FORM NO.F/CDD/004 Rev.00 Date 20.03.2020



# FACULTY OF ENGINEERING AND TECHNOLOGY

# **OUTCOME BASED EDUCATION**

**Curriculum and Syllabus** 

# **B.TECH (ELECTRICAL AND ELECTRONICS ENGINEERING)**

(Part Time)

**Regulation - 2022** 

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING



# **DEPARTMENT VISION STATEMENT**

To produce competent electrical engineers who can excel in education/research/entrepreneurship skills and thereby building an energy efficient society.

# **DEPARTMENT MISSION STATEMENT**

| M1 | To involve students in practical engineering skills through quality education                                                                                  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M2 | To inculcate creative, innovative paths for multidisciplinary research and higher education                                                                    |
| M3 | To enhance entrepreneurial skills in electrical engineering for the societal challenges                                                                        |
| M4 | To render services continuously to meet the requirements of changing world in the Electrical Engineering Industry by educating students for global competition |

# **PROGRAMME EDUCATIONAL OBJECTIVES**

|      | To involve in challenging real time electrical engineering problems such as design, manufacturing and testing of electrical machines |
|------|--------------------------------------------------------------------------------------------------------------------------------------|
|      | To exploit the areas of entrepreneurship to become effective entrepreneurs and managers for electrical industries                    |
| PEO3 | To engage in solving complex problems by applying relevant tools, techniques and electrical softwares                                |

# **PEO with MISSION STATEMENT**

|      | M1 | M2 | М3 | M4 |
|------|----|----|----|----|
| PEO1 | 3  | 1  | 2  | 2  |
| PEO2 | 2  | 3  | 3  | 2  |
| PEO3 | 2  | 1  | 2  | 3  |

3/2/1 Indicates Strength of Correlation, 3 – High, 2- Medium, 1- Low



# **PROGRAMME OUTCOMES**

| PO1  | <b>Engineering Knowledge:</b> Apply the Knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO2  | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering Problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.                                                                 |
| PO3  | <b>Design /development of solutions:</b> Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental consideration.        |
| PO4  | <b>Conduct investigations of complex problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions                                                                |
| PO5  | <b>Modern tool usage:</b> Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.                                                                  |
| PO6  | <b>The engineer and society:</b> Apply reasoning informed by the contextual knowledge to access societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice                                                               |
| PO7  | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.                                                                                    |
| PO8  | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice                                                                                                                                                                    |
| PO9  | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multi-disciplinary settings                                                                                                                                                  |
| PO10 | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions |
| PO11 | <b>Project management and finance:</b> Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team to manage projects and in multi-disciplinary environments                                               |
| PO12 | Life –long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of Technological change                                                                                                                       |



# **PEO-PO**

|      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | <b>PO8</b> | PO9 | PO10 | PO11 | PO12 |
|------|-----|-----|-----|-----|-----|-----|------------|------------|-----|------|------|------|
| PEO1 | 2   | 3   | 3   | 2   | 2   | 2   | 2          | 2          | 2   | 3    | 2    | 1    |
| PEO2 | -   | 2   | 1   | 1   | -   | 2   | 1          | 3          | 3   | 2    | 3    | 1    |
| PEO3 | 2   | 3   | 2   | 2   | 3   | 2   | 2          | 3          | 3   | 2    | 1    | 2    |

3/2/1 Indicates Strength of Correlation, 3 – High, 2- Medium, 1- Low

# **PROGRAMME SPECIFIC OBJECTIVES**

| PSO1 | To identify and investigate the problems in power system and provide solutions to the real time generation, transmission and distribution of power |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO2 | To analyze and develop the modern power electronic devices using latest software tools                                                             |
| PSO3 | To design and manage the sustainable development in smart grid and electric vehicle technology.                                                    |

# **PEO** with **PSO**

|      | PSO1 | PSO2 | PSO3 |
|------|------|------|------|
| PEO1 | 3    | 2    | 2    |
| PEO2 | 2    | 2    | 3    |
| PEO3 | 2    | 3    | 2    |

3/2/1 Indicates Strength of Correlation, 3 – High, 2- Medium, 1- Low



# Faculty of Engineering and Technology

# **Regulation 2022 – Framework**

# **Total Credits: 100**

# Credit for I TO VII Semester: 100 Credits (Maximum)

# **Program Components**

| Basic Science (Mathematics) include according to program - 1 |   |    |  |  |  |  |  |  |
|--------------------------------------------------------------|---|----|--|--|--|--|--|--|
| Program Core theory                                          | - | 15 |  |  |  |  |  |  |
| Program Core Laboratory                                      | - | 5  |  |  |  |  |  |  |
| Program Elective                                             | - | 5  |  |  |  |  |  |  |
| Open Elective                                                | - | -  |  |  |  |  |  |  |
| Open Lab                                                     | - | -  |  |  |  |  |  |  |
| Foreign Language                                             | - | -  |  |  |  |  |  |  |
| Audit course                                                 | - | -  |  |  |  |  |  |  |
| Universal Human values                                       | - | -  |  |  |  |  |  |  |
| • Inter disciplinary theory                                  | - | 2  |  |  |  |  |  |  |
| • Inter disciplinary Lab                                     | - | -  |  |  |  |  |  |  |
| • ETL                                                        | - | 4  |  |  |  |  |  |  |
| Technical Skills                                             | - | -  |  |  |  |  |  |  |
| • Soft skill                                                 | - | -  |  |  |  |  |  |  |
| Project /mini project                                        | - | 2  |  |  |  |  |  |  |



# **Curriculum - Electrical and Electronics Engineering (PT) 2022 Regulation**

|           | I SEMESTER     |                                     |                  |   |           |     |   |          |  |  |  |
|-----------|----------------|-------------------------------------|------------------|---|-----------|-----|---|----------|--|--|--|
| S.N<br>O. | COURSE<br>CODE | COURSE NAME                         | Ty/Lb/<br>ETL/IE | L | T/<br>SLr | P/R | С | Category |  |  |  |
| 1         | EBMA22009      | Laplace and Fourier Transforms      | Ту               | 3 | 1/0       | 0/0 | 4 | BS       |  |  |  |
| 2         | EBEE22002      | DC Machines and Transformers        | Ту               | 3 | 1/0       | 0/0 | 4 | PC       |  |  |  |
| 3         | EBEE22004      | Electromagnetic Field Theory        | Ту               | 3 | 0/0       | 0/0 | 3 | PC       |  |  |  |
| 4         | EBEE22ET2      | Circuit Theory and Network Analysis | ETL              | 2 | 0/0       | 2/0 | 3 | PC       |  |  |  |
|           | PRACTICALS*    |                                     |                  |   |           |     |   |          |  |  |  |
| 1         | EBEE22L11      | Analog and Digital Electronics Lab  | Lb               | 0 | 0/0       | 3/0 | 1 | PC       |  |  |  |

# Credits Sub Total : 15

|           | II SEMESTER    |                                        |                  |   |           |     |   |          |  |  |  |
|-----------|----------------|----------------------------------------|------------------|---|-----------|-----|---|----------|--|--|--|
| S.N<br>O. | COURSE<br>CODE | COURSE NAME                            | Ty/Lb/<br>ETL/IE | L | T/<br>SLr | P/R | С | Category |  |  |  |
| 1         | EBEE22005      | AC and Special Machines                | Ту               | 3 | 0/0       | 0/0 | 3 | PC       |  |  |  |
| 2         | EBEC22ID3      | Communication Systems and IOT          | Ту               | 3 | 0/0       | 0/0 | 3 | ID       |  |  |  |
| 3         | EBME22ID1      | Thermodynamics and Fluid Mechanics     | Ту               | 3 | 0/0       | 0/0 | 3 | ID       |  |  |  |
| 4         | EBEE22ET3      | Linear and Digital Integrated Circuits | ETL              | 2 | 0/0       | 2/0 | 3 | PC       |  |  |  |
|           | PRACTICALS*    |                                        |                  |   |           |     |   |          |  |  |  |
| 1         | EBEE22L12      | Electrical Machines Lab                | Lb               | 0 | 0/0       | 3/0 | 1 | PC       |  |  |  |

Credits Sub Total : 13

## Note:

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and lab/Internal evaluation

L/T/SLr/P/R/C: Lecture/Tutorials/Supervised Learning/Practical/Research/Credit

HS: Humanities and Social Science, ES:Engg. Science. BS: Basic Science, PC:Program core, PE:Program Elective, OE:Open Elective, P:Project

HS: Humanities and Social Science, ES:Engg. Science. BS: Basic Science, PC:Program core, PE:Program Elective, OE:Open Elective, P:Project



|           | III SEMESTER   |                                           |                  |   |           |     |   |          |  |  |  |
|-----------|----------------|-------------------------------------------|------------------|---|-----------|-----|---|----------|--|--|--|
| S.NO<br>· | COURSE<br>CODE | COURSE NAME                               | Ty/Lb/<br>ETL/IE | L | T/<br>SLr | P/R | С | Category |  |  |  |
| 1         | EBEE22006      | Generation, Transmission and Distribution | Ту               | 3 | 0/0       | 0/0 | 3 | PC       |  |  |  |
| 2         | EBEE22008      | Control System                            | Ту               | 3 | 0/0       | 0/0 | 4 | PC       |  |  |  |
| 3         | EBEE22003      | Measurements and Instrumentation          | Ту               | 3 | 0/0       | 0/0 | 3 | PC       |  |  |  |
| 4         | EBEE22ET4      | Design of Electrical Machines             | ETL              | 1 | 0/1       | 3/0 | 3 | PC       |  |  |  |
|           | PRACTICALS*    |                                           |                  |   |           |     |   |          |  |  |  |
| 1         | EBEE22L13      | Measurement and Control Lab               | Lb               | 0 | 0/0       | 3/0 | 1 | PC       |  |  |  |

# **Credits Sub Total: 14**

|       | IV SEMESTER    |                                                  |                  |   |           |     |   |          |  |  |  |
|-------|----------------|--------------------------------------------------|------------------|---|-----------|-----|---|----------|--|--|--|
| S.NO. | COURSE<br>CODE | COURSE NAME                                      | Ty/Lb/<br>ETL/IE | L | T/<br>SLr | P/R | С | Category |  |  |  |
| 1     | EBEE22007      | Power System Protection and Switchgear           | Ту               | 3 | 0/0       | 0/0 | 3 | PC       |  |  |  |
| 2     | EBEE22009      | Power Electronics                                | Ту               | 3 | 0/0       | 0/0 | 3 | PC       |  |  |  |
| 3     | EBXX22EXX      | Program Elective I                               | Ту               | 3 | 0/0       | 0/0 | 3 | PE       |  |  |  |
| 4     | EBEE22ET5      | Microprocessor Microcontroller and ARM Processor | ETL              | 3 | 0/0       | 0/0 | 3 | PC       |  |  |  |
|       | PRACTICALS*    |                                                  |                  |   |           |     |   |          |  |  |  |
| 1     | EBEE22L05      | Power Electronics Lab                            | Lb               | 0 | 0/0       | 3/0 | 1 | PC       |  |  |  |

**Credits Sub Total: 13** 

Note:

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and lab/Internal evaluation

L/T/SLr/P/R/C: Lecture/Tutorials/Supervised Learning/Practical/Research/Credit

HS: Humanities and Social Science, ES:Engg. Science. BS: Basic Science, PC:Program core, PE:Program **Elective, OE:Open Elective, P:Project** 

HS: Humanities and Social Science, ES:Engg. Science. BS: Basic Science, PC:Program core, PE:Program **Elective, OE:Open Elective, P:Project** 



|           | V SEMESTER     |                                                     |                  |   |           |     |   |          |  |  |  |
|-----------|----------------|-----------------------------------------------------|------------------|---|-----------|-----|---|----------|--|--|--|
| S.N<br>O. | COURSE<br>CODE | COURSE NAME                                         | Ty/Lb/<br>ETL/IE | L | T/<br>SLr | P/R | С | Category |  |  |  |
| 1         | EBEE22010      | Power System Analysis                               | Ту               | 3 | 1/0       | 0/0 | 4 | PC       |  |  |  |
| 2         | EBEE22012      | Electric Transients and High Voltage<br>Engineering | Ту               | 3 | 0/0       | 0/0 | 3 | PC       |  |  |  |
| 3         | EBEE22EXX      | Program Elective II                                 | Ту               | 3 | 0/0       | 0/0 | 3 | PE       |  |  |  |
| 4         | EBEE22016      | Energy Utilization and Conservation                 | Ту               | 3 | 0/0       | 0/0 | 3 | PC       |  |  |  |
|           | PRACTICALS*    |                                                     |                  |   |           |     |   |          |  |  |  |
| 1         | EBEE22L07      | Power System Lab                                    | Lb               | 0 | 0/0       | 3/0 | 1 | PC       |  |  |  |

## **Credits Sub Total :14**

|           | VI SEMESTER    |                                           |                  |   |           |     |   |          |  |  |  |  |
|-----------|----------------|-------------------------------------------|------------------|---|-----------|-----|---|----------|--|--|--|--|
| S.N<br>O. | COURSE<br>CODE | COURSE NAME                               | Ty/Lb/<br>ETL/IE | L | T/<br>SLr | P/R | С | Category |  |  |  |  |
| 1         | EBEE22013      | Power Quality and Control of Power system | Ту               | 3 | 0/0       | 0/0 | 3 | PC       |  |  |  |  |
| 2         | EBEE22EXX      | Program Elective III                      | Ту               | 3 | 0/0       | 0/0 | 3 | PE       |  |  |  |  |
| 3         | EBEE22EXX      | Program Elective IV                       | Ту               | 3 | 0/0       | 0/0 | 3 | PE       |  |  |  |  |
| 4         | EBEE22011      | Solid State Drives                        | Ту               | 3 | 0/0       | 0/0 | 3 | PC       |  |  |  |  |
|           | PRACTICALS*    |                                           |                  |   |           |     |   |          |  |  |  |  |
| 1         | EBEE22I05      | Project Phase – 1                         | IE               | 0 | 0/0       | 3/3 | 2 | Р        |  |  |  |  |

## **Credits Sub Total :14**

## Note:

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and lab/Internal evaluation

L/T/SLr/P/R/C: Lecture/Tutorials/Supervised Learning/Practical/Research/Credit

HS: Humanities and Social Science, ES:Engg. Science. BS: Basic Science, PC:Program core, PE:Program **Elective, OE:Open Elective, P:Project** 

HS: Humanities and Social Science, ES:Engg. Science. BS: Basic Science, PC:Program core, PE:Program **Elective, OE:Open Elective, P:Project** 



| VII SEMESTER |                |                                            |                  |   |           |           |   |          |  |
|--------------|----------------|--------------------------------------------|------------------|---|-----------|-----------|---|----------|--|
| S.N<br>O.    | COURSE<br>CODE | COURSE NAME                                | Ty/Lb/<br>ETL/IE | L | T/<br>SLr | P/R       | С | Category |  |
| 1            | EBEE22014      | FACTs and HVDC Transmission                | Ту               | 3 | 0/0       | 0/0       | 3 | PC       |  |
| 2            | EBEE22015      | Smart Grid and Electric Vehicle Technology | Ту               | 3 | 0/0       | 0/0       | 3 | PC       |  |
| 3            | EBEE22EXX      | Program Elective V                         | Ту               | 3 | 0/0       | 0/0       | 3 | PE       |  |
|              |                | PRACTICALS*                                |                  |   |           |           |   |          |  |
| 1            | EBEE22L10      | Project Phase – II                         | Lb               | 0 | 0/0       | 16/1<br>6 | 8 | Р        |  |

**Credits Sub Total :17** 

Note:

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and lab/Internal evaluation

L/T/SLr/P/R/C: Lecture/Tutorials/Supervised Learning/Practical/Research/Credit

HS: Humanities and Social Science, ES:Engg. Science. BS: Basic Science, PC:Program core, PE:Program **Elective, OE:Open Elective, P:Project** 

HS: Humanities and Social Science, ES:Engg. Science. BS: Basic Science, PC:Program core, PE:Program **Elective, OE:Open Elective, P:Project** 

**Credit Summary** 

Semester : 1 : 15

Semester : 2 :13

- Semester : 3 :14
- Semester : 4 :13
- Semester : 5 :14
- Semester : 6 :14
- Semester: 7 :17
- Total Credits : 100



|       | PROGRAM ELECTIVE –I |                                       |                  |   |           |     |   |          |  |  |  |
|-------|---------------------|---------------------------------------|------------------|---|-----------|-----|---|----------|--|--|--|
| S.NO. | COURSE CODE         | COURSE NAME                           | Ty/Lb/<br>ETL/IE | L | T/<br>SLr | P/R | С | Category |  |  |  |
| 1     | EBEE22E01           | Wind Energy Conversion Techniques     | Ту               | 3 | 0/0       | 0/0 | 3 | PE       |  |  |  |
| 2     | EBEE22E02           | IOT Applied to Electrical Engineering | Ту               | 3 | 0/0       | 0/0 | 3 | PE       |  |  |  |
| 3     | EBEE22E03           | Mechatronics                          | Ту               | 3 | 0/0       | 0/0 | 3 | PE       |  |  |  |
| 4     | EBEE22E04           | Fiber optics Communication            | Ту               | 3 | 0/0       | 0/0 | 3 | PE       |  |  |  |

|       | PROGRAM ELECTIVE –II |                                     |                  |   |           |     |   |          |  |  |  |
|-------|----------------------|-------------------------------------|------------------|---|-----------|-----|---|----------|--|--|--|
| S.NO. | COURSE CODE          | COURSE NAME                         | Ty/Lb/<br>ETL/IE | L | T/<br>SLr | P/R | С | Category |  |  |  |
| 1     | EBEE22E05            | Solar Energy Conversion Techniques  | Ту               | 3 | 0/0       | 0/0 | 3 | PE       |  |  |  |
| 2     | EBEE22E06            | Green Building Technology           | Ту               | 3 | 0/0       | 0/0 | 3 | PE       |  |  |  |
| 3     | EBEE22E07            | Neural Networks and its Application | Ту               | 3 | 0/0       | 0/0 | 3 | PE       |  |  |  |
| 4     | EBEE22E08            | Digital Signal Processing           | Ту               | 3 | 0/0       | 0/0 | 3 | PE       |  |  |  |

|       | PROGRAM ELECTIVE –III |                                      |                  |   |           |     |   |          |  |  |  |
|-------|-----------------------|--------------------------------------|------------------|---|-----------|-----|---|----------|--|--|--|
| S.NO. | COURSE<br>CODE        | COURSE NAME                          | Ty/Lb/<br>ETL/IE | L | T/<br>SLr | P/R | С | Category |  |  |  |
| 1     | EBEE22E09             | Restructuring of Distribution System | Ту               | 3 | 0/0       | 0/0 | 3 | PE       |  |  |  |
| 2     | EBEE22E10             | DG and Energy Storage Technology     | Ту               | 3 | 0/0       | 0/0 | 3 | PE       |  |  |  |
| 3     | EBEE22E11             | Material Science in Aviation         | Ту               | 3 | 0/0       | 0/0 | 3 | PE       |  |  |  |
| 4     | EBEE22E12             | Power Plant Instrumentation          | Ту               | 3 | 0/0       | 0/0 | 3 | PE       |  |  |  |

|       | PROGRAM ELECTIVE –IV |                                                |                  |   |           |     |   |          |  |  |  |
|-------|----------------------|------------------------------------------------|------------------|---|-----------|-----|---|----------|--|--|--|
| S.NO. | COURSE<br>CODE       | COURSE NAME                                    | Ty/Lb/<br>ETL/IE | L | T/<br>SLr | P/R | С | Category |  |  |  |
| 1     | EBEE22E13            | Safety for Electrical Engineers                | Ту               | 3 | 0/0       | 0/0 | 3 | PE       |  |  |  |
| 2     | EBEE22E14            | Wide Area Monitoring Protection and<br>Control | Ту               | 3 | 0/0       | 0/0 | 3 | PE       |  |  |  |
| 3     | EBEE22E15            | Robotics and Automation                        | Ту               | 3 | 0/0       | 0/0 | 3 | PE       |  |  |  |
| 4     | EBEE22E16            | Image Processing                               | Ту               | 3 | 0/0       | 0/0 | 3 | PE       |  |  |  |

|       | PROGRAM ELECTIVE –V |                                        |                  |   |           |     |   |          |  |  |  |
|-------|---------------------|----------------------------------------|------------------|---|-----------|-----|---|----------|--|--|--|
| S.NO. | COURSE<br>CODE      | COURSE NAME                            | Ty/Lb/<br>ETL/IE | L | T/<br>SLr | P/R | С | Category |  |  |  |
| 1     | EBEE22E17           | Substation Designing                   | Ту               | 3 | 0/0       | 0/0 | 3 | PE       |  |  |  |
| 2     | EBEE22E18           | Industrial Control and Instrumentation | Ту               | 3 | 0/0       | 0/0 | 3 | PE       |  |  |  |
| 3     | EBEE22E19           | Electric Traction                      | Ту               | 3 | 0/0       | 0/0 | 3 | PE       |  |  |  |
| 4     | EBEE22E20           | Environmental Science and Engineering  | Ту               | 3 | 0/0       | 0/0 | 3 | PE       |  |  |  |



# Table. 1: Components of Curriculum and Credit distribution for E&T Programmes

| Course                | Description |         |         |       | Credit    | Contact |
|-----------------------|-------------|---------|---------|-------|-----------|---------|
| Component             | _           | No. of  |         |       | Weightage | hours   |
| -                     |             | Courses | Credits | Total | (%)       |         |
| Basic Science`        | Theory      | 1       | 4       |       |           | 60      |
|                       | Lab         | 0       | 0       | 4     | 4         | 0       |
|                       | ETL         | 0       | 0       |       |           | 0       |
| Engineering Science   | Theory      | 0       | 0       | 0     | 0         | 0       |
|                       | Lab         |         |         |       |           |         |
|                       | ETL         |         |         |       |           |         |
| Humanities and        | Theory      | 0       | 0       | 0     | 0         | 0       |
| Social Science        | Lab         |         |         |       |           |         |
|                       | ETL         |         |         |       |           |         |
| Program Core          | Theory      | 15      | 48      |       |           | 720     |
|                       | Lab         | 5       | 5       | 65    | 65        | 15      |
|                       | ETL         | 4       | 12      |       |           | 240     |
| Program Electives     | Theory      | 5       | 15      | 15    | 15        | 225     |
| <b>Open Elective</b>  | Theory      | 0       | 0       | 0     | 0         | 0       |
|                       | Lab         |         |         |       |           |         |
| Inter-disciplinary    | Theory      | 2       | 6       |       |           | 90      |
|                       | Lab         | 0       | 0       | 6     | 6         | 0       |
|                       | ETL         | 0       | 0       |       |           | 0       |
| Skill Component       |             | 0       | 0       | 0     | 0         | 0       |
| Internship/Project    |             | 2       | 10      | 10    | 10        | 450     |
| Others if any         |             | 0       | 0       | 0     | 0         | 0       |
| NPTEL/SWAYAM          |             |         |         |       |           |         |
| <b>Online Courses</b> |             |         |         |       |           |         |
|                       | TOTAL       | 35      | 100     | 100   | 100%      | 1800    |

Note:

**Basic Science:** Mathematics, Physics and Chemistry.

<u>Engineering Science</u>: Engineering Graphics, Basics of Mechanical and Civil Engineering, Basics of Electrical and Electronics Engineering, C Programming and MS office tools, Python Programming <u>Humanities and Social sciences</u>:

English, Foreign language, Environmental Studies, Management, Entrepreneurship, Indian Constitution and Indian Traditional Knowledge, Universal Human Values.

# **Skill Component:**

Technical Skill, Soft Skill, internship.

Note:

Following categories should be available in the mapping page of each subject



# Table 2: Revision/modification done in syllabus content:

| S.No | Course<br>(Subject)<br>Code | Course (Subject) Name                                                 | he Concept/ Concept/topic added in the new curriculum                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | % of Revision/<br>Modification done |
|------|-----------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| 1.   | EBEE22001                   | Basic Electrical,<br>Electronic and<br>Instrumentation<br>Engineering | Basics of power system                                                                                   | Sensors and Transducers                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20%                                 |
| 2.   | EBEE22ET2                   | Circuit Theory and<br>Network Analysis                                | S-domain Analysis and network<br>synthesis (poles and zeros<br>transforms already learnt in<br>BEE22001) | <ul> <li>Resonance and three phase circuits</li> <li>Lab component included</li> <li>1.Determination of self, mutual inductance and coefficient of coupling</li> <li>2.Design and Simulation of low pass and high pass passive filters</li> <li>3.Design and Simulation of series resonance circuit.</li> <li>4.Design and Simulation of parallel resonant circuits</li> <li>5.Simulation of three phase balanced and unbalanced star, delta networks</li> </ul> | 50%                                 |
| 3.   | EBEE22003                   | Measurements and<br>Instrumentation                                   | Transducers and converters                                                                               | Current, power and energy measurements                                                                                                                                                                                                                                                                                                                                                                                                                           | 20%                                 |



| 3. | EBEC22IL3 | Communication Systems<br>and IOT Lab            | Signal processing experiments were removed                                                                                                            | IOT experiments were added                                                                                                                                | 50% |
|----|-----------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4. | EBEE22006 | Generation,<br>Transmission and<br>Distribution | Faults & Protection                                                                                                                                   | Mechanical design of lines and Insulators<br>(Unit II)<br>Underground cables: Construction,<br>Classification, Capacitance of 2 core and 3<br>core cables | 30% |
| 5. | EBEE22L02 | Measurement and<br>Instrumentation Lab          | <ol> <li>Ramp response Characteristic<br/>of filled in system thermometer.</li> <li>P/I and I/P converter</li> <li>Hall effect transducers</li> </ol> | Study of CRO                                                                                                                                              | 20% |
| 6. | EBEE22007 | Power System protection<br>and switchgear       | Modeling of power system components                                                                                                                   | Protection schemes                                                                                                                                        | 20% |
| 7. | EBEE22008 | Control System                                  |                                                                                                                                                       | Conversion of state variable models to<br>transfer function and vice versa                                                                                | 20% |
| 8. | EBEE22009 | Power Electronics                               | AC and DC drives                                                                                                                                      | <ol> <li>DC to DC converters</li> <li>AC to AC converters</li> </ol>                                                                                      | 40% |
| 9. | EBEE22L05 | Power Electronics Lab                           | Dives experiments                                                                                                                                     |                                                                                                                                                           | 20% |



# Table3:

# <u>List of New courses/ value added courses//life skills/Electives/interdisciplinary /courses</u> <u>focusing on employability/entrepreneurship/skill development.</u>

| S.<br>No | New courses (Subjects)                                           | Value<br>added<br>courses | Life<br>skill | Electives | Inter<br>Disciplinary | Focus on<br>employability/entrepreneur<br>ship/<br>skill development |
|----------|------------------------------------------------------------------|---------------------------|---------------|-----------|-----------------------|----------------------------------------------------------------------|
| 1.       | EBMA22009/Laplace<br>and Fourier Transforms                      |                           |               |           | Yes                   |                                                                      |
| 2.       | EBCS22ID2/ Artificial<br>Intelligence and Expert<br>systems      |                           |               |           | Yes                   | Employability                                                        |
| 3.       | EBEE22011/Solid State<br>Drives                                  |                           |               |           |                       | Employability                                                        |
| 4.       | EBEE22010/Power<br>System analysis                               |                           |               |           |                       | Employability                                                        |
| 5.       | EBEE22012/Electric<br>Transients and high<br>voltage Engineering |                           |               |           |                       | Employability                                                        |
| 6.       | EBEE22014/FACTs and<br>HVDC Transmission                         |                           |               |           |                       | Employability                                                        |
| 7.       | EBEE22015/Smart grid<br>and Electric Vehicle<br>Technology       |                           |               |           |                       | Skill development/<br>Employability                                  |
| 8.       | EBEE22E04/Fiber Optics<br>Communication                          |                           |               | Yes       | Yes                   |                                                                      |
| 9.       | EBEE22E15/Robotics<br>and Automation                             |                           |               |           |                       | Employability                                                        |
| 10.      | EBEE22E20/Environmen<br>tal Science and<br>Engineering           |                           |               | Yes       | Yes                   |                                                                      |



| Course Code:<br>EBMA22009 | Course N<br>TRANSI |                                                                            |                                   | CE ANI       | ) FOUF               | RIER           |                        |                                  | Ty/Lb/<br>TL/IE | L | T/S        | Lr I | ?/R | C   |
|---------------------------|--------------------|----------------------------------------------------------------------------|-----------------------------------|--------------|----------------------|----------------|------------------------|----------------------------------|-----------------|---|------------|------|-----|-----|
|                           | Prerequi           | isite: Fi                                                                  | rst year                          | · Engine     | eering N             | Aathem         | atics                  |                                  | Ту              | 3 | 1/0        | ) (  | /0  | 4   |
| L : Lecture T : T         |                    |                                                                            |                                   |              |                      | Project 1      | R : Rese               | arch C: C                        | Credits         |   |            |      |     |     |
| Ty/Lb/ETL : Th            |                    | Embedde                                                                    | ed Theor                          | ry and L     | ab                   |                |                        |                                  |                 |   |            |      |     |     |
| OBJECTIVES                |                    |                                                                            |                                   |              |                      |                |                        |                                  |                 |   |            |      |     |     |
| The student sh            |                    |                                                                            |                                   |              | m                    | c              |                        |                                  |                 |   |            |      |     |     |
|                           | ble to unde        |                                                                            | -                                 | _            | ace Tran             | istorms        |                        |                                  |                 |   |            |      |     |     |
|                           | ble to apply       | -                                                                          |                                   |              |                      |                |                        |                                  |                 |   |            |      |     |     |
|                           | ble to unde        |                                                                            | -                                 |              |                      |                |                        |                                  |                 |   |            |      |     |     |
|                           | erstand the        |                                                                            | s in Fou                          | rier and     | Z Trans              | storms         |                        |                                  |                 |   |            |      |     |     |
| COURSE OUT<br>CO1         | To be abl          |                                                                            | arctand                           | the con      | oonto in             | Lonlooo        | Tranafa                |                                  |                 |   |            |      |     |     |
| CO1<br>CO2                | To be abl          |                                                                            |                                   |              | _                    | Laplace        | Transic                | orms                             |                 |   |            |      |     |     |
|                           | To be abl          |                                                                            | •                                 |              |                      |                |                        |                                  |                 |   |            |      |     |     |
| CO3<br>CO4                | To be abl          |                                                                            |                                   |              |                      |                |                        |                                  |                 |   |            |      |     |     |
| C04<br>C05                |                    |                                                                            |                                   |              | lonns                |                |                        |                                  |                 |   |            |      |     |     |
|                           |                    | To be able to apply Z transforms<br>e Outcomes with Program Outcomes (POs) |                                   |              |                      |                |                        |                                  |                 |   |            |      |     |     |
| COs/POs                   | PO1                | PO2                                                                        | PO3                               | PO4          | PO5                  | <b>PO6</b>     | <b>PO7</b>             | PO8                              | PO9             | P | <b>D10</b> | PO11 | P   | 012 |
| C01                       | 3                  | 2                                                                          | 2                                 | 3            | 3                    | 1              | 1                      | 2                                | 2               |   | 1          | 1    |     | 2   |
| CO2                       | 2                  | 2                                                                          | 1                                 | 3            | 1                    | 2              | 1                      | 2                                | 3               |   | 1          | 1    |     | 2   |
| CO3                       | 3                  | 2                                                                          | 1                                 | 3            | 2                    | 3              | 2                      | 1                                | 1               |   | 2          | 1    |     | 3   |
| CO4                       | 3                  | 2                                                                          | 1                                 | 2            | 1                    | 3              | 2                      | 1                                | 1               |   | 1          | 1    |     | 2   |
| CO5                       | 3                  | 3                                                                          | 1                                 | 2            | 1                    | 2              | 2                      | 1                                | 1               |   | 2          | 2    |     | 3   |
| COs / PSOs                | -                  | PSO1                                                                       |                                   |              | PSO2                 |                |                        | PSO                              | 3               |   |            |      |     |     |
| CO1                       |                    | 3                                                                          |                                   |              | 3                    |                |                        | 3                                |                 |   |            |      |     |     |
| CO2                       |                    | 3                                                                          |                                   |              | 3                    |                |                        | 3                                |                 |   |            |      |     |     |
| CO3                       |                    | 3                                                                          |                                   |              | 3                    |                |                        | 3                                |                 |   |            |      |     |     |
| CO4                       |                    | 3                                                                          |                                   |              | 3                    |                |                        | 3                                |                 |   |            |      |     |     |
| CO5                       |                    | 3                                                                          |                                   |              | 3                    |                |                        | 3                                |                 |   |            |      |     |     |
| 3/2/1 Indicates S         | Strength of        | Correla                                                                    | tion, 3 -                         | High, 2      | 2- Mediu             | ım, 1- L       | ow                     |                                  |                 |   |            |      |     |     |
| Category                  | Basic Sciences     | Engineering<br>Sciences                                                    | Humanities and<br>Social Sciences | Program Core | Program<br>Electives | Open Electives | Practical /<br>Project | Internships /<br>Technical Skill | Soft Skills     |   |            |      |     |     |
|                           | $\checkmark$       |                                                                            |                                   |              |                      |                |                        |                                  |                 |   |            |      |     |     |

#### (An ISO 21001 : 2018 Certified Institution) Perivar E.V.R. High Road, Maduravoval, Chennai-95, Tamili adu. India

| Course Code:<br>EBMA22009 | Course Name: LAPLACE AND FOURIER<br>TRANSFORMS   | Ty/Lb/<br>ETL/IE | L | T/SLr | P/R | C |
|---------------------------|--------------------------------------------------|------------------|---|-------|-----|---|
|                           | Prerequisite: First year Engineering Mathematics | Ту               | 3 | 1/0   | 0/0 | 4 |
|                           |                                                  |                  |   |       |     |   |

#### UNIT I LAPLACE TRANSFORMS

Transforms of simple functions - Properties of Transforms - Inverse Transforms - Transforms of Derivatives and Integrals.

#### UNIT II **APPLICATIONS OF LAPLACE TRANSFORMS**

Periodic functions – Initial and final value theorems – Convolution theorem – Applications of Laplace transforms for solving linear ordinary differential equations up to second order with constant coefficients and Linear simultaneous differential equations of first order with constant coefficients.

#### FOURIER SERIES UNIT III

Dirichlet's conditions – General Fourier series – Half range Sine & Cosine series – Complex form of Fourier series – Parseval's identity -Harmonic Analysis.

#### **UNIT IV** FOURIER TRANSFORMS

Statement of Fourier integral theorem – Fourier transform pairs – Fourier Sine and Cosine transforms – Properties – Transforms of simple functions - Convolution theorem - Parseval's theorem.

#### UNIT V Z TRANSFORMS AND DIFFERENCE EQUATION

Z-transforms – Elementary properties – Inverse Z transforms – Partial fraction – Residue method – Convolution theorem – Solution of difference equation using Z transform (simple problems).

## Total no. of Periods: 60

## **REFERENCE BOOKS**

- 1) Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).
- 2) Veerarajan T., Engineering Mathematics (for semester III), Tata McGraw Hill Publishing Co., (2005).
- 3) Singaravelu, Transforms and Partial Differential Equations, Meenakshi Agency, (2017).
- 4) Kreyszig E., Advanced Engineering Mathematics (9<sup>th</sup> ed.), John Wiley & Sons, (2011).
- 5) Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).



12

12

# 12

## 12



| Course Code:<br>EBEE22002 | Course<br>TRAN                                                                                                   |                             |                                                                                                                                 | IACHI       | NES AN    |           | Ty/ Lb/<br>ETL/IE | L        | T/SLr     | P/R  | C       |                                                                                                                  |            |  |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|-----------|-------------------|----------|-----------|------|---------|------------------------------------------------------------------------------------------------------------------|------------|--|--|
|                           |                                                                                                                  |                             |                                                                                                                                 |             | al, Elect | ronics a  | nd                |          | Ту        | 3    | 1/0     | 0/0                                                                                                              | 4          |  |  |
|                           | Instru                                                                                                           |                             |                                                                                                                                 |             |           |           |                   |          |           |      |         |                                                                                                                  |            |  |  |
| L : Lecture T : Tu        |                                                                                                                  | -                           |                                                                                                                                 | -           |           | ect R : R | esearch           | n C :    |           |      |         |                                                                                                                  |            |  |  |
| CreditsT/L/ETL:           | Theory/La                                                                                                        | ıb/Embe                     | edded T                                                                                                                         | heory a     | nd Lab    |           |                   |          |           |      |         |                                                                                                                  |            |  |  |
| OBJECTIVES                |                                                                                                                  |                             |                                                                                                                                 |             |           |           |                   |          |           |      |         |                                                                                                                  |            |  |  |
| To provid                 |                                                                                                                  | -                           |                                                                                                                                 |             | -         |           | -                 |          |           |      |         |                                                                                                                  |            |  |  |
| • To famili               |                                                                                                                  |                             |                                                                                                                                 | workin      | g princip | le of the | DC m              | achines, | transform | ners | and the | r                                                                                                                |            |  |  |
| performa                  |                                                                                                                  |                             |                                                                                                                                 |             |           |           |                   |          |           |      |         |                                                                                                                  |            |  |  |
| To provid                 |                                                                                                                  | •                           |                                                                                                                                 |             |           |           |                   | 0        |           |      |         |                                                                                                                  |            |  |  |
| To provid                 |                                                                                                                  | •                           | •                                                                                                                               |             |           | <b>.</b>  |                   |          |           | c    |         |                                                                                                                  |            |  |  |
| To study                  |                                                                                                                  |                             | s and di                                                                                                                        | fferent t   | esting m  | ethods f  | or DC             | machines | s and Tra | nsto | rmers   |                                                                                                                  |            |  |  |
| COURSE OUTO               |                                                                                                                  |                             |                                                                                                                                 | 4.0         |           |           |                   |          |           |      |         |                                                                                                                  |            |  |  |
| Students complete         |                                                                                                                  |                             |                                                                                                                                 |             | 1         |           |                   |          |           |      |         |                                                                                                                  |            |  |  |
| CO1                       | Evoke                                                                                                            | the prin                    | ciples b                                                                                                                        | ehind E     | lectrical | machine   | es                |          |           |      |         |                                                                                                                  |            |  |  |
| CO2                       | Compre                                                                                                           | ehend tl                    | ne work                                                                                                                         | ing of C    | Generator | rs, Trans | former            | s and Mo | otors     |      |         |                                                                                                                  |            |  |  |
| CO3                       | Articul                                                                                                          | ate the o                   | characte                                                                                                                        | eristics of | of Genera | ators, Tr | ansform           | ners and | Motors    |      |         |                                                                                                                  |            |  |  |
| CO4                       | Analyz                                                                                                           | e and de                    | esign of                                                                                                                        | the Ele     | ctrical m |           |                   |          |           |      |         |                                                                                                                  |            |  |  |
| CO5                       | Scrutin                                                                                                          | ize and                     | test the                                                                                                                        | dc mac      | hines &   |           |                   |          |           |      |         |                                                                                                                  |            |  |  |
| Mapping of Cou            | rse Outco                                                                                                        | ome wit                     | th Prog                                                                                                                         | ram Ou      | itcome (  | POs)      |                   |          |           |      |         |                                                                                                                  |            |  |  |
| COs/POs                   | PO1                                                                                                              | PO2                         | PO3                                                                                                                             | PO4         | PO5       | PO6       | PO7               | PO8      | PO9       | PO   | 10 PO   | 011 F                                                                                                            | PO12       |  |  |
| C01                       | 3                                                                                                                | 2                           | 1                                                                                                                               | 1           | 1         | 3         | 2                 | 2        | 1         | 3    | 2       | 2                                                                                                                | 1          |  |  |
| CO2                       | 3                                                                                                                | 2                           | 2                                                                                                                               | 2           | 2         | 3         | 3                 | 3        | 3         | 3    | 2       | 2                                                                                                                | 2          |  |  |
| CO3                       | 3                                                                                                                | 3                           | 3                                                                                                                               | 3           | 3         | 3         | 3                 | 3        | 3         | 3    | 2       | 2                                                                                                                | 1          |  |  |
| CO4                       | 3                                                                                                                | 3                           | 3                                                                                                                               | 3           | 3         | 3         | 3                 | 3        | 3         | 3    | 2       | 2                                                                                                                | 1          |  |  |
| CO5                       | 3                                                                                                                | 3                           | 3                                                                                                                               | 3           | 3         | 3         | 3                 | 3        | 3         | 3    | 2       | 2                                                                                                                | 2          |  |  |
| COs/PSOs                  |                                                                                                                  | PS                          | 01                                                                                                                              |             |           | PS        | 02                | 4        |           |      | PSO3    |                                                                                                                  |            |  |  |
| CO1                       |                                                                                                                  |                             | 3                                                                                                                               |             |           |           | 3                 |          |           |      | 3       |                                                                                                                  |            |  |  |
| CO2                       |                                                                                                                  | 2                           | 2                                                                                                                               |             |           |           | 2                 |          |           |      | 1       |                                                                                                                  |            |  |  |
| CO3                       |                                                                                                                  | 3                           | 3                                                                                                                               |             |           |           | 1                 |          |           |      | 2       |                                                                                                                  |            |  |  |
| CO4                       |                                                                                                                  | 2                           | 2                                                                                                                               |             |           |           | 2                 |          |           |      | 3       |                                                                                                                  |            |  |  |
| CO5                       |                                                                                                                  | $\frac{1}{3}$ $\frac{1}{2}$ |                                                                                                                                 |             |           |           |                   |          |           |      | 2       |                                                                                                                  |            |  |  |
| 3/2/1 Indicates S         | trength of Correlation, 3–High, 2-Medium, 1-Low                                                                  |                             |                                                                                                                                 |             |           |           |                   |          |           |      |         |                                                                                                                  |            |  |  |
|                           |                                                                                                                  |                             |                                                                                                                                 |             |           |           |                   |          |           |      |         |                                                                                                                  |            |  |  |
|                           | Basic Sciences<br>Engineering Sciences<br>Humanities and<br>Social Sciences<br>Program Core<br>Program Electives |                             |                                                                                                                                 |             |           |           | ş                 | гy       |           | ent  | +00;    | Practical / Project                                                                                              |            |  |  |
|                           | SUC                                                                                                              | ng                          |                                                                                                                                 | enc         | ore       | Pot       | 3                 | ive      | lina      |      | uou     | , diama di |            |  |  |
|                           | Scit                                                                                                             | eri                         |                                                                                                                                 | Sci         | Ŭ         | Ц<br>Ц    |                   | lect     | ldic      |      | mp      |                                                                                                                  | <b>I</b> / |  |  |
| ~                         | ic S                                                                                                             | ine                         | Engineering Sci<br>Humanities and<br>Social Sciences<br>Program Core<br>Program Elective<br>Open Electives<br>Interdisciplinary |             |           | C         |                   | lca      |           |      |         |                                                                                                                  |            |  |  |
| 30r.                      | Basic Sciences<br>Engineering Sc<br>Humanities and<br>Social Science:                                            |                             |                                                                                                                                 |             |           | 100       | à                 | pen      | terc      |      | dill    |                                                                                                                  | acı        |  |  |
| Category                  |                                                                                                                  |                             |                                                                                                                                 |             |           |           | ol                | In       |           | Sk   | É É     | <u> </u>                                                                                                         |            |  |  |
| ũ                         | $\checkmark$                                                                                                     |                             |                                                                                                                                 |             |           |           |                   |          |           |      |         |                                                                                                                  |            |  |  |



| Course Code:<br>EBEE22002 | Course Name: DC MACHINES AND<br>TRANSFORMERS    | Ty/ Lb/<br>ETL/IE | L | T/SLr | P/R | C |
|---------------------------|-------------------------------------------------|-------------------|---|-------|-----|---|
|                           | Prerequisite: Basic Electrical, Electronics and | Ту                | 3 | 1/0   | 0/0 | 4 |
|                           | Instrumentation Engineering                     |                   |   |       |     |   |

#### UNIT I ELECTROMECHANICAL ENERGY CONVERSION

Principles of electromechanical energy conversion – Energy, Co-energy – Elementary concepts of rotating machines – - Rotating magnetic field - generated voltage-Torque - Magnetic Leakage

#### UNIT II **DC GENERATORS**

Constructional features of DC machine – Principle of operation of DC generator – EMF equation – Methods of excitation and types of DC generators - Characteristics of Series, Shunt and Compound DC generators -Armature reaction - Commutation - Methods of improving commutation - Parallel operation of DC shunt and compound generators

#### UNIT III **DC MOTORS**

Principle of operation of DC motors-Back EMF and its significance-Torque equation-Types of DC motors- Voltage Equation – Characteristics of DC series, shunt and compound motors– Starting of DC motors–Types of starters–Speed control of DC series and shunt motors-Power flow, losses and efficiency

#### **UNIT IV TRANSFORMERS**

Principle of operation – Constructional features of single phase and three phase shell type and core type transformers– EMF equation-Transformer on No load and Load-Phasor diagram-Parameters referred to HV/ LV windings -Equivalent circuit - three phase transformers-connections - Scott Connection-Regulation --Autotransformers

#### UNIT V **TESTING OF DC MACHINES & TRANSFORMERS**

Losses and efficiency in DC Machines and transformers - Condition for maximum efficiency - Testing of DC machines - Brake test, Swinburne's test, Retardation test and Hopkinson's test - Testing of transformers - Polarity test, load test, open circuit and short circuit tests, Sumpner's test-All day efficiency.

## TEXT BOOKS

- 1. Kothari, D.P, Nagrath, I.JN (2010) Electrical Machines. Tata McGraw Hill Publishers.
- 2. Murugesh Kumar, K. (2003) DC Machines & Transformers. Vikas Publishing House Pvt Ltd.
- Theraja, B.L. Chand, S. (2011) Electrical Technology Volume. II AC/DC Machines. 3.

## **REFERENCE BOOKS**

- 1. Fitzgerald, A. E. Charles Kingsley Jr, Stephen, D. Umans (2020) Electric Machinery. 7th Ed, McGraw Hill Companies.
- 2. Hill Stephen, J. Chapman, (2012) Electric Machinery Fundamentals, 5th Ed, McGraw Hill Companies, New Delhi
- 3. Bimbhra, P.S. (2003) Electrical Machinery. Khanna Publishers.
- 4. Gupta, JB. (2015) Theory & Performance of Electrical Machine, S.K. Kataria & Sons

12

## **Total No. of Periods :60**

12

12

12

12



(An ISO 21001 : 2018 Certified Institution) Perivar E.V.R. High Road, Maduravoval, Chennai-95, Tamiln nadu. India



| Course Code:<br>EBEE22004        | Course M            | Name:                | ELECI          | ГROM                              | AGNETI       | C FIEI            | LD THE   | EORY           | Ty/ Lb/<br>ETL/IE |            | T/SLr           | P/R               | C                |  |
|----------------------------------|---------------------|----------------------|----------------|-----------------------------------|--------------|-------------------|----------|----------------|-------------------|------------|-----------------|-------------------|------------------|--|
|                                  | Prerequi<br>Instrum |                      | Bas<br>n Engin |                                   | lectrical,   | Elec              | tronics  | and            | Ту                | 3          | 0/0             | 0/0               | 3                |  |
| L : Lecture T : Tut              |                     |                      |                |                                   |              | R : Res           | earch C  | :              |                   | -          |                 |                   |                  |  |
| CreditsT/L/ETL:TI                | heory/Lab/          | Embed                | ded The        | ory and                           | l Lab        |                   |          |                |                   |            |                 |                   |                  |  |
| OBJECTIVES                       |                     |                      |                |                                   |              |                   |          |                |                   |            |                 |                   |                  |  |
| <b>OBJECTIVE:</b>                |                     |                      |                |                                   |              |                   |          |                |                   |            |                 |                   |                  |  |
| <ul> <li>To acquire l</li> </ul> | knowledge           | in Elec              | tromagi        | netic fie                         | eld theory   |                   |          |                |                   |            |                 |                   |                  |  |
| • To provide                     | a solid fou         | ndation              | in Elect       | trostati                          | cs such as   | Dipole            | , Capaci | tance          |                   |            |                 |                   |                  |  |
| • To attain fai                  | miliarity in        | Bound                | ary con        | ditions                           | and Magi     | netic fie         | ld       |                |                   |            |                 |                   |                  |  |
| • To understa                    | nd the rela         | tion bet             | ween fi        | eld the                           | ory and ci   | rcuit the         | eory     |                |                   |            |                 |                   |                  |  |
| • To identify                    | the electro         | magneti              | ic wave        | propag                            | ation in n   | nedium            | •        |                |                   |            |                 |                   |                  |  |
| COURSE OUTCO                     |                     |                      |                |                                   |              |                   |          |                |                   |            |                 |                   |                  |  |
| Students completin               | ng this cour        | se were              | e able to      | )                                 |              |                   |          |                |                   |            |                 |                   |                  |  |
| CO1                              | Recall the          | basics               | of electr      | omagn                             | etic field   | theory            |          |                |                   |            |                 |                   |                  |  |
| CO2                              | Realize the         | e conce              | pts like       | Electro                           | statics su   | ch as Di          | ipole, C | apacita        | nce and e         | lectric    | poten           | tial eta          | С                |  |
|                                  | Investigate         |                      |                |                                   |              |                   |          |                |                   |            | •               |                   |                  |  |
| CO4                              | Analyze tł          |                      |                |                                   |              |                   |          |                |                   |            |                 |                   |                  |  |
| CO5                              | Inspect the         |                      |                |                                   |              |                   |          |                |                   |            |                 |                   |                  |  |
| Mapping of Cours                 |                     |                      |                |                                   |              |                   |          |                |                   |            |                 |                   |                  |  |
| COs/POs                          | PO1                 | PO2                  | PO3            | PO4                               | PO5          | PO6               | PO7      | PO8            | PO9               | <b>PO1</b> | 0 PO            | 11 P              | <b>PO12</b>      |  |
| CO1                              | 3                   | 2                    | 1              | 1                                 | 1            | 3                 | 2        | 2              | 1                 | 3          | 2               |                   | 1                |  |
| CO2                              | 3                   | 2                    | 2              | 2                                 | 2            | 3                 | 3        | 3              | 3                 | 3          | 2               |                   | 2                |  |
| CO3                              | 3                   | 3                    | 3              | 3                                 | 3            | 3                 | 3        | 3              | 3 3 2             |            |                 |                   |                  |  |
| CO4                              | 3                   | 3                    | 3              | 3                                 | 3            | 3                 | 3        | 3              | 3                 | 3          | 2               |                   | 1                |  |
| CO5                              | 3                   | 3                    | 3              | 3                                 | 3            | 3                 | 3        | 3              | 3                 | 3          | 2               |                   | 2                |  |
| COs /PSOs                        |                     | PSC                  | )1             |                                   |              | PS                | 02       |                |                   | P          | <b>SO3</b>      |                   |                  |  |
| CO1                              |                     | 3                    | -              |                                   |              |                   | 3        |                |                   |            | 3               |                   |                  |  |
| CO2                              |                     | 3                    |                |                                   |              | 2                 | 2        |                |                   |            | 3               |                   |                  |  |
| CO3                              |                     | 2                    |                |                                   |              | 2                 | 2        |                |                   |            | 2               |                   |                  |  |
| CO4                              |                     | 3                    |                |                                   |              | 3                 | 3        |                |                   |            | 2               |                   |                  |  |
| CO5                              |                     | 1                    |                |                                   |              |                   | 3        |                |                   |            | 3               |                   |                  |  |
| 3/2/1 Indicates Stre             | ngth of Co          | rrelatio             | n, 3–Hi        | gh, 2-N                           | Iedium, 1    | -Low              |          |                |                   |            |                 |                   |                  |  |
|                                  | Ĩ                   |                      |                | •                                 |              |                   |          |                |                   |            |                 |                   |                  |  |
| ~                                | Basic Sciences      | Engineering Sciences |                | Humanities and Social<br>Sciences | Program Core | Program Electives |          | Open Electives | Interdisciplinary |            | Skill Component | Duration]/Duriant | acucal / F10Ject |  |
| O                                | Ś                   | οņ                   |                | <u> </u>                          |              |                   |          |                |                   |            |                 |                   |                  |  |
| Category                         | Bas                 | Eng                  |                | Hu<br>Sci                         | Pro          | Pro               |          | 0 <sup>p</sup> | Int               |            | Sk              | Ď.                | I                |  |

#### L T/SLr P/R **Course Code: Course Name: ELECTROMAGNETIC FIELD THEORY** Tv/Lb/ **EBEE22004 ETL/IE**

Electrical,

#### UNIT I ELECTROSTATIC FIELD

Prerequisite:

Introduction- Concepts of different co-ordinate systems -Electric field intensity- Electric flux density-electric fields due to charge distributions- Electric potential - potential gradient -Gauss law & Coulomb's law with Application

#### UNIT II **ELECTROSTATICS**

Field due to dipoles - Dipole moment - Current and Current density, Boundary conditions at dielectric and conductor surfaces - Capacitor - Capacitance - Energy stored and energy density - Capacitance due to Spherical shell, Coaxial cable

#### MAGNETOSTATICS **UNIT III**

Introduction to Magnetic materials- Magnetic field intensity- Magnetic flux density (B) – B in free space, conductor, magnetic materials. Magnetization and Permeability – Boundary conditions- Lorentz Law of force– Biot-Savart Law - Ampere's Law - Magnetic field - Scalar and vector potential - Magnetic force - Torque - Inductance

#### **UNIT IV ELECTRODYNAMICFIELDS**

Faraday's law, induced EMF – transformer and motional EMF, Maxwell's equations (differential and integral forms) – Displacement current - Relation between field theory and circuit Theory.

#### UNIT V **ELECTROMAGNETIC FIELDS AND WAVE PROPAGATION**

Basic

**Instrumentation Engineering** 

Generation – electromagnetic wave equations – Wave parameters- velocity, intrinsic impedance, propagation constant - Wave propagation in free space, loss and lossless dielectrics, conductors - skin depth, Poynting vector

# Total No. of Periods: 45

20

# **TEXT BOOKS**

- 1. William Hayt, (2005) Engineering Electromagnetics.7<sup>th</sup> Edn, McGraw Hill.
- 2. Matthew. N.O. Sadiku, (2007) Elements of Electromagnetics.4<sup>th</sup> Edn, First Indian Edition, Oxford University Press.
- 3. Ashutosh Pramanik, (2006) Electromagnetism theory and application, Prentice Hall of India Private Ltd.

# **REFERENCE BOOKS**

- 1. David K. Cheng, (2004) Field and Wave Electromagnetics, 2<sup>nd</sup> Edn, Pearson Education.
- 2. William H. Hayt Jr, John A. Buck, (2006) Engineering Electromagnetics, 7th Edn, Tata McGraw Hill Publishing Company Ltd.
- 3. Edminister, J.A. Schaum's, (2006) Theory and problems of Electromagnetics, 2<sup>nd</sup> Edn, Special Indian Edition, Tata McGraw hill.

|                               | Dr. M.G.R.<br>DUCATIONAL AND RESEARCH INSTITUTE | At NAAC |
|-------------------------------|-------------------------------------------------|---------|
| Comments of the United States | DEEMED TO BE UNIVERSITY                         | * * *   |
| 2 Consider of a state of the  | University with Graded Autonomy Status          |         |
|                               | (An ISO 21001 : 2018 Certified Institution)     |         |

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

**Electronics** 

and Ty

9

С

3

0/0

0/0

9

9

3

9



| Course Code:<br>EBEE22ET2 |                | e Name<br>VORK A     |                       |                   | HEORY             | AND        |                                                                                        |                | 7/ Lb/<br>FL/IE     | L             | T/S<br>Lr     | P/<br>R  | C      |  |  |
|---------------------------|----------------|----------------------|-----------------------|-------------------|-------------------|------------|----------------------------------------------------------------------------------------|----------------|---------------------|---------------|---------------|----------|--------|--|--|
|                           |                | quisite:<br>mentati  |                       |                   | al, Elect         | ronics a   | nd                                                                                     | I              | ETL                 | 2             | 0/0           | 2/0      | 3      |  |  |
| L : Lecture T :           |                |                      | <b>.</b>              |                   | •                 | : Project  | R : Re                                                                                 | esearch C:     | Credits             |               |               |          |        |  |  |
| T/L/ETL : The             |                | Embedd               | ed Theo               | ory and           | Lab               |            |                                                                                        |                |                     |               |               |          |        |  |  |
| <b>OBJECTIVE</b>          | understa       | nd the b             | asics of              | Flectri           | c Circuit         | - c        |                                                                                        |                |                     |               |               |          |        |  |  |
|                           | impart k       |                      |                       |                   |                   |            |                                                                                        |                |                     |               |               |          |        |  |  |
|                           |                |                      |                       |                   |                   |            | esponse                                                                                | of circuits    | S                   |               |               |          |        |  |  |
| • To                      | understa       | and Netw             | vork gra              | phs, cu           | t sets and        | d Duality  | y of the                                                                               | network        |                     |               |               |          |        |  |  |
|                           |                |                      |                       | the two           | port net          | works, v   | arious t                                                                               | ypes of fil    | ters and            | d Attenuators |               |          |        |  |  |
| COURSE OU                 |                |                      |                       | <u> </u>          |                   |            |                                                                                        |                |                     |               |               |          |        |  |  |
| <u>CO1</u>                | ·              |                      |                       |                   |                   |            | nd reduce any given electrical network<br>cuits by applying circuital laws and theorem |                |                     |               |               |          |        |  |  |
| CO2                       | Ability        | y to solve           | e simple              | est to co         | omplex c          | ircuits b  | y applyi                                                                               | ing circuit    | al laws a           | nd th         | eorem         |          |        |  |  |
| CO3                       |                | -                    |                       | <u> </u>          |                   |            | -                                                                                      | ponse of C     | fircuits            |               |               |          |        |  |  |
| CO4                       |                |                      |                       |                   | _                 |            | -                                                                                      | networks       |                     |               |               |          |        |  |  |
| CO5                       | Ability        | y to build           | d electri             | c circui          | ts and ar         | alyze vo   | oltage, c                                                                              | current & p    | power flo           | w th          | rough         | the circ | cuit   |  |  |
| Mapping of C              | ourse Oi       | utcomes              |                       | rogran            |                   |            |                                                                                        |                |                     |               |               |          | -      |  |  |
| COs/POs                   | <b>PO1</b>     | PO2                  | PO3                   | <b>PO4</b>        | PO5               | <b>PO6</b> | <b>PO7</b>                                                                             | PO8            | PO9                 | PO            | 010           | PO11     | PO12   |  |  |
| CO1                       | 3              | 3                    | 3                     | 2                 | 2                 | 1          | 1                                                                                      | 2              | 3                   | 2             |               | 3        | 2      |  |  |
| CO2                       | 2              | 1                    | 1                     | 2                 | 2                 | 1          | 1                                                                                      | 2              | 3                   | 2             |               | 3        | 2      |  |  |
| CO3                       | 2              | 1                    | 2                     | 1                 | 1                 | 2          | 2                                                                                      | 1              | 3                   | 2             |               | 3        | 1      |  |  |
| CO4                       | 1              | 2                    | 1                     | 2                 | 2                 | 2          | 3                                                                                      | 1              | 2                   | 3             |               | 3        | 1      |  |  |
| <u>CO5</u>                | 3              | 3                    | 3                     | 3                 | 2                 | 3          | 2                                                                                      | 1              | 2                   | 2             |               | 3        | 1      |  |  |
| COs / PSOs                |                | PS                   |                       |                   |                   | P          | <b>SO2</b>                                                                             |                |                     |               | PSC           | )3       |        |  |  |
| <u>CO1</u>                |                | 3                    |                       |                   |                   |            | 2                                                                                      |                |                     |               | 2             |          |        |  |  |
| <u>CO2</u>                |                | 2                    |                       |                   |                   |            | 2                                                                                      |                |                     |               | 2             |          |        |  |  |
| CO3<br>CO4                |                | 3                    |                       |                   |                   |            | <u>1</u><br>2                                                                          |                |                     |               | $\frac{1}{3}$ |          |        |  |  |
| CO4<br>CO5                |                | 2                    |                       |                   |                   |            | $\frac{2}{3}$                                                                          |                |                     |               | $\frac{3}{2}$ |          |        |  |  |
| 3/2/1 Indicates           | Strength       |                      |                       | 3- Hig            | gh, 2- Me         | edium, 1   |                                                                                        |                | 1                   |               |               |          |        |  |  |
|                           |                |                      |                       |                   |                   |            |                                                                                        |                |                     |               |               |          |        |  |  |
| Category                  | Basic Sciences | Engineering Sciences | Humanities and Social | Program Electives | Interdisciplinary |            | Skill Commonent                                                                        | Component      | Practical / Project |               |               |          |        |  |  |
| Ca                        | Basic          | Engin                | Huma                  | Sciences          | Program Core      | Progr      | 0                                                                                      | Open Electives | Interd              |               |               |          | Practi |  |  |
|                           |                | √ V                  |                       |                   |                   |            |                                                                                        |                |                     |               |               |          |        |  |  |

# **TEXT BOOKS**

- 1. Sudhakar, A. Shyammohan, S. and Palli (2015) Circuits and Networks: Analysis and Synthesis, 5th Edn, Tata McGraw-Hill
- 2. A. Chakrabarthy (2010), Circuit Theory. 5th Ed. Dhanpat Rai & Sons Publications, New Delhi.
- 3. Smith, K.A. and. Alley, R.E (2014) Electrical Circuits, Cambridge University Press

# Network parameters- Analysis of T, Ladder, Bridged T and Lattice Networks - Filters

Prerequisite: Prerequisite: Basic Electrical, Electronics

#### UNIT V **RESONANCE AND THREE PHASE CIRCUITS**

Series and parallel resonance – their frequency response – Quality factor and Bandwidth - Analysis of three phase 3wire and 4-wire circuits with star and delta connected loads, balanced & unbalanced-power measurement in three phase circuits

### UNIT I BASIC CIRCUIT CONCEPTS

ANALYSIS

Course Code:

EBEE22ET2

Basic circuit elements-Ideal sources-Ohm's law-Kirchoff's voltage laws-Network reduction: Voltage and Current division, Source Transformation-Series and Parallel combination of R, L and C – Mesh and Nodal analysis for D.C and A.C circuits

#### UNIT II NETWORK THEOREMS AND COUPLED CIRCUITS

and Instrumentation Engineering

9 Network theorems (Analysis of DC and AC Circuits): Thevenin, Norton, Superposition, Maximum power transfer and Reciprocity.

### UNIT III NETWORK TOPOLOGY AND TRANSIENT ANALYSIS

9 Graph theory -Branch Nodal Analysis-Link loop Analysis-Tie set and Cut set matrices- Duality. Transients: Behavior of circuit elements under switching conditions and their representation- Forced and free Response of RL, RC, RLC circuits with DC and AC excitations.

#### **UNIT IV TWO PORT NETWORKS, FILTERS AND ATTENUATORS**

Characterization of two port networks in terms of Z, Y, H and T parameters-network equivalents -Relation between

9

# LAB COMPONENT:

- 1. Experimental verification of Kirchhoff's voltage and current laws and Current and Voltage Division and Source Transformation
- 2. Verification of Nodal and Mesh Analysis.
- 3. Experimental verification of theorem.
- 4. Experimental determination of time constant of series R-C electric circuits
- 5. Experimental determination of frequency response of RLC circuits.
- 6. Determination of two port network parameters.
- 7. Experimental determination of power in three phase circuits by two-wattmeter method
- 8. Simulation of three phase balanced and unbalanced star, delta networks circuits

# Total No. of Periods: 60

22





ETL/IE

ETL

9

9

15

R

2/0

Lr

0/0

2

С



| Course Code:<br>EBEE22L11 | Course<br>ELEC                                                                  |              |          | LOG AN<br>B | ND DIG          | ITAL       |              |                  | Ty/ Lb/<br>ETL/IE | L                                             | T/SLr                   | P/R       | С           |
|---------------------------|---------------------------------------------------------------------------------|--------------|----------|-------------|-----------------|------------|--------------|------------------|-------------------|-----------------------------------------------|-------------------------|-----------|-------------|
|                           | Prereq                                                                          |              |          |             | Electro         | onics      |              |                  | Lb                | 0                                             | 0/0                     | 3/0       | 1           |
| L : Lecture T : 7         |                                                                                 |              | •        |             | •               | Project    | R : R        | esearch          | C: Credit         | S                                             |                         |           |             |
| T/L/ETL: Theor            | y/Lab/Em                                                                        | bedded       | Theory   | and La      | b               |            |              |                  |                   |                                               |                         |           |             |
| OBJECTIVE:                |                                                                                 |              |          |             |                 |            |              |                  |                   |                                               |                         |           |             |
|                           | now the b                                                                       |              | •        | Ũ           | •               |            | - <i>.</i> • |                  |                   |                                               |                         |           |             |
|                           | ign knowl                                                                       |              |          |             |                 |            |              |                  |                   |                                               |                         |           |             |
|                           | lents able<br>lents acqu                                                        |              | ·        |             | 0               | U          | <b>I I</b>   |                  |                   |                                               |                         |           |             |
|                           | study abou                                                                      |              | -        |             | -               | -          | y log r      | IDL              |                   |                                               |                         |           |             |
| COURSE OUT                |                                                                                 |              |          |             | numpie          | 2213       |              |                  |                   |                                               |                         |           |             |
| COLKSE OUT                |                                                                                 |              |          | oncepts     | of logi         | c gates    |              |                  |                   |                                               |                         |           |             |
| CO2                       |                                                                                 |              |          | <u> </u>    | 0               | •          | ation o      | f Boole          | an Functio        | n                                             |                         |           |             |
| CO3                       |                                                                                 |              |          | nters, R    |                 |            |              |                  |                   | <u>, , , , , , , , , , , , , , , , , , , </u> |                         |           |             |
| CO4                       |                                                                                 |              |          | ots in pro  | -               | -          |              | -                |                   |                                               |                         |           |             |
| CO5                       |                                                                                 |              | <b>^</b> | about n     | Ŭ.              | <u> </u>   |              | <u> </u>         | ers               |                                               |                         |           |             |
| Mapping of Co             |                                                                                 | comes v      |          | <u> </u>    | r               | -          | -            | •                |                   |                                               |                         |           |             |
| COs/POs                   | <b>PO1</b>                                                                      | PO2          | PO3      | PO4         | PO5             | <b>PO6</b> | <b>PO7</b>   | <b>PO8</b>       | <b>PO9</b>        | <b>PO1</b>                                    | 0 PO1                   | 1         | PO12        |
| CO1                       | 3                                                                               | 3            | 3        | 3           | 2               | 2          | 2            | 3                | 3                 | 2                                             | 1                       |           | 2           |
| CO2                       | 2                                                                               | 2            | 2        | 2           |                 | 3 3 2 2 2  |              |                  |                   |                                               | 2                       |           | 3           |
| CO3                       | 3                                                                               | 3            | 3        | 2           | 2               | 2          | 3            | 3                | 2 3               |                                               | 2                       |           | 1           |
| CO4                       | 3                                                                               | 3            | 2        | 2           | 1               | 1          | 2            | 3                | 2                 | 2                                             | 3                       |           | 2           |
| CO5                       | 2                                                                               | 2            | 2        | 2           | 1               | 2          | 2            | 3                | 2                 | 1                                             | 2                       |           | 2           |
| COs / PSOs                | PSC                                                                             |              |          | <b>602</b>  | PS              |            |              |                  |                   |                                               |                         |           |             |
| CO1                       | 3                                                                               |              |          | 3           | 2               |            |              |                  |                   |                                               |                         |           |             |
| CO2                       | 2                                                                               |              |          | 2           | 3               |            |              |                  |                   |                                               |                         |           |             |
| CO3                       | 3                                                                               |              |          | 2           | 2               |            |              |                  |                   |                                               |                         |           |             |
| CO4                       | 3                                                                               |              |          | 2           | 1               |            |              |                  |                   |                                               |                         |           |             |
| CO5<br>H/M/L indicates    | Strength                                                                        |              |          | 2<br>H- Hig | 9h. M- 1        |            | n. L-Lo      | w                |                   |                                               |                         |           |             |
|                           |                                                                                 |              |          |             | D, 1.1          |            | ,            |                  |                   |                                               |                         |           |             |
| Category                  | Sciences<br>Engineeri<br>ng<br>Science<br>Humaniti<br>es &<br>Social<br>Program |              |          |             | Program<br>Core | Program    | Elective     | Open<br>Elective | Practical/        | Project                                       | Internship<br>s/Technic | al skills | Soft skills |
| Ŭ                         |                                                                                 | $\checkmark$ |          |             |                 |            |              |                  |                   |                                               |                         |           |             |



| Course Code:<br>EBEE22L11 | Course Name: ANALOG AND DIGITAL<br>ELECTRONICS LAB | Ty/ Lb/<br>ETL/IE | L | T/SLr | P/R | С |
|---------------------------|----------------------------------------------------|-------------------|---|-------|-----|---|
|                           | Prerequisite: Diploma basic Electronics            | Lb                | 0 | 0/0   | 3/0 | 1 |

## LIST OF EXPERIMENTS

- 1. Study of Logic Gates & Digital Logic families
- 2. Implementation of Boolean functions
- 3. Adders & Subtractors
- 4. Multiplexers and de-multiplexers
- 5. Study of Flip-flops
- 6. Study of Registers
- 7. Study of Counters
- 8. Design and Testing of RC Phase shift, LC Oscillators
- 9. Single phase half wave and full wave rectifiers with inductive and capacitive filters
- 10. A stable and Mono stable Multi vibrators

**Total No. of Periods: 45** 



| Course<br>Code:                                           | Course                                                         | Name:                             | AC AN                         | ID SPEC                           | CIAL M                           | ACHIN                             | ES                             |                                     | Ty/ Lb/<br>ETL/IE     |               | T/SLr              | P/R         | C             |  |
|-----------------------------------------------------------|----------------------------------------------------------------|-----------------------------------|-------------------------------|-----------------------------------|----------------------------------|-----------------------------------|--------------------------------|-------------------------------------|-----------------------|---------------|--------------------|-------------|---------------|--|
| EBEE22005                                                 | Prerequ                                                        | uisite: D                         | OC Ma                         | chines ai                         | nd Trans                         | sformer                           | S                              |                                     | Ту                    | 3             | 0/0                | 0/0         | 3             |  |
| L : Lecture T :<br>CreditsT/L/ET<br>OBJECTIVE             | L:Theory                                                       |                                   | <b>•</b>                      |                                   | •                                |                                   | Resear                         | ch C :                              |                       |               |                    |             |               |  |
|                                                           |                                                                |                                   |                               |                                   | 6.0                              |                                   |                                |                                     |                       |               |                    |             |               |  |
| <ul><li>Acquire</li><li>Able to</li><li>Gains k</li></ul> | ands the c<br>es Knowle<br>learn abo<br>nowledge<br>and the co | edge abo<br>ut three<br>in starti | ut sync<br>phase i<br>ing and | chronous<br>induction<br>speed co | motors u<br>motor a<br>ontrol of | used in t<br>nd to dr<br>three ph | he Powe<br>aw the c<br>ase ind | er systen<br>circle dia<br>uction m | agram of<br>notor     |               |                    | achin       | e             |  |
| COURSE OU<br>Students comp                                |                                                                |                                   | were a                        | ble to                            |                                  |                                   |                                |                                     |                       |               |                    |             |               |  |
| <b>^</b>                                                  | Recognize                                                      |                                   |                               |                                   | ines                             |                                   |                                |                                     |                       |               |                    |             |               |  |
| CO2                                                       | Demonstra<br>Machines                                          |                                   | -                             |                                   |                                  | onous Ge                          | enerator,                      | Induction                           | n Motors a            | and v         | arious S           | pecial      |               |  |
| CO3                                                       | Apply the                                                      | concept                           | learn ab                      | out the m                         | ibit a cos                       | t-effective                       | e solu                         | tion                                |                       |               |                    |             |               |  |
|                                                           | Analyze th<br>and provid                                       | rs, induct                        | ion motor                     | s and                             | special                          |                                   |                                |                                     |                       |               |                    |             |               |  |
|                                                           | Simplify t                                                     |                                   |                               |                                   |                                  |                                   | erators, in                    | nduction                            | motors an             | d Spe         | ecial ma           | chines      |               |  |
| Mapping of C                                              |                                                                |                                   |                               |                                   |                                  |                                   |                                | 1                                   |                       |               |                    |             |               |  |
| COs/POs                                                   | PO1                                                            | PO2                               | PO3                           | PO4                               | PO5                              | PO6                               | PO7                            | PO8                                 | PO9                   | PO            |                    |             | PO12          |  |
| <u>CO1</u>                                                | 3                                                              | 2                                 | 2                             | 3                                 | 2                                | 2                                 | 3                              | 2                                   | 3                     | 2             | 2                  |             | 3             |  |
| <u>CO2</u>                                                | 3                                                              | 3                                 | 3                             | 3                                 | 3                                | 3                                 | 3                              | 3                                   | 3                     | 3             | 3                  |             | 3<br>3        |  |
| CO3<br>CO4                                                | 2<br>3                                                         | 2<br>3                            | <u>2</u><br>3                 | 3                                 | 2 3                              | 2<br>3                            | <u> </u>                       | 2<br>3                              | 3                     | $\frac{2}{3}$ | 2                  |             | $\frac{3}{2}$ |  |
| <u>C04</u><br>C05                                         | 2                                                              | 2                                 | 2                             | 3                                 | 2                                | 2                                 | 3                              | 2                                   | 2<br>3                | $\frac{3}{2}$ | 2                  |             | $\frac{2}{3}$ |  |
| COs /PSOs                                                 |                                                                | PSO                               |                               | 5                                 | 2                                | _                                 | 02                             | -                                   | 5                     |               | PSO3               |             | 5             |  |
| CO1                                                       |                                                                | 3                                 |                               |                                   |                                  |                                   | 2                              |                                     |                       |               | 3                  |             |               |  |
| CO2                                                       |                                                                | 2                                 |                               |                                   |                                  | -                                 | 3                              |                                     |                       |               | 2                  |             |               |  |
| CO3                                                       |                                                                | 2                                 |                               |                                   |                                  |                                   | 2                              |                                     |                       | 3             |                    |             |               |  |
| CO4                                                       |                                                                | 3                                 |                               |                                   | 1                                |                                   |                                |                                     |                       |               | 2                  |             |               |  |
| CO5                                                       |                                                                |                                   |                               |                                   |                                  |                                   | 2                              |                                     |                       |               | 2                  |             |               |  |
| 3/2/1 Indicates                                           | s Strength                                                     |                                   | elation                       | , 3–High                          | , 2-Medi                         | um, 1-L                           | ow                             |                                     | 1                     |               |                    |             |               |  |
| Category                                                  | Basic<br>Sciences                                              | Engineering                       | Dences                        | and Social<br>Sciences            | Program                          | Program                           | Electives                      | Open<br>Electives                   | Interdiscipli<br>nary |               | Skill<br>Component | Practical / | Project       |  |
| Ca                                                        |                                                                |                                   |                               |                                   |                                  |                                   |                                |                                     |                       |               |                    |             |               |  |

# Course Name: AC AND SPECIAL MACHINES Ty/ Lb/ L T/SLr ETL/IE

# UNIT I SYNCHRONOUS GENERATOR

Types & Constructional Features of Synchronous Generators- EMF Equation - Synchronous reactance - Armature reaction - Voltage regulation - EMF, MMF and ZPF methods - Change of excitation and mechanical input - Application

## UNIT II SYNCHRONOUS MOTOR

Principle of operation – Construction – Equivalent Circuit and phasor diagram – Power and Torque – Power flow – Power developed by synchronous motors – Speed-Torque characteristics – Effect of change in excitation – V curves and inverted V curves – Hunting & suppression - Application

## UNIT III THREE PHASE INDUCTION MOTOR

Construction – Types of rotors – Cage and wound rotor machines – Principle of operation – Production of rotating magnetic field – Equivalent circuit – Torque and Power output – Torque-slip characteristics – Condition for maximum efficiency – Testing – Load Test – No load and Blocked rotor test – Circle diagram.

## UNIT IV STARTING & SPEED CONTROL OF INDUCTION MOTORS

Prerequisite: DC Machines and Transformers

Necessity for Starters – Starting methods of three phase induction motor – Types of Starters – Stator resistance and reactance – Rotor resistance starter- star-delta starter – Cogging & Crawling – Speed control – Voltage control –Rotor resistance control.

## UNIT V SPECIAL MACHINES

Single phase induction motor – Constructional details – Double revolving field theory – Equivalent circuit –Speed-torque characteristics – Starting methods – Split-phase motor - shaded-pole induction motor – Universal motor – Variable Reluctance motor, Switched Reluctance Motor, Stepper Motor, Permanent Magnet Motors - Application

## **TEXT BOOKS**

Course

**EBEE22005** 

Code:

- 1. Nagrath, I.J. Kothari, D.P. (2005) Electric Machines.7th Ed. New Delhi: T.M.H publishing Co Ltd.
- 2. Bhimbhra, P.S. (2007) Generalised Theory of Electrical Machines, Khanna Publishers.
- 3. E.G. Janardanan (2014) Special electrical machines, PHI learning Private Limited, Delhi.
- 4. Bhimbhra, P.S. (2003) Electrical Machinery. Khanna Publishers.

## **REFERENCE BOOKS**

- 1. Fitzgerald, Kingsley, Umans, (1990) Electric Machinery. 5th Ed. New Delhi: McGraw Hill Books co.
- 2. Stephen J. Chapman, (1985) Electric Machinery Fundamentals. New Delhi: McGraw Hill Book Co.
- 3. Say, M.G. (1980) Alternating current Machines.4th Ed. ELBS & Pitman. London:
- 4. Sen, S.K. (1984) Electrical Machinery. New Delhi: Khanna Publishers.
- 5. Mukherjee, P.K. and Chakravorty, S (2004) Electrical Machines, Dhanpat Rai& Sons.



9

9

9

P/R

0/0

9

9

Τv

3

0/0

С

3

## **Total No. of Periods: 45**



| Course Code:<br>EBEC22ID3       | Cour<br>IOT                                                                                                      | se Nam                                              | e: CON    | <b>IMUNI</b>         | (CATIO)                                             | AND      | Ty/ Lb/<br>ETL/IE |            | T/SLr               | P/R   | C               |      |                     |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------|----------------------|-----------------------------------------------------|----------|-------------------|------------|---------------------|-------|-----------------|------|---------------------|--|--|
|                                 |                                                                                                                  | equisite                                            | : Basic   | Electri              | cal, Elec                                           | tronics  | and               |            | Ту                  | 3     | 0/0             | 0/0  | 3                   |  |  |
|                                 |                                                                                                                  | umenta                                              |           | 0                    | 0                                                   |          |                   |            |                     |       |                 |      |                     |  |  |
| L : Lecture T :                 |                                                                                                                  |                                                     | <b>.</b>  |                      | •                                                   | 0        | : Rese            | arch C :   |                     |       |                 |      |                     |  |  |
| CreditsT/L/ET                   |                                                                                                                  | y/Lab/Ei                                            | mbedde    | d Theor              | y and La                                            | 0        |                   |            |                     |       |                 |      |                     |  |  |
| OBJECTIVE                       | S                                                                                                                |                                                     |           |                      |                                                     |          |                   |            |                     |       |                 |      |                     |  |  |
| <ul> <li>To understa</li> </ul> | nd the A                                                                                                         | nalog &                                             | Digital   | Commu                | unication                                           | •        |                   |            |                     |       |                 |      |                     |  |  |
| <ul> <li>To study ab</li> </ul> | out the n                                                                                                        | nethods                                             | to conve  | ert Anal             | og to Dig                                           | ital con | nmuni             | cation usi | ng code t           | heor  | у.              |      |                     |  |  |
| <ul> <li>To study ab</li> </ul> | out diffe                                                                                                        | rent mod                                            | dulation  | techniq              | ues                                                 |          |                   |            |                     |       |                 |      |                     |  |  |
| • To introduc                   | e various                                                                                                        | s media i                                           | for digit | al comn              | nunicatio                                           | n        |                   |            |                     |       |                 |      |                     |  |  |
| • To apply the                  | e concep                                                                                                         | t of Inter                                          | rnet of 7 | Things in            | n the real                                          | -world   | scenar            | io         |                     |       |                 |      |                     |  |  |
| COURSE OU                       |                                                                                                                  |                                                     |           |                      |                                                     |          |                   |            |                     |       |                 |      |                     |  |  |
| Students comp                   | leting th                                                                                                        | is course                                           | e were a  | ble to               |                                                     |          |                   |            |                     |       |                 |      |                     |  |  |
| CO1                             | Unde                                                                                                             | erstand t                                           | he conce  | ept of A             | nalog an                                            | d Digita | l Com             | municatio  | on                  |       |                 |      |                     |  |  |
| CO2                             |                                                                                                                  |                                                     |           |                      |                                                     |          |                   | ion schem  |                     | Т     |                 |      |                     |  |  |
| CO3                             | Illust                                                                                                           | rate the                                            | applicat  | ion of I             | OT, mod                                             | ulation  | and in            | formation  | theory              |       |                 |      |                     |  |  |
| CO4                             | Para                                                                                                             | ohrase th                                           | le conce  | pt of co             | mmunica                                             | tion sys | stem a            | nd IOT     | •                   |       |                 |      |                     |  |  |
| CO5                             |                                                                                                                  |                                                     |           | A                    |                                                     |          |                   | rn tool fo | r better s          | ustai | nability        | 7    |                     |  |  |
| Mapping of C                    |                                                                                                                  |                                                     |           |                      |                                                     |          |                   |            |                     |       |                 |      |                     |  |  |
| COs/POs                         | PO1                                                                                                              | PO2                                                 | PO3       | PO4                  | PO5                                                 | PO6      | PO7               | PO8        | PO9                 | PO    | lo PO           | 11 I | PO12                |  |  |
| CO1                             | 3                                                                                                                | 2                                                   | 1         | 1                    |                                                     |          |                   |            | 1                   | 3     | 3               |      | 3                   |  |  |
| CO2                             | 3                                                                                                                | 2                                                   | 2         | 2                    | 3                                                   | 3        | 1                 | 2          | 3                   | 2     | 2               |      | 2                   |  |  |
| CO3                             | 2                                                                                                                | 3                                                   | 3         | 2                    | 3                                                   | 2        | 1                 | 2          | 3                   | 1     | 2               | ,    | 2                   |  |  |
| CO4                             | 3                                                                                                                | 2                                                   | 3         | 2                    | 3                                                   | 3        | 3                 | 2          | 2                   | 3     | 2               |      | 1                   |  |  |
| CO5                             | 3                                                                                                                | 3                                                   | 2         | 1                    | 3                                                   | 3        | 3                 | 3          |                     |       |                 |      | 2                   |  |  |
| COs /PSOs                       |                                                                                                                  | PS                                                  | 501       |                      |                                                     | PS       | 02                |            | I                   | ]     | PSO3            |      |                     |  |  |
| CO1                             |                                                                                                                  |                                                     | 3         |                      |                                                     |          | 2                 |            |                     |       | 3               |      |                     |  |  |
| CO2                             |                                                                                                                  |                                                     | 2         |                      |                                                     |          | 3                 |            |                     |       | 2               |      |                     |  |  |
| CO3                             |                                                                                                                  |                                                     | 3         |                      |                                                     |          | 2                 |            |                     |       | 3               |      |                     |  |  |
| CO4                             |                                                                                                                  |                                                     | 2         |                      |                                                     |          | 1                 |            |                     |       | 2               |      |                     |  |  |
| CO5                             |                                                                                                                  |                                                     | 3         |                      |                                                     |          | 2                 |            |                     |       | 2               |      |                     |  |  |
| 3/2/1 Indicat                   | tes Stren                                                                                                        | es Strength of Correlation, 3–High, 2-Medium, 1-Low |           |                      |                                                     |          |                   |            |                     |       |                 |      |                     |  |  |
|                                 |                                                                                                                  |                                                     |           |                      |                                                     |          |                   |            |                     |       |                 |      |                     |  |  |
|                                 |                                                                                                                  |                                                     |           |                      |                                                     |          |                   |            |                     |       |                 |      |                     |  |  |
|                                 | Basic Sciences<br>Engineering Sciences<br>Humanities and Social<br>Sciences<br>Program Core<br>Program Electives |                                                     |           |                      |                                                     |          | 5                 |            | <u>S</u>            |       | ut              | 100  | eci                 |  |  |
|                                 | ces                                                                                                              | Sc                                                  |           | an                   | le                                                  | itic     |                   | ves        | nai                 |       | one             |      | l01                 |  |  |
|                                 | ien                                                                                                              | ing                                                 | , I.      | les                  | $C_0$                                               | Ц        |                   | scti       | ipli                |       | np(             |      | <u>г</u>            |  |  |
|                                 | Sci                                                                                                              | eer                                                 |           | ces                  | m                                                   | L L      |                   | Εlε        | isci                |       | Cor             |      | саі                 |  |  |
| ory                             | Basic Sciences                                                                                                   | gin                                                 | ,         | Humaniti<br>Sciences | Program Core<br>Program Electives<br>Open Electives |          |                   | en         | erd                 |       | Skill Component |      | Fractical / Project |  |  |
| teg                             | Bas<br>Eng<br>Pro                                                                                                |                                                     |           |                      |                                                     |          |                   | Op         | Inte                |       | Ski             |      | ы<br>Т              |  |  |
| Category                        |                                                                                                                  |                                                     |           |                      |                                                     |          |                   |            | ✓ Interdisciplinary |       | -               |      |                     |  |  |
|                                 |                                                                                                                  |                                                     |           |                      |                                                     |          |                   |            |                     |       |                 |      |                     |  |  |

# Course Code: Course Name: COMMUNICATION SYSTEMS AND Ty/Lb/ L T/SLr P/R C

| EBEC22ID3 | ЮТ                                                                             | ETL/IE |   |     |     |   |
|-----------|--------------------------------------------------------------------------------|--------|---|-----|-----|---|
|           | Prerequisite: Basic Electrical, Electronics and<br>Instrumentation Engineering | Ту     | 3 | 0/0 | 0/0 | 3 |
|           |                                                                                | 1      |   |     | 11  | L |

# UNIT I SIGNALS & NOISE

Periodic & Aperiodic Signals – Noise - External Noise – Thermal Agitation – Shot Noise – Noise Figure – Signal to Noise ratio – Equivalent Noise resistance.

# UNIT II INTRODUCTION TO COMMUNICATION

Basic Communication systems – Need for Modulation in communication systems – Amplitude Modulation – Double Side Band Amplitude Modulation – Single sideband and VSB modulation – modulators. AM Transmitter and Receiver, FM transmitter and Receiver.

## UNIT III MODULATION TECHNIQUES AND PULSE MODULATION

Phase modulation – Noise triangle – Pre-emphasis and de-emphasis – Stereophonic FM multiplex system – comparison of wideband and narrow band FM – AFC – Sampling theorem –Quantization, Quantization Error, PAM, PWM, PPM, PCM.

# UNIT IV DIGITAL MODULATION & INFORMATION THEORY

ASK, FSK, PSK, Transmitter and Receiver. Introduction-Information & Entropy, Source Coding Theory, Discrete Memory less Channel, Mutual Information Channel Capacity, Channel Coding Theory.

# UNIT V INTERNET OF THINGS

Introduction – Block diagram of IoT- IoT Architecture – Communication Technologies in IoT – Cloud Storage in IoT- Data Storage in IoT – Applications of IoT – Smart Home, Smart City, Smart Agriculture, Health Monitoring System.

# **Total No. of Periods: 45**

# TEXT BOOKS

- 1. Roy Blake, (2002) Electronic Communication systems. 2<sup>nd</sup> Edn, Thomson Learning.
- 2. George Kennedy, (1992) Electronic communication systems, Tata McGraw Hill publications.
- 3. Michael Miller, (2015) The Internet of Things, Que Publishing

# **REFERENCE BOOKS**

- 1. Bruce Carlson, A. Taub & Schilling, (1986) Principles of Communication Systems, Tata McGraw Hill.
- 2. Simon Haykins, (2001) Principles of Communications, Prentice Hall of India.
- 3. Arshdeep Bahga, Vijay Madisetti (2015) Internet of Things A hands-on approach, Universities Press



9

9

9

9



| Course Code<br>EBME22ID1 |                                                                                                        | Course Name: THERMODYNAMICS AND<br>FLUID MECHANICS   |           |                                 |              |                   |         |                |                                         |        | T/SLr           | P/R | C                   |  |  |  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------|---------------------------------|--------------|-------------------|---------|----------------|-----------------------------------------|--------|-----------------|-----|---------------------|--|--|--|--|
|                          | Prer                                                                                                   | equisite                                             | : Basic   | Mecha                           | nical &      | Civil Eı          | ngg     |                | Ту                                      | 3      | 0/0             | 0/0 | 3                   |  |  |  |  |
| L : Lecture T            | : Tutoria                                                                                              | SLr : S                                              | upervis   | ed Lear                         | ning P: P    | roject R          | : Rese  | arch C :       |                                         |        |                 | 1   |                     |  |  |  |  |
| CreditsT/L/E             |                                                                                                        |                                                      | -         |                                 | •            |                   |         |                |                                         |        |                 |     |                     |  |  |  |  |
| OBJECTIV                 | ES                                                                                                     | -                                                    |           |                                 |              |                   |         |                |                                         |        |                 |     |                     |  |  |  |  |
| • To ur                  | nderstand                                                                                              | the basi                                             | c Laws    | of Ther                         | modynaı      | nics and          | l the w | orking pr      | inciple o                               | f IC   | Engine          | s.  |                     |  |  |  |  |
| • To ur                  | nderstand                                                                                              | the desi                                             | gn of T   | urbines                         | and boile    | ers.              |         |                |                                         |        |                 |     |                     |  |  |  |  |
| • To ur                  | nderstand                                                                                              | the prop                                             | perties o | f Fluids                        | and imp      | lementa           | tion of | Hydraul        | ic machi                                | nery   | & Pum           | ps. |                     |  |  |  |  |
|                          | now the ir                                                                                             | -                                                    |           |                                 |              |                   | ship of | various        | propertie                               | s of t | fluid           |     |                     |  |  |  |  |
|                          | udy about                                                                                              |                                                      |           | of pump                         | s and tur    | bines             |         |                |                                         |        |                 |     |                     |  |  |  |  |
| COURSE O                 |                                                                                                        |                                                      |           |                                 |              |                   |         |                |                                         |        |                 |     |                     |  |  |  |  |
| Students com             |                                                                                                        |                                                      |           |                                 |              |                   |         |                |                                         |        |                 |     |                     |  |  |  |  |
| C01                      | Capable to understand the basic Laws of Thermodynamics and the working principle of IC<br>Engines      |                                                      |           |                                 |              |                   |         |                |                                         |        |                 |     | of IC               |  |  |  |  |
| CO2                      |                                                                                                        | Students are capable to design turbines and boilers. |           |                                 |              |                   |         |                |                                         |        |                 |     |                     |  |  |  |  |
| CO3                      | Students can demonstrate the properties of Fluids and implementation of Hydraulic machinery            |                                                      |           |                                 |              |                   |         |                |                                         |        |                 |     |                     |  |  |  |  |
| CO4                      |                                                                                                        | & Pumps.                                             |           |                                 |              |                   |         |                |                                         |        |                 |     |                     |  |  |  |  |
| 04                       | Acquire knowledge on the importance, application and inter relationship of various properties of fluid |                                                      |           |                                 |              |                   |         |                |                                         |        |                 |     | erties              |  |  |  |  |
| CO5                      |                                                                                                        |                                                      | ledge o   | n variou                        | s types o    | fnum              | and ti  | irhines        |                                         |        |                 |     |                     |  |  |  |  |
| Mapping of               |                                                                                                        |                                                      |           |                                 |              |                   |         | in Unites      |                                         |        |                 |     |                     |  |  |  |  |
| COs/POs                  | PO1                                                                                                    | PO2                                                  | PO3       | 0                               |              | PO6               | PO7     | PO8            | PO9                                     | РО     | 010 PC          | 011 | PO12                |  |  |  |  |
| CO1                      | 3                                                                                                      | 2                                                    | 2         | 1                               | 2            | 3                 | 3       | 2              | 3                                       | 1      | 2               | 2   | 1                   |  |  |  |  |
| CO2                      | 2                                                                                                      | 2                                                    | 2         | 2                               | 1            | 3                 | 3       | 2              | 2                                       | 1      | 1               | L   | 1                   |  |  |  |  |
| CO3                      | 3                                                                                                      | 1                                                    | 2         | 1                               | 2            | 2                 | 2       | 2              | 3                                       | 1      | 2               | 2   | 1                   |  |  |  |  |
| CO4                      | 2                                                                                                      | 2                                                    | 2         | 3                               | 2            | 3                 | 3       | 2              | 2                                       | 2      | 1               | [   | 1                   |  |  |  |  |
| CO5                      | 3                                                                                                      | 2                                                    | 1         | 2                               | 1            | 2                 | 2       | 2              | 3                                       | 2      | 1               | L   | 1                   |  |  |  |  |
| COs/PSOs                 |                                                                                                        | PS                                                   | 01        |                                 |              | PS                | 02      |                |                                         | ]      | PSO3            |     |                     |  |  |  |  |
| CO1                      |                                                                                                        | 3                                                    | ;         |                                 |              | 2                 |         |                |                                         |        |                 |     |                     |  |  |  |  |
| CO2                      |                                                                                                        | 3                                                    | 5         |                                 |              | 3                 |         |                |                                         |        |                 |     |                     |  |  |  |  |
| CO3                      |                                                                                                        | 3                                                    | 5         |                                 |              | 2                 |         |                |                                         |        | 2               |     |                     |  |  |  |  |
| CO4                      |                                                                                                        | 3                                                    |           |                                 |              | 3                 |         |                |                                         |        |                 |     |                     |  |  |  |  |
| CO5                      |                                                                                                        | 3                                                    |           |                                 |              | 2                 |         |                |                                         |        | 2               |     |                     |  |  |  |  |
| 3/2/1 Indicate           | es Strengt                                                                                             | h of Cor                                             | relation  | , 3–Hig                         | h, 2-Mec     | lium, 1-          | Low     |                |                                         | -      |                 | 1   |                     |  |  |  |  |
|                          | iences                                                                                                 | Engineering Sciences                                 |           | rumannes and Social<br>Sciences | Core         | Program Electives |         | ctives         |                                         |        | nponent         |     | Practical / Project |  |  |  |  |
| Category                 | Basic Sciences                                                                                         | Engineer                                             |           | Sciences                        | Program Core | Program           | 0       | Open Electives | <ul> <li>✓ Interdisciplinary</li> </ul> |        | Skill Component |     | Fractical           |  |  |  |  |
| -                        |                                                                                                        |                                                      |           |                                 |              |                   |         |                | •                                       |        |                 | I   |                     |  |  |  |  |

#### (An ISO 21001 : 2018 Certified Institution) Perivar E.V.R. High Road, Maduravoval, Chennai-95, Tamili iravoval, Chennai-95. Tamilnadu, India

#### **Course Name: THERMODYNAMICS AND** Ty/Lb/L T/SLr P/R **Course Code:** С EBME22ID1 **FLUID MECHANICS** ETL/IE Prerequisite: Basic Mechanical & Civil Engg Tv 3 0/0 0/0 3

#### UNIT I BASIC CONCEPTS AND FIRST LAW OF THERMODYNAMICS

Thermodynamics systems, Concepts of continuum, Thermodynamics properties, Equilibrium, Process, Cycle, Work, Heat, Temperature, Zeroth law of thermodynamics. First law of thermodynamics – Applications to closed and open systems – Steady flow Energy Equations – Simple Problems

#### UNIT II SECOND LAW OF THERMODYNAMICS

Statements, Reversibility, causes of irreversibility, Carnot Cycle, Reversed Carnot Cycle, Heat Engines, Refrigerators, Heat Pumps - Clausius Inequality – Entropy - Principles of increase of entropy - Carnot theorem.

#### **UNIT III POWER CYCLES**

Air cycles – Assumptions - Otto, Diesel, Dual and Brayton cycle – Air standard efficiency – Mean effective pressure – Working of two stroke and Four Stroke Petrol and Diesel Engines.

#### FLUID MECHANICS **UNIT IV**

Fluid properties; fluid statics, manometer, control-volume analysis of mass, momentum and energy; differential equations of continuity and momentum; Bernoulli's equation; viscous flow of incompressible fluids; boundary layer; elementary turbulent flow; flow through pipes, head losses in pipes, bends etc.

#### UNIT V **FLUID MACHINERY**

Introduction, types of pumps - reciprocating pump - centrifugal pump - construction details - working principles, Pelton-wheel, Francis and Kaplan turbines – construction and working principles.

# **Total No. of Periods :45**

## **TEXT BOOKS**

- 1. Nag, P.K. Engineering Thermodynamics, 2<sup>nd</sup> Edn, Tata McGraw Hill Publishing Company Ltd.
- 2. Rajput R.K., Fluid Mechanics and Hydraulic Machines, S. Chand and Co., India

## **REFERENCE BOOKS**

- 1. Holman, J.P. (1995) Thermodynamics, McGraw Hill.
- 2. Yunus A. Cengel, Thermodynamics-An Engineering Approach., Tata Mc.Graw Hill.
- 3. Bansal R.K., A Text Book of Fluid Mechanics and Hydraulic Machines, S. Chand and Co., India





9

9

9

9



| Course Code:<br>EBEE22ET3                                                                                       | Course Name: LINEAR AND DIGITAL<br>INTEGRATED CIRCUITS                                                                                                                          |                                                                                                 |          |                        |                                                             |               |               |               |                       | )/ L<br>E     | T/SLr                                 | P/R    | C             |  |  |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------|------------------------|-------------------------------------------------------------|---------------|---------------|---------------|-----------------------|---------------|---------------------------------------|--------|---------------|--|--|
|                                                                                                                 | Prerequisite: Communication Systems and IOT                                                                                                                                     |                                                                                                 |          |                        |                                                             |               |               |               |                       | 2             | 0/0                                   | 2/0    | 3             |  |  |
| L : Lecture T : 7                                                                                               | Futorial                                                                                                                                                                        | SI r · Su                                                                                       | nervised | vh C ·                 |                                                             |               |               |               |                       |               |                                       |        |               |  |  |
| CreditsT/L/ETL                                                                                                  |                                                                                                                                                                                 |                                                                                                 | <b>.</b> |                        | •                                                           |               | Researc       | лс.           |                       |               |                                       |        |               |  |  |
| OBJECTIVES                                                                                                      |                                                                                                                                                                                 | y/ Lu0/ Lii                                                                                     | locuucu  | Theory                 | und Luo                                                     | ·             |               |               |                       |               |                                       |        |               |  |  |
| • To study the                                                                                                  | IC fabr                                                                                                                                                                         | ication p                                                                                       | rocedure | ,                      |                                                             |               |               |               |                       |               |                                       |        |               |  |  |
| <ul> <li>To study char</li> </ul>                                                                               |                                                                                                                                                                                 |                                                                                                 |          |                        | lesign fo                                                   | r signal      | analysis      | s using (     | Op-amp                | ICs.          |                                       |        |               |  |  |
| <ul> <li>To study inte</li> </ul>                                                                               |                                                                                                                                                                                 |                                                                                                 |          |                        | -                                                           | -             | -             | -             |                       |               | cuits, r                              | egulat | or            |  |  |
| Circuits, AD                                                                                                    |                                                                                                                                                                                 |                                                                                                 |          |                        | <b>I</b>                                                    | <b>r</b>      |               |               | ,                     |               | · · · · · · · · · · · · · · · · · · · | 8      |               |  |  |
| Familiarity of                                                                                                  | f differ                                                                                                                                                                        | ent types                                                                                       | of gates | using t                | uth table                                                   | e with lo     | ogic circ     | uits.         |                       |               |                                       |        |               |  |  |
| Familiarity to                                                                                                  |                                                                                                                                                                                 |                                                                                                 |          |                        |                                                             |               |               |               |                       |               |                                       |        |               |  |  |
| COURSE OUT                                                                                                      | COM                                                                                                                                                                             | FS (Cor)                                                                                        |          |                        |                                                             |               |               |               |                       |               |                                       |        |               |  |  |
| Students comple                                                                                                 |                                                                                                                                                                                 |                                                                                                 | were ab  | le to                  |                                                             |               |               |               |                       |               |                                       |        |               |  |  |
| CO1                                                                                                             |                                                                                                                                                                                 |                                                                                                 |          |                        | evices ir                                                   | integra       | ted forn      | า             |                       |               |                                       |        |               |  |  |
| CO2                                                                                                             |                                                                                                                                                                                 | Understands the Electronics Devices in integrated form                                          |          |                        |                                                             |               |               |               |                       |               |                                       |        |               |  |  |
| CO2<br>CO3                                                                                                      | Describe the constructional feature of Regulators, Op-Amp, ICs                                                                                                                  |                                                                                                 |          |                        |                                                             |               |               |               |                       |               |                                       |        |               |  |  |
| C03<br>C04                                                                                                      | Apply the basic concept and can fabricate special ICs for better application and reduce the cos<br>Choose the appropriate IC for the best solution and infer the societal needs |                                                                                                 |          |                        |                                                             |               |               |               |                       |               |                                       |        |               |  |  |
|                                                                                                                 |                                                                                                                                                                                 |                                                                                                 |          |                        |                                                             |               |               |               |                       |               |                                       |        |               |  |  |
| CO5                                                                                                             |                                                                                                                                                                                 | fy the de                                                                                       |          | combi                  | national                                                    | circuits      | and ap        | oply the      | e ICs an              | d Op          | o. Amp                                | to bi  | uild a        |  |  |
| Mapping of Co                                                                                                   |                                                                                                                                                                                 | nable So                                                                                        |          | anom (                 | Jutoom                                                      |               |               |               |                       |               |                                       |        |               |  |  |
| COs/POs                                                                                                         | PO1                                                                                                                                                                             | PO2                                                                                             | PO3      | PO4                    | PO5                                                         | PO6           | PO7           | PO8           | PO9                   | PO1           |                                       | 1 P    | 012           |  |  |
|                                                                                                                 |                                                                                                                                                                                 |                                                                                                 |          |                        |                                                             |               |               |               |                       |               |                                       |        |               |  |  |
| <u>CO1</u>                                                                                                      | 3                                                                                                                                                                               | 3                                                                                               | 3        | 3                      | 3                                                           | 3             | 3             | 3             | 3                     | 3             |                                       | 3      | 3             |  |  |
| CO2                                                                                                             | 3                                                                                                                                                                               | 3                                                                                               | 3        | 3                      | 3                                                           | 3             | 3             | 3             | 3                     | 3             |                                       | 3      | 3             |  |  |
| CO3<br>CO4                                                                                                      | 3                                                                                                                                                                               | 3                                                                                               | 3        | 3                      | 3                                                           | 3             | 3             | 22            | 32                    | 3 2           |                                       | 3<br>2 | 3             |  |  |
| C04<br>C05                                                                                                      | 3<br>3                                                                                                                                                                          | $\frac{3}{3}$                                                                                   | 3        | $\frac{3}{3}$          | $\frac{3}{3}$                                               | $\frac{2}{3}$ | <u>2</u><br>3 | <u>2</u><br>3 | 3                     | $\frac{2}{3}$ |                                       |        | $\frac{2}{3}$ |  |  |
| COS /PSOs                                                                                                       | 3                                                                                                                                                                               |                                                                                                 | 01       | 3                      | 3                                                           |               |               |               |                       |               |                                       |        |               |  |  |
| CO3/1305                                                                                                        |                                                                                                                                                                                 |                                                                                                 | 3        |                        |                                                             | PSO3          |               |               |                       |               |                                       |        |               |  |  |
| CO1<br>CO2                                                                                                      |                                                                                                                                                                                 |                                                                                                 | 3<br>3   |                        |                                                             | 2 3           |               |               |                       |               |                                       |        |               |  |  |
| CO2<br>CO3                                                                                                      |                                                                                                                                                                                 |                                                                                                 | <u>3</u> |                        |                                                             | 3             |               |               |                       |               |                                       |        |               |  |  |
| C04                                                                                                             |                                                                                                                                                                                 |                                                                                                 | <u>5</u> |                        |                                                             |               | 3<br>2        |               | 3                     |               |                                       |        |               |  |  |
| C05                                                                                                             |                                                                                                                                                                                 |                                                                                                 | 2<br>3   |                        |                                                             | 2             |               |               |                       |               |                                       |        |               |  |  |
| 3/2/1 Indicates S                                                                                               | trength                                                                                                                                                                         |                                                                                                 |          | 8–High.                | 2-Mediu                                                     |               | 3<br>ow       |               | 1                     |               | _                                     |        |               |  |  |
|                                                                                                                 | -0**                                                                                                                                                                            |                                                                                                 |          |                        |                                                             | ,             |               |               | ili                   |               | nt                                    |        |               |  |  |
| gory<br>Basic<br>Sciences<br>Engineering<br>Sciences<br>Humanities<br>and Social<br>Sciences<br>Program<br>Core |                                                                                                                                                                                 |                                                                                                 |          |                        |                                                             |               |               | Se            | Interdiscipli<br>nary |               | ll<br>mei                             | al /   |               |  |  |
|                                                                                                                 | nce                                                                                                                                                                             | Basic<br>Sciences<br>Engineer<br>Brinnit<br>Humanit<br>Aumanit<br>Program<br>Program<br>Program |          | n<br>tive              | dis                                                         |               | Skill<br>mpon | Practical     | ect                   |               |                                       |        |               |  |  |
| ory                                                                                                             | Basic<br>Sciences                                                                                                                                                               | Engineering                                                                                     | lum      | and Social<br>Sciences | Sciences<br>Program<br>Core<br>Program<br>Electives<br>Open |               |               | )pe<br>llec   | Inter<br>nary         |               | Skill<br>Component                    |        | Project       |  |  |
| Category                                                                                                        | щN                                                                                                                                                                              | Щ                                                                                               |          | S a                    |                                                             |               |               |               |                       | +             | <u> </u>                              | Ъ      | д             |  |  |
| ja                                                                                                              |                                                                                                                                                                                 |                                                                                                 |          |                        | *                                                           |               |               |               |                       | 1             |                                       |        |               |  |  |

#### UNIT I **IC FABRICATION**

IC classification, fundamental of monolithic IC technology, epitaxial growth, masking and etching, diffusion of impurities. Realization of monolithic ICs and packaging. Fabrication of diodes, capacitance, resistance and FETs

#### CHARACTERISTICS AND APPLICATIONS OF OP AMP UNIT II

Ideal OP-Amp characteristics, offset voltage and current, differential amplifier; frequency response of OP-AMP; Basic applications of op-amp – summer, differentiator and integrator - Instrumentation amplifier, comparators, multivibrators, waveform generators, clippers, clampers, peak detector, S/H circuit

#### UNIT III SPECIAL IC'S

555 Timer circuit – Functional block, characteristics & applications; 566-voltage controlled oscillator circuit; 565-phase lock loop circuit functioning and applications, Analog multiplier ICs

#### **UNIT IV DIGITAL FUNDAMENTALS**

Number Systems – Decimal, Binary, Octal, Hexadecimal, 1's and 2's complements, Codes – Binary, BCD, Excess 3, Gray, Alphanumeric codes, Boolean theorems, - Deriving a Boolean equation from truth table - simplification of Boolean functions using K-map & Quine McCluskey method, Implementation of a Boolean function using Logic gates and universal gates.

#### UNIT V COMBINATIONAL CIRCUITS AND SEQUENTIAL CIRCUITS

Design of adder, subtractor, comparators, code converters, encoders, decoders, multiplexers and de-multiplexers -Function realization multiplexers - Latches-Flip flops - Mealy and Moore Models- Design of Shift Registers and counters (Synchronous and Asynchronous Sequential Circuits)-Hazards

# LAB COMPONENT:

- 1. Measurement of Op-Amp Characteristics.
- 2. Op-amp applications I Inverting & Non-inverting amplifier, summer, Multiplier, logarithmic and differential amplifiers, Integrator.
- 3. Op-amp applications –II –Wave form generation, multi-vibrators.
- 4. Voltage controlled oscillator.
- 5. A/D & D/A converters.
- 6. Study and Implementation of Logic gates.
- 7. Design and implementation of code converters using logic gates.
- 8. Design and implementation of 3-bit synchronous up/down counter.
- 9. Implementation of SISO, SIPO, PISO and PIPO shift registers using flip-flops.

# **Total No. of Periods: 60**

32

(An ISO 21001 : 2018 Certified Institution) Perivar E.V.R. High Road, Maduravoval, Chennai-95, Tamili iravoval, Chennai-95. Tamilnadu, India



# 15

9

9

9

9



## **TEXT BOOKS**

- 1. Ramakant, A. Gayakward, (2003) Op-amps and Linear Integrated Circuits, 6<sup>th</sup> Edn, Pearson Education PHI.
- 2. Roy Choudhary, D. SheilB. Jani, (2003) Linear Integrated Circuits, 2<sup>nd</sup> Edn, NewAge.
- 3. Morris Mano, M. (2002) Digital Logic and Computer Design, Prentice Hall of India

## **REFERENCE BOOKS**

- 1. Jacob Milman, Christos C. Halkias, (2003) Integrated Electronics- Analog and Digital circuits system, Tata McGraw Hill.
- 2. Robert F. Coughlin, Fredrick F. Driscoll, (2002) Op-amp and Linear ICs. 4th Edn, Pearson Education, PHI.
- 3. Charles H. Roth, (2002) Fundamentals Logic Design, 4th Edn, Jaico Publishing.
- 4. Floyd, (2003) Digital Fundamentals,8<sup>th</sup> Edn, Pearson Education.
- 5. John F. Wakerly, (2002) Digital Design Principles and Practice, 3rd Edn, Pearson Education



| Course C<br>EBEE22I |                | Course Name: ELECTRICAL MACHINES LAB                                                                                 |                                                              |                |                   |                |                   |                 |                     |               | y /Lb/<br>TL/IE | L                | T /<br>S.Lr | P /<br>R        | C             |
|---------------------|----------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------|-------------------|----------------|-------------------|-----------------|---------------------|---------------|-----------------|------------------|-------------|-----------------|---------------|
| EDEE221             | _1_            |                                                                                                                      | rerequisite: DC Machines and Transformers, AC and            |                |                   |                |                   |                 |                     |               |                 |                  |             |                 |               |
|                     |                |                                                                                                                      | quisite: 1<br>al Machi                                       |                | nines a           | na Ir          | ansiori           | mers, A         | Cand                |               | Lb              | 0                | 0/0         | 3/(             | 1             |
| L : Lectur          | eT·Tι          | 1                                                                                                                    |                                                              |                | Learni            | ησ Ρ           | Projec            | t R·Re          | esearch             | C. Crec       | lits            |                  |             |                 |               |
| T/L/ETL :           |                |                                                                                                                      |                                                              |                |                   |                | . I Tojee         |                 | searen              | 0. 0100       | 1105            |                  |             |                 |               |
| OBJECT              |                |                                                                                                                      |                                                              | ž              |                   |                |                   |                 |                     |               |                 |                  |             |                 |               |
| •                   | To a           | nalyze t                                                                                                             | he Interna                                                   | al and E       | xternal           | Load (         | Characte          | eristics t      | for DC              | Generat       | ors and         | Moto             | ors         |                 |               |
| •                   |                |                                                                                                                      | e the spee                                                   |                | •                 |                |                   |                 | DC M                | lotor an      | d Gener         | rator            |             |                 |               |
| •                   |                |                                                                                                                      | constant lo                                                  |                | <b>.</b> .        |                |                   |                 |                     |               |                 |                  |             |                 |               |
| ٠                   |                | -                                                                                                                    | he Load (                                                    |                |                   | -              |                   |                 | ines                |               |                 |                  |             |                 |               |
| •                   |                |                                                                                                                      | age Regu                                                     |                | -                 |                |                   |                 | 0.000               |               |                 |                  |             |                 |               |
| •<br>COUDE          |                |                                                                                                                      | effect of                                                    |                | cy and            | voltage        | e contro          | ol action       | of Thr              | ee phase      | e induct        | ion m            | achin       | es.             |               |
| COURSE              |                |                                                                                                                      | . , ,                                                        | ,              |                   | <u> </u>       |                   |                 | 114                 |               |                 |                  |             |                 |               |
| COI                 |                | •                                                                                                                    | Analyze the Load Characteristics of DC Generators and Motors |                |                   |                |                   |                 |                     |               |                 |                  |             |                 |               |
| <u>CO2</u>          |                | 1                                                                                                                    | Determine different methods of speed control for DC Machines |                |                   |                |                   |                 |                     |               |                 |                  |             |                 |               |
| <u> </u>            |                | Understand the losses incorporated in DC Machines                                                                    |                                                              |                |                   |                |                   |                 |                     |               |                 |                  |             |                 |               |
| <u>CO4</u>          |                | Determine the characteristics of transformers and induction motors.<br>Understand the basic knowledge of alternators |                                                              |                |                   |                |                   |                 |                     |               |                 |                  |             |                 |               |
|                     |                |                                                                                                                      |                                                              |                |                   | ,              |                   |                 |                     |               |                 |                  |             |                 |               |
| Mapping             |                |                                                                                                                      |                                                              |                | 0                 | -              |                   |                 | DOT                 | DOO           | DOD             | DO               |             | 011             | DO10          |
| COs/P<br>CO1        |                | PO1 2                                                                                                                | PO2<br>2                                                     | PO3<br>3       | PO4<br>2          | PO             | <u>75</u><br>1    | PO6<br>2        | PO7<br>3            | PO8<br>2      | PO9<br>3        | <b>PO</b> 1<br>2 |             | <u>011</u><br>3 | PO12<br>2     |
| <u> </u>            |                | $\frac{2}{2}$                                                                                                        | 2                                                            | 3              | 2                 |                | 1                 | $\frac{2}{3}$   | $\frac{3}{2}$       | $\frac{2}{2}$ | $\frac{3}{3}$   | $\frac{2}{2}$    |             | <u>3</u>        | $\frac{2}{2}$ |
| <u> </u>            |                | $\frac{2}{3}$                                                                                                        | 3                                                            | 2              | 2                 |                | 1                 | 2               | 3                   | 1             | 3               | 2                |             | <u> </u>        | 3             |
| <u> </u>            |                | 3                                                                                                                    | 3                                                            | 3              | 2                 |                | 2                 | 2               | 3                   | 2             | 2               | 2                |             | 3               | 1             |
| <u> </u>            |                | 3                                                                                                                    | 3                                                            | 3              | 3                 |                | 2 3               | 3               | 3                   | 2             | 3               | 2                |             | 3               | 3             |
| $\frac{COS}{COS/P}$ |                |                                                                                                                      | <b>SO1</b>                                                   |                | <b>SO2</b>        |                | PSO               | _               | 5                   | -             | 5               | -                |             | 5               | 5             |
| C01                 |                |                                                                                                                      | 3                                                            |                | 2                 |                | 2                 | •               |                     |               |                 |                  |             |                 |               |
| CO2                 |                |                                                                                                                      | 3                                                            |                | 2                 |                | 2                 |                 |                     |               |                 |                  |             |                 |               |
| CO3                 |                |                                                                                                                      | 3                                                            |                | 2                 |                | 1                 |                 |                     |               |                 |                  |             |                 |               |
| CO4                 | 4              |                                                                                                                      | 2                                                            |                | 3                 |                | 2                 |                 |                     |               |                 |                  |             |                 |               |
| COS                 | 5              |                                                                                                                      | 3                                                            |                | 2                 |                | 3                 |                 |                     |               |                 |                  |             |                 |               |
| 3/2 /1 indi         | icates S       | trength                                                                                                              | of Correl                                                    | ation 3        | 3- High           | , 2- M         | edium,            | 1-Low           |                     | 1             |                 |                  |             |                 |               |
|                     |                |                                                                                                                      |                                                              |                |                   |                |                   |                 |                     |               |                 |                  |             |                 |               |
|                     |                | Ň                                                                                                                    | ial                                                          |                |                   |                |                   |                 |                     |               |                 |                  |             |                 |               |
|                     |                | nce                                                                                                                  | Social                                                       |                | ŝ                 |                |                   |                 | L                   |               |                 |                  |             |                 |               |
|                     | ş              | cie                                                                                                                  | р                                                            |                | tive              | ŝ              | ury               | ent             | jec                 | , I           |                 |                  |             |                 |               |
|                     | nce            | 18 2                                                                                                                 | s ai                                                         | , ore          | llec              | tive           | lin               | noq             | Pro                 |               |                 |                  |             |                 |               |
|                     | cie            | erir                                                                                                                 | itie                                                         | n C            | пE                | llec           | scip              | omj             | al /                |               |                 |                  |             |                 |               |
| ry                  | ic S           | ine                                                                                                                  | nan                                                          | grai           | grat              | йE             | rdis              | 1 Č             | tice                |               |                 |                  |             |                 |               |
| Category            | Basic Sciences | Engineering Sciences                                                                                                 | Humanities and<br>Sciences                                   | √ Program Core | Program Electives | Open Electives | Interdisciplinary | Skill Component | Practical / Project |               |                 |                  |             |                 |               |
| Cat                 | <u> </u>       | <u>µ</u>                                                                                                             |                                                              | 7              | <u> </u>          |                |                   |                 |                     |               |                 |                  |             |                 |               |
| -                   |                |                                                                                                                      |                                                              |                |                   |                |                   | L               |                     |               |                 |                  |             |                 |               |



| Course Code:<br>EBEE22L12 | Course Name: ELECTRICAL MACHINES LAB                                   | Ty /Lb/<br>ETL/IE | L | T /<br>S.Lr | P/<br>R | С |
|---------------------------|------------------------------------------------------------------------|-------------------|---|-------------|---------|---|
|                           | Prerequisite: DC Machines and Transformers, AC and<br>Special Machines | Lb                | 0 | 0/0         | 3/0     | 1 |

## LIST OF EXPERIMENTS

- 1. Open Circuit Characteristics Of DC Shunt Generator
- 2. Load Characteristics of DC Compound Generator
- 3. Load test on DC Shunt Motor
- 4. Load test on DC Series Motor
- 5. Swinburne's Test
- 6. OC and SC test on Single Phase Transformer
- 7. Load test on Single Phase Transformer
- 8. Load Test on Three Phase Alternator
- 9. Load Test on Three Phase Induction Motor
- 10. Load Test on Single Phase Induction Motor

**Total No. of Periods: 45** 



| Course Code:<br>EBEE22006 | DISTR                                                           | RIBUTI                                                                                | ON      | ERATIC                 | AND             | Ty/ Lb/<br>ETL/IF |           | T/SLr<br>0/0      | P/R<br>0/0            | C<br>3 |                    |             |             |  |
|---------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------|---------|------------------------|-----------------|-------------------|-----------|-------------------|-----------------------|--------|--------------------|-------------|-------------|--|
|                           | -                                                               | -                                                                                     |         | 0                      | ic field tl     | -                 |           |                   | Ту                    | 3      | 0/0                | 0/0         | 3           |  |
| L:Lecture T:Tu            |                                                                 | -                                                                                     |         | U                      | 5               |                   | earch C   | •                 |                       |        |                    |             |             |  |
| CreditsT/L/ETL            |                                                                 | /Lab/En                                                                               | bedde   | d Theory               | and Lab         |                   |           |                   |                       |        |                    |             |             |  |
| OBJECTIVES                |                                                                 |                                                                                       |         |                        |                 |                   |           |                   |                       |        |                    |             |             |  |
|                           | learn abo                                                       |                                                                                       | -       |                        |                 |                   |           |                   |                       |        |                    |             |             |  |
|                           |                                                                 |                                                                                       |         | -                      | rameters        |                   |           |                   |                       |        |                    |             |             |  |
|                           | model th                                                        |                                                                                       |         |                        |                 |                   |           |                   |                       |        |                    |             |             |  |
|                           |                                                                 |                                                                                       |         | and subs               |                 |                   |           |                   |                       |        |                    |             |             |  |
| • To                      | know ab                                                         | out the f                                                                             | ault an | d protect              | tion            |                   |           |                   |                       |        |                    |             |             |  |
| COURSE OUT                | ГСОМЕ                                                           | S (Cos)                                                                               |         |                        |                 |                   |           |                   |                       |        |                    |             |             |  |
| Students comple           |                                                                 |                                                                                       | were a  | ble to                 |                 |                   |           |                   |                       |        |                    |             |             |  |
| CO1                       | Recogni                                                         | Recognise the various methods of power generation and its functional component        |         |                        |                 |                   |           |                   |                       |        |                    |             |             |  |
| CO2                       | Identify                                                        | Identify the performance parameters for the power generation and transmission systems |         |                        |                 |                   |           |                   |                       |        |                    |             |             |  |
| CO3                       | Analyze various factors which effect the power system structure |                                                                                       |         |                        |                 |                   |           |                   |                       |        |                    |             |             |  |
|                           |                                                                 |                                                                                       |         |                        | , electric      | <u> </u>          | -         |                   |                       | the    | transmi            | ssion       | line        |  |
| CO4                       |                                                                 |                                                                                       |         | ing equip              |                 |                   |           | F                 |                       |        |                    |             |             |  |
| CO5                       |                                                                 |                                                                                       |         |                        | fferent p       | rotectiv          | e equip   | ments in          | power sy              | vsten  | 1                  |             |             |  |
| Mapping of Co             |                                                                 |                                                                                       |         |                        |                 |                   |           |                   | <u> </u>              | /~     |                    |             |             |  |
| COs/POs                   | PO1                                                             | PO2                                                                                   | PO3     | PO4                    | PO5             | PO6               | PO7       | PO8               | PO9                   | POI    | lo PO              | 11 P        | <b>PO12</b> |  |
| CO1                       | 3                                                               | 3                                                                                     | 3       | 3                      | 3               | 2                 | 3         | 2                 | 3                     | 2      | 3                  | ,           | 2           |  |
| CO2                       | 2                                                               | 2                                                                                     | 2       | 3                      | 2               | 3                 | 1         | 3                 | 3                     | 2      | 3                  | ,           | 3           |  |
| CO3                       | 3                                                               | 3                                                                                     | 2       | 3                      | 2               | 3                 | 3         | 3                 | 2                     | 3      | 3                  | ,           | 2           |  |
| CO4                       | 2                                                               | 2                                                                                     | 2       | 3                      | 3               | 3                 | 3         | 2                 | 3                     | 2      | 3                  |             | 2           |  |
| CO5                       | 3                                                               | 3                                                                                     | 3       | 2                      | 3               | 2                 | 2         | 3                 | 2                     | 3      | 2                  |             | 3           |  |
| COs /PSOs                 |                                                                 | PS                                                                                    | 01      |                        |                 | PS                | PSO3      |                   |                       |        |                    |             |             |  |
| CO1                       |                                                                 |                                                                                       | 3       |                        |                 | 3                 |           |                   |                       |        |                    |             |             |  |
| CO2                       |                                                                 | 2                                                                                     | 2       |                        |                 | 2                 |           |                   |                       |        |                    |             |             |  |
| CO3                       |                                                                 | 1                                                                                     | l       |                        |                 | ,                 | 2         |                   |                       |        | 3                  |             |             |  |
| CO4                       |                                                                 |                                                                                       | 2       |                        |                 | -                 | 1         |                   |                       |        | 2                  |             |             |  |
| CO5                       |                                                                 |                                                                                       | 3       |                        |                 |                   | 2         |                   |                       |        | 2                  |             |             |  |
| 3/2/1 Indicates           | Strength                                                        | of Corr                                                                               | elation | , 3–High               | , 2-Mediu       | um, 1-L           | OW        |                   |                       |        |                    |             |             |  |
| ory                       | Basic<br>Sciences                                               | Engineering                                                                           | Defices | and Social<br>Sciences | Program<br>Core | Program           | Electives | Open<br>Electives | Interdiscipli<br>nary |        | Skill<br>Component | Practical / | Project     |  |
| Category                  | N B                                                             | Щ.                                                                                    |         | X al                   | <u>£</u> Ū_√    | P1                | Щ         | О Ш               | Ir<br>ni              |        | 0                  | P1          | <u>P</u>    |  |
3. Arun Ingole (2017) Power Transmission and distribution. Pearson Education. 4. Chakrabarti, A. Soni, M.L. Gupta, P.V. Bhatnagar, U.S. (2002) A Text Book on Power System Engineering. Dhanpat Rai & Co. Pvt. Ltd

# **REFERENCE BOOKS**

- 1. Patra, S.P. Basu, S.K. and Chowduri, S. (1983) Power systems Protection. Oxford and IBH
- 2. Sunil S. Rao, (1986) Switchgear and Protection. New Delhi: Khanna Publishers
- 3. Central Electricity Authority (CEA), 'Guidelines for Transmission System Planning', New Delhi

Transposition of Lines - Concepts of GMR and GMD - Skin and Proximity Effects **UNIT IV** 9 MODELLING AND PERFORMANCE OF TRANSMISSION LINES Classification of lines – short line, medium line and long line – equivalent circuits, phasor diagram, attenuation constant,

and Double circuits - Solid, Stranded and Bundled Conductors - Symmetrical and Unsymmetrical Spacing -

phase constant, surge impedance; transmission efficiency and voltage regulation, real and reactive power flow in lines,

## UNIT III TRANSMISSION LINE PARAMETERS Parameters of Resistance, Inductance and Capacitance calculations - Single and three phase transmission lines - Single

DISTRIBUTION

Power - circle diagrams, surge impedance loading, methods of voltage control; Ferranti effect

Feeders, distributors and service mains – DC distributor – 2-wire and 3-wire, radial and ring main distribution - AC distribution - single phase and three phase 4-wire distribution - Substation - Classification, functions and major components - sample substation layout

# **TEXT BOOKS**

2002

**Course Code:** 

**EBEE22006** 

UNIT I

UNIT II

- 1. V. K. Mehta, "Principles of Power Systems", S. Chand, New Delhi, 2005
- 2. S.N. Singh, 'Electric Power Generation, Transmission and Distribution', Prentice Hall of India Pvt. Ltd, New Delhi,

## UNIT V DISTRIBUTION SYSTEM AND SUBSTATIONS

# **Total No. of Periods:45**

# Wind, Biomass, Geothermal, Tidal – Structure of Electrical Power System – Different operating Voltages 9

9

P/R

0/0

С

3

T/SLr

0/0

L

3

Ty/ Lb/

ETL/IE

Τv

9

9



(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal. Chennai-95. Tamih adu. India

Conventional sources of energy – Thermal, Nuclear, Diesel, Gas etc – Non-conventional Sources of Energy – Solar,

Mechanical design of OH lines- Line Supports - Types of Towers - Stress and sag calculation - Effects of wind and Ice loading. Insulators: Types, voltage distribution in insulator string, improvement of string efficiency, testing of

**MECHANICAL DESIGN OF LINES, CABLES AND INSULATORS** 

insulators, Underground cables: Construction, Classification, Capacitance of 2 core and 3 core cables

**Course Name: GENERATION, TRANSMISSION AND** 

**Prerequisite: Electromagnetic Field Theory** 

**INTRODUCTION TO POWER SYSTEM** 



| Course Code:<br>EBEE22008    | Course              | Name:                                                                                                                                                                                                                             | CONTH         | ROL SY                            | STEM                    |                   |            |                | 7/ Lb/<br>FL/IE   | L       | T/SLr           | P/R   | С                   |
|------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------|-------------------------|-------------------|------------|----------------|-------------------|---------|-----------------|-------|---------------------|
|                              | Prerequ             | uisite: L                                                                                                                                                                                                                         | aplace a      | and Fou                           | rier Tra                | nsform            | IS         |                | Ту                | 3       | 1/0             | 0/0   | 4                   |
| L: Lecture T: Tu             |                     | -                                                                                                                                                                                                                                 |               | 0                                 | 5                       | t R: Res          | earch      | C: Credit      | s                 |         |                 | 1 1   |                     |
| T/L/ETL: Theor<br>OBJECTIVES | y/Lab/Em            | nbedded                                                                                                                                                                                                                           | Theory        | and Lab                           | )                       |                   |            |                |                   |         |                 |       |                     |
|                              | erstand th          | he hasic                                                                                                                                                                                                                          | compon        | ents of                           | control s               | veteme            |            |                |                   |         |                 |       |                     |
|                              | able to so          |                                                                                                                                                                                                                                   |               |                                   |                         |                   | ev dom     | ain            |                   |         |                 |       |                     |
|                              | erstand th          |                                                                                                                                                                                                                                   |               |                                   |                         |                   |            |                |                   |         |                 |       |                     |
|                              | erstand th          | -                                                                                                                                                                                                                                 | •             | -                                 |                         | 5                 | 5          |                |                   |         |                 |       |                     |
|                              | erstand th          |                                                                                                                                                                                                                                   |               |                                   |                         | ent varia         | bles       |                |                   |         |                 |       |                     |
| COURSE OUT                   |                     |                                                                                                                                                                                                                                   |               |                                   |                         |                   |            |                |                   |         |                 |       |                     |
| Students comple              | ting this o         | course w                                                                                                                                                                                                                          | vere able     | e to                              |                         |                   |            |                |                   |         |                 |       |                     |
| CO1                          | Summar              | rize the f                                                                                                                                                                                                                        | fundame       | ental con                         | cepts of                | control           | system     | 18             |                   |         |                 |       |                     |
| CO2                          | system f            | loy time domain analysis to predict and diagnose transient performance parameters of the<br>em for standard input functions                                                                                                       |               |                                   |                         |                   |            |                |                   |         |                 |       |                     |
| CO3                          |                     | trate the time and frequency-domain responses of any control system and will be able to focus tability of a closed-loop control system tify the needs of different types of controllers and compensator to ascertain the required |               |                                   |                         |                   |            |                |                   |         |                 |       |                     |
| CO4                          | Identify<br>dynamic |                                                                                                                                                                                                                                   |               |                                   |                         | ontrolle          | rs and     | compensa       | ator to as        | certain | the req         | uired |                     |
| CO5                          | Create v            | arious c                                                                                                                                                                                                                          | ontrol s      | ystem ap                          | oplication              | ns relate         | ed to in   | dustries       |                   |         |                 |       |                     |
| Mapping of Co                | urse Out            | come wi                                                                                                                                                                                                                           | ith Prog      | gram Ou                           | utcome (                | (Pos)             |            |                |                   |         |                 |       |                     |
| COs/POs                      | PO1                 | PO2                                                                                                                                                                                                                               | PO3           | PO4                               | PO5                     | PO6               | <b>PO7</b> | PO8            | PO9               | PO10    |                 | l P   | 012                 |
| <u>CO1</u>                   | 3                   | 3                                                                                                                                                                                                                                 | 2             | 2                                 | 3                       | 3                 | 1          | 2              | 2                 | 2       | 3               | _     | 3                   |
| CO2<br>CO3                   | <u>3</u><br>3       | 3                                                                                                                                                                                                                                 | 3<br>3        | 3<br>3                            | 3<br>3                  | 2<br>2            | 2<br>1     | 2              | 2<br>1            | 1       | 1               | _     | 2<br>2              |
| CO3<br>CO4                   | 2                   | $\frac{3}{2}$                                                                                                                                                                                                                     | $\frac{3}{2}$ | 3                                 | 3                       | $\frac{2}{2}$     | 1          | 2              | 2                 | 1       | 1               | _     | 2                   |
| C04<br>C05                   | 3                   | 3                                                                                                                                                                                                                                 | 3             | 3                                 | 3                       | 3                 | 3          | 3              | $\frac{2}{3}$     | 3       | 3               |       | $\frac{2}{3}$       |
| COs/PSOs                     | 5                   | PS(                                                                                                                                                                                                                               | -             | 5                                 | 5                       |                   | 02         | 5              | 5                 | -       | <b>PSO3</b>     |       | 5                   |
| C01                          |                     | 3                                                                                                                                                                                                                                 |               |                                   |                         |                   | 2          |                |                   | -       | 3               |       |                     |
| CO2                          |                     | 2                                                                                                                                                                                                                                 |               |                                   |                         |                   | 3          |                |                   |         | 3               |       |                     |
| CO3                          |                     | 2                                                                                                                                                                                                                                 |               |                                   |                         | ,                 | 2          |                |                   |         | 3               |       |                     |
| CO4                          |                     | 3                                                                                                                                                                                                                                 |               |                                   |                         |                   | 3          |                |                   |         | 2               |       |                     |
| CO5                          |                     | 2                                                                                                                                                                                                                                 |               |                                   |                         |                   | 2          |                |                   |         | 3               |       |                     |
| 3/2/1 Indicates St           | trength of          | Correla                                                                                                                                                                                                                           |               |                                   | Medium                  | 1,1-Low           | /          |                | T                 |         |                 | 1     |                     |
| gory                         | Basic Sciences      | Engineering Sciences                                                                                                                                                                                                              |               | Humanities and Social<br>Sciences | ∠ Program Core          | Prooram Flectives |            | Open Electives | Interdisciplinary |         | Skill Component |       | Practical / Project |
| Category                     | E                   |                                                                                                                                                                                                                                   |               | <u>т</u> (У)                      | $\overline{\checkmark}$ |                   | -          | 0              | Ī                 |         |                 |       | ±4                  |

# **Total No. of Periods:60**

# 12

12

# 12

12

12



| CDUCATIONAL AND RESEARCH INSTITUTE<br>DEEMED TO BE UNIVERSITY<br>University with Graded Autonomy Status<br>(An ISO 21001 : 2018 Certified Institution)<br>Perivar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India. | University with Graded Autonomy Status<br>(An ISO 21001 : 2018 Certified Institution) | ANAAC |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------|

| Course Code:<br>EBEE22008 | Course Name: CONTROL SYSTEM                  | Ty/ Lb/<br>ETL/IE | L | T/SLr | P/R | С |
|---------------------------|----------------------------------------------|-------------------|---|-------|-----|---|
|                           | Prerequisite: Laplace and Fourier Transforms | Ту                | 3 | 1/0   | 0/0 | 4 |

#### UNIT I INTRODUCTION TO CONTROL SYSTEMS COMPONENTS

Open and closed loop Systems - mathematical models of physical systems - differential equations - transfer function - armature control - field control - block diagram reduction - signal flowgraphs

### UNIT II TIME RESPONSE ANALYSIS

Standard test signals – time response of first order – second order systems-steady state errors and error constants

## FREQUENCY RESPONSE AND CONCEPT OF STABILITY **UNIT III**

Bode plot, polar plot, Nyquist Stability-Concept of stability-necessary conditions-Hurwitz stability criterion-Routh stability criterion-relative stability analysis.

## **UNIT IV** INTRODUCTION TO DESIGN OF COMPENSATORS

Realization of basic compensators-lag, lead, lag-lead. Introduction to P, PI, PD, PID controllers, tuning of PID controllers

## UNIT V STATE SPACE REPRESENTATION

Concept of state-State Variable representation-conversion of state variable models to transfer functions- Conversion of transfer function to state variable models – Solution of state equations – Concepts of controllability and observability.

# TEXT BOOKS

- 1. Nagrath,L.J.Gopal,M.(2017) Control System Engineering. 6<sup>th</sup> Ed. Newage International (P) Ltd Publishers.
- 2. Ogata, K. Modern Control Engineering-analysis of system dynamics, system design using Root Locus. 4thEd. Prentice Hall for practice and solutions.

# **REFERENCE BOOKS**

1. www.GaliLMc.com-GALIL we move the world-featured tutorials-motion controllers, tuning servo systems, adjustment of PID filter.



| Course C<br>EBEE220 |                |                      |                                                                                                                               | e: ME<br>NTAT |              | EMENT             | <b>IS AND</b>  |                   |         | Ty/ Lb/<br>ETL/IE | L       | T/S<br>Lr           | P/<br>R | C    |  |
|---------------------|----------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|-------------------|----------------|-------------------|---------|-------------------|---------|---------------------|---------|------|--|
|                     |                |                      | -                                                                                                                             |               |              |                   | ctronics       | and               | •       | Ту                | 3       | 0/0                 | 0/0     | 3    |  |
|                     |                |                      |                                                                                                                               | tion En       | 0            | 0                 |                |                   |         |                   |         |                     |         |      |  |
|                     |                |                      |                                                                                                                               | -             |              | •                 | P : Proje      | ct R : Rese       | arch C  | : Credits         |         |                     |         |      |  |
| T/L/ETL :           |                | ry/Lab/I             | Embed                                                                                                                         | ded The       | eory an      | d Lab             |                |                   |         |                   |         |                     |         |      |  |
| OBJECT              |                | . 1 (1 . )           | <b>A</b>                                                                                                                      |               |              |                   |                |                   |         |                   |         |                     |         |      |  |
|                     |                |                      |                                                                                                                               |               |              | trol conc         |                | ansducers,        | bridge  | a and its C       | horocto | rictics             |         |      |  |
|                     |                |                      |                                                                                                                               | •             |              | •                 | <b>•</b>       | nd measure        | •       |                   |         |                     | facto   | r    |  |
|                     |                |                      |                                                                                                                               |               |              |                   |                | make accur        |         |                   |         |                     |         | L    |  |
|                     |                |                      |                                                                                                                               |               |              |                   |                | ay devices.       |         | 6                 |         |                     |         |      |  |
| COURSE              |                |                      |                                                                                                                               |               |              |                   |                | •                 |         |                   |         |                     |         |      |  |
| C01                 |                | Ability              | to un                                                                                                                         | derstand      | I the co     | ncept of          | measure        | ment and co       | ontrol  |                   |         |                     |         |      |  |
| CO2                 |                | Unders               | stand t                                                                                                                       | he opera      | ation of     | differen          | t measur       | ing instrum       | ents    |                   |         |                     |         |      |  |
| C03                 |                | Knowl                | edgeal                                                                                                                        | ole on d      | ifferent     | types of          | transdu        | cers, bridge      | s and a | mplifiers         |         |                     |         |      |  |
| C04                 |                |                      | owledgeable on different types of transducers, bridges and amplifiers<br>equire knowledge on different types of oscilloscopes |               |              |                   |                |                   |         |                   |         |                     |         |      |  |
| CO5                 |                | Apply                | ply the knowledge of various instruments to measure the physical quantities in the field of science, ineering and technology  |               |              |                   |                |                   |         |                   |         |                     |         |      |  |
| Mapping             | of Co          | urse Oı              | itcome                                                                                                                        | es with       | Progra       | um Outc           | omes (P        | Os)               |         |                   |         |                     |         |      |  |
| COs/PO              | Os             | PO1                  | PO2                                                                                                                           | PO3           | PO4          | PO5               | <b>PO6</b>     | <b>PO7</b>        | PO8     | PO9               | POI     | lo PO               | 011     | PO12 |  |
| CO1                 |                | 3                    | 3                                                                                                                             | 3             | 3            | 3                 | 3              | 3                 | 2       | 3                 | 2       |                     | 3       | 3    |  |
| CO2                 |                | 2                    | 2                                                                                                                             | 2             | 2            | 2                 | 2              | 2                 | 2       | 2                 | 1       |                     | 3       | 1    |  |
| CO3                 |                | 3                    | 3                                                                                                                             | 3             | 3            | 3                 | 3              | 3                 | 2       | 2                 | 2       | -                   | 3       | 1    |  |
| CO4                 |                | 2                    | 2                                                                                                                             | 2             | 2            | 2                 | 2              | 2                 | 2       |                   | 2       |                     | 2       | 3    |  |
| CO5                 |                | 3                    | 3                                                                                                                             | 3             | 3            | 3                 | 3              | 3                 | 2       | 3                 | 2       |                     | 3       | 1    |  |
| COs/PS              |                | PSC                  | 01                                                                                                                            |               | <b>SO2</b>   | PS                | 503            |                   |         |                   |         |                     |         |      |  |
| C01                 |                | 2                    |                                                                                                                               |               | 2            |                   | 3              |                   |         |                   |         |                     |         |      |  |
| CO2                 |                | 2                    |                                                                                                                               |               | 1            |                   | 1              |                   |         |                   |         |                     |         |      |  |
| <u>CO3</u>          |                | 1                    |                                                                                                                               |               | 1            | _                 | 2              |                   |         |                   |         |                     |         |      |  |
| <u>CO4</u>          |                | 3                    |                                                                                                                               |               | 3            |                   | 2              |                   |         |                   |         |                     |         |      |  |
| CO5                 |                | 2                    |                                                                                                                               |               | 2            |                   | 3              | 1 1               |         |                   |         |                     |         |      |  |
| 3/2/1 Indi          | cates S        | strength             | OI CO                                                                                                                         | rrelatior     | 1 <u>3-</u>  | 11gn, 2- N        | viedium,       | 1-LOW             | П       |                   | T       |                     | 1       |      |  |
|                     | ences          | Engineering Sciences | Humanities and Social                                                                                                         |               | Core         | Program Electives | ctives         | plinary           |         | Skill Component   |         | Practical / Project |         |      |  |
| Category            | Basic Sciences | Engineer             | Humaniti                                                                                                                      | ociences      | Program Core | Program           | Open Electives | Interdisciplinary |         | Skill Co          |         | Practica            |         |      |  |
| Cat                 |                |                      |                                                                                                                               |               | ٧            |                   |                |                   |         |                   |         |                     |         |      |  |

#### (An ISO 21001 : 2018 Certified Institution) Perivar E.V.R. High Road, Maduravoval, Chennai-95, Tamili adu. India

| Course Code:<br>EBEE22003 | Course Name: MEASUREMENTS AND<br>INSTRUMENTATION                               | Ty/ Lb/<br>ETL/IE | L | T/S<br>Lr | P/<br>R | C |  |
|---------------------------|--------------------------------------------------------------------------------|-------------------|---|-----------|---------|---|--|
|                           | Prerequisite: Basic Electrical, Electronics and<br>Instrumentation Engineering | Ту                | 3 | 0/0       | 0/0     | 3 |  |

#### UNIT I **INTRODUCTION TO MEASUREMENTS**

Basic elements of Instruments-Principles and types of analog and digital voltmeters, ammeters- Static and dynamic characteristics - Errors in measurements - Standards and calibration

#### CURRENT, POWER AND ENERGY MEASUREMENTS UNIT II

Power and Energy measurement – Instrument transformers – Current and Potential Transformers – Dynamometer and Instruments, kVAh and kVARh meters

#### UNIT III **METHODS OF MEASUREMENTS**

D.C& A.C potentiometers - D.C & A.C bridges - transformer ratio bridges - self - balancing bridges - PMMC, moving iron - Electrostatic and Electromagnetic interference-Grounding techniques - Calibration

#### **UNIT IV BRIDGES AND THEIR APPLICATIONS**

D.C bridges: Wheatstone, Kelvin and Kelvin Double bridge – A.C bridges: Maxwell, Wein, Anderson and Schering bridges – Errors, limitations and applications of each bridge.

#### UNIT V STORAGE AND DISPLAY DEVICES

Magnetic disc and Tape Recorders –Digital plotters and printers - CRT displays - Digital CRO – LED, LCD and Dot matrix displays - Data Loggers.

## **Total No. of Periods: 45**

# TEXT BOOKS

- 1. A.K. Sawhney (2015) A Course in Electrical and Electronic Measurements and Instrumentation. 9th Ed. Dhanpat Rai & Co.
- 2. Kalsi H.S. (2010) Electronic Instrumentation. 3<sup>rd</sup> Ed. Tata McGraw Hill Publications.
- 3. Bouwens A.J (2010) Digital instrumentation. 16<sup>th</sup> Reprint, Tata McGraw Hill Publications.

## **REFERENCE BOOKS**

- 1. Rangan C.S (2009) Instruments Devices and System. 2<sup>nd</sup> Ed. Tata McGraw Hill Publications.
- 2. W.D. Cooper (2009) Electronic Instrumentation and Measurement Techniques. 1st Ed. Prentice Hall of India Publications.





9

9

9

9



| Course Code:<br>EBEE22ET4 | MACH           | IINES                                                                                                          |             |                                   | ELECT        |                              |           | ]              | Ty/ Lb/<br>ETL/IE | L       | T/SLr           | P/R      | C                   |  |  |
|---------------------------|----------------|----------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------|--------------|------------------------------|-----------|----------------|-------------------|---------|-----------------|----------|---------------------|--|--|
|                           |                | uisite: 1<br>I Machi                                                                                           |             | chines a                          | nd Trar      | sforme                       | ers, AC   | and            | ETL               | 2       | 0/0             | 2/0      | 3                   |  |  |
| L : Lecture T : '         | Futorial S     | SLr : Su                                                                                                       | pervised    | l Learni                          | ng P: Pro    | ject R :                     | Resear    | ch C : C       | redits            |         | 1               |          | •                   |  |  |
| T/L/ETL:Theor             |                | nbedded                                                                                                        | 1 Theory    | and La                            | lb           |                              |           |                |                   |         |                 |          |                     |  |  |
| OBJECTIVES                |                |                                                                                                                |             |                                   |              |                              |           |                |                   |         |                 |          |                     |  |  |
|                           | graduate       |                                                                                                                |             |                                   |              |                              | rmers     |                |                   |         |                 |          |                     |  |  |
|                           | nderstand      |                                                                                                                | 0 0         |                                   |              |                              |           |                |                   |         |                 |          |                     |  |  |
|                           | graduate       |                                                                                                                |             |                                   |              |                              |           |                | d to the I        | ndus    | trial neo       | eds.     |                     |  |  |
|                           | graduate       |                                                                                                                | <b>.</b>    |                                   |              |                              |           |                |                   |         |                 |          |                     |  |  |
| • To u                    | nderstand      | d the ch                                                                                                       | aracteris   | stics like                        | e speed, t   | orque et                     | tc. of di | fferent e      | lectrical         | macl    | nines.          |          |                     |  |  |
| COURSEOUT                 | COMES          | (Cos)                                                                                                          |             |                                   |              |                              |           |                |                   |         |                 |          |                     |  |  |
| Students compl            |                |                                                                                                                | were ab     | le to                             |              |                              |           |                |                   |         |                 |          |                     |  |  |
| CO1                       |                |                                                                                                                |             |                                   | terials fo   |                              |           |                |                   |         |                 |          |                     |  |  |
| CO2                       |                |                                                                                                                |             |                                   | r the elec   |                              |           |                |                   |         |                 |          |                     |  |  |
| CO3                       |                | Estimate the performance characteristics of various electrical machines for the complex engineering problems   |             |                                   |              |                              |           |                |                   |         |                 |          |                     |  |  |
| ~~~                       |                | engineering problems                                                                                           |             |                                   |              |                              |           |                |                   |         |                 |          |                     |  |  |
| CO4                       |                | Acquire knowledge to carry out a detailed design of a electrical machines and estimate the performance indices |             |                                   |              |                              |           |                |                   |         |                 |          |                     |  |  |
|                           |                |                                                                                                                |             |                                   | 1 .          |                              | <u> </u>  |                | 1 .               | <u></u> |                 | 1.1.1    | 1.1                 |  |  |
| CO5                       | Design         | a simpl                                                                                                        | le machi    | ne to ca                          | ter the te   | mperati                      | ire rise  | issue in       | design of         | t hig   | h rated         | and high | ghly                |  |  |
| Mapping of Co             | efficier       |                                                                                                                |             | anom (                            | Jutaama      | $(\mathbf{DO}_{\mathbf{f}})$ |           |                |                   |         |                 |          |                     |  |  |
| COs/POs                   | PO1            | PO2                                                                                                            | PO3         | PO4                               | PO5          | PO6                          | PO7       | PO8            | PO9               | РО      | 10 D(           | 111      | PO12                |  |  |
| COS/105                   | 3              | 3                                                                                                              | 3           | 1<br>1                            | 2            | 3                            | 3         | 3              | 3                 | 2       | 2               | 011      | 3                   |  |  |
| <u>CO1</u><br>CO2         | 2              | 3                                                                                                              | 2           | 2                                 | 3            | 3                            | 2         | 3              | 3                 | 2       | 2               |          | <u> </u>            |  |  |
| C02                       | 3              | 2                                                                                                              | 3           | 3                                 | 2            | 3                            | 3         | 3              | 3                 | 2       |                 |          | 3                   |  |  |
| <u> </u>                  | 3              | 3                                                                                                              | 2           | 2                                 | 3            | 2                            | 2         | 2              | 2                 | 3       |                 |          | 2                   |  |  |
| <u> </u>                  | 2              | <u> </u>                                                                                                       | 1           | 2                                 | 3<br>1       | 3                            | 1         | 3              | 3                 | 2       |                 |          | 2                   |  |  |
| COs /PSOs                 | 2              | PS                                                                                                             |             | 2                                 | 1            | PS                           | _         | 3              | 5                 | 2       | PSO3            |          | 4                   |  |  |
| CO3/FSOS                  |                |                                                                                                                |             |                                   |              |                              |           |                |                   |         |                 |          |                     |  |  |
| <u>CO1</u><br>CO2         |                |                                                                                                                | 2<br>3      |                                   |              |                              | 3         |                |                   |         | 3               |          |                     |  |  |
| CO2<br>CO3                |                |                                                                                                                | 2           |                                   |              |                              | 3<br>3    |                |                   |         | 2<br>3          |          |                     |  |  |
| <u> </u>                  |                |                                                                                                                | 3           |                                   |              |                              | 2         |                |                   |         | $\frac{3}{2}$   |          |                     |  |  |
| C04<br>C05                |                |                                                                                                                | ,<br>1      |                                   |              |                              | 3         |                |                   |         | <u> </u>        |          |                     |  |  |
| 3/2/1 Indicates S         | Strength c     |                                                                                                                |             | -High                             | l<br>2-Mediu |                              |           |                |                   |         | 1               |          |                     |  |  |
|                           | , a chigan c   |                                                                                                                |             |                                   | 2 1110010    |                              |           |                |                   |         |                 |          |                     |  |  |
|                           | Basic Sciences | Engineering Sciences                                                                                           | -<br>-<br>- | Humanities and Social<br>Sciences | Program Core | Prooram Flectives            |           | Open Electives | Interdisciplinary |         | Skill Component |          | Practical / Project |  |  |
| ory                       | sic            | gine                                                                                                           | ,           | Humanit<br>Sciences               | gr£          | 013                          | 0         | en             | erdi              |         | ) III           | ctic     |                     |  |  |
| Category                  | Bat            | Eng                                                                                                            |             | Hu<br>Sci                         | Pro          | Pro                          |           | Op             | Inté              |         | Ski             |          | Pra                 |  |  |
| Cat                       |                |                                                                                                                |             |                                   | V            |                              |           |                |                   |         |                 |          |                     |  |  |

(An ISO 21001 : 2018 Certified Institution) Perivar E.V.R. High Road, Maduravoval, Chennai-95, Tamilnadu, India

| Course Code:<br>EBEE22ET4 | Course Name: DESIGN OF ELECTRICAL<br>MACHINES                       | Ty/ Lb/<br>ETL/IE | L | T/SLr | P/R | С |
|---------------------------|---------------------------------------------------------------------|-------------------|---|-------|-----|---|
|                           | Prerequisite: DC Machines and Transformers, AC and Special Machines | ETL               | 2 | 0/0   | 2/0 | 3 |

# UNIT I INTRODUCTION

Major considerations–Limitations–Space factor temperature gradient–Heat flow in two dimensions–Thermal resistivity of winding– Temperature gradient in conductors placed in slots

# UNIT II DC MACHINES

Magnetic circuit calculations-Net length of Iron-Real & Apparent flux densities-D.C machines output equations -Design of shunt and series field windings-Design of Commutator and brushes.

# UNIT III TRANSFORMERS

KVA output for single and three phase transformers–Window space factor–Temperature rise of Transformers -Design of Tank with & without cooling tubes–Conservator-Breather

# UNIT IV INDUCTION MOTORS

Magnetic leakage calculations–Leakage reactance of poly-phase machines-Output equation of Induction motor —circle diagram–Dispersion co-efficient– relation between D&L for best power factor.

# UNIT V SYNCHRONOUS MACHINES

Runaway speed-construction-output equations-choice of loadings-Design of salient pole machines-Short circuit ratio-Introduction to computer aided design-Program to design main dimensions of Alternators.

# Lab Components:

1. Case study and Design of any one of the machines with prototype.

# TEXT BOOKS

- Sawhney, A.K.& Chakrabarti, A (2010) A Course in Electrical MachineDesign.6<sup>th</sup> Ed. Dhanpat Rai & Sons, New Delhi.
- 2. Deshpande M V (2011) Design and testing of Electrical Machines, PHI learning Pvt. Ltd.

# **REFERENCE BOOKS**

- 1. Sen, S.K. (2006) Principles of Electrical Machine Designs with Computer Programmes. New Delhi: Oxford and IBH Publishing Co. Pvt. Ltd.
- 2. Shanmuga sundaram et. al (2011) Design data Handbook, 1st Ed. New Age International



**Total No. of Periods:60** 

15



**9** rm

9

9

9



| Cours<br>Code: |                | Course                  | Name: ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EASUI        | REME              | NT A           | ND (                | CONTE                            | ROL L       | AB                      | Ty/ Lb/<br>ETL/IE | L       | T /<br>S.Lr | P/<br>R | C     |
|----------------|----------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|----------------|---------------------|----------------------------------|-------------|-------------------------|-------------------|---------|-------------|---------|-------|
| EBEE           | E22L13         | Prereq                  | uisite: Meas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | surem        | ents an           | d Ins          | strum               | nentatio                         | on, Cor     | ntrol                   | Lb                | 0       | 0/0         | 3/0     | 1     |
|                |                | System                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                   |                |                     |                                  | ,<br>,      |                         |                   |         |             |         |       |
| L : Le         | cture T :      | Tutorial                | SLr : Sup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ervise       | l Learn           | ing I          | P:Pro               | oject R                          | : Rese      | arch C:                 | Credits           |         |             |         |       |
| T/L/E          | TL : The       | eory/Lab/               | Embedded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Theory       | and La            | ab             |                     | -                                |             |                         |                   |         |             |         |       |
| OBJE           | CTIVE          | :                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                   |                |                     |                                  |             |                         |                   |         |             |         |       |
|                |                |                         | and the Mea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                   |                |                     | -                                |             |                         |                   |         |             |         |       |
|                |                |                         | ill obtain kn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                   |                |                     |                                  |             |                         |                   |         |             |         |       |
|                |                |                         | e energy me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eters in     | n single          | e pha          | se, th              | ree pha                          | se and      | measu                   | re the pow        | ver, ir | on loss     | and j   | powe  |
|                |                | ctor.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                   |                |                     |                                  |             |                         |                   |         |             |         |       |
|                |                |                         | ize the stud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                   |                |                     |                                  |             |                         | inductance        | e and   | capaci      | tance-  | facto |
| COUI           |                |                         | $\frac{1}{2} = \frac{1}{2} $ |              |                   |                |                     |                                  | AD CIC.     |                         |                   |         |             |         |       |
| CO1            | r              |                         | niliarized ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | ferent            | vpes           | of Tr               | ansduc                           | ers, brid   | lges an                 | d its chara       | cteris  | tics.       |         |       |
| CO2            |                |                         | concept of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                   | • •            |                     |                                  |             |                         |                   |         |             | ower    |       |
| CO2            |                |                         | ts familiariz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                   |                |                     |                                  |             |                         |                   |         |             |         | facto |
| 005            |                | •                       | 1 packages e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                   | neast          |                     |                                  | W 1051      | , and the second second | muutanet          |         | capaci      | unce-   | racio |
| CO4            |                |                         | edge on P/I a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | Conve             | erters         |                     |                                  |             |                         |                   |         |             |         |       |
| CO5            |                |                         | edge on Sma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                   |                |                     |                                  |             |                         |                   |         |             |         |       |
| Mann           | ing of (       | ourse O                 | utcomes wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | th Pro       | arom (            | Juter          | mag                 | (POs)                            |             |                         |                   |         |             |         |       |
|                | s/POs          | PO1                     | PO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PO3          | 0                 |                | 05                  | PO6                              | PO7         | PO8                     | PO9               | POI     | 0 PO        | 11      | PO12  |
|                | 01             | 2                       | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3            | 2                 | -              | 3                   | 2                                | 3           | 2                       | 3                 | 2       |             | 3       | 3     |
|                | 02             | 2                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2            | 3                 |                | 3                   | 3                                | 3           | 2                       | 2                 | 1       |             | 3       | 2     |
|                | 03             | 1                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3            | 3                 |                | 3                   | 3                                | 3           | 3                       | 3                 | 3       | 3           | 3       | 1     |
| C              | 04             | 2                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3            | 3                 |                | 3                   | 3                                | 3           | 3                       | 3                 | 3       |             | 3       | 2     |
| C              | 05             | 3                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3            | 3                 |                | 3                   | 1                                | 3           | 1                       | 3                 | 2       |             | 3       | 2     |
| COs/           | / PSOs         | Р                       | SO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P            | SO2               |                | PSC                 | 03                               |             |                         | •                 |         |             |         |       |
| C              | 01             |                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 3                 |                | 3                   | 6                                |             |                         |                   |         |             |         |       |
| C              | 02             |                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 3                 |                | 3                   |                                  |             |                         |                   |         |             |         |       |
| C              | 03             |                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 3                 |                | 3                   |                                  |             |                         |                   |         |             |         |       |
|                | 04             |                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 3                 |                | 3                   |                                  |             |                         |                   |         |             |         |       |
|                | 05             |                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 2                 |                | 3                   |                                  |             |                         |                   |         |             |         |       |
| 3/2/11         | Indicates      | Strength                | OfCorrelati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | on,3–l       | ligh,2-l          | Medi           | um,1-               | Low                              |             |                         |                   |         |             |         |       |
|                |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                   |                |                     |                                  |             |                         |                   | 1       |             |         |       |
|                |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | ves               |                | sct                 |                                  |             |                         |                   |         |             |         |       |
|                | ces            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | re           | sctiv             | ves            | roje                | ∕ llix                           |             |                         |                   |         |             |         |       |
|                | ienc           | ing                     | ies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Co           | Ele               | sctiv          | / P.                | ps /                             | ls          |                         |                   |         |             |         |       |
| ~              | Sci            | leer                    | unit<br>Joci<br>ces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | am           | am                | Ele            | cal                 | ushi]<br>iica                    | lkill       |                         |                   | 1       |             |         |       |
| Ľ.             | Basic Sciences | Engineering<br>Sciences | Humanities<br>and Social<br>Sciences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Program Core | Program Electives | Open Electives | Practical / Project | Internships /<br>Technical Skill | Soft Skills |                         |                   |         |             |         |       |
| 5              |                | i ⊑ 8                   | L d O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ц,           | ц,                | L L            | Ľ                   | e <u> </u>                       | 0           | 1                       |                   | 1       |             |         |       |
| Category       | B;             | ыŇ                      | N B H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ∠<br>P       | Ч                 | 0              | Ч                   | II<br>T                          | Ň           |                         |                   |         |             |         |       |



| Course Code:<br>EBEE22L13 | Course Name: MEASUREMENT AND CONTROL<br>LAB                        | Ty/ Lb/<br>ETL/IE | L | T/<br>S.Lr | P/<br>R | C |
|---------------------------|--------------------------------------------------------------------|-------------------|---|------------|---------|---|
|                           | Prerequisite: Measurements and Instrumentation,<br>Control Systems | Lb                | 0 | 0/0        | 3/0     | 1 |

# LIST OF EXPERIMENTS:

- 1. Study of temperature measuring transducers (Thermocouples).
- 2. Study of displacement and pressure transducers (LVDT)
- 3. Measure the stress and strain using strain gauge.
- 4. AC Bridges.
- 5. DC Bridges.
- 6. Calibration of Single-phase Energy meter.
- 7. Calibration of Three-phase Energy meter.
- 8. Transfer function of self-excited DC Generator
- 9. Transfer function of Armature controlled DC Motor.
- 10. Transfer function of Field controlled DC Motor.
- 11. Transfer function of AC Servomotor.



| Course Code:<br>EBEE22007 |                | e Name:<br>CHGEA                                                                                 |            | ER SYS                            | TEM P          | ROTEC             | TION     | AND            | Ty/ Lb/<br>ETL/IE | L        | T/SLr           | P/R   | С                   |  |  |
|---------------------------|----------------|--------------------------------------------------------------------------------------------------|------------|-----------------------------------|----------------|-------------------|----------|----------------|-------------------|----------|-----------------|-------|---------------------|--|--|
|                           | Prereq         | uisite: (                                                                                        | Genera     | tion, Tr                          | ansmiss        | ion and           | Distril  | oution         | Ту                | 3        | 0/0             | 0/0   | 3                   |  |  |
| L: Lecture T: Tu          |                |                                                                                                  |            |                                   |                | ect R: Re         | esearch  | C: Cred        | lits              |          |                 |       |                     |  |  |
| T/L/ETL: Theor            | y/Lab/Er       | nbedded                                                                                          | d Theor    | y and La                          | ab             |                   |          |                |                   |          |                 |       |                     |  |  |
| OBJECTIVES                |                |                                                                                                  |            |                                   |                |                   |          |                |                   |          |                 |       |                     |  |  |
|                           | attain kno     | -                                                                                                |            |                                   |                | les of Re         | elay     |                |                   |          |                 |       |                     |  |  |
|                           | know abo       |                                                                                                  | <b>.</b> . | <b>.</b>                          |                |                   |          |                |                   |          |                 |       |                     |  |  |
|                           | attain kno     |                                                                                                  |            |                                   |                | ircuit br         | eakers   |                |                   |          |                 |       |                     |  |  |
|                           | nodel the      |                                                                                                  |            |                                   |                |                   |          |                |                   |          |                 |       |                     |  |  |
|                           |                |                                                                                                  | orking     | principle                         | e of relag     | ys, circu         | it break | ers and        | various p         | ower     | system of       | compo | nents               |  |  |
| COURSEOUT                 |                |                                                                                                  |            |                                   |                |                   |          |                |                   |          |                 |       |                     |  |  |
| Students comple           | -              |                                                                                                  |            |                                   |                |                   |          |                |                   |          |                 |       |                     |  |  |
| CO1                       | •              |                                                                                                  |            |                                   | -              | ower sy           |          | <u> </u>       |                   |          |                 |       |                     |  |  |
| CO2                       |                | Immarize the operation of relays, circuit breakers and power system components                   |            |                                   |                |                   |          |                |                   |          |                 |       |                     |  |  |
| CO3                       | Model          | lodel the protective devices, Generator, Transformer, Transmission line, Load                    |            |                                   |                |                   |          |                |                   |          |                 |       |                     |  |  |
| 003                       | represe        | epresentation etc.                                                                               |            |                                   |                |                   |          |                |                   |          |                 |       |                     |  |  |
| CO4                       | Design         | esign the relays and power system components                                                     |            |                                   |                |                   |          |                |                   |          |                 |       |                     |  |  |
| CO5                       | Ų              | Paraphrase the working principle of relays, circuit breakers and various power system components |            |                                   |                |                   |          |                |                   |          |                 |       |                     |  |  |
| Mapping of Co             |                |                                                                                                  |            |                                   |                |                   |          |                |                   | <u>r</u> | - ~ j ~         | 1     |                     |  |  |
| COs/POs                   | <b>PO1</b>     | PO2                                                                                              | PO3        |                                   |                | PO6               | PO7      | PO8            | PO9               | PO1      | 0 PO1           | 1     | PO12                |  |  |
| CO1                       | 3              | 2                                                                                                | 3          | 2                                 | 3              | 2                 | 2        | 3              | 3                 | 3        | 3               |       | 3                   |  |  |
| CO2                       | 2              | 2                                                                                                | 3          | 2                                 | 3              | 2                 | 2        | 3              | 2                 | 3        | 3               |       | 3                   |  |  |
| CO3                       | 2              | 3                                                                                                | 2          | 2                                 | 3              | 3                 | 3        | 2              | 1                 | 2        | 2               |       | 2                   |  |  |
| CO4                       | 3              | 2                                                                                                | 3          | 3                                 | 3              | 2                 | 2        | 3              | 2                 | 3        | 3               |       | 3                   |  |  |
| CO5                       | 2              | 3                                                                                                | 2          | 3                                 | 2              | 3                 | 3        | 3              | 3                 | 2        | 2               |       | 2                   |  |  |
| COs/PSOs                  |                | PS                                                                                               | 01         |                                   |                | PS                | 02       |                |                   |          | PSO3            |       |                     |  |  |
| CO1                       |                | 3                                                                                                |            |                                   |                | 3                 |          |                |                   |          | 2               |       |                     |  |  |
| CO2                       |                | 2                                                                                                |            |                                   |                | 2                 |          |                |                   |          | 3               |       |                     |  |  |
| CO3                       |                | 3                                                                                                |            |                                   |                | 3                 |          |                |                   |          | 2               |       |                     |  |  |
| CO4                       |                | 2                                                                                                |            |                                   |                | 2                 |          |                |                   |          | 3               |       |                     |  |  |
| CO5                       |                | 3                                                                                                |            |                                   |                | 3                 |          |                |                   |          | 1               |       |                     |  |  |
| 3/2/1 Indicates S         | trength o      | of Correl                                                                                        | ation, 3   | High,                             | 2-Mediu        | m, 1-Lo           | W        |                |                   |          |                 |       |                     |  |  |
|                           |                |                                                                                                  |            |                                   |                |                   |          |                |                   |          |                 |       |                     |  |  |
|                           |                | Engineering Sciences                                                                             |            | Humanities and Social<br>Sciences |                | -                 |          |                |                   |          |                 |       |                     |  |  |
|                           |                | ien                                                                                              | 5          | Ň                                 |                | ves               |          |                | ý                 |          | nt              |       | ect                 |  |  |
|                           | ses            | Sc                                                                                               |            | anc                               | re             | cti               |          | ves            | nar               |          | one             |       | Õ                   |  |  |
|                           | enc            | ing                                                                                              |            | es                                | C              | Ele               |          | cti            | pli               |          | odu             |       | d d                 |  |  |
|                           | Basic Sciences | een                                                                                              |            | niu                               | m              | Program Electives |          | Open Electives | Interdisciplinary |          | Con             |       | cal                 |  |  |
| Ż                         | sic            | gine                                                                                             |            | enc                               | gre            | 0T3               | )        | en             | erdi              |          |                 |       | ictiv               |  |  |
| 10g                       | Bas            | Eng                                                                                              |            | Humaniu<br>Sciences               | ∠ Program Core | Pro               |          | Op             | Inté              |          | Skill Component |       | Practical / Project |  |  |
| Category                  |                |                                                                                                  |            |                                   | $\overline{}$  |                   |          |                |                   |          |                 |       | - 7                 |  |  |
| U                         |                |                                                                                                  |            |                                   |                |                   |          |                | 1                 |          |                 |       |                     |  |  |



**SWITCHGEAR** 

#### UNIT I **PROTECTION SCHEMES**

Principles and need for protection schemes-nature and causes of faults- types of faults-Methods of grounding-Zones of protection and essential qualities of protection-protection scheme

#### UNIT II RELAYS

**Course Code:** 

**EBEE22007** 

Operating Principles of relays - Common relay terms - Universal Torque Equation. - Electromagnetic relays, Induction relays -Over current relays-Directional, Distance, Differential and negative sequence relays

#### UNIT III **APPARATUS PROTECTION**

Generator Protection - Motor protection - Bus bar protection and Transmission line and Feeder protection - CT and PT protection

#### **UNIT IV** STATIC AND NUMERICAL RELAYS

Static relays - components of static relays - over current relays, differential protection and distance protection -Microprocessor based relays-Block diagram of Numerical relays

#### UNIT V **CIRCUIT BREAKERS**

Arc phenomena- arc interruption- Current zero interruption theories- recovery voltage and restriking voltage - RRRV

- current chopping - Resistance switching- Various types of circuit breakers - selection and Testing of circuit breakers

– Fuses– HRC fuses

# **TEXT BOOKS**

- 1. V.K. Mehta, "Principles of Power Systems", S. Chand, NewDelhi,2005
- 2. Ravindranath, B.and Chander, N. (2011) Power System Protection and Switchgear, New Age International (P) Ltd
- 3. Chakrabarti, A. Soni, M. L. Gupta, P. V. Bhatnagar, U. S. (2002) A Text Book on Power System Engineering. Dhanpat Rai & Co. Pvt. Ltd
- 4. Arun Ingole (2017), Switch Gear and protection, Pearson Education.

# **REFERENCE BOOKS**

- 1. Patra, S.P. Basu, S.K. and Chowduri, S. (1983) Power systems Protection. Oxford and IBH
- 2. SunilS. Rao, (1986) Switchgear and Protection. New Delhi: Khanna Publishers
- 3. Central Electricity Authority (CEA), 'Guidelines for Transmission System Planning', New Delhi

| EDUCATIONAL AND RESEARCH INSTITUTE (                                 | AT NAAC |
|----------------------------------------------------------------------|---------|
| University with Graded Autonomy Status                               |         |
| (An ISO 21001 : 2018 Certified Institution)                          |         |
| Perivar E.V.R. High Road, Maduravoval, Chennai-95, Tamilnadu, India. |         |

**Course Name: POWER SYSTEM PROTECTION AND** 

**Prerequisite: Generation, Transmission and Distribution** 



9

9

9

9

0/0

T/SLr P/R

0/0

С

3

Tv/Lb/

**ETL/IE** 

Тy

L

3

47

9



| Course Code:<br>EBEE22009       | Course    | e Name: I                                                                                   | POWER                | ELECT                             | RONIC        | CS             |                   |           | / Lb/<br>L/IE   | L       | T/SLr               | P/R | C     |  |
|---------------------------------|-----------|---------------------------------------------------------------------------------------------|----------------------|-----------------------------------|--------------|----------------|-------------------|-----------|-----------------|---------|---------------------|-----|-------|--|
|                                 | -         | uisite: Ba                                                                                  |                      |                                   | lectroni     | cs and         |                   | ,         | Ту              | 3       | 0/0                 | 0/0 | 3     |  |
| L: Lecture T: Tu                |           |                                                                                             |                      |                                   | Project      | R : Res        | earch C           | : Credits | T/L/ET          | Ľ:      |                     | 1   | L     |  |
| Theory/Lab/Em                   | bedded 7  | Theory an                                                                                   | d Lab                | C                                 | U            |                |                   |           |                 |         |                     |     |       |  |
| OBJECTIVES                      |           |                                                                                             |                      |                                   |              |                |                   |           |                 |         |                     |     |       |  |
| • ]                             | Гo attain | Power El                                                                                    | ectronic I           | Devices a                         | and its cl   | haracter       | istics.           |           |                 |         |                     |     |       |  |
| • ]                             | Fo desigi | n the trigg                                                                                 | ering of f           | iring cire                        | cuits.       |                |                   |           |                 |         |                     |     |       |  |
|                                 |           | the inverte                                                                                 |                      |                                   |              | al drives      | 5.                |           |                 |         |                     |     |       |  |
| • ]                             | Гo attain | knowledg                                                                                    | ge on DC             | & AC D                            | rives        |                |                   |           |                 |         |                     |     |       |  |
| COURSE OUT<br>Students complete |           |                                                                                             | ere able t           | 0                                 |              |                |                   |           |                 |         |                     |     |       |  |
| CO1                             | Recogn    | nize the va                                                                                 | arious Pov           | wer Elec                          | tronic D     | evices a       | and its sy        | witching  | charact         | eristic | S                   |     |       |  |
| CO2                             | v         | Inderstand various operation and characteristics performance of power converter circuits    |                      |                                   |              |                |                   |           |                 |         |                     |     |       |  |
| CO3                             | Analyz    | te and des tement of a                                                                      | ign variou           | ls power                          |              |                |                   |           |                 |         |                     |     | g the |  |
| CO4                             |           | amine power electronic design at the system level and assess the performance                |                      |                                   |              |                |                   |           |                 |         |                     |     |       |  |
| CO5                             |           | Articulate the usage of Power Electronic Devices in commercial and industrial applications. |                      |                                   |              |                |                   |           |                 |         |                     |     |       |  |
|                                 |           | se Outcome with Program Outcome (POs)                                                       |                      |                                   |              |                |                   |           |                 |         |                     |     |       |  |
| COs/POs                         | PO1       | PO2                                                                                         | PO3                  | PO4                               | PO5          | PO6            | PO7               | PO8       | PO9             | PO      | 10 P                | 011 | PO12  |  |
| CO1                             | 3         | 1                                                                                           | 1                    | 1                                 | 1            | 2              | 2                 | 3         | 1               | 2       | }                   | 3   | 3     |  |
| CO2                             | 3         | 2                                                                                           | 2                    | 2                                 | 1            | 3              | 3                 | 3         | 3               | 2       |                     | 2   | 3     |  |
| CO3                             | 3         | 3                                                                                           | 3                    | 3                                 | 3            | 3              | 3                 | 3         | 3               | 2       | ;                   | 3   | 3     |  |
| CO4                             | 3         | 3                                                                                           | 3                    | 3                                 | 3            | 3              | 3                 | 3         | 3               | 2       |                     | 3   | 3     |  |
| CO5                             | 3         | 3                                                                                           | 3                    | 3                                 | 3            | 3              | 3                 | 3         | 3               | 2       |                     | 3   | 3     |  |
| COs/PSOs                        |           | PS                                                                                          | 01                   | 1                                 |              | PS             | 02                |           |                 |         | PSO3                | I   |       |  |
| C01                             |           |                                                                                             | 2                    |                                   |              |                | 2                 |           |                 |         | 3                   |     |       |  |
| CO2                             |           |                                                                                             |                      |                                   |              |                | 3                 |           |                 |         | 3                   |     |       |  |
| CO3                             |           |                                                                                             |                      |                                   |              |                | 3                 |           |                 |         | 3                   |     |       |  |
| CO4                             |           |                                                                                             |                      |                                   |              |                | 3                 |           |                 |         | 3                   |     |       |  |
| CO5                             |           |                                                                                             | 3                    |                                   |              |                | 3                 |           |                 |         | 3                   |     |       |  |
| 3/2/1 Indicates S               | trength o | -                                                                                           |                      | igh. 2-M                          | edium.       |                | -                 |           |                 |         | •                   |     |       |  |
|                                 |           |                                                                                             | . ,                  | 3,==                              | ,            |                |                   |           |                 |         |                     |     |       |  |
| Category                        |           | Basic Sciences                                                                              | Engineering Sciences | Humanities and Social<br>Sciences | Program Core | Open Electives | Interdisciplinary |           | Skill Component |         | Practical / Project |     |       |  |
| Ca                              |           |                                                                                             |                      |                                   |              |                |                   |           |                 |         |                     |     |       |  |

## UNIT I POWER SEMICONDUCTOR DEVICES

Instrumentation Engineering

**Course Name: POWER ELECTRONICS** 

Prerequisite: Basic Electrical, Electronics and

Power semiconductor devices Overview: Characteristics of power Structure, operation, Static characteristics and switching characteristics (Turn on and Turn off) of SCR, TRIAC, BJT, MOSFET and IGBT-Two transistor model of SCR - Series and Parallel operation of SCR - Turn on circuits for SCR - Different techniques of commutation-Protection of Thyristors against over voltage, over current, dv/dt and di/dt

#### UNIT II PHASE CONTROLLED CONVERTERS

Single phase and three phase half controlled and fully controlled rectifiers with R, RL and RLE loads–Waveforms of load voltage and line current – Inverter operation of fully controlled converter – harmonic factor, power factor, ripple factor, distortion factor – operation with freewheeling diode – effect of source inductance –dual converter.

### UNIT III **INVERTERS**

Course Code:

**EBEE22009** 

Voltage and current source inverters – Single phase and three phase inverters (both 120° mode and 180° mode) inverters - PWM techniques: Sinusoidal PWM, modified sinusoidal PWM -multiple PWM - Resonant series inverter -current Source Inverter – UPS

### **UNIT IV** DC TO DC CONVERTERS

Step-down and step-up chopper- control strategy-Introduction to types of choppers-A, B, C, D and E-switched mode regulators-Buck, Boost and Buck-Boost regulator, Introduction to Resonant converters, Applications-Battery operated vehicles.

### UNIT V AC TO AC CONVERTERS

Single phase and Three Phase AC voltage controllers- Control strategy- Power Factor control-Multi stage sequence control- single phase and three phase cyclo converters- Introduction to Matrix converters, Applications-Welding.

# **TEXT BOOKS**

- 1. Rashid, M.H. (2017) Power Electronics-Circuits Devices and Applications. 4<sup>th</sup> Ed. Prentice Hall of India.
- 2. Bimbhra, P.S. (2018) Power Electronics. 4th Ed. Khanna Publishers.

# **REFERENCE BOOKS**

- 1. Singh, M.D. Kanchandani, (2002) Power Electronics. New Delhi: Tata McGraw Hill & Hill publication Company Ltd.
- 2. Dubey, G.K. Doradia, S.R. Joshi, A. Sinha, R.M. (1986) Thyristorised Power Controllers. Wiley Eastern Limited.
- 3. Lander, W. (1993) Power Electronics. 3<sup>rd</sup> Ed. McGrawHill and Company.

Q

9

9

## 9

# **Total No. of Periods: 45**

9

L

3

Ty/Lb/

**ETL/IE** 

Ty

T/SLr P/R

0/0

0/0

С





| Course Code:<br>EBEE22ET5       | Course Na<br>MICROC                                        |                                                                             |                   |                                   |                        | OCESS                | SOR      |           |                | y/ Lb/<br>FL/IE   | L  | T/SI            | r P/F  | R C                 |  |
|---------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------|-----------------------------------|------------------------|----------------------|----------|-----------|----------------|-------------------|----|-----------------|--------|---------------------|--|
|                                 | Prerequis                                                  |                                                                             |                   |                                   | Electroni              | cs and               |          |           | ]              | ETL               | 2  | 0/0             | 2/0    | ) 3                 |  |
|                                 | Instrume                                                   |                                                                             | 0                 | 0                                 |                        |                      |          | 1         |                | 1.                |    |                 |        |                     |  |
| L : Lecture T :<br>T/L/ETL:Theo |                                                            |                                                                             |                   |                                   |                        | ect R : I            | Resear   | rch       | C : Cre        | dits              |    |                 |        |                     |  |
| OBJECTIVES                      |                                                            | beuueu                                                                      | i neor y          |                                   |                        |                      |          |           |                |                   |    |                 |        |                     |  |
| • To<br>• Int<br>• To           | o understand<br>terfacing of<br>o know the<br>o understand | f periphe<br>program                                                        | ral devi<br>Assem | ces usir<br>bly lang              | ng 8085.<br>guage in I | Microco              | ontrol   | ler       | essor          |                   |    |                 |        |                     |  |
|                                 | o make prog                                                |                                                                             | ng KEI            | L softwa                          | are.                   | _                    |          |           |                |                   |    |                 |        |                     |  |
| COURSEOUT                       |                                                            |                                                                             |                   |                                   |                        |                      |          |           |                |                   |    |                 |        |                     |  |
| ^                               | ý                                                          | g this course were able to<br>imate Simple arithmetic operations using 8085 |                   |                                   |                        |                      |          |           |                |                   |    |                 |        |                     |  |
| CO1                             | Estimate S                                                 | Simple a                                                                    | rithmet           | ic opera                          |                        |                      |          |           |                |                   |    |                 |        |                     |  |
| CO2                             | Employ th                                                  | ploy the concepts of microprocessor 8085 with Interfacing devices           |                   |                                   |                        |                      |          |           |                |                   |    |                 |        |                     |  |
| CO3                             | Explain S                                                  | lain Simple arithmetic operations using 8051 microcontrollers               |                   |                                   |                        |                      |          |           |                |                   |    |                 |        |                     |  |
| CO4                             | Categoriz                                                  | egorize various applications of microprocessor                              |                   |                                   |                        |                      |          |           |                |                   |    |                 |        |                     |  |
| CO5                             | Organize                                                   | Drganize the concept of ARM processors & its interfacings                   |                   |                                   |                        |                      |          |           |                |                   |    |                 |        |                     |  |
| Mapping of C                    | ourse Out                                                  | come wi                                                                     | th Prog           | gram O                            | utcome (               | (POs)                |          |           |                |                   |    |                 |        |                     |  |
| COs/POs                         | PO1                                                        | PO2                                                                         | PO3               | PO4                               | PO5                    | PO6                  | PO       | <b>D7</b> | PO8            | PO9               | PC | 010 I           | PO11   | PO12                |  |
| CO1                             | 3                                                          | 2                                                                           | 3                 | 3                                 | 2                      | 2                    | 3        |           | 3              | 3                 | 1  |                 | 3      | 3                   |  |
| CO2                             | 3                                                          | 2                                                                           | 3                 | 2                                 | 3                      | 3                    | 3        |           | 3              | 3                 | 2  |                 | 3      | 3                   |  |
| CO3                             | 3                                                          | 2                                                                           | 2                 | 2                                 | 3                      | 3                    | 3        |           | 3              | 3                 | 2  |                 | 3      | 3                   |  |
| CO4<br>CO5                      | <u>3</u><br>3                                              | 3<br>3                                                                      | 3                 | 3<br>3                            | 3                      | 3                    | 3        |           | 3              | <u>3</u><br>3     | 2  |                 | 3<br>3 | <u>3</u><br>3       |  |
|                                 | 3                                                          | -                                                                           |                   | 3                                 | 3 3 3 3<br>PSO2        |                      |          |           |                | 3                 |    |                 | -      | 3                   |  |
| COs /PSOs                       |                                                            | PSO<br>2                                                                    | 1                 |                                   |                        |                      |          |           |                |                   |    | PSO3            | )      |                     |  |
| CO1<br>CO2                      |                                                            | $\frac{3}{2}$                                                               |                   |                                   |                        |                      | 2<br>3   |           |                |                   |    | $\frac{2}{3}$   |        |                     |  |
| CO2<br>CO3                      |                                                            | 2                                                                           |                   |                                   |                        |                      | <u>3</u> |           |                |                   |    | $\frac{3}{3}$   |        |                     |  |
| CO4                             |                                                            | 3                                                                           |                   |                                   |                        |                      | <u>3</u> |           |                | 1                 |    | 3               |        |                     |  |
| CO5                             |                                                            | 3                                                                           |                   |                                   | 1                      |                      | 3        |           |                |                   |    | 3               |        |                     |  |
| 3/2/1 Indicates S               | Strength of                                                |                                                                             | ion, 3–1          | High, 2-                          | Medium                 | , 1-Low              | 7        |           |                |                   |    |                 |        |                     |  |
| Category                        | Basic Sciences                                             | Engineering Sciences                                                        | -                 | Humanities and Social<br>Sciences | ✓ Program Core         | Decornans El cotivos |          |           | Open Electives | Interdisciplinary |    | Skill Component |        | Practical / Project |  |
| Cate                            |                                                            |                                                                             |                   |                                   |                        |                      |          |           |                |                   |    |                 |        |                     |  |



# UNIT V INTRODUCTION TO ARM PROCESSORS

Basic ARM architecture – ARM assembly language program – ARM organization and implementation– The ARM

# LAB COMPONENTS:

- 1. Multi precision addition / subtraction / multiplication / division.
- 2. Programming with control instructions
- 3. Increment / Decrement, Ascending / Descending order, Maximum / minimum of numbers.
- 4. A/D Interfacing, D/A Interfacing, Traffic light controller Step motor and key board interfacing.
- 5. Simple Arithmetic Operations using ARM processor
- 6. Programming with control instructions using ARM processor (ARM926 kit)
- 7. Seven segment display interfacing using ARM processors. (ARM926 kit)
- 8. LED display Interfacing using ARM processors. (ARM926 kit)

# UNIT I 8085 PROCESSOR

Functional block diagram - Signals - Memory interfacing - I/O ports and data transfer concepts - Timing Diagram -Interrupt structure Instruction format and addressing modes – Assembly language format – Data transfer, data manipulation & control instructions, subroutine and stack

# UNIT II PERIPHERAL INTERFACING

Study of Architecture and programming of ICs: 8255 PPI, 8259 PIC, 8251 USART, 8279 Key board display controller and 8253 Timer/ Counter - Interfacing with 8085 - A/D and D/A converter interfacing

# **UNIT III MICRO CONTROLLER 8051**

Functional block diagram - Instruction format and addressing modes – Interrupt structure – Timer –I/O ports – Serial communication. Data Transfer, Manipulation, Control & I/O instructions

# **UNIT IV MICRO CONTROLLER PROGRAMMING & APPLICATION**

Simple programming exercises: key board and display interface- interfacing an LCD- ADC and DAC interfacing -Sensors - Closed loop control of servo motor- interfacing a stepper motor

instruction set - The thumb instruction set - ARM CPU cores



| Course           | Course Name: MICROPROCESSOR,                    | Ty/Lb/ | L | T/SLr | P/R | С |
|------------------|-------------------------------------------------|--------|---|-------|-----|---|
| Code:            | MICROCONTROLLER AND ARM PROCESSOR               | ETL/IE |   |       |     |   |
| <b>EBEE22ET5</b> |                                                 |        |   |       |     |   |
|                  | Prerequisite: Basic Electrical, Electronics and | ETL    | 2 | 0/0   | 2/0 | 3 |
|                  | Instrumentation Engineering                     |        |   |       |     |   |

(An ISO 21001 : 2018 Certified Institution)

al, Chennai-95. Tai

Perivar E.V.R. High B

TITUTE

# 9

Q

9

15

**Total No. of Periods: 60** 

51

# 0



# **TEXT BOOKS**

- Gaonkar, R.S (2002) Microprocessor Architecture Programming and Application. New Delhi: Wiley Eastern Ltd
- Muhammad Ali Mazidi & Janice Gilli Mazidi, (2003) The 8051 Micro Controller and Embedded Systems. 5<sup>th</sup> Indian reprint, Pearson Education
- 3. Steve Furber, (2000) ARM System –On –Chip architecture. Addison Wesley

# **REFERENCE BOOKS**

- 1. William Kleitz, (2006) Microprocessor and Micro Controller Fundamental of 8085 and 8051 Hardware and Software. Pearson Education
- 2. Daniel Tabak, Advanced Daniel Microprocessors. McGraw Hill Inc



| Course Code:<br>EBEE22L05 | Cour      | se Name        | e: POWE              | ER ELEC                           | TRON         | CS LA         | В                 |                | Ty/ Lb/<br>ETL/IE | L      | T/SLr           | P/R     | С                   |
|---------------------------|-----------|----------------|----------------------|-----------------------------------|--------------|---------------|-------------------|----------------|-------------------|--------|-----------------|---------|---------------------|
|                           | Prere     | equisite:      | Power E              | Electronic                        | es           |               |                   |                | Lb                | 0      | 0/0             | 3/0     | 1                   |
| L: Lecture T: Tu          | itorial S | SLr: Sup       | ervised L            | earning P                         | P: Projec    | t R: Res      | earch C:          | Credits        | T/L/ETL           | :      |                 |         |                     |
| Theory/Lab/Em             | bedded    | Theory         | and Lab              |                                   |              |               |                   |                |                   |        |                 |         |                     |
| OBJECTIVES                |           |                |                      |                                   |              |               |                   |                |                   |        |                 |         |                     |
|                           |           |                |                      |                                   |              |               | i-conduc          | ctor devi      | ices and th       | neir s | witching        |         |                     |
|                           |           |                |                      | riggering                         |              |               |                   |                |                   | . 11   | 1 D             |         |                     |
| • To ur<br>Inver          |           | na the op      | eration, o           | characteri                        | stics and    | i perior      | nance pa          | arameter       | rs of contr       | onec   | Rectifie        | rs and  |                     |
|                           |           | nd the te      | chniques             | to control                        | l the sne    | ed of B       | ushless           | DC Mot         | or and SR         | Mo     | tor             |         |                     |
|                           |           |                | -                    | of AC Vol                         | -            |               |                   |                | or and br         |        | 101             |         |                     |
|                           |           |                |                      |                                   |              |               |                   | l Electrio     | c drives in       | Pow    | ver Syste       | m       |                     |
| COURSEOUT                 |           |                | 1                    |                                   |              |               |                   |                |                   |        |                 |         |                     |
| Students comple           |           |                | were ab              | le to                             |              |               |                   |                |                   |        |                 |         |                     |
| CO1                       | Recal     | l the ope      | ration of            | power ele                         | ectronics    | s device      | s and ga          | in know        | ledge of th       | he co  | omparativ       | e study | y of                |
|                           |           |                |                      | on their s                        |              |               |                   |                |                   |        |                 |         |                     |
| CO2                       |           |                | -                    | on of AC                          |              |               |                   |                |                   |        |                 |         |                     |
| CO3                       |           |                |                      |                                   |              |               |                   |                | r and SR          |        |                 |         |                     |
| CO4                       |           |                |                      |                                   |              |               |                   |                | of controll       |        |                 | and Inv | verters             |
| CO5                       | Trans     | mission        | System               |                                   |              |               | nd incorp         | orate in       | designing         | g the  | HVDC            |         |                     |
| Mapping of Co             |           |                |                      |                                   |              |               |                   |                |                   |        |                 |         |                     |
| COs/POs                   | PO1       | PO2            | PO3                  | PO4                               | PO5          | PO6           | PO7               | PO8            | PO9               |        |                 |         | PO12                |
| CO1<br>CO2                | 3         | $\frac{2}{2}$  | 3                    | с<br>2                            | 3<br>2       | <u>3</u><br>3 | 3<br>2            | 2<br>2         | 3                 |        |                 | 2       | <u>3</u><br>3       |
| <u>C02</u><br>C03         | 3         | $\frac{2}{2}$  | 2                    | 2                                 | 3            | 2             | 2                 | 3              | 2                 |        |                 | 2       | $\frac{3}{2}$       |
| <u> </u>                  | 3         | $\frac{2}{2}$  | 2                    | 2                                 | 3            | 3             | 3                 | 3              | 2                 |        |                 | 2       | $\frac{2}{3}$       |
| <u>CO5</u>                | 3         | 3              | 3                    | 3                                 | 3            | 2             | 3                 | 2              | 2                 |        | 2 2             |         | 3                   |
| COs/PSOs                  | - 1       |                | <b>SO1</b>           | -                                 | -            |               | <b>O2</b>         |                |                   |        | PSO3            |         |                     |
| CO1                       |           |                | 3                    |                                   |              |               | 2                 |                |                   |        | 3               |         |                     |
| CO2                       |           |                | 2                    |                                   |              |               | 3                 |                |                   |        | 2               |         |                     |
| CO3                       |           |                | 2                    |                                   |              |               | 3                 |                |                   |        | 3               |         |                     |
| CO4                       |           |                | 3                    |                                   |              |               | 2                 |                |                   |        | 2               |         |                     |
| CO5                       |           |                | 2                    |                                   |              |               | 3                 |                |                   |        | 3               |         |                     |
| 3/2/1 Indicates S         | trength   | of Corr        | elation, 3           | -H1gh, 2-                         | Medium       | n, 1-Lov      | v                 |                |                   |        |                 |         |                     |
|                           |           |                | s                    | al                                |              |               |                   |                |                   |        |                 |         |                     |
|                           |           |                | nce                  | oci                               |              |               | s                 |                |                   |        |                 |         |                     |
|                           |           | s              | cie                  | S pi                              |              |               | ive               | ş              | ury               |        | ent             |         | Jeci                |
|                           |           | nce            | ο<br>S               | s ar                              | Ore          |               | lect              | live           | lina              |        | uoc             |         | O'LO                |
|                           |           | Basic Sciences | Engineering Sciences | Humanities and Social<br>Sciences | Prooram Core |               | Program Electives | Open Electives | Interdisciplinary |        | Skill Component |         | Practical / Project |
| $\Sigma$                  |           | c S            | ine                  | nce                               | ารม          |               | gran              | nΕ             | sib:              |        | Ŭ               | .       | tic                 |
| 108                       |           | asi            | igni                 | Humanit<br>Sciences               | μŪα          | 201           | rog               | )pei           | nter              |        | kill            |         | rac                 |
|                           | 1         | LL I           | ш                    |                                   |              |               |                   | $\cup$         |                   |        | $\sim$          | 1 (     | 1                   |
| Category                  |           |                |                      |                                   |              |               |                   |                | · · · ·           |        | _               |         |                     |



| Course Code:<br>EBEE22L05 | Course Name: POWER ELECTRONICS LAB | Ty/ Lb/<br>ETL/IE | L | T/SLr | P/R | С |
|---------------------------|------------------------------------|-------------------|---|-------|-----|---|
|                           | Prerequisite: Power Electronics    | Lb                | 0 | 0/0   | 3/0 | 1 |

# LIST OF EXPERIMENTS

- 1. Characteristics of SCR, MOSFET, IGBT and TRIAC
- 2. Gate Pulse Generation using R, RC and UJT
- 3. Single phase half controlled and fully controlled bridge converter with R load and RL loads
- 4. Single phase AC voltage controller using TRIAC, DIAC with RANDRL loads
- 5. IGBT based Chopper
- 6. IGBT Based PWM Inverter
- 7. Single phase parallel inverter
- 8. Single phase Series inverter
- 9. Forced commutation circuits (Class A, Class B, Class C, Class D & Class E).
- 10. Single phase cyclo-converter with R and RL loads
- 11. Step down and step up MOSFET based choppers
- 12. Simulation of Single Phase and Three phase cycloconverters.



| Course Code:<br>EBEE22010 | Course         | Name: Po                                                                                                                                             | OWER S           | YSTEN                             | I ANAL        | YSIS              |         |                | Ty/ Lb/<br>TL/IE  | L     | T/SLr           | P/R     | C                   |  |  |
|---------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------|---------------|-------------------|---------|----------------|-------------------|-------|-----------------|---------|---------------------|--|--|
|                           | Prerequ        | isite: Ger                                                                                                                                           | neration,        | Transn                            | nission a     | nd Dist           | ributio | n              | Ту                | 3     | 1/0             | 0/0     | 4                   |  |  |
| L : Lecture T : T         |                |                                                                                                                                                      |                  |                                   | Project       | R : Rese          | arch C  | : Credits      | 5                 |       |                 |         | 4                   |  |  |
| T/L/ETL:Theory            | y/Lab/Eml      | bedded Th                                                                                                                                            | eory and         | Lab                               |               |                   |         |                |                   |       |                 |         |                     |  |  |
| OBJECTIVES                |                |                                                                                                                                                      |                  |                                   |               |                   |         | ~              |                   |       |                 |         |                     |  |  |
|                           | attain basi    |                                                                                                                                                      |                  |                                   |               | -                 | -       | er flow a      | nalysis           |       |                 |         |                     |  |  |
|                           | nodel and      | •                                                                                                                                                    |                  |                                   | -             | •                 |         |                |                   |       |                 |         |                     |  |  |
|                           | nodel and      |                                                                                                                                                      |                  |                                   |               |                   |         |                |                   |       |                 |         |                     |  |  |
|                           | model the      | · ·                                                                                                                                                  |                  | •                                 | -             | •                 |         |                |                   | c     | а               |         | c                   |  |  |
|                           | earn powe      |                                                                                                                                                      |                  | ased on                           | nodal ad      | mittance          | and in  | pedance        | e matrice         | s for | the ana         | lysis ( | )İ                  |  |  |
|                           | e –scale p     |                                                                                                                                                      | orks.            |                                   |               |                   |         |                |                   |       |                 |         |                     |  |  |
| COURSEOUT                 |                |                                                                                                                                                      |                  |                                   |               |                   |         |                |                   |       |                 |         |                     |  |  |
|                           |                | this course were able to                                                                                                                             |                  |                                   |               |                   |         |                |                   |       |                 |         |                     |  |  |
| CO1                       |                | comprehend and analyze the power system analysis in steady state operation                                                                           |                  |                                   |               |                   |         |                |                   |       |                 |         |                     |  |  |
| CO2                       | systems        | nodel generators, transformers, lines and cables in the positive, negative and zero sequence                                                         |                  |                                   |               |                   |         |                |                   |       |                 |         |                     |  |  |
|                           | ~              | analyze symmetrical and asymmetrical faults                                                                                                          |                  |                                   |               |                   |         |                |                   |       |                 |         |                     |  |  |
| CO4                       |                |                                                                                                                                                      |                  |                                   |               |                   | mal po  | wer flow       | v.                |       |                 |         |                     |  |  |
|                           |                | establish and solve equations for AC, DC and optimal power flow.<br>use power system models based on nodal admittance and impedance matrices for the |                  |                                   |               |                   |         |                |                   |       |                 |         |                     |  |  |
| CO5                       |                | nalysis of large –scale power networks.                                                                                                              |                  |                                   |               |                   |         |                |                   |       |                 |         |                     |  |  |
| Mapping of Co             |                |                                                                                                                                                      |                  |                                   |               | s)                |         |                |                   |       |                 |         |                     |  |  |
| COs/POs                   | PO1            | PO2                                                                                                                                                  | PO3              | PO4                               | PO5           | PO6               | PO7     | PO8            | <b>PO9</b>        | PO    | 10 PC           | )11     | PO12                |  |  |
| CO1                       | 3              | 3                                                                                                                                                    | 3                | 3                                 | 3             | 2                 | 3       | 3              | 3                 | 3     | 3               | 3       | 2                   |  |  |
| CO2                       | 2              | 3                                                                                                                                                    | 3                | 2                                 | 1             | 3                 | 2       | 3              | 3                 | 2     | 1               |         | 3                   |  |  |
| CO3                       | 3              | 3                                                                                                                                                    | 2                | 3                                 | 2             | 2                 | 3       | 3              | 2                 | 3     | 2               |         | 2                   |  |  |
| CO4                       | 2              | 2                                                                                                                                                    | 2                | 2                                 | 3             | 3                 | 2       | 2              | 2                 | 2     | 3               |         | 3                   |  |  |
| CO5                       | 3              | 3                                                                                                                                                    | 2                | 1                                 | 2             | 2                 | 3       | 3              | 2                 | 1     | 2               |         | 2                   |  |  |
| COs /PSOs                 |                | PSC                                                                                                                                                  | )1               |                                   |               | PS                |         |                |                   | ]     | PSO3            |         |                     |  |  |
| C01                       |                | 3                                                                                                                                                    |                  |                                   |               | 2                 |         |                |                   |       | 3               |         |                     |  |  |
| CO2                       |                | 1                                                                                                                                                    |                  |                                   | -             | 3                 |         |                |                   |       | 2               |         |                     |  |  |
| CO3                       |                | 2                                                                                                                                                    |                  |                                   |               | 2                 |         |                |                   |       | 3               |         |                     |  |  |
| CO4                       |                | 3                                                                                                                                                    |                  |                                   |               | 3                 |         |                |                   |       | 2               |         |                     |  |  |
| CO5<br>3/2/1 Indicates S  |                | 2                                                                                                                                                    |                  | 1. 0 Ma                           | dinan 1       | 2                 |         |                |                   |       | 3               |         |                     |  |  |
| 5/2/1 mulcales S          | trength of     | Correlatio                                                                                                                                           | л, э–пі <u>е</u> | gn, 2-ivie                        | aium, 1-      | LOW               |         |                |                   |       |                 |         |                     |  |  |
|                           |                |                                                                                                                                                      | -                | TI II                             |               |                   |         |                |                   |       |                 |         |                     |  |  |
|                           |                |                                                                                                                                                      | . I              | OCI:                              |               |                   |         |                |                   |       |                 |         |                     |  |  |
|                           |                |                                                                                                                                                      |                  | ň                                 |               | ves               |         |                | y                 |       | nt              | 10      | loe                 |  |  |
|                           | ces            | 2                                                                                                                                                    |                  | anc                               | re            | scti              |         | ves            | nar               |       | one             |         | loj                 |  |  |
|                           | enc            |                                                                                                                                                      | â .              | les                               | Co            | Ele               |         | scti-          | ipli              |       | npc             |         | - L                 |  |  |
|                           | Sci            |                                                                                                                                                      |                  | ces                               | am            | m                 |         | Ele            | isci              |       | Cor             |         | Саг                 |  |  |
| ory                       | Basic Sciences |                                                                                                                                                      |                  | Humanities and Social<br>Sciences | ngr,          | Program Electives | )       | Open Electives | Interdisciplinary |       | Skill Component |         | rractical / rroject |  |  |
| Category                  | Ba             | F                                                                                                                                                    |                  | Hu<br>Sci                         | ∠Program Core | Prc               |         | Op             | Int               |       | Sk              |         | 217                 |  |  |
| Ca                        |                |                                                                                                                                                      |                  |                                   |               |                   |         |                |                   |       |                 |         |                     |  |  |
|                           |                |                                                                                                                                                      |                  |                                   |               |                   |         |                |                   |       |                 |         |                     |  |  |

# (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Madurayoval. Chemai: 95. Tamila

University with Graded Autonon

| Course Code:<br>EBEE22010 | Course Name: POWER SYSTEM ANALYSIS                     | Ty/ Lb/<br>ETL/IE | L | T/SLr | P/R | С |
|---------------------------|--------------------------------------------------------|-------------------|---|-------|-----|---|
|                           | Prerequisite: Generation Transmission and Distribution | Ту                | 3 | 1/0   | 0/0 | 4 |

#### UNIT I **POWER SYSTEM**

Need for system planning and operational studies – Power scenario in India – Power system – p.u. Single line components – Representation – diagram \_ per unit quantities impedance p.u. diagram \_ reactance diagram \_ Network graph, Bus incidence matrix, Primitive parameters, Bus admittance matrix from primitive parameters - Representation of - nominal transformer - Formation of bus admittance matrix of large power network.

#### POWER FLOW ANALYSIS UNIT II

Bus classification – Formulation of Power Flow problem in polar coordinates - Power flow solution using Gauss Seidel method – Handling of Voltage controlled buses - Power Flow Solution by Newton Raphson method.

#### UNIT III SYMMETRICAL FAULT ANALYSIS

Assumptions in short circuit analysis – Symmetrical short circuit analysis using Thevenin's theorem – Bus Impedance matrix building algorithm (without mutual coupling) – Symmetrical fault analysis through bus impedance matrix - Post fault bus voltages - Fault level - Current limiting reactors.

#### UNIT IV UNSYMMETRICAL FAULT ANALYSIS

Symmetrical components Sequence impedances Sequence networks Analysis of — \_ unsymmetrical faults at generator terminals: LG, L and LG – unsymmetrical fault occurring at any point in a power system – computation of post fault currents in symmetrical component and phasor domains.

#### UNIT V STABILITY ANALYSIS

Classification of power system stability - Rotor angle stability - Swing equation - Swing curve – Power-Angle equation – Equal area criterion – Critical clearing angle and time – Classical step-by-step solution of the swing equation – modified Euler method.

# **TEXT BOOKS**

- 1. Hadi Saadat (2007) Power system analysis. 11th Reprint. Tata McGraw Hill Publishing Company, New Delhi,
- 2. P. Kundur (1994) Power System Stability and Control. Tata McGraw Hill Publishing Company, New Delhi,

# **REFERENCE BOOKS**

- 1. Kothari, D.P. and Nagrath, I. J. (2003) Modern Power System Analysis. 3rd. Tata Mc Graw Hill Publishing Company Limited
- 2. M.A. Pai, (2003) Computer Techniques in power system Analysis. Tata McGraw Hill publishing company, New Delhi.
- 3. C.A. Gross, (2011) Power System Analysis," Wiley India



12

12

# 12

Total No. of Periods :60



adu. India

12



| Course Code:<br>EBEE22012 | Course<br>VOLTA           |                                                                                                                       | LECTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CIC TRA                           | NSIENT         | <b>FS AND</b>     | HIGH          |                | Ty/ Lb/<br>ETL/IE | L             | T/SLr           | P/R | С                   |
|---------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------|-------------------|---------------|----------------|-------------------|---------------|-----------------|-----|---------------------|
|                           | Prerequ                   | isite: Ge                                                                                                             | neratior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n, Trans                          | mission a      | and Dist          | ributio       | n,             | Ту                | 3             | 0/0             | 0/0 | 3                   |
|                           |                           | Electroni                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                |                   |               |                |                   |               |                 |     |                     |
| L : Lecture T : T         |                           | -                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                 | P: Project     | R : Rese          | earch C       | : Credit       | S                 |               |                 |     |                     |
| T/L/ETL:Theory            | /Lab/Emt                  | bedded T                                                                                                              | heory an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d Lab                             |                |                   |               |                |                   |               |                 |     |                     |
| OBJECTIVES                |                           | 1 1                                                                                                                   | 1 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                 | 1. 1           |                   | <b>1</b> 4    |                |                   |               |                 |     |                     |
|                           | ttain basi                |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                |                   |               |                | n                 |               |                 |     |                     |
|                           | plot load d               |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                |                   | U             |                |                   |               |                 |     |                     |
|                           | mpart kno                 | •                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                 |                | •                 |               |                |                   |               |                 |     |                     |
|                           | study the e<br>know the i |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                |                   |               |                |                   | Faui          | amont           |     |                     |
| COURSEOUT                 |                           |                                                                                                                       | e of Sys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   | intoring a     |                   | ei Quali      | ty Meas        | urement           | Equi          | Jinein          |     |                     |
| Students comple           |                           |                                                                                                                       | re able t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                 |                |                   |               |                |                   |               |                 |     |                     |
| CO1                       |                           |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | lity and r     | ower Sy           | vstem or      | peration       |                   |               |                 |     |                     |
| C01<br>C02                |                           | cquire knowledge on Power Quality and power System operation                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                |                   |               |                |                   |               |                 |     |                     |
| C02                       |                           | nderstanding of load duration curve and regulation needs                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                |                   |               |                |                   |               |                 |     |                     |
|                           |                           | miliar to Frequency control and Voltage Control<br>nowledge on economic operation of power system and Unit commitment |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                |                   |               |                |                   |               |                 |     |                     |
| CO4                       |                           | -                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                 | -              | -                 |               |                |                   |               |                 |     |                     |
| CO5                       | Equipme                   | ent                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                 | tem Mon        | -                 | nd Powe       | er Qualı       | ty Measu          | ireme         | ent             |     |                     |
| Mapping of Co             |                           |                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                |                   |               |                |                   |               | 10 20           |     |                     |
| COs/POs                   | PO1                       | PO2                                                                                                                   | PO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PO4                               | PO5            | PO6               | PO7           | PO8            | PO9               | <u>PO</u>     |                 |     | PO12                |
| CO1<br>CO2                | 3<br>2                    | <u>3</u><br>3                                                                                                         | 3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3<br>2                            | <u>3</u><br>1  | 2<br>3            | 3<br>2        | 3<br>3         | 3<br>3            | 3             | 3               |     | 2<br>3              |
| CO2<br>CO3                | <u>2</u><br>3             | 3                                                                                                                     | $\frac{3}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{2}{3}$                     | 2              | $\frac{3}{2}$     | $\frac{2}{3}$ | $\frac{3}{3}$  | 2                 | $\frac{2}{3}$ |                 |     | $\frac{3}{2}$       |
| CO3                       | 2                         | 2                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                 | 3              | $\frac{2}{3}$     | 2             | 2              | 2                 | $\frac{3}{2}$ | $\frac{2}{3}$   |     | $\frac{2}{3}$       |
| C04                       | 3                         | 3                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                 | 2              | 2                 | 3             | 3              | 2                 | 1             | 2               |     | $\frac{3}{2}$       |
| COs /PSOs                 | 5                         | <br>PSC                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                 | 4              | PSC               | -             | 5              | 4                 |               | PSO3            |     | 4                   |
| CO3/1303                  |                           | 3                                                                                                                     | /1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                | 2                 |               |                |                   |               | 3               |     |                     |
| CO2                       |                           | 1                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                | 3                 |               |                |                   |               | 2               |     |                     |
| CO3                       |                           | 2                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                | 2                 |               |                |                   |               | 3               |     |                     |
| CO4                       |                           | 3                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                | 3                 |               |                |                   |               | 2               |     |                     |
| CO5                       |                           | 2                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                | 2                 |               |                |                   |               | 3               |     |                     |
| 3/2/1 Indicates S         | trength of                | Correlati                                                                                                             | on, 3–H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | igh, 2-M                          | ledium, 1      | -Low              |               |                |                   |               |                 |     |                     |
|                           |                           |                                                                                                                       | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ial                               |                |                   |               |                |                   |               |                 |     |                     |
|                           |                           |                                                                                                                       | Engineering Sciences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Humanities and Social<br>Sciences |                | e.                |               |                |                   |               |                 |     | ÷                   |
|                           | s                         |                                                                                                                       | cie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | p<br>D                            |                | ive               |               | $\mathbf{s}$   | цу                |               | ent             |     | Jec                 |
|                           | JCe                       |                                                                                                                       | S<br>ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s ar                              | ore            | PCI               |               | ive            | lina              |               | uou             | (   | 0<br>0<br>0         |
|                           | Basic Sciences            |                                                                                                                       | line in the second seco | s s                               | A Program Core | Program Flectives |               | Open Electives | Interdisciplinary |               | Skill Component |     | Practical / Project |
|                           | Š                         |                                                                                                                       | nee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ani                               | ran            | ran               |               | ΠE             | disc              |               | ũ               |     | nca                 |
| ory                       | asic                      |                                                                                                                       | ngı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Humaniti<br>Sciences              | 10<br>00       | ωŪ,               | a             | per            | lter              |               | kill            |     | ract                |
| Category                  | <u> </u>                  |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                |                   |               |                |                   |               |                 |     |                     |
| Ca                        |                           |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | N              |                   |               |                |                   |               |                 |     |                     |

# **TEXT BOOKS**

- 1. Allan Greenwood (1991) Electrical Transients in Power Systems. 2<sup>nd</sup> Ed. Wiley Inter Science, New York.
- 2. C.S. Indulkar, D.P. Kothari, K. Ramalingam (2010) Power System Transients A statistical approach. 2<sup>nd</sup> Ed. PHI Learning Private Limited, Second Edition.
- 3. M.S. Naidu and V. Kamaraju (2013) High Voltage Engineering. 5th Ed. McGraw Hill.

# **REFERENCE BOOKS**

- 1. Y. Hase (2012) Handbook of Power System Engineering, Wiley India, 2012.
- 2. Akihiroametani, (2013) Power System Transient theory and applications. CRC press

| EDUCATIONAL AND RESEARCH INSTITUTE                                   | A A A A A A A A A A A A A A A A A A A |
|----------------------------------------------------------------------|---------------------------------------|
| University with Graded Autonomy Status                               |                                       |
| (An ISO 21001 : 2018 Certified Institution)                          |                                       |
| Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India. |                                       |

| Course Code:<br>EBEE22012 | Course Name: ELECTRIC TRANSIENTS AND HIGH<br>VOLTAGE                          | Ty/ Lb/<br>ETL/IE | L | T/SLr | P/R | С |
|---------------------------|-------------------------------------------------------------------------------|-------------------|---|-------|-----|---|
|                           | Prerequisite: Generation, Transmission and Distribution,<br>Power Electronics | Ту                | 3 | 0/0   | 0/0 | 3 |

#### UNIT I SWITCHING TRANSIENTS

Over voltages due to switching transients - resistance switching and the equivalent circuit for interrupting the resistor current - load switching and equivalent circuit - waveforms for transient voltage across the load and the switch - normal and abnormal switching transients. Current suppression - current chopping - effective equivalent circuit. Capacitance switching - effect of source regulation - capacitance switching with a restrike, with multiple restrikes. Illustration for multiple restriking transients - ferro resonance.

### UNIT II LIGHTNING TRANSIENTS

Review of the theories in the formation of clouds and charge formation - rate of charging of thunder clouds – mechanism of lightning discharges and characteristics of lightning strokes – model for lightning stroke - factors contributing to good line design - protection using ground wires - tower footing resistance - Interaction between lightning and power system.

## UNIT III TRANSIENTS IN INTEGRATED POWER SYSTEM

The short line and kilometric fault - distribution of voltages in a power system - Line dropping and load rejection voltage transients on closing and reclosing lines - over voltage induced by faults -switching surges on integrated system Oualitative application of EMTP for transient computation.

### UNIT IV **GENERATION OF HIGH VOLTAGES AND CURRENTS**

Generation of High Direct Current Voltages, Generation of High Alternating Voltages, Generation of Impulse Voltages, Generation of Impulse Currents, Tripping and Control of Impulse Generators.

## MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS UNIT V

High Resistance with series ammeter – Dividers, Resistance, Capacitance and Mixed dividers – Peak Voltmeter, Generating Voltmeters - Capacitance Voltage Transformers, Electrostatic Voltmeters - Sphere Gaps - High current shunts- Digital techniques in high voltage measurement.

# **Total No. of Periods :45**

9

9

# 9



| Course Code:<br>EBEE22016 | Course Nar<br>CONSERV            | ATION                |               |                                   |              |                   |               | EI             | / Lb/<br>TL/IE    | L T      | /SLr   | P/R                  | C      |
|---------------------------|----------------------------------|----------------------|---------------|-----------------------------------|--------------|-------------------|---------------|----------------|-------------------|----------|--------|----------------------|--------|
|                           | Prerequisit                      | e: Gener             | ration,       | Transn                            | nission a    | nd Dist           | ributio       | n              | Ту                | 3        | 0/0    | 0/0                  | 3      |
| L: Lecture T: Tu          | torial SLr: Su                   | ipervised            | l Learn       | ing P: P                          | roject R:    | Researc           | ch C: C       | redits T/      | L/ETL:            |          |        |                      |        |
| Theory /Lab/Em            | bedded Theo                      | ry and La            | ab            | -                                 | -            |                   |               |                |                   |          |        |                      |        |
| OBJECTIVES                |                                  |                      |               |                                   |              |                   |               |                |                   |          |        |                      |        |
|                           | study the ener                   | ••                   |               |                                   | •            |                   |               |                |                   |          |        |                      |        |
|                           | analyze the h                    | 0                    |               | U                                 | 0            |                   |               |                |                   |          |        |                      |        |
|                           | lerstand the ei<br>lerstands and | •••                  |               |                                   |              |                   |               |                |                   |          |        |                      |        |
|                           | ign the house                    | -                    | energy        | auditing                          | 5            |                   |               |                |                   |          |        |                      |        |
| COURSEOUT                 | -                                |                      |               |                                   |              |                   |               |                |                   |          |        |                      |        |
| Students comple           |                                  |                      | able to       |                                   |              |                   |               |                |                   |          |        |                      |        |
| ^                         | Recall the f                     |                      |               | f Heatir                          | ng and W     | Velding,          | Illum         | ination,       | Electric          | Drives,  | HE     | Vs and               | d      |
| CO1                       | Energy Con                       | servation            | n princi      | ples                              | 0            | 0                 |               |                |                   |          |        |                      |        |
| CO2                       | Comprehen                        |                      | +             |                                   | 0            | eating,           | Weldir        | ıg, Illum      | nination,         | Electri  | c Dr   | ives,                |        |
| ~~~                       | HEVs and E                       |                      |               |                                   |              | · ·               | <b>F1</b> · · | D :            |                   | 1 5      |        |                      |        |
| CO3                       | Analyze the                      |                      | -             | Welding                           | g, Illumii   | hation,           | Electric      | c Drives       | , HEVs            | and Er   | nergy  |                      |        |
|                           | Conservatio<br>Design and        |                      |               | chnique                           | s involve    | d in Hee          | tina an       | d Weldi        | ng Illun          | vination | Flee   | tric D               | rives  |
| CO4                       | HEVs and E                       |                      |               |                                   |              | u III I Icc       | ung an        |                | ing, mun          | mation   | , Liec |                      | 11005, |
| CO5                       | Scrutinize t                     | he archit            | tecture       | and feat                          | atures of    | various           | s Heati       | ng and         | Welding           | g, Illum | inatic | on,                  |        |
| CO5                       | Electric Driv                    | ves, HEV             | s and         | Energy                            | Conserva     | tion prin         |               |                |                   |          |        |                      |        |
| Mapping of Co             |                                  |                      | -             |                                   |              |                   |               |                | n                 |          |        |                      |        |
| COs/POs                   | PO1                              | PO2                  | PO3           | PO4                               |              | PO6               | <u>PO7</u>    | PO8            | PO9               | PO10     |        |                      | PO12   |
| CO1                       | 3                                | 2                    | 1             | 1                                 | 1            | 3                 | 2             | 2              | 1                 | 3        | 2      |                      | 1      |
| CO2<br>CO3                | 3<br>3                           | 2<br>3               | 2<br>3        | 2<br>3                            | 2<br>3       | 3<br>2            | <u>3</u><br>3 | 3              | <u>3</u><br>3     | 3<br>3   | 2      |                      | 2<br>1 |
| CO3                       | 3                                | 3                    | $\frac{3}{3}$ | 3                                 | 3            | <u>2</u><br>3     | $\frac{3}{2}$ | 3              | 3                 | 3        | 2      |                      | 1      |
| C04                       | 3                                | 3                    | 3             | 3                                 | 3            | 3                 | 3             | 3              | 3                 | 3        | 2      |                      | 2      |
| COs/PSOs                  |                                  | PSO1                 |               |                                   |              | PS                | -             |                |                   | PS       | 03     |                      |        |
| CO1                       |                                  | 3                    |               |                                   |              | 2                 |               |                |                   |          | 2      |                      |        |
| CO2                       |                                  | 3                    |               |                                   |              | 3                 | 6             |                |                   |          | 3      |                      |        |
| CO3                       |                                  | 2                    |               |                                   |              | 3                 | 6             |                |                   |          | 3      |                      |        |
| CO4                       |                                  | 3                    |               |                                   |              |                   |               |                |                   |          | 3      |                      |        |
| CO5                       | 1.00                             | 3                    | <u> </u>      |                                   |              | 3                 |               |                |                   |          | 3      |                      |        |
| 3/2/1 Indicates S         | trength of Co                    |                      | , 3–H1g       | gh, 2-Me                          | edium, I-    | Low               |               |                |                   |          |        |                      |        |
|                           |                                  | Engineering Sciences |               |                                   |              |                   |               |                |                   |          |        |                      |        |
|                           |                                  | ien                  | -             | sσ                                |              | ves               |               |                | <b>N</b>          | ţ        |        |                      | 20     |
|                           | ces                              | Š                    |               | and                               | ore          | ecti              |               | ves            | inaı              | 5        | OIIC   | i                    | []     |
|                           | ien                              | ring                 |               | ties                              | ŭ            | Ē                 |               | ecti           | ildi              |          | dım    |                      | I / I  |
| y                         | Sc                               | nee                  |               | ani<br>al S                       | ram          | am.               |               | ЫШ             | disc              | Č        | 20     | [e., i               | ורמ    |
| gor.                      | Basic Sciences                   | ngii                 |               | Humanities and<br>Social Sciences | Program Core | Program Electives | )             | Open Electives | Interdisciplinary | Ę        |        | Dractical / Drainact | art    |
| Category                  | B                                | Ē                    |               | ΞŇ                                | <u> </u>     | Pr H              |               | 0              | In                | 5        | ā –    | ģ                    | G      |
| C                         |                                  |                      |               |                                   | N            |                   |               |                |                   |          |        |                      |        |

#### **Course Code: Course Name: ENERGY UTILIZATION AND** Tv/Lb/ L T/SLr P/R **EBEE22016 CONSERVATION ETL/IE Prerequisite: Generation, Transmission and Distribution** 3 Ty 0/0

### UNIT I **HEATING AND WELDING**

Advantages and methods of electric heating, resistance ovens, induction heating, dielectric heating, the arc furnace heating of building. Electric welding, resistance and arcwelding, control devices

#### UNIT II **ILLUMINATION**

Importance of lighting – properties of good lighting scheme – laws of illumination – photometry - types of lamps – lighting calculations - basic design of illumination schemes for residential, commercial, street lighting and sports ground -energy efficiency lamps.

### UNIT III **ELECTRIC DRIVES**

Type of electric drives, choice of motor, starting and running characteristics, speed control, temperature rise, particular applications of electric drives, types of industrial loads, continuous, intermittent and variable loads, load equalization

#### **UNIT IV** INTRODUCTION TO ELECTRIC AND HYBRID VEHICLES

Configuration and performance of electrical vehicles, traction motor characteristics, tractive effort, transmission requirement and energy consumption

#### UNIT V **ENERGY CONSERVATION**

Principle of energy conservation - waste heat recovery - Heat pump – Economics of energy conservation, cogeneration, combined cycle plants, electrical energy conservation opportunities

# TEXT BOOKS

- 1. Epenshaw Taylor, (2009) Utilization of Electric Energy. 12th Impression. Universities Press.
- 2. Mehrdad, Ehsani, Yimin Gao, Sabastien E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles. CRC Press.
- 3. Wadhwa, C.L. (2003) Generation, Distribution and Utilization of Electrical Energy. New Age International Pvt. Ltd.
- 4. Gupta, B.R. (2003) Generation of Electrical Energy. NewDelhi: Eurasia Publishing House(P)Ltd.

# **REFERENCE BOOKS**

- 1. Soni Gupta, Bhatnager- Dhanapat Rai & sons A Course in Electrical Power.
- 2. Uppal, S. L. Electrical Power. Khanna Publications



# **Total No. of Periods:45**



9

9

9

9

0/0

С



| L : Lecture T : T               | Prerequ                 |                                                |                      |                                   |              | ETL/              | ΊE         |                |                   |                 |        |                        |  |
|---------------------------------|-------------------------|------------------------------------------------|----------------------|-----------------------------------|--------------|-------------------|------------|----------------|-------------------|-----------------|--------|------------------------|--|
| L : Lecture $T \cdot T$         | -                       | isite: Po                                      | wer Sys              | tem Ana                           | lysis        |                   |            | Lb             | 0                 | 0/0             | ) 3/(  | ) 1                    |  |
|                                 |                         |                                                |                      |                                   | : Project    | R : Rese          | arch C     | : Credits      | , I               |                 |        | l                      |  |
| T/L/ETL: Theory                 | /Lab/Emb                | bedded T                                       | heory ar             | nd Lab                            |              |                   |            |                |                   |                 |        |                        |  |
| OBJECTIVES                      |                         |                                                |                      |                                   |              |                   |            |                |                   |                 |        |                        |  |
|                                 | know abou               |                                                |                      |                                   |              |                   |            |                |                   |                 |        |                        |  |
|                                 | inderstand              |                                                |                      | •                                 |              |                   |            |                |                   |                 |        |                        |  |
|                                 | inderstand<br>gain know |                                                |                      | •                                 | Circuito     |                   |            |                |                   |                 |        |                        |  |
|                                 | amiliar at              |                                                |                      |                                   |              |                   | lectrica   | 1 Softwa       | re                |                 |        |                        |  |
|                                 |                         |                                                |                      | Песепте                           | ui uiives    | using L           | leetited   | I DOILWA       |                   |                 |        |                        |  |
| COURSEOUTO<br>Students complete |                         |                                                | re able t            | 0                                 |              |                   |            |                |                   |                 |        |                        |  |
| CO1                             | -                       |                                                |                      | em comp                           | onents       |                   |            |                |                   |                 |        |                        |  |
| CO2                             |                         | nduct load flow analysis using various methods |                      |                                   |              |                   |            |                |                   |                 |        |                        |  |
| CO3                             | Perform                 | the expe                                       | riment o             | n various                         | types of     | relays            |            |                |                   |                 |        |                        |  |
| CO4                             | Simulate                | e various                                      | fault ana            | alysis in t                       | he power     | system            | networ     | k              |                   |                 |        |                        |  |
| CO5                             | Analyze                 | the powe                                       | er netwo             | rk on reg                         | ular basis   | 5                 |            |                |                   |                 |        |                        |  |
| Mapping of Cou                  | urse Outo               | come wit                                       | h Progr              | am Outc                           | ome (PO      | s)                |            |                |                   |                 |        |                        |  |
| COs/POs                         | PO1                     | PO2                                            | PO3                  |                                   |              | PO6               | <b>PO7</b> | PO8            | PO9               | PO10            | PO11   | PO12                   |  |
| CO1                             | 3                       | 2                                              | 2                    | 2                                 | 3            | 3                 | 2          | 3              | 2                 | 3               | 2      | 2                      |  |
| CO2                             | 3                       | 3                                              | 3                    | 3                                 | 3            | 2                 | 3          | 3              | 2                 | 2               | 2      | 2                      |  |
| <u>CO3</u>                      | 2                       | 3                                              | 3                    | 3                                 | 2            | 3                 | 2          | 2              | 3                 | 3               | 3      | 2                      |  |
| CO4<br>CO5                      | <u>3</u><br>3           | 23                                             | 3                    | 3                                 | 3            | 2<br>3            | 3          | 3              | $\frac{2}{3}$     | 2<br>3          | 2<br>2 | $\frac{3}{2}$          |  |
| COS /PSOs                       | 3                       | - S<br>PS                                      | -                    | 3                                 | 3            | - S<br>PS         |            | <u>_</u>       | 3                 | - S<br>PS       | _      |                        |  |
| COS/1305<br>CO1                 |                         | 2                                              |                      |                                   |              | 15                |            |                |                   | 3               |        |                        |  |
| CO1<br>CO2                      |                         |                                                |                      |                                   |              | 3                 |            |                |                   | 2               |        |                        |  |
| CO3                             |                         | 3                                              |                      |                                   |              | 2                 |            |                |                   | 3               |        |                        |  |
| CO4                             |                         | 3                                              |                      |                                   |              | 3                 |            |                |                   | 2               |        |                        |  |
| CO5                             |                         | 3                                              |                      |                                   |              | 3                 | 6          |                |                   | 3               | 6      |                        |  |
| 3/2/1 Indicates St              | rength of               | Correlati                                      | ion, 3–H             | ligh, 2-M                         | edium, 1-    | Low               |            |                |                   |                 |        |                        |  |
|                                 |                         |                                                |                      | _                                 |              |                   |            |                |                   |                 |        |                        |  |
|                                 |                         |                                                | Ses                  | cial                              |              |                   |            |                |                   |                 |        |                        |  |
|                                 |                         |                                                | ienc                 | So                                |              | 'es               |            |                | >                 | It              |        | ct                     |  |
|                                 | ses                     |                                                | Sci                  | and                               | e            | ctiv              |            | ves            | nary              | ner             |        | roje                   |  |
|                                 | enc                     |                                                | gui                  | es :                              | Coi          | Ele               |            | ctiv           | pliı              | odt             | H      | $/P_1$                 |  |
|                                 | Sci                     |                                                | een                  | niti<br>Ses                       | m            | , m               |            | Ele            | isci              | Jon             |        | cal                    |  |
| ory                             | Basic Sciences          |                                                | Engineering Sciences | Humanities and Social<br>Sciences | Program Core | Program Electives | )          | Open Electives | Interdisciplinary | Skill Component |        | actio                  |  |
| Category                        | Ba                      |                                                | En                   | Hu<br>Sci                         | Prc          | Pro               |            | Op             | Int               | Ski             |        | <- Practical / Project |  |
| Ca                              |                         |                                                |                      |                                   |              |                   |            |                |                   |                 |        |                        |  |



| Course Code:<br>EBEE22L07 | Course Name: POWER SYSTEM LAB       | Ty/Lb/<br>ETL/IE | L | T/S.Lr | P/R | С |
|---------------------------|-------------------------------------|------------------|---|--------|-----|---|
|                           | Prerequisite: Power System Analysis | Lb               | 0 | 0/0    | 3/0 | 1 |

# LIST OF EXPERIMENTS

- 1. Experimentation on Performance of Over Voltage Relay.
- 2. Experimentation on Performance of Under Voltage Relay.
- 3. Experimentation on Performance of Earth Fault Relay.
- 4. Experimentation on Performance of Differential Protection of transformer.
- 5. Experimentation on Dielectric Testing of transformer oil.
- 6. Experimentation on Performance of Over Current Relay using Electromagnetic and Digital Type.
- 7. Computation of Parameters and Modeling of Transmission Lines
- 8. Formation of Bus Admittance and Impedance Matrices and Solution of Networks.
- 9. Simulation on Load Flow Analysis-I: Solution of Load Flow and Related Problems Using Gauss-Seidel Method
- 10. Simulation on Load Flow Analysis-II: Solution of Load Flow and Related Problems Using Newton-Raphson and Fast-Decoupled Methods
- 11. Simulation on Transient and Small Signal Stability Analysis: Single-Machine Infinite Bus System
- 12. Simulation on SLG fault in a power system network
- 13. Simulation on DLG fault in a power system network
- 14. Study the characteristics of MCB & HRC Fuse.



| Course Code:<br>EBEE22013 | Course Name: POWER QUALITY AND CONTROL OF<br>POWER SYSTEM              |                                                           |         |                                   |               |                   | -      | / Lb/<br>TL/IE | L                 | T/SLr | P/R             | C                   |          |  |  |
|---------------------------|------------------------------------------------------------------------|-----------------------------------------------------------|---------|-----------------------------------|---------------|-------------------|--------|----------------|-------------------|-------|-----------------|---------------------|----------|--|--|
|                           | Prerequisit                                                            | e: Powe                                                   | er Syst | em Ana                            | lysis         |                   |        |                | Ту                | 3     | 0/0             | 0/0                 | 3        |  |  |
| L : Lecture T : T         | Tutorial SLr :                                                         | Supervi                                                   | sed Le  | arning P                          | : Project     | R : Rese          | arch C | : Credits      | 5                 |       |                 | I                   | <u> </u> |  |  |
| T/L/ETL: Theor            |                                                                        |                                                           |         |                                   |               |                   |        |                |                   |       |                 |                     |          |  |  |
| OBJECTIVES                |                                                                        |                                                           |         |                                   |               |                   |        |                |                   |       |                 |                     |          |  |  |
|                           | attain basic ki                                                        | -                                                         |         |                                   | -             | -                 | -      | -              | n                 |       |                 |                     |          |  |  |
| -                         | plot load dura                                                         |                                                           |         |                                   |               |                   | -      |                |                   |       |                 |                     |          |  |  |
|                           | mpart knowl                                                            | •                                                         | -       | •                                 |               | •                 |        |                |                   |       |                 |                     |          |  |  |
|                           | study the econ                                                         |                                                           |         |                                   |               |                   |        |                |                   |       |                 |                     |          |  |  |
|                           | know the imp                                                           |                                                           | of Syst | em Mor                            | nitoring a    | nd Powe           | r Qual | ity Meas       | urement           | Equip | oments          |                     |          |  |  |
| COURSEOUT                 |                                                                        |                                                           |         |                                   |               |                   |        |                |                   |       |                 |                     |          |  |  |
| Students comple           |                                                                        |                                                           |         |                                   |               |                   |        |                |                   |       |                 |                     |          |  |  |
| C01                       | Acquire know                                                           |                                                           |         | -                                 |               |                   |        | peration       |                   |       |                 |                     |          |  |  |
| CO2                       | Understand                                                             | Understanding of load duration curve and regulation needs |         |                                   |               |                   |        |                |                   |       |                 |                     |          |  |  |
| CO3                       |                                                                        | Familiar to Frequency control and Voltage Control         |         |                                   |               |                   |        |                |                   |       |                 |                     |          |  |  |
| CO4                       | Knowledge                                                              | on econ                                                   | nomic o | peration                          | of powe       | r system          | and U  | nit comn       | nitment           |       |                 |                     |          |  |  |
|                           | Understand the importance of System Monitoring and Power Quality Measu |                                                           |         |                                   |               |                   |        |                |                   | ireme | nt              |                     |          |  |  |
| CO5                       | Equipment                                                              |                                                           |         |                                   |               |                   |        |                |                   |       |                 |                     |          |  |  |
| Mapping of Co             |                                                                        |                                                           |         |                                   |               | s)                |        |                |                   |       |                 |                     |          |  |  |
| COs/POs                   | PO1                                                                    | PO2                                                       |         |                                   | PO5           | PO6               | PO7    |                | PO9               | POI   | 10 PC           | D11 I               | PO12     |  |  |
| CO1                       | 3                                                                      | 3                                                         | 3       | 3                                 | 3             | 2                 | 3      | 3              | 3                 | 3     | 3               |                     | 2        |  |  |
| CO2                       | 2                                                                      | 3                                                         | 3       | 2                                 | 1             | 3                 | 2      | 3              | 3                 | 2     | 1               |                     | 3        |  |  |
| CO3                       | 3                                                                      | 3                                                         | 2       | 3                                 | 2             | 2                 | 3      | 3              | 2                 | 3     | 2               |                     | 2        |  |  |
| CO4                       | 2                                                                      | 2                                                         | 2       | 2                                 | 3             | 3                 | 2      | 2              | 2                 | 2     | 3               |                     | 3        |  |  |
| CO5                       | 3                                                                      | 3                                                         | 2       | 1                                 | 2             | 2                 | 3      | 3              | 2 1 2 2           |       |                 |                     | 2        |  |  |
| COs /PSOs                 |                                                                        | PSO                                                       | 1       |                                   |               | PS                |        |                | PSO3              |       |                 |                     |          |  |  |
| CO1                       |                                                                        | 3                                                         |         |                                   | 2             |                   |        |                | 3                 |       |                 |                     |          |  |  |
| CO2                       |                                                                        | 1                                                         |         |                                   | 3             |                   |        |                | 2                 |       |                 |                     |          |  |  |
| CO3                       |                                                                        | 2                                                         |         |                                   |               | 2                 |        |                |                   | 3     |                 |                     |          |  |  |
| CO4                       |                                                                        | 3                                                         |         |                                   |               | 3                 |        |                |                   | 2     |                 |                     |          |  |  |
| <b>CO5</b>                | the set of Ca                                                          | 2                                                         | 2 11    | -1- 2 M                           | . P 1         | 2                 |        |                |                   |       | 3               |                     |          |  |  |
| 3/2/1 Indicates S         | trength of Co                                                          | rrelation                                                 | n, 3–H1 | gn, 2-M                           | eaium, 1-     | -Low              |        |                |                   |       |                 |                     |          |  |  |
|                           |                                                                        | Ses                                                       |         | Humanities and Social<br>Sciences |               |                   |        |                |                   |       |                 |                     |          |  |  |
|                           |                                                                        | Engineering Sciences                                      |         | So                                |               | 'es               |        |                | ~                 |       | It              | t                   | ۲<br>۲   |  |  |
|                           | es                                                                     | Sci                                                       |         | and                               | e             | ctiv              |        | /es            | lar               |       | ner             |                     | ้าวา     |  |  |
|                           | Basic Sciences                                                         | ng                                                        | )       | es :                              | Coi           | Ele               |        | Open Electives | Interdisciplinary |       | odu             | Ď                   | -        |  |  |
|                           | Sci                                                                    | )<br>jeni                                                 |         | niti<br>es                        | E             | m j               |        | Ele            | sci               |       | lon             |                     | (11)     |  |  |
| y.                        | iic (                                                                  | zine                                                      |         | enc                               | gra           | gra               | )      | en ]           | rdi               |       | II C            |                     | רווי     |  |  |
| gor                       | Bas                                                                    | Eng                                                       | ,       | Humanit<br>Sciences               | Program Core  | Program Electives |        | Opí            | Inte              |       | Skill Component | Dractical / Draiact | 5 1 1    |  |  |
| Category                  |                                                                        |                                                           |         | ~~ ~4                             | $\overline{}$ |                   |        | - <b>-</b>     |                   |       | •               |                     | -        |  |  |
| Ŭ                         |                                                                        |                                                           |         |                                   |               |                   |        |                |                   |       |                 |                     |          |  |  |



#### **Course Name: POWER OUALITY AND CONTROL OF** T/SLr P/R **Course Code:** Ty/Lb/ L С **EBEE22013 POWER SYSTEM ETL/IE Prerequisite: Power System Analysis** Ty 3 0/00/0 3

vith Graded Autonon (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal. Chennai-95. Tamiln

adu. India

#### INTRODUCTION TO POWER QUALITY AND SYSTEM OPERATION UNIT I

Power Quality Terms- Overloading- Under Voltage- Over Voltage-Voltage Sag- Voltage Swell - Voltage imbalance-Voltage fluctuation-Power Frequency Variation - Harmonics - System load Characteristics-load curves and loadduration curve - load factor - diversity factor - Need for Voltage regulation and frequency regulation in power system -Basic P-F and Q-V control loops

#### UNIT II **REAL POWER - FREQUENCY CONTROL**

Fundamentals of AGC-Fundamentals of Speed Governing mechanisms and modeling-Speed-Load characteristics regulation of two Synchronous Machines in parallel- Control areas - LFC of single & Multi areas Static & Dynamic Analysis of uncontrolled and controlled cases -Tie line with frequency bias control -Steady state instabilities

#### UNIT III **REACTIVE POWER – VOLTAGE CONTROL**

Excitation system Modeling - Static & Dynamic Analysis - stability Compensation-Principles of transmission line compensation-Effect of Generator loading-static VAR System Modeling-System Level Voltage control

#### **UNIT IV** ECONOMIC DISPATCH AND UNIT COMMITMENT

Need for Economic Dispatch-Characteristics curve for Steam and hydroelectric Units - Co-ordination Equation with Loss and without losses-Base point and Participation Factor-Constraints and solutions in Unit Commitment -Priority List Methods-Forward Dynamic Programming approach

#### **MONITORING & COMPUTER CONTROL OF POWER SYSTEMS** UNIT V

Need of computer control of power systems. Concept of energy control centre (or) load dispatch centre and the functions - system monitoring - data acquisition and control. System hardware configuration - SCADA and EMS functions-Control Strategies - Power quality Measurement Equipment - Harmonic Analyser - Flicker meter

# TEXT BOOKS

- 1. Allen. J. Wood and Bruce F. Wollen berg, (2003) Power Generation, Operation and Control. John Wiley & Sons. Inc
- 2. Chakrabarti & Halder, (2004) Power System Analysis: Operation and Control. Ed. Prentice Hall of India
- 3. Kundur, P, (1994) Power System Stability and Control. USA: MC Graw Hill Publisher

# **REFERENCE BOOKS**

- 1. Kothari, D.P. and Nagrath, I.J. (2003) Modern Power System Analysis. 3rd. Tata Mc Graw Hill Publishing **Company Limited**
- 2. Grigsby, L.L. (2001) The Electric Power Engineering, Hand Book. CRC Press & IEEE Press
- 3. Hadi Saadat, (2007) Power System Analysis.11<sup>th</sup> Reprint
- 4. N.V. Ramana, (2011) Power System Operation and Control, Pearson
- 5. C.A. Gross, (2011) Power System Analysis, Wiley India

# **Total No. of Periods :45**

64

# 9

9

# 9

# 9



| rial SL<br>b/Emt<br>knowl<br>e oper<br>d desi<br>e oper<br>and ar<br><b>MES</b> (<br>this c<br>lity to<br>lity to<br>lity to<br>lity to                                                      | r : Super<br>bedded T<br>edge on<br>cation of<br>ign the c<br>cation an<br>od sugge<br>Cos)<br>ourse we<br>o select s<br>analyze t<br>study ab<br>understa<br>come with<br>PO2<br>1<br>2 | wer Elect<br>vised Lea<br>heory and<br>the AC a<br>converte<br>current an<br>d transien<br>st a conv<br>me able to<br>suitability<br>the operation<br>the operation<br>the operation<br>out the stee<br>nd and sug<br>h Program<br>PO3<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rning P: 1<br>Lab<br>and DC c<br>er/ chopp<br>ad speed<br>nt dynam<br>erter for<br>v drive for<br>ion of the<br>ion and p<br>eady state<br>ggest a co     | drives<br>per fed d<br>controll<br>nics of a<br>solid st<br>pr the gi<br>e convert<br>performa<br>e operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c drive,<br>lers for a<br>a motor<br>ate driv<br>ven app<br>ter/chopp<br>nce of A<br>on and tr<br>for solid                     | both q<br>a close<br>load sy<br>e<br>blicatio<br>per fed<br>C moto<br>ansient                                                            | Credits<br>Qualitative<br>d loop s<br>ystem.<br>n<br>dc drive.<br>r drives.<br>dynamic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | olid sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | motor                                                                                                                                                                                          | r drive<br>stem.<br>11 P                                                                                                                                                                | 3<br>ee                                                                                                                                                                                                                               |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| b/Emb<br>cnowl<br>e oper<br>d desi<br>e oper<br>and ar<br><b>MES</b> (<br>this c<br>lity to<br>lity to<br>lity to<br>lity to<br><b>Description</b><br><b>Outcome</b><br><b>3</b><br><b>3</b> | edge on<br>cation of<br>ign the c<br>cation an<br>od sugge<br><b>Cos</b> )<br>ourse we<br>o select s<br>analyze t<br>study ab<br>understa<br><b>come wit</b><br><b>PO2</b><br>1<br>2     | the AC a<br>converte<br>current an<br>d transien<br>st a converte<br>st a converte<br>re able to<br>suitability<br>the operation<br>the operation<br>the operation<br>out the stee<br>nd and sugnities<br>h Program<br>PO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lab<br>and DC of<br>pr/ chopped<br>ad speed<br>nt dyname<br>erter for<br>v drive for<br>ion of the<br>ion and pr<br>eady state<br>ggest a com<br>PO4<br>1 | drives<br>ber fed d<br>controll<br>nics of a<br>solid st<br>or the gi<br>e convert<br>e converter<br>me (POs<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | c drive,<br>lers for a<br>a motor<br>ate driv<br>ven app<br>ter/chopp<br>nce of A<br>on and tr<br>for solid<br>s)<br><b>PO6</b> | both q<br>a close<br>load sy<br>e<br>blicatio<br>per fed<br>C moto<br>ansient<br>l state d<br>PO7                                        | ualitativ<br>d loop s<br>vstem.<br>n<br>dc drive.<br>r drives.<br>dynamic<br>rive<br><b>PO8</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | olid sta<br>cs of a n<br>PO9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | notor la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | motor<br>ad sys                                                                                                                                                                                | r drive<br>stem.<br>11 P                                                                                                                                                                | PO12                                                                                                                                                                                                                                  |  |
| cnowl<br>e oper<br>d desi<br>e oper<br>and ar<br><b>MES</b> (<br>; this c<br>lity to<br>lity to<br>lity to<br>lity to<br><b>2 Outc</b><br><b>PO1</b><br><b>3</b><br><b>3</b>                 | edge on<br>ration of<br>ign the c<br>ration an<br>od sugge<br><b>Cos</b> )<br>ourse we<br>o select s<br>analyze f<br>analyze f<br>study ab<br>understa<br>come with<br>PO2<br>1<br>2     | the AC a<br>converte<br>current an<br>d transien<br>est a conv<br>re able to<br>suitability<br>the operation<br>the operation<br>out the stee<br>nd and sugnities<br>h Program<br>PO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and DC c<br>er/ chopp<br>ad speed<br>nt dynam<br>erter for<br>/ drive for<br>ion of the<br>ion and p<br>eady state<br>ggest a co<br>m Outco<br>PO4<br>1   | er fed d<br>controll<br>nics of a<br>solid st<br>or the gi<br>e convert<br>e operation<br>onverter<br>me (POs<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ven app<br>ter/chopp<br>nce of A<br>on and tr<br>for solid                                                                      | a close<br>load sy<br>e<br>olicatio<br>per fed<br>C moto<br>ansient<br>I state d<br>PO7                                                  | d loop s<br>ystem.<br>n<br>dc drive.<br>r drives.<br>dynamic<br>rive<br><b>PO8</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | olid sta<br>cs of a n<br>PO9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | notor la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | motor<br>ad sys                                                                                                                                                                                | r drive<br>stem.<br>11 P                                                                                                                                                                | PO12                                                                                                                                                                                                                                  |  |
| e oper<br>d desi<br>e oper<br>and ar<br><b>MES</b> (<br>this c<br>lity to<br>lity to<br>lity to<br>lity to<br><b>2 Outc</b><br><b>PO1</b><br><b>3</b><br><b>3</b>                            | ation of<br>ign the c<br>ration an<br>id sugge<br><b>Cos</b> )<br>ourse we<br>o select s<br>analyze t<br>analyze t<br>study ab<br>understa<br>come with<br>PO2<br>1<br>2                 | converte<br>surrent an<br>d transien<br>est a conv<br>re able to<br>suitability<br>the operation<br>the operation<br>out the stee<br>nd and sug<br>h Program<br>PO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | er/ chopp<br>ad speed<br>nt dynam<br>erter for<br>7 drive for<br>ion of the<br>ion and p<br>eady state<br>ggest a co<br>m Outco<br>PO4<br>1               | er fed d<br>controll<br>nics of a<br>solid st<br>or the gi<br>e convert<br>e operation<br>onverter<br>me (POs<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ven app<br>ter/chopp<br>nce of A<br>on and tr<br>for solid                                                                      | a close<br>load sy<br>e<br>olicatio<br>per fed<br>C moto<br>ansient<br>I state d<br>PO7                                                  | d loop s<br>ystem.<br>n<br>dc drive.<br>r drives.<br>dynamic<br>rive<br><b>PO8</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | olid sta<br>cs of a n<br>PO9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | notor la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | motor<br>ad sys                                                                                                                                                                                | r drive<br>stem.<br>11 P                                                                                                                                                                | PO12                                                                                                                                                                                                                                  |  |
| this c<br>lity to<br>lity to<br>lity to<br>lity to<br>lity to<br><b>Outc</b><br><b>PO1</b><br><b>3</b><br><b>3</b>                                                                           | ourse we<br>o select s<br>analyze t<br>analyze t<br>study ab<br>understa<br>come with<br>PO2<br>1<br>2                                                                                   | the operation<br>the operation<br>out the steend and sugnation<br>h Program<br>PO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ion of the<br>ion and p<br>eady state<br>ggest a co<br>m Outco<br>PO4<br>1                                                                                | e convert<br>performa<br>e operatio<br>onverter<br>me (POs<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ter/chopp<br>nce of A<br>on and tr<br>for solid<br>s)<br>PO6                                                                    | c moto<br>C moto<br>ransient<br>l state d<br><b>PO7</b>                                                                                  | dc drive.<br>r drives.<br>dynamic<br>rive<br><b>PO8</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cs of a m<br>PO9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PO10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PO                                                                                                                                                                                             | 11 P                                                                                                                                                                                    |                                                                                                                                                                                                                                       |  |
| lity to<br>lity to<br>lity to<br>lity to<br>e Outce<br>PO1<br>3<br>3                                                                                                                         | analyze a<br>analyze a<br>study ab<br>understa<br>come with<br>PO2<br>1<br>2                                                                                                             | the operation the operation the operation the steep of th | ion of the<br>ion and p<br>eady state<br>ggest a co<br>m Outco<br>PO4<br>1                                                                                | e convert<br>performa<br>e operatio<br>onverter<br>me (POs<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ter/chopp<br>nce of A<br>on and tr<br>for solid<br>s)<br>PO6                                                                    | c moto<br>C moto<br>ransient<br>l state d<br><b>PO7</b>                                                                                  | dc drive.<br>r drives.<br>dynamic<br>rive<br><b>PO8</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cs of a m<br>PO9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PO10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PO                                                                                                                                                                                             | 11 P                                                                                                                                                                                    |                                                                                                                                                                                                                                       |  |
| lity to<br>lity to<br>lity to<br>e Outc<br>PO1<br>3<br>3                                                                                                                                     | analyze i<br>study ab<br>understa<br>come with<br>PO2<br>1<br>2                                                                                                                          | the operation out the steep of  | ion and p<br>eady state<br>ggest a co<br>m Outco<br>PO4<br>1                                                                                              | e operatio<br>onverter<br>me (POs<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nce of A<br>on and tr<br>for solid<br>s)<br><b>PO6</b>                                                                          | C moto<br>cansient<br>l state d<br><b>PO7</b>                                                                                            | r drives.<br>dynamic<br>rive<br><b>PO8</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cs of a m<br>PO9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PO10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PO                                                                                                                                                                                             | 11 P                                                                                                                                                                                    |                                                                                                                                                                                                                                       |  |
| lity to<br>lity to<br>e Outc<br>PO1<br>3<br>3                                                                                                                                                | study ab<br>understa<br>come with<br>PO2<br>1<br>2                                                                                                                                       | out the ste<br>nd and sug<br>h Program<br>PO3<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eady state<br>ggest a co<br>m Outco<br>PO4<br>1                                                                                                           | e operatio<br>onverter<br>me (POs<br>PO5<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on and tr<br>for solid<br>s)<br><b>PO6</b>                                                                                      | ansient<br>l state d<br>PO7                                                                                                              | dynamio<br>rive<br><b>PO8</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cs of a m<br>PO9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PO10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PO                                                                                                                                                                                             | 11 P                                                                                                                                                                                    |                                                                                                                                                                                                                                       |  |
| lity to<br>e Outc<br>PO1<br>3<br>3                                                                                                                                                           | understa<br>come with<br>PO2<br>1<br>2                                                                                                                                                   | nd and sug<br>h Program<br>PO3<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ggest a co<br>m Outco<br>PO4<br>1                                                                                                                         | onverter<br>me (POs<br>PO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | for solid<br>s)<br><b>PO6</b>                                                                                                   | l state d<br>PO7                                                                                                                         | rive<br>PO8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PO9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PO10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PO                                                                                                                                                                                             | 11 P                                                                                                                                                                                    |                                                                                                                                                                                                                                       |  |
| PO1<br>3<br>3                                                                                                                                                                                | come with<br>PO2<br>1<br>2                                                                                                                                                               | h Program<br>PO3<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m Outcom<br>PO4<br>1                                                                                                                                      | me (POs<br>PO5<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s)<br>PO6                                                                                                                       | PO7                                                                                                                                      | PO8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                                                                                       |  |
| PO1<br>3<br>3                                                                                                                                                                                | PO2<br>1<br>2                                                                                                                                                                            | PO3 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PO4<br>1                                                                                                                                                  | PO5<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PO6                                                                                                                             |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                                                                                       |  |
| 3<br>3                                                                                                                                                                                       | 1<br>2                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                 |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                                                                                       |  |
| 3                                                                                                                                                                                            | 2                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                               | 2                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                              |                                                                                                                                                                                         | 3                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                              |                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                               | -                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                                                                                       |  |
| 3                                                                                                                                                                                            |                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                               | 3                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                              |                                                                                                                                                                                         | 3                                                                                                                                                                                                                                     |  |
| 3                                                                                                                                                                                            | <u>3</u><br>3                                                                                                                                                                            | 3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3<br>3                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>3</u><br>3                                                                                                                   | <u>3</u><br>3                                                                                                                            | 3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>3</u><br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                              |                                                                                                                                                                                         | 3<br>3                                                                                                                                                                                                                                |  |
| <u>3</u>                                                                                                                                                                                     | $\frac{3}{3}$                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                         | $\frac{3}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                               | $\frac{3}{3}$                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{3}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{2}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{3}{3}$                                                                                                                                                                                  |                                                                                                                                                                                         | 3                                                                                                                                                                                                                                     |  |
| 5                                                                                                                                                                                            |                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PS                                                                                                                              | -                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                 |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                              | 3                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                 |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                              | 3                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                 |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                 |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                              |                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                           | 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                 |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                                                                                       |  |
| gth of                                                                                                                                                                                       | Correlati                                                                                                                                                                                | on, 3–Hig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gh, 2-Meo                                                                                                                                                 | dium, 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Low                                                                                                                             |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                                                                                       |  |
| asic Sciences                                                                                                                                                                                |                                                                                                                                                                                          | Engineering Sciences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Humanities and Social<br>Sciences                                                                                                                         | Program Core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Program Electives                                                                                                               | )                                                                                                                                        | Open Electives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Interdisciplinary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Skill Component                                                                                                                                                                                | Practical / Project                                                                                                                                                                     | 11001001 1 10000                                                                                                                                                                                                                      |  |
| 3<br>3<br>Strength of Correlation, 3–High,<br>saud Social<br>social<br>se and Social<br>se and Social                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                           | 3<br>th of Correlation, 3–High, 2-Med<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>social<br>s | Basic Sciences       Basic Sciences       Basic Sciences       Humanities and Social       Program Core         Program Core    | SciencesEngineering SciencesBasic SciencesEngineering SciencesHumanities and SocialSciencesProgram CoreSciencesProgram ElectivesSciences | 3     3       3     3       3     3       3     3       3     3       4     3       4     3       4     3       4     3       5     3       5     3       5     3       5     3       6     3       7     3       7     3       7     3       7     3       7     3       7     3       7     3       7     3       7     3       7     3       7     3       7     3       7     3       7     3       7     3       7     3       7     3       7     3       7     3       7     3       7     3       7     3       7     3       7     3       7     3       7     3       7     3       7     3       7     3       7     3       3     3       3 <td>3     3       3     3       3     3       3     3       3     3       4     3       4     3       4     4       4     4       4     4       4     4       4     4       5     4       5     5       5     5       6     5       7     5       6     6       7     7       7     7       7     7       7     7       7     7       8     7       7     7       7     7       8     7       7     7       7     7       8     7       9     7       9     7       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10       10       10</td> <td>3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       4     5       5     5       5     5       5     5       5     5       5     5       5     5       5     5       5     5       6     5       6     5       6     5       6     5       6     5       6     5       6     5       7     5       7     5       7     5       7     5       7     5       7     5       7     5       7</td> <td>Sciences     Engineerring Sciences       Basic Sciences     Engineerring Sciences       Program Core     Sciences       Open Electives     Sciences       Interdisciplinary     Open Electives</td> <td>Basic SciencesEngineering SciencesEngineering SciencesEngineering SciencesEngineering SciencesSciencesProgram CoreSciencesProgram ElectivesOpen ElectivesSkill ComponentSkill Component</td> <td>Basic Sciences     Engineering Sciences       Engineering Sciences     Engineering Sciences       Engineering Sciences     Engineering Sciences       Program Core     Engineering Sciences       Skill Component     Skill Component</td> | 3     3       3     3       3     3       3     3       3     3       4     3       4     3       4     4       4     4       4     4       4     4       4     4       5     4       5     5       5     5       6     5       7     5       6     6       7     7       7     7       7     7       7     7       7     7       8     7       7     7       7     7       8     7       7     7       7     7       8     7       9     7       9     7       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10       10       10       10 | 3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       3     3       4     5       5     5       5     5       5     5       5     5       5     5       5     5       5     5       5     5       6     5       6     5       6     5       6     5       6     5       6     5       6     5       7     5       7     5       7     5       7     5       7     5       7     5       7     5       7 | Sciences     Engineerring Sciences       Basic Sciences     Engineerring Sciences       Program Core     Sciences       Open Electives     Sciences       Interdisciplinary     Open Electives | Basic SciencesEngineering SciencesEngineering SciencesEngineering SciencesEngineering SciencesSciencesProgram CoreSciencesProgram ElectivesOpen ElectivesSkill ComponentSkill Component | Basic Sciences     Engineering Sciences       Engineering Sciences     Engineering Sciences       Engineering Sciences     Engineering Sciences       Program Core     Engineering Sciences       Skill Component     Skill Component |  |

# Course Code:<br/>EBEE22011Course Name: SOLID STATE DRIVESTy/ Lb/<br/>ETL/IELT/SLrP/RPrerequisite: Power ElectronicsTy30/00/0

# UNIT I DRIVE CHARACTERISTICS

Electric drive – Equations governing motor load dynamics – steady state stability – multi quadrant Dynamics: acceleration, deceleration, starting & stopping – typical load torque characteristics – Selection of motor.

# UNIT II CONVETER/CHOPPER FED DC MOTOR DRIVE

Steady state analysis of the single and three phase converter fed separately excited DC motor drive– continuous conduction – Time ratio and current limit control – 4 quadrant operation of converter / chopper fed drive-Applications.

# UNIT III INDUCTION MOTOR DRIVES

Stator voltage control–V/f control– Rotor Resistance control-qualitative treatment of slip power recovery drives-closed loop control– vector control- Applications.

# UNIT IV SYNCHRONOUS MOTOR DRIVES

V/f control and self-control of synchronous motor: Margin angle control and power factor control- Three phase voltage/current source fed synchronous motor- Applications.

# UNIT V DESIGN OF CONTROLLERS FOR DRIVES

Transfer function for DC motor /load and converter – closed lop control with Current and sped feedback–armature voltage control and field weakening mode – Design of controllers; current controller and sped controller- converter selection and characteristics.

# **Total No. of Periods:45**

# TEXT BOOKS

- 1. G.K. Dubey (2001) Fundamentals of electric drives. 2<sup>nd</sup> ed. Narosa publishing house
- 2. Bimal K. Bose (2002) Modern Power Electronics and AC Drives, Pearson Education.
- 3. R. Krishnan (2001) Electric Motor & Drives: Modeling, Analysis and Control, Pearson.

# **REFERENCE BOOKS**

- 1. Vedam Subramanyam (2016) Electric Drives Concepts and Applications 2nd Ed. McGraw Hill.
- 2. John Hindmarsh and Alasdain Renfrew (2012) Electrical Machines and Drives System, Elsevier
- 3. Theodore Wildi (2015) Electrical Machines Drives and power systems, 6th edition, Pearson Education.



9

Q

9

9

С

3



| Course Code:<br>EBEE22014 | Course Name: FACTS AND HVDC TRANSMISSION                                                   |                                                                                |                      |                                   |                                                         |                   |          |                | y/ Lb/<br>FL/IE   | L  | T/SLr           | P/R                 | C                 |  |  |
|---------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------|-----------------------------------|---------------------------------------------------------|-------------------|----------|----------------|-------------------|----|-----------------|---------------------|-------------------|--|--|
|                           | Prerequisite: Power Quality and Control of Power System                                    |                                                                                |                      |                                   |                                                         |                   |          |                | Ту                | 3  | 0/0             | 0/0                 | 3                 |  |  |
| L: Lecture T: Tu          | torial SL                                                                                  | r: Super                                                                       | vised Lea            | rning P: P                        | roject R: I                                             | Research          | C: Cr    | edits T/L      | /ETL:             |    |                 |                     |                   |  |  |
| Theory/Lab/Emb            | bedded T                                                                                   | heory an                                                                       | nd Lab               | _                                 | -                                                       |                   |          |                |                   |    |                 |                     |                   |  |  |
| OBJECTIVES                |                                                                                            |                                                                                |                      |                                   |                                                         |                   |          |                |                   |    |                 |                     |                   |  |  |
|                           |                                                                                            | 0                                                                              | on HVDO              | 2                                 |                                                         |                   |          |                |                   |    |                 |                     |                   |  |  |
|                           | model the                                                                                  |                                                                                | •                    |                                   |                                                         |                   |          |                |                   |    |                 |                     |                   |  |  |
|                           |                                                                                            | ow about FACTS Controllers                                                     |                      |                                   |                                                         |                   |          |                |                   |    |                 |                     |                   |  |  |
|                           |                                                                                            | odel the Power flow system                                                     |                      |                                   |                                                         |                   |          |                |                   |    |                 |                     |                   |  |  |
|                           | To model the HVDC system, FACTS controllers in a cost-effective manner COURSEOUTCOMES(Cos) |                                                                                |                      |                                   |                                                         |                   |          |                |                   |    |                 |                     |                   |  |  |
| Students comple           |                                                                                            |                                                                                | vere able            | to                                |                                                         |                   |          |                |                   |    |                 |                     |                   |  |  |
| CO1                       |                                                                                            | Recognize the Power electronics components                                     |                      |                                   |                                                         |                   |          |                |                   |    |                 |                     |                   |  |  |
| CO2                       | Classify                                                                                   | Classify the Power electronic components, HVDC system and FACTS devices        |                      |                                   |                                                         |                   |          |                |                   |    |                 |                     |                   |  |  |
| CO3                       | Summar                                                                                     | Summarize importance of HVDC, FACTS for a power flow modeling with modern tool |                      |                                   |                                                         |                   |          |                |                   |    |                 |                     |                   |  |  |
| CO4                       | Analyze                                                                                    | e the HV                                                                       | DC cable             | s, FACTS                          | s controllers and devices for a sustainable environment |                   |          |                |                   |    |                 |                     |                   |  |  |
| CO5                       | CO5 Model the HVDC system, FACTS                                                           |                                                                                |                      |                                   |                                                         |                   | st-effec | ctive man      | ner               |    |                 |                     |                   |  |  |
| Mapping of Co             |                                                                                            |                                                                                | 0                    |                                   | · · · ·                                                 |                   |          |                |                   |    |                 |                     |                   |  |  |
| COs/POs                   | PO1                                                                                        | PO2                                                                            |                      | PO4                               | PO5                                                     | PO6               | PO7      |                | PO9               | PO |                 |                     | PO12              |  |  |
| CO1                       | 3                                                                                          | 3                                                                              | 2                    | 3                                 | 3                                                       | 3                 | 3        | 2              | 2                 | 3  | 3               |                     | 2                 |  |  |
| CO2                       | 2                                                                                          | 3                                                                              | 3                    | 2                                 | 3                                                       | 2                 | 3        | 3              | 3                 | 2  | 3               |                     | 3                 |  |  |
| <u>CO3</u>                | 3                                                                                          | 2                                                                              | 3                    | 3<br>2                            | 2                                                       | 3                 | 2        | 3              | 3                 | 3  | 2               |                     | 3                 |  |  |
| CO4<br>CO5                | 23                                                                                         | 3                                                                              | 23                   | $\frac{2}{3}$                     | 3<br>3                                                  | 2<br>3            | 3        | 2 3            | <u> </u>          | 23 | 3               |                     | 2<br>3            |  |  |
| COs /PSOs                 | 3                                                                                          | -                                                                              | <b>SO1</b>           | 3                                 | 3                                                       |                   | -        | 3              | 3 3 3 3<br>PSO3   |    |                 |                     |                   |  |  |
| COS/1505                  |                                                                                            | 1                                                                              | 3                    |                                   | PSO2<br>3                                               |                   |          |                | 3                 |    |                 |                     |                   |  |  |
| CO2                       |                                                                                            |                                                                                | 3                    |                                   |                                                         |                   | 3        |                |                   |    |                 |                     |                   |  |  |
| CO3                       |                                                                                            |                                                                                | 2                    |                                   |                                                         |                   | 2        |                |                   |    |                 |                     |                   |  |  |
| CO4                       |                                                                                            |                                                                                | 3                    |                                   |                                                         |                   | 3        |                |                   |    |                 |                     |                   |  |  |
| CO5                       |                                                                                            |                                                                                | 3                    |                                   | 2 3<br>3 3                                              |                   |          |                |                   |    |                 |                     |                   |  |  |
| 3/2/1 Indicates St        | trength of                                                                                 | f Correla                                                                      | ation, 3–H           | ligh, 2-Me                        | dium, 1-L                                               | OW                |          |                |                   |    |                 |                     |                   |  |  |
| çory                      |                                                                                            | Basic Sciences                                                                 | Engineering Sciences | Humanities and Social<br>Sciences | <ul> <li>Program Core</li> </ul>                        | Program Electives | 2        | Open Electives | Interdisciplinary |    | Skill Component | Dractical / Droiact | 14011041 / 140100 |  |  |
| Category                  |                                                                                            | H                                                                              |                      |                                   |                                                         |                   |          | 0              | I                 |    |                 | <u> </u>            |                   |  |  |

#### T/SLr P/R **Course Code: Course Name: FACTS AND HVDC TRANSMISSION** Tv/ Lb/ L **EBEE22014** ETL/IE

**Prerequisite: Power Quality and Control of Power System** 

#### UNIT I INTRODUCTION TO HVDC

Introduction of DC Power transmission technology - Classification of HVDC links- Components of HVDC transmission system-Comparison of AC and DC-Planning and Modern trends in DC transmission.

#### UNIT II HVDC CABLES AND MODELING OF HVDC SYSTEMS

Introduction of DC cables – Basic physical phenomenon arising in DC insulation – Practical dielectrics – Dielectric stress consideration - Economics of DC cables compared with AC cables- Introduction to converter model of HVDC

#### **UNIT III INTRODUCTION TO FACTS**

The concept of flexible AC transmission - reactive power control in Electrical power transmission lines -uncompensated transmission line - series and shunt compensation. Overview of FACTS devices - Static VAR Compensator (SVC) -Thyristors Switched Series capacitor (TCSC) - Unified Power Flow controller (UPFC) -Integrated Power Flow Controller (IPFC).

#### UNIT IV **EMERGING FACTS CONTROLLERS**

Static Synchronous Compensator (STATCOM) - operating principle - V-I characteristics - Unified Power Flow Controller (UPFC) –Principle of operation -modes of operation– applications

#### UNIT V POWER FLOW MODELING

Power flow modeling of SVC, TCSC, STATCOM and UPFC.

# **TEXT BOOKS**

- 1. Mohan Mathur, R. Rajiv K. Varma, Thyristor–Based Facts Controllers for Electrical Transmission Systems. IEEE press and John Wiley & Sons, Inc.
- 2. ACHAetal, E. Power Electronic Control in Electrical Systems. Newness Power Engineering Series.
- 3. Padiyar, K.R. (1990) HVDC power transmission system. 1<sup>st</sup> Ed. NewDelhi: Wiley Eastern Limited.
- 4. Edward Wilson Kimbark, (1971) Direct Current Transmission. Vol.I. Wiley interscience. NewYork: London: Sydney:

# REFERENCE BOOKS

- 1. John, A.T. (1999) Flexible AC Transmission System. Institution of Electrical and Electronic Engineers (IEEE).
- 2. Narain G. Hingorani, Laszio, Gyugyl, (2001) Understanding FACTS Concepts and Technology of Flexible AC Transmission System. Delhi: Standard Publishers.



0/0

0/0

9

9

9

# 9

С

3

## **Total No. of Periods: 45**

9

## 68

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Ty



| Course Code:<br>EBEE22015                                                                                       | Course Name: SMARTGRID AND ELECTRIC VEHICLE<br>TECHNOLOGY                                                                             |                                                             |                      |                                   |              |                   |               |                | y/ Lb/<br>TL/IE   | L | T/SLr           | P/R                 | C                 |  |  |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------|-----------------------------------|--------------|-------------------|---------------|----------------|-------------------|---|-----------------|---------------------|-------------------|--|--|
|                                                                                                                 | Prerequisite: Generation, Transmission and Distribution,                                                                              |                                                             |                      |                                   |              |                   |               |                | Ту                | 3 | 0/0             | 0/0                 | 3                 |  |  |
|                                                                                                                 | Power System Analysis                                                                                                                 |                                                             |                      |                                   |              |                   |               |                |                   |   |                 |                     |                   |  |  |
|                                                                                                                 | L : Lecture T : Tutorial SLr : Supervised Learning P: Project R : Research C : Credits<br>T/L/ETL: Theory/Lab/Embedded Theory and Lab |                                                             |                      |                                   |              |                   |               |                |                   |   |                 |                     |                   |  |  |
|                                                                                                                 | y/Lab/Em                                                                                                                              | bedded T                                                    | heory a              | nd Lab                            |              |                   |               |                |                   |   |                 |                     |                   |  |  |
| OBJECTIVES                                                                                                      |                                                                                                                                       |                                                             |                      |                                   |              |                   |               |                |                   |   |                 |                     |                   |  |  |
|                                                                                                                 | ntroduce l                                                                                                                            |                                                             | -                    | -                                 |              |                   |               |                |                   |   |                 |                     |                   |  |  |
|                                                                                                                 | mpart kno                                                                                                                             | •                                                           |                      | · ·                               | -            | - <b>1</b>        |               |                |                   |   |                 |                     |                   |  |  |
|                                                                                                                 | ntroduce l                                                                                                                            |                                                             |                      |                                   |              |                   | ý             |                |                   |   |                 |                     |                   |  |  |
|                                                                                                                 | learn the principle and operation of Electric Vehicles owledge about E-mobility business.                                             |                                                             |                      |                                   |              |                   |               |                |                   |   |                 |                     |                   |  |  |
| Knowledge about E-mobility business.      COURSEOUTCOMES(Cos)      Students completing this course were able to |                                                                                                                                       |                                                             |                      |                                   |              |                   |               |                |                   |   |                 |                     |                   |  |  |
|                                                                                                                 |                                                                                                                                       | Understand issues, opportunities & challenges in Smart grid |                      |                                   |              |                   |               |                |                   |   |                 |                     |                   |  |  |
| C01                                                                                                             |                                                                                                                                       |                                                             |                      |                                   |              |                   |               |                |                   |   |                 |                     |                   |  |  |
|                                                                                                                 | Designing and develop skills required for smart grid planning                                                                         |                                                             |                      |                                   |              |                   |               |                |                   |   |                 |                     |                   |  |  |
| CO3                                                                                                             | To understand the basic concepts of electric vehicle technology                                                                       |                                                             |                      |                                   |              |                   |               |                |                   |   |                 |                     |                   |  |  |
| CO4                                                                                                             | To understand the principle and operation of Electric Vehicles                                                                        |                                                             |                      |                                   |              |                   |               |                |                   |   |                 |                     |                   |  |  |
| CO5                                                                                                             | Acquire knowledge on E-Indian electricity business on Indian roadmap perspective                                                      |                                                             |                      |                                   |              |                   |               |                |                   |   |                 |                     |                   |  |  |
| Mapping of Co                                                                                                   |                                                                                                                                       |                                                             |                      |                                   |              |                   |               | _              | _                 |   |                 |                     |                   |  |  |
| COs/POs                                                                                                         | PO1                                                                                                                                   | PO2                                                         | PO3                  | PO4                               | PO5          | PO6               | <b>PO7</b>    | PO8            | PO9               |   |                 |                     | PO12              |  |  |
| CO1                                                                                                             | 3                                                                                                                                     | 3                                                           | 2                    | 2                                 | 3            | 3                 | 2             | 3              | 2                 | 2 | 3               |                     | 3                 |  |  |
| CO2                                                                                                             | 2                                                                                                                                     | 3                                                           | 3                    | 3                                 | 2            | 3                 | 3             | 2              | 3                 | 3 | 2               |                     | 3                 |  |  |
| CO3                                                                                                             | 3                                                                                                                                     | 2                                                           | 3                    | 3                                 | 3            | 2                 | 3             | 2              | -                 | - | 3               |                     | 2                 |  |  |
| CO4<br>CO5                                                                                                      | 2<br>3                                                                                                                                | <u>3</u><br>3                                               | 23                   | 3                                 | 23           | <u>3</u><br>3     | $\frac{2}{3}$ | 3<br>2         | 23                | 3 | 2               |                     | <u>3</u><br>3     |  |  |
| COs /PSOs                                                                                                       | 3                                                                                                                                     |                                                             | -                    | 5                                 | 3            | -                 |               | 4              | 3 3 3 3<br>PSO3   |   |                 |                     |                   |  |  |
| COS/FSOS                                                                                                        |                                                                                                                                       | <u> </u>                                                    |                      |                                   | PSO2<br>3    |                   |               |                | 2                 |   |                 |                     |                   |  |  |
| CO1                                                                                                             |                                                                                                                                       | 2                                                           |                      |                                   | 3            |                   |               |                | 3                 |   |                 |                     |                   |  |  |
| CO3                                                                                                             |                                                                                                                                       | 3                                                           |                      |                                   | 2            |                   |               |                | 3                 |   |                 |                     |                   |  |  |
| CO4                                                                                                             |                                                                                                                                       | 2                                                           |                      |                                   |              | 3                 |               |                |                   | 2 |                 |                     |                   |  |  |
| CO5                                                                                                             | 3                                                                                                                                     |                                                             |                      |                                   |              | 3                 | ;             |                |                   |   | 3               |                     |                   |  |  |
| 3/2/1 Indicates S                                                                                               | trength of                                                                                                                            | Correlati                                                   | on, 3–H              | igh, 2-Me                         | edium, 1-    | Low               |               |                |                   |   |                 | T                   |                   |  |  |
| Category                                                                                                        | Basic Sciences                                                                                                                        |                                                             | Engineering Sciences | Humanities and Social<br>Sciences | Program Core | Program Electives | )             | Open Electives | Interdisciplinary |   | Skill Component | Denotion1 / Deviant | Flacucal / Fluger |  |  |
| Ca                                                                                                              |                                                                                                                                       |                                                             |                      |                                   | $\checkmark$ |                   |               |                |                   |   |                 |                     |                   |  |  |

### UNIT I INTRODUCTION TO SMART GRID

**Power System Analysis** 

TECHNOLOGY

Introduction - Evolution of Electric Grid, Smart Grid Concept - Definitions and Need for Smart Grid - Functions -Opportunities – Benefits and challenges, Difference between conventional & Smart Grid, Technology Drivers.

### **DESIGNING SMARTGRID** UNIT II

Barriers and solution to smart grid development- General Level Automation- Power System Automation at Transmission Level-Distribution Level Automation- End user level-Applications for adaptive control and optimization.

### UNIT III VEHICLES

**Course Code:** 

**EBEE22015** 

Vehicle resistance, Types: Rolling resistance, grading resistance, Aerodynamic drag vehicle performance, calculating the acceleration force, Maximum speed, finding the total tractive effort, torque required on the drive wheel. Transmission: Differential, clutch & gear box, Braking performance.

### **UNIT IV** HYBRID VEHICLES

Types of Evs, Hybrid electric drive- train, Tractive effort in normal driving – Energy consumption concept of hybrid electric drive trains, Architecture of Electric Drive Trains, Series and parallel hybrid electric drive trains

### UNIT V **BATTERY MANAGEMENT SYSTEM**

Need of BMS-Rule based control and optimization-based control-Software based high level supervisory control-Mode power - Behavior of motor - Advance Features.

# Total No. of Periods: 45

# **TEXT BOOKS**

- 1. Gilbert N. Sorebo & Michael C. Echols, Smart Grid Security-An end-to-end view of security in the new Electrical grid. CRC Press.
- 2. James Momoh, Smart Grid-Fundamentals of Design and Analysis. CRC Press.
- 3. Janaka B. Ekanayake, Kithsiri Liyanage, JianzhongWu, Akihiko Yokoyama, NickJenkins Smart Grid Technology & Application. In Wiley.
- 4. James Larminie, J. Lowry, "Electric Vehicle Technology Explained", John Wiley & Sons Ltd. 2003.
- 5. M. Ehsani, Y. Gao, S. E. Gay and A. Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design", CRC Press, 2004.
- 6. S. Onori, L. Serrao and G. Rizzoni, "Hybrid Electric Vehicles: Energy Management Strategies", Springer, 2015.

# **REFERENCE BOOKS**

- 1. David Gao (2015) Energy Storage for Sustainable Microgrid, 1<sup>st</sup>Ed, Elsevier
- 2. Emadi, A. (Ed.), Miller, J., Ehsani, M., "Vehicular Electric Power Systems" Boca Raton, CRC Press, 2003.
- 3. Tarig Muneer and Irene Illescas García, "The automobile, In Electric Vehicles: Prospects and Challenges", Elsevier, 2017.

| EDUCATIONAL AND RESEARCH INST               |      |
|---------------------------------------------|------|
| DEEMED TO BE UNIVERSITY                     | **** |
| University with Graded Autonomy Status      |      |
| (An ISO 21001 : 2018 Certified Institution) |      |

Perivar E.V.R. High Road, Maduravoval, Chennai-95, Tamilnadu, India

Course Name: SMARTGRID AND ELECTRIC VEHICLE

Prerequisite: Generation, Transmission and Distribution,

# 9

70

# 9

T/SLr P/R

0/0

Q

9

0/0

С

3

Ty/Lb/

ETL/IE

Ty

L

3



| Course Code:<br>EBEE22E01                                                        |                                                                                                                                               | e Name<br>INIQUE                                                            | : WIND<br>CS         | ENER                              | GY CO         | NVEF    | RSION             | Ty/ Lb/<br>ETL/IE |                   | L      | T/SLr           | P/R    | C                   |  |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------|-----------------------------------|---------------|---------|-------------------|-------------------|-------------------|--------|-----------------|--------|---------------------|--|
|                                                                                  | Prerec                                                                                                                                        | quisite:                                                                    | Energy               | Utilizat                          | ion and       | Cons    | ervation          | Т                 | `у                | 3      | 0/0             | 0/0    | 3                   |  |
| L: Lecture T: Tu                                                                 | torial S                                                                                                                                      | Lr: Supe                                                                    | rvised L             | earning                           | P: Proje      | ect R:  | Research          | C: Credi          | ts                |        |                 |        |                     |  |
| T/L/ETL:Theory                                                                   | //Lab/Er                                                                                                                                      | nbeddec                                                                     | l Theory             | and La                            | b             |         |                   |                   |                   |        |                 |        |                     |  |
| OBJECTIVES                                                                       |                                                                                                                                               |                                                                             |                      |                                   |               |         |                   |                   |                   |        |                 |        |                     |  |
|                                                                                  |                                                                                                                                               |                                                                             |                      |                                   | rgy Con       | version | n System          |                   |                   |        |                 |        |                     |  |
|                                                                                  |                                                                                                                                               |                                                                             | rgy crisi            |                                   |               |         |                   |                   |                   |        |                 |        |                     |  |
|                                                                                  |                                                                                                                                               |                                                                             |                      |                                   |               | nd its  | characteri        | stics.            |                   |        |                 |        |                     |  |
|                                                                                  | To understand different converters                                                                                                            |                                                                             |                      |                                   |               |         |                   |                   |                   |        |                 |        |                     |  |
| • To design wind Energy conversion system such as sub systems and its components |                                                                                                                                               |                                                                             |                      |                                   |               |         |                   |                   |                   |        |                 |        |                     |  |
| COURSE OUT                                                                       |                                                                                                                                               |                                                                             |                      |                                   |               |         |                   |                   |                   |        |                 |        |                     |  |
| Students comple                                                                  |                                                                                                                                               |                                                                             |                      |                                   |               |         |                   |                   |                   |        |                 |        |                     |  |
| <u>CO1</u>                                                                       |                                                                                                                                               |                                                                             |                      |                                   |               | y Conv  | version Sy        | stem              |                   |        |                 |        |                     |  |
| CO2                                                                              |                                                                                                                                               |                                                                             | solve th             |                                   |               | •       |                   |                   |                   |        |                 |        |                     |  |
| <u>CO3</u>                                                                       |                                                                                                                                               | Convey the characteristics Power Electronic Devices and its characteristics |                      |                                   |               |         |                   |                   |                   |        |                 |        |                     |  |
| <u>CO4</u>                                                                       | Analyze and design the characteristics for different converters                                                                               |                                                                             |                      |                                   |               |         |                   |                   |                   |        |                 |        |                     |  |
|                                                                                  | CO5Explore and design wind Energy conversion system such as sub systems and its componentsping of Course Outcomes with Program Outcomes (POs) |                                                                             |                      |                                   |               |         |                   |                   |                   |        |                 |        |                     |  |
| Mapping of Co                                                                    | urse Ou                                                                                                                                       | itcomes                                                                     | with Pr              | ogram                             | Outcom        | es (PC  | Js)               |                   |                   |        |                 |        |                     |  |
| COs/POs                                                                          | PO1                                                                                                                                           | PO2                                                                         | PO3                  | PO4                               | PO5           | PO      | 6 PO7             | PO8               | PO9               | PO1    | 0 PO            | 11   1 | PO12                |  |
| CO1                                                                              | 3                                                                                                                                             | 2                                                                           | 3                    | 2                                 | 3             | 3       | 3                 | 3                 | 3                 | 3      | 3               |        | 3                   |  |
| CO2                                                                              | 3                                                                                                                                             | 2                                                                           | 3                    | 3                                 | 3             | 3       | 3                 | 3                 | 3                 | 3      | 3               |        | 3                   |  |
| CO3                                                                              | 3                                                                                                                                             | 2                                                                           | 3                    | 2                                 | 3             | 3       | 3                 | 3                 | 3                 | 3      | 3               |        | 3                   |  |
| CO4                                                                              | 3                                                                                                                                             | 2                                                                           | 3                    | 2                                 | 2             | 3       | 1                 | 3                 | 3                 | 3      | 3               |        | 3                   |  |
| <u>CO5</u>                                                                       | 3                                                                                                                                             | 2                                                                           | 3                    | 3                                 | 3             | 3       | 3                 | 3                 | 3                 | 2      | 3               |        | 3                   |  |
| COs /PSOs                                                                        |                                                                                                                                               | PS                                                                          |                      |                                   |               | P       | SO2               |                   |                   |        | PSO3            |        |                     |  |
| <u>CO1</u>                                                                       |                                                                                                                                               |                                                                             | 3                    |                                   |               |         | 3                 |                   | 3                 |        |                 |        |                     |  |
| <u>CO2</u>                                                                       |                                                                                                                                               |                                                                             | 3                    |                                   |               |         | 3                 |                   | 3                 |        |                 |        |                     |  |
| <u>CO3</u>                                                                       |                                                                                                                                               |                                                                             | 3                    |                                   |               |         | 3                 |                   | 3                 |        |                 |        |                     |  |
| <u>CO4</u>                                                                       |                                                                                                                                               |                                                                             | 2                    |                                   | 3             |         |                   |                   |                   |        |                 |        |                     |  |
| CO5<br>3/2/1 Indicates S                                                         | tranath (                                                                                                                                     | of Corre                                                                    | 3<br>lation 3        | High (                            | ) Mediu       | m 1 I   |                   |                   |                   | 3      |                 |        |                     |  |
| 5/2/1 maleates 5                                                                 |                                                                                                                                               |                                                                             |                      | -mgn, 2                           |               | , I-I   | 20 W              |                   |                   |        |                 |        |                     |  |
|                                                                                  | ces<br>Sciences<br>and Social                                                                                                                 |                                                                             | re<br>ctives         |                                   | ives          | inary   |                   | onent             |                   | roject |                 |        |                     |  |
| Category                                                                         | Basic Sciences                                                                                                                                |                                                                             | Engineering Sciences | Humanities and Social<br>Sciences | Droarram Core |         | Program Electives | Open Electives    | Interdisciplinary | 4      | Skill Component |        | Practical / Project |  |
| Car                                                                              |                                                                                                                                               |                                                                             |                      |                                   |               |         |                   |                   |                   |        |                 |        |                     |  |



(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

| Course Code:<br>EBEE22E01 | Course Name: WIND ENERGY CONVERSION<br>TECHNIQUES | Ty/ Lb/<br>ETL/IE | L | T/SLr | P/R | С |  |
|---------------------------|---------------------------------------------------|-------------------|---|-------|-----|---|--|
|                           | Prerequisite: Energy Utilization and Conservation | Ту                | 3 | 0/0   | 0/0 | 3 |  |

## UNIT I MODELLING OF THE DOUBLY FED INDUCTION GENERATOR(DFIG)

Mechanical and three phase electrical models. "Quadrature-Phase Slip-Ring (QPSR) model. Expression of the DFIG and QPSR model in a single generic reference frame. Particularization to the stator flux/voltage –oriented reference frame for vector control (VC).

# UNIT II MODELLING OF PERMANENT MAGNET SYNCHRONOUS GENERATOR (PMSG)

Rotor flux-oriented model of the PMSG: Analogy with the stator flux/voltage-oriented DFIG model. Arrangement of the global electromechanical model in state equations for simulation.

# UNIT III WIND TURBINE SUB SYSTEMS & COMPONENTS

Design of WECS components-Stall, pitch & yaw control mechanisms-Brake control mechanisms-Theoretical simulation of wind turbine characteristics; Test methods

# UNIT IV APPLICATION OF WIND ENERGY

Wind pumps - Performance analysis, design concept and testing - Principle of Wind Energy Generators - Standalone, grid connected and hybrid applications of WECS- Economics of wind energy utilization-Wind energy in India

# UNIT V OVERVIEW OF SMALL HYDRO POWER SYSTEM

Overview of micro, mini and small hydro systems- Hydrology- Elements of pumps and turbine - Selection and design criteria of pumps and turbines-Site selection and civil works-Speed and voltage regulation-Investment issues load management and tariff collection; Distribution and marketing issues: case studies; Potential of small hydro power in India.

# **Total No. of Periods: 45**

9

0

9

9

## **TEXT BOOKS**

- 1. Manwell, J.F. Mcgowan, J.G. Rogers, A. L (2002) Wind Energy Explained–Theory, Design & Application. John Wiley &Sons
- 2. GrayL.Johnson (1985) Wind Energy Systems. Prentice Hall Inc
- 3. Bose, B.K. (2001) Modern Power Electronics & AC Drives. Prentice Hall

## **REFERENCE BOOKS**

- 1. Vaughn Nelson, (2009) Wind Energy– Renewable Energy & the Environment. CRC Press
- S.T. Rama, E. Sheeba Percis, A. Nalini, S. Bhuvaneswari (2017), Handbook on Standalone Renewable Energy Systems, 1<sup>st</sup> Edn, Research India Publication ISBN No 978-93-87374-12-6


| Course Code:<br>EBEE22E02 |                                                              | e Name:<br>NEERIN    | ICAI    |                                   |              | <b>Fy/ Lb/</b><br>ETL/IE | L     | T/SLr | P/R         | C                 |                                      |      |     |                     |
|---------------------------|--------------------------------------------------------------|----------------------|---------|-----------------------------------|--------------|--------------------------|-------|-------|-------------|-------------------|--------------------------------------|------|-----|---------------------|
|                           | Prereq                                                       | uisite: (            | Comm    | unicatio                          | n System     | s and I                  | ОТ    |       |             | Ту                | 3                                    | 0/0  | 0/0 | 3                   |
| L : Lecture T : T         |                                                              |                      |         |                                   |              | ct R : R                 | esear | ch C  | : Cre       | dits              |                                      |      | 1   |                     |
| T/L/ETL:Theory            | /Lab/Emt                                                     | bedded 7             | Theory  | and Lab                           |              |                          |       |       |             |                   |                                      |      |     |                     |
| OBJECTIVES                |                                                              |                      |         |                                   |              |                          |       |       |             |                   |                                      |      |     |                     |
| • To s                    | tudy IoT                                                     | in Electi            | ric Eng | ineering                          |              |                          |       |       |             |                   |                                      |      |     |                     |
|                           | tudy Tele                                                    |                      |         | 5                                 |              |                          |       |       |             |                   |                                      |      |     |                     |
|                           | Study IoT                                                    |                      |         |                                   |              |                          |       |       |             |                   |                                      |      |     |                     |
|                           | Study Sma                                                    | •                    |         | •                                 |              |                          |       |       |             |                   |                                      |      |     |                     |
| • To S                    | Study Sma                                                    | art Space            | e Secur | ity Syste                         | em           |                          |       |       |             |                   |                                      |      |     |                     |
| COURSE OUT                |                                                              |                      |         |                                   |              |                          |       |       |             |                   |                                      |      |     |                     |
| Students complete         |                                                              |                      |         |                                   |              |                          |       |       |             |                   |                                      |      |     |                     |
| C01                       |                                                              | nize the l           |         |                                   |              |                          |       |       |             |                   |                                      |      |     |                     |
| CO2                       |                                                              |                      |         |                                   | orate IO     |                          |       |       |             |                   |                                      |      |     |                     |
| CO3                       | Summa                                                        | arize the            | Telem   | atics, Sn                         | nart energ   | gy and v                 | ariou | s sec | curity      | measure           | S                                    |      |     |                     |
| CO4                       |                                                              |                      |         |                                   | ctive ma     | nner                     |       |       |             |                   |                                      |      |     |                     |
| CO5                       |                                                              |                      |         |                                   | d improv     | mea                      | sures |       |             |                   |                                      |      |     |                     |
|                           |                                                              |                      |         |                                   |              |                          |       |       |             |                   |                                      |      |     |                     |
| COs/POs                   | urse Outcome with Program Outcome (POs)PO1PO2PO3PO4PO5PO6PO6 |                      |         |                                   |              |                          |       | 7     | PO8         | PO9               | PO                                   |      |     | PO12                |
| CO1                       | 3                                                            | 3                    | 3       | 3                                 | 3            | 3                        | 3     |       | 3           | 3                 | 3                                    | 3    |     | 3                   |
| CO2                       | 3                                                            | 3                    | 3       | 3                                 | 3            | 3                        | 2     |       | 2           | 2                 | 3                                    | 3    |     | 2                   |
| CO3                       | 3                                                            | 3                    | 3       | 3                                 | 3            | 3                        | 3     |       | 3           | 1                 | 3                                    | 3    |     | 3                   |
| CO4                       | 2                                                            | 3                    | 1       | 3                                 | 3            | 3                        | 2     |       | 2           | 3                 | 3                                    | 3    |     | 2                   |
| CO5                       | 3                                                            | 3                    | 3       | 3                                 | 3            | 2                        | 3     |       | 3           | 2                 | 3                                    | 2    |     | 3                   |
| COs /PSOs                 |                                                              | PS                   |         |                                   |              | PS                       |       |       |             |                   |                                      | PSO3 |     |                     |
| CO1                       |                                                              | 3                    |         |                                   |              | 3                        |       |       |             |                   |                                      | 3    |     |                     |
| CO2                       |                                                              | 2                    |         |                                   |              | 2                        |       |       |             |                   |                                      | 2    |     |                     |
| CO3                       |                                                              | 3                    |         |                                   |              | 3                        |       |       |             |                   |                                      | 1    |     |                     |
| CO4                       |                                                              | 2                    |         |                                   |              | 2                        |       |       |             |                   |                                      | 3    |     |                     |
| CO5<br>3/2/1 Indicates St | rength of                                                    | 3<br>Correlat        |         | -High, 2-                         | -Medium      | 3<br>, 1-Low             |       |       |             |                   |                                      | 2    |     |                     |
|                           | <u> </u>                                                     |                      |         |                                   |              | -                        |       |       |             |                   |                                      |      |     |                     |
|                           | Basic Sciences                                               | Engineering Sciences |         | Humanities and Social<br>Sciences | Program Core |                          |       |       | n Electives | Interdisciplinary | Interdisciplinary<br>Skill Component |      |     | Practical / Project |
| gor                       | 3asi                                                         | Bug                  |         | Hun<br>Scie                       | Prof         | rog                      | ·     |       | ope         | ntei              |                                      | Skil |     | rac                 |
| Category                  | ¥                                                            |                      |         |                                   | Ι            |                          |       |       | <u> </u>    |                   |                                      |      |     |                     |

#### adu. India

| Course Code:<br>EBEE22E02 | Course Name: IOT APPLIED TO ELECTRICAL<br>ENGINEERING | Ty/ Lb/<br>ETL/IE | L | T/SLr | P/R | С |
|---------------------------|-------------------------------------------------------|-------------------|---|-------|-----|---|
|                           | Prerequisite: Communication Systems and IOT           | Ту                | 3 | 0/0   | 0/0 | 3 |

#### UNIT I **INTRODUCTION TO IOT**

Introduction-Need of IOT in Electrical Engineering-Challenges in Implementation of IOT-Trends in Electrical Engineering - Configuration and Scalability-Efficiency-Quality of Service

#### UNIT II **TELEMATICS**

Smart Devices-Smart Apps-Wearable Technology-Vehicle Telemetry-Smart Homes and Building Automation-Vehicle Charging Station

#### UNIT III SMART ENERGY

Generation-Transmission-Distribution and Metering-Storage-Smart Monitoring and Diagnostics System at Major Power Plants-Micro grid and Virtual Power

#### UNIT IV **INDUSTRIAL IOT**

Real-Time Monitoring and Control of Processes-Deploying Smart Machine-Smart Sensor-Smart Controllers -SCADA- Proprietary Communication

#### UNIT V SECURITY MEASURES

Securing Smart Spaces and Smart Grid-Smart Grid-Service that need to be Secure- Security Requirement-Security Smart Spaces-Smart Tracking Firewall - Crypto graphic Key in the IoT

#### **Total No. of Periods: 45**

### TEXT BOOKS

1. George Mastorakis, (2016), Internet of Things (IoT) in 5G Mobile Technologies, 1<sup>st</sup> ed. Edition, Publisher **SPRINGER** 

### **REFERENCE BOOKS**

1. Enterprise IoT: Strategies and Best Practices for Connected Products and Services, DirkSlama, FrankPuhlmann, JimMorrish, RishiM Bhatnagar, Publisher O'REILLY



9

9

9

9



| Course Code:<br>EBEE22E03 | Course                                                      | e Name         | : MECH               | ATRONIC                           | S            |                    |          | -              | / Lb/<br>TL/IE    | L  | T/SLr           | P/R | C                   |
|---------------------------|-------------------------------------------------------------|----------------|----------------------|-----------------------------------|--------------|--------------------|----------|----------------|-------------------|----|-----------------|-----|---------------------|
|                           | Prerequ                                                     | isite: (       | Control Sy           | ystems                            |              |                    |          |                | Ту                | 3  | 0/0             | 0/0 | 3                   |
| L : Lecture T : 7         | Futorial S                                                  | SLr : Su       | pervised             | Learning P:                       | Project R    | R : Resea          | urch C : | Credits        |                   |    |                 |     | 1                   |
| T/L/ETL:Theor             |                                                             | nbedde         | d Theory             | and Lab                           |              |                    |          |                |                   |    |                 |     |                     |
| OBJECTIVES                |                                                             |                |                      |                                   |              |                    |          |                |                   |    |                 |     |                     |
| • To                      | o underst                                                   | and the        | concepts             | of sensors a                      | and transc   | lucers             |          |                |                   |    |                 |     |                     |
|                           |                                                             |                | program              |                                   |              |                    |          |                |                   |    |                 |     |                     |
|                           |                                                             |                | system pro           |                                   |              |                    |          |                |                   |    |                 |     |                     |
|                           |                                                             |                |                      | ors, actuator                     |              |                    |          |                |                   |    |                 |     |                     |
|                           |                                                             |                | recent tre           | ends and adv                      | vancemen     | t in Mec           | chatron  | ics            |                   |    |                 |     |                     |
| COURSE OUT                |                                                             |                |                      |                                   |              |                    |          |                |                   |    |                 |     |                     |
| Students comple           |                                                             |                |                      |                                   |              |                    |          |                |                   |    |                 |     |                     |
|                           | •                                                           |                |                      | s, actuators                      |              |                    |          |                |                   |    |                 |     |                     |
| CO2                       |                                                             |                | č                    | ntrol technic                     |              |                    |          |                |                   |    |                 |     |                     |
| CO3                       |                                                             |                | <u> </u>             | sis in Mech                       |              |                    |          |                |                   |    |                 |     |                     |
| CO4                       |                                                             |                |                      | tors with the                     |              |                    |          |                |                   |    |                 |     |                     |
|                           | <b>A</b>                                                    |                |                      | nds and adva                      | natronic     | cs                 |          |                |                   |    |                 |     |                     |
|                           |                                                             |                |                      | ·                                 | PO7          |                    |          |                |                   |    |                 |     |                     |
| COs/POs                   | Course Outcome with Program Outcome (POs)PO1PO2PO3PO4PO5PO6 |                |                      |                                   |              |                    |          | PO8            | PO9               | PO |                 |     | PO12                |
| CO1                       | 3                                                           | 3              | 3                    | 3                                 | 3            | 3                  | 3        | 3              | 3                 | 3  |                 |     | 3                   |
| CO2                       | 3                                                           | 3              | 3                    | 3                                 | 2            | 2                  | 2        | 3              | 2                 | 3  |                 |     | 2                   |
| CO3                       | 3                                                           | 3              | 3                    | 3                                 | 3            | 3                  | 1        | 3              | 3                 | 3  |                 |     | 3                   |
| CO4                       | 1                                                           | 3              | 3                    | 3                                 | 2            | 2                  | 3        | 3              | 2                 | 3  |                 |     | 2                   |
| CO5                       | 3                                                           | 3              | 3                    | 2                                 | 3            | 3                  | 2        | 3              | 2                 | 2  | 2 3             |     | 3                   |
| COs /PSOs                 |                                                             |                | PSO1                 |                                   |              | PSO2               |          |                |                   |    | PSO3            |     |                     |
| CO1                       |                                                             |                | 3                    |                                   |              |                    | 3        |                |                   |    | 3               |     |                     |
| CO2                       |                                                             |                | 3                    |                                   |              | 2                  | 2        |                |                   |    | 2               |     |                     |
| CO3                       |                                                             |                | 3                    |                                   |              |                    | 3        |                |                   |    | 3               |     |                     |
| CO4                       |                                                             |                | 3                    |                                   |              | 2                  | 2        |                |                   |    | 2               |     |                     |
| CO5                       |                                                             |                | 2                    |                                   |              |                    | 3        |                |                   |    | 3               |     |                     |
| 3/2/1 Indicates           | Strength                                                    | of Cor         | relation, 3          | -High, 2-M                        | ledium, 1    | -Low               |          |                |                   |    |                 |     |                     |
| Category                  |                                                             | Basic Sciences | Engineering Sciences | Humanities and Social<br>Sciences | Program Core | ✓Prooram Flectives |          | Open Electives | Interdisciplinary |    | Skill Component |     | Practical / Project |
| Cate                      |                                                             |                |                      |                                   |              |                    |          |                |                   |    |                 |     |                     |

Mechatronics-definition and key issues-evolution-elements-mechatronics approach to modern Engineering design.

#### UNIT II SENSORS AND TRANSDUCERS

Types-displacement, position, proximity and velocity sensors-signal processing-data display.

#### UNIT III **ACTUATION SYSTEMS**

Mechanical types-applications-electrical types-applications-pneumatic and hydraulic systems-applications -selection of actuators

#### UNIT IV **CONTROL SYSTEMS**

Types of controllers-programmable logic controllers-applications-ladder diagrams-microprocessor applications in mechatronics-programming interfacing-computer applications

#### UNIT V **RECENT ADVANCES**

Manufacturing mechatronics – automobile mechatronics – medical mechatronics – office automation – case studies.

### **Total No. of Periods:45**

### **TEXT BOOKS**

- 1. Bulton, N. (1995) Mechatronics: Electronic Control system for Mechanical and Electrical Engineering, Long man.
- 2. Dradly, D.A. Dawson, D. Burd, N. C. and Loader, A.J. (1993) Mechatronics: Electronics in products and processes, Chapman & Hall.

### **REFERENCE BOOKS**

- 1. HMT Mechatronics. NewDelhi: Tata McGraw-Hill.
- 2. GalipUlsoyA., and Devices, W.R. (1989) Microcomputer Applications in Manufacturing. USA: John wiley.
- 3. James Harter, (1995) Electromechanics: Principles, concepts and devices. New Jersey: Prentice Hall.



| Course Code:<br>EBEE22E03 | Course Name: MECHATRONICS     | Ty/ Lb/<br>ETL/IE | L | T/SLr | P/R | С |
|---------------------------|-------------------------------|-------------------|---|-------|-----|---|
|                           | Prerequisite: Control Systems | Ту                | 3 | 0/0   | 0/0 | 3 |

### 9

9

9

9

9



| Course Code:<br>EBEE22E04 | Course     | Name:                                                                  | FIBER C                                                                                                                       | PTICS (               | COMM     | TION         |                    | y/ Lb/<br>TL/IE | L                 | T/SLr   | P/R             | C                     |                     |  |
|---------------------------|------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|--------------|--------------------|-----------------|-------------------|---------|-----------------|-----------------------|---------------------|--|
|                           | Prerequ    | uisite: C                                                              | ommunio                                                                                                                       | cation Sys            | stems a  | and IOT      |                    |                 | Ту                | 3       | 0/0             | 0/0                   | 3                   |  |
| L : Lecture T : 7         | Tutorial   | SLr : Su                                                               | pervised l                                                                                                                    | Learning I            | P: Proje | ect R : R    | esearch C          | : Credits       |                   |         |                 |                       |                     |  |
| T/L/ETL:Theor             |            | mbedded                                                                | l Theory a                                                                                                                    | and Lab               |          |              |                    |                 |                   |         |                 |                       |                     |  |
| OBJECTIVES                |            |                                                                        |                                                                                                                               |                       |          |              |                    |                 |                   |         |                 |                       |                     |  |
| • T                       | o learn tl | he basic                                                               | elements                                                                                                                      | of optical            | fiber to | ansmiss      | sion link, fi      | ber mode        | s configu         | iration | is and st       | ructur                | es                  |  |
| • T                       | o learn f  | iber opti                                                              | cs receive                                                                                                                    | rs such as            | s PIN A  | PD dio       | les                |                 |                   |         |                 |                       |                     |  |
|                           |            |                                                                        |                                                                                                                               |                       |          |              | ty of netwo        |                 | pects             |         |                 |                       |                     |  |
|                           |            |                                                                        |                                                                                                                               |                       |          |              | nunication         |                 |                   |         |                 |                       |                     |  |
|                           | Ŭ          |                                                                        | networks                                                                                                                      | and under             | stand n  | on-linea     | ar effects in      | n optical fi    | ibers             |         |                 |                       |                     |  |
| COURSE OUT                |            |                                                                        |                                                                                                                               |                       |          |              |                    |                 |                   |         |                 |                       |                     |  |
| Students compl            |            |                                                                        |                                                                                                                               |                       |          |              |                    |                 |                   |         |                 |                       |                     |  |
|                           |            |                                                                        |                                                                                                                               |                       |          |              | munication         |                 |                   |         |                 |                       |                     |  |
| CO2                       |            |                                                                        |                                                                                                                               | A                     |          |              | optical con        | ponents         |                   |         |                 |                       |                     |  |
| CO3                       |            |                                                                        |                                                                                                                               |                       |          |              | n systems          |                 |                   |         |                 |                       |                     |  |
| CO4                       |            |                                                                        |                                                                                                                               |                       | <b>L</b> |              | r communi          | 2               |                   |         |                 |                       |                     |  |
| CO5                       |            |                                                                        |                                                                                                                               |                       |          |              | r effects in       | optical fi      | bers              |         |                 |                       |                     |  |
|                           | ourse Ou   | Outcome with Program Outcome (POs)PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12 |                                                                                                                               |                       |          |              |                    |                 |                   |         |                 |                       |                     |  |
| COs/POs                   | <b>PO1</b> | PO2                                                                    | PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO1 |                       |          |              |                    |                 |                   |         |                 |                       |                     |  |
| CO1                       | 3          | 3                                                                      | 3                                                                                                                             | 3                     | 3        | 3            | 3                  | 3               | 3                 | 3       | 3               | ;                     | 3                   |  |
| CO2                       | 3          | 3                                                                      | 3                                                                                                                             | 3                     | 2        | 2            | 2                  | 3               | 2                 | 3       | 2               |                       | 2                   |  |
| CO3                       | 3          | 3                                                                      | 3                                                                                                                             | 3                     | 3        | 3            | 1                  | 3               | 3                 | 3       | 3               |                       | 3                   |  |
| CO4                       | 1          | 3                                                                      | 3                                                                                                                             | 3                     | 2        | 2            | 3                  | 3               | 2                 | 3       | 2               |                       | 2                   |  |
| CO5                       | 3          | 3                                                                      | 3                                                                                                                             | 2                     | 3        | 3            | 2                  | 3               | 2                 | 2       | 3               | 5                     | 3                   |  |
| COs /PSOs                 |            | P                                                                      | SO1                                                                                                                           |                       |          | ]            | PSO2               |                 |                   | F       | PSO3            |                       |                     |  |
| CO1                       |            |                                                                        | 3                                                                                                                             |                       |          |              | 3                  |                 |                   |         | 3               |                       |                     |  |
| CO2                       |            |                                                                        | 3                                                                                                                             |                       |          |              | 2                  |                 |                   |         | 2               |                       |                     |  |
| CO3                       |            |                                                                        | 3                                                                                                                             |                       |          |              | 3                  |                 |                   |         | 3               |                       |                     |  |
| CO4                       |            |                                                                        | 3                                                                                                                             |                       |          |              | 2                  |                 |                   |         | 2               |                       |                     |  |
| CO5                       |            |                                                                        | 2                                                                                                                             |                       |          |              | 3                  |                 |                   |         | 3               |                       |                     |  |
| 3/2/1 Indicates           | Strength   | n of Corr                                                              | elation, 3                                                                                                                    | -High, 2-             | Mediu    | n, 1-Lov     | W                  |                 | •                 |         |                 |                       |                     |  |
| Category                  |            | Basic Sciences                                                         | Engineering Sciences                                                                                                          | Humanities and Social | Sciences | Program Core | ✓Program Electives | Open Electives  | Interdisciplinary |         | Skill Component | Daractical / Durainat | rractical / rroject |  |
| Cat                       |            |                                                                        |                                                                                                                               |                       |          |              |                    |                 |                   |         |                 |                       |                     |  |

General system- transmission link-advantage of optical fiber communication-basic structure of optical fiber waveguideray theory transmission-optical fiber modes and transmission-optical fiber modes and configuration-step index and graded index fiber-single mode fiber-fiber materials-photonic crystal, fiber optic cables specialty fibers.

#### **OPTICAL TRANSMISSION AND RECEIVER UNIT II**

Introduction-Attenuation-absorption-scattering losses-bending loss-dispersion-intra model dispersion-inter model dispersion -Optical receiver operation-receiver sensitivity-quantum limit-eye diagrams-coherent detection-burst mode receiver-Analog receivers.

#### UNIT III ANALOG LINKS

Analog links – Introduction, overview of analog links, CNR, multichannel transmission techniques, RF over fiber, key link parameters, Radio over fiber links, microwave photonics.

#### **UNIT IV DIGITAL LINKS**

Digital links – Introduction, point-to-point links, System considerations, link power budget, resistive budget, short wave length band, transmission distance for single mode fibers, Power penalties, nodal noise and chirping.

#### UNIT V DIGITAL TRANSMISSION SYSTEMS

Point to point links-system considerations-link power budget-modulation formats for analog communication system-Introduction to WDM concept -Introduction to advanced multiplexing strategies.

### **TEXT BOOKS**

- 1. J. Keiser, Fibre Optic communication, McGraw-Hill, 5th Ed. 2013 (Indian Edition).
- 2. J. Gowar, Optical communication systems, Prentice Hall India, 1987.
- 3. S.E. Miller and A.G. Chynoweth, eds., Optical fibres telecommunications, Academic Press, 1979.
- 4. G. Agrawal, Nonlinear fibre optics, Academic Press, 2nd Ed. 1994.

### **REFERENCE BOOKS**

- 1. T. Tamir, Integrated optics, (Topics in Applied Physics Vol.7), Springer-Verlag, 1975.
- 2. G. Agrawal, Fiber optic Communication Systems, John Wiley and sons, New York, 1997
- 3. F.C. Allard, Fiber Optics Handbook for engineers and scientists, McGraw Hill, New York, 1990.



| Course Code:<br>EBEE22E04 | Course Name: FIBER OPTICS COMMUNICATION     | Ty/ Lb/<br>ETL/IE | L | T/SLr | P/R | C |
|---------------------------|---------------------------------------------|-------------------|---|-------|-----|---|
|                           | Prerequisite: Communication Systems and IOT | Ту                | 3 | 0/0   | 0/0 | 3 |

### Total No. of Periods:45

78

9

9

9

9



| Course Code:<br>EBEE22E05 | Course<br>TECHN     |                                                                                                                                                                                               |                            | ENERGY                            | CONV     | /ERSIO    | N                 |                | Fy/ Lb/<br>ETL/IE | L      | T/SLr           | P/R                 | C             |  |
|---------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------|----------|-----------|-------------------|----------------|-------------------|--------|-----------------|---------------------|---------------|--|
|                           | Prerequ             | uisite: E                                                                                                                                                                                     | nergy Uti                  | ilization a                       | and Cor  | nservatio | n                 |                | Ту                | 3      | 0/0             | 0/0                 | 3             |  |
| L : Lecture T : 7         | Futorial            | SLr : Su                                                                                                                                                                                      | pervised I                 | Learning                          | P: Proje | ct R : Re | search C          | C : Credits    |                   | 1      | I               |                     | L             |  |
| T/L/ETL:Theor             |                     | mbedde                                                                                                                                                                                        | d Theory a                 | and Lab                           |          |           |                   |                |                   |        |                 |                     |               |  |
| OBJECTIVES                |                     |                                                                                                                                                                                               |                            |                                   |          |           |                   |                |                   |        |                 |                     |               |  |
|                           | -                   |                                                                                                                                                                                               | lar Radiati                |                                   |          |           | 1                 |                |                   |        |                 |                     |               |  |
|                           | -                   |                                                                                                                                                                                               | lge on the                 | ~ ~                               |          |           |                   | hnology        |                   |        |                 |                     |               |  |
|                           |                     |                                                                                                                                                                                               | fundamen                   |                                   |          |           | cells             |                |                   |        |                 |                     |               |  |
|                           |                     |                                                                                                                                                                                               | r cells in c<br>solar pass |                                   |          | nner.     |                   |                |                   |        |                 |                     |               |  |
| COURSE OUT                |                     |                                                                                                                                                                                               | solar pass                 | Ive Archi                         | lecture  |           |                   |                |                   |        |                 |                     |               |  |
| Students comple           |                     |                                                                                                                                                                                               | were able                  | to                                |          |           |                   |                |                   |        |                 |                     |               |  |
| ^                         |                     |                                                                                                                                                                                               |                            |                                   | on, prin | ciples of | collecto          | rs, applica    | tions of          | solar  | energy          | desig               | n             |  |
|                           |                     |                                                                                                                                                                                               | l its archite              |                                   | , p      | r 01      |                   | .,             |                   |        |                 |                     |               |  |
| (())                      | Realize<br>architec |                                                                                                                                                                                               |                            |                                   |          |           |                   |                |                   |        |                 |                     |               |  |
| 1 1 1 1 1                 | -                   | alyze and design the collectors, applications of solar energy, design the PV cells and its hitecture amine the PV system design and applications of solar energy, design the PV cells and its |                            |                                   |          |           |                   |                |                   |        |                 |                     |               |  |
| C04                       | Examin              | amine the PV system design and applications of solar energy, design the PV cells and its chitecture                                                                                           |                            |                                   |          |           |                   |                |                   |        |                 |                     |               |  |
|                           |                     | chitecture<br>rticulate the usage of solar passive architecture and its applications collectors, applications of solar<br>ergy, design the PV cells and its architecture                      |                            |                                   |          |           |                   |                |                   |        |                 |                     |               |  |
| Mapping of Co             |                     |                                                                                                                                                                                               |                            |                                   |          |           |                   |                |                   |        |                 |                     |               |  |
| COs/POs                   | PO1                 | PO2                                                                                                                                                                                           | PO3                        | PO4                               | PO5      | PO6       | PO7               |                | PO9               | PO     |                 |                     | 012           |  |
| C01                       | 3                   | 1                                                                                                                                                                                             | 1                          | 2                                 | 2        | 3         | 2                 | 2              | 1                 | 3      | 2               |                     | 1             |  |
| CO2                       | 3                   | 2                                                                                                                                                                                             | 2                          | 2                                 | 2        | 3         | 3                 | 3              | 3                 | 3      | 2               |                     | 2             |  |
| <u>CO3</u>                | 3                   | 3                                                                                                                                                                                             | 3                          | 3                                 | 3        | 3         | 3                 | 3              | 3                 | 3      | 2               |                     | 1             |  |
| CO4<br>CO5                | 3                   | 3                                                                                                                                                                                             | 3                          | <u>3</u><br>3                     | 3        | 3         | 3                 | 3              | 3                 | 3<br>3 | 2               |                     | $\frac{2}{2}$ |  |
| COs/PSOs                  | 5                   | -                                                                                                                                                                                             | <b>SO1</b>                 | 5                                 | 5        | -         | 502               | 5              | 5                 | _      | PSO3            | 1                   | 4             |  |
| CO3/1303                  |                     | 1                                                                                                                                                                                             | 3                          |                                   |          | 1.        | 2                 |                |                   |        | 2               |                     |               |  |
| CO1<br>CO2                |                     |                                                                                                                                                                                               | 3                          |                                   |          |           | $\frac{2}{3}$     |                |                   |        | $\frac{2}{3}$   |                     |               |  |
| CO3                       |                     |                                                                                                                                                                                               | 3                          |                                   |          |           | 3                 |                |                   |        | -               |                     |               |  |
| CO4                       |                     |                                                                                                                                                                                               | 3                          |                                   |          |           | 3                 |                |                   |        | 3<br>3          |                     |               |  |
| CO5                       |                     |                                                                                                                                                                                               | 3                          |                                   |          |           | 3                 |                |                   |        | 3               |                     |               |  |
| 3/2/1 Indicates           | Strength            | of Cor                                                                                                                                                                                        | relation, 3-               | -High, 2-                         | Medium   | n, 1-Low  |                   |                | 1                 |        |                 | 1                   |               |  |
|                           |                     |                                                                                                                                                                                               |                            |                                   |          |           |                   |                |                   |        |                 |                     | _             |  |
|                           |                     | ences                                                                                                                                                                                         | ing                        | es and<br>iences                  | euc j    | COTO      | Program Electives | ctives         | plinary           |        | aponent         | Dractical / Droiact |               |  |
| jory                      |                     | Basic Sciences                                                                                                                                                                                | Engineering<br>Sciences    | Humanities and<br>Social Sciences | cuerbor. |           | rogram            | Open Electives | Interdisciplinary |        | Skill Component | ractical            | ומרווימו      |  |
| Category                  |                     | д                                                                                                                                                                                             | ЦN                         |                                   |          | - √       | <u>م</u>          | 0              | I                 |        | S               |                     |               |  |

#### Course Code: Course Name: SOLAR ENERGY CONVERSION **TECHNIQUES**

#### SOLAR RADIATION AND COLLECTORS UNIT I

Solar Radiation-Solar angles - Sun path diagrams - shadow determination - Solar Collectors - flat plate collector thermal analysis - heat capacity effect - testing methods-evacuated tubular collectors - concentrator collectors-classificationtracking systems-compound paraboli concentrators-parabolic trough concentrators -concentrators with point focus-Heliostats - performance of the collectors

#### APPLICATIONS OF SOLAR THERMAL TECHNOLOGY **UNIT II**

Prerequisite: Energy Utilization and Conservation

Principle of working, types - design and operation of - solar heating and cooling systems - solar water heaters - thermal storage systems-solar still-solar cooker -domestic, community- solar pond - solar drying

#### **UNIT III** SOLAR PV FUNDAMENTALS

Solar cells - p-n junction: homo and hetro junctions - metal-semiconductor interface - dark and illumination characteristics -efficiency limits- variation of efficiency with band-gap and temperature -efficiency measurements-high efficiency cells -preparation of metallurgical, electronic and solar grade Silicon-production of single crystal Silicon: Czokralski(CZ)and Float Zone(FZ) method

#### **UNIT IV** SOLAR PHOTO VOLTAIC SYSTEM DESIGN AND APPLICATIONS

Solar cellar ray system analysis and performance prediction- Shadow analysis: reliability- solar cellar ray design concepts-PV system design-design process and optimization-voltage regulation-maximum tracking - use of computers in array design - quick sizing method - array protection and troubleshooting - standalone -hybrid and grid connected system - System installation - operation and maintenances - field experience - PV market analysis and economics of SPV systems

#### UNIT V SOLAR PASSIVE ARCHITECTURE

Thermal comfort - heat transmission in buildings- bioclimatic classification – passive heating concepts: direct heat gain - indirect heat gain - isolated gain and sunspaces - passive cooling concepts: evaporative cooling -application of wind, water and earth for cooling; shading - paints and cavity walls for cooling - roof radiation traps - earth air-tunnel. – energy efficient landscape design - thermal comfort - concept of solar temperature and its significance- calculation of instantaneous heat gain through building envelope

### **TEXT BOOKS**

**EBEE22E05** 

- Sukhatme SP, (1984), Solar Energy, TataMcGraw Hill 1.
- Kreider, J.F. and Frank Kreith, (1981), Solar Energy Handbook, McGrawHill 2.

### **REFERENCE BOOKS**

- Garg HP., PrakashJ., (2000), Solar Energy: Fundamentals & Applications, TataMcGrawHill 1.
- 2. S.T. Rama, E. Sheeba Percis, A. Nalini, S. Bhuvaneswari, (2017), Handbook on Standalone Renewable Energy Systems, 1stEdn, Research India Publication ISBN No 978-93-87374-12-6
- 3. AlanLFahrenbruch and Richard H Bube, (1983), Fundamentals of Solar Cells: PV Solar Energy Conversion, Academic Press
- 4. Larry D Partain, (1995), Solar Cells and their Applications, John Wiley and Sons, Inc.



### 80

# 9

9

9

T/SLr P/R

0/0

9

0/0

С

3

Ty/Lb/

ETL/IE

Ty

L

3

# 9

Total No. of Periods:45

# D EDUCATIONAL AND RESEARCH INSTITUTE University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

| Course Code:<br>EBEE22E06 | Prerequisite: None                                          |                       |               |               |        |                   | NOL            | OGY               |             | Fy/ Lb/<br>ETL/IE | L                   | T/SLr                 | P/R | C          |
|---------------------------|-------------------------------------------------------------|-----------------------|---------------|---------------|--------|-------------------|----------------|-------------------|-------------|-------------------|---------------------|-----------------------|-----|------------|
|                           | Prereq                                                      | uisite: No            | ne            |               |        |                   |                |                   |             | Ту                | 3                   | 0/0                   | 0/0 | 3          |
| L: Lecture T: T           |                                                             |                       |               |               | Proje  | ect R:            | Rese           | arch C: C         | redits      |                   | 1                   |                       |     |            |
| T/L/ETL:Theor             |                                                             | mbedded               | Theory a      | nd Lab        |        |                   |                |                   |             |                   |                     |                       |     |            |
| OBJECTIVES                |                                                             |                       |               |               |        |                   |                |                   |             |                   |                     |                       |     |            |
|                           |                                                             | e concept o           |               | -             |        |                   |                |                   |             |                   |                     |                       |     |            |
|                           |                                                             | l the Desig           |               |               |        | -                 | g              |                   |             |                   |                     |                       |     |            |
|                           |                                                             | vledge on             |               |               |        | •                 |                |                   |             |                   |                     |                       |     |            |
|                           |                                                             | importanc             |               |               |        |                   |                |                   |             |                   |                     |                       |     |            |
|                           |                                                             | e future tre          | ends in G     | reen Buil     | lding  | and to            | o reva         | imp the ed        | cological   | design.           |                     |                       |     |            |
| COURSEOUT                 |                                                             |                       |               |               |        |                   |                |                   |             |                   |                     |                       |     |            |
| Students comple           |                                                             |                       |               |               |        |                   |                |                   |             |                   |                     |                       |     |            |
| C01                       |                                                             | tand the co           |               |               |        |                   | -              | 1                 | <u> </u>    | <u> </u>          |                     |                       |     |            |
| CO2                       |                                                             | rize the in           |               |               |        |                   |                |                   | t carbon    | tooting           |                     |                       |     |            |
| CO3                       |                                                             | he issues i           |               |               |        |                   |                |                   |             |                   |                     |                       |     |            |
| CO4                       | Implem                                                      | ent the co            | ncept of      | green bui     | ilding | g in the          | es requir      | ed in a c         | ost-effecti | ive ma            | nner                |                       |     |            |
| CO5                       |                                                             | a Green b             |               |               |        |                   |                |                   |             |                   |                     |                       |     |            |
|                           |                                                             |                       |               |               |        |                   |                | Dee               | DOG         | <b>D</b> O10      |                     | 4 5                   | 010 |            |
| COs/POs                   | Course Outcome with Program Outcome (POs)PO1PO2PO3PO4PO5PO6 |                       |               |               |        |                   |                |                   | PO8         | PO9               | PO10                |                       | 1 P | <u>012</u> |
| <u>CO1</u>                | 3                                                           | 3                     | 1             | 3             | 2      |                   | 3              | 3                 | 3           | 2                 | 3                   | 3                     |     | 3          |
| CO2                       | 3                                                           | 2                     | 2             | 2             | 2      |                   | 2              | 3                 | 2           | 2                 | 2                   | 2                     |     | 3          |
| <u>CO3</u>                | 3                                                           | 3                     | 2             | 3             | 2      |                   | 2              | 3                 | 3           | 2                 | 2                   | 2                     |     | 3          |
| <u>CO4</u>                | 3                                                           | 2                     | 2<br>2        | $\frac{2}{2}$ | 3      |                   | $\frac{2}{3}$  | 2                 | 2           | 3                 | 23                  | $\frac{2}{3}$         |     | 2<br>3     |
| CO5                       | 3                                                           | 2                     |               | 2             |        |                   | -              |                   | 2           | 2                 | -                   |                       |     | 3          |
| COs /PSOs                 |                                                             |                       | 01            |               |        |                   | P              | <u>502</u>        |             |                   | P                   | <u>SO3</u>            |     |            |
| <u>CO1</u>                |                                                             |                       | 3             |               |        |                   |                | 3                 |             |                   |                     | 3                     |     |            |
| CO2                       |                                                             |                       | 2             |               |        |                   |                | 3                 |             |                   |                     | 2                     |     |            |
| CO3<br>CO4                |                                                             |                       | 2             |               |        |                   |                | 3                 |             |                   |                     | 3                     |     |            |
| C04<br>C05                |                                                             |                       | <u>2</u><br>3 |               |        |                   |                | 2<br>3            |             |                   |                     | 2<br>2                |     |            |
| 3/2/1 Indicates           | Strengt                                                     |                       |               | High ?        | Medi   | um 1              | -L ou          | -                 |             |                   |                     | 4                     |     |            |
| 3/2/1 mulcates            | Suchgu                                                      |                       | iatioli, 3-   | -111gll, 2-   | ivicul | um, 1.            | -LOW           |                   |             |                   |                     |                       |     |            |
| Category                  |                                                             | Humanities and Social | ociences      | Program Core  |        | Program Electives | Open Electives | Interdisciplinary |             | Skill Component   | Dractical / Draiact | I IAUIUVAI / I IVJVVI |     |            |
| Cat                       | Basic Sciences<br>Engineering Sciences                      |                       |               |               |        |                   | ٦              |                   |             |                   |                     |                       |     |            |

B. Tech – Electrical and Electronics Engineering (Part Time – 2022 Regulation)

# UNIT I INTRODUCTION TO GREEN BUILDING

Basics of Green-Sustainable Design–ecological Design–Green Design–Green Buildings-Progress & Obstacles-High Performance Green Buildings

### UNIT II DESIGN OF GREEN BUILDING

**Prerequisite:** None

Foundations of Green Building-Environmental Concerns-Assessment-Design process-green building –execution project-Heat Island Mitigation–Sustainable sites

### UNIT III REDUCTION OF CARBON FOOTING

Building energy Issues – Design Strategy – Renewable Energy Systems- Smart Building & energy Management Systems -Reducing the Carbon footprint

### UNIT IV ENVIRONMENTAL ASPECTS

Hydrological cycle-Sustainable storm water management-Construction Operations and commissioning of Green Building –Construction & Demolition Waste Management- Indoor Environmental Quality

### UNIT V FUTURE TRENDS

Economics in Green Building–Managing First costs–Financial Barriers-Articulating Performance goals for future Green Buildings– Revamping Ecological Design

### **Total No. of Periods: 45**

Tv

3

### TEXT BOOKS

- 1. Charles J. Kibert Sustainable Construction: Green Building Design and Delivery, 3<sup>rd</sup> Edition Wiley Publisher, (2012) ISBN:978-0-470-90445-9
- 2. Francis D, K, Ching, IanM, Shapiro, Green Building Illustrated, Wiley

### **REFERENCE BOOKS**

- 1. Sam Kubba, Handbook of Green Building Design, and Construction, Elsevier Publisher (2012) ISBN:978-0-12-385128-4
- Charles J. Kibert, Martha C. Monroe, Anna L. Peterson, Richard R. Plate, Leslie Paul Thiele, WorkingToward Sustainability: Ethical Decision –Making in a Technological World, Wiley Publisher, ISBN :978-0-470-53972-9
- 3. S. T. Rama, E. SheebaPercis, A. Nalini, S. Bhuvaneswari, (2017), Handbook on Standalone Renewable Energy Systems, 1<sup>st</sup> Edn, Research India Publication ISBN No 978-93-87374-12-6

| EDUCATIONAL AND RESEARCH INSTITUTE                                   | At NAAC |
|----------------------------------------------------------------------|---------|
| DEEMED TO BE UNIVERSITY                                              | * * *   |
| University with Graded Autonomy Status                               |         |
| (An ISO 21001 : 2018 Certified Institution)                          |         |
| Perform F.V.P. High Pared Medanarral Channel OF Terrilling day India |         |

### (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India. Course Code: EBEE22E06 Course Name: GREEN BUILDING TECHNOLOGY Ty/ Lb/ ETL/IE L T/SLr P/R C

### **9** 1age

#### 9

#### 82

#### 9

9

9

0/0

3

0/0



| Course Code:<br>EBEE22E07    |                                                                                       | e Name:<br>CATIO |            | AL NETV     | VORKS    | TS           |                   | Ty/ Lb<br>ETL/II |                   | T/SLr    | P/R             | С                   |                                         |
|------------------------------|---------------------------------------------------------------------------------------|------------------|------------|-------------|----------|--------------|-------------------|------------------|-------------------|----------|-----------------|---------------------|-----------------------------------------|
|                              | Prereq                                                                                | uisite: N        | one        |             |          |              |                   |                  | Ту                | 3        | 0/0             | 0/0                 | 3                                       |
| L : Lecture T : 7            | Futorial                                                                              | SLr : Su         | pervised   | 1 Learning  | g P: Pro | ject R : ]   | Research          | C : Cred         | its               |          |                 |                     |                                         |
| T/L/ETL:Theor                | y/Lab/E                                                                               | mbedded          | d Theory   | y and Lab   |          |              |                   |                  |                   |          |                 |                     |                                         |
| OBJECTIVES                   |                                                                                       |                  |            |             |          |              |                   |                  |                   |          |                 |                     |                                         |
| <ul> <li>To known</li> </ul> | ow the f                                                                              | undamer          | ntals of I | Neural net  | work     |              |                   |                  |                   |          |                 |                     |                                         |
| To lea                       | rn the th                                                                             | neories of       | f Neural   | network     |          |              |                   |                  |                   |          |                 |                     |                                         |
|                              |                                                                                       |                  |            | eural netw  |          |              |                   |                  |                   |          |                 |                     |                                         |
|                              |                                                                                       |                  |            | ral Netwo   |          |              |                   |                  |                   |          |                 |                     |                                         |
|                              |                                                                                       |                  | etwork fo  | or control  | of vario | ous para     | meters fo         | or differer      | nt applica        | ation    |                 |                     |                                         |
| COURSE OUT                   |                                                                                       |                  |            |             |          |              |                   |                  |                   |          |                 |                     |                                         |
| Students comple              |                                                                                       |                  |            |             |          |              |                   |                  |                   |          |                 |                     |                                         |
|                              |                                                                                       |                  |            | ntal of neu |          | work         |                   |                  |                   |          |                 |                     |                                         |
| CO2                          |                                                                                       |                  |            | Neural ne   |          |              |                   |                  |                   |          |                 |                     |                                         |
| CO3                          | 1                                                                                     |                  |            | e architect |          |              |                   |                  |                   |          |                 |                     |                                         |
|                              |                                                                                       |                  |            | node using  |          |              |                   |                  |                   |          |                 |                     |                                         |
|                              |                                                                                       |                  |            |             |          |              | paramete          | rs for diff      | erent ap          | plicatio | n               |                     |                                         |
|                              |                                                                                       |                  |            |             |          |              |                   |                  |                   |          |                 |                     |                                         |
| COs/POs                      | PO1         PO2         PO3         PO4         PO5         PO6         PO7         1 |                  |            |             |          |              |                   |                  |                   |          |                 |                     |                                         |
| CO1                          | 3                                                                                     | 3                | 2          | 2           | 2        | 3            | 3                 | 1                | 3                 | 2        | 3               |                     | 3                                       |
| CO2                          | 2                                                                                     | 3                | 3          | 3           | 3        | 3            | 2                 | 2                | 2                 | 2        | 2               |                     | 3                                       |
| CO3                          | 3                                                                                     | 3                | 3          | 3           | 3        | 3            | 3                 | 2                | 3                 | 2        | 2               |                     | 3                                       |
| CO4                          | 2                                                                                     | 3                | 3          | 3           | 3        | 3            | 2                 | 2                | 2                 | 3        | 2               |                     | 3                                       |
| CO5                          | 3                                                                                     | 3                | 3          | 3           | 3        | 3            | 2                 | 2                | 2                 | 2        | 3               |                     | 2                                       |
| COs /PSOs                    |                                                                                       |                  | 501        |             |          | P            | SO2               |                  |                   | P        | PSO3            |                     |                                         |
| CO1                          |                                                                                       |                  | 2          |             |          |              | 3                 |                  |                   |          | 3               |                     |                                         |
| CO2                          |                                                                                       |                  | 3          |             |          |              | 3                 |                  |                   |          | 2               |                     |                                         |
| CO3                          |                                                                                       |                  | 3          |             |          |              | 3                 |                  |                   |          | 3               |                     |                                         |
| CO4                          |                                                                                       |                  | 3          |             |          |              | 3                 |                  |                   |          | 2               |                     |                                         |
| CO5                          |                                                                                       |                  | 3          |             |          |              | 3                 |                  |                   |          | 2               |                     |                                         |
| 3/2/1 Indicates              | Strengt                                                                               | h of Corr        | elation,   | 3–High, 2   | 2-Mediu  | ım, 1-Lo     | OW                | r                | 1                 |          |                 |                     |                                         |
| Category                     | Basic Sciences<br>Engineering Sciences                                                |                  |            |             | ocicicos | Program Core | Program Electives | Open Electives   | Interdisciplinary |          | Skill Component | Dractical / Droiact | 111111111111111111111111111111111111111 |
| C                            |                                                                                       |                  |            |             |          | n            | 1                 |                  |                   |          |                 |                     |                                         |

Course Name: NEURAL NETWORKS AND ITS

FUNDAMENTALS OF NEURAL NETWORKS Introduction- Basic Structure of a Neuron- Model of Biological Neurons-Elements of Neural Networks Weighting Factors-Threshold-Activation Function.

#### UNIT II NEURAL NETWORKS THEORY

APPLICATION

**Prerequisite:** None

ADALINE- Linear Separable Patterns- Single Layer Perceptron- General Architecture- Linear Classification-Perceptron Algorithm-Multi-Layer Perceptron General Architecture-Input-Output Mapping.

#### UNIT III **NEURAL NETWORK ARCHITECTURE**

Introduction- NN Classifications- Feed forward and feedback networks- Supervised and Unsupervised Learning Networks- Back Propagation Algorithm- Delta Training Rule-Radial Basis Function Network (RBFN)-Kohonen Self Organization Network-Hopfield Network.

#### **UNIT IV** NEURAL NETWORKS FOR CONTROL

Schemes of neuro-control – identification and control of dynamical systems – adaptive neuro controller – casestudy.

#### UNIT V APPLICATION OF NEURAL NETWORKS

Introduction -Application of neural network in Design of digital filters- computer networking -Electrical Fault Diagnosis.

### **Total No. of Periods:45**

С

3

T/SLr P/R

0/0

9

9

9

9

9

0/0

### **TEXT BOOKS**

Course Code:

**EBEE22E07** 

UNIT I

- 1. AliZilouchian MoJamshidi, (2000) Intelligent Control Systems Using Soft Computing Methodologies.
- 2. Englewoodcliffs, N.J. Laurance Fausett, (1992) Fundamentals of Neural Networks. Prentice Hall.

### **REFERENCE BOOKS**

- 1. Tsoukala, L.H. and RobertE.Uhrig, (1997) Fuzzy and Neural approach in Engineering. John Wiley and Sons.
- 2. JacekM.Zurada, (1997) Introduction to artificial Neural Systems. Mumbai: Jaico Publishing House.
- 3. Millon, W.T. Sutton, R.S. and Webrose, P.J.(1992) Neural Networks for control.MIT: Press.





Ty/ Lb/

**ETL/IE** 

Tv

L



| Course Code:<br>EBEE22E08 | Course N                                                        | Name: DI    | NG         |                                  | <b>Fy/ Lb/</b><br>ETL/IE                                                 | L          | T/SLr      | P/R         | C               |                     |                   |      |                                       |
|---------------------------|-----------------------------------------------------------------|-------------|------------|----------------------------------|--------------------------------------------------------------------------|------------|------------|-------------|-----------------|---------------------|-------------------|------|---------------------------------------|
|                           | Prerequi                                                        | site: Con   | trol Sys   | tems                             |                                                                          |            |            |             | Ту              | 3                   | 0/0               | 0/0  | 3                                     |
| L : Lecture T : '         | Tutorial S                                                      | Lr : Super  | vised L    | earning l                        | P: Proje                                                                 | ct R : R   | esearch    | C : Credits | 5               |                     | I                 |      |                                       |
| T/L/ETL: Theo             | ry/Lab/En                                                       | nbedded 7   | Theory a   | nd Lab                           | -                                                                        |            |            |             |                 |                     |                   |      |                                       |
| OBJECTIVES                | 1                                                               |             |            |                                  |                                                                          |            |            |             |                 |                     |                   |      |                                       |
| •                         | To under                                                        | stand the   | fundam     | entals of                        | signals                                                                  | & syst     | ems.       |             |                 |                     |                   |      |                                       |
| •                         | Impart k                                                        | nowledge    | on Z-tra   | ansform                          | concept                                                                  | s.         |            |             |                 |                     |                   |      |                                       |
| •                         | To Unde                                                         | rstand the  | Design     | ing of sig                       | gnals us                                                                 | ing filte  | ers.       |             |                 |                     |                   |      |                                       |
| •                         | To avail                                                        | the know    | ledge on   | design                           | IR and                                                                   | FIR filt   | ers with   | Fourier se  | ries meth       | nod                 |                   |      |                                       |
| •                         | To under                                                        | stand the   | Archited   | cture and                        | l feature                                                                | es of va   | rious sign | nal proces  | sing chip       | s                   |                   |      |                                       |
| COURSE OUT                |                                                                 |             |            |                                  |                                                                          |            |            | -           |                 |                     |                   |      |                                       |
| Students compl            | eting this                                                      | course we   | ere able t | to                               |                                                                          |            |            |             |                 |                     |                   |      |                                       |
| CO1                       | Recall the                                                      | e fundame   | entals of  | signals                          | & syste                                                                  | ms.        |            |             |                 |                     |                   |      |                                       |
| CO2                       |                                                                 | end and in  |            |                                  |                                                                          |            |            |             |                 |                     |                   |      |                                       |
| CO3                       |                                                                 |             |            |                                  |                                                                          |            |            | ig techniq  | ues             |                     |                   |      |                                       |
| CO4                       | Design a                                                        | nd study c  | of variou  | s technic                        | ques inv                                                                 | volved i   | n filters  |             |                 |                     |                   |      |                                       |
| CO5                       | Scrutinize the architecture and features of various signal pr   |             |            |                                  |                                                                          |            |            |             | chips           |                     |                   |      |                                       |
| Mapping of Co             | ourse Outcome with Program Outcome (POs)                        |             |            |                                  |                                                                          |            |            | -           |                 |                     |                   |      |                                       |
| COs/POs                   | PO1                                                             | PO2         | PO3        | PO4                              | PO5                                                                      | <b>PO6</b> | <b>PO7</b> | PO8         | PO9             | PO1                 | lo PO             | 11 P | 012                                   |
| CO1                       | 3                                                               | 2           | 2          | 2                                | 3                                                                        | 3          | 2          | 2           | 2               | 3                   | 2                 |      | 1                                     |
| CO2                       | 3                                                               | 2           | 2          | 2                                | 2                                                                        | 3          | 3          | 3           | 3               | 3                   | 2                 |      | 2                                     |
| CO3                       | 3                                                               | 3           | 3          | 3                                | 3                                                                        | 3          | 3          | 3           | 3               | 3                   | 2                 |      | 2                                     |
| CO4                       | 3                                                               | 3           | 3          | 3                                | 2                                                                        | 3          | 3          | 3           | 3               | 3                   | 2                 |      | 2                                     |
| CO5                       | 3                                                               | 3           | 3          | 3                                |                                                                          |            |            |             |                 | 3                   | 2                 |      | 2                                     |
| COs /PSOs                 |                                                                 | PSC         | )1         |                                  |                                                                          | P          | SO2        |             |                 | P                   | SO3               |      |                                       |
| CO1                       |                                                                 | 3           |            |                                  |                                                                          |            | 2          |             |                 |                     | 2                 |      |                                       |
| CO2                       |                                                                 | 3           |            |                                  |                                                                          |            | 3          |             |                 |                     | 3                 |      |                                       |
| CO3                       |                                                                 | 3           |            |                                  |                                                                          |            | 3          |             |                 |                     | 3                 |      |                                       |
| CO4                       |                                                                 | 3           |            |                                  |                                                                          |            | 3          |             |                 |                     | 3                 |      |                                       |
| CO5                       |                                                                 | 3           |            |                                  |                                                                          |            | 3          |             |                 |                     | 3                 |      |                                       |
| 3/2/1 Indicates           | Strength of                                                     | of Correlat | tion, 3–I  | High, 2-N                        | Medium                                                                   | , 1-Lov    | /          |             |                 |                     |                   |      |                                       |
|                           | Ī                                                               |             |            | Ţ                                |                                                                          |            |            |             |                 |                     |                   |      |                                       |
| ĥ                         | Basic Sciences<br>Engineering Sciences<br>Humanities and Social |             |            | Humanities and Socia<br>Sciences | Program Core<br>Program Electives<br>Open Electives<br>Interdisciplinary |            |            |             | Skill Component | Dractical / Draiact | auluar / I i ujuu |      |                                       |
| Category                  | Engi<br>Hum                                                     |             |            | Hu<br>Sci                        |                                                                          | ¥<br>√     | Prc        | Op          | Int             |                     |                   | D    | , , , , , , , , , , , , , , , , , , , |

#### Course Code: **Course Name: DIGITAL SIGNAL PROCESSING** T/SLr P/R Tv/Lb/ L С **EBEE22E08 ETL/IE Prerequisite:** Control Systems Ty 3 0/00/0 3

(An ISO 21001 : 2018 Certified Institution)

#### UNIT I DISCRETE TIME SIGNALS AND SYSTEMS

Periodic and pulse signals- examples of sequences-pulse step, impulse, ramp, sine and exponential-differential equations -linear time in variant-stability, causality -DT systems -time domain analysis

#### UNIT II **Z-TRANSFORM AND DFT**

Z-transform and its properties – convolution – inverse Z-transform – discrete Fourier series – properties –sampling the Z-transform – Discrete Fourier Transform – properties for frequency domain analysis – linear convolution using discrete Fourier transform- overlap add method, overlap save method

#### UNIT III FAST FOURIER TRANSFORM (FFT)

Introduction to Radix 2 FFT's – decimation in time FFT algorithm – decimation in frequency FFT algorithm – computing inverse DFT using FFT- mixed radix FFT algorithm

#### **UNIT IV IIR AND FIR FILTER DESIGN**

Classification – reliability constrains– IIR design – bilinear transform method – impulse invariant method–step– in variance method-FIR design-Fourier series method-window function method

#### UNIT V PROGRAMMABLED SP CHIPS

Architecture and features of TMS320C50, TMS3201 and ADSP2181 signal processing chips

### **Total No. of Periods: 45**

### **TEXT BOOKS**

- 1. OpenheimA.V., and SchaferR.W., Discrete Time Signal Processing, Prentice Hall of India, NewDelhi,1992
- 2. ProakisJ.G. and Manolakis, D.G., Digital Signal Processing Principles, Algorithms and Applications, Prentice Hall of India, New Delhi, 1997

### **REFERENCE BOOKS**

- 1. Antonian A., Digital Filters analysis and Design, TataMcGraw-Hill PublishingCo., NewDelhi, 1988
- 2. Stanley W.D., Digital Signal Processing, Restion Publishing House, 1989.
- 3. ADSP2181 Datasheet



86

9

9

9

9

# **Dr. M.G.R.** EDUCATIONAL AND RESEARCH INSTITUTE DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

| Course Code:<br>EBEE22E09 | Course<br>SYSTE                                  |                                                                                    | RESTR                | UCTUR                 | ING OF    | IBUTIO       | •                                     | ′ Lb/<br>L/IE         | L                 | T/SLr  | P/R             | C                   |                    |
|---------------------------|--------------------------------------------------|------------------------------------------------------------------------------------|----------------------|-----------------------|-----------|--------------|---------------------------------------|-----------------------|-------------------|--------|-----------------|---------------------|--------------------|
|                           | Prerequ                                          | uisite: T                                                                          | ransmis              | ssion and             | Distrib   | oution       |                                       | ]                     | Гу                | 3      | 0/0             | 0/0                 | 3                  |
| L : Lecture T : 7         | <b>Futorial</b>                                  | SLr : Su                                                                           | pervised             | l Learning            | g P: Proj | ect R : R    | esearch C                             | C: Credits            |                   |        |                 |                     | <u> </u>           |
| T/L/ETL: Theorem          |                                                  | mbedde                                                                             | d Theor              | y and Lab             | )         |              |                                       |                       |                   |        |                 |                     |                    |
| OBJECTIVES                |                                                  |                                                                                    |                      |                       |           |              |                                       |                       |                   |        |                 |                     |                    |
| To stu                    | dy about                                         | Distrib                                                                            | ution sys            | stem and              | Load Pa   | ittern       |                                       |                       |                   |        |                 |                     |                    |
| To imp                    | part knov                                        | wledge o                                                                           | on the D             | istribution           | n feeder  |              |                                       |                       |                   |        |                 |                     |                    |
| To res                    | tructure                                         | the Dist                                                                           | ribution             | network a             | and exte  | nt contro    | l for Low                             | voltage ne            | etwork            |        |                 |                     |                    |
|                           |                                                  |                                                                                    |                      | control te            |           |              |                                       |                       |                   |        |                 |                     |                    |
| • To atta                 | ain confi                                        | dence of                                                                           | n Autom              | nation in I           | Distribut | ion field    |                                       |                       |                   |        |                 |                     |                    |
| COURSE OUT                |                                                  |                                                                                    |                      |                       |           |              |                                       |                       |                   |        |                 |                     |                    |
| Students comple           |                                                  |                                                                                    |                      |                       |           |              |                                       |                       |                   |        |                 |                     |                    |
| CO1                       | Ų                                                |                                                                                    |                      | on networ             |           | 0            |                                       |                       |                   |        |                 |                     |                    |
| CO2                       |                                                  |                                                                                    |                      | ders and s            |           | ç            |                                       |                       |                   |        |                 |                     |                    |
| CO3                       | -                                                |                                                                                    | lt in the            | distributio           | on feede  | er and rest  | ructure tl                            | he network            | and au            | tomize | the dis         | stribut             | ion                |
|                           | network                                          |                                                                                    |                      |                       |           | _            |                                       |                       |                   |        |                 |                     |                    |
| CO4                       |                                                  |                                                                                    |                      |                       |           |              |                                       | ise of mod            |                   |        |                 |                     |                    |
|                           |                                                  | mulate their structured distributed network and identify the issues involved in it |                      |                       |           |              |                                       |                       |                   |        |                 |                     |                    |
|                           |                                                  | e Outcome with Program Outcome (Pos)                                               |                      |                       |           |              |                                       |                       |                   |        |                 |                     |                    |
| COs/POs                   | PO1                                              | PO2                                                                                | PO3                  | PO4                   | PO5       | PO6          | PO7                                   | PO8                   | PO9               | PO10   |                 |                     | 012                |
| <u>CO1</u>                | 3                                                | 3                                                                                  | 2                    | 3                     | 3         | 3            | 3                                     | 2                     | 3                 | 3      | 3               |                     | 2                  |
| CO2                       | 2                                                | 3                                                                                  | 3                    | 2                     | 2         | 2            | 3                                     | 3                     | 2                 | 2      | 3               |                     | 3                  |
| CO3                       | 3                                                | 3                                                                                  | 2                    | 3                     | 3         | 3            | 3                                     | 2                     | 3                 | 3      | 3               |                     | 2                  |
| <u>CO4</u>                | 2                                                | 3                                                                                  | 2                    | 2                     | 2         | 2            | 3                                     | 2                     | 2                 | 2      | 3               |                     | 2                  |
| CO5                       | 2                                                | 2                                                                                  | 3                    | 3                     | 3         | 2            | 2                                     | 3                     | 3                 | 2      |                 |                     | 3                  |
| COs /PSOs                 |                                                  |                                                                                    | 501                  |                       |           | P            | SO2                                   |                       |                   | P      | <b>SO3</b>      |                     |                    |
| CO1                       |                                                  |                                                                                    | 3                    |                       |           |              | 3                                     |                       |                   |        | 3               |                     |                    |
| CO2                       |                                                  |                                                                                    | 2                    |                       |           |              | 2                                     |                       |                   |        | 3               |                     |                    |
| CO3                       |                                                  |                                                                                    | 3                    |                       |           |              | 3                                     |                       |                   |        | 3               |                     |                    |
| CO4                       |                                                  |                                                                                    | 2                    |                       |           |              | 2                                     |                       |                   |        | 3               |                     |                    |
| CO5                       |                                                  |                                                                                    | 3                    |                       |           |              | 2                                     |                       |                   |        | 2               |                     |                    |
| 3/2/1 Indicates S         | Strength of Correlation, 3–High, 2-Medium, 1-Low |                                                                                    |                      |                       |           |              |                                       |                       |                   |        |                 |                     |                    |
| jory                      |                                                  | Basic Sciences                                                                     | Engineering Sciences | Humanities and Social |           | Program Core | <ul> <li>Program Electives</li> </ul> | <b>Dpen Electives</b> | Interdisciplinary |        | Skill Component | Dractical / Draiant | 14011041 / 110Juni |
| Category                  |                                                  | Щ                                                                                  | Щ                    |                       | 2         |              | 0                                     | Ē                     |                   | S.     |                 | -                   |                    |

#### UNIT I INTRODUCTION TO DISTRIBUTION SYSTEM

Prerequisite: Transmission and Distribution

Development of Power Distribution Network -Load Growth and Diversified Demands - Load Modeling- Load Demand Forecasting -Self healing Techniques - Line parameters- Overhead lines, Insulators and Supports-Cables-Insulation Resistance- Voltage drop and Power loss in Conductor

#### **UNIT II DISTRIBUTION FEEDER**

Primary Distribution system – Secondary Distribution system – Design Considerations - Substation location and planning-Feeder Loading-Voltage drop considerations-Drop with different loadings-Voltage drop constant with different loading

#### UNIT III **RESTRUCTURING THE NETWORK**

Design of Network – Voltage selection – Sizing –Voltage control- Current loading- Earthing –Cost Factor – LV Distribution Networks - Switchgear for Distribution Substation and LV Networks-Extended Control of Distribution Substations and LV Network

#### **UNIT IV** SELF HEALING CONTROL

Self-Healing -Principle -Characteristics- Control method - Urban Distribution network self-healing control method based on Quantity of State-Based on Distributed Power and Microgrid- Based on Coordination Control model

#### UNIT V AUTOMATION IN DISTRIBUTION SYSTEM

Implementation of Distribution Network self-healing – Relay Protection Units – Basic Requirements – Self Adaption - SCADA / RTU- History and Development of SCADA -Principle and Operation - Automation of Distribution System- PMU/WAMS and SCADA/EMS-Application of PMU or WAMS

**Total No. of Periods: 45** 

### **TEXT BOOKS**

- 1. Kamaraju, V (2009), Electrical power Distribution System, Tata McGrawHill
- Abdelhay A, Sallam, Om, P, Malik, (2011), Electric Distribution Systems, Wiley 2.

### **REFERENCE BOOKS**

- 1. XinxinGu, NingJiang (2017), Self-Healing Control Technology for Distribution Networks, Wiley
- James Northcote-Green, Robert Wilson, Control and Automation of electrical Power Distribution Systems, 2. **Taylor & Francis**

|                     | Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamiinadu, India. |         |   |       |     |   |
|---------------------|----------------------------------------------------------------------|---------|---|-------|-----|---|
|                     |                                                                      |         |   |       |     |   |
| <b>Course Code:</b> | Course Name: RESTRUCTURING OF DISTRIBUTION                           | Ty/ Lb/ | L | T/SLr | P/R | С |
| EBEE22E09           | SYSTEM                                                               | ETL/IE  |   |       |     |   |

9

### 9

88

# 9

0/0

3

0/0

Ty

3

9



| Course Code:<br>EBEE22E10 |            | e Name: I<br>NOLOG |                      | ECTRICA                           | AL STO       | RAG          | E                 |                | y/ Lb/<br>TL/IE   | L      | T/SLr           | P/R                 | C                   |
|---------------------------|------------|--------------------|----------------------|-----------------------------------|--------------|--------------|-------------------|----------------|-------------------|--------|-----------------|---------------------|---------------------|
|                           | Prereq     | uisite: Sr         | nart grid            | and Elect                         | ric Vehi     | icle T       | echnolog          | gy             | Ту                | 3      | 0/0             | 0/0                 | 3                   |
| L : Lecture T : T         | utorial S  | Lr : Supe          | rvised Lea           | arning P: P                       | Project R    | : Res        | earch C           | : Credits      | Γ/L/ETL:          |        |                 |                     | <u> </u>            |
| Theory/Lab/Emb            | edded T    | heory and          | l Lab                | _                                 | -            |              |                   |                |                   |        |                 |                     |                     |
| OBJECTIVES                |            |                    |                      |                                   |              |              |                   |                |                   |        |                 |                     |                     |
|                           | -          | -                  |                      | Technolog                         |              |              |                   |                |                   |        |                 |                     |                     |
|                           |            | •                  | ·                    | Batteries a                       | •            | <b>•</b>     |                   |                |                   |        |                 |                     |                     |
| •                         |            | •                  |                      | s along wit                       |              | vantag       | e and dis         | sadvantag      | es                |        |                 |                     |                     |
|                           | •          | • •                |                      | storage de                        |              |              |                   |                |                   |        |                 |                     |                     |
| • To have                 | e a wide   | spread kr          | owledge              | on Electric                       | vehicle      | e            |                   |                |                   |        |                 |                     |                     |
| COURSE OUT                |            |                    |                      |                                   |              |              |                   |                |                   |        |                 |                     |                     |
| Students complet          |            |                    |                      |                                   |              |              |                   |                |                   |        |                 |                     |                     |
| CO1                       | -          |                    |                      | rgy resourc                       |              |              |                   |                |                   |        |                 |                     |                     |
| CO2                       | Summa      | arize the c        | oncept of            | Distribute                        | d Genera     | ation,       | Batteries         | s, Fuel Ce     | ll and Ele        | ectric | Vehicle         | ;                   |                     |
| CO3                       | Model      | a Microgr          | rid and des          | sign an ele                       | ctric sto    | rage to      | echnolog          | 5y             |                   |        |                 |                     |                     |
| CO4                       | Paraph     | rase the al        | ternate en           | ergy sourc                        | e in Dis     | tribut       | ed Gener          | ation          |                   |        |                 |                     |                     |
| CO5                       | Demon      | strate the         | operation            | of the Dis                        | tributed     | gener        | ation and         | d various      | types of e        | energy | storag          | e syste             | em                  |
| Mapping of Cou            |            |                    |                      |                                   |              |              |                   |                | 51                | 01     | 0               |                     |                     |
| COs/POs                   | <b>PO1</b> | PO2                | PO3                  | PO4                               | PO5          | PO6          | PO7               | PO8            | PO9               | PO1    | lo PO           | 11 P                | 012                 |
| CO1                       | 3          | 2                  | 3                    | 3                                 | 3            | 3            | 2                 | 3              | 3                 | 3      | 3               |                     | 2                   |
| CO2                       | 3          | 3                  | 2                    | 2                                 | 2            | 3            | 3                 | 2              | 2                 | 2      | 3               |                     | 3                   |
| CO3                       | 3          | 2                  | 3                    | 3                                 | 3            | 3            | 2                 | 3              | 3                 | 3      | 3               |                     | 2                   |
| CO4                       | 3          | 2                  | 2                    | 2                                 | 2            | 3            | 2                 | 2              | 2                 | 2      | 3               |                     | 2                   |
| CO5                       | 2          | 3                  | 3                    | 3                                 | 2            | 2            | 3                 | 3              | 3                 | 2      | 2               |                     | 3                   |
| COs /PSOs                 |            | P                  | SO1                  |                                   |              | ]            | PSO2              |                |                   | ]      | PSO3            |                     |                     |
| CO1                       |            |                    | 3                    |                                   |              |              | 3                 |                |                   |        | 3               |                     |                     |
| CO2                       |            |                    | 2                    |                                   |              |              | 2                 |                |                   |        | 3               |                     |                     |
| CO3                       |            |                    | 3                    |                                   |              |              | 3                 |                |                   |        | 3               |                     |                     |
| CO4                       |            |                    | 2                    |                                   |              |              | 2                 |                |                   |        | 3               |                     |                     |
| CO5                       |            |                    | 3                    |                                   |              |              | 2                 |                |                   |        | 2               |                     |                     |
| 3/2/1 Indicates S         | Strength   | of Correla         | ation, 3–H           | ligh, 2-Me                        | dium, 1-     | -Low         |                   |                |                   |        |                 |                     |                     |
| Category                  |            | Basic Sciences     | Engineering Sciences | Humanities and Social<br>Sciences | Program Core |              | Program Electives | Open Electives | Interdisciplinary |        | Skill Component | Denotion] / Deviced | Flacucal / I tujuci |
| Cate                      |            | Щ                  | Щ                    | I<br>S                            | Ц            | $\checkmark$ | Ŧ                 | 0              |                   |        | <b>U</b> 1      | Ω                   | -                   |

Conventional Power generation – Advantages and disadvantages – energy crisis – non-conventional energy resources -review of solar, Wind energy system, biomass, tidal sources

#### **UNIT II** DISTRIBUTED GENERATION

Concept of distributed generation – topologies – selection of sources – regulatory standards – Security issues in DG implementation – Energy storage element - Necessity of energy storage – types of energy storage –comparison of energy storage technologies-Application

#### UNIT III **BATTERIES & FUEL CELL**

Batteries - Measurement - Storage and types - Fuel Cell - History of fuel cell - Principle of electro chemical Storage - Types - Hydrogen oxygen cells, Hydrogen air cell - Hydrocarbon air cell-alkaline fuel cell -detailed analysisadvantage and drawback of each cell.

#### **UNIT IV** ALTERNATE ENERGY STORAGE TECHNOLOGIES

Flywheel - Super Capacitors - Principles & applications, Compressed Air Energy Storage- Concept of Hybrid Storage-Microgrid Economics-Applications

#### UNIT V **ELECTRIC VEHICLE**

Electric Vehicle – Types – Hybrid Vehicle – Battering Charging – Usage of batteries in Hybrid vehicle – Fundamentals of Electric vehicle modeling- Types of PHEVs and Automotive system

### **TEXT BOOKS**

- 1. Ibrabim Dincer, marcA, Rosen, (2011) Thermal Energy Storage Systems and Applications, 2<sup>nd</sup> Ed, JohnWiley
- 2. James Larminie, John Lowry (2003), Electric Vehicle Technology Explained, John Wiley & Sons
- 3. Sumedha Rajakaruna, Farhad Shahnia, Arindham Ghosh, "Plug-in-Electric Vehicles in Smart Grid -Integration Techniques", Springer, 2015

### **REFERENCE BOOKS**

- 1. SethLeitman, BobBrant (2013) Build Your Own Electric Vehicle, 3rd Ed, McGrawHill
- 2. S.T. Rama, E. SheebaPercis, A. Nalini, S. Bhuvaneswari, (2017), Handbook on Standalone Renewable Energy Systems, 1st Edn, Research India Publication ISBN No978-93-87374-12-6

Jameslarminie, Andrew Dicks, (2003), Fuel Cell Systems Explained, Wiley

#### Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India Course Name: DG & ELECTRICAL STORAGE T/SLr P/R **Course Code:** Ty/Lb/ L **EBEE22E10** TECHNOLOGY **ETL/IE** Prerequisite: Smart Grid and Electric Vehicle Technology Ty 3 0/00/0





9

9

С

3

9

9

# **Total No. of Periods:45**

# D EDUCATIONAL AND RESEARCH INSTITUTE University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

| Course Code:<br>EBEE22E11  | Cour      | se Name:               | MATERI               | AL SCIEN                          | NCE IN       | AV    | /IATI   | ON     |                | Ty/ Lb/<br>ETL/IE | L  | T/SLr           | P/R              | C                   |
|----------------------------|-----------|------------------------|----------------------|-----------------------------------|--------------|-------|---------|--------|----------------|-------------------|----|-----------------|------------------|---------------------|
|                            |           | equisite: E<br>neering | asic Elect           | rical, Elec                       | tronics      | and   | l Instr | umen   | tation         | Ту                | 3  | 0/0             | 0/0              | 3                   |
| L : Lecture T : 7          |           |                        | pervised L           | earning P:                        | Project      | R :   | Resea   | rch C  | : Credi        | ts                |    |                 |                  |                     |
| T/L/ETL: Theorem           |           |                        |                      |                                   | ç            |       |         |        |                |                   |    |                 |                  |                     |
| OBJECTIVES                 |           |                        |                      |                                   |              |       |         |        |                |                   |    |                 |                  |                     |
| <ul> <li>To gai</li> </ul> | n basi    | c knowled              | ge on Cryo           | ogenic Tec                        | hnology      | /     |         |        |                |                   |    |                 |                  |                     |
|                            |           | 0                      | on Super A           | •                                 |              | catio | ons     |        |                |                   |    |                 |                  |                     |
|                            |           | ·                      | ce of Flexi          |                                   |              |       |         |        |                |                   |    |                 |                  |                     |
|                            |           |                        | knowledge            | e about Na                        | no scier     | nce   | and na  | no ma  | terial         |                   |    |                 |                  |                     |
|                            |           | out Drone              |                      |                                   |              |       |         |        |                |                   |    |                 |                  |                     |
| COURSE OUT                 |           |                        |                      |                                   |              |       |         |        |                |                   |    |                 |                  |                     |
| Students compl             | · · · · · |                        |                      |                                   |              |       |         |        |                |                   |    |                 |                  |                     |
| CO1                        |           |                        | naterials us         |                                   |              |       |         |        |                |                   |    |                 |                  |                     |
| CO2                        | Sumn      | narize the             | use of supe          | er alloy, fle                     | exible E     | lecti | ronics  |        |                |                   |    |                 |                  |                     |
| CO3                        | Mode      | el the mate            | rial for flex        | kible electr                      | onics w      | ith l | Nanote  | echnol | ogy            |                   |    |                 |                  |                     |
| CO4                        | Desig     | n Drone o              | r any simp           | le kind of                        | Air Veh      | icle  |         |        |                |                   |    |                 |                  |                     |
| CO5                        | Assoc     | ciate the m            | aterial scie         | nce in Avi                        | iation       |       |         |        |                |                   |    |                 |                  |                     |
| Mapping of Co              | ourse     | Outcome                | with Prog            | ram Outco                         | ome (PC      | Os)   |         |        |                |                   |    |                 |                  |                     |
| COs/POs                    | PO        |                        |                      | PO4                               | PO5          |       | PO6     | PO7    | PO8            | B PO9             | PO | l0 PO           | 11 I             | PO12                |
| CO1                        | 3         | 2                      | 3                    | 3                                 | 3            |       | 2       | 3      | 3              | 3                 | 3  | 2               | ;                | 3                   |
| CO2                        | 2         | 3                      | 2                    | 2                                 | 3            |       | 3       | 2      | 2              | 2                 | 3  | 3               | 5                | 2                   |
| CO3                        | 3         | 2                      | 3                    | 3                                 | 3            |       | 2       | 3      | 3              | 3                 | 3  | 2               | 2                | 3                   |
| CO4                        | 2         | 2                      | 2                    | 2                                 | 3            |       | 2       | 2      | 2              | 2                 | 3  | 2               | 2                | 2                   |
| CO5                        | 3         | 3                      | 3                    | 2                                 | 2            |       | 3       | 3      | 3              | 2                 | 2  | 3               | 5                | 3                   |
| COs /PSOs                  |           | ]                      | PSO1                 |                                   |              |       | PSC     | )2     | •              |                   |    | PSO3            |                  |                     |
| CO1                        |           |                        | 3                    |                                   |              |       | 3       |        |                |                   |    | 3               |                  |                     |
| CO2                        |           |                        | 2                    |                                   |              |       | 2       |        |                |                   |    | 2               |                  |                     |
| CO3                        |           |                        | 3                    |                                   |              |       | 3       |        |                |                   |    | 3               |                  |                     |
| CO4                        |           |                        | 2                    |                                   |              |       | 2       |        |                |                   |    | 2               |                  |                     |
| CO5                        |           |                        | 3                    |                                   |              |       | 3       |        |                |                   |    | 2               |                  |                     |
| 3/2/1 Indicates            | Streng    | gth of Cor             | relation, 3-         | High, 2-M                         | ledium,      | 1-L   | ωW      |        |                |                   |    |                 |                  |                     |
| Category                   |           | Basic Sciences         | Engineering Sciences | Humanities and Social<br>Sciences | Program Core |       |         |        | Open Electives | Interdisciplinary |    | Skill Component | -<br>-<br>-<br>- | Practical / Project |
| Cat                        |           |                        |                      |                                   |              |       |         |        |                |                   |    |                 |                  |                     |

# Course Code:<br/>EBEE22E11Course Name: MATERIAL SCIENCE IN AVIATIONTy/ Lb/<br/>ETL/IELT/SLrP/RCPrerequisite: Basic Electrical, Electronics and InstrumentationTy30/00/03

### UNIT I INTRODUCTION TO CRYOGENIC TECHNOLOGY

Terms & Phenomena associated with Cryogenic Systems – Prominent contributors- Critical Aspects and Issues involved – Benefits from Integration – Early applications of Cryogenic Technology- Gas Separation process – Industrial Applications of Cryogenic fluid technology

### UNIT II SUPER ALLOY

Introduction-Basic Metallurgy-characteristics & Facts-Properties-Microstructure-Strengthening-Melting & Conversion-Investment casting- Corrosion & Protection of Super Alloy-Applications

### UNIT III FLEXIBLE ELECTRONICS

History – Materials for Flexible Electronics – Degrees – Substrates – Backplanes Electronics – Front plane Technologies – Encapsulation - Fabrication Technology – Sheets by batch Processing and Web by Roll-to-Roll Processing

### UNIT IV NANOSCIENCE AND NANOTECHNOLOGY

Nano – Current Technologies – Energetics – Implications – Electron Microscopes – Optical Microscopes – Photoelectron Spectroscopy for the study of nano materials – Metal clusture and nano particles – nano crystals – Raman Scattering– Basics of nanomaterials

### UNIT V DRONE AND AIR VEHICLE

Introduction–Types of flying drones–Current Uses–Drone Components–Concept sand Systems–Regulations & Safety – Applications– Future Trends

### **Total No. of Periods :45**

### **TEXT BOOKS**

- 1. Jha, AR, (2006), Cryogenic Technology and Applications, Elsevier
- 2. John, KTien, Super alloys, Super composites and Super ceramics, Elsevier
- 3. WilliamS, Wong, Alberto Salleo, Flexible Electronics: Materials and Applications, Springer
- 4. Pradeep, T, (2012) Nanoscience and Nanotechnology, McGrawHill

### **REFERENCE BOOKS**

- 1. Mattew, JD, StephenJD, Superalloys, A Technical guide, 2<sup>nd</sup> Ed, ASM International.
- 2. MurtyBS, Shankar. P, Baldev Raj, BBRath, James Murday, Nanoscience and Nanotechnology, Springer
- 3. Robo kingdom LLC, (2016) Drone Book



9

9

9

9

9

mind

# D EDUCATIONAL AND RESEARCH INSTITUTE University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

| Course Code:<br>EBEE22E12       | Course Name      | : POW                | ER PLA         | ANT IN                         | STRUM        | IENTAT            | ΓΙΟΝ       |                | / Lb/<br>TL/IE    | L       | T/SLr           | P/R                 | C                 |
|---------------------------------|------------------|----------------------|----------------|--------------------------------|--------------|-------------------|------------|----------------|-------------------|---------|-----------------|---------------------|-------------------|
|                                 | Prerequisite:    | Measur               | rements        | and In                         | strumen      | tation            |            | 1              | Ту                | 3       | 0/0             | 0/0                 | 3                 |
| L : Lecture T : 7               |                  | <b>.</b>             |                | •                              | Project R    | : Resea           | rch C :    | Credits        |                   |         |                 |                     |                   |
| T/L/ETL:Theor                   |                  | ed Theo              | ry and I       | Lab                            |              |                   |            |                |                   |         |                 |                     |                   |
| OBJECTIVES                      |                  |                      |                |                                |              |                   |            |                |                   |         |                 |                     |                   |
|                                 | miliarity to Bu  | -                    |                |                                |              |                   |            |                |                   |         |                 |                     |                   |
|                                 | apable to measu  |                      | -              |                                |              |                   |            |                |                   |         |                 |                     |                   |
|                                 | apable to analy  |                      |                |                                | n power j    | plants            |            |                |                   |         |                 |                     |                   |
|                                 | nderstand the c  |                      |                |                                |              |                   |            |                |                   |         |                 |                     |                   |
|                                 | pable to monit   |                      | control t      | heir nev                       | v able en    | ergy sys          | tems       |                |                   |         |                 |                     |                   |
| COURSE OUT<br>Students complete |                  |                      | able to        |                                |              |                   |            |                |                   |         |                 |                     |                   |
| ^                               |                  |                      |                | nta Mar                        | aurom or t   | a contral         | 10000 4    | urbinar        | onitoria -        | and C   | ontrol          |                     |                   |
|                                 | Recognize the v  |                      |                |                                |              |                   | -          |                |                   |         | ontrol          |                     |                   |
| CO2                             | Classify the var | ious type            | es of Pow      | er plant                       | s based or   | the anal          | yze ranc   | l control t    | technique         | es      |                 |                     |                   |
| CO3                             | Paraphrase the 1 | neasurer             | nent tech      | niques,                        | and analy    | se the im         | purities,  | boiler op      | eration a         | ind spe | ed contr        | ol.                 |                   |
| CO4                             | Model the powe   | er plant b           | ased on t      | the curre                      | ent need fo  | or a susta        | inable so  | ociety in a    | a cost-eff        | ective  | manner          |                     |                   |
|                                 | Apply the mode   |                      |                |                                |              |                   | issues in  | n the field    | 1                 |         |                 |                     |                   |
| Mapping of Co                   |                  |                      |                |                                |              |                   |            | 1              |                   |         |                 |                     |                   |
| COs/POs                         | PO1              | PO2                  | PO3            | PO4                            | PO5          | PO6               | <b>PO7</b> | PO8            | PO9               | PO1     |                 |                     | 012               |
| CO1                             | 3                | 3                    | 2              | 3                              | 2            | 3                 | 3          | 3              | 2                 | 3       | 3               |                     | 3                 |
| CO2                             | 2                | 2                    | 3              | 2                              | 3            | 2                 | 2          | 3              | 3                 | 2       | 2               |                     | 3                 |
| CO3                             | 3                | 3                    | 2              | 3                              | 2            | 3                 | 3          | 3              | 2                 | 3       | 3               |                     | 3                 |
| <u>CO4</u>                      | 2                | 2                    | 3              | 2                              | 2            | 2                 | 2          | 3              | 2                 | 2       | 2               |                     | 3                 |
| CO5                             | 3                | 3                    | 3              | 3                              | 3            | 3                 | 2          | 2              | 3                 | 3       |                 |                     | 2                 |
| COs /PSOs                       |                  | PSO1                 |                |                                |              | PS                |            |                |                   |         | PSO3            |                     |                   |
| <u>CO1</u>                      |                  | 3                    |                |                                |              | 3                 |            |                |                   |         | 3               |                     |                   |
| CO2                             |                  | 2                    |                |                                |              | 2                 |            |                |                   |         | 3               |                     |                   |
| CO3                             |                  | 3                    |                |                                |              |                   |            |                |                   |         | 3               |                     |                   |
| CO4                             |                  | 2                    |                |                                |              | 2                 |            |                |                   |         | 3               |                     |                   |
| CO5<br>3/2/1 Indicates          | Strength of Co   | 3<br>rrelation       | n 3_Hic        | h 2_M                          | edium 1      | 2<br>-L ow        |            |                |                   |         | 2               |                     |                   |
| 5/2/1 mulcales                  |                  |                      | <u>, 5–111</u> | 511, 2-111                     |              |                   |            |                |                   |         |                 |                     |                   |
| Category                        | Basic Sciences   | Engineering Sciences |                | Humanities and Social Sciences | Program Core | Program Electives | b          | Open Electives | Interdisciplinary |         | Skill Component | Dractical / Draiact | riacurai / rivjuu |
| Ca                              |                  |                      |                |                                |              | $\checkmark$      |            |                |                   |         |                 |                     |                   |

#### UNIT I **OVERVIEW OF POWER GENERATION**

Brief survey of methods of power generation – hydro, thermal, nuclear, solar and wind power – importance of instrumentation in power generation- thermal power plants- building blocks- details of boiler process UP & I diagram of boiler- cogeneration.

#### UNIT II MEASUREMENTS IN POWER PLANTS

Electrical measurements – current, voltage, power, frequency, power factor etc. – non electrical parameters –flow of feed water, fuel, air and steam with correction factor for temperature – steam pressure and steam temperature– drum level measurement-radiation detector-smoke density measurement-dust monitor.

#### UNIT III ANALYZERS IN POWER PLANTS

Flue gas oxygen analyzer – analysis of impurities in feed water and steam – dissolved oxygen analyzer – chromatography-PH meter - fuel analyzer- pollution monitoring instruments.

#### **UNIT IV CONTROL LOOPS IN BOILER**

Combustion control – air/fuel ratio control – furnace draft control – drum level control – main stem and reheat steam temperature control – super heater control – attemperator – de aerator control – distributed control system in power plants-inter lock sin boiler operation.

#### **TURBINE- MONITORING AND CONTROL** UNIT V

Speed, vibration, shell temperature monitoring and control – steam pressure control – lubricant oil temperature control-cooling system

### **TEXT BOOKS**

Course Code:

**EBEE22E12** 

- 1. Sam G. Dukelow, (1991) The control of Boilers, instrument Society of America
- 2. Modern Power Station Practice.Vol.6. Instrumentation, Controls and Testing. Pergamon Press. Oxford

### REFERENCE BOOKS

- 1. Elonka, S. M. and Kohal, A. L. (1994) Standard Boiler Operations. NewDelhi: McGraw-Hill
- 2. Jain, R.K. (1995) Mechanical and industrial Measurements. Delhi: Khanna Publishers

**Course Name: POWER PLANT INSTRUMENTATION** 

Prerequisite: Measurements and Instrumentation



9

94

**Total No. of Periods:45** 

9

9

9

9

0/0

T/SLr P/R

0/0

Tv/Lb/

**ETL/IE** 

Tv

L

3

С

# D EDUCATIONAL AND RESEARCH INSTITUTE University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

| Course Code:<br>EBEE22E13 | Course                                                                                 | Name: S                                                     | SAFETY     | FOR EL                | ECTRIC     | CAL E        | NG       | INEEF              |                | y/ Lb/<br>TL/IE   | L  | T/SLr           | P/R              | C                  |
|---------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------|------------|-----------------------|------------|--------------|----------|--------------------|----------------|-------------------|----|-----------------|------------------|--------------------|
|                           | Prereq                                                                                 | uisite: E                                                   | lectrical  | Engineer              | ing Pract  | tise lat     | )        |                    |                | Ту                | 3  | 0/0             | 0/0              | 3                  |
| L:LectureT:Tute           |                                                                                        |                                                             |            |                       | oject R: I | Researc      | ch C     | : Credi            | ts             |                   |    | •               | •                | •                  |
| T/L/ETL:Theor             |                                                                                        | mbedded                                                     | l Theory a | and Lab               |            |              |          |                    |                |                   |    |                 |                  |                    |
| OBJECTIVES                |                                                                                        |                                                             |            |                       |            |              |          |                    |                |                   |    |                 |                  |                    |
| To atta                   | ain knov                                                                               | vledge or                                                   | n Electric | al Safety             |            |              |          |                    |                |                   |    |                 |                  |                    |
|                           |                                                                                        |                                                             |            | Electrical            | Safety E   | quipme       | ents     |                    |                |                   |    |                 |                  |                    |
|                           |                                                                                        |                                                             | ty proced  |                       |            |              |          |                    |                |                   |    |                 |                  |                    |
|                           |                                                                                        |                                                             |            | ety codes             |            |              |          |                    |                |                   |    |                 |                  |                    |
| • To trai                 | in the st                                                                              | udents or                                                   | the Safe   | ty training           | g.         |              |          |                    |                |                   |    |                 |                  |                    |
| COURSE OUT                |                                                                                        |                                                             |            |                       |            |              |          |                    |                |                   |    |                 |                  |                    |
| Students comple           |                                                                                        |                                                             |            |                       |            |              |          |                    |                |                   |    |                 |                  |                    |
| CO1                       |                                                                                        |                                                             |            | electrical            | •          |              |          |                    |                |                   |    |                 |                  |                    |
| CO2                       |                                                                                        |                                                             | •          | of safety             | <b>A A</b> |              |          |                    |                |                   |    |                 |                  |                    |
| CO3                       | -                                                                                      |                                                             | •          | lure and t            | -          |              |          |                    |                | ciety             |    |                 |                  |                    |
| CO4                       |                                                                                        | Perform safety experiments to create awareness among people |            |                       |            |              |          |                    |                |                   |    |                 |                  |                    |
| CO5                       | Analyze the Hazards in the electricity and safety training methods throughout the life |                                                             |            |                       |            |              |          |                    |                |                   |    |                 |                  |                    |
| Mapping of Co             |                                                                                        |                                                             |            |                       |            |              |          |                    |                |                   |    |                 |                  |                    |
| COs/POs                   | PO1                                                                                    | PO2                                                         | PO3        | PO4                   | PO5        | PO           | 6        | <b>PO7</b>         | PO8            | PO9               | PO |                 | 11 F             | PO12               |
| CO1                       | 3                                                                                      | 2                                                           | 3          | 3                     | 2          | 3            |          | 2                  | 3              | 3                 | 3  |                 | 2                | 3                  |
| CO2                       | 2                                                                                      | 3                                                           | 2          | 2                     | 3          | 2            |          | 3                  | 2              | 2                 | 3  |                 |                  | 2                  |
| CO3                       | 3                                                                                      | 2                                                           | 3          | 3                     | 2          | 3            |          | 2                  | 3              | 3                 | 3  |                 |                  | 3                  |
| CO4                       | 2                                                                                      | 2                                                           | 2          | 2                     | 3          | 2            |          | 2                  | 2              | 2                 | 3  |                 |                  | 2                  |
| CO5                       | 3                                                                                      | 3                                                           | 3          | 3                     | 3          | 3            |          | 3                  | 3              | 2                 | 2  |                 | <b>,</b>         | 3                  |
| COs /PSOs                 |                                                                                        | P                                                           | <u>SO1</u> |                       |            |              | PSO      | )2                 |                |                   |    | PSO3            |                  |                    |
| CO1                       |                                                                                        |                                                             | 3          |                       |            |              | 3        |                    |                |                   |    | 3               |                  |                    |
| CO2                       |                                                                                        |                                                             | 2          |                       |            |              | 2        |                    |                |                   |    | 3               |                  |                    |
| CO3                       |                                                                                        |                                                             | 3          |                       |            |              | 3        |                    |                |                   |    | 3               |                  |                    |
| CO4                       |                                                                                        |                                                             | 2          |                       |            |              | 2        |                    |                |                   |    | 3               |                  |                    |
| CO5                       |                                                                                        |                                                             | 3          |                       |            |              | 2        |                    |                |                   |    | 2               |                  |                    |
| 3/2/1 Indicates           | Strengt                                                                                | h of Corr                                                   | elation, 3 | -H1gh, 2-             | Medium,    | 1-Low        | /        | <u> </u>           |                | 1                 |    |                 | <u> </u>         |                    |
| ıry                       | tegory<br>Basic Sciences<br>Engineering Sciences                                       |                                                             |            |                       |            |              | Ē        | -Program Electives | Open Electives | Interdisciplinary |    | Skill Component | stinol / Durinot | rracucal / rroject |
| Category                  |                                                                                        | Bas                                                         | Eng        | Humanities and Social |            | Program Core | <u>_</u> |                    | Ope            | Inte              |    | Skil            |                  | <b>F</b> 1at       |

### UNIT I GENERAL PRINCIPLES OF ELECTRIC SAFETY

Prerequisite: Electrical Engineering Practise lab

Electricity and Human Body – Earthing – Grounding – General Inspection and testing requirement for electrical safety equipment–Flash and thermal production– head and Eye Protection – Electricians Safety kits

### UNIT II HAZARDS IN ELECTRICITY

Lighting Hazards - Hazardous area –Hazard Analysis – shock effect -Electrical Insulation – Electrical fires –Arc Flash–Arc energy –arcing voltage–Injury and death–Protective Strategies-Electrical safety in hospitals

### UNIT III REGULATORY OF SAFETY REQUIREMENT AND STANDARDS

**Course Name: SAFETY FOR ELECTRICAL ENGINEERS** 

Standard Guidelines of Electrical Safety - Risk assessment and Management – Safety against over voltage, extralow and residual voltages – safety practice – Safety Audits – ANSI-IEEE Electrical safety code – Electrical standards at work place – Accident prevention

### UNIT IV SAFETY PROCEDURES AND EQUIPMENTS

Residual current detectors - effects of electric and magnetic fields and electromagnetic radiation – electrosurgical hazards – Ground Rods and ground mats - electrical fires and their investigation –wind energy Area Classification –Safety issues with emerging energy sources

### UNIT V SAFETY TRAINING METHODS

Introduction – Elements of a Training Program – On the Job Training – Training Consultants and Vendors-Training Program Setup–Step by Step Method electrical safety

**TEXT BOOK:** 

Course Code:

**EBEE22E13** 

1. Electrical safety handbook – John Cadick -McGRAW -HILL, Third Edition



0/0

T/SLr

Tv/Lb/

**ETL/IE** 

Tv

L

3

9

9

9

9

P/R

0/0

С

3

9

Total No. of Periods 45

D EDUCATIONAL AND RESEARCH INSTITUTE

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

| Course Code:<br>EBEE22E14  |            | Name:<br>ONTRO |                      | REA MO                            | NITOI    | RING I       | PRO                | TECT       |                | Ty/ Lb/<br>CTL/IE | L      | T/SLr           | P/R              | C                  |
|----------------------------|------------|----------------|----------------------|-----------------------------------|----------|--------------|--------------------|------------|----------------|-------------------|--------|-----------------|------------------|--------------------|
|                            | Prereq     | uisite: P      | ower qua             | lity and (                        | Contro   | l of Pov     | ver S              | Systen     | n              | Ту                | 3      | 0/0             | 0/0              | 3                  |
| L:LectureT:Tut             |            | -              |                      | •                                 | oject R  | : Resea      | rch (              | C: Cre     | dits           |                   |        |                 | I                | 4                  |
| T/L/ETL:Theor              |            | mbeddec        | l Theory a           | und Lab                           |          |              |                    |            |                |                   |        |                 |                  |                    |
| OBJECTIVES                 |            |                |                      |                                   |          |              |                    |            |                |                   |        |                 |                  |                    |
| To kno                     | ow abou    | t the Pha      | sor Meas             | urement U                         | Jnit and | l its imp    | oorta              | nce        |                |                   |        |                 |                  |                    |
| To imp                     | part kno   | wledge o       | on State E           | stimation                         | and the  | Optim        | al pla             | aceme      | ent of PM      | U                 |        |                 |                  |                    |
| To atta                    | ain fami   | liarity on     | Wide Ar              | ea Measu                          | rement   | System       | L                  |            |                |                   |        |                 |                  |                    |
|                            |            |                | knowledg             |                                   |          |              | chem               | nes an     | d the Dyr      | namic m           | odel o | of Power        | Syste            | em                 |
| <ul> <li>To app</li> </ul> | ply the le | earnt con      | cept for the         | ne real tin                       | ne issue | s.           |                    |            |                |                   |        |                 |                  |                    |
| COURSE OUT                 | COME       | CS(Cos)        |                      |                                   |          |              |                    |            |                |                   |        |                 |                  |                    |
| Students compl             | eting thi  | s course       |                      |                                   |          |              |                    |            |                |                   |        |                 |                  |                    |
|                            |            |                | hasor Me             |                                   | t Unit   |              |                    |            |                |                   |        |                 |                  |                    |
| CO2                        |            |                | state estim          |                                   |          | ide Are      | ea M               | easure     | ements, S      | mart Gri          | d      |                 |                  |                    |
| CO3                        |            |                | Grid for tl          |                                   |          |              |                    |            |                |                   |        |                 |                  |                    |
| CO4                        | Demon      | strate the     | operation            | n of the P                        | MU the   | re by th     | e mo               | onitori    | ng of Su       | bstation          |        |                 |                  |                    |
| CO5                        | Analyze    | e the tran     | smission             | and distri                        | bution ( | optimiz      | ation              | n in the   | e Smart C      | Grid              |        |                 |                  |                    |
| Mapping of Co              | ourse Ou   | utcome v       | vith Prog            | ram Out                           | come (   | POs)         |                    |            |                |                   |        |                 |                  |                    |
| COs/POs                    | PO1        | PO2            | PO3                  | PO4                               | PO5      | PO           | 5                  | <b>PO7</b> | PO8            | <b>PO9</b>        | PO     | 10 PO           | 11 P             | PO12               |
| CO1                        | 3          | 2              | 3                    | 3                                 | 2        | 3            |                    | 2          | 3              | 2                 | 3      |                 |                  | 3                  |
| CO2                        | 3          | 3              | 3                    | 3                                 | 2        | 3            |                    | 3          | 3              | 2                 | 3      | 3               |                  | 3                  |
| CO3                        | 3          | 2              | 3                    | 3                                 | 3        | 3            |                    | 2          | 3              | 3                 | 3      |                 |                  | 3                  |
| CO4                        | 3          | 3              | 2                    | 3                                 | 2        | 3            |                    | 3          | 2              | 2                 | 3      |                 |                  | 2                  |
| CO5                        | 2          | 2              | 2                    | 3                                 | 3        | 2            |                    | 2          | 2              | 3                 | 2      |                 |                  | 2                  |
| COs /PSOs                  |            | P              | <b>SO1</b>           |                                   |          |              | PSO                | 2          |                |                   |        | PSO3            |                  |                    |
| CO1                        |            |                | 2                    |                                   |          |              | 3                  |            |                |                   |        | 2               |                  |                    |
| CO2                        |            |                | 2                    |                                   |          |              | 3                  |            |                |                   |        | 3               |                  |                    |
| CO3                        |            |                | 3                    |                                   |          |              | 3                  |            |                |                   |        | 2               |                  |                    |
| CO4                        |            |                | 2                    |                                   |          |              | 3                  |            |                |                   |        | 3               |                  |                    |
| CO5                        |            |                | 3                    |                                   |          |              | 2                  |            |                |                   |        | 2               |                  |                    |
| 3/2/1 Indicates            | Strengtl   | n of Corr      | elation, 3-          | -High, 2-                         | Mediun   | n, 1-Lo      | W                  | 1          |                | 1                 |        |                 | r                |                    |
| 2                          |            | Basic Sciences | Engineering Sciences | Humanities and Social<br>Sciences | C        | rrogram core | ✓Program Electives |            | Open Electives | Interdisciplinary |        | Skill Component | otiool / Duoioot | rracucal / rroject |
| ode                        |            | Ba             | En                   | Hu<br>Sci                         | ,        | Ĕ            | Prc                |            | Op             | Inte              |        | Sk              | Ě                | 21J                |
| Category                   |            |                |                      |                                   |          |              |                    |            |                |                   |        |                 |                  |                    |

AND CONTROL

**EBEE22E14** 

PMU-History of PMU-Basic definition of Synchrophasor, Frequency, Accuracy Indexes-Sensors of PMUs - PMU Architecture-Data Acquisition System-Communication & Data Collector-Distributed PMU-International Standards.

#### UNIT II STATE ESTIMATION AND PMUS

Introduction - Formulation of the SE problem - SE measurement Model - SE Classification - Role & Impact of PMU in SE – PMU based Transmission System SE and Distribution SE - Optimal PMU Placement – SE Applications - Automation Architecture with integrated PMU Measurement for SE

#### UNIT III WIDE AREA MEASUREMENT SYSTEMS

Course Code: Course Name: WIDE AREA MONITORING PROTECTION

Prerequisite: Power Quality and Control of Power System

WAMS – Definition, Data resource, Communication Systems, Applications- Monitoring System Components – Substation Configuration and Communication - Substation Monitoring System- Voltage Stability Assessment -Adaptive load shedding-

#### **UNIT IV SMART GRID**

Smart Transmission grid-Demands & Requirement-Wide Area Disturbances-SIPS Architecture-Components and Applications - Dynamic Model of large Power system- Eigen Values & Eigen vectors –Optimization model for equilibrium tracing–Q-V Sentivity –Small Signal Stability Analysis

#### UNIT V WAMPAC APPLICATION

WAMPAC Application in Frequency Stability, Voltage Stability, Transient Stability, Small Signal Stability

### **Total No. of Periods:45**

### **TEXT BOOKS**

- Antonello Monti, Carlo Muscas, Ferdinanda Ponci, Phasor Measurement Units and Wide Area Monitoring 1. Systems, Elsevier
- Alfredo Vaccaro, Ahmed Faheem Zobaa, Wide Area Monitoring, Protection and Control Systems, IET 2.

### **REFERENCE BOOKS**

- 1. Begovic, Miroslav, M, Electrical Transmission Systems and Smart Grids, Springer
- 2. Fahd Hashiesh, Mansour, MM, Hossam E Mostafa (2011), Wide Area Monitoring, Protection and Control, Lambert

(An ISO 21001 : 2018 Certified Institution) val Chennai-95, Tamilnadu, India Perivar F.V.R. High Road, Madurav



### 9

98

# 9

9

Ty/Lb/

**ETL/IE** 

Ty

L

3

T/SLr

0/0

P/R

0/0

С

3

9

D EDUCATIONAL AND RESEARCH INSTITUTE University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

| Course Code:<br>EBEE22E15 | Course     | Name:          | ROBOTI               | CS AN                 | D AU'     | ГОМАТ        | ION                |                | Ty/ Lb/<br>ETL/IE | L       | T/SLr           | P/R                 | C                  |
|---------------------------|------------|----------------|----------------------|-----------------------|-----------|--------------|--------------------|----------------|-------------------|---------|-----------------|---------------------|--------------------|
|                           | Prerequ    | usite: B       | asic Mecl            | hanical               | and C     | ivil Engi    | ineering           |                | Ту                | 3       | 0/0             | 0/0                 | 3                  |
| L : Lecture T : T         | Futorial 3 | SLr : Su       | pervised I           | earning               | g P: Pro  | oject R :    | Research (         | C : Cred       | its               |         |                 |                     |                    |
| T/L/ETL: Theorem          | ry/Lab/E   | mbedde         | d Theory             | and Lab               | )         |              |                    |                |                   |         |                 |                     |                    |
| <b>OBJECTIVES</b>         |            |                |                      |                       |           |              |                    |                |                   |         |                 |                     |                    |
| To intr                   | roduce th  | ne basic       | concepts a           | and part              | s of ro   | bots.        |                    |                |                   |         |                 |                     |                    |
| • To und                  | derstand   | the wor        | king of ro           | bots and              | l vario   | us types     | of robots.         |                |                   |         |                 |                     |                    |
| • To ma                   | ke the st  | udents f       | amiliar wi           | ith the v             | arious    | drive sys    | stems of ro        | bots, se       | nsor sand         | their a | pplicati        | ons in              |                    |
| robots                    | and prog   | grammiı        | ng of robo           | ts.                   |           | -            |                    |                |                   |         |                 |                     |                    |
| • To dis                  | cuss the   | various        | applicatio           | n of rob              | ots, ju   | stificatio   | n and imp          | lementat       | tion of rob       | ots.    |                 |                     |                    |
|                           |            |                |                      |                       |           |              | s and their        |                |                   |         |                 |                     |                    |
| COURSE OUT                | COME       | S(Cos)         | -                    |                       |           |              |                    |                |                   |         |                 |                     |                    |
| Students comple           |            |                | were able            | to                    |           |              |                    |                |                   |         |                 |                     |                    |
| ^                         | -          |                | obots and            |                       | S         |              |                    |                |                   |         |                 |                     |                    |
| CO2                       | Ŭ          |                |                      |                       |           | sed on A     | pplication         |                |                   |         |                 |                     |                    |
|                           |            |                |                      |                       |           |              | ompile pro         |                |                   |         |                 |                     |                    |
|                           |            |                | uators, ser          |                       |           |              |                    | Bruin          |                   |         |                 |                     |                    |
|                           |            |                |                      |                       |           |              | esign, use         | of Elect       | ric Drives        |         |                 |                     |                    |
| Mapping of Co             |            |                |                      |                       |           |              | congin, use        |                |                   |         |                 |                     |                    |
| COs/POs                   | PO1        | PO2            | PO3                  | PO4                   | PO5       | PO6          | PO7                | PO8            | PO9               | PO1     | 0 PO            | 11 P                | 012                |
| CO1                       | 3          | 3              | 2                    | 3                     | 2         | 3            | 3                  | 2              | 3                 | 2       | 3               |                     | 3                  |
| CO2                       | 3          | 3              | 3                    | 3                     | 3         | 3            | 3                  | 2              | 3                 | 3       | 3               |                     | 3                  |
| CO3                       | 3          | 3              | 2                    | 3                     | 2         | 3            | 3                  | 3              | 3                 | 2       | 3               |                     | 3                  |
| CO4                       | 2          | 3              | 3                    | 3                     | 3         | 2            | 3                  | 2              | 3                 | 3       | 2               |                     | 3                  |
| CO5                       | 2          | 3              | 2                    | 2                     | 2         | 2            | 3                  | 3              | 2                 | 2       | 2               |                     | 3                  |
| COs /PSOs                 |            |                | 501                  | -                     | -         |              | SO2                | v              | -                 |         | SO3             |                     |                    |
| C01                       |            |                | 3                    |                       |           | -            | 3                  |                |                   | -       | $\frac{505}{2}$ |                     |                    |
| CO1                       |            |                | <u>3</u>             |                       |           |              | 3                  |                |                   |         | 2               |                     |                    |
| C02                       |            |                | <u>3</u>             |                       |           |              | 3                  |                |                   |         | 3               |                     |                    |
| CO4                       |            |                | <u>3</u>             |                       |           |              | 3                  |                |                   |         | 2               |                     |                    |
| C04                       |            |                | 2                    |                       |           |              | 3                  |                |                   |         | 2 3             |                     |                    |
| 3/2/1 Indicates           | Strength   |                |                      | -High                 | 2-Medi    | ium 1-L      | -                  |                |                   |         | 0               |                     |                    |
| 3/2/1 maleutes            | buengu     |                | ciution, 5           |                       |           |              | 5 • • •            |                |                   |         |                 |                     |                    |
| şory                      |            | Basic Sciences | Engineering Sciences | Humanities and Social | orielices | Program Core | ←Program Electives | Open Electives | Interdisciplinary |         | Skill Component | Dractical / Droiact | 19411491 / 110/241 |
| Category                  |            | Щ              | Щ                    |                       | 2         | <u>ц</u>     |                    | C              |                   |         |                 | <u>P</u>            | -                  |
|                           |            |                |                      | 1                     |           |              |                    |                | L                 |         |                 |                     |                    |

Anatomy of robotics-History & Terminology of Robotics-various generations of robots-degrees of freedom -Asimov's laws of robotics

#### UNIT II SENSORS IN ROBOTICS

Position sensors-optical, non-optical, Velocity sensors, Accelerometers, Proximity Sensors-Contact, non-contact, Range Sensing, touch and Slip Sensors, Force and Torque Sensors.

#### UNIT III MANIPULATORS, ACTUATORS AND GRIPPERS

Prerequisite: Basic Mechanical and Civil Engineering

Construction of manipulators – manipulator dynamics and force control – electronic and pneumatic manipulator control circuits- end effectors- U various types of grippers-design considerations

#### **UNIT IV ROBOTICS IN MATERIAL HANDLING**

General considerations in robot material handling- material transfer application-pick & place operations-machine loading & unloading-characteristics of robot application-Robot cell design-processing operations-Spot welding, Spray painting, Plastic moulding, forging

#### UNIT V **ROBOTICS IN FUTURE**

Robot intelligence, Advanced Sensors, Capabilities, Telerobotics, Mechanical design Features, Mobility, locomotion and Navigation-the universal Hand Systems Integration and Networking

### Total No. of Periods:45

### TEXT BOOKS

- 1. Mikell P. Weiss G. M., Nagel R. N., Odraj N.G., Industrial Robotics, McGraw-Hill Singapore,
- 2. Ghosh, Control in Robotics and Automation: Sensor Based Integration, Allied Publishers, Chennai, 1998.

### **REFERENCE BOOKS**

- 1. Deb. S. R., (1992), Robotics technology and flexible Automation, John Wiley.
- 2. Asfahl C.R., (1992), Robots and manufacturing Automation, John Wiley.
- 3. Klafter R.D., Chimielewski T.A., Negin M., (1994)., Robotic Engineering–An integrated approach, Prentice Hall of India.
- 4. Mc Kerrow P.J.(1991)., Introduction to Robotics, Addison Wesley.
- 5. Issac Asimov (1986.), I Robot, Ballantine Books, New York.



Perivar E.V.R. High Road, Maduravoval, Chennai-95, Tamilnadu, India С Course Code: **Course Name: ROBOTICS AND AUTOMATION** Ty/Lb/ L T/SLr P/R **EBEE22E15 ETL/IE** 

0/0

9

9

9

3

3

0/0

Tv

9

100



| Course Code:<br>EBEE22E16 | Course N                | lame: IM   | AGE P                | ROCESS                            | SING         |                     |         | -              | / Lb/<br>TL/IE    | L       | T/SLr           | P/R                 | C                    |
|---------------------------|-------------------------|------------|----------------------|-----------------------------------|--------------|---------------------|---------|----------------|-------------------|---------|-----------------|---------------------|----------------------|
|                           | Prerequi                | site: Non  | e                    |                                   |              |                     |         |                | Ту                | 3       | 0/0             | 0/0                 | 3                    |
| L : Lecture T : 7         | Futorial S              | Lr : Super | vised Le             | earning P                         | : Project    | R : Rese            | earch C | : Credit       | s                 |         |                 |                     | <u> </u>             |
| T/L/ETL: Theorem          |                         | nbedded 7  | Theory a             | nd Lab                            | -            |                     |         |                |                   |         |                 |                     |                      |
| OBJECTIVES                |                         |            |                      |                                   |              |                     |         |                |                   |         |                 |                     |                      |
| • To app                  | ply transfo             | ormation ( | techniqu             | es in Digi                        | ital Imag    | e Proces            | ssing   |                |                   |         |                 |                     |                      |
|                           | ply techni              |            |                      |                                   |              | tion, con           | npressi | on, segn       | nentation         | n etc   |                 |                     |                      |
|                           | rn image                |            |                      |                                   |              |                     |         |                |                   |         |                 |                     |                      |
|                           | rn the fun              |            |                      |                                   |              |                     | filters | for imag       | e enhan           | cemer   | nt              |                     |                      |
|                           | plementin               |            | nt algorit           | hm in im                          | age proc     | essing              |         |                |                   |         |                 |                     |                      |
| COURSE OUT                |                         |            | 11 (                 |                                   |              |                     |         |                |                   |         |                 |                     |                      |
| Students comple           |                         |            |                      |                                   | ania -       |                     |         |                |                   |         |                 |                     |                      |
| CO1                       | Understar               |            |                      | <u> </u>                          |              | and ( -             |         |                |                   |         |                 |                     |                      |
| CO2                       | Apply the               |            |                      |                                   |              |                     |         |                | ore imag          | ges     |                 |                     |                      |
| CO3                       | Illustrate<br>Paraphras |            |                      |                                   |              |                     |         |                | forime            | go or 1 |                 | ont                 |                      |
| <u>CO4</u>                | Paraphras<br>Perform e  |            |                      |                                   |              |                     |         |                |                   |         | nancem          | ent                 |                      |
| CO5<br>Mapping of Co      |                         |            |                      |                                   |              |                     |         | image p        | rocessin          | g       |                 |                     |                      |
| COs/POs                   | PO1                     | PO2        | n Progr<br>PO3       | PO4                               | PO5          | <b>PO6</b>          | PO7     | PO8            | PO9               | PO1     | 0 PO            | 11 D                | 012                  |
| COS/FOS                   | 3                       | 2          | 3                    | 2                                 | 3            | 3                   | 2       | 3              | 2                 | 3       | 3               |                     | 2                    |
| CO2                       | 3                       | 3          | 3                    | 3                                 | 3            | 3                   | 3       | 3              | 3                 | 3       | 3               |                     | 2                    |
| CO2                       | 3                       | 2          | 3                    | 2                                 | 3            | 3                   | 2       | 3              | 2                 | 3       | 3               |                     | <u>2</u><br>3        |
| CO4                       | 3                       | 3          | 3                    | 3                                 | 2            | 3                   | 3       | 3              | 3                 | 2       | 3               |                     | 2                    |
| CO5                       | 2                       | 2          | 2                    | 2                                 | 2            | 3                   | 2       | 2              | 2                 | 2       | 3               |                     | 3                    |
| COs /PSOs                 |                         | PSC        | 01                   | _                                 |              | PS                  | 02      |                |                   | Ī       | PSO3            |                     |                      |
| CO1                       |                         | 3          |                      |                                   |              | 3                   |         |                |                   | -       | 2               |                     |                      |
| CO2                       |                         | 3          |                      |                                   |              | 3                   |         |                |                   |         | 3               |                     |                      |
| CO3                       |                         | 3          |                      |                                   | 1            | 3                   |         |                |                   |         | 2               |                     |                      |
| CO4                       |                         | 2          |                      |                                   | 1            | 3                   |         |                |                   |         | 3               |                     |                      |
| CO5                       |                         | 2          |                      |                                   |              | 3                   |         |                |                   |         | 2               |                     |                      |
| 3/2/1 Indicates           | Strength of             | of Correla | tion, 3–             | High, 2-N                         | ledium,      | 1-Low               |         |                |                   |         |                 |                     |                      |
| Category                  | Basic Sciences          | -          | Engineering Sciences | Humanities and Social<br>Sciences | Program Core | ✓ Program Electives | 0       | Open Electives | Interdisciplinary |         | Skill Component | Denotion1 / Deniant | Flacifical / Flugeri |
| Ca                        |                         |            |                      |                                   |              | V                   |         |                |                   |         |                 |                     |                      |

#### UNIT I DIGITAL IMAGE FUNDAMENTALS AND TRANSFORMS

Elements of visual perception – Image sampling and quantization Basic relationship between pixels – Basic geometric transformations-Introduction to Fourier Transform and DFT -properties of 2D Fourier Transform -FFT-Separable Image Transforms-Walsh-Hadamard-Discrete Cosine Transform, Haar, Slant-Karhunen-Loeve transforms.

#### UNIT II **IMAGE ENHANCEMENT TECHNIQUES**

**Prerequisite:** None

Spatial Domain methods: Basic grey level transformation- Histogram equalization- Image subtraction-Image averaging –Spatial filtering: Smoothing, sharpening filters – Laplacian filters – Frequency domain filters: Smoothing-Sharpening Filters-Homomorphic filtering.

#### UNIT III **IMAGE RESTORATION**

Model of Image Degradation/restoration process- Noise models- Inverse Filtering-Least mean square filtering -Constrained least mean square filtering-Blind image restoration-Pseudo inverse-Singular value decomposition.

#### UNIT IV **IMAGE COMPRESSION**

Lossless compression: Variable length coding – LZW coding – Bit plane coding- predictive coding-DPCM. Lossy Compression: Transform coding – Wavelet coding – Basics of Image compression standards: JPEG, MPEG, Basics of vector quantization.

#### UNIT V **IMAGE SEGMENTATION AND REPRESENTATION**

Edge detection – Thresholding - Region Based segmentation – Boundary representation: chair codes- Polygonal approximation – Boundary segments – boundary descriptors: Simple descriptors-Fourier descriptors – Regional descriptors –Simple descriptors- Texture- Implementation of various algorithms in image processing using related simulation packages.

### **TEXT BOOKS**

**EBEE22E16** 

1. Rafael CGonzalez, Richard E. Woods, (2003) Digital Image Processing.2<sup>nd</sup> Ed. Pearson Education.

### **REFERENCE BOOKS**

- 1. William K. Pratt, (2001) Digital Image Processing. John Willey.
- 2. Chanda Dutta Magundar, (2000) Digital Image Processing and Applications. Prentice Hall of India:
- 3. Millman Sonka, Vaclavhlavac, Roger Boyle, Broos, colic, (1999) Image Processing Analysis and Machine Vision. Thompson Learning
- 4. Jain, A.K. (1995) Fundamentals of Digital Image Processing. NewDelhi: PHI.





9

С

3

T/SLr P/R

0/0

9

9

9

0/0

L

3

**ETL/IE** 

Tv

## **Total No. of Periods:45**



| Course Code:<br>EBEE22E17 | Course Name              | : SUBS               | TATIO    | N DES                             | IGNINO                    | 5                   |           | PO8         PO9         PO10         PO11         PO           3         3         3         2         2           2         2         3         3         2           3         3         3         2         2           2         2         3         3         2           2         2         3         3         2           2         2         3         3         2 | С                 |       |                 |     |                           |
|---------------------------|--------------------------|----------------------|----------|-----------------------------------|---------------------------|---------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------|-----------------|-----|---------------------------|
|                           | Prerequisite:            | Power S              | System   | Protect                           | ion and                   | Switch              | gear      |                                                                                                                                                                                                                                                                                                                                                                              | Ту                | 3     | 0/0             | 0/0 | 3                         |
| L : Lecture T : 7         | Tutorial SLr : S         | Supervis             | ed Lear  | ning P: 1                         | Project F                 | R : Resea           | arch C :  | Credits                                                                                                                                                                                                                                                                                                                                                                      | T/L/ETL           | .:    |                 |     |                           |
| Theory/Lab/Em             |                          | and La               | ıb       | 0                                 | U                         |                     |           |                                                                                                                                                                                                                                                                                                                                                                              |                   |       |                 |     |                           |
| OBJECTIVES                |                          |                      |          |                                   |                           |                     |           |                                                                                                                                                                                                                                                                                                                                                                              |                   |       |                 |     |                           |
|                           | o study about th         | -                    |          |                                   |                           | • •                 |           |                                                                                                                                                                                                                                                                                                                                                                              |                   |       |                 |     |                           |
|                           | -                        | -                    |          |                                   |                           |                     |           | -                                                                                                                                                                                                                                                                                                                                                                            | -                 |       |                 |     |                           |
|                           |                          |                      | -        |                                   |                           |                     |           |                                                                                                                                                                                                                                                                                                                                                                              |                   |       |                 |     |                           |
|                           |                          | pread ki             | nowledg  | e about                           | High vo                   | oltage Po           | wer Ele   | ctronics                                                                                                                                                                                                                                                                                                                                                                     | Substati          | on su | ich as H        | VDC |                           |
|                           | ation<br>o understand th | e Intear             | ation an | d Auton                           | nation of                 | f Substat           | ions      |                                                                                                                                                                                                                                                                                                                                                                              |                   |       |                 |     |                           |
| COURSE OUT                |                          | -                    |          | u Auton                           |                           | Substa              | .10115    |                                                                                                                                                                                                                                                                                                                                                                              |                   |       |                 |     |                           |
| Students compl            |                          |                      | able to  |                                   |                           |                     |           |                                                                                                                                                                                                                                                                                                                                                                              |                   |       |                 |     |                           |
|                           | Identify the co          |                      |          | e Substa                          | tion                      |                     |           |                                                                                                                                                                                                                                                                                                                                                                              |                   |       |                 |     |                           |
| CO2                       | -                        | -                    |          |                                   |                           | dentify             | the fault | s related                                                                                                                                                                                                                                                                                                                                                                    | l to it           |       |                 |     |                           |
| CO3                       |                          |                      | -        |                                   |                           | -                   |           |                                                                                                                                                                                                                                                                                                                                                                              |                   | ation | integra         | ion |                           |
| CO4                       | -                        | -                    |          |                                   |                           |                     |           |                                                                                                                                                                                                                                                                                                                                                                              |                   |       | -               |     |                           |
| CO5                       | Design the sub           | ostation             | with all | the requ                          | uirement                  | s for a s           | ustainat  | le socie                                                                                                                                                                                                                                                                                                                                                                     | ty                |       |                 |     |                           |
| Mapping of Co             | ourse Outcome            | e with P             | rogram   | Outco                             | me (POs                   | 5)                  |           |                                                                                                                                                                                                                                                                                                                                                                              |                   |       |                 |     |                           |
| COs/POs                   | PO1                      | PO2                  | PO3      | PO4                               | PO5                       | PO6                 | PO7       | PO8                                                                                                                                                                                                                                                                                                                                                                          |                   | POI   | 10 PO           | 11  | PO12                      |
| CO1                       | 3                        | 2                    | 3        | 3                                 | 3                         | 2                   | 3         |                                                                                                                                                                                                                                                                                                                                                                              |                   |       |                 |     | 3                         |
| CO2                       | 2                        | 3                    | 2        | 2                                 | 3                         | 3                   | 2         |                                                                                                                                                                                                                                                                                                                                                                              |                   |       |                 |     | 2                         |
| CO3                       | 3                        | 2                    | 3        | 3                                 | 3                         | 2                   | 3         |                                                                                                                                                                                                                                                                                                                                                                              |                   |       |                 |     | 3                         |
| CO4                       | 2                        | 2                    | 2        | 2                                 | 3                         | 3                   | 2         |                                                                                                                                                                                                                                                                                                                                                                              |                   |       |                 |     | 2                         |
| CO5                       | 3                        | 3                    | 3        | 2                                 | 2                         | 3                   | 3         | 3                                                                                                                                                                                                                                                                                                                                                                            | 2                 | 2     | -               |     | 3                         |
| COs /PSOs                 |                          | PSO1                 |          |                                   |                           |                     | 02        |                                                                                                                                                                                                                                                                                                                                                                              |                   |       |                 |     |                           |
| C01                       |                          | 3                    |          |                                   |                           |                     | 2         |                                                                                                                                                                                                                                                                                                                                                                              |                   |       |                 |     |                           |
| CO2<br>CO3                |                          | <u>3</u><br>3        |          |                                   |                           |                     | 3<br>2    |                                                                                                                                                                                                                                                                                                                                                                              |                   |       |                 |     |                           |
| CO3                       |                          | 3                    |          |                                   |                           |                     | 3         |                                                                                                                                                                                                                                                                                                                                                                              |                   |       |                 |     |                           |
| C04                       |                          | 2                    |          |                                   |                           |                     | 3         |                                                                                                                                                                                                                                                                                                                                                                              |                   |       |                 |     |                           |
| 3/2/1 Indicates           | Strength of Co           |                      | n, 3–Hig | gh, 2-Me                          | edium, 1                  |                     | <i>.</i>  |                                                                                                                                                                                                                                                                                                                                                                              |                   |       | U               |     |                           |
|                           |                          |                      |          |                                   | ,                         |                     |           |                                                                                                                                                                                                                                                                                                                                                                              |                   |       |                 |     |                           |
|                           |                          | ces                  | · ·      | OC18                              |                           |                     |           |                                                                                                                                                                                                                                                                                                                                                                              |                   |       |                 |     |                           |
|                           |                          | ien                  |          | Ň                                 |                           | SAV                 |           |                                                                                                                                                                                                                                                                                                                                                                              | y                 |       | nt              |     | ect                       |
|                           | ces                      | Sc                   |          | anc                               | ore                       | itic                | 22        | ves                                                                                                                                                                                                                                                                                                                                                                          | nar               |       | one             |     | roje                      |
|                           | ien                      | ing                  | , .      | les                               | Co                        | Ц                   |           | ecti                                                                                                                                                                                                                                                                                                                                                                         | ilqi              |       | ,du             |     | / F                       |
|                           | Sc                       | leer                 |          | amt                               | am                        | ue<br>ue            |           | El                                                                                                                                                                                                                                                                                                                                                                           | lisc              |       | Col             |     | ical                      |
| uy                        | Basic Sciences           | Engineering Sciences | )        | Humanities and Social<br>Sciences | Program Core              | 001                 | 190       | Open Electives                                                                                                                                                                                                                                                                                                                                                               | Interdisciplinary |       | Skill Component |     | Practical / Project       |
| Category                  | B                        | Ъ                    | ;        | Ň                                 | $\mathbf{P}_{\mathbf{r}}$ | d Drooram Flectives |           | Ō                                                                                                                                                                                                                                                                                                                                                                            | In                |       | Š               |     | $\mathbf{P}_{\mathbf{r}}$ |
| Cat                       |                          |                      |          |                                   |                           | N                   |           |                                                                                                                                                                                                                                                                                                                                                                              |                   |       |                 |     |                           |

# Course Code:<br/>EBEE22E17Course Name: SUBSTATION DESIGNINGTy/ Lb/<br/>ETL/IELT/SLrP/RPrerequisite: Power System Protection and SwitchgearTy30/00/0

### UNIT I INTRODUCTION TO SUBSTATION AND ITS TYPES

Need for Substation–Budgeting–Traditional & Innovative Substation Design–Site Selection and Acquisition-Station Design–Station Construction–Station Commissioning- bas bar arrangements in Switch yard

### UNIT II GAS INSULATED SUBSTATION

Sulfur Hexafluoride – Construction – Circuit Breaker – Current and Voltage Transformers – Disconnect and Ground Switches – Interconnecting Bus – Air, Power Cable and Direct Transformer Connections – Surge Arrester – Control System – Gas monitoring System – Gas compartments and Zones – Electrical & Physical Arrangement– Grounding– Testing–Installation – Operation and Interlocks – Economics.

### UNIT III AIR- INSULATED SUBSTATIONS

Introduction – Single and Double Bus Arrangement – Main and Transfer Bus Arrangement – Double Bus-Single Breaker Arrangement – Ring Bus Arrangement – Breaker and a Half Arrangement – Comparison of Configurations

### UNIT IV HIGH VOLTAGE POWER ELECTRONIC SUBSTATION

High Voltage Power Equipment - Converter Station (HVDC) – FACTS Controllers – Control & Protection System – Health monitoring and thermal energy, Losses and cooling –Civil works – Reliability and Availability – Future Trends

### UNIT V SUBSTATION INTEGRATION AND AUTOMATION

Definitions and Terminology – Open Systems- Architecture Functional Data paths – Substation Integration and Automation Systems–New Vs Existing Substations–Equipment conditioning Monitoring– Substation Integration and Automation Technical issues – Protocol Fundamentals and Considerations – Communication Protocol Application Areas

# Total No. of Periods:45

### TEXT BOOKS

1. John D, Mc Donald (2007), Electric Power Substations Engineering, 2<sup>nd</sup> Ed, CRC Press

2. Sunil. S, Rao (2010), Switchgear Protection and Power Systems, 4th Ed. Khanna Publishers

### **REFERENCE BOOKS**

- 1. Khedkar MK, Dhole GM, Electric Power Distribution Automation, University Science Press
- 2. Satnam PS and Gupta PV, Substation Design & Equipment, Dhanpat Rai Publications



9

9

**9** 115-

9

С

3

9



| Course Code:<br>EBEE22E18 | Course Name<br>INSTRUMEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |           | L CON                             | TROL         |                   |          |                | y/ Lb/<br>FL/IE   | L       | T/SLr           | P/R | С                   |  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|-----------------------------------|--------------|-------------------|----------|----------------|-------------------|---------|-----------------|-----|---------------------|--|
|                           | Prerequisite:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Measur               | rements   | and In                            | strumen      | tation            |          |                | Ту                | 3       | 0/0             | 0/0 | 3                   |  |
| L : Lecture T : '         | Tutorial SLr : S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | upervis              | ed Lear   | ning P: 1                         | Project R    | : Resea           | arch C : | Credits '      | T/L/ET            | L:      |                 |     |                     |  |
| Theory/Lab/Em             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and La               | b         |                                   |              |                   |          |                |                   |         |                 |     |                     |  |
| OBJECTIVES                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |           |                                   |              |                   |          |                |                   |         |                 |     |                     |  |
| • T                       | o know about fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | orce, tor            | que, vel  | locity                            |              |                   |          |                |                   |         |                 |     |                     |  |
| • T                       | o learn the mea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | suremei              | nt of acc | eleratio                          | n, vibrati   | ion, den          | sity and | viscosit       | у                 |         |                 |     |                     |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |           |                                   |              |                   |          |                |                   |         |                 |     |                     |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |           |                                   |              |                   | -        |                |                   |         |                 |     |                     |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | e industr | y by giv                          | ving suita   | able solu         | ition in | a cost-ef      | fective           | manne   | er.             |     |                     |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |           |                                   |              |                   |          |                |                   |         |                 |     |                     |  |
| ^                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |           |                                   |              | .1                |          |                | 1 4               |         |                 |     |                     |  |
| CO1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |           |                                   |              |                   |          |                | I Applic          | cation  |                 |     |                     |  |
| CO2                       | To understand the Pressure and Temperature measurement<br>To learn about the Controllers and Converters, Thermocouple with the use of modern tools<br>To solve the issues in the industry by giving suitable solution in a cost-effective manner.OUTCOMES(Cos)ompleting this course were able toRecognize the basic regulatory power supply, thermocouple, Industrial ApplicationSummarize the need for the Industrial Control InstrumentationInterpret the PLC, various converters, pressure measurement and various application in<br>IndustriesAnalyze the Controllers and Converters, Thermocouple with the use of modern tools<br>Solve the issues in the industry by giving suitable solution in a cost-effective manner.of Course Outcome with Program Outcome (POs)sPO1PO2PO3PO4PO5PO6PO7PO8PO1PO10PO11PO123333Solve the issues in the industry by giving suitable solution in a cost-effective manner.of Course Outcome with Program Outcome (POs)Solve the issues in the industry by 23323322323332323323323332                                                                                                                                                                                      |                      |           |                                   |              |                   |          |                |                   |         |                 |     |                     |  |
| CO3                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LC, vari             | ous con   | verters,                          | pressure     | measur            | rement a | ind vario      | ous appl          | ication | 1 IN            |     |                     |  |
|                           | belarn about the Controllers and Converters, Thermocouple with the use of modern tools         belarn about the industry by giving suitable solution in a cost-effective manner.         COMES(Cos)         eting this course were able to         Recognize the basic regulatory power supply, thermocouple, Industrial Application         Summarize the need for the Industrial Control Instrumentation         Interpret the PLC, various converters, pressure measurement and various application in         Industries         Analyze the Controllers and Converters, Thermocouple with the use of modern tools         Solve the issues in the industry by giving suitable solution in a cost-effective manner.         urse Outcome with Program Outcome (POs)         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12         3       3       2       3       3       2       3       2       3       2       3       2       3       2       3       2       3       2       3       2       3       2       3       2       3       2       3       2       3       2       3       2       3       2       3       2       3 |                      |           |                                   |              |                   |          |                |                   |         |                 |     |                     |  |
| CO4                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |           |                                   |              |                   |          |                |                   |         |                 |     |                     |  |
| CO5                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |           |                                   |              |                   |          |                |                   |         |                 |     |                     |  |
| COs/POs                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | <u> </u>  |                                   |              | ,                 | DO7      | DOP            | DOO               | DO1     |                 | 11  | DO12                |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |           |                                   |              |                   |          |                |                   | -       |                 |     |                     |  |
| <u>CO1</u>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |           |                                   |              |                   |          |                |                   |         |                 |     |                     |  |
| <u>CO2</u>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |           |                                   |              |                   |          |                |                   |         |                 |     |                     |  |
| CO3                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |           |                                   |              |                   | _        | -              |                   |         |                 |     |                     |  |
| <u>CO4</u>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |           |                                   |              |                   |          | -              |                   |         |                 |     |                     |  |
| CO5                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                    | -         | 3                                 | 3            |                   |          | 2              | 3                 | -       | e               |     | 3                   |  |
| COs /PSOs                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |           |                                   |              |                   |          |                |                   |         |                 |     |                     |  |
| CO1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                    |           |                                   |              | -                 | 3        |                |                   |         | 3               |     |                     |  |
| CO2                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                    |           |                                   |              |                   | 2        |                |                   |         | 2               |     |                     |  |
| CO3                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                    |           |                                   |              |                   | 3        |                |                   |         | 3               |     |                     |  |
| CO4                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                    |           |                                   |              |                   | 2        |                |                   |         | 2               |     |                     |  |
| CO5                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                    |           |                                   |              |                   | 3        |                |                   |         | 2               |     |                     |  |
| 3/2/1 Indicates           | Strength of Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rrelation            | n, 3–Hig  | gh, 2-Me                          | edium, 1-    | -Low              | •        |                |                   |         |                 |     |                     |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |           | _                                 |              |                   |          |                |                   |         |                 |     |                     |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ses                  |           | сла                               |              |                   |          |                |                   |         |                 |     |                     |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | enc                  | τ.        | No No                             |              | es                | 3        |                | ~                 |         | It              |     | ct                  |  |
|                           | es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sci                  | -         | nd                                | e            | vito              |          | es             | lar)              |         | nen             |     | oje                 |  |
|                           | succ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gu                   | )         | SS a                              | Or           | -lec              |          | ,tiv           | olin              |         | lod             |     | Pr                  |  |
|                           | cie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | erii                 |           | es                                | m (          | ۳<br>۲            |          | Elec           | scif              |         | un              |     | al /                |  |
| ×                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ine                  |           | nar                               | grai         | )Ta1              | n        | in E           | rdis              |         | $1^{\rm C}$     |     | otic                |  |
| 30r.                      | Basic Sciences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Engineering Sciences | )         | Humanities and Social<br>Sciences | Program Core | Program Electives | 2 I      | Open Electives | Interdisciplinary |         | Skill Component |     | Practical / Project |  |
| Category                  | Щ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |           |                                   | <u>L</u>     | ~ ~               | 1        | U              | Ţ                 |         | S               |     | ц                   |  |
| Ŭ                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |           |                                   |              | ,                 |          |                |                   |         |                 |     |                     |  |

### UNIT I REGULATORY POWER SUPPLY

Overview of Switching Regulators and switch mode power supplies – Uninterrupted Power Supplies – Solid state circuit breakers-PLC

### UNIT II CONTROLLERS AND CONVERTERS

EDUCATION

Prerequisite: Measurements and Instrumentation

Analog Controllers – Proportional controllers – Proportional Integral Controllers – PID Controllers – Feed forward Controllers – Signal Conditioners – Instrumentation Amplifiers – Voltage to Current, Current to Voltage, Voltage to Frequency, Frequency to Voltage Converters – Isolation Circuits

### UNIT III PRESSURE MEASUREMENT

Units of pressure - Manometers - Different types - Elastic type pressure gauges - Bourdon type bellows - Diaphragms - Electrical methods - Elastic elements with LVDT and strain gauges - Capacitive type pressure gauge-Piezo resistive pressure sensor-Resonator pressure sensor-Measurement of vacuum-McLeod Gauge-Thermal conductivity gauges - Ionization gauge, cold cathode and hot cathode types - Testing and calibration of pressure gauges-Dead weight tester.

### UNIT IV THERMOCOUPLE

Thermocouples – Laws of thermocouple – Fabrication of industrial thermocouples – Signal conditioning of thermocouples output – Thermal block Reference Books functions – Commercial circuits for cold junction compensation–Response of thermocouple–Special techniques for measuring high temperature using thermocouples–Radiation methods of temperature measurement

### UNIT V APPLICATION IN INDUSTRIES

Stepper Motors and Servo motors – Control and Application – Servo Amplifiers – Selection of Servo motor and Application–Fibre Optics– Barcode Equipment and Application of Barcode in Industry

### **TEXT BOOKS**

- 1. Doebelin, E.O. (2003) Measurement Systems–Application and Design. Tata McGraw Hill publishing company.
- 2. Jain, R.K. (1999) Mechanical and Industrial Measurements. NewDelhi: Khanna Publishers.
- 3. Michael Jacob, (1988) 'Industrial Control Electronics–Applications and Design', Prentice Hall
- 4. Thomas, E. Kissel, (2003) Industrial Electronics, PHI

### **REFERENCE BOOKS**

- 1. Patranabis, D. (1996) Principles of Industrial Instrumentation. Tata McGraw Hill Publishing Company Ltd.
- 2. Sawhney, A. K. and Sawhney, P. (2004)A Course on Mechanical Measurements, Instrumentation and Control Dhanpath Rai and Co.
- 3. Nakra, B.C.& Chaudary, B.C. Instrumentation Measurement & Analysis. Tata McGraw Hill Publishing Ltd.
- 4. Singh, S.K. (2003) Industrial Instrumentation and Control. Tata McGrawHill.
- 5. Eckman, D.P. Industrial Instrumentation. Wiley Eastern Ltd.



STITUTE



3

0/0

0/0

9

9

9

Ty

С

3

### 9

9

#### **Total No. of Periods:45**



| Course Code:<br>EBEE22E19 | Course Name:           | ELECT                                                                 | TRIC T   | RACTI                             | ON           |                     |            |                | Fy/ Lb/<br>ETL/IE | L   | T/SLr           | P/R  | C                   |  |
|---------------------------|------------------------|-----------------------------------------------------------------------|----------|-----------------------------------|--------------|---------------------|------------|----------------|-------------------|-----|-----------------|------|---------------------|--|
|                           | Prerequisite: <b>F</b> | lectrica                                                              | l Mach   | ines, Po                          | wer Ele      | ctronics            | 5          |                | Ту                | 3   | 0/0             | 0/0  | 3                   |  |
| L : Lecture T : 7         | Tutorial SLr : Su      | pervised                                                              | l Learni | ng P: Pr                          | oject R :    | : Researc           | ch C : 0   | Credits T      | /L/ETL:           |     |                 |      | 4                   |  |
|                           | bedded Theory          | and Lab                                                               |          | -                                 | -            |                     |            |                |                   |     |                 |      |                     |  |
| OBJECTIVES                |                        |                                                                       |          |                                   |              |                     |            |                |                   |     |                 |      |                     |  |
|                           | o know about tra       |                                                                       |          |                                   |              |                     |            |                |                   |     |                 |      |                     |  |
|                           | o estimate motor       | 0                                                                     |          |                                   | Books to     | Indian S            | Standa     | ds             |                   |     |                 |      |                     |  |
|                           | o apply concepts       | in elect                                                              | rical Ma | achines                           |              |                     |            |                |                   |     |                 |      |                     |  |
| COURSEOUT                 |                        | wara ah                                                               | la ta    |                                   |              |                     |            |                |                   |     |                 |      |                     |  |
|                           | eting this course      |                                                                       |          | 1 171                             |              |                     |            |                |                   |     |                 |      |                     |  |
| CO1                       | Recognition of         |                                                                       |          |                                   |              |                     |            |                |                   |     |                 |      |                     |  |
| CO2                       | Classify the ope       | -                                                                     |          |                                   |              |                     |            |                |                   |     |                 |      |                     |  |
| CO3                       | Estimate the Po        |                                                                       | -        |                                   |              | -                   | -          |                |                   |     |                 |      |                     |  |
| CO4                       | Summarize the scenario |                                                                       |          |                                   |              |                     |            |                |                   |     |                 |      |                     |  |
| CO5                       | Utilize the Trac       | lize the Traction system and special Drives for a sustainable society |          |                                   |              |                     |            |                |                   |     |                 |      |                     |  |
| Mapping of Co             | ourse Outcome          | with Pro                                                              | ogram (  | Outcom                            | e (POs)      |                     |            |                |                   |     |                 |      |                     |  |
| COs/POs                   | PO1                    | PO2                                                                   | PO3      | PO4                               | PO5          | PO6                 | <b>PO7</b> | PO8            | PO9               | POI | lo PO           | 11 I | 2012                |  |
| CO1                       | 3                      | 2                                                                     | 2        | 3                                 | 3            | 2                   | 3          | 2              | 3                 | 3   | 2               |      | 2                   |  |
| CO2                       | 2                      | 3                                                                     | 3        | 2                                 | 2            | 3                   | 2          | 3              | 2                 | 2   | 3               |      | 2                   |  |
| CO3                       | 3                      | 2                                                                     | 2        | 3                                 | 3            | 2                   | 3          | 2              | 3                 | 3   | 2               |      | 2                   |  |
| CO4                       | 2                      | 3                                                                     | 2        | 2                                 | 2            | 3                   | 2          | 2              | 2                 | 2   | 3               |      | 3                   |  |
| CO5                       | 3                      | 3                                                                     | 3        | 3                                 | 3            | 3                   | 3          | 3              | 3                 | 3   | 3               |      | 3                   |  |
| COs /PSOs                 |                        | PSO1                                                                  |          |                                   |              | PS                  | 02         |                |                   | ]   | PSO3            |      |                     |  |
| CO1                       |                        | 3                                                                     |          |                                   |              | 2                   | 2          |                |                   |     | 3               |      |                     |  |
| CO2                       |                        | 2                                                                     |          |                                   |              |                     | 3          |                |                   |     | 2               |      |                     |  |
| CO3                       |                        | 3                                                                     |          |                                   |              | 2                   |            |                | ļ                 |     | 3               |      |                     |  |
| CO4                       |                        | 2                                                                     |          |                                   |              |                     | 3          |                |                   |     | 2               |      |                     |  |
| <b>CO5</b>                | Street f C             | 3                                                                     | 2 11' 1  |                                   | <br>         |                     | 3          |                |                   |     | 3               |      |                     |  |
| 3/2/1 Indicates           | Strength of Cor        | relation,                                                             | 3−H1gh   | i, 2-Med                          | 1um, 1-l     | LOW                 | <u> </u>   |                | 1                 |     |                 |      |                     |  |
| Category                  | Basic Sciences         | Engineering Sciences                                                  |          | Humanities and Social<br>Sciences | Program Core | ✓ Program Electives |            | Open Electives | Interdisciplinary |     | Skill Component |      | Practical / Project |  |
| Cat                       |                        |                                                                       |          |                                   |              |                     |            |                |                   |     |                 |      |                     |  |

Course Code:

**EBEE22E19** 

Basic drive components classification and operating modes of electric drive, nature and type of mechanical loads, review of speed torque characteristics of electric motors and load, joint speed torque characteristics. Electric Braking: Plugging, dynamic and regenerative braking of DC and AC motors.

#### UNIT II DYNAMICS OF ELECTRIC DRIVES SYSTEM

Prerequisite: Electrical Machines, Power Electronics

Equation of motion, equivalent system of motor load combination, stability considerations, electro mechanical transients during starting and braking, calculation of time and energy losses, optimum frequency of starting.

#### **UNIT III TRACTION DRIVE**

Electric traction services, duty cycle of traction drives calculations of drive rating and energy consumption, desirable characteristics of traction drive and suitability of electric motors, control of traction drives. Energy Conservation in Electric Drive: Losses in electric drive system and their minimization energy, efficient operation of drives, load equalization.

#### **UNIT IV** ESTIMATION OF MOTOR POWER RATING

Heating and cooling of electric motors, load diagrams, classes of duty, Reference Books to India standards, estimation of rating of electric motors for continuous, short time and intermittent ratings.

#### UNIT V SPECIAL ELECTRIC DRIVE

Servo motor drive, step motor drive, linear induction motor drive, permanent magnet motor drive. Selection of electric drive: Selection criteria of electric drive for industrial applications, case studies related to steel mills, paper mills, textile mills and machine tool etc.

### **TEXT BOOKS**

- 1. Dubey, G.K. (1995) Fundamentals of Electric Drive. Narosa Publishing House.
- 2. Chilkin, M. Electric Drive. Mir Publications.

### **REFERENCE BOOKS**

- 1. Pillai, S.K.A first course on Electric Drive. New age international publishers.
- 2. Dev, N.K. Sen, P.K. (1999) Electric Drives. Prentice Hall of India.
- 3. Vedam Subhramanyam, (1994) Electric Drive: Concepts and Applications. Tata McGraw Hill.



Perivar F.V.R. High Road, Maduravoval, Chennai-95, Tamilnadu, India **Course Name: ELECTRIC TRACTION** Ty/Lb/ L T/SLr P/R

ETL/IE

Tv

3

0/0

## **Total No. of Periods:45**

# 9

9

С

3

0/0

9

### 9

108



| <b>Course Code:</b><br>EBEE22E20 | Course Name:<br>ENGINEERIN             |                      |          |                                   | ad, Maduravoyal, |                    |                | ]              | ſy/ Lb/<br>ETL/IE | L    | T/SLr           | P/R    | C                   |
|----------------------------------|----------------------------------------|----------------------|----------|-----------------------------------|------------------|--------------------|----------------|----------------|-------------------|------|-----------------|--------|---------------------|
|                                  | Prerequisite: N                        |                      |          |                                   |                  |                    |                |                | Ту                | 3    | 0/0             | 0/0    | 3                   |
| I · Lecture T · '                | Tutorial SLr : Su                      |                      | l Learn  | ing D. P.                         | roject R ·       | Researc            | $rh C \cdot C$ | redits T       | -                 |      |                 |        |                     |
|                                  | bedded Theory a                        | <b>•</b>             |          | ung 1 . 1 i                       | oject K .        | Researc            | лс.с           | icuits i       | / L/ L I L.       |      |                 |        |                     |
| OBJECTIVES                       |                                        |                      |          |                                   |                  |                    |                |                |                   |      |                 |        |                     |
| • T                              | o acquire the kno                      | wledge               | about 1  | nature an                         | d environ        | ment               |                |                |                   |      |                 |        |                     |
|                                  | o study the impor                      |                      |          |                                   |                  |                    |                |                |                   |      |                 |        |                     |
| • T                              | o study the integ                      | rated the            | emes ai  | nd biodiv                         | versity, na      | tural re           | source,        | pollutio       | n control         | and  | waste n         | nanag  | ement               |
|                                  | o learn about the                      |                      |          |                                   |                  |                    |                | enginee        | ering             |      |                 |        |                     |
|                                  | o understand the                       | impact               | of hum   | an activi                         | ties to the      | e enviro           | nment          |                |                   |      |                 |        |                     |
|                                  | <b>COMES(Cos)</b><br>eting this course | wara ah              | la to    |                                   |                  |                    |                |                |                   |      |                 |        |                     |
| · · · · ·                        |                                        |                      |          |                                   | . for an         |                    |                | - <b>1- 1</b>  |                   |      |                 |        |                     |
| C01                              | Implement the s                        |                      |          | -                                 |                  |                    | -              | oblems         |                   |      |                 |        |                     |
| CO2                              | Understand the                         | features             | of the   | earth's ii                        | nterior an       | d surfac           | e              |                |                   |      |                 |        |                     |
| CO3                              | Understands pul                        | blic part            | icipatio | on is an i                        | mportant         | aspect v           | which s        | erves the      | e environ         | ment | tal Prote       | ection |                     |
| CO4                              | Public awarenes                        | s of env             | vironme  | ental scie                        | nce and e        | engineer           | ring           |                |                   |      |                 |        |                     |
| CO5                              | Understands the                        | impact               | of hun   | nan activ                         | ities to th      | e enviro           | onment         |                |                   |      |                 |        |                     |
| Mapping of Co                    | ourse Outcome                          | -                    |          |                                   |                  |                    |                |                |                   |      |                 |        |                     |
| COs/POs                          | PO1                                    | PO2                  | PO3      | PO4                               | PO5              | PO6                | <b>PO7</b>     | PO8            | <b>PO9</b>        | PO   | l0 PO           | 11     | PO12                |
| CO1                              | 3                                      | 2                    | 2        | 3                                 | 3                | 2                  | 3              | 2              | 3                 | 3    | 2               |        | 2                   |
| CO2                              | 2                                      | 3                    | 3        | 2                                 | 2                | 3                  | 2              | 3              | 2                 | 2    | 3               |        | 2                   |
| CO3                              | 3                                      | 2                    | 2        | 3                                 | 3                | 2                  | 3              | 2              | 3                 | 3    | 2               |        | 2                   |
| CO4                              | 2                                      | 3                    | 2        | 2                                 | 2                | 3                  | 2              | 2              | 2                 | 2    | 3               |        | 3                   |
| CO5                              | 3                                      | 3                    | 3        | 3                                 | 3                | 3                  | 3              | 3              | 3                 | 3    | 3               |        | 3                   |
| COs /PSOs                        |                                        | PSO1                 |          |                                   |                  | PS                 | 02             |                |                   |      | PSO3            |        |                     |
| CO1                              |                                        | 3                    |          |                                   |                  | 2                  | 2              |                |                   |      | 3               |        |                     |
| CO2                              |                                        | 2                    |          |                                   |                  | 3                  |                |                |                   |      | 2               |        |                     |
| CO3                              |                                        | 3                    |          |                                   |                  | 2                  |                |                |                   |      | 3               |        |                     |
| CO4                              |                                        | 2                    |          |                                   |                  | 2                  | 3              |                |                   |      | 2               |        |                     |
| CO5                              |                                        | 3                    | <u> </u> |                                   |                  | 3                  | 3              |                |                   |      | 3               |        |                     |
| 3/2/1 Indicates                  | Strength of Corr                       | elation,             | 3–H1g    | h, 2-Mec                          | lium, I-L        | ow                 |                |                |                   |      |                 |        |                     |
| ory                              | Basic Sciences                         | Engineering Sciences |          | Humanities and Social<br>Sciences | Program Core     | ✓Program Electives |                | Open Electives | Interdisciplinary |      | Skill Component |        | Practical / Project |
| Category                         | B                                      | Ш                    |          | Т N                               | <u></u>          |                    |                | 0              | II                |      | S               |        | <u>д</u>            |



| Course Name: ENVIRONMENTAL SCIENCE AND<br>ENGINEERING | Ty/ Lb/<br>ETL/IE | L | T/SLr | P/R | С |
|-------------------------------------------------------|-------------------|---|-------|-----|---|
| Prerequisite: None                                    | Ту                | 3 | 0/0   | 0/0 | 3 |

#### UNIT I ENVIRONMENT, ECOSYSTEM AND BIODIVERSITY

Definition, scope and importance of environment – need for public awareness - concept of an ecosystem – structure and function of an ecosystem – producers, consumers and decomposers – energy flow in the ecosystem – ecological succession – food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to biodiversity definition: genetic, species and ecosystem diversity – biogeographical classification of India – value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, national and local levels – India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. Field study of common plants, insects, birds; Field study of simple ecosystems – pond, river, hill slopes, etc.

### UNIT II ENVIRONMENTAL POLLUTION

Definition – causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – solid waste management: causes, effects and control measures of municipal solid wastes – role of an individual in prevention of pollution – pollution case studies – disaster management: floods, earthquake, cyclone and landslides. Field study of local polluted site – Urban / Rural / Industrial / Agricultural.

### UNIT III NATURAL RESOURCES

Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and over- utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies - Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate studies sources. case Land resources: Land as energy a resource. land degradation, man induced landslides, soil erosion and desertification – role of an individual in conservation of natural resources - Equitable use of resources for sustainable lifestyles. Field study of local area to document environmental assets - river / forest / grassland / hill / mountain.

### UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

From unsustainable to sustainable development — urban problems related to energy — water conservation, rain water harvesting, watershed management — resettlement and rehabilitation of people; its problems and concerns, case studies — role of non-governmental organization- environmental ethics: Issues and possible solutions — climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust, case studies. — waste land reclamation — consumerism and waste products — environment production act — Air (Prevention and Control of Pollution) act — Water (Prevention and control of Pollution) act — Wildlife protection act — Forest conservation act — enforcement

### B. Tech – Electrical and Electronics Engineering (Part Time – 2022 Regulation)

# 9

9

#### 9

### .



machinery involved in environmental legislation-central and state pollution control boards- Public awareness.

### UNIT V HUMAN POPULATION AND THE ENVIRONMENT

9

Population growth, variation among nations — population explosion — family welfare programme — environment and human health — human rights — value education — HIV / AIDS — women and child welfare — role of information technology in environment and human health — Case studies.

### **Total No. of Periods:45**

### **TEXT BOOKS**

- 1. Gilbert M. Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, 2004
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2006.

### **REFERENCE BOOKS**

- 1. Erach Bharucha, "Textbook of Environmental Studies", Universities Press(I) PVT, LTD, Hyderabad, 2015.
- 2. Dharmendra S. Sengar, 'Environmental law', Prentice Hall of India PVT LTD, New Delhi, 2007.
- 3. Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press, 2005
- 4. G. Tyler Miller and Scott E. Spool man, "Environmental Science", Cengage Learning India PVT, LTD, Delhi, 2014.