Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

OUTCOME BASED EDUCATION

Curriculum and Syllabus

M.Tech(Full Time)-Power System

2022 REGULATION

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

VISION STATEMENT

We envision a department that renders services continuously to meet the requirements of changing world in Electrical Engineering Industry by educating the students for a global competition in line with Institution's Mission.

MISSION STATEMENT

M1	Enhance the quality of education by continuously updating curriculum and syllabi in correlation with the current trends
M2	Impart the students with latest technical and industry oriented software skills required for problem solving, design, testing and implementation of solutions in modern electrical power and energy related industries
M3	Enrich entrepreneurial skills that contributes to social-economic growth by utilizing the advanced technologies in electrical engineering
M4	Kindle their creative skills and encourage them to be innovators and provide a path for research and higher education
M5	Enlighten their communication skills and team spirit such that they reach out efficiently to the public on energy conservation and management, deal various situations practicing ethics.

PROGRAMME EDUCATIONAL OBJECTIVES

PEO1	Proficient in engineering fundamentals such as mathematical, core science and engineering basics, hence capable of being competent and successful electrical engineers in various fields like industry/higher education/ research/entrepreneurship therefore building an energy efficient society.
PEO2	Inherit the characteristics of a renowned Electrical Engineer in the field of design, testing and manufacturing of electrical and electronic equipments, novel and creative design engineers for developing cost effective technology.
PEO3	Exploit real time problem solving skills, applying sustainable and renewable energy technology in developing smart grids to solve the energy crisis in the society.
PEO4	Communicate and compile engineering data and documents professionally to the benefit an entity or society, work in team building and exhibit leadership skills and entrepreneurial qualities.
PEO5	Exhibit lifelong learning through innovative research activities ensuring safety and ethics.

PROGRAMME OUTCOMES

PO1	Ability to apply the enhanced knowledge in advanced technologies for
	modelling, analyzing and solving contemporary issues in power sector with a
	global perspective.
PO2	Ability to critically analyze and carry out detailed investigation on multifaceted complex Problems in area of Power Systems and envisage advanced research in thrust areas.
PO3	Ability to identify, analyze and solve real-life engineering problems in the area of Power Systems and provide strategic solutions satisfying the safety, cultural, societal and environmental aspects/ needs.

Ability for continued pursuance of research and to design, develop and
propose theoretical and practical methodologies towards research and
development support for the Power System infrastructure.
Ability to develop and utilize modern tools for modeling, analyzing and solving
various Engineering problems related to Power Systems.
Willingness and ability to work in a team of engineers/ researchers with
mutual understandings to take unsophisticated challenges, in the field of
Power Systems, lead and motivate the group to inculcate multidisciplinary and
collaborative approach.
Willingness and ability to take up administrative challenges including the
management of various projects of interdisciplinary nature and carry out the
same in an efficient manner giving due consideration to societal,
environmental, economical and financial factors.
Ability to express ideas clearly and communicate orally as well as in writing
with others in an effective manner, adhering to various national and
international standards and practices for the documentation and presentation
of the contents.

PROGRAMME SPECIFIC OBJECTIVES

PSO1	Graduates acquire a rigid foundation in mathematical, core science and engineering fundamentals to pursue their higher education in various globally reputed institutions and are well versed in latest software to match the industrial needs.
PSO2	Graduates excel in designing, analyzing, testing and evaluating of various electrical systems such as Electrical Machines and Drives, Sub-station, Smart Grid, Micro Grid, Automation and Power systems in a cost effective manner to meet the energy crisis in the society.
PSO3	Graduates gain skills, confidence and expertise themselves in innovative technologies associated with current technology, capable of providing efficient energy management solutions and also compete vibrantly through the professional society platform and therefore crafted to be competent Entrepreneurs and industry ready electrical engineers.

M.Tech –Power System (Full Time) Curriculum and Syllabus 2022 Regulation

	I SEMESTER								
S.No	Course Code	Course Title	Ty/Lb/ IE	Т	eaching Sc	Credits			
				L	T/S.Lr	P/R			
1	EMMA22012	Random Process and Optimization Techniques	Ту	3	1/0	0/0	4		
2	EMPS22001	Power System Dynamics and Control	Ту	3	1/0	0/0	4		
3	EMPS22EXX	Program Elective – I	Ту	3	0/0	0/0	3		
4	EMPS22EXX	Program Elective – II	Ту	3	0/0	0/0	3		
5	EMPS22L01	Power System Dynamics and Control Lab	Lb	0	0/0	4/0	2		
6	EMPS22L02	Renewable Energy lab	Lb	0	0/0	4/0	2		
7	EMCC22001	Research Methodology and IPR	Ту	3	0/0	0/0	3		
8	EMCC22IXX	Audit Course 1	ΙE	2	0/0	0/0	0		
		Total		17	2	8	21		

	II SEMESTER								
S.No	Course Code	Course Title	Ty/Lb/ IE	Tea	ching Scho	Credits			
				L	T/S.Lr	P/R			
1	EMPS22002	Power System Analysis	Ту	3	1/0	0/0	4		
2	EMPS22003	Digital Protection of Power System	Ту	3	0/0	0/0	3		
3	EMPS22EXX	Program Elective - III	Ту	3	0/0	0/0	3		
4	EMPS22EXX	Program Elective - IV	Ту	3	0/0	0/0	3		
5	EMPS22L03	Power System Analysis Lab	Lb	0	0/0	4/0	2		
6	EMPS22L04	Power System Protection Lab	Lb	0	0/0	4/0	2		
7	EMCC22IXX	Audit Course 2	ΙE	2	0/0	0/0	0		
8	EMPS22I01	Term Paper	IE	0	0/0	0/4	2		
		Total		14	1	12	19		

	III SEMESTER								
S.No	Course Code	Course Title	Ty/Lb/ IE	Те	aching Sch	Credits			
				L	T/S.Lr	P/R			
1	EMPS22004	Smart Grid	Ту	3	0/0	0/0	3		
2	EMPS22EXX	Program Elective - V	Ту	3	0/0	0/0	3		
3	EMOL22I01	Open Elective-(NPTEL/ SWAYAM / Any MOOC approved by AICTE/UGC)	IE	3	0/0	0/0	3		
4	EMPS22I02	Summer Internship	IE	0	0/0	4/0	2		
5	EMPS22L05	Dissertation Phase - I	Lb	0	0/0	0/10	5		
		Total		9	0	14	16		

	IV SEMESTER										
S.No	Course Code	Course Title	Ty/Lb/ IE	Teaching Scheme			Credits				
				L	T/S.Lr	P/R					
1	EMPS22L06	Dissertation Phase - II	Lb	0	0/0	10/10	10				
2	EMPS22I03	Research Publication	IE	0	0/0	2/2	2				
		Total		0	0	24	12				

 $\label{thm:condition} Ty/Lb/IE: Theory/Lab/Internal Evaluation. \\ L/T/SLr/P/R: Lecture/Tutorial/Supervised Learning/Practical/Research$

LIST OF PROGRAM ELECTIVES

	PROGRAM ELECTIVE - I								
S.No	Course Code	Course Title	Ty/Lb/ IE	Te	aching Sch	Credits			
				L	T/S.Lr	P/R			
1	EMPS22E01	High Power Converters	Ту	3	0/0	0/0	3		
2	EMPS22E02	Energy Auditing ,Conservation and Management	Ту	3	0/0	0/0	3		
3	EMPS22E03	Optimization Techniques	Ту	3	0/0	0/0	3		
4	EMPS22E04	Dynamics of Electrical Machines	Ту	3	0/0	0/0	3		

	PROGRAM ELECTIVE - II								
S.No	Course Code	Course Title	Ty/Lb/ IE	Те	aching Sch	Credits			
				L	T/S.Lr	P/R			
1	EMPS22E05	Wind and Solar Systems	Ту	3	0/0	0/0	3		
2	EMPS22E06	Electric and Hybrid Vehicles	Ту	3	0/0	0/0	3		
3	EMPS22E07	EHVAC Transmission	Ту	3	0/0	0/0	3		
4	EMPS22E08	Distributed generation and micro grid	Ту	3	0/0	0/0	3		

	PROGRAM ELECTIVE - III								
S.No	Course Code	Course Title	Ty/Lb/ IE	Те	aching Sch	Credits			
				L	T/S.Lr	P/R			
1	EMPS22E09	Energy Storage Systems	Ту	3	0/0	0/0	3		
2	EMPS22E10	Electric Power Distribution System	Ту	3	0/0	0/0	3		
3	EMPS22E11	Digital Signal Processing	Ту	3	0/0	0/0	3		
4	EMPS22E12	Power Apparatus Design	Ту	3	0/0	0/0	3		

	PROGRAM ELECTIVE - IV												
S.No	Course Code	Course Title	Ty/Lb/ IE	Te	aching Sch	Credits							
				L	T/S.Lr	P/R							
1	EMPS22E13	Advanced Micro-controller Based Systems	Ту	3	0/0	0/0	3						
2	EMPS22E14	Real Time Control of Power Systems	Ту	3	0/0	0/0	3						
3	EMPS22E15	Electric Power Quality	Ту	3	0/0	0/0	3						
4	EMPS22E16	Artificial Intelligence Techniques	Ту	3	0/0	0/0	3						

	PROGRAM ELECTIVE - V												
S.No	Course Code	Course Title	Ty/Lb/ IE	Te	aching Sch	neme	Credits						
1	EMPS22E17	Restructured Power Systems	Ту	3	0/0	0/0	3						
2	EMPS22E18	Power System Transients	Ту	3	0/0	0/0	3						
3	EMPS22E19	FACTS and Custom Power Devices	Ту	3	0/0	0/0	3						
4	EMPS22E20	Industrial Load Modeling and Control	Ту	3	0/0	0/0	3						

		AUDIT COURSE 1	& 2				
S.No	Course Code	Course Title	Ty/Lb/ IE	Те	aching Sch	Credits	
				L	T/S.Lr	P/R	
1	EMCC22I01	English for Research paper Writing	Ту	2	0/0	0/0	0
2	EMCC22I02	Disaster Management	Ту	2	0/0	0/0	0
3	EMCC22I03	Sanskrit for Technical Knowledge	Ту	2	0/0	0/0	0
4	EMCC22I04	Value Education	Ту	2	0/0	0/0	0
5	EMCC22I05	Constitution of India	Ту	2	0/0	0/0	0
6	EMCC22I06	Pedagogy Studies	Ту	2	0/0	0/0	0
7	EMCC22I07	Stress Management by Yoga	Ту	2	0/0	0/0	0
8	EMCC22I08	Personality Development through Life Enlightenment Skills	Ту	2	0/0	0/0	0
9	EMCC22I09	Research Publication Ethics	Ту	2	0/0	0/0	0

Summary of Credits:

Semester	Credits
I	21
II	19
III	16
IV	12
Total	68

Components of curriculum and Credit distribution

S. No	CATEGORY	Description	No.of Courses	Credits	Total	Credit Weightage %	Contact hours
1	CORE COURSES	Core Theory	04	2*4=08 2*3=06	22	32.35	((2*60)+ 2*45) = 210
		Core Lab	04	04*2=08			(4*45)= 180
2	ELECTIVE COURSES	Department Core Electives/ Skill enhancement electives	5	5*3=15	15	22	(5*45)= 225
3	MATHEMATICS	Theory	01	1*4=4	04	06	1*60=60
4	OPEN ELECTIVES	Open Elective theory	01	1*03=3	03	4.41	(1*45)= 45
5	COMMON COURSE	Theory	01	1*03=3	03	4.41	(1*45)= 45
6	SKILL BASED ELECTIVES (AUDIT COURSES)	Theory	02	0	0	0	(20*2)=40
7	MINI PROJECT AND SEMINAR/ INTERNSHIP	Summer Internship	01	1*02=2	02	3	(1*30)= 30
8	PROJECTS	Project	02	(1*5=5)+ (1*10=10)	15	22	(75+150)= 225
9	TERM PAPER/ PUBLICATION	Publication	02	(1*02=02) + (1*02=02)	04	5.88	(30+30)=6
	Total		23	68	68	100	1120

Revision/modification done in syllabus content:

S.No	Course	Course	Concept/	Concept/topic	% of
	(Subject) Code	(Subject) Name	topic if any,	added in the	Revision/
			removed in	new curriculum	Modificatio
			current		n done
			curriculum		
1.	EMPS22L04	POWER SYSTEM PROTECTION LAB	NIL	MODELING	15
2.		HIGH POWER	CYCLOCONVERTER	FULL CONTENT	95
	EMPS22E01	CONVERTERS	S,MATRIX	CHANGED	
			CONVERTERS, UPS		
3.		DYNAMICS OF	TRANSFER	FULL CONTENT	90
	EMPS22E04	ELECTRICAL	FUNCTION	CHANGED	
		MACHINES			
4.			FEW CONTENTS IN	FULL CONTENT	95
	EMPS22E05	WIND AND	ALL UNITS TO BE	CHANGED	
		SOLAR SYSTEMS	CHANGED		
5.		ELECTRIC AND	FEW CONTENTS IN	FULL CONTENT	95
	EMPS22E06	HYBRID	ALL UNITS TO BE	CHANGED	
		VEHICLES	CHANGED		
6.	EMPS22E17	RESTRUCTURED	FEW CONTENTS IN	FULL CONTENT	80
		POWER SYSTEMS	ALL UNITS TO BE	CHANGED	
			CHANGED		

Details of New courses, Electives, inter disciplinary, life skill, courses focused on employability, entrepreneurship, skill etc.

S.No	New courses (Subjects)	Value added course s	Life skill	Electives	Inter Disciplinary	Focus on employability /entrepreneu rship/ skill development.
1	POWER SYSTEM DYNAMICS AND CONTROL				RANDOM PROCESS AND OPTIMIZATION TECHNIQUES	TERM PAPER
2	RENEWABLE ENERGY LAB	NIL	NIL	ENERGY AUDITING, CONSERVATION AND MANAGEMENT		
3	POWER SYSTEM DYNAMICSAN D CONTROL LAB	NIL	NIL	OPTIMIZATION TECHNIQUES	NIL	NIL
4	POWER SYSTEM ANALYSIS LAB	NIL	NIL	EHVAC TRANSMISSION	NIL	SUMMER INTERNSHIP
5		NIL	NIL	DISTRIBUTED GENERATION AND MICRO GRID	NIL	RESEARCH PUBLICATION
5	NIL	NIL	NIL	ENERGY STORAGE SYSTEMS	NIL	RESEARCH PUBLICATION ETHICS
6	NIL	NIL	NIL	REAL TIME CONTROL OF POWER SYSTEMS	NIL	NIL

Course Code: EMMA22012	Course T OPTIMI			PROCESS NIQUES	AND	Ty/Lt IE	o/ L	T/S.Lr	P/R	С					
	Prerequi	site: UG	level Ma	thematics	5	Ту	3	1/0	0/0	4					
L : Lecture T : To Ty/Lb/IE : Theor				ning P : Pr	oject R : Re	esearch C: C	redits	- L							
OBJECTIVE: S															
	e and analy														
					gramming p	roblem									
3. Having	critical thir	iking and	ınnovauv	e skiiis											
COURSE OUT	COMES (C	'Os) · Tł	ne studen	tc will he	ahle to										
CO1				andom var											
						. 1									
CO2				-	robability ar										
CO3						transcenden	tal equation	ons.							
CO4				atrix theor											
CO5					ogramming	problem									
Mapping of Cou	irse Outco	se Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO	2	PO3	PO4	PO5	PO6	PO7	PC)8					
CO1	2	3		2	2	3	1	1	2						
CO2	3	2		1	2	2	2	2	2						
CO3	3	3		1	2	2	3	1	1						
CO4	3	2		2	2	1	2	2	2	,					
CO5	3	3		1	2	1	1	2	1						
COs / PSOs	PSO1	PSC)2	PSO3											
CO1	3	3		2											
CO2	2	2		1											
CO3		3		2											
CO4	3	3		3											
CO5	3	3		3											
3/2/1 indicates S	strength of	Correla	tion 3- Hi	igh, 2- Me	dium, 1-Lo	\mathbf{w}									
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill Component	Practical / Project						

EMMA22012 RANDOM PROCESS AND OPTIMIZATION TECHNIQUES 3

3 1/0 0/0 4

UNIT I RANDOM VARIABLES

12 hours

Random variables – Distribution functions – Moments – Moment generating functions – Two dimensional Random variables – Marginal and conditional distributions.

UNIT II RANDOM PROCESS

12 hours

Classification of Random Process – Stationary Process – Ergodic Process – Markov Process – Markov Chains – Auto Correlation – Auto Covariance – Cross Correlation – Cross Covariance – Spectral Density.

UNIT III SOLUTION OF EQUATIONS

12 hours

Solution of Algebraic and Transcendental equations – Method of false position – Iteration method – Newton-Raphson method – Solution of Linear system of equations – Gauss Elimination method – Gauss-Jordan method – Iterative methods – Gauss-Jacobi method – Gauss-Seidel method – Matrix Inversion by Gauss-Jordan method.

UNIT IV ADVANCED MATRIX THEORY

12 hours

Generalized Eigen vectors – Jordan canonical form – Matrix norms – QR algorithm – Pseudo inverse – Singular value decomposition – Least square solutions.

UNIT V LINEAR PROGRAMMING

12 hours

 $Formulation \ of \ LPP-Standard \ form \ of \ LPP-Graphical \ method-Simplex \ method-Big \ M \ method-Two \ phase \ method.$

Total no. of hours: 60

Suggested Reading:

- 1. Richard Johnson A., Miller & Freund's ,"Probability and statistics for Engineers "(8th ed.), Prentice Hall of India, 2009.
- 2. Veerarajan T., "Probability, Statistics and, Random Processes", Tata McGraw Hill Publishing Co., 2008.
- 3. Gupta S.C., Kapoor V.K., "Fundamentals of Mathematical Statistics", S.Chand& Co., 2007.
- 4. Veerarajan T., "Numerical Methods", Tata McGraw Hill Publishing Co., 2005.
- 5. Sastry S.S., "Introductory Methods of Numerical Analysis", Prentice Hall of India, 2003.
- 6. Bronson R., "Theory and problems of Matrix operations" (Schaum's outline series), McGraw Hill, 1989.
- 7. Lewis D.W., "Matrix theory", Allied publishers, 1995.
- 8. Hamdy A. Taha, "Operations Research: An Introduction" (9th ed.), Pearson, 2010.
- 9. Panneerselvam R., "Operations Research" (2nd ed.), Prentice Hall of India, 2011.

Course Cod EMPS22003	CON	se Title: P TROL	OWER SYS	STEM DYN	NAMICS AN	Ty/Lb/ IE	L	T/S.Lr	P/R	С				
	Prer	equisite: El er system	ectrical Ma	chines, Con	ntrol System	Ty	3	1/0	0/0	4				
				ng P : Projec	t R : Research	n C: Credits		I.						
Ty/Lb/IE: T														
 Acc Der Ana 	derstand th quire funda rive Single alyze meth	e fundamenta mental know and Multi-m ods of small-	al dynamic b vledge about achine powe signal stabili	modeling an r system dyr ity analysis o	ower systems of dynamics of namic models. of power systems of the effect of	f synchronous m.	s mac	hines.						
COURSE O														
CO1	analysis.				controls of po									
CO2	Interpret	results of sys	tem stability	studies.	ulating the dy	_	nena (of power sy	stems a	nd				
CO3	Ability to	Ability to analyze the single and Multi-machine power system.												
CO4	Analyze t system.	the theory ar	nd practice tl	he concept o	of small signal	stability of a	a sing	le-machine	e infinit	e bus				
CO5	Model the	e transmissio	n and synchr	onous mach	ines and analy	ze the transie	nt stal	oility.						
Mapping of	Course O	utcomes wit	th Program	Outcomes (1	POs)									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P	07	PO8	}				
CO1	3	3	3	2	2									
CO2	3	3	3	2	2									
CO3	3	2	3	2	2									
CO4	3	3	3	3	3	2								
CO5	3	3	3	2	2									
COs / PSOs	PSO1	PSO2	PSO3											
CO1	3	3	2											
CO2	3	3	1											
CO3		2												
CO4	3	2												
CO5		3												

3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low

EMPS22001 POWER SYSTEM

POWER SYSTEM DYNAMICSAND CONTROL

3 1/0 0/0 4

UNIT I BASIC CONCEPTS AND REVIEW OF CLASSICAL METHODS

12 hours

Introduction on Power System Stability –Review on the States of Operation and System Security - System Dynamic Problems - Current Status and Recent Trends - System Model - Some Mathematical Preliminaries - Analysis of Steady State Stability - Analysis of Transient Stability - Simplified Representation of Excitation Control.

UNIT II SYNCHRONOUS MACHINE DYNAMIC MODELING AND CONTROL

12 hours

Dynamic Modeling:Introduction - Three-Damper-Winding Model - Transformations and Scaling - Linear Magnetic Circuit - Nonlinear Magnetic Circuit - Single-Machine Steady State - Operational Impedances and Test Data.

Control Models: Voltage and Speed Control Overview - Exciter Models - Voltage Regulator Models - Turbine Models - Speed Governor Models - Problems.

UNIT III SINGLE AND MULTIMACHINE DYNAMIC MODELS

12 hours

Single Model: Multi-Time-Scale Model - Elimination of Stator/Network Transients - Two-Axis Model - One-Axis (Flux-Decay) Model - Classical Model - Damping Torques - Synchronous Machine Saturation - Problems.

Multimachine Model: Synchronously Rotating Reference Frame - Network and R-L Load Constraints - Elimination of Stator/Network Transients - Two-Axis Model - Flux{Decay Model - Classical Model - Damping Torques - Saturation - Frequency during Transients - Angle References and an Infinite Bus.

UNIT IV SMALL SIGNAL STABILITY

12 hours

Basic Linearization Technique: Linearization of Model A , Linearization of Model B - Participation Factors - Studies on Parametric effects: Effect of loading - Effect of K_A - Effect of type of load - Hopf bifurcation - Electromechanical Oscillatory Modes - Power System Stabilizers: Basic approach - Derivation of K1- K6 constants - Synchronizing and damping torques - Power system stabilizer design-Problems.

UNIT V TRANSMISSION LINES AND DYNAMICS OF A SYNCHRONOUS GENERATOR 12 hours

Transmission Lines -D-Q Transformation using α - β Variables - Loads. Electromagnetic Transients: Fastest Transmission Line Models - Solution Methods. Dynamics of a Synchronous Generator Connected to

Infinite Bus: System Model - Synchronous Machine Model - Application of Model - Calculation of Initial Conditions - System Simulation - Consideration of other Machine Models.

Total no. of Hours: 60

Suggested Reading:

- 1. K.R.Padiyar, "Power System Dynamics, Stability & Control", BS Publications, Second Edition, 2015.
- 2. P. Kundur, "Power system stability and control", McGraw Hill Inc, New York, 2006.
- 3. P.M. Anderson, A.A. Fouad, "Power System Control and Stability", Galgotia Publications, New Delhi, 2003.
- 4. Peter W. Sauer, M. A. Pai, "Power System Dynamics and Stability", Pearson Education Asia, India, 2002.
- 5. I.J. Nagrath, D.P. Kothari, "Modern Power System Analysis", Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1994.
- 6. Harry G. Kwatny, Karen Miu-Miller, "Power System Dynamics and Control: A Nonlinear Hybrid Systems PerspectiveControl Engineering", Springer New York, 2016.

Course Code	00	rse Title: NTROL L		CS AND	Ty/Lb/ IE	L	T/S.Lr	P/R	С					
EMPS22L01		requisite: ver system	Electrical	Machines,	Control	System ,	Lb	0	0/0	4/0	2			
L : Lecture T Ty/Lb/IE : Th	eory/Lab/I	nternal Eva	luation	ing P : Pro	ject R : Re	search C: C	redits							
1. Acqu 2. Anal	iire fundam yze the me	ental know thods of sm	ledge abou all-signal s	tability ana	lysis of po	wer system	hronous ma ients in pow							
COURSE OU	JTCOMES	S (COs) : T	he student	s will be al	ole to									
CO1	1 1													
CO2	Compreh	end the con	cepts in mo	deling and	simulating	the transm	ission and s	ynchro	onous ma	chines a	nd			
	analyze tl	nalyze the dynamic and transient stability. Design a stabilized power system with the knowledge of controlling aspects affecting the system.												
CO3	Design a	stabilized p	ower systei	n with the	knowledge	of controll	ing aspects	affecti	ng the sys	stem.				
Mapping of Course Outcomes with Program Outcomes (POs)														
COs/POs	PO1	PO2	PO3	PC	205	PO6	PO	7	PO8	}				
CO1	3	3	3	2	;	2								
CO2	3	3	3	2	;	2								
CO3	3	2	3	2	;	2								
COs / PSOs	PSO1	PSO2	PSO	3										
CO1	3	3	3											
CO2	3	3	1											
CO3	3	2												
3/2/1 indicate	es Strength	of Correla	tion 3- Hi	gh, 2- Med	ium, 1-Lo	w								
Category Basic Sciences Engineering Sciences Humanities and			Program Core	Program Electives	Open Electives	Interdisciplinary	Skill Component	Dractical / Drainet						
									•					

EMPS22L01 POWER SYSTEM DYNAMICSAND CONTROL LAB 0 0/0

0 0/0 4/0

LIST OF EXPERIMENTS

- 1. Design and analyze the dynamic modeling of the synchronous generator.
- 2. Design an excitation system for synchronous machine and regulate its terminal voltage in generating mode.
- 3. Perform a small-signal stability analysis of single machine-infinite bus system using classical machine model.
- 4. Perform a small-signal stability analysis of multi-machine-infinite bus system using classical machine model.
- 5. Design a power system stabilizer.
- 6. Electromagnetic Transients in Power systems: Transmission Line Energization.

Total no.of hours:45

Course Co		se Title: RE	NEWABLE	ENERGY	LAB	Ty/Lb/ IE	L	T/S.Lr	P/R	С					
EMPS22L		equisite: No	n-Conventio	onal Sources	, HVDC	Lb	0	0/0	4/0	2					
L : Lecture	T : Tutorial	S.Lr : Super	vised Learni	ng P : Projec	et R : Researc	h C: Credits				<u> </u>					
Ty/Lb/IE:	Theory/Lab	/Internal Eva	luation	<i>C</i> 3											
		ts will be abl													
		-	_	_		nd frequency,	turbine	es characte	eristics,	time					
_		quency of the	_		_										
	•					series and par									
		_	simulation, i	implementati	on and perfo	rmance charac	teristic	s of solar	photovo	oltaic					
	d wind turb				0.34										
					s of a Micro-g	grid.									
		ES (COs): T													
CO1		hoose and design a wind turbine depending upon the generated wind power, turbines characteristics, erformance of turbine at different speeds. esign a PV system depending upon the illumination effect on PV Modules, effect of Temperature,													
CO2					ation affect o	n DV Modules	offect	t of Tompe	ratura						
CO2		ect of Shading on PV Modules and effect of angle of inclination of Solar Modules.													
CO3		Comprehend the Characteristics of Solar Modules when connected in series and parallel in real time													
	application	ıs.													
CO4	Design and	esign and determine the performance characteristics of solar photovoltaic and wind turbine in hybrid													
~~=	mode.														
CO5					cteristics of a	Micro-grid.									
Mapping of	of Course O	utcomes wit	h Program	Outcomes (1	POs)										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO	7	PO8	;					
CO1	3	3	3	3	3										
CO2	3	3	3	3	2										
CO3	3	2	3	2	2										
CO4	3	3	3	3	3										
CO5	3	3	3	3	3										
COs/	PSO1	PSO2	PSO3												
PSOs															
CO1	3	3	3												
CO2	3	3	3												
CO3	3	3	1												
CO4	3	3	3												
CO5	3	3 3 3													

3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill Component	Practical / Project
									√

EMPS22L02

RENEWABLE ENERGY LAB

0 0/0 4/0

2

List of Experiments

- 1. Modeling of PV cell.
- **2.** Modeling of Wind Turbine.
- 3. Analysis of the characteristics of charging and discharging of battery.
- **4.** Design of solar PV boost converter using P&O MPPT technique.
- 5. Analyze the current waveform for linear & non-linear loads & calculations for grid tied PV system..
- **6.** Impact of transmission line inductance on voltage quality at PCC.
- 7. Power factor correction using capacitor bank and its impact on power quality at PCC.
- **8.** Design hybrid micro grid integration with grid and analyze the power flow.

Total no.of hours:45

ourse Code:	IPI	urse Title: RE R	ESEARCH N	Ty/Lb/ IE	L	T/S.Lr	P/R	C		
EMCC22001	Pre	erequisite: Co	re Subjects			Ту	3	0/0	0/0	3
		S.Lr : Supervis		P: Project R	R : Research C	: Credits				
Ty/Lb/IE : TI	heory/Lab/l	Internal Evalua l is to emphasi	ation ze the impor	tance of inno	vation and cr	eativity by u	ndersta	nding the r	esearch	
		h will aid to bu				cativity by u	nuci sta	nding the i	cscarcii	L
		S (COs) : The								
CO1		nd research pr		ılation by An	alyzing resea	rch related i	nforma	tion and its	execut	ion
		ving research e								
CO ₂		nd that today's		•	Computer, Info	ormation Tec	hnolog	y, but tome	orrow w	vorlo
		aled by ideas, o								
CO3		nding that whe				•				
		to emphasis th			out Intellectua	al Property R	ight to	be promote	ed amoi	ng
		in general & e	-	_						
CO4		nd that IPR pro								
		nt in R & D, w			new and bette	er products, a	ınd in tı	ırn brings a	about,	
		c growth and s								
Mapping of	Course Ou	itcomes with l	Program Ot	itcomes (PO	(\mathbf{s})					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PC	7	PO8	
COs/POs CO1	PO1 2	PO2	PO3 3	PO4 3	PO5 3	PO6	PC) 7	PO8	
						PO6	PC	07	PO8	
CO1	2	3	3	3	3	PO6	PC	07	PO8	
CO2	2 2	3	3	3	3	PO6	PC	07	PO8	
CO1 CO2 CO3 CO4 COs /	2 2 2	3 3	3 3	3 3	3 3	PO6	PC	07	PO8	
CO1 CO2 CO3 CO4	2 2 2 3	3 3 3	3 3 2	3 3	3 3	PO6	PC	07	PO8	
CO1 CO2 CO3 CO4 COs /	2 2 2 3	3 3 3	3 3 2	3 3	3 3	PO6	PC	07	PO8	
CO1 CO2 CO3 CO4 COs / PSOs	2 2 2 3 PSO1	3 3 3 PSO2	3 3 2 PSO3	3 3	3 3	PO6	PC	07	PO8	
CO1 CO2 CO3 CO4 COs/ PSOs CO1	2 2 2 3 PSO1 3	3 3 3 PSO2	3 3 2 PSO3	3 3	3 3	PO6	PC	07	PO8	

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill Component	Practical / Project
							√		

EMCC22001

RESEARCH METHODOLOGY AND IPR

3 0/0 0/0 3

UNIT I SELECTION, ANALYSIS AND STATEMENT OF THE RESEARCH PROBLEM

9 hours

Literature Review and Formulation of Objectives – using the following Critical thinking Skills – Drawing a Concept map, Oral Communication, Debating, Questioning, Collaborating, Evaluation and Reasoning

UNIT II RESEARCH DESIGN

9 hours

Types of Study, Types of Data, Measures of Variability, Setting up the Hypotheses, data collection techniques and tools, sampling, Describing data – Charts and graphs; Data processing – Categorization, coding, summarization.

UNIT III DATA ANALYSIS AND REPORT WRITING

9 hours

Statistical measures, Regression and correlation, significance test; Report writing – Purpose, format, content, editing and evaluation. Using Citation tools; Report for specific purposes – Theses, Journals, Grant application. Oral presentation to an audience; use of project management digital tools and plagiarism checking.

UNIT IV INTRODUCTION TO INTELLECTUAL PROPERTY

9 hours

Types of intellectual property rights – Patent, Copyright, Trade Mark, Industrial Design, Geographical Indication, Trade Secrets - Traditional Knowledge. Elements of Patentability - Novelty, Non Obviousness (Inventive Steps), Industrial Application – Non patentable inventions – Process of patenting – National and International – Form and Fees for IP India

UNIT V PRIOR ART SEARCH, PATENT DRAFTING

9 hours

Drafting patent Claims – Types of claims - Registration Procedure, Rights and Duties of Patentee; Patent infringement; Licensing – Franchising - Joint ventures; Non-Disclosure Agreements (NDAs) - Material Transfer Agreements (MTAs).

Total no. of hours: 45

Suggested Reading:

- $1. \quad C.\ Vijayalakshmi\ and\ C.\ Sivapragasam\ , "Research\ Methods-Tips\ and\ Techniques"\ ,\ MJP\ Publishers\ ,\ 2011$
- 2. P Deboraj Rumsey," Statistics Essentials for Dummies", Wiley Publishing Incorporated, 2010.
- 3. Bouchoux," Intellectual Property", DELMAR CENGAGE Learning, USA,2013.
- 4. V K Ahuja," Law Relating to Intellectual Property Rights", LexisNexis Butterworths India,2017.

Important WebLinks:

- 1. https://www.wipo.int/portal/en/index.html
- 2. http://ipindia.nic.in/
- 3. https://www.epo.org
- 4. https://www.uspto.gov

Course Cod EMPS22002		se Title: PO	WER SYST	EM ANALY	YSIS	Ty/Lb/ IE	L	T/S.Lr	P/R	C	
	Prere	equisite: Ci er System	ircuit Theo	ry, Electri	cal Machin	res,	3	1/0	0/0	4	
		S.Lr : Super/ Internal Eva		ng P : Projec	t R : Researc	h C: Credits					
		s will be able									
1. Stu	dy various	methods of 1	oad flow and	their advant	ages and disa	advantages.					
					faults in pov						
		•	•		•	ds to rank the c	ontin	gencies.			
	,	ge of simple	_		ation.						
		ge instability									
		ES (COs): T									
CO1	Calculate v	oltage phaso	rs at all buse	s, given the	data using va	arious methods	of lo	ad flow.			
CO2	Estimate th	ne fault curre	nts in each pl	nase.							
CO3	Rank vario	us contingen	cies accordir	g to their se	verity.						
CO4	Analyze th	e efficient al	gorithm to de	etermine vari	ous paramete	ers.					
CO5	Determine	the stability	and instabilit	y of a power	system.						
Mapping of	Course O	utcomes wit	h Program (Outcomes (F	POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P() 7	PO8		
CO1	2	2	3	3	3						
COI	<u> </u>	<u> </u>	3	3	3						
CO2	2	3	3	3	3						
CO3	3	3	3	3	3						
CO4	3	3 3 3 3									

CO2	2	3	3	3	3			
CO3	3	3	3	3	3			
CO4	3	3	3	3	3			
CO5	3	3	3	2	3	1		
COs/	PSO1	PSO2	PSO3					
PSOs								
CO1	3	3	3					
CO2	3	3	3					
CO3	3	2	3					
CO4	3	2	3					
CO5	3	3	3					
	•	•	•	•	•	•	•	•

2/1 indicate	es strengt	ii oi Corr	eration 5- 1	nigii, 2- M	eurum, 1-1.	юw			
· Ca	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill Component	Practical / Project

EMPS22002

POWER SYSTEM ANALYSIS

3 1/0 0/0

UNIT I LOAD FLOW 12 hours

Over view of Newton-Raphson, Gauss Seidal – Fast Decoupled methods-Convergence Properties- Sparsity Techniques – Handling Q-max- violations in constant matrix, inclusion in frequency effects- AVR in load flow, handling of discrete variable in load flow.

UNIT II FAULT ANALYSIS

12 hours

Simultaneous faults - open conductors faults- generalized method of fault analysis.

UNIT III SECURITY ANALYSIS

12 hours

Security state diagram, contingency analysis, generator shift distribution factors- line outage distribution factor, multiple line outages -overload index ranking – Power System Equivalents –WARD –REI Equivalents.

UNIT IV STATE ESTIMATION

12 hours

Sources of errors in Measurement – Virtual and Pseudo – measurement – Observability – Tracking State Estimation – WSL Method –Bad Data Correction.

UNIT V VOLTAGE STABILITY

12 hours

 $Voltage\ Collapse-\ P-V\ Curve,\ Multiple\ Power\ Flow\ Solution-Continuation\ Power\ Flow-Optimal\ Multiples\ Load\ Flow-Voltage\ Collapse\ Proximity\ Indices.$

Total no. of hours: 60

Suggested Reading:

- 1. J.J. Grainger &W.D.Stevenson, "Power system analysis", McGraw Hill ,2017
- 2. A.R. Bergen & Vijay Vittal, "Power System Analysis", Pearson, 2000
- 3. L.P. Singh, "Advanced Power System Analysis and Dynamics", New Age International, 2006
- 4. G.L. Kusic, "Computer aided power system analysis", Prentice Hall India, 2007
- 5. A.J. Wood, "Power Generation, Operation and Control", John Wiley, 2013
- 6. P.M. Anderson, "Faulted power system analysis", IEEE Press, 1995

Course Co	SY	ourse Title: STEM	DIGITAL	PRO	TEC'	TION	OF	POWER	Ty/Lb/ IE	L	T/S.Lr	P/R	С
21.11 0220	Pr	erequisite: lathematical			witchg	gear ai	nd P	rotection,	Ту	3	0/0	0/0	3
		ial S.Lr : Su		earning	g P : P	roject	R : I	Research C	: Credits		l .		
		ab/Internal I ents will be											
		merical relay											
	-	athematical a		wards	protec	ction.							
3. St	tudy of alg	gorithms for	numerical p	protect	tion.								
COURSE	OUTCO	MES (COs)	: The stud	ents w	vill be	able t	0						
CO1	Determi	ne the positi	on placeme	nt of I	Digital	l Relay	s.						
CO2	Apply M		approach t	oward	ls prot	ection.							
CO3								s to be im	olemented i	n pov	ver systen	1.	
CO3 Learn to develop various efficient Protection algorithms to be implemented in power system. Mapping of Course Outcomes with Program Outcomes (POs)													
Cos/Pos	PO1	PO2	PO	3	PO	04	P	O5	PO6	P	D7	PO8	3
CO1	3	3	3		3			3					
CO2	3	3	3		3			3					
CO3	3	3	3		3			3					
COs / PSOs	PSO1	PSO2	PSO	3									
CO1	3	2	2										
CO2	3	2	3										
CO3	3	3	3										
3/2/1 indic	cates Stre	ngth of Cor	relation 3-	High,	, 2- M	edium	, 1-I	ow					
			n s			ves			y	nent		ect	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core		Program Electives		Open Electives	Interdisciplinary	Skill Component		Practical / Project	
		H S H S H S H S H S H S H S H S H S H											

EMPS22003

DIGITAL PROTECTION OF POWER SYSTEM

3 0/0 0/0

3

UNIT I RELAYS 9hours

Evolution of digital relays from electromechanical relays - Performance and operational characteristics of digital protection- Mathematical background to protection algorithms - Finite difference techniques.

UNIT II NUMERICAL METHODS

9hours

Interpolation formulae - Forward, backward and central difference interpolation -Numerical differentiation -Curve fitting and smoothing -Least squares method -Fourier analysis -Fourier series and Fourier transform -Walsh function analysis.

UNIT III DIGITAL PROTECTION

9hours

Basic elements of digital protection -Signal conditioning: transducers, surge protection, analog filtering, analog multiplexers -Conversion subsystem: the sampling theorem, signal aliasing -Error, sample and hold circuits, multiplexers, analog to digital conversion - Digital filtering concepts -The digital relay as a unit consisting of hardware and software.

UNIT IV ALGORITHMS 9hours

Sinusoidal wave based algorithms -Sample and first derivative (Mann and Morrison) algorithm. -Fourier and Walsh based algorithms.

UNIT V ADVANCEMENT IN PROTECTION

9hours

Fourier Algorithm: Full cycle window algorithm, fractional cycle -window algorithm. -Walsh function based algorithm -Least Squares based algorithms. Differential equation based algorithms. -Traveling Wave based Techniques -Digital Differential Protection of Transformers -Digital Line Differential Protection -Recent Advances in Digital Protection of Power Systems.

Total no. of Hours: 45

Suggested Reading:

- A.G. Phadke and J. S. Thorp, "Computer Relaying for Power Systems", Wiley/Research studies Press, 2009
- 2. A.T. Johns and S. K. Salman, "Digital Protection of Power Systems", IEEE Press, 1999
- 3. Gerhard Zeigler, "Numerical Distance Protection", Siemens Publicis Corporate Publishing, 2006
- 4. S.R.Bhide "Digital Power System Protection" PHI Learning Pvt.Ltd,2014.

Course Code: EMPS22L03	Course Title: POWER SYSTEM ANALYSIS LAB	Ty/Lb/ IE	L	T/S.Lr	P/R	С
	Prerequisite: Circuit Theory, Electrical Machines, Power System	Lb	0	0/0	4/0	2

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/IE: Theory/Lab/Internal Evaluation

OBJECTIVE: Students will be able to

- 1. Model the transmission lines.
- 2. Perform various power and load flow analysis.
- 3. Ability to acquire knowledge on transient and short circuit analysis.
- 4. Gain knowledge on fault analysis on transmission line models.
- 5. Forecast load and estimate the economic load dispatch in power systems.
- 6. Familiar about Voltage Security in power system.

COURSE	OUTCOMES (COs): The students will be able to
CO1	Comprehend the concepts in modeling transmission lines under normal and fault conditions.
CO2	Analyze the load and power flow performance in power system.

CO3 Determine the effect of the transient and short circuit fault in a power system and analysis the impact.
 CO4 Estimate the economic load dispatch in power system.

CO5 Assess the methods to secure power system.

Mapping of Course Outcomes with Program Outcomes (POs)

Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	3	3	3	3			
CO2	3	3	3	3	3			
CO3	3	3	3	3	3			
CO4	3	3	3	3	3			
CO5	3	3	3	2	3			
COs / PSOs	PSO1	PSO2	PSO3					
CO1	3	3	3					
CO2	3	3	3					
CO3	3	2						
CO4	3	2						
CO5	3	3						

3/2/1 indic	cates Stren	gth of Cor	relation 3-	High, 2- M	ledium, 1-I	LOW			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill Component	Practical / Project

EMPS22L03

POWER SYSTEM ANALYSIS LAB

0/0 4/0

LIST OF EXPERIMENTS

- 1. Transmission line and modeling..
- 2. Power flow analysis by Newton-Raphson/ Fast decoupled method.
- 3. Transformers in power flow.
- 4. Estimation of the effect of sudden short-circuit on a synchronous generator output.
- 5. Transient stability studies.
- 6. Study the effect of short-circuits faults and overloading of transmission lines.
- 7. Economic load dispatch using lambda-iteration method.
- 8. Load Forecasting in Power System.
- 9. Unit commitment solution by Priority-list scheme and dynamic programming approach.
- 10. Study of Voltage Security in power system Real Time Voltage Assessment.

Total no. of Hours: 45

Course Code: EMPS22L04	Course Title: POWER SYSTEM PROTECTION LAB	Ty/Lb/ IE	L	T/S.Lr	P/R	С
	Prerequisite: Power System Switchgear and Protection, Computer and Analytical Knowledge	Lb	0	0/0	4/0	2

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/IE: Theory/Lab/Internal Evaluation

OBJECTIVE: Students will be able to

- 1. Understand the operating characteristics and testing of Current Transformers, Potential Transformers and Circuit Breaker.
- 2. Analyze the performance of various relays.
- 3. Model various relays.
- 4. Testing the operation of various relays.
- 5. Design and test the Reverse power protection and losses in generators

J. D	esign and test the Reverse power protection and rosses in generators.
COURSE	OUTCOMES (COs): The students will be able to
CO1	Comprehend the ability to understand the operating characteristics and testing of Current Transformers, Potential Transformers and Circuit Breaker.
CO2	Ability to determine the selection of relays based on the application in power system.
CO3	Gain the knowledge of to model the relays.
CO4	Understand the testing concepts of relays in power system.
CO5	Design and simulate to protect the generators and analyze the losses occurring.

Mapping of Course Outcomes with Program Outcomes (POs)

			0	,	•			
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	3	3	3	3			
CO2	3	3	3	3	3			2
CO3	3	3	3	3	3			
CO4	3	3	3	3	3			1
CO5	3	3	3	2	3			2
COs / PSOs	PSO1	PSO2	PSO3					
CO1	3	3	3					
CO2	3	3	3					
CO3	3	2	3					
CO4	3	2	3					
		1	1	1	1	1		I

CO5	3	3	3						
3/2/1 indic	ates Stren	gth of Cori	relation 3-	High, 2- M	ledium, 1-I	Low			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill Component	←Practical / Project

EMPS22L04

POWER SYSTEM PROTECTION LAB

0 0/0 4/0

2

LIST OF EXPERIMENTS

- 1. Testing of ratio, polarity, magnetizing characteristic of Current Transformers & Potential Transformers.
- 2. Development of and validation of Over current and Earth fault relays for three phase system.
- 3. Testing of Transformer using Differential relays and protection.
- 4. Testing of Line Distance relays
- 5. Testing of Line Differential relays
- 6. Design and testing the Reverse power protection and loss of field protection of generator.
- 7. Modeling and testing of Over fluxing relays
- 8. Modeling and testing of load shedding relays
- 9. Modeling and testing of Under/Over frequency relays
- 10. Modeling and testing of over voltage and under voltage relays
- 11. Modeling and testing of Negative sequence relays
- 12. Modeling and testing of auxiliary relays.
- 13. Testing of Air Circuit Breaker.

Total no. of Hours: 45

Course Code:	Course	e Title: SM	ART GRID)			Ty/Lb/ IE	L	T/S.Lr	P/R	C
EMPS22004							1E				
		puisite: El system	ectrical M	achines, (Control	System	Ty	3	0/0	0/0	3
L : Lecture T : '	Tutorial S	Lr : Super		ng P : Proje	ect R : Re	esearch C:	Credits				
Ty/Lb/IE : Theo OBJECTIVE:											
			rt grid and it	s advantage	es over co	onvention	al grid.				
2. Know	smart me	tering techi	niques.				C				
			ent technique		-4: C .	d::1	1	0_	:414: -	41	_1_
4. Unders		ne problem	s associated	with integr	ation of c	ıısırıbutec	i generano	nα	its solutio	n throu	gn
COURSE OUT		S (COs) : T	he students	will be abl	e to						
CO1 Con	nprehend	the differer	nce between si	mart grid & o	convention	nal grid.					
CO2 App	oly smart n	netering con	cepts to indust	rial and com	mercial ir	nstallations					
CO3 Abi	lity to for	rmulate the s	olutions in the	e areas of sm	art substa	tions, disti	ributed gene	eratio	n and wide	area	
mea	surements	S.									
CO4 Mo	del the sn	nart grid solı	itions using m	odem comm	unication	technolog	ies.				
Mapping of Co	urse Out	tcomes wit	h Program (Outcomes	(POs)						
Cos/Pos I	PO1	PO2	PO3	PO4	PO	5	PO6		PO7	POS	3
CO1	3	3	3	2	2						
CO2	3	3	3	2	2						
CO3	3	2	3	2	2						
CO4	3	3	3	3	3						
COs / P	SO1	PSO2	PSO3								
PSOs											
CO1	3	3	3								
CO2	3	3	3								
CO3	3	3	3								
CO4	3	2	3								
3/2/1 indicates	Strength	of Correla	ation 3- Hig	h, 2- Mediı	ım, 1-Lo	ow I		1			

|--|

EMPS22004 SMART GRID 3 0/0 0/0 3

UNIT I INTRODUCTION TO SMART GRID

9 hours

Introduction to Smart Grid, Evolution of Electric Grid - Concept of Smart Grid, Definitions - Need of Smart Grid, Concept of Robust & Self Healing Grid Present development & International policies in Smart Grid Introduction to Smart Meters, Real Time Prizing, Smart Appliances - Automatic Meter Reading(AMR) - Outage Management System(OMS) - Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart - Sensors, Home & Building Automation - Smart Substations, Substation Automation, Feeder Automation .

UNIT II WIDE AREA MEASUREMENT

9 hours

Geographic Information System(GIS) - Intelligent Electronic Devices(IED) & their application for monitoring & protection, Smart storage like Battery, SMES, Pumped Hydro - Compressed Air Energy Storage, Wide Area Measurement System(WAMS) -Phase Measurement Unit(PMU).

UNIT III MICROGRID 9 hours

Concept of micro-grid, need & applications of micro-grid, formation of micro-grid, Issues of interconnection, protection & control of micro-grid - Plastic & Organic solar cells, Thin film solar cells, Variable speed wind generators, fuel-cells, micro-turbines - Captive power plants, Integration of renewable energy sources.

UNIT IV POWER QUALITY IN SMART GRID

9 hours

Power Quality & EMC in Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources - Power Quality Conditioners for Smart Grid- Web based Power Quality monitoring - Power Quality Audit.

UNIT V COMPONENTS IN SMART GRID

9 hours

Advanced Metering Infrastructure (AMI), Home Area Network (HAN) - Neighborhood Area Network (NAN), Wide Area Network (WAN) -Bluetooth, ZigBee, GPS, Wi-Fi, Wi-Max based communication -Wireless Mesh Network, Basics of CLOUD Computing & Cyber Security for Smart Grid Broadband over Power line (BPL) -IP based protocols.

Total no. of Hours: 45

Suggested Reading:

- 1. Ali Keyhani, "Design of smart power grid renewable energy systems", Wiley IEEE, 2011.
- 2. Clark W. Gellings, "The Smart Grid: Enabling Energy Efficiency and Demand Response", CRC Press, 2009.
- 3. JanakaEkanayake, Nick Jenkins, Kithsiri Liyanage, "Smart Grid: Technology and Applications", Wiley 2012.
- 4. Stuart Borlase, "Smart Grid: Infrastructure, Technology and solutions ".CRC Press,2012.
- 5. A.G.Phadke, "Synchronized Phasor Measurement and their Applications", Springer, 2008.

PROGRAM ELECTIVES

Course Co		rse Title: HI	GH POWER	R CONVER	ΓERS	Ty/Lb/ IE	L	T/S.Lr	P/R	C
EWH GZZE		equisite: Co	ntrol System	,Power syst	em	Ту	3	0/0	0/0	3
		l S.Lr : Super /Internal Eva		ng P: Projec	t R : Researc	h C: Credits	I			
		ts will be able								
		ne power devi								
		ledge of different control								
4. A	nalvze and i	nodel the cor	strategres sur	used in pow	er system.					
5. G	ain knowled	lge to select tl	he type of con	nverters appl	icable for sp	ecific applicat	ions.			
COURSE		ES (COs) : T								
CO1	Learn the	characteristi	cs of power s	emiconducto	or devices an	d use them in	design	ing the cir	cuits.	
CO2	Analyze th	ne different to	pologies of the	he converter	s and use it a	ccording to th	e appli	cation.		
CO3	Ability to	analyze and	decide the ef	ficient contr	ol strategy su	itable for spe	cific co	onverters.		
CO4	Compreh	end and mode	el the convert	ters to be imp	plemented in	power systen	1.			
CO5	Design va	arious conver	ters to be imp	plemented ba	sed on the a	oplication.				
Mapping o	of Course C	outcomes wit	h Program (Outcomes (F	POs)					
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO)7	PO8	ì
CO1	3	3	3	3	3	2				
CO2	3	3	3	3	3	2	2	2		
CO3	3	3	3	3	3	2	2	2		
CO4	3	3	3	3	3	2	2	2		
CO5	3	3	3	3	3	2	2	2		
COs / PSOs	PSO1	PSO2	PSO3							
CO1	3	3	3							
CO2	3	3	3							
CO3	2	3	3							

CO4	3	3	3						
CO5	3	3	3						
3/2/1 indic	ates Streng	th of Corre	lation 3- I	High, 2- M	ledium, 1-I	Low	L		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill Component	Practical / Project

EMPS22E01

HIGH POWER CONVERTERS

3 0/0 0/0

UNIT I INTRODUCTION TO CONVERTERS

9 hours

3

Basic introduction to power devices:SCR, MOSFET,IGBT,TRIAC-Introduction to power Converters: Half ,Full Bridge operation-single and three phase-Modulation techniques ,harmonics in sinusoidal PWM,Space vector modulation.

UNIT II MULTILEVEL INVERTERS

9 hours

Introduction to Multilevel inverters:Two level voltage source inverter- Diode clamped multilevel inverters-flying capacitor multilevel inverter- Neutral point clamped converter-Cascaded H- bridge multilevel inverter:output waveform synthesis,Phase shift PWM,Level shift PWM-Fault tolerant operation.

UNIT III MODULAR MULTILEVEL CONVERTER

9 hours

Introduction to Modular Multilevel Converter(MMC): Topology and operation-Arm and Cell voltage ratings , arm currents ,arm energy balance-Different MMC circuit topologies-PWM Techniques- Capacitor voltage balancing- Fault tolerant operation.

UNIT IV CONTROLLERS 9 hours

Switched mode power converters: objective ,control implications- Feedback control: single and multi loop- cascaded SMPC-Variable frequency control-constant on time control methods- constant off time control methods-hysteresis control method-sliding mode control.

UNIT V MODELLING OF CONVERTERS

9 hours

Overview of modeling techniques-Design aspects of converters--Small signal analysis of converters: Derivation of transfer functions-Closed current loop-Impedance analysis and Stability.

Total no. of hours: 45

- 1. N. Mohan, T. M. Undeland and W. P. Robbins, "Power Electronics: Converter, Applications and Design", John Wiley and Sons, 1989.
- 2. M.H. Rashid, "Power Electronics", Prentice Hall of India, 1994.
- 3. B. K. Bose, "Power Electronics and A.C. Drives", Prentice Hall, 1986.
- 4. Bin Wu, "High power converters and drives", IEEE press, Wiley Enter science.
- 5. https://archive.nptel.ac.in/courses/108/105/108105180.

Course Code: EMPS22E02	Course Title: ENERGY AUDITING, CONSERVATION AND MANAGEMENT	Ty/Lb/ IE	L	T/S.Lr	P/R	С
	Prerequisite: Power system, Electrical Machines.	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/IE : Theory/Lab/Internal Evaluation

OBJECTIVE: Students will be able to

- 1. Understand the current energy scenario, energy conservation, audit and management.
- 2. Gain the knowledge to calculate the efficiency of various thermal utilities.
- 3. Analyze the various energy monitoring system and optimization techniques.
- 4. Inculcate systematic knowledge and skill about assessing the energy efficiency, energy auditing and energy management.
- 5. Acquire the need and methods of energy conservation.

COURSE	OUTCOMES (COs): The students will be able to
CO1	apply the knowledge of the subject to calculate the efficiency of various thermal utilities.
CO2	design suitable energy monitoring system to analyze and optimize the energy consumption in an organization.
CO3	use the energy audit methods learnt to identify the areas deserving tighter control to save energy expenditure.
CO4	Comprehend and carry out the cost- benefit analysis of various investment alternatives for meeting the energy needs of the organization.
CO5	guide the employees of the organization about the need and the methods of energy conservation.

Mapping of Course Outcomes with Program Outcomes (POs)

Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	3	3	3	3	2		
CO2	3	3	3	3	3	2	2	
CO3	3	3	3	3	3	2	2	
CO4	3	3	3	3	3	2		
CO5	3	3	2	2	2	2	3	2
COs / PSOs	PSO1	PSO2	PSO3					
CO1	3	3	3					
CO2	3	3	3					
CO3	2	3	3					

CO4	3	3	3						
CO5	2	3	3						
3/2/1 indic	cates Streng	gth of Corre	elation 3- 1	High, 2- M	ledium, 1-	Low			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill Component	Practical / Project

EMPS22E02 ENERGY AUDITING, CONSERVATION AND MANAGEMENT 3 0/0 0/0 3

UNIT I ENERGY SCENARIO AND BASICS OF ENERGY ITS VARIOUS FORMS AND CONSERVATION

9 hours

Commercial and Non-commercial energy, primary energy resources, commercial energy production, final energy consumption, Indian energy scenario, sectoral energy consumption (domestic, industrial and other sectors), energy needs of growing economy, energy intensity, long term energy scenario, energy pricing, Energy security, energy conservation and its importance, energy strategy for the future, Energy Conservation Act 2001 and its features. Thermal Basics-fuels, thermal energy contents of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensation, steam, moist air and humidity and heat transfer.

UNIT II THERMAL PERFORMANCE

9 hours

Calculation of heat loss - heat gain, estimation of annual heating & cooling loads, factors that influence thermal performance, analysis of existing buildings setting up an energy management programme and use management - electricity saving techniques. Energy efficiency in thermal utilities like boilers, furnaces, pumps and fans, compressors, cogeneration (steam and gas turbines), heat exchangers, lighting system, Motors belts and drives, refrigeration system. Heat Recovery and Co-generation: Heat recovery from ventilation, air co-generation of heat and electricity, heat recovery and bottoming cycles.

UNIT III ENERGY MANAGEMENT AND AUDIT

9 hours

Definition, energy audit, need, types of energy audit. Energy management (audit) approach-understanding energy costs, 3.1 Bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, fuel and energy substitution, energy audit instruments and metering.

UNIT IV ENERGY MONITORING AND TARGETING

9 hours

Defining monitoring & targeting, elements of monitoring & targeting, data and information-analysis, techniques - energy consumption, production, cumulative sum of differences (CUSUM). Energy Management Information Systems (EMIS).

UNIT V FINANCIAL MANAGEMENT

9 hours

Investment-need, appraisal and criteria, financial analysis techniques simple payback period, return on investment, net present value, internal rate of return, cash flows, risk and sensitivity analysis; financing options, energy performance contracts and role of Energy Service Companies (ESCOs).

Total no. of hours: 45

- 1. W. F. Kenny, "Energy Conservation in Process Industries", Elsevier Inc, 1984.
- 2. Amlan Chakrabarti, "Energy Engineering and Management", Prentice Hall India, 2019.
- 3. Craig B. Smith, Kelly Parmenter, "Energy Management Principles-Applications, Benefits, Savings", Pergamon Press, New York, 2015.
- 4. https://beeindia.gov.in/.
- 5. W. C. Turner,"Energy Management Hand Book", John Wiley and sons, 2010.

Course Coo	de: Cou	rse Title: C	PTIMIZ	ATIO	N TE	CHNI	QUE	ZS .	Ty/Lb/	L	T/S.Lr	P/R	C
EMPS22E0	13								IE				
EMIT S22EU		requisite: M		cal ar	nd Co	mpute	er Kn	owledge.	Ту	3	0/0	0/0	3
		1				Γ		g	-3				
L : Lecture	T : Tutoria	al S.Lr : Sup	ervised Le	arning	g P : F	roject	R : F	Research C	C: Credits		1		
Ty/Lb/IE: 7	Theory/La	b/Internal E	valuation										
OBJECTIV													
		he necessity gineering de								foda	sian neobl	om to	
		tion of the o							illiulation o	i a ue	sigii probi	em to	
		rn various a		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	nong	car cor ric	au (c ₅	•					
		the effecti		izatio	n te	chniqu	ies f	for speci	fic applic	ations	s in po	wer sy	stem.
COLIDAR		TTG (GO.)			*** *								
COURSE O													
		able insight						-					
		end and app				nizatio	n met	hods and	algorithms t	to dev	velop and	for solv	ing
	various ty	pes of optin	nization pr	<u>oblem</u>	ıs.	. ,.	. 1		1.1	· F		1	
CO3		to go in research by applying optimization techniques in pro							problems of	Eng	ineering ai	าต	
CO4	Technolog	gy. e mathematic	201 magyilta	and n		aal taa	hnian	os of onti	mization th	20071	to company	Engine	
CO4		by using co				cai tec	nnıqu	ies or opu	mization the	eory i	to concrete	Engine	ering
Mapping of						nes (P	Os)						
Cos/Pos	PO1	PO2	PO3	3	PO)4	P	05	PO6	P	07	POS	3
CO1	3	3	3		3			3					
CO2	3	3	3		3			3				2	
CO3	3	3	3		3			3					
CO4	3	3	3		3			3				1	
COs/	PSO1	PSO2	PSO	3									
PSOs													
CO1	3	3	3										
CO2	3	3	3										
CO3	3	3	3										
CO4	3	3	3										
3/2/1 indica	ates Streng	es Strength of Correlation 3- High, 2- Medium, 1-Low											
										+	2		
			ъ ss			ves			2	nen		ect	
Category	səɔ	D 0	Humanities and Social Sciences	ıre		Program Electives		Open Electives	Interdisciplinary	Skill Component	3	Practical / Project	
ıteg	Basic Sciences	Engineering Sciences	ies Icie	Program Core		Ele		ecti	ipli	1,5	[]	! /]	
Ca	Sc	Engineer Sciences	anit 1 S	am		am		El	lisc	11		cal	
	ısic	ien ien	Human Social	ogr		ogr		en	terd	15	[]	actı	
	$\mathbf{B}_{\mathcal{J}}$	En Sc	Ηι So	Pr		Pr		O_{I}	l <u>II</u>	•	-	7	

		V		

EMPS22E03

OPTIMIZATION TECHNIQUES

3 0/0 0/0 3

UNIT I FUNDAMENTALS OF OPTIMIZATION TECHNIQUES

9 hours

Fundamentals of optimization techniques: Definition-Classification of optimization problems-Unconstrained and Constrained optimization-Optimality conditions-Classical Optimization techniques (Lamda Iteration method, Linear programming, Quadratic programming).

UNIT II LAMDA ITERATION METHOD

9 hours

Brief introduction to lamda iteration method, formulate the Lagrange function, Lamda iteration method to solve Optimal dispatch problem.

UNIT III QUADRATIC PROGRAMMING AND LINEAR PROGRAMMING

9 hours

Introduction to quadratic programming-Working principle, sequential programming-Linear constrained optimization problem, Karush-Kuhn-Tucker conditions and its application to solve various problems-Interior point method, lagrangian duality.Linear programming:Examples of linear programming problem-Simplex Method I-Fundamental theorem of linear programming-Weak and strong duality theorems-Integer programming-Network flow-develop a linear programming model from problem description.

UNIT IV GENETIC ALGORITHM

9 hours

Introduction to genetic Algorithm - Working principle - Principles of Genetic Algorithm- Evolutionary Strategy and Evolutionary Programming - Genetic Operators-Selection - Crossover and Mutation fitness function - GA operators-Similarities and differences between GA and traditional methods- Unconstrained and constrained optimization using Genetic Algorithm- Algorithms and flow chart for solving economic load dispatch and hydro-thermal scheduling problem.

UNIT V PARTICLE SWARM OPTIMIZATION

9 hours

Fundamental principle-Velocity Updating-Advanced operators-Parameter selection- Hybrid approaches (Hybrid of GA and PSO, Hybrid of EP and PSO) -Binary, discrete and combinatorial. Algorithms and flow chart of various for solving economic load dispatch and hydro-thermal scheduling problem.

Total no. of Hours: 45

- 1. S.S.Rao, "Engineering Optimization: Theory and Practice", 3rd Edition, New Age International (P) Ltd,2013.
- 2. D.E.Goldberg, "Genetic Algorithm" Pearson Education, 2009

- 3. S.N.Sivanandam, S.N. Deepa, "Principle of soft computing ",Wiley,2018.
- 4. Jizhong Zhu ,"Optimization on Power system Operation" Wiley-IEEE Press.
- 5. K.P. Chong, Stanislaw H. Zak.,"An Introduction to Optimization", 3rd Edition.2011.
- 6. G. Hadley ,"Linear programming", Narosa Publishing House, New Delhi,1997.

Course Co	MA	rse Title: DY CHINES	NAMICS O	F ELECTR	ICAL	Ty/Lb/ IE	L	T/S.Lr	P/R	C
-		equisite: Pov	wer system ,	Electrical M	lachines.	Ту	3	0/0	0/0	3
Ty/Lb/IE :	Theory/LativE: Studen	l S.Lr : Super o/Internal Eva ats will be abl	luation e to		t R : Researc	h C: Credits	•			
	•	ormance charac		chines						
		ge how to mode the dynamics o		_						
		w to determine								
	-	edge about the	-		hronous machi	ines				
		ES (COs): T		-		iiics.				
CO1		n's Primitive n				odel				
CO2		mathematical r								
					induction ino					
CO3		ymmetrical 2-p				100	150	<u> </u>		
CO4						ted DC motor a	nd DC	Series moto	or.	
CO5	Determine	a wide range of	f applications i	n electric pov	ver engineering	g careers.				
Mapping	of Course C	Outcomes wit	h Program (Outcomes (1	POs)					
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	P	07	PO8	;
CO1	2	3	3	3	3	2				
CO2	3	3	3	2	2	2				
CO3	3	3	2	2	1	2				
CO4	3	3	2	3	1	2				
CO5	3	3	2	2	2	2				
COs /	PSO1	PSO2	PSO3							
PSOs										
CO1	3	3	2							
CO2	3	3	2							
CO3	2	3	3							
CO4	3	3	3							
CO5	2	3	3							

3/2/1 indic	ates Stren	gth of Cori	relation 3-	High, 2- M	ledium, 1-I	LOW			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill Component	Practical / Project

EMPS22E04

DYNAMIC OF ELECTRICAL MACHINES

3 0/0 0/0 3

UNIT-I: MODELING CONCEPTS

9 hours

Basic Two-pole machine representation of commutator machines, 3-ph synchronous machine with and without damper bars and 3-ph induction machine, Kron's primitive machine-voltage, current and torque equations. Real time model of a two phase induction machine-transformation to obtain constant matrices-thee phase to two phase transformation-power equivalence.

UNIT-II MODELING OF THREE PHASE INDUCTION MACHINE

9 hours

Generalized model in arbitrary reference frame- Electromagnetic torque — Derivation of commonly used induction machine models- Stator reference frame model-Rotor reference frame model- Synchronously rotating frame model-Equations in flux linkages - per unit model-Dynamic Simulation- Small signal equations of induction machine — derivation DQ flux linkage model derivation — control principle of Induction machine. Signal Transient - Small Oscillation Equations in State Variable form - Dynamical Analysis of Interconnected Machines.

UNIT-III SYMMETRICAL AND UNSYMMETRICAL 2 PHASE INDUCTION MACHINE 9 hours

Analysis of symmetrical 2 phase induction machine-voltage and torque equations for unsymmetrical 2 phase induction machine voltage and torque equations in stationary reference frame variables for unsymmetrical 2 phase induction machine-analysis of steady state operation of unsymmetrical 2 phase induction machine- single phase induction motor - Cross field theory of single-phase induction machine.

UNIT-IV SYNCHRONOUS MACHINE MODELING

9 hours

Mathematical model of a sep. excited DC motor- steady state and transient analysis - Transfer function of a sep. excited DC motor - Mathematical model of a DC series motor, shunt motor ,linearization techniques for small perturbations. Synchronous machine inductances - voltage equations in the rotor's DQ0 reference frame-electromagnetic torque-current in terms of linkages.

UNIT-V DYNAMIC ANALYSIS OF SYNCHRONOUS MACHINE

9 hours

Dynamic performance of synchronous machine, three-phase fault, comparison of actual and approximate transient torque characteristics, Equal area criteria- simulation of three phase synchronous machine – modeling of PMSM.

Total no. of Hours: 45

- 1. D.P. Sengupta& J.B. Lynn," Electrical Machine Dynamics", The Macmillan Press Ltd. 1980.
- 2. R Krishnan "Electric Motor Drives, Modeling, Analysis, and Control", Pearson Education., 2001.
- 3. P.C. Kraus, "Analysis of Electrical Machines", McGraw Hill Book Company, 1987.
- 4. Boldia& S.A. Nasar,,"Electrical Machine Dynamics", The Macmillan Press Ltd. 1992.
- 5. C.V. Jones, "The Unified Theory of Electrical Machines", Butterworth, London. 1967.
- 6. Chee Mun Ong "Dynamic simulation of Electric machinery using Matlab / Simulink" Prentice Hall.
- 7. Woodson & Melcher, "Electromechanical Dynamics", John Wiley & Sons.

Course Code: EMPS22E05	Course Title: WIND AND SOLAR SYSTEMS	Ty/Lb/ IE	L	T/S.Lr	P/R	С
	Prerequisite: Power system ,Electrical Machines.	Ty	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/IE: Theory/Lab/Internal Evaluation

OBJECTIVE: Students will be able to

- 1. Explain the concept of wind and solar energy systems.
- 2. Provide the students a deep insight in to the integration of power electronics converters with PV and wind energy sources.
- 3. Acquire knowledge about how to integrate power electronic converters with renewable energy sources.
- 4. Expose to study various maximum power point tracking (MPPT) techniques of wind and PV energy systems.
- 5. Inculcate on the need for hybrid energy systems and issues associated with it.

COURSE	COURSE OUTCOMES (COs): The students will be able to						
CO1	Explain the wind and solar energy conversion.						
CO2	Design power electronic converters for stand-alone and grid tied wind and solar systems.						
CO3	Ability of integrating power electronic converters with renewable energy sources.						
CO4	Comprehend and Skill in developing MPPT techniques for wind and PV systems.						
CO5	Develop proficiency in design and development of hybrid energy systems.						

Mapping of Course Outcomes with Program Outcomes (POs)

Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	3	3	3	3	1		
CO2	3	3	3	2	2	2		
CO3	3	3	2	2	1	2	1	1
CO4	3	3	2	3	1	2		
CO5	3	3	2	2	2	2	1	1
COs / PSOs	PSO1	PSO2	PSO3					
CO1	3	3	3					
CO2	3	3	3					
CO3	2	3	3					
CO4	3	3	3					
CO5	2	3	3					

3/2/1 indicates Stren	gth of Corr	relation 3-	High, 2- M	edium, 1-I	LOW			
Category Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill Component	Practical / Project

EMPS22E05

WIND AND SOLAR SYSTEMS

3 0/0 0/0 3

UNIT I SOURCES OF ENERGY

9 hours

Renewable energy sources and features. Introduction to wind and solar energy. Wind Energy: General theories of wind machines: Basic laws and concept of aerodynamics, efficiency limit for wind energy conversion. Description and performances of horizontal axis wind turbine: Design of the blades and determination of forces acting on the wind power plant, power - speed and torque - speed characteristics of wind turbines, wind turbine control systems. Description and performances of vertical axis wind turbine.

UNIT II DESIGN AND OPERATION OF WIND POWER SYSTEM

9 hours

Induction and synchronous generators, grid connected and self-excited induction generator operation, generation schemes with variable speed turbines, constant voltage and constant frequency generation with power electronic control, Optimized control of induction generators and synchronous generators. Reactive power compensation, Types of converters, Type of wind energy conversion system, MPPT techniques for wind electrical systems.

UNIT III DESIGN AND OPERATION OF PV SYSTEM AND BATTERIES

9 hours

Solar processes and spectral composition of solar radiation , Radiation flux at the Earth's surface, solar collectors, types and performance characteristics, applications. Solar Photovoltaic systems: Operating principle, photovoltaic cell concepts, cell, module, array, series and parallel connections. Solar PV system design and PV MPPT techniques. Applications Basics of Batteries: Types and parameters of batteries for PV systems, series and parallel connections and performance characteristics.

UNIT IV GRID INTEGRATION AND HYBRID ENERGY SYSTEM

9 hours

Grid integration of wind and PV systems, charge controllers ,General overview of distributed generation; Hybrid energy systems: Wind-Diesel hybrid system, Wind-solar hybrid system, System with energy storage, Special purpose applications.

UNIT V WIND AND SOLAR ENERGY SYSTEM ECONOMICS

9 hours

Overview of economic assessment, capital, operation and maintenance costs of wind and solar energy systems, comparison of alternative energy systems using life cycle cost analysis.

Total no. of Hours: 45

- M.G. Simoes, F.A. Farret, "Alternative Energy Systems: Design and Analysis with Induction Generators", CRC Press , 2004
- 2. Nicola Femia, Giovanni Petrone, Giovanni Spagnuolo, Massimo Vitelli, "Power Electronics And Control Techniques For Maximum Energy Harvesting in Photovoltaic Systems", CRC Press , 2012
- 3. Thomas Ackermann, Editor, "Wind power in Power Systems", John Willy and sons Ltd.2005
- 4. Siegfried Heier, "Grid integration of wind energy conversion systems", John Willy and sons Ltd., 2006
- 5. K. Sukhatme and S.P. Sukhatme, "Solar Energy". Tata McGraw Hill, Second Edition, 1996.

Course Co	ode: Cou	ırse Title: EL	ECTRIC A	ND HYBRI	D VEHICLE	S	Гу/Lb/	L	T/S.Lr	P/R	С
EMPS22E	206						IE				
	Pre	requisite: ineering ,Elec		ctrical and nines, IC Eng		ics	Ту	3	0/0	0/0	3
		al S.Lr : Super		ng P : Projec	t R : Researc	h C: C	redits				
		b/Internal Evants will be abl									
		concept of Ele		orid Electric	Vehicles.						
2. G	ain deep in	sight knowled	ge in vehicle	traction							
		wledge about									
		d different as					-1				
		n efficient mar IES (COs) : T				protoc	OI.				
CO1		sic model of E									
COI	Duna a oa	sic moder of E	rectife and fry	orid Electric	venicies.						
CO2	Choose a s	suitable drive sc	heme for deve	eloping an elec	ctric hybrid veh	icle de	pending	on reso	ources.		
CO3	Design and	d develop basic	schemes of el	ectric vehicles	and hybrid ele	ectric ve	chicles.				
CO4	Choose pro	oper energy stor	rage systems fo	or vehicle app	lications.						
CO5	Identify va	rious communi	cation protoco	ols and technol	logies used in v	ehicle 1	networks				
Mapping of	of Course (Outcomes wit	h Program	Outcomes (1	POs)						
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO)6	P(07	PO8	}
CO1	2	3	3	3	3	3	3				
CO2	3	3	3	2	2	3	3				
CO3	3	3	2	2	1	3	3				
CO4	3	3	2	3	1	2	2				
CO5	3	3	3	3	3	3	3	2	2	2	
COs/	PSO1	01 PSO2 PSO3									
PSOs											
CO1	3	3	3								
CO2	3	2	3								
CO3	2	3	2								
CO4	3	2	3								

CO5	3	3	3						
3/2/1 indic	cates Stren	gth of Cori	relation 3-	High, 2- M	ledium, 1-I	Low			<u> </u>
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill Component	Practical / Project

EMPS22E06

ELECTRIC AND HYBRID VEHICLES

3 0/0 0/0 3

UNIT I HYBRID AND ELECTRIC VEHICLES

9 hours

Introduction to Hybrid Electric Vehicles: History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Conventional Vehicles: Basics of vehicle performance, vehicle power source characterization, transmission characteristics, mathematical models to describe vehicle performance.

UNIT II HYBRID TRACTION

9 hours

Hybrid Electric Drive-trains: Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Electric Drive-trains: Basic concept of electric traction, introduction to various electric drive-train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis.

UNIT III DC DRIVES AND ENERGY STORAGE

9 hours

Electric Propulsion unit: Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives. Energy Storage: Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Hybridization of different energy storage devices.

UNIT IV SIZING THE DRIVE SYSTEM

9 hours

Matching the electric machine and the internal combustion engine (ICE)- Sizing the propulsion motor, sizing the power electronics Selecting the energy storage technology.

UNIT V ENERGY MANAGEMENT

9 hours

Communications, supporting subsystems: CAN control system, Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies

Total no. of Hours: 45

- 1. Tom Denton," Electric and Hybrid Vehicles", Routledge Publishers, 2020.
- 2. Iqbal Hussein," Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, 2003.
- 3. James Larminie, John Lowry, "Electric Vehicle Technology Explained", Wiley, 2003.
- 4. Mehrdad Ehsani, YimiGao, Sebastian E. Gay, Ali Emadi, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design", CRC Press, 2010.
- 5. Sandeep Dhameja, "Electric Vehicle Battery Systems", Newnes, 2000 .http://nptel.ac.in/courses/108103009/

Course Code: EMPS22E07	Course Title: EHVAC TRANSMISSION	Ty/Lb/ IE	L	T/S.Lr	P/R	C
	Prerequisite: Basic electrical and electronics engineering ,Transmission and Distribution, FACT Devices.	Ту	3	0/0	0/0	3

L : Lecture T : Tutorial S.Lr : Supervised Learning P : Project R : Research C: Credits

Ty/Lb/IE : Theory/Lab/Internal Evaluation

OBJECTIVE: Students will be able to

- 1. Calculate the transmission line parameters.
- 2. Derive the field effect on EHV and UHV AC lines.
- 3. Acquire knowledge on corona, RI and audible noise in EHV and UHV lines.
- 4. Gain knowledge of voltage control and compensation problems in EHV and UHV transmission systems.
- 5. Learn various compensation methods.

COURSE	COURSE OUTCOMES (COs): The students will be able to						
CO1	Calculate the transmission line parameters.						
CO2	Calculate the field effects on EHV and UHV AC lines.						
CO3	Determine the corona, RI and audible noise in EHV and UHV lines						
CO4	Analyze voltage control and compensation problems in EHV and UHV transmission systems.						
CO5	Understand reactive power compensation using SVC and TCR.						

Mapping of Course Outcomes with Program Outcomes (POs)

Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	3	3	3	3	3		
CO2	3	3	3	3	2	3		
CO3	3	3	3	1	1	1		
CO4	3	3	3	3	2	2		
CO5	3	3	3	3	2	2		
COs / PSOs	PSO1	PSO2	PSO3					
CO1	3	3	3					
CO2	3	2	3					
CO3	2	1	1					
CO4	3	2	3					
CO5	3	3	3					

3/2/1 indicates Stren	gth of Correl	lation 3- I	High, 2- M	edium, 1-L	ow.			
Category Basic Sciences		Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill Component	Practical / Project

EMPS22E07 EHVAC TRANSMISSION 3

UNIT I INTRODUCTION OF EHVAC TRANSMISSION

9 hours

3

E.H.V. A.C. Transmission, line trends and preliminary aspects, standard transmission voltages :power handling capacities and line losses, mechanical aspects. Calculation of line resistance and inductance: resistance of conductors, temperature rise of conductor and current carrying capacity. Properties of bundled conductors and geometric mean radius of bundle, inductance of two conductor lines and multi conductor lines, Maxwell's coefficient matrix. Line capacitance calculation. Capacitance of two conductor line, and capacitance of multi conductor lines, potential coefficients for bundled conductor lines, sequence inductances and capacitances and diagonalization.

UNIT II EFFECTS OF ELECTRO STATIC FIELD

9 hours

Calculation of electro static field of AC lines - Effect of high electrostatic field on biological organisms and human beings. Surface voltage Gradient on conductors, surface gradient on two conductor bundle and cosine law, maximum surface voltage gradient of bundle with more than 3 sub conductors, Mangoldt formula.

UNIT III CORONA 9 hours

Corona in EHV lines ,corona loss formulae ,attenuation of traveling waves due to corona ,Audio noise due to corona, its generation, characteristics and limits, measurement of audio noise.

UNIT IV POWER FREQUENCY VOLTAGE CONTROL

9 hours

Problems at power frequency, generalized constants, No load voltage conditions and charging currents, voltage control using synchronous condenser, cascade connection of components: Shunt and series compensation, sub synchronous resonance in series, capacitor compensated lines.

UNIT V REACTIVE POWER COMPENSATING SYSTEMS

9 hours

Introduction, SVC schemes, Harmonics injected into network by TCR, design of filters for suppressing harmonics

injected into the system.

Total no. of Hours: 45

- 1. S.Rao ,"EHV-AC, HVDC Transmission & Distribution Engineering" Khanna Publishers,3rd Edition,2001.
- 2. Rakesh Das Begamudre ,"Extra High Voltage AC Transmission Engineering", Wiley Eastern ltd., New Delhi, 2009.
- 3. Sanjay Kumar Sharma, "EHV-AC, HVDC Transmission and Distribution Engineering", S.K. Kataria & Sons, 2016.
- 4. EHV Transmission line reference book Edison Electric Institute (GEC) 1986.

Course Co	MIC	rse Title: DI CRO GRID	STRIBUTE	D GENERA	TION AND	Ty/Lb/ IE	L	T/S.Lr	P/R	C
EMPS22F		equisite:	Basic elec	trical an	d electronic	1				
		neering ,Ele				Ty	3	0/0	0/0	3
				ng P : Projec	et R : Research	C: Credits	1	L		I
		o/Internal Eva								
		oncept of con		wer generati	on systems.					
		concept of dis								
		e impact of g sight knowled			rid					
					controlling aspe	cts in micro	grid.			
		ES (COs) : T								
CO1	Review th	e conventiona	al power gen	eration						
CO2	Analyze th	ne concept of	distributed g	eneration an	d installation					
CO3	Design the	grid integrat	ion system v	vith conventi	onal and non-co	nventional	energ	y sources.		
CO4	Design the	DC and AC	micro grid.							
CO5	Analyze p	ower quality	issues and co	ontrol operati	on of micro gri	1.				
Mapping	of Course C	Outcomes wit	h Program	Outcomes (1	POs)					
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	P	O7	PO8	3
CO1	2	3	3	3	3	3				
CO2	3	3	3	2	2	3				
CO3	3	3	2	3	2	2				
CO4	3	3	2	3	3	3	-	1		
CO5	3	3	3	3	3	3	2	2		
COs /	PSO1	PSO2	PSO3							
PSOs										
CO1	3	3	3							
CO2	3	2	3							
CO3	2	2	1							
CO4	3	3	3							

CO5

3

3

3

3/2/1 indic	ates Stren	gth of Cori	relation 3-	High, 2- M	edium, 1-I	LOW			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill Component	Practical / Project
					٧				

EMPS22E08 DISTRIBUTED GENERATION AND MICRO GRID 3 0/0 0/0 3

UNIT I INTRODUCTION 9 hours

Conventional power generation: advantages and disadvantages, Energy crises, Non - conventional energy (NCE) resources: review of Solar PV, Wind Energy systems, Fuel Cells, micro-turbines, biomass, and tidal sources.

UNIT II DISTRIBUTED GENERATIONS

9 hours

Concept of distributed generations, topologies, selection of sources, regulatory standards/ framework, Standards for interconnecting Distributed resources to electric power systems: IEEE 1547. DG installation classes, security issues in DG implementations. Energy storage elements: Batteries, ultra-capacitors, flywheels. Captive power plants.

UNIT III IMPACT OF GRID INTEGRATION

9hours

Requirements for grid interconnection, limits on operational parameters,: voltage, frequency, THD, response to grid abnormal operating conditions, islanding issues. Impact of grid integration with NCE sources on existing power system: reliability, stability and power quality issues.

UNIT IV BASICS OF MICROGRID

9hours

Concept and definition of microgrid, microgrid drivers and benefits, review of sources of microgrids, typical structure and configuration of a microgrid, AC and DC microgrids, Power Electronics interfaces in DC and AC microgrids.

UNIT V CONTROL AND OPERATION OF MICROGRID

9 hours

Modes of operation and control of microgrid: grid connected and islanded mode, Active and reactive power control, protection issues, anti-islanding schemes: passive, active and communication based techniques, microgrid communication infrastructure, Power quality issues in microgrids, regulatory standards, Microgrid economics, Introduction to smart microgrids.

Total no. of Hours: 45

- 1. S Amirnaser Yezdani, and Reza Iravani, "Voltage Source Converters in Power Systems: Modeling, Control and Applications", IEEE John Wiley Publications, 2009.
- DorinNeacsu, "Power Switching Converters: Medium and High Power", CRC Press, Taylor & Francis, 2006
- 3. Chetan Singh Solanki, "Solar Photo Voltaics", PHI learning Pvt. Ltd., New Delhi, 2009
- 4. J.F. Manwell, J.G "Wind Energy Explained, Theory Design and Applications", McGowan Wiley publication, 2nd Edition, 2009.
- 5. D. D. Hall and R. P. Grover, "Biomass Regenerable Energy", John Wiley, New York, 1987.
- 6. John Twidell ,Tony Weir, "Renewable Energy Resources", Taylor and Francis Publications, Second Edition, 2006.

Course Code: EMPS22E09	Course Title: ENERGY STORAGE SYSTEMS	Ty/Lb/ IE	L	T/S.Lr	P/R	С
	Prerequisite: Basic electrical and electronics engineering.	Ту	3	0/0	0/0	3

L : Lecture T : Tutorial S.Lr : Supervised Learning P : Project R : Research C: Credits

Ty/Lb/IE: Theory/Lab/Internal Evaluation

OBJECTIVE: Students will be able to

- 1. Study details of various energy storage systems along with applications.
- 2. Analyze the operation of different energy storage systems.
- 3. Learn about batteries.
- 4. Acquire knowledge about Fuel cells.
- 5. Enabling to identify the optimal solutions to a particular energy storage application/utility.

COURSE	COURSE OUTCOMES (COs): The students will be able to						
CO1	Understand need of energy storage systems						
CO2	Acquire knowledge pertaining to various ways to store energy, its analysis and use.						
CO3	Design different energy storage systems.						
CO4	Determine the operation of fuel cells.						
CO5	Focus and select efficient energy storage systems for specific applications.						

Mapping of Course Outcomes with Program Outcomes (POs)

Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	3	3	3	3	3		
CO2	3	3	3	2	2	2		
CO3	3	3	2	3	2	2		
CO4	3	3	2	3	3	2		
CO5	3	3	3	3	3	3		
COs / PSOs	PSO1	PSO2	PSO3					
CO1	3	3	3					
CO2	3	2	3					
CO3	2	2	2					
CO4	3	3	3					
CO5	3	3	3					

3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low										
Category Basic Sciences		Humanities and Social Sciences Program Core	Program Electives	Open Electives	Interdisciplinary	Skill Component	Practical / Project			

EMPS22E09

ENERGY STORAGE SYSTEMS

3 0/0 0/0 3

UNIT I INTRODUCTION 9 hours

Energy availability, Necessity of energy storage, different types of energy storage, mechanical, chemical, electrical, electrochemical, biological, magnetic, electromagnetic, thermal, comparison of energy storage technologies.

UNIT II ENERGY STORAGE SYSTEMS

9 hours

Thermal Energy storage, sensible and latent heat, phase change materials, Energy and exergy analysis of thermal energy storage, Electrical Energy storage-super-capacitors, Magnetic Energy storage-Superconducting systems, Mechanical-Pumped hydro, flywheels and pressurized air energy storage.

UNIT III ELECTROCHEMICAL ENERGY STORAGE

9hours

Battery: fundamentals and technologies, characteristics and performance comparison: Lead-acid, Nickel-Metal hydride, Lithium Ion; Battery system model, emerging trends in batteries. Hydrogen as energy carrier and storage, Hydrogen resources and production.

UNIT IV FUEL CELLS 9 hours

Basic principle of direct energy conversion using fuel cells; Thermodynamics of fuel cells Fuel cell types: AFC, PEMFC, MCFC, SOFC, Microbial Fuel cell; Fuel cell performance, characterization and modeling; Fuel cell system design and technology, applications for power and transportation.

UNIT V APPLICATIONS OF ENERGY STORAGE

9 hours

Renewable energy storage ,Battery sizing and stand-alone applications, stationary (Power Grid application), Small scale application :Portable storage systems and medical devices, Mobile storage Applications- Electric vehicles (EVs), types of EVs, batteries and fuel cells, future technologies, hybrid systems for energy storage.

Total no. of Hours: 45

- 1. Dincer I., and Rosen M. A. m" Thermal Energy Storage: Systems and Applications", Wiley ,2011.
- 2. Huggins R. A.," Energy Storage: Fundamentals, Materials and Applications", Springer, 2015.
- 3. O'Hayre R., Cha S., Colella W., Prinz F. B. m" Fuel Cell Fundamentals", Second Edition, Wiley, 2009.
- 4. Narayan R., Viswanathan Bm" Chemical and Electrochemical Energy System", Universities Press, 1998.
- 5. Rahn C. D., Wang C.," Battery Systems Engineering, First Edition", Wiley, 2013.
- 6. Moseley P. T., and Garche J," Electrochemical Energy Storage for Renewable Sources and Grid Balancing", Elsevier Science, 2014.

Course Co		rse Title: EL TEM	ECTRIC PO	OWER DIS	TRIBUTION	Ty/Lb/ IE	L	T/S.Lr	P/R	С
EMPS22E	Prer			trical an	S T.,	2	0/0	0/0	2	
	engi	neering ,Tra	nsmission a	nd Distribu	ion.	Ty	3	0/0	0/0	3
				ng P : Projec	t R : Research	C: Credits	1	•		
		/Internal Eva								
		ts will be ablout power dis		tem						
2.		the interconne								
3.		knowledge ab								
4.		n the selection								
		nd how to ma ES (COs) : T								
CO1					listributed netw	nrk				
CO2					ls of metering a		ng the	narameter	e in	
		ection of nety		ilous ilictiloc	is of metering a	na controlli	iig tiic	parameter	5 111	
CO3	Design a S	CADA auton	nated system	l.						
CO4	Analyze th	ne distributed	network and	optimize th	e selection and 1	olacement o	f devi	ces in a dis	tributed	i
G0.5	system.		1 11 . 11							
CO5	-	t an automate			DO \					
		Outcomes wit				DO 6		o=	D 00	
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	P	07	PO8	į
CO1	3	3	3	3	3	3				
CO2	3	3	3	2	2	3				
CO3	3	3	2	3	2	3				
CO4	3	3	2	3	3	2				
CO5	3	3	3	3	3	3				
COs / PSOs	PSO1	PSO2	PSO3							
CO1	3	3	3							
CO2	3	2	3						_	
CO3	2	2	2							
CO4	3	3	3							

CO5	3	3	3						
3/2/1 indic	ates Stren	gth of Cori	relation 3-	High, 2- M	ledium, 1-1	Low			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill Component	Practical / Project

EMPS22E10

ELECTRIC POWER DISTRIBUTION SYSTEM

3 0/0 0/0 3

UNIT I DISTRIBUTION SYSTEM

9 hours

Distribution of Power, Management, Power Loads - Load Forecasting Short-term & Long-term - Power System Loading, Technological Forecasting. Advantages of Distribution Management System (D.M.S.) Distribution Automation- Definition - Restoration / Reconfiguration of Distribution Network, Different Methods and Constraints -Power Factor Correction.

UNIT II INTERCONNECTION OF DISTRIBUTION

9 hours

Control and Communication Systems - Remote Metering - Automatic Meter Reading and its implementation.

UNIT III SCADA 9 hours

Introduction- Block Diagram-SCADA Applied To Distribution Automation- Common Functions of SCADA - Advantages of Distribution Automation through SCADA.

UNIT IV OPTIMIZATION IN DISTRIBUTION

9 hours

Calculation of Optimum Number of Switches, Capacitors, Optimum Switching Device Placement in Radial - Distribution Systems, Sectionalizing Switches – Types, Benefits -Bellman's Optimality Principle - Remote Terminal Units -Energy efficiency in electrical distribution & Monitoring.

UNIT V MAINTENANCE OF AUTOMATED DISTRIBUTION SYSTEMS

9 hours

Difficulties in Implementing Distribution Automation in Actual Practice- Urban/Rural Distribution- Energy Management- AI techniques applied to Distribution Automation.

Total no. of Hours: 45

- 1. A.S. Pabla, "Electric Power Distribution", Tata McGraw Hill Publishing Co. Ltd., Fourth Edition.2000.
- 2. M.K. Khedkar, G.M. Dhole, "A Text Book of Electrical power Distribution Automation", University Science Press, New Delhi
- 3. Anthony J Pansini, "Electrical Distribution Engineering", CRC Press,2020.
- 4. James Momoh, "Electric Power Distribution, automation, protection & control", CRC Press, 2007.

Course Co	ode: Cou	ırse Title: DI	GITAL SIG	NAL PROC	ESSING	Ty/Lb/	L	T/S.Lr	P/R	С				
EMPS22E														
	Pre	requisite: Sig	nals and Sys	stems		Ty	3	0/0	0/0	3				
	re T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits													
		b/Internal Eva												
_		nts will be abl												
1. 2.		out difference out the techni				e signals								
3.					ers.									
		Acquire knowledge about finite word length. Gain knowledge about various signal models.												
		Understand how to design a FIR and IIR filter.												
		IES (COs) : T			to									
CO1				in and frequ	ency domain	representation	s as w	vell analyz	e the					
		me signals an												
CO2	_					their realization								
CO3	Acquire l	knowledge abo	out the finite	word length	effects in im	plementation of	f digit	al filters.						
CO4	Knowledgrandom s		arious linear	signal model	s and estima	tion of power s	pectr	um of stati	onary					
CO5		otimum FIR a	nd IIR filters											
Mapping	of Course	Outcomes wit	h Program (Outcomes (I	POs)									
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	P) 7	PO8					
CO1	3	2	3	3	3	1								
CO2	3	3	3	2	2	2								
CO3	3	2	2	3	2	1								
CO4	3	2	2	3	3									
CO5	3	3	3	3	3									
COs / PSOs	PSO1	PSO1 PSO2 PSO3												
CO1	3	3	3 3											
CO2	3	1	3											
CO3	1		1											
CO4	1	1	1											
CO5	1		3											

3/2/1 indic	3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low									
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill Component	Practical / Project	

EMPS22E11

DIGITAL SIGNAL PROCESSING

3 0/0 0/0 3

UNIT I DISCRETE TIME SIGNALS

9 hours

Discrete time signals - Linear shift invariant systems- Stability and causality -Sampling of continuous time signals Discrete time Fourier transform- Discrete Fourier series- Discrete Fourier transform - Z transform-Properties of different transforms.

UNIT II DISCRETE FOURIER TRANSFORM (DFT)

9 hours

Linear convolution using DFT - Computation of DFT Design of IIR digital filters from analog filters -Impulse invariance method - Bilinear transformation method.

UNIT III FINITE IMPULSE RESPONSE(FIR)

9 hours

FIR filter design using window functions - Comparison of IIR and FIR digital filters -Basic IIR and FIR filter realization structures - Signal flow graph representations Quantization process and errors - Coefficient quantization effects in IIR and FIR filters.

UNIT IV ANALOG TO DIGITAL CONVERSION

9 hours

A/D conversion noise- Arithmetic round-off errors - Dynamic range scaling - Overflow oscillations and zero Input limit cycles in IIR filters - Linear Signal Models.

UNIT V POWER SPECTRUM

9 hours

All pole, All zero and Pole-zero models - Power spectrum estimation- Spectral analysis of deterministic signals Estimation of power spectrum of stationary random signals - Optimum linear filters- Optimum signal estimation Mean square error estimation - Optimum FIR and IIR Filters.

Total no. of Hours: 45

- 1. Sanjit K Mitra, "Digital Signal Processing: A computer-based approach ",Tata McGraw-Hill Edition,1998.
- 2. Dimitris G. Manolakis, Vinay K. Ingle, Stephen M. Kogon, "Statistical and Adaptive Signal Processing", Mc Graw Hill international editions, 2000.

Course Co	ode: Cou	rse Title: PC	WER APPA	RATUS DI	ESIGN	Ty/Lb/ IE	L	T/S.Lr	P/R	C
EMPS22E	212					112				
		requisite: Dechines.	C Machines	and Trai	nsformers, AC	Ту	3	0/0	0/0	3
L : Lecture	e T : Tutoria	ıl S.Lr : Super	vised Learni	ng P : Projec	ct R : Research	C: Credits		ı		
Ty/Lb/IE:	Theory/Lal	b/Internal Eva	luation							
		nts will be abl								
		out DC mach								
2.		out the dimer			is machines.					
3. 4.		knowledge ab owledge abou		macnines.						
5.		and how to de		ent machine						
		ES (COs) : T								
CO1		DC machine								
CO2					es, Induction me	atoms and Crim	ahaa	mana maah	inas	
					es, maucuon mo	otors and Syr	ichro	nous mach	mes.	
CO3	-	end the losses								
CO4			cs and concer	ntrate on the	aspects in design	gning the ma	chine	s in order t	to reduc	e the
COF	harmonics									
CO5	·	ficient machir								
Mapping	of Course (Outcomes wit	th Program (Outcomes (1	POs)					
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	P	07	PO8	3
CO1	3	2	3	3	3					
CO2	3	3	3	2	3					
CO3	3	2	2	3	3					
CO4	3	2	2	3	3					
CO5	3	3	3	3	3					
COs / PSOs	PSO1	PSO2	PSO3							
CO1	3	3	3							
CO2	3	3	3							
CO3	2	3	2							
CO4	3	3	1							
CO5	3	3	3							

3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low										
Category Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill Component	Practical / Project		

EMPS22E12 POWER APPARATUS DESIGN

3 0/0 0/0 3

UNIT I DC MACHINES AND TRANSFORMERS

9 hours

Principles of Design of Machines -Specific loadings, choice of magnetic and electric loadings - Real and apparent flux densities, temperature rise calculation, Separation of main dimension for DC machines - Induction machines and synchronous machines - Design of Transformers-General considerations, output equation, emf per turn, choice of flux density and current density, main dimensions, leakage reactance and conductor size, design of tank and cooling.

UNIT II INDUCTION AND SYNCHRONOUS MACHINES

9 hours

Specific loadings, choice of magnetic and electric loadings Real and apparent flux -densities, temperature rise calculation - Separation of main dimension for DC machines - Induction machines and synchronous machines - Heating and cooling of machines, types of ventilation, continuous and intermittent rating.

UNIT III EMF EOUATIONS

9 hours

General considerations, output equation, emf per turn, choice of flux density and current density, main dimensions, leakage reactance and conductor size, design of tank and cooling tubes - Calculation of losses, efficiency and regulation - Forces winding during short circuit.

UNIT IV HARMONICS 9 hours

General considerations, output equation - Choice of specific electric and magnetic loadings, efficiency, power factor-Number of slots in stator and rotor - Elimination of harmonic torques.

UNIT V DESIGN OF ENERGY EFFICIENT OF MACHINES

9 hours

Design of stator and rotor winding, slot leakage flux - Leakage reactance, equivalent resistance of squirrel cage rotor - Magnetizing current, efficiency from design data - Types of alternators, comparison, specific loadings, output coefficient - design of main dimensions - Introduction to Computer Aided Electrical Machine Design Energy efficient machines.

Total no. of Hours: 45

- 1. Clayton A.E, "The Performance and Design of D.C. Machines", Sir I. Pitman & sons, Ltd.
- 2. M.G. Say, "The Performance and Design of A.C. Machines", Pitman
- 3. Sawhney A.K, "A course in Electrical Machine Design", DhanpatRai & Sons, 5th Edition.

Course Co	BAS	rse Title: AE SED SYSTEN		MICRO-CO	NTROLLER	Ty/Lb/	L	T/S.Lr	P/R	C
EMPS22E		equisite: Mi	croprocessor	r and Micro	controller	Ту	3	0/0	0/0	3
L : Lecture	T : Tutoria	1 S.Lr : Super	vised Learni	ng P : Projec	t R : Researc	h C: Credits				
		o/Internal Éva								
		its will be abl								
		he computer	-							
	•	he architectur			llers.					
	-	vledge about		-						
		ige about the	_							
		bout controlle								
COURSE		ES (COs) : T								
CO1	Analyze the	e configuration	of a computer	and its proto	cols.					
CO2	Understand	the working o	f microcontro	ollers.						
CO3	Learn how	to program a p	rocessor in ass	sembly langua	ge and develop	an advanced pr	ocesso	or based sys	tem.	
CO4	Compreher	nd and configu	e the different	peripherals w	hich are interfa	aced with the mi	crocoi	ntroller.		
CO5	Frame the	program and co	ntrol the device	ces interfaced	with the micro	controller.				
Mapping	 of Course (Outcomes wit	h Program (Outcomes (I	POs)					
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO	07	PO8	1
CO1	2	2	1	3	2					
CO2	2	3	3	2	2					
CO3	2	2	2	3	2					
CO4	2	2	2	3	2					
CO5		1		2	3					
COs / PSOs	PSO1	PSO2	PSO3							
CO1	3	3	3							
CO2	3	3	3							
CO3	2	3	2							
CO4		1								

CO5	2	1	1						
3/2/1 indic	cates Stren	gth of Cori	relation 3-	High, 2- M	ledium, 1-I	Low			L
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill Component	Practical / Project

EMPS22E13 ADVANCED MICRO-CONTROLLER BASED SYSTEMS 3 0/0 0/0 3

UNIT I COMPUTER ORGANIZATIONS

9 hours

Basic Computer Organization- Accumulator based Processes-Architecture – Memory Organization-I/O Organization.

UNIT II MICRO-CONTROLLER

9 hours

 $\label{lem:micro-Controllers-Intel 8051 - Intel 8056-Registers, Memories - I/O Ports, Serial Communication - Timers - Interrupts - Programming.$

UNIT III INTEL 8051 9 hours

Intel 8051 - Assembly language programming - Addressing-Operations - Stack & Subroutines - Interrupts-DMA.

UNIT IV INTERFACING 9 hours

PIC 16F877- Architecture Programming - Interfacing Memory/ I/O Devices - Serial I/O and data communication.

UNIT V DSP 9hours

Digital Signal Processor (DSP) - Architecture – Programming - Introduction to FPGA – Microcontroller development for motor control applications - Stepper motor control using micro controller.

Total no. of Hours: 45

- 1. John.F.Wakerly: "Microcomputer Architecture and Programming", John Wiley and Sons 1981
- 2. Ramesh S.Gaonker: "Microprocessor Architecture, Programming and Applications with the 8085", Penram International Publishing (India), 1994
- 3. Raj Kamal: "The Concepts and Features of Microcontrollers", Wheeler Publishing, 2005
- 4. Kenneth J. Ayala, "The 8051 microcontroller", Cengage Learning, 2004
- 5. John Morton," The PIC microcontroller: your personal introductory course", Elsevier, 2005
- 6. Dogan Ibrahim," Advanced PIC microcontroller projects in C: from USB to RTOS with the PIC18F Series", Elsevier, 2008
- 7. Microchip datasheets for PIC16F877

Course Code: EMPS22E14	Course Title: REAL TIME CONTROL OF POWER SYSTEMS	Ty/Lb/ IE	L	T/S.Lr	P/R	С
	Prerequisite: Power system operation and control	Ty	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/IE: Theory/Lab/Internal Evaluation

OBJECTIVE: Students will be able to

- 1. Understand the importance of state estimation in power systems.
- 2. Know the importance of security and contingency analysis.
- 3. Acquire knowledge on SCADA, its objectives and its importance in power systems.
- 4. Learn the significance of voltage stability analysis.
- 5. Apply AI to power systems problems.

COURSE	COURSE OUTCOMES (COs): The students will be able to							
CO1	Understand state estimation, security and contingency evaluation.							
CO2	Design a secured and perform contingency analysis in power systems.							
CO3	Analyze and apply Supervisory control and data acquisition in power systems.							
CO4	Real time software application to state estimation.							
CO5	Build an efficient power system incorporating AI.							

Mapping of Course Outcomes with Program Outcomes (POs)

TI O					/			
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	3	3	3	3	3		
CO2	3	3	3	3	3	3	2	
CO3	3	3	3	2	3	3		
CO4	3	3	3	3	3	3		
CO5	3	3	3	3	3	3		
COs / PSOs	PSO1	PSO2	PSO3					
CO1	3	3	3					
CO2	3	3	3					
CO3	3	3	2					
CO4	3	3	3					
CO5	3	3	3					

3/2/1 indic	3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low									
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill Component	Practical / Project	

EMPS22E14 REAL TIME CONTROL OF POWER SYSTEMS 3 0/0 0/0 3

UNIT I STATE ESTIMATION

9 hours

Different types of State Estimations, Theory of WLS state estimation, sequential and non-sequential methods to process measurements, Bad data Observability, Bad data detection, identification and elimination.

UNIT II HYBRID TRACTION

9 hours

Security and Contingency Evaluation: Security concept, Security Analysis and monitoring, Contingency Analysis for Generator and line outages by iterative linear power flow method, Fast Decoupled model, and network sensitivity methods.

UNIT III DC DRIVES AND ENERGY STORAGE

9 hours

Computer Control of Power Systems: Need for real time and computer control of power systems, operating states of a power system, SCADA - Supervisory control and Data Acquisition systems implementation considerations, energy control centres, software requirements for implementing the above functions.

UNIT IV SIZING THE DRIVE SYSTEM

9 hours

Voltage Stability, voltage collapse, and voltage security, relation of voltage stability to rotor angle stability. Voltage stability analysis Introduction to voltage stability analysis `P-V' curves and `Q-V' curves, voltage stability in mature power systems, long-term voltage stability, power flow analysis for voltage stability, voltage stability static indices.

UNIT V ENERGY MANAGEMENT

9 hours

Synchrophasor Measurement units: Introduction, Phasor representation of sinusoids, a generic PMU, GPS, Phasor measurement systems, Communication options for PMUs, Functional requirements of PMUs and PDCs, Phasors for nominal frequency signals, types of frequency excursions in power systems, DFT estimation at off nominal frequency with a nominal frequency clock.

Total no. of Hours: 45

- 1. John J.Grainger ,William D.Stevenson, Jr.,"Power System Analysis", McGraw-Hill, 1994, International Edition.
- 2. Allen J.Wood ,Bruce F.Wollenberg ,"Power Generation operation and control", John Wiley & Sons, 1984.
- 3. A.G.Phadka ,J.S. Thorp, "Synchronized Phasor Measurements and Their Applications", Springer, 2008.
- 4. R.N.Dhar,"Computer Aided Power Systems Operation and Analysis", Tata McGraw Hill, 1982.
- 5. L.P.Singh,"Advanced Power System Analysis and Dynamics", Wiley Eastern Ltd. 1986.
- 6. PrabhaKundur, "Power System Stability and Control", McGraw Hill, 1994.

Course Co	ode: Cou	rse Title: EL	ECTRIC PO	OWER QUA	ALITY	Ty/Lb/	L	T/S.Lr	P/R	С
EMPS22E	15					IE				
	Prei	requisite: l ineering,Pow		etrical and cs.	d Electronic	S Ty	3	0/0	0/0	3
L : Lecture	T : Tutoria	l S.Lr : Super	vised Learni	ng P : Projec	t R : Research	C: Credits	I	l		<u> </u>
Ty/Lb/IE:	Theory/Lal	o/Internal Éva	luation							
		its will be able								
1. 2.		out different p		issues.						
3.		owledge about out modeling		devices						
4.		knowledge ab			quality.					
	Understa	and about FAC	CTs devices.							
COURSE	OUTCOM	ES(COs): T	he students	will be able	to					
CO1	Identify	the factors and	d devices that	t affect the p	ower system.					
CO2	Acquire	knowledge ab	out the harm	onics, harmo	onic introducing	devices and	effe	ct of harmo	nics on	
		quipment and								
CO3	Develop compone	•	deling skills	needed for n	nodeling and an	alysis of har	moni	cs in netwo	orks and	Į.
CO4	Decide th	ne devices to l	oe implemen	ted in power	network to imp	prove the pov	ver fa	ctor.		
CO5	Comprel	end and decid	le the device	s to be used	for compensation	on.				
Mapping	of Course (Outcomes wit	h Program (Outcomes (1	POs)					
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	P	07	PO8	3
CO1	3	2	3	3	3					
CO2	3	3	3	2	3					
CO3	3	2	2	3	3					
CO4	3	2	2	3	3	2				
CO5	3	3	3	3	3	2				
COs/	PSO1	PSO2	PSO3							
PSOs										
CO1	3	3	3							
CO2	3	3	3							
CO3	2	3	2							
CO4	3	3	3							

CO5	3	3	3								
3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low											
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill Component	Practical / Project		

EMPS22E15

ELECTRIC POWER QUALITY

3 0/0 0/0 3

UNIT I OVERVIEW OF POWER QUALITY

9 hours

Introduction-power quality-voltage quality-overview of power quality phenomena - classification of power quality issues-power quality measures and standards-THD-TIF-DIN-C message weights-flicker factor transient phenomena-occurrence of power quality problems power acceptability curves-IEEE guides, standards and recommended practices.

UNIT II HARMONICS 9 hours

Harmonics-individual and total harmonic distortion - RMS value of a harmonic waveform- Triplex harmonics-important harmonic introducing devices-SMPS-Three phase power converters-arcing devices saturable devices-harmonic distortion of fluorescent lamps-effect of power system harmonics on power system equipment and loads.

UNIT III MODELLING OF NETWORK

9 hours

Modeling of networks and components under non-sinusoidal - conditions transmission and distribution systems Shunt capacitors-transformers-electric machines-ground systems loads that cause power quality problems power quality problems created by drives and its impact on drive.

UNIT IV IMPROVEMENT OF POWER QUALITY

9 hours

Power factor improvement- Passive Compensation Passive Filtering, Harmonic – Resonance Impedance Scan Analysis- Active Power Factor Corrected Single Phase Front end, Control Methods for Single Phase APFC Three Phase APFC and Control Techniques, PFC Based on Bilateral Single Phase and Three Phase Converter.

UNIT V FACTS 9 hours

Static VAR compensators-SVC and STATCOM Active Harmonic Filtering-Shunt Injection Filter for single phase, three-phase three-wire and three-phase fourwire systems d-q domain control of three phase shunt active filters uninterruptible power supplies constant voltage transformers series active power filtering techniques for harmonic cancellation and isolation - Dynamic Voltage Restorers for sag , swell and flicker problems - Grounding and wiring

introduction - NEC grounding requirements-reasons for grounding - typical grounding and wiring problems solutions to grounding and wiring problems.

Total no. of Hours: 45

- 1. G.T. Heydt, "Electric power quality", McGraw-Hill Professional, 2007.
- 2. Math H. Bollen, "Understanding Power Quality Problems", IEEE Press, 2000.
- 3. J. Arrillaga, "Power System Quality Assessment", John wiley, 2000.
- 4. J. Arrillaga, B.C. Smith, N.R. Watson & A. R. Wood, "Power system Harmonic Analysis", Wiley, 1997.

Prerequisite: Circuit Theory, Electrical Machines, Ty Down System L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits Ty/Lb/IE: Theory/Lab/Internal Evaluation OBJECTIVE: Students will be able to 1. Understand the concepts of AI. 2. Study about fuzzy logic. 3. Ability to acquire knowledge on neural networks. 4. Gain knowledge on the identification of a system. 5. Familiar about genetic algorithm. COURSE OUTCOMES (COs): The students will be able to CO1 Comprehend the concepts of AI. CO2 Analyze the fuzzy logic and defuzzication. CO3 Write algorithms to solve problems. CO4 Identify the system and apply the fuzzy logic and neural network to solve the problem. CO5 Utilize the concept of genetic algorithm to solve problems. Mapping of Course Outcomes with Program Outcomes (POs)	Course Co	TEC	rse Title: HNIQUES	ARTIFIC	CIAL IN	FELLIGENCE	Ty/Lb/ IE	L	T/S.Lr	P/R	(
Ty/Lb/IE : Theory/Lab/Internal Évaluation	EWH 5221	Prer		ircuit Theo	ry, Electri	cal Machines	, Ty	3	0/0	0/0	3
OBJECTIVE: Students will be able to 1.					ng P : Projec	et R : Research (C: Credits	1		l	
1. Understand the concepts of AI. 2. Study about fuzzy logic. 3. Ability to acquire knowledge on neural networks. 4. Gain knowledge on the identification of a system. 5. Familiar about genetic algorithm. COURSE OUTCOMES (COs): The students will be able to CO1 Comprehend the concepts of AI. CO2 Analyze the fuzzy logic and defuzzication. CO3 Write algorithms to solve problems. CO4 Identify the system and apply the fuzzy logic and neural network to solve the problem. CO5 Utilize the concept of genetic algorithm to solve problems. Mapping of Course Outcomes with Program Outcomes (POs) Cos/Pos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO CO1 3 3 3 3 3 3 3 CO2 3 3 3 3 3 3 CO3 3 3 3 3 3 3 CO4 Total Cos PO5 PO6 PO7 PO6 CO5 Total Cos PO7 PO7 PO7 PO7 PO7 CO6 Total Cos PO7 PO7 PO7 PO7 PO7 PO7 PO7 CO6 Total Cos PO7											
2. Study about fuzzy logic. 3. Ability to acquire knowledge on neural networks. 4. Gain knowledge on the identification of a system. 5. Familiar about genetic algorithm. COURSE OUTCOMES (COs): The students will be able to CO1 Comprehend the concepts of AI. CO2 Analyze the fuzzy logic and defuzzication. CO3 Write algorithms to solve problems. CO4 Identify the system and apply the fuzzy logic and neural network to solve the problem. CO5 Utilize the concept of genetic algorithm to solve problems. Mapping of Course Outcomes with Program Outcomes (POs) COs/Pos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO CO1 3 3 3 3 3 3 3 3 CO2 3 3 3 3 3 3 3 CO3 3 2 3 2 3 CO4 PSO1 PSO2 PSO3 CO5 PSO1 PSO2 PSO3 CO6 PSO1 PSO2 PSO3 CO7 PSO3 PSO3 PSO4 PSO5 PSO5 CO7 PSO1 PSO2 PSO3 CO7 PSO3 PSO4 PSO5 PSO5 CO7 PSO5 PSO5 PSO5 CO7 PSO6 PSO7 PSO7 PSO7 CO7 PSO7 PSO7 PSO7 PSO8 CO8 PSO8 PSO7 PSO7 PSO7 CO9 PSO7 PSO7 PSO7 PSO7 PSO7 CO9 PSO7 PS											
3. Ability to acquire knowledge on neural networks. 4. Gain knowledge on the identification of a system. 5. Familiar about genetic algorithm. COURSE OUTCOMES (COs): The students will be able to CO1 Comprehend the concepts of Al. CO2 Analyze the fuzzy logic and defuzzication. CO3 Write algorithms to solve problems. CO4 Identify the system and apply the fuzzy logic and neural network to solve the problem. CO5 Utilize the concept of genetic algorithm to solve problems. Mapping of Course Outcomes with Program Outcomes (POs) COs/Pos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO CO1 3 3 3 3 3 3 1 CO2 3 3 3 3 3 3 2 CO3 3 3 3 3 3 3 3 CO4 PSO1 PSO2 PSO3 CO5 PSO1 PSO2 PSO3 CO6 PSO1 PSO2 PSO3 CO7 PSO3 PSO3 PSO3 CO7 PSO3 PSO3 PSO4 PSO5 PSO5 CO7 PSO1 PSO2 PSO3 CO7 PSO3 PSO3 PSO5 CO7 PSO3 PSO4 PSO5 PSO5 CO7 PSO5 PSO5 PSO5 CO7 PSO6 PSO7 PSO7 PSO7 CO7 PSO8 PSO7 PSO7 PSO7 CO7 PSO8 PSO8 PSO8 CO8 PSO8 PSO9 PSO9 CO9 PSO9 PSO9 PSO9 PSO9 CO9 PSO9 PSO9 PSO9 PSO9 CO9 PSO9 PSO9 PSO9 PSO9 PSO9 CO9 PSO9 PSO9 PSO9 PSO9 PSO9 PSO9 PSO9 PSO9 CO9 PSO9 PSO9				л.							
5. Familiar about genetic algorithm. COURSE OUTCOMES (COs): The students will be able to CO1 Comprehend the concepts of AI. CO2 Analyze the fuzzy logic and defuzzication. CO3 Write algorithms to solve problems. CO4 Identify the system and apply the fuzzy logic and neural network to solve the problem. CO5 Utilize the concept of genetic algorithm to solve problems. Mapping of Course Outcomes with Program Outcomes (POs) Co3/Pos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO CO1 3 3 3 3 2 CO2 3 3 3 2 CO3 3 3 3 3 CO4 3 3 3 3 CO5 PSO1 PSO2 PSO3 PSOs PSO3 PSO3 CO1 3 3 3 CO2 3 3 3 CO3 3 2 2 <tr< td=""><td></td><td></td><td></td><td>ge on neural</td><td>networks.</td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>				ge on neural	networks.						
COURSE OUTCOMES (COs): The students will be able to CO1 Comprehend the concepts of AI. CO2 Analyze the fuzzy logic and defuzzication. CO3 Write algorithms to solve problems. CO4 Identify the system and apply the fuzzy logic and neural network to solve the problem. CO5 Utilize the concept of genetic algorithm to solve problems. Mapping of Course Outcomes with Program Outcomes (POs) Cos/Pos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO CO1 3 3 3 1 CO CO PO7 PO CO2 3 3 3 3 2 CO PO7 PO CO3 3 3 3 3 2 CO PO7 PO CO4 3 3 3 3 3 3 3 CO CO PSO1 PSO2 PSO3 PSO3 PSO3 PSO4 PSO5 PSO5 PSO5 PSO5 PSO5 PSO5 PSO5 PSO5					a system.						
CO1					*11.1.1.1						
CO2					will be able	e to					
CO3		-									
CO4		_			cation.						
CO5											
Mapping of Course Outcomes with Program Outcomes (POs) Cos/Pos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO CO1 3 3 3 3 1 <		_	-				to solve the	e prob	olem.		
Cos/Pos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO CO1 3 3 3 3 1 3 3 1 3 3 1 3 3 3 3 2 3 2 3 <td>CO5</td> <td>Utilize the</td> <td>concept of g</td> <td>enetic algorit</td> <td>hm to solve</td> <td>problems.</td> <td></td> <td></td> <td></td> <td></td> <td></td>	CO5	Utilize the	concept of g	enetic algorit	hm to solve	problems.					
CO1 3 3 3 1 CO2 3 3 3 2 CO3 3 3 3 2 CO4 3 3 3 3 CO5 3 2 3 2 COs/ PSO1 PSO2 PSO3 PSOs PSO3 PSO3 CO1 3 3 3 CO2 3 3 3 CO3 3 2 2	Mapping	of Course O	utcomes wit	h Program (Outcomes (1	POs)					
CO2 3 3 3 2 CO3 3 3 3 2 CO4 3 3 3 3 CO5 3 2 3 2 3 COs/ PSOs PSO1 PSO2 PSO3 PSO3 PSO3 PSO5 PS	Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	P	07	PO8	1
CO3 3 3 3 2 CO4 3 3 3 3 3 CO5 3 2 3 2 3 COs / PSO1 PSO2 PSO3 PSO4 PSO4 PSO4 PSO5 PSO4 PSO5 PSO	CO1	3	3	3	3	1					
CO4 3 3 3 3 3 CO5 3 2 3 2 3 COs / PSOs PSO1 PSO2 PSO3 PSO3 PSOs CO1 3 3 3 3 CO2 3 3 3 3 3 CO3 3 2 2 2	CO2	3	3	3	3	2					
CO5 3 2 3 2 3 COs / PSOs PSO1 PSO2 PSO3 PSO3 PSOs CO1 3 3 3 CO2 3 3 3 CO3 3 2 2	CO3	3	3	3	3	2					
COs / PSO1 PSO2 PSO3 PSOs CO1 3 3 3 3 CO2 3 3 3 3 CO3 3 2 2	CO4	3	3	3	3	3					
PSOs	CO5	3	2	3	2	3					
CO1 3 3 3 CO2 3 3 3 CO3 3 2 2		PSO1	PSO2	PSO3							
CO2 3 3 3 3 CO3 3 2 2 2	1505										
CO3 3 2 2	CO1	3	3	3							
	CO2	3	3	3							
CO4 3 2 3	CO3	3	2	2							
	CO4	3	2	3							
CO5 3 3 3	CO5	3	3	3							

3/2/1 indica	ates Stren	gth of Cori	relation 3-	High, 2- M	edium, 1-I	∠ow			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill Component	Practical / Project
					V				

EMPS22E16 ARTIFICIAL INTELLIGENCE TECHNIQUES 3 0/0 0/0 3

UNIT I INTRODUCTION TO AI

9 hours

Biological foundations to intelligent Systems -Artificial Neural Networks, Single layer and Multilayer Feed Forward NN - LMS and Back Propagation Algorithm - Feedback networks and Radial Basis Function Networks.

UNIT II FUZZY LOGIC 9 hours

Fuzzy Logic - Knowledge Representation and Inference Mechanism - Defuzzification Methods.

UNIT III FUZZY NEURO 9 hours

Fuzzy Neural Networks - some algorithms to learn the parameters of the network like GA.

UNIT IV SYSTEM IDENTIFICATION

9 hours

System Identification using Fuzzy and Neural Network.

UNIT V GENETIC ALGORITHM

9 hours

Genetic algorithm - Reproduction cross over, mutation - Introduction to evolutionary program - Applications of above mentioned techniques to practical problems.

Total no. of Hours: 45

- 1. J M Zurada , "An Introduction to ANN", Jaico Publishing House.
- 2. Simon Haykins, "Neural Networks", Prentice Hall.
- 3. Timothy Ross, "Fuzzy Logic with Engg.Applications", McGraw. Hill.
- 4. Driankov, Dimitra, "An Introduction to Fuzzy Control", Narosa Publication.

5. Golding, "Genetic Algorithms", Addison-Wesley Publishing Company.

Course Co		rse Title: RE	STRUCTU	RED POWI	ER SYSTEM	S Ty/Lb/ IE	L	T/S.Lr	P/R	C
EWI GZZE	Prer	equisite: De	C Machines	s and Trai	nsformers, A	AC Ty	3	0/0	0/0	3
L : Lecture	T : Tutoria	l S.Lr : Super	vised Learni	ng P : Projec	ct R : Researc	h C: Credits	ı	1		
		/Internal Eva								
		ts will be abl								
1.		out restructur								
2. 3.		out the econo knowledge ab			wer system					
4.					n managemei	nt.				
						and generatio	n entit	y based on	pricing	Ţ
		ES (COs): T						~		,
CO1	Restructur	e an efficient	power system	m.						
CO2		e knowledge			ssociated with	n the power sy	stem a	and fundan	nentals o	of
CO3			s operating n	nechanism b	etween conve	entional and re	structi	ıred nower	system	
CO4					nitectural aspe		- I GOV	area power	- system	
							1	1 .	. ,.	
CO5	the power	market opera	tion.			nsmission net	work a	and general	ion enti	ty 11
		Outcomes wit			_	 		1		
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	P	O7	PO8	3
CO1	3	3	3	3	3					
CO2	3	3	3	2	3					
CO3	3	3	3	3	3					
COS	3	3	3	3	3					
CO4	3	2	2	3	3	2				
001	J		_			_				
CO5	3	3	3	3	3	2				
COs/	PSO1	PSO2	PSO3							
PSOs										
CO1	3	3	3							
CO2	3	3	3							
CO3	2	3	2							
CO4	3	3	2							

CO5	3	3	3									
3/2/1 indic	3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low											
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill Component	Practical / Project			

EMPS22E17

RESTRUCTURED POWER SYSTEMS

3 0/0 0/0 3

UNIT I RESTRUCTURED SYSTEM

9 hours

Introduction to restructuring of power industry, Reasons for restructuring of power industry, Understanding the restructuring process, Entities involved, Levels of competition, The market place mechanisms, Sector-wise major changes required; Reasons and objectives of deregulation of various power systems across the world. Developments in India -IT applications in restructured markets -Working of restructured power systems -PJM- Recent trends in Restructuring.

UNIT II FUNDAMENTALS OF ECONOMICS

9 hours

Consumer and suppliers behavior, Total utility and marginal utility, Law of diminishing marginal utility, Elasticity of demand and supply curve, Market equilibrium, Consumer and supplier surplus, Global welfare, Deadweight loss.

UNIT III THE PHILOSOPHY OF MARKET MODELS

9 hours

Monopoly model, Single buyer model, Wholesale competition model, Retail competition model, distinguishing features of electricity as a commodity, Four pillars of market design, Cournot, Bertrand and Stackelberg competition model.

UNIT IV TRANSMISSION CONGESTION MANAGEMENT

9 hours

Transfer capability, Importance of congestion management, Effects of congestion, Classification of congestion management methods, ATC, TTC,TRM, CBM,ATC calculation using DC and AC model, Nodal pricing, Locational Marginal Prices (LMPs), Implications of nodal pricing, Price area congestion management Capacity alleviation methods, Redispatching, Counter-trade, Curtailment .

UNIT V PRICING OF TRANSMISSION NETWORK USAGE AND LOSS ALLOCATION 9 hours

Introduction to transmission pricing, Principles of transmission pricing, Classification of transmission pricing, Rolled-in transmission pricing paradigm, Marginal transmission pricing paradigm, Composite pricing paradigm, Merits and

de-merits of different paradigms, Classification of loss allocation methods, Pro-rata methods, Incremental methods, Power flow tracing based allocation .

Total no. of Hours: 45

- 1. LorrinPhilipson, H. Lee Willis, "Understanding electric utilities and de-regulation", Marcel Dekker Pub.,1998.
- 2. Steven Stoft, "Power system economics: designing markets for electricity", John Wiley and Sons, 2002.
- 3. Kankar Bhattacharya, Jaap E. Daadler, Math H.J. Boolen, "Operation of restructured power systems", Kluwer Academic Pub., 2001.
- 4. Mohammad Shahidehpour, MuwaffaqAlomoush, "Restructured electrical power systems: operation, trading and volatility", Marcel Dekker.
- 5. NPTEL Cource-Restructured Power Systems, A. R. Abhyankar, S. A. Khaparde, Available: http://nptel.iitm.ac.in/courses/108101005/
- 6. Daniel Kirschen and Goran Strbac, "Fundamentals of Power System economics", John Wiley & Sons Ltd, 2004.
- 7. Sally Hunt,"Making competition work in electricity", John Wiley & Sons, Inc., 2002.

Course Code:	Course Title: POWER SYSTEM TRANSIENTS	Ty/Lb/	L	T/S.Lr	P/R	C
EMPS22E18		IE				
	Prerequisite: Basic electrical and electronics engineering ,High voltage Engineering.	Ту	3	0/0	0/0	3
L: Lecture T: 7	Cutorial S.Lr: Supervised Learning P: Project R: Research C:	Credits	•	•	•	•
Ty/Lb/IE: Theo	ry/Lab/Internal Evaluation					
OBJECTIVE: S	Students will be able to					
1 I e	arn the reasons for occurrence of transients in a nower system.					

- Learn the reasons for occurrence of transients in a power system.
- 2. Understand the change in parameters like voltage and frequency during transients.
- 3. Acquire knowledge about the lightning phenomenon and its effect on power system.

COURSE	OUTCOMES (COs): The students will be able to
CO1	Analyze the various transients that could occur in power system and their mathematical formulation.
CO2	Design various protective devices in power system for protecting equipment and personnel.
CO3	Derive mathematically the opening and closure timing of devices during overvoltage.
CO4	Model the power system for transient analysis.
CO5	Coordinate the insulation of various equipments in power system.

Mapping of Course Outcomes with Program Outcomes (POs)

Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
							_	
CO1	3	3	3	3	3			
CO2	3	3	3	3	3			
CO3	3	3	2	3	2			
CO4	3	3	3	3	3			
CO5	3	3	3	3	3	2		
COs / PSOs	PSO1	PSO2	PSO3					
CO1	3	3	3					
CO2	3	2	2					
CO3	2	2	2					
CO4	3	3	3					
CO5	3	3	3					

3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category Basic Sciences Engineering Sciences Sciences Program Core Program Electives Open Electives Interdisciplinary Skill Component Skill Component	
--	--

EMPS22E18

POWER SYSTEM TRANSIENTS

3 0/0 0/0 3

UNIT I ELECTRIC TRANSIENT

9 hours

Fundamental circuit analysis of electrical transient - Laplace Transform method of solving simple Switching transients - Damping circuits - Abnormal switching transients, Three-phase circuits and transients - Computation of power system transients.

UNIT II LIGHTNING 9 hours

Principle of digital computation – Matrix method of solution - Modal analysis - Z transform - Computation using EMTP - Lightning, switching and temporary over voltages, Lightning - Physical phenomena of lightning.

UNIT III OVERVOLTAGE 9 hours

Interaction between lightning and power system - Influence of tower footing resistance and Earth Resistance - Switching: Short line or kilometric fault -Energizing transients - closing and - re-closing of lines -line dropping, load rejection – over voltages induced by faults.

UNIT IV TRAVELLING WAVES

9 hours

Switching HVDC lineTravelling waves on transmission line -Circuits with distributed Parameters Wave Equation - Reflection, Refraction, Behaviour of Travelling waves at the line terminations - Lattice Diagrams – Attenuation and Distortion - Multi-conductor system.

UNIT V INSULATION COORDINATION

9 hours

Insulation co-ordination: Principle of insulation co-ordination in Air - Insulated substation (AIS) and Gas Insulated Substation (GIS) Coordination between insulation and protection level - Statistical approach - Protective devices - Protection of system against over voltages - lightning arresters, substation earthing.

Total no. of Hours: 45

- 1. Allan Greenwood, 'Electrical Transients in Power Systems', Wiley Inter Science, New York, 2ndEdition, 1991.
- 2. Pritindra Chowdhari, "Electromagnetic transients in Power System", John Wiley and Sons Inc., Second Edition, 2009.
- 3. C.S. Indulkar, D.P.Kothari, K. Ramalingam, "Power System Transients A statistical approach", PHI Learning Private Limited, Second Edition, 2010.

Course Co	D	ourse Title: F. EVICES	ACTS AN	D CU	STOM PO	OWER	Ty/Lb/ IE	L	T/S.Lr	P/R	С
EWH 522E	Pı	rerequisite: ngineering ,Tr		electr n and			cs Ty	3	0/0	0/0	3
		rial S.Lr : Supe		arning	P: Project	R : Research	C: Credits	1	1		
		Lab/Internal Eve lents will be ab									
1.	To lea	rn the active ar	nd reactive			rol in power s	system.				
2. 3.		lerstand the ne velop the differ				for compensat	ion.				
		MES (COs):									
COURSE CO1		knowledge ab					and Active I	Poneti	va Powar (Compone	otion
COI		es at Transmiss						Cacii	ve rower c	Compens	sauon
CO2		various Static s, PWM Invert						Cont	rolled Re	active F	Power
CO3	Develop	o analytical mo	deling skil	lls nee	eded for mo	odeling and an	alysis of sucl	h Stat	ic VAR Sy	stems.	
Mapping o	of Course	e Outcomes w	ith Progra	ım Oı	itcomes (P	Os)					
Cos/Pos	PO1	PO2	PO3		PO4	PO5	PO6	P	07	POS	3
CO1	3	3	3		3	3	3				
CO2	3	3	3		2	2	3				
CO3	3	3	2		3	2	3				
COs/	PSO1	PSO2	PSO3	3							
PSOs											
CO1	3	3	3								
CO2	3	2	3								
CO3	2	2	2								
3/2/1 indic	ates Stre	ength of Corre	lation 3- I	High,	2- Mediun	n, 1-Low					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill Component		Practical / Project	
	Basic	Engineer	Humar Social	Progr	Progr	Open	Interc	SKi		Pract	

		\checkmark		

EMPS22E19

FACTS AND CUSTOM POWER DEVICES

3 0/0 0/0 3

UNIT I REACTIVE POWER

9 hours

Reactive power flow control in Power Systems - Control of dynamic power unbalances in Power System - Power flow control - Constraints of maximum transmission line loading -Benefits of FACTS Transmission line compensation - Uncompensated line -Shunt compensation, Series compensation Phase angle control Reactive power compensation Shunt and Series compensation principles - Reactive compensation at transmission and distribution level.

UNIT II COMPENSATORS

9 hours

Static versus passive VAR compensator- Static shunt compensators: SVC and STATCOM - Operation and control of TSC, TCR and STATCOM - Compensator control - Comparison between SVC and STATCOM.

UNIT III SERIES COMPENSATION

9 hours

Static series compensation: TSSC, SSSC -Static voltage and phase angle regulators - TCVR and TCPAR Operation and Control - Applications, Static series compensation -GCSC, TSSC, TCSC and Static synchronous series compensators and their Control.

UNIT IV UPFC 9 hours

SSR and its damping Unified Power Flow Controller Circuit Arrangement, Operation and control of UPFC Basic Principle of P and Q control Independent real and reactive power flow control- Applications.

UNIT V FACTS 9 hours

Introduction to interline power flow controller - Modeling and analysis of FACTS Controllers Simulation of FACTS controllers Power quality problems in distribution systems - harmonics, loads that create harmonics modeling, harmonic propagation, series and parallel resonances mitigation of harmonics passive filters, active filtering – shunt series and hybrid and their control Voltage swells, sags, flicker, unbalance and mitigation of these problems by power line conditioners IEEE standards on power quality.

Total no. of Hours: 45

- 1. K R Padiyar, "FACTS Controllers in Power Transmission and Distribution", New Age International Publishers, 2007
- X P Zhang, C Rehtanz, B Pal, "Flexible AC Transmission Systems-Modelling and Control", SpringerVerlag, Berlin, 2006
- 3. N.G. Hingorani, L. Gyugyi, "Understanding FACTS: Concepts and Technology of Flexible ACTransmission Systems", IEEE Press Book, Standard Publishers and Distributors, Delhi, 2001.

- 4. K.S.Sureshkumar ,S.Ashok , "FACTS Controllers & Applications", E-book edition, Nalanda DigitalLibrary, NIT Calicut,2003
- 5. G T Heydt, "Power Quality", McGraw-Hill Professional, 2007
- 6. T J E Miller, "Static Reactive Power Compensation", John Wiley and Sons, New York, 1982.

Course Co	CO	urse Title: IN NTROL	DUSTRIAL	LOAD MO	DELING ANI	Ty/Lb/ IE	L	T/S.Lr	P/R	С
		erequisite: Po	wer system (operation ar	nd control	Ту	3	0/0	0/0	3
				ng P : Projec	ct R : Research	C: Credits			•	
		ab/Internal Eva ents will be abl								
		the energy den		n						
					study load dem	and industri	ally.			
		Electricity pri			•		•			
4. St	tudy Reac	tive power man	nagement in I	ndustries.						
COURSE	OUTCO	MES (COs) : T	The students	will be able	e to					
CO1	Compre	ehend and appl	y the concept	ts of load co	ontrol technique	s in industrie	es.			
CO2	Apply o	lifferent types	of industrial 1	processes an	d optimize the p	process using	g vari	ous tools.		
CO3	Determ	ine load manag	gement to red	luce demand	of electricity d	uring peak ti	me			
CO4	Analyz	e and apply di	fferent energy	y saving opp	ortunities in inc	lustries				
Mapping	of Course	Outcomes wit	th Program	Outcomes (POs)					
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO	07	PO8	}
CO1	2	3	3	3	3					
CO2	3	3	3	3	3					
CO3	3	3	3	2	2					
CO4	3	3	3	3	3					
COs/	PSO1	PSO2	PSO3							
PSOs										
CO1	3	3	3							
CO2	3	3	3							
CO3	3	3	2							
CO4	3	3	3							

3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category Basic Sciences Engineering Sciences Sciences Program Core Program Electives Open Electives Interdisciplinary Skill Component Skill Component	
--	--

EMPS22E20 INDUSTRIAL LOAD MODELING AND CONTROL 3 0/0 0/0 3

UNIT I ENERGY SCENARIO

9 hours

Electric Energy Scenario- Demand Side management – Industrial Load Management – Load Curves – Load Shaping Objectives – Methodologies – barriers – Classification of Industrial Loads Continuous and batch Processes – Load modeling.

UNIT II ELECTRICITY PRICING

9 hours

Electricity Pricing – Dynamic and spot pricing – Models – Direct Load Control – Interruptible Load Control – Bottom Up approach – Scheduling – Formulation of Load models – Optimization and Control Algorithms – Case Studies.

UNIT III REACTIVE POWER MANAGEMENT

9 hours

Reactive Power Management in Industries – Controls – Power Quality impacts – Application of Filters Energy saving in Industries.

UNIT IV COOLING AND HEATING LOADS

9 hours

Cooling and heating loads – Load profiling – Modeling Cool Storage – Types Control Strategies – Optimal Operation-Problem Formulation – Case studies.

UNIT V CONTROL STRATEGIES

9 hours

Captive power units - Operating and control strategies - Power Pooling- Operation models - Energy banking- Industrial Cogeneration - Selection of Schemes Optimal Operating Strategies - Peak load saving - Constraints Problem formulation- Case study - Integrated Load management for Industries.

Total no. of Hours: 45

- 1. C.O. Bjork " Industrial Load Management Theory, Practice and Simulations", Elsevier, the Netherlands,1989.
- 2. C.W. Gellings and S.N. Talukdar, Load management concepts. IEEE Press, New York, 1986, pp. 3-28.
- 3. Y. Manichaikul and F.C. Schweppe," Physically based Industrial load", IEEE Trans. on PAS, April 198.1
- 4. H. G. Stoll, "Least cost Electricity Utility Planning", Wiley Interscience Publication, USA, 1989.
- 5. I.J.Nagarath and D.P.Kothari, .Modern Power System Engineering., Tata McGraw Hill publishers, NewDelhi, 1995.
- 6. IEEE Bronze Book- "Recommended Practice for Energy Conservation and cost effective planning in Industrial facilities", IEEE Inc, USA.

AUDIT COURSES

1 & 2

Course Co	WF	ırse Title: l	ENGLISH	FOI	R RES	EAR(CH PA	APER	,	Ty/Lb/ IE	L	T/S.L	r I	P/R	С
		requisite: N	NIL							Ту	2	0/0	(0/0	0
	Theory/La	b/Internal E	evaluation	arnir	ng P : F	Project	R : I	Research	h C: C	redits		l			
OBJECTI 1.		nts will be a e art of wri		earch	n naner	r and t	hesis								
2.		he good qua	-						n.						
COURSE	OUTCOM	IES (COs)	: The stud	ents	will be	able	to								
CO1	Understa	nd that how	to improve	e you	r writi	ng skil	ls and	d level o	of reac	lability.					
CO2	Learn abo	out what to	write in eac	ch sec	ction.										
CO3		nd the skills													
		Outcomes v													
Cos/Pos	PO1	PO2	PO3	3	PC)4	P	O5	P	O6	PO	O7		PO8	
CO1	1	1	1		1	-		1							
CO2	1		1					1						2	
CO3								1						3	
COs / PSOs	PSO1	PSO2	PSO	3											
CO1	1		1												
CO2															
CO3	3		3												
3/2/1 indic	ates Stren	gth of Cori	relation 3-	High	ı, 2- M	lediun	n, 1-I	LOW							
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core		Program Electives		Open Electives		Interdisciplinary	Skill Component		Practical / Project		
			- -								V				

EMCC22I01 ENGLISH FOR RESEARCH PAPER WRITING 2 0/0 0/0 0

UNIT I 4 hours

Planning and Preparation, Word Order- Breaking up long sentences- Structuring Paragraphs and Sentences- Being Concise and Removing Redundancy,-Avoiding Ambiguity and Vagueness.

UNIT II 4 hours

Clarifying Who Did What, Highlighting Your Findings- Hedging and Criticising- Paraphrasing and Plagiarism-Sections of a Paper- Abstracts- Introduction.

UNIT III 8 hours

Review of the Literature- Methods- Results- Discussion- Conclusions- The Final Check- key skills are needed when writing a Title- key skills are needed when writing an Abstract- key skills are needed when writing an Introduction-skills needed when writing a Review of the Literature.

UNIT IV 4 hours

Skills are needed when writing the Methods- skills needed when writing the Results- skills are needed when writing the Discussion- skills are needed when writing the Conclusions.

UNIT V 4 hours

Useful phrases- how to ensure paper is as good as it could possibly be the first- time submission.

Total no. of Hours: 16

- 1. Goldbort R," Writing for Science", Yale University Press, 2006.
- 2. Day R," How to Write and Publish a Scientific Paper", Cambridge University Press, 2006.
- 3. Highman N,"Handbook of Writing for the Mathematical Sciences, SIAM", Highman's book, 1998.
- 4. Adrian Wallwork, "English for Writing Research Papers", Springer New York Dordrecht Heidelberg London, 2011.

Course Co	de: Cour	se Title: DIS	SASTER MA	ANAGEME	NT	Ty/Lb/ IE	L	T/S.Lr	P/R	C
EMCC22I	D2 Prer	equisite: NII				Ту	2	0/0	0/0	0
L : Lecture	T : Tutorial	S.Lr : Super	vised Learni	ng P : Project	t R : Researc	h C: Credits	1			
		/Internal Éva		2 3						
		ts will be able								
1.	Learn to d	demonstrate a	critical und	erstanding of	key concept	s in disaster ris	sk red	uction and		
		rian response								
2.	Critically	evaluate disa	ister risk red	uction and hu	ımanitarian r	esponse policy	and p	practice fro	m multi	iple
	perspectiv									
3.					nitarian resp	onse and practi	cal re	levance in	specific	:
		lisasters and o								
4.						ment approach				
5.			ming in diffe	rent countrie	s, particularl	y their home c	ountry	y or the co	untries	
	they work									
COURSE (OUTCOMI	ES(COs): T	he students	will be able	to					
CO1	Critically e	evaluate disas	ter risk redu	ction and hur	nanitarian re	sponse policy	and pi	actice fron	n multip	ole
	perspective					1 1 7	•			
									. ~	
CO2	Develop ar	n understandi	ng of standa	rds of human	itarian respo	nse and practic	al rel	evance in s	specific	
CO2		n understandi sasters and co			itarian respo	nse and practic	al rel	evance in s	specific	
CO2	types of di	sasters and co	onflict situati	ons.	•	-			specific	
	types of di Understand	sasters and co	onflict situati s and weakn	ons. esses of disas	ster manager	nse and practicent approache ountry or the co	s, pla	nning and		
CO3	types of di Understand programm	sasters and co	onflict situati s and weakn nt countries,	ons. esses of disas particularly t	ster manager heir home co	nent approache	s, pla	nning and		
CO3 Mapping o	types of di Understand programm	sasters and co d the strength ing in differen	onflict situati s and weakn nt countries,	ons. esses of disas particularly t	ster manager heir home co	nent approache	s, pla	nning and es they wo		
CO3 Mapping o	types of di Understand programm f Course O	sasters and co d the strength ing in different outcomes wit	onflict situati s and weakn nt countries, h Program (ons. esses of disas particularly t Outcomes (P	ster manager heir home co POs)	nent approache	s, pla ountri	nning and es they wo	rk in.	
CO3	types of di Understand programm f Course O	sasters and co d the strength ing in different outcomes wit	onflict situati s and weakn nt countries, h Program (ons. esses of disas particularly t Outcomes (P	ster manager heir home co	nent approache	s, pla ountri	nning and es they wo	rk in.	
CO3 Mapping o	types of di Understand programm f Course O	sasters and co d the strength ing in different outcomes wit	onflict situati s and weakn nt countries, h Program (ons. esses of disas particularly t Outcomes (P	ster manager heir home co POs)	nent approache	s, pla ountri	nning and es they wo	rk in.	
CO3 Mapping o Cos/Pos CO1	types of di Understand programm f Course O	sasters and co d the strength ing in different outcomes wit	onflict situati s and weakn nt countries, h Program (ons. esses of disas particularly t Outcomes (P	ster manager cheir home co POs) PO5	nent approache	s, pla ountri	nning and es they wo	rk in.	
CO3 Mapping o Cos/Pos CO1 CO2 CO3	types of di Understand programm f Course O PO1	sasters and co d the strength ing in different outcomes with PO2	onflict situati s and weakn nt countries, h Program (ons. esses of disas particularly t Outcomes (P	ster manager cheir home co POs) PO5 1	nent approache ountry or the co	s, pla ountri	nning and es they wo	rk in.	
CO3 Mapping o Cos/Pos CO1 CO2 CO3 COs /	types of di Understand programm f Course O	sasters and co d the strength ing in different outcomes wit	onflict situati s and weakn nt countries, h Program (ons. esses of disas particularly t Outcomes (P	ster manager cheir home co POs) PO5 1	nent approache ountry or the co	s, pla ountri	nning and es they wo	rk in.	
CO3 Mapping o Cos/Pos CO1 CO2 CO3 COs /	types of di Understand programm f Course O PO1	sasters and co d the strength ing in different outcomes with PO2	onflict situati s and weakn nt countries, h Program (ons. esses of disas particularly t Outcomes (P	ster manager cheir home co POs) PO5 1	nent approache ountry or the co	s, pla ountri	nning and es they wo	rk in.	
CO3 Mapping o Cos/Pos CO1 CO2	types of di Understand programm f Course O PO1	sasters and co d the strength ing in different outcomes with PO2	onflict situati s and weakn nt countries, h Program (ons. esses of disas particularly t Outcomes (P	ster manager cheir home co POs) PO5 1	nent approache ountry or the co	s, pla ountri	nning and es they wo	rk in.	
CO3 Mapping o Cos/Pos CO1 CO2 CO3 COs / PSOs	types of di Understand programm f Course O PO1	sasters and co d the strength ing in different outcomes with PO2	ponflict situati s and weakn nt countries, h Program PO3	ons. esses of disas particularly t Outcomes (P	ster manager cheir home co POs) PO5 1	nent approache ountry or the co	s, pla ountri	nning and es they wo	rk in.	

|--|

EMCC22I02 DISASTER MANAGEMENT 2 0/0 0/0 0

UNIT I INTRODUCTION 4 hours

Disaster: Definition, Factors And Significance- Difference Between Hazard And Disaster- Natural And Manmade Disasters: Difference- Nature- Types And Magnitude.

UNIT II REPERCUSSIONS OF DISASTERS AND HAZARDS

4 hours

Economic Damage- Loss Of Human And Animal Life- Destruction Of Ecosystem-Natural Disasters: Earthquakes-Volcanisms- Cyclones- Tsunamis- Floods- Droughts And Famines- Landslides And Avalanches- Man-made disaster: Nuclear Reactor Meltdown- Industrial Accidents- Oil Slicks And Spills-Outbreaks Of Disease And Epidemics War And Conflicts.

UNIT III DISASTER PRONE AREAS IN INDIA

4 hours

Study of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics.

UNIT IV DISASTER PREPAREDNESS AND MANAGEMENT

4 hours

Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

UNIT V RISK ASSESSMENT AND DISASTER MITIGATION

8 hours

Disaster Risk: Concept And Elements, Disaster Risk Reduction- Global And National Disaster Risk Situation-Techniques Of Risk Assessment- Global Co- Operation In Risk Assessment And Warning- People's Participation In

Risk Assessment- Strategies for Survival- Concept and Strategies of Disaster Mitigation- Emerging Trends In Mitigation- Structural Mitigation And Non-Structural Mitigation- Programs of Disaster Mitigation In India.

Total no. of Hours: 16

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.
- 2. Sahni, Pardeep Et.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.
- 3. Goel S. L., "Disaster Administration And Management Text And Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi.

Course Co	KN	rse Title: S OWLEDG		T FO	R TECH	NI CA	L		Гу/Lb/ IE	L	T/S.Lr	P/R	•
EMCC22I	03 Pre	requisite: N	VIL.						Ту	2	0/0	0/0	0
		ıl S.Lr : Sup		earnin	g P : Proje	ct R : I	Research	C: C	redits	l .	<u>I</u>		
		b/Internal E											
		nts will be a				1		1					
1. 2.		working kn g of Sanskri					ne scient	ific la	nguage	in the	world.		
		g of Sanskri					tics scie	ence &	other s	aibiec	ts enhanc	ing the	
٥.	memory			P	.0814 111 111		, 5010		001101	, a a je e			
4.		neering sch	olars equij	pped v	with Sansk	rit will	be able	to exp	olore the	e huge	knowled	ge from	
	ancient 1												
COURSE	OUTCOM	ES (COs)	The stud	ents v	will be abl	e to							
CO1	Understar	nding basic	Sanskrit la	nguag	ge.								
CO2	Ancient S	anskrit liter	ature abou	t scie	nce & tech	nology	can be	under	stood.				
CO3	Being a lo	ogical langu	age will he	elp to	develop lo	gic in s	students						
Mapping o	of Course (Outcomes v	vith Progr	am O	utcomes (POs)							
Cos/Pos	PO1	PO2	PO	3	PO4	P	O5	PC)6	P	07	PO8	3
CO1													
CO2								1					
CO3								2	;				
COs /	PSO1	PSO2	PSO	12									
PSOs	1501	1502	150										
CO1			1										
CO2													
CO3			1										
3/2/1 indic	ates Streng	gth of Corr	elation 3-	High	, 2- Mediu	ım, 1-I	LOW						
					Š					nt		+	
>	S		nd ses		Program Electives		S		ary	Skill Component		Practical / Project	
Category	Basic Sciences	స్త	Humanities and Social Sciences	Program Core	leci		Open Electives	<u>:</u>	ınterdiscipiinary		-	포 도	
ate	cie	erin ss	itie Sci	n C	1 日		lec		CID			\ 	
\mathcal{C}	c S	Engineering Sciences	nan al	ran	ran		n E	:	SID	l II		tic	
	asi	ng cie	Human Social	rog	log Tog))pe	,	<u> </u>	Š		rac	

, , , , , , , , , , , , , , , , , , ,

EMCC22I03 SANSKRIT FOR TECHNICAL KNOWLEDGE 2 0/0 0/0 0

UNIT I 8 hours

Alphabets in Sanskrit- Past/Present/Future Tense-Simple Sentences.

UNIT II 8 hours

Order- Introduction of roots- Technical information about Sanskrit Literature.

UNIT III 8 hours

Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics.

Total no. of Hours: 24

- 1. Dr. Vishwas ,"Abhyaspustakam" –, Samskrita-Bharti Publication, New Delhi.
- 2. "Teach Yourself Sanskrit" Prathama Deeksha-Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication.
- 3. Suresh Soni ,"India's Glorious Scientific Tradition", Ocean books (P) Ltd., New Delhi.

				ALUE EDUCATION					' L	T/S.Lr	P/R	С
EMCC22I04 Prerequisite: N			NIL	IL .				Ту	2	0/0	0/0	0
Ty/Lb/IE:	Theory/L	ab/Internal I	Evaluation	earnin	ıg P : P	Project 1	R : Researc	ch C: Credits				
OBJECTI 1.		ents will be a tand value o		and s	self- de	evelopn	nent.					
2.	Imbibe	good values	in students	S.								
		should know MES (COs)										
COURSE CO1					WIII DC	able						
CO2	Knowledge of self-development. Learn the importance of Human values.											
CO3		ing the over										
		Outcomes			Outcon	nes (PC	Os)					
Cos/Pos	PO1	PO2	PO		PO		PO5	PO6	P	07	PO8	
CO1											1	
CO2								1			1	
CO3								1			1	
COs / PSOs	PSO1	PSO2	PSO	3								
CO1			1									
CO2												
CO3			1									
3/2/1 indic	cates Strei	ngth of Cor	relation 3-	High	, 2- M	edium	, 1-Low					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core		Program Electives	Open Electives	Interdisciplinary	Skill Component		Practical / Project	
	щ	шо	T S	<u>a</u>		\mathbf{d}		Ţ		√	<u>L-1</u>	

EMCC22I04 VALUE EDUCATION 2 0/0 0/0 0

UNIT I 4 hours

Values and self-development –Social values and individual attitudes-Work ethics- Indian vision of humanism- Moral and non- moral valuation- Standards and principles- Value judgments.

UNIT II 6 hours

Importance of cultivation of values-Sense of duty- Devotion- Self-reliance- Confidence- Concentration- Truthfulness-Cleanliness- Honesty- Humanity- Power of faith- National Unity-Patriotism-Love for nature-Discipline.

Unit III 6 hours

Personality and Behavior Development - Soul and Scientific attitude- Positive Thinking- integrity and discipline-Punctuality- Love and Kindness- Avoid fault Thinking- Free from anger- Dignity of labour- Universal brotherhood and religious tolerance- True friendship- Happiness Vs suffering- love for truth-Aware of self-destructive habits-Association and Cooperation-Doing best for saving nature.

UNIT IV 6 hours

Character and Competence –Holy books vs Blind faith-Self-management and Good health-Science of reincarnation-Equality- Nonviolence-Humility- Role of Women- All religions and same message-Mind your Mind- Self-control-Honesty- Studying effectively.

Total no. of Hours: 22

Suggested Reading:

1 Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi.

Course Co		rse Title: CC	NSTITUTIO	Ty/Lb/ IE	L	T/S.Lr	P/R	C			
EMCC22I	05 Prer	equisite: NII		Ту	2	0/0	0/0	0			
L : Lecture	T : Tutorial	S.Lr : Super	vised Learnii	ng P : Projec	t R : Researc	h C: Credits	1		I		
		/Internal Ēva		\mathcal{E} 3							
		ts will be able									
						om from a civ					
						tuals' constitut				nt to	
						arly years of In					
				commencen	nent of the B	olshevik Revo	lution	in 1917 aı	nd its im	pact	
		f the Indian (
COURSE	OUTCOM	ES(COs): T	he students	will be able	to						
CO1	Discuss th	e growth of the	he demand fo	r civil rights	in India for	the bulk of Ind	ians t	efore the a	rrival o	f	
	Gandhi in	Indian politic	es.								
CO2					of argument	that informed	the co	nceptualiz	ation of	•	
		rms leading t									
CO3	Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the										
		leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult									
	_	the Indian C									
CO4		e passage of t									
Mapping of	of Course O	outcomes wit	h Program (Outcomes (I	POs)						
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	P)7	PO8	3	
CO1											
CO2						1					
CO3						1					
CO4											
COs /	PSO1	PSO2	PSO3								
PSOs											
CO1			1								
CO2											
CO3			1								
CO4											
			ation 3- Higl								

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill Component	Practical / Project
								$\sqrt{}$	

EMCC22I05 CONSTITUTION OF INDIA 2 0/0 0/0 0

UNIT I HISTORY OF MAKING OF THE INDIAN CONSTITUTION

4 hours

History-Drafting Committee-(Composition & Working)-Preamble-Salient Features.

UNIT II CONTOURS OF CONSTITUTIONAL RIGHTS & DUTIES

4 hours

Fundamental Rights-Right to Equality -Right to Freedom-Right against Exploitation- Right to Freedom of Religion-Cultural and Educational Rights- Right to Constitutional Remedies- Directive Principles of State Policy-Fundamental Duties.

UNIT III ORGANS OF GOVERNANCE

4 hours

Parliament- Composition- Qualifications and Disqualifications- Powers and Functions- Executive- President-Governor- Council of Ministers- Judiciary, Appointment and Transfer of Judges, Qualifications- Powers and Functions.

UNIT IV LOCAL ADMINISTRATION

4 hours

District's Administration head: Role and Importance,- Municipalities: Introduction, Mayor and role of Elected Representative,-CEO of Municipal Corporation.- Pachayati raj: Introduction, PRI: Zila Pachayat.- Elected officials and their roles, CEO Zila Pachayat: Position and role.- Block level: Organizational Hierarchy (Different departments),- Village level: Role of Elected and Appointed officials,- Importance of grass root democracy.

UNIT V ELECTION COMMISSION

4 hours

Election Commission: Role and Functioning.- Chief Election Commissioner and Election Commissioners.- State Election Commission: Role and Functioning.- Institute and Bodies for the welfare of SC/ST/OBC and women.

Total no. of Hours: 20

Suggested Reading:

1. The Constitution of India, 1950 (Bare Act), Government Publication.

- 2. Dr. S. N. Busi, "Dr. B. R. Ambedkar framing of Indian Constitution", 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, "Introduction to the Constitution of India", Lexis Nexis, 2015.

Course Co	ode: Cor	ırse Title: I	PEDAGO	GY S	TUDIE	ES				Ty/Lb/ IE	L	T/S.Lr	P/R	С
EMCC22I	106 Pre	requisite: N	VIL .							Ty	2	0/0	0/0	0
I · Lecture	T · Tutori	al S.Lr : Sup	ervised Le	arnii	nσP·P	roject	- R · 1	Research	. C· (
		b/Internal E		arm	ng i . i .	rojeci		ecsearen	ı c. c	reans				
OBJECTI		nts will be a												
1.		existing evid							amm	e design	and p	oolicy ma	king	
		ken by the D												
2. COURSE		critical evid IES (COs):		_			_		d					
CO1	What peo	lagogical pra	actices are	being	g used b	y tea	chers	in form	al an	d informa	al cla	ssrooms i	n develo	ping
CO2	What is t	he evidence		ective	eness of	these	e peda	agogical	pract	tices, in v	vhat (condition	s, and wi	th
CO3		ulation of le teacher educ		rioul	um and	proct	ioum) and the	seche	ool ourric	ulum	and qui	lanca	
COS		best suppor				pract	icuiii) and the	SCIIC	or curric	urum	and guid	iance	
Mapping		Outcomes v				es (P	Os)							
Cos/Pos	PO1	PO2	POS	3	PO	4	P	05	P	06	P	07	PO8	3
CO1														
CO2														
CO3														
COs / PSOs	PSO1	PSO2	PSO	3										
CO1														
CO2														
CO3			1											
3/2/1 indic	cates Stren	gth of Corr	elation 3-	High	h, 2- Me	ediun	n, 1-I	Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core)	Program Electives		Open Electives		Interdisciplinary	Skill Component	J	Practical / Project	

			$\sqrt{}$	

EMCC22I06 PEDAGOGY STUDIES 2 0/0 0/0

UNIT I 4 hours

Aims and rationale, Policy background, Conceptual framework and terminology Theories of learning, Curriculum, Teacher education. Conceptual framework, Research questions. Overview of methodology and Searching.

UNIT II 2 hours

Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries, Curriculum, Teacher education.

UNIT III 4 hours

Evidence on the effectiveness of pedagogical practices -Methodology for the in depth stage: quality assessment of included studies-How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy- Theory of change. Strength and nature of the body of evidence for effective pedagogical practices- Pedagogic theory and pedagogical approaches- Teachers' attitudes and beliefs and Pedagogic strategies.

UNIT IV 4 hours

Professional development: alignment with classroom practices and followup Support -Peer support Support from the head teacher and the community- Curriculum and assessment Barriers to learning: limited resources and large class sizes.

UNIT V 2 hours

Research design -Contexts Pedagogy- Teacher education - Curriculum and assessment - Dissemination and research impact.

Total no. of Hours: 16

- 1. Ackers J, Hardman F," Classroom interaction in Kenyan primary schools, Compare"2001, 31 (2):245-261.
- 2. Agrawal M ,"Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies",2004, 36 (3): 361-379.
- 3. Akyeampong K, "Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID" 2003.
- 4. Akyeampong K, Lussier K, Pryor J, Westbrook J, "Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development", 2013, 33 (3): 272–282.
- 5. Alexander RJ, "Culture and pedagogy: International comparisons in primary education",2001.. Oxford and Boston: Blackwell.
- 6. Chavan M," Read India: A mass scale, rapid, 'learning to read' campaign",2003.

 $7.\ www.pratham.org/images/resource \%\,20 working \%\,20 paper \%\,202.pdf.$

Course Code:	Cour	se Title: ST	RESS MAN	AGEMENT	BY YOGA	Ty/Lb/ IE	L	T/S.Lr	P/R	С
EMCC22I07	Prer	equisite: NII				Ту	2	0/0	0/0	0
L : Lecture T :				ng P : Projec	t R : Research	C: Credits	1			<u>I</u>
Ty/Lb/IE : The OBJECTIVE:										
		ts will be able e Basic Conc		1						
		ge on Ashtan		ι.						
		ledge of Tecl		Practice of V	⁷ Ogasanas					
_		ress and the c	_	ructice or i	ogusunus.					
		wledge abou		ng through v	oga.					
COURSE OU										
		and the Basic								
	ain kno	wledge on As	shtanga yoga	ι.						
CO3	To Unde	rstand stress	and the caus	es.						
CO4	cquire k	knowledge of	Techniques	and Practice	of Yogasanas	3.				
CO5 A	ttain the	e knowledge	about stress	busting throu	ıgh yoga.					
Mapping of C	ourse O	utcomes wit	h Program (Outcomes (1	POs)					
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO	07	PO8	3
CO1										
CO2										
CO3										
CO4										
CO5						1			1	
	PSO1	PSO2	PSO3							
PSOs										
CO1										
CO2										
CO3										
CO4										
CO5										

3/2/1 indic	ates Stren	gth of Cori	relation 3-	High, 2- M	ledium, 1-I	LOW			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Interdisciplinary	Skill Component	Practical / Project
								$\sqrt{}$	

EMCC22I07 STRESS MANAGEMENT BY YOGA 2 0/0 0/0 0

UNIT I 8 hours

Definitions of Eight parts of yoga(Ashtanga).

UNIT II 8 hours

Yam and Niyam-Do's and Don't's in life-Ahinsa, satya, astheya, bramhacharya and aparigraha- Shaucha, santosh, tapa, swadhyay, ishwarpranidhan.

UNIT III 8 hours

Asan and Pranayam-i) Various yog poses and their benefits for mind & body-ii)Regularization of breathing techniques and its effects-Types of pranayam.

Total no. of Hours: 24

- 1. Janardan Swami Yogabhyasi Mandal ,"Yogic Asanas for Group Tarining-Part-I", Nagpur.
- 2. Swami Vivekananda, "Rajayoga or conquering the Internal Nature", Advaita Ashrama, (Publication Department), Kolkata.

Course Co	TH	urse Title: I ROUGH L						Ty/Lb/ IE	L	T/S.Lı	r P/R	С
EMCC22I	Pre	requisite: I	NIL					Ту	2	0/0	0/0	0
Ty/Lb/IE:	Theory/La	al S.Lr : Suj ab/Internal E	Evaluation	arning I	P : Projec	t R : I	Research	C: Credits				
		nts will be a		.1 1	1							
		achieve the				onalit	v and det	ermination.				
		wisdom in s		iia, pieu	ising per	onan	y and act	or mination.				
COURSE	OUTCOM	IES (COs)	: The stud	ents wil	l be able	to						
CO1	highest g	oal in life						eloping his pe				ne
CO2	The person	on who has	studied Gee	eta will l	lead the r	nation	and man	kind to peace	and	prosperit	y.	
CO3	Study of	Neetishatak	am will hel	lp in dev	veloping	versat	ile persor	ality of stude	ents.			
Mapping o	of Course	Outcomes v	with Progr	am Out	tcomes (1	POs)						
Cos/Pos	PO1	PO2	PO3	3	PO4	P	O5	PO6	PO	D7	PO8	
CO1												
CO2												
CO3											1	
COs / PSOs	PSO1	PSO2	PSO	3								
CO1												
CO2												
CO3												
3/2/1 indic	ates Stren	gth of Cori	relation 3-	High, 2	- Mediu	m, 1-I	Low			•		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives		Open Electives	Interdisciplinary	Skill Component		Practical / Project	
										√		

EMCC22I08 PERSONALITY DEVELOPMENT THROUGH LIFE 2 0/0 0 ENLIGHTENMENT SKILLS

UNIT I 8 hours

Neetisatakam-Holistic development of personality -Verses- 19,20,21,22 (wisdom)-Verses- 29,31,32 (pride & heroism)-Verses- 26,28,63,65 (virtue)-Verses- 52,53,59 (dont's)- Verses- 71,73,75,78 (do's).

UNIT II 8 hours

Approach to day to day work and duties-Shrimad Bhagwad Geeta: Chapter 2-Verses 41, 47,48,- Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17,23, 35,-Chapter 18-Verses 45, 46, 48.

UNIT III 8 hours

Statements of basic knowledge-Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68- Chapter 12 -Verses 13, 14, 15, 16,17, 18- Personality of Role model. Shrimad Bhagwad Geeta:-Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Chapter 4-Verses 18, 38,39-Chapter18 – Verses 37,38,63.

Total no. of Hours: 24

- 1. Swami Swarupananda, "Srimad Bhagavad Gita", Advaita Ashram (Publication Department), Kolkata.
- 2. P.Gopinath ,Bhartrihari's Three Satakam (Niti-sringar-vairagya) ", Rashtriya Sanskrit Sansthanam, New Delhi.

	t Code:	Subject Name: RESEARCH AND PUBLICATION	Ty/Lb/	L	T/S.Lr	P/R	C
EMCC:	22109	ETHICS	IE				
		Prerequisite: Core subjects	Ту	2	0/0	0/0	0
Т/L/: Т	Theory/Lab I	L: Lecture T: Tutorial P: Practical/Project R: Research C	C: Credit	s T/I	Theory/La	ab	
OBJEC	CTIVE:						
1.	To understa	and the philosophy of science and ethics, research integrity a	and publ	icatio	on ethics.		
2.	To identify	research misconduct and predatory publications.					
3.	To understa	and indexing and citation databases, open access publication	s, resear	ch m	etrics (citat	ions, h	-
	index, impa	act Factor, etc.).					
COUR	SE OUTCO	OMES (COs): By doing this course students will					
CO1	Understand	the ethical issues related to Research and Publication					
CO2	Get to know	w about different types of plagiarism and ways for avoiding	plagiari	sm			
CO3	Know about	t best practices and guidelines in publication ethics and also	learns t	o avo	oid Publicat	ion	
CO4		w about Violation of publication ethics, authorship and contractory publishers and journals.	ributor s	hip a	nd get to id	entify	

Mapping of COs/POs		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	DO11	PO12
COS/POS	POI	POZ	PO3	PU4	PU5	PO	PO/	PU	P09	POIU	POII	PO12
CO1	2	3	3	3	3	2	3	3	2	3	2	3
CO2	2	3	3	3	3	2	3	3	2	3	2	3
CO3	2	3	3	3	3	2	3	3	2	3	2	3
CO4	2	3	3	3	3	3	3	3	3	3	3	3
CO5	2	3	3	3	3	2	3	3	2	3	2	3
COs / PSO	s]	PSO1	PS	O2		PSO3						
CO1	2		3			3						
CO2	2		3		l l	3						
CO3	2		3	3		3						
CO4	2		3			3						
CO5	2		3			3						
1/2/3 indica	ites Str	ength of	Correlati	on 3- H	igh, 2-	Medium	, 1-Lov	v	•			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core		Program Electives	Open Electives		Interdisciplinary	Skill Component		Practical / Project

EMCC22I09

RESEARCH AND PUBLICATION ETHICS

2 0/0 0/0 0

UNIT I: INTRODUCTION

Introduction to philosophy: Definition, nature and scope, concept, branches - Ethics: Definition, moralphilosophy, nature of moral judgments and reactions – Ethics with respect to Science and Research Intellectual honesty and research integrity.

UNIT II: SCIENTIFIC CONDUCT

Scientific misconducts: Falsification, Fabrication, and Plagiarism (FFP), Redundant Publications: Duplicate and over lapping publications, salami slicing – Selective reportingand misrepresentation of data.

UNIT III: PUBLICATION ETHICS -I

Publication ethics: Definition, introduction and importance – Best practices/standards setting initiatives and guidelines: COPE, WAME etc. Publication misconduct: definition, Concept, problems that lead to unethical behavior and vice-versa, types.

UNIT IV: PUBLICATION ETHICS - II

Violation of publication ethics, authorship and contributor ship – Identification of publication misconduct, complaints and appeals – Predatory publishers and journals – Subject specific ethical issues, Complaints and appeals: examples and fraud from India and Abroad.

UNIT V: DATA BASES AND RESEARCH METRICS

Open Access publication and Initiatives – Indexing databases – Citation databases, Web of Science, Scopus, etc. – Impact factor of journals as per Journal Citation report .SNIP, SJR, IPP, Cite Score - Metrics: hindex,gindex,i10index,altmetrics – Conflict of interest.

- 1. Bird A, "Philosophy of Science", Routledge, 2006.
- 2. MacIntyre ,Alasdair, "A Short History of Ethics", London, 1967.
- 3. Chaddah, P, "Ethics in Competitive Research: Do not get scooped; do not get plagiarized", 2018, ISBN: 9789387480865.
- 4. On Being a Scientist: A Guide to Responsible Conduct in Research, National Academy of Sciences, National Academy of Engineering and Institute of Medicine, 2009,3rd edition, National Academies Press.
- 5. Resnik, D. B,"What is ethics in research & why is it important"2011, National Institute of Environmental Health Sciences,pp.1—10. https://www.niehs.nih.gov/research/reso_uuces/bioethics/whatis/index.cfm
- 6. Bcall, J 2012, Predatory publishers are corrupting open access, Nature, Vol. 489, no.7415,pp. 179—179. https://d0i.org/IO.1 03 8/48917%.
- 7. Ethics in Science Education, Indian National Science Academy (INSA), Research and Governance, 2019, ISBN: 978-81-939482-1-7. http://www.insaindia.rcs.Wpdf/Ethics_Book.pdf.