem													
	•			he project							• •						•
				real-world											o think	criti	cally
				optimal so ES (COs)			ake	etnical de	ecisio	is an	a to pres	sem e	Tectiv	ery.			
COUR				vledge an			mire	ed in the	cours	ante	tudy ad	dressi	na 9 61	pecifi	nroble	mo	
	issue	•		vicuge all	1 24		Junc		course		auy au	uressi	ng a sj		- proble		
<u> </u>			to at 1	ents to thi	m1-	mitical	1	nd areat	ual	h 04	and to 1	100000	المعمد	101-1-			41
CO2					IIK (critical	iy ai	nu creati	very a	Dout	societal	issue	s and c	ieveic	pp user 1	rien	uly
			chable solutions								<u> </u>						
CO3		•	research skills and demonstrate their proficiency														
CO4	Mak	the the	e stude	ents to face	e ch	allenge	es of	f team we	ork, p	repar	e a prese	entatio	on and	demo	onstrate	the	
	inna	te ta	lents.														
Mapp	ing of	f Co	urse O	utcomes	wit	h Prog	ran	1 Outcor	nes (I	POs)							
COs/F	POs 1	PO1	PO	2 PO3	I	204	PO	5 PO	6 P	07	PO8	PO) P	010	PO11	P	012
CO		3	3	3		3	2	3		3	1	2					3
CO		3	3	3		3	3	3		3	2	2		2	3		3
CO		3	3	3		3	3	3		3	2	2		3	3		2
CO		3	2	3		3	3	3		2	3	3		3	3		3
COs /		s]	PSO1			ŀ	PSO2				03			PSC)4	
	01			3				3				3			3		
	02			3				3				3			3		
	03			3				2				3			3		
	04		14	3		<u> </u>	2 -	2				2		1	3		
3/2/1 i	ndica	ites S	streng	th of Cor	rela	ation	<u>3-1</u>	High,2- I	viediu	ım, I	-Low						
Category	Basic Sciences Engineering Sciences and Social Sciences Program Core Program Electives		Open Electives	,	Inter Disciplinary	Chall	Component	Practical /	Project								
																~	/

Subject Code:	Subject Name : PROJECT PHASE - I	TY / Lb/ ETL/IE	L	T/SL r	P/R	С
EBEC22I05	Prerequisite: Core Courses	IE	0	0/0	3/3	2

Students are expected to do the Project in a group of 3 to 4 students. They should identify the area/topic of the Project and should collect the literatures related to the project. Students intending to do Industrial projects will approach the industries with the support of the university, identify the industrial problem and finalize the project. In case of Industrial projects apart from Industry guide, a guide has to be appointed by the department. At the end of the Semester the students should submit their Project Phase - I report to the Department and Viva -Voce examination will be conducted by the examiners duly appointed by the Head of the department.

Subject Cod	le:	5					GUAGE	Ll	Y /	L	T/SL r	P/1	R	C
EBFL22IXX	X	Prereq	uisite:	None				IE		1	0/0	1/0)	1
L : Lecture 7	: Tutor	ial SI	r : Sup	pervised	Learni	ng P:	Project	R : Res	earch C	C: Cre				
T/L/ETL : T	heory/L	ab/Emb	edded '	Theory	and La	b	-							
OBJECTIV communicate speakers of t	e effecti	vely in											h nativ	'e
COURSE O	UTCO	MES (C O s):	(3-5)										
CO1	Achi	eve fun	ctional	proficie	ency in	listeni	ng, spea	ıking, rea	ading, a	nd wr	iting.			_
CO2		Develop an insight into the nature of languag equisition. Decode, analyze, and interpret authentic texts						self, the	process	of la	nguage	and c	ulture	
CO3	Deco	Decode, analyze, and interpret authentic text							t genres	5.				
Mapping of	Course	burse Outcomes with Program Outcomes (P						s)						
COs/POs	PO1	urse Outcomes with Program Outcomes (PO PO1 PO2 PO3 PO4 PO5 PO6 PO7						PO8	PO9	PO	10 P	011	PO	12
CO1	1	1	1	1	1	2	1	2	2	2		2	1	
CO2	2	1	1	1	1	2	1	2				2	1	
CO3	1	1	2	2	1	2	2	2	2	2		2	1	
COs / PSOs	5	PSO	1		PS	02		PS	PSO3 PSO4					
<u>CO1</u>		1]	<u> </u>			1			1		
CO2	_	1			1	L			1			1		
CO3		1 	of Com		. 11	[[]:~b_]			l Larr			1		
H/M/L indi	cates St	rength	<u> 01 Cor</u>	relation	<u> H-</u>	Hign, I	vi- wiec	lium, L-	Low					
Category	Basic Sciences	iences d Social		Program Core		Program Electives	Open Electives	Inter Disciplinary		Skill Component		Practical / Project		
				\checkmark										

Subject Code:	Subject Name: FOREIGN LANGUAGE	TY/	L	T/SL	P/R	С
		Lb/		r		
		ETL/IE				
EBFL22IXX	Prerequisite: None	IE	1	0/0	1/0	1

Foreign language is introduced in the curriculum to make the students globally employable. Students should select and register for any one of the foreign languages from the given list. At the end of the course students should be able to read, write and converse the language in the basic level. At the end of the semester the assessment will be done through internal examination by the examiner duly appointed by the head of the department.

SEMESTER VIII

Subject Code:				NCIPLI ND BEH	ES OF IAVIOF	RAL SO	CIE	NCE	TY/L L/IE		L	T/S Lr	P/R	С
EBCC22ID2	Prere	equisite	None						Т	Y	3	0/0	0/0	3
L:LectureT:Tut T/L/ETL:Theor					gP:Proje	ectR:Re	sea	rchC:C	redits					
OBJECTIVE	·													
About the				d princi	ples of N	Aanage	mer	nt Stud	ies					
• The appli														
• The syste	m and pi	ocess of	f effecti	ive contr	olling in	the org	gan	ization						
COURSEOU														
CO1 Clear und	lerstandi	ng in pla	anning,	and have	e knowle	edge in	asp	ect of l	Manager	nent St	udie	s (Lev	el 2)	
CO2 Understa	nding the	e plannir	ng proce	ess in the	e organiz	zation.	(Le	vel 2)						
CO3 Understa	inding the concept of organization. (Level 2)													
	trate the ability to directing and coo						eve	13)						
	and formulate the best control methods. (Level 4)				,									
MappingofCo	appingofCourseOutcomes(COs)with				ramOut	comes(PO	s)⪻	ogramS	ogramSpecificOu			(PSOs))
COs/Pos	Os/Pos PO1 PO2 PO3			PO4	PO5	PO6				PO	D10	PO11	PO12	
CO1	3	2	2	3		2			- 3			2	3	2
CO2	3	2	2	3		2			3	2		3	-	2
CO3	3	-	-	2		-	- 3		2	-	_	2	2	2
CO4	3	3	3	3		2		-	2	2	2		2	2
CO5	2	3	3	-	3	3		3	2	3		2	2	2
COs / PSOs		PSO1			PSO2	2			PSO3				PSO ₄	1
CO1		-			2				3				3	
CO2		-			2				3				3	
CO3		-			2				3				3	
CO4 CO5		-			2				3				3	
0.05		-			2				5				5	
Category	Basic Science	Engineeri ng	Science Humanities and		Program Core	Program	elective	Onan Flactiva		Inter Disciplinary		Skill Component		Practical /Project
										\checkmark				

Subject	Subject Name : PRINCIPLES OF MANAGEMENT	TY/Lb/ET	L	T/S	P /	С
Code:	AND BEHAVIORAL SCIENCE	L/IE		Lr	R	
EBCC22ID2	Prerequisite:None	TY	3	0/0	0/0	3

UNIT I **INTRODUCTION**

Definition of Management - Science or Art - Manager Vs Entrepreneur - types of managers - managerial roles and responsibilities – Evolution of Management –need and Importance of Organizational Behavior, Leadership styles - Theories - Leaders Vs Managers.

UNIT II PLANNING & ORGANISING

Nature and purpose of planning - planning process - types of planning - Planning premises objectives hierarchy of objectives, Management By Objectives (MBO)- Decision making process. Nature and purpose of Formal and informal organization structure- types - Line and staff authority- delegation of authority - centralization and decentralization.

UNIT III STAFFING AND COORDINATING

Human Resource Planning, Job Analysis, Recruitment, Selection, Training and Development, Performance Management, Career planning. Coordination -Nature and purpose - Coordination at various levels: Top management, Middle management, Supervisory management and workers. Techniques for effective coordination

UNIT IV DIRECTING AND CONTROLING

Direction: Principles of direction - Need and Importance for directing, process of controlling - budgetary and non-budgetary control techniques – use of technology. Recent Trends in Management controlling.

UNIT V **GROUP BEHAVIOUR AND MOTIVATION**

Group Dynamics - How Groups Work, Stages of Group Development, Team building, Motivation -Theories of motivation Organizational Conflict - Causes - Types of Conflicts, Managing conflicts.

Total Number of Hours: 45

Reference Books:

- 1. Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of Management" 7th Edition, Pearson Education, 2011.
- 2. Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008.
- 3. Harold Koontz & Heinz Weihrich "Essentials of management" Tata Mc Graw Hill, 1998.
- 4. S.S. Khanka Organizational Behaviour S. Chand Ltd. 2006.
- 5. L.M.Prasad Organizational Behaviour. S. Chand Company 3rd edition 2004.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subjec	t Cod	e: Su	bject N	II		/Lb/	L	T/SL	r P/R	C				
EBEC))T 12	Dr	erequis	itar Dra	vioot Di	1000 I				<u>'L/IE</u> b	0	0/0) 12/12	2 8
					-		~ D. F	Ducient			v			2 0
T/L/ET								rojeci	R : Rese	earch	L: Cr	eans		
OBJEC								to cul	minate t		demi	c study	v and nr	ovide an
														direction
														owledge
														critically
													•••••••	j
			find an optimal solution, make ethical decision TCOMES (COs) : (3-5)									j -		
CO1			the knowledge and skills acquired in the course					ourse (of study a	address	sing a	a specif	fic probl	em or
	issue									6	1	1		
CO2			alate students to think critically and creatively a					ely abo	out societ	al issu	es an	d deve	lop user	friendly
			eachable solutions					2						•
CO3	Anal	yse rese	se research skills and demonstrate their proficience					icy in communication skills.						
CO4	Mak	e the stu	the students to face challenges of teamwork, pre					k, prep	are a pre	sentati	on a	nd dem	onstrate	the
	innat	e talents	5.		-				-					
		Course	Outcon				itcome	s (POs	s)					
COs/	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	7 PO8	PO	9 1	PO10	PO11	PO12
CC)1	3	3	3	3	3	3	3	3	3		3	3	3
CC)2	3	3	3	3	3	3	3	3	3		3	3	3
CC)3	3	3	3	3	3	3	3	2	2		3		
CO		3	3	3	3	3	3	3	2	2		3	3	3
COs /			PSO	1		PSC	02		PS	503			PSO	4
CC			3			3				3			3	
CC			3			3				3			3	
CC			3			3				3			3	
CC			3			3				3			3	
3/2/1 in	ndicat	es Stren	igth of (Correla	ation	3- High	n, 2- M	edium	, 1-Low					
					s d									
		Basic Sciences	b 0		an	ore			Open Electives		^			
	~	ien	inξ		cier cier cier		ecti		ıary		ent			
	Category	Sc	Engineering	Sciences	Humanities and Social Sciences Program Core Program Electives		Ele		Inter Disciplinary		Component	cal		
	lteg	sic	gin	len	um cia	ngr		ogn Scti	en		scij	E		acti ojeć
	Ca	Ba	En	NC NC	Hu So	Prc	ſ	Εle	Op	,	Inter Disci	Skill	CC	Practical / Project
													\checkmark	

Subject Code:	Subject Name : PROJECT PHASE - II	TY /Lb/	L	T/SLr	P/R	С
		ETL/IE				
EBEC22L13	Prerequisite: Project Phase I	Lb	0	0/0	12/12	8

To make the students to make use of the knowledge and skill developed during their four years of study and to apply them for making an innovative product/process for the development of society and industries.

Students are expected to do a Project work either in an Industry or at the University in the field of relevant Engineering /inter-disciplinary /multi-disciplinary area in a group of 3 or 4 students. The work to be carried out in Phase II should be continuation of Phase I. Each group will be allotted a guide based on the area of Project work. In case of industrial Project external guide has to be allotted from Industry. Inter disciplinary/multi-disciplinary project can be done with students of different disciplines as a group. Monthly reviews will be conducted during the semester to monitor the progress of the project by the project review committee. Students have to submit the Project thesis at the end of the semester and appear for the Project Viva-Voce examination conducted by the examiners duly appointed by the Controller of Examination. In case of industrial project certificate in proof has to be included in the report along with the bonofide certificate.

PROGRAM ELECTIVES

ELECTIVE I – ELECTRONICS STREAM

Subject Code		oject Na D ITS A				FOR	DEV	ICES	L	Y / b/ FL/IE	L	T	/SLr	P/R	C
EBEC22E01		requisit		-					Т		3		0/0	0/0	3
L : Lecture T :						$\mathbf{P}:\mathbf{P}$	roject	R :	Researc	h C: Cre	dits				
T/L/ETL : The		b/Embe	dded Th	eory an	d Lab										
OBJECTIVE			. f :	al diada	ممطلا										
To learnTo gain							^	lons.							
 To gain To apply 		•		•				وليتم	ated now	or suppl	N/				
COURSE OU	TCOM	IES (C			5, сопт			eguia	iicu pow		у.				
The Students v			1		6	1 .1:	1								
CO1		stand th													
CO2		the dio				-	11								
CO3		mber th	•												
CO4	Illustr	ate the o	lifferent	types o	of conve	rters.									
CO5	Demo	nstrate	the desig	gn of pr	otection	and s	witch	gear	r <u> </u>						
Mapping of C	Course Outcomes with Program Outcomes (POs)														
COs/POs	PO1	PO2	PO3	PO3 PO4 PO5 PO6				07	PO8	PO9	PO10		PO1	1 P	012
CO1	2	1	2	2	2	1		1	1		2				
CO2	2	1	2	3	2	1		1	1		2				
CO3	2	1	1	2	2	2		2	1	1	2				2
CO4	2	1	1	2	2 2 2 1				1	$\frac{2}{2}$		1			
CO5	2	2	3	3	2	1		2	-	3 2 PSO3			1		2
COs / PSOs		PSO:	1		PSC 2)2				03			PS	04	
<u>CO1</u>		2			3				1					1	
CO2 CO3		2			3			-	1				,	2	
C03		1			1					*				2	
C04 C05		1			1				2					2	
3/2/1 indicates	s Stren		Correla	tion 3	- High.	2- Me	edium	ı, 1-l			1			_	
		<u> </u>						,							
Category	Basic Sciences	Engineering Sciences		Humanities and Social Sciences	Sciences Program Core Program Electives			Open Electives	Inter Disciplinary		Skill Component		Practical / Project		
							\checkmark								

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) riyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

ND RESEAR

Subject Code:	Subject Name : SEMICONDUCTOR DEVICES AND ITS APPLICATIONS	TY / Lb/ ETL/IE	L	T/SL r	P/R	C
EBEC22E01	Prerequisite: Analysis of Solid State Devices	TY	3	0/0	0/0	3

STITUTE

UNIT I SPECIAL DIODES

Breakdown Diodes-Avalanche Multiplication, Zener breakdown and its characteristics, Tunnel Diodes -Principle and Characteristics, Photodiode and its characteristics, Photo Voltaic Effect, and Light Emitting Diodes, Four Layer diode and its characteristics.

APPLICATIONS OF DIODES **UNIT II**

Diode as clipper, clamper, comparator, sampling gate, voltage multipliers and peak detectors - Regulated Power Supply.

UNIT III **INVERTERS**

Single Phase and three phase inverters-Voltage source inverters-current source inverters-Multilevel inverters-Resonant inverters.

UNIT IV **CONVERTERS**

Single phase and three phase converters –Buck-Boost Converters-Dc to Dc converters-Ac to Ac Converters-Resonant Converters-Cycloconverters.

UNIT V FIRING AND PROTECTING CIRCUITS

Necessity of isolation, pulse transformer, optocoupler - Gate drives circuit: SCR, MOSFET, IGBTs and base driving for power BJT - Over voltage, over current and gate protections

Total Number of Hours: 45

TEXT BOOKS :

- 1. Jacob Milman, Christos Halkias and Chetan D.Parikh, 'Integrated Electronics, Analog and Digital Circuits and Systems"
- 2. Rashid M.H., " Power Electronics Circuits, Devices and Applications ", Prentice Hall India, Third Edition, New Delhi, 2004
- 3. B.W Williams 'Power Electronics Circuit Devices and Applications'.

REFERENCES :

- 1. P.S.Bimbra, 'Power Electronics", Khanna Publishers, Eleventh Edition 2003
- 2. Ned Mohan, T.MUndeland and W.P. Robbin, "Power Electronics: converters, Application and design" John Wiley and sons. Wiley India edition, 2006
- 3. P.C. Sen, "Modern Power Electronics", Wheeler Publishing Co, First Edition, New Delhi, 1998

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject C	ode:	Subje SYST		Name :	REAL	TIME	OPER	AT	ING		/ Lb/ L/IE	L	T/SI	Lr	P/R		С
EBEC22E	202			site: No	one							3	0	/0	0/0)	3
L : Lecture	e T : T		-			l Learn	ing P:	Pro	ject	R : Re	search	C: C	redits				
T/L/ETL :								•	0								
OBJECT	IVES	:															
				and fun													
				on of en													
				portanc	e of qu	eues ai	nd sche	dulıı	ng								
COURSE The Stude				COs):													
CO1				fundam	entals (ofembe	edded s	vste	m								
CO1 CO2				ng techr						ation							
CO3	**	•		unction	•				•								
CO4				lesign o		•											
	•				•			1				1					
CO5										nt tools	ın rea	l time	e syste	em.			
Mapping						0			<u> </u>	,							
COs/POs	PO		02	PO3	PO4	PO5	PO6	PC		PO8	PO9	P	010	P	011	PO	12
CO1	1		1	1	1	1	3	1		1	1						
CO2	2		3	3	3	3	2			1	2		3		2	1	
CO3	1		3	3	2	3	1			1	3		3		1	1	
CO4	1		3	3	3	3	2	1			2		2				
CO5 COs /PSOs	2		2	3	3	3 PSO	1	1		DC	2		2	DCO 1		1	
	\$	P	<u>501</u>			1	2			PS					$\frac{PSO_4}{2}$	•	
CO1 CO2			1			$\frac{1}{2}$				2					2		
CO2 CO3			1			2				2							
CO3			1			2				3					2		
CO5			1			2				2					2		
3/2/1 india	cates S	Streng	th of	f Corre	lation	3- Hi	gh, 2- I	Med	ium	, 1-Lov	V		•				
								SS				>				Ļ	
	Ś				nd			tives		SS		nary		lent		jec	
	nce		ы)	is al	ore		llec		tive		iilqi		noq		Prc	
	or y cie		erir	Se	litie Sci	n C		лE		Ilec		isci		om		al /	
	Caleguly Basic Scie		ine	ence	nan ial	grai		graı		'n E		ГD		II C		otic	
	Calegoly Basic Sciences		Engineering	Sciences	Humanities and Social Sciences	Program Core		Program Electi		Open Electives		Inter Disciplinary		Skill Compone		Practical / Project	
	b b c H c H c H c H c H c H c H c H c H		+		Ι		•1		I								
	✓																

CATIONAL AND RESEARCH INSTITUTE DEEMED TO BE UNIVERSITY University with craces Autonomy status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennal-95. Tamilinadu, India.

Subject Code:	Subject Name : REAL TIME OPERATING	TY/Lb/	L	T/SLr	P/R	С	
	SYSTEMS	ETL/IE					
EBEC22E02	Prerequisite: None	TY	3	0/0	0/0	3	

UNIT I EMBEDDED SYSTEM FUNDAMENTALS

EDUCAT

Complex systems and microprocessors- Embedded system design process -Designexample: Model train controller- Design methodologies- Design flows - RequirementAnalysis - Specifications-System analysis and architecture design – Quality Assurancetechniques - Designing with computing platforms – consumer electronics architecture -platform-level performance analysis.

UNIT II SURVEY OF SOFTWARE ARCHITECTURES

Round -robin, Round-robin with interrupts, queues. Function- scheduling architecture, Real time operating system architecture, Scheduling architecture.

UNIT III ELEMENTS OF REAL TIME OPERATING SYSTEMS

Structure of a Real Time System — Estimating program run times – Task Assignment and Scheduling – Fault Tolerance Techniques – Reliability, Evaluation – Clock SynchronisationTasks & Task states, Tasks & data, Semaphores & shares data, Message Queues, Mailboxes and Pipes, Timer functions, Events, Memory management and Interrupt Routines in an RTOS environment.

UNIT -IV BASIC DESIGN USING REAL-TIME OPERATING SYSTEMS

Principles, encapsulating semaphores & queues, hard real-time scheduling considerations, saving memory space, saving power.

UNIT V **EMBEDDED TOOLS**

Embedded software development tools- host and target machines, linker/locators for embedded software, getting embedded software into the target system. Debugging techniques- testing on host system, instruction set simulators, the assert, macro using laboratory tools.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS:

- 1. Wayne Wolf, "Computers as Components- Principles of Embedded Computing Systems Design", Academic press, 2001.
- 2. David E. Simon, "An Embedded Software Primer", Pearson education, 1999.

REFERENCES:

- 1. Arnold S. Berger, "Embedded Systems Design- an Introduction to Processes, Tools & Techniques", CMP books, 2002.
- 2. Jean J. Labrosse, "Embedded Systems Building Blocks", CMP books, 2002.
- 3. Michael Barr, "Programming Embedded Systems in C and C++", O'Reilly, 1999.
- 4. Lyla B.Das, —Embedded Systems : An Integrated Approach Pearson Education, 2013.
- 5. Jonathan W.Valvano, —Embedded Microcomputer Systems Real Time Interfacing, Third Edition Cengage Learning, 2012.
- 6. David. E. Simon, —An Embedded Software Primer^{II}, 1st Edition, Fifth Impression, Addison Wesley Professional, 2007.
- 7. Raymond J.A. Buhr, Donald L.Bailey, —An Introduction to Real-Time Systems- From Design to *Networking with C/C++*, *Prentice Hall, 1999.*

9 Hrs

9 Hrs

9 Hrs

9 Hrs

	e:	Subject	Name :	INTRO	DDUC	TION T	O Pl	LC		/ Lb/	L	T/S	Lr	P/R	C	
									ET	L/IE						
EBEC22E03	3	Prerequ		ectrical	and I	nstrume	ntati	ion	TY		3	0	/0	0/0	3	
I. I. a stores 7	. T.	Enginee			(<u>, D.</u>	Desea	ah C. (4.0				
L : Lecture T T/L/ETL : T							ojeci	t K:	Resear	cn C: C	rear	ts				
	•			neory a	IIG Lu	0										
OBJECTIV To study the		ring pring	inles of I	Program	mahle	Logic C	ontro	ller								
Provide stude			•	U		U			ign of e	electro	nic ea	uion	nent u	sing	PLC	
To understan		· ·			.				•					-		
• To d	evelo	op archited	sture of I	PI C ext	lainin	σ each ur	nit in	detai	1			Ū				
										l techn	ique	for Pl	LC			
		relop a software program using modern engineering tools and technique for PLC by knowledge gained about PLC systems and to identify few real-life industrial attions TCOMES (COs) : (3- 5)														
<u> </u>		tions ΓCOMES (COs) : (3- 5)														
		FCOMES (COs) : (3- 5) ill be able to														
		ill be able to														
CO1		Enable the students to develop knowledge on role of automation and importance of PLC Interpret the Programming equipment, Various techniques of programming in PLC														
CO2	Int															
CO3	Fai	Familiarize the students about the components of PLC														
CO4	Un	Familiarize the students about the components of PLC Understanding the architecture of SCADA and explain the importance of SCADA														
CO5	De	-														
Mapping of	Cou	rse Outco	mes wit	h Prog	ram O	utcomes	(PO	s)								
COs/POs	PC		PO3	PO4	PO5		PC		PO8	PO9	P	010	PO		PO12	
CO1	3	3	3	3	2	2	2	2		2		2	2	2	1	
CO2	3	3	3	3	2	2	2	2		2		2	2	2	1	
CO3	3	3	2	3	3	2	2	2		2		2	3	5	2	
CO4	3		3	3	3	2	2			3		2	3		3	
CO5	3	-	3	3	3	2	2			3		2	3		2	
COs / PSOs		PSO 2	01			<u>502</u>			PSC 2)3			Р	<u>SO4</u>		
CO1 CO2		3				3 3 3			3 3 2					2 2		
C02 C03		3				3	-+		<u> </u>					2		
<u> </u>		3							2					2		
CO4 CO5		2				3 3	$\neg \uparrow$		2 2					2 3		
3/2/1 indicat	es St		f Correla	ation	3- Hig	gh,2- Mee	lium	ı, 1-L				. <u> </u>				
		S		pr		1)			S							
		snce	<u> 1</u> 8	is al		Core			tive		2		ıt			
ıry		Scie	erii es	nitie	es	m (B	es	Elec		lina		nei		al /	
680		ic f	gine enc(mar	ence	gra	grai	ctiv	en E		r cibl	-	npc		ctic ject	
Cat		Bas	Eng Scie	Hur	Soc Sci	Pro	Pro	Ele	Opé		Inte Dise		Ski Cor		Pro.	
						/	-					-+				
			1	1												
Category		Basic Sciences	Engineering Sciences	Humanities and	Social Sciences	Program Core	< Program	Electives	Open Electives		Inter Disciplinary		Skill Component	•	Practical Project	

(An IS	O 21001 : 2018 Ce	rtified Institu	ition)	
Periyar E.V.R. High	Road, Maduravoyal,	Chennai-95.	Tamilnadu, 🛛	índia.

Subject Code:	Subject Name : INTRODUCTION TO PLC	Ty / Lb/	L	T/SLr	P/R	С
		ETL/IE				
EBEC22E03	Prerequisite: Electrical and	Ту	3	0/0	0/0	3
	Instrumentation Engineering	-				
UNIT I INT	RODUCTION TO PLC					9 Hrs

INTRODUCTION TO PLC UNIT I

Role of automation in Industries - benefits of automation - Necessity of PLC - History and Evolution of PLC – Definition, types, selection criterion – Overall PLC system – PLC Input andOutput modules – CPU, programmers and monitors, power supplies - Solid state memory

UNIT II **PROGRAMMING OF PLC**

Programming equipment, Various techniques of programming, Ladder diagram fundamentals ,proper construction of ladder diagram, basic components and their symbols in ladder diagram, Basics of PLC Programming: Processor Memory Organization, Program Scan, PLC Programming Languages, Relay-Type Instructions, Instruction Addressing, Branch Instructions, Internal Relay Instructions, Programming Examine If Closed and Examine If Open Instructions, Entering the Ladder Diagram, Modes of operation

UNIT III COMPUTER CONTROLLED TEST SYSTEM

Programmable Logic Controllers: Introduction, Parts of a PLC, Principles of Operation, architecture, PLCs versus Computers, PLC Size and Application.PLC Hardware Components: The I/O Section, Discrete I/O Modules, Analog I/O Modules, Special I/O Modules, I/O Specifications, The Central Processing Unit (CPU), Memory Design, Memory Types, Programming Terminal Devices, Recording and Retrieving Data, Human Machine Interfaces (HMIs). Definition of discrete state process control, PLC Vs PC, PLC Vs DCS, relay diagram, ladder diagram, ladder diagram examples, relay sequencers, timers/counters, high speed counter, PLC design, study of at least one industrial PLC. 9 Hrs

UNIT IV SCADA FUNDAMENTALS

Introduction, Open system: Need and advantages, Building blocks of SCADA systems, Remote terminal unit (RTU): Evolution of RTUs, Components of RTU, Communication subsystem, Logic subsystem, Termination subsystem, Testing and human-machine interface (HMI) subsystem, Power supplies, Advanced RTU functionalities. Intelligent electronic devices (IEDs).

UNIT V APPLICATIONS OF PLC

9 Hrs Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs: Electromagnetic Control Relays, Contactors, Motor Starters, Manually Operated Switches, Mechanically Operated Switches, Sensors, Output Control Devices, Seal-in Circuits, Latching Relays, Converting Relay Schematics into PLC Ladder Programs, Measurement of temperature, flow, pressure, force, displacement, speed, level Developing a ladder logic for Sequencing of motors, Tank level control, ON OFF temperature control, elevator, bottle filling plant, car parking Motors Controls

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXTBOOKS:

- 1. Gary Dunning, "Introduction to Programmable Logic Controllers", Thomson, 2nd Edition
- 2. John R. Hackworth, Frederick D., Hackworth Jr., "Programmable Logic Controllers ProgrammingMethods and Applications", PHI Publishers
- 3. John W. Webb, Ronald A. Reis, "Programmable Logic Controllers: Principles and Application", PHILearning, New Delhi, 5th Edition
- 4. L.A. Bryan, E. A. Bryan, "Programmable Controllers Theory and Implementation" Industrial TextCompany Publication, Second Edition

REFERENCE BOOKS:

- 1. Batten G. L., "Programmable Controllers", McGraw Hill Inc., Second Edition
- 2. Krishna Kant, "Computer Based Industrial Control", PHI
- 3. M. Chidambaram, "Computer Control of Process", Narosha Publishing
- 4. P. K. Srivstava, "Programmable Logic Controllers with Applications", BPB Publications
- 5. Webb J. W, "Programmable Controllers", Merrill Publishing Company, 1988

9 Hrs

ELECTIVE I - COMMUNICATION STREAM

Subject Co	de:	•	ct Name : PAGATIO		CNNA	AND W	AV	E	-	/ Lb/ TL/IE	L	T/S		P/R		С
EBEC22E0		Physic				·			Ту		3)/0	0/0)	3
L : Lecture	T:T	utorial	SLr : Sı	ipervise	ed Le	arning P	: Pro	oject	R : R	esearch	C: Cr	redits				
T/L/ETL : 7		•	Embeddec	l Theor	y and	l Lab										
OBJECTIV																
			a Paramete													
	•		on Resista	nce, Ar	ntenna	a Efficien	icy N	leasu	remei	nt.						
			a Arrays.													
			t types Ar													
			vave propa													
COURSE (· · /	: (3- 5))											
The student CO1	-	In the able to Inderstand the knowledge about antenna basics. Vrite about the radiation from a current element.														
CO1 CO2				-												
CO2 CO3			the antenn				eleli	lent.								
		•		•												
CO4 CO5		Explain various types of antenna. Describe various types of radio wave propagation.														
COs/Pos	PO1	ourse Outcomes with Program Outcomes (POs)														
COS/F0S CO1	3	3	3	3	3	3 100		2	00	109	10	10	101		10	12
CO1 CO2	3	3	3	3	3	3		2								
CO2 CO3	3	3	3	3	3	2		2								
CO4	3	3	3	3	3	2		2								
CO5	3	3	3	3	3	2		2								
COs / PSO	s	P	SO1		P	SO2			P	SO3				PSO	4	
C01	~	- ,	3			3				2				100	-	
CO2			3			3				2						
CO3			3			3				2		1				
CO4			3			3				2		l				
CO5			3			3				2						
3/2/1 indica	ites S	Strengt	h of Corr	elation	3- H	ligh, 2- N	ledi	um, 1	-Low	,						
								,								
Category	Basic Sciences		Engineering Sciences	Humanities and Social Sciences		Program Core	Program Electives		Open Electives		Inter Disciplinary		Skill Component		Practical / Project	
							~	/								

Subject Code:	Subject Name :ANTENNA AND WAVE	Ty / Lb/	L	T/SL	P/R	С	
	PROPAGATION	ETL/IE		r			
EBEC22E04	Prerequisite: Mathemitics II, Solid State	Ту	3	0/0	0/0	3	
	Physics						

UNIT I ANTENNA BASICS

Antenna Parameters - Gain, Directivity, Effective Aperture Polarization, Beam width, Balun, Ground System, Top loading, monopole and Half wave dipole antenna, Short linear antenna, Beam solid angle, Antenna Temperature.

9 Hrs **RADIATION PRINCIPLE AND ANTENNA TERMINOLOGIES** UNIT II

Principle of Radiation, pattern, Antenna Terminologies - Reciprocity Theorem, Friss Formula, Slot Antennas, SWR (Standing Wave Radiators)

UNIT III ANTENNA ARRAYS

Arrays - Two Element Arrays - Uniform Linear Array - Broadside Array - End fire array - Principle of Pattern Multiplication - Binomial Arrays.

UNIT IV SPECIAL ANTENNA

Dish Antenna – Helical Antenna, Biconical Antenna, Microstip Patch Antenna, Turnstile Antenna, Yagi – uda antenna, Loop Antenna, Antenna Low and Medium Frequencies.

UNIT V WAVE PROPAGATION

Wave Propagation - Surface Wave Propagation, Structure of the Ionosphere, Space Wave Propagation-Determination of Critical Frequencies - Maximum Usable Frequency - Effect of Earth's Magnetic Field -Fading - Super Refraction - Scatter Propagation.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

TEXTBOOKS:

1. Constantine A.Balanis, "Antenna theory analysis and design" JohnWiley, 2nd Edition 2007.

2. G.S.V. Raju, "Antenna wave propagation", pearson education, 2004.

3. R.E. Collins, "Antenna and Radio wave propagation".

REFERENCE BOOKS:

- 1. John D. Kraus, Ronald J Marhefka. "Antenna for all Appplications" Tata McGraw Hill 3nd Edition. 2007.
- 2. A.R.Harish, M. Sachidanada, "Antenna and wave propagation", Oxford university press, 2007.
- 3. W.L.Stutzman and G.A. Thiele, "Antenna analysis and design", John willey, 2000.

161

9 Hrs

9 Hrs

9 Hrs

Total Number of Hours: 45

Subject Code				TELEC YSTEN	COMM 1	UNI	CAT	ION	Ty /		L	T/SL r	P /.	R	С	
EBEC22E05					- ication	Net	work	s	Ty		3	0/0	()/0	3	
L : Lecture T		-								earch (C: Credi	its				
T/L/ETL : Th							J									
OBJECTIVI	E :															
• To und		he wor	king of	simple	telepho	one n	etwor	rks.								
• To esta	blish the	e signifi	cance of	of netw	ork para	amete	ers in	traf	fic engi	neering	5.					
• To dem	nonstrate	the tra	nsmissi	ion of d	ata in n	netwo	orks									
COURSE O	UTCOM	IES (C	Os):(3- 5)												
The Students	will be a	able to														
CO1	Describ technolo		pply th	e funda	mentals	s of to	eleco	mmu	inicatio	on syste	ms and	associa	ated			
CO2		Understand and explain the reasons for switching and the relative merits of the various modes of switching.														
	modes of switching. Analyze and design systems related to traffic engineering.															
CO3	Analyze	Analyze and design systems related to traffic engineering. Analyze the internal design and operation of telephone networks with regard to key														
CO4		signaling systems used in telecommunication networks.														
CO5	Underst	Understand and analyze the switching techniques used in data networks. Course Outcomes with Program Outcomes (POs)														
Mapping of	Course (ourse Outcomes with Program Outcomes (POs)														
COs/POs	PO1	ourse Outcomes with Program Outcomes (POs)														
CO1	3	3	1	3	3	1		1	1		1	1				
CO2	1	3	1	3	3	1			1		1	1				
CO3	3	3	3	3	1	1										
CO4	1	3	3	3	1	1		1		1						
CO5	1	3	3	3	3	1		1	D	1			DCIC	2	<u> </u>	
COs / PSOs	-	PSO1		_	PSC				P	SO3			PS()4		
CO1		3			3								2			
CO2		3			3								1			
CO3		3			2					2			$\frac{2}{2}$			
CO4	+	3			3			_		1			3			
CO5		3	fCarr	alation	3) N/I-	d:	- 1 T	1			2			
H/M/L indic	ates Stro	ength 0	I COLL	eration	3- H	igii, 4	2- IVIE	aiul	m, 1-Lo	JW			1			
Category	Basic Sciences	Engineering Sciences		Humanities and Social Sciences	Program Core		Program Electives		Open Electives	Inter Disciplinary	(murdiacia taut	Skill Component		Practical / Project		
							\checkmark									

Traffic Engineering

Network Traffic load and parameters, Grade of service and blocking probability, Modeling Switching Systems, Incoming Traffic and Service Time Characterization, Blocking Models and Loss Estimates, Delay systems.

UNIT IV Telephone Networks

Subscriber Loop Systems, Switching Hierarchy and Routing, Transmission Plan, Transmission Systems, Numbering Plan, Charging Plan, Signaling Techniques, In channel signaling, common channel signaling, Cellular mobile telephony.

UNIT V Data Networks

EPABX system – block diagram, working – Data transmission in PSTN, data rates in PSTNs – ISO – OSI reference model – Motivation for ISDN – Networks and protocol architecture, ISDN standards, broadband ISDN, voice data integration.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

TEXT BOOKS:

- 1. Thiagarajan Vishwanathan, "Telecommunication Switching Systems and Networks"; PHI Publications.
- 2. J. E. Flood, "Telecommunications Switching, Traffic and Networks", PearsonEducation.
- 3. B.Forouzan "Data Communications and Networking", Pearson Education.

REFERENCE BOOKS:

- 1. John C. Bellamy, "Digital Telephony", Third Edition; Wiley Publications.
- 2. Andy Valder, "Understanding Telecommunication Networks", IET press

Prerequisite: Communication Networks

ND RESEARC

NSTITUTE

Ty

3

0/0

UNIT I Introduction

EBEC22E05

UNIT III

Evolution of Telecommunications, Simple Telephone Communication, Manual switching system, major telecommunication Networks, Strowger Switching System, Crossbar Switching.

UNIT II Switching Concepts

SPC-its categorization, Enhanced Services, Two stage networks, Three stage networks, n-stage networks Time multiplexed Space Switching, Time Multiplexed time switching, combination Switching, Three stage combination switching, n-stage combination switching.

combination switching, n-stage con

9 Hrs

Total Number of Hours: 45

163

9 Hrs

0/0

С

3

9 Hrs

9 Hrs

Subject	Cod	e: Su	bject N	Name :	AUDIO		avoyal, c NAL				/ Lb/	L	T/S	Lr	P/R		С
			ROCES							ET	L/IE						
EBEC2	2E06					nd Sys	stems, I	Digital		Ту		3	0)/0	0/0)	3
				ocessin													
L : Lect				-			•	Projec	ct R	R : Rese	arch C	: Cre	dits				
T/L/ET			ab/Emł	bedded	Theory	and L	ab										
OBJEC					2												
		•		oncepts				1 0									
									aud	lio codi	ng						
							io codin	0		1							
			· ·		-	hods 1	n time a	nd free	quer	ncy don	nain.						
COURS				,	(3-5)												
The Stu								1 1	1.								
CO1							tion and				1.						
CO2										audio c	oding.						
CO3						0	transfor										
CO4							th suital			ues.							
CO5			.		U		inalyze	1									
Mappir																	
COs/P		PO1	PO2	PO3	PO4	PO5			7]	PO8	PO9	PC)10	PC)11	PC	D12
CO 1		3	3	3	3	1	3	3		3	2		3				3
CO2		3	3	3	3	1	2	3		3	2		1				3
CO.		3	3	3	3	1	2	3		3	2		1				3
CO4		3	3	3	3	1	3	3		3	2		1				3
CO	5	3	3	3	3	1	3	3		3	2		3				3
COs /]	PSOs		PSC	D1		F	SO2			PS	03				PSO	4	
CO)1		3				3				3				3		
CO	2		3				3			,	3				3		
CO	3		2				1			,	3				3		
CO	94		3				3			/	2				3		
CO	5		3				2				3				3		
3/2/1 in	dicat	es Stre	ngth of	f Corre	lation	3- H	igh, 2-]	Mediu	m, 1	1-Low							
													Γ		Ţ		
					al												
			ces		oci												
			ien		S			ves			È	Ċ.		nt		žčt	
	ory	ses	Sc		anc	ę.		čti		ves	.11.9			inei		ĵ0j	
	egc	enc	ng)	es	Č	5	Ele		ctiv		rd v		odu		$^{\rm P1}$	
	Category	Sci.	ieri.		niti es	1		Ш		Щ е	iec			,on		al	
	Category Basic Sciences Engineering Sciences				Humanities and Social Sciences	Prooram Core	à	Program Electives		Open Electives	Inter Discinlinary	- -		Skill Component		Practical / Project	
	Basi							lo		Jp∈	nte			Š ki		Prac	
		I					1	н				-	+			H	
								\checkmark		1							

Subject Code:	Subject Name : AUDIO SIGNAL	Ty / Lb/	L	T/SLr	P/R	С	l
	PROCESSING	ETL/IE					
EBEC22E06	Prerequisite: Signals and Systems, Digital	Ту	3	0/0	0/0	3	l
	Signal processing						

UNIT I **MECHANICS OF SPEECH AND AUDIO**

Introduction - Review Of Signal Processing Theory-Speech production mechanism - Nature of Speech signal – Discrete time modeling of Speech production – Classification of Speech sounds – Phones – Phonemes - Phonetic and Phonemic alphabets - Articulatory features. Absolute Threshold of Hearing -Critical Bands- Simultaneous Masking, Masking-Asymmetry, and the Spread of Masking- Non simultaneous Masking - Perceptual Entropy - Basic measuringphilosophy -Subjective versus objective perceptual testing - The perceptual audio quality measure (PAQM) - Cognitive effects in judging audio quality.

UNIT II TIME-FREQUENCY ANALYSIS: FILTER BANKS AND TRANSFORMS 9 Hrs

Introduction -Analysis-Synthesis Framework for M-band Filter Banks- Filter Banks for Audio Coding: Design Considerations - Quadrature Mirror and Conjugate Quadrature Filters- Tree- Structured QMF and CQF M-band Banks - Cosine Modulated "Pseudo QMF" M-band Banks - Cosine Modulated Perfect Reconstruction (PR) M-band Banks and the Modified Discrete Cosine Transform (MDCT) - Discrete Fourier and Discrete Cosine Transform - Pre-echo Distortion- Preecho Control Strategies.

UNIT III AUDIO CODING AND TRANSFORM CODERS

Lossless Audio Coding-Lossy Audio Coding- ISO-MPEG-1A,2A,2A Advanced, 4Audio Coding -Optimum Coding in theFrequency Domain - Perceptual Transform Coder -Brandenburg-Johnston Hybrid Coder - CNET Coders - Adaptive Spectral Entropy Coding -Differential Perceptual Audio Coder - DFT Noise Substitution -DCT with Vector Quantization -MDCT with Vector Quantization.

UNIT IV TIME AND FREQUENCY METHODS FOR SPEECH PROCESSING

Time domain parameters of Speech signal – Methods for extracting the parameters: Energy, Average Magnitude - Zero crossing Rate - Silence Discrimination using ZCR and energy Short Time Fourier analysis Formant Pitch Extraction using time and frequency domain extraction _ methods HOMOMORPHIC SPEECH ANALYSIS: Cepstral analysis of Speech - Formant and Pitch Estimation – HomomorphicVocoders.

UNIT V LINEAR PREDICTIVE ANALYSIS OF SPEECH

Formulation of Linear Prediction problem in Time Domain - Basic Principle - Auto correlation method -Covariance method - Solution of LPC equations - Cholesky method - Durbin's Recursive algorithm lattice formation and solutions - Comparison of different methods - Application of LPC parameters - Pitch detection using LPC parameters – Formant analysis – VELP – CELP.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXTBOOKS:

1. Digital Audio Signal Processing, Second Edition, UdoZölzer, A John Wiley& sons Ltd Publicatioons

2. Applications of Digital Signal Processing to Audio And Acoustics Mark Kahrs, Karlheinz Brandenburg, Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow. **REFERENCE:**

1. Digital Processing of Speech signals – L. R. Rabiner and R.W. Schaffer - Prentice Hall – 1978

B.Tech ECE 2022 Regulation

9 Hrs

9Hrs

9Hrs

ELECTIVE II - ELECTRONICS STREAM

Subject C	Code:		•	Name : MENT			ENT		-	/ Lb/ L/IE	L	T/SL r	P/R	C		
EBEC22	E 07	Pr	erequi	site: E	lectrica	and and			Ту		3	0/0	0/) 3		
				entation												
L : Lectur				-			•	oject I	R : Rese	arch C	: Credi	ts				
T/L/ETL		2	Embe	dded Th	eory an	d Lab										
OBJECT			sta ta t1		fromior		tmi a a 1/a 1	otroni	inctm	monto	thair ac	notmot	~ ~			
							trical/ele ds and ι			-				tand		
	nsduce			or oper	ation, s	stanuai	us anu u	iiiits oi	measu	ement	s .Dask	measu	lemen	t and		
				opportur	nities to	devel	op basic	skills	in the d	esign o	of electi	onic eq	uipme	nts		
	ng PLC			11			1			0		1	I			
COURSE	E OUT	JTCOMES (COs) : (3-5) ill be able to														
		arn the concepts of transducers.														
CO1	Learr	arn the concepts of transducers. Inderstand the basic design techniques of signal generators and analyzers.														
CO2	Unde	n knowledge about Instrumentation standard protocols.														
CO3		various laboratory instruments like cathode ray oscilloscope, function generators and analyz														
CO4				tory ins	trumen	ts like	cathode	ray os	cillosco	pe, fur	nction g	generato	rs and	analyze		
~~-																
<u>CO5</u>		velop basic skills in designing of computer controlled instrumentation.														
		ourse Outcomes with Program Outcomes (POs)														
COs/PO)s	PO1	PO2	PO3	PO4			PO7	PO8	PO9	PO1		11	PO12		
CO1		3	1	1	2	2	1	1	2	3		2				
CO2		3	3	3	3	3	3	3	2	2		2				
CO3		3	1	1	2	3	3	2	1	3		2				
CO4		3	3	3	2	2	2	3	1	2		2				
<u>CO5</u>		3	3	3	2	2	2	3	1	2		2				
COs / PS	SOs		PSO		_	PS			P	SO3			PSO	4		
<u>CO1</u>			3			4				3						
CO2			3		_					3						
CO3			3			2				3						
CO4			3							2						
CO5			3			3				3						
3/2/1 indi	cates S	Streng	th of C	Correlat	ion 3	- High	n, 2- Me	dium,	1-Low							
	~															
		~			p a	3		ive	v.		lary	ent		ject		
		JCe		00	an an		ore	lect	ive		olin	ono		Pro		
	VI	cieı		s	ities and		C C	υE	lect		scij	dua		1/]		
	Category	C S		nee	iani	3	ran	ran	Ξ		Di	Ŭ		tica		
Č	Cal	Basic Sciences		Engineering Sciences	Humanities and	3	Program Core	Program Electives	Onen Electives	-	Inter Disciplinary	Skill Component		Practical / Project		
		В		ЩŇ	ΗJ	ו ב	പ	P	C		Ir	S		Ч		
								~								

INSTRUMENTATION STANDARD PROTOCOLS

TRANSDUCERS

Definition of protocol, HART Protocol: Introduction, frame structure, programming, implementation examples, benefits, advantages and limitation. Foundation Field bus H1: Introduction, frame structure, programming, implementation examples, benefits, advantages and limitation. Comparison of HART, Foundation Fieldbus, Devicenet, Profibus, Controlnet, Industrial Ethernet.

Transducer definition, classification, and performance characteristics. Potentiometer and its types, loading effect, sensitivity, piezo-resistive, equivalent circuits, charge and voltage sensitivity. Measurements,

A.F. Generator, Pulse Generator, AM / FM Signal Generator, Function Generator, Sweep Frequency Generator, Wave Analyzers, Spectrum Analyzers, Logic Analyzer, Distortion Analyzers, Network

SIGNAL GENERATORS AND SIGNAL ANALYZERS

UNIT IV DATA DISPLAY AND RECORDING SYSTEM

Subject Name : INTELLIGENT

INSTRUMENTATION

Prerequisite: Electrical and

Instrumentation, Errors in Measurements, Calibration and Standard.

Instrumentation Engineering

CRO, Single Beam, Dual Trace, Double Beam CRO, Digital Storage and Analog Storage Oscilloscope, Sampling Oscilloscope, Power Scope, Curve Tracer, Analog, Digital Recorders and Printers - Case Study on Lissajous Pattern.

UNIT V **COMPUTER CONTROLLED TEST SYSTEM**

Programmable logic controllers (PLC) Introduction, architecture, definition of discrete state process control, PLC Vs PC, PLC Vs DCS, relay diagram, ladder diagram, ladder diagram examples, relay sequencers, timers/counters, high speed counter, PLC design, study of at least one industrial PLC. Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

TEXTBOOKS:

Subject Code:

EBEC22E07

UNIT I

UNIT II

Analyzer.

UNIT III

- Rangan C.S. "Instrumentation Devices and Systems", Tata McGraw Hill, 1998. 1.
- Sandeep Redkar, "Foundation Fieldbus control system", Rockwell Automation, 2010, 2.
- A. K. Shawney "Electronics and Electrical Instrumentation", Tata McGraw Hill, 1975. 3

REFERENCE BOOKS:

- 1. Bouwels A.J., "Digital Instrumentation", McGraw Hill, 1986.
- 2. Barney .C, "Intelligent Instrumentation ", Prentice Hall of India, 1985.
- 3. Oliver and Cage, "Electronic Measurements and Instruments and Instrumentation", McGraw Hill, 1975.
- 4. Deobelin, "Measurements Systems", McGraw Hill, 1990.
- 5. Cooper, "Electronic Instrumentation and Measurement Techniques", Prentice Hall of India, 1988.

Ty / Lb/

ETL/IE

Ty

0/0

P/R

С

3

9 Hrs

T/SL

r

0/0

L

3

9 Hrs

9 Hrs

9 Hrs

Total Number of Hours: 45

9 Hrs

167

Subject C	ode:	•		e : ADV CESSO		D			-	/Lb/ L/IE	L	T/ Lı		R	С	
EBEC22E	E 08		quisite: contro	Microp	rocess	or and	d		Lt)	3	0/0	()/0	3	
L : Lectu	re T : Tu				l Learni	ng P	: Pro	oiect R	: Rese	arch C	:					
Credits T				•		•		J								
OBJECT																
• To	introduce	e the con	cepts in	internal	progra	mmin	ıg m	odel of	Intel fa	amily o	of m	icrop	rocessors	5.		
			-				-			-		-	chitectur			
	grammin			-				•								
_	introduce	-							r							
COURS			•			~	r									
		will be able to plain the generalized architecture of advanced microprocessor														
CO1		0														
CO2		pply their understanding to do a project to develop an application using ARM processor. ppreciate the microprocessor based system design nalyze the MOTOROLA MC 68000 family														
CO3								ign								
CO4																
CO5		escribe about the various RISC processors Course Outcomes with Program Outcomes (POs)														
		Course Outcomes with Program Outcomes (POs)														
COs/POs					PO5	PO	5	PO7	PO8		P			P		
CO1	3	3	3	2		1				3		3	1		3	
CO2	3	2	3	2	3	3				3		2	3		3	
CO3 CO4	3	3	23	23		1				1 2		3 2	23		3 2	
CO4 CO5	3	3	3	3		1				3		2 3	1		1	
COs /PSO	-	PSO1	-		PSO				PSC	-		5	PSO	1	1	
C01	3	3	<u></u>		2	4			150	5			130	-		
CO1		3			2				2				3			
CO3		3			2				2				1			
CO4		3			1								2			
CO5		3			1								2			
3/2/1 ind	icates St	trength	of Corr	elation	3- Hig	gh, 2-	Me	dium,1	-Low							
							~									
tegory	Category Basic Sciences Engineering Sciences			Humanities and Social Sciences	Program Core		Program Electives		Open Electives	Inter Disciplinary		Skill Comnonent		Practical / Project		
Cat	Catego Basic Sci Engineer Sciences				Prog		Prog		Oper	Inter		Skill		Pract		
							\checkmark	~								

BE UNIVER то University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) ertyar E.V.R. High Road, Maduravoyal, Chennai-95. Taminadu, India.

Subject Code:	Subject Name : ADVANCED MICROPROCESSORS	Ty /Lb/ ETL/IE	L	T/S Lr	P/R	C
EBEC22E08	Prerequisite: Microprocessor and Microcontrollers	Lb	3	0/0	0/0	3

AND RESEARCH

INSTITUTE

UNIT I THE INTEL X86 FAMILY

EDUCAT

The Intel X86 Family Architecture, 32 bit Processor Evolution Systems Connections and Timing, Instruction and Data Formats, Instruction set of X86 Processors, Addressing Modes.

INTRODUCTION TO ARM PROCESSOR UNIT II

ARM Architecture –ARM programmer's model- ARM development tools-memory hierarchy-ARM assembly language programming-Simple Examples-Architectural support for operating system- ARM instruction Set-Embedded ARM Applications

UNIT III SYSTEM DEVELOPMENT

Microprocessors Based System Design, TMS 320 Series DSP Based Signal Processing, Microcontroller 8096, architecture, addressing mode and system design.

THE MOTOROLA MC 68000 FAMILY **UNIT IV**

The MC 68000 Architecture, CPU Registrars, Data Formats, Addressing Modes, Instruction Set and Assembler Directors, Memory Management Instruction and Data, Caches, Exception Processing.

UNIT V **RISC PROCESSORS**

RISC vs CISC, RISC Properties and Evaluation, Advanced RISC Microprocessors, DEC ALPHA, The Power PC family. The SUN SPARC Family, the MIPS RX 100 Family, the Intel 960 Family. The Motorola M88110 Family, HP Precision Architecture.

Practical component P : Include case studies / application scenarios Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS:

- 1. B.B. Bery, "The Intel Microprocessors 8086 / 8088, 80186 / 80188, 80286, 80386, 80486, PENTIUM, and PENTIUM Processors", Prentice Hall, 1997.
- 2. K Udayakumar, B.S. Uma Shankar, "Advanced Microprocessors and IBM PC Assembly Language Programming", Tata McGraw Hill, 1996
- Andrew N.Sloss, Dominic Symes and Chris Wright "ARM System Developer"s Guide : 3.
- Designing and Optimizing System Software", First edition, Morgan Kaufmann Publishers, 2004 **REFERENCES:**
 - 1. Daniel Tabak, "Advanced Microprocessors", McGraw Hill, 1995.
 - 2. Douglas V. Hall, "Microprocessors and Interfacing Programming Hardware", McGraw Hill, 1992.
 - 3. Steve furber "ARM Systems on chip Architecture", Second Edition Addison Wesley trade computer publication, 2000.
 - 4. W.A. Tribel& A. Singh, "The 68000 and 68020 Microprocessors Architecture, Software and Interfacing Techniques", Prentice hall of India, 1991
 - 5. Rifiquzzaman, "Microprocessors Theory and Applications: Intel and MotorolaPrentice Hall, 1992.
 - 6. Kenneth J. Ayala, "The 8051 Microcontroller, Architecture, Programming and Application", Penram International Publishing (India), 1996.6. John Peatman, "Design with Microcontrollers", McGraw Hill International, 1988

169

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Cod	e: Su	bject N	ame :	NANO	ELEC	TRC	ONICS			y / Lb/ TL/IE	L	T/SI r	L P/I	ł	C	
EBEC22E09		erequis ysics	ite: Er	igineeri	ng Phy	vsics,	Solid	Stat	te T	y	3	0/	0 0	/0	3	
L : Lecture T			-			0	: Proje	ct l	R : Rese	earch C	Cred	lits			·	
T/L/ETL : Th		.b/Embe	edded 7	Theory a	ind Lab)										
OBJECTIV		_				_	_									
	n and u								5.							
	w the te								darrigan							
COURSE O	n knowl				ure dev	lices	and to	gic	uevices	•						
The Students			05).(5-5)												
CO1			conce	pts in na	anopart	icles										
CO2				ation and	-			tech	niques							
									ques							
CO3		Describe the properties of Nano materials Categorize the Nano structure devices Understand and explain the principle and application of Nano devices. urse Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO														
CO4	Categ															
CO5	Unde															
Mapping of	Course															
COs/POs	PO1	PO2	PO3	PO4	PO5				PO8	PO9	PO	10	PO11	P	012	
CO1	3	3 2 3 2 3 3 3 3 1 3 1 3														
CO2	3	3 2 3 2 3 3 3 3 1 3 1 3														
CO3	3	3	3	3	3	3	3	3	2	1	3		2		3	
CO4	3	3	3	3	3	3	3	3	3	2	3		2		3	
CO5	3	3	3	2	3	3	(1)	3	3	3	3		2		3	
COs / PSOs		PSO	l		PS	02			PS	503			PSO	4		
CO1		3			3					3			3			
CO2		3			3					3			3			
CO3		3			3					3			3			
CO4		3			3					3			3			
CO5		3			3					3			3			
3/2/1 indicat	es Stren	igth of (Correl	ation	3- Hig	h, 2-	Mediu	1m, 1	I-Low							
	SS	Sciences		elation 3- High, 2- Medium,1-L						nary		lent		oject		
Category	Basic Sciences	Engineering Sciences		Humanities and Social Sciences	Program Core Program Electives				Open Electives	Inter Disciplinary	I	Skill Component		Practical / Project		
							~									

Clusters and Supramolecules; Wave mechanics- Schrödinger wave equation; Chemical Bonds (types and strength).

AND RESEARCH

UNIT II SYNTHESIS AND MEASUREMENT TECHNIQUES

Prerequisite: Engineering Physics, Solid State

Nanomaterial Synthesis- Sol-gel methods, Mechanical methods: ball milling, mechanical attrition, Thin films methods: chemical vapor deposition, physical vapor deposition; Characterization techniques for nanomaterials and nano structures - FTIR, XRD, AFM, SEM, TEM, Analysis by Diffraction and Fluorescence Methods-Scanning Probe Techniques

UNIT III NANO MATERIALS & ITS PROPERTIES

Classifications of nanomaterials - Zero dimensional, one-dimensional and two dimensional nanostructures; Carbon nanomaterials: nanotubes and fullerenes; Properties- Dielectrics-Ferroelectrics-Electronic Properties and Quantum Effects- Magneto transport in Layered Structures-Organic Molecules - Electronic Structures, Properties, and Reactions.

UNIT IV NANO STRUCTURE DEVICES

FDUCATIONAL

Physics

Subject Code:

EBEC22E09

Density of states of electrons in nanostructures- Electron transport in nanostructures- Electrons in quantum wells, Electrons in quantum wires, Electrons in quantum dots; Nanostructure devices - Resonant- tunneling diodes- Field-effect transistors- Single-electron-transfer devices- Potential-effect transistors- Light-emitting diodes and lasers- Nano-electromechanical system devices- Quantum-dot cellular automata

UNIT V **APPLICATIONS OF NANOELECTRONICS**

Nanosensors- Nanoelectronics in Diagnostics applications, Environmental, Agriculturaland Food, Nanoelectronics for energy systems- batteries, solar cells.

Practical component P : Include case studies / application scenarios Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS:

- 1. Vladimir V. Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, "Introduction to Nanoelectronics: Science, Nanotechnology, Engineering, and Applications", Cambridge University Press 2011
- 2. Supriyo Datta,"Lessons from Nanoelectronics: A New Perspective on Transport", World Scientific2012

3. George W. Hanson, "Fundamentals of Nanoelectronics", Pearson 2009

REFERENCES:

- 1. Korkin, Anatoli; Rosei, Federico (Eds.), "Nanoelectronics and Photonics", Springer 2008
- 2. Mircea Dragoman, Daniela Dragoman, "Nanoelectronics: principles and devices", CRC Press 2006
- 3. Karl Goser, Peter Glösekötter, Jan Dienstuhl, "Nanoelectronics and Nanosystems: From Transistors to Molecular and Quantum Devices",
- 4. Springer 2004
- 5. W. R. Fahrner, Nanotechnology and Nan electronics: Materials, Devices, Measurement Techniques(SpringerVerlag Berlin Heidelberg 2005)
- 6. Mark A. Reed, Takhee Lee, "Molecular nanoelectronics", American Scientific Publishers 2003
- 7. Jaap Hoekstra, "Introduction to Nanoelectronic Single-Electron Circuit Design", Pan Stanford Publishing 2010.

Ty

ETL/IE

NSTITUTE

r

0/0

0/0

3

9 Hrs

9 Hrs

9 Hrs

9 Hrs

3

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.																	
Subjec	t cod	e:	0	et Name							Ty /Lb/]	L	T/S	P/F	Ł	С
				PUTER				JRE A	ANE)	ETL/IE			Lr			
				LLEL													
EBEC2	2E10			uisite:		opro	ocessor	and			Ту		3 0	/0	0/	0	3
				controll	-						_						
										ect R	: Resear	ch C:					
			Theory	/Lab/En	ıbedd	ed T	Theory a	and La	ab								
OBJE																	
								rdwar	e de	esign	basic stru	icture ai	nd be	havi	or of th	e	
various functional modules of the computer.To learn parallel processing memory techniques.																	
		-	-	-			echniqu	les.									
COURSE OUTCOMES (COs) : (3-5) The Students will be able to																	
								4 -									
CO1				asic ope													
CO2							<u> </u>				nputer sy	stem					
CO3				orking of													
CO4		1		ciple of						1			han -				
CO5 Classify different types of memory and I/O based techniques in a computer system.																	
	Mapping of Course Outcomes with Program Outcomes (POs)																
COs/PC		01	PO2	PO3	PO		PO5	PO6		PO7	PO8	PO9	PO		PO11	P	012
<u> </u>		1	1	2	2			2				1	2		1		2
CO		1	2	2	2			1				1	2		1		2
CO		1	1	1	2			1				2	2		3		1
CO		1	1	3	-			2				2		3	2		1
CO		1	1	1	1			1		T		2	3		2		2
COs / P			PSO1			I	PSO2				PSO3		_	I	PSO4		
CO			1				2				2		_		2		
CO			1				2								2		
CO			1				2				2				1		
CO			1				1				1				1		
CO			1				2								2		
3/2/1 in	ndicat	tes St	rength	of Corre	elatio	n	3- Higł	1, 2- N	/ledi	ium,	1-Low						
				ş													
				hce					s								
				ciei	q	s		Program Core Program Electives Open Electives		ary			3nt		ect		
	×	ces		Ň	an	lce	re		ecti		ve	lin		one		roj	
	Category Basic Sciences			3ur	ies	ciei	C		Ē		scti	cip		up(/P	
Category Basic Sciences Engineering Sciences			mit	Ň	am		am		El	Dis		C0		cal			
	ũ	sic		BIB	Humanities and	Social Sciences	Program Core		gr		Open Electives	Inter Disciplinary		Skill Component		Practical / Project	
		Ba		ц	μ	Š	Prc		Prc		Op	Int		Sk		Prî	
									\checkmark	·							

TEXT BOOK:

Subject code:

EBEC22E10

1. David A. Patterson and John L. Hennessey, "Computer organization and design", Morgan Kauffman / Elsevier, Fifth edition, 2014.

REFERENCES:

- 1. V.CarlHamacher, Zvonko G. Varanesic and Safat G. Zaky, "Computer Organisation", VI th edition, Mc Graw-Hill Inc, 2012.
- 2. William Stallings "Computer Organization and Architecture", Seventh Edition, Pearson Education. 2006.
- 3. Vincent P. Heuring, Harry F. Jordan, "Computer System Architecture", Second Edition, Pearson Education. 2005.
- 4. Govindarajalu, "Computer Architecture and Organization, Design Principles and Applications", first edition, Tata McGraw Hill, New Delhi, 2005.
- 5. John P. Hayes, "Computer Architecture and Organization", Third Edition, Tata Mc Graw Hill, 1998.

UNIT I OVERVIEW & INSTRUCTIONS

Eight ideas - Components of a computer system - Technology - Performance - Power wall -Uniprocessors to multiprocessors; Instructions - operations and operands - representing instructions -Logical operations - control operations - Addressing and addressing modes.

UNIT II **ARITHMETIC OPERATIONS**

ALU - Addition and subtraction - Multiplication - Division - Floating Point operations - Subword parallelism.

UNIT III PROCESSOR AND CONTROL UNIT

Subject Name :

Microcontroller

Basic MIPS implementation – Building datapath – Control Implementation scheme – Pipelining – Pipelined datapath and control – Handling Data hazards & Control hazards – Exceptions.

UNIT IV PARALLELISM

Instruction-level-parallelism – Parallel processing challenges – Flynn's classification – Hardware multithreading – Multicore processors

UNIT V **MEMORY AND I/O SYSTEMS**

Memory hierarchy - Memory technologies - Cache basics - Measuring and improving cache performance - Virtual memory, TLBs - Input/output system, programmed I/O, DMA and interrupts, I/O processors.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

T/S

Lr

0/0

L

3

Ty /Lb/

ETL/IE

Ty

P/R

0/0

С

3

9 Hrs

AND RESEARCH INSTITUTE EDUCAT DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Perlyar E.V.R. High Road, Maduravoyal, Chennal-95. Tamilnadu, India.

COMPUTER ARCHITECTURE AND

PARALLEL PROCESSING

Prerequisite: Microprocessor and

9 Hrs

173

9 Hrs

9 Hrs

ELECTIVE II – COMMUNICATION STREAM

Subject Co	de:		t Name TS APP			OF T	HINO	GS		「y / L ETL/I			/SLr	P/I	R	C	
EBEC22E1	1	Prereq	uisite: (Commu	nicatio	on Netv	vorks	5		Ту		3	0/0	0)/0	3	
L : Lecture							: Proj	ect	R : Res	search	C: C	redits	5	•			
T/L/ETL : 7	Theory	/Lab/E	mbedded	l Theory	and L	ab											
OBJECTIV																	
		sics of															
	•		Cloud er	ivironme	ent.												
COURSE			cations.	(3.5)													
The student			· /	. (3- 3)													
CO1				cepts of	techno	logy of	f IoT										
CO2		Explore basics concepts of technology of IoT Understand different IoT domains.															
CO3							nt										
		Image system data in cloud environment terface embedded system with IoT															
CO4				-													
CO5	Learn new applications based on IoT.																
Mapping of	f Cou	rse Out	comes v	vith Pro	gram	Outcor	nes (l	POs)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PC)7	PO8	PO	9]	PO10) PC)11	PO	12	
CO1	3	3	3	3	3	2	3		2	2		2	(°)		3		
CO2	3	2	2	3	3	2	2	2	2	2		2		3	3		
CO3	3	2	3	3	3	2	2	2	2	2		2	(*)	3	3		
CO4	3	3	2	3	3	2	2		2	2		2	3		3		
CO5	3	2	3	3	3	2	2)	2	3		2	3		3		
COs /PSOs		PSC)1		PS					03			P	SO4			
<u>CO1</u>		3				3				3				3			
<u>CO2</u>		3				3 3				$\frac{2}{2}$		-		3			
CO3 CO4		3				<u> </u>				2 2				3			
<u>C04</u> C05		2				3				<u>2</u> 3				3			
3/2/1 indica	ntes St		of Corr	elation		-	Medi	ium.		-				5			
		gen				, -			, - 101	· 							
Category	Category Basic Sciences Engineering Sciences		Humanities and Social Sciences	Program Core	Program Core Program Electives			Open Electives		Inter Disciplinary		Skill Component		Practical / Project			
							\checkmark										

Subject Code:	Subject Name : INTERNET OF THINGS	Ty / Lb/	L	T/SLr	P/R	С	
	AND ITS APPLICATIONS	ETL/IE					
EBEC22E11	Prerequisite: Communication Networks	Ty	3	0/0	0/0	3]

UNIT I **INTRODUCTION TO INTERNET OF THINGS**

Definition and Characteristics of IoT - Things in IoT - IoT Protocols - Logical Design of IoT - IoT enabling technologies – IoT Levels.

UNIT II DOMAIN SPECIFIC IoT

Home Automation - Cities - Environment - Energy - Retail - Logistics - Agriculture - Industry - Health and Life style-SDN and NFV for IoT.

UNIT III IoT SYSTEM MANAGEMENT AND CLOUD

Need for IoT System Management - SNMP - NETOPEER - IoT design methodology - Xively - Django-Amazon Web for IoT – SkyNetIoT.

IOT PHYSICAL DEVICES UNIT IV

Raspberry Pi - Raspberry Pi Interfaces - Arduino boards - Other IoT devices - Intel Galileo Arduino board Specification.

UNIT V **IoT APPLICATIONS**

Applications based on IoT - Smart Cities -Smart Home and Buildings -Smart Energy and the Smart Grid -Smart Health- Smart Transportation and Mobility

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXTBOOKS:

- 1. ArshdeepBahga.Vijaymadisetti, "Internet of things A hands- on approach", Universities press, First Editon, 2015.
- 2. Adrian McEwen and Hakim Cassimally, "Designing the Internet of Things", Wiley, First edition 2014.
- 3. C HillarGastn, "Internet of Things with Python", Packt publishing, first edition ,2016.

REFERENCE BOOKS:

- 1. Dominique D. Guinard and Vlad M. Trifa "Building the Web of Things With examples in Node.js and Raspberry Pi", June 2016 ISBN 9781617292682
- 2. CharalamposDoukas, "Building Internet of Things with the Arduino" ISBN/EAN13:1470023431 / 9781470023430
- 3. Gastón C. Hillar, "Internet of Things with Python", May 2016, PACKT Publishing limited.
- 4. Marco Schwartz "Internet of Things with the Raspberry Pi: Build Internet of Things Projects Using the Raspberry Pi Platform", Kindle Edition.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code		bject N ETWOI		EXT (GENER	RATIO	ON IP		Ty / I ETL/		L	T/SL r	P /1	R	С
EBEC22E12	Pr	erequis	ite: Co	mmuni	cation	Netw	orks		Ту		3	0/0	0	/0	3
L : Lecture T T/L/ETL : Th							Projec	t l	R : Res	earch (C: Cred	lits			
OBJECTIV															
• To hav					IPV6 a	archite	ecture								
	n the ke w the te				noturo	le oon	antio								
COURSE O		<u> </u>		Ų	netwoi	K COIL	gestioi	1							
The Students			08):(3- 3)											
CO1		tand the	e kev fe	atures o	of IPV6	archi	tecture	,							
CO2		e the tra							ocol						
CO2	•					•	•								
		et the ac					a netw	OL	KS						
CO4	Develo	p a wire	eless ne	twork a	rchitec	ture									
CO5 Apply their ideas for controlling and avoiding network congestion															
Mapping of Course Outcomes with Program Outcomes (POs)															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO	7	PO8	PO9	PO1	0 POI	11	PO	12
CO1	1	1	3	3	3	3	1		1	1	1	1		2	!
CO2	1	1	1	3	1	3	1		1	1	1	1		1	
CO3	1	3	1	1	3	1	2		1	3	1	1		1	
CO4	1	1	1	1	1	3	1		1	1	2	1		1	
CO5	1		1	3	1	1	1		1	1	3	1	DCO	1	
COs / PSOs		PSO1	L		PS				P	503			PSC	04	
CO1		1		_	3					1			1		
CO2 CO3		2			_					3			1		
CO3		$\frac{1}{2}$			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1				
CO4 CO5		<u> </u>			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							<u> </u>			
H/M/L indic	ates Str	enoth o	f Corr	elation			И- Ме	di	um, L-	Low			1		
				-iunon		B, 1			, 17-						
Category	Basic Sciences	Engineering Sciences		Humanities and Social Sciences			Program Electives		Open Electives			Skill Component	Practical / Project		
				~											

Subject Name :NEXT CENEDATION ID Tw / I b/

Subject Code:	Subject Name INEAT GENERATION IP	1 y / LD/	L	1/SL	F/K	C
	NETWORKS	ETL/IE		r		
EBEC22E12	Prerequisite: Communication Networks	Ту	3	0/0	0/0	3

UNIT I **IP V6 ADRESSING**

C-1 *- + C - 1 --

Next Generation Networks-Overview-IP V6 Specification-Addressing Architecture-Address Allocation Management-Unicast Address Allocation-Global Unicast Address Format-Testing Address Allocation-Multicast Addressing-Reversed IP V6 Subnet any cast addresses.

UNIT II **IP V6 TRANSMISSION AND SECURITY**

Internet Control Message Protocol-Hop-by-Hop Options-Header Compression-Packet Tunneling-Domain Name System-Transition Mechanisms-Routing-Renumbering-IP Privacy-Security Architecture for the Internet Protocol-IP Authentication Header-IP Encapsulation Security Payload-IP Authentication using Keyed MD5-The ESP DES-CBC Transform.

UNIT III **IP V6 OVER DIFFERENT NETWORKS**

IP V6 over Ethernet Networks-IP V6 over FDDI Networks-IP V6 over Token ring Networks- IP V6 over ARCnet Networks- IP V6 over PPP- IP V6 over NBMA Networks- IP V6 over ATM Networks.

WIRELESS IP NETWORK ARCHITECTURES UNIT IV

3GPP Packet Data Networks, Network architecture, Protocol Reference Model, Packet Data Protocols, Bearers, and connections for Packet Services, Packet Data Protocol (PDP) Context, Steps for a Mobile to Access 3GPP Packet-Switched Services, User Packet Routing and Transport, Configuring PDP Addresses on Mobile Stations, GPRS Attach Procedure, Access to MWIF Networks, Session Management.

UNIT V NETWORK CONGESTION CONTROL AND AVOIDANCE

Introduction-Queue Management-Scheduling-Types of flows-Queue Management Techniques: RED-FRED-SRED-PI Controller-REM- E-RED Scheduling Algorithms: Fair Queing-CFS.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS:

- 1. RFC 2373, -IP V6 Addressing Architecture, RFC 1881-IPv6 Address Allocation Management, (Unit I)
- 2. RFC 2463-Internet Control Message Protocol, RFC 2402-IP Authentication Header (Unit II)
- 3. RFC 2497-Transmission of IPv6 Packets over ARCnet Networks, RFC-2492-IPv6 over ATM Networks (Unit III)

REFERENCES:

- 1. http://www.faqs.org/rfcs/(Unit I, II, III)
- 2. JYH-CHENG CHEN, TAO ZHANG, "IP-Based Next Generation Wireless Networks (Systems, Architectures and Protocols)", by John Wiley & Sons, Published by John Wiley & Sons, Inc., Hoboken, New Jersey.2004. (Unit IV)
- 3. http://www.icir.org/floyd/red.html (Unit V)

TICT

9 Hrs

9 Hrs

9 Hrs

9Hrs

9 Hrs

0

177

INSTITUTE EDUCAT ND RESEARCH DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India

(AII 130 210	or . zoro certineu in	sutution)
eriyar E.V.R. High Road,	, Maduravoyal, Chennai	-95. Tamilnadu, India.

Subject Code			me: I ICATIO		AL NE	FWOR	KS ANI	D Ty/L ETL		L	T/ S.L		′R	C
EBEC22E13	Pre	requisi	te: Digi	tal Elec	tronics			T	y	3	0	(0	3
L : Lecture T :	Tutori	al S.L	r : Supe	rvised l	Learnin	g P:Pi	roject R	: Researc	h C: C	redits	5			
Ty/Lb/ETL: 7	Theory/	Lab/Em	nbedded	Theory	and La	b								
OBJECTIVE														
The student s		be mad	le to: To	o study	the vari	ous neu	ral netw	ork algori	ithms a	and its	s app	lication	in	
pattern recogn														
COURSE OU														
CO1	Des	cribe th	e basic	concept	s of arti	ficial n	eural net	tworks.						
CO2	Exp	lain abo	out BPN	and BA	AM									
CO3	Imp	Implement the concept of simulated annealing and CPN												
CO4			e concep											
CO5	Des	cribe D	eep leai	ning.										
Mapping of C	Course	Outcon	nes with	n Progr	am Ou	tcomes	(POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10	PO11	PO	012
CO1	3	2	2	2	1	1	1	1	1	2	2	2		3
CO2	3	3	2	2	1	1	1	1	2	2	2	1		2
CO3	3	3	3	3	3	2	2	2	3	2	2	3		2
CO4	3	2	3	3	2	1	1	1	1	2	2	2		2
CO5	3	3	3	3	2	1	2	1	1	1		1		1
COs / PSOs		PSO1			PSO2			PSO3				PSO4		
CO1		1			2			2				3		
CO2		1			2			3				1		
CO3		3			2			3				1		
CO4		1			1			3				2		
CO5		1			2			1				3		
3/2/1 Indicate	s Stren	ngth Of	Correl	ation, 3	– Higł	n, 2- Me	edium, 1	- Low						
Category	Basic Sciences	- - - -	Engineering Sciences	Humanities and Social Sciences	Program Core		Program Electives	Open Electives	Inter Disciplinary		Skill Component		Practical / Project	
							v							

DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Perlyar E.V.R. High Road, Maduravoyal, Chennal-95. Tamilnadu, India.

Subject Code:	Subject Name : NEURAL NETWORKS AND ITS APPLICATIONS	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	C	
EBEC22E13	Prerequisite: Digital Electronics	Ту	3	0	0	3	

AND RESEARCH

UNIT IINTRODUCTION TO ARTIFICIAL NEURAL NETWORKS

Neuro – Physiology – General Processing Element – ADALINE – LMS Learning Rule – MADALINE – Perception Networks

UNIT II BPN AND BAM

EDUCAT

Back Propagation Network – Updating of Output and Hidden Layer Weights – Application of BPN – Associative Memory – Bi-Directional Associative Memory - Hopfield Memory – Traveling Sales Man Problem

UNIT III SIMULATED ANNEALING AND CPN

Annealing, Boltzmann Machine – Learning – Application – Counter Propagation Network – Architecture – Training – Application.

UNIT IV SOM AND ART

Self-Organizing Map – Learning Algorithm – Feature Map Classifier – Applications – Architecture of Adaptive Resonance Theory – Pattern Matching in ART Network. Neocognitron: Architecture of Neocognitron – Data Processing and Performance of Architecture of Spacio – Temporal Networks for Speech Recognition

UNIT V DEEP LEARNING

Deep Feed Forward network, regularizations, training deep models, dropouts, Training Deep Neural Networks using Back Propagation-Setup and initialization issues, vanishing and exploding Gradient problems, Gradient-Descent Strategies

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS:

- 1. Laurence Fausett, "Fundamentals of Neural Networks: Architecture, Algorithms and Applications", Prentice Hall, 1994.
- 2. J.A. Freeman and B.M.Skapura, "Neural Networks, Algorithms Applications and Programming Techniques", Addison-Wesley, 1990.

3. CharuC.Aggarwal "Neural Networks and Deep learning" Springer International Publishing, 2018 *REFERENCE BOOKS:*

1. Martin T. Hagan, Howard B. Demuth "Neural Networks Design", 2 ndEdition, Martin Hagan, 2014

2. Simon Haykin, "Neural Networks and Learning Machines" -3/E - Pearson/ Prentice Hall 2009

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject	Code		Subject NAVIG						Ty /Lb/ ETL/IF		T/SLr	C/SLr P/R C					
EBEC2	2E14		Prerequ				ication		Ty	3	0/0	0/	0 3				
L : Lec					-			iect R ·	Researc	-	0/0	0/	0 5				
			Theory/L	-					researe	n e.							
OBJE			j, <u> </u>														
			niliar wi	th funda	mentals	of RAE	DAR										
• T	o gair	n in-dep	th know	ledge ab	out the o	differen	t types o	f RAD	AR and	their or	perations						
	•	-	l detection	0			• •			-							
	To become familiar with RADAR navigation techniques																
COURSE OUTCOMES (COs) : (3- 5)																	
The Students will be able to																	
CO1			h the var														
CO2			d the ope		Ų		y signal	genera	tors.								
CO3			e targete														
CO4			ne propag				d forma	tion of	clutter								
CO5 Exhibit the different navigational aids																	
Mapping of Course Outcomes with Program Outcomes (POs)																	
COs/Pos		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12				
CO1		2	1	1	1	1	1	1		1	1		2				
CO2		2	3	2	1	1	1	1		1							
CO3		1	2	2	2	2	2	2	2	2	2	1					
CO4		1	2	2	2	2	2	2	2	2	2	1	1				
CO5		1	1	1	1	1	2		1	1	2	DCO	2				
COs /P			PSO1			PSO2			PSO3			PSO4					
CO			$\frac{2}{2}$			$\frac{2}{2}$			3		_	$\frac{2}{2}$					
CO2 CO3			2			3			2 2			3					
			1			3			$\frac{2}{2}$			1					
CO4 CO5			1			$\frac{2}{2}$			2			$\frac{2}{2}$					
		tos Str	ength of	Correls	tion 3		2- Med	lium 1	-			2					
5/2/11	luica		cingtil OI			/- 111g11,	2- Micu	, I	-100	1							
	Category	Basic Sciences Engineering Sciences Humanities and Social		Humanities and Social Sciences	Program Core	Program Electives	,	Open Electives	Inter Disciplinary	Skill Component		Practical / Project					
DEEMED TO BE UNIVERSITY Iniversity with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) eriyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamiinadu, India.

Subject Code:	Subject Name :RADAR AND NAVIGATIONAL AIDS	Ty /Lb/ ETL/IE	L	T/SLr	P/R	С
EBEC22E14	Prerequisite: Digital Communication	Ту	3	0/0	0/0	3

AND RESEARCH

INSTITUTE

UNIT I RANGE AND TYPES OF RADAR

Range Parameters, Pulsed Radars, Signal to Noise Ratio, Integration of Pluses Beam Parameters, System Losses and Propagation Effects MTI; CW and Pulse-Doppler Radar, Delay Lines Tracking Radar, Mono pulse, Sequential, Simultaneous, Conical Scan and Monopulse Trackers, Beacons.

TRANSMITTERS, RECEIVERS AND ANTENNA UNIT II

Klystron, Magnetron, TWT Amplifiers and Oscillators, Crossed Fields Devices, Parabolic Cassegrainian, Coefficient, Squares Antennas, Radomes, Feeds, Receivers, Performance Figures, Displays Scope and PPI Duplexers.

UNIT III **DETECTION OF RADAR SIGNALS IN NOISE**

MF, Correlation Detection, Detector Characteristics, Automatic Detection, CFAR Receiver, Pulse Compression and Classification of Targets with Radar.

PROPAGATION OF RADAR WAVES AND CLUTTER UNIT IV

Plane Earth and Spherical Earth Problem, Refraction and Diffraction, GTD Analyzers, Surface and Sea Clutter, Detection of Targets, Effects of Weather on Radar.

UNIT V **RADAR TOPICS AND NAVIGATIONAL AIDS**

Synthetic Aperture, Over the Horizon Radar, ARSR, ASR, Bistatic and Monostatic Radars, LORAN, ILS, GCA, Direction Finder, VOR Concepts, Airborne Doppler Navigation.

Practical component P: Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS:

1. M.I. Skoinik "Introduction to Radar Systems:, McGraw Hill 1981.

2. N.S. Nagaraja, Elements of Electronic Navigation Systems, 2nd Edition, TMH, 2000. **REFERENCES:**

1. F.E. Terman, "Electronics and Radio Engineering" McGraw Hill

2. Peyton Z. Peebles:, "Radar Principles", John Wiley, 2004

3. J.C Toomay, " Principles of Radar", 2nd Edition – PHI, 2004

9 Hrs

9 Hrs

9 Hrs

9 Hrs

ELECTIVE III – ELECTRONICS STREAM

Subject	Cod		oject N STEM		ADVA	NCED	DIGI	ΓAL		/ Lb/ L/IE	L	T/S	Lr	P/R		С	
EBEC2	2E15	Pre	erequis	site: Di	gital El	ectroni	cs		Ту		3	0	/0	0/0		3	
L : Lect	ure T	: Tutori	al SI	Lr : Sup	ervised	Learni	ng P:	Project	R : Rese	arch C	: Cre	dits					
T/L/ET	L:Th	neory/La	b/Emb	edded '	Theory	and Lat	5	-									
OBJEC																	
									ntial circ								
	-				•	·			faults us	0		algo	rithn	ns			
						mergin	g prog	rammab	le logic d	levices.							
COURS					(3-5)												
The Stu						~ ~ ~ ~ ~ ~ ~ ~	4:01 aim										
CO1 CO2		lyze and							aquantia	lairari	+						
CO2 CO3									equentia inctional		ι.						
<u>CO3</u> CO4						<u> </u>			sign of s		al ci	renit					
C04 C05								le logic		equenti		icuit.					
				<u> </u>	<u> </u>	, <u> </u>		<u> </u>									
COs/PC			PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 3 3 3 3 3 2 2 2 2 2 2														
C01	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							-	100		-						
CO2		3	3	3	3	3	3	2		1		2		-	1		
CO3		3	3	3	3	3	2	3		2			,	2	2		
CO4		3	3	3	3	3	3	2		2		3		3	2		
CO5		3	2	2	3	3	3	3		2		3		2	2		
COs /PS	SOs		PSO1	•		PSO	2		PSC	03]	PSO4	•		
CO 1			3			3			3					2			
CO2			3			3			3					2			
CO3			3			3			2					2			
CO4			3			3			2			<u> </u>		2			
COS			3			3			3					1			
3/2/1 in	dicat	es Stren	gth of	Corre	lation	3- Hig	h, 2- N	Aedium,	, 1-Low	,		•					
			s														
			lce					s									
			cier		d SS			Program Electives		arv	Î		snt		ect		
	Category Basic Sciences Engineering Sciences					ore		ecti	ives	lin:			onε		roj		
	jory	ien	ling	,	ties	Ŭ		E	ecti	cin	1		du		[/]		
	Category	Sc	leel		Humanities and Social Sciences	Program Core		una:	Open Electives	Inter Disciplinary		C	Skill Component		Practical / Project		
	ũ	asic	lgir)	um: vcia	ogr		1g0	Den	fer		F	all		act		
		B	En		Hı So	$\mathbf{P}_{\mathbf{r}}$		Pr	Ō	Int		5	Ň		Pr		
								1									
								\checkmark									

DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamiinadu, India.

Subject Code:	Subject Name : ADVANCED DIGITAL	Ty / Lb/	L	T/SLr	P/R	С	
	SYSTEM	ETL/IE					
EBEC22E15	Prerequisite: Digital Electronics	Ту	3	0/0	0/0	3]

AND RESEARCH

INSTITUTE

UNIT I SEQUENTIAL CIRCUIT DESIGN

EDUCAT

Analysis of Clocked Synchronous Sequential Networks (CSSN), Modeling of CSSN, State Stable Assignment and Reduction, Design of CSSN, Design of Iterative Circuits, ASM Chart, ASM Realization, Design of Arithmetic circuits for Fast adder- Array Multiplier.

ASYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN UNIT II

Analysis of Asynchronous Sequential Circuit (ASC) - Flow Table Reduction - Races in ASC - State Assignment Problem and the Transition Table – Design of ASC – Static and Dynamic Hazards – Essential Hazards - Data Synchronizers - Designing Vending Machine Controller - Mixed Operating Mode Asynchronous Circuits.

UNIT III FAULT DIAGNOSIS AND TESTABILITY ALGORITHMS Fault Table Method - Path Sensitization Method - Boolean Difference Method - Kohavi Algorithm -

Tolerance Techniques - The Compact Algorithm - Practical PLA's - Fault in PLA - Test Generation -Masking Cycle - DFT Schemes - Built-in Self Test.

UNIT IV SYNCHRONOUS DESIGN USING PROGRAMMABLE DEVICES 9 Hrs

Programming Techniques -Re-Programmable Devices Architecture- Function blocks, I/O blocks, Interconnects, Realize combinational, Arithmetic, Sequential Circuit with Programmable Array Logic; Architecture and application of Field Programmable Logic Sequence.

UNIT V NEW GENERATION PROGRAMMABLE LOGIC DEVICES 9 Hrs

Fold back Architecture with GAL, EPLD, EPLA, PEEL, PML; PROM – Realization State Machine using PLD - FPGA - Xilinx FPGA - Xilinx 2000 - Xilinx 3000

Practical component P: Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS:

- 1. Donald G. Givone, "Digital principles and Design", Tata McGraw Hill 2002.
- 2. Stephen Brown and ZvonkVranesic, "Fundamentals of Digital Logic with VHDL Deisgn", Tata McGraw Hill, 2002

REFERENCES:

- 1. Donald G. Givone, "Digital principles and Design", Tata McGraw Hill 2002.
- 2. Stephen Brown and ZvonkVranesic, "Fundamentals of Digital Logic with VHDL Deisgn", Tata McGraw Hill, 2002
- 3. MarkZwolinski, "Digital System Design with VHDL", Pearson Education, 2004
- 4. Parag K Lala, "Digital System design using PLD", BS Publications, 2003
- 5. John M Yarbrough, "Digital Logic applications and Design", Thomson Learning, 2001.
- 6. Nripendra N Biswas, "Logic Design Theory", Prentice Hall of India, 2001.
- 7. Zvikohavi, "Finite and switching automatic theory," publications?

9 Hrs

183

Subject Code:	S	ubject	Name :		EDDE IGN	D SOF	TWAF	RE		7 /Lb/ FL/IE	L	T/S r	LI	?/R	C
EBEC22E1	l6 Pro	erequis ols	ite: C I	Progra	mming	g and M	Is Offi	ce	Ту	7	3	0/0)	0/0	3
L : Lecture T/L/ETL : 7	T : Tuto	orial S				ning P .ab	: Proje	ct R	:Re	esearch	C: Cre	edits			
OBJECTIV • Toim		softwa	are desi	gn for a	an emh	edded s	system	usin	g C a	and ass	embly	level	prog	rams	
COURSE (DUTCO	OMES (COs):				- <u>j</u> ~		0 - 1		<u></u>		<u>r</u> 2		
The Student				at of he		ار ما ما م									
CO1	Unders						•	1							
CO2	Write a	•					•								
CO3	Differe				•	-	•	•		•					
CO4	Applys							~		-					
CO5	Demon		-	•			5		ory	manage	ement				
		rse Outcomes with Program Outcomes (POs) PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
COs/POs	PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO11 1 1 2 1 1 2 2 1 2 </td													
CO1 CO2	<u>1</u> 1	1 2	1 2	2	3	2	1		1 1		2		3		2
CO2 CO3	1	3	2	3	3	1	1	-	1	1	2	_	3		2
CO3	1	3	3	3	3	1	1		2	3			2		
CO5	1	2	3	3	3	2	2		3		2		3		2
COs / PSO	s	PSO)1		P	SO2			P	SO3			Р	SO4	
CO1		1				1				1				1	
CO2		2				2				3				1	
CO3		1				2 2				3				1 2	
CO4 CO5		2				2				<u> </u>				2	
3/2/1 indica	ntes Stre	ength o	f Corre	elation	3- H	-	Mediu	m. 1	-Lo	-				2	
Category	Basic Sciences	Engineering Sciences	0	Humanities and Social Sciences	Program Core		Program Electives		Open Electives		Inter Disciplinary	Skill Commonent		Dractical / Droiect	
							\checkmark								

CATIONAL AND RESEARCH INSTITUTE DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) eriyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject	Subject Name : EMBEDDED SOFTWARE	Ty /Lb/	L	T/SL	P/R	С
Code:	DESIGN	ETL/IE		r		
EBEC22E16	Prerequisite: C Programming and Ms Office	Ту	3	0/0	0/0	3
	Tools	_				

UNIT I INTRODUCTION TO EMBEDDED SYSTEM AND DATA REPRESENTATION& ARM PROCESSOR 9 Hrs

Embedded system-Design goals for embedded software- Real time and multi-tasking-Embedded processors and languages-Building an embedded application-Data Representation-Fixed precision binary numbers-Binary representation of Integers and real numbers-ASCII and BCD number.

ARM Architecture Versions - ARM Architecture - Instruction Set - Stacks and Subroutines - Features of the LPC 214X Family – Peripherals – The Timer Unit – Pulse Width Modulation Unit – UART – Block Diagram of ARM9 and ARM Cortex M3 MCU.

UNIT II EMBEDDED PROGRAMMING

Components for embedded programs- Models of programs- Assembly, linking and loading - compilation techniques- Program level performance analysis - Software performance optimization - Program level energy and power analysis and optimization – Analysis and optimization of program size- Program validation and testing

UNIT III INPUT OUTPUT PROGRAMMING

I/O instructions – synchronization, transfer rate and latency – polled waiting loops – interrupt driven I/Ointerrupt service routine-Buffers and queues -ISR in assembly and C - Non-maskable interrupts - Software interrupts - Exceptions - direct memory access -comparison of methods .

UNIT IV CONCURRENT SOFTWARE AND SCHEDULING

Foreground/background systems - Multi threaded programming - shared resources and critical sections thread states - pending threads - context switching - round-robin scheduling - priority-based scheduling assigning priorities – deadlock –watchdog timers.

MEMORY MANAGEMENT AND SHARED MEMORY UNIT V

Objects in C – scope – lifetime –automatic allocation – static allocation – Dynamic allocation- recognizing shared objects – reentrant functions – read only data – accessing shared memory.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS:

- 1. Daniel W. Lewis, "Fundamentals of embedded software where C and assembly meet", Pearson Education, 2002.
- 2. Steve Heath, "Embedded system design", Elsevier, 2003.
- 3. Marilyn Wolf, -Computers as Components Principles of Embedded Computing System Designl, Third Edition — Morgan Kaufmann Publisher (An imprint from Elsevier), 2012.
- 4. Jane W.S. Liu, Real Time Systems, Pearson Education, Third Indian Reprint, 2003.

REFERENCES:

- 1. Lyla B.Das, —Embedded Systems : An Integrated Approach Pearson Education, 2013.
- 2. Jonathan W.Valvano, —Embedded Microcomputer Systems Real Time Interfacing, Third Edition Cengage Learning, 2012.
- 3. David. E. Simon, —An Embedded Software Primer^{II}, 1st Edition, Fifth Impression, AddisonWesley Professional. 2007.
- 4. Raymond J.A. Buhr, Donald L.Bailey, —An Introduction to Real-Time Systems- From Design to *Networking with C/C++*, *Prentice Hall, 1999.*
- 5. C.M. Krishna, Kang G. Shin, —Real-Time Systems, International Editions, Mc Graw Hill 1997
- 6. K.V.K.K.Prasad, —Embedded Real-Time Systems: Concepts, Design & Programming, Dream Tech Press, 2005
- 7. Sriram V Iver, Pankaj Gupta, —Embedded Real Time Systems Programming, Tata Mc Graw Hill, 2004.

9 Hrs

9 Hrs

9 Hrs

185

									Tv	/ Lb/	L	T/S	P /	С		
Subject Code	: Su	bject N	ame : (QUANI	CUM C	OMP	UTIN	G	-	TL/IE		Lr	R			
EBEC22E17		erequis lysics	ite: Ma	athemat	ics I, E	ngine	ering			Ту	3	0/0	0/0	3		
L : Lecture T :	: Tutori	al SL				g P:F	Project	t R	: Resear	ch C: C	redi	ts		ł		
T/L/ETL : The	eory/La	ıb/Embe	edded T	heory a	nd Lab											
• To unde • To unde • To unde • To unde	erstand lerstand zing.	d the j	principl	es, qua	intum	inform			d limita	ation o	fq	uantui	m op	erations		
COURSE OUTCOMES (COs) : (3- 5) The Students will be able to CO1 Demonstrate the importance of quantum computing and superposition states.																
CO2									•	^						
CO3	Build	quantu	m circu	its with	the kno	wledg	e of v	ario	us quant	um gate	es.					
CO4	Apply	the con	ncept of	fdiffere	nt quant	tum al	gorith	ms	and have	e the ins	ight	of QI	KD.			
CO5	Identi	dentify Quantum errors and correct it using Quantum error correcting codes. urse Outcomes with Program Outcomes (POs)														
Mapping of C	Course	rrse Outcomes with Program Outcomes (POs)														
COs/POs	PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1	3	2	1	1	2	2	1		2	2		1	2	3		
CO2	3	3	2	2	1	1	1		2	2		1	2	3		
CO3	3	3	3	2	3	1	1		2	2		2	3	3		
CO4	2	2	2	3	3	1	1		2	2		2	2	2		
CO5	3	3	3	2	3	2	2		2	2		2	2	2		
COs / PSOs		PSO1		-	PSO:	2			PSO3	3	_		PSO-	4		
CO1 CO2		3			3				3				$\frac{2}{2}$			
CO2 CO3		3		-	3				$\frac{3}{2}$				2			
CO4		3			3				2				3			
C05		3			3				2				3			
3/2/1 indicate	s Stren		Correla	ation 3		, 2- M	ediun	n, 1-					-			
		-														
Category	Basic Sciences	Engineering Sciences		Humanities and Social Sciences	Program Core		Program Electives		Open Electives	Inter Disciplinary		Skill Component		Practical / Project		
							\checkmark									

CATIONAL AND RESEARCH INSTITU DEEMED TO BE UNIVERSITY University with Gradod Autonomy Status (An ISO 21001 : 2018 Certified Institution) Perlyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code:	Subject Name : QUANTUM COMPUTING	Ty / Lb/ ETL/IE	L	T/S Lr	P/ R	С
EBEC22E17	Prerequisite: Mathematics I, Engineering Physics	Ту	3	0/0	0/0	3

UNIT I **INTRODUCTION**

Introduction to Quantum Computing- Power of Quantum Computing- Quantum Information- Quantum Computers. The Wave and the Corpuscular Nature of Light Photon Behavior, State Description, Measurement in Multiple Bases, Superposition States – The Superposition probability Rule.

UNIT II **QUANTUM MECHANICS**

EDUCAT

Quantum Postulates – State space, Evolution, Quantum Measurement, Distinguishing Quantum states, Projective measurements, POVM measurements -Quantum Mechanics-Hilbert Space-Linear Operators Tensor and Outer Products-Ouantum Operators- Application Ouantum mechanism: Super dense Coding -Double Silt Experiments.

UNIT III QUBITS AND QUANTUM GATES

Oubits, Bloch Sphere Representation-Rotation Operation-The Measurement of a Single Oubits-A Pair of Qubits- Bell States- Qubits as Spin Half- Integer Particles- Qubits as Polarized Photon-Entanglement, Exchange of Information / Teleportation – Quantum Coping Circuit - The Non-Cloning Theorem-Quantum Gates – Universal Quantum Gate Gates – Matrix Representation – Quantum Circuits- Single and Multiple **Qubit Controlled Operations.**

UNIT IV QUANTUM ALGORITHM

Turing Machine - Quantum Parallelism-Deutsch's Problem, Deutsch – Jozsa Algorithm -QFT(Quantum Fourier Transform)-Short's Factoring Algorithm-Simon's Algorithm-Quantum Search Algorithm- Quantum key distribution - Mathematical Models of Quantum Computers - Introduction Different implementations of quantum computer.

UNIT V QUANTUM ERROR CORRECTION

Quantum error correction and simple examples – The Three Qubit flip code, Three Qubit Phase flip code, The Shor Code - Brief Introduction to Quantum Computing Software - Quantum error-correcting codes:Error models, Criteria for a good code: reversible operations.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

TEXTBOOKS:

- Dan C. Marinescu, Gabriela M. Marinescu, "Approaching Quantum Computing", Pearson 1. Education 2008-09.
- 2. M.A. Neilson and I.L .Chuang "Quantum computing and Quantum information", Cambridge University Press, 2009.
- 3. Vishal Sahani "Introduction to Quantum Computing", TATA McGraw-Hill Publishing Company Limited.

REFERENCE BOOKS:

- 1. A.Yu.Kitaev, A.H.Shen, M.N.Vyalyi, "Classical and Quantum Computation", American Mathematical Society.
- 2. Mark.M.Wilde, "Quantum information theory" Cambridge university press.
- 3. J.A.Jones, "Quantum information, computation and communication" Cambridge University Press.
- 4. Scott Aaronson, "Quantum computing since Democritus", Cambridge University Press 2013.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Total Number of Hours: 45

187

INSTITUTE

Subject	Code	: Su	ıbject N	Name :	POWE	R ELE	CTRO	ONICS	5	T y/ ETI	Lb/ L/IE	L	T/S	Lr I	P/R	C
EBEC2	2E18	Pr	erequi	site: Ar	alysis o	of Solid	l State	Devic	es	Ту		3	0/0	0	0/0	3
L : Lect	ure T	: Tutor	rial SI	Lr : Sup	ervised	Learni	ng P:	Projec	ct R	: Resea	arch C	: Cre	dits			
T/L/ETI	L : Th	eory/L	ab/Emt	bedded '	Theory	and La	b	-								
OBJEC	TIVE	ES :														
					onic cire											
								rs and	SCR	s. Seri	es and	para	llel fi	unctio	ns of	f SCRs,
	0		00	0	thods o											
					ion AC		es.									
		•			verters			LIDO								
					, charge	es, SMI	PS and	UPS.								
COURS					(3-5)											
The Stu					6		•									
CO1					of powe											
CO2			~~~	<u> </u>	CR for 1					utation	•					
CO3	Develop different types of inverters and choppers.															
CO4	Apply the concepts of power electronics in industries and HVDC system.															
<u>CO5</u>	O5 Apply the concepts of power electronics in industries and HVDC system. Apping of Course Outcomes with Program Outcomes (POs)															
	<u> </u>	of Course Outcomes with Program Outcomes (POs)PO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12														
COs/PC)s		PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
<u>CO1</u>		3	2	3	2	2	2	2		1	2		2	1		2
<u>CO2</u>		3	2	3	3	2	2	2		2	1	-	2	1		2
CO3		3	3	3	3	3	1	2		1	1		2	2		1
<u>CO4</u>		2	3	3	3	1	1	1		1	1		2	1		2
<u>CO5</u>		3	3	3	3	1	1	1		DCC	1		2	1		2
COs /PS			PSO1			PSC)2			PSC)3			P	<u>SO4</u>	
<u>CO1</u>			3			2				$\frac{2}{2}$					2	
<u>CO2</u>			2			3				2					2	
<u>CO3</u>			3			2				2					1	
<u>CO4</u> CO5			3			$\frac{3}{2}$				$\frac{2}{2}$					1 1	
$\frac{205}{3/2/1}$ in		a Stro		Conno	lation			Modin	m 1						1	
<i>3/2/</i> 1 III	uicau	soue	ingth Of			J- 1118	311, 2- 1	viculu	III, I-	LUW						
			es		ocial											
	Category Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core			Program Electives		Open Electives	Inter Disciplinary		τ	Skill Component		Practical / Project				
		Basic	Engin)	Humanit Sciences	Progr.		Progra		Open	Inter I		11:-10	Skill (,	Practi
								\checkmark								

DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamiinadu, India.

Subject Code:	Subject Name : POWER ELECTRONICS	T y/ Lb/	L	T/SLr	P/R	С	
		ETL/IE					
EBEC22E18	Prerequisite: Analysis of Solid State Devices	Ту	3	0/0	0/0	3	

AND RESEARCH

INSTITUTE

UNIT I **POWER ELECTRONIC DEVICES**

FDUCATIONAL

Characteristics of Power Devices - Characteristics of SCR - Two Transistor Model of SCR, Characteristics of TRIAC, BJT, MOSFET, IGBT, GTO both Static and Switching Characteristics - Protection of Thyristors against Over Voltage - Over Current, dv/dt and di/dt.

TRIGGERING & COMMUTATION TECHNIQUES UNIT II

Turn on Circuits for SCR - Triggering with Single Pulse & Train of Pulses - Triggering with Microprocessor - Different Techniques of Commutation - Natural and Forced Commutation - Series & Parallel Operations.

PHASE CONTROLLED CONVERTERS UNIT III

Converters – Single Phase – Three Phase – Half Controlled and Fully Controlled Rectifiers with R, RL and RLE Loads - Waveforms of Load Voltage and Line Current - Harmonic Factor, Power Factor, Ripple Factor, Distortion Factor - Operation with Freewheeling Diode - Effect of Source Inductance - Dual Converter.

UNIT IV **INVERTERS & CHOPPERS**

Voltage and Current Source Inverters, Resonant, Series Inverter - Basic Series Inverter, Modified, Improved – PWM Techniques – Single Phase AC Choppers with R and RL Load – Half Wave and Full Wave - DC Choppers - Various Classes of Operation - Buck, Boost and Buck - Boost Type Choppers -Merits and Applications.

UNIT V AC VOLTAGE CONTROLLERS & INDUSTRAIL APPLICATIONS 9 Hrs Single-Phase and Three-Phase AC Voltage Controllers - Sequence Control of AC Voltage Regulators.Cycloconverters - Single-Phase and Three-Phase Cycloconverters, SMPS & UPS - Static Compensators - HVDC Transmission System.

Practical component P: Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS:

- 1. Rashid, M.H., "Power Electronics Circuits Devices and Applications", Prentice Hall of India, 3 rd Edition, 2004.
- 2. Singh.M.D and Kanchandani, "Power Electronics", Tata McGraw Hill & Hill publication Company Ltd, New Delhi, 2002.

REFERENCES:

- 1. Dubey, G.K., Doradia, S.R., Joshi, A. and Sinha, R.M., "Thyristorised Power Controllers", Wiley Eastern Limited, 1986.
- 3. Lander, W., "Power Electronics", McGraw Hill and Company, Third Edition, 1993. 3. P.S. Bimbhra, "Power Electronics", Khanna Publishers, 3rd Edition, 1999.

9 Hrs

9 Hrs

9 Hrs

ELECTIVE III – COMMUNICATION STREAM

Subject	Code			Name : 1 TECTU	HIGH : RE	SPEEI) SWI	TCHI	NG	Ty / ETI	′ Lb/ L/IE	L	T/S	Lr	P/R		С
EBEC22	2E19	Prer	equis	site: Co	mmuni	ication	Netw	orks		Ту		3	0/0	0	0/0	, ,	3
L : Lectu								Proje	ct R	: Rese	arch C:	Cre	dits				
T/L/ETL	c: The	eory/Lab	/Emb	bedded '	Theory	and La	b										
OBJEC																	
		ip the stu									chnique	es in	ATN	M net	work	S	
		erstand th	<u> </u>	-	-		-										
		pare the				high s	peed sy	witchi	ng sy	stems.							
COURS					(3- 5)												
The Stud																	
		ribe the l															
		pret the s							techr	nology							
		sify block						e.									
		ate quive	<u> </u>														
		ain addre		/		0	<u> </u>	/									
	-	Course O	ourse Outcomes with Program Outcomes (POs)01PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12														
COs/PO	s P	01 F	02	PO3	PO4	PO5	PO6	PO	7 F	208	PO9	PC	D10	PO	11	PO1	2
CO1		3	2	2	2	1	2	1		1		1	2	4	2	2	
CO2		3	3	3	3	2	1	3		3	1				3		
CO3		2	3	2	1	1	1	2		2		1	1				
CO4		3	3	3	3	1	2	1		1							
CO5		3	3	3	2	1	2	2		2	1	1	2		3	1	
COs /PSC	Os	P	SO1			PSC)2			PSC)3]	PSO4	Ļ	
CO1			2			1				1					1		
CO2			3			3				3					2		
CO3			3			2				3					1		
CO4			3			3				1					1		
CO5			2			1				2					1		
3/2/1 ind	licate	s Streng	th of	Corre	lation	3- Hig	gh, 2- I	Mediu	ım, 1	-Low							
		0															
	Category	Basic Sciences	Engineering Sciences)	Humanities and Social Sciences	Program Core		Program Electives		Open Electives	Inter Disciplinary			Skill Component		Practical / Project	
								\checkmark									
-																	

DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code:	Subject Name : HIGH SPEED SWITCHING	Ty / Lb/	L	T/SLr	P/R	С	
	ARCHITECTURE	ETL/IE					
EBEC22E19	Prerequisite: Communication Networks	Ту	3	0/0	0/0	3	l

UNIT I **HIGH SPEED NETWORK**

Introduction-LAN, WAN, Network evolution through ISDN to B-isdn, Transfer mode and control of B-ISDN, SDH multiplexing structure, ATM standard, ATM Adaption layers

LAN SWITCHING TECHNOLOGY UNIT II

Switching concepts, Switch forwarding techniques, Switch path control, LAB switching, cut through forwarding, Store and forward, Virtual LANS

UNIT III **ATM SWITCHING ARCHITECTURE**

Switch models, blocking networks-Basic-and-enhanced banyan networks, sorting networks merge sorting, Re-arrange able networks-full-and-partial connection networks, Non-blocking networks-Recursive network construction, comparison of non-blocking network, Switches with deflection routing-shuffle switch, Tandem banyan

UNIT IV **QUEUES IN ATM SWITCHES**

Internal Queuing-Input, Output and shared queuing multiple queuing networks Combined input, Output and shared queuing-performance analysis of Queued Switches

UNIT V **IP SWITCHING**

Addressing model, IP Switching types-flow driven and topology driven solutions, IP over ATM address and next hop resolution, Multicasting, Ipv6 over ATM

Practical component P: Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS:

- 1. Ranier Handel, Manfred N Huber, Stefan Schroder, "ATM Networks- concepts protocols applications", 3rd Edition, Addison Wesley, New York, 1999
- 2. AchillePattavina, "Switching Theory: Architecture and performance in broadband ATM Networks", John Wiley & Sons Ltd., New York. 1998

REFERENCES:

1. Christopher Y Metz, "Switching protocols & Architectures", McGraw Hill Professionals publishing, NewYork.1998.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject		bject N		INFO	ORM	ATI	ION C	ODIN	G	-	/ Lb/	L	T/SL	P/F	2	С
Code:		ECHNI	-	•	0		• .•				TL/IE		<u>r</u>	-	10	
EBEC22E2		erequis		-						Ту		3	0/0	0/	0	3
L : Lecture T								: Proje	ect]	R : R	esearch	n C: Cre	edits			
T/L/ETL : T		Lab/Em	bedded	Theo	ory an	id La	ab									
OBJECTIV					C											
		mplete i														
		d encod method									r daaa	ding to	hniaua			
		ailed ki											mique	5.		
		the con		-	-					103510		inques.				
COURSE O						iiu c	ommu	neutro	,							
The Students				(0.	.,											
CO1		nize the		is coo	ling ti	heor	ems in	infor	nati	ion th	eorv					
CO2	•				•						•					
	CO2Interpret the digital modulation techniques in digital codingCO3Analyze the different coding methods and apply it for error correction															
	CO3Analyze the different coding methods and apply it for error correctionCO4Demonstrate the different compression techniques															
CO5	CO5 Develop a code for audio/video signals Mapping of Course Outcomes with Program Outcomes (POs)															
Mapping of	Mapping of Course Outcomes with Program Outcomes (POs)															
COs/POs	PO1	01 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1		O1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 3 3 3 3 2 3 2 2 2 3 3 2														
CO2	3	3	3	3		3	2	2		1	2	3	3		3	
CO3	3	3	3	3		3	3	1		1	2	3	3		3	
CO4	3	3	3	3		2	3	1		2	2	3	3		3	
CO5	3	3	3	2		2	3	1		2	2	3	3		3	i –
COs / PSOs		PSO	1				02			I	PSO3			PSC)4	
CO1		3					3				3			2		
CO2		3					3				3			2		
CO3		3					3				2			1		
CO4		3					3				2			2		
CO5		3	6.0		~		3			1 -	2			1		
3/2/1 indicat	tes Stre	ength of	t Corre	elatio	n 3	- Hi	gh, 2-	Medi	ım,	1-L0	W					
Category	Basic Sciences	Engineering Sciences	0	Humanities and Social	Sciences	Program Core	,	Program Electives		Open Electives		Inter Disciplinary	Skill Component		Practical / Project	
								\checkmark								

Subject	Subject Name : INFORMATION CODING	Ty / Lb/	L	T/SL	P/R	С	l
Code:	TECHNIQUES	ETL/IE		r			
EBEC22E20	Prerequisite: Digital Communication	Ту	3	0/0	0/0	3	

UNIT I **INFORMATION ENTROPY FUNDAMENTALS**

Uncertainty, Information and Entropy - Source coding Theorem - Huffman coding -Shannon Fano coding - Discrete Memory less channels - channel capacity - channel coding Theorem - Channel capacity Theorem.

UNIT II **DATA AND VOICE CODING**

Differential Pulse code Modulation - Adaptive Differential Pulse Code Modulation - Adaptive sub band coding – Delta Modulation – Adaptive Delta Modulation – Coding of speech signal at low bit rates (Vocoders,LPC).

UNIT III ERROR CONTROL CODING

Linear Block codes - Syndrome Decoding - Minimum distance consideration - cyclic codes - Generator Polynomial - Parity check polynomial - Encoder for cyclic codes - calculation of syndrome -Convolutionalcodes.

COMPRESSION TECHNIQUES UNIT IV

Principles - Text compression - Static Huffman Coding - Dynamic Huffman coding - Arithmetic coding -Image Compression – Graphics Interchange format – Tagged Image File Format – Digitized documents – IntroductiontoJPEGstandards.

UNIT V AUDIO AND VIDEO CODING

Linear Predictive coding - code excited LPC - Perceptual coding, MPEG audio coders - Dolby audio coders - Video compression - Principles - Introduction to H.261 & MPEG Video standards. Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXTBOOKS:

- 1. Simon Haykin, "Communication Systems", John Wiley and Sons, 4th Edition, 2001.
- 2. Fred Halsall, "Multimedia Communications, Applications Networks Protocols and Standards", Pearson Education, Asia 2002; Chapters: 3, 4, 5.

REFERENCES:

- 1. Mark Nelson, "Data Compression Book", BPB Publication 1992.
- 2. Watkinson J, "Compression in Video and Audio", Focal Press, London, 1995.

ND RESEARC NSTITUTE University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Taminadu, India.

9Hrs

9Hrs

9Hrs

9 Hrs

Subject code	2:	•	Subject Name : OPTICAL NETWORK AND SWITCHING TECHNIQUES Prerequisite: Communication Networks						-	/ Lb/ L/IE	L	T/S Lr	ŀ	
EBEC22E21	L	Prere	quisite	: Comm	unicati	on N	letw	orks	Ту	,	3	0/0	0/	0 3
L : Lecture						0	: Pro	ject R	: Resear	ch C: Ci	redits			•
T/L/ETL : 7		_ab/Emt	bedded '	Theory a	and Lab									
OBJECTIV														
	n basic o		-											
	erstand			0	technic	lues								
COURSE ((3-5)										
The Student CO1				elements	of opti	cal f	Fibor							
CO1 CO2				pt of sw	^				lover					
CO2 CO3				-			OFK	111 () 51	layer					
CO3 CO4		Explain all types of optical networks. nalyze multiple access methods in WDM.												
C04 C05			*			אטא	v1.							
		Understand the all optical switches. Course Outcomes with Program Outcomes (
COs/POs	PO1	e Outcomes with Program Outcomes (PO PO2 PO3 PO4 PO5 PO6 PO					$\frac{(\mathbf{FOS})}{\mathbf{PO7}}$	PO8	PO9	PO1	10 P	011	PO12	
COS/105	3	2	105	3	105	1		107	100	107	101		$\frac{011}{1}$	2
CO1 CO2	3	3	2	2	1	2		3	3	1	3		2	2
CO2	1	3	3	1	1	3		1	1	1	3		1	1
CO4	1	3	3	1	3	1		3	2	1	3		1	2
CO5	3	2	1	3		1	L	3	1	1	2		1	2
COs /PSOs		PSO1	L		PSO	2			PSO	3		P	SO4	
CO1		2			2				1				1	
CO2		3			2				1				2	
CO3		2			3				2				2	
CO4		1			3				2				2	
CO5		3			2				1				2	
3/2/1 indica	ates Stre	ength of	f Corre	lation	3- High	1,2-]	Med	lium,-]	Low					
Category	Basic Sciences	Engineering	Sciences	Humanities and Social Sciences	Program Core		Program Electives		Open Electives	Inter Disciplinary		Skill Component	Practical / Project	

Subject code:	Subject Name : OPTICAL NETWORK AND SWITCHING TECHNIQUES	Ty / Lb/ ETL/IE	L	T/S Lr	P/ R	C
EBEC22E21	Prerequisite: Communication Networks	Ту	3	0/0	0/0	3

UNIT IINTRODUCTION

Optical communication - Basics of sources, transmitters, Modulators, Optical fiber, photo detectors, and receivers - Switching in networks - circuit switched - Packet switched - cell switched - Virtual circuit switched – Burst switched (fast circuit switched) – Transmission /Asynchronous – synchronous.

UNIT II SWITCHING NETWORKS

Layering in packet switched networks – motivation – commonly used abstraction: Physical layer – Data link layer - Network layer - Transport layer - Application layer - Layering in circuit switched networks -Physical layer – Multiplexing standards – Signaling – CAS, CCS, SS7 concept – Data plane – management plane – control plane – concept.

UNIT III OPTICAL TRANSMITTER AND RECEIVERS

First generation networks – SDH/SONET – Computer interconnections – ESCON – Fiber channel – HIPPI - FDDI - ATM - DQDB - Components - description - Mode locked laser (for ps pulses) - Tunable filters multiplexers – De-multiplexers – Tunable wavelength convertors – Optical amplifiers.

Fiber - EDFA - SOA - Tunable transmitters - Tunable receivers - Dispersion compensating fibers -Multiplexing techniques - SDM - TDMA - WDMA (OFDMA) - DWDM - SCM - CDMA - Protocols for single channel broadcast networks - ALOHA, CSMA/CD - Problems with CSMA/CD - Definition of high speednetwork.

UNIT IV **MULTIPLE ACCESS METHODS**

Classifications of multiple access methods - Random access - Reserved access - Scheduled access -Multichannel multiple access protocols - Desirable characteristics of protocol - Scalability - Fairness -TTTR – TTFR – FTTR – FTFR – Problem of wavelength stability – Multi hop WDM network – Shuffle net - MSN - Wavelength routed networks - Mesh - Ring - Traffic grooming problem - IP over optical framework - ASON - MpeS - Burst switched network (buffer less networks).

UNIT V **OPTICAL SWITCHES**

All -optical circuit switches - All-optical packet switches - Broadcast and select - Wavelength routed -Spaced switch based – Discussion on various switch architectures – Packet buffering techniques: Travelling type - Recirculating type: Protection and restoration - Restoration mechanism: Restoration timing issues -Path protection- Span protection – P –cycles.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS:

- 1. Gerd Keiser, "Optical Fiber Communication" Mc Graw -Hill International, 4 th Edition., 2010.
- 2. Hussein T.Mouftah and Jaafar M.H.Elmirghani, "Photonic Switching Technology Systems and Networks ",IEEE Press, New York -10016-5997,ISBN - 0-7803-4707-2.
- 3. C.Siva Rama Murthy and Mohan Gurusamy, "WDM Optical Networks Concepts, Design and Algorithms", Prentice Hall of India Pvt. Ltd, New Delhi –2002.

REFERENCE BOOKS:

- 1. John M. Senior, "Optical Fiber Communication", Second Edition, Pearson Education, 2007.
- 2. Ramaswami, Sivarajan and Sasaki "Optical Networks", Morgan Kaufmann, 2009.
- 3. J.Senior, "Optical Communication, Principles and Practice", Prentice Hall of India, 3 rd Edition, 2008.

9 Hrs

9 Hrs

B.Tech ECE 2022 Regulation

9 Hrs

9 Hrs

Subject	Cod	Code: Subject Name : PHOTONICS							•	/Lb/ L/IE	L	T/	/SLr	P/R	2	С			
EBEC2	2E22	2	Preregi	uisite: Ei	ngineerir	ng Physi	cs			Т	v	3	0/	0	0/	0	3		
L : Lec	ture '				pervised l			Proj	ect R	: R	esearc	h C:		-		-			
				-	bedded T	•													
OBJE	CTIV	VES :	•			•													
• T	o bec	ome fa	amiliar	with fund	lamentals	of RAE	DAR												
• T	o gai	n in-de	epth kno	wledge a	bout the	differen	t typ	oes o	f RAI	DAI	R and t	their o	perat	ions					
	-		-	-	ADAR a														
		-			DAR nav						I								
				(COs) :		0		1											
			be able		()														
CO1					pes of El	lectroma	gnet	tic C	p tics										
CO2	Di	scuss	the guid	ed wave	and fiber optics														
CO3	Su	ımmar	ize the S	Semicond	luctor Op	otics													
CO4	Ar	nalyze the dectection of light, acousto and electro optics																	
CO5	Ur	ndersta	derstand the optical fiber communication																
Mappi	ing of	f Cour	se Out	comes wi	ith Progr	gram Outcomes (POs													
COs/ P	Os	PO1	PO2	PO3	PO4	PO5	PO)6	PO7	7	PO8	PO9	PO	10	PO11	P	PO12		
CO1		3	2	2	2	2	2	2	2				2	2			2		
CO2		2		2	2		2	2	3		3		3	3			3		
CO3			2	2	2	2	2	2	2		2	2	3	3	2				
CO4			2	2	2	2	2	2	2		2	2	3	3	2				
CO5		3				3	2	2	3				3	3			2		
COs /PS	SOs		PSO	1		PSO2				PSO3					PSO ₄	ļ.			
CO1			3			2					2				2				
CO2			2			2					2				3				
CO3			1			2					2				1				
CO4			1			2					2				2				
CO5			3			2					3				2				
3/2/1 ii	ndica	tes St	rength	of Corre	lation	3- High,	, 2- I	Med	ium,	1-L	OW								
	Category	Basic Sciences		Engineering Sciences	Humanities and Social Sciences	Program Core		Program Electives			Open Electives	Inter Disciplinary		Skill Component		Practical / Project			
	J	Basic		Engin	Humanit Sciences	Progra		 ▲ Progra 		 ▲ Program 		(Open .	Inter I		Skill C		Practic	

DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Perlyar E.V.R. High Road, Maduravoyal, Chennal-95. Tamilnadu, India.

Subject Code:	Subject Name : PHOTONICS	Ty /Lb/ ETL/IE	L	T/SLr	P/R	C	
EBEC22E22	Prerequisite: Engineering Physics	Ту	3	0/0	0/0	3	

AND RESEARCH

INSTITUTE

UNIT I **INTRODUCTION**

Electromagnetic Optics: electromagnetic theory of light, electromagnetic waves in vacuum & dielectric media, absorption and dispersion, pulse propagation in dispersive media, Meta materials

Polarization Optics: polarization of light, reflection and refraction, optics of anisotropic media, Optics of liquid crystals, polarization devices.

UNIT- II **GUIDED WAVE AND FIBER OPTICS**

Guided wave Optics: electromagnetic waves in dielectric layered media, photonic crystals, waveguides, resonators, plasmonics.

Fiber Optics: electromagnetic waves in fiber, Attenuation and dispersion, photonic crystal fibers.

UNIT- III SEMICONDUCTOR OPTICS

Semiconductor Optics: quantization of electromagnetic field, quantum states of light, photon statistics, interaction of photons with charge carriers, light emitting diodes, laser diodes, microcavity lasers.

UNIT- IV DECTECTION OF LIGHT, ACOUSTO AND ELECTRO OPTICS

Detection of light: theory of photo detection, phdetectors, photodiodes, avalanche photodiodes, noise in photo detectors.

Acousto and Electro Optics: interaction of light and sound, acousto-optic devices, Principles of electro optics, electro optics of anisotropic media, electro optics of liquid crystals

UNIT- V SPECIAL FIBER OPTIC AND SENSORS

Special fibres- polarization maintaining fibres, holey fibre, PC fibres, DC Flattened and dispersion shifted fibre.

Fibre optic sensors- advantages of FOS, intensity modulated sensors, interferometric sensors, rotation sensors, bio sensors. Optical communication - advantages, modulation, time division and wave length multiplexing.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOK:

1. Optical Electronics by A.K. Ghatak, K. Thyagarajan (Cambridge University Press) **REFERENCES:**

1. Principles of Opticsby Max Born, Emil Wolf (Cambridge University Press) Fundamentals of *Photonics by Saleh&Teich (Wiley-Interscience)*

9 Hrs

9 Hrs

9 Hrs

ELECTIVE IV – Electronics Stream

Subject	Code	e: St	ıbject N	Name :	DEVICE MODELING nalysis of Solid State Devices					Ty / ETL		L	T/S	Lr]	P/R	C
EBEC2	2E23	Pr	erequi	site: Aı	nalysis o	of Solid	l State	Dev	ices	Ту		3	0/0	0	0/0	3
L : Lect	ure T	: Tuto	rial S	Lr : Sup	pervised	Learni	ng P:	Proj	ect 1	R : Rese	arch C	: Cre	dits			
T/L/ET			.ab/Emł	bedded	Theory	and La	b									
OBJEC																
			-		ices and											
					ed BJT											
					ircuits u	sing SI	PICE n	nodel	ing							
COURS					(3- 5)											
		will be able to														
CO1		scuss the types and structures of resistors & capacitor														
CO2		Criticize the dynamic & static behavior of integrated diodes.							odes.							
CO3	0															
CO4				0												
CO5				<u> </u>	Ŭ	<u> </u>		<u> </u>		vices usin	ng SPIC	CE.				
Mappir	ng of (Course	e Outco	mes wi	th Prog	gram O	outcon	nes (F	POs))						
COs/PC)s	PO1	PO2	PO3	PO4	PO5	PO6	PO	D7	PO8	PO9	PC	D10	PO	11	PO12
CO1		3	3	2	2	1	2	3	3		3		2	3		
CO2		3	3	3	3	3	2	3	3	3			2	3		
CO3		3	3	3	3	3	1			2	3			3		
CO4		3	3	3	3	3	2	3	3	3			2			
CO5		3	3	3	3	3	2				3		2			
COs / I	SOs		PSO	1		PSC)2			PSC)3			Р	SO4	
CO	1		3			3				1					3	
CO	2		3			3									3	
CO	3		3			2				1					3	
CO	4		3			3									3	
CO			3			3				1					3	
3/2/1 in		es Stre	ngth of	f Corre	lation	3- Hig	gh, 2- I	Medi	um,	1-Low			•			
					- s			ves			2			nt		sct
		ses			and nces	e		ectives		ves	linarv			Skill Component		roject
	<u>S</u>	enc	ng)	es : :ier	Col				ctiv	ici	5		odu		P1
	Category	Basic Sciences	Engineering	ses	Humanities Social Scie	Program Core		Program El		Open Electi	Inter Discin			Jon		Practical / P
	ate	ic	ine	Sciences	maı ial	gra		gra		en J		•		ПС		ctic
	C	Bas	- up	Sci	Hui Soc	Pro		Pro)qC	nte			Ski		Pra
	ŀ			J				H		- Ŭ			-+	~ 1	-+	
								\checkmark								
			1													

DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Perlyar E.V.R. High Road, Maduravoyal, Chennal-95. Tamilnadu, India.

Subject Code:	Subject Name : DEVICE MODELING	Ty / Lb/	L	T/SLr	P/R	С	l
		ETL/IE					ł
EBEC22E23	Prerequisite: Analysis of Solid State Devices	Ту	3	0/0	0/0	3	

AND RESEARCH

UNIT I **INTEGRATED PASSIVE DEVICES**

Types and Structures of Resistors and Capacitors in Monolithic Technology – Dependence of Model Parameters on Structure.

UNIT II **INTEGRATED DIODES**

Junction and Schottky Diodes in Monolithic Technologies - Static and Dynamic Behavior - Small and Large Signal Models – SPICE Models.

UNIT III **INTEGRATED BIPOLAR TRANSISTOR**

Types and Structures in Monolithic Technologies - Basic Model (Eber Moll_-Cunmel - Poon Model -Dynamic Model, Parasitic Effects - SPICE Model - Parameter Extraction.

UNIT IV INTEGRATED MOS TRANSISTOR

n-MOS and p-MOS Transistor - Threshold Voltage -Threshold Voltage Equations - MOS Device Equations – Basic DC Equations Second Order Effects – MOS Models Small Signal AC Characteristics – MOSFET SPICE Model Level 1,2,3,4

UNIT V SPICE MODELLING

Advanced Concepts of Large Signal & Low Signal Modeling Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS:

- 1. Daniel Foty, "MOSFET Modeling with Spice" prentice hall, 1997.
- 2. Neil Weste and Kamran Eshranghian "Principles of CMOS VLSI Design, A System Perspective", "Addition – Wesley, 1993.

REFERENCES:

- 1. Jacob Millman& Arvin Millman, "Micro Electronics", McGraw Hill (Second Edi) 1987.
- 2. M. Satyagi, John Wiley "Introduction to Semi-conductor materials and devices", New Edition.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

9 Hrs

INSTITUTE

Subject Code:		Su	bject N	ame : V	VLSI T	LSI TECHNOLOGY					Lb/ IE	L	T/S Lr	P/ R	C
EBEC2	2E24		erequis ectroni		alysis o	f Solid	State D	evices/	Digital	Ту		3	0/0	0/0	3
L : Lect T/L/ETI								Project]	R : Rese	arch C:	Crec	lits	•		1
OBJEC															
To enab						is desi	gn flow :	in VLSI	and the	ir appli	catio	ns in	fuzzy s	ystem	s
			COMES (COs) : (3-5)												
			l be able to be fabrication of CMOS transistors & its layout design												
CO1			e fabrication of CMOS transistors & its layout desig						<u> </u>		0 /	· .			
CO2			he interconnection resistance & capacitance & thei distribution of clock signals in a chip, henceforth t										lon.		
CO3			VLSI implementation of FLC, testing techniquesar									-	n for d	0.000	
CO4										le CAD	auto	matic	on for th	ie sam	ie.
CO5 Mannin		-	ign different types of adders and multiplier. Course Outcomes with Program Outcomes (POs)												
COs/P	0									DOO	D	10	DO11	D	012
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PC)10	PO11	. P	012
C01		3	3	2	1	2					_		3		3
CO2		3	3	2	3	3							1		3
CO3		3	3	3	2	3							1		3
CO4		3	3	3	3	3							1		3
CO5		3	3	3	3	3							3		3
COs / F	SOs	5	PSO	1		PS	02	•	PS	03			PS	04	
CO	1		3			2	2			2			3	3	
CO	2		3				3			2			3	3	
CO	3		3			2	3			3			3	3	
CO	4		3			3	3			2			3	3	
CO	5		3			2	3			3		1	3	3	
3/2/1 in	dicat	tes Stre	ngth of	f Correl	ation	3- Hig	gh,2- Me	edium, 1	1-Low						
	Category Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core		Program Core	Program Electives	Open Electives		Inter Disciplinary		Skill Component	-	Practical / Project				
						✓									

CATIONAL AND RESEARCH INSTITU DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) eriyar E.V.R. High Road, Maduravoyal, Chennai-95, Tamilnadu, India.

Subject Code:	Subject Name : VLSI TECHNOLOGY	Ty / Lb/ ETL/IE	L	T/S Lr	P/ R	C	
EBEC22E24	Prerequisite: Analysis of Solid State	Ту	3	0/0	0/0	3	1
	Devices/Digital Electronics						

VLSI DESIGN FLOW UNIT I

EDUCAT

Design hierarchy concepts of regularity, modularity & locality VLSI Design styles - CMOS Fabrication Technology- Introduction, Fabrication Process flow- basic steps, CMOS n-well process, p-well process, twin tub process, layout design rules-Introduction-CMOS Layout design rules - CMOS inverter Layout design -Layout of CMOS NAND & NOR gates - Complex CMOS Logic gates

PARASITIC EXTRACTION & PERFORMANCE ESTIMATION FROM UNIT II PHYSICAL STRUCTURE

Introduction - Reality with inter connection - MOSFET capacitances-interconnect capacitance estimation interconnect resistance estimation

UNIT III **CLOCK SIGNALS & SYSTEM TIMING**

On chip clock generation & distribution using ring & pierce crystal oscillator - non - overlapping clock signals and gate level implementation - H-tree clock distribution N/W - clock skew reduction - Zero -Skew clock routing N/W- Clock distribution N/W for DEC alpha µp chips

UNIT IV **TESTABILITY OF INTEGRATED SYSTEMS-VLSI FOR FUZZY LOGIC SYSTEMS** 9 Hrs

Design constraints - Testing - The rule of ten - terminology - Failures in CMOS - Combinational Logic Testing – Practical Ad-Hoc DFT guidelines – Scan design techniques- Integrated implementations of FLC, Digital implementation of FLC's, Analog implementation of FLC's, Mixed digital / analog implementations of Fuzzy systems, CAD automation for FLC DESIGN, NN implementing fuzzy systems.

UNIT V **ARITHMETIC FOR DIGITAL SYSTEMS**

Introduction – notation systems – Principles of generation & propagation – 1 bit full adder – Enhancement Techniques for Adders - multi operand - Adders - Multiplication - Addition and Multiplication in Galois Fields GF(2n)

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

TEXT BOOKS:

- 1. Cheng., SZE., "VLSI Technology"., Prentice Hall of India,
- 2. Douglas A. Pucknell and Kamran Eshraghian, "Basic VLSI Design Systems and Circuits", Prentice Hall of India Pvt Ltd., 1993.

REFERENCES:

- 1. Cheng., SZE., "VLSI Technology"., Prentice Hall of India,
- 2. Douglas A. Pucknell and Kamran Eshraghian, "Basic VLSI Design Systems and Circuits", Prentice Hall of India Pvt Ltd., 1993.
- 3. Horspool., Gorman., "The ASIC Handbook", Tata McGraw Hill Publications., 1999
- 4. Randall .L. Geiger and P. E. Allen, "VLSI Design Techniques for Analog and Digital Circuits", McGraw Hill International Company, 1990

9 Hrs

Total Number of Hours: 45

9 Hrs

9 Hrs

Subject Co	de:		Subject Name : BIOMEDICAL NSTRUMENTATION							L	T/SL r	P/R	C		
EBEC22E2	5	Prerequ Enginee		lectrica	l and I	nstrun	nentati	on Ty	7	3	0/0	0/0	3		
L : Lecture '	T : Tuto	rial SLr	: Supe	rvised L	earning	g P:Pr	oject I	R : Resea	rch C:	Credits	5	1			
T/L/ETL: T	Theory/L	.ab/Embe	dded T	heory an	d Lab		-								
OBJECTIV	/ES :														
		e methods													
		w to mea													
		and the wo							nal fune	ctionin	g				
		nd the us							(. 1 .						
COURSE (nd the ne		tecnniqu	le of ele	ectrical	salety	in Hospi	tais						
The students			08):												
CO1		e the stude	ents to a	lavalon	knowle	dre of	how in	etrument	e work	in the	various				
COI		ment and		-		•									
CO2	•	et technic			<u> </u>			, 1000gil							
CO3	•	liarize students with various medical equip						equipment's and their technical aspects							
COS		stand med					ii equ	unpinient s'and then technical aspects.							
CO4		uce stude				ved in	some me	dical eq	auinme	ent's					
													.: <u>.</u>		
CO5	proble		•				•		sity of o	equipm	ient s to	a spec	sinc		
Mapping of	f Cours	e Outcon	nes witl	ı Progra	am Ou	tcomes	(POs)								
COs/POs	e PC	D1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10) PO1	1 PC	012		
CO1	2	2 1	1	1	1	3	3	3	3	1	3		3		
CO2	1	1	1	2	1	3	3	2	3	1	2		2		
CO3	1		1	2	1	3	3	3	3	2	3		2		
CO4	1		1	1	2	3	3	3	3	2	2		2		
CO5	1		2	1	2	3	3	3	3	2	2		2		
COs / PSC)s	PSO	1		PSO	02		PSC	03			04			
<u>CO1</u>		1			1			3				2			
<u>CO2</u>		1			2			3				1			
<u>CO3</u>		1			$\frac{2}{2}$			3				2			
<u>CO4</u>		3			2			3				3			
CO5 H/M/L indi	onton Pr	-	f Come	lation		ah M	Mod:-	3 1 m, L-L 0				2			
11/1V1/L IIIQI	cates S			aau011		gn, wi-	wieult	1111, L-L(JW						
	~			Humanities and Social Sciences Program Core Program Electives		s	ary		ent	ject					
	JCe	ad		s ar enc	ore	lect		ive	plin		u o o	Pro			
ory	cier	lin,	S	Scie	Ŭ	Ц	1	lect	scil		Junc	1/1			
		ee	ce	ani al ;	ran	ran		υE	Di		ŭ	tica			
teg	0	Ē													
Category	asic S	ngin	cien	lum oci:	rog	10 o	0	pei	iter		kill	ract			
Categ	Basic Sciences	Engineering	Sciences	Humanities and Social Sciences	Program Core	Proo		Open Electives	Inter Disciplinary		Skill Component	Practical / Project			
Categ	Basic S	Engin	Scien	Hum Socii	Prog	▲ Proo		Oper	Inter		Skill	Pract			

ETL/IE INSTRUMENTATION

UNIT I **BASIC PHYSIOLOGY**

Subject Code:

EBEC22E25

FDUCATIONAL

Engineering

Cells and their Structures - Transport of Ions Through Cell Membrane - Resting and Excited State - Trans membrane Potential - Action Potential - Bio-Electric Potential - Nervous System - Physiology of Muscles - Heart and Blood Circulation - Respiratory System - Urinary System.

BASIC TRANSDUCER PRINCIPLES AND ELECTRODES UNIT II

Subject Name : BIOMEDICAL

Prerequisite: Electrical and Instrumentation

The Transducer Principles – Active Transducers – Passive Transducers – Transducer for Bio-Medical Application – Electrode Theory- Bio-Potential Electrode – Bio-Chemical Transducer.

CARDIOVASCULAR SYSTEM UNIT III

The Heart and Cardiovascular System – Blood Pressure – Characteristics of Blood Flow – Heart Sounds -Electro Cardiograph – Measurements of Blood Pressure – Measurement of Blood Flow and Cardiac O/P Plethysmography – Measurements of Heart Sounds

UNIT IV X-RAY AND RADIOISOTOPE INSTRUMENTATION:

X-ray Imaging Radiography - Fluoroscopy - Image Intensifiers - Angiography - Medical use of Radioisotopes – Beta Radiations – Detectors – Radiation Therapy.

UNIT V BIO-TELEMETRY

Introduction to Bio-Telemetry – Physiological Parameters Adaptable to Bio-Telemetry – The Components of Bio-Telemetry Systems – Implantable Units – Applications of Telemetry in Patient Care – Application of Computer in Bio-Medical Instrumentation, Anatomy of Nervous System – Measurement from the Nervous System – EEG – EMG.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

TEXT BOOKS:

1. M. Arumugam, "Bio-medical Instrumentation" – Anuradha Agencies Publishers, 1992.

2. Khandpur," Handbook on Biomedical Instrumentation" - Tata McGraw Hill Co Ltd., 1989. **REFERENCES:**

- 1. Leusis Cromwell Fred, J. Werbell and Erich A.pfraffer, "Biomedical instrumentation and Measurements" – Prentice Hall of India, 1990.
- 2. Joseph J. Carr and John M. Brown, "Introduction to Biomedical equipment Technology", John Wiley and Sons, New York, 1997

Ty

Ty / Lb/

9 Hrs

9 Hrs

9 Hrs

9 Hrs

С

3

P/R

0/0

T/SL

r

0/0

L

3

9 Hrs

Total Number of Hours: 45

ELECTIVE IV – COMMUNICATION STREAM

Subject	Code:	 Subject Name : SPREAD SPECTRUM COMMUNICATION Prerequisite: Digital Communication 							Ty / ETL		L	ſ/SLr	P/R	C	
EBEC2	2E26	Pr	rerequis	site: Di	gital Co	ommun	nicatior	1		Ту		3	0/0	0/0) 3
L : Lect	ure T :	Tutor	rial Sl	Lr : Sup	ervised	Learni	ng P:	Projec	t R	: Rese	arch C	: Cred	its		•
T/L/ETI			ab/Emb	bedded '	Theory	and La	b								
OBJEC															
		e the s	students	s to lear	n the co	oncepts	of spre	ead spe	ctru	m syst	ems ar	nd their	r perfo	rmanc	e
	etrics	TGO			<u> </u>										
COURS					(3-5)										
The Stu CO1					les of I	1555 B	EUCC								
CO1 CO2					he spre				ion	format	c				
CO2 CO3					of spread										
CO3					& benef					Jinats	•				
		-					•	•							
<u>CO5</u>		Estimate the spreading code acquisition and tracking circuits.													
	apping of Course Outcomes with Program Outcomes (Po										DOC	D O		011	DOI
COs/PC)s P	01	PO2	PO3	PO4	PO5	PO6	PO7		PO8	PO9	PO	LO P	011	PO12
<u>CO1</u>		3	3	3	3	2	2	2	2		1	2		1	1
<u>CO2</u>		3	3	3	3	2	2	2	2		1	2		1	1
<u>CO3</u>		3	3	3	3	2	2	2	2		1	2		1	1
CO4 CO5		3 3	3	3	3	2	2	2	2		1	2		1	1
$\frac{COS}{COS/PS}$		3	PSO1	-		PSC			2	PSC	-			$\frac{1}{\mathbf{PSO}_{4}}$	-
COS/FS			3			3	14			<u>- rsc</u> 2	,,			130	7
CO2			3			3				2				1	
CO3			3			3				2				1	
CO4			2			3				2				1	
CO5			3			3				2				1	
3/2/1 in		Stre	ngth of	Corre	lation	3- Hig	gh, 2- N	Iediu r	n, 1·	-Low					
	~	S	ciences		nd Social			tives		S		lal y	ent		ject
	Category	Basic Sciences	Engineering Scier)	Humanities and Sciences	Program Core		Program Electives		Open Electives	Inter Discontin		Skill Component		Practical / Project
								\checkmark							

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) eriyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India

Subject Code:	5	Ty / Lb/	L	T/SLr	P/R	C	
	COMMUNICATION	ETL/IE				<u> </u>	
EBEC22E26	Prerequisite: Digital Communication	Ту	3	0/0	0/0	3	

UNIT I INTRODUCTION

EDUCAT

Fundamental concepts of Spread spectrum systems, Pseudo noise sequences, Director Sequence Spread Spectrum (DSSS) and Frequency Hop Spread Spectrum Systems and Code Division multiple acess

UNIT II PERFORMANCE CHARACTERIZATION OF DIGITAL

Systems communications models – Performance of spread spectrum signals in jamming environments– spread spectrum systems performances with forward error correction

UNIT III SPREAD SPECTRUM SYSTEMS

Direct sequence spread spectrum methods employing BPSK, QPSK and MSK - Frequency Hop spread spectrum methods - Hybrid direct sequence/frequency hop spread spectrum. Complex envelop representation of spread spectrum signals.

UNIT IV BINARY SHIFT REGISTER SEQUENCES FOR SPREAD SPECTRUM SYSTEMS 9Hrs

Sequence generator fundamentals, Maximum length sequences. Gold and Kasami codes, Nonlinear Code generators

UNIT VSYNCHRONIZATION OF SPREAD SPECTRUM SYSTEMS:9 HrsDiversity reception in fading channels, Cellular radio concept, CDMA cellular systems, Examples of
CDMA cellular systems. Multicarrier CDMA systems.CDMA standards.9 Hrs

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS:

- 1. Ziemer, R.E & Peterson, R.L., "Digital Communication and Spread Spectrum Systems", Mac millan Publishing Co., 1985.
- 2. Holms, J.K., "Coherent Spread Spectrum systems", Wiley Interscience, 1982.
- 3. R. L. Peterson, R. E. Zeimer and D. E. Borth, "Introduction to Spread Spectrum Communications", Pearson, 1995.

4. J. D. Proakis and M. Salehi, "Digital Communication", McGraw Hill, 2008

REFERENCES:

- 1. Ziemer, R.E & Peterson, R.L., "Digital Communication and Spread Spectrum Systems", Mac millan Publishing Co., 1985.
- 2. Holms, J.K., "Coherent Spread Spectrum systems", Wiley Interscience, 1982.
- 3. Dixon, R.C., "Spread Spectrum Systems", Wiley Interscience, 1976.
- 4. Charles E Cook., etal, "Spread-Spectrum Communications", IEEE Press, Inc, New York,

9 Hrs

9 Hrs

Subject	Cod			ame :		ORK				Ty/		L	T/SI	Lr	P/R	С
EBEC2	<u>2F27</u>			EMEN		icatior	Netwo	rks		ETL Ty	/1E	3	0/0		0/0	3
L : Lect			-						D		orch C			,	0/0	5
T/L/ETI				-			0	FIOJECI	K.	. Rese		. Cit	ans			
OBJEC			<i>au</i> / Lint	Jeudeu	Theory		.0									
			student	s learn	the con	cepts o	of manag	ving the	e vai	rious d	categor	ies o	of netv	vorl	cs and	
			erforma			e e pro e										
COURS					(3-5)											
The Stu																
CO1	Und	lerstand	the fu	ndamen	tals of v	various	networ	k topol	ogie	es.						
CO2	Disc	cuss ce	llular co	oncepts	in desig	gning a	u mobile	comm	unic	cation	system	L				
CO3							their w	<u> </u>								
CO4				•			ons of b				rk mar	nagei	ment.			
CO5							twork m	<u> </u>		t.						
	<u> </u>	Course Outcomes with Program Outcomes (POs)														
COs/P		PO1	PO2	PO3	PO4	PO5	PO6	PO7	F	PO8	PO9	PO	D10	PO	D11	PO12
CO1		3	2	1	1	3		1		1	1		1			3
CO2		3	3	1	1	3		1			1		1			1
CO3		3	3	1	3	3		1			1					
CO4		1	3	1	3	1	1	2			1				1	
COS		1	3	3	1	1	1	1		1	1				1	
COs/I			PSC	D1		P	<u>SO2</u>				03				PSO4	
CO			3				1				2				1	
CO			1				3				1				1	
CO			1				3				1				2	
CO CO			3				3				2 1				3	
3/2/1 in		og Stro	ngth of	Corro	lation	3 Ц;	-	lodium	1		1				3	
<i>3 4</i> /1 III	uical	cs sue	ngui u	Corre	1411011	J- III	gii, 2- IV.	iculuff	1, 1-	-LUW						
	Category	Basic Sciences	Engineering Sciences	0	Humanities and Social Sciences	Drouran Cons	11051411 0010	Program Electives		Open Electives		Inter Disciplinary		Skill Component	1	Practical / Project
								\checkmark								

Subject Code:	Subject Name : NETWORK	Ty / Lb/	L	T/SLr	P/R	С	
	MANAGEMENT	ETL/IE					
EBEC22E27	Prerequisite: Communication Networks	Ту	3	0/0	0/0	3	1

UNIT IFUNDAMENTALS OF COMPUTER NETWORK TECHNOLOGY

Network Topology, LAN, Network node components – Hubs, Bridge, Gateways, Switches, WAN, ISDN – Transmission Technology, communication protocols and standards

UNIT II NETWORK MANAGEMENT

ISO Network Management Functions, Network Management Protocols, Network Management Tools, Wireless Network Management, Policy-based Network Management

INTERNET MANAGEMENT (SNMP) UNIT III

SNMP-Organizational model – system Overview, The information model, communication model-Functional model, SNMP proxy server, Management information, protocol remote monitoring

UNIT IV **BROADBAND NETWORK MANAGEMENT**

Broadband networks and services, ATM Technology-VP, VC, ATM Packet, Integrated service, ATMLAN emulation, Virtual LAN. ATM Management Information base, Role of SNMD and ILMI in ATM Management, M1, M2, M3, M4 Interface. ATM Digital Exchange Interface Management

UNIT V NETWORK MANAGEMENT APPLICATIONS

Configuration management, Fault management, performance management, Event Correlation Techniques security Management Service Level Management

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS:

1. Mani Subramaniyan, "Network Management Principles and Practice", Addison Wesly.Newyork 2000 **REFERENCES:**

- 4. 1. Lakshmi G. Raman, "Fundamentals of Telecommunication Network Management", Eastern
- 5. Economy Edition IEEE, Press, New Delhi-1999
- 3. Salah Aiiarous, Thomas Plevayk, "Telecommunications Network Management Technologies and Implementations", eastern Economy Edition IEEE press, New Delhi. 1998

9 Hrs

9 Hrs

9Hrs

9 Hrs

	001 : 2018 Certified Institution)	
eriyar E.V.R. High Road	, Maduravoyal, Chennai-95. Tamilnadu, India.	

Subject Code:			Name : UNICA		LLIT	E		•	/ Lb/ []/IE	L	[/SLr	P/R	C
EBEC22E28	I	Prerequ		nalog C	Comm	unicatio	on, Digit			3 ()/0	0/0	3
L : Lecture T : '	Tutoria	l SLr	: Superv	vised Le	arning	g P:Pro	oject R	: Resear	ch C: C	redits			
T/L/ETL : Theo	ory/Lab	/Embec	lded The	eory and	l Lab								
OBJECTIVES	5:												
 Overview 	v of sat	ellite sy	stems in	relatio	n to o	ther terre	estrial sy	/stems					
• Study of	satellit	e orbits	and laur	nching.									
• Study of	earth s	egment	and space	ce segm	ent co	mponen	ts						
• Study of	satellit	e access	by vari	ous use	rs.								
• Study of	DTH a	nd com	pression	standaı	rds.								
COURSE OUT			-										
The students w	vill be a	able to	ŕ										
CO1	Recog	gnize va	rious ele	ement o	f orbi	tal Mech	anics						
CO2	Interp	ret vari	ous mult	iple acc	cess a	nd switc	hing tec	hniques.					
CO3	Illusti	ate the	concepts	s involv	ed in	satellite	link des	ign					
CO4	Analy	ze the p	orinciple	s, conce	epts a	nd opera	tion of s	atellite o	commu	nicatio	n system	ns	
CO5	Exam	ine the	various	process	of ear	rth statio	n design	1.					
Mapping of Co	ourse ()utcom	es with I	Progra	m Ou	tcomes	(POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10) PO1	1 PC)12
CO1	3	3	2	2	2	2	2	2		2	1		2
CO2	3	3	3	2	3	2	2	3	3	3	3		3
CO3	3	3	3	3	2	2	2	1	2	3	2		2
<u>CO4</u>	3	3	3	3	2	2	1		2	3			2
CO5	3	3	3	2	3	2	2	DCO	3	2	DO		3
COs / PSOs		PSO1	-		PSC			PSO	3			04	
<u>CO1</u>		3			2			1				2	
<u>CO2</u>		3		-	3			2				2	
CO3 CO4		3			3							2 2	
					3			2				2	
CO5 3/2/1 indicates	Strong	3 ith of C	orrolati	on 3-		, 2- Med	lium 1						
5/2/1 mulcates	Streng		onnenau		Ingn	, 2 - Mice	iiuiii, 1-						
Category		Dasic Sciences	Engineering Sciences	Humanities and Social Sciences		Program Core	Program Electives	Open Electives	Inter Disciplinary	(murdiageneration	Skill Component	Practical / Project	
							\checkmark						

UNIT IELEMENTS OF ORBITAL MECHANICS

Equation, Orbital Elements, Orbital Perturbation, Tracking and Orbital Determination, Orbital Correction Control.

ELEMENTS OF COMMUNICATION SATELLITE DESIGN

Space Environment, Spacecraft Configuration, Spacecraft Subsystem, Payload, Reliability Consideration Spacecraft Integration and Testing.

UNIT II MULTIPLE ACCESS TECHNIQUES

FDM – FM – FDMA, TDMA, SSMA / CDMA, RANDOM MULTIPLE Access Techniques; Packet Switching and Packet Satellite Networks Satellite on Board Processing and Switching.

UNIT III SATELLITE LINK DESIGN

Types of System: BSS, Performance Requirements and Standards for Telephony, TV and DATA, Performance Impairments, Noise, Interference, Inter modulation, Design of Typical Satellite Links.

UNIT IV DOMESTIC SATELLITE SYSTEMS

The INSAT System, International System, INTELSAT, IMMARSAT, Satellite Based Personal Communication LEO, ICO, GEO Systems.

UNIT V EARTH STATION DESIGN

Earth Station Configuration, Site Selection, Antenna and Tracking Systems, Receiver and Transmitter Subsystems, Terminal Equipment: Telephone / Video Interface, Rearward Links, Miscellaneous Facilities Like Echo Suppressor, FM Digitizers, Ground Station Measurements, Elements of Frequency Coordination and Control, VSAT Networks and Terminals – Satellite Broadcasting, Satellite TV Systems. **Practical component P: Include case studies / application scenarios**

Research component R: Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS:

Subject

- 1. T. Pratt and C.W. Bostian, "Satellite Communication" John Wiley & Son, 1986.
- 2. Abdul Namith, "Satellite Communication"-Lakshmi Publications.

REFERENCES:

- 1. B.N. Agarwal, "Design of Geosynchronous Spacecraft" Prentice Hall, 1986.
- 2. D. Roddy, "Satellite Communication" Prentice Hall, 1989
- 3. M. Richharia, "Satellite Communication SystemsDesign Principles", Macmillan Press Ltd. Second Edition 2003.

Tr./IL/ I

DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamiinadu, India.

Subject Neme (SATELLITE COMMUNICATION

Code:	Subject Name :SATELLITE COMMUNICATION	IY/LD/ ETL/IE	-	Lr	P/K	C
	Prerequisite: Analog Communication, Digital communication	Ту	3	0/0	0/0	3

209

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code			Name : UNICA		GEN	ERATI	ON			y / Lb/ TL/IE		L	T/SL r	P/R	C
EBEC22E29]	Prerequ	isite: D) Jigital	Comn	nunicati	on		T	y		3	0/0	0/0	3
L : Lecture T							roject	R : R	Rese	earch C:	Cred	its			
T/L/ETL : Th		b/Embe	dded Th	eory an	nd Lab)									
OBJECTIVI															
	arn the I									hlana at	5 C 1				
• To pr system		Dasic ui	luerstand	ung or	the ke	ey techno	Jiogles	and	ena	idlers of	300	eyoi	nd comm	lumcat	IOII
•	udy 5G	wireless	channe	l mode	ls										
	•				5										
COURSE OF Upon the com					nte mi	ll he abl	a to								
CO1						nunicati		ndard	ls						
CO2		<u> </u>	e 5G tec			inamouti	SII Buu	iuuiu	•••						
CO3				-		ultiplexi	ng tec	hniau	ies						
CO4	÷					G Comm	-								
CO5						reless Co			ions	3					
Mapping of				<u> </u>											
COs/POs	PO1	PO2	PO3	PO4	PO5		PO7)8	PO9	PO)10	PO11	PO	12
CO1	2	1	2	2	2	1	1			1	1	1	1	1	l
CO2	2	1	2	2	3	1	1			1	1	1	1]	l
CO3	2	3	3	3	3	1				1	_				
CO4	2	3	3	3	3	1								2	
CO5	2	3	3	1	DC	1				002		1	- DC		1
COs / PSOs		PSO1			PS				P	<u>SO3</u>			PS		
CO1 CO2		3			3					1				2	
CO2 CO3		3			3					1					
CO4		3			3										
C05		3			3									3	
H/M/L indica	atas Str		f Connol	lation	-		Modi		тт	ow				-	
	ates Str		Corre	auon	11- []	ligh, M-	wreur	uiii, .	11	20W					
							e				y		t	з	
	es			und	a	د	Program Elective		es		Inter Disciplinary		Skill Component	Practical / Project	
<u>v</u>	snc(5	цр.	es a ien	r r	5	Elec		tiv		ipli		Iodi	P_{n}	
Category	Basic Sciences		Sciences	Humanities and Social Sciences	4		m		Open Electives		Disc		Jon	al /	
late	ic		enc	mar	-64U	α Ω	gra		en I		чĽ		II C	ctic	
	Bas	2 2	Sciences	Humanities and Social Sciences	Droaram Cora		Pro		Op(Inte		Ski	Pra	
					<u> </u>	-							-		
							\checkmark								

Subject Code:	Subject Name : NEXT GENERATION COMMUNICATION	Ty / Lb/ ETL/IE	L	T/SL r	P/R	С
EBEC22E29	Prerequisite: Digital Communication	Ту	3	0/0	0/0	3

UNIT I INTRODUCTION TO FUNDAMENTALS OF WIRELESS COMMUNICATION 9Hrs

Evolution of cellular systems-Requirements, goals, and vision of the next generation wireless communication systems- Fading-Digital modulations-Performance Metrics

UNIT II **KEY CONCEPTS IN 5G**

Small cells: Past, present, and future trends of cellular networks coverage and capacity of small cell networks-Interference management, D2D architecture Towards IoT Spectrum sharing.Massive MIMO: Point-to-point MIMO, Virtual MIMO (relaying), multiuser MIMO MassiveMIMO, propagation channel model, channel estimation, uplink and downlink data transmission-capacity bounds- achievable rate- energy and spectral efficiency trade-off

UNIT III mmWAVE TECHNOLOGY AND MULTIPLE ACCESS TECHNIQUES 9 Hrs

Applications-Radiowave propagation-Physical layer design and algorithms- mmWaveMIMO challengeschannel modeling- channel estimation- Beamforming.Multiple access techniques: OFDM, filter banks, GFDM, OTFS, NOMA

UNIT IV TRANSITION TO 6G

Wireless energy harvesting-Machine learning, visible light communication, Intelligent reflecting surface (IRS)- Extremely Large Aperture Massive MIMO- Energy-rate trade-off- Simultaneous wireless information and power transfer (SWIPT)- time-switching- power splitting- Wireless powered communication networks -Outage probability and throughput.

UNIT V APPLICATIONS OF MACHINE LEARNING

Channel modeling and estimation Spectrum sensing and sharing Resource allocation (NOMA, mmWave massive MIMO).

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS:

- 1. R. Vannithamby and S. Talwar, Towards 5G: Applications, Requirements and Candidate Technologies., John Willey & Sons, West Sussex, 2017.
- 2. Manish, M., Devendra, G., Pattanayak, P., Ha, N., 5G and Beyond Wireless Systems PHY Layer Perspective, Springer Series in Wireless Technology

REFERENCES:

- 1. 1.T. S. Rappaport, R. W. Heath Jr., R. C. Daniels, and J. M. Murdock, Millimeter Wave Wireless Communication., Pearson Education, 2015.
- 2. 2.M. Vaezi, Z. Ding, and H. V. Poor, Multiple Access techniques for 5G Wireless Networks and Beyond., Springer Nature, Switzerland, 2019

9 Hrs

9 Hrs

Subject		Subje	ct Name :	COGN	NITIN	VE RA	DIO		y / Lb/	Ι			R	C	
Code:		D		:-::4 - 1 C	·		•		TL/IE					2	
EBEC22E3			quisite: D	0					Гу Ъ	3	6 0/0	0/0)	3	
L : Lecture Credits T/I	еТ:Ти и сти	itorial	SLr : Su	pervise	d Lea	rning P	': Pr	oject R	: Resear	ch C:					
		: Theo	ry/La0/En	ibedded	1 The	ory and	Lat)							
OBJECTI		s tha ci	udent to u	ndersta	nd the		nar	aradian	of com	itiva ra	dia ca	mmunice	tio	n	
			g technolo					-	li ol cogi			liiiiuiiica	uio	11	
			udent to u	•		•			litics on	d roquir	omont	. in			
			are define							-		5 111			
							-	-							
	-		tudent to t	ne evor	ving i	iext gei	iera	101 W1r6	eless net	works a	na the	IT			
	sociated		0												
		TCOMES (COs) : (3- 5) will be able to													
-	nts will	will be able to Describe the basics of the software defined radios.													
CO1		Describe the basics of the software defined radios.													
CO2		To learn the hardware and software architecture of software defined radio													
CO3		Design the wireless networks based on the cognitive radios													
CO4		To understand cognitive radio architecture													
CO5		Explain the concepts behind the wireless networks and next generation networks													
Mapping	of Cou	rse O	itcomes w	vith Pro	gran	1 Outco	me	s (POs)	-		-				
COs/POs	PO1	PO2	PO3	PO4	PO	5 PC)6	PO7	PO8	PO9	PO1	0 PO1	Ľ	PO12	
CO1	3	1	1	1	3]	-	3	1		2				
CO2	3	1	2	3	2			2	3	1		2			
CO3	2	1	3	1	2			2	1	1	2	2			
CO4	2 3	3	2	3	23			3	1 2	2	3	3			
CO5 COs /PSOs	3	-	<u> </u>	1	-	SO2)		PSO		3	PS	04		
CO1		3							130	3		3	04		
CO1 CO2		3			2				2			3			
CO2 CO3		3							2			3			
CO4		3				·			3			3			
CO5		3			2	2						3			
H/M/L ind	licates	Stren	gth of Co	rrelatio	n F	I- High	, M	- Mediu	ım, L-Lo)W					
			es										T		
			enc					es		Ý		t		ct	
	es		Sci	und Ses		ė		ctiv	es	inar		nen		oje	
ory	enc		gu	es a ienc		Cor		Ele	ctiv	ipli		odı		/Pr	
Category	Sci	Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core Program Electives Open Electives Inter Disciplinary Inter Disciplinary Skill Component Skill Component													
Ca	sic		gine	mal vial)gra)gr6	en	зrГ				ictic	
	Ba	Baa Brown Pro Pro Pro Pro Ski Intervention													
								\checkmark							

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) riyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject	Subject Name : COGNITIVE RADIO	Ty / Lb/	L	T/S	P/R	С
Code:		ETL/IE		Lr		
EBEC22E30	Prerequisite: Digital Communication	Ту	3	0/0	0/0	3

AND RESEARCH

TO BE UNIVER

UNIT I INTRODUCTION TO **SDR**

Definitions and potential benefits, software radio architecture evolution - foundations, technology tradeoffs and architecture implications, Antenna for Cognitive Radio.

UNIT II SDR ARCHITECTURE

Essential functions of the software radio, architecture goals, quantifying degrees of Programmability, top level component topology, Computational properties of functional components, interface topologies among plug and play modules, architecture partitions.

UNIT IIIINTRODUCTION TO COGNITIVE RADIOS

Making radio self-aware, the cognition cycle, organization of cognition tasks, structuring knowledge for cognition tasks, Enabling location and environment awareness in cognitive radios – concepts, architecture, design considerations.

UNIT IV COGNITIVE RADIO ARCHITECTURE

Primary Cognitive Radio functions, Behaviors, Components, A-Priori Knowledge taxonomy, observe phase data structures, Radio procedure knowledge encapsulation, components of orient, plan, decide, act phases; knowledge representation, design rules.

UNIT V NEXT GENERATION WIRELESS NETWORKS

The XG Network architecture, spectrum sensing, spectrum management, spectrum mobility, spectrum sharing, upper layer issues, cross – layer design.

Practical component P : Include case studies / application scenarios Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS:

- 1. Alexander M. Wyglinski, MaziarNekovee, and Y. Thomas Hou, "Cognitive Radio Communications And Networks - Principles And Practice", Elsevier Inc., 2010.
- 2. E. Biglieri, A.J. Goldsmith., L.J. Greenstein, N.B. Mandayam, H.V. Poor, "Principles of Cognitive Radio", Cambridge University Press, 2013.

Kwang-Cheng Chen and Ramjee Prasad, "Cognitive Radio Networks", John Wiley & Sons Ltd., 2009. 3. **REFERENCES:**

- 1. Khattab, Ahmed, Perkins, Dmitri, Bayoumi, Magdy, "Cognitive Radio Networks From Theory to Practice", Springer Series: Analog Circuits and Signal Processing, 2009.
- 2. J. Mitola, "Cognitive Radio: An Integrated Agent Architecture for software defined radio", Doctor of Technology thesis, Royal Inst. Technology, Sweden 2000.
- 3. Simon Haykin, "Cognitive Radio: Brain empowered wireless communications", IEEE Journal on selected areas in communications, Feb 2005.
- 4. Ian F. Akyildiz, Won Yeol Lee, Mehmet C. Vuran, Shantidev Mohanty, "NeXt generation /dynamic spectrum access / cognitive radio wireless networks: A Survey" Elsevier Computer Networks, May 2006.
- 5. Joseph Mitola, "Software Radio Architecture: A Mathematical Perspective" IEEE Journal on Selected Areas in Communication, Vol. 17, No. 4, April 1999.
- 6. HasariCelebi, Husevin Arslan, "Enabling location and environment awareness in cognitive radios", Elsevier Computer Communications, January 2008.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

9 Hrs

213

ELECTIVE V - Electronics Stream

Subject	Cod				INTRO M DES		TION 7	Ю		' / Lb/ TL/IE	L	T/SL	r P/R	C		
EBEC2	2E31						nstrum	entatio			3	0/0	0/0) 3		
			gineer													
L : Lect								Project	R : Res	earch C	: Cre	dits				
T/L/ETI			ab/Emt	bedded '	Theory	and La	b									
OBJEC																
						basic (concepts	s of ME	MS des	ign and	their	applic	cations			
COURS					(3-5)											
The Stu								101 .	1	•						
CO1				i			nsors an		cate tech	niques.						
CO2							S, syste									
CO3							design j				oirc	it and	avator			
CO4 CO5			ze and understand different issues related to design of MEMS circuit and system. xposed to the optical and RF based MEMS system.													
			e Outcomes with Program Outcomes (POs)													
COs/P	0	PO1														
		POI			PO4		PUo	P07	PUð	P09	P	JIU	PUII			
CO1		1	3	3	1	3	1	1	1	1		1	1	2		
CO2		3	1	3	3	1	1	1	1	1		1	1	2		
CO3		3	1	3	3	1	1	1	1	1		1	1	1		
CO4		3	1	3	1	3	1	1	1	1		1	1	2		
COS		1	3	1	3	1	1	3	1	1		1	1	1		
COs / P			PSO	1			02		P	503			PSO	4		
CO			3				3			2			1			
CO2			1				3			2			2			
CO3			3				3			2			2			
<u>CO</u> 4			3				2			2			2			
CO		C ·	3				3		4 7	2			2			
3/2/1 in	dicat	es Stre	ngth of	Corre	lation	3- Hi	gn, 2- N	ledium	, 1-Low							
	Category	Basic Sciences	Engineering Sciences	0	Humanities and Social Sciences	Prooram Core		Program Electives	Open Electives		Inter Disciplinary		Skill Component	Practical / Project		
								~								

UNIT I **INTRODUCTION TO MEMS**

Engineering

MEMS and Microsystems, Miniaturization, Typical products, Micro sensors, Micro actuation, MEMS with micro actuators, Micro accelerometers and Micro fluidics, MEMS materials, Micro fabrication

AND RESEARC

DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Perlyar E.V.R. High Road, Maduravoyal, Chennal-95. Tamilnadu, India.

Subject Name : INTRODUCTION TO

Prerequisite: Electrical and Instrumentation

MEMS SYSTEM DESIGN

UNIT II **MECHANICS FOR MEMS DESIGN**

Elasticity, Stress, strain and material properties, Bending of thin plates, Spring configurations, torsional deflection, Mechanical vibration, Resonance, Thermo mechanics - actuators, force and response time, Fracture and thin film mechanics.

UNIT III ELECTRO STATIC DESIGN

Electrostatics: basic theory, electro static instability. Surface tension, gap and finger pull up, Electro static actuators, Comb generators, gap closers, rotary motors, inch worms, Electromagnetic actuators. Bi stable actuators.

UNIT IV CIRCUIT AND SYSTEM ISSUES

Electronic Interfaces, Feedback systems, Noise, Circuit and system issues, Case studies - Capacitive accelerometer, Peizo electric pressure sensor, Modeling of MEMS systems, CAD for MEMS.

UNIT V INTRODUCTION TO OPTICAL AND RF MEMS

Optical MEMS, - System design basics - Gaussian optics, matrix operations, resolution. Case studies, MEMS scanners and retinal scanning display, Digital Micro mirror devices. RF Memes - design basics, case study - Capacitive RF MEMS switch, performance issues.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOK:

Subject Code:

EBEC22E31

- 1. Stephen Santuria, "Microsystems Design", Kluwer publishers, 2000.
- 2. NadimMaluf, "An Introduction to Micro Electro Mechanical System Design", Artech House, 2000
- 3. Mohamed Gad-el-Hak, editor, "The MEMS Handbook", CRC pressBaco Raton, 2000.

REFERENCES:

- 1. Stephen Santuria, "Microsystems Design", Kluwer publishers, 2000.
- 2. NadimMaluf, "An Introduction to Micro Electro Mechanical System Design", Artech House, 2000
- 3. Mohamed Gad-el-Hak, editor, "The MEMS Handbook", CRC pressBaco Raton, 2000.
- 4. Tai Ran Hsu, "MEMS & Micro Systems Design and Manufacture" Tata McGraw Hill, New Delhi, 2002.

215

9Hrs

9 Hrs

9Hrs

9Hrs

9 Hrs

С

3

P/R

0/0

T/SLr

0/0

NSTITUTE

L

3

Ty / Lb/

ETL/IE

Ty

Subject Code:				Name : N OF A	ANAL	YSIS A		ınai-95. T	Ту	/Lb/ `L/IE	L		C/S Lr	P/R	C	
	<u> </u>							D 1			2			0.10	-	
EBEC2	2E32		_		-		d State	e Device	s,	Ту	3	0/0		0/0	3	
L·Leo	tura			Integrat			ing D ·	Project 1	P · Pase	arch C	· Cro	dite				
				nbedded	-		•	Tiojeet	IX . INCSC		. Cit	uns				
OBJE			// Lau/ L1	noeuueu	Theory		10									
	-		fundan	nentals o	f Analog	n Desin	n and c	current n	virrors							
				erstions (minis							
			-		-			tiplier ar	d PLL							
								itched ca		filters.						
		-		(COs):			5 01 0 11		-p							
			be able													
CO1				al operat	ing prin	ciple of	analog	g ICs.								
CO2			-	-		_	_		followe	s and I	Noise	e				
CO3	Ill	ustrate	ze the characteristics of poles with nodes, source followers and Noise ate the concepts for design of analog multiplier and PLL													
CO4			ne MOS amplifiers													
CO5			n MOS switched capacitor filters.													
Mappi	ing o	f Cou	urse Outcomes with Program Outcomes (POs)													
COs/PC		PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1		3	3	3	3	3	2	3	2	2		1	3		2	
CO2		3	3	3	3	3	3	2	1	3		1	3		1	
CO3		3	3	3	3	3	3	3	1	3		1	2		2	
CO4		3	3	3	3	3	2	3	1	2		1	2		2	
CO5		3	3	3	3	2	3	3	1	2		1	1		2	
COs /PS	Os		PSO	1		PSO	2		PS	03			PS	SO4		
CO1			3			3			3					3		
CO2			3			3			2					3		
CO3			3			3			2					2		
CO4			3			3			2					2		
CO5			3			3			2					1		
3/2/1 in	ndica	ates St	trength	of Corr	elation	3- Hi	gh, 2- I	Medium	, 1-Lov	7						
	Category	Basic Sciences		Engineering Sciences	Humanities and Social Sciences	Program Core		Program Electives	Open Electives		Inter Disciplinary		Skill Component		Practical / Project	
								\checkmark								
CATIONAL AND RESEARCH INSTITU DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) eriyar E.V.R. High Road, Naduravoyal, Chennai-95, Tamiinadu, India.

Subject Code:	Subject Name : ANALYSIS AND DESIGN OF ANALOG IC's	Ty /Lb/ ETL/IE	L	T/S Lr	P/R	С
EBEC22E32	Prerequisite: : Analysis of Solid State Devices, Linear Integrated circuits	Ту	3	0/0	0/0	3

UNIT I INTRODUCTION TO ANALOG IC DESIGN AND CURRENT MIRRORS 9 Hrs

Concepts of Analog Design - General consideration of MOS devices – MOS I/V Characteristics – Second order effects – MOS device models. Basic current mirrors- Cascade current mirrors- Active current mirrors- Large and Small signal analysis- Common mode properties.

UNIT II OPERATIONAL AMPLIFIERS AND NOISE

General considerations- Miller Effect and Association of Poles with Nodes, Common source stage- Source followers- Common gate stage- Cascade stage- Differential pair. Noise- Statistical characteristics of noise-Types of noise- Representation of noise in circuits- Noise in single stage amplifiers- Noise in differential pairs- Noise Bandwidth

UNIT III ANALOG MULTIPLIER AND PLL

Analysis of four Quadrant and Variable Trans-conductance Multiplier, Phase Locked Loops-Simple PLL-Charge pump PLLs - Non ideal Effects in PLLs- Delay locked loops- its Applications.

UNIT IV MOS ANALOG ICS

EDUCAT

Design of MOS Operational Amplifier, MOS Power Amplifier. CMOS Operational Amplifier: Introduction and analysis of Cascade Amplifier and Telescopic Cascade Amplifier. Design of CMOS op-amps, Compensation of op-amps, Design of Two stage op-amps, Cascade op-amps.

UNIT V SWITCHED CAPACITOR CIRCUITS

General Considerations- Sampling switches- Switched Capacitor Amplifiers- Switched Capacitor Integrator- Switched Capacitor Common mode feedback.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXTBOOKS:

- 1. Behzad Razavi, —Design of Analog CMOS Integrated Circuits^{II}, Tata McGraw Hill, 2001, 33rd reprint, 2016.
- 2. Grey and Meyer, "Analysis and Design of Analog Ics." Wiley International, 1996.

REFERENCES:

- 1. Kenneth R.Laker, Willy M.C.Sansen, William M.C.Sansen, "Design of Analog Integrated Circuits and Systems", McGraw Hill, 1994
- 2. Grey, Wolley, Brodersen, "Analog MOS Integrated Circuits", IEEE Press, 1989.
- 3. Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. Meyer, Analysis and Design of Analog Integrated Circuits, 5th Edition, Wiley, 2009

9 Hrs

9 Hrs

9 Hrs

Subject Cod	e:	Subje SYST		e : CYB	ER PH	YSIC	CAL	T y Lb IE	7/ /ETL/	L	T/S Lr	P/R	C
EBEC22E33	3			erequisit					Ту	3	0/0	0/0	3
L : Lecture			-			•	Projec	et R :	Research	C: Cre	edits		
T/L/ETL : 7		Lab/Eml	bedded 7	Theory a	nd Lab								
OBJECTIV													
				s of cybe		-							
 To imp 	olement	a cyber	-physica	ıl system	for aut	omate	ed cor	trol.					
	-			methods	for CP	S.							
COURSE (OUTCO	OMES (COs) : ((3- 5)									
The Student													
CO1				of cyber			stem.						
CO2	-	-		ble contr		em.							
CO3	•			control sy									
CO4	Apply	/ formal	method	s for safe	ety of C	CPS.							
CO5	Deplo	ya secu	red envi	ronment	for CP	S.							
Mapping of	Course	Outcor	nes witl	h Progra	ım Out	come	s (PO	s)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	6 P	07	PO8	PO9	PO10	PO11	PO12
CO1	3	1	3	3	1	1		2	1	1	1		2
CO2	1	3	3	3	3	1		1	1	2			
CO3	3	1	3	3	1	1			2	1		2	
CO4	1	3	3	3	1	2			1		1	1	2
CO5	1	1	1	1	1	1		1	1		2		1
COs /PSOs		PSO1			PSO2				PSO3			PSO4	
CO1		3			3				2			1	
CO2		1			3				1			2	
CO3		3							2			3	
CO4		1			3				1			2	
CO5		3	~ -		3				2			2	
3/2/1 indicat	es Stre	ngth of	Correla	tion 3	3- Higł	1, 2- N	Aediu	m, 1-	Low	1			
Category	Basic Sciences	Engineering Sciences	-	Humanities and Social Sciences	Program Core		Program Electives		Open Electives	Inter Disciplinary	Skill Component		Practical / Project
							\checkmark						

DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95, Tamilnadu, India.

Subject Code:	Subject Name :CYBER PHYSICAL SYSTEM	T y/ Lb/ ETL/IE	L	T/S Lr	P/R	С
EBEC22E33	Prerequisite: None	Ту	3	0/0	0/0	3

AND RESEARCH

UNIT I **INTRODUCTION TO CPS**

Basic Principles of Design and validation – Industry 4.0 – IoT Implications – Processors, Sensors and Actuators - Wireless HART, CAN , Automotive Ethernet-RTOS

UNIT II AUTOMATED CONTROL DESIGN

Dynamic System and Stability – Controller Design Techniques – CLFs, MLFs under slow switching -Performance under Packet drop and noise

UNIT III **CPS IMPLEMENTATION**

Mapping of features to software to ECUs –Effect of scheduling – Bus Latency – sense and actuation faults on control performance-network congestion-Control, Bus and Network Scheduling

UNIT IV FORMAL METHODS FOR SAFETY

Advanced Automata based Modeling and Analysis - Introduction, Timed and Hybrid Automata, Trajectories and zenoness, and formal analysis, CPS software-weakest Pre-conditions and bounded model checking

UNIT V SECURE DEPLOYMENT

Secure Task Mapping and Partitioning – State Estimation for attack detection – Case Study – Automated Lighting and AC control in green buildings

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS:

- 1. Rajeev Alur, "Principles of Cyber Physical Systems", MIT Press@2015,ISBN:0262029111 9780262029117
- 2. Marwedel, Peter"Embedded System Design Embedded Systems Foundations of Cyber-Physical Systems, and the Internet of Things"SpringerISBN 978-3-319-56045-8

REFERENCES:

- 1. 1. Rolf Dreschler, Ulrich Kuhne, "Formal Modeling and Verification of Cyber Physical System",.
- 2. DhandaP.Rawat, Joel JPC Rodrigues, Ivan StojMenovic "Cyber Physical Systems : From Theory to Practice", CRC Press, 2016

9 Hrs

9 Hrs

9 Hrs

Subject	Cod		bject N STEM		DIGIT	AL CO	ONTR	OL		Ty / ETL		L	T/S	Lr	P/R		С
EBEC2	2E34	l Pr	erequi	site: C	ontrol S	System	is Engi	ineer	ing	Ту		3	0/	0	0/0)	3
L : Lect	ure T	: Tutor	rial Sl	Lr : Sup	pervised	Learni	ing P:	Proj	ect 1	R : Rese	arch C	Cre	dits				
T/L/ET	L : Tł	neory/L	ab/Emt	bedded '	Theory	and La	b	·									
OBJEC	TIV	ES :															
					s of digi												
	-		•	· .					their	analysi	S						
					ots in di												
					control												
					nalysis	in disci	rete do	main									
COURS					(3-5)												
The Stu					vital as a	+== 1	atom -		ata								
CO1	O1Acquire knowledge of digital control system concepts.O2Discuss the transient and steady state response of control system.																
	O2 Discuss the transferit and steady state response of control system. O3 Analyze stability of digital control system.																
C03																	
CO4 CO5		Test the controllability and observability of a given system.															
			Course Outcomes with Program Outcomes (POs)														
	-		PO2	PO3	PO4		-		$\overline{)}$		DOO	D	10	D	211	D	112
COs/P CO1		PO1 3	3	3	PO4 2	PO5 2	PO6			PO8	PO9)10 2		<u>) 2</u>)12 3
CO1 CO2		3	3	3	2	3	2		1 2	1	3		2		2 3		<u>3</u> 2
C02		3	3	3	3	3	1		3	$\frac{1}{2}$	3	-	2 1		<u>3</u>		<u>2</u> 1
C03		3	3	3	3	3	2		2	$\frac{2}{2}$	3		2		3		$\frac{1}{2}$
C04		3	3	3	3	2	3	-	3	$\frac{2}{2}$	3	_	2		3		3
CO ₅ /P		5	PSO:	-		PSC	-		5		-		2		PSO ²		5
CO			3	L		3)			2					2	r	
CO			3			3				2					3		
CO			3			3				3					3		
CO			3			3				3					3		
CO			3			3				3					3		
3/2/1 in		es Stre		Corre	lation		gh, 2- I	Medi	um,	1-Low			·				
					ial												
			ces		oci												
			ien		L S			ves				Ì		nt		ect	
	JIY	ces	Sc		anc	re		<u>scti</u>		ves	lina			one		roj	
	Category	ien	ing)	ies	C		Elé		cti	cin			лрс		\mathbf{P}	
	Cat	Sci	eer		nit	un		un		Ele	Disc		,	10		cal	
	0	Basic Sciences	Engineering Sciences) I	Humanities and Social Sciences	Program Core		gr;		Open Electives	er [;	Skill Component		Practical / Project	
		Ba	Ens	-	Hu Sci	Prc		Program Electives		Op	Inter Disciplinary			SK		\Pr{a}	
								\checkmark									
		1								1	1						

Subject Code:	Subject Name : DIGITAL CONTROL	Ty / Lb/	L	T/SLr	P/R	С	
	SYSTEM	ETL/IE					
EBEC22E34	Prerequisite: Control Systems Engineering	Ту	3	0/0	0/0	3	

UNIT I **INTRODUCTION**

Introduction to digital control - Sampling Process - Sample and Hold Circuit - Zero and First Order hold -Z-Transform – Inverse Z- Transform – Region of convergence – Initial and Final Value Theorem

UNIT II PULSE TRANSFER FUNCTION AND TIME RESPONSE

Block diagram reduction methods - Reduction Rules- Multi-loop - MIMO Systems - Signal Flow Graphsteady state error - error transfer functions- Error Constants-Time-Domain Analysis of Second Order Systems-Time Response

UNIT III **STABILITY**

Introduction-Jury Stability Test- Schur-Cohn stability Test- Bilinear transformation- Stability by Pole Location - Root locus method- Bode Plot- Nyquist Plot.

UNIT IV DIGITAL PID CONTROLLER

Cascade Compensation- Digital Lag Lead Compensator by Bode method- Design of P,PI and PID Controller- Ziegler's- Nichols Method, Cohen-Coon Method

UNIT V STATE SPACE ANALYSIS

Realization of Pulse Transfer Function- Diagonalisation- discretization of Continuous time systemsState Transition Matrix- Solution of Discrete-time state equations- Controllability and Observability

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS:

- 1. V.I.George and C.P.Kurien, Digital Control System, Cengage Learning, 2012.
- 2. B.C.Kuo, Digital Control System, 2nd Edition, Oxford University Press, 2010.
- 3. M.SamiFadali, Antonio Visioli, Digital Control Engineering Analysis and Design, Academic Press, 2013.

REFERENCES:

- 1. M.Gopal, 'Digital Control and State Variable Methods', Tata McGraw Hill, 3rd Edition, 2009.
- 2. C.M. Houpis, G.B.Lamount, 'Digital Control Systems- Theory, Hardware, Software', International Student Edition, McGraw Hill Book Co., 1985.
- 3. KannanM.Moddgalya, Digital Control, Wiley India, 2007.
- 4. C.L.Philips and J.M.Pan, "Feedback Control System, Pearson, 2013.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

ELECTIVE V – Communication Stream

Subject	Code			ame : l ERENC					ſΥ		Lb/ L/IE	L	T/S	Lr	P/R		С
EBEC2	2E35			ite:Fiel agnetic		Wave				Ту		3	0/0	0	0/0)	3
L : Lectu	ıre T					Learni	ng P:	Projec	tR	: Resea	arch C:	Cre	dits				
T/L/ETI							0	5									
OBJEC	TIVE	ES :															
• T	o unde	erstand	EMI S	ources,	EMI pi	oblems	and th	neir sol	lutior	n meth	ods in	PCB	leve	1 / Sı	ubsys	stem	
ar	nd sys	tem lev	el desig	gn.													
			e emiss	ion Imr	nunity 1	level fro	om dif	ferent	syste	ms to	couple	with	the p	presc	ribed	1 EM	ίC
	andar																
COURS				COs): (3- 5)												
The Stud																	
CO1				rces of				S									
CO2				ıpling p													
CO3				uremen													
CO4				ol and is					EMI								
CO5		-	Bs for various applications in EMI control e Outcomes with Program Outcomes (POs)														
	<u> </u>		e Outcomes with Program Outcomes (POs)														
COs/P		PO1	PO2	PO3	PO4	PO5	PO6	_	7]	PO8	PO9	_)10	PC)11	PC	D12
CO1		1	1	1	2	1	2	2		3		-	2				3
CO2		3	2	1	2	2	2	2		2			3				2
CO3		2	2	3	2	2	3	2		3	2		3		3		2
CO4		1	2	3	3	3	2	2		2			3		2		2
CO5		2	2	3	2	2	2	2		2	2		2				2
COs / P			PSO	1		PS				PS]	PSO4	4	
CO			1				2			2					2		
CO			2				3			2					2		
CO			2				3			2					2		
CO			2				3			2					1		
CO: 3/2/1 inc		s Strer	2 ngth of	Correl	ation	2 3- Hig		Aediu	m, 1-	2 Low	2				2		
									-								
	Category Basic Sciences Engineering Sciences)	Humanities and Social Sciences	Program Core		Program Electives		Open Electives	Inter Disciplinary			Skill Component		Practical / Project	
								\checkmark									

	(An IS	O 21001	1:2018 Ce	rtified Instit	ution)	
Periyar I	E.V.R. High	Road, M	aduravoyal,	Chennai-95.	Tamilnadu,	India.

Subje	ct Code:	Subject Name : ELECTROMAGNETIC	Ty/ Lb/	L	T/SLr	P/R	С	l
		INTERFERENCE AND COMPATIBILITY	ETL/IE					
EBEC	C22E35	Prerequisite: Field and Wave	Ту	3	0/0	0/0	3	l
		Electromagnetics	-					

UNIT I **EMI ENVIRONMENT**

Sources of EMI, Conducted and Radiated EMI, Transient EMI, EMI-EMC Definitions and Units of Parameters. Units of Specification, Civilian Standards Military Standards.

UNIT II EMI COUPLING PRINCIPLES

Conducted, Radiated and Transient Coupling, Common Impedance Ground Coupling, Radiated Common Mode and Ground Loop Coupling, and Radiated Differential Mode Coupling, Near Field Cable to Cable Coupling, Power Mains and Power Supply Coupling.

EMI MEASUREMENTS UNIT III

EMI Test Instruments Systems. EMI Test, EMI Shielded Chamber, Open Area Test Site, TEM Cell Antennas, Conductors Sensors / Injectors / Couplers. Military Test Method and Procedures, Calibration Procedures.

UNIT IV **EMICONTROL TECHINOUES**

Shielding, Filtering, Grounding, Bonding, Isolation Transformer, Transient Suppressors, Cable Routing, Signal Control, Component Selection and Mounting.

UNIT V **EMI DESIGN OF PCBs**

PCB Traces Cross Talk, Impedance Control, Power Distribution Decoupling, Zoning Motherboard Design and Propagation Delay Performance Models.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS:

1. V.P. Kodali, "Engineering EMC Principles, Measurements and Technologies", IEEE Press, 1996.

2. Clayton R. Paul – Introduction to Electromagnetic compatibility – Wiley & Sons – 1992

REFERENCES:

- 1. Bernhard Keiser. "Principles of Electromagnetic Compatibility", Artech House, #rd Ed, 1986.
- 2. Henry W. Ott, "Noise Reduction Techniques in Electronic Systems", John Wiley and Sons, Newyork, 1988.

9 Hrs

9 Hrs

9 Hrs

B.Tech ECE 2022 Regulation

9 Hrs

Subject	Cod	e: Si	ubject N			NCED				-	/ Lb/	L	T/S	Lr	P/R		С
		S	IGNAL	PROC	ESSIN	G				ET	L/IE						
EBEC2	2E36	P	rerequi	site: Di	gital Si	gnal Pr	ocessii	ng		Ту		3	0/0	0	0/0		3
L : Lect	ure T	: Tuto	rial SI	Lr : Sup	ervised	Learni	ng P:	Projec	tR:	Rese	arch C	: Cre	dits				
T/L/ETI	L : Tł	neory/L	.ab/Emb	edded '	Theory	and Lał)										
OBJEC																	
			learns i											oces	sing.		
			knows		•	diction	and filt	tering	conce	epts &	z techn	iques	5.				
COURS			· · ·		(3- 5)												
The Stu																	
CO1			e chara			Ŭ	<u> </u>		<u> </u>								
CO2			erent typ	A				their r	node	ls.							
CO3			d the co	<u> </u>				-									
CO4			ferent ty														
CO5			tirate sig	× •						er ban	KS.						
	_		urse Outcomes with Program Outcomes (POs)01PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12														
COs/PO	Os	PO1	-						7 F			-				PO	<u> 312</u>
CO1		3	3	2	3	3	3	2		2	3		2		3		1
CO2		3	3	3	3	3	3	3		2	3		1		1		2
CO3		3	3	3	2	3	3	3		3	2		3		2		2
CO4		3	3	3	3	3	2	2		3	2		3		3		2
CO5	h	3	3	3	3	3	2	3		3	3		3		3		3
COs /PS			PSO1		_	<u>PSC</u>)2			PS(PSO-		
C01			3			3				3					2		
CO2			3			3				2					3		
CO3			3			3				3					3		
CO4			3		_	3				3					3		
CO5			3			3		<u> </u>	1	3					3		
3/2/1 in	uicat	es stre	ength of	Corre	ation	3- Hig	n, 2- N	iediui	n, 1-	LOW							
			ces		Social												
	Category Basic Sciences Engineering Sciences								Open Electives	Inter Disciplinary			Skill Component		Practical / Project		
								\checkmark									

UNIT I DISCRETE RANDOM SIGNAL PROCESSING

SIGNAL PROCESSING

Subject Name : ADVANCED CONCEPTS IN

Prerequisite: Digital Signal Processing

9 Hrs Discrete Random Process, Expectation, Variance, Co-Variance, Scalar Product, Energy of Discrete SignalParseval's Theorem, Wiener Khintchine Relation-Power Spectral Density –Periodogram – Sample AutocorrelationSum Decomposition Theorem, Spectral Factorization Theorem – Discrete Random Signal Processing by Linear Systems-Simulation of White Noise – Low Pass Filtering of White Noise.

SPECTRUM ESTIMATION UNIT II

FDUCATIONAL

Subject Code:

EBEC22E36

Non-Parametric Methods-Correlation Method - Co-Variance Estimator - Performance Analysis of Estimators - Unbiased, Consistent Estimators - Periodogram Estimator - Barlett Spectrum Estimation -Welch Estimation – Model based Approach – AR, MA, ARMA Signal Modeling – Parameter Estimation using Yule-Walker Method.

UNIT III LINEAR ESTIMATION AND PREDICTION

9 Hrs Maximum likelihood criterion-efficiency of estimator – Least mean squared error criterion – Wiener filter – Discrete Wiener Hoff equations – Recursive estimators-Kalman filter – Linear prediction, prediction errorwhitening filter, inverse filter – Levinson recursion, Lattice realization, and Levinson recursion algorithm for solving Teoplitz system of equations.

UNIT IV **ADAPTIVE FILTERS**

FIR adaptive filters – Newton's steepest descent method-adaptive filter based on steepest descent method – Widrow Hoff LMS adaptive algorithm - Adaptive channel equalizations - Adaptive echo chancellor -Adaptive noise cancellation – RLS adaptive filters –Exponentially weighted RLS – sliding window RLS – Simplified IIR LMS adaptive filter

MULTIRATE DIGITAL SIGNAL PROCESSING UNIT V

Mathematical description of change of sampling rate - Interpolation and Decimation -continuous time model – Direct digital domain approach -Decimation by an integer factor – Interpolation by an integer factor - single and multistage realization - Poly phase realization - Application to sub band coding -Wavelet transform and filter bank implementation of wavelet expansion of signals.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis **Total Number of Hours: 45**

TEXT BOOKS:

- 1. Monson H. Hayes, "Statistical Digital Signal Processing and Modeling", John Wiley and Sons, Inc., New York, 1996
- 2. Sopocles J. Orfanidis, "Optimum Signal Processing", McGraw Hill, 1990.

REFERENCES:

- 1. Monson H. Haves, "Statistical Digital Signal Processing and Modeling", John Wiley and Sons, Inc., New York, 1996
- 2. Sopocles J. Orfanidis, "Optimum Signal Processing", McGraw Hill, 1990. .
- 3. John G. Proakis, Dimitris G. Manolais, "Digital Signal Processing", Prentice Hall of India, 1995

P/R

0/0

С

3

T/SLr

0/0

L

3

Ty / Lb/

ETL/IE

Ty

9 Hrs

9 Hrs

Subject Co	de:	•	ect Name MUNIC			DE B	ANI	D	Ty /Lb/ET /IE	L	T/ Li		P/R	C
EBEC22E3	87	Prer	requisite	: Digital	Comn	nunic	atio	n	Ту	3	()/0	0/0) 3
L : Lecture				•		•		U	R : Resea	rch C:				
Credits T/I	L/ETL	: Theor	y/Lab/Ei	mbedded	l Theor	y and	Lab							
OBJECTI														
			peration			n								
	•		ransmitte											
• To stu	udy ab	out the	character	ristics of	UWB	anten	nas							
COURSE	OUT	COMES	S (COs)	: (3-5)										
The Studen														
C01	Und	erstand	the oper	ation of	Ultra V	Vide E	Band	Syste	ms					
CO2	Lear	n the p	roperties	of UWE	3 anten	nas								
CO3	Desi	ign a Ù	WB trans	smitter										
CO4			WB rece											
CO5	Dev	elop a r	nulti-car	rier UW	B recei	ver								
Mapping	of Cou	rse Ou	tcomes v	with Pro	gram (Outco	mes	(POs)		1			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO	5	PO7	PO8	PO9	PO10]	PO11	PO12
CO1			3	3	2			3	2		3		2	3
CO2			3	2	2			2	3		3		3	3
CO3	3	3	3	3	2			2			3		2	2
CO4	3	3	3	3	2			2						
CO5	3	3	3	3	3			2	3	3			DCOA	
COs /PSO	s	PSC	01		PSO	02			PSO3				PSO4	
CO1					3				2				2	
CO2					3				3				2	
CO3 CO4		2			3								n	
C04 C05		2	,		3				2				$\frac{2}{2}$	
3/2/1 indic	rates S	trenoth	of Cor	elation	-	igh. 2.	. Me	dium			I		4	
		- ength				·8···, <i>4</i>	1,10	-urunny						
Category	Basic Sciences		Engineering Sciences	Humanities and Social Sciences	Program Core		Program	Electives	Open Electives	Inter Discinlinery	(mudicera	Skill Component	- - -	Project
							~							

Subject Code:	Subject Name : ULTRA WIDE BAND COMMUNICATION	Ty /Lb/ ETL/IE	L	T/S Lr	P/R	C	
EBEC22E37	Prerequisite: Digital Communication	Ту	3	0/0	0/0	3	

UNIT IINTRODUCTION TO UWB SYSTEMS

Overview of UWB - UWB Concept - UWB Signals: Impulse (I) and Multi-Carrier (MC) Signals, Uniqueness of UWB Systems; I-UWB System Model; MC-UWB System Model. Advantages of UWB Systems - Challenges in UWB Systems - Single Band Vs. Multi Band - Applications of UWB Systems -Regulatory, Legal & Other Controversial Issues.

UNIT II **INTERFERENCE, COEXISTENCE & UWB ANTENNAS**

Interference of UWB on NB: UWB Pulse Model - Effect of NB Receive Filter - BER Analysis - Time-Hopped Case - Aggregate of UWB Interference Modeling: Received Power - Asymptotic PDF of Aggregate Noise - Amplitudes: Aggregated PDF - Bernoulli and Poisson Models - Interference Analysis: NB on UWB, UWB on UWB - Basic Properties of UWB Antennas.

UWB TRANSMITTER DESIGN UNIT III

IUWB Signal Generators: Avalanche Pulse Generators - Step Recovery Diode Pulse Generators- Tunnel Diode Pulsars - Pulse Circuits Suitable for Integrated Circuits - Modulators- I-UWB Transmitters: TH-PPM and TH(A-PAM) UWB Signals - OOC-PPM UWB Signals - DSUWB Signals - TR UWB System-MC-UWB Transmitters: CI-UWB Signals - FH-UWB Systems - OFDM-UWB Systems - Spectral Encoded UWB Communication System.

UNIT IV **IUWB RECEIVER DESIGN**

System Model- Threshold/Leading Edge Detection - Correlation Detection (CD) Receivers - RAKE Receivers - Multi-User Detection (MUD) UWB Receivers- Hybrid RAKE IMUD Receivers - Auto Correlation TR UWB Receivers- Synchronization and Timing Issues - Digital I-UWB Implementation.

UNIT V **UWB COMMUNICATION STANDARDS AND ADVANCED TOPICS** 9 Hrs

standardization in wireless personal area networks - DS-UWB proposal - MB-OFDM UWB proposal -IEEE proposals for UWB channel models - UWB ad-hoc and sensor networks - MIMO and Space-time coding for UWB systems - Self interference in high data-rate UWB communications - Coexistence of DS-UWB with WIMAX.

Practical component P: Include case studies / application scenarios Research component R: Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS:

- 1. Jeffrey H. Reed, "An Introduction to UWB Communication Systems, Prentice Hall, 2005.
- 2. Robert Aiello and Anuj Batra, "UWB Systems: Technologies and Applications", Newnes- Elsevier, 2006.

3. FaranakNekoogar, "UWB Communications: Fundamentals and Applications", Prentice Hall, 2005. **REFERENCES:**

- 1. Ultra Wideband Antennas: Design, Methodologies, and Performance BY (Author), Marco Antonio Peyrot-Solis (Author), HildebertoJardón Aguilar
- 2. Design of CMOS RFIC Ultra-Wideband Impulse Transmitters and Receivers Book by Cam Nguyen and Meng Miao 3. Ultra-Wideband Antennas and Propagation: For Communications, Radar and Imaging 1st Editionby BenAllen (Editor), Mischa Dohler (Editor), Ernest Okon (Editor), Wasim Malik (Editor), AnthonyBrown (Editor), David Edwards

9 Hrs

9 Hrs

9 Hrs

Subject Cod		bject N GNAL				ER .	ACOU	JST		Ty / Lb/ ETL/IE	L	T/S r		P/R	C
EBEC22E38		erequis				oces	sing		Т	Cy.	3	0/	0 (0/0	3
L : Lecture T T/L/ETL : T							: Proje	ct]	R : Rese	earch C:	Cred	its			
OBJECTIV	ES :														
	rn the ba						ustics								
	dy the ch				•										
• To app	ply the pr	inciples	s of sign	nal proc	essing	for p	ractica	ıl sc	olutions						
COURSE O The Students			Os):(3- 5)											
CO1	Analyz		onagati	on of se	ound in	wate	r								
CO1	Discuss	-						nt no	oise in s	ea					
CO2 CO3															
								a s	ignal un	der wate	л.				
CO4	Analyz	e the ch	aracter	istic of	sonar s	ysten	18								
CO5	Perceiv	e the ar	chitectu	re of A	DSP 2	18x a	and TM	AS 3	320c541	x Proces	ssors				
Mapping of	Course	Outcon	nes wit	h Progi	ram Ou	itcor	nes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO)7		PO9	PO	10	PO1	1	PO12
CO1	3	3	3	3	3	3	2								2
CO2	3	3	3	3	3	3	2								2
CO3	3	3	3	3	3	3	2								2
<u>CO4</u>	3	3	3	3	3	3	2								2
CO5	3	3	3	3	3	3	2	1	Dí		L r		DC		2
COs / PSOs	;	PSO:	L		PS				R	<u>503</u>				04	
CO1 CO2		3			3					<u>3</u> 3				3 3	
<u>CO2</u> CO3		3			3					<u> </u>	-+			3 3	
<u> </u>		3			3					3	-+			<u>3</u>	
C04 C05		3			3					3	-+			3	
3/2/1 indicat	es Stren	-	Correla	tion 3	-		Mediu	ım,	1-Low	-	1_			5	
					8	,		,							
Category	Basic Sciences	Engineering Sciences		Humanities and Social Sciences	Program Core		Program Electives		Open Electives	Inter Disciplinary		Skill Component	-	Decetical / Deciset	r tactical / rtuject
							\checkmark								

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Taminadu, India.

Subject Code:	Subject Name : UNDER WATER ACOUSTIC	Ty / Lb/	L	T/SL	P/R	С
	SIGNAL PROCESSING	ETL/IE		r		
EBEC22E38	Prerequisite: Digital Signal Processing	Ту	3	0/0	0/0	3

ND RESEARCH

NSTITUTE

UNIT I FUNDAMENTALS OF UNDERWATER ACOUSTICS

The Ocean acoustic environment, measuring sound level, Sources and receivers, relevant units, sound velocity in sea water, typical vertical profiles of sound velocity, Sound propagation in the Oceancharacteristic sound propagation paths-deep water and shallow water, Range dependent environment. Sound attenuation in sea water, Bottom Loss, Surface bottom and volume scattering, Snell's law for range dependent ocean.

UNIT II AMBIENT NOISE IN THE SEA

Sources of ambient noise-introduction, different frequency bands of ambient noise, process of surface noise generation, shallow water, variability of ambient noise, spatial coherence of ambient noise, directional characteristics of ambient noise, intermittent sources of noise- biological & non biological (rain, earthquakes, explosions and volcanoes).

SIGNALS, FILTERS AND RANDOM FUNCTIONS **UNIT III** 9 Hrs

Fourier representations, filters and noise, digital filter design techniques, temporal resolution and bandwidth of signals, signal to noise power ratio, Estimates of auto-covariance, power spectrum, cross covariance and cross spectrum.

UNIT IV CHARACTERISTICS OF SONAR SYSTEMS 9 Hrs

Sonar systems, active and passive sonar equations, transducers and their directivities, Sensor array characteristics-array gain, receiving directivity index, beam patterns, shading and super directivity, adaptive beam forming.

UNIT V DSP PROCESSORS

Architecture of ADSP 218x, Architecture of TMS 320C541X. CASE STUDY:

1. Signal processing of ocean ambient noise data.

2. Beam forming of vertical linear array data.

Practical component P: Include case studies / application scenarios Research component R: Future trends / research areas / Comparative Analysis

TEXT BOOKS:

- 1. Principles of Underwater Sound by Robert J Urick
- 2. Acoustical Oceanography : Principles and Applications by Clay & Medwin

REFERENCES:

- 1. Ambient noise in the sea by Robert J.Urick
- 2. Fundamental of ocean acoustics by L.M.Brekhovskikh and Yu.P.Lysanov
- 3. Sonar signal processing by Richard O.Nielsen 6. DAP processor manuals.

9 Hrs

9 Hrs

Total Number of Hours: 45

COMMON ELECTIVE FOR BOTH STREAMS

Subject C	ode:				: CRYP ECURI		APHY	YAN	D	Ty / I ETL/		L	T/SL r	P/R	C
EBEC22E	E 39	P	rerequi	site: (Commin	ication	Netw	orks		Ту		3	0/0	0/0	3
L : Lectur					ervised L		g P:P	roject	R	: Resea	rch C:	Credits			
T/L/ETL :	The	ory/Lab	/Embed	ded T	heory an	ld Lab									
OBJECT	IVES	S :													
					graphic a	lgorith	ms, fir	ewall	•						
		dy Integ	•			•									
					work sec	urity co	oncepts	S.							
COURSE The studen				b s):											
The studer CO1					f attacks	60011 r 0	dinfo	moti	n te	onamia	aion				
CO1 CO2					sages us						\$1011.				
		• •	• •					• •	-	•					
CO3	Ver	nty mes	sage usi	ng dig	gital sign	ature a	nd mai	nage s	secr	et key.					
CO4				-	on netw										
CO5					ious secu					ireless s	systems	•			
		ourse C	rse Outcomes with Program Outcomes (POs) D1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
COs/PO	s	PO1								PO8	PO9	PO10	PO1	1 P	012
CO1		3	3	3	3	1	2	1		2	3	3	2		3
CO2		3	3	3	3	3	3	1		2	2	3	3		3
CO3		3	3	3	3	2	3	3		3	3	3	3		3
CO4		3	2	3	3	3	3	2		3	1	3	3		3
CO5		2	3	3	3	3	3	2		3	3	3	3		3
COs / PS	Os		<u>PSO1</u>			PSO2	2			PSO	3		PS		
C01			3			2				2					
CO2			3			3				2					
CO3			3			3				2					
CO4 CO5			3			1				$\frac{1}{3}$					
3/2/1 indi	ontos	Strong	-	orrolo	tion 3	-	2 M	odium	n 1	-			4	_	
JIZII IIUI	Latts	Sueng		UITCI	ation J	- mgn	, <i>2</i> - 1 VI	curul	II, I ,	-1.0%	1				
Category	Category Basic Sciences Engineering Sciences				Humanities and Social Sciences	Program Core	Ē	FTOBTAIL ELECTIVES		Open Electives	Inter Disciplinary		Skill Component	Practical / Project	
								\checkmark							

CATIONAL AND RESEARCH INSTITUTE DEEMED TO BE UNIVERSITY University with Grad Grad Institution (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyai, (chennai-95, Tamilinadu, India.

Subject Code:	Subject Name : CRYPTOGRAPHY AND	Ty / Lb/	L	T/SL	P/R	С	
	NETWORK SECURITY	ETL/IE		r			
EBEC22E39	Prerequisite: Comminication Networks	Ту	3	0/0	0/0	3	

UNIT I INTRODUCTION ON SECURITY

EDUCATIONAL

Security Goals, Types of Attacks: Passive attack, active attack, attacks on confidentiality, attacks on Integrity and availability. Security services and mechanisms, Techniques: Cryptography, Steganography, Revision on Mathematics for Cryptography.

UNIT II SYMMETRIC & ASYMMETRIC KEY ALGORITHMS

Substitution Ciphers, Transposition Ciphers, Stream and Block Ciphers, Data Encryption Standards (DES), Advanced Encryption Standard (AES), RC4, Principle of asymmetric key algorithms, RSA Key distribution.

UNIT III INTEGRITY, AUTHENTICATION AND KEY MANAGEMENT

Message Integrity, Hash functions: SHA, Digital signatures: Digital signature standards. Authentication Entity Authentication: Biometrics, Key management Techniques, Introduction to Quantum Cryptography.

UNIT IV NETWORK SECURITY, FIREWALLS AND WEB SECURITY

Introduction on Firewalls, Types of Firewalls, Firewall Configuration and Limitation of Firewall. IP Security Overview, IP security Architecture, authentication Header, Security payload, security associations, Key Management. Web security requirement, secure sockets layer, transport layer security, secure electronic transaction, dual signature

UNIT V WIRELESS NETWORK SECURITY

Security Attack issues specific to Wireless systems: Worm hole, Tunneling, DoS WEP for Wi-Fi network, Security for 4G networks: Secure Ad hoc Network, Secure Sensor Network Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS:

- 1. Behrouz A. Fourouzan, "Cryptography and Network security" Tata McGraw-Hill, 2008
- 2. William Stallings, "Cryptographyand Network security: principles and practice", 2nd Edition, Prentice Hall of India, New Delhi, 2002
- 3. Atul Kahate, "Cryptography and Network security", 2nd Edition, Tata McGraw-Hill, 2008 **REFERENCES:**
 - 1. R.K.Nichols and P.C. Lekkas,""Wireless Security", Mc Graw-Hill Professional, New York, NY, USA, 2001
 - 2. H. Yang et al., "Security in Mobile Ad Hoc Networks: Challenges and Solution", IEEE Wireless Communications, Feb. 2004.
 - 3. Securing Ad Hoc Networks, IEEE Network Magazine, vol. 13, no. 6, pp. 24-30, December 1999.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Co	de:			me : IN AL IN				TO		y / Lb/ TL/IE	L	T/SLr	P/R	C
EBEC22E4	0			e: Nor		ULIN					3	0/0	0/0	3
L : Lecture	T · Tutori		-			ng P	· Proi	iect	R : Res	-	'· Cre	dits		
T/L/ETL : 7							. 110j	jeet	K . Kes			uns		
OBJECTIV	2			5										
	understan	d an ov	erview	of AI p	rincipl	es and	l appi	roac	hes					
• To (develop a	basic u	Inderst	anding o	of build	ling bl	locks	of A	4I					
	design an				stem									
COURSE (
Upon the co					ents wi	ll be a	able t	0						
CO1	Understa				<u> </u>									
CO2	Analyze				-									
CO3	Demonst	rate the	e capab	ility of	reasoni	ng								
CO4	Illustrate	the pro	blem s	olving	by usin	g diffe	erent	algo	orithms					
CO5	Exhibit t	he diffe	erent kr	nowledg	e Repr	esenta	ation	metl	hods					
Mapping of	f Course	e Outcomes with Program Outcomes (POs)												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		07	PO8	PO9	PO1	0 PO11	PO	12
CO1	1	1						2			2	1	1	-
CO2	1	3		3	3	3	1	2			2		2	2
CO3	2	3	3	2	3	3		3			2			
CO4	2	3	3	2	3	3		3	2		2			
CO5	2	2	2	1	3	3		1	2		3			
COs / PSOs	;	PSO1			PSC)2			PS			PS	504	
CO1		3							3				1	
CO2		3							3				1	
CO3	_	3			2				3				1	
<u>CO4</u>	_	3			2								1	
CO5		3	£ ()		TTT	T-1-		/ 1 ⁴	<u> </u>				1	
H/M/L indi	cates Str	ates Strength of Correlation H- High, M- Medium, L-Low												
Category	Basic Sciences Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core Program Elective								Open Electives	Inter Disciplinary	•	Skill Component	Practical / Project	
							\checkmark							

INTRODUCTION TO AI UNIT I

Overview of AI application areas: game playing, automated reasoning and theorem proving, expert systems, natural language understanding, planning and robotics, machine learning and Alan Turing Test.

UNIT II LOGIC

Symbol and sentences, the semantics of the Propositional Calculus & Predicate Calculus.Inference Rules and Theorem Proving. Axioms, Literals, Horn clause & Clausal forms

UNIT III REASONING

Inductive, Deductive, Abductive and Default reasoning. More examples on Resolution proof.

UNIT IV **PROBLEM SOLVING**

Structures and strategies for state space search. Algorithms for Heuristic search, Heuristic evaluation functions

KNOWLEDGE REPRESENTATION UNIT V

Knowledge representation Techniques; conceptual graphs; structured representations; frames, scripts; issues in knowledge representation: hierarchies, inheritance, exceptions.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS:

1. Artificial Intelligence - A New Synthesis by Nils J. Nilsson, Morgan Kaufmann Publishers.

2. Artificial Intelligence: Strategies and techniques for complex problems solving by George Luger, Addison-Wesley, 2003.

REFERENCES:

1. Artificial Intelligence - A Modern Approach by Stuart Russell & Peter Norvig, Prentice Hall.

ND RESEARC NSTITUTE University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) teriyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code:	Subject Name : INTRODUCTION TO	Ty / Lb/	L	T/SLr	P/R	С
	ARTIFICIAL INTELLIGENCE	ETL/IE				
EBEC22E40	Prerequisite: None	Ту	3	0/0	0/0	3

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject	Su	periyar bject N	ame : I	MACH	INE I	LEARN	ING			Ty /Lb		L	T/SLr	P/	C
Code:	41 D	•	·	1 1 11		10 1				ETL/I	E	2	0.40	R	
EBEC22E4		erequis	ite: Pr	odadili	ity an	d Rando	om Pr	ocess		Ту		3	0/0	0/ 0	3
L : Lecture	T : Tuto	orial S	Lr : Su	pervise	d Leaı	ning P	: Proie	ct R	: Re	esearch	C: Cr	edit	<u> </u>	U	
T/L/ETL : 1							•j •						-		
OBJECTI															
• To	understa	and issu	es and o	challen	ges in	machine	e learn	ing.							
						on and m				у.					
					proce	ess of de	cision-	-maki	ng.						
COURSE															
Upon the co							able to)							
CO1						earning									
CO2	** •		<u> </u>	^	•	learnin	0								
CO3	Demon	istrate t	he redu	ction of	dime	nsionali	ty in a	probl	em	statem	ent				
CO4	Implen	nent the	differe	nt meth	ods o	f decisio	n mak	ting fo	or a	comple	ex prol	blen	1		
CO5	Integra	rate the machine learning models and statistical tools for making decisions													
Mapping o	f Cours	e Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PC)8	PO9	PO	10	PO11	PO)12
CO1	2	3	3	3	1	1	1				1			1	1
CO2	2	3	3	3	1	3	1				1]	1
CO3	2	3	3	3	1	3	1				1			1	1
CO4	2	3	3	3	1	2	1			2	2		1	1	1
CO5	2	3	3	3	1	1	1			2	2		1		1
COs /PSOs	5	PSO	1		P	SO2			P	SO3			PSO	94	
<u>CO1</u>	_	2				3				3			1		
CO2		2				3				3			1		
<u>CO3</u>		2				3				3			2		
<u>CO4</u>		2				3				3			2		
CO5 H/M/L ind	icates S	2 trength	ofCo	relatio	n H	3 [- High,	<u>М</u> . М	ediur	n T	3 -Low			2		
11/1V1/1/1/11U	icaits D			i ciau		- 111g11,	TAT- TAT		11, L					1	
		ect any s s s s													
	lces	۰ ۲	n	an		ore	ect		ive		olin		one	roj	
Ŋ	Basic Sciences	Engineering	x	Humanities and Social Sciences	C	Program Core	Program Elective		Open Electives		Inter Disciplinary		Skill Component	Practical / Project	
Category	S	hee	Sciences	ani 1 S		ran	ran		Ы		Di		Co	ica	
Cate	asic	أنور	cier	um oci£		60 0	[go]		per		iter		kill	act	
0	B	Ъ	Ň	H S(¢	2	Pı		0		In		S	P1	
		\checkmark													

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

ND RESEARC

Subject	Subject Name : MACHINE LEARNING	Ty /Lb/	L	T/SLr	P /	С
Code:		ETL/IE			R	
EBEC22E41	Prerequisite: Probability and Random Process	Ту	3	0/0	0/	3
					0	

UNIT I: INTRODUCTION

Introduction to Machine Learning- Supervised Learning, Unsupervised Learning and Reinforcement Learning.

UNIT II PROBABILITY BASICS

Linear Algebra - Statistical Decision Theory – Regression & Classification - Bias – Variance - Linear Regression - Multivariate Regression

UNIT III DIMENSIONALITY REDUCTION

Dimensionality Reduction Subset Selection - Shrinkage Methods - Principal Components Regression - Linear Classification - Logistic Regression - Linear Discriminant Analysis Optimization - Classification - Separating Hyperplanes Classification

UNIT IV DECISION MAKING

Artificial Neural Networks (Early Models, Back Propagation, Initialisation, Training and Validation) -Parameter Estimation (Maximum Likelihood Estimation, Bayesian Parameter Estimation) - Decision Trees -Evaluation Measures - Hypothesis Testing - Ensemble Methods - Graphical Methods

UNIT V CLUSTERING METHODS

Clustering - Gaussian Mixture Models - Spectral Clustering - Learning Theory - Reinforcement Learning.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS: 1 The Eleme

- The Elements of Statistical Learning: Data Mining, Inference and Prediction by T.Hastie, R.Tibshirani, J.Friedman, 2e, Springer Series in Statistics.
- Pattern Recognition and Machine Learning(Information Science and Statistics) by Christopher M.Bishop, Addison-Wesley, 2003.

REFERENCES:

1. Machine Learning: An Algorithmic Perspective by Stephen Marsland, 2e, Chapman and Hall/CRC..

9 Hrs

9 Hrs

9 Hrs

9 Hrs

9 Hrs

NSTITUTE

Subject Code:		ubject I YSTEN		FUZZY	⁷ LOO	GIC AN	D			y / Lb/ TL/IE	L		T/SL r	P/ R	C
EBEC22E4	2 P	rerequi	site: Ma	athema	tics I	& П			T	y	3		0/0	0/0	3
L : Lecture							: Pro	ject I	R : Re	esearch	C: Cr	edit	S		•
T/L/ETL : T	heory	/Lab/En	nbedded	Theory	and I	Lab									
OBJECTIV															
						zy logic									
						various f		sets a	and re	lations	•				
		<u> </u>		v	of fuz	zzy syste	em								
COURSE C															
Upon the co	mplet														
CO1						of mem				ns for d	lifferer	nt aj	pplicatio	ns	
CO2					•	ations in		•							
CO3		Illustra	te the ro	le of fu	zzy re	elations i	n an	ANF	FIS sy	stem					
CO4		Unders	tand the	fundan	nental	concept	ts of t	fuzzy	rules	and re	asonin	ıg			
CO5		Identif	ntify the working of models of fuzzy inference system												
Mapping of	Cour	rse Outo	comes w	ith Pro	gram	Outcor	nes (POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	5 PO6	PO	7 P	208	PO9	PO	10	PO11	P	012
CO1	3	3	3	3	3	2	1				2	,	1		1
CO2	3	3	3	3	3	2	1				2	,	1		1
CO3	3	3	2	2	3	2									2
CO4	3	2	3	3	3	2				1					2
CO5	3	3	3	3	3	2					2	r	1		
COs /PSOs		PSC)1		P	SO2			P	503			PS	04	
CO1		3				1				3			1	L	
CO2		3				1				3]	l	
CO3	 	3				1				3					
CO4		3				1				3					
CO5		3				1				3					
H/M/L indi	cates	Strengt	h of Co	rrelatio	n H	[- High,	M- N	/lediu	um, I	-Low		<u> </u>			
Category	Basic	Sciences	Sciences	Humanities and Social	Sciences	Program Core	Program	Electives	Open	Electives	Inter Disciplinary		Skill Component	Practical /	Project

Subject Subject Name : FUZZY LOGIC AND L T/SL P/ Ty / Lb/ Code: **SYSTEMS ETL/IE** R r **EBEC22E42** Prerequisite: Mathematics I & II 3 0/0 0/0 Ty

INTRODUCTION TO FUZZY LOGIC UNIT I

Introduction to Fuzzy sets-Fuzzy Logic-Membership Functions-Set Theoretic Operations-.Fuzzy Systems and its Applications

UNIT II FUZZY SETS AND ARITHMETIC

Fuzzy Set Properties-Distance between Fuzzy Sets-Arithmetic Operations on Fuzzy Numbers-Complement T-norm and S-norm for Fuzzy Sets-Parameterized T-form and .S-form

UNIT III **FUZZY RELATION**

Fuzzy Relation and its Operations-Projections-Cylindrical Extensions-Properties of Fuzzy Relations-Fuzzy Tolerance and Equivalence Relations

FUZZY RULES AND INFERENCE SYSTEM UNIT IV

Linguistic Hedges-Negation-Connectives-Concentration and Dilation, Contrast Intensification of Fuzzy Sets-Orthogonality of Fuzzy Sets-Fuzzy Rules and Reasoning

UNIT V **FUZZY INFERENCE SYSTEM**

Mamdani Fuzzy Model-Larsen Fuzzy Model-Tsukamoto Fuzzy Model-TSK Fuzzy Model-Fuzzifiers and Defuzzifiers-ANFIS Architecture.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS:

- 1. Ross.T.J, "Fuzzy Logic with Engineering Applications", John Wiley and Sons.
- 2. Jang, Sun and Mizutani,, "Neuro Fuzzy and Soft Computing", Prentice Hall of India

9 Hrs

9 Hrs

С

3

9 Hrs

Subject Cod			ame : TE MAT			TION 7	Ю	-	Lb/ L/IE	L	T/ S.L		P/R	C
EBEC22E4	13 Pro	erequis	ite: Non	e				T	'y	3	0/0) (0/0	3
L : Lecture T	: Tutori	al S.I	Lr : Supe	rvised l	Learnin	g P:F	Project R	: Researc	h C: C	redit	s			
Ty/Lb/ETL :	Theory/	Lab/Er	nbedded	Theory	and La	ib	U							
OBJECTIV														
The student										_	_			
								tical Logi						
								on and Red	currenc	e rel	ations	S		
								nd Fields	ahina					
			asic con	-			aia, Finit	e state ma	cnine.					
COURSE O				cepts m	Graph	uncory								
				concer	ts in Le	oic an	d Predica	te calculu	6					
			he Basic			.5								
			he Basic											
		nderstand the Basic concepts in Automata Inderstand the Basic concepts in Graph theory												
Mapping of														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		PO8	PO9	PC)10	PO11	P	012
C01	3	3	2	3	2	1	1	1	2		1	1	-	3
CO2	3	2	1	2	1	2	1	2	2		1	1		3
CO3	2	3	1	3	2	2	2	1	1	_	2	1		3
CO4	3	3	1	2	1	2	2	1	1	-	2	1		2
CO5	2	3	1	2	1	2	2	1	1	-	2	2		3
COs /PSOs		PSO1			PSO2			PSO3				PSO ⁴	4	_
CO1		2			3			1				2		
CO2		1			2			1				3		
CO3	1	1			2			1				2		
CO4		2			3			1				3		
CO5		1			3			1				3		
3/2/1 Indicat	tes Strei	ngth Of	f Correla	ation, 3	8 – Higł	n, 2- M	ledium, 1	- Low						
									y		It		ct	
	es			Humanities and Social Sciences	ė			/es	Inter Disciplinary		Skill Component		Practical / Project	
~	enc		ng	es (ien	Coi			ctiv	ipl		odı		P_1	
Category	Basic Sciences		Engineering Sciences	Humanities and Social Sciences	Program Core		lm /es	Open Electives)isc		,on		al,	
Iteg	ic		gine	maı ial	gra)	gra ctiv	en]	хГ		II C		ctic	
Ca	Bas		Engineer Sciences	Hun Soc	Pro		Program Electives	Opí	Inte		Ski		Pra	
													_	
	\checkmark													

DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

ND RESEARC

Subject Code:	Subject Name : : INTRODUCTION TO DISCRETE MATHEMATICS	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	С	
EBEC22E43	Prerequisite: None	Ту	3	0/0	0/0	3	

UNIT I LOGIC

Statements – Truth Table – Connectives – Normal Forms – Predicate Calculus – Inference Theory.(Qualitative approach)

UNIT II COMBINATORICS

Mathematical Induction – Pigeon Hole Principle – Principle of Inclusion and Exclusion – Recurrence Relations – Generating Functions.(Qualitative approach)

UNIT III GROUPS

Basic Concepts – Groups – Subgroups – Homomorphism – Kernel – Cosets – Lagrange's theorem - Group Homomorphisms – Rings and Fields (Definitions and simple theorems and problems).(Qualitative approach)

UNIT IV AUTOMATA

Finite Automata – Regular grammar – Introduction – Context free grammar – Introduction to Turing machine – Finite state machine – Introduction – Language Recognition.(Qualitative approach)

UNIT V GRAPHS

Introduction to Graphs – Terminology – Matrix representation of Graphs: Incidence matrix, Adjacency matrix – Graph Isomorphism – Connectivity – Euler and Hamiltonian Paths (simple theorems and problems). (Qualitative approach)

Total Number of Hours: 45

REFERENCE BOOKS:

1. Veerarajan T., Discrete Mathematics, Tata McGraw Hill Publishing Co., (2008).

- 2. Tremblay J.P., Manohar R., Discrete Mathematical structures with applications to Computer science, Tata McGraw Hill Publishing Co., (2008).
- 3. Kolman, Busby, Ross, Discrete Mathematical Structures, Pearson, (2014).
- 4. Kenneth Rosen, Discrete Mathematics and its applications (SIE), Tata McGraw Hill Publishing Co., (2007).

9 Hrs Recurre

9 Hrs

9 Hrs

9 Hrs

Subject Cod		oject Na TWOR		WIRE	LESS S	ENSO	R	-	Lb/ L/IE	L	T S.I		P/R	C
EBEC22E44	l Pre	requisi	te: Con	ımunic	ation N	etwor	ks	ſ	Гу	3	0/	0	0/0	3
L : Lecture T	: Tutori	al S.L	r : Supe	rvised l	Learnin	g P:F	Project R	: Resear	ch C: C	Credit	ts			
Ty/Lb/ETL:	Theory/	Lab/En	nbedded	Theory	and La	b								
OBJECTIV														
The student														
	nderstan			-			-							
				del sele	ction ar	nd mod	el compl	exity						
COURSE O														
CO1	Unders	tand the	e basics	of wire	less sen	sor net	works an	d its appl	ication	ıs.				
CO2	Learn t	he routi	ng proto	ocols for	r ad hoc	wirele	ess netwo	orks.						
CO3	Analyz	e the ro	uting pr	otocols	for opti	mizing	g the desi	gn of sen	sor net	work	s.			
CO4														
CO5	Integra	tegrate the machine learning models and statistical tools for making decisions												
Mapping of	Course	urse Outcomes with Program Outcomes (POs)												
COs/POs	PO1													
CO1	3	3	3	3	3	3	3	2	2		2	2		2
CO2	3	3	3	3	3	3	3	2	2		2	2		2
CO3	3	3	3	3	3	3	3	2	2		2	2		2
CO4	3	3	3	3	3	3	3	2	2		2	2		2
CO5	3	3	3	3	3	3	3	2	2		2	2		2
COs / PSOs		PSO1			PSO2			PSO3				PSO	4	
CO1		2			1			2				3		
CO2		3			3			2				3		
CO3		3			3			3				2		
CO4		3			3			3				2		
CO5		2			1			1				3		
3/2/1 Indicat	tes Strer	ngth Of	Correl	ation, 3	6 – Higł	n, 2- M	edium, 1	- Low						
Category	Basic Sciences		Engineering Sciences	Humanities and Social Sciences	Program Core	,	Program	Open Electives	Inter Disciplinary		Skill Component		Practical / Project	

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) eriyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamiinadu, India.

BE

Subject Code:	Subject Name : WIRELESS SENSOR NETWORKS	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	C
EBEC22E44	Prerequisite: Communication Networks	Ту	3	0/0	0/0	3

UNIT I: INTRODUCTION AND OVERVIEW OF WIRELESS SENSOR NETWORKS

Introduction, Brief Historical Survey of Sensor Networks, and Background of Sensor Network Technology, Ah-Hoc Networks, Applications of Wireless Sensor Networks: Sensor and Robots, Reconfigurable Sensor Networks, Highway Monitoring, Military Applications, Civil and Environmental Engineering Applications, Wildfire Instrumentation, Habitat Monitoring, Another Taxonomy of WSN Technology, Basic Sensor Network Architectural Elements, Home Control, Medical Applications.

ROUTING PROTOCOLS FOR AD HOC WIRELESS NETWORKS UNIT II

Designing issues, classification of routing protocols, table driven routing protocols, on demand routing protocol, Hybrid routing protocol, Hierarchical routing protocols. Multicast routing in Ad Hoc wireless networks: Operations and classification of multicast routing protocols, Tree based multicast routing protocol, Mesh based multicast routing protocol.

UNIT III SYSTEM ARCHITECTURE AND DESIGN ISSUES

EDUCAT

Design Constraints for Routing in Wireless Sensor Networks, Classification of Routing Protocols in Wireless Sensor Networks-Hierarchy Role of Nodes in the Network, Data Delivery Model, Optimization Techniques for Routing in Wireless Sensor Networks, Application of the Optimization Techniques: Routing Protocols

UNIT IV **ROUTING PROTOCOLS FOR WIRELESS SENSOR NETWORKS** 9 Hrs

Introduction, Data Dissemination and Gathering, Routing Challenges and Design Issues in Wireless Sensor Networks Network Scale and Time-Varying Characteristics, Resource Constraints, Sensor Applications Data Models, Routing Strategies in Wireless Sensor Networks: WSN Routing Techniques, Flooding and Its Variants, Sensor Protocols for Information via Negotiation, Low-Energy Adaptive Clustering Hierarchy, Power-Efficient Gathering in Sensor Information Systems, Directed Diffusion, Geographical Routing.

UNIT V TRANSPORT LAYER SECURITY PROTOCOLS FOR AD HOC WIRELESS **NETWORKS** 9 Hrs

Designing issues, classification of transport layer solutions, feedback-based TCP, TCP bus, Ad Hoc TCP, Security in Ad hoc wireless networks, Issues and challenges in security provisioning, Key management, Secure routing in Ad hoc wireless networks. Quality of Service: Issues and challenges in providing QoS in Ad Hoc wireless networks, classification of QoS solutions.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS:

- 1. The Elements of Statistical Learning: Data Mining, Inference and Prediction by T.Hastie, R.Tibshirani, J.Friedman, 2e, Springer Series in Statistics.
- 2. Pattern Recognition and Machine Learning(Information Science and Statistics) by Christopher M.Bishop, Addison-Wesley, 2003.

9 Hrs

9 Hrs

Subject	Code		bject N				5			Ty/L	1, India. b/	L	T/SI	P/R		С
, , , , , , , , , , , , , , , , , , ,					ANAG	EMEN	T SYS	TEM	S	ETL/I	Е		r			
EBEC2	2E45	Pr	erequis	site: No	one					Ту		3	0/	0 0/0)	3
L : Lectu								Project	t R	R : Resea	rch C:	Cree	dits			
T/L/ETI			ıb/Embe	edded T	Theory a	and Lab										
OBJEC			141.1	CC			1	1					. 6	1 - 4 - 1		
								0		ind impl						
		ork mod		and io	ogical d	atabase	design	is, dat	aba	ase mode	ening, re	lau	onai,	merarch	Ical	, and
				estandin	g of ess	ential I	ORMS	conce	nte	such as	• datab		securi	tv integ	ritv	and
	• To develop an understanding of essential DBMS concepts such as: database security, integrity, and concurrency.															
	concurrency. DURSE OUTCOMES (COs) : (3- 5)															
	e Students will be able to															
CO1	Unc	lerstand	the fur	Idamen	tal conc	epts an	d techr	niques	of	DBMS						
CO2						.		<u> </u>		ying data	abases.					
CO3									_	se systen						
CO4		luate a								2						
CO5	Des	ign and	develo	pment o	of advar	nced dat	tabase	manag	gem	nent syst	ems					
Mappin	g of (Course	Outcor	nes wit	h Prog	ram Oı	utcome	es (PO	s)							
COs/P	Ding of Course Outcomes with Program Outcomes (POs)/POsPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO1														012	
CO1			2	3	3		1				2		1			2
CO2		2	2	3	3	3	2				3		1			3
CO3		2	2	3	3	3	2				3		1			
CO4		2	2	3	3	3	2				2		1			3
CO5		2	2	3	3	3	2				3		1	1		3
COs / PS	SOs		PSO1			PSO	2			PSO3	3			PSO4	ļ	
CO1			3			2				3				3		
CO2			3			3				3				3		
CO3			2			2				3				3		
CO4			2			2				3				3		
CO5			2			2				3				3		
H/M/L i	indica	ates Str	ength o	of Corr	elation	H- H	ligh, M	I- Mee	diu	m, L-Lo	DW					
											Λ	•	+	н	ct	
		es			and	e				/es	inaı		5	llei	oje	ć
		Basic Sciences	ngn)	Humanities and Social Sciences	Program Core				Open Electives	ldix	-	4	экш сопровен	Practical / Project	
	ory	Sci	eeri	ses	niti Sc	Ш		ves		Ele	Disc		5	ΠΟ	cal	
	Category	sic	Engineering	Sciences	ma vial	gra		gra		en	зrГ				ctic	
	Ca	Bat	Eng	Sci	Humanities and Social Sciences	Pro		Program Electives		Op	Inter Disciplinary			ŊQ	Pra	
				-		, 1										
								\checkmark								

B.Tech ECE 2022 Regulation

NSTITUTE AND RESEARC BE University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Perlyar E.V.R. High Road, Maduravoyal, Chennai-95. Taminadu, India.

Subject Code:	Subject Name :	Ty / Lb/	L	T/SL	P/R	С
	DATABASE MANAGEMENT SYSTEMS	ETL/IE		r		
EBEC22E45	Prerequisite: None	Ту	3	0/0	0/0	3

UNIT I FUNDAMENTALS OF DATABASE

Introduction - Purpose of database systems -Uses of DBMS- Advantages and Disadvantages of DBMS Data Abstraction -Data models - Instances and schemas - Data Independence - DDL - DML - Database user-Database Languages

UNIT II **RELATIONAL APPROACH**

ER model — Basic Structure - Entity sets- keys- various operations - relational database design - problems in the relational database design – Normalization, Normal forms -Relational Algebra- Tuple Relational Calculus-Domain Relational Calculus- Query Languages -SQL-Embedded SQL

UNIT III FILE STRUCTURE, INDEXING & HASHING

File and system structure – Overall system structure – file transaction – data dictionary – indexing and hashing basic concepts and B+ tree Indices - static and dynamic hash functions.

UNIT IV **OBJECT ORIENTED RELATIONAL DATABASE TECHNOLOGY**

Concepts for Object Oriented Data Model - Object Oriented Database Languages -Persistent Programming Language-Object Relational Databases. System Implementation techniques: Query Processing-Transaction Processing-Concurrency Control-Recovery System.

UNIT V ENHANCED DATA MODELS FOR ADVANCED APPLICATIONS 9 Hrs

Database System Architecture- Client Server System-Centralized Systems-Parallel Systems-Distributed Database System

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXTBOOKS:

- 1. Abraham, Silberschatz. Henry, F. K.. Sudharshan, S. (2013) Database System Concepts (6th ed.) Tata McGraw Hill, New Delhi.
- 2. Fundamentals of Database System By Elmasari & Navathe, 7th Edition, 2018, Pearson Education **REFERENCE BOOKS:**
 - 1. Ramez, E. Shamkant, B. Navathe (2008) Fundamentals of database systems (5th ed.), Pearson Education
 - 2. Date, C. J. (2012) An Introduction to Database Systems (8th ed.), Pearson EducatioN
 - 3. A Silberschatz, H Korth, S Sudarshan, "Database System and Concepts", fifth Edition McGraw-Hill
 - 5. Rob, Coronel, "Database Systems", Seventh Edition, Cengage Learning

9 Hrs

9 Hrs

9 Hrs

Subject	Code		bject N IEORY		COMPU	TATIO	ON			Ty / ETL		L	T/SL r	. P/R	C
EBEC22	2E46		erequis							Ту		3	0/0) 0/0) 3
L : Lectu								Proje	ct R	: Resea	rch C:	Crea	lits		
T/L/ETL			ıb/Embe	edded 7	Theory a	and Lab)								
OBJEC			vorvior	v of th	a thaor	atical fo	undati	one	of cor	mnutor	scienc	o fra	om th	a norena	ective of
	•	l langu		v or ui			Junuari			inputer	scienc	e no	JIII UI	e perspe	
				ate mac	chines to	o solve	proble	ms ir	com	puting					
		.		•	proble		•		-	er scie	nces.				
					nmars, o	context	frees g	grami	nar.						
COURS The Stud				:Os) : (3-5)										
CO1				to rom	lorovn	raccion	for on	u not	orn						
COI	FOIL	nulate	automa	ita, Tegi	ılar exp	lession		y pau	em						
CO2	Writ	e Cont	ext free	gramn	nar for a	iny cons	struct.								
CO3	Desi	sign Turing machines for any language.													
CO4	Prop	pose computation solutions using Turing machines.													
CO5	Domi	Derive whether a problem is decidable or not.													
05	Den	ve wile	anei a p	noolen			I HOL.								
Mapping	g of C	Course	Outcor	nes wit	h Prog	ram Ou	utcom	es (P	Os)						
COs/PC	Ds	PO1	PO2	PO3	PO4	PO5	PO6	PO)7	PO8	PO9	PO	010	PO11	PO12
CO1		3	3	3	3	2	2				2		2		2
CO2		3	3	3	3	2	2				2	4	2		2
CO3		3	3	3	3	2	2				3	-	2		2
CO4		3	3	3	3	2	2				3		2		2
CO5		3	3	3	3	2	2				3		2		2
COs / P	SOs		PSO	l		PSC)2			PSC)3			PSO	4
CO1			3			2				3				3	
<u>CO2</u>			3			3				3				3	
CO3			2			2				3				3	
<u>CO4</u> CO5			$\frac{2}{2}$			$\frac{2}{2}$				3				3	
H/M/L i		tes Str		of Corr	elation			1. M	edium	5 n, L-L				3	
	nuica				Clation	11-11	-1511, IV	T- TAT		u, 1/-1/					
		S			es					S	1arv	,	ant		Practical / Project
		nce	ಸ)	s ar lenc	, ore				tive	- li Tilu	- d	400		Prc
	JIY	Scie	erir	es	nitie Sci	m C		Е	ß	flec	isci				al /
	Category	Basic Sciences	jine	ence	mar ial	graı		grai	CLIV	Open Electives		4 1			ctic
	Cat	Bas	Engineering	Sciences	Humanities and Social Sciences	Program Core		Program		Op£	Inter Discinlinary		Skill Component		Pra
	-														
								\checkmark							

DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) iyar E.V.R. High Road, Maduravoyal, Chennal-95. Tamilnadu, India.

Subject Code:	Subject Name :	Ty / Lb/	L	T/SL	P/R	С
	THEORY OF COMPUTATION	ETL/IE		r		
EBEC22E46	Prerequisite: None	Ту	3	0/0	0/0	3

ND RESEARCH

INSTITUTE

UNIT I AUTOMATA FUNDAMENTALS

Introduction to formal proof — Additional forms of Proof — Inductive Proofs -Finite Automata — Deterministic Finite Automata - Non-deterministic Finite Automata - Finite Automata with Epsilon Transitions

UNIT II **REGULAR EXPRESSIONS AND LANGUAGES**

Regular Expressions — FA and Regular Expressions — Proving Languages not to be regular — Closure Properties of Regular Languages — Equivalence and Minimization of Automata

UNIT IIICONTEXT FREE GRAMMAR AND LANGUAGES

CFG — Parse Trees — Ambiguity in Grammars and Languages — Definition of the Pushdown Automata — Languages of a Pushdown Automata — Equivalence of Pushdown Automata and CFG, Deterministic Pushdown Automata..

UNIT IV PROPERTIES OF CONTEXT FREE LANGUAGES

Normal Forms for CFG — Pumping Lemma for CFL — Closure Properties of CFL — Turing Machines — Programming Techniques for TM.

UNIT V UNDECIDABILITY

Non Recursive Enumerable (RE) Language — Undecidable Problem with RE — Undecidable Problems about TM — Post?s Correspondence Problem, The Class P and NP.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOK:

1. J.E.Hopcroft, R.Motwani and J.D Ullman, -Introduction to Automata Theory, Languages and Computations, Second Edition, Pearson Education, 2003.

REFERENCES:

- 1. 1.H.R.Lewis and C.H.Papadimitriou, —Elements of the theory of Computation, Second Edition, PHI, 2003.
- 2. J.Martin, —Introduction to Languages and the Theory of Computation, Third Edition, TMH, 2003
- 3. Micheal Sipser, —Introduction of the Theory and Computation, Thomson Brokecole, 1997

9 Hrs

9 Hrs

9 Hrs

9 Hrs

OPEN ELECTIVES

OPEN ELECTIVES

Subject Code		•		INTER ICATI	NET CONS)F T	HIN	GS		y / Lb/ TL/IE	L	T/S	SLr	P/F	
EBEC22OE	1 Pro	erequis	ite: No	ne					T	y	3	0/0		0/0	3
L : Lecture T	: Tutori	al SL	r : Sup	ervised	Learni	ng P	': Pro	oject 1	R : Rese	earch C:	Cre	dits			
T/L/ETL : Th	eory/La	b/Emb	edded 7	Theory	and Lał	b									
OBJECTIVI	ES:														
 To st 	udy bas	ics of Io	ъT.												
 To st 	udy IoT	with C	loud er	vironm	nent.										
 To st 	udy IoT	applica	ations.												
COURSE O	COURSE OUTCOMES (COs) : (3- 5)														
The students	he students will be able to														
CO1	Explore basics concepts of technology of IoT														
CO2	Unders	erstand different IoT domains.													
CO3	Manag	anage system data in cloud environment													
CO4					with Io										
CO5					d on Io										
Mapping of							mes ((POs))						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO	6	PO7	PO8	PO9	PO	010	PO1	1	PO12
CO1	3	3	3	3	3	2	2		2	2	2	2	3		3
CO2	3	2	2	3	3	2		2	2	2	2	2	3		3
CO3	3	2	3	3	3	2		2	2	2	2	2	3		3
CO4	3	3	2	3	3	2		2	2	1	2	2	3		3
CO5	3	2	3	3	3	2		2	2	1	2	2	3		3
COs / PSOs		PSO1	Ĺ		PSC)2			PSC)3			PS	04	
CO1		3			3				3					3	
CO2		3			3				2					3	
CO3		3			3									3	
CO4		3			3				2					3	
CO5		2			3				1					3	
3/2/1 indicate	es Stren	igth of	Correl	ation	3- Hig	h, 2-	Med	lium.	1-Low						
		3				, , ,									
Category	Category Basic Sciences Engineering Sciences			Humanities and Social Sciences	Program Core		Program Electives		Open Electives	Inter Disciplinary		Skill Component			Practical / Project
						~									

DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code:	Subject Name : INTERNET OF THINGS	Ty / Lb/	L	T/SLr	P/R	С	
	AND ITS APPLICATIONS	ETL/IE					
EBEC22OE1	Prerequisite: None	Tv	3	0/0	0/0	3	

UNIT I **INTRODUCTION TO INTERNET OF THINGS**

Definition and Characteristics of IoT – Things in IoT – IoT Protocols – Logical Design of IoT – IoT enabling technologies - IoT Levels.

UNIT II DOMAIN SPECIFIC IoT

EDUCAT

Home Automation - Cities - Environment - Energy - Retail - Logistics - Agriculture - Industry - Health and Life style-SDN and NFV for IoT.

UNIT III IoT SYSTEM MANAGEMENT AND CLOUD

Need for IoT System Management - SNMP - NETOPEER - IoT design methodology - Xively - Django-Amazon Web for IoT – SkyNetIoT.

UNIT IV **IoT PHYSICAL DEVICES**

Raspberry Pi - Raspberry Pi Interfaces - Arduino boards - Other IoT devices - Intel Galileo Arduino board Specification.

UNIT V **IoT APPLICATIONS**

Applications based on IoT - Smart Cities -Smart Home and Buildings -Smart Energy and the Smart Grid -Smart Health- Smart Transportation and Mobility

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXTBOOKS:

- 1. ArshdeepBahga.Vijaymadisetti, "Internet of things A hands- on approach", Universities press, First Editon, 2015.
- 2. Adrian McEwen and Hakim Cassimally, "Designing the Internet of Things", Wiley, First edition 2014.
- 3. C HillarGastn, "Internet of Things with Python", Packt publishing, first edition, 2016.

REFERENCE BOOKS:

- 1. Dominique D. Guinard and Vlad M. Trifa "Building the Web of Things With examples in Node.js and Raspberry Pi", June 2016 ISBN 9781617292682
- 2. CharalamposDoukas, "Building Internet of Things with the Arduino" ISBN/EAN13:1470023431 / 9781470023430
- 3. Gastón C. Hillar, "Internet of Things with Python", May 2016, PACKT Publishing limited.
- 4. Marco Schwartz "Internet of Things with the Raspberry Pi: Build Internet of Things Projects Using the Raspberry Pi Platform", Kindle Edition.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

248

	01.2010 Ce			
Periyar E.V.R. High Road,	Maduravoyal,	Chennai-95.	Tamilnadu,	India.

Subject Co			t Nan MUNI			LULA	R MO	BILE			/Lb/ L/IE		Γ/SL r	P/R	C C
EBEC22O	E2 I	rereq	uisite	: No	one					Ty		3 ()/0	0/0	3
L : Lecture						l Lear	ning P	: Proj	ect	R : R	esearch	C: Crea	lits		
T/L/ETL : 7				-			•	5							
OBJECTI	VES :														
It deals with	th the	funda	menta	al ce	llular 1	adio	concep	ts suc	ch a	s freq	uency	reuse a	nd har	nd of	f.
It presents							-				•				
propagatio			•			0			1			U			
COURSE			1	<u> </u>											
The student	s will b	will be able to													
CO1	Interp	Interpret basic concepts in mobile communication.													
CO2	Apply	pply the concepts in establishing a PSTN.													
CO3	Recognize basic concepts in cellular technology.														
CO4	Analy	alyze different propagation models for improving system coverage.													
CO5	Exam	amine the latest wireless systems and standards.													
Mapping o	f Cour	se Ou	tcome	es wi	ith Pro	gram	Outco	mes (F	POs)					
COs/POs	PO			03	PO4	PO5		<u> </u>		PO8	PO9	PO10	PO1	1	PO12
CO1	3	3		2	2	3	3	3		3	1	3	1		2
CO2	3	3		3	1	2	2	2		3	2	2	2		2
CO3	3	3		3	3	3	3	1		1	3	3	2		3
CO4	3	3		3	3	3	3	3		2	3	3	3		3
CO5	3	3		3	2	3	2	3		3	3	3	3		3
COs /PSOs	5	PS	501			P	SO2			P	SO3			PSC)4
CO1			3				2				2			2	
CO2			3				3				2			2	
CO3			3				3				3			3	
CO4			3				3				2			3	
CO5			3				3				3			3	
3/2/1 indica	ates St	rength	n of Co	orre	lation	3- H	ligh, 2-	Medi	um,	, 1-Lo	W				-
Category	Basic Sciences Engg Sciences				Humanities & Social Sciences	Duccess		Program Electives		Open Electives		Inter Disciplinary	Skill Component		Practical / Project

DEEMED TO BE UNIVERSITY Iniversity with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) eriyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamiinadu, India.

Subject Code:	Subject Name : CELLULAR MOBILE	Ty /Lb/	L	T/SL	P/R	С
	COMMUNICATION	ETL/IE		r		
EBEC22OE2	Prerequisite: None	Ту	3	0/0	0/0	3

ND RESEARCH

INSTITUTE

UNIT I INTRODUCTION TO MOBILE COMMUNICATION

History and Evolution of mobile radio system – Types of mobile wireless system/services – Paging, cellular, WLL, FTTH, Wi-Fi, and Future trends in Personal wireless system.

UNIT II PSTN TECHNOLOGY

EDUCAT

Difference between simplex, half-duplex and duplex transmissions – basic understanding of telephone set – history and evolution of Central Exchange Switching - Operator Switch Boards (PBX) - intraoffice and interoffice calls – Extended Area Service (EAS) – circuit switching, packet switching & TDM switching – DTMF signaling – dial register – in band & out-of-band signaling.

CELLULAR CONCEPT UNIT III

Structure of a cell – Basic cellular terminologies – Principle of Frequency Reuse – Principle of Channel assignment and its types – Types of channel interference – Different types of handoff strategies

UNIT IV 9 Hrs INTERFERENCE AND MOBILE RADIO COMMUNICATION

Interferences in Cellular Systems – Methods to improve cell coverage - Free space propagation model, reflection, diffraction, scattering, link budget design, Outdoor Propagation models and Indoor propagation models

UNIT V WIRELESS SYSTEMS AND STANDARDS

GSM, IS-95, DECT, AMPS, GPRS, UMTS, WLAN, WPAN, WMAN, Ultra Wideband communications, 4G/LTE and beyond 4G.Telecom standards and wireless standards.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS:

- 1. Marion Cole, "Introduction to Telecommunications: Voice, Data and Internet", Pearson Education, 2nd edition, 2008.
- 2. Anu A. Gokhale, "Introduction to Telecommunications", Delmar, 2nd edition, 2005.
- 3. T.S. Rappaport, "Wireless Communication, Principle and Practice", Prentice Hall, NJ, 1996
- 4. Roy Blake," Wireless Communication technology", Thomson Learning, 1st Edition 2001

REFERENCES:

- 1. Pete Moulton, Jason Moulton, "The Telecommunication Survival Guide", Pearson Education, 2001.
- 2. Roger L. Freeman, "Telecommunication System Engineering", Wiley-India, 4th edition, 2004.
- 3. W.C.Y.Lee, "Mobile Communication Engineering", (2/e), McGraw-Hill, 1998.Dharma P. Agarwal," Introduction to wireless and Mobile systems", Thomson Learning, II Edition, 2006

9 Hrs

9 Hrs

9Hrs

SubjectC	Code:	TE	EČHNO		SATEI Y AND FEMS			,		Ty / Lb/. /IE	ETL	L	T/SL r	P/	R	C
EBEC22	OE3			site: No						Ту		2	0/0	1/	1	3
L: Lectur	e T:T	utorial	S. I	Lr : Sup	pervised	Learni	ing P	: Pro	oject 1	R : Res	earch (C: Cree	dits			
T/L/ETL:	: The	ory/Lab	/ Embe	dded T	heory a	nd Lab										
OBJECT																
To learn																
To under		-					•									
To apply					remote	sensing	g tech	nolc	ogy							
COURSI				s):												
The stude				nainla	forhite	1 maal	honio	~								
CO1		erstand	-	-				8								
CO2		erstand														
CO3	Ana	lyze the	variou	s dome	stic sat	ellite sy	ystem	is								
CO4	App	ly the c	oncepts	s in des	igning e	earth st	ation									
CO5	App	raise the	e applic	cations	of satel	lites in	remo	ote se	ensing	2						
Mapping	ofCo	urse O	utcome	swith	Program	nOutco	omes	(POs	s)							
COs/P	/	PO1	PO2	PO3		PO5	PO		PO7	PO8	PO9	PO	10 PC) 11	PO	012
CO	1	3	1	1	2	1	3		1	1	1	2		3		1
CO2	2	3	3	1	1	1	1		3	1	3	1		1		2
CO3	3	3	1	1	1	1	2		1	3	1	3	-	1		1
CO4	1	3	1	3	1	2	1		1	1	1	1		1		3
COS	5	3	1	1	3	1	1		1	1	2	1	-	1		1
COs /P	SOs		PSO	1		PS	02			PS	503			PS()4	
CO	1		3			1					2			1		
CO2			3			3	8				1			1		
COS			3			1					2			2		
CO4			1			3	8				1			3		
COS			3			1					1			3		
3/2/1indi	catess	Strength	ofCorr	elation	3-l	High, 2	-Mec	lium,	,1-Lo	W						
Category BasicSciences Engg . Sciences Humanities & SocialSciences						Programcore		ProgramElectives		OpenElectives	InterDiscinlinery		Skill Component		Practical/ Project	
										\checkmark						

SubjectCode:	Subject Name : SATELLITE TECHNOLOGY AND REMOTE SENSING SYSTEMS	Ty / Lb/E TL/I E	L	T/S L r	P/ R	С
EBEC22OE3	Prerequisite: None	Ту	2	0/0	1/1	3

ELEMENTS OF ORBITAL MECHANICS AND FUNDAMENTALS OF UNIT I REMOTE SENSING 9 Hrs

Kepler's laws of planetary motion - Newton's laws of gravitation- Orbital Elements-Orbital Perturbation; Tracking and Orbital Determination-Orbital Correction/Control - Components of remote sensing -, Energy sources and radiation principles, electromagnetic radiation, (EMR) -EMR spectrum, active and passive remote sensing - platforms - black body radiation - Planck's law - Stefan-Boltzmann law.

UNIT II TYPES OF SATELLITES AND ELEMENTS OF SATELLITE SYSTEM 9 Hrs

Satellites - classification - based on orbits - sun synchronous and geo synchronous - based on purpose earth resource satellites, communication satellites, weather satellites, spy satellites Space Environment-Spacecraft Configuration- Spacecraft Subsystem- Payload- Reliability Consideration -Spacecraft Integration and Testing.

DOMESTIC SATELLITE UNIT III SYSTEMS AND LAUNCH VEHICLES AND FUNDAMENTALS OF MICROWAVE SENSING 9 Hrs

The INSAT System- International System: INTELSAT-IMMARSAT- Satellite Based Personal Communication-LEO-MEO-GEO Systems-PSLV and GSLV, - radar - speckle - back scattering - side looking airborne, radar – synthetic aperture radar – radiometer – geometrical characteristics

UNIT IV EARTH STATION DESIGN

Earth Station Configuration- Receiver and Transmitter Subsystems- Terminal Equipment: Telephone/ Video Interface-Echo Suppressor-FM Digitizers-Elements of Frequency Co-ordination and Control.

APPLICATIONS OF SATELLITES UNIT V

Satellite Broadcasting- Satellite TV Systems. Remote sensing satellites - satellite remote sensing in variousimportant areas- such as environmental issues- agriculture- forestry- urban issues and water management –usage of satellite data models in remote sensing- analysis of data from various climate zones and applications in research and society.

Practical component : Include case studies/application scenarios

Research component: Future trends/research areas/Comparative Analysis

Total Number of Hours: 45

TEXTBOOKS:

- 1. T.PrattandC.W. Bostian, "Satellite Communication" John Wiley&Son-1986.
- 2. A.AbdulNamith,-Satellite Communication" Lakshmi Publications.
- 3. John Jensen Remote Sensing of the Environment: An Earth Resource Perspective (Prentice Hall Series in Geographic Information Science- 2006

REFERENCES:

- 1. B.N.Agarwal, "Designof Geosynchronous Spacecraft", prentice Hall- 1986.
- 2. D.Roddy, "Satellite Communication", PrenticeHall- 1989.
- 3. M.Richharia "SatelliteCommunicationSystemsDesignPrinciples" MacmillanPressLtd.SecondEdition 2003.

http://www.ceinsys.com/blog/applications-of-satellite-imagery-remote-sensing-data/

B.Tech ECE 2022 Regulation

9 Hrs

Subject Code:		ubject N JNDAM		LS OF :	SENSO	ORS				ſy / Lb/ ETL/IE	L	T/S r	L P/	'n	С
EBEC22O		Prerequ								Гу	3	0/0	0/	0	3
L : Lecture							Pro	ject R	: Resea	rch C: C	redite	s			
T/L/ETL : 1	•	.ab/Emb	edded T	heory a	nd Lab										
OBJECTI															
	understau				sensor	•									
	study set														
	understa			rties of	element	ts.									
COURSE (The student			:Os) :												
CO1		t basics	of sense	ors.											
CO2	Recogn	ize sens	or chara	cteristic	cs.										
CO3	Demon	strate se	nsor pro	perties.											
CO4	Explain	princip	les of se	nsing.											
CO5	Study v	arious s	ensor el	ements.											
Mapping o	f Course	e Outco	mes wit	h Progi	ram Ou	itcon	nes (POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO	6	PO7	PO8	PO9	PO	10	PO11	P	PO12
CO1	3	2	3	3	2	1		2	1	1	2		2		2
CO2	3	2	2	3	2	1		2	1	2	2		2		2
CO3	3	2	2	2	2	2		2	1	2	2		2		3
<u>CO4</u>	2	2	2	2	2	1		1	2	1	2		2		3
CO5	2	2 DCO1	2	2	2	1		1	2	1	2		2	4	2
COs /PSO	S	PSO1	L		PSO:	2			PSO 2	3	_		PSO 2	4	
CO1 CO2		3			$\frac{2}{2}$				$\frac{2}{2}$				3		
CO2 CO3		3			3				$\frac{2}{2}$				3		
CO3		3		-	3				2				3		
C04		2			2				3				3		
3/2/1 indica	atesM St	trength	of Corr	elation	3- Hig	gh, 2	- Me	dium,	1-Low				-		
Category	Basic Sciences	Engg Sciences		Humanities & Social Sciences	Program core		Program Electives		Open Electives	Inter Disciplinary		Skill Component		Practical / Project	
									\checkmark						

UNIT I SENSOR FUNDAMENTALS

Basic Sensor Technology - Classification of sensors, Physical properties sensed by the sensors-heat, pressure, flow, current & voltage, presence, distance, position and speed.

UNIT II SENSOR CHARACTERISTICS

Transfer Function - Span (Full-Scale Input) - Full-Scale Output - Accuracy- Calibration --Calibration Error -Hysteresis - Nonlinearity - Saturation

UNIT III DIFFERENT TYPES OF SENSORS

Proximity Sensor, Pressure Sensor, Temperature Sensor, Humidity sensor, Tilt Sensor, Smoke and Gas sensor, Touch sensor, Infrared sensor, ultrasonic sensor & Light sensor

UNIT IV OTHER SENSING TECHNOLOGIES

Accelerometer and Gyroscope sensor, Hall effect Sensors, Positional Detectors, Potentiometer sensors, Vision and Imaging Sensors/ Detectors, LIDAR sensor, PIR Sensor and Color Sensor

UNIT V APPLICATION

Automotive, Manufacturing, Aviation, Medical and Health care, Marine, Robotics, Hazard Detection and AI-enabled internet of things.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

TEXTBOOKS:

1. Jacob Fraden, "Handbook Of Modern Sensors Physics, Designs, And Applications" 2. Jon S. Wilson," Sensor Technology Handbook

REFERENCEBOOKS:

1. Ian Sinclair, "Sensors and Transducers" eBook ISBN: 9780080516998Hardcover ISBN: 9780750649322

EDUCAT ND RESEARCH INSTITUTE University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Taminadu, India.

Subject Code:	Subject Name :	Ty / Lb/	L	T/SL	P/R	С	
	FUNDAMENTALS OF SENSORS	ETL/IE		r			
EBEC22OE4	Prerequisite: None	Ту	3	0/0	0/0	3	1

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Total Number of Hours: 45

9 Hrs

Subject C	ode:				MICR M DES		CESS	OR		/ Lb/ `L/IE		L	T/S r		P/R	C
EBEC22C)E5	Prer	equis	ite: N	one				Ту			3	0)/0	0/0	3
L : Lecture T/L/ETL :								: Proje	ect I	R : Re	search (C: Cre	edits	•		
micr • To t • To l	study roproc inders earn tl	the essor. tand the fund	he con	ncepts s of 80:		rent pe	riphera				bly lan lications	0 0	e pr	ogra	m of	f 8085
COURSE The studen				2 () (s) :												
CO1	Write proce	e asser ssors.	nbly								derstand	the d	lesig	n of a	advan	nced
CO2				-	terface				_	rocess	sors					
CO3					dvanced											
CO4	Demo	onstrat	te the	ir skills	s in writ	ing an	ALP in	n 805	1.							
CO5	Appl	y their	unde	erstand	ing to d	o a pro	ject to	devel	op ai	n appl	ication u	using	8085	•		
Mapping												1				
COs/POs			<u>PO2</u>		PO4		PO6	PO	7 I	PO8	PO9	PO		PO		PO12
<u>CO1</u>		3	2	2	2	2	3	1		1	1	2		2		$\frac{1}{2}$
CO2 CO3		3	3 2	$\frac{3}{2}$	3	3	3	1 2		2 3	<u>1</u> 1	$\frac{2}{2}$		2 3		$\frac{2}{2}$
CO3		3	3	3	3	3	1	2		3	1	2		1		3
C04		3	2	1	2	2	2	3		1	3	2		3		3
COs / PSC	Ds		PSO	1		PS	02			Р	SO3	1		Ι	PSO4	-
CO1			3				3				2				1	
CO2			3				3				1				1	
CO3			2				3				1				2	
CO4			3				2				1				2	
CO5	1 • 4	C 4	1	e C			1		1.	4 7	2				3	
H/M/L ind	licate	s Stre	ngth	of Cor	relatio	n 3-	High, 2	z- Me	diun	n, 1-L	/OW				<u> </u>	
Category	Basic Sciences		Engg Sciences		Humanities $\&$ Social Sciences	Program core)	Program Electives		Open Electives	Inter Discondinomy		(;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Skill Component		Practical / Project
										~						

B.Tech ECE 2022 Regulation

BASED SYSTEM DESIGN ETL/IE **Prerequisite:** None **EBEC220E5** Ty

Subject Name : MICROPROCESSOR

8085 CPU UNIT-I

Subject Code:

Internal Architecture of 8085 microprocessor - Instruction set - Addressing modes - 8085 interrupts -Timing diagram – Assembly level programming.

Ty / Lb/

T/SL

r

0/0

L

3

P/R

0/0

С

3

UNIT II PHERIPHERALS INTERFACING

USART (8251) – Programmable interval timer (8353/8254) programmable peripheral interface (8255) – CRT controller (8275/6845) – Floppy disk controller (8272).

ADVANCED PHERIPHERALS INTERFACING UNIT III

Programmable DMA controller (8257) – Programmable Interrupt controller (8259) – Keyboard display interface (8279) - ADC/DAC interfacing.

UNIT IV 8051 MICROCONTROLLER

8051 Microcontroller hardware and Architecture -I/O pins, Ports and circuits-Counters and Timers-Serial

Data I/O - Interrupts - 8051 Instruction set - Addressing Modes - Assembly Language Programming.

UNIT V 8085 APPLICATIONS

Typical application of 8085 – Stepper motor controls – Traffic light controls – waveform generation – Analog interfacing and industrial control – Microcomputer based system with seven segment displays and switches.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

TEXT BOOKS:

- 1. Ramesh s. Gaonkar, Microprocessor Architecture Programming and Applications with 8085. Fourth edition, Penram international publishing 2000.
- 2. Douglas V. Hall, microprocessor and interfacing, programming and hardware, Tata McGraw Hill, second edition 1999.

REFERENCES:

- 1. A.K.Ray and K.M.Burchandi,"Intel Microprocessors Architecture Programming and Interfacing" McGraw Hill International edition, 2000.
- 2. Kenneth Jayala, "The 8051 Microcontroller Architecture Programming and Application", 2nd edition, Penram International publishers (India), New Delhi, 1996.
- 3. M.RafiQuazzaman, "Microprocessors Theory and Applications", Intel and Motorola prentice Hall of India Pvt. Ltd., New Delhi, 2003

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Total Number of Hours: 45

9 Hrs

Subje	ct Cod	e: Sul	bject N	ame : I	NDUS	TRY 4	.0 CO	NCEPI		/ Lb/	L	T/SL	P /	R	C
EDEC			•	• •						L/IE		r	0/	0	-
-	C22OE		erequis			.	D	D • •			3	0/0	0/	0	3
		: Tutori eory/La		-			0	Project	R : Re	search	C: Cre	lits			
		-	U/EIIU		neory a	and Lat)								
			trate ar	unders	standing	r of the	funda	mentals	of the o	ore are	ac in I	ndustry	10		
									nessed i			nuusu y	4.0.		
						indi tire.	35 15 00	ing nur	nessea	in maac	501105				
		will be		.03) • (5-5)										
CO1				rtunitie	s and cl	nalleng	es in tl	ne fourt	h indust	rial rev	olution	1.			
CO2									an indus						
CO3						•			olved in	•	no indi	istry 4	0		
CO3									econom			y -1 .			
	-	-			-	-	i a netv	vorkeu	econom	y.					
CO5	-	ret tech													
		Course								1	1				
	s/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1			PO	
	01	2	2	2	3	3	3	3	3	3	2	3		3	
	02	3	2	2	3	3	3	3	3	3	3	3		(*)	
	03	3	3	3	3	3	3	3	3	3	3	3		3	
	04	3	2	3	3	3	3	3	3	3	3	3			
-	05 (DCC	2	2	3	3	3	3	3	3	3	3	3		3	3
	/ PSOs		PSO1	_	-	PSC)2			03		J	PSO	4	
	$\frac{01}{02}$		$\frac{2}{2}$			$\frac{2}{2}$				3 3			3		
-	02 03		3		-	3				3 3			3		
	03 04		2			2				3			3		
-	05		$\frac{2}{2}$			$\frac{2}{2}$				3			3		
		es Stren		Correl	ation		h, 2- N	/ledium	n, 1-Lov	-			0		
			3			8	, ,		, _,,						
					Social			Š							
				ł	So			ives	s	arv		ent		ject	
		lce	ces	(\$ S	ore		lect	ive	lin		one		Pro	
lor		cier	ien	.	ties s	1 CC		Ц	ect	scir		duu		1/1	
Category		c S	Sc	'	ani	ran		ran	Π	Di		Co		ica	
ပိ	5	Basic Sciences	Engg Sciences		Humanities & Sciences	Program core		Program Electi	Open Electives	Inter Disciplinary		Skill Component		Practical / Proj	
		B	Eı		Т Х	$\mathbf{P}_{\mathbf{I}}$		<u>.</u>	0	In		SI		P1	
									\checkmark						

B.Tech ECE 2022 Regulation

UNIT I INTRODUCTION TO INDUSTRY 4.0

The various Industrial Revolutions - Digitalization and the Networked Economy - Drivers, Enablers, Compelling Forces and Challenges for Industry 4.0 – The Journey so far: Developments in USA, Europe, China and other countries - Comparison of Industry 4.0 Factory and Today's Factory - Trends of Industrial Big Data and Predictive Analytics for Smart Business Transformation.

UNIT II ROAD TO INDUSTRY 4.0

EDUCAT

Internet of Things (IoT) & Industrial Internet of Things (IIoT) & Internet of Services - Smart Manufacturing - Smart Devices and Products - Smart Logistics - Smart Cities - Predictive Analytics

TECHNOLOGIES FOR ENABLING INDUSTRY 4.0 UNIT III 9 Hrs

Cyber physical systems - Robotic Automation and Collaborative Robots - Support System for Industry 4.0 – Mobile Computing – Related Disciplines – Cyber Security.

UNIT IV RESOURCES

Resource- based view of a firm - Data as a new resource for organizations - Harnessing and sharing knowledge in organizations – Cloud Computing Basics – Cloud Computing and Industry 4.0 – Smart Factories

UNIT V **IIOT TECHNOLOGIES**

Industry 4.0 laboratories -IIoT Reference Architecture - Designing Industrial Internet Systems -Examining the Middleware Transport Protocols - IIoT WAN Technologies and Protocols -Securing the Industrial Internet.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45

TEXT BOOKS:

- 1. Alp Ustundag and Emre Cevikcan, "Industry 4.0: Managing the Digital Transformation", Springer Series in Advanced Manufactruing.
- 2. Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", Apress Publications.

REFERENCE:

1. Rajesh Agnihotri and Samuel New, "Industry 4.0 Data Analytics", CreatespaceIndependent Pub (US)

INSTITUTE

DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95, Tamilnadu, India.

AND RESEARCH

Subject Code:	Subject Name : INDUSTRY 4.0 CONCEPTS	Ty / Lb/	L	T/SL	P/R	С
		ETL/IE		r		
EBEC22OE6	Prerequisite: None	Ту	3	0/0	0/0	3

9 Hrs

9 Hrs

258

9 Hrs

9 Hrs

OPEN LAB

OPEN LAB

Subject Cod	le: S	Subject I	Name :	SENSO	ORS AN	ND IoT	Г LAB		y / Lb/ TL/IE		T/SL r	P/I	C C
EBEC22OL	1 F	Prerequi	site: No	one				L	b	0	0/0	3/0	1
L : Lecture T T/L/ETL : T							: Projec	t R : I	Researcl	n C: Cre	dits		
OBJECTIV													
		experim	ents bas	sed on s	ensor v	vith IO	Т.						
		experim						onment	•				
COURSE O The Students	UTC	OMES (COs):										
CO1		ement C		code to	interfa	ce sens	ors wit	h IOT.					
CO2	-	gn simpl											
CO3		face sens											
CO3							unt.						
		ement us	<u> </u>										
CO5	Desig	gn new a	pplicati	ons usi	ng diffe	erent se	ensors.						
Mapping of	Cour						1	Os)		-			
COs/POs	PO1		PO3		PO5	PO6	PO7	PO8	PO9	PO10	PO1	1	PO12
CO1	3	3	3	3	3	1	2	1	2	2	3		3
CO2	3	2	2	3	3	1	2	1	2	2	3		3
CO3	3	2	3	3	3	1	2	1	2	2	3		3
<u>CO4</u>	3	2	2	3	3	2	2	1	2	2	3		3
CO5	3	2	3	3	3	1	2	1	2	2	3	DCC	2
COs / PSOs		PSO 2	1		PS				$\frac{PSO3}{2}$			PSC 2)4
CO1 CO2		3			<u> </u>				$\frac{2}{2}$			3	
CO2 CO3		3							$\frac{2}{2}$			3	
CO3 CO4		3							1			3	
C04		3							1			3	
H/M/L indic	ates S		of Cor	relatio	-		M- Me	dium.	-			5	
						<u>-</u> , ·							
Category	Basic Sciences	Enge Sciences	}	Humanities & Social Sciences	Program core		Program Electives	Open Electives		Inter Disciplinary	Skill Component		Practical / Project
								•					

Subject Code:	Subject Name : SENSORS AND IoT LAB	Ty / Lb/	L	T/SL	P/R	С
		ETL/IE		r		
EBEC22OL1	Prerequisite: None	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- 1. To Familiarize With Intel Galileo Gen2 Board and Understand the Procedure of Creation and Compilation of C Source Code. (Pre-Loaded Examples)
- 2. Write a Code to Control the Brightness of Led Usingintel Galileo Gen 2 Board.
- 3. To Write C Source Code to Interface temperature Sensor With Intel Galileo Gen 2 and Display the temperature on Serial Monitor.
- 4. To Write C Source Code to Interface Humidity Sensor With Intel Galileo Gen 2 and Display the temperature on Serial Monitor.
- 5. Interface Motion Sensor, With Intel Galileo Gen 2 To Give alert When Motion Is Detected.
- 6. To Write C Source Code to Interface Sound Detector With Intel Galileo Gen.
- 7. To Write C Source Code to Interface Accelerometer With Intel Galileo Gen 2 and display the Values In Serial Monitor.
- 8. To Write C Source Code to Perform Gas Sensor Interfacing With Intel Galileo Gen2 Board.
- 9. To Interface a Flame and Smoke Sensor With Intel Galileo Gen 2 in Cloud Service.
- 10. Design a Smart Lighting System Using Light Sensor, Motion Sensor and Indicate the Status Of The Light in Cloud Service.

Total Number of Hours: 45

REFERENCES:

1. Lab manual, Department of ECE, DR.MGR UNIVERSITY.

Subject	Cod		ubject N AB	Name :	ROBO	TICS	CONT	ROL		Ty / L ETL/I		L T/	SL	P/R	С
EBEC2	20L		rerequi	site: No	one					LIL	<u> </u>		0	3/0	1
L : Lectu						Learni	ng P:	Projec	t R	R : Resea					
T/L/ETI	L: Th	eory/L						5							
OBJEC	TIV	E:													
•	To ui	ndersta	nd the d	ifferent	robotic	config	guratio	ns and	thei	ir subsys	stems.				
COURS					(3-5)										
The Stud															
CO1	Bui	lt simp	ole robot	s using	motor	driver I	C and	sensor	mo	odule.					
CO2			-	-	-		face va	rious d	levi	ces with	arduin	10.			
CO3	Des	ign rot	ots usin	g timer	and de	lay									
CO4	Dev	elop a	nd meas	ure the	perform	nance o	f robo	ts.							
Mappin	g of (Course Outcomes with Program Outcomes (POs)													
COs/PC		PO1	PO2	PO3	PO4	PO5	PO6		-	PO8	PO9	PO1)	PO11	PO12
CO1		3	3	3	2	2	2	2		2	3	2		1	2
CO2		3	3	3	3	3	1	2		2	3	1		2	2
CO3		3	3	3	2	3	2	2		1	3	2		2	2
CO4		3	3	3	3	3	1	2		2	3	1		2	2
COs / P	SOs		PSO	1		PSC)2			PSO	3			PSO ₂	<u>ا</u>
CO			3			2				2				3	
CO			3			3				2				3	
CO			3			2				2				3	
CO			3	-		2				2				2	
3/2/1 inc	dicat	es Stre	ngth of	Corre	ation	3- Hig	3h, 2- 1	Mediur	n, 1	I-Low					
Category		Basic Sciences	Engg Sciences		Humanities & Social Sciences	Program core		Program Electives		Open Electives	Inter Disciplinary		Skill Component		Practical / Project
										\checkmark					

Subject Code:	Subject Name : ROBOTICS CONTROL LAB	Ty / Lb/ ETL/IE	L	T/SL r	P/R	С
EBEC22OL2	Prerequisite: None	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- 1. Robot circuit
- 2. Build a light-tracking robot
- 3. Simple insect robot
- 4. Line follower robot
- 5. Two-legged walking robot
- 6. Robot control using 555 timer
- 7. Study of AVR studio and code debugging
- 8. Interfacing switch to turn on bar graph leds. (implementing a "push to On" indicator)
- 9. LCD interfacing to display alphanumeric characters.
- 10. LCD interfacing to displaying integer values on the lcd.
- 11. Generation of delay using timer and turning 'on' the buzzer
- 12. Indication of the value of counter on lcd
- 13. DC motor interfacing
- 14. PWM control of the DC motor

Total Number of Hours: 45

REFERENCES:

1. Lab manual, Department of ECE, DR.MGR UNIVERSITY.

Subject	Cod	e: Su	bject N	Name :	BASIC	S OF	MATL	AB		7 / Lb/ FL/IE		Г/SL r	P/R	C	
EBEC2				site: No					L			0/0	3/0	1	
								Projec	t R:F	lesearch	C: Crec	lits			
T/L/ET	L:Th	eory/L	ab/Emł	bedded	Theory	and La	ab								
OBJEC	TIVI	ES :													
•	Be fa	miliar	with the	e MAT	LAB G	UI and	basic to	ool boy	kes						
		-		or and 1		-									
						al and r	elation	al oper	ations o	on matri	Х				
COURS					(3-5)										
The Stu															
CO1		^					ol boxes	5							
CO2	Iden	tify ve	ify vector and matrix operations												
CO3	Illus	strate withprogramming arithmetic, logical and relational operations on matrix													
Mappir			urse Outcomes with Program Outcomes (POs)												
COs/P		PO1	PO2	PO3		PO5	PO6	PO7		PO9	PO10	POI	1	PO12	
CO	l	3	3	2	2	3	1	2	2	3	3	3		2	
CO2		3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
CO3	3	3	2	3	3	3	2	2	2	3	3	3		3	
COs / F	SOs		PSO	1	·	PS	502		•	PSO3			PSC)4	
CO	1		3				3			2			3		
CO	2		3				3			3			3		
CO	3		3				3			3			3		
3/2/1 in	dicat	es Stre	ngth of	f Corre	lation	3- Hig	gh, 2- N	Iediu n	n, 1-Lo	W	•				
Category		Basic Sciences	Engg Sciences)	Humanities & Social Sciences	Program core)	Program Electives	. Open Electives		Inter Disciplinary	Skill Component		Practical / Project	

Subject Code:	Subject Name : BASICS OF MATLAB	Ty / Lb/	L	T/SL	P/R	С
		ETL/IE	-	r		
EBEC22OL3	Prerequisite: None	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- 1. Introduction to SDK of MATLAB
- 2. Basic syntax and scalar arithmetic operations and calculations
- 3. Working with formulas
- 4. Arithmetic operations in matrix data
- 5. Matrix operations (inverse, transpose)
- 6. Reading an image file
- 7. Reading from and writing to a text file
- 8. Introduction to toolboxes
- 9. Data visualization and plotting
- 10. Relational operators in data
- 11. Logical operation in data
- 12. Loops in MATLAB
- 13. Computing Eigen value for a matrix
- 14. Random number generation Monte carlo methods

Total Number of Hours: 45

REFERENCES:

1. Lab manual, Department of ECE, DR.MGR UNIVERSITY.