

F/CDD/004 Rev.00.dt.20.03.2020

FACULTY OF ENGINEERING AND TECHNOLOGY

OUTCOME BASED EDUCATION

Curriculum and Syllabus

B.Tech (Mechanical Engineering) (Full Time)

2022

DEPARTMENT OF MECHANICAL ENGINEERING B.Tech Mechanical Engineering - 2022 Regulation

VISION AND MISSION

Department

Vision:

To educate, nurture and motivate the upcoming Engineering professionals with moral and ethical values to become a committed punctilious Engineers to the Nation.

Mission:

M1: Providing quality education through well structured curricula supplemented with practical training, guest lectures by eminent professionals, field visits to leading industries and also in-plant training.

M2: Enhancing skills through faculty development programmes.

M3: Providing ambience for innovative projects and extra-curricular activities

M4: Equipping the department with contemporary infra-structure and the state of art R&D centre to cater to the needs of research scholars and industries

M5: Providing training to students in emerging areas like robotics and CAD/CAM.

M6: Nurturing students having creative ideas to adopt innovative projects which can be subsequently commercialized.

PROGRAMME EDUCATIONAL OBJECTIVES (PEO's)

- PEO1: Graduates will learn and utilize the basics of science and engineering knowledge to excel in their Industrial, Academic, Research and entrepreneurship career.
- PEO2: Graduates will contribute to the society as technically educated, ethical and responsible citizens with proven expertise.
- PEO3: Graduates will fulfil their goals with thrive to pursue lifelong learning with creativity and innovation.

PROGRAM OUTCOMES

Engineering Graduates will be able to:

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6:The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Programme Specific Outcomes

- **PSO1**: Students will have knowledge of Mechanics of Fluids, Thermal Energy and their applications.
- **PSO2**: Students will learn to design Mechanisms and Mechanical Components.
- **PSO3:** Students will learn the various concepts of Manufacturing in Industrial scenario.
- **PSO4:** Students will be exposed to multi disciplinary subjects in Engineering field.

Table1: Components of Curriculum and Credit distribution for E&T Programmes

Course	Description				Credit	Contact
Component		No of			Weight age	hours
		Courses	Credits	Total	(%)	
Basic Science	Theory	6	22	28	17	240
Dusie Science	Lab	0		20	17	90
	ETL	2	6			120
Engineering Science	Theory	0		03	1.8	60
Engineering Science	Lab	0		05	1.0	00
	ETL	1	3			
Humanities and	Theory	3	3	10	6.0	90
Social Science	Lab	1	1	10	0.0	30
	ETL	0	0			
Program Core	Theory	15	53	71	42.8	720
	Lab	9	09			405
	ETL	3	09			180
Program Electives		5	15	15	9.0	225
Open Elective	Theory	2	6	07	4.2	90
	Lab	1	1			45
Inter-disciplinary	Theory	3	9	14	8.4	90
	Lab	2	2			90
	ETL	4	3			150
Skill Component		05	05	05	3.0	150
Online course	Theory	1	1	1	0.6	15
Internship/		1	1			15
Project / Orientation		2	10	12	7.2	90
to Entre& Project		1	1			30
						1.5
Others if any	The Indian	1	0	0		15
	Constitution/E					
	nvironmental					
	TOTAL	<u> </u>	166	166	1000/	2040
	IUIAL	60	100	100	100%	2940

Note:

Basic Science: Mathematics, Physics and Chemistry.

Engineering Science: Engineering Graphics, Basics of Mechanical and Civil Engineering, Basics of Electrical and Electronics Engineering, C Programming and MS office tools, Python Programming

Humanities and Social sciences:

English, Foreign language, Environmental Studies, Management, Entrepreneurship, Indian Constitution and Indian Traditional Knowledge, Universal Human Values.

Skill Component:

Technical Skill, Soft Skill, internship.

Note:

Following categories should be available in the mapping page of each subject

B.Tech Mechanical Engineering - 2022 Regulation

Table 2: Revision/modification done in syllabus content:

S.	Course	Course	Concept/	Concept/topic added in the	% of
No	(Subject)	(Subject)	topic if any, removed	new curriculum	Revision /
	Code	Name	in current Curriculum		Modificat
					ion done
1.			Unit-IV- Cetane and	Unit-IV- Stages of combustion in	
			Octane numbers of fuels,	IC engines- Knocking and	
	EBME22007		Combustion Knocking	Detonation- factors affecting	20%
	LDML22007		and Detonation	knocking_ignition delay_factors	2070
		Thormal	Securating Value and	affecting ignition delay	
			Scavenging, valve and	affecting fightion delay-	
		Engineering	port timing diagrams, Fuel	Supercharging and turbo charging-	
			supply, Ignition, Cooling	various types of loading devices.	
			and Lubrication System		
			Performance & Testing-		
			Heat balance calculations.		
2.	EBME22ET1	Engineering	Unit –I & Unit-II	Unit-I& Unit-II Combined- legal	
		Metrology	Combined	metrology- Calibration -	
				Interchangeability and selective	
				assembly	
				internal and External screw threads-	
			Unit-III changed as Unit-	Measurements of various elements	
			11: Form measurement	of thread, Best size wire - Two and	
				three wire method.	
				Gears - Constant chord method -	
				Base tangent method.	
				definitions	
				- Measurement of Surface Texture -	40%
				Methods - Evaluation of Surface	
				finish.	
			Unit-V: Measurement of	UNIT V: MEASUREMENT OF	
			Power, Flow and	POWER, FLOW AND	
			Temperature- Introduced	TEMPERATURE	
			as new Unit	Force, torque, power :-mechanical,	
				pneumatic, hydraulic and electrical	
				type-Flow measurement: Venturi,	
				Tomporatura: himatallia strip	
				pressure thermometers	
				thermocouples. electrical	
				resistance thermister.	
3	EBME22010	Design of	Unit-I Content expanded.	The following topics are newly	
		Machine		included	
		Elements-I		UNIT- I: Design for Variable	
				loading -Gerber line, Goodman's	
				line, and Soderberg's Line	
				Unit-II: Keys- different types of	50%
				keys- Design of Keys, keyways,	
				tailures of keys	
1		1		Unit-III: Functions of springs-	

				applications- spring materials- Belleville springs (disc) and torsion Spring Unit-IV: Threaded fasteners- stress in screwed threads, Bolted joints including eccentric loading- Welded Joints -merits and demerits of welded joints, Types of welded Joints, Weld symbols, Strength of parallel and fillet weld, strength of a welded joint, eccentrically loaded Welded joints. Unit-V: Lubrication in journal bearings - Types of fly wheels- Design of flywheels involving stresses in rim and arm	
4	EBME22ET2	Manufacturing Technology-II	UNIT- V: POWDER METALLURGY AND PRECISION ENGINEERING Powder metallurgy – production of metal powders, compaction, sintering, selective laser sintering, finishing of sintered parts. Precision machining and micro machining – diamond turning of parts to nanometer accuracy, stereo microlithography, machining of micronized components	UNIT- V: SMART MANUFACTURING Industry 4.0, Cyber Physical system, IoT and Cloud computing for manufacturing, Digital manufacturing, Additive manufacturing, Sustainable manufacturing, advanced simulation, Augmented reality <u>Lab Components</u> Additive manufacturing: Simple components design, slicing and fabrication using FDM machine	20%
5	EBME22011	Heat and Mass Transfer		Unit-IV: Heat exchangers- Classifications, parallel, counter and cross flow- Fouling factors- LMTD and NTU methods Unit-V: Basic Concepts Equimolar counter diffusion – isothermal evaporation. Convective Mass Transfer Sherwood number, Schmidt number, Stanton number- mass transfer coefficients- Laminar, turbulent and Laminar-turbulent conditions.	20%
6	EBME22013	Design of Machine Elements-II	Uint-V: DESIGN OF SIMPLE MECHANISMS Design of Ratchet and pawl mechanism, Geneva mechanism.	The following topics are newly included UNIT II: Tooth stresses –Dynamic effects-Fatigue strength-Factor of Safety-Gear materials- Equivalent number of teeth – Forces for helical gears. UNIT- V: CLUTCHES AND	30%

ech Mechanicai Engineering - 2022 Regulation

10 EBCS22IDX Microprocessor Architecture and Embedded Programming New course has been introduced Programming 100% 8 EBMA22008 Mathematics- Interfigance and Statistics) New course has been introduced Programming 100% 9 EBCS22IDX Artificial Intelligence and Machine Learning New course has been introduced 100% 10 EBCS22IDX Artificial Intelligence and Machine Learning New course has been introduced 100% 11 EBME22ET3 Artificial Machine New course has been introduced 100% 11 EBME22ET3 Virtual and Achine Learning Lab New course has been introduced 100% 12 EBME22ET3 Virtual and Acanceal to Reality UNIT Included in UNIT IV Flexible fuel vehicles- nordications-merits and demerits 20% 13 EBME22E03 Automobile Engineering Electric course has been introduced New Elective course has been introduced 100% 14 EBME22E15 Design Thinking and Innovation New Elective course has been introduced Shifted from programme Elective					BRAKES	
10 EBCS22IDX Microprocessor Architecture and Embedded Programming New course has been introduced Programming 100% 8 EBMA22008 Mathematics- IV (Probability and Statistics) New course has been introduced Programming 100% 9 EBCS22IDX Artificial Intelligence and Machine Learning New course has been introduced Intelligence and Machine 100% 10 EBCS22IDX Artificial Intelligence and Machine New course has been introduced Intelligence 100% 11 EBME22ET3 Virual and Augmented Reality New course has been introduced Introduced 100% 12 EBME22ED1 (ELECTIVE) Advanced IC Engines UNIT Included in UNIT 10 13 EBME22ED3 Fleetric and Hybrid vehicles UNIT V: RECENT TRENDS New Elective course has been introduced 20% 14 EBME22ED15 Adviewed Shifted from programme Core to programme Elective Shifted from programme Elective New Elective course has been introduced					Design of plate clutches -Cone	
Image: Section of the section of t					clutches – Centrifugal clutches-	
and Block brakes - External shoe brakes - Internal expanding shoe 7 EBEC22IDX Architecture and Embedded Programming Microprocessor Architecture and Embedded Programming New course has been introduced 8 EBMA22008 Mathematics- IV (Probability and Statistics) New course has been introduced 100% 9 EBCS22IDX Artificial Intelligence and Machine Learning New course has been introduced 100% 10 EBCS22IDX Artificial Intelligence and Machine Learning New course has been introduced 100% 11 EBME22ET3 Virual and Augmented Reality New course has been introduced 100% 11 EBME22ET3 Advanced IC Engines UNIT New course has been introduced 100% 12 EBME22E01 Advanced IC Engines UNIT V: RECENT 20% 13 EBME22E03 Automobile Engineering UNIT V: Recells-types- construction and working. New Elective course has been introduced 14 EBME22E15 Design Thinking and Innovation Shifted from programme core to programme Elective New Elective course has been introduced In					Electromagnetic clutches. Band	
1 EBEC22IDX Microprocessor Architecture and Embedded Programming New course has been introduced 8 EBMA22008 Mathematics- IV (Probability and Statistics) New course has been introduced 100% 9 EBCS22IDX Artificial Intelligence and Machine Learning New course has been introduced 100% 10 EBCS22IDX Artificial Intelligence and Machine New course has been introduced 100% 11 EBME22ET3 Virtual and Augmented Reality New course has been introduced 100% 12 EBME22ET3 Virtual and Augmented Reality New course has been introduced 100% 12 EBME22EO1 Advanced IC Engines UNIT IV: INIT Included in UNIT IV ALTERNATIVE FUELS Included in UNIT IV Flexible fuel vehicles- nodifications-merits and demerits 20% 13 EBME22E02 Electric and Hybrid vehicles New Elective course has been introduced New Elective course has been introduced 14 EBME22E03 Automobile Engineering Shifted from programme core to programme elective New Elective course has been introduced					and Block brakes. External shoe	
Total States Internal expanding since 7 EBEC22IDX Microprocessor Architecture and Embedded Programming New course has been introduced 8 EBMA22008 Mathematics- IV (Probability and Statistics) New course has been introduced 9 EBCS22IDX Artificial Intelligence and Machine Learning New course has been introduced 100% 10 EBCS22ILX Artificial Intelligence and Machine New course has been introduced 100% 11 EBME22ED1 Artificial Reality New course has been introduced 100% 11 EBME22ED1 Advanced IC Reality UNIT New course has been introduced 100% 12 EBME22ED1 Advanced IC Eggines UNIT V: Included in UNIT IV Flexible fuel vehicles- modifications-merits and demerits 20% 13 EBME22E02 Electric and Hybrid vehicles New Elective course has been introduced 20% 14 EBME22E15 Design Thinking and Innovation Shifted from programme core to programme Elective course has been introduced New Elective course has been introduced					hulter Internal expanding shoe	
7 EBEC22IDX Microprocessor Architecture and Embedded Programming New course has been introduced New course has been introduced 8 EBMA22008 Mathematics- IV (Probability and Statistics) New course has been introduced 100% 9 EBCS22IDX Artificial Intelligence and Machine Learning New course has been introduced 100% 10 EBCS22ILX Artificial Intelligence and Machine Learning New course has been introduced 100% 11 EBME22E13 Artificial Machine New course has been introduced 100% 11 EBME22E01 Artificial Intelligence and Machine New course has been introduced 100% 12 EBME22E01 Advanced IC (ELECTIVE) UNIT IV: Included in UNIT IV Flexible fuel vehicles- modifications-merits and demerits 20% 13 EBME22E02 Electric and Hybrid vehicles New Elective course has been introduced New Elective course has been introduced 14 EBME22E15 Design Thinking and Innovation Shifted from programme Elective New Elective course has been introduced New Elective course has been introduced					brakes – internai expanding shoe	
7 EBEC22IDX Microprocessor Architecture and Embedded Programming New course has been introduced 8 EBMA22008 Mathematics- IV (Probability and Statistics) New course has been introduced 100% 9 EBCS22IDX Artificial Intelligence and Machine Learning New course has been introduced 100% 10 EBCS22ILX Artificial Intelligence and Machine New course has been introduced 100% 11 EBME22ET3 Virtual and Agumented Reality New course has been introduced 100% 12 EBME22ET3 Virtual and Agumented Reality UNIT Included in UNIT IV Flexible fuel vehicles- modifications-merits and demerits 20% 13 EBME22E02 Electric and Hybrid vehicles Electric and Hybrid vehicles New Elective course has been introduced New course has been introduced 14 EBME22E15 Design Thinking and Innovation Shifted from programme Elective Shifted from programme Elective course has been introduced New Elective course has been introduced					brake.	
Architecture and Embedded Programming 100% 8 EBMA22008 Mathematics- IV (Probability and Statistics) New course has been introduced 100% 9 EBCS22IDX Artificial Intelligence and Machine Learning New course has been introduced 100% 10 EBCS22ILX Artificial Intelligence and Machine Learning Lab New course has been introduced 100% 11 EBME22ET3 Virtual and Augmented Reality New course has been introduced 100% 12 EBME22E01 Advanced IC (ELECTIVE) UNIT IV: Reality Included in UNIT IV ALTERNATIVE FUELS Included in UNIT IV Flexible fuel vehicles- - series, parallel and series, parallel configuration – Design – Drive train, sizing of components. Fuel cells-types- construction and working. 13 EBME22E02 Electric and Hybrid vehicles New Elective course has been introduced New Elective course has been introduced 14 EBME22E05 Automobile Engineering and Innovation Shifted from programme core to programme Elective Shifted from programme core to programme Elective 15 EBME22E15 Design Thinking and Innovation New Elective course has been introduced New Elective course has been introduced	7	EBEC22IDX	Microprocessor		New course has been introduced	
and Embedded Programming 100% 8 EBMA22008 Mathematics- IV (Probability and Statistics) New course has been introduced 9 EBCS22IDX Artificial Intelligence and Machine Learning New course has been introduced 10 EBCS22ILX Artificial Intelligence and Machine Learning New course has been introduced 11 EBME22ET3 Virtual and Augmented Reality New course has been introduced 11 EBME22ET3 Virtual and Augmented Reality New course has been introduced 100% 12 EBME22E01 Advanced IC (ELECTIVE) UNIT Intelligence and Machine New course has been introduced 100% 13 EBME22E02 Electric and Hybrid vehicles UNIT V: RECENT TRENDS New Elective course has been introduced 20% 13 EBME22E03 Automobile Engineering New Elective course has been introduced New Elective course has been introduced 14 EBME22E105 Automobile Engineering Shifted from programme Elective Shifted from programme Elective			Architecture			
Image: second statistics Programming Image: second statistics New course has been introduced 100% 9 EBCS22IDX Artificial Intelligence and Machine Learning New course has been introduced 100% 10 EBCS22ILX Artificial Intelligence and Machine Learning New course has been introduced 100% 11 EBME22ET3 Virtual and Achine Learning Lab New course has been introduced 100% 11 EBME22ET3 Virtual and Achine Learning Lab New course has been introduced 100% 12 EBME22E01 Advanced IC UNIT Included in UNIT IV 20% 12 EBME22E01 Advanced IC UNIT Included in UNIT IV 20% 13 EBME22E02 Electric and Hybrid vehicles New Elective course has been introduced 20% 14 EBME22E03 Automobile Engineering New Elective course has been introduced 100% 14 EBME22E02 Electric and Hybrid vehicles New Elective course has been introduced 10% 15 EBME22E15 Design Thinking and Innovation New Elective course has been introduced 10%			and Embedded			100%
8 EBMA22008 Mathematics- IV (Probability and Statistics) New course has been introduced 100% 9 EBCS22IDX Artificial Intelligence and Machine Learning New course has been introduced 100% 10 EBCS22ILX Artificial Intelligence and Machine Learning Lab New course has been introduced 100% 11 EBCS22ILX Artificial Intelligence and Machine Learning Lab New course has been introduced 100% 11 EBME22ET3 Virtual and Augmented Reality New course has been introduced 100% 12 EBME22E01 Advanced IC (ELECTIVE) UNIT IV: Engines Included in UNIT IV ALTERNATIVE FUELS Included in UNIT IV Flexible fuel vehicles- modifications-merits and demerits 20% 13 EBME22E02 Electric and Hybrid vehicles New Elective course has been introduced New Elective course has been introduced 14 EBME22E03 Automobile Engineering Shifted from programme core to programme Elective New Elective course has been introduced 15 EBME22E15 Design Thinking and Innovation New Elective course has been introduced New Elective			Programming			
1 IV (Probability and Statistics) 100% 9 EBCS22IDX Artificial Intelligence and Machine Learning New course has been introduced 100% 10 EBCS22ILX Artificial Intelligence and Machine Learning Lab New course has been introduced 100% 11 EBME22ET3 Virtual and Augmented Reality New course has been introduced 100% 12 EBME22E01 Advanced IC Engines UNIT New course has been introduced 100% 12 EBME22E01 Advanced IC Reality UNIT Included in UNIT IV Flexible fuel vehicles- modifications-merits and demerits 20% 13 EBME22E02 Electric and Hybrid vehicles New Elective course has been introduced New Elective course has been introduced 14 EBME22E15 Design Thinking and Innovation Shifted from programme core to programme Elective Shifted from programme core to programme elective New Elective course has been introduced	8	EBMA22008	Mathematics-		New course has been introduced	
9 EBCS22IDX Artificial Intelligence and Machine Learning New course has been introduced 100% 10 EBCS22ILX Artificial Intelligence and Machine Learning New course has been introduced 100% 11 EBCS22ILX Artificial Intelligence and Machine Learning Lab New course has been introduced 100% 11 EBME22E03 Virtual and Augmented Reality New course has been introduced 100% 12 EBME22E01 Advanced IC Engines UNIT IV: ALTERNATIVE FUELS Included in UNIT 20% 13 EBME22E02 Electric and Hybrid vehicles UNIT V: RENDS New Elective course has been introduced 20% 14 EBME22E03 Automobile Engineering Electric and Hybrid vehicles Shifted from programme core to programme Elective Shifted from programme core to programme Elective New Elective course has been introduced	U		IV (Probability			100%
9 EBCS22IDX Artificial Intelligence and Machine Learning New course has been introduced 100% 10 EBCS22ILX Artificial Intelligence and Machine Learning Lab New course has been introduced 100% 11 EBME22ET3 Virtual and Augmented Reality New course has been introduced 100% 12 EBME22E01 (ELECTIVE) Advanced IC Engines UNIT IV: ALTERNATIVE FUELS Included in UNIT IV Flexible fuel vehicles- modifications-merits and demerits 20% 13 EBME22E02 Electric and Hybrid vehicles New Elective course has been introduced 20% 14 EBME22E03 Automobile Engineering Shifted from programme core to programme Elective Shifted from programme core to programme Elective Shifted from programme core to programme Elective			and Statistics)			10070
9 EBCS22IDX Artrictal Intelligence and Machine Learning New course has been introduced 100% 10 EBCS22ILX Artificial Intelligence and Machine Learning Lab New course has been introduced 100% 11 EBME22ET3 Virtual and Augmented Reality New course has been introduced 100% 12 EBME22E01 Advanced IC (ELECTIVE) UNIT Included in UNIT IV Engines Included in UNIT IV ALTERNATIVE FUELS Flexible fuel vehicles- modifications-merits and demerits 20% 13 EBME22E02 Electric and Hybrid vehicles New Elective course has been introduced New Elective course has been introduced 14 EBME22E15 Design Thinking and Innovation Shifted from programme core to programme Elective Shifted from programme core to programme Elective	0	EDCCOMINY			Norman and the base in the days of	
10 EBCS22ILX Artificial Intelligence and Machine Learning New course has been introduced 100% 10 EBCS22ILX Artificial Intelligence and Machine Learning Lab New course has been introduced 100% 11 EBME22ET3 Virtual and Augmented Reality New course has been introduced 100% 12 EBME22E01 Advanced IC Engines UNIT Included in UNIT 10 12 EBME22E01 Advanced IC Engines UNIT V: RECENT Flexible fuel vehicles- modifications-merits and demerits 20% 13 EBME22E02 Electric and Hybrid vehicles New Elective course has been introduced New Elective course has been introduced 14 EBME22E15 Design Thinking and Innovation New Elective course has been introduced New Elective course has been introduced	9	EBCS22IDX	Artificial		New course has been introduced	1000/
10 EBCS22ILX Artificial Intelligence and Machine Learning Lab New course has been introduced 100% 11 EBME22ET3 Virtual and Augmented Reality New course has been introduced 100% 12 EBME22E01 Advanced IC Engines UNIT IV: ALTERNATIVE FUELS Included in UNIT IV Flexible fuel vehicles- modifications-merits and demerits 20% 11 EBME22E01 Advanced IC Engines UNIT V: RECENT Included in UNIT IV Flexible fuel vehicles- rostrics, parallel and series, parallel configuration – Design – Drive train, sizing of components. Fuel cells-types- construction and working. 20% 13 EBME22E03 Automobile Engineering New Elective course has been introduced New Elective course has been introduced 14 EBME22E15 Design Thinking and Innovation Shifted from programme core to programme Elective New Elective course has been introduced			Intelligence			100%
10 EBCS22ILX Artificial Intelligence and Machine Learning Lab New course has been introduced 100% 11 EBME22ET3 Virtual and Augmented Reality New course has been introduced 100% 12 EBME22E01 (ELECTIVE) Advanced IC Engines UNIT INC Included in UNIT 1V 12 EBME22E01 (ELECTIVE) Advanced IC Engines UNIT V: ALTERNATIVE FUELS Included in UNIT 20% 13 EBME22E02 Electric and Hybrid vehicles UNIT Reality New Elective course has been introduced 100% 14 EBME22E03 Automobile Engineering Electric and Hybrid vehicles New Elective course has been introduced Shifted from programme core to programme elective New Elective course has been introduced			and Machine			
10 EBCS22ILX Artificial Intelligence and Machine Learning Lab New course has been introduced 100% 11 EBME22ET3 Virtual and Augmented Reality New course has been introduced 100% 12 EBME22E01 Advanced IC UNIT Included in UNIT IV Included in UNIT IV (ELECTIVE) Engines UNIT V: RECENT TRENDS Include of the vehicles- modifications-merits and demerits 20% 13 EBME22E02 Electric and Hybrid vehicles Electric and Hybrid vehicles New Elective course has been introduced New Elective course has been introduced 14 EBME22E03 Automobile Engineering Electric and Hybrid vehicles Shifted from programme core to programme Elective Shifted from programme Elective Intelligence introduced 15 EBME22E15 Design Thinking and Innovation New Elective course has been introduced New Elective course has been introduced Intelligence introduced			Learning			
Intelligence and Machine Learning LabIntelligence and Machine Learning Lab100%11EBME22ET3Virtual and Augmented RealityNew course has been introduced100%12EBME22E01 (ELECTIVE)Advanced IC EnginesUNITIV: ALTERNATIVE FUELSIncluded in UNIT IV Flexible fuel vehicles- modifications-merits and demerits20%12EBME22E01 (ELECTIVE)Advanced IC EnginesUNITV: RECENT TRENDSIncluded in UNIT IV Flexible fuel vehicles- nodifications-merits and demerits20%13EBME22E02Electric and Hybrid vehiclesNew Elective course has been introducedNew Elective course has been introduced14EBME22E15Design Thinking and InnovationNew Elective course has been introducedShifted from programme Elective15EBME22E15Design Thinking and InnovationNew Elective course has been introducedNew Elective course has been introduced	10	EBCS22ILX	Artificial		New course has been introduced	
and Machine Learning Laband Machine Learning Laband Machine Learning Laband Machine Learning Lab11EBME22E13Virtual and Augmented RealityNew course has been introduced100%12EBME22E01 (ELECTIVE)Advanced IC EnginesUNITIV: ALTERNATIVE FUELSIncluded in UNIT IV Flexible fuel vehicles- modifications-merits and demerits20%12EBME22E01 (ELECTIVE)Advanced IC EnginesUNITIV: ALTERNATIVE FUELSFlexible fuel vehicles- modifications-merits and demerits20%13EBME22E02Electric and Hybrid vehiclesNew Elective course has been introducedNew Elective course has been introduced14EBME22E03Automobile EngineeringShifted from programme core to programme ElectiveShifted from programme Elective15EBME22E15Design Thinking and InnovationNew Elective course has been introducedNew Elective course has been introduced			Intelligence			100%
11 EBME22ET3 Virtual and Augmented Reality New course has been introduced 100% 12 EBME22E01 Advanced IC Engines UNIT IV: ALTERNATIVE FUELS Included in UNIT IV Flexible fuel vehicles- modifications-merits and demerits 20% 12 EBME22E01 Advanced IC Engines UNIT V: ALTERNATIVE FUELS Included in UNIT IV Flexible fuel vehicles- modifications-merits and demerits 20% 13 EBME22E02 Electric and Hybrid vehicles New Elective course has been introduced New Elective course has been introduced 14 EBME22E15 Design Thinking and Innovation New Elective course has been introduced New Elective course has been introduced			and Machine			
11 EBME22ET3 Virtual and Augmented Reality New course has been introduced 100% 12 EBME22E01 Advanced IC (ELECTIVE) UNIT UNIT IV: ALTERNATIVE FUELS Included in UNIT IV Flexible fuel vehicles- modifications-merits and demerits 20% 12 EBME22E01 Advanced IC (ELECTIVE) UNIT V: Flexible fuel vehicles- modifications-merits and demerits 20% 13 EBME22E02 Electric and Hybrid vehicles New Elective course has been introduced New Elective construction and working. 14 EBME22E03 Automobile Engineering Shifted from programme core to programme Elective Shifted from programme core to programme Elective 15 EBME22E15 Design Thinking and Innovation New Elective course has been introduced New Elective course has been introduced			Learning Lab			
11 EBME22E13 Advanced Reality New Course has been infroduced 100% 12 EBME22E01 (ELECTIVE) Advanced IC Engines UNIT IV: ALTERNATIVE FUELS Included in UNIT IV Flexible fuel vehicles- modifications-merits and demerits 20% 12 EBME22E01 (ELECTIVE) Advanced IC Engines UNIT V: RECENT Included in UNIT IV Flexible fuel vehicles- modifications-merits and demerits 20% 13 EBME22E02 Electric and Hybrid vehicles New Elective course has been introduced New Elective course has been introduced 14 EBME22E03 Automobile Engineering Shifted from programme core to programme Elective New Elective course has been introduced 15 EBME22E15 Design Thinking and Innovation New Elective course has been introduced New Elective course has been introduced	11	EBME22ET2	Virtual and		New course has been introduced	100%
12 EBME22E01 (ELECTIVE) Advanced IC Engines UNIT IV: ALTERNATIVE FUELS Included in UNIT IV Flexible fuel vehicles- modifications-merits and demerits 20% 12 EBME22E01 (ELECTIVE) Advanced IC Engines UNIT IV: ALTERNATIVE FUELS Included in UNIT IV Flexible fuel vehicles- modifications-merits and demerits 20% 14 EBME22E03 Automobile Engineering Electric and Hybrid vehicles New Elective course has been introduced Shifted from programme core to programme Elective 15 EBME22E15 Design Thinking and Innovation New Elective course has been introduced New Elective course has been introduced	11	EDME22E13	Augmented		New course has been introduced	100%
12 EBME22E01 (ELECTIVE) Advanced IC Engines UNIT IV: ALTERNATIVE FUELS Included in UNIT IV Flexible fuel vehicles- modifications-merits and demerits 20% 12 EBME22E01 (ELECTIVE) AUTORNATIVE FUELS Flexible fuel vehicles- modifications-merits and demerits 20% UNIT V: RECENT TRENDS UNIT V: Hybrid electrical vehicles – series, parallel and series, parallel configuration – Design – Drive train, sizing of components. Fuel cells-types- construction and working. 0 13 EBME22E02 Electric and Hybrid vehicles New Elective course has been introduced New Elective course has been introduced 14 EBME22E03 Automobile Engineering Shifted from programme core to programme Elective New Elective course has been introduced 15 EBME22E15 Design Thinking and Innovation New Elective course has been introduced New Elective			Reality			
12 EDME22E01 Instance ite OTH PT. Included in OTH PV. 20% (ELECTIVE) Engines ALTERNATIVE FUELS Flexible fuel vehicles- modifications-merits and demerits 20% UNIT V: RECENT UNIT V: Hybrid electrical vehicles 20% parallel configuration – Design – Drive train, sizing of components. Fuel cells-types- construction and working. 0 13 EBME22E02 Electric and Hybrid vehicles New Elective course has been introduced 0 14 EBME22E03 Automobile Engineering Shifted from programme core to programme Elective New Elective course has been introduced 15 EBME22E15 Design Thinking and Innovation New Elective course has been introduced 1	12	EBME22E01	Advanced IC	LINIT IV:	Included in UNIT IV	
Image: Section of the section of th	14	(FLECTIVE)	Engines	AI TEDNATIVE FUELS	Flavible fuel vehicles	20%
ImponingImponingImponingImponingUNIT V: RECENT TRENDSUNIT V: Hybrid electrical vehicles – series, parallel and series, parallel configuration – Design – Drive train, sizing of components. Fuel cells-types- construction and working.13EBME22E02Electric and Hybrid vehiclesNew Elective course has been introduced14EBME22E03Automobile EngineeringShifted from programme core to programme Elective15EBME22E15Design Thinking and InnovationNew Elective course has been introduced		(LLLCIIVL)	Zingines	ALTERNATIVEFUELS	medifications manite and	2070
Image: Construction and working.Image: Construction and working.13EBME22E02Electric and Hybrid vehiclesNew Elective course has been introduced14EBME22E03Automobile EngineeringShifted from programme Elective15EBME22E15Design Thinking and InnovationNew Elective course has been introduced					mounications-ments and	
Image: Construction of the con						
Image: Figure 10 and series, parallel and series, parallel configuration – Design – Drive train, sizing of components. Fuel cells-types- construction and working.13EBME22E02Electric and Hybrid vehiclesNew Elective course has been introduced14EBME22E03Automobile EngineeringShifted from programme core to programme Elective15EBME22E15Design Thinking and InnovationNew Elective course has been introduced				UNIT V: RECENT	UNIT V: Hybrid electrical vehicles	
Image: space of the systemImage: space of the systemImage: space of the system13EBME22E02Electric and Hybrid vehiclesNew Elective course has been introduced14EBME22E03Automobile EngineeringShifted from programme core to programme Elective15EBME22E15Design Thinking and InnovationNew Elective course has been introduced				TRENDS	– series, parallel and series,	
Drivetrain,sizingofDrivetrain,sizingofcomponents.Fuelcells-types- construction and working.13EBME22E02Electric and Hybrid vehiclesNew Elective course has been introduced14EBME22E03Automobile EngineeringShifted from programme core15EBME22E15Design Thinking and InnovationNew Elective course has been introduced					parallel configuration – Design –	
Image: Components of the second sec					Drive train, sizing of	
13EBME22E02Electric and Hybrid vehiclesNew Elective course has been introduced14EBME22E03Automobile EngineeringShifted from programme core to programme Elective15EBME22E15Design Thinking and InnovationNew Elective course has been introduced					components Fuel cells_types_	
13EBME22E02Electric and Hybrid vehiclesNew Elective course has been introduced14EBME22E03Automobile EngineeringShifted from programme core to programme Elective15EBME22E15Design Thinking and InnovationNew Elective course has been introduced					components. I der cens-types-	
13 EBME22E02 Electric and Hybrid vehicles New Elective course has been introduced 14 EBME22E03 Automobile Engineering Shifted from programme core to programme Elective 15 EBME22E15 Design Thinking and Innovation New Elective course has been introduced					construction and working.	
14 EBME22E03 Automobile Engineering Shifted from programme core to programme Elective 15 EBME22E15 Design Thinking and Innovation New Elective course has been introduced	13	EBME22E02	Electric and		New Elective course has	
14 EBME22E03 Automobile Engineering Shifted from programme core to programme Elective 15 EBME22E15 Design Thinking and Innovation New Elective course has been introduced EBME22E10 Additive			Hybrid vehicles		been introduced	
14 EBME22E03 Automobile Engineering Shifted from programme core to programme Elective 15 EBME22E15 Design Thinking and Innovation New Elective course has been introduced EBME22E10 Additive						
Engineering core to programme Elective 15 EBME22E15 Design Thinking and Innovation New Elective course has been introduced	14	EBME22E03	Automobile		Shifted from programme	
EBME22E15 Design Thinking and Innovation Elective EDME22E10 Additive			Engineering		core to programme	
15 EBME22E15 Design Thinking and Innovation New Elective course has been introduced EDME22E10 Additive			6		Elective	
Internation Internation EDME22E10 Additive	15	EBME22E15	Design Thinking		New Elective course has	
			and Innovation		been introduced	
EBNIEZ/ELY AUUUVE		EBME22E10	Additive		New Elective course has	
16 manufacturing hoon introduced	16		manufacturing		heen introduced	
10 Interference 17 EDME22E22 System Non-Election	10	EDMEODEO2	Custom		New Elective course has here	
17 EDIVIEZZEZ3 System New Elective course has been	1/	EBME22E23	System Modelling and		New Elective course has been	
Simulation Introduced			Simulation		introduced	
	10				New Elective course has here	
	18	EBME22E29	Block chain		New Elective course has been	
18 EBME22E29 Block chain New Elective course has been			Technology		Introduced	

Table3: List of New courses/value added courses//life skills/Electives/interdisciplinary /courses focusing on employability/entrepreneurship/skill development

Sl.No	New courses (Subjects)	New Courses	Value added	Life skill	Electives	Inter Disciplinary	Focus on employability/
			courses				entrepreneurs hip/ skill
							development.
1	Microprocessor Architecture and	Yes				Yes	Yes
2	Mathematics IV (Probability and	Vac					Vas
2	Statistics)	105					105
3	Artificial Intelligence and Machine Learning	Yes				Yes	Yes
4	Artificial Intelligence and Machine Learning Lab	Yes				Yes	Yes
5	Virtual and Augmented Reality	Yes	Yes				Yes
	C Programming and MS office tools	Yes				Yes	Yes
6	Communicative English Lab						Yes
7	Python Programming	Yes				Yes	Yes
8	Technical Skill I (Internal Evaluation)		Yes	Yes			Yes
9	Soft Skill I (Career & Confidence Building) (Internal Evaluation)			Yes			Yes
10	Technical Skill II (Internal Evaluation)		Yes	Yes			Yes
11	Soft Skill II (Qualitative and Quantitative Skills)(Internal Evaluation)			Yes			Yes
12	Mini Project/In plant Training/Industrial Training		Yes	Yes			Yes
13	Technical Skill III		Yes	Yes			Yes
14	CAD/CAM Lab		Yes				Yes
15	Design and Simulation Lab		Yes				Yes
16	Industrial Automation						Yes
17	Industrial Automation Lab						Yes
18	Project Phase – 1						
19	Foreign Language (Internal Evaluation)		Yes				Yes
20	Project Phase – 1		Yes				Yes
21	Electric and Hybrid vehicles	Yes			Yes		Yes
22	Design Thinking and Innovation	Yes			Yes		Yes
23	Additive manufacturing	Yes			Yes		Yes
24	System Modeling and Simulation	Yes		_	Yes		Yes
25	Industry 4.0	Yes		_	Yes		Yes
26	Block chain Technology	Yes			Yes		Yes

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

DEPARTMENT OF MECHANICAL ENGINEERING

B.Tech. Mechanical Engineering (Full Time)

Curriculum – 2022 Regulation

SEMESTER I

S.NO.	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category
1	EBEN22001	Technical English	Ту	2	0/0	0/0	2	HS
2	EBMA22001	Mathematics – I	Ту	3	1/0	0/0	4	BS
3	EBPH22ET1	Engineering Physics	ETL	2	0/0	2/0	3	BS
4	EBCH22ET1	Engineering Chemistry	ETL	2	0/0	2/0	3	BS
5	EBEE22ET1	Basic Electrical & Electronics Engineering	ETL	2	0/0	2/0	3	ES
6	EBCC22I01	Orientation to Entrepreneurship& Project lab.	IE	1	0/0	1/0	1	ID
7	EBCS22ET1	C Programming and MS office tools	ETL	1	0/0	2/0	2	ID
	Credits Sub Total: 18							

	SEMESTER II								
S.NO.	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category	
1	EBMA22003	Mathematics – II	Ту	3	1/0	0/0	4	BS	
2	EBPH22002	Engineering Mechanics	Ту	3	0/0	0/0	3	BS/PC	
3	EBCH22002	Industrial Chemistry	Ту	3	0/0	0/0	3	BS	
4	EBME22001	Engineering Graphics	Ту	2	0/0	2/0	3	ES/PC	
5	EBME22002	Engineering Metallurgy	Ту	3	0/0	0/0	3	PC	
6	EBCC22I02	Communicative English Lab	IE	1	0/0	1/0	1	HS	
7	EBCS22ET2	Python Programming	ETL	1	0/0	2/0	2	ID	
8	EBCC22I03	Environmental Science (Audit Course)	IE	1	0/0	1/0	0	HS	

Credits Sub Total: 19 TOTAL CREDITS FOR I YEAR: 37

Note:

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and lab/Internal evaluation L/T/SLr/P/R/C: Lecture/Tutorials/Supervised Learning/Practical/Research/Credit HS:Humanities and Social Science,ES:Engg.Science.BS:Basic Science,PC:Program core,PE:Program Elective,OE:Open Elective,P:Project Contraction of the second seco

	SEMESTER III								
S.NO.	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С	Category	
1	EBMA22005	Mathematics –III for Mechanical and Civil Engineers	Ту	3	1/0	0/0	4	BS	
2	EBME22003	Engineering Thermodynamics	Ту	3	1/0	0/0	4	PC	
3	EBME22004	Manufacturing Technology- I	Ту	3	0/0	0/0	3	PC	
4	EBCE22ID5	Fluid Mechanics and Machinery	Ту	3	0/0	0/0	3	ID	
5	EBEC22ET3	Microprocessor Architecture and Embedded Programming	ETL	2	0/0	2/0	3	ID	
6	EBME22005	Machine Drawing	Ту	2	0/0	2/0	3	PC	
7	EBCC22ET1	Universal human values: Understanding harmony	ETL	1	0/0	2/0	2	ID	
	PRACTICALS*								
1	EBME22L01	Manufacturing Technology Lab- I	Lb	0	0/0	3/0	1	PC	
2	EBME22L02	Engineering Metallurgy Lab	Lb	0	0/0	3/0	1	PC	
3	EBCE22IL4	Fluid Mechanics and Machinery Lab	Lb	0	0/0	3/0	1	ID	
Credits Sub Total							25		

SEMESTER IV								
S.NO.	Course Code	Course Title	Ty/Lb/ ETL/IE	L	T/SL r	P/R	С	Category
1	EBMA22008	Statistical and Numerical Methods	Ту	3	1/0	0/0	4	BS
2	EBME22006	Strength of Materials	Ту	3	1/0	0/0	4	РС
3	EBME22007	Mechanics of Machine-I	Ту	3	1/0	0/0	4	PC
4	EBCS22ID5	Artificial Intelligence and Machine Learning	Ту	3	0/0	0/0	3	ID
5	EBME22ET2	Engineering Metrology	ETL	2	0/0	2/0	3	РС
6	EBCC22I04/ EBCC22I05	The Indian Constitution/ The Indian Traditional Knowledge (Audit Course)	IE	2	0/0	0/0	0	ID
PRACTICALS*								
1	EBME22L03	Strength of Materials Lab	Lb	0	0/0	3/0	1	РС
2	EBCS22IL4	Artificial Intelligence and Machine Learning Lab	Lb	0	0/0	3/0	1	ID

EDUCATIONAL AND RESEARCH INSTITUTE	Stonted WITH OPEN
University with Graded Autonomy Status	
(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.	

3	EBME22I01	Technical Skill I	IE	0	0/0	2/0	1	SC
4	EBCC22I06	Soft Skill I – Employability Skill	IE	0	0/0	2/0	1	SC
	Credits Sub Total 22							

Credits

Sub	Total	

SEMESTER V								
S.NO.	Course Code	Course Title	Ty/Lb/E TL/IE	L	T/S Lr	P/R	С	Category
1	EBME22008	Thermal Engineering	Ту	3	0/0	0/0	3	PC
2	EBME22009	Mechanics of Machine-II	Ту	3	1/0	0/0	4	PC
3	EBME22ET3	Manufacturing Technology -II	ETL	2	0/0	2/0	3	PC
4	EBME22EXX	Program Elective I	Ту	3	0/0	0/0	3	PE
5	EBXX22OEX	Open Elective I	Ту	3	0/0	0/0	3	ID
6	EBOL22I01	Online course NPTEL/SWAYAM/Any MOOC APPROVED BY AICTE/UGC	IE	1	0/0	1/0	1	ID
		PRACTICALS*						
1	EBME22L04	Dynamics Lab	Lb	0	0/0	3/0	1	PC
2	EBME22L05	Thermal Engineering Lab-I	Lb	0	0/0	3/0	1	PC
3	EBME22I02	Technical Skill II	IE	0	0/0	2/0	1	SC
				Cre	dits Sul	b Total		20

SEMESTER VI								
S.NO.	Course Code	Course Title	Ty/Lb/ET L/IE	L	T/SLr	P/R	С	Category
1	EBME22010	Heat and Mass Transfer	Ту	3	1/0	0/0	4	PC
2	EBME22011	CAD,CAM&CIM	Ту	3	0/0	0/0	3	PC
3	EBME22012	Design of Machine Elements-I	Ту	3	1/0	0/0	4	PC
4	EBME22EXX	Program Elective II	Ту	3	0/0	0/0	3	PE
5	EBXX22OEX	Open Elective II	Ту	3	0/0	0/0	3	ID
		PRACTICALS*	1					
1	EBME22L06	Thermal Engineering Lab -II	Lb	0	0/0	3/0	1	PC
2	EBME22L07	CAD/CAM Lab	Lb	0	0/0	3/0	1	PC
3	EBCC22I07	Soft Skill II-Qualitative and Quantitative Skill	IE	0	0/0	2/0	1	SC
4	EBME22I03	Technical Skill III	IE	0	0/0	2/0	1	SC
5	EBME22I04	Mini Project/Internship	IE	0	0/0	3/0	1	SC
				C	redits Su	b Total		22

C: Credits L: Lecture T: Tutorial S.Lr: Supervised Learning P: Problem / Practical R: Research Ty/Lb/ETL: Theory /Lab/Embedded Theory and Lab * Internal Evaluation

EDUCATIONAL AND RESEARCH INSTITUTE	A A A A A A A A A A A A A A A A A A A
University with Graded Autonomy Status	
(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.	

SEMESTER VII								
S.N	SUBJECT	SUBJECT NAME	Ty/	L	Τ/	P/R	С	Category
О.	CODE		Lb/		S.Lr			
			ETL/I					
			Ε					
1	EBME22013	Industrial Automation	Ту	3	0/0	0/0	3	PC
2	EBME22EXX	Program Elective III	Ту	3	0/0	0/0	3	PE
3	EBME22014	Design of Machine Elements-II	Ту	3	1/0	0/0	4	PC
4	EBME22015	Finite Element Methods	Ту	3	1/0	0/0	4	PC
5	EBME22ET4	Virtual and Augmented Reality	ETL	2	0/0	2/0	3	PC
		PRACTICALS*						
1	EBXX22OL1	Open Lab	Lb	0	0/0	3/0	1	ID
2	EBME22L08	Design and Simulation Lab	Lb	0	0/0	3/0	1	PC
3	EBME22L09	Industrial Automation Lab	Lb	0	0/0	3/0	1	PC
4	EBME22I05	Project Phase – I	IE	0	0/0	3/3	2	Р
5	EBFL22IXX	Foreign Language	IE	1	0/0	1/0	1	HS
				C	redits Su	b Total		23

VIII SEMESTER								
S.N	SUBJECT	SUBJECT NAME	Ty/	L	Τ/	P/R	С	Category
0.	CODE		Lb/		S.Lr			
			ETL/IE					
1	EBCC22ID1	Engineering Economics and Industrial	Ту	3	0/0	0/0	3	ID
		Management						
2	EBME22EXX	Program Elective IV	Ту	3	0/0	0/0	3	PE
3	EBME22EXX	Program Elective V	Ту	3	0/0	0/0	3	PE
PRACTICALS*								
1	EBME22L10	Project Phase – II	Lb	0	0/0	12/12	8	Р
	Credits Sub Total:							17

TOTAL CREDITS: 166

C: Credits L: Lecture T: Tutorial S.Lr: Supervised Learning P: Problem / Practical R: Research Ty/Lb/ETL: Theory /Lab/Embedded Theory and Lab * Internal Evaluation

(An ISO 21001 : 2018 Certified Institution)	
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.	

	PROGRAM ELECTIVE –I & V							
S.NO.	SUBJECT	SUBJECT NAME	Ty/Lb	L	Τ/	P/R	С	Category
	CODE	Elective: Thermal	/ETL/IE		SLr			
		Engineering						
1	EBME22E01	Advanced IC Engines	Ту	3	0/0	0/0	3	PE
2	EBME22E02	Electric and Hybrid vehicles	Ту	3	0/0	0/0	3	PE
3	EBME22E03	Automobile Engineering	Ту	3	0/0	0/0	3	PE
4	EBME22E04	Sustainable Energy	Ту	3	0/0	0/0	3	PE
5	EBME22E05	Gas Dynamics and Jet Propulsion	Ту	3	0/0	0/0	3	PE
6	EBME22E06	Refrigeration and Air Conditioning	Ту	3	0/0	0/0	3	PE
7	EBME22E07	Computational Fluid Dynamics	Ту	3	0/0	0/0	3	PE
8	EBME22E08	Turbo Machines	Ту	3	0/0	0/0	3	PE
		PROGRAM ELECTIVE -II						
S.NO.	SUBJECT	SUBJECT NAME	Ty/Lb	L	T /	P/R	C	Category
	CODE	Elective: Design Engineering	/ETL/IE		SLr			
1	EBME22E09	Mechanical Vibrations	Ту	3	0/0	0/0	3	PE
2	EBME22E10	Design of Production Tools	Ту	3	0/0	0/0	3	PE
3	EBME22E11	Design of Material Handling Equipments	Ту	3	0/0	0/0	3	PE
4	EBME22E12	Applied Tribology	Ту	3	0/0	0/0	3	PE
5	EBME22E13	Design for Manufacture and Assembly	Ту	3	0/0	0/0	3	PE
6	EBME22E14	Mechanics of Fracture	Ту	3	0/0	0/0	3	PE
7	EBME22E15	Design Thinking and Innovation	Ту	3	0/0	0/0	3	PE
	PROGRA	M ELECTIVE –III						
S.NO.	SUBJEC	SUBJECT NAME	Ty/Lb	L	Τ/	P/R	C	Category
	TCODE	Elective: Manufacturing	/ETL/IE		SLr			
		Engineering						
1	EBME22E16	Industrial Robotics	Ту	3	0/0	0/0	3	PE
2	EBME22E17	Non-Conventional Machining Techniques	Ту	3	0/0	0/0	3	PE
3	EBME22E18	Process planning and cost estimation	Ту	3	0/0	0/0	3	PE
4	EBME22E19	Additive manufacturing	Ту	3	0/0	0/0	3	PE
5	EBME22E20	Flexible Manufacturing Systems	Ту	3	0/0	0/0	3	PE
6	EBME22E21	Powder Metallurgy	Ty	3	0/0	0/0	3	PE

PROGRAM ELECTIVE –I V								
S.NO.	SUBJECT	SUBJECT NAME	Ty/Lb	L	T /	P/R	С	Category
	CODE	Elective: Industrial	/ETL		SLr			
		Engineering						
1	EBME22E22	Enterprise Resource Planning	Ту	3	0/0	0/0	3	PE
2	EBME22E23	System Modeling and Simulation	Ту	3	0/0	0/0	3	PE
3	EBME22E24	Total Quality Management	Ту	3	0/0	0/0	3	PE
4	EBME22E25	Facilities Planning and	Ту	3	0/0	0/0	3	PE
		Design						
5	EBME22E26	Quality Engineering	Ту	3	0/0	0/0	3	PE
6	EBME22E27	Industry 4.0	Ту	3	0/0	0/0	3	PE
7	EBME22E28	Supply Chain Management	Ту	3	0/0	0/0	3	PE
8	EBME22E29	Block chain Technology	Ту	3	0/0	0/0	3	PE

Open electives offered by the Mechanical Engineering Department to other Department Students

		OPEN ELECTIVE-I&II						
S.N	SUBJECT	SUBJECT NAME	Ty/Lb/	L	Т/	P/R	С	Categ
0.	CODE		ETL		SLr			ory
1	EBME22OE1	Industrial Engineering	Ту	3	0/0	0/0	3	OE
2	EBME22OE2	Refrigeration and Air conditioning	Ту	3	0/0	0/0	3	OE
3	EBME22OE3	Automobile Engineering	Ту	3	0/0	0/0	3	OE
4	EBME22OE4	Industrial Robotics	Ту	3	0/0	0/0	3	OE
5	EBME22OE5	Sustainable Energy	Ту	3	0/0	0/0	3	OE
6	EBME22OE6	Composite Materials	Ту	3	0/0	0/0	3	OE
7	EBME22OE7	Industry 4.0	Ту	3	0/0	0/0	3	OE
8	EBME22OE8	Virtual and Augmented Reality	Ty	3	0/0	0/0	3	OE

Open Labs offered by the Mechanical Engineering Department to other Department Students

	<u> </u>		-
PEN EL	ECTIVE	LAB*	

		OI LIVE LECTIVE LIND						
S.N	SUBJECT	SUBJECT NAME	Ty/Lb/	L	T /	P/R	С	Category
0.	CODE		ETL		SLr			
1	EBME22OL1	Internal Combustion Engines	Lb	0	0/0	3/0	1	OL
		Lab and Steam Turbine						
2	EBME22OL2	Computer Aided Design Lab	Lb	0	0/0	3/0	1	OL
3	EBME22OL3	Engineering Metrology Lab	Lb	0	0/0	3/0	1	OL
4	EBME22OL4	Automation Lab	Lb	0	0/0	3/0	1	OL
5	EBME22OL5	Virtual and Augmented	Lb	0	0/0	3/0	1	OL
		Reality Lab						

EDUCATIONAL AND RESEARCH INSTITUTE	STATED WITH OR DO
DEEMED TO BE UNIVERSITY	****
University with Graded Autonomy Status	
(An ISO 21001 : 2018 Certified Institution)	

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Open electives offered to Mechanical Engineering Students

COMPUTER SCIENCE AND ENGINEERING												
S.NO.	SUBJECT	SUBJECT NAME	Ty/Lb	L	T /	P/R	С	Category				
	CODE		/ETL/IE		SLr							
1	EBCS22OE1	Cyber security & Forensics	Ту	3	0/0	0/0	3	OE				
2	EBCS22OE2	Artificial Intelligence	Ту	3	0/0	0/0	3	OE				
3	EBCS22OE3	Data Base Concepts	Ту	3	0/0	0/0	3	OE				
4	EBCS22OE4	Software Engineering	Ту	3	0/0	0/0	3	OE				
	IN	FORMATION TECHNOLOGY			I							
S.NO.	SUBJECT	SUBJECT NAME	Ty/Lb	L	T /	P/R	C	Category				
	CODE	Elective: Design Engineering	/ETL/IE		SLr							
1	EBIT22OE1	Web Design	Ту	3	0/0	0/0	3	OE				
2	EBIT22OE 2	Digital Marketing	TY	3	0/0	0/0	3	OE				
3	EBIT22OE3	Cyber Security Essentials	Ту	3	0/0	0/0	3	OE				
4	EBIT22OE4	Introduction to Multimedia	Ту	3	0/0	0/0	3	OE				
ELECTRONICS AND COMMUNICATION ENGINEERING												
S.NO.	SUBJEC	SUBJECT NAME	Ty/Lb	L	T /	P/R	C	Category				
	TCODE		/ETL/IE		SLr							
1	EBEC22OE1	Internet of Things and its Applications	Ту	3	0/0	0/0	3	OE				
2	EBEC22OE2	Cellular Mobile communication	Ту	3	0/0	0/0	3	OE				
3	EBEC22OE3	Satellite and its Applications	Ту	3	0/0	0/0	3	OE				
4	EBEC22OE4	Fundamentals of Sensors	Ту	3	0/0	0/0	3	OE				
5	EBEC22OE5	Microprocessor Based System Design	Ту	3	0/0	0/0	3	OE				
6	EBEC22OE6	Industry 4.0 Concepts	Ту	3	0/0	0/0	3	OE				
	ELI	ECTRICAL AND ELECTRONICS	ENGINEE	RINC	r T							
S.NO.	SUBJECT	SUBJECT NAME	Ty/Lb	L	Τ/	P/R	C	Category				
	CODE		/ETL/IE		SLr							
1	EBEE22OE1	Electrical Safety for Engineers	Ту	3	0/0	0/0	3	OE				
2	EBEE22OE2	Energy Conservation Techniques	Ту	3	0/0	0/0	3	OE				
3	EBEE22OE3	Electric Vehicle Technology	Ту	3	0/0	0/0	3	OE				
4	EBEE22OE4	Biomedical Instrumentation	Ту	3	0/0	0/0	3	OE				
5	EBEE22OE5	Industrial Instrumentation	Ту	3	0/0	0/0	3	OE				
6	EBEE22OE6	Solar Energy Conversion System	Ту	3	0/0	0/0	3	OE				
7	EBEE22OE7	Wind Energy Conversion System	Ту	3	0/0	0/0	3	OE				
8	EBEE22OE8	Energy Storage Technology	Ту	3	0/0	0/0	3	OE				
9	EBEE22OE9	Electrical Machines	Ту	3	0/0	0/0	3	OE				

EDUCATIONAL AND RESEARCH INSTITUTE

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India. CIVIL ENGINEERING

S.NO.	SUBJECT	SUBJECT NAME	Ty/Lb	L	T /	P/R	C	Category				
	CODE	Elective: Design Engineering	/ETL/IE		SLr							
1	EBCE22OE1	Water Pollution and Its management	Ту	3	0/0	0/0	3	OE				
2	EBCE22OE2	Air Pollution Control	Ту	3	0/0	0/0	3	OE				
3	EBCE22OE3	Green Building and Vastu Concepts	Ту	3	0/0	0/0	3	OE				
4	EBCE22OE4	Climate Change and Sustainable Development	Ту	3	0/0	0/0	3	OE				
5	EBCE22OE5	Intelligent Transportation Systems	Ту	3	0/0	0/0	3	OE				
6	EBCE22OE6	Environment, Health and Safety in Industries	Ту	3	0/0	0/0	3	OE				
7	EBCE22OE7	Industrial Pollution Prevention and Cleaner Production	Ту	3	0/0	0/0	3	OE				
8	EBCE22OE8	Fundamentals of nano science	Ту	3	0/0	0/0	3	OE				
BIOTECHNOLOGY												
S.NO.	SUBJEC	SUBJECT NAME	Ty/Lb	L	T /	P/R	C	Category				
	TCODE		/ETL/IE		SLr							
1	EBBT22OE1	Food and Nutrition	Ту	3	0/0	0/0	3	OE				
2	EBBT22OE2	Human Physiology	Ту	3	0/0	0/0	3	OE				
3	EBBT22OE3	Clinical Biochemistry	Ty	3	0/0	0/0	3	OE				
4	EBBT22OE4	Bioprocess Principles	Ty	3	0/0	0/0	3	OE				
5	EBBT22OE5	Biosensors and Biomedical Devices in Diagnostics	Ту	3	0/0	0/0	3	OE				
6	EBBT22OE6	Basic Bioinformatics	Ту	3	0/0	0/0	3	OE				
		CHEMICAL ENGINEER	ING									
S.NO.	SUBJECT	SUBJECT NAME	Ty/Lb	L	T /	P/R	С	Category				
	CODE		/ETL/IE		SLr							
1	EBCT22OE1	Fundamentals of Nanoscience	Ту	3	0/0	0/0	3	OE				
2	EBCT22OE2	Electrochemical Engineering	Ту	3	0/0	0/0	3	OE				
3	EBCT22OE3	Alternative Fuels And Energy System	Ту	3	0/0	0/0	3	OE				
4	EBCT22OE4	Petrochemical Unit Processes	Ту	3	0/0	0/0	3	OE				
5	EBCT22OE5	Principles of Desalination Technologies	Ту	3	0/0	0/0	3	OE				
6	EBCT22OE6	Piping Design Engineering	Ту	3	0/0	0/0	3	OE				
7	EBCT22OE7	E- Waste Management	Ту	3	0/0	0/0	3	OE				
		Dr APJ Abdul Kalam Center For	Research		1	1						
S.NO.	SUBJECT	Ty/Lb	L	T /	P/R	C	Category					
	CODE		/ETL/IE		SLr							
1	EBMG22OE1	Technical Entrepreneurship	Ту	3	0/0	0/0	3	OE				

EDUCATIONAL AND RESEARCH INSTIT	
DEEMED TO BE UNIVERSITY	* * * *
University with Graded Autonomy Status	
(An ISO 21001 : 2018 Certified Institution)	

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India. Open Labs offered to Mechanical Engineering Students

Open Labs offered to Mechanical Engineering Students													
COMPUTER SCIENCE AND ENGINEERING													
S.NO.	SUBJEC	SUBJECT NAME	Ty/Lb	L	T /	P/R	С	Category					
	TCODE		/ETL/IE		SLr								
1	EBCS22OL1	Artificial Intelligence Lab	Lb	0	0/0	3/0	1	OL					
2	EBCS22OL2	PHP/My SQL Programming Lab	Lb	0	0/0	3/0	1	OL					
3	EBCS22OL3	Database Lab	Lb	0	0/0	3/0	1	OL					
INFORMATION TECHNOLOGY													
S.NO.	SUBJECT	SUBJECT NAME	Ty/Lb	L	Τ/	P/R	С	Category					
	CODE		/ETL/IE		SLr								
1	EBIT22OL1	Visual Programming Lab	Lb	0	0/0	3/0	1	OL					
2	EBIT22OL2	Web Design Lab	Lb	0	0/0	3/0	1	OL					
3	EBIT22OL3	Digital content creation Lab	Lb	0	0/0	3/0	1	OL					
4	EBIT22OL4	Computer Network Lab	Lb	0	0/0	3/0	1	OL					
5	EBIT22OL5	PHP/My SQL Programming Lab	Lb	0	0/0	3/0	1	OL					
	ELEC	TRONICS AND COMMUNICATIO	ON ENGINE	EERI	NG								
S.NO.	SUBJECT	SUBJECT NAME	Tv/Lb	L	T/	P/R	С	Category					
211101	CODE	Elective: Design Engineering	/ETL/IE		SLr			95					
1	EBEC22OL1	Sensors and IoT Lab	Lb	0	0/0	3/0	1	OL					
2	EBEC22OL2	Robotics Control Lab	Lb	0	0/0	3/0	1	OL					
3	EBEC22OL3	Basics of MATLAB	Lb	0	0/0	3/0	1	OL					
	EL	ECTRICAL AND ELECTRONICS	ENGINEEI	RING	-								
C NO				T	71 (D/D		C (
S.NO.	SUBJEC	SUBJECT NAME	Ty/Lb /FTI /IF	L		P/K	С	Category					
1	TCODE	Tuono duo en Lob		0	SLr	2/0	1						
1	EDEE22OLI		LU	0	0/0	3/0	1	OL					
2	EBEE22OL2	PLC and SCADA Lab	Lb	0	0/0	3/0	1	OL					
3	EDEE220L3		LU	0	0/0	3/0	1	OL					
4	EBEE22OL4	Power Electronics Lab	Lb	0	0/0	3/0	1	OL					
5	EBEE22OL5	Bio Medical Instrumentation Lab	Lb	0	0/0	3/0	1	OL					
6	EBEE22OL6	Electrical Machines Lab	Lb	0	0/0	3/0	1	OL					
~	CIV	IL ENGINEERING					~	a di seconda di s					
S.NO.	SUBJEC	SUBJECT NAME	Ty/Lb /ETL/IE	L	T/	P/R	C	Category					
1	EBCE22OL1	Building Drawing Practice using Auto	Lb	0	0/0	3/0	1	OL					
	EDCE22QL2	CADD	T L		0./0	2/0	1						
2	EBCE22OL2	Mapping Lab	LD	U	0/0	3/0		UL					
3	EBCE22OL3	Environmental Engineering Laboratory	Lb	0	0/0	3/0	1	OL					

EDUCATIONAL AND RESEARCH INSTITUTE	SUNTED WITH ORDER
University with Graded Autonomy Status	
(An ISO 21001 : 2018 Certified Institution)	
Periyar E.V.R. High Road, Maduravoval, Chennai-95. Tamilnadu, India.	

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

BIOTECHNOLOGY													
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/Lb/ ETL	L	T/ SLr	P/R	С	Category					
1	EBBT22OL1	Basic Biochemistry Lab	Lb	0	0/0	3/0	1	OL					
2	EBBT22OL2	Basic Bioprocess Lab	Lb	0	0/0	3/0	1	OL					
3	EBBT22OL3	Basic Microbiology Lab	Lb	0	0/0	3/0	1	OL					
4	EBBT22OL4	Basic Bioinformatics Lab	Lb	0	0/0	3/0	1	OL					
		CHEMICAL ENGINEERING											
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/Lb/ ETL	L	T/ SLr	P/R	C	Category					
1	EBCT22OL1	Chemical Separation Lab	Lb	0	0/0	3/0	1	OL					
2	EBCT22OL2	Chemical Composition Analysis Lab	Lb	0	0/0	3/0	1	OL					
3	EBCT22OL3	Alternate Fuel Lab	Lb	0	0/0	3/0	1	OL					
4	EBCT22OL4	Food Testing Laboratory	Lb	0	0/0	3/0	1	OL					

CREDIT SUMMARY

- Semester: 1 : **18 Credits**
- Semester: 2 : **19 Credits**
- Semester: 3 : **25 Credits**
- Semester: 4 : 22 Credits
- Semester: 5 : **20 Credits**
- Semester: 6 : 22 Credits
- Semester: 7 : **23 Credits**
- Semester: 8 : **17 Credits**

TOTAL CREDITS-166 Credits

SEMESTER - I

Subject Code	Subject Subject Name : Code TECHNIC					AL EN	GLIS	H		T]	Ty/Lb/ ETL/II	E	L	T/SI	Lr	P/R	C	
EBEN2	2001	Pr	erequ	isite :]	Pass in	Plus 2	Englis	sh			Ту		2	0/0)	0/0	2	
C: Cred	its, L:	Lec	ture,	T: Tuto	orial, S	Lr: Su	pervise	ed Lea	rning	g, P:	: Proble	em /	Prac	ctical				
R: Rese	arch,	Γy/L	.b/ETI	L/IE: 7	Theory	/Lab/E	mbedd	led Th	eory	and	l Lab/Iı	nter	nal E	valuatio	on			
OBJEC	TIVE	Ś																
To refre	To refresh and stimulate students' English learning through Content Integrated Language Learning to have an																	
in-depth understanding of the components of English language and its use in communication that they are																		
competent in inter-personal and academic communication for a successful career.																		
COURSE OUTCOMES (Cos)																		
Student	s comj	oleti	ng thi	s cours	se were	able to)											
CO1	Refresh and stimulate their English learning through Content Integrated Language Learning																	
CO2	Have an in-depth understanding of the components of English language and its use in communication.																	
CO3	Stren	Strengthen their vocabulary and syntactic knowledge for use in academic and technical																
005	com	communication																
CO4	Learn to negotiate meaning in inter-personal and academic communication for a successful career																	
CO5	Engage in organized academic and professional writing for life-long learning and research																	
Mappir	ng of (Cour	rse Oı	itcom	e with	Progra	m Ou	tcome	e (PC)s)								
Cos/PO	s PC)1	PO2	PO3	PO4	PO5	PO6	PO7	PO	80	PO9	PC	010	PO11	PC	D12		
CO1	1		-	1	1	3	1	1	1	2	3		3	1		3		
CO2	-		1	-	2	3	2	1		1	3		3	-	3			
CO3	1		1	1	1	2	1	-		2	3		3 1		3		3	
CO4	1		2	1	1	3	-	1		-	2		2	1			2	
CO5	1		2	1	-	2	1	-		1	3		3	1			3	
COs/PS	Os		PSO	1		PSO2			PS	03			PSC	04				
CO1				3							1 1							
CO2				3							1			1				
CO3				3			2				1			1				
CO4				3			2				1			1				
CO5				3			2				1			1				
3/2/1 In	dicate	es St	trengt	h Of (Correla	ation, 3	5 – Hig	gh, 2-]	Med	ium	n, 1- Lo	W						
	e)				р													
	enc				s ar nce			-	tive		ary		'nt					
	Sci		ini.		itie	д		ran ve	lect		lini		one		29]	c f		
	sic.		inee	nce	nan al S	grar	0	rog	nΕ	er	scip	3	un mp		ctic	oje		
	Ba		gut	lg Scie	Hun	rog	Core	P ele	Ope	Int	Di	l	Co X		Pr3	/Pr		
Ś					*													
800																		
ate																		
Ŭ																		

Subject Name : Tv/Lb/

TECHNICAL ENGLISH

Prerequisite : Pass in Plus 2 English

Unit I	Vocabulary Development:	

Affixes: prefixes and suffixes and word formation-synonyms and antonyms-nominal compounds, expanding using numbers and approximation - preposition, prepositional phrases, preposition + relative pronoun- adjective: degrees of comparison, formation of adjectives, irregular comparatives- Infinitive and Gerunds

ETL/IE

Ty

L

2

T/SLr

0/0

P/R

0/0

Unit II Grammar

Subject Code

EBEN22001

Tenses- auxiliary and modal -voice: active, passive and impersonal passive - Ouestions: Wh-pattern, Yes/no questions, tag questions - adverbs and adverbial clauses- 'If' clause, 'cause and effect', 'purpose'- Concord: subjectverb agreement

Unit III Reading

Comprehension: extracting relevant information from the text, by skimming and scanning and inferring, identifying lexical and contextual meaning for specific information, identifying the topic sentence and its role in each paragraph, comprehension exercises - Note - making - Précis writing-instructions, suggestions and recommendations.

and formal: seeking permission to undergo practical training, letter to an editor of a newspaper complaining about

Unit IV Writing

Unit V Visual Aids in Communication

civic problems and suggesting suitable solutions

Interpretation of diagrams - tables, flow charts, pie charts and bar charts, and their use in Business reports Total no. of Periods: 30

Text book

- 1. Panorama : Content Integrated Language Learning for Engineers, Chandrasena M. Rajeswaran&R.Pushkala,, Vijay Nicole Imprints Pvt. Ltd., Chennai References
- 1. Bhatnagar & Bhatnagar, Communicative English for Engineers and Professionals, Pearson
- 2. Wren and Martin: Grammar and Composition, Chand & Co, 2006
- 3. https://learnenglish.britishcouncil.org
- 4. www.better-english.com/grammar/preposition.

6

6

C

2

6

6

Jumbled sentences- paragraph writing coherence devices- discourse markers. Essay writing- Letter writing, Informal

6

26

(All 100 21001 . 2010 Certified institution)										
Periyar E.V.R. High Road, Madura	avoyal, Chennai-95. Tamilnadu, India.									

Subject EBMA	Code : 22001	Subject Name : MATH			IEMATI	CS – I	Ty/I /ET	Lb L	L	T/ SLr	P/R	С
		Prerequ	uisite : N	None			Ту		3	1/0	0/0	4
L : Lectur T/L/ETL :	re T : T Theory /	utorial S Lab / Er	SLr : S nbeddeo	upervis d Theor	ed Learı y and La	ning P : b	Proje	ct R :	Resea	rch C:	Credits	
OBJECTT • • • • • • • • • • • • •	VES : Apply th Use the Identify : Understa Apply th OUTCOM Mompleting Find the Transfor Find ex into rea Apply k Minima	e Basic con Basic con and solve ind the Ba e Basic co MES (Cos the course the course e summati rm a no mation. pansion co l and imag cnowledge of the gi	oncepts : acepts in problem asic concepts : s) : (3 - e were a ion of th n - di of trigon ginary p e and co ven func-	in Algeb Matrice as in Tri cepts in I in Funct 5) ble to e given s agonal ometric arts. oncepts i	ora gonometr Differenti ions of Se series of t matrix i function n finding	y ation everal va binomial nto an into an the deri	riables , expone equival infinite vative o	ential & lent di series a f given	logarit agonal nd to s functio	hmic matrix eparate a on and to	using or a complex	thogonal function maxima /
CO5 Monning o	Evaluat f Course	Outcom	$\frac{1}{1}$	Program			$\frac{1}{1}$	lima oi	a funct	ion of sev	veral varia	bles.
COs/POs	PO1	PO2	PO3	PO4		PO6) PO7	PO8	PO9	PO10	PO11	PO12
003/103		102	105	104	105	100	107	100	107	1010	1011	1012
CO1	3	3			2	2			3	3		3
CO2	3	3			3	1						3
CO3	3	3			2	-			2	3		1
CO4	3	3			1				2	3		2
CO5	3	3				2			2	2		3
3/2/1 Indica	tes Stren	gth Of Co	orrelatio	on, 3 – I	High, 2- N	/ledium	, 1- Low	7				_
Category	▲ Basic Science	Engineering Science	Humanities and	social Science	Program Core	Program elective	Open Elective		Inter Disciplinary	Skill Component		Practical /Project

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code : EBMA22001	Subject Name : MATHEMATICS – I	Ty/Lb /ETL	L	T/ SLr	P/R	С
	Prerequisite : None	Ту	3	1/0	0/0	4

UNIT I ALGEBRA

Binomial, Exponential, Logarithmic Series (without proof of theorems) – Problems on Summation, Approximation and Coefficients.

UNIT II MATRICES

Characteristic equation – Eigen values and Eigen vectors of a real matrix – Properties of Eigen values – Cayley - Hamilton theorem(without proof) – Orthogonal reduction of a symmetric matrix to Diagonal form.

UNIT III TRIGONOMETRY

Expansions of Sin n θ , Cos n θ in powers of Sin θ and Cos θ – Expansion of Tan n θ – Expansions of Sinⁿ θ and Cosⁿ θ in terms of Sines and Cosines of multiples of θ – Hyperbolic functions – Separation into real and imaginary parts.

UNIT IV DIFFERENTIATION

Basic concepts of Differentiation – Elementary differentiation methods – Parametric functions – Implicit function –Leibnitz theorem(without proof) – Maxima and Minima – Points of inflection.

UNIT V FUNCTIONS OF SEVERAL VARIABLES

DUCA

Partial derivatives – Total differential – Differentiation of implicit functions – Taylor's expansion – Maxima and Minima by Lagrange's Method of undetermined multipliers – Jacobians.

Total no. of periods: 60

12

12

12

12

12

Text & Reference Books:

1) Kreyszig E., Advanced Engineering Mathematics (10th ed.), John Wiley & Sons, (2011).

- 2) Grewal B.S., *Higher Engineering Mathematics*, Khanna Publishers, (2012).
- **3**) John Bird, *Basic Engineering Mathematics* (5th ed.), Elsevier Ltd, (2010).
- 4) Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).
- **5)** P.Kandasamy, K.Thilagavathy and K. Gunavathy, *Engineering Mathematics Vol. I (4th Revised ed.)*, S.Chand& Co., Publishers, New Delhi (2000).
- 6) John Bird, Higher Engineering Mathematics (5th ed.), Elsevier Ltd, (2006).

Subject EBPH22	Code 2ET1		Subject Name :ENGINEERING PHY					YSI	CS	Ty/ ET	Lb/ L	L	T/ SLr	P/R	С
		-	Prerequ	isite :H	ligher S	Sec. Phys	ics			ET	Ĺ	2	0/0	2/0	3
C: Cred	its, L: Leo	cture.	T: Tuto	rial, S	Lr: Su	pervised	Lear	ning	. P:	Proble	em / Pra	actical			l
R: Resea	arch, Ty/I	b/E	ΓL/IE: Τ	heory	/Lab/E	mbedded	d The	ory	and	Lab/In	nternal	Evaluat	ion		
OBJEC	FIVES														
•	• Outlin	e the	relation	betwe	en Scie	ence, En	ginee	ring	& 7	Fechno	ology.				
•	Demo	nstrat	te compo	etency	in unde	erstandir	ng bas	sic c	once	epts.					
•	• Apply	fund	amental	laws c	of Phys	ics in Er	iginee	ering	g & '	Techn	ology.				
•	• To ide	ntify	& solve	proble	ems usi	ng phys	ics co	nce	pts.						
•	Produc	ce a	nd pres	sent a	ctivitie	es assoc	ciated	W	ith	the o	course	throug	h effe	ctive te	chnical
	comm	unica	tion												
COURS	E OUTCO	OME	S (Cos)												
Students	completin	g this	course v	vere ab	le to										
CO1	Demonst	trate	compete	ncy in	unders	tanding	basic	con	cept	ts.					
CO2	Utilize s	cient and	ific met	hods fo	or form	al investion investigation in the second s	tigati nowl	ons edge	& (demon	strate c	ompete	ncy wi	th experi	mental
CO3	Identify	and r	rovide s		is for e	ngineeri	ng nr	oble	ems						
CO4	Relate th	e tec	hnical co	oncent	$\frac{10}{10} \frac{10}{2} \frac{10}{2}$	$\frac{11}{10}$ to day	life ar	nd to	nns.	actical	situatio	ns			
CO5	Think an	alvti	cally to i	internr	$\frac{1}{2}$	ents		iu ii) pre	uctical	Situatio	/113.			
Manning	of Cours	f Course Outcome with Program Outcome (POs)													
Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	<u>PO7</u>	/ PC)8	PO9	PO10	PO11	PO12		
CO1	3	3	1	2	2	2	1			1	2	1011	1012	1	
CO2	3	3	2	2	2	2	1			2	2	1		1	
CO3	3	3	3	2	2	2	1	1	L	1	2	1		2	
CO4	3	3	2	2	1	2	2	1	L	2	2	1		2	
CO5	3	3	2	1	1	2	1	2	2	1	2	1		1	
COs/PSOs	PSO1			PSO	PSO	PSO									
0.01	_			2	3	4									
<u>CO1</u>		3		2	1	1									
C02		3		2	1	1									
CO_4		3		$\frac{2}{2}$	1	1									
C04		3		$\frac{2}{2}$	1	1									
3/2/1 Ind	licates Str	engtl	h Of Cor	relatio	n. 3 – F	ligh. 2- N	Aediu	m. 1	1- Lo	OW					
				al											
				soci		ive			Ŋ		It		t		
	e			s pr		ect			ina		ner		ojec		
~	enc		50	s ai	ore	n el	hive		lqi		odu		Pr		
ory	Sci		arin .	itie	u C	ran	lec		Disc		Jon		cal		
teg	sic		nce	nani		rog	Ц		εrΓ		II C		ctic		
Ca	Ba		ingi	lum		L L	Jue	2	Inte		Ski		Pra		
	√	/	ЦS	ы П							+				
											1				
											1				
											1				

Subject Code EBPH22ET1	Subject Name : ENGINEERING PHYSICS	Ty/Lb /ETL	L	T/ SLr	P/R	С
	Prerequisite : Higher Sec. Physics	ETL	2	0/0	2/0	3

UNIT I PROPERTIES OF MATTER

Elasticity - stress, strain and Hook's law - Poisson's ratio - three moduli of elasticity - twisting couple on a wire – Shafts – Solid & Hollow Shafts – Bending moment – Youngs Modulus Determination -I form of girders. viscosity - flow of liquid through a narrow tube: Poiseuille's law - Ostwald's viscometer – Lubrication

Lab Component – 1. Torsional Pendulum – Determination of Rigidity Modulus 2. Coefficient of Viscosity determination using Poiseuille's Method

UNIT II ACOUSTICS & ULTRASONICS

Fundamentals of acoustics - reverberation- reverberation time - factors affecting acoustics. Ultrasonics -Production of ultrasonic waves - detection of ultrasonic waves - acoustic grating - application of ultrasonic waves.

Lab Component – 3. Ultrasonic Velocity Determination

UNIT III WAVE OPTICS

Huygen's principle - interference of light – wave front splitting and amplitude – air wedge - Newton's rings - Michelson interferometer and its applications - Fraunhofer diffraction from a single slit - diffraction grating

Lab Component – 4. Spectrometer – Grating UNIT IV LASER

Laser principle and characteristics - amplification of light by population inversion - properties of laser beams: monochromaticity, coherence, directionality and brightness - different types of lasers - Ruby laser-Nd-YAG laser-He-Ne laser-CO₂ laser - semiconductor laser - applications of lasers in science, engineering and medicine.

Lab Component – 5. Determination of Wavelength of the given Laser source

UNIT V FIBER OPTIC COMMUNICATION

Total Internal Reflection – Propagation of Light in Optical Fibers – Numerical aperture and Acceptance Angle – Types of Optical Fibers (material, refractive index, mode) – Fiber Optical Communication system (Block diagram) – Attenuation–Transmitter, Receiver, Dispersion, Modulation/Demodulation Advantages of Fiber Optical Communication System – IMT, PMT, Wavelength Modulated & Polarization Modulated Sensors – Endoscope Applications.

Lab Component – 6. Determination of Numerical Aperture of Optical Fiber

Total No of Periods: 45

TEXT BOOKS

- 1. Brijlal, M. N. Avadhanulu & N. Subrahmanyam, Text Book of Optics, S. Chand Publications, 25th edition, 2012
- 2. R. Murugeshan, Electricity and Magnetism, S.Chand Publications, 10th edition, 2017
- 3. R. Murugeshan & Kiruthiga Sivaprasath, Modern Physics, S.Chand Publications, 2016

REFERENCE BOOKS

- 1. Dr. Senthil Kumar Engineering Physics I VRB Publishers, 2016
- 2. N Subrahmanyam & Brijlal, Waves and Oscillations, Vikas Publications, New Delhi, 1988
- 3. N Subrahmanyam & Brijlal, Properties of Matter, S. Chand Co., New Delhi, 1982
- 4. N Subrahmanyam & Brijlal, Text book of Optics, S. Chand Co., New Delhi, 1989
- 5. R. Murugeshan, Electricity and Magnetism, S. Chand & Co., New Delhi, 1995
- 6. Thygarajan K & Ajay Ghatak, Laser Theory and Applications, Macmillan, New Delhi, 1981

9

9

9

9

EDUCATIONAL AND RESEARCH INSTITUTE (NAAC
University with Graded Autonomy Status	
109 × 10	EDUCATIONAL AND RESEARCH INSTITUTE (DEEMED TO BE UNIVERSITY University with Graded Autonomy Status

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject (EBCH22	Code ET1	Su	ıbject	Name I	ENGIN	EERIN	G CH	EMIS	ΓRY	Ty/Lb/ ETL	L	T/S	Lr	P/R	С
		Pre	ereaui	site :Hi	gher Se	c. Chen	nistrv			ETL	2	0/	0	2/0	3
C: Credi	ts. L: L	ectu	re. T	: Tutori	al. SLr	: Super	vised	Learn	ing. P:	Problem	1 / Prac	tical		_, .	
R: Resea	urch. Ty	/Lb	/ETL	/IE: Th	eorv /L	ab/Emb	edded	l Theo	rv and	Lab/Inte	ernal Ev	valuatio	n		
OBJECT	TIVES			-	- J ·				J						
Т	o deduce	e pra	ctical a	pplicatio	on of the	oretical c	oncepts	5							
Т	'o provid	le and	d insigl	ht into fu	ndamen	tal concep	ots of c	hemica	l thermo	dynamics					
Т	'o articul	ate tł	he wate	er treatm	ent meth	ods									
Т	'o impart	the l	knowle	edge in el	lectrical	conducta	nce and	1 EMF							
1	o create	awar	reness a	about the	moderr	Nano co	mposit	es alon	g with c	oncepts of	polyme	rs			
1	o introdi	uce a	inalytic	al tools i	for chara	cterizatio	on techi	nques.							
COURS	E OUT	CON	MES (Cos)											
Students	complet	ing	this co	ourse we	re able	to									
CO1	Apply r	eleva	ant inst	rumenta	tion tech	iniques to	solve	comple	x proble	ms					
CO2	Recall t	the fu	undame	entals and	d demon	strate by	unders	tanding	the first	principle	s of Engi	ineering	scien	ces.	
CO3	Examin	e the	e appro	priate teo	chniques	to interp	ret data	a to pro	vide vali	d conclus	ion				
CO4	Demon	strate	e the co	ollaborati	ion of sc	ience and	l Engin	eering t	o recogi	nize the ne	eed for li	fe long le	earniı	ıg.	
CO5	Analyse	e the	impact	t of conte	extual kr	nowledge	to acce	ess the l	nealth ar	nd society	issues.				
Mapping	g of Cou	f Course Outcome with Program Outcome (POs)													
Cos/POs	PO1	P	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	
CO1	3			3	3	3				2					
CO2	3		3				3							3	
CO3	3			2	3										
CO4	3		3		3				3					3	
CO5	3						2	3	2					3	
COs/PSOs	PSO	1 P	PSO2	PSO3	PSO4	PSO5			•			•			
CO1	3			3	3										
CO2	3			2	3										
CO3	3			3	3										
CO4	3			3	3										
CO5	3			3	3										
3/2/1 Ind	icates S	Strer	ngth O	of Corre	elation,	3 – Hig	h, 2- N	Iediur	n, 1- L	OW					
					, í						ıt				
	ė				р				N.		neı				
	enc				s ar nce					ary	odı				
ory	Scie		rin	ce	tie: cie	_	ran	e c	מרו	lina	on		[0]	t f	
ege	ic S		nee	ien	ani 1 S	ran	120	b it i	5	r cip]	1 C			ojec	
Cat	3as		lgi	Sc	um cia	1 <u>3</u> 0	Pr Pr	elec	har	nte Disc	škil		Prof	Prc	
<u> </u>		/	Ē	ад	H ₁ so	L d	5	ŢĊ)					- /	
	· ·	·													

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code : EBCH22ET1	Subject Name : ENGINEERING CHEMISTRY	Ty/Lb /ETL	L	T/ SLr	P/R	С
	Prerequisite : None	ETL	2	0/0	2/0	3

UNIT -I CHEMICAL THERMODYNAMICS

EDUCAT

Introduction, Terminology in thermodynamics –System, Surrounding, State and Path functions, Extensive and intensive properties. Laws of thermodynamics – I and II laws-Need for the II law. Enthalpy, Entropy, Gibbs free energy, Helmholtz free energy - Spontaneity and its criteria. Maxwell relations, Gibbs -Helmholtz equation (relating E & A) and (relating H & G).

UNIT -II TECHNOLOGY OF WATER

Water quality parameters – Definition and expression. Analysis of water – alkalinity, hardness and its determination (EDTA method only). Boiler feed water and Boiler Troubles-Scales and sludges, Caustic embrittlement, Priming and Foaming and Boiler corrosion. Water softening processes – Internal conditioning, external conditioning – Demineralization methods. Desalination processes-RO and Electrodialysis.

Lab Component-1. Analyze the water quality parameters for the given water sample. UNIT -III ANALYTICAL AND CHARACTERIZATION TECHNIQUES 9

Chromatographic techniques – column, thin layer and paper. Instrumentation-working with block diagram- UV-Visible Spectroscopy, IR Spectroscopy, Scanning electron microscope, Transmission electron microscope.

Lab Component-2.Determination of Rf values of various components using thin layer chromatography.

3. Compute and interpret the structures of the given molecules using Chem Draw.

UNIT – IV ELECTROCHEMISTRY

Conductance – Types of conductance and its Measurement. Electrodes and electrode potential, Nernst equation – EMF measurement and its applications-Electrochemical series- Types of electrodes- Reference electrodes-Standard

hydrogen electrode- Saturated calomel electrode-Determination of P^H using these electrode.

Lab Component-4. Studies on acid-base conductometric titration.

5. Determination of redox potentials using potentiometry

UNIT -VPOLYMERS AND NANO COMPOSITES

Polymers-Introduction-Monomers – Functionality – Degree of polymerization-Tacticity. Classification- Plastics – Thermoplastics and thermosetting plastics, Compounding of plastics – Compression moulding, injection moulding and extrusion processes. Nano composites:particulates, clay and carbon nano tubes.Graphene nano composites and its applications.

Lab Component-6.Polymeric analysis using capillary viscometer

References

1. Jain & Jain Engineering Chemistry 17th Edition, Dhanpat Rai Publishing Company

- 2. Vasant R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar, Polymer Science, New Age International, 1986
- 3. B.K. Sharma, Polymer Chemistry, Goel Publishing House
- 4. Y. R. Sharma , *Elementary Organic Spectroscopy*, S. Chand& Company Ltd.

5. N.Krishnamurthy, K.Jeyasubramanian, P.Vallinayagam, Applied Chemistry, Tata McGraw-Hill Publishing Company Limited, 1999.

6. Chichester, polymer-clay-nano composites, Johnwiley (2000)

Total No. of periods: 45

9

9

9

Subject Code EBEE22ET1	e Sub ELF	ject N ECTRO	ct Name :BASIC ELECTRICAL AND TRONICS ENGINEERING							Ty/Lb/ ETL	' L	T/SLr	P/F	ł	С
	Pre	requis	ite : No	one						ETL	2	0/0	2/0)	3
C: Credits, L	L: Lectu	re, T:	Tutori	ial, SL	r: Supe	rvise	ed L	earnin	g, P:	Proble	m / P	ractical			
R: Research,	Ty/Lb	/ETL/	IE: Th	eory /I	Lab/Eml	bedd	led]	Theory	and	Lab/In	terna	Evaluat	tion		
OBJECTIVE	ES							•							
Unde	erstand	the co	ncepts	of circ	cuit elen	nent	s, ci	rcuit l	aws a	and cou	pled	circuits.			
Gain	inform	ation	on mea	asurem	ent of e	lectr	rical	paran	neter	S.	-				
Acqu	ire kno	wledg	e on c	onvent	tional &	non	-con	ventio	onal e	nergy	produ	ction.			
• Ident	ifv basi	ic theo	retical	princi	ples bel	nind	the	worki	ng of	mode	n ele	ctronic g	adgets.		
• Demo	onstrate	e digit	al elec	tronic	circuits	and	asse	emble	simp	le devi	ces.	2	0		
COURSE OU	UTCON	IES (0	Cos)						<u>siiip</u>	10 00 11					
Students com	pleting t	this co	urse we	ere able	to										
CO1 0	Comput	e the e	lectric	circuit	paramete	ers fo	or sir	nple p	roblei	ns					
CO2 I	Elaborat	te the c	concept	s of Ele	ectrical r	nach	ines	and m	easur	ement p	rincip	les			
CO3 1	ldentify	conve	entiona	1 and	Non-cor	vent	tiona	l Elec	trical	power	Gen	eration,	Transmis	ssion	and
I	Distribu	tion													
CO4	Analyze	the w	orking	princip	les and c	hara	cteri	stics o	f anal	og elec	tronic	devices			
CO5 1	Underst	rstand basics of digital electronics and solving problems and design combinational circuits													
Mapping of C	Course	Outco	me wit	h Prog	ram Ou	tcon	ne (F	<u>POs)</u>	-						
Cos/POs	PO1	PO2	PO3	PO4	PO5	PC	06	PO7	PO8	PO9	PO	10	PO11	PO1	12
COI	3	3	3	3									2		<u>l</u>
CO2	3	3	3	2	2			2			-		2		1
<u>CO3</u>	3	2	3	2	3			$\frac{2}{2}$		2			2		1 1
C04	3	$\frac{2}{2}$	3	$\frac{2}{2}$	3			Z		2	_		$\frac{2}{2}$		1 1
CO ₅ /PSOs	PSO1	2	 PSO2	2	PSO3	PSC	\overline{a}	PSO5		2			2		1
CO1	3		1502		1505	150		1505							
CO2	3														
CO3	3														
CO4	3														
CO5	3														
3/2/1 Indicate	es Stren	gth O	f Corr	elation	, 3 – Hig	gh, 2	- Me	edium,	1- L	DW					
										>					
Category	Basic Science Engineering Science Humanities and social Science Program Core Program elective Open Elective					-	Inter Disciplinar	Skill Component			Practical /Project				
			~												

(An ISO 21001 : 2018 Certified Institution) Perivar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code : EBEE22ET1	Subject Name : BASIC ELECTRICAL AND ELECTRONICS ENGINEERING	Ty/Lb/ ETL	L	T/ SLr	P/R	С
	Prerequisite : None	ETL	2	0/0	2/0	3

UNIT I ELECTRIC CIRCUITS

Electrical Quantities – Ohms Law – Kirchhoff's Law – Series and Parallel Connections – Current Division and Voltage Division Rule - Source Transformation – Wye (Y) – Delta (Δ) , Delta (Δ) – Wye (Y) Transformation – Rectangular to Polar and Polar to Rectangular

Lab Components – Measurement of Electrical Quantities

EDUCATIO

UNIT II MACHINES & MEASURING INSTRUMENTS

Construction & Principle of Operation of DC motor & DC Generator – EMF equation of Generator – Torque Equation of Motor – Construction & Principle of operation of Transformer –Operating principles and Types of measuring instruments – Moving coil, Moving iron – Principle of Energy meter

Lab Component – Measurement of Energy Using energy meter

UNIT III BASICS OF POWER SYSTEM

Generation of Electric Power (Thermal, Hydro, Wind and Solar) – Basic structure of Power system – Types of Transmission & Distribution Schemes – Representation of Substation.

Lab Component – Residential house wiring Stair case wiring

UNIT IV ELECTRON DEVICES

Semiconductor Materials: Silicon and Germanium – PN Junction Diode, Zener Diode – Characteristics and Applications – Bipolar Junction Transistor - JFET, SCR, MOSFET, IGBT –Characteristics and Applications – Operating principle - Rectifiers and Inverters

Lab Component – Resistor colour coding -Resistance Measurement

UNIT V DIGITAL SYSTEM

Number System – Binary, Decimal, Octal, Hexadecimal – Binary Addition, Subtraction, Multiplication & Division – Boolean Algebra – Reduction of Boolean Expressions – Logic Gates - De-Morgan's Theorem - Adder – Subtractor Lab Component - Soldering practice

Logic Gates

Total no of Periods : 45

TEXT BOOKS:

- 1. D P Kothari, I J Nagrath, 2017, Basic Electrical Engineering, Second Edition, Tata McGraw-Hill Publisher
- 2. A.K. Sawhney, 2015 A Course in Electrical and Electronic Measurements and Instrumentation, Dhanpat Rai & CO publisher
- 3. B.L. Theraja, A.K. Theraja, Text Book of Electrical Technology: Volume 3: Transmission, Distribution and Utilization, S. Chand publisher
- 4. Morris Mano, M, 2016 Digital Logic and Computer Design, Prentice Hall of India
- 5. Millman and Halkias 2015, Electronic Devices and Circuits, Tata McGraw Hill

REFERENCE BOOKS:

1. R. Muthusubramanian, S. Salivahanan, K A Muraleedharan, Basic Electrical, Electronics and Computer Engineering, Second Edition, Tata McGraw-Hill publisher

9

9

9 bor

0

EDUCATIONAL AND RESEARCH INSTITUTE	A A A A A A A A A A A A A A A A A A A
University with Graded Autonomy Status	
(An ISO 21001 : 2018 Certified Institution)	

Subject Code EBCC22I01	è	Sub ENT	ject N	ame :	ORIENT	ATION ' & PROJI	TO ECT	Ty E	/Lb/ TL/IE	L	T/SI	r P	/R	C
		LAI	B											
		Pre	requis	ite : N	one				IE	1	0/0	1	/0	1
C: Credits, L	L: Lect	ture,	T: Tu	torial,	SLr: S	upervise	ed Learn	ing, I	P: Probl	em / P	Practical	•		
R: Research,	Ty/L	b/E'l	L/IE:	Theor	y /Lab/l	Embedd	led Theo	ry an	d Lab/I	nterna	l Evalu	ation		
OBJECTIVE	LS .	1 1			1. т				• 1• • 1	1 .		C 1 1	1	
• Unde	erstanc	1 hov	v entre	eprene	urship E		on transfo	orms	individ	uals in	ito succ	essful I	eade	ers.
• Ident	ify inc	divid	ual po	tentia	l &S ha	ve caree	er dreams	5						
• Unde	erstand	l diff	erence	e betw	een idea	as & op	portuniti	es						
• Ident	ify co	mpor	nents a	& crea	ate actio	n plan.								
• Use b	orainst	tormi	ing in	a grou	ip to gei	nerate ic	leas.							
COURSE OU	JTCO	MES	G (Cos)		11.									
Students com	pleting	g this	course	were	able to		-1-11:44		! 1	• • •				
	Deve	elop	a Busi	ness I	$\sin \alpha$ i	nprove	ability to) reco	ognize c	busine	ss oppo	riunity		
CO2	Do a	u self	-analy	sis to	build an	entrep	reneurial	care	er.					
CO3	Artic	iculate an effective elevator pitch.												
CO4	Anal	nalyze the local market environment & demonstrate the ability to find an attractive												
	mark	arket												
CO5	Iden	tify t	he req	uired	skills fo	or entrep	oreneursh	nip &	develop	р				
Mapping of (Course	e Out	tcome	with F	rogram	Outcon	ne (POs)							
Cos/POs	PO	D1	PO2	PO3	PO4	PO5	PO6 I	PO7	PO8	PO9	PO10	PO11	PC)12
CO1			2	2	3	2	2	2		2	2	2		1
CO2		3	2		3	2	3	2	3	3	3	2		2
CO3			2	2	2	2	3		3	3	3	2		
C04			2 2	$\frac{2}{2}$	2	$\frac{2}{2}$	2	3	3	2	2	3		1
COs/PSOs	P	SO1		$\frac{2}{D2 P}$	2SO3	PSO4	2	5	5	2	2	5		1
CO1		2	15.	21	3	1501								
CO2		2			3									
CO3		2			3									
CO4		2			3									
CO5		2			3									
3/2/1 Indicate	es Stre	ength	Of Co	orrelat	tion, 3 –	High, 2	- Mediun	n, 1-]	Low					
Category	Docto Colonoo	Basic ocience	Ingineeri	lg Science	Humanities and social Science	Program	Program	Jnen Elective	Inter	Disciplinary	Skill Component		Duration1	Project
							-		<u> </u>			✓		

Subject Code : EBCC22I01	Subject Name : ORIENTATION TO ENTREPRENEURSHIP	Ty/Lb /ETL/IE	L	T/ SLr	P/R	С
	Prerequisite : None	IE	1	0/0	1/0	1

UNIT I CHARACTERISTICS OF A SUCCESSFUL ENTREPRENEUR

Introduction to entrepreneurship education – Myths about entrepreneurship – How has entrepreneurship changed the country – Dream it. Do it - Idea planes - Some success stories – Global Legends – Identify your own heroes –

UNITII ENTREPRENEURIAL STYLE

Entrepreneurial styles – Introduction, concept & Different types - Barrier to Communication – Body language speaks louder than words

UNIT III DESIGN THINKING

Introduction to Design thinking – Myth busters – Design thinking Process - Customer profiling – Wowing your customer – Personal selling – concept & process – show & tell concept – Introduction to the concept of Elevator Pitch

UNIT IV RISK MANAGEMENT

Introduction to risk taking & Resilience – Managing risks (Learning from failures, Myth Buster) – Understanding risks through risk takers – Why do I do? – what do I do?

UNIT V PROJECT

How to choose a topic – basic skill sets necessary to take up a project – creating a prototype – Pitch your project – Project presentation.

Total No. of Periods: 15

Subject Code:	C	PROGR	AMMING	AND N	AS OFF	FICE TO	OOLS	Т	y/Lb/	L	Т/	P /	R	С
EBCS22ET1									ETL		S.Lr			
	Prereq	uisite: Nil							ETL	1	0/0	2/	0	2
C: Credits, L: I	Lecture	, T: Tuto	rial, SLr: S	Superv	ised Le	arning,	P: Prob	olem / F	Practica	1				
R: Research, T	y/Lb/E	TL/IE: T	heory /Lab	/Embe	dded T	heory a	nd Lab/	Interna	ıl Evalu	ation	l			
OBJECTIVES	:	•												
The student sh	ould be	made to:												
• learn a p	oblem s	ming lang	uage.											
• leaffi pro	ograms	in C and t	o solve the	nrohlen	ns									
• familiar	ize the s	students in	preparation	n of doc	uments	and pres	sentation	ns with	office a	itoma	tion to	ols.		
COURSE OUT	COME	$\frac{1}{S(COs)}$:	After Com	pleting	the cou	irse, the	e studen	t can b	e able to	0		015.		
CO1	Under	stand and	trace the ex	ecution	of prog	rams wr	ritten in	C langu	age.					
CO2	Write	the C code	e for a giver	n algori	thm.									
CO3	Apply	Arrays an	nd Function	s conce	pts to v	write Pro	ograms							
CO4	Apply	Structure	s and point	ers con	cepts for	r writing	, Prograi	ms						
CO5	To per	form docu	imentation .	accour	nting op	erations	and pre	sentatio	n skills					
Mapping of Co	urse Oi	itcomes w	ith Progra	m Oute	comes (POs)	DOT	DOP	DOD	DOI		11	D O1	2
COS/POS	POI	POZ	POS	PO4	POS	PUo	P07	PUð	P09	PUI		<u>л</u>	PUI	.4
	2	2	2	2	1	1	1	1	1	1		2	2	2
CO2	2	2	2	2	1	1	1	1	1	1		2	2	2
CO3	2	2	3	2	1	1	1	1	1	1		3	2	2
CO4	2	2	3	3	1	1	1	1	1	1		3	2	2
CO5	1	1	1	1	1	1	0	0	2	3		2	()
		DC01			DCOA			DCO				DCO		
CUs/PSUs		PS01			PS02			P503)			P504	ŧ	
CO1		1			1			2				2		
CO2		1			1			2				2		
CO3		1			1			2				2		
<u>CO4</u>		1			1			2				2		
CO5	C4	1 • • • • • • • • • •		TT: - L	1 2 Mai	l ¹ 1	T	2				2		
3/2/1 Indicates	Strengt	n Of Cor	relation, 3 -	- Hign,	2- Meo	iium, 1-	LOW	1	1	_				
		e	cial		a									
		ien	soc		tiv		ary	ent	ect					
	Jce	Sc	and	e	elec	ve	olin	one	roj					
	cier	ing	ies	Co	am	sctiv	scil	duid	ll /F					
	c S	leer ce	anit	am	ngra	Ele	Di	I CC	tica					
ry	3asi	ngin tien	um: ien	ogr	Pr(pen	nter	Kill	rac					
ego	щ	Er	Hi Sc	Pr		Ō	н ,		щ					
Cat							✓							
-														

B.Tech Mechanical Engineering - 2022 Regulation

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95, Tamilnadu, India.

Subject Code:	C PROGRAMMING AND MS OFFICE TOOLS	Ty/Lb/	L	Τ/	P/R	С
FRCS22FT1		ETL		S.Lr		
	Prerequisite: Nil	ETL	1	0/0	2/0	2

UNIT I INTRODUCTION

Basic Structure of C programme- Constants, Variables and data types, Keywords, Identifiers- Operators and expressions- executing a C Program

UNIT II DECISION MAKING STATEMENTS AND LOOPING STATEMENTS

Decision making with if statement, Simple if statement, else-if statement, Nesting if-else statement, The else if ladder, The switch statement, The goto statement, The while statement, The do while statement, The for statement, jumps in loops

UNIT III ARRAYS AND FUNCTIONS

Introduction to Arrays- One dimensional arrays, Two dimensional array, and Multidimensional array- Introduction to Functions- calling a function, category of functions- arguments with return values, argument with no return values-parameter passing Mechanism: Call by Value and Call by Reference. Recursion.

UNIT IV STRUCTURES& POINTERS

Structures definition, giving values to members, Structure initialization, comparison of structure variables, Structure within structures, Understanding pointers, accessing the address of the variable, declaring and initializing pointer, accessing a variable through its pointer and arrays

UNIT V MS-OFFICE

Introduction to MS-Word- Menus- Introduction to MS-Excel: features of MS- Excel, spread sheet/worksheet, parts of MS-excel window, functions in excel sheet, chart, Introduction to MS-Power point

Total No. of Periods: 30

TEXT BOOKS:

- 1. E.Balaguruswamy, Programming in ANSI C
- 2. Padma Reddy ,Computer Concepts & 'C' Programming
- 3. ShobhaHangirke,Computer Application For Business List of Experiments : C PROGRAMMING
- 1. Find the factorial of a given positive number using function.
- 2. Calculate X raised to y using function.
- 3. Find GCD and LCM of two given integer numbers using function.
- 4. Find the sum of N natural numbers using function.
- 5. Book information using Structure.
- 6. Student information using Structure.
- 7. Print the address of a variable and its value using Pointer
- 8. Find area and perimeter of a circle
- 9. Check whether the given number is palindrome or not
- 10. Check whether the given number is prime or not
- 11. Calculate sum of the digits of the given number
- 12. Display Fibonacci series up to N terms
- 13. Check whether a given character is alphabetic, numeric or special character
- 14. Count vowels and consonants in a given string

15. Find product of two matrices **MS-OFFICE**

- 16. Preparing a news letter:
- 17. To prepare a newsletter with borders, two columns text, header and footer and inserting a graphic image and page layout.
- 18. Creating and editing the table
- 19. Printing envelopes and mail merge.
- 20. Using formulas and functions: To prepare a Worksheet showing the monthly sales of a company in different branch offices
- 21. Prepare a Statement for displaying Result of 10 students in 5 subjects

6

6

SEMESTER II

	JOI . ZOIO Celtine	a mananon)
erivar E.V.R. High Road	, Maduravoval, Chen	nai-95. Tamilnadu, India.

Subject Code: EBMA22003	Su	bject Na	ame : M	MATIC			Ty/I E	Lb/ TL]	Ĺ	T/ S.Lr	P/F	2	С		
	D				1	1			-			2	1/0	0/0		-
C. Cradita I. I	Pre	erequisit	e: Higne	r second	ary Mat	nematic	:S	D. D.,		<u>y</u>		3	1/0	0/0		4
C: Creans, L: I		2, 1: 1u	ional, S	Lr: Su	pervised	1 Learn	ing, i	P: Pr		1 / Pra		11 				
R: Research, T	y/Lb/E	L1L/IE:	Theory	/Lab/E	mbedde	d Theo	ry ar	nd La	ib/Inte	rnal .	Evalu	atio	n			
OBJECTIVES	:															
The student sh	ould b	e made 1	:0:													
To be able to unde	erstand l	basic con	cepts in i	ntegratio	n											
To understand the	concep	in ordina	uple inte	grais	ations											
To be able to appl	v conce	concepts of analytical geometry														
To be able to upp	erstand the basic concept of vector calculus															
COURSE OUT	COMES (COs):															
CO1	Int	UMES (COs): Integrate the given function by using methods of integration and to find the area under curve and the volume													ame	
	of	of a solid by revaluation														
CO2	Ev	aluate the	multiple	integral	s /area/vo	lume an	d to ch	hange	the or	ler of	integra	ation				
CO3	Ap	bly concepts in Ordinary Differential equations and to solveeulers differential equation														
CO4	Fir	d equation	n of plar	es, lines	and sphe	re and s	hortes	t dista	ance be	tween	skew	lines				
C05	Ve	rifv greer	stokes/s	gauss div	ergence t	neorem										
Manning of Cor	urse O	utcomes	with P	rogram	Outcom	es (PO	s)									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	 P	07	PO8	Р	79	PO	10	PO11	PO	12
CO1	3	3	2	2	2	2	-	1	2		2		2	1		3
CO2	3	3	1	2	2	3		2	2		3		3	2		2
CO3	3	3	1	2	2	3		1	1		3		3	2		2
CO4	3	3	2	2	1	2		2	2		2		3	2		2
CO5	3	3	1	2	2	2		2	1		2		3	1		<u>-</u> 2
COs / PSOs	5	PSO1	1		– PS	$\frac{1}{02}$		Ī	-	PSC	<u>-</u>			PS	14	
00371505		1001	L		10	02				150				10	74	
CO1		3			2	2				1				2		
CO2		3			2	2				1				2		
CO3		3			2	2				1				2		
CO4		3			2	2				1				2		
CO5		3			2	2				1				2		
3/2/1 Indicates	Streng	th Of Co	orrelatio	on, 3 – I	High, 2-	Mediur	n, 1-	Low								
			T S			_				. 11						
	ces	50	and	Jre		N PO	5			ps / Ski						1
<i>y</i>	ien	ing	ecti s lies							shi	\mathbf{ls}					1
goi	Sc	lee1	mit I S	am	am	Ves F1,		cal	t	erne	ikil					1
ate	sic	gin	ma cial	en len len					jec	Int(sch	ft S					1
Ŭ	Ba	En Sci	Hu Soc	Prc	Prc	<u>ă</u>	2	\Pr_{Σ}	Pr(Ē	So					
																l.

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code : EBMA22003	Subject Name : MATHEMATICS – II	Ty/Lb /ETL	L	T/ SLr	P/R	С
	Prerequisite : None	Ту	3	1/0	0/0	4

1. INTEGRATION

Basic concepts of Integration – Methods of Integration– Integration by substitution – Integration by parts – Definite integrals– Properties of definite integrals – Problems on finding Area and Volume using single integrals (simple problems).

2. MULTIPLE INTEGRALS

Double integral in Cartesian and Polar Co-ordinates – Change of order of integration – Triple integral in Cartesian Co-ordinates – Spherical Polar Co-ordinates – Change of variables (simple problems).

3. ORDINARY DIFFERENTIAL EQUATIONS

First order differential equations – Second and higher order linear differential equations with constant coefficients and with RHS of the form: e^{ax} , x^n , Sin ax, Cos ax, $e^{ax}f(x)$, x f(x) where f(x) is Sin bx or Cos bx – Differential equations with variable coefficients (Euler's form) (simple problems).

4. THREE DIMENSIONAL ANALYTICAL GEOMETRY

Direction Cosines and Ratios – Equation of a straight line – Angle between two lines – Equation of a plane – Coplanar lines – Shortest distance between skew lines – Sphere – Tangent plane.

5. VECTOR CALCULUS

Scalar and Vector functions – Differentiation – Gradient, Divergence and Curl – Directional derivatives – Irrotational and Solenoidal fields– Line, Surface and Volume integrals – Green's, Stoke's and Gauss divergence theorems (statement only) – Verification.

Total no. of Periods: 60

Reference Books:

- 1) Kreyszig E., Advanced Engineering Mathematics (10th ed.), John Wiley & Sons, (2011).
- 2) Grewal B.S., *Higher Engineering Mathematics*, Khanna Publishers, (2012).
- 3) John Bird, *Basic Engineering Mathematics* (5th ed.), Elsevier Ltd, (2010).
- 4) Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).
- 5) P.Kandasamy, K.Thilagavathy and K. Gunavathy, *Engineering Mathematics Vol. I* (4th *Revised ed.*), S.Chand& Co., Publishers, New Delhi (2000).
- 6) John Bird, *Higher Engineering Mathematics* (5th ed.), Elsevier Ltd, (2006).

12

12

12

12

EDUCATIONAL AND RESEARCH INSTITUTE	South At B
DEEMED TO BE UNIVERSITY	****
University with Graded Autonomy Status	
(An ISO 21001 : 2018 Certified Institution)	

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.																
Subject	Code	Su	bject Na	me: E	NGINEER	ING MI	ECHA	NICS		Ty/Lb/	L	Τ/	P/R	С		
EBPH2	2002		(FORAU	IO, MECH, V			11(5)		ETL		SLr				
	2002	Pr	erequisi	te: Engi	neering Ph	ysics				Ту	3	0/0	0/0	3		
L : Lectu	ure T :	Tutoria	1 SLr :	Supervi	sed Learnir	ng P:P	roject	R : Rese	earch C:	Credits						
T/L/ETL	. : The	ory/Lab	/Embedd	ded Theo	ory and Lab	1										
OBJEC	TIVE	:														
	• Ba	isic prin	ciples of	stress, s	train and el	astic cor	istants									
	• To	o draw sl	floction	e and be	nding mom	ent diag	ram									
	• 10) IIIu ue	COURSE OUTCOMES (COs) : (3- 5)													
CO1		Articul	rticulate a strong foundation in understanding kinematics & Kinetics													
			lentify and use the fundamentals of mechanics, static and dynamic equilibrium													
CO2	-	Identify	and use	e the fu	ndamental	s of mee	chanic	es, static	c and d	ynamic eq	uilibriu	m				
CO3		Enhanc	e the pr	oblem s	olving skil	mics										
CO4		Develo	evelop analytical skills to identify different types of motion													
CO5		Articula	ate mod	els to ac	quire know	wledge	on ma	athemat	ical, an	alytical sk	tills					
			Mapping of Course Outcomes with Program Outcomes (POs)													
Cos/Pos		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	,, PO10	PO11	PO	12		
CO1		3	3	2	2	2	1	1	100		2	1011		1		
CO2		3	3	1	2	2	1	1		1	2			1		
CO3		3	3	3	3	2	2	2	1		2	1		1		
CO4		3	3	3	3	2	2	1	1	3	2	1 1				
CO5		3	2	2	2	2	1	1	1	2	2	1		1		
Cos / PS	SOs	PS	501	P	SO2	PS	03	PS	504							
CO1			3		3	1			2							
CO2			3		3	1			2							
CO3			3		3	1			2							
CO4			3		3	1			2							
CO5			3		3	1			2							
3/2/1 indi	icates	Strengt	h of Cor	relation	a 3- High,	2- Medi	ium, 1	-Low	<u> </u>							
			lce	cial		e		~								
			cier	l so		ctiv		nary	ent	ject						
		nce	Š	anc	ore	ele	ve	iplir	noq	Pro						
	ry	Scie	ring	ties	CC	ram	lecti	lisci	om	al /						
	ego	sic 5	nee	nce	,ran	rogi	n El	er D	II C	ctic						
	Cat	Ba	Ingi	Hun Scie	rog	P.	Dpe	Int	Ski	Pra						
												1				
													1			

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code:	Subject Name : ENGINEERING MECHANICS	Ty/Lb/	L	Τ/	P/R	С
EDD1122002		ETL		SLr		
EBPH22002	Prerequisite: Engineering Physics	Ту	3	0/0	0/0	3

UNIT I STATICS OF PARTICLE

Introduction – units and Dimensions – Laws of mechanics – concurrent forces in a plane-resolution and Composition of forces – equilibrium of the particle-resultant force. Forces in space – Equilibrium of a particle in space – Rigid body - Moments and couples -moment of a force about a point and about an axis – Equilibrium of rigid bodies

UNIT II PROPERTIES OF SURFACE AND SOLIDS

EDUCAT

Determination of Area and volume – Determination and derivation of First moment of area (Centroid), Second moment of area (Moment of Inertia) geometrical area Mass moment of inertia and polar moment of inertia.Principal moments of inertia of plane areas

UNIT IIIFRICTION

Introduction – Laws of Dry Friction – Coefficient of friction – friction of a body lying on an inclined plane. Application of friction-Ladder friction-Wedge friction-Screw friction.

UNITIVDYNAMICS OF PARTICLES

KINEMATICS: Displacement, Velocity-Constant and variable Acceleration, their relationship – linear and curvilinear motion- Projectile motion, relative motion.

KINETICS: Linear and Curvilinear motion- Impulse and Momentum, Impact-collision of Elastic bodies. Newton's law-D'Alemberts principle.

UNITV DYNAMICS OF RIGID BODIES

KINEMATICS: Introduction-Rotation-Linear and Angular Velocity as well as acceleration. General plane motion-Absolute and Relative velocity in plane motion.

KINETICS: Relation between Translatory and Rotary motion of the body-Work energy equation of particles –D'Alemberts principle.

TEXT BOOKS & REFERENCE BOOKS

- 1) R.S.Khurmi. (2008), "A Textbook of Engineering Mechanics", S.Chand& co Ltd.
- 2) S.Rajasekaran et.al. (2009), "*Fundamentals of Engineering Mechanics*", Vikas Publishing House Pvt Ltd., 3rd Edition.
- 3) Arthur.P.Boresi,Richard.J.Schmidt, "Engineering Mechanics : Statics & Dynamics", Thomson Brooks/Cole,Chennai.
- 4) Palanichamy M.S, Nagan.S, (2001), "Engineering Mechanics Statics and Dynamics" Tata Mc Graw Hill.
- 5) Beer & Johnson et.al, (2010) "Vector Mechanics for Engineers (Statics and Dynamics)", Tata Mc Graw Hill

Total No. of Periods: 45

9

9

9

9

Subject Coc	le	S	ubject]	Name :	INDUS	TRIAI	4		7	Ty/Lb	/ I		T/S	SLr	P/I	2	С
EBCH2200	02	C	HEMI	5181						EIL							
		P	erequi	site :Er	ngg. Che	emistry			r	Ty	3	;	0	/0	0/0		3
C: Credits,	L:	Lectur	e, T: T	utoria	l, SLr:	Superv	vised L	earn	ing,	P: Pro	oblem	/ Pr	acti	cal			
R: Researc	h, 7	Гу/Lb/F	TL/IE	E: Theo	ory /La	b/Embe	edded '	Theo	ry a	and La	b/Inter	nal	Eva	luati	on		
OBJECTIV	VES	5			•												
OBJECTIV	ES	:															
1.Tounderst	stand and apply the basic concepts of fuels and combustion in automobiles.																
2. To analyz	ze the moisture and protein in food through physical and chemical methods. t the industrial development aiming at job creators.																
4.To detect a	o detect the industrial development aiming at job creators. o demonstrate the operations of pulp and paper Industry.																
5. To illustra	emonstrate the operations of pulp and paper industry. llustrate the fundamentals of industrial wastewater treatment. DEF OUTCOMES (Constrained)																
COURSE (E OUTCOMES (Cos)																
Students co	mpleting this course were able to																
CO1	Re	Reproduce the understanding of industry oriented chemical science															
CO2	Ar pr	nalyze the solutions for industrybased problems for sustainable development following rofessional ethics.												owing			
CO3	Âŗ	pply appropriate techniques for industrial development as a resource of life long learning.															
CO4	De	Develop the reasoning nature by the knowledge acquired to assess the health and safety issues.															
CO5	De	Describe the tools used to apply the engineering knowledge															
Mapping of	f Co	ourse O	utcom	e with	Progra	m Out	come (l	POs)									
Cos/POs		PO1	PO2	PO3	PO4	PO5	PO6	PO	7]	PO8	PO9	PC	010	PO1	1 1	PO12	2
CO1		3	3	-				3									
CO2		3		3	3												3
<u>CO3</u>		3		2			2	3	_	2					_		3
CO4		3		3		2		2		3							2
COS/PSOs		3	DCO	1				3	1	DSO2			DSC	74			3
CO1			P50	1		P302				P305	2		P30	J 4	2		
CO^2				3							3				3		
CO3				3							<u>२</u>				3 3		
CO4				3							3				3		
CO5				3							3				3		
3/2/1 Indica	ates	Streng	th Of (Correla	ation, 3	– High	, 2- M	ediur	n, 1-	- Low					-		
	T				Ч										Ī		
					cie		ve			Y						L.	
					d sc		cti			nar			len			je:	
		nce	br	\	an	ore	ele		ive	ipli			Iod			Pro	
Ŋ		cie	om isci am CC					al /									
080		ic	Jee	Ice	ani Ice	am	190	c	Ξ	r D					ctic		
Cate		3as	ıgi	cier	um xien	1g0	P.		pen	nte		Skil Srac			Prac		
<u> </u>	-+		Ē	Š	Ϋ́Η	P1			Ō				• 1			Η	
		v															

An ISO 21001 : 2018 Certified Institution Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code EBCH22002	Subject Name : INDUSTRIAL CHEMISTRY	Ty/Lb/ ETL	L	T/SLr	P/R	С
	Prerequisite : Engineering Chemistry	Ту	2	0/1	0/0	3

UNIT - 1 FUELS & COMBUSTION

Fuels - classification, calorific value, GCV, NCV, Solid fuels-coal - varieties and ranking, analysis -Proximate Carbonisation of coal, Coke -manufacture, Beehive coke oven method, Otto Hoffmann method - recovering by products - Liquid fuels - petrol -refining-cracking- thermal & catalytic, Synthetic petrol - Hydrogenation of coal (Fischer Tropsch Process and Bergius process) – Polymerization, Knocking properties of Gasoline –octane number, cetane number - Ignition lag, Leaded petrol, Reforming, Gaseous fuels- manufacture and uses Combustion - Flue gas analysis – Orsatapparatus. Alternative fuel-Electric vehicles

UNIT2 FOOD ANALYSIS

Food analysis-Introduction. Moisture Analysis-Introduction-Moisture content of foods-Sample collection and handling-Forms of water in foods- Distillation procedure-Reflux distillation with immiscible solvent,-Physical methods-Direct method-Hydrometer, -Refractometry -Chemical method-Karl Fischer titration- Protein analysis-Kjeldahl method-Dumas combustion method.

UNIT – 3 APPLICATIONS IN PAPER INDUSTRY

EDUCAT

Introduction-Manufacture of pulp-Mechanical process-Chemical process-Beating, Refining, Filling, Sizing and Colouring-Manufacture of paper-Calendering-Bagasse utilization in paper industry. 9

UNIT - 4 BUSINESS CHEMICALS

Toiletry formulations-Soaps and detergent, shampoo, Shaving cream, production. Preparation of cosmeticsmoisturizing cream, talcum powder, Nail enamel, Lipstick. Disinfectantsphenyl, hand sanitizer,bleach,causticsoda,naphthalene balls production.

UNIT - 5 INDUSTRIAL WASTES AND TREATMENT PROCESS

Introduction-Characteristics of industrial waste-Types of industrial wastes-Solid industrial wastes-Principles of industrial waste treatment-Treatment and disposal of industrial waste-Sanitary-Chemical analysis of industrial effluents or sewage-Method of treating industrial sludge.

References

- 1. Rama Rao Nadendla, Principles of Organic Medicinal Chemistry, New Age International (P) Limited, Publishers.
- 2. H.D.Belitz, W.Grosch, P.Schieberle, Food Chemistry Springer
- 3. Industrial chemistry by B.K.Sharma, KrisnaPrakashan Media(P) Ltd, Publishers.
- 4. Industrial Chemistry C. S. Unnithan, T. Jayachandran & P. Udhayakala, Sree Lakshmi Publications 2010
- 5. John A.Tyrell, Fundamentals of Industrial Chemistry, , Wiley.
- 6. Ernest M. Flick, Cosmetic and Toiletry Formulations, 2nd Edition, Volume 8, Noyes Publications, William Andrew Publishing, LLC.

Total No. of Periods: 45

Q

Subject Coo	le	Subj	ject N	ame :	ENGIN	EERIN	G GR	APHI	ICS		Ty/Lb/ ETL	L	T	/SLr	P/R	C		
EBME2200	1	Prer	requis	ite : N	one						Ту	2		0/0	2/0	3		
C: Credits,	L: L	ecture	e, T: 7	Futoria	ıl, SLr:	Super	rvised	Lea	rnin	g, P:	Problem	/ P1	actio	cal				
R: Research	n, Ty	/Lb/E	ETL/I	E: The	ory /La	ıb/Emt	bedde	d Th	eory	and	Lab/Inter	mal	Eva	luatio	n			
OBJECTIV	ES				·													
• To a	acqui	re kn	owled	dge in	geome	trical d	rawin	g.										
• To (I NVDO	a tha	atud	onto in	compu	itor oid	ad dr	oftin	a									
	To expose the students in computer aided drafting. COURSE OUTCOMES (Cos)																	
Students cor	COURSE OUTCOMES (Cos) Students completing this course were able to																	
CO1	Utilize the concept of Engineering Graphics Techniques to draft letters, Numbers,																	
001	Dimensioning in Indian Standards																	
CO2	Demonstrate the drafting practice visualization and projection skills useful for conveying ideas																	
	in en	gineer	ring a	pplicati	ons.				I	5					- (-		
CO3	Ident	Identify basic sketching techniques of engineering equipments																
CO4	Demonstrate the projections of Points, Lines, Planes and Solids. And																	
CO5	Draw the sectional view of simple building drawing.																	
Mapping of	of Course Outcome with Program Outcome (POs)																	
Cos/POs	P	O1 1	PO2	PO3	PO4	PO5	PO6	PO	D7	PO8	PO9	PO	D10	PO1	1 F	PO12		
CO1	3		3	3	2	2	2				3	3			3			
CO2	3		3	3	2	2	2				3	3			3			
CO3	3		3	3	1		2				2	2			2			
CO4	3		3	2	2	_	3			2	3	3			3			
CO5	3		3	3	2	3	1			2	3	3		<u> </u>	3			
			PSO	1		PSO2			P	SO3			PSG	J 4				
COI							2											
C02							2		_									
CO3							2		_									
C04							2											
2/2/1 Indian	tos S	trong	th Of	Correl	lation '	3 Uia	 h ? ≀	Mod:	um	1_ T	111							
	105 3	u eng		Corre	auvii,	<u>- mg</u>	11, 2- 1	vieul	ulli,	1-10	J VV							
					ial													
					soc			ПVС			пу		nt			ç		
		e			pu	0		i ac	a)				one			oje		
	npor cip						/Pt											
ory	τ. Σ	2C	erii	0	itie	n C		al al	llec				CO CO			cal		
teg		sic	ine	ince	nan	grai		Ĩ	пE	-						acti		
Ca	É	Ъа	gu	cie	Hun	rog		4)pe				Pr:					
				\checkmark	цN		✓		U			+						

47

Projection of points and straight lines located in the first quadrant - Determination	ion of true lengths and true
inclinations - projection of polygonal surface and circular lamina in simple position onl	ly.
UNIT II PROJECTION OF SOLIDS	10
Projection of simple solids like prism, pyramid, cylinder and cone in simple position	
Sectioning of above solids in simple vertical position by cutting plane inclined to any o	one of the reference plane and
perpendicular to the other.	-
UNIT III DEVELOPMMENT OF SURFACES	9
Development of lateral surfaces of simple and truncated solids - prisms, pyramids, cylin	nders, and cones.
UNIT IVISOMETRIC PROJECTION	9
Principles of isometric projection – isometric scale – isometric projections of simple	solids, like prisms pyramids,
cylinders and cones.	
UNIT V ORTHOGRAPHICS PROJECTIONS	8
Orthographic projection of simple machine parts – missing views	
BUILDING DRAWING	7
Building components – front, Top and sectional view of a security shed.	
(Basic Auto CAD commands to be taught- not for Examinations)	
Total No. of	Periods: 60

Note: First angle projection to be followed.

TEXT BOOKS

1.

2.

3.

4.

Subject Code

EBME22001

Introduction to drawing, importance and areas of applications - BIS standards - IS: 10711 - 2001 : Technical products Documentation - Size and layout of drawing sheets - IS 9606 - 2001: Technical products Documentation -Lettering - IS 10714 & SP 46 - 2003: Dimensioning of Technical Drawings - IS : 15021 - 2001 : Technical drawings – Projections Methods – drawing Instruments, Lettering Practice – Line types and dimensioning – Border lines, lines title blocks Construction of polygons - conic sections - Ellipse, Parabola, Hyperbola and cycloids. UNIT IPROJECTION OF POINTS, LINES AND PLANE SURFACES 12 ue

CONCEPTS AND CONVENTIONS (Not for examination)

Prerequisite : None

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Name : ENGINEERING GRAPHICS

Bhatt, N.D. and Panchal, V.M. (2014) Engineering Drawing Charotar Publishing House

Gopalakrishnan, K.R. (2014) Engineering Drawing (Vol.I& II Combined) Subhas Stores, Bangalore.

Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2008.

Natrajan K.V., "A Text Book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2018.

T/SLr

0/0

P/R

2/0

5

С

3

L

2

Ty/Lb/

ETL

Ty

Subject Code EBME22002	: Su	bject Na	ame : EN	GINEE	RING N	IETAL	LURG	Y	Ty/Lb/	L	T/ SI r	P/R	C			
	Pro	ereauisi	te: -							3		0/0	3			
L : Lecture T :	Tutoria	I SLr:	Supervise	ed Learr	ning P:	Project	R : Rese	earch C:	Credits	C	0/0	0/0				
T/L/ETL : The	eory/Lab	/Embed	ded Theor	y and L	ab	5										
OBJECTIVE	:															
• To und	derstand	differen	t material	s and th	eir meta	llurgica	l propert	ies.								
COUNCE OF	TCOM															
COURSE OU	TCOM	ES (CO	(3-5)) Studei	nts will	be able	to		1 2)							
		mprehend the properties and applications of ferrous and non ferrous metals (Level 2)														
CO2 0	Compret	iend the	propertie	s and ap	plicatio	rous and	s and non terrous metals (Level 2)									
CO3	Demonst	ration a	bout phase	e diagra	$\frac{\text{ms and }}{1}$	g the fun	damenta	uls of Heat	treatme	nt (Level	3)	. 1				
CO4	Analyzin Loval I	analyzing and comparing the mechanisms behind deformation strengthening and fail $(aval I A)$											netals			
CO5	Level L Evaluation	Level L4)														
Manning of C	Course O	valuation and selection of metals, with herars Automes (Pos)														
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	/ PO7	PO8	PO9	PO10	PO11	PO	12			
CO1	2	2	2	2	1	1	-	1	1	1			1			
CO2	2	1	2	1	-	2	2	2	2	1	-		1			
CO3	3	3	3	3	2	3	3	2	3	2	_		1			
CO4	3	3	3	3	3	3	3	2	3	2	-		1			
CO5	2	3	2	2	2	2	2	2	2	2	2		1			
Cos / PSOs	PS	01	PSC)2	PS	503	PS	SO4								
CO1]	l	2			1		1								
CO2		2	2			2		1								
CO3		3	2			3		2								
CO4	3	3	2			3		3								
CO5	2	2	2			2		2								
3/2/1 indicates	Strengt	h of Co	rrelation	3- Hig	h, 2- M	edium,	1-Low									
			_													
			cia		e		~									
			so		ctiv		lary	ent	ect							
ory	lce		and	e	elec	/e	olin	one	roj							
teg	cier	ing	es	Co	n B	ctiv	scif	du	17							
Ca	S	eeri.	niti če	E	gra	Ele	Di	C	ica							
	asic	gine	ma enc	gre	Pro	en	iter	kill	act							
	B	En; Sci	Hu Sci	Prc		Op	In	S	<u> </u>							
				\checkmark												

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code:	Subject Name : ENGINEERING METALLURGY	Ty/Lb/	L	Τ/	P/R	С
EDMEAAAA		ETL		SLr		
EBME22002	Prerequisite:	Ту	3	0/0	0/0	3

UNIT- I: CRYSTALLOGRAPHY AND STRENGTHENING MECHANISMS

Crystalline and amorphous solids - UNIT- cell and primitive cell - Miller indices BCC, FCC and HCP crystal structures and their packing factors –Crystallization- Crystal defects - Effect of crystal imperfections in mechanical properties-Dislocations- strengthening mechanisms for the improvement of mechanical properties.

UNIT- II: FERROUS AND NON FERROUS METALS

DUCAT

Significance of Phase diagram-(Eutectic and Eutectoid alloy system)-Equilibrium and Non- Equilibrium cooling-Allotrophy of Iron-iron carbon phase diagram.

Classification of Steels and Cast Iron-Microstructure of Iron and Steel- Cast Irons - Grey, White malleable, spheroidal –Effect of alloying elements on steel - stainless and tool steels. Copper and Copper alloys - Brass, Bronze and Cupronickel –Aluminum and Al-Cu alloy

UNIT- III: HEAT TREATMENT AND TESTING

Definition - Classification of heat treatment process - Purpose of heat treatment -Principles (fundamentals) of heat treatment - Annealing –Re-crystallization- Normalizing - Hardening-TTT-CCT Cooling curves- Tempering - Interrupted quenching - Testing of materials - Destructive testing - Tensile, Compression, Hardness, Impact, Torsion, Fatigue. Non-destructive testing - Visual inspection, Hammer test, Radiography, Ultrasonic inspection.

UNIT- IV: FAILURE MODES AND ITS PREVENTIONS

Plastic deformation-Fracture - Mechanism of brittle fracture (Griffith's theory) and ductile fracture -Difference between brittle and ductile fractures - Fatigue failure and its prevention - Creep - different stages in creep curve - Factors affecting creep resistant materials -Mechanism of creep fracture.

UNIT- V: NON METALLIC AND NEWER MATERIALS

Types, Properties and Application: Polymers, Ceramics and Metal matrix Composites –Super alloys, Nanomaterials- carbon and metal based materials, Smart materials and their properties

TEXT BOOKS

- 1) Avner, (1997) "Introduction to Physical Metallurgy", McGraw Hill International Book., second edition.
- 2) Williams D Callister, (2007) *"Material Science and Engineering"*, Wiley India Pvt Ltd, Revised Indian Edition.

REFERENCES

- 1) Raghavan, V., (2006) "Materials Science and Engineering", Prentice Hall of India Pvt., Ltd.," 5 th edition.
- 2) Muralidhara. M.K. (1998) "Material science and Process", Danpat Rai Publishing.
- 3) Nayak, S.P., (1985) "Engineering Metallurgy and Material Science", Character Publishing House, Anand, India.
- 4) Van Vlack, (1970) "Material Science for Engineers", Addison Wesley, 10985,
- 5) Arumugam, M., (1997) "Material Science", Anuradha Publishers.
- 6) O.P. Kanna (1999) "Material Science and Metallurgy", Prentice Hall of India Pvt., Ltd.

49

9

9

Q

9

9

Total No. of Periods: 45

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Subject EBCC22	Code 2102	S E	ubject NGLI	Name ISH L	: COM	1MUN	ICAT	IVE		T F	y/Lb/ ETL/IE	L	T/SLr	P/R	С
C: Credits, L: Lecture, T: Tutorial, SLr: Supervised Learning, P: Problem / Practical R: Research, Ty/Lb/ETL/IE: Theory /Lab/Embedded Theory and Lab/Internal Evaluation OBJECTIVES • To engage students in meaningful oral English communication and organized academic and professional reading and writing for a successful career. COURSE COUTCOMES (Cos) Students completing this course were able to CO1 Engage in meaningful oral communication in English with writing as a scaffolding activity. CO2 Have an in-depth understanding of the components of English language and its use in oral communication. CO3 Strengthen their vocabulary and syntactic knowledge for use in academic and technical communication CO4 Learn to negotiate meaning in inter-personal and academic communication for a successful career. CO5 Engage in organized academic and professional writing for life-long learning and research Mapping of Course Outcome with Program Outcome (POs) Cool 1 CO3 1 1 3 2 1 1 3 3 1 2 CO3 PO1 PO2 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO3 1 1 1 2 3 1 2 2			P	rerequi	site :Pa	ss in Pl	lus 2 En	glish				IE	1	0/0	1/0	1
R: Research, Ty/Lb/ETL/IE: Theory /Lab/Embedded Theory and Lab/Internal Evaluation OBJECTIVES • To engage students in meaningful oral English communication and organized academic and professional reading and writing for a successful career. COURSE OUTCOMES (Cos) Students course were able to CO1 Engage in meaningful oral communication in English with writing as a scatfolding activity. CO2 Have an in-depth understanding of the components of English language and its use in oral communication. CO3 Strengthen their vocabulary and syntactic knowledge for use in academic and technical communication CO4 Learn to negotiate meaning in inter-personal and academic communication for a successful career. CO5 Engage in organized academic and professional writing for life-long learning and research Mapping of Course Outcome with Program Outcome (POS) Co3 1 1 3 2 1 1 3 1 2 Co4 1 1 1 3 1 2 3 1 2 Co5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO10 PO11	C: Cred	its, L	: Lec	cture, T	Γ: Tuto	orial, S	Lr: Su	pervise	ed Le	arnin	g, F	P: Probler	m / Prac	ctical		
OBJECTIVES • To engage students in meaningful oral English communication and organized academic an professional reading and writing for a successful career. COURSE OUTCOMES (Cos) Students completing this course were able to CO1 Engage in meaningful oral communication in English with writing as a scaffolding activity. CO2 Have an in-depth understanding of the components of English language and its use in oral communication CO3 Strengthen their vocabulary and syntactic knowledge for use in academic and technical communication CO4 Learn to negotiate meaning in inter-personal and academic communication for a successful career. Co5 Engage in organized academic and professional writing for life-long learning and research Mapping of Course Outcome with Program Outcome (POs) CO3 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO3 1 1 1 2 3 1 2 2 - 3 1 2 CO4 2 1 - 2 3 1 2	R: Rese	arch,	Ty/L	b/ETI	L/IE: T	Theory	/Lab/E	mbedd	led T	heory	an	d Lab/Int	ternal E	valuatio	n	
To engage students in meaningful oral English communication and organized academic and professional reading and writing for a successful career. COURSE OUTCOMES (Cos) Students completing this course were able to CO1 Engage in meaningful oral communication in English with writing as a scaffolding activity. CO2 Have an in-depth understanding of the components of English language and its use in oral communication. CO3 Strengthen their vocabulary and syntactic knowledge for use in academic and technical communication CO4 Learn to negotiate meaning in inter-personal and academic communication for a successful career. CO5 Engage in organized academic and professional writing for life-long learning and research Mapping of Course Outcome with Program Outcome (POs) Cos/PO8 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 1 - 1 1 3 2 1 1 1 3 3 1 - 2 3 3 1 2 2 Co3 CO4 2 1 1 1 3 3 3 1 2 3 3 1 2 2 3 3 1 2 2 Co3 CO5 - 1 1 1 2 3 1 1 2 3 3 1 2 2 3 3 1 1 2 2 CO3 CO5 - 1 1 1 2 3 1 1 2 2 3 1 1 1 2 2 3 CO5 - 1 1 1 2 2 3 1 1 2 CO3 CO4 2 C CO1 CO2 2 C CO4 CO1 CO2 C 2 C CO4 CO1 CO2 C CO4 C CO1 CO3 C Correlation, 3 - High, 2 - Medium, 1 - CO3 CO3 C CO4 C CO1 CO3 C CO4 C CO1 C CO4 C CO1 C CO4 C CO4 C CO1 C CO4 C C C C	OBJEC	ΓΙΥΕ	S			-										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	• 7	Го er	ngage	e stude	ents in	mean	ingful	oral E	Inglis	h coi	nmı	unication	and o	rganized	academi	c and
COURSE COURSE (COS) Students completing this course were able to CO1 Engage in meaningful oral communication in English with writing as a scaffolding activity. CO2 Have an in-depth understanding of the components of English language and its use in oral communication CO3 Strengthen their vocabulary and syntactic knowledge for use in academic and technical communication CO4 Learn to negotiate meaning in inter-personal and academic communication for a successful career. Mapping of Course Outcome with Program Outcome (POS) Cos/POS PO1 PO2 PO8 PO9 PO10 PO11 PO12 CO4 1 1 1 2 2 CO4 1 1 2 2 2 CO4 1 1 2 2 2 2 2 2 2 2 2 2 2 <td>1</td> <td>profes</td> <td>siona</td> <td>al readi</td> <td>ng and</td> <td>writing</td> <td>for a su</td> <td>uccessf</td> <td>ul cai</td> <td>eer.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1	profes	siona	al readi	ng and	writing	for a su	uccessf	ul cai	eer.						
Students completing this course were able to CO1 Engage in meaningful oral communication in English with writing as a scaffolding activity. CO2 Have an in-depth understanding of the components of English language and its use in oral communication. CO3 Strengthen their vocabulary and syntactic knowledge for use in academic and technical communication CO4 Learn to negotiate meaning in inter-personal and academic communication for a successful career. CO5 Engage in organized academic and professional writing for life-long learning and research Mapping of Course Outcome with Program Outcome (PO3) Cos/POs PO1 PO12 CO3 1 1 2 1 1 CO4 PO1 PO12 Cos/PO3 PO4 PO5 PO6 PO1 PO12 CO4 1 1 2 2 1 1 Co3 PO1 PO1 <t< td=""><td>COURS</td><td>E OU</td><td>TCC</td><td>OMES</td><td>(Cos)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	COURS	E OU	TCC	OMES	(Cos)											
CO1Engage in meaningful oral communication in English with writing as a scaffolding activity.CO2Have an in-depth understanding of the components of English language and its use in oral communication.CO3Strengthen their vocabulary and syntactic knowledge for use in academic and technical communicationCO4Learn to negotiate meaning in inter-personal and academic communication for a successful career.CO5Engage in organized academic and professional writing for life-long learning and researchMapping of Course Outcome with Program Outcome (POs)CO3PO1PO1PO11PO12CO3PO1PO11PO11PO12CO3PO1PO11PO11PO11PO12CO3PO1PO11CO3P<1 <th< td=""><td>Students</td><td>comp</td><td>oletin</td><td>g this c</td><td>course v</td><td>were ab</td><td>le to</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Students	comp	oletin	g this c	course v	were ab	le to									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CO1	Enga	ge in	meanin	gful ora	l commu	unicatior	in Eng	lish w	ith wri	iting	as a scaffe	olding ac	tivity.		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CO2	Have	an in	-depth	understa	unding o	f the cor	nponent	s of E	nglish	lang	guage and	its use in	oral com	nunication	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CO3	Strengthen their vocabulary and syntactic knowledge for use in academic and technical communication														
$ \begin{array}{ c c c c c c c } \hline CO5 & Engage in organized academic and professional writing for life-long learning and research \\ \hline Mapping of Course Outcome with Program Outcome (POS) \\ \hline Cos/POs & PO1 & PO2 & PO3 & PO4 & PO5 & PO6 & PO7 & PO8 & PO9 & PO10 & PO11 & PO12 \\ \hline Cos/POs & PO1 & 1 & - & 1 & 1 & 3 & 2 & 1 & 1 & 3 & 3 & - & 3 \\ \hline Cos & 1 & 1 & - & 1 & 1 & 2 & 1 & 2 & 3 & 3 & 1 & 2 \\ \hline CO3 & 1 & 1 & 1 & 1 & 2 & 3 & 1 & 2 & 1 & 2 & 2 & - & 3 \\ \hline CO3 & 1 & 1 & 1 & 1 & 2 & 3 & 1 & 1 & - & 2 & 3 & 1 & 1 & 2 \\ \hline CO3 & 1 & 1 & 1 & 1 & 2 & 3 & 1 & 1 & - & 3 & 1 & 1 & 2 \\ \hline CO4 & 1 & - & - & 2 & 3 & 1 & 1 & - & 3 & 1 & 1 & 2 \\ \hline CO5 & - & 1 & 1 & 2 & 3 & 1 & 1 & - & 3 & 1 & 1 & 2 \\ \hline CO6 & PSO & PSO & PSO & PSO & PSO & PSO & \hline CO1 & 2 & & & 1 & - & \\ \hline CO2 & 2 & & & & 1 & - & & 1 \\ \hline CO3 & 2 & & & & & 1 & - & & \\ \hline CO4 & 2 & & & & & 1 & & \\ \hline CO4 & 2 & & & & & & 1 & & \\ \hline CO4 & 2 & & & & & & 1 & & \\ \hline CO4 & 2 & & & & & & & 1 & \\ \hline CO5 & 2 & & & & & & & 1 & \\ \hline CO4 & 2 & & & & & & & & & 1 \\ \hline CO4 & 2 & & & & & & & & & & & \\ \hline CO4 & 2 & & & & & & & & & & & & \\ \hline CO4 & 2 & & & & & & & & & & & & & \\ \hline Co1 & 2 & & & & & & & & & & & & & & & & \\ \hline Co2 & 2 & & & & & & & & & & & & & & & & &$	CO4	Learn to negotiate meaning in inter-personal and academic communication for a successful career. Engage in organized academic and professional writing for life-long learning and research														
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	CO5	Engage in organized academic and professional writing for life-long learning and research														
$ \begin{array}{c cccc} \hline Cos/POs & PO1 & PO2 & PO3 & PO4 & PO5 & PO6 & PO7 & PO8 & PO9 & PO10 & PO11 & PO12 \\ \hline CO1 & 1 & - & 1 & 1 & 3 & 2 & 1 & 1 & 3 & 3 & - & 3 \\ \hline CO2 & 2 & 1 & 1 & 1 & 1 & 2 & 1 & - & 2 & 3 & 3 & 1 & 2 \\ \hline CO3 & 1 & 1 & 1 & 1 & 2 & 3 & 1 & 2 & 1 & - & 2 & 3 & 3 & 1 & 3 \\ \hline CO4 & 1 & - & - & 2 & 3 & 1 & 2 & 1 & 2 & 2 & - & 3 \\ \hline CO5 & - & 1 & 1 & 2 & 3 & 1 & 1 & - & 3 & 1 & 1 & 2 \\ \hline CO5 & - & 1 & 1 & 2 & 3 & 1 & 1 & - & 3 & 1 & 1 & 2 \\ \hline CO3 PSOs & PSO1 & PSO2 & PSO3 & PSO4 & \hline CO2 & 2 & & & 1 & - & - \\ \hline CO2 & 2 & & & & 1 & - & - & - \\ \hline CO3 & 2 & & & & & 1 & - & - & - & - & - & - & -$	Mappin	g of Course Outcome with Program Outcome (POs)														
CO1 1 - 1 1 3 2 1 1 3 3 - 3 CO2 2 1 1 1 3 3 1 2 3 3 1 2 CO3 1 1 1 1 2 1 - 2 3 3 1 2 CO3 1 1 1 2 1 - 2 3 3 1 3 CO4 1 - - 2 3 1 1 2 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 2 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>	Cos/POs	s PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO2 2 1 1 1 3 3 1 2 3 3 1 2 CO3 1 1 1 1 2 1 - 2 3 3 1 2 CO3 1 1 1 2 1 2 3 3 1 2 CO4 1 - 2 3 1 2 1 2 2 - 3 CO5 - 1 1 2 3 1 1 - 3 1 1 2 CO3 PSO1 PSO2 PSO3 PSO4 - 2 3 1 1 2 CO3 2 2 1 1 2 1 1 2 1 2 CO3 2 2 1 1 2 1 1 1 2 1 1 CO4 2 1 1 1 1 1 2 1 1 1 1 <	CO1		1	-	1	1	3	2	1		1	3	3	-	3	
CO3 I <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<>	CO2		2	1	1	1	3	3	1		2	3	3	1	2	
CO4 1 - - 2 3 1 2 1 2 2 - 3 CO5 - 1 1 2 3 1 1 - 3 1 1 2 2 - 3 COS/PSOs PSOI PSOI PSO2 PSO3 PSO3 PSO4 CO1 2 2 1 2 1 2 2 1 CO2 2 1 2 1 2 1 2 2 1 CO3 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 <t< td=""><td><u>CO3</u></td><td></td><td>1</td><td>I</td><td>1</td><td>1</td><td>2</td><td>1</td><td>-</td><td>4</td><td>2</td><td>3</td><td>3</td><td>l</td><td>3</td><td></td></t<>	<u>CO3</u>		1	I	1	1	2	1	-	4	2	3	3	l	3	
COS - 1 1 2 3 1 1 - 3 1 1 2 COS/PSOS PSO1 PSO2 PSO3 PSO4 1 1 2 1 CO3 2 1	CO4		1	-	-	2	3	1	2		l	2	2	-	3	
Control LSO1 LSO1 LSO2 LSO3 LSO4 Col 2 1 1 1 CO3 2 1 1 CO3 2 1 1 CO4 2 1 1 CO5 2 1 1 J2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- Low 1 Jacticical Variation And social Inter Discriptionary N Variationary Variationary	COS/PSOs		-		1	2		1	1		-	3		1	Z	
Category Cat	CO1			130	1		1302			130	5	1	1.50	J4		
Correction of the sector of th	CO_2				$\frac{2}{2}$							1				
Category Contegory C	CO3				2							1				
Cotegory 3/2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- Tom Program consistenting Science Program consistenting Science Program consistenting Program consiste	CO4				2							1				
Category Category Category Category Basic Science Basic Science Science Program Core Program cor	CO5				2							1				
Category Basic Science Engineering Science Program Core Program elective Inter Disciplinary Practical /Project	3/2/1 Inc	licate	s Str	ength	Of Co	relatio	n, 3 – I	ligh, 2-	- Mee	lium,	1- I	Low				
	Category Basic Science Engineering Science Program Core Program core Program elective Inter Disciplinary												Skill Component		Practical /Project	

Subject Code	Subject Name : COMMUNICATIVE	Ty/Lb/	L	T/SLr	P/R	C
EDCC22102	ENGLISH LAB Prerequisite Pass in Plus 2 English		1	0/0	1/0	1
	The quisite if ass in Thus 2 Elignsh	112	1	0/0	1/0	1
UNIT I LISTENI	NG				3	
Authentic audios a	nd videos					
Prescribed Book: I	English Pronunciation in use – Mark Hancock,					
UNIT IISPEAKI	NG				3	
Individual- Solo:	Self introduction, Describing, anchoring, welcome	address, vo	te of tha	unks,		
Pair & Group: Ro	ole play- formal -informal, narrating stories, film re	view, analy	zing ne	wspaper h	eadings a	nd
reports, interpretin	g Advertisement pamphlets					
Group discussion	, mock interviews, formal presentation, power poin	t presentati	on			
Prescribed Book: J	U.C. Richards with J. Hull &S.Proctor, Interchange,	, Cambridge	e Unive	rsity Press	s, 2015.	
UNIT III READI	NG				3	
Extensive, focused	l reading,					
Strategies for effect	ctive reading - Reading comprehensions – Note mal	king- summ	arizing	paraphra	sing, Rev	iew
Suggested reading	: Short stories, news paper reports, film reviews					
UNIT IV WRITH	NG				3	
Extensive writing	practices – note taking, Cognitive and meta cognitiv	ve strategie	s to incu	ilcate a se	ense of org	ganizing
ideas into coherent	t sentences and paragraphs, Formal letters, Business	s letters. Re	sume w	ith coveri	ng letter	
UNIT VNON VE	RBAL COMMUNICATION/ CHARTS, DIAGE	RAMS ANI) TABI	Æ	3	
Interpretation of cl	harts Flow chart, pie chart, bar diagram, table, tree	diagram, etc	с.			
			Total 1	No. of Pei	riods: 15	

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

ISTITUTE

Text Book

- 1. J. C. Richards with J. Hull &S.Proctor, Interchange, Level 2, Cambridge University Press, 2021.
- 2. M. Chandrasena Rajeswaran&R.Pushkala, English Communication Lab Work book **Reference Book**
- 1. Hancock, Mark, English Pronunciation in Use; Cambridge Univ. Press, 2013.

EDUCATIO

2. Dutt, K, Rajeevan, G & Prakash, CLN 2008, *A Course on Communication Skills*, 1st edn, Cambridge University Press, Chennai

Subject	PYTHON PROGRAMMINGT / L/LT /P/ RCFTISIr													
Code:							Ľ			S.Lr				
EBC522E12	Prerequ	uisite:	C Pro	gramn	ning an	d MS		ΕΓL	1	0/0	2/	0	2	
			. • 1	CT (~	• 1 7	<u> </u>				• 1			
C: Credits, L:		e, 1: 1u	itorial,	SLr: S	Superv	1sed L	earnin	g, P: Pro	blem	/ Pract	ical			
R: Research,	Ty/Lb/E	$\frac{1 L/1E}{1}$	I neoi	y/Lab	/Embe	adea I	heory	and Lab	/Inter	rnal Ev	aluation			
OBJECTIVE	The stud	dent sho	build be	made t	0:		1.1				1			
• De	evelop a t	basic un	derstar	iding of	t progra	amming	g and t	he Python	prog	rammın	g language	2		
• W	rite progr	ams in	Python	to solv	e real v	vorld p	roblem	18				•		
• Se	e the va	alue of	t progr	amming	gin a	variety	of of	lifferent	discip	olines,es	specially a	as it re	lates in	
COURSE OU	TCOME	<u>.</u> S (CO)	$s) \cdot Afta$	er Com	nleting	the co	urse. 1	the stude	nt car	ı be abl	e to			
COL	Remem	ber the	svntax	and set	nantics	of pytl	non pro	orammin	σ land					
CO2	Underst	and hor	w funct	ional a	nd oper	ations a	are to l	e utilized	5 14115	Suuge				
CO3	Applyth	and no	monto	progra	mmina	constr	uote lil			ndition	llogia lo	oping on	d	
003	function	is to bu	uild bas	ic progra	rams	consu			-s, co	liuluona	u logic, loc	oping, an	.u	
CO4	design of	object-o	riented	l progra	ms wit	h Pytho	on class	ses						
CO5	Apply t	Apply the knowledge to solve various real world problems												
Mapping of C	ourse Ou	rse Outcomes with Program Outcomes (POs)												
COs/POs	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	3	3	3	2	2	1	1	1		1	0	1	1	
CO2	3	2	2	2	2	1	1	1		1	0	1	1	
CO3	3	2	2	2	2	1	1	1		1	0	1	1	
CO4	3	3	3	2	2	1	2	0		2	0	2	2	
CO5	3	3	3	3	2	1	2	0		2	0	2	2	
COs / PSOs	PS	SO1		PS	02			PSO3			PS	04		
CO1		1			1			2				2		
CO2		1			1			2				2		
CO3		1			1			2				2		
CO4		1			1			2				2		
CO5	1 1 2 2													
3/2/1 indicates	Strengt	h of Co	orrelati	ion 3-	High, 2	2- Med	ium, 1	, 1-Low						
Å	ciences ring s s s ciences b Core ical Skill lls													
Categor	Basic Sci	Engineer Sciences	Humaniti Social So	Program	Program	Open Ele	Practical	Intern Technic	Soft Skill					
		✓												

PYTHON PROGRAMMING T/L/ETL T/S.Lr L

ETL

1

0/0

office tools

Prerequisite: C Programming and MS

UNIT I: INTRODUCTION History of Python, Need of Python Programming, Applications Basics of Python Programming Using the REPL(Shell), Running Python Scripts, Variables, Assignment, Keywords, Input-Output, Indentation.

UNIT II: TYPES, OPERATORS AND EXPRESSIONS

Types - Integers, Strings, Booleans; Operators- Arithmetic Operators, Comparison (Relational) Operators, Assignment Operators, Logical Operators, Bitwise Operators, Membership Operators, Identity Operators, Expressions and order of evaluations Control Flow- if, if-elif-else, for, while, break, continue, pass.

UNIT III: FUNCTIONS

EBCS22ET2

Defining Functions, Calling Functions, Passing Arguments, Keyword Arguments, Default Arguments, Variablelength arguments, Anonymous Functions, Fruitful Functions (Function Returning Values), Scope of the Variables in a Function - Global and Local Variables.

UNIT IV:LISTS, TUPLES, DICTIONARIES

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: selection sort, insertion sort, merge sort, histogram.

UNIT V: OBJECT ORIENTED PROGRAMMING OOP IN PYTHON

Classes, 'self variable', Methods, Constructor Method, Inheritance, Overriding Methods, Data hiding.

Total No. of Hours: 45

TEXT BOOKS:

- 1. Python Programming: A Modern Approach, VamsiKurama, Pearson.
- 2. Think Python: How to Think Like a Computer Scientist", 2nd editionUpdated for Python 3, Shroff/O'Reilly Publishers, Allen B. Downey
- 3. Learning Python, Mark Lutz, Orielly.

REFERENCE BOOKS:

1. Core Python Programming, W.Chun, Pearson.

2.Introduction to Python, Kenneth A. Lambert, Cengage.

P/R

2/0

Q

9

9

9

C

Subject	Code:	:	Subjec	t Name	: EN	VIRON	IMEN'	TAI		Ту	/ Lb /	L	T/SL	P/R	С
EBCC2	2103		SCIEN	CE (Au	ıdit	course)				E	ſL		r		
			Prereg	uisite:	Engi	neering	Chem	istr	y		IE	1	0/0	0/0	NC
C: Cred	its, L: I	Lectur	e, T: Tut	orial, Sl	Lr: S	Supervise	ed Lea	rnin	g, P	: Probl	em / P	ractica	ıl	•	
R: Rese	arch, T	y/Lb/]	ETL/IE: '	Theory /	/Lab/	Embedd	led The	eory	and	l Lab/I	nterna	l Evalı	uation		
OBJEC		S:					. –								
• '	Fo acqu	uire ki	nowledge	of the I	Envii	onment	and Ec	cosy	sten	1 & Bi	odiver	sity			
•	To acqu	uire ki	nowledge	of the c	liffei	ent type	es of Er	1V1ro	onm	ental p	ollutio	on			
•	To knov	w moi	re about I	Natural 1	Reso	urces	.1 17								
•	To gain	unde	rstanding	; of soci	al 188	ues and	the En	iviro	onme	ent					
•	To attai	in fam	illiarity of	t human	pop	ulation a	and En	viro	nme	ent					
COURS	SE OU	TCO loting	MES (CO	Js): (3 -	-5)	to									
Student	Know about Environment and Ecosystem & Biodiversity														
CO1	Know about Environment and Ecosystem & Biodiversity														
CO2	Comprehend air, water, Soil, Marine, Noise, Thermal and Nuclear Pollutions and Solid Waste														
	management and identify the importance of natural resources like forest, water, and food resources														
CO3	Discover water conservation and watershed management														
CO4	Identi	ify its	s probler	ns and	con	cerns cl	imate	cha	nge,	globa	al war	ming,	acid ra	ain, ozo	one layer
	deple	tion e	tc.,												
CO5	Expla	ain far	nily welf	are prog	grami	nes and	role of	f inf	orma	ation t	echnol	ogy in	human	health	and
	envire	onmei	nt												
M	apping	g of C	ourse Oi	itcomes	wit	1 Progra	am Ou	itcoi	mes	(POs)					
COs/POs	s P	PO1	PO2	PO3	PO ₂	PO5	PO6	PO	7	PO8		PO9	PO10	PO11	PO12
CO1							2	3	3	2					1
CO2							2	3	3				2		1
CO3							2	3	3	2					1
CO4						_	2	1	5 >	2			2		1
3/2	2/1 indi/	cates (Strength (of Corre	latio	n 3. Hid	 ah 2_ N	s Indi) ium	1-I ou	7		2		1
514	3/2/1 Indicates Strength of Correlation 5- High, 2- Medium, 1-Low														
	es		es	& ces		d)			'es					ills	
	enc		enc	es d		core			ctiv					os/ Sk	S
ory	Sci Sci Sci Sci Sci Sci Skii Sci														
teg	sic		50	uma cial		ngra	ogra		en			actio		ern chn	ft S
Ca	Ba		En	Hu So		Pr(Prc		Op			Pr; Pr(Int	So
				√											

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code: EBCC22I03	Subject Name: ENVIRONMENTAL SCIENCE	Ty/Lb/ ETL	L	T/SL r	P/R	С
	Prerequisite: Engineering Chemistry	AUDIT COURSE-IE	1	0/0	0/0	NC

UNIT I ENVIRONMENT AND ECOSYSTEM

Definition, Scope and Importance of environment – need for public awareness – concept, structure and function of an ecosystem - producers, consumers and decomposers - energy flow in the ecosystem. Biodiversity at national and local levels - India

UNIT II ENVIRONMENT POLLUTION

Definition – causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Nuclear hazards (g) E-Wastes and causes, effects and control measures

UNIT III NATURAL RESOURCES

Forest resources: Use and over-exploitation, deforestation. Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems. Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

From unsustainable to sustainable development – urban problems related to energy – water conservation, rain water harvesting, watershed management – resettlement and rehabilitation of people; its problems and concerns climate change, global warming, acid rain, ozone layer depletion, nuclear accidents ,central and state pollution control boards- Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

Population growth, variation among nations – population explosion, environment and human health – human rights - value education - HIV/AIDS - women and child welfare - role of information technology in environment and human health

(A) AWARENESS ACTIVITIES:

i) small group meetings about water management, promotion of recycle use, generation of less waste, avoiding electricity waste

- ii) Slogan making event
- iii) Poster making event

iv) Cycle rally

v) Lectures from experts

(B) ACTUAL ACTIVITIES:

i) Plantation

- ii) Gifting a tree to see its full growth
- iii) Cleanliness drive
- iv) Drive for segregation of waste
- v) To live some big environmentalist for a week or so to understand his work
- vi) To work in kitchen garden for mess
- vii) To know about the different varieties of plants
- viii) Shutting down the fans and ACs of the campus for an hour or so

Text Books

- 1. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education (2004).
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGrawHill, NewDelhi, (2006).

References

- 1. Vairamani, S. and Dr. K. Sankaran. Elements of Environmental and Health Science. Karaikudi: KPSV Publications, 5th Edition, July, 2013.
- 2. If thikarudeen, Etal, Environmental Studies, Sooraj Publications, 2005.
- 3. R.Murugesan, Environmental Studies, Millennium Publishers and Distributors, 2nd Edition, July, 2009.

SEMESTER III

Subject Code:	Sub	ject Na	me : Mat	themati	cs III fo	or Mech	anical		Ty/Lb/	L	T /	P/F	2	С
EBMA22005		and C	lvil Engi	neers					ETL/IE		SLı	r		
	Pre	requisit	e: Mathe	ematics	I & II				Ту	3	1/0	0/	0	4
L : Lecture T :	Tutoria	l SLr:	Supervis	ed Learr	ning P:	Project	R : Rese	arch C	: Credits					
T/L/ETL : The	ory/Lab	/Embed	ded Theor	y and L	ab									
OBJECTIVE	S: The s	tudent w	vill learn											
Basic	mathem	atical to	ols and t	echnique	es which	n empha	size the	devel	opment of	rigoro	us log	gical thin	king	and
• Theory	v and an	s. plication	ns of parti	al differ	ential ea	nuation	its appl	ication	s Fourier s	series	transf	forms and	Lar	place
transfo	ormation).	is of pure			1,	no uppi		s, 1 ourrer .	,,			- _ F	
COURSE OUT	COME	S (COs):(3-5)	The stu	dents w	ill be al	ole to							
CO1	Understa	and the co	oncepts of I	Partial D	ifferentia	l equatio	ns							
CO2	Determi	ne the Fo	ourier serie	s solutio	ns									
CO3	Apply th	e concep	ts of PDE	in Wave	and Heat	problem	IS							
CO4	Apply L	aplace tra	insforms ir	n Enginee	ering prol	olems								
CO5	Apply Fo	ourier tra	nsforms in	Enginee	ring prob	lems								
Mapping of Co	urse Oi	se Outcomes with Program Outcomes (POs)												
COs/POs	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12)12	
CO1	3	2	2	3	3	1	1	2	2	1		1		2
CO2	2	2	1	3	1	2	1	2	3	1		1		2
CO3	3	2	1	3	2	3	2	1	1	2		1		3
CO4	3	2	1	2	1	3	2	1	1	1		1		2
CO5	3	3	1	2	1	2	2	1	1	2		2		3
COs / PSOs	PS	01	PSG	02	PS	603	PS	504						
CO1		2	1	1		1		3						
CO2		2]	1		1		3						
CO3		2	1	1		1		3						
CO4		2]	1		1		3						
CO5	<u> </u>	2]			1		3						
3/2/1 indicates	Strengt	h of Coi	relation	3- Hig	h, 2- Me	edium,	I-Low						r	
			I											
			oci		ive	Ŋ	It	t						
ory	ce		s pu	a)	lect	Ð	lina							
ateg	iene	ng	es a	Core	m e	ctiv	scip	du	4/					
ü	c Sc	eeri ce	miti ce	am (gra	Ele	Dis	Ů.	иса					
	3 asi	ngin tiene	uma tieno	ogra	Pro	ben	nter	kill	rac					
	H ./	Er Sc	Hı Sc	Pr		Ō	Π		4					
	v													

2018 Certified Institution

Subject Code: EBMA22005	Subject Name : Mathematics III for Mechanical and Civil Engineers	Ty/Lb/ ETL	L	T/ SLr	P/R	С
	Prerequisite: Mathematics I & II	Ту	3	1/0	0/0	4

UNIT- I: PARTIAL DIFFERENTIAL EQUATIONS

Formation of PDE by eliminating arbitrary constants and eliminating arbitrary functions – Solutions of standard types of first order equations – Lagrange's equation – Linear partial differential equations of second and higher order with constant coefficients.

UNIT- II: FOURIER SERIES

Dirichlet's conditions – General Fourier series – Half range Sine & Cosine series – Complex form of Fourier series - Parseval's identity - Harmonic Analysis.

UNIT- III: APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Classification of second order linear partial differential equations – Solutions of one dimensional wave equation, one-dimensional heat equation - Steady state solution of two dimensional heat equations (Cartesian coordinates only) - Fourier series solutions.

UNIT-IV: LAPLACE TRANSFORMS

Transforms of simple functions – Properties of Transforms – Inverse Transforms – Transforms of Derivatives and Integrals - Periodic functions - Initial and final value theorems - Convolution theorem - Applications of Laplace transforms for solving linear ordinary differential equations up to second order with constant coefficients and Linear simultaneous differential equations of first order with constant coefficients.

UNIT- V: FOURIER TRANSFORMS

Statement of Fourier integral theorem - Fourier transform pairs - Fourier Sine and Cosine transforms -Properties – Transforms of simple functions – Convolution theorem – Parseval's theorem.

TEXT BOOKS

- 1) Veerarajan T. (2007), Engineering Mathematics (for first year), Tata McGrawHill Publishing Co.,
- 2) Veerarajan T. (2005), Engineering Mathematics (for semester III), Tata McGraw Hill Publishing Co.,

REFERENCES

- 1) Singaravelu (2009), Transforms and Partial Differential Equations, Meenakshi Agency.
- 2) Kreyszig E. (2011), Advanced Engineering Mathematics (9th ed.), John Wiley & Sons.
- 3) Grewal B.S. (2012), Higher Engineering Mathematics, Khanna Publishers.

Total No. of Periods

12

12

12

12

12

: 60

Subject Code	:: Subject Name : ENGINEERING THERMODYNAMICS Distribution Distribution														
EBME22003	Pro	erequisi	te: Engin	eering	Physics				Tv	3	1/0	0/0	4		
L : Lecture T	: Tutoria	l SLr:	: Supervis	ed Lear	ning P:	Practica	al R:R	esearch	C: Credits	11					
T/L/ETL : The	eory/Lab	/Embedo	ded Theor	y and La	ab										
OBJECTIVE	: OBJE	CTIVE:	The stud	lents wi	ll learn										
• The funda	mentals	of therm	odynamic	s and th	ermodyı	namic re	lations								
• Properties	of Stean	n and its	application	ons.											
• Different	thermody	ynamic c	cycles												
COURSE OU	JTCOM	ES (CO	s): The s	tudents	will be	able to									
CO1	Unders	stand the	e basic co	oncepts	and law	vs of the	ermody	namics	.(Level 18	&2)					
CO2	Apply	the first	and seco	ond law	of them	modyna	mics to	the en	gineering	processe	es and				
	devices	s.(Level	3)												
CO3	Unders	stand the	e concept	s of ent	ropy an	id its en	gineeri	ng appl	lications.(Level 2)					
CO4	Apply	the prop	perties of	pure su	ibstance	es in vai	rious ap	plication	ons. (Lev	el 3)					
CO5	Analyz	halyze the thermal performance of various power cycles.(Level 4)													
CO6	Unders	nderstand and apply the various thermodynamics relations in the engineering processes.(Level													
	2&3).	&3).													
Mapping of C	Course O	se Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	3	3	2	2	1	1	2	1	1	2	-		3		
CO2	3	3	2	3	1	1	2	1	2	2	-		2		
CO3	3	3	3	3	1	1	2	1	1	2	-		2		
CO4	3	3	3	3	1	1	2	1	2	2	-		2		
CO5	3	3	3	3	2	1	3	1	2	2	-		3		
CO6	3	3	3	3			2		2	2	-		2		
COs / PSOs	PS	201) 2	PS	$\frac{03}{2}$	PS	204				+			
		<u> </u>	2			2		<u> </u>							
CO_2		2	$\frac{2}{2}$			2		$\frac{2}{2}$				+			
C04		3	2			2		2				-			
C05		3	2			2		$\frac{2}{2}$							
CO6		3	2			2		2							
3/2/1 indicat	es Strei	ngth of	Correlat	ion:	3- High	, 2- Me	dium,	1-Low							
			al									Τ			
Category	Basic Science	Basic Science Engineering Engineering Science Humanities and soci. Science Program Core Program Core Inter Disciplinary Skill Component Practical /Project													
				\checkmark											

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code:	Subject Name : ENGINEERING THERMODYNAMICS	Ty/Lb/ ETL	L	T/ SLr	P/R	С
EDWIE22003	Prerequisite: Engineering Physics	Ту	3	1/0	0/0	4

UNIT- I: BASIC CONCEPTS AND FIRST LAW OF THERMODYNAMICS

Thermodynamics systems, Concepts of continuum, Thermodynamic properties, Equilibrium, Process, Cycle, Work, Heat, Temperature, and Zeroth law of thermo dynamics. First law of thermodynamics– Applications to closed and open systems, Internal energy, Specific heats, Enthalpy, Steady flow conditions.

UNIT- II: SECOND LAW OF THERMODYNAMICS

EDUCA

Statements, Reversibility, Causes of irreversibility, Carnot cycle, Reversed Carnot cycle, Heat engines, Refrigerators, Heat pumps. Clausius inequality, Concept of Entropy, Principles of increase of entropy, Carnot theorem, Available energy, Availability, Introduction to exergy.

UNIT- III: WORKING FLUIDS

Thermodynamic properties of pure substance, Property diagrams. PVT surface of water and other substances, calculation of properties. Applications of First law and second law analysis using tables and charts.

Properties of ideal and real gases, Equation of state, Gas laws. Van der-waal's equation of state, Compressibility. Daltons law of partial pressures, Internal Energy, enthalpy, Specific heat and molecular weight of gas mixtures.

UNIT- IV: POWER CYCLES

Gas power cycles - Carnot, Otto, Diesel, Dual, Brayton Cycles. Vapour Power Cycles – Rankine, Modified Rankine, Reheat, Ideal Regenerative cycle.

UNIT- V: THERMODYNAMIC RELATIONS

Exact differentials, Maxwell relations, Tds relations, Difference and ratio of Heat Capacities, Energy Equation, Clausius - Clapeyron equations, Joule-Thomson coefficient.

Total No. of Periods : 60

Note: Standard and approved Steam Table, Mollier Chart are permitted in examination. **TEXT BOOKS**

- 1) P.K.Nag, (2014) "Engineering Thermodynamics" (Fifth Edition), Tata McGraw Hill Education Publishing Company Ltd., New Delhi.
- 2) Yunus A.Cengel, (2014) "Thermodynamics-An Engineering. Approach", Tata McGraw Hill Education, 8th edition.

REFERENCES

- 1) Spalding & Cole, (1973) "Engineering Thermodynamics", ELBS, 6th edition.
- 2) J.P.Holman, (2011) "Thermodynamics", McGraw Hill 109095, 10th edition,
- 3) Van Wylen & Sonntag, (1998) "Fundamentals of Classical Thermodynamics", Wiley Eastern, 5th Edition.
- 4) Rogers & Mathew, (1992) "Engineering Thermodynamics", Adison Wesley 1090909, 4th edition.
- 5) Michael Saad, (1966) "Thermodynamics", Prentice Hall 109097.

12

12

12

12

Subject	Cod	e: Sub	oject Na	me: MAN	UFAC	FURIN	G TECH	INOLO	GY - I	Ty/Lb/E	1	T/ SIr	P/ C			
EBME2	2004	PI	rerequis	ite: NIL						Ту		0/0	0/0 3			
L : Lect	ure T	: Tutori	al S Li	: : Supervi	ised Lea	rning P	: Practic	cal R:R	Research	C: Credits			ľ			
Ty/Lb/E	TL:	Theory/	Lab/Em	bedded Th	neory and	d Lab										
OBJEC	TIVI	ES: The	purpose	e of study	is to	6		c								
	•	Impart Select	the appr	dge in var	ious mai	ring pro	ing proc	esses foi ed on the	r metals a	and plastics						
COURS	SE O	UTCON	AES (CO	Ds) : The	student	will be	able to		e appnea							
CO1	Ur	nderstan	d the var	ious man	ufacturir	ng proce	sses for	metals. ((Level 2)							
CO2	De	emonstra	ate the op	peration of	f various	s manufa	acturing	processe	es (Level	3)						
CO3	Ex	pose to	advance	d methods	s of man	ufacturi	ng (Leve	el 2)								
CO4	Re	comme	nd the su	itable ma	nufactur	ing proc	ess depe	ending of	n the req	uirement(Lev	vel 4)					
CO5	De	escribe t	he manu	facturing	of plasti	c compo	onents/Pr	oducts a	and their	applications.	(Leve	1 3)				
Mappin	g of (f Course Outcomes with Program Outcomes (POs)														
Cos/Pos		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PO12			
CO1		3	2	1	-	2	3	2	3	3	3	2	2			
CO2		3	3 2 1 - 2 3 2 3 3 2 2													
CO3		3	2	1	-	2	3	2	3	3	3	2	2			
CO4		3	2	1	-	2	3	2	3	3	3	2	2			
CO5		3	2	1	-	2	3	3	3	3	3	2	2			
Cos / PSC)s	PS	01	PSC)2	PS	03	PS	604							
CO1			3	3			3		2							
CO2		•	3	3		•	3		2							
CO3		•	3	3		•	3		2							
CO4			3	3			3		2							
CO5		ź	3	3		-	3		2							
3/2/1 indi	cates	Streng	th of Co	rrelation	3- Hi	gh, 2- M	ledium,	1-Low								
		ence		s and ince		u	tive	ary	ant							
		ic Sci	Jee	anitie l Scie	am	ogran xtive	Elec	r Xiplin	l npone	tical ject						
	gory	Bass Bass Bass Bass Bass Bass Bass Bass														
	Cate				v											
					•											

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code: EBME22004	Subject Name : MANUFACTURING TECHNOLOGY - I	Ty/Lb /ETL	L	T/ SLr	P/R	С
	Prerequisite: NIL	Ту	3	0/0	0/0	3

UNIT- I: METAL CASTING PROCESSES

EDUCA

Introduction to Pattern making - Moulding sand - Melting furnaces - Special casting processes - Shell, Investment, Die casting, Full mould process - Defects in casting. Computers in casting processes.

UNIT- II: METAL FORMING PROCESSES

Cold and hot working - Forging, Rolling, Extrusion, Drawing. . Introduction to sheet metal forming processes. High energy rate forming - Explosive forming, Electro-hydraulic, Electro magnetic forming, Dynapac machine, petro forge machines. Super plastic forming

UNIT- III: METAL JOINING PROCESSES

Classification - Arc Welding –Sheet metal arc welding, Gas metal welding- - Submerged Arc, TIG, MIG, -Resistance welding -Electrode types – Specification- Special Types - Laser, Electron beam, Plasma Arc, Ultrasonic, Electro slag, Explosive welding and Friction welding - Thermit welding –inspection of welding-Defects in weld- Brazing and soldering

UNIT- IV: METAL CUTTING PROCESSES

Lathe: Specification - Types - Mechanisms - Operations - Calculations - Capstan and turret lathe - Tooling with examples - Copy turning lathe. Drilling: Specification - Types - Feed Mechanism - Operations - Drill tool nomenclature - Mounting – Reamer and tap tools - Calculations.

UNIT- V: PROCESSING OF PLASTIC MATERIALS

Types of Plastics - Types of moulding - Compression moulding - Transfer molding - Injection molding - Blow Moulding - Rota moulding - Film and sheet forming - Thermo forming - Reinforced plastic - Laminated plastics.

Total No. of Periods : 45

TEXT BOOKS

- 1) Sharma P.C. (2008), "A Text Book of Production Technology", S.Chand & Company Ltd., New Delhi.
- 2) Serope Kalpakjian (2013), "*Manufacturing Engineering and Technology*", Addison-wesley Pub.Co ,7th edition.

REFERENCES

- 1) Rao P.N. (2007), "Manufacturing Technology Foundry Forging & Welding", Tata McGraw Hill Publishing Co., New Delhi, 2nd edition.
- 2) R.K. Jain, (2001) "Production Technology", Khanna publisher.
- 3) O.P. Khanna, (1993), "Welding Technology", Dhanpat Rai & sons.
- 4) S. K. Hajra Choudry, S. K. Bose, (2010) "Elements of Workshop Technology -Volume I & II". Media promoters.

9

10

9

8

Subject Cod	e: S	ıbject Na	ame : FL	UID MI M	ECHAN A CHIN	ICS AN	ND		Ty/Lb/ ETL	L	T/ SLr	P/R	C
EBCE22ID5	5 P	rereauisi	te: Engir	neering	Physics	<u>ER 1</u> s & Mat	hematic	rs	Tv	3	0/0	0/0	3
L : Lecture T	: Tutori	al SLr	: Supervis	ed Lear	ning P:	Practic	al R : R	esearch	C: Credits		0/0	0/0	U
T/L/ETL : Th	neory/La	b/Embed	ded Theor	y and L	ab								
OBJECTIV	E: The s	tudents	will learn										
• The b	basic pro	perties of	f fluids.										
• Flow	behavio	ur in vari	ious sectio	ons with	basic eq	luations							
Worl	king prir	ciples of	hydraulic	pumps a	and turb	ines							
COURSE O	UTCON	IES (CO	s): The s	tudents	will be	able to							
CO1	Underst	and the v	arious pro	perties (of fluids	.(Level	1&2)						
CO2	Apply t	he basic o	concepts o	f fluid f	low beh	aviour ii	n various	s sectio	ns and solv	e simple	problems	(Lev	el 3)
CO3	Analyse	the beha	viours of	fluid flo	w throu	gh circu	lar cond	uits(L	evel 4)				
CO4	Acquire	the know	vledge of	construc	tion and	l workin	g princi	ples of	hydraulic t	urbines a	nd pumps	s(Lev	el 2)
CO5	Analyz	the perf	ormance o	of hydrau	ulic turb	ines and	pumps.	(Level	4)				
Mapping of	Course	Outcome	s with Pr	ogram	Outcom	es (POs	;):						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC)12
CO1	3	1	2	2	2	2	2	2	1	2	-		3
CO2	3	3	3	3	2	2	2	2	1	3	-		2
CO3	3	3	2	2	2	2	2	2	1	3	-		2
CO4	3	2	3	2	2	2	2	2	1	2	-		3
CO5	3	2	3	2	2	2	2	2	1	3	-		1
COs / PSOs	Р	SO1	PSC	02	PS	03	PS	604					
CO1		3	2		4	2		2					
CO2		3	2			2		2					
CO3		3	2			2		2					
CO4		3	2		4	2		2					
CO5	Ct.	3	2			2	1 1	2					
3/2/1 indicat	es Stren	gth of Co	orrelation	1: 3- H	ligh, 2- 1	Vlediun	1, I-Lov	V			1		
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				

Subject Code:	Subject Name : FLUID MECHANICS AND MACHINERY	Ty/Lb/ ETL	L	T/ SLr	P/R	С
EDCE22ID5	Prerequisite: Engineering Physics	Ту	3	0/0	0/0	3

UNIT- I: PROPERTIES OF FLUIDS

UNIT-s & Dimensions, Properties of fluids – density, specific Gravity, specific weight, viscosity. Surface tension and Capillarity, Compressibility & Bulk modulus, Vapour pressure, Measurement of pressure- Manometers, Mechanical gauges.

UNIT- II: FLUID FLOW CONCEPTS AND BASIC EQUATIONS

Flow Characteristics, Concepts of System and Control Volume, Continuity, Energy equation- Euler equation- Bernoulli equation, Impulse momentum equation-applications.

UNIT- III: FLOW THROUGH CIRCULAR CONDUITS

Laminar flow through circular tubes – Boundary layer thickness -Darcy equation on pipe roughness – Friction factor – Minor losses – Flow through pipes in series and in parallel, Equivalent pipes.

UNIT- IV: HYDRAULIC TURBINES

Impact of free jets-work done and efficiency calculation, Classification of hydraulic turbines, Elementary working principles of Pelton, Francis, Kaplan turbine, Work done, Governing of turbines, Draft tube, Specific Speed.

UNIT- V: HYDRAULIC PUMPS

Reciprocating pumps : Classification, Working, Single acting and Double acting, Slip, Indicator diagram, Air vessels. Centrifugal pumps :Classification, Components, Working, Velocity triangles, Losses & Efficiency of a centrifugal pump, Pumps in series & parallel, Specific speed, Separation, Cavitations, Priming.

TEXT BOOKS

Total No. of Periods : 45

- 1) Bansal S.K. (2012) "Fluid Mechanics and Hydraulic Machines", Laxmi Publications (P) Ltd., New Delhi.
- 2) R.K.Rajput. (1998) "Fluid Mechanics and Hydraulic Machines", S.Chand & Company Ltd., New Delhi.

REFERENCES

- 1) L.Kumar. (2002), "Engineering Fluid Mechanics", Eurasia Publishing House (P) Ltd., New Delhi.
- 2) Roberson J.A. & Crowe C.T. (2001), "Engineering Fluid Mechanics", M/s Jaico Publishing Co., 9th edition
- 3) Streeter V.L. and Wylie E.B. (1983), "Fluid Mechanics", McGraw Hill.
- 4) Ramamirtham S. (1988), "Fluid Mechanics, Hydraulics and Fluid Machines", Dhanpat Rai & Sons, Delhi.
- 5) Yunus.A.Cengel, Robert H.Turner., "Thermal-Fluid Sciences", Tata McGraw Hill.

7

9

9

10

Subject Co EBEC22E	de: ГЗ	Su AF	bject Na RCHITE	ame : M ECTURI	ICROP E AND I	ROCES EMBEI	SSOR DDED S	YSTEN	IS	T / L/ ETL	L	T/SL	r P/H	Ł	C
		Pre	erequisite	e: Basic	Electric	al and E	Electroni	cs Engir	neering	ETL	2	0/	0 2	2/0	3
L : Lecture	T : Tu	loria	I SLr:	Supervis	sed Lear	rning P	: Project	t R : Re	search C	C: Credits			•		
T/L/ETL : 7	Theory.	/Lab	/Embedd	led Theo	ory and l	Lab									
OBJECTI	VES :														
•	To stu	ıdy	the arch	itecture	, addres	ssing m	odes an	d assen	nbly lev	el progra	amm	ing of	microp	roces	sor.
•	To un	ders	stand the	e concep	ots of d	ifferent	periphe	erals and	d their a	pplicati	ons				
•	To lea	arn t	he funct	tions of dament:	8051 n als of ei	nicrocor mbedde	ntroller. d Syste	ems							
COURSE	OUTC	OM	ES (CO	s): The	studen	ts will b	e able to	0							
CO1	Write	asse	embly la	nguage p	orogram	in 8085	and 808	36 and u	nderstan	d the des	ign o	f proce	essors.		
CO2	Show	thei	r ability	to interf	ace peri	pherals v	with mic	croproce	ssors						
CO3	To le	arn ti	he functi	ions of 8	051 mic	rocontro	oller								
CO4	Unde	rstan	nd the fur	ndament	als of er	nbedded	l system								
CO5	Demo	onstr	ate the a	pplicatio	ons of en	nbedded	system.	•							
Mapping of	f Cour	se O	outcome	s with P	rogram	Outcor	nes (PO	s)							
COs/POs	РО	1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	010	PO11	P	012
CO1	3		1	3	1	1	3	2	2	1	2	2	3		3
CO2	3		1	3	1	1	3	2	2	1	2	2	3		3
CO3	3		1	3	1	1	3	2	2	1	2	2	3		3
CO4	3		1	3	1	1	3	2	2	1	2	2	3		3
CO5	3	Dao	3	3	3	3	3	3	2	3	3	\$	3		3
COs / PSOs		PSO	01	PS	02	PS	03	PS	04						
CO1						1	1		3						
CO2						1	1		3						
CO3						1	1		3						
CO4						1	1		3						
CO5						1	1		3						
3/2/1 indica	ates St	reng	th of Co	orrelatio	n 3- H	ligh, 2-	Mediun	n, 1-Lov	V	1	1			1	
itegory		Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
C								√							

ARCHITECTURE AND EMBEDDED SYSTEMS Prerequisite: Basic Electrical and Electronics Engineering

UNIT I INTEL 8 BIT, 16 BIT MICROPROCESSORS

Internal Architecture of 8085 and 8086 microprocessor – Instruction set – Addressing modes – 8085 interrupts – Timing diagram – Assembly level programming

Lab Component: ALPs on 8085, 8086 microprocessor for arithmetic operations.

Subject Name : MICROPROCESSOR

UNIT II PERIPHERAL INTERFACING

Subject Code:

EBEC22ET3

USART (8251) – Programmable interval timer (8353/8254) programmable peripheral interface (8255)Programmable DMA controller (8257) – Programmable Interrupt controller (8259) – Keyboard display interface (8279) – ADC/DAC interfacing

Lab Component: ALPs on interfacing 8085/8086 with interfacing units like 8255, 8259, 8279, ADC/DAC units.

UNIT III 8051 MICROCONTROLLER

8051 Microcontroller hardware and Architecture –I/O pins, Ports and circuits–Counters and Timers-Serial Data I/O – Interrupts - 8051 Instruction set – Addressing Modes –Assembly Language Programming. **Lab Component**: ALPs using 8051 microcontroller for arithmetic operations and interfacing like timers/counters, Serial I/O.

UNIT -IV EMBEDDED SYSTEM FUNDAMENTALS

Introduction, Characteristics of embedded systems and challenges in system design –Design issues in embedded real-time systems, critical performance issues in embedded real-time systems.

UNIT V SENSOR INTERFACING WITH ARDUINO

Basics of hardware design and functions of basic passive components-sensors and actuators- Arduino code - library file for sensor interfacing-construction of basic applications using laboratory tools. **Lab Component**: Programs in Arduino like LED Blinking, Reading Analog Voltage, Pushbutton Debounce, Reading a Potentiometer value etc.

Total Number of Periods: 45

Text books:

Krishna Kant, "Microprocessors and Microcontrollers, Architecture, programming and system design using 8
 R.S. Gaonkar, "Microprocessor Architecture Programming and Application, with 8085", Wiley Eastern Ltd., New Delhi, 2013.

3. David E. Simon, "An Embedded Software Primer", Pearson education, 1999

References:

Kenneth J. Ayala, "The 8086 Microprocessor: Programming & Interfacing the PC", Delmar Publishers, 2007.
 Arnold S. Berger, "Embedded Systems Design- an Introduction to Processes, Tools & Techniques", CMP books, 2002

3. https://www.arduino.cc/en/software

T / L/

ETL

ETL

L

2

9

9

9

T/SLr

0/0

9

P/R

2/0

С

Subject Code: EBME22005	Subjec	et Name	: MACI	HINE D	RAWIN	IG		T / L/ ETL	L	T / S.Lr	P/ R	C	
	Prerec	quisite:]	Basic Er	ngineeri	ng Grap	ohics		Ту	2	0/0	2/0	3	
L : Lecture T : Tu	utorial	S Lr : S	upervise	d Learni	ng P:F	Practical	R : Res	earch	C: Cred	its			
T/L/ETL : Theory	y/Lab/Ei	nbedded	Theory	and Lat)								
OBJECTIVES:	The pur	pose of	study is	to impai	t knowle	edge in f	fundame	ntals of	machin	e drawing	g and asse	mbly	
drawings.													
COURSE OUTO	COMES	(COs) :	The stu	ident w	ill be ab	le to							
CO1	Unders	stand the	code of	practice	e and BI	S specifi	ication o	f basic r	nachine	elements	s. (Level 2	2)	
CO2	Apply manufa	the fund	amental (Level 3	s of mac 3)	hine dra	wing lik	te fits, li	mits and	toleran	ce analys	is in		
CO3	Assem jack et	ble the v c.(Level	various n 6)	nachine	parts of	IC Engiı	ne comp	onents, '	Fail sto	ck, Cotter	Joint, Sc	rew	
CO4	Sketch	ketch the isometric view and orthographic view of various machine parts . (Level 3)											
CO5	Employ	y CAD t	ools to c	convert p	oart draw	ving into	orthogr	aphic vi	ews. (L	evel 3)			
Mapping of Cou	rse Out	Outcomes with Program Outcomes (POs)											
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	-	-	-	-	2	2	-	3	3	1	2	
CO2	3	-	-	-	-	2	2	-	3	3	1	2	
CO3	3	-	2	-	3	2	2	-	3	3	1	3	
CO4	3	-	2	-	3	2	2	-	3	3	1	3	
CO5	3	-	2	-	3	2	2	-	3	3	1	3	
Cos / PSOs	PS	01	PS	02	PS	03	PS	04					
CO1		3	2	2		3		2					
CO2		3	2	2	-	3		2					
CO3		3	2	2		3		2					
CO4		3	2	2		3		2					
CO5		3	2	2		3		2					
3/2/1 indicates S	trength	of Corr	elation	3- Hig	h, 2- Me	edium, 1	l-Low				1		
			al										
Category	Basic Science	Engineering Science	Humanities and soci Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				
				~									

(An ISO 21001 : 2018 Certified Institution)	
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.	

Subject Code:	Subject Name : MACHINE DRAWING	Ty/Lb/	L	Τ/	P/R	С
EDME22005		ETL		SLr		
EBME22005	Prerequisite: Engineering Graphics	Ту	2	0/0	2/0	3

UNIT-I-DRAWING STANDARDS

Code of practice for Engineering Drawing, BIS specifications -Welding symbols, riveted joints, keys, andfasteners - Reference to hand book for the selection of standard components like bolts, nuts, screws, keys etc.

UNIT- II - INTRODUCTION TO MACHINE DRAWING

Fundamentals of machine drawing: Geometric Dimensioning - Limits, fits, Tolerances - Types -Tolerance Analysis. Isometric to Orthographic conversion of Part drawings and vice versa, Assembly Drawings - Manual drawing.

UNIT- III - PREPARATION OF ASSEMBLY MODELS

Preparing the assembly views (with minimum four components) of various industrial oriented equipments.(E.g. Piston and connection rod, Coupling and shafts, Plummer block, Tail stock, Cotter Joint, Knuckle Joint, Universal Joint and Screw Jack)

UNIT- IV - PREPARATION OF PART MODELS USING MODELING SOFTWARE 6

Preparing isometric view of various industrial oriented machine components - Selection of machine components from software library - Conversion of part drawing into orthographic views. (Drafting)

(UNIT-s I, II and III should be practiced by drafting equipment- UNIT- IV to be practiced by CAD software)

Total No. of Periods: 45

TEXT BOOK:

1. N. D. Bhatt and V. M. Panchal, "Machine Drawing", Charotar Publishing House, Anand, Gujarat, India. 2004.

REFERENCE:

1. K R Gopalakrishnan, "Machine drawing", Subhas Stores, Bangalore. 2007

9

24

Subject Code: EBCC22ET1	Su Un	bject derstan	Name ding Har	: Ur mony	niversal	alues:	T / L/ ETL/ IE	L	T / S.Lr	P/ R	C		
	Pro	erequisi	te:						ETL	1	0/0	2/0	2
L : Lecture T :	Tutoria	l S Lr	: Supervis	ed Lear	ning P:	Project	R : Rese	earch C	Credits				
T/L/ETL : The	ory/Lab	/Embed	ded Theor	y and L	ab								
OBJECTIVE:	:												
•	Develo	pment	of a h	olistic	perspe	ctive l	based of	on sel	f- explor	ation	about		
•	themse	elves (h)	uman bei	ng), fai velopin	nily, so o clarit	$c_1 ety ar x of t$	id natur he hari	e/exist	ence. in the hu	ıman h	eing fai	nilv	
	society	and na	ture/exis	tence	5 cluin	y) 01 (ine nun	inony	in the nu	innun 0	enig, iu	iiiiy,	
•	Strengt	hening	of self-re	eflection	n.								
•	Develo	pment	of comm	itment	and cou	rage to	act.						
COURSE OU	TCOM	ES (CO	s) : (3- 5)	: The st	tudents	will be a	able to						
CO1	Relate	self and	surround	ings and	l identif	y respon	sibility i	in life					
CO2	Assoc	iate hum	an relatio	nship ar	nd nature	e to hand	lle probl	ems and	l provide s	ustainał	ole solutio	ns	
CO3	Develo	op critic	al ability a	and enga	age in re	flective	and inde	ependen	t Thinking				
CO4	Show	commiti	nent towa	rds und	erstandiı	ng of val	lues						
CO5	Apply	oply Human values in day to day setting in real life											
Mapping of Co	urse Ot	itcomes	with Pro	gram O	utcome	s (POs)		DOG	DOA	DO10	D 011	DO	10
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
			1		-	2	1	1	1				2
CO2			2	2		2	3	1	1	2			2
CO3			1	1		<u> </u>	1	2					3
C04			<u> </u>		1	1	1 1	3	1	1			3 2
$CO_{\rm S}$	DS	01		22	DS	<u><u></u></u>		<u></u>	I DSO5	1			3
CO_1	rs	2		J2	PS	2	r.	504	P305				
		, ,	2			3							
CO2		2 2	2			<u>.</u>							
CO4		3	1			2							
CO5		2	2			<u>-</u> 1							
3/2/1 indicates	Streng	th of Co	orrelation	3- Hi	gh, 2- M	ledium,	1-Low						
	0		d social		ective		nary	lent	ject				
gory	Science	ring	ties an	1 Core	ram ele	ective	iscipli	ompor	al /Pro				
Cate	Basic !	Enginee Science	Humani Science	Progran	Prog	Dpen El	Inter E	Skill C	Practic				
							√						

Subject Code:	Subject Name UNIVERSAL HUMAN VALUES	T / L/	L	T /	P/ R	С
		ETL/IE		S.Lr		
EBCC22E11	Prerequisite:	ETL	1	0/0	2/0	2

OBJECTIVE:

- 1. Development of a holistic perspective based on self- exploration about themselves (human being), family, society and nature/existence.
- 2. Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence
- 3. Strengthening of self-reflection.
- 4. Development of commitment and courage to act.

UNIT 1: Course Introduction - Need, Basic Guidelines, Content and Process for Value Education

- 1. Purpose and motivation for the course, recapitulation from Universal Human Values-I.
- 2. Self-Exploration–what is it? Its content and process; 'Natural Acceptance'andExperientialValidation-astheprocessforself-exploration.
- 3. Continuous Happiness and Prosperity-A look at basic Human Aspirations
- 4. Right understanding, Relationship and Physical Facility- the basic requirements for fulfillment of aspirations of every human being with their correct priority.
- 5. UnderstandingHappinessandProsperitycorrectly-Acriticalappraisalof the current scenario
- 6. Method to fulfill the above human aspirations: understanding and living in at various levels of harmony

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking.

UNIT 2: Understanding Harmony in the Human Being - Harmony in Myself!

- 1. Understanding human being as a co-existence of the sentient 'I' and the material 'Body'.
- 2. Understanding the needs of Self ('I') and 'Body' happiness and physical facility.
- 3. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer).
- 4. Understanding the characteristics and activities of 'I' and harmony in 'I'.
- 5. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail.
- 6. Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available tome. Identifying from one's own life.

Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

UNIT 3: Understanding Harmony in the Family and Society- Harmony in Human-Human Relationship

- 1. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; trust and Respect as the foundational values of relationship
- 2. Understanding the meaning of Trust; Difference between intention and competence
- 3. Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship

- 4. Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
- 5. Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family,real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal valuein relationships. Discuss with scenarios. Elicit examples from students' lives.

UNIT 4: Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

- 1. Understanding the harmony in the Nature
- 2. Interconnectedness and mutual fulfillment among the four orders of nature- recyclability and self-regulation in nature.
- 3. Understanding Existence as Co-existence of mutually interacting units in all-pervasive space.
- 4. Holistic perception of harmony at all levels of existence.
- 5. Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

UNIT 5: Implications of the above Holistic Understanding of Harmony on Professional Ethics

- 1. Natural acceptance of human values
- 2. Definitiveness of Ethical Human Conduct
- 3. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
- 4. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- 5. Case studies of typical holistic technologies, management models and production systems
- 6. Strategy for transition from the present state to Universal Human Order:
 - a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers
 - b. At the level of society: as mutually enriching institutions and organizations
- 7. Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions e.g. Todiscuss the conduct as an engineer or scientist etc.

- Text Books
- 1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

REFERENCE BOOKS

- 1. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi.
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J C Kumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi

Contraction of the second seco

L · Locture T	· Tutori				- 1				ETL		SLr				
I · Locturo T ·	· Tutori		Prerec	uisite:	Manufa	cturing	Techno	ology - I	Lb	0	0/0	3/0	1		
T/L/ETL : The	eory/La	al S Lr b/Embec	: Supervi lded Theo	sed Lea ry and I	rning P Lab	: Practic	al R : F	Research	C: Credits	5					
OBJECTIVE	S: The	student	will learn												
•	To imp	art pract	tical expos	sure and	skill in	metal cu	itting pr	ocesses o	of Lathe ar	nd Drillin	g machin	e.			
COURSE OU	JTCOM	IES (CO	Ds) : The	Student	s will be	e able to	•								
CO1	1	Understa	and the op	erations	of basic	metal c	utting p	rocess m	achines (L	level 2)					
CO2	1	Acquire	skill in ba	sic oper	ations in	n metal c	utting p	rocess m	achines (L	Level 4)					
СОЗ]	Practical	skill in se	etting me	echanisn	n and pr	ocess pa	rameters	for specif	fic operat	ions (Lev	el 4)			
CO4	1	Understa	and and pr	epare th	e mould	s based	on the n	eed (Lev	rel 3)						
CO5]	Practical	skill in w	elding o	peration	ns (Leve	l 4)								
Mapping of C	Course	Outcom	tcomes with Program Outcomes (POs)												
Cos/Pos 1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2		
CO1	3	3	-	-	-	2	2	2	3	2	2	2	2		
CO2	3	3	-	-	-	2	2	2	3	2	2	2	2		
CO3	3	3	-	-	-	2	2	2	3	2	2	2			
CO4	3	3	-	-	-	2	2	2	3	2	2	2			
CO5	3	3	-	-	-	2	2	2	3	2	2	2	2		
Cos / PSOs	PSC	01	PSC)2	PS	03	PS	504							
CO1	3		3			2		2							
CO2	3		3		2	2		2							
CO3	3		3		2	2		2							
CO4	3		3			2		2							
CO5	3		3			2		2							
3/2/1 indicates	Strengt	th of Co	rrelation	3- Hig	gh, 2- M	edium,	1-Low								
			al												
			soci		iive		ury	nt	ct						
	ce		pun	e	lect	e	lina	one	roje						
~	cien	ing	es a	Cor	m e	ctiv	scip	duu	1 /P						
gory	c S	leer. ce	uniti ce	am	ogra	Ele	Di	Co	tica						
ate	Basi	ngin cien	uma	1g0.	Pro	pen	Inter	Skill	Prac						
	-	ы Х Е	Η Sc	_P_		0	-								
				÷											

	Feriyar E.v.K. filgh koau, Maduravoyai, Chennai-95. Taminia	au, maia.				
Subject Code:	Name: MANUFACTURING TECHNOLOGYLAB - I	Ty/Lb/	L	T/ SLr	P/R	С
EBME22L01		ETL/IE				
	Prerequisite: Manufacturing Technology - I	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS:

LATHE PRACTICE

- 1) Step turning
- 2) Taper turning
- 3) Thread cutting
- 4) Eccentric turning

DRILLING PRACTICE

- 1) Drilling
- 2) Reaming
- 3) Tapping.

FOUNDRY

1) Study of tools and equipments.

2) Preparation of Green sand moulds for Flange, Gear, V-grooved pulley, T & L Pipes

WELDING

1) Study of tools and equipments.

2) Electric arc welding exercises – lap joint – Butt joint – Fillet joint – Tee joint.

3) Gas welding and gas cutting – Template cutting.

Total No. of Periods: 45

			Periyar E.	V.R. High R	oad, Madu	ravoyal, C	hennai-95	. Tamilna	du, India.							
Subject Code:	Su	bject N	ame : E	NGINE	ERING	META	LLUR	GY	Ty/Lb/	L	Τ/	P/R	С			
EBME22L02	LA	В							ETL		SLr					
	Pr	erequisi	te: Engin	eering N	Aetallur	gy			Lb	0	0/0	3/0	1			
L : Lecture T :	Tutorial	SLr :	Supervise	ed Learn	ing P:	Project 1	R : Rese	arch C:	Credits			. <u> </u>				
T/L/ETL : The	ory/Lab	/Embedo	led Theor	y and La	ıb											
OBJECTIVE:	:															
• To imp	oart knov	vledge a	nd skill al	oout mic	rostructi	ure and h	neat trea	tment p	rocesses							
• Experi	mental r	nethods	of finding	g mechar	nical prop	perties o	f materi	als								
•																
		CC	OURSE C	UTCO	MES (C	Os):(3	3- 5)									
CO1	Unders	tand the	basic con	cept of s	specimer	n prepara	ation for	micros	tructure an	alysis						
CO2	Descrit	be the Ti	me tempe	rature tr	ansform	ation dia	ıgram (T	m (TTT) of different metals								
CO3	Analys	e the mi	icrostructu	are of n	on ferro	us mate	erials									
CO4	Analys	e the mi	icrostructu	are of fe	errous m	naterials										
CO5	Determ	ine the l	nardness c	of differe	ent mate	rials										
		Ma	apping of	Course	Outcon	nes with	Progra	m Out	comes (Pos	s)						
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO)12			
CO1	1		3						2				3			
CO2	1		3						2				3			
CO3	1		3						2				3			
CO4	1		3		-				2				3			
CO5	1		3				-		2				3			
Cos / PSOs	PS	1	PS	02	PS	<u>303</u>	P	504	PS05			_				
		1	2			3										
CO2		<u> </u> 1		<u>.</u>		3										
CO3		1 1	2	2)		<u> </u>						_				
C04	-	1 1	2	, ,		3						_				
$\frac{CO3}{3/2/1}$ indicates 9	Strengtl	1 h of Cor	relation	' 3. Hiał	2- Me	<u> </u>	.Low									
5/2/1 malcates	Strengt			J- Ingi	l, 2- 1110											
			nce													
			Scie													
		e	ial 5													
>		ienc	soc		tive		ary	nt	ct							
gory	ce	Sci	nud	e	lec	e	lina	one	roje							
ateg	cien	ing	es a	Cor	m e	ctiv	scip	duu	1/P							
Ŭ	c S(leer	uniti	am	gra	Ele	Di	Co	tica							
	3asi	ngin	um.	ogr	Prc	pen	nter	skill	rac							
	H	Ē	Η	Pr		Ō						_				
				×					Ň							

Subject Code:	Subject Name : ENGINEERING METALLURGY LAB	Ty/Lb/ ETL	L	T/ SLr	P/R	С
	Prerequisite: Engineering Metallurgy	Lb	0	0/0	3/0	1

ENGINEERING METALLURGY LAB

STUDY EXPERIMENTS

- **1.** Introduction to metallurgy
- 2. Specimen preparation
- **3.** Metallurgical microscope
- 4. Iron carbon system
- 5. Time temperature transformation diagram (TTT)

MICROSTRUCTURE ANALYSIS

- 1. Brass
- 2. Copper
- 3. Gray cast-iron
- **4.** Malleable cast-iron
- 5. Nodular iron
- 6. Mild-steel, Stainless-steel and High speed steel

HEAT TREATMENT PROCESS

- **1.** Jominey quench test
- 2. Hardness of steel

Subject Code	: Su M	bject ACHIN	Name ERY LAI	: FLU B	J ID N	ЛЕСНА	NICS	AND	Ty/Lb/ ETL	L	T/ SLr	P/R	C
EBCE221L4	Pr	ereauisi	te: Fluid	Mecha	nics and	l Machi	nerv		Lb	0	0/0	3/0	1
L : Lecture T :	Tutoria	al SLr:	Supervis	ed Learr	ning P:	Project	R : Rese	arch C:	Credits				
T/L/ETL : The	eorv/Lał	o/Embed	ded Theor	v and L	ab	U							
OBJECTIVE	S. The	otudont v	will loorn	·) ·····									
• Differ	ent Met	hods of f	low meas	urement	s								
To stu	dy the c	haracter	istics of h	ydraulic	pumps.								
• To stu	dy the c	haracteri	istics of h	, ydraulic	turbines	5.							
	maar												
COURSE OU	TCOM	IES (CO	s):		1:00								
		otormin	the con	tioiont of t	f discha								
CO_2		Determin	e the friet	ion foot	or for the	irge of C	Jinice al	ia veni	unmeter				
C04	<u> </u>)raw and	e ule met l analyze	the ner	formanc	e pipes e chara	cteristics	Clirves	of iet n	limn dear	r numn r	ecipro	cating
04	p	umps an	ps		cteristica		or jet p	ump, gea	r pump, i	cerpro	cating		
CO5	Í	Draw and	aw and analyze the performance characteristics c						of hydrau	ilic turbin	es		
Mapping of C	Course (Outcome	es with Pr	ogram (Outcom	es (Pos)					-		
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
	3	2	2	2		2	1		1				
C02	3	1	1	2			1	2	1				
CO4	4	3	1	2		2	1	2					
C05		3		2		2		2					
Cos / PSOs	PS	501	PSC	$\overline{)2}$	PS		PS	504					
CO1		3				2							
CO2		3				2							
CO3		2				3							
CO4		3	2			2		3					
CO5		3	2			2		3					
		<u>3/2/1 i</u>	ndicates S	Strengtl	<u>ı of Cor</u>	relatior	1 <u>3- Hi</u>	gh, 2- N	Iedium , 1	l-Low		-	
			al										
			oci		ive		Ŋ	It	t				
ŝ	e		s pr		lect	0	ina	ner	ojec				
081	ienc	ല്പ	ss an	Core	n el	tive	cipl	npc	/Pr				
Cat	Sci	erii e	nitie e	m (graı	Elec	Dis	Cor	ical				
	asic	gine	mar enc	gra	Pro	en I	ter	cill	acti				
	B	En _{ Sci	Hu Sci	Pro		Op	In	SI	P1				
							✓		\checkmark				

Subject Code: EBCE22IL4	Subject Name : FLUID MECHANICS AND MACHINERY LAB	Ty/Lb/ ETL	L	T/ SLr	P/R	С
	Prerequisite: Fluid Mechanics and Machinery	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS:

- 1. Determination of coefficient of discharge of given orifice meter
- 2. Determination of coefficient of discharge of given venturimeter,
- 3. Determination of coefficient of discharge of given mouthpiece.
- 4. Determination of friction factor of given set of pipes
- 5. Performance test and drawing the characteristics curves of centrifugal pump
- 6. Performance test and drawing the characteristics curves of reciprocating pump
- 7. Performance test and drawing the characteristics curves of jet pump
- 8. Performance test and drawing the characteristics curves of gear pump
- 9. Experiments to draw the characteristic curves of pelton wheel.
- 10. Experiments to draw the characteristic curves of Francis turbine.

SEMESTER IV

EDUCATIONAL AND RESEARCH INSTITUTE DEEMED TO BE UNIVERSITY University with Graded Autonomy Status	AC *
---	------

(An ISO 21001 : 2018 Certified Institution)

Link H2Dots Intervise E1L S.L f Precequisite: First year Engineering Mathematics Ty 3 1/0 0/0 4 L: Lecture T: Tutorial S.L f: Supervised Learning P: Project R: Research C: Credits Ty 3 1/0 0/0 4 L: Lecture T: Tutorial S.L f: Supervised Learning P: Project R: Research C: Credits Ty 3 1/0 0/0 4 DiffectTVFS: The student should be made to: To be able to apply the concepts in Statistics To understand the concepts in Numerical methods To be able to apply the concepts in Autoriations. To understand the concepts in Interpolation CO1 Analyze Statistical dat CO2 Understand the concepts in Interpolation Tot able to solve Algebraic and Transcendental equations. CO3 Understand the concepts in Numerical methods CO4 Solve algebraic and Transcendental copations CO5 CO4 Solve algebraic and Transcendental copations CO5 Apply Interpolation concepts Tot al 1 2 1 2 1 2 2 3 3 1 1 2 2 2 3 3	Subject Code	Subj	ect Nam	e :STA	TISTIC	AL A	ND NU	UMER	RIC	AL		Ty/I	∠b/	L	T/	P/R	С
Note: Try a 1/0 0/0 4 Prerequisite: First year Engineering Mathematics Ty J. 1/0 0/0 4 L: Lecture T: Tutorial Supervised Learning P: Project R: Research C: Credits TheoryLab/Embedded Theory and Lab OBJECTIVES : TheoryLab/Embedded Theory and Lab OBJECTIVES : To deable apply theoroperios in Statistics To understand the concepts in Probability theory COURSE OUTCOMES (COS): The Students will be able to COURSE OUTCOMES (COS): The Students will be able to COURSE OUTCOMES (COS): The Students will be able to CO1 Anyplinterproduction concepts Mapping of Course Outcomes with Program Outcomes (POS) COs? PO PO1 PO11 PO PO2 PO Cos? PO PO11 PO PO PO1 PO Cos?	EDWIA22000	(FO	R MEC	, HANIC	AL AN	D CI	VIL EN	NGINH	EER	RS)		E	L		5.Lr		
Prorequisite: First year Engineering Mathematics Ty 3 1/0 0/0 4 L: Lecture T: Tutorial S.L: Supervised Learning P: Project R: Research C: Credits Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab 000000000000000000000000000000000000		``								,							
L: Lecture T: Turorial S.Lr: Supervised Learning P: Project R: Research C: Credits Ty/LoFET: Theory/LabEmbedded Theory and Lab OBJECTIVES: The student should be made to: To be able to apply the concepts in Numerical methods To materiand the concepts in Numerical methods To be able to solve Algebraic and Transcendental equations. To understand the concepts in Numerical methods To be able to solve Algebraic and Transcendental equations. To understand the concepts in Numerical methods CO1 Analyze Statistical data CO2 Understand the concepts in Numerical methods CO3 Understand the concepts in Numerical methods CO4 Solve algebraic and Transcendental equations. CO5 Apply Interpolation concepts Mapping of Course Outcomes with Program Outcomes (POS) CO5 PO PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO PO11 PO12 CO1 3 3 3 2 2 3 1 1 1 1 1 2 2 1 2 3 CO3 2 3 1 1 3 2 2 1 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 2 3 3 1 1 1 2 2 2 2		Prere	equisite:	First ye	ar Engir	ieerin	g Math	ematic	s			Т	у	3	1/0	0/0	4
TyrLbrETL : Theory Lab/Embedded Theory and Lab OBJECTIVES : The student should be made to: To be able to apply the concepts in Statistics To understand the concepts in Numerical methods To be able to solve Algebraic and Transcendental equations . To Understand the concepts in Interpolation COURSE OUTCOMES (COS) : The Students will be able to CO3 Understand the concepts in Numerical methods CO4 Solve algebraic and Transcendental equations . CO4 Solve algebraic and Transcendental equations CO3 POP POP POP POP CO4 Solve algebraic and Transcendental equations CO4 Solve algebraic and Transcendental equations CO4 Solve algebraic and Transcendental equations CO4 PO PO PO11 PO12 CO5 A 1 1 1 2 2 <	L : Lecture T : T	lutoria	al S.Lr	: Super	vised Le	arnin	$\mathbf{g} \mathbf{P}: \mathbf{P}$	roject	R :	Resea	arch	C: Cree	dits				
OBJECTIVES : The student should be made to: To be able to apply the concepts in Numerical methods To understand the concepts in Numerical methods COURSE OUTCOMES (COs) : The Students will be able to COURSE OUTCOMES (COs) : The Students will be able to COURSE OUTCOMES (COs) : The Students will be able to CO2 Understand probability theory CO3 CO4 Solve algebraic and Transcendental equations CO4 Solve algebraic and Transcendental equations CO4 Solve algebraic and Transcendental equations CO5 Apply Interpolation concepts Mapping of Course Outcomes with Program Outcomes (POs) CO3 2 3 1 1 2 2 2 CO4 2 3 1 1 2 2 3 CO4 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO PO11 PO12	Ty/Lb/ETL : Th	eory/I	_ab/Emb	bedded 7	Theory a	nd La	ıb										
The student should be made to: To be able to apply the concepts in Numerical methods To understand the concepts in Numerical methods To anderstand the concepts in Interpolation COURSE OUTCOMES (COS) : The Students will be able to CO1 Analyze Statistical data CO2 Understand the concepts in Numerical methods CO3 Outlets will be able to CO3 Understand the concepts in Numerical methods CO4 Solve algebraic and Transcendental equations CO4 PO2 PO3 PO6 PO7 PO8 PO11 PO12 COs/POS PO PO11 PO COs/POS PO PO11 </td <td>OBJECTIVES</td> <td>:</td> <td>_</td> <td></td>	OBJECTIVES	:	_														
10 be table to apply the concepts in Substrict To understand the concepts in Numerical methods 10 be able to solve Algebraic and Transcendental equations . 10 understand the concepts in Interpolation COURSE COUTCOMES (COs): The Students will be able to COURSE COUTCOMES (COs): The Students will be able to COU COURES (COs): The Students will be able to CO3 Understand the concepts in Numerical methods CO4 CO4 Statistical data CO5 Apply Interpolation concepts Mapping of Course Outcomes with Program Outcomes (POs) CO3 CO4 PO4 PO5 PO6 PO7 PO8 PO9 PO11 PO12 CO3 2 1 1 2 2 1 2 2 3 CO4 PO2 PO4 PO5 PO6 PO7 PO8 PO9 PO11 PO12 CO3 2 1 1 2 2 3 <	The student sh	ould I	be made	e to:	•												
To understand the concepts in Numerical methods: To understand the concepts in Numerical methods: CO2 Understand the concepts in Numerical methods: CO2 Understand the concepts in Numerical methods: CO2 Understand probability theory CO3 Understand probability theory CO3 Understand probability theory CO3 CO4 Solve algebraic and Transcendental equations : CO4 Solve algebraic and Transcendental equations : CO4 CO4 CO3 PO4 PO5 PO6 PO7 PO8 PO9 PO PO11 PO12 CO3 1 1 2 2 1 3 CO3 PO4 PO5 PO6 PO7 PO8 PO9 PO PO11 PO12 CO3 1 1 2 3 1 1 <t< td=""><td>To be able to appl To understand the</td><td>ly the c</td><td>oncepts in Pro-</td><td>in Statisti obability</td><td>lCS</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	To be able to appl To understand the	ly the c	oncepts in Pro-	in Statisti obability	lCS												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	To understand the	conce	concepts in Numerical methods														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	To be able to solv	e Alge	Algebraic and Transcendental equations.														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	To understand the	conce	pts in Int	erpolatio	n	1											
CO1 Analyze Statistical data CO2 Understand probability theory CO3 Understand probability theory CO3 Understand probability theory CO3 Understand probability theory CO4 Solve algebraic and Transcendental equations COs/POS PO PO1 PO1 PO1 PO8 PO9 PO PO11 PO12 COs/POS PO11 1 2 COs/POS PO1 PO8 PO9 PO PO1 PO1 PO12 2 COs/POS PO11 1 2 2 CO1 3 3 1 1 2 CO3 2 1 1 2 2 2	COURSE OUT	COM	IES (CC	() : The	e Studer	ts wi	ll be al	ble to									
CO2 Understand probability theory CO3 Understand the concepts in Numerical methods CO4 Solve algebraic and Transcendental equations CO5 Apply Interpolation concepts PO PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO PO11 PO12 CO3 1 3 2 2 3 1 1 1 2 2 1 3 CO3 2 3 1 3 2 2 1 1 2 2 1 3 CO4 2 3 1 2 2 3 3 1 1 2 2 3 CO4 2 3 1 1 1 3 3 1 1 2 2 3 CO4 2 3 1 1 2 3 1 1 2 2 2 2 CO5 3 2	CO1	Anal	yze Statis	stical dat	a												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CO2	Unde	erstand pi	robability	theory												
CO4 Solve algebraic and Transcendental equations CO5 Apply Interpolation concepts Mapping of Course Outcomes with Program Outcomes (POs) COS PO0 PO1 PO1 <th< td=""><td>CO3</td><td>Unde</td><td>erstand th</td><td>e concep</td><td>ts in Nun</td><td>nerica</td><td>l method</td><td>ds</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	CO3	Unde	erstand th	e concep	ts in Nun	nerica	l method	ds									
Apply Interpolation concepts Mapping of Course Outcomes with Program Outcomes (POs) PO PO PO PO PO1 PO12 COS/POs PO PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO PO11 PO12 CO1 3 3 2 2 3 1 1 1 2 2 1 3 CO2 3 3 1 2 2 3 3 1 1 2 2 3 3 CO3 2 3 1 1 2 3 3 1 1 2 2 3 3 1 1 2 1 2 2 3 1 1 2 2 2 3 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 <td>CO4</td> <td>Solve</td> <td>e algebrai</td> <td>ic and Tr</td> <td>anscende</td> <td>ntal e</td> <td>quations</td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	CO4	Solve	e algebrai	ic and Tr	anscende	ntal e	quations	3									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	CO5	Appl	y Interpo	lation co	ncepts												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Mapping of Co	urse (Dutcom	es with]	Progran	n Out	tcomes	(POs)									
CO1 3 3 2 2 3 1 1 1 2 2 1 3 CO2 3 3 1 3 2 2 1 1 1 2 2 1 3 CO3 2 3 1 2 2 3 3 1 1 2 1 2 2 3 CO3 2 3 1 1 1 3 3 1 1 2 2 3 CO4 2 3 1 1 1 3 3 1 1 2 2 2 3 CO4 2 3 1 1 2 3 1 1 2 2 2 3 CO5 3 2 1 3 1 2 2 2 2 3 1 1 2 2 2 3 CO4 Co5 3 2 1 1 2 1 1 2 2	COs/POs	PO 1	PO2	PO3	PO4	PO	5 P	06	PC	07	PC)8	PO9	PO 10	PO11	PO	12
CO2 3 3 1 3 2 2 1 1 2 1 2 2 CO3 2 3 1 2 2 3 3 1 1 2 2 3 CO4 2 3 1 1 1 3 3 1 1 2 2 3 CO4 2 3 1 1 1 3 3 1 1 2 1 2 1 2 1 2 3 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 1 2 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CO1	3	3	2	2	3	;	1		1		1	2	2	1		3
CO3 2 3 1 2 2 3 3 1 1 2 2 3 CO4 2 3 1 1 1 3 3 1 1 2 2 3 CO4 2 3 1 1 1 3 3 1 1 2 2 1 2 2 1 2 2 2 2 2 2 2 3 1 1 1 2 2 1 2 2 1 2 <th< td=""><td>CO2</td><td>3</td><td>3</td><td>1</td><td>3</td><td>2</td><td>2</td><td>2</td><td></td><td>1</td><td></td><td>1</td><td>2</td><td>1</td><td>2</td><td></td><td>2</td></th<>	CO2	3	3	1	3	2	2	2		1		1	2	1	2		2
CO4 2 3 1 1 1 3 3 1 1 2 1 2 CO5 3 2 1 3 1 2 3 1 1 2 1 2 3 1 1 2 2 2 2 3 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td>CO3</td> <td>2</td> <td>3</td> <td>1</td> <td>2</td> <td>2</td> <td>2</td> <td>3</td> <td></td> <td>3</td> <td></td> <td>1</td> <td>1</td> <td>2</td> <td>2</td> <td></td> <td>3</td>	CO3	2	3	1	2	2	2	3		3		1	1	2	2		3
CO5 3 2 1 3 1 2 3 1 1 2 2 2 CO5 3 2 1 3 1 2 3 1 1 2 2 2 CO5 PSO1 PSO2 PSO2 PSO3 PSO4 CO1 CO1 CO2 CO2 CO3 CO3 CO4 CO4 CO4 CO4 CO5 Co1 CO3 Co1 CO4 CO4 <td>CO4</td> <td>2</td> <td>3</td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td>3</td> <td></td> <td>3</td> <td></td> <td>1</td> <td>1</td> <td>2</td> <td>1</td> <td></td> <td>2</td>	CO4	2	3	1	1	1		3		3		1	1	2	1		2
COs / PSOs PSO1 PSO2 PSO3 PSO4 C01	CO5	3	2	1	3	1		2		3		1	1	2	2		2
COs / PSOs PSO1 PSO2 PSO3 PSO4 C01																	
CO1 Image: Colored color	COs / PSOs		PSO1	L		PS	02					PSO3			F	PSO4	
CO2 CO3 Co3 CO4 Engineering CO5 Basic Science J2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- Low Basic Science Science Basic Science Science Basic Science Basic Science Science Still Component Program clective Practical /Project	CO1																
CO3 CO3 CO3 CO4 Endineering Basic Science J2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- Low Program elective Science Basic Science Science Science Science Science Program elective Program elective Science Program elective Program elective Science Science Still Component Still Component Science Science Science	CO2																
CO4 Co4 Co5 Description 3/2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- Low J/2/1 Indicates Strength of Correlation Basic Science Basic Science Image: Science Program core Science N Image: Strength of Corelation Program core N N	CO3																
Cote Strength Of Correlation, 3 – High, 2- Medium, 1- Low Engineering Basic Science Basic Sc	CO4																
3/2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- From Category Basic Science Basic Science Program Core Program Core Science Basic Science Program Core Program Core Science Science Project Program Core Program Core V Project Projective Projective V Project Projective V V <t< td=""><td>CO5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	CO5																
Category Abasic Science Abasic Science Engineering Engineering Science Program Core Program Core Inter Disciplinary Inter Disciplinary Practical /Project	3/2/1 Indicates	Stren	gth Of (Correlat	tion, 3 –	High	1, 2- Me	edium,	, 1-	Low				-		[
Category Basic Science Basic Science Engineering Science Program elective Program elective Inter Disciplinary Skill Component Practical /Project																	
Category Category Category Category Category Basic Science Basic Science Brogram Core Program clectiv Program electiv Skill Component Skill Component Practical /Project				ocia			/e			>							
Category Category Category Category Basic Science Engineering Science Program cle Program cle Inter Disciplii Inter Disciplii Practical /Proj				1 sc			ctiv			nar.		ent	ject				
Category		Jce		anc	d H	2	ele	ve		plir		uoc	roj				
Categ	ory	ciel	ing	es		ctiv						łu	1 /F				
Ca Engine Science Progre Skill Skill	teg	Š	eer	niti e	e 5	Ele						č	ica				
B B C B C P P P P P	Ca	asic	gine	enc	enc	Pro Jagra Ja											
		B	Eng	Sci Hui	Sci	Pro Pro						S	Pr				
		,															

An ISO 21001 : 2018 Certified Institution Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code EBMA22008	Subject Name : STATISTICAL AND NUMERICAL METHODS (FOR MECHANICAL AND CIVIL ENGINEERS)	Ty/Lb/ ETL	L	T/ S.Lr	P/R	С
	Prerequisite: First year Engineering Mathematics	Ту	3	1/0	0/0	4

UNIT I **BASICS OF STATISTICS**

Variables – Uni-variate Data – Frequency Distribution – Measures of Central Tendency – Mean – Median – Mode - Quartiles - Measures of Dispersion - The Range - Quartile Deviation - Standard Deviation - Relative Measures of Dispersion - Coefficient of Variation - Quartile Coefficient of Variation.

UNIT II PROBABILITY AND RANDOM VARIABLE

EDUCAT

Axioms of Probability – Conditional probability – Total probability – Baye's Theorem – Random variable – Probability mass function – Probability density function – Properties – Moments (Definition and simple problems).

UNIT III BASICS OF NUMERICAL METHODS

Curve fitting-Method of group averages-Principle of least square-Method of moments-Finite differences-Operators (Forward, Backward & Shifting) -Relationship between the operators.

UNIT IV SOLUTION OF EQUATIONS

Solution of Algebraic and Transcendental equations - Method of false position - Iteration method - Newton-Raphson method - Solution of Linear system of equations - Gauss Elimination method - Gauss-Jordan method - Iterative methods - Gauss-Jacobi method - Gauss-Seidel method - Matrix Inversion by Gauss-Jordan method. UNIT V **INTERPOLATION** 12

Newton forward and backward differences - Central differences - Stirling's and Bessel's formulae - Interpolation with Newton's divided differences – Lagrange's method.

Total no. of hrs: 60

Text Books:

Reference Books:

1) Veerarajan T., *Probability, Statistics and, Random Processes*, Tata McGraw Hill Publishing Co., (2008).

- 2) Singaravelu, Probability and Random Processes, Meenakshi Agency, (2017).
- 3) Gupta S.C., Kapoor V.K., Fundamentals of Mathematical Statistics, S.Chand& Co., (2007).
- 4) Veerarajan T., *Numerical Methods*, Tata McGraw Hill Publishing Co., (2005).
- 5) Sastry S.S., Introductory Methods of Numerical Analysis, Prentice Hall of India, (2003).
- Kandasamy P., Thilagavathy, Gunavathy K., Numerical Methods (Vol.IV), S.Chand& Co., (2008). 6)

12

12

12

Subjec	ct Cod	e:	Subject MATEI	Name : RIALS	STF	RENGT	TH OF			Ty/Lb/ ETL			T/ SLr	P/R	С	
EBME	E 22006	5														
			Prerequ	isite: Ei	igine	ering N	Aechan	ics		Ту	3		1/0	0/0	4	
L : Leo	cture T	: Tuto	rial SL	: Super	vised	Learni	ng P:	Practical	R : R	esearch (C: Credi	ts				
T/L/E7	$\Gamma L: Th$	neory/L	.ab/Embe	dded Th	eory a	and Lal	b									
OBJE	CTIV	E: The	e student	will lea	rn											
	• E	Basic p	rinciples	of stress	strai	n and e	lastic c	onstants								
	• 1	To drav	shear fo	orce and	bendi	ng mor	nent dia	agrams								
COUT		o find (leflection	\mathbf{O} of bean	15	1 4	<u></u>	.1.4.								
COUR	(SE U	UICO	MES (C	Os): If	dent w	III de a	die to									
CO1		Under	stand the	concept	s of m	nechani	cs of sc	s of solids (Level 2)								
CO2		Analy	ze the str	resses involved due to			differe	nt types	of load	ling (Lev	vel 4)					
CO3		Apply	the diffe	rent theo	ries o	of mech	anics (I	Level 3)								
CO4		Derive	the expr	ession fo	or def	lection	and ber	nding mo	oment	(Level 4)						
CO5		Use m	athematio	hematical approach to analy				tresses i	nvolve	d (Level	4)					
			Μ	apping	of Co	ourse O	utcom	es with l	Progra	m Outc	omes (P	Os)				
Cos/P	OS	PO1	PO2	PO3	PO3 PO4			PO6	PO7	' PO8	PO9)	PO10	PO	1 PO12	
CO1		3	3	3		2	3	2	2	2	3		3	2	2	
CO2		3	3	3		2	3	2	2	2	3		3	2	2	
<u>CO3</u>		3	3	3		2	3	2	2	2	3		3	2	2	
C04		3	3	3		2	3	2	2	2	3		3	2	2	
Cos/I	DSOg	J D	<u> </u>	3		<u></u>	PSO3			<u> </u>	3		3		<u>∠</u>	
C01	1 505	1	3		3	<i>.</i>	<u>PS03</u>			2						
CO2			3		$\frac{3}{3}$			2		2						
CO3			3		3			2		2						
CO4			3		3			2		2						
CO5			3		3			2		2						
3/2/1 i	ndicat	es Stre	ngth of	Correla	ion	3- Hig	gh, 2- M	ledium,	1-Low	7			<u>.</u>			
			al													
			oci			ive		IJ	It	t						
	e		s pu			ect		ina	ner	ojec						
	enc	b	s al	Ore		n el	tive	cipl	odu	/Pr						
	Sci	enir	itie			ran	lec	Disc	Con	cal						
	sic	ine	nce	nce	rogr			er I	ill (acti						
	Ba	Eng	Scie Hun	Scie	Progi		Ope	Int	Sk	Pra						
						~~										

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India

Subject Code: EBME22006	Subject Name : STRENGTH OF MATERIALS	Ty/Lb/ ETL	L	T/ SLr	P/R	С
	Prerequisite: Engineering Mechanics	Ту	3	1/0	0/0	4

UNIT- I: STRESS, STRAIN AND DEFORMATION OF SOLIDS

EDUCAT

Rigid and Deformable bodies – Strength, Stiffness and Stability – Stresses; Tensile, Compressive and Shear – Deformation of simple and compound bars under axial load – Thermal stress – Elastic constants and their relationship – strain energy due to axial load – stress due to suddenly applied load and impact load.

UNIT- II: BEAMS - LOADS AND STRESSES

Types of beams: Supports and Loads – Shear force and Bending Moment in beams – Cantilever, Simply supported beams and Overhanging beams Stresses in beams – Theory of simple bending – Stress variation along the length and in the beam section – Effect of shape of beam section on stress induced – Shear stress distribution in beams of different sections.

UNIT- III: TORSION OF SHAFTS AND SPRINGS

Theory of pure torsion- Torsion of circular and hollow shafts –Stepped shafts – Composite shaft – Stress due to combined bending and torsion. Type of springs - Stiffness- Springs in series-Springs in parallel - Stresses and deflections in helical springs and leaf springs – Design of helical springs- design of buffer Springs - leaf springs.

UNIT- IV: DEFLECTION OF BEAMS

Double integration method- Macaulay's Method- Area Moment Theorems for Computations of slope and deflection in Beams. Columns – End conditions – Equivalent length of a column – Euler equation – Slenderness ratio – Rankine formula for columns.

UNIT- V: ANALYSIS OF STRESSES IN TWO DIMENSIONS

Biaxial state of stresses – Thin cylindrical and spherical shells – Deformation in thin cylindrical and spherical shells – Biaxial stresses at a point-Stress as Tension. Stresses on inclined plane – Principal planes and Principal stresses – Mohr's circle for biaxial stresses – Maximum shear stress - Strain energy and Strain Energy Density.

Total No. of Periods: 60

TEXT BOOKS

- 1. Rajput R.K. "Strength of Materials (Mechanics of Solids)", S.Chand & company Ltd., New Delhi, 2010.
- 2. S.Ramamruthum and R. Narayan, "Strength of Materials", Dhanpat Rai & Sons,

REFERENCES:

- 1. Beer F. P. and Johnston R, (2002) "Mechanics of Materials", McGraw-Hill Book Co, Third Edition
- 2. Egor P. Popov, "Engineering Mechanics of Solids", Prentice Hall of India, New Delhi.

12

12

12

12

D G EDUCATIONAL AND RESEARCH INSTITUTE DEE MED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution)

Subject Code:		Sub	ject	Nam	ne: M	ECH		CS ()F M A	ACH	INE	S-I	T / I ETL		L	T/ Lr	S.	P/ R	C
EBME22	007	Pre	req	uisite	e: Eng	neer	ring N	Mech	nanics				Т	у	3	1	/0	0/0	4
L : Lecture	е Т : Т	[[utori	al	S Lr	: Supe	vise	d Lea	rnin	g P:I	Practi	cal	R : Re	esearch	C: C	Credits				<u> </u>
T/L/ETL :	Theo	ry/La	b/Er	nbed	ded Th	eory	and l	Lab											
OBJECT	IVES	: The	pur	pose	of stuc	ly is t	to un	derst	and ar	nd app	ply tl	ne diff	ferent c	once	pts of n	necha	nics.		
COURSE	OUT	COM	1ES	(CO	s): T	he stu	uden	t wil	l be al	ble to)								
CO1	U	Inders	tand	l the f	fundan	enta	l con	cepts	s of me	echan	ism	and their applications. (Level 2)							
CO2	Α	nalyz	e the	e diff	erent l	nks o	of a n	nech	anism	. (Lev	/el 4])							
CO3	D	raw t	he di	isplac	cement	, velo	ocity	and	accele	ratior	1 for	differ	ent me	chani	sms. (I	Level	3)		
CO4	C	ompa	re th	ne dif	ferent	ypes	of ri	gid t	ransm	issior	ı sys	tems a	and the	ir app	olication	ns. (L	evel 3	3)	
CO5	Il	lustrate the various frictions in machine drives. (Lev						vel 3)											
Mapping	of Co	urse	Out	come	es with	Prog	gram	l Out	tcome	s (PC) s)								
Cos/Pos	P	01	PO	02	PO3	P	04	PO	5 P	06	PC	07	PO8	PO	9 PO	D10	PO	11	PO12
CO1		3		3	2		2	-		1		1	-	1		2	1		2
CO2		3		3	2	2 3				1		1	-	1		2	1		2
CO3		3		3	2		3	2		1		1	-	1		2	1		2
CO4		3		3	2		3	2		1		1	-	1		2	1		2
CO5		3		3	2		2	2		1		1	-	1		2	1		2
Cos / PSC	s	PS	01		P	SO2		PSO3 PS				PSC)4						
CO1		,	3			2		2				2							
CO2		,	3			2			2			2							
CO3			3			2			2			2							
CO4			3			2			2			2							
CO5			3			2			2			2							
3/2/1 indi	cates	Stren	gth	of Co	orrelat	ion	3- E	High,	, 2- M	ediur	n, 1-	Low							
				cial			e)											
				l so			ctiv			hary	•	ent	ect						
	nce	5		anc		ore	ele	3	ve	ildi		pon	Proj						
	Scie	Ling	,	ties		L Col			lecti	isci		om	al /						
	sic (nee	nce	iani	nce	gram			пE	er D		ПС	ctic						
	Ba	ignE	Scie	Ium	Scie	Progr			Dpe	Inte		Ski	Pra						
			<u> </u>	<u> </u>									1						
								1											

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

ubject mame . MILCHANICS OF MACHINES -1	Ty/Lb/	L	Τ/	P/R	С
	ETL		SLr		
rerequisite: Engineering Mechanics, Strength of Iaterials	Ту	3	1/0	0/0	4
re Ia	requisite: Engineering Mechanics, Strength of terials	requisite: Engineering Mechanics, Strength of Ty	requisite: Engineering Mechanics, Strength of Ty 3	requisite: Engineering Mechanics, Strength of Ty 3 1/0	requisite: Engineering Mechanics, Strength of Ty 3 1/0 0/0

UNIT I BASICS OF MECHANISMS

Classification of mechanisms – Basic kinematic concepts and definitions – Degree of freedom, Mobility – Kutzbach criterion, Gruebler's criterion – Grashof's Law – Kinematic inversions of four bar chain and slider crank chains – Limit positions – Mechanical advantage – Transmission Angle.

UNIT II KINEMATIC ANALYSIS OF MECHANISMS

EDUCAT

Displacement, velocity and acceleration analysis of simple mechanisms –Velocity and acceleration polygons – analytical method and Kliens construction . Coincident points – Coriolis component of Acceleration.

UNIT III KINEMATICS OF CAM MECHANISMS

Classification of cams and followers – Terminology and definitions – Displacement diagrams –Uniform velocity, uniform acceleration and retardation, simple harmonic motions – Derivatives of follower motions – Layout of plate cam profiles.

UNIT IV GEARS AND GEAR TRAINS

Law of toothed gearing – Involutes and cycloidal tooth profiles –Spur Gear terminology and definitions–Gear tooth action – contact ratio – Interference and undercutting. Helical, Bevel, Worm, Rack and Pinion gears [Basics only]. Gear trains – Speed ratio, train value – Parallel axis gear trains – Simple Epicyclic Gear Trains.

UNIT V FRICTION IN MACHINE ELEMENTS

Bearings and lubrication – Pivot and collar bearings, Friction clutches – Belt and rope drives – Friction in brakes- Shoe brakes, Band brakes and band and block brakes-braking torque.

Total No. of Periods: 60

TEXT BOOKS:

1. Uicker, J.J., Pennock G.R and Shigley, J.E., "Theory of Machines and Mechanisms", 3rd Edition, Oxford University Press, 2009.

2. Rattan, S.S, "Theory of Machines", 3rd Edition, Tata McGraw-Hill, 2009.

3. Khurmi R. S, (2012) "Theory of Machines", S.Chand Publications,.

REFERENCES

1) Thomas Bevan, (2005) "Theory of Machines", CBS Publishers and Distributors, 5th Edition.

2) Shigley J.E and Uicker J.J., (1995) "Theory of Machines and Mechanisms", McGraw Hill Inc.

3) Rattan S.S., (2009) "Theory of Machines", Tata McGraw Hill Publishing Company Ltd., New Delhi.

4) Dr.V.P.Singh. (2005) "Theory of Machines", Dhanpat Rai and Co Private Limited.

12

12

12

12

Subject Code	: S N	Subject Na MACHINI	ect Name : ARTIFICIAL INTELLIGENCE A CHINE LEARNING						Ty / Lb/ ETL	L	T/ S.Lr	P/ R	C		
FRCS22ID5	I	Prerequisi	te: Mathe	ematics					Ту	3	0/0	0/0	3		
L : Lecture T	: Tuto	rial SLr :	Supervis	ed Lear	ning P:	Project	R : Res	earch C	C: Credits						
Ty/Lb/ETL : 7	Гheory	//Lab/Emb	edded Th	eory and	l Lab										
OBJECTIVE	2:														
• Study	the co	oncepts of	Artificial	Intellige	ence.										
• Learn	the m	ethods of s	solving pr	oblems	using A	rtificial	Intellige	nce.							
Introd	luce th	e concepts	of Exper	t Systen	ns and m	achine	earning								
COURSE OU	JTCO	MES (CO	s): Stud	ents will			1.1		s AI search algorithms						
		A nulve lin	ly knowledge representation, reasoning, and ma						s Al search algorithms						
02		problems	roblems in terms of data management					mach	ine learni	ng tech	iiques t	o rear	-world		
CO3		Analyse th	analyse the statistical data for decision making												
CO4		Describe	escribe the concepts in machine learning												
CO5		Apply kno	owledge o	of AI in 1	obotics										
Mapping of (Course	e Outcome	es with Pr	ogram	Outcom	nes (POs	s)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 2	l PO	012		
CO1	3	3	3	3	2	3	2	2	3	3	3		3		
C02	3	3	3	3	2	3	2	2	3	3	3		3		
005	3	3	3	3	1	3	2	2	3	2	3		3		
CO4	3	3	3	3	1	3	2	2	3	2	3		3		
CO5	3	3	3	3	1	3	2	2	3	2	3		3		
COs / PSOs	PSC	01	PSO2		PSO3		PSO4								
								3							
C02								<u> </u>							
CO4								3							
CO5								3							
3/2/1 indicate	s Stre	ength of Co	orrelatio	n 3- Hi	gh, 2- N	Iedium	, 1-Low	-	<u> </u>						
		Ĭ													
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project						
							•								

UNIT 1: INTRODUCTION OF AI AND ML

Introduction to data science and AI&ML: Data Science AI & ML, Use Cases in Business and Scope, Scientific Method, Modeling Concepts, CRISP-DM Method, Statistical analysis: Initial Data Analysis, probability, R essentials: Commands and Syntax, Packages and Libraries, Introduction to Data Types, Data Structures in R - Vectors, Matrices, Arrays, Lists, Factors, Data Frames, Importing and Exporting Data, Control structures and Functions.

UNIT 2: DATA MANAGEMENT

Data Acquisition, Data Pre-Processing And Preparation, Data Quality And Transformation, Handling Text Data, Principle Of Big Data, Big Data Framework-Hadoop, Spark, Nosql.

UNIT 3: STATISTICAL DECISION MAKING

Data Visualization, Sampling And Estimation, Inferential Statistics, Linear Regression, Non Linear Regression.

UNIT 4: MACHINE LEARNING

Foundation for ML, Clustering, Classification: Naïve bayes classifier, K-Nearest neighbors, support vector machine, decision tree, ensembles methods, Association rule mining.

UNIT 5 : AI IN ROBOTICS

Robotic perception, localization, mapping- configuring space, planning uncertain movements, dynamics and control of movement, Ethics and risks of artificial intelligence in robotics

Total No. of Periods: 45

TEXT BOOKS:

1. Micheal Negnevitsky, "Artificial Intelligence: A guide to Intelligent Systems", Harlow: Addison-Wesley, 2005.

REFERENCES:

1. Nils J. Nilsson, "Introduction to Machine Learning", 2005. 2. Pang-Ning Tan, Michael Steinbach., Introduction to Data Mining, Pearson, 2019.

	Periyar E.v.k. high koad, Maduravoyal, Chennal-95. Taminad	iu, india.				
Subject	Subject Name : ARTIFICIAL INTELLIGENCE AND	Ty / Lb/	L	T /	P/ R	1
Code:	MACHINE LEARNING	ETL		S.Lr		l
	Prerequisite: Mathematics	Ту	3	0/0	0/0	1
EBCS22ID5		-				l

DUCA 2018 Certified Institution

О	6
ი	0
~	~

9

9

9

9

Q

С

EDUCATIONAL AND RESEARCH INSTITUTE	Solution At State
DEEMED TO BE UNIVERSITY	****
University with Graded Autonomy Status	
(An ISO 21001 : 2018 Certified Institution)	

Subject Code:		Subject	Name: E	NGINE	ERING	METR	OLOG	Y	Ty/Lb/	L	T /	P/R	С
EBME22ET2									ETL		SLr		
	Prer	equisite	: Enginee	ring Phy	ysics				ETL	2	0/0	2/0	3
L : Lecture T :	Tutoria	l S Lr	: Supervis	ed Learr	ning P:	Project							
T/L/ETL : The	ory/Lab	/Embedo	ded Theor	y and La	ıb								
OBJECTIVES	S: The s	student v	vill learn		_	_			_				
• Te	chnique	of meas	surement u	sing dif	ferent ty	pes of p	recision	measuri	ng instru	nments			
OURSE OUT	COME	S (COs)	:										
CO1	Un	derstand	d the funda	amentals	of preci	ision me	easureme	ents (Le	evel 2)				
CO2	Ga	in theore	etical and	practical	l knowle	edge abo	out the lin	near and	l angular i	measureme	ents (Leve	13)	
CO3	De	monstra	te the diff	erent typ	bes of for	rm meas	suremen	ts (Leve	13)				
CO4	Sel	lect the a	appropriate	e precisi	on meas	uring in	strumen	t based of	on the cor	nponent di	awing (Le	evel 4)
CO5	Ex	posed to	the recen	t advanc	ement ii	n metrol	ogy (Le	vel 2)					
Mapping of Co	ourse O	outcome	s with Pro	ogram C	Jutcome	es (POs)			D 0 0				
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO	12
COI	3	2	2	-	3	3	2	2	3	2	2		2
CO2	3	2	2	-	3	3	2	2	3	2	2		2
CO3	3	2	2	-	3	3	2	2	3	2	2		2
CO4	3	2	2	-	3	3	2	2	3	2	2		2
CO5	3	2	2	-	3	3	2	2	3	2	2		2
Cos / PSOs	PS	01	PSC	02	PS	03	PS	504					
CO1	,	3	3		2	2		2					
CO2		3	3			2		3					
CO3	•	3	3			2		3					
CO4	,	3	3			2		3					
CO5	,	3	3			2		3					
3/2/1 indicates \$	Strengt	h of Cor	relation	3- High	n, 2- Me	dium, 1	-Low	. <u></u>			-		
			ee										
			ien										
			l Sc										
		JCe	cia		'e								
ory		ciel	d sc		ctiv		nary	lent	ject				
tego	ence	S S	ano	ore	ele	ive	ipli	por	Pro				
Cai	Scie	lini	ties	Ŭ	ram	lect	Disc	Jom	al/				
	sic	inee	iani	gran	rog	υE	er D	II C	ictic				
	Ba	Bug	Hun	Prof	Ч	Ope	Int	Sk	Prí				
						Ĭ	1						
				✓									

An ISO 21001 : 2018 Certified Institution Perivar E.V.R. High Road, Maduravoval, Chennai-95, Tamilnadu, India.

Subject Code:	Subject Name : ENGINEERING METROLOGY	Ty/Lb/ ETL	L	T/ SLr	P/ R	С
EBME22ET2	Prerequisite: Engineering Physics	ETL	2	0/0	2/0	3

UNIT- I: INTRODUCTION TO METROGY

Basic concepts-Need for measurement - legal metrology-Precision and Accuracy - Reliability - Errors in Measurements - Types - Causes- Calibration - Interchangeability and selective assembly

Linear and angular measurements- Measurement of Engineering Components: Comparators- types--Mechanical, Optical, Electrical, electronics and pneumatic - Slip Gauges - Limit Gauges - Auto Collimator - Angle Decker - Alignment Telescope - Sine Bar - Bevel Protractor.

LAB COMPONENTS:

1. Angular Measurement using Sine Bar, Slip Gauge and Dial Gauge,

EDUCA

- 2. Measurement of Dimensions using Vernier Height Gauge
- 3. Measurement of Dimensions using Vernier Depth Micrometer
- 4. Angular Measurement using Vernier Height Gauge and Sine Bar
- 5.Angular measurement using Bevel Protractor
- 6.Calibration of Dial Gauge using Slip Gauge

7.Flatness of given work piece using Autocollimator

UNIT- II: FORM MEASUREMENTS

Measurement of Screw Thread - internal and External screw threads- Measurements of various elements of thread - Best size wire - Two and three wire method.

Gears - Measurements of various elements - Constant chord method - Base tangent method.

Surface Finish: Surface topography definitions - Measurement of Surface Texture - Methods - Evaluation of Surface finish.

Lab Components:

1. Measurement of Gear Nomenclature using Gear Tooth Vernier 2. Thread Measurement using Profile Projector

UNIT- III: LASER METROLOGY

Precision instrument based on Laser: Use of Lasers - Principle - Laser Interferometer - Application in Linear and Angular measurements - Testing of machine tools using Laser Interferometer.

UNIT- IV: ADVANCES IN METROLOGY

Co-ordinate Measuring Machine (CMM) - Constructional features - Types - Applications of CMM - CNC applications - Computer Aided Inspection (CAI) - Machine Vision - Applications in Metrology. Lab Components: 1. Measurement of Dimensions using Tool Makers Microscope

UNIT V: MEASUREMENT OF POWER, FLOW AND TEMPERATURE

Force, torque, power :-mechanical, pneumatic, hydraulic and electrical type-Flow measurement: Venturi, orifice, Rotameters, pitot tube – Temperature: bimetallic strip, pressure thermometers, thermocouples, electrical resistance thermister..

TEXT BOOK

1)

R.K. Jain, (1994) "Engineering Metrology", Khanna publishers, 109094.

REFERENCES

- I.C. Gupta, "A TEXT BOOK of Engineering Metrology", Dhanpat Rai & sons, 109096. 1)
- 2) G.N. Galyer and C.R. Shotbolt, "Metrology for Engineers", ELBS edition, 109090.
- Thomas "Engineering Metrology", Butthinson & co, 10984. 3)

88

10

9

7

10

9

DEEMED TO BE UNIVERSITY University with Graded Autonomy Status
--

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Co	de:		Subject CONS	et Nai STITUTIC	ne : N (Audi	THI t course	E IN	IDIAN	Ty/L	b/	L	T/	P/R	C
EBCC22I0	C22I04 Prerequisite: NIL								TE	2		0/0	0	
			Prerec	juisite: N	IL.				IE		2	U/U	U/U	U
L : Lecture	T : T	utorial	SLr :	Supervise	d Learnin	g P : P	roject R	: Resea	rch C:					
Credits T/L/	ETL	: Theor	y/Lab/E	mbedded 'I	heory and	l Lab								
OBJECT	VE:	de en e		of the high			.f. I., d:	Constitu	4					
• 10 • To	To provide an overview of the history of the making of Indian Const								luion					
• 10 • To	Knox	v the fu	ndament	al rights d	buties and	the direct	tive prind	rinles of	i. state no	licy				
• To	unde	rstand fl	he functi	onality of	the legisl	ature th	e execut	ive and f	he indic	iarv				
COURSE	OUT		S (COs)	(3-5)	the legist		<u>e enecut</u>	ive una t	lie juure	iui y				
The Studen	ts wil	ll be abl	e to	. ()										
CO1	Und	lerstand	the histo	ory of mak	ing of Ind	ian Cons	titution							
CO2	Und	lerstand	the prea	mble and	the basic s	tructures	of the C	onstitutio	on					
CO3	Des	cribe th	e fundan	nental righ	ts, duties a	and the d	irective p	orinciples	s of state	e policy	y			
CO4	Des	cribe th	e Emerg	ency powe	rs of the g	overnme	ent							
CO5	Und	lerstand	the Spe	cial Provis	sions for J	ammu an	d Kashn	nir, Nagal	land and	l Other	Reg	gions and	d Amendr	nents
Mapping o	of Course Outcomes with Program Outcomes (POs)													
COs/POs	PO	01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9		PO10	PO11	PO1 2
CO1							3	1	1	1		1		
CO2							3	1	1	1		1		
CO3							3	1	1	2		1		
CO4							3	1	1	2		1		
CO5	_						3	1	1	2		1		
COs / PSOs		PSO	01	PS	02	PS	503							
CO1		1			1		2							
CO2	_	1			1		2							
<u>CO3</u>		1			1		2							
CO4 CO5		1			1 1		2							
203 3/2/1 indicat	tes St	renoth	of Corr	elation 3	1 - High 2-	Medium	<u>-</u> n 1-Low	7						
		n engul					 							
Category		Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				
								√						

Subject Code:	Subject Name : THE INDIAN CONSTITUTION (Audit course)	Ty/Lb/ ETL/IE	L	T/ SLr	P/R	C
EBCC22104	Prerequisite: NIL	IE	2	0/0	0/0	0
UNIT 1			•		3	•
The Histo	ry of the Making of Indian Constitution, Prear	nble and the	e Bas	ic Struct	tures	
UNIT 2					3	
Fundame	ntal Rights and Duties , Directive Principles of	f State Polic	у			
UNIT 3					3	
Legislatu	re, Executive and Judiciary					
UNIT 4	-				3	
Emergeno	cy Powers					
UNIT 5	-				3	
Special P	rovisions for Jammu and Kashmir, Nagaland a	nd Other Re	egion	s. Amen	dments	

Total No. of Periods: 15

TEXT BOOKS:

1. D D Basu, Introduction to the Constitution of India, 20th Edn., Lexisnexis Butter worths, 2012.

REFERENCE BOOKS:

1. Rajeev Bhargava (ed), Ethics and Politics of the Indian Constitution, OxfordUniversity

Press, New Delhi, 2008.

2. Granville Austin, The Indian Constitution: Cornerstone of a Nation, Oxford UniversityPress, Oxford, 1966.

 Zoya Hassan, E. Sridharan and R. Sudarshan (eds), India's Living Constitution: Ideas, Practices, Controversies, Permanent Black, New Delhi, 2002
 Subhash C. Kashyap, Our Constitution, National Book Trust, New Delhi, 2011.

Subject	t Code	e: S	Subject Na	ame: THE	INDIAN '	FRADITI	ONAL		Ty/L	b L	Τ/	P /	R	С
EBCC2	22105	I	KNOWLE	EDGE (Aud	it course	e)			/ETL	./	SLı	•		I
									IE					1
		I	Prerequisi	te: NIL					IF	2 2	0/0	0/0		0
L : Lect	ure T	: Tut	orial SL	r : Supervised	Learning	P: Project	R : Resea	arch C: Cre	dits	•				
T/L/ET	L : Th	neory/	Lab/Embe	edded Theory	and Lab									
OBJEC	TIVE	E:	(1.1 D	1 • 1	101	10 11	1. 75 1	177	1 1	G (
•	Tou	inders	stand the P	re- colonial a	nd Colonia	al Period, In Aditional Pr	ndian I rad	itional Kno	wledge	System	TV .			
•	To K	Know	the Histor	v of Physics a	and Chemi	strv. Tradit	tional Art a	and Archite	cture an	d Vastu	sy Shashtra,	Astronor	nv an	d
	Ast	trolog	sy size	.jj							,			
•	To u	inders	stand the C	Drigin of Math	nematics, A	viation Te	chnology i	n Ancient	India, Cr	afts and	Trade in	Ancient l	India	
COUR	SE OU		OMES (C	Os): (3-5)										
CO1	Unde	will t	d the Pre-	colonial and	Colonial P	eriod Indi	an Traditio	nal Knowl	edge Svs	stem				
	Desc	rihe	the Traditi	ional Medicin	e Traditio	nal Produc	tion and C	onstruction	Techno	logy				
	Und		d the bist-	my of Dhuster	and Char	nui i iouuc	litional A	t and Amati		nd Wast	Chechter	Acteor	0.000	nd
	Astro	erstan ology	u the histo	bry of Physics	s and Chen	instry, 1rac	intional Ar	i and Archi	lecture a	uia vasti	u Snashtra	i, Astron	omy a	u10
	1 10110	51055												
CO4	Unde	erstan	d the Orig	in of Mathem	atics, Avia	tion Techr	nology in A	Ancient Ind	ia, Crafts	s and Tra	ade in An	cient Indi	a	
CO5	Unde	erstan	d the TK	S and the C	ontempo	rary Wor	ld, India	n union a	nd IT F	Revolut	tion			
Mappir	ng of (Cour	se Outcon	nes with Prog	gram Outo	comes (PO	s)							
COs/PO	Os F	?0	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1		-	3	3	1		2				2		1	
CO2			3	3	1		2				2		1	
<u>CO3</u>			3	3	1		2				2		1	
CO4 CO5			3	3	1		2				$\frac{2}{2}$		1	
$\frac{COS}{COS}$		Р	<u>5</u> SO1	PSO	2	PS	03	PSC)4		2		1	
PSOs				1		-~								
CO1		1		1		2								
CO2		1		1		2								
CO3		1		1		2								
CO4		1		1		2								
$\frac{1005}{2/2/1}$	ndiaa	1	trongth	1 of Convolati	on 2 11	2 ab 2 Ma	dium 1	Low						
3/2/11	luica	ites 5	trengtn	of Correlati	оп 5- п	gn, 2- Me			1	-				
								ry	at	5				
	e			e a			n	lina	nei	oje				
	iena		Jg	ence	Core	n	tive	cipl	npc	/Pr				
	Sci		erii e	nitie Scie	u C	grat	Ilec	Dis	Cor	cal				
	Isic		ține ence	nar ial S	grai	Prog	sn E	ter]	ill (acti				
	\mathbf{Ba}		Eng Sci6	Hui soci	Pro	ele	Opé	In	Sk	Pr				
								✓						
X														
JOF														
TEC														
CA'														
-					B.Tech Ma	chanical I	Ingineerin	g - 2022 Re	gulation	1				91

B.Tech Mechanical Engineering - 2022 Regulation

Subject Code: EBCC22I05	Subject Name : THE INDIAN TRADITIONAL KNOWLEDGE (Audit course)	Ty/Lb /ETL/ IE	L	T/ SLr	P/R	C
	Prerequisite: NIL	IE	2	0/0	0/0	0

UNIT I

Historical Background: TKS During the Pre- colonial and Colonial Period, Indian Traditional Knowledge System

UNIT II

Traditional Medicine, Traditional Production and Construction Technology

UNIT III

History of Physics and Chemistry, Traditional Art and Architecture and Vastu Shashtra, Astronomy and Astrology

UNIT IV

Origin of Mathematics, Aviation Technology in Ancient India, Crafts and Trade in Ancient India

UNIT V

TKS and the Contemporary World, TKS and the Indian Union, TKS and IT Revolution.

Total No. of Periods: 15

TEXT BOOKS:

1. Amit Jha (2009), Traditional knowledge system in india, 1st Edition, Delhi University (North Campus)

2. Dr.A.K.Ghosh (2011), Traditional Knowledge of Household Products

3

3

3

3

Subject Code	e: Su LA	bject N AB	ame : S	TREN	GTH O	F MA	FERIAI	LS	Ty/Lb/ ETL	L	T/ SLr	P/R	C
	Pre	erequisi	te: Engin	eering N	Aetallur	gy			Lb	0	0/0	3/0	1
L : Lecture T	: Tutorial	SLr :	Supervise	ed Learn	ing P:	Project	R : Rese	earch (C: Credits				<u>.</u>
T/L/ETL : Th	eory/Lab	/Embedd	led Theory	y and La	ıb								
OBJECTIVE	C:												
To de To tes	termine t st the har	he mech dness of	anical pro	perties of OPPER	of steel read and Alu	od using minium	g Univers	sal test	ing machir	ne			
COURSE OU	JTCOM	ES (COs	s): The st	udent w	vill be at	ole to	L arral (2)						
	Determ	and the s	stress strai	n diagra	m of ste	el rod. (Level 2)						
002	Determ	me the r	iaruness u	esting of	Steel, C	opper a	na Alun	iinium					
CO3	Estimate	e the Spr	ing consta	ant, unde	er Tensio	on and C	ompress	sion					
CO4	Estimat	e the not	ch toughn	ess of st	eel using	g Izod in	mpact te	sting n	nachine				
CO5	Study th	ne mecha	unical prop	perties of	f Steel a	nd Cast	iron spe	cimen	using Univ	versal testi	ng machin	ne.	
Mapping of C	ourse Ou	tcomes	with Prog	gram O	utcomes	(Pos)							
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	3	2	2	2	2	2	2	3	3	2		2
CO2	3	3	2	2	2	2	2	2	3	3	2		2
CO3	3	3	2	2	2	2	2	2	3	3	2		2
CO4	3	3	2	2	2	2	2	2	3	3	2		2
CO5	3	3	2	2	2	2	2	2	3	3	2		2
Cos / PSOs	PS	501	PSO	02	PS	03	PS	504					
CO1		3	3			2	2						
CO2	-	3	3		4	2	2						
CO3		3	3			2	2						
CO4		3	3			2	2						
CO5		3	3			2	2						
3/2/1 indicates	Strengt	h of Cor	relation	3- High	n, 2- Mee	dium, 1	Low						
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				

B.Tech Mechanical Engineering - 2022 Regulation

Subject Code: EBME22L03	Subject Name : STRENGTH OF MATERIALS LAB	Ty/Lb/ ETL	L	T/ SLr	P/R	С
	Prerequisite: Engineering Metallurgy	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS:

- 1. Evaluation of Engineering Stress/strain diagram on steel rod.
- 2. Determination of mechanical properties of steel and cast iron using Universal testing machine
- 3. Hardness values of Steel, Copper and Aluminium using Brinell hardness machines
- 4. Hardness values of Steel, Copper and Aluminium using Rockwell machine
- 5. Deflection Test on mild steel and Aluminium beam Verification of Maxwell theorem
- 6. Estimation of Spring constant, under Tension and Compression
- 7. Determination of notch toughness of steel using Izod impact testing machine
- 8. Torsion test on metal specimen by using Torsion Testing Machine.

EDUCATIONAL AND RESEARCH INSTITUTE	A + + + +
University with Graded Autonomy Status	
(An ISO 21001 : 2018 Certified Institution)	

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code	: Sul M	bject Na ACHINI	ame : AR E LEARN	AND	Ty / Lb/ ETL	L	T/ S.Lr	P/ R	C					
EBCS22IL4	Pro M	erequisi ACHIN	te: ART E LEARN	IFICIA NING	L INT	ELLIG	ENCE	AND	Lb	0	0/0	3/0	1	
L : Lecture T :	Tutoria	l SLr	Supervis	ed Lear	ning P:	Project	R : Res	earch C	C: Credits	11				
Ty/Lb/ETL : T	Theory/I	_ab/Emb	edded Th	eory and	l Lab									
OBJECTIVE	:													
• Study	the cond	cepts of	Artificial	Intellige	ence.									
• Learn	the met	hods of s	solving pr	oblems	using A	rtificial	Intellige	nce.						
• Introd	uce the	concepts	of Exper	t Systen	ns and m	achine l	earning							
COURSE OU	COURSE OUTCOMES (COs) : Students will able to:													
CO1 Write a R program to merge two given lists into one list, given matrix into one list.														
CO2	Demo	onstrate	the work	ing of t	he decis	sion tree	e based	ID3 al	gorithm					
CO3	Write	a progr	am to im	plemen	t the na	ïve Bay	vesian c	lassifie	r for a san	nple trai	ining da	ita set		
<u>CO4</u>	Apple	$\frac{1}{2}$ as a .C	SV IIIe.	o olucto	r a sot	of data (stored		V filo					
C04	Apply	Write a program to implement k-Nearest Neighbor algorithm to classify the iris data set using												
	Java/Python ML library.													
Monning of C	Java/Python ML library. Apping of Course Outcomes with Program Outcomes (POs)													
						PO6	9 PO7	POS	PO0	PO10	Ρ Ω11	1 D/	D12	
CO1	3	3	3	3	2	3	2	2	3	3	3		3	
CO2	3	3	3	3	2	3	2	2	3	3	3		3	
CO3	3	3	3	3	1	3	2	2	3	2	3		3	
CO4	3	3	3	3	1	3	2	2	3	2	3		3	
CO5	3	3	3	3	1	3	2	2	3	2	3		3	
COs / PSOs	PSO1	5	PSO2	5	PSO3	5	2 PSO4	-	5	-			5	
CO1	1501		1504		1505		1004	3						
CO2								3						
CO3								3						
CO4								3						
CO5								3						
3/2/1 indicates	s Strens	gth of C	orrelation	n 3- Hi	gh, 2- N	ledium.	1-Low		L					
	c				Í									
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
							\checkmark		✓					

Subject Code: EBCS22IL4	Subject Name : ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING LAB	Ty/Lb/ ETL	L	T/ SLr	P/R	С
	Prerequisite: Artificial Intelligence and Machine Learning	Lb	0	0/0	3/0	1

- 1. Write a R program to list containing a vector, a matrix and a list and give names to the elements in the list.
- 2. Write a R program to merge two given lists into one list.
- 3. Write a R program to convert a given matrix to a list.
- 4. Write a program to demonstrate the working of the decision tree based ID3 algorithm.
- 5. Write a program to implement the naïve Bayesian classifier for a sample training data set Stored as a .CSV file.
- 6. Apply EM algorithm to cluster a set of data stored in a .CSV file.

7. Write a program to implement k-Nearest Neighbor algorithm to classify the iris data set.

Subject Code:	Subject Name: TECHNICAL SKILL-I	Ty/Lb/	L	Τ/	P/R	С
FBMF22101		ETL/IE		SLr		
EDNIE22101	Pre requisite: All subjects studied up to date	IE	0	0/0	2/0	1

Students should acquire skill in the domain/inter disciplinary area from government/private training centers/industries /University for a minimum period of 15 calendar days. The training can be through off line, online or mixed mode. Students are supposed to prepare Technical skill report at the end of the training and submit the report along with the certificate in proof of the training, during the viva voce examination conducted by the examiners duly appointed by the head of the department

Subject Code:	Subj	ect Name	: SOFT SI	KILLS I	-EMPLY	ABILI	TY SKIL	L Ty/	Lb/	L	Τ/	P/R	С		
EBCC22I06								ETI	L/IE		SLr				
	Pre r	equisite:	None					I	IE 0 0/0 2/0 1						
L : Lecture T : Tu T/L/ETL : Theory	itorial y/Lab/E	S Lr : Suj mbedded	pervised Le Theory and	earning I d Lab	P : Projec	t R:Res	search C:	Credits							
OBJECTIVES:	The stu	dent will													
• To	create a	awarenes	s in stude	nts, varı	ous top	compan	les helpi	ng them	improve th	neir skil	l set matr	x, lead	ıng		
• To 1	heln sti	udents be	e aware of	various	technia	ues of c	andidate	recruitm	ent and he	eln them	prepare	CV's at	nd		
resu	ime.			vano as	teening		anaraato	10010101		np thom	propure	e v b u	14		
• To]	help stu	udent ho	w to face	various t	types of	interviev	w, prepa	ring for H	HR, techni	cal inter	views.				
• To	help stu	udents in	nprove the	eir verba	l reading	g, narrat	ion and p	presentat	ion skills ł	by perfo	rms vario	us moc	k		
sess	sions.														
COURSE OUT	COMES	5 (COs) :													
CO1	В	Be aware of various top companies leading to improvement in skills amongst them.													
CO2	В	Be aware	of vario	us cand	idate re	cruitme	ent techr	niques li	ke group	discuss	sion, inte	rviews	s and		
	b	e able to	able to prepare CV's and resumes.												
CO3	P	repare f	or differe	ent type	s of inte	erviews	and be	prepareo	1 for HR	and tecl	hnical in	terviev	vs.		
CO4	lı	mprove	their verb	oal, wri	tten and	other s	kills by	perform	ning mock	x sessio	ns.				
CO5	P	articipa	tion of gr	oup dis	cussion	and ap	titude te	ests							
Mapping of Cou	Course Outcomes with Program Outcomes (POs)														
Cos/Pos	PO1	PO2	PO3	PO4	PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										
CO1	1	1	1	1	1	2	2	3	2	3	2		3		
CO2	1	1	1	1	1	2	2	3	2	3	2		3		
CO3	1	1	1	1	1	2	2	3	2	3	2		3		
CO4	1	1	1	1	1	2	2	3	2	3	2		3		
CO5	1	1	1	1	1	2	2	3	2	3	2		3		
Cos / PSOs	PS	501	PS()2	PS	<u> </u>	2 PS	504	2				5		
CO1															
CO2															
CO3															
CO4												_			
CO5												_			
3/2/1 indicates S	trengt	h of Cor	relation	3- Higł	1, 2- Me	dium, 1	-Low								
	_														
			cial		e										
			l so		ctiv		lary	ent	ect						
ory	nce	50	and	ore	ele	ve	plir	hon	Proj						
tego	Scie	ring	ties	CC	am	ecti	isci	om	al //						
Ca	sic (inee	nani nce	ran	rogı	n El	er D	ПC	ctic						
	Bat	Ingi	Hum	rog	L L	Dpei	Inte	Ski	Pra						
		ШХ			1		1	✓							

Subject Code:	Subject Name : SOFT SKILLS I-EMPLYABILITY	Ty/Lb/	L	Τ/	P/R	С
EBCC22106	SKILL	ETL/IE		SLr		
	Prerequisite: None	IE	0	0/0	2/0	1

UNIT I

Creation of awareness of top companies / improving skill set matrix / Development of positive frame of mind / Creation of self-awareness.

UNIT II

Group discussions / Do's and don'ts - handling group discussions / what evaluators look for interpersonal relationships / Preparation of Curriculum Vitae / Resume.

UNIT III

Interview – awareness of facing questions – Do's and don'ts of personal interview / group interview, enabling students to prepare for different proce3dures such as HR interviews and Technical Interviews / self-introductions. 6

UNIT IV

Verbal aptitude, Reading comprehension / narration / presentation / Mock Interviews. UNIT V

Practical session on Group Discussion and written tests on vocabulary and reading comprehension Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total No of Periods: 30

6

SEMESTER V

Subject C	Code:	Subjec	t Name TH	me : ΓHERMAL ENGINEERING						L	T/ SLr	P/R	C
EBME22	008	Prere	auisite:	Engine	ering [Therm	odvnai	mics	Ty	3	0/0	0/0	3
L.·Lectur	e T · Tutori	ial SL:	r · Supe	rvised I	earning	$\mathbf{p} \mathbf{P} \cdot \mathbf{P}_1$	ractical	R · Rese	arch C· C	redits	0/0	0/0	5
T/L/ETL :	Theory/La	ıb/Embe	edded T	heory ar	nd Lab	5 1 . 1 1	lucticu	1 IV. IVOS		realts			
OBJECT	IVE: The s	student	will lea	rn									
• To	o integrate	the cond	cepts. la	ws and	method	lologies	s from	the first c	ourse in th	nermodvr	amics in	to the an	alvsis of
c	yclic proce	ss.	1,			0							,
• To T	o apply the urbines.	thermo	dynami	c conce	pts into	o variou	us ther	mal appli	cations lik	e, IC eng	gines Ste	am turbi	nes, Gas
COURSE		AES (C	Os): T	The stud	lent wi	ll be al	ole to						
CO1	Demonstra	ate the v	vorking	princip	les of st	eam ge	enerato	rs, conder	sers and r	ozzles a	nd solve	the	
	problems.	(Level3))	1 1		U		,					
CO2	Analyze tł	ne perfo	rmance	of singl	e and n	nultista	ge air c	compresso	ors and gas	turbines	.(Level 4)	
CO3	Construct	the velo	city dia	gram of	steam	turbine	and de	etermine i	ts perform	ance.(Le	vel 3)		
CO4	Acquire th	e know	ledge of	IC eng	ines and	d estim	ate the	performa	nce param	eters. (Le	evel 2)		
CO5	Understan	d the an	alyze th	e differ	ent refr	igeratic	on and a	air conditi	ioning sys	tem. (Lev	vel 2& 4)		
	Mapping of Course Outcomes with Program Outcomes (Pos)												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	COs/P	Os	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	2	1	1	CO1		3	3	2	2	1
CO2	3	3	2	2	1	1	CO2		3	3	2	2	1
CO3	3	3	2	2	1	1	CO3		3	3	2	2	1
CO4	3	2	2	2	1	2	CO4		3	2	2	2	1
CO5	3	2	2	2	1	2	CO5		3	2	2	2	1
COs	/ PSC)1	PS	O2	PS	O3		PSO4					
PSOs													
CO1	3			2	-	2		2					
CO2	3			2	-	2		2					
CO3	3			2		2		2			_		
CO4	3			3		2		3					
CO5	3			3		2		3	1 0 1/				
	3	$\frac{2}{1} \ln ($	dicates	Streng	gth of (Correl	ation:	<u>3- Hış</u>	gh, 2- Me	dium, I	-Low		
				П									
				cia		'e		~					
	~			l sc		ctiv		lary	ent	ect			
	(ro	nce		and	re	ele	ve	plir	noc	roj			
	uteg	cieı	ing	ies	C	цп	cti	scij	dua	11 /F			
	Ca	Š	eer ce	nit. Se	m	gra	Ele	Di	ŭ	tica			
		asi	gin	lenc	ngr;	Prc	en	nter	kill	raci			
		В	En Sci	Hu Sci	Prc		Op	Ir	Š	P			
					✓								

Subject Code: Subject Name : THERMAL ENGINEERING Ty/Lb/ L **T**/ P/R С SLr ETL EBME22008 **Prerequisite: Engineering Thermodynamics** Ty 3 0/0 0/0 3

An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

UNIT- I: STEAM GENERATORS, CONDENSERS AND NOZZLE

EDUCATIO

Types and Classifications, high pressure boilers – Benson, Lamont and Babcock-Wilcox Boiler- mountings and Accessories - Criteria for selection of a boiler. Steam Condensers-Classifications - Evaporative and surface condensers-

Steam nozzles--isentropic flow through nozzles-convergent, convergent divergent nozzles-critical pressure ratioeffect of friction.

UNIT- II: AIR COMPRESSORS AND GAS TURBINES

Reciprocating Compressor – Single Stage and Multi-stage operations, Effect of clearance, Volumetric efficiency. Rotary Compressor - Construction & Working of centrifugal compressor.

Gas turbines- classifications-Methods for improvement of Thermal efficiency -Inter-cooling, Reheating, Regeneration, Gas turbine fuels-Applications.

UNIT-III: STEAM TURBINES

Impulse and Reaction Principles - Compounding-velocity and pressure compounding- Velocity diagrams for single stage turbines, Speed regulations – Governing.

UNIT- IV: INTERNAL COMBUSTION ENGINES

Working principles of IC Engines- Stages of combustion in IC engines- Knocking and Detonation- factors affecting knocking-ignition delay-factors affecting ignition delay-Supercharging and turbo charging- various types of loading devices.

UNIT- V: REFRIGERATION AND AIR-CONDITIONING

Working principles of Vapour Compression refrigeration cycle -P-H & T-S diagrams, Calculation of COP, effect of sub-cooling and superheating, Vapour absorption refrigeration cycles – Refrigerants – Properties. Introduction to Psychrometry - Psychrometric charts - Psychrometric processes - Principles of air-Conditioning– Types of a/c systems – Summer, Winter comfort and Year round air-conditioning.

Total No. of Periods 45

***NOTE:** Use of approved Steam Tables, Refrigeration Tables and Psychrometric Charts are permitted in Examination.

TEXT BOOKS

1) Rajput R. K., (2012) "Thermal Engineering", Laxmi Publications (P) Ltd.

2) C. P. Kothandaraman and S. Domkundwar, (2004) "Thermodynamics and Thermal Engineering" Dhanpat Rai & Co. (P) Ltd.

REFERENCES

- 2) P. L. Ballaney, (1994) "Thermal Engineering", Khanna Publishers, New Delhi.
- 3) W.P.Stoecker and J. W. Jones, "Refrigeration and Air Conditioning", Tata McGraw Hill Co. Ltd.,
- 4) Ganesan V., (2012) "Internal Combustion Engines", Tata McGraw Hill New Delhi, 4th edition.

9

Q

9

9

STITUTE

Subject Code	: S	ubject Na	me : MF	CHAN	ICS OF	MACH	IINES -	-II	T / L/ ETL	L	T / S.L	P/	R	С
EBME22009		nonomici	to. Fngin	ooning	Jochon	iog Mod	hania	of	Tr	2	1/0	0/0		1
	N	Terequisi Iachine-I	te. Engin	eering r	vietnam	ics, met	mannes	01	Тy	5	1/0	0/0		-
L : Lecture T :	Tutor	ial SLr :	Supervise	ed Learn	ing P:	Practica	1 R : Re	esearch	C: Cred	its				I
T/I/FTI · The	ory/L	h/Embed	ded Theor	v and L	ah									
T/L/LTL . The	OBJECTIVE: The purpose of study is to understand and apply the dynamic analysis of machineries													
OBJECTIVE : The purpose of study is to understand and apply the dynamic analysis of machineries.														
COURSE OUTCOMES (COs) : The student will be able to Understand the force analysis of reciprocating mechanisms and its application. (Level 2)														
		Closeify t	a the forc	e analys	sis of rec	dontifu	ng meer	tiona of	and its	applica	ttion.	Level 2). 	
02		(level 3)	le vibrato	ry syste	ins and i	dentify	the equa	uions of	amere	nt mec	namea	li systen	IS.	
CO3		Solve the	problems	of the v	ibratorv	systems	. (Level	3).						
CO4		Demonstr	ate the dy	namic b	alancing	of rotat	ing and	recipro	cating n	nasses.	(level	3)		
CO5		Distinguis	h the diff	erent spe	eed gove	ernors ar	nd their	characte	eristic cu	urves (1	level 4).		
		Ma	pping of	Course	Outcon	nes witł	n Progra	am Out	comes (Pos)				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	D10	PO11	P	012
CO1	3	3	2	2	2	1	2	1	2		2	2		2
CO2	3	3	3	2	2	2	2	2	2		2	2		2
<u>CO3</u>	3	3	3	2	2	2	2	2	2		2	2		2
<u>CO4</u>	3	3	3	2	2	2	2	2	2		2	2		2
CO5	3	3		$\frac{2}{2}$	2 DC	$\frac{2}{2}$	2 D	$\frac{2}{104}$	2		2	2		2
COS / PSUS	1	<u>2501</u>	PS()2	PSO3 PS			<u>004</u>						
		3			-	L		<u>2</u> 2						
CO2		3	2			2		<u>2</u> 2						
CO4		3	2			2		$\frac{2}{2}$						
CO5		3	2			2		2						
3/2/1 indicates	s Strei	ngth of Co	orrelation	3- Hi	gh, 2- M	ledium,	1-Low							
			e											
Category	Basic Science	Engineering Science	Humanities and social Scienc	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
				Ŧ										

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution)

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code: EBME22009	Subject Name : MECHANICS OF MACHINES –II	Ty/Lb/ ETL	L	T/ SLr	P/ R	С
	Prerequisite: Engineering Mechanics, Mechanics of Machine-I	Ту	3	1/0	0/0	4

UNIT I FORCE ANALYSIS AND FLYWHEELS

EDUCAT

Static force analysis of mechanisms – D' Alemberts principle - Inertia force and Inertia torque – Dynamic force analysis - Dynamic Analysis in Reciprocating Engines – Gas Forces - Equivalent masses - Bearing loads - Crank shaft Torque–Engine shakingforces - Turning moment diagrams - Flywheels of engines and punch press.

UNIT II BALANCING

Static and dynamic balancing - Balancing of rotating masses in several planes - Partial Balancing of a single cylinder Engine – Primary and secondary unbalanced forces.

UNIT III FREE VIBRATION

Basic features of vibratory systems - Basic elements and lumping of parameters - Degrees of freedom -Single degree of freedom – Longitudinal and transverse Free vibration - Equations of motion natural frequency - Types of Damping -Damped free vibration –Whirling of shafts and critical speed -Torsional systems; Natural frequency of two and three rotor systems – torsionally equivalent shaft system.

UNIT IV FORCED VIBRATION

Response to periodic forcing - Harmonic Forcing - Forced vibration caused by unbalance - Support motion - Force transmissibility and amplitude transmissibility - Vibration isolation

UNIT V MECHANISMS FOR CONTROL

Governors - Types - Centrifugal governors - Gravity controlled and spring controlled centrifugal governors - Characteristics - Effect of friction - Controlling Force - Quality of governors - effect of friction. Gyroscopes - Gyroscopic couple - Gyroscopic stabilization - Gyroscopic effects in aero plane, automobiles and ships.

Total No. of Periods: 60

TEXT BOOKS:

1. Ambedkar A. G., Mechanism and Machine Theory, Prentice Hall of India, New Delhi, 2007.

REFERENCES

1. Thomas Bevan, "Theory of Machines", CBS Publishers and Distributors, 1984.

2. Ghosh A. and Mallick A.K., "Theory of Mechanisms and Machines", Affiliated East-Press Pvt.Ltd., New Delhi, 1988.

- 3. Shigley J.E. and Uicker J.J., "Theory of Machines and Mechanisms", McGraw-Hill, Inc., 1995.
- 4. Rao J.S. and Dukkipati R.V., "Mechanism and Machine Theory ", Wiley-Eastern Limited, New Delhi, 1992.
- 5. John Hannah and Stephens R.C., "Mechanics of Machines", Viva low-Priced Student Edition, 1999.
- 6. Sadhu Singh "Theory of Machines" Pearson Education, 2002.

12

12

12 /n2

12

Subject Code:	: Subj	ject Nan	ne : MAN	UFAC	TURIN	G TECH	INOLO	GY - II	Ty/Lb	/ L	T/	P/R	С
EBME22ET3									ETL		SLr		
	Prer	equisite	: Manufa	cturing	Techno	ology - I			ETL	2	0/0	2/0	3
L : Lecture T :	Tutoria	1 SLr :	Supervis	ed Learr	ning P:	Project	R : Rese	earch C: 0	Credits				
T/L/ETL : The	ory/Lab	/Embed	ded Theor	y and L	ab								
OBJECTIVE	:												
To imp	part kno	wledge a	and skill i	n metal o	cutting p	process a	ind smai	rt manufa	acturing te	chnology	<i>i</i>		
COURSE OU	тсом	ES (CO	(3.5))									
CO1	Understand the concepts of metal cutting and related informations (Level 2)												
CO2	Acquire skill in special purpose machines (Level 4)												
CO3	Select ar	propria	te method	of man	ifacturir	ig based	1 on the	requirem	nent (Leve	14)			
CO4	Understa	and the c	concepts a	nd appli	cations	of smar	t manuf	acturing	(Level 3)	1 1)			
CO5	Acquire	skill in s	smart man	ufacturi	ng techr	niques (Level 4))	(/				
	^	Ma	pping of	Course	Outcom	nes with	Progra	m Outco	omes (POs	5)			
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	3	2	-	2	3	3	2	3	2	2		2
CO2	3	3	3	-	2	3	3	2	3	2	2		2
CO3	3	3	3	-	2	3	3	2	3	2	2		2
C04	3	3	2	-	3	3	3	2	3	2	2		2
C_{OS}/PSO_{S}	<u>3</u>	3		-	<u> </u>		3 D(<u> </u>	2	2		2
$\frac{C08/F508}{C01}$	<u>P5</u>	2	P50	J2	PS	<u>03</u>	P:	<u>304</u> 2	P505				
CO2		3 2	3			2		3					
CO3		<u>,</u>	3			2		3					
CO4		3	3			3		3					
CO5		3	3			3		3					
3/2/1 indicates	Strengt	h of Co	rrelation	3- Hig	h, 2- Me	edium, 1	1-Low					· ·	
			ce										
			ien										
			Sc										
~		ce	cial		e								
jor		cien	so		ctiv		lary	ent	ect				
iteg	ıce	S	and	re	elec	ve	plin	uou	roj				
ü	cieı	ing	ies	Co	am	scti	scij	luc	ul /F				
	c S	ieer	mit	am	3gr	Ele	Di	Ŭ	tice				
	asi	ıgir	jmt	ogr	Pr(Den	ntei	kil	rac				
	E	Еr	Η̈́	$\mathbf{P}_{\mathbf{r}}$		Ō	I	S	<u>ц</u>				
				V									

EDUCATIONAL AND RESEARCH INSTITUTE	SSOTED WITH OR DE NAAC
University with Graded Autonomy Status	
(An ISO 21001 : 2018 Certified Institution)	
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.	

Subject Code:	Subject Name : MANUFACTURING TECHNOLOGY - II	T / L/	L	Τ/	P /	С
		ETL		S.Lr	R	
EBME22ET3	Prerequisite: Manufacturing Technology - I	ETL	2	0/0	2/0	3

UNIT- I: THEORY OF METAL CUTTING

Metal cutting types - Mechanism of metal cutting - Cutting forces - Chip formation - Merchant's circle diagram -Calculations – Tool geometry - Machinability - Tool wear - Tool life - Cutting tool materials - Cutting fluids.

UNIT- II: SPECIAL PURPOSE MACHINES-I

Shaper, Planer, slotter: Specification - Types - Mechanism – Calculations Boring: Specification - Types - Operations - Boring tool - Jig Boring machine. Broaching: Specification - Types - Tool nomenclature - Broaching process.

Lab Components

Shaping, and Slotting Practice: Cutting key ways and dove tail hexagonal machining using Shaper, Internal keyway using slotter

UNIT- III: SPECIAL PURPOSE MACHINES-II

Milling: Specification - Types - Cutter nomenclature - Types of cutter - Milling processes - Indexing – Cam and thread milling.

Grinding: Types of grinding machine - Designation and selection of grinding wheel - Bonds – Reconditioning of grinding wheel – Lapping, honing and super finishing.

Lab Components

Grinding Practice: Cylindrical grinding, Surface grinding.

Milling Practice: Hexagonal milling, Contour milling

UNIT- IV: GEAR CUTTING MACHINES

Kinematics of gear shaping and gear hobbing - Gear generation principles specifications – Cutters - Bevel geargenerator - Gear finishing methods.

Lab Components

Machining of helical gear using hobbing machine, Spur gear milling

UNIT- V: SMART MANUFACTURING

Industry 4.0, Cyber Physical system, IoT and Cloud computing for manufacturing, Digital manufacturing, Additive manufacturing, Sustainable manufacturing, advanced simulation, Augmented reality

Lab Components

Additive manufacturing: Simple components design, slicing and fabrication using FDM machine

TEXT BOOKS

- 1) S. K. Hajra Choudry, S. K. Bose, (2010) "Elements of Workshop Technology -Volume I & II". Media promoters.
- 2) P. C. Sharma, (2008) "A text book of Production Engineering", S. Chand and Co. Ltd., IV Edition.
- 3) Masoud Soroush, Michael Baldea, Thomas F. Edgar (2020) "Smart Manufacturing" Elsevier Science. *REFERENCES*
 - 1) H.M.T, (1990) "Production Technology Handbook", TMH.
 - 2) Richara R. Kibbe, John E. Neely, Roland O. Meyer and Warrent T. White, (2009) "Machine Tool Practices", VI Edition, Prentice Hall of India.
 - 3) N. K. Mehta, (2012) "Machine Tool Design and NC", Tata McGraw Hill Publishing Co. Ltd.
 - 4) Jaeger R.C, (1988) "Introduction to microelectronics fabrication", Addison Wesley pub. Co.,
- 5) C. Elanchezian, M. Vijayan, (2004) "Machine Tools" Anuradha Publications.

10

10

8

9

Subject Code: EBOL22I01	Subject Name: ONLINE COURSE NPTEL/SWAYAM/Any MOOC APPROVED BY AICTE/UGC	Ty/Lb/ ETL	L	T/ SLr	P/R	С
	Pre requisite:	IE	1	0/0	1/0	1

Students should register for the online course with a minimum course duration of 4 weeks through the online portals such as NPTEL/SWAYAM/Any MOOC in the beginning of the semester. A mentor will be assigned by the department for monitoring the students.

Students are expected to attend the online classes regularly and submit the weekly assignments before the due dates. Students should appear for the online examination and submit the certificate at the end of the semester .Internal Examination will be conducted by the examiners duly appointed by the head of the department.

Subject Code	bubject Code: Subject Nan				MICS	LAB			T / L/		L	Γ/ SIr	P/ R	C					
EBME22L04											ĥ	5.L1							
	Prer	Prerequisite: Mechanics of Machines-I &II									0 ()/0	3/0	1					
L : Lecture T : Tutorial S Lr : Supervised Learning P : Project R : Research C: Credits																			
T/L/ETL : Theory/Lab/Embedded Theory and Lab																			
OBJECTIVE	TIVES: The student will learn Working of simple mechanisms																		
• WORK1	For find natural frequency of vibrating system at different models																		
COURSE OU	DURSE OUTCOMES (COs) : The student will be able to																		
CO1	Gain knowledge in kinematics and Dynamics of Machinery (Level 2)																		
CO2	Characterize the dynamic properties of component or equipments ((Level 4)									
CO3	Analyze the vibration characteristics (Level 4)																		
CO4	Apply various principles for dynamic solutions (Level 3)																		
CO5	Illustrate the method of static and dynamic balancing of masses (Level 4)																		
Mapping of Course Outcomes with Program Outcomes (POs)																			
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7 PO8		PO9		PO10	PO11	PO	12					
CO1	3	3	3	3	3	2	2	2	3		3	2		2					
CO2	3	3	3	3	3	3 2		2	3		3	2		2					
CO3	3	3	3	2	3	3 2		2	3		3	2		2					
CO4	3	3	3	2	3	2	2	2	3		3	2	2						
CO5	3	3	3	2	3	2	2	2	3		3	2		2					
Cos / PSOs	PS	501	PS	02	PS	03	PS	504											
CO1		3	3			2		3											
CO2		3	3		2 3			3											
CO3	í	3	3		2		3												
CO4	í	3	3			2		3											
CO5	í	3	3			2		3											
3/2/1 indicates	Strengt	h of Cor	relation	3- High	n, 2- Me	dium, 1	-Low												
			ce																
			ien																
			l Sc																
Ŕ		JCe	cia		<i>j</i> e		~												
gor		cieı	d sc		ctiv		nary	lent	ject										
ate	ince	S S	ano	ore	ele	ive	iplii	por	Pro										
	Scie	ling	ties	Ŭ	ram	lect	lisc	om	al/										
	sic (inee	iani	gran	rog	n El	er L	III C	ictic										
	Ba	- Bug	Hun	Prog	P	Dpe	Int	Sk	Prá										
				 →			✓												
	1	1	1																

Subject Code:	Subject Name :	T / L/	L	Τ /	P/ R	C
-	DYNAMICS LAB	ETL		S.Lr		
EBME22L04	Prerequisite: Mechanics of Machines-I &II	Lb	0	0/0	3/0	1

KINEMATICS (Demonstration only)

- 1. Kinematics of four bar mechanisms Slider Crank, Crank Rocker Mechanism.
- 2. Kinematics of Gears Spur, Helical, Bevel, Worm.
- 3. Kinematics of Gear trains Simple, Compound, Epicyclic & differential gear trains.

1. DYNAMICS

- a. Motorized Gyroscope Verification of Laws.
- b. Connecting Rod and Flywheel Determination of M.I. by oscillation.
- c. Governors Watts, Porter, Proell and Hartnell Study of characteristics and determination of Sensitivity, effort etc.
- d. Cam-profile of the cam-study of Jump phenomenon Determination of Critical Speeds.

2. VIBRATING SYSTEMS

- a. Helical Spring Determination of natural frequency
- b. Compound Pendulum Determination of natural frequencies moment of inertia.
- c. Torsional vibration Determination of natural frequencies Single rotor system Two rotor system
- d. Flywheel Determination of torsional natural frequencies moment of inertia.
- e. Whirling of shaft Determination of critical speed of shaft.

3. BALANCING

Static and dynamic balancing of rotating masses

Subject Code:		ubject Na	me : THE	RMAL I	ENGINE	ERING	LAB-I	T	T / L/ L T /						C		
EBME22L05								E	ETL			S.Lr	•				
		Prerequisite: Thermodynamics and Thermal							Lb)	0	0/	0	3/0	1		
I · Lecture T · 7	g parvised Learning D. Project D. Desearch C. Credite																
T/L/ETL · Theo	rv/Lah/	Embedded	Theory ar	nd Lab	1.110jec	<i></i>	searen e	. crea	11.5								
				la Luo													
• To eva	luate th	e performa	nce of stea	ım turbir	nes and IC	Cengines	3.										
COURSE OUT	ГСОМІ	ES (COs) :				8											
CO1	CO1 Unders		Understand the concept of working and performance of steam turbines														
CO2		Analyze th	alyze the performance and heat balance test of IC engines														
CO3		Determine	termine and Draw performance characteristics curve of IC engines														
CO4]	Determine	termine the IP and Mechanical efficiency on multi cylinder diesel engine using Morse test														
CO5		Analyse the performance, emission and combustion characteristics of diesel engines with di									fferent	fuels					
Mapping of Co	ourse O	utcomes w	vith Progr	am Outo	comes (P	os)						, 					
FF8			8-		()											
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO9	P	O10	PC	PO11 PC			
															12		
CO1	3	2		2	1		2										
CO2	3	1		2			2										
C03	2	-		3			3										
C04	3	1		2	-		2										
<u>CO5</u>	2		DC	3	DC		3										
Cos / PSOs	2PS0	2	PS02		PS	503	P	804									
<u>CO1</u>		3	$\frac{2}{2}$														
<u>CO2</u>	2		2														
C03	2		2		-		-										
<u>CO4</u>	2		2		-												
2/2/1 : 1:	C4		2	2 11	h 2 Madium 1 Law												
3/2/1 indicates	Streng	gth of Col	rrelation	3- Hig	gn, 2- Mi	eaium,	1-LOW										
			al														
)CI		ve		N	_	L.								
			l sc		cti		Jar	eni	ec								
	lce		anc	e	ele	/e	lilc	uo	roj								
	ier	ng	Se	C C	B	ctiv	cij	du	I/P								
	Sc	eri	e liti	u U	gra	flee	Dis	S	cal								
	sic	ine	nce	graı	log	n E	er]	E	lcti								
ory	Ba	ing	lun cie	roξ	Р	be	Int	Sk	\Pr_{δ}								
tegu		ЦN	З							✓							
Cat																	
	1			1	1			1	1								

Subject Code:	Subject Name : THERMAL ENGINEERING LAB-I	T / L/ ETL	L	Τ /	P/ R	С
				S.Lr		
EBME22L05	Prerequisite: Thermal Engineering	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS:

IC ENGINES LAB

- 1. Study of IC engines components and loading devices.
- 2. Valve timing and port timing diagrams.
- 3. Performance test on 4-stroke twin cylinder diesel engine.
- 4. Heat balance test on 4-stroke single cylinder diesel engine.
- 5. Performance test on single cylinder 4-stroke petrol engine.
- 6. Morse test on multi cylinder petrol engine.
- 7. Retardation test to find frictional power of a diesel engine.
- 8. Combustion and Exhaust analysis of an IC Engine with different Fuels.

STEAM LAB

- 1. Study of steam generators and turbines.
- 2. Performance and energy balance test on a steam generator.
- 3. Performance and energy balance test on a steam turbine.
- 4. Performance test on a steam condenser.

Subject Code:	Subject Name: TECHNICAL SKILL-II	T / L/ ETL/IE	L	T / S.Lr	P/ R	С
EBME22I02	Pre requisite: All Subjects Studied Up to Date	IE	0	0/0	2/0	1

Students should acquire skill in the domain/inter disciplinary area from government/private training centers/industries /University for a minimum period of 15 calendar days. The training can be through off line, online or mixed mode. Students are supposed to prepare Technical skill report at the end of the training and submit the report along with the certificate in proof of the training, during the viva voce examination conducted by the examiners duly appointed by the head of the department.

SEMESTER VI

EDUCATIONAL AND RESEARCH INSTITUTE	Soluted Wirns op to
DEEMED TO BE UNIVERSITY	* * * *
University with Graded Autonomy Status	
(An ISO 21001 : 2018 Certified Institution)	

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code	: Su	bject Na	Name : HEAT AND MASS TRANSFER							L	T /	P/R	C
									ETL		SLr		
EBME22010	Pr	erequisi	te: Engir	neering	Therm	odynan	nics		Ту	3	1/0	0/0	4
L : Lecture T :	Tutoria	l S Lr	: Supervis	sed Lear	ning P :	Project	R : Res	earch (C: Credits			1	
T/L/ETL : The	eory/Lab	/Embed	ded Theor	ry and L	ab								
OBJECTIVE	S: The s	student v	vill learn										
Conce	pt and r	nodes of	heat and	mass tra	nsfer.			_					
Conce	pt of va	rious hea	t transfer	correlat	ions and	l their ei	ngineerin	ng calc	ulations.				
• Conce	$\frac{\text{pt and t}}{\text{TCOM}}$	ypes of r \mathbf{FS} (CO	$\frac{1}{1}$	ngers									
COURSE OC	Unders	tand the	$\frac{s}{knowled}$) re of Co	nduction	heat tr	ansfer ar	nd its a	nnlications	(Level	2)		
	Apply	the conc	ant of for	sed and	free con	vection	hoot tror	nu no a	d its applic	ations	$(\mathbf{I}_{\text{AVA}})$	3)	
CO2	Evelor	a the ope	liestions	of redict	ion host	transfo			iu ns applie	ations.	(Level	3)	
<u>CO</u> 4	Explore the applications of radiation heat transfer. (Level 3) Understand the knowledge of phase change heat transf								and heat	arahan	~~~ in	anain	aamina
04	applica	tions. (L	evel 2)	uge of	phase of	anster	and neat	excitait	gers m	engin	eening		
CO5	Apply	the mass	transfer c	concepts	s. (Lev	el 3)							
Mapping of C	Course Outcomes with Program Outcomes (POs)												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10) PO	11]	PO12
CO1	3	3	2	1	2	1	2	1	1	1		-	2
CO2	3	3	2	2	2	1	1	1	2	2		-	2
CO3	2	3	2	1	2	2	2	1	1	2		-	2
CO4	3	2	1	1	2	1	1	1	1	1		-	2
CO5	3	3	2	3	2	1	1	1	2	2		-	2
COs / PSOs	PS	501	PSC	02	PS	03	PS	504					
COI		3	2			2		3					
<u>CO2</u>		3	2			2		3					
<u>CO3</u>		3	2			2		3					
C04		3				2		<u>3</u>					
$\frac{COJ}{2/2/1}$ indicator	Strongt	5 th of Cou	<u>4</u>	2 Uia			1 Low	2					
5/2/1 mulcates	Strengt		Telation	<u>3- nig</u>	11, 2- 1vie								
Open Electives	asic Science	gineering ence	manities and social ence	gram Core	Program elective	en Elective	ter Disciplinary	cill Component	actical /Project				
	B	En	Hu Sci	Prc		Op	In	S	4 I		_		

n ISO 21001 : 2018 Certified Institution Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code:	Subject Name : HEAT AND MASS TRANSFER	Ty/Lb/	L	T /	P/R	С
EDME22010		ETL		SLr		
EBNIE22010	Prerequisite: Engineering Thermodynamics	Ту	3	1/0	0/0	4

UNIT-I: CONDUCTION

EDUCA

Introduction of heat transfer - Mode of Heat Transfer- Fourier' Law of Conduction - General Differential equation of Heat Conduction- Heat conduction through Plane Wall, Cylinders and Spherical systems Composite Systems - Critical thickness of insulation - Extended surfaces (Fins).

UNIT-II: CONVECTION

Basic Concepts - Boundary Layer Concept - Types of Convection - Forced Convection-External Flow- Flow Flow-Laminar over flat plates. Cylinders and Spheres-Internal and Turbulent Flow-Combined Laminar and Turbulent -Free Convection - Flow over Vertical Plate, Horizontal Plate and long horizontal cylinder.

UNIT-III: RADIATION

Basic Laws of Radiation, Radiation shape factor, shape factor algebra for radiant heat exchange between black and gray bodies and Radiation shield-, Introduction to Radiosity and Irradiation.

UNIT- IV: PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGER

Boiling heat transfer phenomenon – modes of boiling, pool boiling regime-flow boiling thro horizontal pipes.boiling empirical correlations. Condensation-film and drop wise condensation-Nusselt theory of condensation over vertical surface.

Heat exchangers- Classifications, parallel, counter and cross flow- Fouling factors- LMTD and NTU methods

UNIT- V: MASS TRANSFER

Basic Concepts

Diffusion Mass Transfer - Fick's Law of Diffusion - Steady state Molecular Diffusion - Equimolar counter diffusion - isothermal evaporation.

Convective Mass Transfer

Convective Mass Transfer Correlations- Sherwood number, Schmidt number, Stanton number- mass transfer coefficients- Laminar, turbulent and Laminar-turbulent conditions.

Total No. of Periods : 60

***NOTE:** Use of approved HMT data book is permitted in the University Examination.

TEXT BOOKS

- 1) C.P.Kothandaraman, (2005) "Fundamentals of Heat and Mass Transfer", New age International (p) Ltd-109098.
- 2) R.C.Sachdeva (2010). "Fundamentals of Heat and Mass Transfer", New age International (p) Ltd -109098, 4th edition.
- 3) R.K.Rajput (2007) "Heat and Mass transfer", Chand Publishers

REFERENCES

- 1) J.P.Holman (2001) "Heat transfer", McGraw Hill Book Company, 9th edition.
- 2) Ozisik.N.M. (1998) "Heat transfer", McGraw Hill Book Company.
- 3) Michael A. Boles and Yunus A. Cengel (2002), "Thermodynamics: An Engineering Approach", McGraw-Hill.

13

12

12

10

EDUCATIONAL AND RESEARCH INSTITUTE DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution)

	Su	ubject Name : CAD,CAM & CIM					ilennai-93		Ty/Lb/	L	T/	P/R	С		
	Pr	oroquisi	te: Desim	n of Ma	chine F	lomonte	2			_	SLr				
	Ma	anufacti	iring Tecl	hnology		Aemenu	,		Ту	3	0/0	0/0	3		
Subject Code:															
EBME22011															
L : Lecture T :	Tutoria	l S.Lr	: Supervis	ed Lear	ning P :	Project	R : Res	earch C	C: Credits						
T/L/ETL : The	ory/Lab	/Embed	ded Theor												
• To pro	CTIVE vide an	: overvie	w of how	sign, d	evelopment	t of Ma	nufacturir	g plan	s and						
manuf	acture	the need	1 for into a	notion o											
• 10 unc	ierstand	the need	1 for integ	ration o	I CAD,										
			COUR	SE OU	ГСОМЕ	5)									
CO1	Underst	and the o	concepts a	ind uses	of vario	ous CAE	devices	s (Leve	12)						
CO2	Apply v	arious C	AD mode	ling tecl	hniques	(Level 3	3)								
CO3	Underst	and the	CNC mac	hines an	d intege	ration o	f CAD/O	CAD/CAM (Level 2)							
CO4	Analyze	and wri	te down p	art prog	rammin	nilling	g operations (Level 4)								
CO5	Apply g	roup tec	hnology a	nd com	outer aid	ning an	d understar	nd the F	MS conce	pt and					
	functions (Level 3) Manning of Course with Program Outcomes (Pos)														
Cog/Dog	DO1	DOJ		ng of Co	Durse wi	th Prog	gram Ou		s (Pos)	DO10		DO	10		
COS/POS	2	PO2 3	PO3	PU4	PU5	PU0	P0/	PUð	P09	POI		PO	12		
	3	3	2		3										
CO2	3	3	2		3										
CO4	3	3	2		3										
CO5	3	3	2		3										
Cos / PSOs	PS	01	PSC)2	PS	03	PS	504							
CO1			3	;		3		2							
CO2			3	;		3		2							
CO3			3	3		3		2							
CO4			(*)	;		3	2								
CO5				;		3		2							
3/2/1 indicates	Strengt	h of Coi	relation	3- Hig	h, 2- Me	edium, 1	l-Low		1						
			IJ												
		suce	oci		ve		y	t							
	e	Scie	s pu		ecti		inaı	nen	ojec						
င် ရေ	ienc	പ്പ	ss ai	Core	n el	tive	cipl	odu	/Pr						
• +	Sc	čerii	nitie e	m (graı	Elec	Dis	Col	ical						
	asic	gint	mai	ogra	Pro	en]	nter	kill	ract						
	В	En	Hu Sci	Prc		Op	Ц	N.	<u>д</u>			_			
				✓											
						1	1								

Subject Name : CAD, CAM & CIM **Subject Code:** Ty/Lb/ **T**/ P/R L ETL SLr **EBME22011** Prerequisite: Design of Machine Elements, Тy 3 0/0 0/0 Manufacturing Technology

UNIT- I INTRODUCTION

A typical product cycle, CAD tools for the design process of product cycle, CAD / CAM system evaluation criteria, Input / Output devices;

Graphics Displays: Refresh display, DVST, Raster display, pixel value and lookup table, estimation of graphical memory, LCD, LED fundamentals. Concept of Coordinate Systems: Working Coordinate System, Model Coordinate System, Screen Coordinate System. Graphics exchange standards.

UNIT- II GEOMETRIC TRANSFORMATIONS AND MODELING

Homogeneous representation; Translation, Scaling, Reflection, Rotation, Shearing in 2D and 3D;. Window to View-port transformation. Geometry and Topology, Comparison of wireframe, surface and solid models, Properties of solid model, properties of representation schemes, Concept of Half-spaces, Boolean operations. Schemes: B-rep, CSG, Sweep representation, ASM, Primitive instancing, Cell Decomposition and Octree encoding

UNIT- III COMPUTER AIDED MANUFACTURING

CAM Concepts, Objectives & scope, Nature & Type of manufacturing system, Evolution, Benefits of CAM, Role of management in CAM, Concepts of Computer Integrated Manufacturing, Impact of CIM on personnel, Role of manufacturing engineers, CIM Wheel to understand basic functions.

NC and CNC Technology: Types, Classification, Specification and components, Construction Details-Axis designation, NC/CNC tooling. Fundamentals of Part programming, Types of format, Part Programming for drilling, lathe and milling machine operations.

UNIT- IV GROUP TECHNOLOGY AND CAPP

Introduction, part families, part classification and coding systems: OPITZ, PFA, FFA, Cell design, rank order clustering, composite part concepts, Benefits of group technology. Approaches to Process Planning, Different CAPP system, application and benefits

UNIT- V FLEXIBLE MANUFACTURING SYSTEM

Introduction & Component of FMS, Needs of FMS, general FMS consideration, Objectives, Types of flexibility and FMS, FMS lay out and advantages. Automated material handling system: Types and Application, Automated Storage and Retrieval System, Automated Guided Vehicles, Cellular manufacturing, Tool Management, Tool supply system, Tool Monitoring System, Flexible Fixturing, Flexible Assembly Systems.

TEXT BOOKS

- 1) Chris McMohan and Jimmie Browne, "CAD/CAM", Addison Wesley Publications, 2nd Ed.
- 2) HMT, (2000) "Mechatronics", Tata McGraw-Hill Ed.
- 3) Mikkel. P.Groover, (2007) "Automation, Production and Computer Integrated Manufacturing", PHI., Pvt Ltd.

REFERENCE BOOKS

1. Mikell P Groover, "Automation, Production Systems and Computer Integrated Manufacturing", Pearson Education

2. Rao, Tewari, Kundra, "Computer Aided Manufacturing", McGraw Hill.

3. P. Radhakrishnan, "Computer Numerical Control", New Central Book Agency

Total No. of Periods: 45

Q

9

9

9

С

Subject Code:	Subj	ect Nam	e: DESIC	GN OF N	MACHI	NE ELI	EMENT	S - I	Ty/Lb/	L	T/	P/R	С	
EBME22012	Duon	anicita	Enginee	nina Ma	ahania	Stuand	-th of		EIL		SLr			
	Mate	rials. M	echanics	of Macl	hines -I	, streng	gui 01		Ту	3	1/0	0/0	4	
L : Lecture T : T	Futorial	S Lr :	Supervis	ed Learr	ning P :	Project	R : Res	earch C:	Credits	1 1				
T/L/ETL : Theo	ory/Lab/	Embedd	led Theor	y and La	.b	Ũ								
OBJECTIVES	: The s	tudent w	vill learn											
• To	unders	stand the	e principl	es invol	ved in e	valuatir	ig the sl	hape and	d dimensi	ons of a o	componer	nt to s	atisfy	
	ictional	and stre	ngth requi	tudonta	will be	abla ta								
	Inderat	LS (CUs	s): The S		will be a		on theo	mias of f	ilumo (La	(12)				
CO1 CO2	Develop	design	thinking r		e analys	is Daseu	oblem (Level 6		vel 2)				
CO2 1 CO3 1	Design t	he mach	ine eleme	nts like	Shafts, 1	Kevs. Co	ouplings	and Bea	, arings. (Le	evel 6)				
CO4 S	Select th	e appro	priate type	e of sprin	ng based	l on the	requiren	nents. (L	evel 5)					
CO5 (Compar	e the var	rious type	us types of fasteners on strength and application aspects. (Level 4)										
Mapping of Co	ourse O	utcome	s with Pro	ogram C	Outcome	es (POs)								
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	
CO1		3	3	2	3	2	2	2	2				2	
CO2	3	3	3	2	3	2	2	2	2				2	
CO3	3	3	3	2	3	2	2	2	2				2	
CO4	3	3	3	2	3	2	2	2	2				2	
CO5	3	3	3	2	3	2	2	2	2				2	
Cos / PSOs	PS	01	PSO	02	PS	03	P	SO4						
CO1				3		2		2						
CO2				3		2		2						
CO3			(°,	3		2		2						
CO4				3		2		2						
CO5			3	3		2		2						
3/2/1 indicates S	trengtl	ı of Cor	relation	3- High	, 2- Me	dium, 1	-Low			1				
			cial		/e		>							
L X	0		d sc		ctiv		nary	nent	ject					
6 g 0]	ence	ад	s an	ore	ı ele	ive	ipli	Iodi	Pro					
Cat	Scie	erin	ities	n C	ran	lect	Disc	Con	cal					
	sic	ine. ince	nan ince	grat	rog	'nE	er I	ili (acti					
	\mathbf{Ba}	Eng Scie	Hur Scie	Pro		Ope	Int	Sk	Pr					
Γ Γ				~										

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code: EBME22012	Subject Name : DESIGN OF MACHINE ELEMENTS - I	Ty/Lb/ ETL	L	T/ SLr	P/R	С
Prerequisite:	Engineering Mechanics, Strength of Materials, Mechanics of Machines -I	Ту	3	1/0	0/0	4

UNIT- I: INTRODUCTION TO DESIGN OF MACHINE ELEMENTS

EDUCAT

Introduction to the design process-factors influencing machine design, selection of materials based on mechanical properties - Principal stresses for various load -Factor of safety-Theories of failure- design based on strength and stiffness- stress concentration-Design for Variable loading –Gerber line, Goodman's line, and Soderberg's Line.

UNIT- II: SHAFTS AND COUPLINGS

Design of solid and hollow shafts based on strength and rigidity, Keys- different types of keys- Design Of Keys, keyways, failures of keys-Couplings - Rigid coupling- flexible coupling

UNIT- III: DESIGN OF SPRINGS

Functions of springs-applications- spring materials-Design of helical, Belleville springs (disc) and torsion Spring–Design of Leaf Spring.

UNIT- IV: TEMPORARY AND PERMANENT JOINTS

Threaded fasteners- stress in screwed threads, Bolted joints including eccentric loading- Design of Knuckle and cotter joints- Design of Welded joints- merits and demerits of welded joints, Types of welded joints, Weld symbols, Strength of parallel and fillet weld, strength of a welded joint, eccentrically loaded Welded joints.

UNIT- V: DESIGN OF BEARINGS AND FLYWHEELS

Introduction -Design of bearings - Sliding contact bearing – Design of journal bearings- Mckees equation- Lubrication in journal bearings -Rolling contact bearing (antifriction bearing). Types of fly wheels- Design of flywheels involving stresses in rim and arm.

Total No. of Periods: 60

***NOTE:** Use of PSG Design Data book is permitted in Examination

TEXT BOOKS

- 1) Shigley J.E and Mischke C. R., (2008) "Mechanical Engineering Design", Sixth Edition, Tata McGraw Hill.
- 2) Bhandari V.B, (2010) "Design of Machine Elements", Second Edition, Tata McGraw-Hill Book Co.

REFERENCE BOOK:

- 1. Sundararajamoorthy, T.V. and Shanmugan, Machine Design, Anuradha Agencies, 2003.
- Shigley, J.E., Charles, R.M. and Richard, G.B., Mechanical Engineering Design, 7th ed., McGraw-Hill,
 2004.

12

12

12

12

	21001.2010 00	tineu matit	ution)	
eriyar E.V.R. High 🛛	Road, Maduravoyal,	Chennai-95.	Tamilnadu, I	ndia.

Subject Code:	: Su	bject Na	me : TH	ERMAI	L ENGI	NEERI	NG LAI	B-II	Ty/Lb/ ETL	L	T/SLr	P/R	С	
EBMEZ2L06	Pr Tr	erequisi ansfer	te: Thern	nal Eng	ineerin	g , Heat	and Ma	ISS	Lb	0	0/0	3/0	1	
L : Lecture T : Tu	ıtorial	S.Lr :	Supervis	ed Lear	ning P	: Proje	ct R : R	esearcl	n C: Credi	ts				
T/L/ETL : Theory	y/Lab/l	Embedde	ed Theor	y and L	ab									
OBJECTIVES: The	e student	will learn	1 		• 11	1 6	. ,.	1.	1					
 To evaluate the performance of air compressor, air blower and refrigeration and air conditioning systems. To determine the properties of different liquid fuels. 														
• To study the different modes of heat transfer.														
COURSE OUTCOMES (COs) : (3- 5)														
CO1	Calculate the performance of air compressor and blower and COP of a refrigeration system. (Level 3)													
CO2	Determine the flash, fire point and viscosities of different oils (Level 3)													
CO3	Determ	ine the e	missivity	of a gre	y body.									
CO4	Estima	te the the	rmal cond	ductivity	of an ii	al and c	omposite w	vall. (Le	vel 4)					
CO5	Measure the effectiveness of pinfin and parallel and counter flow heat exchanger. (Level 3)													
Mapping of Cou	apping of Course Outcomes with Program Outcomes (Pos)													
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	
CO1	3	3	1	1	1	1	1	2	2	2	2	1	L	
CO2	3	2	2	2	1	2	2	2	2	2	2	1	l	
CO3	3	3	2	2	1	2	2	2	2	2	2	2	2	
CO4	3	3	2	2	2	2	2	2	2	2	2	1	L	
CO5	3	3	2	2	2	2	2	2	2	2	2	1	l	
Cos / PSOs		3	3			2		2	2	2	2	2	2	
CO1		3	2			2		2						
CO2		3	2			2		2						
CO3		3	2			2		3						
CO4		3	2			2		2						
CO5		3	2			2		3						
3/2/1 indicates Stre	ength of	f Correla	ation 3-	High, 2-	- Mediu	m, 1-Lo)W	1		1				
			cial		je									
gory	Basic Science	Engineering Science	Humanities and so Science	Program Core	Program electiv	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
Cate				√					\checkmark					

Subject Code: EBME22L06	Subject Name : THERMAL ENGINEERING LAB-II	Ty/Lb/ ETL	L	T/ SLr	P/R	С
	Prerequisite: Thermal Engineering , Heat and Mass Transfer	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS:

- 1. Performance test on reciprocating air compressor.
- 2. Performance test on a constant speed air blower.
- 3. Viscosity measurement using Redwood apparatus.
- 4. Viscosity measurement using Say bolt apparatus.
- 5. Determination of COP of a refrigeration system.
- 6. Determination of COP of air conditioning system.
- 7. Determination of flash point and fire point of the given lubricating oil sample.
- 8. Determination of thermal conductivity of an insulating material.
- 9. Determination of efficiency of a pin fin using natural and forced convection methods.
- 10. Determination of emissivity of a gray body using emissivity apparatus.
- 11. Determination of Stefan Boltzmann Constant.
- 12. Determination of effectiveness of a parallel flow and counter flow heat exchanger.
- 13. Determination of Heat Transfer in Drop and Film wise Condensation
- 14. Overall Heat Transfer Coefficient of Composite wall..

Subject	Code	: 8	ubject I	Name: CA	AD/CAN	M LAB				Ty/Lb/	L	T/	P/R	С		
EBME2	22L07	_								ETL		SLr	-			
			re requ	isite: CAl	D/CAM/	CIM, N	lachine	Drawin	ıg	Lb	0	0/0	3/0	1		
L : Lect T/L/ETI	ure T : L : The	Tutoria ory/Lab	I S Lr : /Embedd	Supervise led Theor	ed Learn y and La	ning P: Ib	Project	R : Rese	earch C:	Credits	1 1	1		<u>.</u>		
OBJEC	TIVE	S: The	student v	vill												
•	Get pr	actical k	nowledg	e through	practice	on CNO	C Machi	nes and	related	software						
OURSE	E OUT	COME	S (COs)	:												
CO1		Under	stand the	e concepts	of meta	l cutting	and rela	ated info	rmation	(Level 2)						
CO2		Acqui	re skill iı	n special p	ourpose 1	nachine	s (Level	4)								
CO3		Select	appropri	iate metho	d of ma	nufactur	ing bas	ed on the	he requirement (Level 4)							
CO4		Under	stand the	e concepts	and app	lications	s of pow	der meta	allurgy ((Level 3)						
CO5		Expos	e to vario	ous advan	ced man	ufacturii	precision	n compone	nts (Leve	el 3)						
Mappin	ng of C	course C	utcome	s with Pro	ogram (Outcome	es (POs)	1								
Cos/Pos	5	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12		
CO1		3	3	2	-	2	3	3	2	3	2	2		2		
CO2		3	3	3	-	2	3	3	2	3	2	2		2		
CO3		3	3	3	-	2	3	3	2	3	2	2		2		
CO4		3	3	2	-	3	3	3	2	3	2	2		2		
CO5		3	3	2	-	3	3	3	2	3	2	2		2		
Cos / PS	SOs	PS	501	PSC)2	PS	03	PS	504							
CO1			3	3		, ,	2		3							
CO2			3	3			2		3							
CO3			3	3			2		3							
CO4			3	3			3		3							
CO5			3	3			3		3							
H/M/L i	indica	tes Stre	ngth of (Correlatio	on H-	High, M	I- Medi	um, L-L	ωW		1					
	Category Basic Science Engineering Science			Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project						
					✓					\checkmark						

Subject Code:	Subject Name : CAD / CAM LAB	Ty/Lb/E TL	L	T/ SLr	P/R	С
	Prerequisite: CAD,CAM&CIM, Machine Drawing	Lb	0	0/0	3/0	1

List of Experiments

1. CAD LAB

- 1. Introduction to computer Aided Design and Drafting Packages.
- 2. 2D Drawing using Auto CAD/ Solid works or CATIA Software
- 3. 2D sectional views, part drawing, assembly drawing, detailed drawing.
- 4. Dimensioning, annotations, symbols Welding, Surface finish, threads, Text, Bill of Materials, Title Block.
- 5. Exercises Knuckle joint, Gib & Cotter joint, Screw Jack, Foot step bearing.
- 6. Orthographic views, Isometric views.
- 7. Solid modeling features-Boolean operations.

CAM LAB

NC part programme with G and M codes should be generated, tool path simulation and execution to be done for the following machines.

- 1. Exercises in CNC lathe.
 - 1. Step Turning
 - 2. Taper Turning
 - 3. Thread Cutting
 - 4. Eccentric Turning
- 2. Exercises in CNC milling machines.
 - 1. Contour Milling
 - 2. Hexagonal Milling

Subject Code	: Subj QUA	ject: SO ANTITA	OFT SKIL ATIVE SI	LS II -(KILLS	QUALI	TATIV	E AND		T / L/ ETL/I	L	T / S.Lr	P/ R	С
EBCC22I07	Dw	mania	to: Docio	Mathan	notios				E	0	0/0	2/0	1
I. I. a atura T.	Tutorial	SLav	Cumomia		iaucs.	Ducient	D.D.a.	a a ma ha (U	0/0	2/0	I
L: Lecture 1 : T/L/ETL · The	i utorial	Embedi	Supervise	v and L	nng P: ah	Project	R : Rese	earch C	.: Credits				
OBJECTIVE	S:	Linoca		y und E	uo								
To bri	ing beha	avioural	patterns	of stud	ents.								
• To tra	in them	for cor	porate cu	lture.									
• To cre	eate self	awarer	ness.										
• To bu	ild conf	ïdence.											
To tra	in the st	tudents	for facing	g the in	terview	s and d	evelop i	interpe	ersonal rela	tionshi	p.		
COURSE OU	TCOM	ES (CO	s):(3-5)										
CO1	Recog	nize and	d apply a	rithmeti	ic know	ledge i	n a vari	ety of	contexts.				
CO2	Ability criticis	to ider m.	ntify and	criticall	ly evalu	ate phi	losophie	cal arg	uments an	d defen	d them fr	om	
CO3	Gain tl	ne skill	in solvin	g H.C.F	F & L.C	$M - P_1$	roblem	and Pr	ofit & Los	s probl	ems.		
CO4	Gain the skill in solving the problems in Permutation								nbinations	1			
CO5	Data Interpretation using different graphs.												
Mapping of C	ourse O	utcome	s with Pr	ogram (Outcom	es (Pos)							
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	012
CO1	3	3	3	3	3	3	1	1	3	2	3	3	
CO2	2	2	2	3	1	3	1	3	3	3	3	1	
CO3	3	3	3	3	3	3	2	2	3	3	3	3	
CO4	3	3	3	3	3	3	1	1	3	2	3	3	
CO5	2	2	2	3	1	3	1	3	3	3	3	1	
Cos / PSOs	PS	01	PSC	02	PS	O3	PS	504					
CO1													
CO2													
CO3													
C04													
3/2/1 indica	tes Stre	ngth of	Correlati	on 3-1	High, 2-	Mediu	n, 1-Lo	w	I				
		0											
egory	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				
Cat								~					

Subject: SOFT SKILLS II - QUALITATIVE AND L T / L/ Т / **QUANTITATIVE SKILLS** ETL/I S.Lr Е **Prerequisite: Basic Mathematics.** IE 0 0/0 6

Logical Statements - Arguments - Assumptions - Courses of Action.

EDUCATI

UNIT II Logical Reasoning II

Logical conclusions – Deriving conclusions from passages – Theme detection.

UNIT III Arithmetical Reasoning I

Number system - H.C.F & L.C.M - Problem on ages - Percentage - Profit & Loss - Ratio & Proportion – Partnership.

UNIT IV Arithmetical Reasoning II

Time & Work - Time & Distance - Clocks - Permutations & Combinations - Heights & Distances -Odd man out and Series.

UNIT V Data Interpretation

Tabulation – Bar graphs – Pie graphs – Line graphs.

REFERENCE BOOK:

1. R.S.Agarwal, A modern approach to Logical Reasoning, S.Chand & Co., (2017).

2. R.S.Agarwal, A modern approach to Verbal and Non verbal Reasoning, S.Chand & Co., (2017).

3. R.S.Agarwal, Quantitative Aptitude for Competitive Examinations, S.Chand & Co., (2017).

- 4. A.K.Gupta, Logical and Analytical Reasoning, Ramesh Publishing House, (2014).
- 5. B.S.Sijwali, Indu sijwali, A new approach to Reasoning (Verbal and Non verbal), Arihant Publishers, (2014).

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India. **Subject Code: EBCC22I07 UNIT I Logical Reasoning I** 6

P/R

2/0

С

1

6

6

Subject Code:	Subject Name: TECHNICAL SKILL-III	T / L/ ETL/IE	L	T / S.Lr	P/ R	С
EBME22I03	Pre requisite: All Subjects Studied Up to Date	IE	0	0/0	2/0	1

Students should acquire skill in the domain/inter disciplinary area from government/private training centers/industries /University for a minimum period of 15 calendar days. The training can be through off line, online or mixed mode. Students are supposed to prepare Technical skill report at the end of the training and submit the report along with the certificate in proof of the training, during the viva voce examination conducted by the examiners duly appointed by the head of the department.

Subject Code: EBME22I04	Subject Name : MINI-PROJECT /INTERNSHIP	T / L/ ETL/IE	L	T / S.Lr	P/ R	С
		IE	0	0/0	3/0	1

MINI PROJECT:

Students will have an opportunity to expose their knowledge and talent to make an innovative project. Students are supposed to do innovative projects useful to industries/society in the area of relevant Engineering, inter and multi-disciplinary areas, under the guidance of a staff member. They have to prepare a project report and submit to the department.

At the end of the semester Viva-Voce examination will be conducted by the internal Examiner duly appointed by the Head of the department and the students will be evaluated.

INTERNSHIP

Students are supposed to undergo internship in related Industries for a minimum period of 30days cumulatively during the semester. They have to prepare a report on the Internship with a certificate in proof from competent authority in the industry. At the end of the semester Viva-Voce examination will be conducted by the Examiners duly appointed by the Head of the department and the students will be evaluated.

SEMESTER VII

Subject Code	:	Subjec	t Name: I	NDUST	RIAL A	UTOM	ATION	I	Ty/Lb/	L	T/	P/R	С	
EBME22013									EIL		SLr			
	Pre I	requisite	e: Manufa	icturing	Techno	ology-I a	& II,		Tv	3	0/0	0/0	3	
I · Lecture T ·	Tutorial	trical an	<u>a Electro</u> · Supervis	ed Lear	gineerin ning P ·	lg Project	R · Rese	earch C:	Credits					
T/L/ETL : The	ory/Lab	/Embedo	ded Theor	y and La	ılıng T ıb	Tiojeet	R . Rest		Cicuits					
OBJECTIVE	S: The s	student v	vill gain											
• kn	owledge	e in hydr	aulic, pnei	umatic a	nd mech	atronics	system	in Autor	nation.					
OURSE OUT	COME	S (COs)	:											
CO1	Underst	and Pne	umatic and	d hydrau	ilic princ	ciples, co	omponer	nts and f	unctions (Level 2)				
CO2	Analyze	e and De	sign the P	neumati	c and hy	draulic	circuits f	for autor	nation (Le	vel 4)				
CO3	Recogn	ecognise the various components of mechatronics system (Level 2)												
CO4	Discuss	scuss the various actuation systems and System models in automation (Level 3)												
CO5	Design	sign the Mechatronic system for the required automation (Level 4)												
Mapping of C	ourse O	rse Outcomes with Program Outcomes (POs)												
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	
CO1	3	3	2	2	3	3	2	3	3	3	3		2	
CO2	3	3	3	3	3	3	2	3	3	3	3		2	
CO3	3	3	2	2	3	3	2	3	3	3	3		2	
CO4	3	3	2	2	3	3	2	3	3	3	3		2	
CO5	3	3	3	3	3	3	2	3	3	3	3		2	
Cos / PSOs	PS	501	PSC	02	PS	03	PS	504						
CO1	, ,	3	3		1	2		3						
CO2	, ,	3	3		1	2		3						
CO3	, ,	3	3		1	2		3						
CO4	í	3	3		2	2		3						
CO5	í	3	3		2	2		3						
3/2/1 indicates	Strengt	h of Cor	relation	3- High	n, 2- Me	dium, 1	-Low					1		
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					

Subject Code:	Subject Name : INDUSTRIAL AUTOMATION	Ty/Lb/	L	Τ/	P/R	С
EDME22012		ETL		SLr		
EBNIE22015	Pre requisite: Manufacturing Technology-I & II, Electrical and Electronics Engineering	Ту	3	0/0	0/0	3

UNIT- I BASIC PRINCIPLES OF HYDRAULICS AND PNEUMATICS

Hydraulic principles - Hydraulic pumps - pumping circuits - Hydraulic actuators - Characteristics - Hydraulic valves types and Applications – Hydraulic Fluids. Fundamentals of pneumatics – Control elements – logic circuits - position - pressure sensing - switching - Electro-pneumatic - Electro-hydraulic circuits. Symbols of hydraulic and pneumatic circuits.

UNIT- II DESIGN OF HYDRAULIC AND PNEUMATIC CIRCUITS

Hydraulic circuits – Reciprocating – Quick-return – sequencing – synchronizing –Accumulators circuits – Safety circuits - Industrial circuits. Pneumatic circuits - classic - cascade - step counter - combination methods. Design of Hydraulic and pneumatic circuits - Selection of components - Installation and Maintenance of Hydraulic and Pneumatic power packs.

UNIT-III MECHATRONICS, SENSORS AND TRANSDUCERS

Introduction to Mechatronics Systems - Measurement Systems - Transducers - Performance Terminology -Sensors for Displacement, Position and Proximity; Velocity, Motion, Force, Fluid Pressure, Liquid Flow, Liquid Level, Temperature, Light Sensors - Selection of Sensors.

UNIT- IV ACTUATION SYSTEM AND SYSTEM MODELS

Hydraulic, Pneumatic and electrical actuation Systems - Mechanical Switches - Solid State Switches -Solenoids - D.C Motors - A.C Motors - Stepper Motors. Building blocks of Mechanical, Electrical, Fluid and Thermal Systems, Rotational – Translational Systems, Electromechanical Systems – Hydraulic – Mechanical Systems.

UNIT-V CONTROLLERS AND DESIGN OF MECHATRONICS SYSTEMS

Continuous and discrete process Controllers -- PID Controllers -- Digital Controllers, Digital Logic Control --Micro Processors Control. Programmable Logic Controllers - Basic Structure - Input / Output Processing -Programming – Mnemonics – Timers, Internal relays and counters – Shift Registers – Master and Jump Controls. Stages in designing Mechatronics Systems -Case Studies of Mechatronics Systems, Pick and place robot automatic Car Park Systems - Engine Management Systems.

TEXT BOOKS

1) S.Ilango and V.Soundarrajan ,(2011) "Introduction to Hydraulics and Pneumatics", Prentice hall india,2nd Edition.

2) K.Shanmugasundaram (2006) "Hydraulic and Pneumatic control" S.Chand &Co.

3) W. Bolton, "Mechatronics", Pearson Education, Second Edition, 1999.

REFERENCES

1) Michael B. Histand and David G. Alciatore, "Introduction to Mechatronics and Measurement Systems", McGraw-Hill International Editions, 2000.

2) Bradley D. A., Dawson D., Buru N.C. and. Loader A.J, "Mechatronics", Chapman and Hall, 1993.

3) Lawrence J. Kamm, "Understanding Electro – Mechanical Engineering", An Introduction to Mechatronics, Prentice - Hall of India Pvt., Ltd., 2000.

4) Nitaigour Premchand Mahadik, "Mechatronics", Tata McGraw-Hill publishing Company Ltd, 2003

5) Anthony Esposito, (2008) "Fluid power with applications", Pearson education Pvt. Ltd, 7th edition.

6) W.Bolton, (2012) "Pneumatic and Hydraulic Systems", Butterworth, 3rd edition.

8

8

10

8

11

Subject Code:	Subj	ect Name	e: DESIGN	OF MA	CHINE	ELEME	ENTS - II	[Ty/Lb/	L	Τ/	P/R	С	
EBME22014									ETL		SLr			
	Prer	equisite:	Design of	Machine	e Elemen	its - I			Ту	3	1/0	0/0	4	
L : Lecture T :	Tutoria	ISLr:	Supervise	d Learni	ng P:H	Project R	t : Resea	urch C: (Credits	1				
T/L/ETL : Theor	ry/Lab/E	mbedded	Theory an	d Lab										
OBJECTIVES :	The stu	dent will	learn											
• To und	erstand	the princ	iples invol	ved in ev	valuating	the shap	be and di	imension	s of a com	ponent to	o satisfy fu	nctional	and	
COURSE OUT	COMES	$\overline{\mathbf{S}(\mathbf{COs})}$:												
CO1	Underst	tand and	perform t	he failur	e analys	is hased	on theo	ries of f	ailure (Le	vel 2)				
CO2	Develo	n design	thinking r	rocess a	nd defir	e the nr	oblem (Level 6		ver 2)				
CO3	Design	ign the machine elements like Shafts, Keys, Couplings and Bearings. (Level 6)												
CO4	Select t	the appropriate type of spring based on the requirements. (Level 5)												
CO5	Compa	are the various types of fasteners on strength and application aspects. (Level 4)												
Mapping of Co	urse Ou	tcomes w	omes with Program Outcomes (POs)											
Cos/Pos	PO1	PO2	PO3	PO4	PO10	PO11	PO1	2						
CO1	3	3	3	2	3	3	2	2	2	2	2		2	
CO2	3	3	3	2	3	3	2	2	2	2	2	2	2	
CO3	3	3	3	2	3	3	2	2	2	2	2	2	2	
CO4	3	3	3	2	3	3	2	2	2	2	2		2	
CO5	3	3	3	2	3	3	3	2	2	2	2		2	
Cos / PSOs	PS	501	PSC)2	PS	603	PS	504						
CO1		3	3		í	3		2						
CO2		3	3			3		2						
CO3		3	3		í	3		2						
CO4		3	3			3		2						
CO5	,	3	3			3		2						
3/2/1 indicates	Strengt	h of Cor	relation	3- High	n, 2- Me	dium, 1	-Low		1					
			nce											
			cie											
		0	al S											
		ence	oci		ive		<u>5</u>	Ħ	з					
	s	Scie	s pu		ecti		ina	ner	ojec					
ry	ienc	33	ss an	Ore	n el	tive	cipl	npc	/Pr					
ego	Sci	erii	nitie	m C	grat	Ilec	Dis	Cor	cal					
Cat	ısic	gine	nar	gra	Prog	en E	ter	ill	acti					
_	B	Εnξ	Hui	Pro		Opí	In	Sk	Pr					
				~										

Design of Flat belts and pulleys – Selection of V belts and pulleys – Selection of hoisting wire ropes and pulleys - Design of Transmission chains and Sprockets.

UNIT 2 SPUR GEARS AND PARALLEL AXIS HELICAL GEARS

Prerequisite: Design of Machine Elements - I

Speed ratios and number of teeth-Force analysis- Tooth stresses –Dynamic effects-Fatigue strength-Factor of Safety-Gear materials-Design of Straight tooth spur and helical gears based on strength and wear considerations- Pressure angle in the normal and transverse plane –Equivalent number of teeth – Forces for helical gears.

Subject Name : DESIGN OF MACHINE ELEMENTS - II

UNIT 3 BEVEL AND WORM GEARS Straight bevel gear: Tooth terminology- Design of pair of straight bevel gears - Tooth forces and stresses Worm Gear: Merits and demerits- Terminology. Design of the worm and gear - Forces and stresses, efficiency.

UNIT- IV: DESIGN OF SPEED REDUCERS

Design of speed reducers –Geometric Progression – Standard Step ratio- Ray diagram – Kinematic arrangement of Gears -Number of teeth on gears.

UNIT- V: CLUTCHES AND BRAKES

Design of plate clutches – Cone clutches – Centrifugal clutches- Electromagnetic clutches. Band and Block brakes- External shoe brakes – Internal expanding shoe brake.

Total No. of Periods 60

*NOTE: Use of P.S.G Design Data Book is permitted in the University examination

TEXT BOOKS

Subject Code:

EBME22014

- 1) Shigley J.E and Mischke C. R., (2003) *"Mechanical Engineering Design"*, Sixth Edition, Tata McGraw Hill.
- 2) Sundararajamoorthy T. V and Shanmugam .N, (2003) "Machine Design", Anuradha Publications, Chennai.

REFERENCES

- 1) Maitra G.M. and Prasad L.V., "Hand book of Mechanical Design", II Edition, Tata McGraw Hill 10985.
- 2) Bhandari, V.B., "Design of Machine Elements", Tata McGraw Hill Publishing Company Ltd., 109094.
- 3) Prabhu. T.J., (2000) "Design of Transmission Elements", Mani Offset, Chennai.
- 4) Hamrock B.J., Jacobson B. and Schmid S.R., "Fundamentals of Machine Elements", Tata McGraw-Hill Book Co., 1090909.
- 5) Ugural A,C, (2003) "Mechanical Design, An Integrated Approach", Tata McGraw-Hill.

12

12

P/R C

0/0 4

Ty/Lb

/ETL

Ty

L

3

T/

SLr

1/0

12

12

Subject Code: EBME22015	Subj	ect Nam	ne: FINIT	'E ELEN	MENT A	NALYS	SIS		Ty/Lb/ ETL	L	T/ SLr	P/R	С
	Prere Elem	equisite: ents-I	Strength	of M	laterials,	Desig	n of N	Aachine	Ту	3	1/0	0/0	4
L : Lecture T : T	utorial	S Lr : Suj	pervised Le	earning I	P: Projec	t R : Res	search C:	Credits					<u> </u>
T/L/ETL : Theor	y/Lab/Ei	mbedded	Theory and	d Lab									
• Fundam	entals of	f finite ele	ement anal	vsis and t	heir appl	ications.							
Method	of solvi	ng one, t	wo and iso	-paramet	ric eleme	nts.							
OURSE OUTCO	OMES (COs):											
CO1	Underst	and the l	basic conc	epts in l	Finite El	ement M	lethod.	(Level 2	2)				
CO2	Identify	the appl	lication ar	d charac	cteristics	of Finit	te Eleme	ent Anal	ysis eleme	ents. (Lev	el 2)		
CO3	Develop	the elei	ment chara	acteristic	equation equation	ons and g	generatio	on of glo	obal equat	ions. (Lev	vel 6)		
CO4	Analyze	e the suit	able boun	dary cor	nditions	to a gloł	oal equat	tion of H	FEA eleme	ents. (Lev	el 4)		
CO5	Apply F	FEA soft	ware to an	alyze th	e machi	ne eleme	ents. (Le	evel 3)					
Mapping of Cou	irse Out	tcomes w	ith Progra	m Outco	omes (PC)s)							
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12
CO1	3	3	3	2	2	2	1	1	2	2	1		2
CO2	3	3	3	3	2	2	1	1	2	2	1	1	2
CO3	3	3	3	3	2	2	1	1	2	2	1		2
CO4	3	3	3	3	2	2	1	1	2	2	1	1	2
CO5	3	3	3	3	3	2	1	1	2	2	1		2
Cos / PSOs	PS	601	PSC)2	PS	503	P	SO4					
CO1		3	3		,	2		3					
CO2		3	3		,	2		3					
CO3		3	3		ź	2		3					
CO4		3	3		,	2		3					
CO5		3	3			2		3					
3/2/1 indicates S	Strengt	h of Cor	relation	3- High	n, 2- Me	dium, 1	-Low						
			e)										
			ienc										
			Sci										
		ce	cial		e								
jory		zien	so		ctiv		lary	ent	ect				
ateg	nce	S	and	le	ele	ve	plir	uoc	Proj				
C	cie	ring	ties	Cc	am	ecti	isci	omj	al /l				
	ic S	neei	ani	ram	Igo.	ΠE	r D	II C	ctic				
	Bas	ingi	Hum	rog	P1	Dper	Inte	Ski	Pra				
		Ш			×								

Subject Code:	Subject Name : FINITE ELEMENT ANALYSIS	Ty/Lb/ ETL	L	T/ SLr	P/R	С
EDME22015	Prerequisite: Strength of Materials, Design of Machine Elements-I	Ту	3	1/0	0/0	4

UNIT-I INTRODUCTION

Historical Background – Mathematical Modeling of field problems in Engineering –Governing Equations – Discrete and continuous models – Boundary, Initial and Eigen Value problems– Weighted Residual Methods – Variational Formulation of Boundary Value Problems – Ritz Technique – Basic concepts of the Finite Element Method.

UNIT- II ONE-DIMENSIONAL PROBLEMS

One Dimensional Second Order Equations – Discretization – Element types- Linear and Higher order Elements – Derivation of Shape functions and Stiffness matrices and force vectors-Assembly of Matrices - Solution of problems from solid mechanics including thermal stresses-heat transfer. Natural frequencies of longitudinal vibration and mode shapes. Fourth Order Beam Equation –Transverse deflections and Transverse Natural frequencies of beams.

UNIT- III TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS

Second Order 2D Equations involving Scalar Variable Functions – Variational formulation –Finite Element formulation – Triangular elements and Quadrilateral elements- Shape functions and element matrices and vectors. Application to Field Problems - Thermal problems – Torsion of Non circular shafts.

UNIT- IV TWO DIMENSIONAL VECTOR VARIABLE PROBLEMS

Equations of elasticity – Plane stress, plane strain and axisymmetric problems – Constitutive matrices and Strain displacement matrices – Stiffness matrix – Stress calculations - Plate and shell elements.

UNIT- V ISOPARAMETRIC FORMULATION AND ADVANCED TOPICS9Natural co-ordinate systems – Isoparametric elements – Shape functions for isoparametric elements – One and
two dimensions – Serendipity elements – Numerical integration - Matrix solution techniques – Solutions
Techniques to Dynamic problems – Introduction to Analysis Software- Introduction to Non Linearity.

Lab Components

Design the following machine elements using CAD software, analyse using FEA software.

- 1. Shafts subjected to Bending Moment and Twisting Moment
- 2. Open and Closed coiled helical springs
- 3. Leaf Springs
- 4. Wire ropes for various loads
- 5. Connecting rod

Design and simulation of linkages.

- 1. Simulation of Single Slider Crank chain Mechanism for I.C. Engines.
- 2. Simulation of 4 bar mechanism.
- 3. Simulation of crank and slotted lever mechanism.

TEXT BOOKS:

- 1. J.N.Reddy, "An Introduction to the Finite Element Method", 3rd Edition, Tata McGrawHill,2005
- 2. Seshu, P, "Text Book of Finite Element Analysis", Prentice-Hall of India Pvt. Ltd., NewDelhi, 2007.

REFERENCES:

- 1. Logan, D.L., "A first Subject in Finite Element Method", Thomson Asia Pvt. Ltd., 2002.
- 2. Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, "Concepts and
- Applications of Finite Element Analysis", 4th Edition, Wiley Student Edition, 2002.
- 3. Rao, S.S., "The Finite Element Method in Engineering", 3rd Edition, Butter worth Heinemann, 2004.
- 4. Chandrupatla and Belagundu, "Introduction to Finite Elements in Engineering", 3rd Edition, Ibrahim Zeid, "Introduction to CAD/CAM", Tata McGraw Hill Co.

Total No. of Periods: 45

9

Subject Code:	S	ubject	Name UGMF	:VIRT	TUAL REAL	REA	ALITY	Ту	/Lb/	L	T/	P/R	С		
EBME22ET4	P	rereau	usite:	Manufa	cturin	g T	echnol	Dgv.	E ETL	2	5.Lr 0/0	2/0	3		
	C	CAD CA	AM, The	rmal Er	ngg.	8					0/0	2/0	5		
L:LectureT:Tuto	rial	SLr:	Supervise	edLearni	ngP:Pr	ojectR	:Resear	chC:Cre	dits						
T/L/ETL:Theory	/Lab/E	Embedd	edTheory	yandLab											
OBJECTIVE:C)BJEC	TIVE:	The stud	ents will	learn										
To introduce	e the re	elevanc	e of this	course t	to the o	existin	g techno	ology th	rough de	emonstra	tions, ca	ase stuc	lies and		
 To understar 	nd virtu	al reali	ty, augm	ented rea	ality an	id usin	g them t	o build]	Biomedi	cal engir	neering a	applicat	ions		
COURSEOUT	COME	MES(COs) : The students will be able to													
CO1	Unde	rstand t	the physi	cal princ	iples o	f VR &	& AR								
CO2	Creat	e a con	nfortable.	high-pe	rforma	nce V	R applic	ation us	ing Unit	y					
CO3	Analy	nalyze and understand the working of various state of the art VR & AR devices.													
CO4	Anal	alyze & Design a system or process to meet given specifications with realist													
C05	engir	neering	<u>constra</u>	$\frac{\text{ints}}{2D - AI}$)										
CU5 Monning of Cou	Creat	Cutcomes with Program Outcomes (POs)													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11		PO12		
CO1	3	3	3	3	2	3	107	2	3	2	3		3		
CO2	3	3	3	3	- 3	3	1	3	2	2	3		3		
CO3	3	3	3	3	3	3	1	2	3	3	3		3		
CO4	3	3	3	3	3	3	1	2	3	3	2		3		
CO5	3	2	3	2	3	3	1	2	3	3	2		3		
COs /PSOs	P	SO1	PS	02	Р	SO3	PS	504							
CO1		3	3	;		3		3							
CO2	Í	3		3		3		3							
CO3		3	3	3	1	3		3							
CO4	í	3	3	3		3		3							
CO5		2	3	\$		3		3							
	3/	/2/1 inc	licates S	trength	of Cor	relatio	on 3-H	ligh, 2-	Medium	, 1-Low					
			ocial		ive		<u>5</u>	1	t						
~	lce		and s	e	electi	ve	olina		rojec						
gory	cier	ing	ies a	Col	am (ectiv	iscip	duur	al /P						
ateş	ic S	neer	anit Ice	ram	ogr	1 El¢		5	ctice						
Ũ	Bas	ngii cien	lum cier	rogı	Pr	ben	Inte		Prac						
		ŇМ	Ň			0									

EDUCATIONAL AND RESEARCH INSTITUTE DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar EVA High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code:	Subject Name: VIRTUAL REALITY AND AUGMENTED REALITY	Ty / Lb/ETL	L	T /S.Lr	P/ R	С
EBME22ET4	Prerequisite: Manufacturing Technology,	ETL	2	0/0	2/0	3
	CAD CANI, I nermai Engg.					

UNIT I INTRODUCTION

The three I's of virtual reality-commercial VR technology and the five classic components of a VR system – Input Devices: (Trackers, Navigation, and Gesture Interfaces): Three-dimensional position trackers,

navigation and manipulation-interfaces and gesture interfaces-Output Devices: Graphics displays-sound displays & haptic feedback.

Lab components:

1.Installation of Unity and Visual Studio, setting up Unity for VR development

2.Demonstration of the working of HTC Vive

UNIT II VR DEVELOPMENT PROCESS

Geometric modeling - kinematics modeling - physical modeling - behaviour modeling - model Management. Lab components:

1.Demonstration of the working of Google Cardboard

2.Develop a scene in Unity that includes a cube, plane and sphere

UNIT III CNTENT CREATION CONSIDERATION FOR VR

Methodology and terminology-user performance studies-VR health and safety issues-Usability of virtual reality system- cyber sickness -side effects of exposures to virtual reality environment

Lab components:

1. Change the colour and material of Game object

2. Change the texture of Game object

UNIT IV VR ON THE WEB & VR ON THE MOBILE

JS-pros and cons-building blocks (WebVR, WebGL, Three.js, device orientation events)- frameworks (A-frame, React VR)-Google VR for Android-Scripts, mobile device configuration, building to android-cameras and interaction-teleporting-spatial audio-Assessing human parameters-device development and drivers-Design Haptics

Lab components:

1.Create an immersive environment (living room)

2. Create an immersive environment (tennis court)

UNIT V APPLICATIONS OF VR &AR

Mechanical applications-Robotics applications- Advanced Real time Tracking- other applications- games, movies, simulations.

Lab components:

1.Assembly of Gear box using VR & AR 2. Assembly of tailstock using VR & AR

TEXT BOOKS:

- 1. C. Burdea& Philippe Coiffet, "Virtual Reality Technology", Second Edition, Gregory, John Wiley & Sons, Inc.,2008
- 2. Jason Jerald. 2015. The VR Book: Human-Centred Design for Virtual Reality. Association for Computing Machinery and Morgan & Claypool, New York, NY, USA.

REFERENCES:

1. Augmented Reality: Principles and Practice (Usability) by Dieter Schmalstieg& Tobias Hollerer, Pearson Education (US), Addison-Wesley Educational Publishers Inc, New Jersey, United States, 2016. ISBN: 9780321883575

2. Practical Augmented Reality: A Guide to the Technologies, Applications, and Human Factors for AR and VR (Usability), Steve Aukstakalnis, Addison-Wesley Professional; 1 edition, 2016.

3. The Fourth Transformation: How Augmented Reality & Artificial Intelligence Will Change Everything, Robert Scoble&Shel Israel, Patrick Brewster Press; 1 edition, 2016.

9

9

9

Subject Cod	le: Su	bject]	Name :	DESI	GN Al	ND SI	MULA	TION	Ty / Lb	/ L	T /	P/ R	C
EBME22L08		ND							ETL		5. LI	K	
	Pr	erequis	ite: Nil						Lb	0	0/0	3/0	1
L : Lecture T	: Tutor	ial SI	r : Super	vised L	earning	g P : Pro	oject R	: Resea	rch C: C	redits			
T/L/ETL : Th	neory/La	ab/Emb	edded Th	neory an	ld Lab								
OBJECTIV	ES:												
• To ge	t practi	cal knov	vledge of	model	ing of v	various	machin	e parts	using Au	to CAE	and oth	er	
mode	ling sof	tware.											
COURSE O	UTCO	MES (C	2Os): (3)	- 5)									
CO1	Understa	nd the Ba	asics of CA	D Mode	ling Pack	age			<u> </u>				
CO2	Draw th	e 2D dia	igram, par	t drawin	g and as	ssembly	drawing	g using	Auto CAI	<u>ر</u>			
CO3	Understa	Inderstand the knowledge on design packages (Solid works and C								s)			
CO4	Ability to	o draw the	e various 1	nachine p	oarts usir	ng CATI	A Softwa	are.					
CO5	Analyze the material properties and deflections in Ansys Software							ire					
Mapping of	Course	e Outcomes with Program Outcomes (Pos)											
Cos/Pos	PO1	PO2	PO3	PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1									
CO1	3	3	3	3	3	3		2	2	3	3		2
CO2	3	3	3	3	3	3		2	2	3	3		2
CO3	3	3	3	3	3	3		2	2	3	3		2
CO4	3	3	3	3	3	3		2	2	3	3		2
CO5	3	3	3	3	3	3		2	2	3	3		2
Cos / PSOs]	PSO1	F	PSO2]	PSO3		PSO4					
CO1		3	3			3							
CO2		3	3			3							
CO3		3	3			3							
CO4	ĺ	3	3			3							
CO5		3	3			3							
3/2/1 indicates	Strengt	h of Co	rrelation	3- Hig	h, 2- Me	edium, 1	1-Low						
			ial										
			soc		tive		ary	nt	sct				
	e		pu	c)	lec	e	lina	one	oje				
	ien	ng	es a	Con	m e	Stiv	cip	du	P.				
Å	Sc	erii e	niti6 e	m (grai	Elec	Dis	Col	ical				
Or	asic	gine	mar enc	gra	Pro	en I	ter	dill	acti				
teg	B	Eng	Huı Scie	Pro	H	Opé	In	Sk	Pr				
Ca				_ √					✓				

Subject Code: EBME22L08	Subject Name : DESIGN AND SIMULATION LAB	Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
	Prerequisite: Nil	Lb	0	0/0	3/0	1

List of Exercises

- 1. Introduction to computer Aided Design and Modeling Package
- 2. Exercises (2-D & 3-D) using Design packages:

Part Modeling: Generation of various 3D models through protrusion, revolve, shell sweep, Creation of various features, Study of parent child relation, Feature based and Boolean based modeling surface and assembly modeling, Study of various standard translators, Design simple components

3. Exercise using Analysis software: Structural Analysis:

i) Determination of deflection and stresses in bar

ii)Determination of deflection and stresses in 2D and 3D trusses and beams.

Thermal Analysis

i)Steady state heat transfer Analysis of plane and axis symmetric components.ii)2D problem with conduction and convection boundary conditions.

Softwares Recommended:

- 1. CATIA V5
- 2. Solid Works
- 3. ANSYS

Pre ro Tutorial y/Lab/En The st practic design	equisite: SLr: mbedded udent w	Industria Supervised Theory and vill learn	d auton d Learnin d Lab	nation								
Tutorial y/Lab/Ei The st practic desigr	S Lr : mbedded udent w	Supervised Theory and vill learn	d Learni d Lab	ng P:H		Pre requisite: Industrial automation						
The st practic desigr	udent w	vill learn			Project R	: Resea	rch C: C	Credits				<u> </u>
practic desigr												
h kits	e simpl and ir	e prograr nplement	ns on m pneun	nicropro natic an	cessors d hydra	and mi aulic ci	cro con rcuits w	trollers. vith autor	nation s	tudio so	ftware	and
OMES (COs):											
Recogni	ize the v	arious con	nponent	s of Hyd	lraulics a	and Pneu	imatic ci	rcuits (Le	vel 2)			
Design a	and imp	lement hy	draulic c	circuits v	vith auto	mation	studio so	oftware and	d kit (Le	vel 4)		
CO3 Design and implement pneumatic circuits with automation studio software and kit (Level 4)												
Understand the concepts and applications of robots (Level 2) Write programming for controllers in automation (Level 4)												
Mapping of Course Outcomes with Program Outcomes (POs)												
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	2
3	3	2	2	3	3	2	3	3	3	3		2
3	3	3	3	3	3	2	3	3	3	3	2	
3	3	3	3	3	3	2	3	3	3	3		2
3	3	2	2	3	3	2	3	3	3	3	2	
3	3	3	3	3	3	2	3	3	3	3		2
PS	01	PSC)2	PS	603	PS	504					
	3	3		,	2		3					
	3	3			2		3					
	3	3		,	2		3					
	3	3			2		3					
	3	3	~		2		3					
	3/2/1 i	indicates S	Strengtl	h of Cor	relation	1 3- Hig	gh, 2- M	edium, 1-	Low			
Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				
	practic design design h kits DMES (Recogni Design i Design i	practice simple design and in h kits MES (COs) : Recognize the v Design and imp Design and i	practice simple program design and implement h kits	practice simple programs on a design and implement pneum h kits	practice simple programs on incropro design and implement pneumatic an h kits	practice simple programs on incroprocessors design and implement pneumatic and hydra h kits	practice simple programs on microprocessors and implement pneumatic and hydraulic cich kits $\overrightarrow{PMES(COs):}$ tecognize the various components of Hydraulics and Pneu Design and implement hydraulic circuits with automation Design and implement pneumatic circuits with automation Inderstand the concepts and applications of robots (Level Vrite programming for controllers in automation (Level 4) rse Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 3 3 2 2 3 3 2 3 3 3 3 3 3 3 2 3 3 3 2 2 3 3 2 3 3 3 2 2 3 3 2 PSO1 PSO2 PSO3 PS 3 3 2 2 3 3 3 2 2 3 3 3 2 2 PSO1 PSO2 PSO3 PS 3 3 2 2 3 3 3 2 2 3	practice simple programs on incroprocessors and incro condesign and implement pneumatic and hydraulic circuits with automation studio score the various components of Hydraulics and Pneumatic circles series and implement hydraulic circuits with automation studio score sign and implement pneumatic circuits with automation studio score score and applications of robots (Level 2) Vrite programming for controllers in automation (Level 4) resourcemes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 3 3 2 2 3 3 2 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	practice simple programs on microprocessors and micro controllers. design and implement pneumatic and hydraulic circuits with autor h kits	practice simple programs on incroprocessors and incro contoners. design and implement pneumatic and hydraulic circuits with automation s h kits $\frac{\text{MES}(\text{COs}):}{\text{Ecognize the various components of Hydraulics and Pneumatic circuits (Level 2)} \\ \text{Design and implement hydraulic circuits with automation studio software and kit (Level a) inderstand the concepts and applications of robots (Level 2) Vrite programming for controllers in automation (Level 4) rse Outcomes with Program Outcomes (POS) \frac{\text{PO1} \text{PO2} \text{PO3} \text{PO4} \text{PO5} \text{PO6} \text{PO7} \text{PO8} \text{PO9} \text{PO10} \\ \hline 3 3 2 2 3 3 2 3 3 3 \\ \hline 3 3 3 3 3 3 3 2 3 3 $	practice simple programs on microprocessors and micro contoners. design and implement pneumatic and hydraulic circuits with automation studio software and kit (Level 2) Zecognize the various components of Hydraulics and Pneumatic circuits (Level 2) Zesign and implement hydraulic circuits with automation studio software and kit (Level 4) Design and implement pneumatic circuits with automation studio software and kit (Level 4) Zesign and implement pneumatic circuits with automation studio software and kit (Level 4) Tree Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 3 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	practice simple programs on microprocessors and micro controlets. design and implement pneumatic and hydraulic circuits with automation studio software h kits MES (COs) : tecognize the various components of Hydraulics and Pneumatic circuits (Level 2) Design and implement hydraulic circuits with automation studio software and kit (Level 4) Design and implement pneumatic circuits with automation studio software and kit (Level 4) Design and implement pneumatic circuits with automation studio software and kit (Level 4) Inderstand the concepts and applications of robots (Level 2) Vrite programming for controllers in automation (Level 4) res Outcomes with Program Outcomes (POs) POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1 3 3 2 2 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3

Subject Code:	Subject Name : INDUSTRIAL AUTOMATION LAB	Ty/Lb/	L	Τ/	P/R	С
EDME221.00		ETL		SLr		
EBME22L09	Prerequisite: Industrial automation	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS:

- a. Exercises in PLC Trainer Kit.
- b. Exercises in Pneumatic / Hydraulic Trainer Kit.
- c. Exercises in Electro Pneumatic kit.
- d. Exercises in Industrial Robot.
- e. Exercises in microprocessors and micro controllers.
- f. Design of pneumatic and hydraulic circuits using Automation Studio software.

Subject Code: EBME22105	Subject Name: PROJECT PHASE-I	Ty/Lb/ ETL/IE	L	T/ SLr	P/R	С
	Pre requisite: All Courses	IE	0	0/0	3/3	2

Students are expected to do the Project in a group of 3 to 4 students. They should identify the area/topic of the Project and should collect the literatures related to the project. Students intending to do Industrial projects will approach the industries with the support of the university, identify the industrial problem and finalize the project. In case of Industrial projects apart from Industry guide, a guide has to be appointed by the department. At the end of the Semester the students should submit their Project Phase - I report to the Department and Viva -Voce examination will be conducted by the examiners duly appointed by the Head of the department.

Subject Code:	5	Subject Na	me: FO	REIGN	LANGU	AGE		Т	y/Lb/	-	Τ/	D/D	C
FBFI 22IXX]	ETL/IE	L	SLr	P/K	C
LDI LZZIAA	1	Pre Requis	ite: Nil						IE	1	0/0	1/0	1
L : Lecture T	: Tuto	rial S.Lr :	Supervised	l Learnin	ıg P : Pı	oject R	: Researc	h C: C	Credits	1 1			
T/L/ETL : Theo	ry/Lab	/Embeddec	l Theory an	d Lab									
OBJECTIVE : higher studies/p	The rofessi	main objec onal career	tive of this abroad	course i	s to equi	p the stu	idents wit	h one f	foreign lang	uage whi	ch will en	able the	m for
			COURSE	OUTCO	MES (C	Os): (3-	5)						
CO1 Students will gain the knowledge of identifying phonetics of all the letters in one foreign language													
CO2		Students v	vill gain the	knowled	lge of rea	ading sm	all words	and in	one foreign	language	:		
CO3		Students v	vill gain the	knowled	lge of wr	iting skill	l in one fo	reign la	anguage.				
CO4		Students v	vill gain the	knowled	lge of rea	ding skil	l in one fo	oreign la	anguage				
CO5		Students v	ill gain the	knowled	lge of spo	oken skill	l in one fo	reign la	anguage				
	Mapping of Course Outcomes with Program Outcomes (POs)												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2
CO1	2	1	1	1	1	3	3	3	3	3	3	3	
CO2	3	2	3	3	2	3	3	3	3	3	3	2	
CO3	3	3	3	3	2	3	3	3	3	3	3	2	
CO4	3	2	3	3	2	3	3	3	3	3	3	2	
CO5	3	3	3	3	2	3	3	3	3	3	3	2	
COs / PSOs		PSO1	PSC)2	PS	PSO3 PSO4							
CO1													
CO2											_		
CO3									_		_		
CO4													
	C4	-41 - f C -	1-4	2 11:-1	- 2 M-	JP 1	T						
3/2/1 indicates	Stren	gth of Co	rrelation	3- Higi	n, 2- Me	aium, I	-Low						
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				
			~										

Subject Code: EBFL22IXX	Subject Name : FOREIGN LANGUAGE	Ty/Lb/ ETL/IE	L	T/ SLr	P/R	С
	Pre Requisite: Nil	IE	1	0/0	1/0	1

Foreign language is introduced in the curriculum to make the students globally employable. Students should select and register for any one of the foreign languages from the given list. At the end of the course students should be able to read, write and converse the language in the basic level. At the end of the semester the assessment will be done through internal examination by the examiner duly appointed by the head of the department.

S.NO	COURSE CODE	COURSE NAME
1	EBFL22I01/HBFL22I01	FRENCH
2	EBFL22I02/ HBFL22I02	GERMAN
3	EBFL22I03/ HBFL22I03	JAPANESH
4	EBFL22I04/ HBFL22I04	ARABIC
5	EBFL22I05/ HBFL22I05	CHINESE
6	EBFL22I06/HBFL22I06	RUSSIAN
7	EBFL22I07/HBFL22I07	SPANISH

SEMESTER VIII

Subject Code: EBCC22ID1	Subje AND	ect Nam INDUST	e : EN FRIAL	GINEE MANA	RING GEME	ECON NT	OMICS	5 Ty/Lb/ ETL	L	T/ SLr	P/R	С
	Prere	equisite:	Nil					Ту	3	0/0	0/0	3
L : Lecture T : T	utorial	SLr : S	Supervi	sed Lear	ming P	: Proje	ct R : R	esearch C:	Credits			
T/L/ETL : Theor	y/Lab./	Embedd	led The	ory and	Lab.							
OBJECTIVE: T	The stuc	lent will	learn:									
COURSE OUTC	Concep COMES	ts of ind	ustrial i	manager tudent v	ment an will be	d econo able to	omics					
CO1	Unders	Understand the various concepts of organizations and economics related to it (Level 2)										
CO2	Expose	e to the b	ehavio	r of the	human	in the c	organiza	tion (Level	2)			
CO3	Analyz	the de	mand a	nd supp	ly patte	rns and	l costs re	elated to it (Level 4)		
CO4	Illustra	te the va	arious n	nethods	of prod	uction	with cos	st effectiver	less (Le	vel 3)		
CO5	Identif	y the eff	ect of c	ost on n	nacro e	conomi	cs (Leve	el 2)				
Mapping of Cou	irse Ot	itcomes	(COs)	with Pr	ogram	Outco	mes (PC	Ds) & Prog	ram Sp	ecific Outc	omes (PSOs))
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	-	3	2	-	3	3	3	3	2
CO2	2	2	2	-	3	2	-	3	3	3	-	2
CO3	2	2	2	-	3	2	-	2	3	3	3	2
CO4	2	2	2	-	3	2	-	2	3	3	3	2
CO5	2	2	2	-	3	2	-	2	3	3	3	2
COs / PSOs	PS	501	PS	SO2	P	SO3	PSO 4					
CO1		2		3		3	3					
CO2		2		3		3	3					
CO3		2		3		3	3					
CO4		2		3		3	3					
CO5		2		3		3	3					
3/2/1 indicates St	rength	of Corr	elation	3- Hi	gh, 2- N	Aediun	n, 1-Lov	v			1	
ıtegory	Basic Science	Engineer ing	Humanities and social Science	Program	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project			
C												

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code:	Subject Name : ENGINEERING ECONOMICS AND INDUSTRIAL MANAGEMENT	Ty/Lb/ ETL/IE	L	T/ SLr	P/R	С
EBCC22ID1	Prerequisite: Nil	Ту	3	0/0	0/0	3

UNIT - I Introduction to Management

DUCA

The Nature of Management –Management: Science or Art – Difference between administration and management - Evolution of management thought - Roles of managers– F.W.Taylor and Henri Fayol contribution to the management- Organization and the environmental factors.

UNIT - II Managing Organizational Behavior

Definition- need and Importance of Organizational Behavior – Nature and Scope of Organizational Behavior - Role of managers – Contributing disciplines to Organizational Behavior - Frame work of Organizational Behavior.

UNIT – III Demand & Supply Analysis

Meaning of demand, the demand curve, Elasticity of demand, types of elasticity of demand. Supply –Meaning, the supply curve, equilibrium with supply and demand curves.

UNIT IV Theory of Production

Meaning of Production, Basic concepts- total, average, and marginal product, short run and long run production Function, Law of Variable Proportion. Production function with two variable inputs – Isoquants – Meaning, Properties, ISO cost Lines, All variable inputs – Returns to Scale, Cost Analysis: Determinants of Costs, types of Cost.

UNIT V Macro Economic Concepts

National income concepts, Inflation, Balance of Payment, Circular flow of income Monetary and Fiscal Policy, Demonetization, Exchange Rates

REFERENCE BOOKS:

- 1. Meenakshi Gupta Principles of Management PHI Learning Pvt. Ltd.-2009.
- 2. L.M.Prasad Principles and Practice of Management Sultan Chand & Sons 7th Edition 2007.
- 3. Harold Koontz Principles of Management Tata McGraw Hill 2004.
- 4. Mithani, D.M, Managerial Economics- Theory & applications, Himalaya pub.
- 5. Mehta, P, L, Managerial Economics. Analysis, problem & cases, Sultan Chand

9

Q

9

9

9

Total No. of Periods

Subject Code:	Subject Name: PROJECT PHASE-II	Ty/Lb/	L	T /	P/R	С
EBME22L10		ETL		SLr		
	Pre requisite: Project Phase-I	Lb	0	0/0	12/12	8

To make the students to make use of the knowledge and skill developed during their four years of study and to apply them for making an innovative product/process for the development of society and industries.

Students are expected to do a Project work either in an Industry or at the University in the field of relevant Engineering /inter-disciplinary /multi-disciplinary area in a group of 3 or 4 students. The work to be carried out in Phase II should be continuation of Phase I. Each group will be allotted a guide based on the area of Project work. In case of industrial Project external guide has to be allotted from Industry. Inter disciplinary/multi-disciplinary project can be done with students of different disciplines as a group. Monthly reviews will be conducted during the semester to monitor the progress of the project by the project review committee. Students have to submit the Project thesis at the end of the semester and appear for the Project Viva-Voce examination conducted by the examiners duly appointed by the Controller of Examination. In case of industrial project certificate in proof has to be included in the report along with the bonofide certificate.

ELECTIVE SUBJECTS

ELECTIVE:

THERMAL ENGINEERING

	0 21001 . 2010 00	fillieu matit	ulion
Periyar E.V.R. High	Road, Maduravoya	, Chennai-95.	Tamilnadu, India.

Subject Co EBME22E	ode: 01	Sul	bject Na	me: AD	VANC	ED IC F		Ty/Lb/ ETL	L	T/ SLr	P/R	C		
		Pre En	erequisi gineerir	te: Thern	nodynai	nics and	d Ther	mal		Ту	3	0/0	0/0	3
L : Lecture	T : Tı	utorial	l S Lr	: Supervis	ed Lear	ning P:	Practic	al R : R	esearch	C: Credits	5			
T/L/ETL : T	Theor	y/Lab	/Embed	ded Theor	y and L	ab								
• Re	cent a	dvand	cements	of I.C Er	gines									
• Vai	rious a	alterna	ative fue	ls for I.C	engines									
COURSE	OUT	COM	ES (CO	s) : The S	tudent	will be a	able to							
COI	Und	lerstar	nd and a	pply the k	nowledg	ge of fue	el injecti	on syste	ms and	combustic	on proces	s of IC		
	engi	nes.(I	Level 28	23)										
CO2	Dist	Distinguish the types of combustion chambers used in CI engine.(Level 1)												
CO3	Ana	lyze the pollution formations mechanism and control in IC engines.(Level 4)												
CO4	Und	lerstar	erstand and apply the knowledge of various alternative fuels in IC engines.(Level 2&3)											
CO5	App	ly the	ly the recent trends techniques in IC engines.(Level 3)											
Mapping o	f Cou	rse O	se Outcomes with Program Outcomes (POs)											
COs/POs	P	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1		3	2	1	2	1	1	3	1	1	1	-		1
CO2		2 3 1 1 1 1 2 1 1 1 -								1				
CO3		2	3	2	2	1	1	3	1	1	1	-		1
CO4		2	3	2	1	1	1	3	1	1	1	-		1
CO5		3	2	2	2	1	1	1	1	1	1	-		2
Cos / PSOs		PS	01	PSC)2	PS	03	PS	504					
CO1			3	2		2	2		2					
CO2			3	2		2	2		2					
CO3			3	2		4	2		2					
CO4			3	2		4	2		2					
CO5			3	2		4	2		2					
3/2/1 indic	cates	Strer	ngth of	Correlat	ion:	3- High	, 2- Me	edium,	1-Low					
				ial										
				soc		tive.		ary	ent	ect				
		nce	50	and	ore	elec	ve	plin	pone	Proj				
L L L L L L L L L L L L L L L L L L L	`	Scie	guing	ties	1 Cc	ram	lecti	Disci	om	al /]				
ate		sic	inee	nani	gran	rog	nΕ	er D	ill C	actic				
		\mathbf{Ba}	Eng	Hun Scie	Pro§	Ч	Ope	Int	Sk	Prí				
						~								

Subject Code:	Subject Name : ADVANCED IC ENGINES	Ty/Lb/	L	Τ/	P/R	С
EDME 22EA1		ETL		SLr		
FDIVIE22EU1	Prerequisite: Thermodynamics and Thermal	Tv	3	0/0	0/0	3
	Engineering	Гy	5	0/0	0/0	5

UNIT- I: SPARK IGNITION ENGINES

Spark Ignition Engine Mixture Requirements - Fuel- Injection Systems-Monopoint and Multi point Injection – Stages of Combustion-Normal and Abnormal Combustion-factors Affecting Knock-Combustion Chambers.

UNIT- II: COMPRESSION IGNITION ENGINES

States of Combustion in C.I.Engine – Direct and Indirect Injection Systems - Combustion Chambers – Fuel Spray Behavior and Structure-Spray Penetration and Evaporation-Air Motion - Turbo charging.

UNIT- III: POLLUTANT FORMATION AND CONTROL

Pollutant –Global warming- Sources and Types –Formation of NOx - Hydro-Carbon Emission Mechanism - Carbon Monoxide. Formation-Particulate Emissions-Methods of Controlling Emissions - Catalytic Converters and Particulate Traps-EGR technique.

UNIT- IV: ALTERNATIVE FUELS

Bio-fuel – Vegetable oil – Bio diesel -Alcohol, Hydrogen, Natural Gas and Liquefied Petroleum Gas-Properties, Suitability, Engine Modifications, Merits and Demerits as Fuels-Flexible fuel vehicles-modifications-merits and demerits

UNIT- V: RECENT TRENDS

Lean Burn Engines-Stratified Charge Engines-Homogeneous Charge Compression Ignition – Common rail direct injection engine, Hybrid electrical vehicles – series, parallel and series, parallel configuration – Design – Drive train, sizing of components. Fuel cells-types-construction and working.

Total No. of Periods: 45

9

9

9

9

9

TEXT BOOK

1) V.Ganesan, (2008) "Internal combustion engines", Tata McGraw Hill.

REFERENCES

- 1) Mathur and Sharma, (1990) "Internal combustion engines".
- 2) John Heywood, (1988) "Internal combustion engines fundamentals", Tata McGraw Hill Co.
- 3) Benson and White house (1983) "Internal combustion engines Vol I & Vol II", Pergamon press.
- 4) Domkundwar, "Internal combustion engines" Dhanpat Rai & Co. (P) Ltd.

Subject Code:	Subj	ect Nan	ne: ELE	CTRIC	AND H	IYBRII) VEHI	CLES	Ty/Lb/	L	T /	P/R	С
EBME22E02									ETL/IE		SLr		
	Prer	equisite	e: Basi	c Ele	ectrical	and	Elec	tronics	Tv	3	0/0	0/0	3
	Engi	neering	5						-5	Ũ	0/0	0/0	U C
L : Lecture T : T	'utorial	S Lr	: Supervis	ed Lear	ning P:	Project	R : Res	earch C	: Credits				
T/L/ETL : Theor	ry/Lab	/Embed	ded Theor	y and L	ab								
OBJECTIVE:													
• Recent	advanc	cements	of I.C En	gines									
Various	alterna	ative fue	ls for I.C	engines.									
COUDSE OUT	COM		a) . (2 5)										
COURSE OUT	Unde	LS (CU rstand tl	8) : (3- 3) he electric	al vehic	les conc	ents and	lvehicle	kinetia	es and dyna	mice			
CO^2	Desic	i stanu li	attery nacl	tor the	types of	f electric	vehicle	hacad	on its care	city			
CO2	Unde	rstand t	he workin	$\frac{101}{9}$ of DC	$\frac{1}{8} \Delta C$	electric	al moto	rs	i oli its capa	icity			
CO4	Apply	y the kn	owledge o	of gears,	differen	tial and	clutches	s to the	transmissic	on of el	ectric veh	icles	
CO5	Desig	gn the dr	rive train of	of hybrid	d vehicle	es							
Mapping of Co	urse O	utcome	s with Pr	ogram (Outcom	es (POs	5)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	0 PO11	PO	12
CO1	2	2	2	2	3	2	3	2	2	2			1
CO2	2	2	2	2	3	2	3	2	2	2			1
CO3	2	2	2	2	3	2	3	2	2	2			1
CO4	2	2	2	2	3	2	3	2	2	2			1
CO5	2	2	2	2	3	2	3	2	2	2			1
Cos / PSOs	P	SO1	PSC	02	PS	03	PS	504					
COl		3	2					2					
CO2		3	2					2					
CO3		3	2					2					
C04		3	2					2					
CUS 2/2/1 indicator St	monot	3 h of Cor	<u> </u>	2 11:~	h 2 Ma	dium 1		Z					
5/2/1 malcates St	rengu		relation	3- Hig	n, 2- Me	aium, 1							
			lı										
			ocia		ve		y		t				
			d sc		cti		nar	nen	jec				
	nce	50	an	ore	ele	ve	pli	lod	Pro				
	cie	ing	ies	ŭ	am	ecti	isci	uc	al //				
	ic S	ieel	amit ce	am	ogr	Ē	D	I C	tic				
ıry	3asi	ngir ien	um; ien	ogr	Pr	ben	nte	ikil	rac				
egc	E	Er Sc	Hı Sc	Pr	,	Ō	Ĩ	S	F				
Cat					N								
-													

Subject Code:	Subject Name : VEHICLES	ELECTRIC	AND	HYBRID	Ty/Lb/ ETL/IE	L	T/ SLr	P/R	С
EBME22E02	Prerequisite: Basic Engineering	Electrical	and	Electronics	Ту	3	0/0	0/0	3

UNIT I ELECTRIC VEHICLES

Introduction, Components, vehicle mechanics – Roadway fundamentals, vehicle kinetics, Dynamics ofvehicle motion - Propulsion System Design.

UNIT II BATTERY

Basics - Types, Parameters - Capacity, Discharge rate, State of charge, state of Discharge, Depth of Discharge, Technical characteristics, Battery pack Design, Properties of Batteries.

UNIT III DC & AC ELECTRICAL MACHINES

Motor and Engine rating, Requirements, DC machines, Three phase A/c machines, Induction machines, permanent magnet machines, switched reluctance machines.

UNIT IV ELECTRIC VEHICLE DRIVE TRAIN

Transmission configuration, Components – gears, differential, clutch, brakes regenerative braking, motorsizing.

UNIT V HYBRID ELECTRIC VEHICLES

Types – series, parallel and series, parallel configuration – Design – Drive train, sizing of components.

Text books:

1. Iqbal Hussain, "Electric & Hybrid Vehicles – Design Fundamentals", Second Edition, CRC Press,

2011.

2. James Larminie, "Electric Vehicle Technology Explained", John Wiley & Sons, 2003.

Reference Books:

1. Mehrdad Ehsani, Yimin Gao, Ali Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals", CRC Press, 2010.

2. Sandeep Dhameja, "Electric Vehicle Battery Systems", Newnes, 2000 .http://nptel.ac.in/courses/108103009/

9

9

9

9

Subject Code:	Su	bject Na	me :						T/L/	L	T /	P/ R	С		
EBME22E03				ILE EN	GINE	<u>ERING</u>			EIL	2	S.Lr	0	2		
	En	erequisi gineerii	te: Inern 1g-I	nodynai	nics and	a Inern	nai		1	3	U	U	3		
L : Lecture T : Tu	torial	SLr : St	pervised	Learning	g P:Pro	oject R	: Resear	ch C: C	Credits				I		
T/L/ETL : Theory	//Lab/Ei	mbeddec	l Theory a	ind Lab											
OBJECTIVE : T	he stude	ent will	learn												
Various a	utomob	oile parts	s, power	transmis	sion fro	m engi	ne to va	rious p	arts of th	e autom	obile, eng	gine co	oling,		
lubricatio	n and al	lso abou	t various p	ollutant	s and its	control	•								
COURSE OUTC	COMES	MES (COs) : (3-5)													
CO1	Gain th	ne know	ledge of v	ehicle st	ructures	.(Level	2)								
CO2	Apply	the skill	of auxilia	ry syste	ms in IC	engine	s.(Level	3)							
CO3	Demor	nstrate th	e power t	ransmiss	sions sys	stems.(L	level 3)								
CO4	Apply	the know	wledge of	steering	, brakes	and sus	pension	system	s.(Level 3)					
CO5	Unders	stand the	concept of	of the fu	el cells	and hyb	rid vehi	cles.(Le	evel 2)						
Mapping of Cou	rse Out	comes v	vith Prog	ram Ou	tcomes	(Pos)									
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12		
COI	3	2	1	1	-	1	1	1	1	1	-		1		
CO2	3	2	2	2	-	1	2	1	1	2	-		2		
CO3	2	2	1	1	-	1	1	1	1	1	-		1		
CO4	2	2	2	2	-	1	1	1	1	2	-		1		
CO5	2	1	1	1	-	2	2	1	1	1	-		2		
Cos / PSOs	PS	01	PSC)2	PS	03	PS	04							
CO1	,	3	2		4	2		2							
CO2	,	3	2		4	2		2							
CO3	,	3	2		4	2		2							
CO4	,	3	2		4	2		2							
CO5		3	2]	1		3							
3/2/1 indicates St	trength	of Corr	elation	3- High	<u>, 2- Mee</u>	lium, 1	-Low	_		-1					
		SS	cial					cal Skil							
Ŕ	s	cience	id Soc		ives	s	ject	echni							
10g6	nce	lg S	s an	ore	llect	tive	Pro	L / S							
Cate	ciel	erin	itie	n C	пE	lec	al /	hips	ills						
	ic S	ine	nan nce	grat	grat	пE	tica	rnsl	Sk	1					
	3asi	gug	Hun Scie	βroξ	Pro£	Ope	rac	nte	oft						
					<u> </u>			Π		1					
										1					

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code:	Subject Name:	T / L/	L	Τ/	P/ R	С
	AUTOMOBILE ENGINEERING	ETL		S.Lr		
EBME22E03						
	Prerequisite: Thermodynamics and Thermal	Т	3	0/0	0/0	3
	Engineering					

UNIT- I: VEHICLE STRUCTURE AND ENGINES

Vehicle construction –types-chassis layout- body-integral and chassis mounted body- vehicle specifications-power and torque requirements- choice of engine for different applications. Engine types and construction –cylinder arrangement-piston- cylinder head connecting rod – crank shaft-valves- liners-manifolds.

UNIT- II: ENGINE AUXILIARY SYSTEMS AND POLLUTION CONTROL

Fuel supply system to SI and CI engines–injection timing. Lubrication system-cooling system-ignition system-Spark timing-firing order, electronic fuel injection system-types. Pollution from engines and their control-Indian emission standards-supercharging-turbo charging.

UNIT- III: TRANSMISSION SYSTEMS

Clutches –need-types-single& multi plate –diaphragm-fluid coupling-torque converter Gear boxes-manualsliding mesh- constant mesh-synchro mesh- epicyclic gear boxes-automatic transmission. Universal jointpropeller shaft-Hotchkiss drive- torque tube drive. Differential-need-types- construction. Four wheel driverear axle.

UNIT- IV: STEERING AND SUSPENSION SYSTEMS

Principle of steering-steering geometry and wheel alignment-steering linkages-steering gear boxes-power steering.

Wheel and tyre construction-type and specification-tyre wear and causes-front axles arrangements. Suspension system-need and types-independent systems-coil-leaf spring-torsion bar-shock absorbers-air suspension.

UNIT- V: BRAKE SYSTEMS

Auto Electrical Components and Alternative Power Plants. Brake –need –types-mechanical-hydraulic-pneumatic-power brake-trouble shooting of brakes. Principles of modern electrical systems-battery-dynamo- starting motor- lighting- automobile conditioning. Electric hybrid vehicle and fuel cells.

TEXT BOOKS

1) K.K.Ramalingam, (2007) "Automobile Engineering", SciTech Publications.

2) Kirpal Singh, (2012) "Automobile Engineering vol-I&II".

3) R.B.Gupta, (2013) "Automobile Engineering", Satya Prakashan Publishing.

REFERENCES

Joseph Heitner, "Automotive Mechanics", Affiliated East West Press Ltd.
 "Newton and Steeds, Motor Vehicles", ELBS –13 EDITION.

3. William Crouse, (2007) "Automotive Mechanics", Tata McGraw Hill.

rage	Pa	ge
------	----	----

9

9

0

9

Subject Code:	Sub	ject Na	me : SUS	TAINA	BLE E	NERGY	ζ		Ty/Lb/	L	T/	P/R	С
EBME22E04									ETL		SLr		
	Prei	requisit	e: Therm	odynan	nics and	l Therr	nal		Ту	3	0/0	0/0	3
	Eng	ineerin	g						-				
L : Lecture T : 7	Tutoria	1 S Lr	: Supervis	ed Lear	ning P :	: Project	R : Res	earch C	: Credits				
T/L/ETL : Theo	ory/Lab	/Embed	ded Theor	y and L	ab								
OBJECTIVES	S: Stude	ents will	learn										
• The cor	ncept, p	orinciple	s and char	acteristi	cs of dif	fferent r	enewabl	e energy	y systems.				
Energy	conver	sion tec	hniques										
COURSE OUT	ГСОМ	ES (CO	(3-5))									
CO1 U	Indersta	and the b	pasic conc	epts of s	solar rad	iation a	nd their u	utilizati	ons(Leve	el 2)			
CO2 A	pply th	ie solar l	knowledge	e in vari	ious pra	ctical ap	plication	ns(Lev	el 3)				
CO3 C	arryout	t out cor	structions	of diffe	erent ene	ergy con	version	techniq	ues(Level	12)			
CO4 E	xplain	the prine	ciples of e	nergy co	onversio	n from	earth and	l ocean.	.(Level 3)				
CO5 D	emonst	trate the	working	of MHD	and co	ncept of	Fuel cel	ls(Lev	el 3)				
Mapping of Co	ourse O	Jutcome	es with Pr	ogram	Outcom	es (POs	5)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	012
CO1	3	2	1	1	1	2	2	2	1	1	-	2	
CO2	3	2	2	2	1	2	2	2	1	2	2	2	
CO3	3	2	2	1	1	1	1	2	1	1	1	2	
CO4	3	2	2	2	1	1	1	2	1	2	-	1	
CO5	3	2	2	1	1	1	1	1	1	1	-	1	
COs / PSOs	PS	01	PSC	02	PS	03	PS	504					
CO1		3	2		,	2		1					
CO2		3	2		,	2		2					
CO3		3	1			1		2					
<u>CO4</u>		3	1			1		1					
		5 h -£ ()	<u> </u>	2 11:-		l 	1 T	1					
$\frac{3/2}{1}$ indicates S	strengt	h of Co	rrelation	<u>3- Hig</u>	h, 2- Mi	edium,	I-Low						
			al										
			ocia		ve		y	t	t				
			d se		scti		nar	nen	jec				
	nce	50	an	ore	ele	ive	ipli	poi	Pro				
	cie	ring	ties	Ŭ	am	ecti	isc	om	al				
	ic S	nee Ice	ani Ice	ram	0g1	E	r D	II C	ctic				
ory	3as	ngi ien	um Xien	lgo.	Pr	pen	nte	Skil	Prac				
[egi	H	ы	Б Х	P1		Ō	I	9 1	н		_		
Cai					v								

Subject Code:	Subject Name :	SUSTAINABLE ENI	Ty/Lb/	L	Τ/	P/R	С		
EBME22E04					ETL		SLr		
	Prerequisite:	Thermodynamics	and	Thermal	Tv	3	0/0	0/0	3
	Engineering				J	C .	0,0	0/0	

UNIT- I PRINCIPLES OF SOLAR RADIATION:

Role and Potential of new and renewable source, the solar energy option, Environmental impact of solar power, Solar constant, extra-terrestrial and terrestrial solar radiation, solar radiation on titled surface, Instruments for measuring solar radiation and sun shine, solar radiation data.

UNIT- II SOLAR ENERGY

SOLAR ENERGY COLLECTION: Flat plate and concentrating collectors, classification of concentrating collectors, orientation and thermal analysis, advanced collectors.

SOLAR ENERGY STORAGE: Different methods, sensible, latent heat and stratified storage, solar ponds. Solarapplications - solar heating/cooling techniques, solar distillation and drying, photovoltaic energy conversion.

UNIT- III WIND ENERGY AND BIOMASS

WIND ENERGY: Sources and potentials, horizontal and vertical axis windmills, performance characteristics. BIOMASS: Principles of Bio-Conversion, Anaerobic/aerobic digestion, types of Bio-Gas digestors, gas yield, combustion characteristics of bio-gas, utilization for cooking, I.C.Engine operation, economic aspects.

UNIT- IV GEOTHERMAL, TIDAL AND WAVE ENERGY

GEOTHERMAL ENERGY: Resources, types of wells, methods of harnessing OTEC: Principles, utilization, setting of OTEC plants, thermodynamic cycles. TIDAL AND WAVE ENERGY: Potential and conversion techniques, mini hydel power plants, and their economics.

UNIT- V:DIRECT ENERGY CONVERSION

Need for DEC, Carnot cycle, limitations, principles of DEC. Thermo-electric generators, MHD Power generators, principles, working.

Fuel cells: principle, working -types - Selection of fuels and operating conditions.

Total No. of Periods : 45

TEXT BOOKS

- 1) G.D.Rai, (2004) "Non-Conventional Energy Sources" Khanna Publishers.
- 2) Ashok V Desai, (2003) "Non-Conventional Energy", Wiley Eastern.
- 3) K.M.Mittal, (2007) "Non-Conventional Energy Systems", Wheeler Publishing.
- 4) Ramesh & Kumar, (2007) "Renewable Energy Technologies", Narosa Publishing House.

REFERENCES

- 1) Twidell & Weir, (2006) "Energy Sources", Taylor & Francis
- 2) Sukhame, (2009) "Solar Energy".
- 3) B.S.Magal Frank Kreith, (2010) "Solar Power Engineering"

9

9

9

Subject Code	: Su PR	bject Na OPULS	nme : GA SION	S DYN	AMICS	AND J	ET		Ty/Lb/ ETL	L	T/ SLr	P/R	С
EBME22E05	Pro	erequisi	te: Engi	neering	Therm	odynan	nics		Ту	3	0/0	0/0	3
L : Lecture T	: Tutoria	l S Lr	: Supervis	ed Lear	ning P:	Practic	al R : R	esearch	C: Credits	5			
T/L/ETL : The	eory/Lab	/Embed	ded Theor	y and L	ab								
OBJECTIVE	S: The s	student	will learn	l				4					
• The b	asic diffe	erence be	etween ind	compres	sible and	d compr	essible f	low.					
• The p	henomen	ion of sh	lock wave	s and its	s effect c	on flow.	1-:						
• Basic		$\frac{1}{1}$	ut jet prop	tudont	ind Rock	ket Prop	ulsion.						
COURSE OU	Gain th	ES (CO e fundar	s): The s	wledge	of com	ible to	, flow ar	d its pr	operties ()	[aval 2)			
C01	Solve th	e proble	ems in con	stant ar	d variab	le area	ducts (I	$\frac{10}{2}$ revel 3)	opernes. (I	Level 2)			
CO3	Analyze	Analyze the flow properties in different ducts. (Level 4)											
CO3	T that y Z		the flow properties in different ducts. (Level 4)						<u> </u>	1100			
CO4	Underst	tand the	phenome	non of d	ifferent	shock w	vaves and	d their e	effects. (Le	vel 1&2)			
CO5	Apply t	he know	ledge of	propuls	sions in 1	ockets a	and jets.	(Level	3)				
Mapping of C	Course C	se Outcomes with Program Outcomes (POs)											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	2	2	2	1	1	1	1	1	2			1
CO2	3	2	2	2	1	1	1	1	1	2			1
CO3	3	2	2	2	2	1	1	1	1	2		1	
CO4	3	2	2	2	1	1	1	1	1	2			1
CO5	3	2	2	2	1	2	2	2	1	2			1
COs / PSOs	PS	01	PSC	02	PS	O3	PS	SO4					
CO1		3	2		2	2		2					
CO2		3	2		2	2		2					
CO3		3	2		2	2		2					
CO4		3	2		2	2		2					
CO5		3	2			2		2					
3/2/1 indicat	es Strei	ngth of	Correlat	tion:	3- High	, 2- Me	edium,	1-Low					
			cial		e								
5			SO		ctiv		lary	ent	ect				
g01	lce		and	e	elec	/e	olin	one	roj				
ate	cier	ing	es	Col	m	ctiv	scij	duu	1 <i>/</i> F				
U	Č C	eer	uniti ce	am	gra	Ele	Di	Ŭ	tica				
	asi	igin iene	ima	ngc	Prc)en	nter	kill	rac				
	В	En	Hu Sci	Pr(OF	Iı	S	Ч				
					✓								

Subject Code: Subject Name : GAS DYNAMICS AND JET Ty/Lb/ **T**/ P/R С L PROPULSION SLr ETL/IE **Prerequisite: Engineering Thermodynamics** Ty 0/0 3 0/0 3 **EBME22E05**

UNIT- I: COMPRESSIBLE FLOW – FUNDAMENTALS

Energy and momentum equations for compressible fluid flows, various regions of flows, reference velocities, stagnation state, velocity of sound, critical states. Mach number, Critical Mach number, types of waves. Mach cone, Mach angle.

UNIT- II: FLOW THROUGH VARIABLE AREA DUCTS

Isentropic flow through variable area ducts. T-s and h-s diagrams for nozzle and diffuser flows, area ratio as a function of Mach number, mass flow rate through nozzles and diffusers, effect of friction in flow through nozzles.

UNIT- III: FLOW THROUGH CONSTANT AREA DUCTS

Flow in constant area ducts with friction (Fanno flow) – Fanno curves and Fanno flow equation, variation of flow properties, variation of Mach number with duct length.

Flow in constant area ducts with heat transfer (Rayleigh flow), Rayleigh line and Rayleigh flow equation, variation of flow properties, Maximum heat transfer - Isothermal flow.

UNIT- IV: NORMAL SHOCK

Governing equations, variation of flow parameters like static pressure, static temperature, density, stagnation pressure and entropy across the normal shocks. Prandtl Meyer equation, flow in convergent and divergent nozzle with shock

UNIT- V: PROPULSION

Theory of jet propulsion –Types of Jet engines- principles and working of pulse jet, ram jet, turbojet, turbofan and turbo prop engines. Types of rocket engines –Liquid and Solid propellant rocket- Propellants-feeding systems –Cryogenic rocket engine.

Total No. of Periods: 45

***NOTE:** Use of approved Gas tables permitted in the University Examination

TEXT BOOK

1) Yahya S.M., (2005) "Fundamental of Compressible flow", New Age International (P) Ltd., New Delhi. Third edition reprint.

REFERENCES

- 1) Patrick & William, (1997) "Fundamentals Of Compressible Flow", McGraw Hill-Inc.
- 2) Ganesan.V, (2010) "Gas Turbines", Tata McGraw Hill Publishing Company, New Delhi.

9

9

9 00

9 tio

Q

Subject Code:		Subjec	et Name (: REFF CONDI	RIGER A	ATION IG	AND A	AIR	Ty/Lb/ ETL	L	T/ SLr	P/R	С
EBME22E06	Pre	erequisi	te: Thern	nodynai	mics, Tł	nermal	Enginee	ring	Ту	3	0/0	0/0	3
L : Lecture T : Tu	ıtorial	SLr:	Supervise	ed Learr	ning P:	Project	R : Rese	arch C:	Credits				
T/L/ETL : Theory	y/Lab/	Embed	ded Theor	y and L	ab								
• The work • Different • Alternate	cing pr cycle refrig	S: Stude rinciple s used i gerants t	ents will le of refrige n refrigera o reduce g	earn rators ar ation. global w	nd air co arming	nditioni •	ng syste	ms.					
COURSE OUTC		ES(CO)	$\frac{s}{1}$: (3-5))	<u> </u>		1	1 6 '		1.0			
COI Gai	in the	basic ki	nowledge	of vario	us refrig		cycles a	nd refrig	gerants(L	$\frac{\text{evel } 2}{14}$			
CO2 Ana	alyze the various refrigeration cycles using thermodynamic concepts(Level 4)												
CO3 Une	dersta	nd the d	lesign and	workin	g princij	ples of v	various c	ompone	nts of refr	igeratio	n and air-	conditi	oning
CO4 Apr	tems.(ly the psychometric knowledge to calculate the cooling and heating load. (Level 3)											
CO5 Un	dersta	nd the f	undament	al conce	e to calc	rvogeni	e coom	ering an	d low-tem	nerature	of prope	rties of	
mat	terials	(Level	2)		pis of c	ryogenn	cinginic	ang an		perature	or prope		
Mapping of Cou	rse O	utcome	s with Pr	ogram (Outcom	es (POs	;)						
COs/POs P	01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	012
CO1	3	2	2	2	1	3	3	3	2	2	-		3
CO2	2	3	3	3	2	2	2	2	2	3	-		2
CO3	3	2	2	2	1	2	2	2	2	2	-		3
CO4	2	2	2	2	1	2	2	2	2	3	-		2
CO5	2	3	3	3	2	2	2	2	2	3	-		2
COs / PSOs	PS	01	PSC	02	PS	603	PS	504					
CO1	3	5	3			3		3					
CO2	3	5	3			3		3					
CO3	3		2		,	2		2					
<u>CO4</u>	3	5	3			3		3					
CO5	3		2	<u> </u>		2		2					
3/2/1 indicates Sti	rength	n of Col	relation	3- Hig	h, 2- Me	edium, i	l-Low			1			
egory	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				
Cat					 ✓ 								

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code:	Subject Name : REFRIGERATION AND	Ty/Lb	L	T /	P/R	C
	AIR	/ETL/IE		SLr		
	CONDITIONING					
EBME22E06	Prerequisite: Thermodynamics, Thermal Engineering	Ту	3	0/0	0/0	3

UNIT- I: REFRIGERATION CYCLES AND REFRIGERANTS

EDUCAT

Vapour Compression Réfrigération Cycle-Simple Saturated Vapour Compression Réfrigération Cycle. Thermodynamic Analysis of the above. Refrigerant Classification, Designation, Alternate Refrigerants, Global Warming Potential & Ozone Depleting Potential Aspects.

UNIT- II: SYSTEM COMPONENTS

Refrigerant Compressors – Reciprocating Open & Hermetic Type, Screw Compressors and Scroll Compressors – Construction and Operation Characteristics. Evaporators – DX Coil, Flooded Type Chillers Expansion Devices - Automatic Expansion Valves, Capillary Tube & Thermostatic Expansion Valves. Condensing UNIT-s and Cooling Towers.

UNIT- III: CYCLING CONTROLS AND SYSTEM BALANCING

Pressure and Temperature Controls. Range and Differential Settings. Selection and Balancing of System Components-Graphical Method.

UNIT- IV: PSYCHROMETRY & AIR CONDITIONING

Moist Air Behavior, Psychrometric Chart, Different Psychrometric Process Analysis. Summer and Winter Air-conditioning, Cooling Load Calculations, Air Distribution Patterns, Dynamic and Frictional Losses in Air Ducts, Equal Friction Method, Fan Characteristics in Duct Systems.

UNIT- V: INTRODUCTION TO CRYOGENIC ENGINEERING

Introduction to cryogenic engineering-applications of cryogenics in various fields-low temperature properties of materials- mechanical, thermal, electrical and magnetic properties- properties of cryogenic fluids-cryogenic fluid storage and transfer systems- cryogenic insulation.

Total No. of Periods : 45

TEXT BOOKS

1) W.F.Stocker and J.W.Jones, (2009) "Refrigeration & Air Conditioning", McGraw Hill Book Company.

2) Randall F.Barron, (1985) "Cryogenic systems", Oxford University press.

REFERENCES

- 1) R.J.Dossat, (2005) "Principles of Refrigeration", John Wiley and Sons Inc., 6th edition.
- 2) Manohar Prasad, (2009) "Refrigeration and Air Conditioning", Wiley Eastern Ltd.

9

Q

Q

9

EDUCATIONAL AND RESEARCH INSTITUTE DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution)

(741100 21001 1 2010 00	i inica montanon,
Periyar E.V.R. High Road, Maduravoyal	, Chennai-95. Tamilnadu, India.

Subject Code:	S	Subjec	t Name	: CO	OMPUT MICS	ATION	IAL F	LUID	Ty/Lb	L	T/	P/R	С
				DINA	MICS				/ETL/IE		SLr		
EBME22E07	Prere trans	equisit sfer an	te: Therr	nodyna Mechan	mics, H lics	eat and	l Mass		Ту	3	0/0	0/0	3
L : Lecture T : Tut	torial	S Lr :	: Supervis	ed Lear	ning P:	Project	R : Res	earch	C: Credits				
T/L/ETL : Theory	/Lab/E	mbeda	led Theor	y and La	ab								
OBJECTIVES: S	Student	s will	learn										
• G	overnii	ng equ	ation of f	luid dyn	amics.	•. •	. 1		X 7 1	.1 1			
• M	lethods	s of sol	ving the e	equation	s by Fin	ite elem	ent and	Finite	Volume me	thods			
COURSE OUTC	COMES (COs) : (3-5) derstand the fundamental knowledge of governing equations and boundary conditions (Level 2)												
CO1 Und	erstand	d the fu	undament	al know	ledge of	governi	ing equa	tions a	and boundar	ry condi	ions.(Lev	el 2)	
CO2 Ana	lyze th	e cond	luction pr	oblems	using fir	nite diffe	erence m	ethod	(Level 4)				
CO3 Solv	ve the f	luid fl	ow proble	ms in di	iffusion	ume n	method.(Level3)						
CO4 App	ly the o	y the one dimensional equation to solve convection prob								nite volu	me metho	d.(Lev	rel 3)
CO5 Calc	culate t	he flui	d flow fi	eld usin	g finite v	.(Leve	14)						
Mapping of Cour	se Out	tcome	s with Pr	ogram (Dutcom	es (POs)						
COs/POs PO	D1 F	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO11	PO	12
CO1	3	2	1	1	2	1	1	2	2	2	-		1
CO2	3	3	2	2	2	2	2	2	2	2	-		1
CO3	3	3	2	2	2	2	2	2	2	2	-		1
CO4	3	2	2	2	2	2	2	2	2	2	-		1
CO5	3	2	2	2	2	2	2	2	2	2	-		1
COs / PSOs	PSO	1	PSC)2	PS	03	PS	504					
CO1	3		2		4	2		2					
CO2	3		3		4	2		3					
CO3	3		3		4	2		3					
CO4	3		3		4	2		3					
CO5	3		3		2	2		3					
3/2/1 indicates Stro	ength o	of Cor	relation	3- Hig	n, 2- Me	edium, 1	l-Low	1					
			al a										
			ocia		ve		2	<u>.</u>	t				
			d sc		cti		nar	len	jec				
nce		50	an	ore	ele	ve	ipli	por	Pro				
cie		cing	ies	Ŭ	am	ecti	isci	iuo	al //				
c		ce ce	anit ce	am	ogr	Ē	<u>Ū</u>	I C	tic				
ory Jasi	•	ngii ien	um: ien	1g0	$\mathbf{P}_{\mathbf{\Gamma}}$	pen	nte	skil	rac				
leg(<u>ا</u>	S Е	Hı Sc	Pr	/	Ō	Ι		H				
Cai					v								

Subject Name : COMPUTATIONAL FLUID Subject Code: Tv/Lb L **T**/ P/R **DYNAMICS** ETL/IE SLr Prerequisite: Thermodynamics. Heat and Mass **EBME22E07** Ty 3 0/0 0/0 3 transfer and Fluid Mechanics

In ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

UNIT- I: GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

EDUCATIO

Basics of computational fluid dynamics – Governing equations of fluid dynamics – Continuity, Momentum and Energy equations - Chemical species transport - Physical boundary conditions - Time-averaged equations for Turbulent Flow - Turbulent-Kinetic Energy Equations - Mathematical behavior of PDEs on CFD - Elliptic, Parabolic and Hyperbolic equations.

UNIT- II: FINITE DIFFERENCE METHOD

Derivation of finite difference equations - Simple Methods - General Methods for first and second order accuracy - solution methods for finite difference equations - Elliptic equations - Iterative solution Methods -Parabolic equations – Explicit and Implicit schemes – Example problems on elliptic and parabolic equations.

UNIT- III: FINITE VOLUME METHOD (FVM) FOR DIFFUSION

Finite volume formulation for steady state One, Two and Three -dimensional diffusion problems. One dimensional unsteady heat conduction through Explicit, Crank – Nicolson and fully implicit schemes.

UNIT- IV: FINITE VOLUME METHOD FOR CONVECTION DIFFUSION

Steady one-dimensional convection and diffusion - Central, upwind differencing schemes-properties of discretization schemes - Conservativeness, Boundedness, Trasnportiveness, Hybrid, Power-law, QUICK Schemes.

UNIT- V: CALCULATION FLOW FIELD BY FVM

Representation of the pressure gradient term and continuity equation – Staggered grid – Momentum equations – Pressure and Velocity corrections - Pressure Correction equation, SIMPLE algorithm and its variants. Turbulence models, mixing length model, Two equation $(k-\varepsilon)$ models – High and low Reynolds number models

Total No. of Periods: 45

TEXT BOOKS

1) Ghoshdastidar, P.S., (1998) "Computer Simulation of flow and heat transfer", Tata McGraw Hill Publishing Company Ltd.

2) Versteeg, H.K., and Malalasekera, W., (1998) "An Introduction to Computational Fluid Dynamics: The finite volume Method", Longman.

REFERENCES

1) Patankar, S.V. (2004) "Numerical Heat Transfer and Fluid Flow", Hemisphere Publishing Corporation.

2) Muralidhar, K., and Sundararajan, T., (1995) "Computations Fluid Flow and Heat Transfer", Narosa Publishing House, NewDelhi.

8

9

С

10

9

Subject Code:	Subject Name : TURBO MACHINES								Ty/Lb/	L	Τ/	P/R	С		
									ETL		SLr				
EBME22E08	Pro	erequisi	te: Fluid	Mechar	nics, Th	ermal			Ту	3	0/0	0/0	3		
	En	gineeriı	ng												
L : Lecture T :	Tutoria	l SLr :	Supervise	ed Learr	ning P:	Project	R : Rese	earch C:	Credits	11					
T/L/ETL : The	ory/Lab	/Embed	ded Theor	y and L	ab										
OBJECTIVE:	The co	ourse ai	ms at giv	ving an	overvie	ew of a	different	types	of turbo 1	machine	ery used	for en	ergy		
transformation,	, such as	s pumps	, fans, con	npressor	rs, as we	ll as hye	draulic, s	steam ar	d gas-turb	ines.					
COURSE OU	Understand the concepts of turbo machines and its applications. (Level 2)														
01	Analyze the performance of turbo machines using first law of thermodynamics (Level A)														
CO2	Analyze	e the per	formance	of turbo	o machir	nes usin	g first lav	w of the	rmodynam	nics. (Le	evel 4)				
CO3	Solve the turbo machines problems using velocity triangle concepts. (Level 3)														
CO4	Understand the working principles of centrifugal and axial flow and radial flow										npressors	(Level	2)		
CO5	Calculate stage losses, stage efficiency and pressure ratio in axial flow and radial flow									ow turbin	e.(Le	vel 3)			
Mapping of Co	ourse C	utcome	es with Pr	ogram	Outcom	es (POs	5)	1		1	I				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12		
COl	3	2	1	-	-	1	1	1	1	1	-	1			
CO2	3	3	2		-	1	1			2	-	1			
CO_3	3	3	3	1	-					2	-	1			
CO4	3	3	2	-	-	1	1	1	1	1	-	1			
CO_{S} / PSO_{S}	 	01		1	- PS			<u> </u>	1		-	1			
CO1	15	3	2	52	15	2	1.	1							
CO2		3	2			2		1							
CO3		3	2			2		1							
CO4		3	2			2		1							
CO5	2	3	2			2		1							
3/2/1 indicates S	Strengt	h of Co	rrelation	3- Hig	h, 2- Me	edium,	1-Low	1 1	•			·			
			cial		0										
			SOC		stiv		ary	ent	ect						
	JCe		and	re	elec	ve	plin	ono	roj						
	cieı	ing	ies	C	am	ecti	iscij	luc	II /F						
	ic S	leel	anit ice	am.	ogr	El	ĹĎ	1 C	tica						
ory	Bas	ngii cien	um: cien	rogı	\mathbf{Pr}	pen	Inte	Skil	Prac						
Iteg	_	ых	Ϋ́Η	P	✓	0	<u> </u>		-	-					
ŭ															

Subject Code: Subject Name : TURBO MACHINES Ty/Lb/ L **T**/ P/R С ETL SLr **Prerequisite: Fluid Mechanics Thermal** Tv 3 **EBME22E08** 0/0 0/0 3 Engineering

UNIT-1 INTRODUCTION

Definition of turbo machine, parts of turbo machines, Comparison with positive displacement machines, Classification, Application of first and second laws of thermodynamics to turbo machines.

UNIT- 2 ENERGY EXCHANGE IN TURBOMACHINES

Euler's turbine equation, Velocity triangles for different values of degree of reaction, Components of energy transfer, Degree of Reaction, utilization factor, Relation between degree of reaction and Utilization factor.

UNIT- 3 CENTRIFUGAL COMPRESSORS

Construction details, types, impeller flow losses, slip factor, diffuser analysis losses and performance curves.

UNIT- 4 AXIAL AND RADIAL FLOW COMPRESSORS

Axial and radial flow compressors and pumps- general analysis, Effect of blade discharge angle on performance, Theoretical head – capacity relationship.

UNIT- 5 AXIAL AND RADIAL FLOW TURBINES

Velocity diagrams, losses and coefficients, blade design principles, testing and performance characteristics.

Total No. of Periods 45

TEXT BOOKS:

1. Gas Turbine, V.Ganesan, Tata McGraw Hill Co. Ltd., 3rd edition, 2010

2. Turbines, Compressors & Fans, S. M. Yahya, Tata McGraw HillCo. Ltd., 2nd edition, 2002

REFERENCE BOOKS:

2. D. G. Shepherd, "Principals of Turbo machines", the Macmillan Company (1964).

- 3. , S. L.Dixon, "Fluid Mechanics & Thermodynamics of Turbo machines", Elsevier (2005).
- 4. B.K. Venkanna, "Turbomachine", PHI, New Delhi 2009.

5. M. S. Govindgouda and A. M.Nagaraj, "A Text Book of Turbomachines", , M. M. Publications, 4Th Ed, 2008.

6. V. Kadambi and Manohar Prasad, "An Introduction to Energy Conversion, Volume III, Turbo machinery", New Age International Publishers, reprint 2008.


```
r.
```

9

9

9

PROGRAM ELECTIVE DESIGN ENGINEERING

	(An 150 /	21001:2018	Certified Instit	ution)
eriyar l	E.V.R. High Ro	oad, Maduravoy	al, Chennai-95/	. Tamilnadu, India.

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.													
Subject Code:	Subj	ect Nam	e: MEC	HANIC	AL VIB	RATIO	NS		Ty/Lb/	L	Τ/	P/R	C
EBME22E09									ETL		SLr		
	I	Pre requ	isite: Stro	ength of	materi	als; Me	chanics	of	Tv	3	0/0	0/0	3
			<u> </u>	Machir	<u>ies- II.</u>	D • (1.0	- J	Ũ	0/0	0/0	·
T/L/ETL : Theo	ory/Lab	/Embedo	led Theor	ed Learr y and La	ling P: b	Project	R : Rese	earch C:	Credits				
OBJECTIVES	: The s	tudent v	vill learn										
Multi d	egree o	f freedoi	n system i	in differe	ent mode	es.							
• Vibrati	on meas	suremen	t techniqu	es.									
OURSE OUTO	COMES	S (COs)	:										
CO1	Underst	and the f	fundamen	tals of vi	bration	systems	. (Level	2)					
CO2	Evaluat	e the Na	tural frequ	ency of	Longitu	dinal an	d Transv	verse vib	ration sys	tem. (Lev	vel 5)		
CO3	Analyze	the tors	ional vibr	ation sys	stem at c	lifferent	modes.	(Level 4))				
CO4 5	Solve fr	ee, damj	ped and fo	rced vib	ration sy	ystems c	of single,	, Two an	d multi de	gree of f	reedom. (l	Level	3)
CO5	Acquire	knowle	dge in var	ious vib	ration m	easurem	nent syst	ems.(Le	vel 2)				
Mapping of Co	ourse O	utcome	s with Pro	ogram C)utcome	es (POs)							
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	1	1	1	1	-	-	-	2	2	-		2
CO2	3	3	3	3	2	-	_	_	2	2	1		2
CO3	3	3	3	3	2	-	-	-	2	2	1		2
CO4	3	2	3	3	2	-	-	-	2	2	1		2
CO5	3	2	1	1	1	_	_	_	2	2	_		2
Cos / PSOs	PS	01	PSC)2	PS	603	PS	504					
<u>CO1</u>		2	2		,	<u>ז</u>		1					
CO2	-	3	2		-	2		2					
CO3		3	2			2		2					
CO4		3	2			2		2					
CO5		3	2			2		1					
3/2/1 indicates S	Strengt	h of Cor	relation	3- High	. 2- Me	dium. 1	-Low						
	, in engli							Г					
	ð		id social		ective		inary	nent	jject				
ategory	Basic Science	Engineering Science	Humanities an Science	Program Core	Program ele	Open Elective	Inter Discipli	Skill Compo	Practical /Pro				
C					~								

Subject Code:	Subject Name : MECHANICAL VIBRATIONS	Ty/Lb/	L	Τ/	P/R	С
		ETL		SLr		
EBME22E09	Prerequisite: Strength of Materials, Mechanics of Machines-II	Ту	3	0/0	0/0	3

UNIT-I:INTRODUCTION

Relevance of and need for vibration Analysis- Mathematical Modelling of Vibrating Systems - Discrete and Continuous Systems - Review of Single degree of Freedom Systems - Free and Forced Vibrations, Various **Damping Models**

UNIT- II: TWO DEGREE-OF-FREEDOM SYSTEMS

General Solution to Free vibration problem-Damped Free Vibration, Forced Vibration of un-damped System -Dynamic Vibration Absorbers-Technical Applications.

UNIT- III:MULTI-DEGREE OF FREEDOM SYSTEMS

Free and Forced Vibrations of multi-degree of freedom systems in longitudinal, torsional and lateral modes -Matrix methods of solution - normal modes - orthogonal principle- energy methods, Introduction to vibration of plates.

UNIT- IV: CONTINOUS SYSTEMS

Torsional vibrations – Longitudinal vibrations of rods – Transverse vibrations of beams- Governing equations of motion - Natural frequencies and normal modes - energy methods.

UNIT- V:VIBRATION MEASUREMENT

Vibration monitoring-Data Acquisition- Vibration parameter selection - vibration sensors-accelerometers-Performance characteristics-sensor location-signal pre-amplification – vibration meters-vibration signaturesstandards-vibration testing equipment-in-site, Balancing of rotors.

Total No. of Periods: 45

TEXT BOOK

1) J.S.Rao and K.Gupta, (1999)"Introductory Subject on Theory and Practice of Mechanical Vibrations", Wiley Eastern Ltd.

REFERENCES

1) P.Srinivasan, (1990) "Mechanical Vibration Analysis", Tata-McGraw Hill, New Delhi.

2) G.K.Grover, (2006) "Mechanical Vibrations", New Chand and Bros, Roorkey.

9

9

9

9

Subject Code:	Subj	ject Name: DESIGN OF PRODUCTION TOOLS						S	Ty/Lb/	L	Τ/	P/R	С
									ETL		SLr		
EBME22E10	Prer mac	equisite hine eler	: Manufa nents	cturing	Techno	logy, D	esign of		Ту	3	0/0	0/0	3
L : Lecture T :	Tutoria	l S Lr	: Supervis	ed Learr	ning P:	Project	R : Rese	earch C:	Credits	1 1			
T/L/ETL : The	ory/Lab	/Embedd	led Theor	y and La	ıb								
OBJECTIVES	S: The s	student v	vill learn	<u> </u>									
• The de	sign of	jigs and	fixtures.										
• Differe	ent types	s of press	s tools and	l various	elemen	ts of a p	ress tool	s.					
To imp	oart kno	wledge i	n basics, c	lesign ar	nd drawi	ng of pr	oductior	n tools					
COURSE OU	TCOM	ES (CO	s):										
CO1	Underst	and the	different e	lements	and prin	nciples of	of jigs an	nd fixtur	es (Level 2	2)			
CO2	Select a	nd creat	e a jig for	a given	compon								
CO3	Select and create a fixture for a given component (Level 7)												
CO4	Underst	and the	sheet meta	l operat	ions, ele	ments a	nd die d	esign pr	ocess (Lev	rel 4)			
CO5	Select a	nd creat	e a press t	ool for a	ı given c	ompone	nt (Leve	el 7)					
Mapping of C	ourse O	utcome	s with Pro	ogram (Outcome	es (POs))						
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2
CO1	3	2	2	-	3	3	2	2	3	2	3		2
CO2	3	3	3	3	3	3	2	2	3	2	3		2
CO3	3	3	3	3	3	3	2	2	3	2	3		2
CO4	3	2	2	-	3	3	2	2	3	2	3		2
CO5	3	3	3	3	3	3	2	2	3	2	3		2
Cos / PSOs	PS	01	PSC	02	PS	03	PS	SO4					
CO1		3	3			2		3					
CO2		3	3			2		3					
CO3		3	3			2		3					
CO4		3	3			2		3					
CO5		3	3			2		3					
3/2/1 indicates	Strengt	h of Cor	relation	3- Hig	h, 2- Me	edium, 1	1-Low			-			
			e										
			ienc										
			Sc										
x		ce	cial		e								
gor		cien	so		ctiv		lary	ent	ect				
ateg	nce	S	and	re	elec	ve	plin	onoc	roj				
Ű	cie	ing	ies	C	am	ecti	Isci	luic	H la				
	ic S	Ieel	anit	am	ogr	E	r D	1 C	tici				
	3asi	ngir	nmi	ıgo:	\mathbf{Pr}	pen	nte	Skil	Prac				
	H	Ē	Ĥ	P1		Õ	I		н			_	
					*								

(An ISO 21001 : 2018 Certified Institution)	
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.	

Subject Code:	Subject Name : DESIGN OF PRODUCTION TOOLS	Ty/Lb/	L	Τ/	P/R	С
		ETL		SLr		
EBME22E10	Prerequisite: Manufacturing Technology, Design of machine elements	Ту	3	0/0	0/0	3

UNIT- I: LOCATING AND CLAMPING PRINCIPLES

EDUCA

OBJECTIVES of tool design- Function and advantages of Jigs and fixtures, Basic elements-principles of location .Locating methods and devices, Principles of clamping Mechanical actuation, pneumatic and hydraulic actuation. Standard parts, Drill bushes and Jig buttons, Tolerances and materials used.

UNIT-II: JIGS

Design and development of jigs and fixtures for given component- Types of Jigs -Post, Turnover, Channel, latch, box, pot, angular post jigs, Indexing jigs, automatic drill jigs- rack and pinion operated air operated jigs - Design and drawing of channel, box, indexing and angular post jigs

UNIT- III: FIXTURES

General principles of milling, Lathe, boring, broaching and grinding fixtures and shaping fixtures .Assembly, Inspection and Welding fixtures, Modular fixtures. Design and drawing of turning, milling and grinding fixtures

UNIT- IV: PRESS WORKING

Press Working Terminologies - operations ,Types of presses , press accessories , Computation of press capacity , Strip layout , Material Utilization , Shearing action ,Clearances ,Press Work Materials , Center of pressure, recent trends in tool design- computer Aids for sheet metal forming Analysis

UNIT- V: ELEMENTS OF CUTTING, BENDING, FORMING AND DRAWING DIES

Design of various elements of dies, Die Block, Punch holder, Die set, Stops, Strippers, Pilots - Selection of Standard parts. Design and drawing of simple blanking, piercing, compound and progressive dies.

Total No. of Periods: 45

TEXT BOOKS

- 1) Joshi, P.H. (2004) "Jigs and Fixtures", Second Edition, Tata McGraw Hill Publishing Co., Ltd., New Delhi.
- 2) Donaldson, Lecain and Goold, (2000) "Tool Design", III rd Edition, Tata McGraw Hill.

REFERENCES

- 1) K.Venkataraman, (2005) "Design of Jigs Fixtures & Press Tools", Tata McGraw Hill, New Delhi.
- 2) Kempster, (1974) "Jigs and Fixture Design", Hoddes and Stoughton "Third Edition.
- 3) Joshi, P.H. Press Tools (2006) "Design and Construction", Wheels publishing, 2 edition
- 4) Hoffman, "Jigs and Fixture Design", Thomson Delmar Learning, Singapore
- 5) "Design Data Hand Book", PSG College of Technology, Coimbatore.

9

9

9

Q

Subject Code:	Subj DES	ject Nan SIGN Ol	ne : F MATEI	RIAL H	IANDLI	NG EQ	UIPME	INTS	Ty/Lb/ ETL	L	T/ SLr	P/R	С		
EBME22E11	Prer	equisite	: Design of	of Mach	ine Eler	nents.			Ту	3	0/0	0/0	3		
L : Lecture T :	: Tutoria	l S.Lr	: Supervis	sed Lear	ning P:	Project	R : Res	earch C	: Credits						
T/L/ETL : The	eory/Lat	/Embed	ded Theor	y and L	ab										
OBJECTIVE	:														
• D	esign of	differen	t types of	material	handlin	g systen	ns used f	for engi	neering an	d proces	ss industri	es.			
<u> </u>	** •	COURSE OUTCOMES (COs) : (3-5)													
	Unders	Juderstand the basic principles of material handling equipments. (Level 2) Apply the design knowledge of various drives for material handling equipments. (Level 3)													
C02	Apply	Apply the design knowledge of various drives for material handling equipments. (Level 3) Differentiate various types of material handling device based on application. (Level 4)													
CO4	Design	esign and application of Hoist, Cranes, Conveyors and Elevators. (Level 6)													
CO5	Selection	election of material handling device for different applications. (Level 5)													
	percett	Mapping of Course with Program Outcomes (Pos)													
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	2		
CO1	3	3	3	2	1	2	2	1	2	1	2		2		
CO2	3	3	3	2	2	2	2	1	2	2	2		2		
CO3	3	3	3	2	2	2	2	1	2	2	2		2		
CO4	3	3	3	2	2	2	2	1	2	2	2		2		
CO5	3	3	3	2	2	2	2	1	2	2	2		2		
Cos / PSOs	PS	01	PSC	02	PS	03	PS	504							
CO1		3 3 3 2		2											
CO2		3	3		í	3	2								
CO3		3	3			3		2							
CO4		3	3		•	3		2							
COS	<u>C</u> 4	<u>3</u> 1 f. C	3	2 11		3	1 T	2							
3/2/1 indicates	Strengt	n of Col	rrelation	<u>3- Hi</u> g	gn, 2- M	eaium,	I-LOW								
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project						
					ļ										

Subject Code: Subject Name : L **T**/ P/R С Ty/Lb/ **DESIGN OF MATERIAL HANDLING EQUIPMENTS** ETL SLr Prerequisite: Design of Machine Elements. Tv 0/0 3 0/0 3 **EBME22E11**

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

UNIT- I: INTRODUCTION TO MATERIALS HANDLING EQUIPMENT

EDUCAT

Overview - consideration in material handling system design, ten principles of material handling. Types of material handling equipments-trolleys, industrial trucks, AGV, monorails and other rail guided vehicles, conveyors, cranes, hoists and elevators.

UNIT- II: DESIGN OF HOISTS

Design of hoisting elements: Welded and roller chains - Hemp and wire ropes - Design of ropes, pulleys, pulley systems, sprockets and drums, Load handling attachments. Design of forged hooks and eye hooks – crane grabs - lifting magnets - Grabbing attachments - Design of arresting gear - Brakes: shoe, band and cone types.

UNIT- III: DRIVES OF HOISTING GEAR

Hand and power drives - Travelling gear - Rail travelling mechanism - cantilever and monorail cranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings.

UNIT- IV: CONVEYORS

Types - description - design and applications of Belt conveyors, apron conveyors and escalators Pneumatic conveyors, Screw conveyors and vibratory conveyors.

UNIT- V: ELEVATORS

Bucket elevators: design - loading and bucket arrangements - Cage elevators - shaft way, guides, counter weights, hoisting machine, safety devices - Design of fork lift trucks.

Total No. of Periods: 45

*NOTE: Use of Approved Data Book is permitted in examination

TEXT BOOKS:

- 1. Rudenko, N. (1970) Materials handling equipment. ELnvee Publishers
- 2. Mikell Groover, P. (2006) *Automation, Production system and computer integrated Manufacturing*. Second Edition, Prentice Hall of India Pvt. Ltd

REFERENCES

- 1. Alexandrov, M. (1981) Materials Handling Equipments. MIR Publishers
- 2. Boltzharol, A. (1958) Materials Handling Handbook. The Ronald Press Company
- 3. P.S.G. Tech, (2003) Design Data Book. Kalaikathir Achchagam
- 4. Lingaiah. K. and Narayana Iyengar, (1983) Machine Design Data Hand Book. Vol.1 & 2, Suma Publishers
- 5. Spivakovsy, A.O. and Dyachkov, V.K. (1985) Conveying Machines. Volumes I and II, MIR Publishers

9

9

9

9

Subject Code:	S	ubject Na	ame : A l	PPLI	E D TR	IBOLO	GY		Ty/Lb/	L	Τ/	P/R	С
						ETL		SLr					
EBME22E12	P a	rerequisi nd Mach	ite: Engir ineries	T v	3	0/0	0/0	3					
L : Lecture T	: Tutor	al SLr :	Supervis	ed Leari	ning P:	Project	R : Rese	earch C:	Credits				
T/L/ETL : Th	eory/La	b/Embed	ded Theor	ry and L	ab	U							
OBJECTIVE	E: The	e student v	will learn										
• T	'o impa	rt knowle	dge in the	friction	, wear a	spects of	f machine	compo	nents.				
• T	o unde	rstand the	material j	propertie	es which	ibologic	al characte	ristics	of surfa	ces.			
• T	o unde	erstand th	e analyti	cal beh	avior of	differe	ent type	s bearin	igs and de	esign o	of bearin	igs base	ed on
a	nalytica	al /theoret	ical appro	ach.									
COURSE OU	JTCO	COMES (COs) : (3-5) The student will able to											
COl	Under	stand the	fundamer	ntal conc	cepts of t	friction	wear and	d surface	e treatment	s. (Lev	rel 2)		
<u>CO2</u>	Apply	Apply the knowledge of wear and surface treatment in metals								ls. (Lev	vel 3		
<u>CO3</u>	Expos	e to lubri	cation in h	nydrody	namic ar	nd hydro	ostatic be	earings.	(Level 2)				
<u>CO4</u>	Analy	ze the the	ory of ela	sto-hydi	rodynam	ic lubri	cation. (Level 4)			/ *	1.0	
	Illustr	ate the be	havior of	tribolog	ical com	ponents	s using d	ifferent	working co	onditio	ns. (Leve	el 3)	
Mapping of C	ourse (Dutcomes	with Prog	ram Ou	tcomes (POs)	DO7	DOQ	DOO	DO10	DO1	1 DC	12
Cos/Pos	POI	PO2	P03	P04	P05	PUo	PO/	P08	P09	POIU	POI	I PC	112
COl	3	2	1	2	1	1	1	-	1	1	1		1
CO2	3	3	1	3	1	1	1	-	1	1	1		1
CO3	3	3	1	3	1	1	1	-	1	1	1		1
<u>CO4</u>	3	3	1	3	1	1	1	-	1	1	1		1
<u>CO5</u>	3	3	1	3	1	1	1	-	1	1	1		1
Cos / PSOs	P	<u>soi</u>	PSC	02	PS	03	PS	<u>504</u>					
		3	2		1 2								
<u>CO2</u>		3	2			1		2	-				
<u>CO3</u>		3	2		-	<u> </u> 1		2					
C04		3		<u>,</u>		<u> </u> 1		2					
$\frac{2}{2}$	Strong	3 th of Co	rrolation	2 Uia	h 2 Ma	l dium	1 I ow	2					
5/2/1 mulcates	Streng			<u>- 3- mg</u>	11, 2 - 1910								
			-										
			ocia		ve		v		<u>.</u>				
			d sc		cti		nar	lent	jec				
	nce	50	and	ore	ele	ve	plii	pon	Pro				
	cie	ing	ies	CC	am	ecti	isci	mc	1 /1 Ia				
	cS	lee1	unit ce	am	g	Еľ	Â	Ŭ	tica				
	asi	ien	ien i	ıgc	Pro	en	nter	kill	rac				
	В	EnSc	Ht Sc	$\mathbf{P}_{\mathbf{r}}$		Of	I	S	<u>ц</u>				
					√								
ry													
ego													
Jatu													

Subject Code:	Subject Name : A P P L I E D TRIBOLOGY	Ty/Lb/	L	Τ/	P/R	С
		ETL		SLr		
EBME22E12	Prerequisite: Engineering Mechanics, Fluid Mechanics and Machineries	Ту	3	0/0	0/0	3

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

UNIT- I - SURFACE INTERACTION AND FRICTION

DUCA

Topography of Surfaces – Surface features-Properties and measurement – Surface interaction –Adhesive Theory of Sliding Friction –Rolling Friction-Friction properties of metallic and non-metallic materials.

UNIT- II WEAR AND SURFACE TREATMENT

Types of wear – Mechanism of various types of wear – Laws of wear – Theoretical wear models-Wear of Metals and Non-metals – Surface treatments – Surface modifications – surface coatings methods

UNIT- III LUBRICANTS AND LUBRICATION REGIMES

Lubricants and their physical properties- Viscosity and other properties of oils –Additives-and selection of Lubricants- Lubricants standards ISO,SAE,AGMA, BIS standards – Lubrication Regimes.

UNIT- IV THEORY OF HYDRODYNAMIC AND HYDROSTATIC LUBRICATION

Reynolds Equation,-Assumptions and limitations-One and two dimensional Reynolds Equation-Reynolds and Somerfield boundary conditions- Pressure wave, flow, load capacity and friction calculations in Hydrodynamic and Hydrostatic bearings.

UNIT- V HIGH PRESSURE CONTACTS

Rolling contacts of Elastic solids- contact stresses – Hertzian stress equation- Spherical and cylindrical contacts-Contact Fatigue life- Oil film effects- Elasto Hydrodynamic lubrication Theory-Soft and hard EHL-Reynolds equation for elasto hydrodynamic lubrication

Total No. of Periods: 45

TEXT BOOKS:

1. Rabinowicz.E, "Friction and Wear of materials", John Willey & Sons , UK, 1995

2. Cameron, A. "Basic Lubrication Theory", Ellis Herward Ltd., UK, 1981

REFERENCES

1. Halling, J. (Editor) – "Principles of Tribology", Macmillian – 1984.

2. Williams J.A. "Engineering Tribology", Oxford Univ. Press, 1994.

3. S.K.Basu, S.N.Sengupta & B.B.Ahuja, "Fundamentals of Tribology", Prentice –Hall of India Pvt Ltd, New Delhi, 2005

4. G.W.Stachowiak & A.W.Batchelor, Engineering Tribology, Butterworth-Heinemann, UK, 2005

9

Q

Q

Q

Subj DES ASS	ect Nar IGN F(EMBLY	ne: OR MAN Y	UFAC'	TURE	AND		T	Y/Lb/ ETL	L	T/ SL r	P/ R		С			
Pre I Mac I	requisit hine Ele	e: Streng ements-I	gth of N , Manu	laterial facturi	s, Desig ng Tecł	gn of mology	-	Т	3	0/0	0,	/0	3			
Tutori	al SL b/Embe	r : Supervedded The	vised Le	earning	P : Pra	ctical R	: Research C: Credits									
$\frac{S}{S}$: The	e purpos	e of study	$\frac{1}{1}$ is to it	npart th	e gener	al desig	n. mar	ufactur	ing and a	ssembly	princ	iples	s in			
acturing	р ы гроз 3.	e er staaj	, 15 00 11		e Bener		,			.ssellerj	P	-p	,			
TCON	IES (C	Os) : The	e studer	nts will	be able	to										
Unders	stand the	e basic pr	inciples	s of Mar	ability.	(Level	Level 2)									
Disting	guish the	e various	types of	f form d	lesign iı	1 casting	g, forg	ing and	machinii	ng. (Leve	el 4)					
Analyz	ze and re	edesign th	ne comp	onent fo	or the ea	ase of m	anufa	cturing.	(Level 4)						
Exposi	ire to m	odern too	ol like C	Compute	r aided	Design	for As	sembly.	(Level 2	2)						
Analyz	$\frac{1}{2}$ e and e	valuate D	esign fo	or assen	bly thr	ough cas	se stuc	lies. (Le	evel 4)							
ourse	Outcon	nes with	Program	m Outc	omes (l	POs)	DOG		DO10			DO	10			
POI	PO2	P03	PO4	P05	PO6	PO7	PO8	P 09	POIO	PO	11	PO.	12			
3	3	3	2	1	2	2	1	2	2	2	2	2	2			
3	3	3	2	2	2	2	1	2	2	2	2	-	2			
3	3	3	2	2	2	2	1	2	2	2	2	2	2			
3	3	3	2	3	2	2	1	2	3	2	2	2	2			
3	3	3	2	2	2	2	1	2	2	2	2		2			
PS	01	PSC	02	PS	03	PS	504									
	3	3			2		2									
	3	3		1	2		2	2								
	3	3			2		2									
	3	3		1	2		2									
	3	3		,	2		2									
s Stren	gth of (Correlati	on 3-	High, 2	2- Medi	um, 1-I	JOW									
Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project								
	Subj DES ASS Pre I Mac I Tutori cory/La S: The acturing TCOM Unders Disting Analyz Expose PO1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Subject Nat DESIGN FO ASSEMBL Pre requisit Machine El I Tutorial S L cory/Lab/Ember S: The purpos acturing. TCOMES (C Understand the Distinguish the Analyze and re Exposure to m Analyze and re Course Outcom PO1 PO2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Subject Name: DESIGN FOR MANA ASSEMBLY Pre requisite: Streng Machine Elements-I I Tutorial S Lr : Super- cory/Lab/Embedded The S: The purpose of study acturing. TCOMES (COs) : The Understand the basic pr Distinguish the various Analyze and redesign th Exposure to modern too Analyze and evaluate D Course Outcomes with D PO1 PO2 PO3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Subject Name: DESIGN FOR MANUFAC ASSEMBLY Pre requisite: Strength of M Machine Elements-I, Manu I Tutorial S Lr : Supervised Le cory/Lab/Embedded Theory and S: The purpose of study is to in acturing. TCOMES (COs) : The studen Understand the basic principles Distinguish the various types of Analyze and redesign the comp Exposure to modern tool like C Analyze and evaluate Design for Course Outcomes with Program PO1 PO2 PO3 PO4 3 3 3 2 3 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Subject Name: DESIGN FOR MANUFACTURE / ASSEMBLY Pre requisite: Strength of Material Machine Elements-I, Manufacturin I Tutorial S Lr : Supervised Learning cory/Lab/Embedded Theory and Lab S: The purpose of study is to impart that acturing. TCOMES (COS) : The students will Understand the basic principles of Mar Distinguish the various types of form of Analyze and redesign the component for Exposure to modern tool like Compute Analyze and evaluate Design for assen Course Outcomes with Program Outce PO1 PO1 PO2 PO3 PO4 PO5 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 3 2 9201 PSO2 PS 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 <td>Subject Name: DESIGN FOR MANUFACTURE AND ASSEMBLY Pre requisite: Strength of Materials, Desig Machine Elements-I, Manufacturing Tech I Tutorial S Lr : Supervised Learning P : Practory/Lab/Embedded Theory and Lab S: The purpose of study is to impart the generatory/Lab/Embedded Theory and Lab S: The purpose of study is to impart the generatory. TCOMES (COS) : The students will be able Understand the basic principles of Manufactur Distinguish the various types of form design in Analyze and redesign the component for the exercising to modern tool like Computer aided Analyze and evaluate Design for assembly thr Course Outcomes with Program Outcomes (IPO1 PO1 PO2 PO3 PO4 PO5 PO6 3 3 2 3 3 2 3 3 2 PSO1 PSO2 PSO3 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 <tr< td=""><td>Subject Name: DESIGN FOR MANUFACTURE AND ASSEMBLY Pre requisite: Strength of Materials, Design of Machine Elements-I, Manufacturing Technology I Tutorial S Lr : Supervised Learning P : Practical R bory/Lab/Embedded Theory and Lab S: The purpose of study is to impart the general design acturing. TCOMES (COs) : The students will be able to Understand the basic principles of Manufacturability. Distinguish the various types of form design in casting Analyze and redesign the component for the ease of m Exposure to modern tool like Computer aided Design Analyze and evaluate Design for assembly through ca- tourse Outcomes with Program Outcomes (POS) PO1 PO2 PO3 PO4 PO5 PO6 PO7 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 3 <</td><td>Subject Name: DESIGN FOR MANUFACTURE AND ASSEMBLY T Pre requisite: Strength of Materials, Design of Machine Elements-I, Manufacturing Technology-I Image: Compose of Materials, Design of Machine Elements-I, Manufacturing Technology-I Tutorial S Lr : Supervised Learning P : Practical R : Res- bory/Lab/Embedded Theory and Lab S: The purpose of study is to impart the general design, mar- acturing. TCOMES (COs) : The students will be able to Understand the basic principles of Manufacturability. (Leve Distinguish the various types of form design in casting, forg Analyze and redesign the component for the ease of manufa Exposure to modern tool like Computer aided Design for As Analyze and evaluate Design for assembly through case stude course Outcomes with Program Outcomes (POS) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 3 3 2 2 2 1 3 2 2 1 3 3 3 2 2 2 1 3 2 2 1 3 3 3 2 2 2 1 3 2 2 1 3 3 3 2 2 2 1 3 3 2 2 1 3 3</td><td>Subject Name: DESIGN FOR MANUFACTURE AND ASSEMBLY Ty/Lb/ ETL Pre requisite: Strength of Materials, Design of Machine Elements-I, Manufacturing Technology- I T Tutorial S Lr : Supervised Learning P : Practical R : Research C iory/Lab/Embedded Theory and Lab T S: The purpose of study is to impart the general design, manufacturing. TOOMES (COS) : The students will be able to Understand the basic principles of Manufacturability. (Level 2) Distinguish the various types of form design in casting, forging and Analyze and redesign the component for the ease of manufacturing. Exposure to modern tool like Computer aided Design for Assembly Analyze and evaluate Design for assembly through case studies. (Le ourse Outcomes with Program Outcomes (POS) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 P 3 3 2 2 2 1 2 3 3 2 2 1 2 3 3 2 2 1 2 3 3 2 2 1 2 3 3 2 2 1 2 3 3 2 2 1 2 3 3 2 2</td><td>Subject Name: DESIGN FOR MANUFACTURE AND ASSEMBLY Ty/Lb/ ETL L Pre requisite: Strength of Materials, Design of Machine Elements-I, Manufacturing Technology- I T 3 Tutorial S Lr : Supervised Learning P : Practical R : Research C: Credits fory/Lab/Embedded Theory and Lab S: The purpose of study is to impart the general design, manufacturing and a facturing. TOOMES (COs) : The students will be able to Understand the basic principles of Manufacturability. (Level 2) Distinguish the various types of form design in casting, forging and machinin Analyze and redesign the component for the ease of manufacturing. (Level 4) Course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 P P010 3 3 2 2 1 2 2 3 3 2 2 1 2 2 3 3 2 2 1 2 2 Maltyze and evaluate Design for assembly through case studies. (Level 4) 2 2 2 1 2 2 3 3 2 2 1 2 2</td><td>Subject Name: DESIGN FOR MANUFACTURE ANDTy/Lb/ ETLLT/DESIGN FOR MANUFACTURE AND ASSEMBLYTy/Lb/ ETLLT/Pre requisite: Strength of Materials, Design of Machine Elements-I, Manufacturing Technology- IT30//0Tutorial S Lr : Supervised Learning P : Practical R : Research C: Credits sory/Lab/Embedded Theory and LabS: The purpose of study is to impart the general design, manufacturing and assembly acturing.TOMES (COS) : The students will be able toUnderstand the basic principles of Manufacturability. (Level 2)Distinguish the various types of form design in casting, forging and machining. (Level Analyze and evaluate Design for assembly through case studies. (Level 4)FOOM EOG PO7PO8P PO10PO1PO2PO3PO4PO5PO6PO7PO8PPO10PO10PO10PO10PO10PO10PO10PO10PO10PO10PO10PO10PO10PO10PO2<</td><td>Subject Name: DESIGN FOR MANUFACTURE ANDTy/Lb/ ETLLT/ SLP/ SLP/ SLP/ RPre requisite: Strength of Materials, Design of Machine Elements-I, Manufacturing Technology- IT30/00Tutorial S Lr : Supervised Learning P : Practical R : Research C: Credits ory/Lab/Embedded Theory and LabS: The purpose of study is to impart the general design, manufacturing and assembly princ acturing.TOMES (COs) : The students will be able toUnderstand the basic principles of form design in casting, forging and machining. (Level 4)Analyze and redesign the component for the ease of manufacturing. (Level 2)Analyze and redesign for assembly through case studies. (Level 2)Analyze and reduce Design for assembly through case studies. (Level 2)Outcomes with Program Outcomes (POs)PO1PO2PO3PO4PO5PO6PO7PO8PPPO10PO1133222122233322212223332221222332221222333222122233322122<td< td=""><td>Subject Name: DESIGN FOR MANUFACTURE ANDTy/Lb/ ETLLT/ SLP/ SLP/ SLPre requisite: Strength of Materials, Design of Machine Elements-1, Manufacturing Technology- 1T30/00/0Tutorial S Lr : Supervised Learning P : Practical R : Research C: Credits cory/Lab/Embedded Theory and LabT30/00/0St repurpose of study is to impart the general design, manufacturing and assembly principles taturing.T0/00/0TOOMES (COs) : The students will be able to Understand the basic principles of Manufacturability. (Level 2)Understand the basic principles of form design in casting, forging and machining. (Level 4)Exposure to modern tool like Computer aided Design for Assembly. (Level 2)Analyze and redesign the component for the ease of manufacturing. (Level 4)Seposure to modern tool like Computer aided Design for Assembly. (Level 2)Analyze and evaluate Design for assembly through case studies. (Level 4)FOOMES OUTCOMES with Program Outcomes (POs)PP01P01P01P01P02P03P04P05P06P07P08P33222122233322122233222122233222122233322122233322122<t< td=""></t<></td></td<></td></tr<></td>	Subject Name: DESIGN FOR MANUFACTURE AND ASSEMBLY Pre requisite: Strength of Materials, Desig Machine Elements-I, Manufacturing Tech I Tutorial S Lr : Supervised Learning P : Practory/Lab/Embedded Theory and Lab S: The purpose of study is to impart the generatory/Lab/Embedded Theory and Lab S: The purpose of study is to impart the generatory. TCOMES (COS) : The students will be able Understand the basic principles of Manufactur Distinguish the various types of form design in Analyze and redesign the component for the exercising to modern tool like Computer aided Analyze and evaluate Design for assembly thr Course Outcomes with Program Outcomes (IPO1 PO1 PO2 PO3 PO4 PO5 PO6 3 3 2 3 3 2 3 3 2 PSO1 PSO2 PSO3 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 <tr< td=""><td>Subject Name: DESIGN FOR MANUFACTURE AND ASSEMBLY Pre requisite: Strength of Materials, Design of Machine Elements-I, Manufacturing Technology I Tutorial S Lr : Supervised Learning P : Practical R bory/Lab/Embedded Theory and Lab S: The purpose of study is to impart the general design acturing. TCOMES (COs) : The students will be able to Understand the basic principles of Manufacturability. Distinguish the various types of form design in casting Analyze and redesign the component for the ease of m Exposure to modern tool like Computer aided Design Analyze and evaluate Design for assembly through ca- tourse Outcomes with Program Outcomes (POS) PO1 PO2 PO3 PO4 PO5 PO6 PO7 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 3 <</td><td>Subject Name: DESIGN FOR MANUFACTURE AND ASSEMBLY T Pre requisite: Strength of Materials, Design of Machine Elements-I, Manufacturing Technology-I Image: Compose of Materials, Design of Machine Elements-I, Manufacturing Technology-I Tutorial S Lr : Supervised Learning P : Practical R : Res- bory/Lab/Embedded Theory and Lab S: The purpose of study is to impart the general design, mar- acturing. TCOMES (COs) : The students will be able to Understand the basic principles of Manufacturability. (Leve Distinguish the various types of form design in casting, forg Analyze and redesign the component for the ease of manufa Exposure to modern tool like Computer aided Design for As Analyze and evaluate Design for assembly through case stude course Outcomes with Program Outcomes (POS) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 3 3 2 2 2 1 3 2 2 1 3 3 3 2 2 2 1 3 2 2 1 3 3 3 2 2 2 1 3 2 2 1 3 3 3 2 2 2 1 3 3 2 2 1 3 3</td><td>Subject Name: DESIGN FOR MANUFACTURE AND ASSEMBLY Ty/Lb/ ETL Pre requisite: Strength of Materials, Design of Machine Elements-I, Manufacturing Technology- I T Tutorial S Lr : Supervised Learning P : Practical R : Research C iory/Lab/Embedded Theory and Lab T S: The purpose of study is to impart the general design, manufacturing. TOOMES (COS) : The students will be able to Understand the basic principles of Manufacturability. (Level 2) Distinguish the various types of form design in casting, forging and Analyze and redesign the component for the ease of manufacturing. Exposure to modern tool like Computer aided Design for Assembly Analyze and evaluate Design for assembly through case studies. (Le ourse Outcomes with Program Outcomes (POS) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 P 3 3 2 2 2 1 2 3 3 2 2 1 2 3 3 2 2 1 2 3 3 2 2 1 2 3 3 2 2 1 2 3 3 2 2 1 2 3 3 2 2</td><td>Subject Name: DESIGN FOR MANUFACTURE AND ASSEMBLY Ty/Lb/ ETL L Pre requisite: Strength of Materials, Design of Machine Elements-I, Manufacturing Technology- I T 3 Tutorial S Lr : Supervised Learning P : Practical R : Research C: Credits fory/Lab/Embedded Theory and Lab S: The purpose of study is to impart the general design, manufacturing and a facturing. TOOMES (COs) : The students will be able to Understand the basic principles of Manufacturability. (Level 2) Distinguish the various types of form design in casting, forging and machinin Analyze and redesign the component for the ease of manufacturing. (Level 4) Course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 P P010 3 3 2 2 1 2 2 3 3 2 2 1 2 2 3 3 2 2 1 2 2 Maltyze and evaluate Design for assembly through case studies. (Level 4) 2 2 2 1 2 2 3 3 2 2 1 2 2</td><td>Subject Name: DESIGN FOR MANUFACTURE ANDTy/Lb/ ETLLT/DESIGN FOR MANUFACTURE AND ASSEMBLYTy/Lb/ ETLLT/Pre requisite: Strength of Materials, Design of Machine Elements-I, Manufacturing Technology- IT30//0Tutorial S Lr : Supervised Learning P : Practical R : Research C: Credits sory/Lab/Embedded Theory and LabS: The purpose of study is to impart the general design, manufacturing and assembly acturing.TOMES (COS) : The students will be able toUnderstand the basic principles of Manufacturability. (Level 2)Distinguish the various types of form design in casting, forging and machining. (Level Analyze and evaluate Design for assembly through case studies. (Level 4)FOOM EOG PO7PO8P PO10PO1PO2PO3PO4PO5PO6PO7PO8PPO10PO10PO10PO10PO10PO10PO10PO10PO10PO10PO10PO10PO10PO10PO2<</td><td>Subject Name: DESIGN FOR MANUFACTURE ANDTy/Lb/ ETLLT/ SLP/ SLP/ SLP/ RPre requisite: Strength of Materials, Design of Machine Elements-I, Manufacturing Technology- IT30/00Tutorial S Lr : Supervised Learning P : Practical R : Research C: Credits ory/Lab/Embedded Theory and LabS: The purpose of study is to impart the general design, manufacturing and assembly princ acturing.TOMES (COs) : The students will be able toUnderstand the basic principles of form design in casting, forging and machining. (Level 4)Analyze and redesign the component for the ease of manufacturing. (Level 2)Analyze and redesign for assembly through case studies. (Level 2)Analyze and reduce Design for assembly through case studies. (Level 2)Outcomes with Program Outcomes (POs)PO1PO2PO3PO4PO5PO6PO7PO8PPPO10PO1133222122233322212223332221222332221222333222122233322122<td< td=""><td>Subject Name: DESIGN FOR MANUFACTURE ANDTy/Lb/ ETLLT/ SLP/ SLP/ SLPre requisite: Strength of Materials, Design of Machine Elements-1, Manufacturing Technology- 1T30/00/0Tutorial S Lr : Supervised Learning P : Practical R : Research C: Credits cory/Lab/Embedded Theory and LabT30/00/0St repurpose of study is to impart the general design, manufacturing and assembly principles taturing.T0/00/0TOOMES (COs) : The students will be able to Understand the basic principles of Manufacturability. (Level 2)Understand the basic principles of form design in casting, forging and machining. (Level 4)Exposure to modern tool like Computer aided Design for Assembly. (Level 2)Analyze and redesign the component for the ease of manufacturing. (Level 4)Seposure to modern tool like Computer aided Design for Assembly. (Level 2)Analyze and evaluate Design for assembly through case studies. (Level 4)FOOMES OUTCOMES with Program Outcomes (POs)PP01P01P01P01P02P03P04P05P06P07P08P33222122233322122233222122233222122233322122233322122<t< td=""></t<></td></td<></td></tr<>	Subject Name: DESIGN FOR MANUFACTURE AND ASSEMBLY Pre requisite: Strength of Materials, Design of Machine Elements-I, Manufacturing Technology I Tutorial S Lr : Supervised Learning P : Practical R bory/Lab/Embedded Theory and Lab S: The purpose of study is to impart the general design acturing. TCOMES (COs) : The students will be able to Understand the basic principles of Manufacturability. Distinguish the various types of form design in casting Analyze and redesign the component for the ease of m Exposure to modern tool like Computer aided Design Analyze and evaluate Design for assembly through ca- tourse Outcomes with Program Outcomes (POS) PO1 PO2 PO3 PO4 PO5 PO6 PO7 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 3 <	Subject Name: DESIGN FOR MANUFACTURE AND ASSEMBLY T Pre requisite: Strength of Materials, Design of Machine Elements-I, Manufacturing Technology-I Image: Compose of Materials, Design of Machine Elements-I, Manufacturing Technology-I Tutorial S Lr : Supervised Learning P : Practical R : Res- bory/Lab/Embedded Theory and Lab S: The purpose of study is to impart the general design, mar- acturing. TCOMES (COs) : The students will be able to Understand the basic principles of Manufacturability. (Leve Distinguish the various types of form design in casting, forg Analyze and redesign the component for the ease of manufa Exposure to modern tool like Computer aided Design for As Analyze and evaluate Design for assembly through case stude course Outcomes with Program Outcomes (POS) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 3 3 2 2 2 1 3 2 2 1 3 3 3 2 2 2 1 3 2 2 1 3 3 3 2 2 2 1 3 2 2 1 3 3 3 2 2 2 1 3 3 2 2 1 3 3	Subject Name: DESIGN FOR MANUFACTURE AND ASSEMBLY Ty/Lb/ ETL Pre requisite: Strength of Materials, Design of Machine Elements-I, Manufacturing Technology- I T Tutorial S Lr : Supervised Learning P : Practical R : Research C iory/Lab/Embedded Theory and Lab T S: The purpose of study is to impart the general design, manufacturing. TOOMES (COS) : The students will be able to Understand the basic principles of Manufacturability. (Level 2) Distinguish the various types of form design in casting, forging and Analyze and redesign the component for the ease of manufacturing. Exposure to modern tool like Computer aided Design for Assembly Analyze and evaluate Design for assembly through case studies. (Le ourse Outcomes with Program Outcomes (POS) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 P 3 3 2 2 2 1 2 3 3 2 2 1 2 3 3 2 2 1 2 3 3 2 2 1 2 3 3 2 2 1 2 3 3 2 2 1 2 3 3 2 2	Subject Name: DESIGN FOR MANUFACTURE AND ASSEMBLY Ty/Lb/ ETL L Pre requisite: Strength of Materials, Design of Machine Elements-I, Manufacturing Technology- I T 3 Tutorial S Lr : Supervised Learning P : Practical R : Research C: Credits fory/Lab/Embedded Theory and Lab S: The purpose of study is to impart the general design, manufacturing and a facturing. TOOMES (COs) : The students will be able to Understand the basic principles of Manufacturability. (Level 2) Distinguish the various types of form design in casting, forging and machinin Analyze and redesign the component for the ease of manufacturing. (Level 4) Course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 P P010 3 3 2 2 1 2 2 3 3 2 2 1 2 2 3 3 2 2 1 2 2 Maltyze and evaluate Design for assembly through case studies. (Level 4) 2 2 2 1 2 2 3 3 2 2 1 2 2	Subject Name: DESIGN FOR MANUFACTURE ANDTy/Lb/ ETLLT/DESIGN FOR MANUFACTURE AND ASSEMBLYTy/Lb/ ETLLT/Pre requisite: Strength of Materials, Design of Machine Elements-I, Manufacturing Technology- IT30//0Tutorial S Lr : Supervised Learning P : Practical R : Research C: Credits sory/Lab/Embedded Theory and LabS: The purpose of study is to impart the general design, manufacturing and assembly acturing.TOMES (COS) : The students will be able toUnderstand the basic principles of Manufacturability. (Level 2)Distinguish the various types of form design in casting, forging and machining. (Level Analyze and evaluate Design for assembly through case studies. (Level 4)FOOM EOG PO7PO8P PO10PO1PO2PO3PO4PO5PO6PO7PO8PPO10PO10PO10PO10PO10PO10PO10PO10PO10PO10PO10PO10PO10PO10PO2<	Subject Name: DESIGN FOR MANUFACTURE ANDTy/Lb/ ETLLT/ SLP/ SLP/ SLP/ RPre requisite: Strength of Materials, Design of Machine Elements-I, Manufacturing Technology- IT30/00Tutorial S Lr : Supervised Learning P : Practical R : Research C: Credits ory/Lab/Embedded Theory and LabS: The purpose of study is to impart the general design, manufacturing and assembly princ acturing.TOMES (COs) : The students will be able toUnderstand the basic principles of form design in casting, forging and machining. (Level 4)Analyze and redesign the component for the ease of manufacturing. (Level 2)Analyze and redesign for assembly through case studies. (Level 2)Analyze and reduce Design for assembly through case studies. (Level 2)Outcomes with Program Outcomes (POs)PO1PO2PO3PO4PO5PO6PO7PO8PPPO10PO1133222122233322212223332221222332221222333222122233322122 <td< td=""><td>Subject Name: DESIGN FOR MANUFACTURE ANDTy/Lb/ ETLLT/ SLP/ SLP/ SLPre requisite: Strength of Materials, Design of Machine Elements-1, Manufacturing Technology- 1T30/00/0Tutorial S Lr : Supervised Learning P : Practical R : Research C: Credits cory/Lab/Embedded Theory and LabT30/00/0St repurpose of study is to impart the general design, manufacturing and assembly principles taturing.T0/00/0TOOMES (COs) : The students will be able to Understand the basic principles of Manufacturability. (Level 2)Understand the basic principles of form design in casting, forging and machining. (Level 4)Exposure to modern tool like Computer aided Design for Assembly. (Level 2)Analyze and redesign the component for the ease of manufacturing. (Level 4)Seposure to modern tool like Computer aided Design for Assembly. (Level 2)Analyze and evaluate Design for assembly through case studies. (Level 4)FOOMES OUTCOMES with Program Outcomes (POs)PP01P01P01P01P02P03P04P05P06P07P08P33222122233322122233222122233222122233322122233322122<t< td=""></t<></td></td<>	Subject Name: DESIGN FOR MANUFACTURE ANDTy/Lb/ ETLLT/ SLP/ SLP/ SLPre requisite: Strength of Materials, Design of Machine Elements-1, Manufacturing Technology- 1T30/00/0Tutorial S Lr : Supervised Learning P : Practical R : Research C: Credits cory/Lab/Embedded Theory and LabT30/00/0St repurpose of study is to impart the general design, manufacturing and assembly principles taturing.T0/00/0TOOMES (COs) : The students will be able to Understand the basic principles of Manufacturability. (Level 2)Understand the basic principles of form design in casting, forging and machining. (Level 4)Exposure to modern tool like Computer aided Design for Assembly. (Level 2)Analyze and redesign the component for the ease of manufacturing. (Level 4)Seposure to modern tool like Computer aided Design for Assembly. (Level 2)Analyze and evaluate Design for assembly through case studies. (Level 4)FOOMES OUTCOMES with Program Outcomes (POs)PP01P01P01P01P02P03P04P05P06P07P08P33222122233322122233222122233222122233322122233322122 <t< td=""></t<>			

 \mathbf{C}

9

9

9

9

9

	DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilna	du, India.		NAAC * * *		
Subject Code:	Subject Name : DESIGN FOR MANUFACTURE AND ASSEMBLY	Ty/Lb/ ETL	L	T/ SLr	P/R	

Subject Code.	ASSEMBLY	ETL	L	SLr	r/ĸ	C
EBME22E13	Prerequisite: Strength of Materials, Design of Machine	Ту	3	0/0	0/0	3
	Elements-I, Manufacturing Technology-I	-				

UNIT-I: INTRODUCTION

General design principles for manufacturability - strength and mechanical factors, Process capability - Feature tolerances - Geometric tolerances - Assembly limits -Datum features - Tolerance stacks.

UNIT- II: FORM DESIGN - CASTING

Production methods on form design - Casting considerations - Requirements and rules - Redesign of components for castings and Case studies.

UNIT- III: FORM DESIGN - FORGING

Forging considerations - Requirements and rules - Redesign of components for forging and Case studies.

UNIT- IV: FORM DESIGN - MACHINING

Machining considerations - Requirements and rules -Redesign of components for Machining and Case studies.

UNIT- V: DESIGN FOR ASSEMBLY METHODS

Approaches to design for assembly - Qualitative evaluation procedures, knowledge based approach, Computer aided DFA methods. Assemblability measures. Boothroyd - Dewhurst DFA method - Redesign of a simple product - Case studies.

Total No. of Periods: 45

TEXT BOOKS:

- 1. Harry Peck, (1983) Design for Manufacture. Pittman Publication
- 2. Alan Redford and Chal, (1994) *Design for Assembly Principles and Procedures*. McGraw Hill International

REFERENCES

- 1. Robert Matousek, (1963) Engineering Design A Systematic Approach. Blackie & Sons Ltd
- 2. James G. Bralla, (1986) Hand Book of Product Design for Manufacturing. McGraw Hill Co
- 3. Swift, K.G. (1987) Knowledge Based Design for Manufacture.

Subject Code:		Subject	t Name: 🛛	MECHA	ANICS	OF FRA	ACTUR	E	Ty/Lb/ ETL/IE	L	T/ SLr	P/R	C	
EBME22E14		Pre r Enginee	equisite: ring Meta	Strea allurgy	ngth	of Ma	aterials,	,	Ту	3	0/0	0/0	3	
L : Lecture T :	Tutori	al S Lr	: Supervis	sed Lear	ning P	: Project	R : Res	search	C: Credits					
T/L/ETL : The	ory/La	b/Embed	ded Theor	y and L	ab									
OBJECTIVES	S: The	e student v	will learn		C 11(1.1		c · · 1 1			
 Solid i fatigue 	load a	nics of ci	acked col	mponen	ts of dif	ferent n	nodes by	y whic	h these con	nponents	fail unde	er static	e and	
OURSE OUT	COM	ES (COs)	: The stu	ident wi	ll be ab	le to								
CO1		Identify th	ne various	failure	mechani	sms in c	lifferent	materi	als. (Level 2	2)				
CO2		Evaluate 1	aluate fracture toughness using linear fracture tests. (Level 5)											
CO3		Apply the	ply the crack driving force in linear and non-linear materials. (Level 4)											
CO4		Estimate	timate the life of fatigue crack growth for both linear and nonlinear materials. (Level 3)											
CO5		Employ the knowledge of fracture mechanics in engineering application. (Level 3)												
Mapping of Course Outcomes with Program Outcomes (POs)														
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2	
CO1	3	3	3	3	2	2	2	-	2	2	1	2	2	
CO2	3	3	3	3	2	2	2	-	2	2	1	2	2	
CO3	3	3	3	3	2	2	2	-	2	2	1	2	2	
CO4	3	3	3	3	2	2	2	-	2	2	1	2		
CO5	3	3	3	3	2	2	2	-	2	2	1	2		
Cos / PSOs	P	SO1	PSC	02	PS	03	PS	SO4						
CO1		3	3		1		2							
CO2		3	3		1		2							
CO3		3	3		1	L		2						
C04		3	3		1	L		2						
3/2/1 indicates S	Streng	th of Corr	elation 3	- High, 2	- Mediu	- m, 1-Lov	w	-						
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
					V									

Subject Code: Subject Name : MECHANICS OF FRACTURE Tv/Lb/ L **T**/ P/R С SLr ETL/IE **Prerequisite:** Strength of Materials, **EBME22E14** Ty 0/0 0/0 3 3 **EngineeringMetallurgy**

UNIT- I ELEMENTS OF SOLID MECHANICS

The geometry of stress and strain, elastic deformation, plastic and elasto-plastic deformation - limit analysis – Airy's function – field equation for stress intensity factor.

UNIT- II STATIONARY CRACK UNDER STATIC LOADING

Two dimensional elastic fields – Analytical solutions yielding near a crack front – Irwin's approximation - plastic zone size – Dugdaale model – determination of J integral and its relation to crack opening displacement.

UNIT- III ENERGY BALANCE AND CRACK GROWTH

Griffith analysis – stable and unstable crack growth –Dynamic energy balance – crack arrest mechanism –K1c test methods - R curves - determination of collapse load.

UNIT- IV FATIGUE CRACK GROWTH CURVE

Empirical relation describing crack growth law – life calculations for a given load amplitude – effects of changing the load spectrum -- rain flow method– external factors affecting the K1c values.- leak before break analysis.

UNIT- V APPLICATIONS OF FRACTURE MECHANICS

Crack Initiation under large scale yielding – thickness as a design parameter – mixed mode fractures - crack instability in thermal and residual stress fields - numerical methods

Total No. of Periods: 45

TEXT BOOKS:

- 1. David Broek, "Elementary Engineering Fracture Mechanics ", Fifthoff and Noerdhoff International Publisher, 1978.
- 2. 2. Kare Hellan, "Introduction of Fracture Mechanics", McGraw-Hill Book Company, 1985.

REFERENCES:

- 1. Preshant Kumar, "Elements of Fracture Mechanics", Wheeler Publishing, 1999.
- 2. John M.Barson and Stanely T.Rolfe Fatigue and fracture control in structures Prentice hall Inc. Englewood, 1977.
- 3. Tribikram Kundu, "Fundamentals of Fracture Mechanics", Ane Books Pvt. Ltd. New Delhi/ CRC Press, 2012

9

9

9

Q

Subject Code:	Subje INNO	ct Na VATIO	me: D N	ESIGN	THI	NKING	AND	Ty/Lb/ ETL/I	E	T/ SL	/ P/R	С
	Pre re	quisite:	NIL					Tv	3	0/(0/0	3
EBME22E15								Lì	5	0/0	0/0	5
L : Lecture T :	Tutorial	S Lr	: Supervi	sed Lea	arning I	P: Proje	ect R : R	Research C	C: Credits	8		
T/L/ETL : The	ory/Lab	/Embedd	led Theor	y and La	ıb							
• Solid	S: The smechani	tudent with tudent with the second se	vill learn racked co	omponer	nts of d	lifferent	modes b	by which	these co	mponents f	ail under	static and
fatigue	load co	nditions	•									
OURSE OUT	COME	S (COs)	:									
CO1 U	Jndersta	and the f	undament	al conce	epts of de	esign thi	nking					
CO2	Apply th	e knowl	edge of de	esign thi	nking pi	rocess in	product	developme	ent			
CO3 I	nnovate	the new	idea for j	product	creation	S						
CO4 I	Develop	the proc	luct design	n and str	rategies							
CO5 (Create a	new bus	siness idea	for a st	artup.							
Mapping of Co	ourse O	utcome	s with Pro	ogram (Outcome	es (POs)						
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	2	3	2			2		2
CO2	3	3	2	3	2	3	2			2		2
CO3	3	3	2	3	2	3	2			2		2
CO4	3	3	2	3	2	3	2			2		2
CO5	3	3	2	3	2	3	2			2		2
Cos / PSOs	PS	01	PSC	02	PS	503	PSO4					
CO1	,	2	3			3	2					
CO2	,	2	3			3	2					
CO3	,	2	3			3	2					
CO4		2	3			3	2					
CO5	,	2	3			3	2					
3/2/1 indicates S	Strengtl	h of Cor	relation	3- High	n, 2- Me	dium, 1	-Low			·		
			_									
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project			
					\checkmark							

INNOVATION Pre requisite: NIL Ty **EBME22E15**

DESIGN

Periyar E.V.R

DUCA

Name:

Unit I Introduction to Design Thinking

Introduction to elements and principles of Design, basics of design-dot, line, shape, form as fundamental design components. Principles of design. Introduction to design thinking, history of Design Thinking, New materials in Industry.

An ISO 21001 : 2018 Certified Institution)

THINKING

. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Unit II Design Thinking Process

Subject

Subject Code:

Design thinking process (empathize, analyze, idea & prototype), implementing the process in driving inventions, design thinking in social innovations. Tools of design thinking -person, costumer, journey map, brain storming, product development Activity: Every student presents their idea in three minutes, Every student can present design process in the form of flow diagram or flow chart etc. Every student should explain about product development.

Unit III Innovation

Art of innovation, Difference between innovation and creativity, role of creativity and innovation in organizations. Creativity to Innovation. Teams for innovation, Measuring the impact and value of creativity. Activity: Debate on innovation and creativity, Flow and planning from idea to innovation, Debate on value-based innovation.

Unit IV Product Design

Problem formation, introduction to product design, Product strategies, Product value, Product planning, product specifications. Innovation towards product design Case studies. Activity: Importance of modeling, how to set specifications, Explaining their own product design.

Unit V Design Thinking in Business Processes

Design Thinking applied in Business & Strategic Innovation, Design Thinking principles that redefine business -Business challenges: Growth, Predictability, Change, Maintaining Relevance, Extreme competition, Standardization. Design thinking to meet corporate needs. Design thinking for Startups. Defining and testing Business Models and Business Cases. Developing & testing prototypes. Activity: How to market our own product, About maintenance, Reliability and plan for startup. Total No. of Periods: 45

Text Books

1. Change by design, Tim Brown, Harper Bollins (2009)

2. Design Thinking for Strategic Innovation, Idris Mootee, 2013, John Wiley & Sons.

Reference Books

- 1. Design Thinking in the Classroom by David Lee, Ulysses press
- 2. Design the Future, by Shrrutin N Shetty, Norton Press
- 3. Universal principles of design-William lidwell, kritinaholden, Jill butter.
- 4. The era of open innovation –chesbrough.H

L

3

9

9

9

Ty/Lb/

ETL/IE

AND

T/

SLr

0/0

P/R

0/0

С

3

Q

PROGRAM ELECTIVE MANUFACTURING ENGINEERING

4 či 1	EDUCATIONAL AND RESEARCH INSTITUTE DEEMED TO BE UNIVERSITY University with Graded Autonomy Status	Contraction of the second seco
	(Am ISO 24004 + 2018 Contified Institution)	

Subject Co	de:	Subje	ct Nam	e : IND	USTRIA	L'ROE	SOTICS	Tamilnad	Ty/Lb/E	L	Τ/	P/R	С
									TL		SLr		
FRME22	F16	Prere	quisite:	Industr	rial Auto	omation	1		Ту	3	0/0	0/0	3
L : Lecture	e T : Tut	orialSLr :	Supervi	sed Lea	rning P :	Project	R : Res	earch C	C: Credits				
T/L/ETL :	/L/ETL : Theory/Lab/Embedded Theory and Lab												
OBJECT	IVES: T	o give an	understa	inding to	the stu	dent wit	h respec	t to:					
• Ba	asic comp	ponents of	f an indu	strial ro	bot and	Sensors	used in	robots					
• Ro	obot prog	ramming	method	s and Ro	obot app	lications	5						
COURSE	OUTCO	OMES (C	Os):										
CO1	Unders	tand the b	asic con	cepts of	a robot	(Level 2	2)						
CO2	Identify	and appl	y the dif	fferent c	ompone	nts and	operatio	n with	respect to r	obot (Lev	vel 3)		
<u>CO3</u>	Recogn	ize the va	rious ty	pes of se	$\frac{1}{1}$	nd mach	ine visio	on conc	epts and its	applicat	10ns (Lev	⁷ el 3)	
C04 C05	Design	the robot	cell and	state its	el 4) s applica	tions (I	evel 4)						
Mapping	of Cours	se Outcor	nes with	Progra	am Outo	comes (]	Pos)						
Cos/Pos	PO1	PO2	PO	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12
001	2		3							2	2		2
<u>CO1</u>	3	3	2	2	3	3	2	2	3	3	3		$\frac{2}{2}$
CO2	3	3	3	3	3	3	2	2	3	3	3		2
CO3	3	3	2	2	3	3	2	2	3	3	3		2
CO4	3	3	3	3	3	3	2	2	3	3	3	_	2
	3 DS	3	3 D	<u> </u>	3 DS	$\frac{3}{103}$	2 D	2	3	3	3		2
PSOs	P3	01	C P	3)2	rs	05	P.	4					
CO1		3		3		2		3					
CO2		3		3		2		3					
CO3		3		3 2				3					
CO4		3		3		2		3					
CO5		3		3		2		3					
3/2/1 indica	ates Stre	ngth of C	Correlat	ion 3-1	High, 2-	Mediu	m, 1-Lo	W	r	T	1		
			_										
			cia		e.		~						
			l so		ctiv		lary	ent	ect				
~	nce		and	re	ele	ve	plir	uoc	roj				
ory	ciel	ing	ies	C	m	scti	sci	luic	ul /I				
teg	C S	eer	unit ce	am	gra	Ele	Di	Ŭ	tice				
Ca	asi	ien	ien i	ogr	Pro	Den	nter	kill	rac				
		Sc	Ht Sc	Pr		Ō	ГТ 	S	Ц			_	
					↓ V								
					1								
Subject Code:	Subject Name : INDUSTRIAL ROBOTICS	Ty/Lb/	L	Τ/	P/R	С							
------------------	-------------------------------------	--------	---	-----	-----	---							
		ETL		SLr									
EBME22E16	Prerequisite: Industrial Automation	Ту	3	0/0	0/0	3							

n ISO 21001 : 2018 Certified Institution Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

UNIT-I:INTRODUCTION

Definition of a Robot - Basic Concepts -- Robot components -- manipulator-configurations -- joints- degree of freedom. Types of Robot Drives - Basic Robot Motion types - Point to Point Control - Continuous Path Control.

UNIT- II: COMPONENTS AND OPERATIONS

EDUCAT

Basic Control System Concepts - open loop and closed loop control-Control System Analysis - Robot Actuation and Feed Back, Manipulators - Direct and Inverse Kinematics, Co-ordinate Transformation - Brief Robot Dynamics, Types of Robot and Effectors – Grippers – Tools as End Effectors – Robot / End Effort Interface.

UNIT-III:SENSING AND MACHINE VISION

Range Sensing - Proximity Sensing - Touch sensing - Force and Torque Sensing. Introduction to Machine Vision – functions and applications.

UNIT- IV:ROBOT PROGRAMMING

Methods - Languages -programming for pick and place applications-palletizing. Capabilities and Limitation -Artificial Intelligence – Knowledge Representation – Search Techniques – AI and Robotics.

UNIT- V:ROBOT CELL DESIGN AND APPLICATIONS

Robot cell design-types and control.

Applications of Robots -process applications in welding and painting - Assembly applications- Material Handling applications.

Total No. of Periods : 45

TEXT BOOK

1) K. S. Fu, R. C. Gonalez, C.S.G. Lee, "Robotics Control Sensing Vision and Intelligence", McGraw Hill International Edition, 10987.

REFERENCES

- 1) Mikell P. Groover, Mitchell Weiss, (2008) "Industrial Robotics, Technology, Programming and Application", Tata McGraw Hill International Editions, 10986.
- 2) Richard D. Klafter, Thomas A. Chonieleswski and Michael Negin, (1989) "Robotic Engineering An Integrated Approach", Prentice Hall Inc., Englewoods Cliffs, NJ, USA, 109809.

9

9

Q

9

Subject Code:	Sub	ject Na	me: NO	N-CON FECHN	VENTIO IQUES	ONAL	MACH	INING	Ty/Lb/ ETL	L	T/ SLr	P/R	С
EBME22E17	Prer	equisite	: Manufa	cturing	Techno	logy I &	: II		Ту	3	0/0	0/0	3
L : Lecture T : ' T/L/ETL : Theo	Tutorial pry/Lab	SLr: Embedd	Supervis	ed Leari y and La	ning P: Ib	Project	R : Rese	earch C:	Credits	1 1			
OBJECTIVES	S: The s	student w	vill learn										
• To	underst	and basi	cs of Non	convent	ional ma	achining	techniq	ues					
• 10 • To	know fl	ne applic	ations of u	non con	ventiona	lionai m 1 machir	aching hing tech	niques i	n various i	fields			
COURSE OU	ГСОМ	ES (COs	<u>s):</u>										
CO1	Explain	the prin	ciple, adv	antage a	nd limita	ations of	differen	t Non c	onvention	al machi	ning proce	esses. (Level
	2)			e							U I		
CO2	Compar	e the dif	ferent nor	conven	tional pr	ocesses	for their	capabil	ity (Level	4)			
CO3	Underst	and the o	different p	process p	aramete	rs and it	s effect o	on mater	rial remova	al (Leve	12)		
CO4	ncorpo	rate the h	iybrid pro	cesses to	o take ad	lvantage	$\frac{1}{1}$ s of diffe	erent pro	bcesses (L	$\frac{1}{2}$			
05	dentify	ntify and use a suitable machining process based on their requirement (Level 3)											
Mapping of Co	ourse O	rse Outcomes with Program Outcomes (POs)											
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	012
CO1	3	3	2	2	3	2	3	2	3	2	3		2
CO2	3	3	2	2	3	2	3	2	3	2	3		2
CO3	3	3	2	2	3	2	3	2	3	2	3		2
CO4	3	3	2	2	3	2	3	2	3	2	3		2
CO5	3	3	2	2	3	2	3	2	3	2	3		2
Cos / PSOs	PS	01	PSC)2	PS	03	PS	04					
CO1	-	3	3		2	2	Í	3					
CO2		3	3		2	2		3					
CO3		3	3		2	2		3					
CO4	-	3	3			2		3					
CO5		3	3		2	2	í	3					
3/2/1 indicates S	Strengt	h of Cor	relation	3- Hig	h, 2- Me	edium, 1	-Low				1		
			al										
Cate gory	Basic Science	Engineering Science	Humanities and soci: Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				
					Ý								

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India. Subject Code: Subject Name : NON CONVENTIONAL L **T**/ P/R С Ty/Lb/ MACHINING TECHNIQUES ETL SLr

An ISO 21001 : 2018 Certified Institution)

UNIT- I: INTRODUCTION, ELECTRICAL DISCHARGE MACHINING

Prerequisite: Manufacturing Technology I & II

Need For Unconventional Processes - Classification - Electrical Discharge Machining Processes, Operating Principles - Dielectric - Electrode Material - Tool/Wear - Processes Parameters - Metal Removal Rate -Applications – Current Developments In EDM.

UNIT- II: ELECTRO CHEMICAL MACHINING

EDUCATI

Electro Chemical Machining Process - Principles - Equipments - Metal Removal Analysis - Tool Material -Insulation – Process Parameters – ECH, ECG Etc., – Applications.

UNIT- III: ELECTRON BEAM, LASER BEAM AND PLASMA ARC MACHINING

EBM process - principle - Gun construction - vacuum and non-vacuum technique - applications. LBM process, principles, pumping processes, Types of Emission- Beam control – Applications.

UNIT- IV: ULTRASONIC MACHINING

Ultrasonic Machining Processes - Working Principles - Transducers - Concentrators - Nodal Point Clamping -Feed Mechanism - Metal Removal Rate - Process Parameters - Applications.

UNIT- V: ABRASIVE, WATER JET AND HYBRID MACHINING

AJM Processes – Principle – Equipment – Metal Removal Rate – Process Parameters – Applications. WJM Process – Principle – Equipment – Applications. Introduction to hybrid machining-Electro Chemical Discharge Machining, Abrasive electrical discharge grinding-Principle, advantages, limitations and applications.

Total No. of Periods : 45

TITUTE

Ту

3

0/0

TEXT BOOKS

EBME22E17

- 1) P.K.Mishra (1997) "Non Conventional Machining". The Institution Of Engineers (India) text book Series
- 2) Vijay.K. Jain (2007) "Advanced Machining Processes" Allied Publishers Pvt. Ltd., New Delhi

REFERENCES

- 1) Benedict. G.F. (1987) "Nontraditional Manufacturing Processes" Marcel Dekker Inc., New York.
- 2) Pandey P.C. and Shan H.S. (2007) "Modern Machining Processes" Tata McGraw-Hill, New Delhi.
- 3) Mc Geough, (1998) "Advanced Methods of Machining" Chapman and Hall, London.
- 4) Paul De Garmo, J.T.Black, and Ronald.A.Kohser, (2001) "Material and Processes in Manufacturing", Prentice Hall of India Pvt. Ltd., New Delhi ,8th Edition.
- 5) P.C.Sharma, (1995) "TEXT BOOK of Production Engineering".

0/0

10

8

9

Subject Code:	S	ubject N	ame: PR	OCESS ESTIM	PLANN ATION	NING A	ND CO	ST	Ty/Lb/ ETL	L	T/ SLr	P/R	C
EBME22E18	Prer	eanisite	Manufa	cturing	Technol	logy I &	II		Ту	3	0/0	0/0	3
L : Lecture T : T T/L/ETL : Theo	Tutorial	S Lr : Embedd	Supervis	ed Learn y and La	ning P:	Project	R : Rese	earch C:	Credits	5	0/0	0/0	5
OBJECTIVES	: The s	tudent w	vill learn										
Process	planni	ng activi	ties										
Various Mathad	s eleme	nts of co	st of a pro	duct.	ina								
COURSE OUT	rcom	ES (COs	$\frac{1000}{3}$:	ess plain	iiiig								
CO1	Underst	lerstand the method of planning the various machining processes (Level 2)											
CO2	Analyze	and des	cribe the	step by s	step proc	edure fo	or manuf	facturing	(Level 4)	- /			
CO3	Apply c	omputer	s for adva	nced pro	bcess pla	nning (l	Level 3)		. ,				
CO4	Discuss	uss the various cost involved in manufacturing of component or product (Level 2)											
CO5	Evaluat	uate and identify the economic method of manufacturing (Level 6)											
Mapping of Co	ourse O	e Outcomes with Program Outcomes (POs)											
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	012
CO1	3	3	3	3	3	2	2	3	3	3	3		2
CO2	3	3	3	3	3	2	2	3	3	3	3		2
CO3	3	3	3	3	3	2	2	3	3	3	3		2
CO4	3	3	3	3	3	2	2	3	3	3	3		2
CO5	3	3	3	3	3	2	2	3	3	3	3		2
Cos / PSOs	PS	01	PSC	02	PS	03	PS	504					
CO1		3	3			3		3					
CO2		3	3			3		3					
CO3		3	3			3		3					
CO4		3	3			3		3					
CO5		3	3			3		3					
3/2/1 indicates S	strengt	h of Cor	relation	3- Hig	h, 2- Me	edium, 1	l-Low			•			
legory	cience	ing	ies and social	Core	am elective	ective	isciplinary	omponent	u /rroject				
Cai	Basic S	Engineer Science	Humanit Science	Program		Open Ele	Inter D	Skill C	Fractic				

Subject Code: Subject Name : PROCESS PLANNING AND COST Ty/Lb/ L **T**/ P/R С **ESTIMATION** ETL SLr **EBME22E18** Prerequisite: Manufacturing Technology I & II Тy 0/0 0/0 3 3

UNIT- I: PROCESS PLANNING

Definition - OBJECTIVES - Scope - approaches to process planning- Process planning activities - Finished part requirements- operating sequences- machine selection –material selection parameters- Set of documents for process planning- Developing manufacturing logic and knowledge- production time calculation - selection of cost optimal processes.

UNIT- II: COMPUTER AIDED PROCESS PLANNING

EDUCAT

Variant process planning - Generative approach -Forward and Backward planning, Input format, Logical Design of a Process Planning - Implementation considerations. Application of computer software's in process planning.

UNIT-III: ELEMENTS OF COST

Introduction - Importance and aims of Cost estimation - Estimation procedure. Material Cost - Determination of Material Cost Labour Cost - Determination of Direct Labour Cost - Expenses - Cost of Product (Ladder of cost) -Illustrative examples. Analysis of overhead expenses - Factory expenses - Depreciation - Causes of depreciation - Methods of depreciation - Administrative expenses - Selling and Distributing expenses - Allocation of overhead expenses.

UNIT- IV: PRODUCT COST ESTIMATION

Estimation in forging shop - Losses in forging - Forging cost - Illustrative examples. Estimation in welding shop - Gas cutting - Electric welding - illustrative examples. Estimation in foundry shop - Estimation of pattern cost and casting cost - Illustrative examples.

UNIT- V: ESTIMATION OF MACHINING TIME AND COST

Estimation of machining time and cost for Lathe operations - Estimation of machining time and cost for drilling, boring, shaping, planning, milling and grinding operations - Illustrative examples. Value engineering - cost reduction

Total No. of Periods : 45

TEXT BOOKS

- 1) M.Adithan and B.S. Pabla, (1989) "Estimating and Costing", Konark Publishers Pvt. Ltd.
- 2) V.Jayakumar (2012) "Process Planning and Cost Estimation", Lakshmi Publication.

REFERENCES

- 1) Nanua Singh, (1996) "System approach to Computer Integrated Design and Manufacturing", John Wiley & Sons, Inc.
- 2) Joseph G. Monks, (1982) "Operations Management, Theory & Problems", McGraw Hill Book Company.
- 3) T.R. Banga and S.C. Sharma, (2011) "Estimating and Costing", Khanna Publishers, 16thEdition
- 4) Sadhu singh, (2002) "Computer aided Design and manufacturing", Khanna publisher, new delhi, second edition.

9

Q

9

Subject Code:	S	ubject N	ame: AD	DITIVI	E MAN	UFACT	URING		Ty/Lb/	L	T /	P/R	С		
EBME22E19									ETL		SLr				
	Prer	equisite	: Manufa	cturing	Techno	logy I 8	k II		Ту	3	0/0	0/0	3		
L : Lecture T :	Tutoria	l S Lr	: Supervis	ed Lear	ning P:	Project	R : Rese	earch C:	Credits	1					
T/L/ETL : The	ory/Lab	/Embedd	led Theor	y and La	ıb										
OBJECTIVE	S: The s	student v	vill learn		. 6 . 1.1		6		D			• • •			
• 10 und	ages and	the fund	amental c	concepts	of Add	itive Ma	inufactur	ing (i.e.	Rapid Pro	ototyping)	and 3-D	printi	ng, its		
• To cla	ages and ssify va	rious tv	nes of Ad	lditive N	Aanufact	uring P	rocesses	and kn	ow their	working r	rincinle	advar	ntages		
limitat	ions etc	inous ty			fundiaco	uning 1	10005505	und Ki	low then	working p	interpre,	uuvui	nuges,		
To hay	ve a hol	istic viev	v of vario	us appli	cations	of these	technol	ogies in	relevant f	fields such	as mech	nanical	l, Bio-		
medica	al, Aero	space, el	ectronics of	etc				U					,		
COURSE OU	тсом	ES (CO	s):												
CO1	Describ	e variou	s CAD iss	ues for 3	3D printi	ototypin	g and relat	ed operati	ons for S	STL m	odel				
	manipu	lation													
CO2	Formula	mulate and solve typical problems on reverse engineering for								onstruction	n from pl	nysical	l		
	prototy	pe mode	ls through	digitizi	ng and sj	ace fittir	ıg.								
CO3	Formula	ate and s	olve typic	al proble	ems on r	everse e	engineeri	ng for s	urface rec	onstruction	n from di	gitized	1		
<u> </u>	mesh m	nodels through topological modelling and subdivision surface fitting.											an d		
04	explain	n and summarize the principles and key characteristics of additive manufacturing technologies and only used 3D printing and additive manufacturing systems													
C05	Describ	only used 3D printing and additive manufacturing systems.													
005	parts.	e and su		ypical it	ipia 1001	ing pro	000000	quick	baten proc		plastic ai	iu mei	ai		
Mapping of C	ourse C	outcome	s with Pro	ogram (Jutcome	s (POs)								
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	P	012		
CO1	2	3	2	3	2	2	-	-	2	2	-	2			
CO2	2	2	2	3	3	2	-	-	2	2	-	2			
CO3	2	2	-	3	2	2	-	-	2	2	-	2			
CO4	2	2	3	3	2	2	-	-	2	2	-	2			
C05	2	2	3	3	2	2			2	2	-	2			
Cos / PSOs	- PS	<u>-</u> SO1	e PS($\frac{2}{2}$	- PS	-	P	504	-	-		-			
CO1	2		3		3	05	-								
CO2	2		3		3		3								
CO3	1		2		2		3								
CO4	3		3		3		2								
CO5	3		3		3		2								
3/2/1 indicates	Strengt	h of Cor	relation	3- High	n, 2- Me	dium, 1	-Low				1				
								It	t						
	Se		pr o			1)		ner	ojec						
	ienc	G	ence		В	tive	lary	mpc	/Pr						
. 20 50	c Sc	eri	nitie Scie	н	gra ive	Elec	plir	Col	ical						
or te	asic	gine Scie	mai ial	igra re	Pro lect	en l	nter isci	kill	ract						
	В	е Еп	Hu soc	Prc Co:	°.	Op	DF	Š	Ч						
					~										

Subject Code:	Subject Name: ADDITIVE MANUFACTURING	Ty/Lb/ ETL	L	T/ SLr	P/R	С
	Prerequisite: Manufacturing Technology I & II	Ту	3	0/0	0/0	3

UNIT – I Introduction:

Prototyping fundamentals, Historical development, Fundamentals of Rapid Prototyping, Advantages and Limitations of Rapid Prototyping, Commonly used Terms, Classification of RP process, Rapid Prototyping Process Chain: Fundamental Automated Processes.

UNIT – II Liquid-based Rapid Prototyping Systems:

Stereo lithography Apparatus (SLA): Models and specifications, Process, working principle, photopolymers, photo polymerization, Layering technology, laser and laser scanning, Applications, Advantages and Disadvantages, Case studies. Solid ground curing (SGC): Models and specifications, Process, working principle, Applications, Advantages and Disadvantages, Case studies Solid-based Rapid Prototyping Systems: Laminated Object Manufacturing (LOM): Models and specifications, Process, working principle, Applications, Advantages, Case studies. Fused Deposition Modeling (FDM): Models and specifications, Process, working principle, Applications, Advantages and Disadvantages, Case studies.

UNIT – III Powder Based Rapid Prototyping Systems:

Selective laser sintering (SLS): Models and specifications, Process, working principle, Applications, Advantages and Disadvantages, Case studies. Three dimensional Printing (3DP): Models and specifications, Process, working principle, Applications, Advantages and Disadvantages, Case studies. Rapid Tooling: Introduction to Rapid Tooling (RT), Conventional Tooling Vs RT, Need for RT. Rapid Tooling Classification; Indirect Rapid Tooling Methods: Spray Metal Deposition, RTV Epoxy Tools, Ceramic tools, Investment Casting, Spin Casting, Die casting, Sand Casting, 3D Keltool process. Direct Rapid Tooling : Direct AIM, LOM Tools, DTM Rapid Tool Process, EOS Direct Tool Process and Direct Metal Tooling using 3DP

UNIT – IV Rapid Prototyping Data Formats:

STL Format, STL File Problems, Consequence of Building Valid and Invalid Tessellated Models, STL file Repairs: Generic Solution, Other Translators, Newly Proposed Formats. Rapid Prototyping Software's: Features of various RP software's like Magics, Mimics, Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor.

UNIT – V RP Applications:

Application – Material Relationship, Application in Design, Application in Engineering, Analysis and Planning, Aerospace Industry, Automotive Industry, Jewelry Industry, Coin Industry, GIS application, Arts and Architecture. RP Medical and Bioengineering Applications: Planning and simulation of complex surgery, Customized Implants & Prosthesis, Design and Production of Medical Devices, Forensic Science and Anthropology, Visualization of Biomolecules.

Total No. of Periods : 45

Text Books

1.Rapid prototyping; Principles and Applications /Chua C.K., Leong K.F. and LIM C.S/World Scientific Publications 2. Rapid Manufacturing /D.T. Pham and S.S. Dimov/Springer

Reference Books

1. Terry Wohlers, Wholers Report 2000, Wohlers Associates

2. Rapid Prototyping and Manufacturing /PaulF.Jacobs/ASME

B.Tech Mechanical Engineering - 2022 Regulation

9

9

9

9

Subject Code:		Subject	Name: F	LEXIBI SYST	LE MAI TEMS	NUFAC	TURIN	G	Ty/Lb/	L	T/	P/R	С
		•••							ETL		SLr		
EBME22E20	Prer Indu	equisite istrial A	: Manufa utomation	cturing n; CAD/	Techno /CAM	logy I ð	έП;		Ту	3	0/0	0/0	3
L : Lecture T :	Tutoria	l S Lr	: Supervis	ed Lear	ning P:	Project	R : Rese	earch C:	Credits	L	L. L		
T/L/ETL : The	ory/Lab	/Embedo	ded Theor	y and La	ıb								
OBJECTIVES	S: The	student v	vill learn										
•	To uno	derstand	the Mode	rn manu	facturing	g system	1S	C (. ,				
• COURSE OU!	$\frac{10 \text{ un}}{\text{TCOM}}$	Serstand	the conce	pts and a	application	ons of fi	lexible m	ianutact	uring syste	ems			
		derstand	the conce	ents of f	levible n	nanufaci	turing sy	stems (I	FMS) (Lev	rel 2)			
CO2	Ar	only the	use of con	puters i	n FMS (Level 3)	stems (1		(12)			
CO3	Ar	ply the s	simulation	and dat	a base n	nanagem	, ent in F	MS (Le	evel 3)				
CO4	Jus	stify the	implemen	tation of	f FMS (I	Level 4)			,				
CO5	Ur	nderstand	the futur	e factory	with th	e applic	ation of	FMS co	ncepts (Le	vel 2)			
Mapping of C	ourse C	utcomes with Program Outcomes (POs)											
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	3	2	2	3	3	2	2	3	3	3		2
CO2	3	3	2	2	3	3	2	2	3	3	3		2
CO3	3	3	3	3	3	3	2	2	3	3	3		2
CO4	3	3	3	3	3	3	2	2	3	3	3		2
CO5	3	3	2	2	3	3	2	2	3	3	3		2
Cos / PSOs	PS	601	PSC)2	PS	603	PS	504					
CO1		3	3			2		3					
CO2		3	3		ź	2		3					
CO3		3	3			2		3					
CO4		3	3			2		3					
CO5		3	3			2		3					
/2/1 indicates St	trength	of Corr	elation	3- High	, 2- Med	lium, 1-	Low				·		
Category	Basic Science	ngineering Science	umanities and social Science	ogram Core	Program elective	pen Elective	inter Disciplinary	Skill Component	Practical /Project				
		Щ	<u> </u>		~	0							

EDUCATIONAL AND RESEARCH INSTITUTE DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India. Code: Subject Name : FLEXIBLE MANUFACTURING Ty/Lb/ L T/ P.

Subject Code:	Subject Name : FLEXIBLE MANUFACTURING SYSTEMS	Ty/Lb/ ETL	L	T/ SLr	P/R	С
EBME22E20	Prerequisite: Manufacturing Technology I & II; Industrial Automation; CAD/CAM	Ту	3	0/0	0/0	3

UNIT- I PLANNING, SCHEDULING AND CONTROL OF FLEXIBLE MANUFACTURING SYSTEMS 9

Introduction to FMS - development of manufacturing systems - benefits - major elements of FMS - types of flexibility - FMS application and flexibility –single product, single batch, n - batch scheduling problem - knowledge based scheduling system.

UNIT- II COMPUTER CONTROL AND SOFTWARE FOR FLEXIBLE MANUFACTURING SYSTEMS 9

Introduction - composition of FMS - hierarchy of computer control - computer control of work center and assembly lines - FMS supervisory computer control - types of software specification and selection - trends.

UNIT- III FMS SIMULATION AND DATA BASE

Application of simulation - model of FMS - simulation software - limitation - manufacturing data systems - data flow - FMS database systems - planning for FMS database.

UNIT- IV GROUP TECHNOLOGY AND JUSTIFICATION OF FMS

Introduction - matrix formulation - mathematical programming formulation - graph formulation - knowledge based system for group technology - economic justification of FMS - application of possibility distributions in FMS systems justification.

UNIT- V APPLICATIONS OF FMS AND FACTORY OF THE FUTURE

FMS application in machining, sheet metal fabrication, prismatic component production - aerospace application - FMS development towards factories of the future - artificial intelligence and expert systems in FMS - design philosophy and characteristics for future.

Total No. of Periods: 45

TEXT BOOK:

1. Jha.N.K., "Handbook of flexible manufacturing systems", Academic Press Inc., 1991.

REFERENCES:

1. Groover M.P., "Automation, production systems and computer integrated manufacturing", Prentice Hall of India Pvt., New Delhi, 2007.

2. Kalpakjian S., "Manufacturing Engineering and Technology", Addison-Wesley Publishsing Co., 2013.

3. Radhakrishnan P. and Subramanyan S., "CAD/CAM/CIM", Wiley Eastern Ltd., New Age International Ltd., 1994.

4. Raouf A. and Daya B.M., "Flexible manufacturing systems: recent development", Elsevier Science, 1995.

5. Ohno T., "Toyota production system: beyond large-scale production", Productivity Press (India) Pvt. Ltd., 1992.

9

Q

EDUCATIONAL AND RESEARCH INSTITUTE DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution)

	-		Periyar E.V	.R. High R	oad, Madu	ravoyal, C	hennai-95	. Tamilnac	lu, India.	<u>г г</u>			
Subject Code:	, i	Subject 1	Name: P	OWDE	R META	ALLUR	GY		Ty/Lb/	L	Τ/	P/R	С
									ETL		SLr		
EBME22E21	Prer	equisite	: Materia	ls Scien	ce; Engi	neering	g Metallı	urgy	Ту	3	0/0	0/0	3
L : Lecture T :	Tutoria	l S Lr	: Supervis	ed Learr	ning P:	Project	R : Rese	earch C:	Credits	1			
T/L/ETL : The	ory/Lab	/Embedd	led Theor	y and La	lb								
OBJECTIVES	S: The s	student v	vill learn										
• To und	lerstand	basics of	f powder i	metallur	gy haises a								
 To exp To kno 	ose vari	ous pow	n of powd	er metal	lurgy in	various	fields						
COURSE OU	TCOM	ES (COs	s) : The st	udent w	vill be al	ole to							
CO1	Underst	and the	fundamer	tals of	powder 1	netallur	gy (Leve	el 2)					
CO2	Interpre	t the cha	racterizati	on para	meters of	f metal j	powders	(Level	3)				
CO3	Compar	ing the c	lifferent n	nanufact	uring me	ethods o	f compo	nents by	v powder n	netallurgy	y(Level 3)		
CO4	Analyzi	nalyzing the different sintering theories (Level 4)											
CO5	Differer	ntiating a	ind compa	ring diff	erent ap	plication	ns of po	wder me	tallurgy (I	Level 3)			
Mapping of C	ourse O	rse Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10											
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	2	2	2	1	3	1	2	2	2	2	1		2
CO2	3	2	2	1	3	3	3	2	2	2	-		2
CO3	3	2	2	1	3	3	3	2	2	2	-		2
CO4	3	2	2	1	3	3	3	2	2	2	-		2
CO5	3	2	2	1	3	3	3	2	2	2	3		2
Cos / PSOs	PS	501	PSO	02	PS	03	PS	504					
CO1		2	2		2	2		3					
CO2		3	2			3		3					
CO3		2	2		2	2		2					
CO4		3	2		3	3		2					
CO5		3	2		3	3		3					
3/2/1 indicates	Strengt	h of Cor	relation	3- High	1, 2- Mee	dium, 1	-Low	,		T			
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				

Page 193

Subject Code:	Subject Name :POWDER METALLURGY	Ty/Lb/	L	T /	P/R	С
		ETL		SLr		
EBME22E21	Prerequisite: Engineering Metallurgy	Ту	3	0/0	0/0	3

UNIT- I INTRODUCTION OF POWDER METALLURGY AND PRODUCTION OF METAL **POWDERS**

Historical and modern developments in Powder Metallurgy. Advantages, limitations, applications and basic steps involved in Powder Metallurgy. Manufacture of metal powders: Conventional methods and modern methods of metal powder manufacture. Purity of metal powders. Blending techniques.

UNIT- II POWDER CHARACTERIZATION

Powder characterization: problem of size determination. Method of size analysis and surface area assessment. Powder conditioning, fundamentals of powder compaction, density distribution

in green compacts, compressibility, green Strength, pyrophorocity and toxicity. Apparent density and flowability measurement.

UNIT- III POWDER COMPACTION

Powder compaction: Mechanical, thermal and thermomechanical compacting processes. Presses used for transmission. Die design and tooling for consolidation of powders. New methods of consolidation. E.g. Powder rolling, Powder forging, Isostatic pressing. Advantages and limitations of these methods.

UNIT- IV SINTERING PROCESS

Theories of sintering: Sintering mechanism, Roll of diffusion, Recrystallization, Por emigration, Pore-growth and coalescence. Liquid phase sintering and related processes. Effect of compacting pressure, sintering temperature and time on sintered properties. Type of sintering furnaces. Sintering atmospheres.

UNIT- V APPLICATIONS OF POWDER METALLURGY

Manufacturing and application of important P/M components: Porous bearing, Electrical contact materials, Metallic filters, Cemented carbides, magnets, Friction materials and Composites.

Total No. of Periods: 45

Text Books:

1. A. K. Sinha, "Introduction to Powder Metallurgy", Dhanpatrai Publication 2. P. C. Angelo and R. Subramanian, "Powder Metallurgy: Science, Technology and Applications",

Reference Books

1. Powder Metallurgy-ASM Vol. II

- 2. Powder Metallurgy-Sands and Shakespeare
- 3. Powder Metallurgy-Dixtor R.H. and Clayton.

4. Cemented Tungsten carbide Production, properties and testing-Gopal S. Upadhayay

9

9

PROGRAM ELECTIVE INDUSTRIAL ENGINEERING

EDUCATIONAL AND RESEARCH INSTITUTE	SUNTED WITH OR NAAC
University with Graded Autonomy Status	
(An ISO 21001 : 2018 Certified Institution)	

			Periyar E.V	.K. High K	bau, Mauu	ravoyai, ci	iennai-95.	Taminad	iu, india.				
Subject Cod	e:	Sub	ject Nam	e: ENT	ERPRIS	SE RES	OURCH	£	Ty/Lb /ETI	L	T/	P/	С
EDNIE22E2.	2	Dro rogu	icito: Mor	PLA.	ININING	hnolog	., T &. TT.		/EIL		SLr	ĸ	
		Applicati	ion of Co	mputer	Science	Engine	ering		Ту	3	0/0	0/0	3
L : Lecture T T/L/ETL : Th	': Tutor neory/L	ial S Li ab/Embed	r : Supervi dded Theo	ised Lear ory and I	rning P Lab	: Practic	al R : R	Research	C: Credits	5			
OBJECTIV	ES: Th	e student	will learn	:									
• Buildi	ng of bı	isiness m	odel for re	esource p	olanning	; Impact	of IT in	I ERP					
COURSE O	UTCO	MES (CO	Os) : The	student	will be	able to							
CO1		Understa	and the co	ncepts o	f ERP (I	Level 2)							
CO2		Build the	e business	Model a	and imp	ement E	ERP (Lev	vel 4)					
CO3		Understa	and the pri	inciples	of organ	izationa	l transfo	rmation	(Level 2)				
<u>CO4</u>		Examine	e the globa	al Indust	rial Con	petition	and use	Inform	ation Tech	nology (L	Level 4)		
CO5 Manning of	Carrie	Describe	e the conce	epts of S	Outpoir C	nain Ma	nageme	nt (Leve	el 2)				
						DO6	S) DO7	DUS	PO0	PO10	PO11	DO1	2
	101	102	103	104	105	2	10/	100	103	1010	1011)
	3	2	2	2	3	2	2	3	3	3	3		<u>-</u>
$\frac{CO2}{CO2}$	3	3	3	3	3	2	2	3	3	3	3	4	<u></u>
<u>CO3</u>	3	2	2	2	3	2	2	3	3	3	3	4	2
<u>CO4</u>	3	3	3	3	3	2	2	3	3	3	3	4	2
	3 D(2		2	3 DC	2		3	3	3	3	4	2
Cos / PSOs	P	501	PSC)2	PS	03	PS	<u>504</u>					
		3	3			3		3					
<u>CO2</u>		3	3			3		3					
CO3		3	3			3		3					
CO4		3	3			3		3					
CO5		3	3			3		3					
3/2/1 indicates	s Streng	gth of Co	rrelation	3- Hig	gh, 2- M	edium,	1-Low			1	1	T	
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India. **Subject Code:** Subject Name : ENTERPRISE RESOURCE P/R Ty/Lb L **T**/ С **PLANNING** /ETL SLr **EBME22E22 Prerequisite: Nil** Ty 3 0/0 0/0 3

UNIT- I: INTRODUCTION TO ERP

Integrated Management Information, Seamless Integration - Supply Chain Management- Integrated Data Model-Benefits Of ERP - Business Engineering And ERP- Definition Of Business Engineering - Principle of business engineering - Business engineering with information technology.

UNIT- II: BUSINESS MODELING FOR ERP

Building The Business model - ERP implementation – An Overview – Role Of Consultant, Vendors and Users, Customization – Precautions - ERP Post implementation options ERP Implementation Technology – Guidelines for ERP Implementation.

UNIT-III: INTRODUCTION TO ORGANIZATIONAL TRANSFORMATION

Fundamental elements of organizational transformation - Principles-Methodology -Models (LMI CIP, DSMCQ & PMP) - Process improvements in models (Moen & Nolan strategy, NPRDC, LMI CIP) - Tools and Techniques.

UNIT- IV: GLOBAL INDUSTRIAL COMPETITION AND INFORMATION TECHNOLOGY 9

Coping with competition – the impact and value of IT Systems – impact and value of IT – Value chain of a firm and strategic use of IT – development trends of IT. Introduction to SAP and its applications in ERP.

UNIT- V: SUPPLY CHAIN MANAGEMENT

The concept of supply chain, logistics, customer and supply chain relation, role of IT in supply chain management – strategy and structure of supply chain – factors of supply chain – stages in supply chain progress.

Total No. of Periods: 45

TEXT BOOKS

1) Leon, (2014) "Enterprise Resource Planning", McGraw Hill, New Delhi

- 2) P. N. Rastogi, "Re-Engineering And Re-inventing the Enterprise", Wheeler Publishing
- 3) Dr. J. A. Edosomwan, (1995) "Organizational transformation and Process Re-Engineering" 1 edition.

REFERENCES

1. Jose Antonio Fernandz, (2005) "The SAP R/3 Handbook", TMH, 3 edition 2. Vinod Kumar Garg and N.K. Venkita Krishnan, (2004) "Enterprise Resource Planning Concepts and Practice", PHI. Publishing Co.

9

9

9

Subject Code:	Subj SIM	ect I ULATI	Name: ON	SYST	EM]	MODE	LING	AND	Ty/Lb/ ETL	L	T/ SLr	P/R	C
EBME22E23	Pre r	equisite	:						Ту	3	0/0	0/0	3
L : Lecture T : T/L/ETL : Theo	Tutorial	S Lr Embedo	: Supervis led Theory	ed Learr y and La	ning P: ıb	Project	R : Rese	earch C:	Credits	<u> </u>	1		
OBJECTIVES	S: The s	tudent v	vill learn:										
The basic system	n conce	pt and d	efinitions	of system	m; iono arrat								
Analyze a system	m and to	model a	ise of the i	informat	tion to in	nprove (the perfo	rmance.					
OURSE OUT(COME		• The stu	dents w	ill he ah	le to							
CO1	Explain	the syst	em concer	ot and ar	m be ab	rtional r	nodeling	method	l to model	the activ	ities of a s	static s	vstem
CO2	Describ	e the bel	navior of a	dvnami	ic system	$\frac{1}{1}$ and cr	eate an a	nalogou	is model fo	or a dvna	mic system	n:	ystem
CO3	Simulat	e the ope	eration of	a dynam	nic system	n and n	nake imp	roveme	nt accordi	ng to the	simulation	ı resul	ts.
CO4	Identify	the dist	ribution of	f data fro	om the c	ollected	data			U			
CO5	Create	a model	building	and vali	date the	perform	nance of	the mod	lel				
Mapping of Co	ourse O	e Outcomes with Program Outcomes (POs)											
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	2	2	1	1	1	1	1		2	2	2	2	
CO2	2	2	1	1	1	1	1		2	2	2	2	
CO3	2	2	2	1	2	1	1		2	2	2	2	
CO4	2	2	1	1	1	1	1		2	2	2	2	
CO5	2	2	1	1	1	1	1		2	2	2	2	
Cos / PSOs	PS	01	PSC	02	PS	03	PS	504					
CO1					2		2						
CO2					2		2						
CO3					2		2						
CO4					2		2						
CO5					2		2						
3/2/1 indicates S	Strengt	h of Cor	relation	3- High	n, 2- Me	dium, 1	-Low						
			П										
Catego ry	Basic Science	Engineering Science	Humanities and socia Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				
					V								

B.Tech Mechanical Engineering - 2022 Regulation

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code:	Subject N SIMULATIC	Name: ON	SYSTEM	MODELING	AND	Ty/Lb/ ETL	L	T/ SLr	P/R	С
EBME22E23	Pre requisite:	:				Ту	3	0/0	0/0	3

UNIT I Introduction

When simulation is the appropriate tool and when it is not appropriate, Advantages and disadvantages of Simulation; Areas of application, Systems and system environment; Components of a system; Discrete and continuous systems, Model of a system; Types of Models, Discrete-Event System Simulation Simulation examples: Simulation of queuing systems. General Principles.

UNIT II Statistical Models in Simulation

Statistical Models in Simulation:

Review of terminology and concepts, Useful statistical models, Discrete distributions. Continuous distributions, Poisson process, Empirical distributions. General Principles.

Queuing Models:

Characteristics of queuing systems, Queuing notation, Long-run measures of performance of queuing systems, Long-run measures of performance of queuing systems cont...,Steady-state behavior of M/G/1 queue, Networks of queues,

UNIT III Random-Number Generation

Random-Number Generation:

Properties of random numbers; Generation of pseudo-random numbers, Techniques for generating random numbers, Tests

for Random Numbers,

Random Variate Generation:

Inverse transform technique Acceptance-Rejection technique.

EDUCAT

UNIT IV Input Modeling

Input Modeling:

Data Collection; Identifying the distribution with data, Parameter estimation, Goodness of Fit Tests, Fitting a non-stationary Poisson process, Selecting input models without data, Multivariate and Time-Series input models.

Estimation of Absolute Performance:

Types of simulations with respect to output analysis, Stochastic nature of output data, Measures of performance and their estimation, Contd.

UNIT V Measures of performance and their estimation

Measures of performance and their estimation,Output analysis for terminating simulations Continued..,Output analysis for steady-state simulations. Verification, Calibration And Validation: Optimization: Model building, verification and validation, Verification of simulation models, Verification of simulation and validation of models, Optimization via Simulation.

Textbooks:

1. Jerry Banks, John S. Carson II, Barry L. Nelson, David M. Nicol: Discrete-Event System Simulation, 5th Edition, Pearson Education, 2010.

Reference Books:

1. Lawrence M. Leemis, Stephen K. Park: Discrete – Event Simulation: A First Course, Pearson Education, 2006.

2. Averill M. Law: Simulation Modeling and Analysis, 4 th Edition, Tata McGraw-Hill, 2007

B.Tech Mechanical Engineering - 2022 Regulation

9

9

.

9

Subject Code:	Su	bject Na	ame: TO	TAL QU	JALITY	MANA	AGEME	ENT	Ty/Lb/	L	Τ/	P/R	С
EBME22E24									ETL		SLr		
	Pre	requisite	e: Manufa	cturing	Techno	ology I &	& II		Ту	3	0/0	0/0	3
L : Lecture T :	Tutoria	l S Lr	: Supervis	ed Learr	ning P:	Project	R : Rese	earch C:	Credits				
T/L/ETL : The	ory/Lab	/Embedo	led Theor	y and La	ıb								
OBJECTIVE	S: The	student v	vill learn										
Various Princi	ples and	Tools of	f TQM; IS	O Stand	ards								
OURSE OUT	COME	S (COs)	•										
CO1	Unders	tand the	various qu	ality too	ols and te	echnique	es (Level	12)					
CO2	Demon	strate the	customer	· satisfac	tion tech	nniques	(Level 3)					
CO3	Expose	d to qual	ity auditin	ig systen	ns and p	orocedui	es (Leve	el 2)					
CO4	Implem	ent TQM	I and TP	M (Leve	14)								
CO5	Implem	ent Kaiz	en and co	nduct FN	MEA. (L	evel 3)							
Mapping of C	ourse C	Outcome	s with Pro	ogram (Outcome	es (POs)							
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	012
CO1	3	1	2	2	2	2	2	3	3	3	2		2
CO2	3	1	2	2	2	2	2	3	3	3	3		3
CO3	3	1	2	2	2	2	3	3	3	3	2		3
CO4	3	1	2	2	2	2	3	3	3	3	3	1	2
CO5	3	2	2	2	2	2	3	3	3	3	3		3
Cos / PSOs	PS	501	PSO	02	PS	03	PS	SO4					
CO1		3	3		4	2		3					
CO2		3	3		4	2		3					
CO3		3	3		2	2		3					
CO4		3	3		2	2		3					
CO5		3	3		4	2		3					
3/2/1 indicates	Strengt	h of Cor	relation	3- High	, 2- Me	dium, 1	-Low	1 1					
			ee										
			ien										
			l Sc										
		nce	ocia		/e		>						
		cieı	d sc		ctiv		nary	lent	ject				
	ence	S ad	an	ore	ı ele	ive	ilqi	Iodi	Pro				
ry	Scie	erin	ities	υC	ram	lect	Disc	Join	cal /				
ego	sic	inee	nani	gran	rog	пE	er I	U U	actic				
Cat	Ba	gung	Iun	Prog	Ч	Ope	Int	Sk	Pre				
					✓	Ĭ				1		1	

Subject Code:	Subject Name : TOTAL QUALITY MANAGEMENT	Ty/L	L	Τ/	P/R	С
		b/ET		SLr		
EBME22E24		L				
	Prerequisite: Manufacturing Technology I & II	Ту	3	0/0	0/0	3

UNIT-I: INTRODUCTION

Definition of Quality, Dimensions, Planning of quality, conformance to specification, Quality costs-. Basic concepts and evolution of Total Quality Management, Principles of TQM, Deming Philosophy Deming prize MBNQA. Barriers to TQM Implementation.

UNIT- II: TQM PRINCIPLES

Customer satisfaction-Customer Perception of Quality, Customer Complaints. Service Quality, Customer Retention. Employee Involvement- Motivation, Empowerment, Teams. Recognition and Reward, Performance Appraisal, Benefits, Continuous Process Improvement-Juran Triology, PDSA Cycle,58,Kaizen.Supplier Partnership- Partnering, sourcing, Supplier Selection, Supplier Rating, Relationship Development, Performance Measures-Basic Concepts. Strategy, Performance Measure.

UNIT- III: STATISTICAL QUALITY CONTROL

The Seven Tools Of Quality, Statistical Fundamentals, Control Charts For Variables And Attributes, Process Capability, Concept Of Six Sigma, Phases And Defective UNIT-s Of Six Sigma .Overview Of GB,BB,MBB Leadership Characteristics ,Leadership Concept , Role Of Senior Management, Lean Management Principle, Strategic Planning New Seven Management Tools.

UNIT- IV: TQM TOOLS

Benchmarking-Reasons to Benchmark, Benchmarking Process. Quality Function Deployment (QFD), pareto, process flow diagram, check sheets and histogram Taguchi Quality Loss Function. Total Productive Maintenance (TPM)-Concept, Improvement Needs, FMEA-Stages of FMEA.

UNIT- V: QUALITY SYSTEMS

Need For ISO 09000 and Other Quality Systems, ISO 09000 – 2000 Quality System -Elements. Implementation Of Quality System, Documentation, Quality Auditing, Quality Council, Quality statements, Quality Management System TS 1609409, ISO 14000 Concept, Requirements And Benefits. Introduction To Capability Material Management (CMM), People Capability Management (PCM).

Total No. of Periods : 45

TEXT BOOK

1) Dale H Besterfied, "Total Quality Management", Prentice Hall Publishing House

REFERENCES

- 1) S.Ramachandran, Dn.S.Jose, "Total Quality Management", Airwalk Publications, First Edition, December.
- 2) Kulneet Suri, (2004 05) "Total Quality Management: Priciples & Practce, Tools & Techniques", S.K. Kateria & sons, First Edition,
- *3)* James R.Evans & William M.Lidsay, "The Management and Control of Quality", (^{5th} Edition), South Western(Thomson Learning),2002(ISBN 0-324-06680-5).
- 4) Feigenbaum.A.V. "Total Quality Management", Tata Mcgraw-Hill, 109091.
- 5) Oakland.J.S. "Total Quality Management", Butterworth-Heinemann Ltd., Oxford, 109809
- 6) R.S.Nagarajan, A.A.Arivalagar, "Total Quality Management", New Age International (p) Ltd., Publishers, First Edition.

B.Tech Mechanical Engineering - 2022 Regulation

9

9

9

Q

Subject	Code:	Subjec	t Name	: FAC	LITIES	S PLAN	NING	AND		Ty/Lb	L	Τ/	P/R	С
				DESI	GN					/ETL		SLr		
EBME2	2E25	Prere	quisite:	Manufac	cturing	Technol	logy-I&	: II						
										Ту	3	0/0	0/0	3
L : Lectu	ure T : T	utorial	SLr : S	upervised	l Learnir	ng P:P	roject R	: Resea	rch C: C	redits				
T/L/ETL	: Theor	ry/Lab./l	Embedd	ed Theory	and La	b.								
OBJEC	TIVES:	The stu	ident wi	ll learn To	o explain	n project	manag	ement fo	or entrep	reneurs				
COURSE	E OUTC	COMES	(COs) :	The stud	lent will	be able	e to							
CO1	Underst handling	and the n	eed for F	Facilities re	quireme	nt planniı	ng, selec	tion of op	otimum lo	ocation for t	he plant/j	olant layou	t/mate	rial
CO2	Illustrat	e plant la	yout & n	naterial ha	ndling sy	stem (Le	vel 3)							
CO3	Compar	e the pro	s and cor	ns of altern	ate locati	ons for t	he plant,	plant lay	outs & m	aterial hand	dling syst	ems (Leve	(4)	
CO4	Critical	y examin	ne/explor	e the optio	ns for pla	ant locati	on, layo	ut & mate	erial hand	ling system	(Level 5)		
CO5	Judge w	hich opti	ion is bet	ter compar	red to the	rest for:	Plant lo	cation, Pl	ant layou	t & materia	l handling	g system (I	Level 4	4)
Map	ping of	Course	Irse Outcomes (COs) with Program Outcomes (POs) & Program Specific Outcomes (PSO										PSOs)
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	012
CO1		2	2	2	2	3	2	2	2	1	2	2		1
CO2		1	2	2	1	3	1	1	-	-	3	1		1
CO3		3	1	3	2	2	1	1	1	1	3	1		1
CO4		3	3	2	1	2	1	1	-	1	2	1		1
CO5	DCO.	3	2		$\frac{2}{2}$	3	$\frac{1}{0^2}$			1	2	2		1
	r50s	г э	3		52	rs	1	r.	1					
C01			3	2			1		1					
CO2 CO3			3	2			1		1					
CO4			3	2			1		1					
CO5		3	ì	2			1		1					
			3/2/1 in	dicates S	trength	of Corr	elation	3- Hig	gh, 2- Mo	edium, 1-I	Low			
			ce	cial		e								
			cien	l soc		ctiv		lary	ent	ect				
	ory	nce	Š	anc	ore	ele	ve	plir	uod	Proj				
	liteg	Scie	guing	ties	CC	ram	lecti	lisci	om	al //				
Č	C.	sic 5	inee	nani nce	gran	rogı	n El	er D	III C	Ictic				
		Ba	Eng	Hun Scie	Prog	Р	Dpe	Int	Ski	Pra				
						✓								

B.Tech Mechanical Engineering - 2022 Regulation

Subject Code:

EBME22E25

UNIT I:

UNIT II:

study - types of layout

REFERENCES

- 1. Tompkins, J.A. and J.A. White, (2003) "Facilities planning", John Wiley
- 2. Richard Francis.L. and John A.White, (2002) "Facilities Layout and location an analytical approach", PHI
- 3. James Apple.M,(1977) "Plant layout and Material Handling", John Wiley
- 4. Pannerselvam, R, (2007) "Production and Operations Management", PHI

Group technology – Production Flow analysis (PFA), ROC (Rank Order Clustering) – Line balancing, single, multi and mixed mode, parallel line and parallel station

Plant location analysis – factors, costs, location decisions – single facility location models, multi facility location models- set covering problem - warehouse location problems

INTRODUCTION

PLANT LOCATION

DESIGN

UNIT III: LAYOUT DESIGN

Design cycle – SLP procedure, nadler's ideal approach, flow and activity analysis, computerized layout planning procedure - ALDEP, CORELAP, CRAFT

Facilities planning, significance, objectives, requirement, process, product and schedule design, need for layout

UNIT IV: GROUP TECHNOLOGY AND LINE BALANCING

Subject Name : FACILITIES PLANNING AND

Prerequisite: Manufacturing Technology-I& II

10

UNIT V: MATERIAL HANDLING 10 Principles, unit load concept, material handling system design, handling equipment types, selection and specification, handling cost, containers and packaging

Total No. of Periods: 45

10

P/R

0/0

С

3

T/

SLr

0/0

5

10

Ty/Lb/

ETL

Ty

 \mathbf{L}

3

Page 202

Subject Code EBME22E26	: Su	bject Na	ame : QU	ALITY	ENGIN	IEERIN	IG	Ty/Lb	/ETL	L	T/ SLr	P/R	С
	Pr	erequisi	te: Nil					T	y	3	0/0	0/0	3
L : Lecture T : T	utorial	SLr : Sup	pervised Le	earning I	P : Projec	t R : Re	search C	: Credits					
T/L/ETL : Theo	ry/Lab./	Embeddeo	d Theory a	nd Lab.									
OBJECTIVE : systems; also fo	The stu cusedthe	dent will theory a	learn: Band applicat	usic conc ions of S	eptual ic CM Netv	lea of So works wit	upply Cl th simple	hain Mar e case stu	nagemen dy	t systems a	nd its inte	rnal str	uctural
				CO	URSE O	UTCOM	IES (CO) s):					
CO1	Re	call/Expl	ain basic Ç	uality co	oncepts, f	oundatio	n for this	s course (Level 2))			
CO2	I11	ustrate Co	ontrol Char	ts for Va	riables/A	ttributes	for real	life scena	rios (Le	vel 3)			
CO3	Ех	amine Pr	ocess Capa	bility (L	evel 4)								
CO2	Co	ompare Sa	mple Insp	ection sy	stems (Le	evel 4)							
CO3	Re	call/Expl	ain TQM c	concepts,	TQM too	ols (Leve	12)						
Mapping of Co	urse Ou	tcomes (COs) with	Program	n Outcor	mes (PO	s) & Pro	ogram Sp	ecific O	outcomes (PS	SOs)		
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	1	-	-	-	1	-	-	-	1	1	-		1
CO2	1	1	-	1	1	1	-	-	1	1	-		1
CO3	1	1	-	1	1	1	-	-	1	1	-		1
CO2	1	1	-	1	1	1	-	2	2	2	3		1
CO3	1	-	2	1	2	2	2	2	3	2	2		2
COs / PSOs	P	501	PSO	52	PS	03	P	SO4					
CO1		3	2			2		-					
CO2		3	2	,		2		1					
CO3		3	2			2		1					
CO2		3	2			2		1					
CO3		3	2	1 4		2		2					
	-	3/2/1 i	ndicates	Strengt	h of Cor	relation	n 3- H i	igh, 2- N	Iedium	1, 1-Low			
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	 Program elective 	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India. **Subject Code: T**/ P/R Subject Name : OUALITY ENGINEERING Tv/Lb/ L С ETL SLr **EBME22E26 Prerequisite: Nil** Τv 3 0/0 0/0

UNIT I: **QUALITY CONCEPTS**

EDUCAT

Quality, History of Quality, Quality Control, Quality Assurance, Quality Costs, Optimum Quality, Opportunity Loss, Taguchi's Quality loss function

CONTROL CHARTS FOR VARIABLES & PROCESS CAPABILITY UNIT II: 10

Statistical Process Control (SPC), Control Charts for Variables, Action & Warning Limits in Control Charts, Process Capability, Process Capability Indices, Process Capability Studies, Problems in Control Charts for Variables

UNIT III: **OTHER CONTROL CHARTS**

Control Charts for Attributes, Special Control Charts – Group Control Chart, Moving Averages/Moving Range Control Charts, Difference Control Charts, Mid-Range and Median Control Charts & Cumulative Sum Control Charts

UNIT IV: SAMPLING ISPECTION

Economics of Sampling, Sampling Methods, Sampling Plans, OC Curves, Quality Indices, Standard tables used in Sampling Inspection - Dodge-Romig & ABC Standard

UNIT V: TOTAL QUALITY MANAGEMENT (TQM)

Main Concepts of TOM, Quality Dimensions, TOM concepts in depth - KAIZEN, POKA YOKE, Six Sigma, 5S & Kano's Model, TQM Tools - Benchmarking, QFD & FMEA

Total No. of Periods: 45

REFERENCES:

- 1. Douglas C. Montgomery, (2007) "Introduction to Statistical Quality Control", John Wiley & Sons
- 2. Grant E.L. and Leavenworth R.S., (2000), "Statistical Quality Control", TMH
- 3. Dale H. Besterfield, (2002) "Total Quality Management", Pearson Education Asia

9

8

3

6

Subject Code:	Su	bject Na	ame: IND	USTRY	4.0				Ty/Lb/	L	T/ SI n	P/R	С
FRME??E?7	Pre	requisite	e: Manufa	cturing	Techno	ology I &	¢П			3	0/0	0/0	3
	Tutorial		. Cum a mula	a d T a a m	ing D.	Ducient	D . D	anah C	Credite	3	0/0	0/0	5
T/L/ETL : The	orv/Lab	Embedo	led Theor	v and La	ing P: b	Project	K : Kest		Creans				
OBIECTIVE	\mathbf{S} The s	tudent v	vill learn)									
Objective	b . The s	student v	viii learn										
OURSE OUT	COME	S (COs)	:										
CO1	Descri	be Indus	stry 4.0 an	d scope :	for India	an Indus	try						
CO2	Demor	nstrate c	onceptual	framewo	ork and i	road ma	p of Indu	ustry 4.0)				
CO3	Descri	be Robo	tic techno	logy and	l Augme	ented rea	lity for I	Industry	4.0				
CO4	Demor	nstrate o	bstacle an	d framev	work cor	nditions	for Indu	stry 4.0					
CO5	Unders	stand the	e role of au	gmente	d reality	in the a	ge of Inc	lustry 4	.0				
Mapping of C	Course O	outcome	s with Pro	ogram C)utcome	es (POs)							
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	012
CO1	1		1			2	2	2	2	2	2	2	
CO2	1		1			2	2	2	2	2	2	2	
CO3	2	2	2	2	2	2	2	2	2	2	2	2	
CO4	1	2	2	1	2	1	1	1		1	2	2	
CO5	1	1	1	1	1	1	1	1	1	1	1	1	
Cos / PSOs	PS	501	PSC	02	PS	03	PS	504					
CO1					2		1						
CO2					2		1						
CO3					2		1						
CO4					2		1						
CO5					2		1						
3/2/1 indicates	Strengt	h of Cor	relation	3- High	, 2- Me	dium, 1	-Low						
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	 ▲ Program elective 	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				

Subject Code:	Subject Name: INDUSTRY 4.0	Ty/Lb/	L	T /	P/R	С
		ETL		SLr		
EBME22E27	Pre requisite: Manufacturing Technology I & II	Ту	3	0/0	0/0	3

Unit-1: Introduction to Industry 4.0

Introduction, core idea of Industry 4.0, origin concept of industry 4.0, Industry 4.0 production system, current state of industry 4.0, Technologies, How is India preparing for Industry 4.0

Unit-2: A Conceptual Framework for Industry 4.0

Introduction, Main Concepts and Components of Industry 4.0, State of Art, Supportive Technologies, Proposed Framework for Industry 4.0.

Unit-3: Technology Roadmap for Industry 4.0

Introduction, Proposed Framework for Technology Roadmap, Strategy Phase, Strategy Phase, New Product and Process Development Phase.

Unit-4: Advances in Robotics in the Era of Industry 4.0

Introduction, Recent Technological Components of Robots- Advanced Sensor Technologies, Internet of Robotic Things, Cloud Robotics, and Cognitive Architecture for Cyber-Physical Robotics, Industrial Robotic Applications- Manufacturing, Maintenance and Assembly.

Unit-5: The Role of Augmented Reality in the Age of Industry 4.0

Introduction, AR Hardware and Software Technology, Industrial Applications of AR: Obstacles and Framework Conditions for Industry 4.0-Lack of A Digital Strategy alongside Resource Scarcity, Lack of standards and poor data security, Financing conditions, availability of skilled workers, comprehensive broadband infra- structure, state support, legal framework, protection of corporate data, liability, handling personal data.

Total No. of Periods : 45

Reference Books:

1. Alp Ustundag and Emre Cevikcan, "Industry 4.0: Managing the Digital Transformation".

- 2. Bartodziej, Christoph Jan, "The Concept Industry 4.0".
- 3. Klaus Schwab, "The Fourth Industrial Revolution".
- 4. Christian Schröder, "The Challenges of Industry 4.0 for Small and Medium-sized Enterprises".

List of Open Source Software/learning website: 1. www.nptel.ac.in/

Page 206

9

Q

9

9

9 5 ar

Subject Code:	S	bubject N	ame: SU	PPLY C	CHAIN]	MANA	GEMEN	T	T	y/Lb/ FTI	L	T/ SI r	P/R	C
EBME22E28	Pre	requisite	: Manufa	cturing	Techno	logy I &	& II			Tv	2	0/0	0/0	2
L. L. acture T 7	Tutorio	1 51	Cumomia	adlaam	ina D.	Draiaat	D . Dag	anah C		I y	3	0/0	0/0	3
T/L/ETL : Theo	ory/Lab	Embedd	led Theor	y and La	b.	Floject	K. Kest		. Cr	euns				
OBJECTIVES	: The	student	will learn	Basic	Concep	tual ide	ea of si	upplv d	chai	n mana	agement	system:	Theor	v and
application SCI	M netw	vorks wit	th simple	casestuc	ły			11 5			0	,		5
OURSE OUTO	COME	S (COs)	:											
CO1	Ur	nderstand	l the vario	us conce	epts of su	upply ch	nain man	agemer	nt. (l	Level 2)			
CO2	Ar	nalyze an	d decide t	he prope	er logisti	cs. (Lev	vel 4)							
CO3	De	evelop pr	oper netw	ork to lo	ocate sou	irce and	distribu	tion cer	nters	at a op	timal pri	cing. (Le	vel 4)	
CO4	Co	ordinate	the suppl	y chain 1	manager	nent net	work. (I	Level 3))					
CO5	Us	e inform	ation tech	nology i	n supply	v chain r	nanagen	nent. (L	eve!	13)				
		Ma	pping of	Course	Outcom	es with	Progra	m Outo	com	es (POs	5)	-		
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO9	PO10	PO11	P	012
CO1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							-		2	2	1		2
CO2	3	3 3 3 1 3 2 2 3 3 3 1 3 2 2								3	3	3		2
CO3	3	3 3 3 1 3 2 2 3 2 2 - 2 2 2								3	3	3		2
CO4	3							3		3	3	2		2
CO5	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						2		3	3	2		2
Cos / PSOs	PS	501	PSC)2	PS	03	PS	SO4						
CO1		3	3		1	1		2						
CO2		3	3			3		3						
CO3		3	3			3		3						
CO4		3	3			3		3						
CO5		3	3			3		3						
3/2/1 indicates S	Strengt	h of Cor	relation	3- High	1, 2- Me	dium, 1	-Low	1	T		I			
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	≮ Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					

Subject Code: Subject Name : SUPPLY CHAIN MANAGEMENT **T**/ P/R С Ty/Lb/ L ETL SLr **EBME22E28** Prerequisite: Manufacturing Technology I & II Тy 3 0/0 0/0 3

UNIT- I: **INTRODUCTION**

Definition of logistics and SCM: evolution, scope, importance& decision phases = drivers of SC performance and obstacles.

UNIT- II: LOGISTICS MANAGEMENT

Factors – Modes of Transportation - Design options for Transportation Networks-Routing and Scheduling – Inbound and outbound logistics- Reverse Logistics - 3PL- Integrated Logistics Concepts- Integrated Logistics Model - Activities - Measuring logistics cost and performance - Warehouse Management - Case Analysis

UNIT- III: SUPPLY CHAIN NETWORK DESIGN

Distribution in Supply Chain - Factors in Distribution network design -Design options-Network Design in Supply Chain – Framework for network Decisions - Managing cycle inventory and safety.

UNIT- IV: SOURCING AND PRICING IN SUPPLY CHAIN

Supplier selection and Contracts - Design collaboration - Procurement process. Revenue management in supply chain

UNIT- V: COORDINATION AND TECHNOLOGY IN SUPPLY CHAIN

Supply chain coordination - Bullwhip effect - Effect of lack of co-ordination and obstacles - IT and SCM supply chain IT frame work. E Business & SCM. Metrics for SC performance – Case Analysis

Total No. of Periods: 45

REFERENCES

- 1. Sunil Chopra and Peter Meindl, (2007) "Supply Chain Management, Strategy, Planning, and operation", $(2^{nd} ed.)$, PHI
- 2. David J.Bloomberg, Stephen Lemay and Joe B.Hanna, (2002), "Logistics", PHI
- 3. Martin Christopher, "Logistics and Supply Chain Management –Strategies for Reducing Cost and Improving Service", (2nd ed.), Pearson Education Asia
- 4. Jeremy F.Shapiro, Thomson Duxbury, (2002) "Modeling the supply chain"
- 5. James B.Ayers, (2000) "Handbook of Supply chain management", St.Lucle Press

9

9

Q

	(71110	0 2100		i unica misur	anony	
Periyar E.V.	R. High	Road,	Maduravoyal,	Chennai-95.	Tamilnadu,	India.

Subject Code FBME22E29	: Su TE	bject ECHNO	Name LOGY	:]	BLOCK	. (CHAIN	Ty/Lb	/ETL	L	T/ SLr	P/R	С				
	Pr	erequisi	te: Nil					Ту	7	3	0/0	0/0	3				
L : Lecture T : T	Futorial	SLr : Sup	pervised Le	earning H	P: Projec	t R : Res	search C	: Credits					_1				
T/L/ETL : Theo	ory/Lab./H	Embeddeo	d Theory a	nd Lab.													
OBJECTIVE:	The stud Ur wi De Int	lent will l nderstand th them, esign, bu tegrate io	earn: d how blo ild, and d deas from	ockchain eploy sn blockch	systems hart cont ain tech	s (mainl tracts an nology i	y Bitco d distrib nto thei	in and E outed app r own pr	othereum olicatior	n) work, T	Го secure	ly inte	ract				
	Unders	Understand the design principles of Bitcoin, Ethereum and Nakamoto consensus															
	Evoluo		ty prives	u and of	ficiona	$\frac{1}{1000}$	von blog	block chain system.									
	Evalua	the Securi	ry, privac	y, and en	Vorificat	tion prot		K CHAIII S	system.								
	Interne	$\frac{1}{t}$ with a	block cho	in exetor	n by son	ding on	d roadin	a transa	tions								
C02	Design	ract with a block chain system by sending and reading transactions.															
CO3	urse Outcomes (COs) with Program Outcomes (POs) & Program Specific Outcon								-4 (D(
COs/POs	PO1	PO2	PO3	Program PO4	PO5	nes (POs	s) & Pro PO7	gram Spo PO8		PO10	PO11	PO	12				
C01		2	1	1	100	1	10/	100	202	2	3	2					
	1	1	•	-		1			4		5						
CO2	1	1	2	2	3	1			1	2	2	1					
CO3				2	2					2	2	2					
CO2				2	2					2	2	2					
CO3				2	2					2	2	2					
COs / PSOs	PSO1	1	PSO2		PSO3		PSO4	•									
CO1					2												
CO2					2												
CO3					2												
CO2					2												
CO3					2												
3/2/1 indicates	Strengt	h of Co	rrelation	3- Hig	h, 2- Me	edium, 1	-Low				1						
ategory	Basic Science	Engineerin g Science	Humanities and social Science	Program Core	 Program elective 	Open Elective	Inter Disciplinary	Skill Component	Practical /Project								
C																	

Subject Code: FBME22E29	Subject Na TECHNOLOG	me : SY	BLOCK	CHAIN	Ty/Lb/ETL	L	T/ SLr	P/R	С
	Prerequisite: N	il			Ту	3	0/0	0/0	3

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Unit I: Basics

Distributed Database, Two General Problem, Byzantine General problem and Fault Tolerance, Hadoop Distributed File System, Distributed Hash Table, ASIC resistance, Turing Complete. • Cryptography: Hash function, Digital Signature - ECDSA, Memory Hard Algorithm, Zero Knowledge Proof.

Unit II: Blockchain

Introduction, Advantage over conventional distributed database, Blockchain Network, Mining Mechanism, Distributed Consensus, Merkle Patricia Tree, Gas Limit, Transactions and Fee, Anonymity, Reward, Chain Policy, Life of Blockchain application, Soft & Hard Fork, Private and Public block chain.

Unit III: Distributed Consensus

EDUCAT

Nakamoto consensus, Proof of Work, Proof of Stake, Proof of Burn, Difficulty Level, Sybil Attack, Energy utilization and alternate.

Unit IV: Crypto currency

History, Distributed Ledger, Bitcoin protocols - Mining strategy and rewards, Ethereum - Construction, DAO, Smart Contract, GHOST, Vulnerability, Attacks, Sidechain, Namecoin

Unit V: Crypto currency Regulation

Stakeholders, Roots of Bit coin, Legal Aspects-Crypto currency Exchange, Black Market and Global Economy. Applications: Internet of Things, Medical Record Management System, Domain Name Service and future of Block chain.

Tutorial & Practical: Naive Block chain construction, Memory Hard algorithm - Hash cash implementation, Direct Acyclic Graph, Play with Go-ethereum, Smart Contract Construction, Toy application using Block chain, Mining puzzles

Total No. of Periods : 45

Text Book

1. Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven Goldfeder, Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction, Princeton University Press (July 19, 2016).

Reference Books

1. Antonopoulos, Mastering Bitcoin: Unlocking Digital Cryptocurrencies

- 2. Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System
- 3. DR. Gavin Wood, "ETHEREUM: A Secure Decentralized Transaction Ledger," Yellow paper. 2014.

4. Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli, A survey of attacks on Ethereum smart contracts

9

9

9

9

OPEN ELECTIVE SUBJECTS

Construction of the second secon	ALLED WITH OR DE
---	------------------

Subject Code:		Subject	Name: 1	NDUST	RIAL I	ENGIN	EERING	Ĵ	Ty/Lb	L	T/	P/R	С
									/ETL		SLr		
EBME22OE1	Pre	requisite	e: NIL						Ту	3	0/0	0/0	3
L : Lecture T :	Tutoria	l S Lr	: Supervis	ed Lear	ning P:	Project	R : Res	earch C:	Credits	11			
T/L/ETL : The	ETL : Theory/Lab/Embedded Theory and Lab												
OBJECTIVE	3JECTIVES : The student will learn:												
Various Techniques of work measurement; Details of plant layout and material handling devices; Basic concepts of ERP													
OURSE OUT	URSE OUTCOMES (COs) :												
CO1	Expose	to variou	s concept	s of Indu	ıstrial en	igineerir	ng. (Leve	el 2)					
CO2	Select a	nd Desig	n the appi	opriate	plant lay	out and	associat	ed mater	ial handl	ing syster	ns. (Leve	l 4)	
CO3	Analyze	the wor	k place an	d design	n suitable	e enviro	nment to	o provide	comfort	to the wo	ork. (Leve	l 4)	
CO4	Understa	and the v	various fac	tors inv	olved in	fixing v	vages an	d incenti	ives. (Lev	vel 2)			
CO5	Plan the	various	resources	of an en	terprise.	(Level	3)						
Mapping of C	ourse C	Outcome	s with Pro	ogram (Outcome	es (POs))	1	-1	1			
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	. P	012
CO1	3	1	2	-	1	3	1	3	3	3	3		2
CO2	3	3	3	2	3	3	2	2	3	3	3		2
CO3	3	3	3	2	3	3	2	2	3	3	3		2
CO4	3	2	2	-	2	3	1	2	3	3	3		2
CO5	3	3	3	2	3	3	2	2	3	3	3		2
Cos / PSOs	PS	501	PSC	02	PS	03	PS	504					
CO1	í	3	3			1		2					
CO2	í	3	3		ź	2		3					
CO3		3	3		2	2		3					
CO4	,	3	3			1		2					
CO5	,	3	3		,	2		2					
3/2/1 indicates	Strengt	h of Cor	relation	3- High	n, 2- Me	dium, 1	-Low				L		
			0										
			suce										
			Scie										
		e	ial										
ŗy		ienc	soc		tive		ary	ц	çt				
5001	ce	Sci	nu	e	lect	e	lina	one	roje				
Cate	cien	gui	es s	Cor	me	ctiv	scip	duu	1/P				
	c S(eeri	miti	am	gra	Ele	Di	C	tica				
	3asi	ngin	amu	ogr	Prc	Den	nter	ikill	rac				
	н	Ē	Ĥ	Pr		Ō	Π	U 1	1			_	
						ľ							
		i	1	1	i	i	1	1		í.	1	1	

Subject Name : INDUSTRIAL ENGINEERING **T**/ Ty/Lb/ \mathbf{L} ETL SLr

Ту

3

LINIT- I-WORI	K STUDY & WORK	MEASUREMENT	

Prerequisite: NIL

Work study - Techniques - Productivity, Improving productivity by reducing work content- Human factors in work study. Method study - Basic procedure - Recording techniques - Micro-motion study, Threbligs, SIMO chart, Principles of motion economy.

Work Measurement – Techniques – Time study – Allowances – Work sampling – PMTS – MTM.

UNIT- II:SITE SELECTION, PLANT LAYOUT & MATERIAL HANDLING

Site Selection: Importance of plant location - choice of site for location - State regulations on location -Industrial Estates. Plant layout: Types of factory buildings, OBJECTIVES of good plant layout, Principles, Techniques used, Types, Flow pattern, Line Balance, computerized plant layout. Material Handling: Functions, OBJECTIVES, principles, Devices used, Relation between plant layout and material handling.

UNIT-III:ERGONOMICS

Subject Code:

EBME22OE1

Techniques – Analysis – Equipment Design – Fatigue – Motivation theory of Fatigue – Fatigue tests-Duties of a human factor Engineer - Human effectiveness improvement through ergonomics.

UNIT- IV:WAGES & INCENTIVES

Wages: Wage & salary policies, systems of wage payments, Principles of wage administration, National Wage Policy, Fair wage committee report, Need based minimum wage Incentives: Need, Incentive plans, Comparison of various Incentive plans, Administration of wage incentives.

UNIT- V:ENTERPRISE RESOURCE PLANNING (ERP)

Need for optimal use of Resources, MRP I & II, Supply chain Management, Evolution of ERP, BPR, Lean Manufacturing, Popular ERP Packages, Implementation of ERP, Benefits of ERP.

TEXT BOOKS

- 1) O.P. Khanna, (2005) "Industrial Engineering and Management", Khanna Publishers.
- 2) K.KAhuja, "Industrial Management", Khanna Publishers.
- 3) Martand Telsang, "Industrial Engineering and Production Management".

REFERENCES

- 1) M.Mahajan, "Industrial Engineering and Production Management", Dhanpat Rai &CO.,
- 2) B. Kumar, (2005) "Industrial Engineering", Khanna Publishers.
- 3) International Labour Organization (ILO), (2004) "Introduction to Work study", Universal Publishing Corporation.
- 4) H. B. Maynard, "Industrial Engineering, Handbook", McGraw Hill Book Company, International Edition.
- 5) Marvin E. Mandel, "Time & Motion study", Prentice Hall, Private Limited, International Edition.
- 6) James M Apple, "Principles of Layout & Materials Handling", Ronalds Press, International Edition.
- 7) V. K. Garg & N.K. Venkatakrishnan, (2004) "Enterprise Resource Planning, Concepts & Practice", Prentice Hall of India Private Limited.

Total No. of Periods : 45

Q

9

0/0

P/R

0/0

С

3

Subject Cod	e: Su	Subject Name : REFRIGERATION AND AIR							Ty / Lb/	L	Τ /	P /	C
BME220E2		CONDITIONING						ETL		S.Lr	R		
DIVIE220E2	Pr	erequis	ite: Nil						Ту	3	0/0	0/0	3
L : Lecture T	: Tutor	ial SL	r : Super	vised L	earning	g P : Pro	oject R	: Resear	ch C: Cre	edits			
T/L/ETL : Theory/Lab/Embedded Theory and Lab													
OBJECTIVES: Students will learn													
• The working principle of refrigerators and air conditioning systems.													
Differ	Different cycles used in refrigeration.												
Alternate retrigerants to reduce global warming . COURSE OUTCOMES (COs) : (3-5)													
COURSE O	Gain the basic knowledge of various refrigeration cycles and refrigerants (Level 2)												
CO2	Analyze	the var	ious refrig	veration	cvcles u	sing the	rmodvn	amic cor	cepts(Le	(vel 4)			
CO3	Underst	and the	design and	d workir	ng princi	ples of	various	compone	ents of refr	igeratio	n and air-	onditi	ioning
	systems	.(Level 2	2)		01	1		1		0			0
CO4	Apply t	he psych	rometry k	nowled	ge to cal	culate t	he cooli	ng and h	eating load	d(Leve	13)		
CO5	Underst	and the	fundamen	tal conc	epts of c	ryogeni	c engine	eering an	d low-tem	perature	e of proper	ties of	f
Monning of	materia	ls.(Level	2) mog with	Drogr	am Au	taamas	$(\mathbf{D} \mathbf{\Omega}_{\mathbf{g}})$						
CO_{S}/PO_{S}	PO1	PO2	PO3	PO4		PO6	$(\mathbf{I} \mathbf{O} \mathbf{S})$	PO8	POQ	PO10	PO11	PO	12
003/103	101	102	105	104	105	100	107	100	10)	1010	1011	10	12
<u>CO1</u>	3	2	2	2	1	3	3	3	2	2	-		3
<u>CO2</u>	2	3	3	3	2	2	2	2	2	3	-	_	2
CO3	3	2	2	2	1	2	2	2	2	2	-		3
C04	2	2	2	2	1	2	2	2	2	3	-	_	2
CO_{S} / PSO_{S}	<u> </u>	3	3	5	<u> </u>	2	2	2	1	3	- 3		2
C01	PS	<u>-</u> 01	PS(2	PS	<u></u>	P	<u>2</u> 504	1	5	5		5
CO^2	15	3	3	52	3 3			3				_	
CO3		3	3			3		3					
CO4		3	2		,	2		2					
CO5		3	3			3		3					
3/2/1 indicates	Strengt	h of Co	rrelation	3- Hig	h, 2- Me	edium, 1	l-Low						
			_										
			cial		é		~						
			d so		ctiv		nary	ent	ject				
	nce	50	anc	ore	ele	Ve	iilqi	noq	Pro				
	Scie	ring	ties	CC	am	ecti	isci	mo	al				
ory	ic S	nee nce	nce	ran	lgoï	Π	r D	II C	ctic				
egc	Bas	ungi ciei	lum ciei	rog	P	Iper	Inte	Ski	Pra				
Cat		щα				v ✓							
-													

n ISO 21001 : 2018 Certified Institution Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code: BME22OE2	Subject Name : REFRIGERATION AND AIR CONDITIONING	Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
	Prerequisite: Nil	Ту	3	0/0	0/0	3

UNIT- I: REFRIGERATION CYCLES AND REFRIGERANTS

EDUCA

Vapour Compression Réfrigération Cycle-Simple Saturated Vapour Compression Refrigeration Cycle. Thermodynamic Analysis of the above. Refrigerant Classification, Designation, Alternate Refrigerants, Global Warming Potential & Ozone Depleting Potential Aspects.

UNIT- II: SYSTEM COMPONENTS

Refrigerant Compressors - Reciprocating Open & Hermetic Type, Screw Compressors and Scroll Compressors -Construction and Operation Characteristics. Evaporators - DX Coil, Flooded Type Chillers Expansion Devices -Automatic Expansion Valves, Capillary Tube & Thermostatic Expansion Valves. Condensing UNIT-s and Cooling Towers.

UNIT- III: CYCLING CONTROLS AND SYSTEM BALANCING

Pressure and Temperature Controls. Range and Differential Settings. Selection and Balancing of System Components-Graphical Method.

UNIT-IV: PSYCHROMETRY & AIR CONDITIONING

Moist Air Behavior, Psychrometric Chart, Different Psychrometric Process Analysis. Summer and Winter Airconditioning, Cooling Load Calculations, Air Distribution Patterns, Dynamic and Frictional Losses in Air Ducts, Equal Friction Method, Fan Characteristics in Duct Systems.

UNIT- V: INTRODUCTION TO CRYOGENIC ENGINEERING

Introduction to cryogenic engineering-applications of cryogenics in various fields-low temperature properties of materials- mechanical, thermal, electrical and magnetic properties- properties of cryogenic fluids-cryogenic fluid storage and transfer systems- cryogenic insulation.

Total No. of Periods:: 45

TEXT BOOKS

1) W.F.Stocker and J.W.Jones, (2009) "Refrigeration & Air Conditioning", McGraw Hill Book. Company.

2) Randall F.Barron, (1985) "Cryogenic systems", Oxford University press.

REFERENCES

1) R.J.Dossat, (2005) "Principles of Refrigeration", John Wiley and Sons Inc., 6th edition.

2) Manohar Prasad, (2009) "Refrigeration and Air Conditioning", Wiley Eastern Ltd.

9

Q

9

		1 * A N	Periyar E.	V.R. High R	load, Madu	iravoyal, C	hennai-95	5. Tamilnad	lu, India.	T I	TT /	D/	C
Subject Cod	le: St	Subject Name : AUTOMOBILE								L	T /	P/	C
			ENGIN	EERIN	G				ETL		S.Lr	K	
BME22OE3	_										0.10	0.10	
	Pr	erequis	ite: Nil						Ту	3	0/0	0/0	3
	T (· 1 . 01	C	• 11	•		· (D		100	1.4			
L: Lecture I	L: Lecture I: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits												
1/L/EIL: Ineory/Lab/Embedded Ineory and Lab													
OBJECTIV	E: The	student	will learr	1									
• Various automobile parts, power transmission from engine to various parts of the automobile, engine												ngine	
cooling, lubrication and also about various pollutants and its control.													
COURSE O	UTCO	MES (C	COs): (3	- 5)									
CO1	Ga	ain the kı	nowledge	of vehic	ele struct	ures.(Le	evel 2)						
CO2	Aj	pply the	skill of au	xiliary s	ystems i	n IC eng	gines.(L	evel 3)					
CO3	De	emonstra	te the pov	ver trans	mission	s system	ns.(Leve	13)					
CO4	Aj	pply the	knowledg	e of stee	ring, bra	akes, sus	spension	and ligh	ting syste	ms.(Lev	/el 3)		
<u>CO5</u>	U	nderstand	the conc	ept of t	he fuel c	ells and	hybrid	vehicles.	(Level 2)				
Mapping of	Course	Outco	mes with	Progra	am Ou	tcomes	(Pos)		D 00	DO10		4 1	201
Cos/Pos	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	POI0	POI	1 H	2
CO1	3	2	1	1	-	1	1	1	1	1	-	1	
CO2	3	2	2	2	-	1	2	1	1	2	-	2	
CO3	2	2	1	1	-	1	1	1	1	1	-	1	
CO4	2	2	2	2	-	1	1	1	1	2	-	1	
CO5	2	1	1	1	-	2	2	1	1	1	-	2	
Cos / PSOs		PSO1	F	PSO2]	PSO3		PSO4					
CO1		3	2	·		2		2					
CO2		3	2			2		2					
CO3		3	2			2		2					
CO4		3	2	r.		2		2					
CO5		3	2	r		1		3					
3/2/1 indicates	Streng	th of Co	rrelation	3- Hig	h, 2- Me	edium, 1	l-Low						
			IJ										
			DCIE		ve		x	.	+				
			d so		scti		nar		Jec				
	nce	50	an	ore	ele	ive	ipli	lod	Pro				
	Scie	ring	ties	Ŭ	am	ecti	isc	om	al				
	ic S	nee 1ce	ani	ran	1g0.	ЪЕ	чD	II C	ctic				
	Bas	ngi ciei	lum cier	rog	$\mathbf{P}_{\mathbf{f}}$	Ied	Inte	Ski	Pra				
x		ы N	ΤŎ	Ā				'	,				
jor						-							
Iteg													
C													

Subject Name : AUTOMOBILEGINEERING **Subject Code:** Ty / Lb/ L Т P/ С 1 S.Lr R ETL **EBME22OE3 Prerequisite: Nil** Ty 3 0/0 0/0 3

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

UNIT- I: VEHICLE STRUCTURE AND ENGINES

Vehicle Chassis -types- layout- vehicle specifications- power and torque requirements- choice of engine for different applications. Engine types and construction -- Cylinder- cylinder head-Crank case-Piston- connecting rod - crank shaft-valves-liners-manifolds.

ISTITUTE

UNIT- II: ENGINE AUXILIARY SYSTEMS AND POLLUTION CONTROL 9

Fuel supply system to SI and CI engines-Electronic. Lubrication system-cooling system-ignition system-. Pollution from engines and their control- Exhaust gas recirculation - Catalytic converters,

UNIT- III: TRANSMISSION SYSTEMS

DUCATIO

Clutches -single& multi plate Gear boxes-manual- sliding mesh- constant mesh- automatic transmission. Universal joints-propeller shaft Differential.

UNIT- IV: STEERING AND SUSPENSION SYSTEMS

Principle of steering-steering geometry -steering linkages-steering gear boxes- power steering. Wheel and tyre construction-type and specification-tyre wear- Suspension system-need and types- shock absorbers-air suspension.

UNIT- V: BRAKE SYSTEMS

Auto Electrical Components,. Brake -need -types-mechanical- hydraulic- pneumatic-power brake-Principles of modern electrical systems-battery-dynamo- starting motor- lighting- automobile air conditioning. Electric hybrid vehicle and fuel cells.

Total No. of Periods:: 45

TEXT BOOKS

- 1) K.K.Ramalingam, (2007) "Automobile Engineering", SciTech Publications.
- 2) Kirpal Singh, (2012) "Automobile Engineering Vol-I&II".
- 3) R.B.Gupta, (2013) "Automobile Engineering", Satya Prakashan Publishing.

REFERENCES

- 1) Joseph Heitner, "Automotive Mechanics", Affiliated East West Press Ltd.
- 2) "Newton and Steeds, Motor Vehicles", ELBS –13 EDITION.
- 3) William Crouse, (2007) "Automotive Mechanics", Tata McGraw Hill.

9

9

9

			Periyar E.V	(An 150 .R. High Ro	oad, Madu	ravoyal, C	hennai-95	. Tamilna	du, India.				
Subject Code	e: Su	bject N	ame : IN	DUST	RIAL I	ROBO	TICS		Ty / Lb/	L	Τ /	P /	С
FRME??OF	1								ETL		S.Lr	R	
	- Pr	erequis	ite: Nil						Ту	3	0/0	0/0	3
L : Lecture T	: Tutor	Itorial SLr : Supervised Learning P : Project R : Research C: Credits											_1
T/L/ETL : Th	/ETL : Theory/Lab/Embedded Theory and Lab												
OBJECTIVE	TIVE: OBJECTIVES: Students will learn												
• Basic	compoi	nents of	an indus	trial rob	oot and	Sensor	s used i	n robot	S				
 Robot programming methods and Robot applications 													
COURSE O	DURSE OUTCOMES (COs) : (3- 5)												
CO1	Unders	stand the	basic cor	ncepts of	f a robot	(Level	2)						
CO2	Identif	y and ap	ply the di	fferent c	compone	ents and	operatio	n with 1	respect to r	obot (Le	evel 3)		
CO3	Recog	nize the	various ty	pes of se	ensors a	nd mach	nine visi	on conc	epts and its	applica	tions (Le	vel 3)	
CO4	Write p	program	me for rol	oot (Lev	el 4)								
CO5	Design	the rob	ot cell and	l state its	s applica	ations (L	Level 4)						
Mapping of	Course	Outco	mes with	Progra	am Out	tcomes	(Pos)						
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	3	2	2	3	3	2	2	3	3	3		2
CO2	3	3	3	3	3	3	2	2	3	3	3		2
CO3	3	3	2	2	3	3	2	2	3	3	3		2
CO4	3	3	3	3	3	3	2	2	3	3	3		2
CO5	3	3	3	3	3	3	2	2	3	3	3		2
Cos / PSOs	PS	01	PSO	02	PS	03	P	SO 4					
CO1	-	3	3			2		3					
CO2		3	3			2		3					
CO3		3	3			2		3					
CO4		3	3			2		3					
CO5		3	3			2		3					
3/2/1 indicates	Strengt	h of Co	rrelation	3- Hig	h, 2- Me	edium, 1	1-Low						
			nce										
			cie										
			al S										
		nce	ocia		ve		y	t	÷				
x	Ð	cie	d s		ecti		nar	nen	ojec				
g 01	enc	60	s an	ore	ı ele	ive	ilqi	Iodi	Prc				
ate	Scie	irin	ties	Ŭ	ran	lect	Disc	Jon	ial /				
Ű	sic	nee	lani	ran	rog	υE	er L	II C	ctic				
	Ba	igngi	Iun	Prog	Ч	Dpe	Int	Ski	Pra				
						\checkmark						+	
Subject Code: Subject Name : INDUSTRIAL Ty / Lb/ L Т 1 P/ С **EBME22OE4 ROBOTICS** S.Lr R ETL **Prerequisite:** Nil 3 0/0 3 Tv 0/0

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

UNIT- I: INTRODUCTION

Definition of a Robot – Basic Concepts – Robot components –manipulator-configurations – joints- degree of freedom. Types of Robot Drives – Basic Robot Motion types – Point to Point Control – Continuous Path Control.

UNIT- II: COMPONENTS AND OPERATIONS

Basic Control System Concepts – open loop and closed loop control-Control System Analysis – Robot Actuation and Feed Back, Manipulators – Direct and Inverse Kinematics, Co- ordinate Transformation – Brief Robot Dynamics, Types of Robot and Effectors – Grippers – Tools as End Effectors – Robot / End Effort Interface.

UNIT- III: SENSING AND MACHINE VISION

Range Sensing – Proximity Sensing – Touch sensing – Force and Torque Sensing. Introduction to Machine Vision – functions and applications.

UNIT- IV:ROBOT PROGRAMMING

Methods – Languages –programming for pick and place applications-palletizing. Capabilities and Limitation – Artificial Intelligence – Knowledge Representation – Search Techniques – AI and Robotics.

UNIT- V:ROBOT CELL DESIGN AND APPLICATIONS

Robot cell design-types and control. Applications of Robots –process Applications in welding and painting – Assembly applications– Material Handling applications.

TEXT BOOK

1) K. S. Fu, R. C. Gonalez, C.S.G. Lee, "Robotics Control Sensing Vision and Intelligence", McGraw Hill International Edition, 10987.

REFERENCES

- 1) Mikell P. Groover, Mitchell Weiss, (2008) "Industrial Robotics, Technology, Programming and Application", Tata McGraw Hill International Editions, 10986.
- 2) Richard D. Klafter, Thomas A. Chonieleswski and Michael Negin, (1989) "Robotic Engineering An Integrated Approach", Prentice Hall Inc., Englewoods Cliffs, NJ, USA, 109809.

9

9

9

9

9

Subject Code:	Subject Name : SUSTAINABLE ENERGY						Ty/ E	Lb/ TL	L	T/ SLr	P/R	С				
EBME220E5	Pre	requisit	e: NIL						Т	y	3	0/0	0/0	3		
L : Lecture T :	Tutoria	l S Lr	: Supervis	sed Lear	ning P :	Project	R : Res	earch C	C: Cree	lits			•	•		
T/L/ETL : The	ory/Lat	/Embed	ded Theor	ry and L	ab											
OBJECTIVE	S: Stude	ents will	learn													
• The co	oncept, p	cept, principles and characteristics of different renewable energy systems.														
• Energy	conversion techniques FCOMES (COs) : (3- 5)															
COURSE OU	ICOMES (COs) : (3-5) Understand the basic concepts of solar radiation and their utilizations(Level 2)															
CO^2		Apply the solar knowledge in various practical applications(Level 3)														
CO3		rryout o	ut constru	ictions o	f differe	nt energ	v conve	rsion te	chnia		Tevel 2)				
CO4	Ev	nlain th	e principle	es of ene		version	from ear	th and	ocean		$\frac{1}{1}$ (Let ver 2))				
C04		monstro	to the wor	$\frac{1}{12}$	(15)											
CO3									S(Le	(el 3)						
COs/POs	PO1 PO2 PO3 PO4 PO5 PO6 PO7						9 PO7	PO8	PC	9	PO10	PO11	PO	12		
CO1	3	2	105	1	105	2	2	2		1	1	-	2	12		
CO2	3	2	2	2	1	2	2	2		1	2	2	2			
CO3	3	2	2	1	1	1	1	2		1	1	1	2			
CO4	3	2	2	2	1	1	1	2		1	2	-	1			
CO5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	1	1	1		1	1	-	1				
COs / PSOs	PS	01	PSO	D2	PS	03	PS	504								
COI		3	2	r		2		$\frac{1}{2}$								
CO_2		3	2	r	$\begin{array}{c c} 2 & 2 \\ \hline 1 & 2 \end{array}$											
CO4		3	1			1 1		<u>2</u> 1								
CO5		3	1			1		1								
3/2/1 indicates	Strengt	h of Co	rrelation	3- Hig	h, 2- Me	edium,	1-Low	1								
						,										
	c Science	eering Science	mities and social Science	am Core	ogram elective	Elective	. Disciplinary	Component	tical /Project							
Category	Basi	Engin	EmnH	banical	JId	uedO ✓	Inter	Skill	Prac							

n ISO 21001 : 2018 Certified Institution Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code:	Subject Name : SUSTAINABLE ENERGY	Ty/Lb/	L	Т/	P/R	С
EBME220E5		ETL		SLr		
	Prerequisite: NIL	Ту	3	0/0	0/0	3

UNIT- I PRINCIPLES OF SOLAR RADIATION:

EDUCAT

Role and Potential of new and renewable source, the solar energy option, Environmental impact of solar power, Solar constant, extra-terrestrial and terrestrial solar radiation, solar radiation on titled surface, Instruments for measuring solar radiation and sun shine, solar radiation data.

UNIT- II SOLAR ENERGY

SOLAR ENERGY COLLECTION: Flat plate and concentrating collectors, classification of concentrating collectors, orientation and thermal analysis, advanced collectors.

SOLAR ENERGY STORAGE: Different methods, sensible, latent heat and stratified storage, solar ponds. Solarapplications - solar heating/cooling techniques, solar distillation and drying, photovoltaic energy conversion.

UNIT- III WIND ENERGY AND BIOMASS

WIND ENERGY: Sources and potentials, horizontal and vertical axis windmills, performance characteristics. BIOMASS: Principles of Bio-Conversion, Anaerobic/aerobic digestion, types of Bio-Gas digestors, gas yield, combustion characteristics of bio-gas, utilization for cooking, I.C.Engine operation, economic aspects.

UNIT- IV GEOTHERMAL, TIDAL AND WAVE ENERGY

GEOTHERMAL ENERGY: Resources, types of wells, methods of harnessing OTEC: Principles, utilization, setting of OTEC plants, thermodynamic cycles. TIDAL AND WAVE ENERGY: Potential and conversion techniques, mini hydel power plants, and their economics.

UNIT- V:DIRECT ENERGY CONVERSION

Need for DEC, Carnot cycle, limitations, principles of DEC. Thermo-electric generators, MHD Power generators, principles, working.

Fuel cells: principle, working -types - Selection of fuels and operating conditions.

Total No. of Periods : 45

TEXT BOOKS

- 5) G.D.Rai, (2004) "Non-Conventional Energy Sources" Khanna Publishers.
- 6) Ashok V Desai, (2003) "Non-Conventional Energy", Wiley Eastern.
- 7) K.M.Mittal, (2007) "Non-Conventional Energy Systems", Wheeler Publishing.
- 8) Ramesh & Kumar, (2007) "Renewable Energy Technologies", Narosa Publishing House.

REFERENCES

- 4) Twidell & Weir, (2006) "Energy Sources", Taylor & Francis
- 5) Sukhame, (2009) "Solar Energy".
- 6) B.S.Magal Frank Kreith, (2010) "Solar Power Engineering"

9

9

9

Q

9

Subject Cod	e: Su	bject N	ame : Co	OMPO	SITE N	MATE	RIALS		Ty / Lb/	L	T /	P/	С		
ERME 220EA	5								ETL		S.Lr	K			
	, Pr	erequis	ite: Nil						Ту	3	0/0	0/0	3		
L : Lecture T	: Tutor	ial SL	r : Super	vised L	earning	g P : Pro	oject R	Resear	rch C: Cro	edits			4		
T/L/ETL : Th	eory/La	ab/Emb	edded Th	neory an	id Lab										
OBJECTIVI	ES: Stu	dents w	ill learn												
Differ	ent con	nposites	s and thei	r manuf	facturin	g meth	ods								
Desig	n paran	neters of	f compos	ites											
• To gai	In knowledge in need and applications of composite materials UTCOMES (COs) : (3- 5) The student will be able to														
COURSE O	UTCO	MES (C	COs): (3)	5- 5) Th	e studer	nt will b	e able to	D							
CO1	Unders	stand the	different	compos	ites and	ring me	thods (Lev	/el 2)							
CO2	Know	the mec	hanics and	l perforr	nance of	f compo	site mat	erials (L	evel 3)						
CO3	Unders	stand the	design pa	arameter	rs of con	nposites	(Level 2	2)							
CO4	Analyz	lyze and predict the failure in composites(Level 4)													
CO5	Design	and Ma	nufacture	compos	sites usin	ng simp	le manuf	facturing	g technique	es (Leve	l 4)				
Mapping of	Course	Outco	mes with	Progra	am Out	tcomes	(Pos)	1		1					
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	12		
CO1	3	1	2	2	2	2	2	3	3	3	2		2		
CO2	3	1	2	2	2	2	2	3	3	3	3		3		
CO3	3	1	2	2	2	2	3	3	3	3	2		3		
CO4	3	1	2	2	2	2	3	3	3	3	3		2		
CO5	3	2	2	2	2	2	3	3	3	3	3		3		
Cos / PSOs		PSO1	I	PSO2]	PSO3		PSO4							
CO1	-	3	3		-	2		3							
CO2	-	3	3		-	2		3							
CO3		3	3			2		3							
CO4	-	3	3		-	2		3							
CO5	-	3	3			2		3							
3/2/1 indicates	Strengt	h of Co	rrelation	3- Hig	h, 2- Me	edium, 1	1-Low	<u>г </u>		1					
			_												
			ocia		/e		>								
			d sc		ctiv		nar.	ent	ject						
	nce	50	anc	ore	ele	ve	illq	noq	Pro						
	cie	Buing	ties	CC	am	ecti	isci	om	al /]						
ry	ic S	nee	anit	am.	ogr	E	r D	1 C	Stic						
oge	Bas	ngi	um zien	lgo.	Pr	pen	Inte	Skil	Prac						
ate	T	ых	НХ	Ъ		0			_			+			

Subject Code: Subject Name : COMPOSITE MATERIALS Ty / Lb/ L Т P/ С S.Lr R ETL **EBME22OE6 Prerequisite:** Nil 3 Ty 0/0 0/0 3

UNIT-I: INTRODUCTION

Limitations of Conventional Materials- Definition of Composite Materials- Types and Characteristics Applications.

UNIT- II: MATERIALS

Fibers- Materials- Fiber Reinforced Plastics- Thermo set Polymers- Coupling Agents, Fillers and Additives-Metal Matrix and Ceramics Composites.

UNIT- III: MANUFACTURING

Fundamentals- bag moulding- compression moulding pultrusion- filament winding- other manufacturing process-quality inspection and non-destructive testing.

UNIT- IV: MECHANICS AND PERFORMANCE

Introduction to Micro-mechanics- Unidirectional Lamina-Laminates- Inter laminar Stress- Statics Mechanical Properties- Fatigue Properties- Impact Properties- Environmental Effects- Fracture Mechanics and Toughening mechanisms, Failure Modes

UNIT- V: DESIGN

Failure Predictions- Design Considerations- Joint Design- Codes- Design Examples. Optimization of Laminated Composites- Application of FEM for Design.

Total No. of Periods:: 45

9

Q

9

9

9

TEXT BOOKS

1) P.K.Mallick, (2006) "Fiber-Reinforced Composites", Monal Deklatr Inc., New York.

2) B.D.Agrawal and L.J.Broutmam, (2006) "Analysis and Performance of Fiber Composites", John Wiley and Sons, New York.

REFERENCES

- 1) Micael hyer, (1998) "Stress Analysis of Fiber- Reinforced Composite Materials", TataMcGraw Hill.
- 2) *Ronald Gibson, (2007)* "Principles of Composite Material Mechanics", Tata McGraw Hill.

Subject Code:	Su	bject Na	ame: IND	DUSTRY	¥ 4. 0				Ty/Lb/ ETL	L	T/ SLr	P/R	C			
EBME22OE7	Pre r	requisite	e: NIL						Ту	3	0/0	0/0	3			
L : Lecture T : T/L/ETL : Theo	Tutorial Dry/Lab	S Lr Embedo	: Supervis led Theor	ed Learn y and La	ning P : 1b	Project	R : Rese	earch C	Credits				<u> </u>			
OBJECTIVES processes in the	S: The see 21st ce	student entury du	will learn le to incre	concept asing in	terconne	rapid ch ectivity a	ange to and smar	technol t autom	ogy, indus ation.	tries, and	societal j	patter	ns and			
OURSE OUTO	COMES	S (COs)	•													
CO1	Descri	be Indus	try 4.0 an	d scope	for India	an Indus	try									
CO2	Demor	nstrate co	onceptual	framewo	ork and i	road mag	p of Indu	ustry 4.0)							
CO3	Descri	be Robo	tic techno	logy and	l Augme	ented rea	lity for I	Industry	4.0							
CO4	Demor	istrate o	bstacle and	d framev	work cor	nditions	for Indu	istry 4.0								
CO5	Unders	stand the	Role of A	Augment	ed Reali	ity Indus	stry 4.0									
Mapping of Co	ourse O	utcome	s with Pro	ogram (Outcome	es (POs)				-	<u>.</u>					
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	012			
CO1	1		1			2	2	2	2	2	2	2				
CO2	1		1			2	2	2	2	2	2	2				
CO3	2	2	2	2	2	2	2	2	2	2	2	2				
CO4	1	2	2	1	2	1	1	1		1	2	2				
CO5	1	1	1	1	1	1	1	1	1	1	1	1				
Cos / PSOs	PS	01	PSO	02	PS	603	PS	504								
CO1					2		1									
CO2					2		1									
CO3					2		1									
CO4					2		1									
CO5					2		1									
3/2/1 indicates S	Strengtl	h of Cor	relation	3- High	n, 2- Me	dium, 1	-Low									
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project							

Subject Code:	Subject Name: INDUSTRY 4.0	Ty/Lb/	L	Τ/	P/R	С
		ETL		SLr		
EBME22OE7	Pre requisite: NIL	Ту	3	0/0	0/0	3

Unit-1: Introduction to Industry 4.0

Introduction, core idea of Industry 4.0, origin concept of industry 4.0, Industry 4.0 production system, current state of industry 4.0, Technologies, How is India preparing for Industry 4.0

Unit-2: A Conceptual Framework for Industry 4.0

Introduction, Main Concepts and Components of Industry 4.0, State of Art, Supportive Technologies, Proposed Framework for Industry 4.0.

Unit-3: Technology Roadmap for Industry 4.0

Introduction, Proposed Framework for Technology Roadmap, Strategy Phase, Strategy Phase, New Product and Process Development Phase.

Unit-4: Advances in Robotics in the Era of Industry 4.0

Introduction, Recent Technological Components of Robots- Advanced Sensor Technologies, Internet of Robotic Things, Cloud Robotics, and Cognitive Architecture for Cyber-Physical Robotics, Industrial Robotic Applications- Manufacturing, Maintenance and Assembly.

Unit-5: The Role of Augmented Reality in the Age of Industry 4.0

Introduction, AR Hardware and Software Technology, Industrial Applications of AR: Obstacles and Framework Conditions for Industry 4.0-Lack of A Digital Strategy alongside Resource Scarcity, Lack of standards and poor data security, Financing conditions, availability of skilled workers, comprehensive broadband infra- structure, state support, legal framework, protection of corporate data, liability, handling personal data.

Total No. of Periods : 45

9

9

9

9

9

Reference Books:

- 1. Alp Ustundag and Emre Cevikcan, "Industry 4.0: Managing the Digital Transformation".
- 2. Bartodziej, Christoph Jan, "The Concept Industry 4.0".
- 3. Klaus Schwab, "The Fourth Industrial Revolution".
- 4. Christian Schröder, "The Challenges of Industry 4.0 for Small and Medium-sized Enterprises".

List of Open Source Software/learning website: 1. www.nptel.ac.in/

D G Γ_ Κ. EDUCATIONAL AND RESEARCH INSTITUTE MED NIVERSITY D 0 BI E U University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution)

SubjectCode:	S	ubject	Nam	e :	VIRT	UAL	AN	D	Ty/Lb/	L	T /	P/R	С			
	Α	UGM	ENTED	REA	LITY				ETL		S.Lr					
EBME22OE8	Р	rerequ	isite: NI	Ĺ					Ту	3	0/0	0/0	3			
L:LectureT:Tuto	rial	SLr:	Supervise	edLear	ningP:	Project	R:Rese	archC:	Credits	1						
T/L/ETL:Theory	/Lab/E	Embedd	edTheor	yandLa	ıb											
OBJECTIVE:O	BJEC	TIVE:	The stuc	lents w	ill lear	n										
To introduce	the re	elevanc	e of this	course	to the	e existi	ng tech	nology	through de	emonstra	tions, ca	ase stud	ies and			
applications	ations with a futuristic vision along with socio-economic impact and issues derstand virtual reality, augmented reality and using them to build Biomedical engineering a															
• To understand virtual reality, augmented reality and using them to build Biomedical engineering ap																
COURSEOUTCOMES(COs) : The students will be able to																
CO1	Unde	rstand t	the physi	cal prir	nciples	of VR	& AR									
CO2	Creat	e a con	nfortable,	high-p	berform	nance V	R appl	ication	using Unit	У						
CO3	Analy	se and	understa	nd the	workir	ng of va	arious s	tate of	ate of the art VR & AR devices.							
CO4	Anal	yse &	Design	n a sy	vstem	or pro	to me	et given	specific	ations	with r	ealistic				
	engir	neering	; constra	ints												
CO5 Create and deploy a VR & AR application.																
Mapping of Cou	irse O	utcome	es with P	rograi	n Out	comes	(POs)	1	1	1	1	T				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12				
CO1	3	3	3	3	2	3	1	2	3	2	3		3			
CO2	3	3	3	3	3	3	1	3	2	2	3		3			
CO3	3	3	3	3	3	3	1	2	3	3	3		3			
CO4	3	3	3	3	3	3	1	2	3	3	2		3			
CO5	3	2	3	2	3	3	1	2	3	3	2	•	3			
COs /PSOs	<u>Р</u>	<u>801</u>	PS 2	02	Р	<u>803</u>	ľ	<u>2804</u>								
		2	3			3	•	2								
	-) 2	3			3	•	3								
CO3		, ,	3			3	•	2								
		, ,	3		•	5 2	•	5 7								
CU5 3/2/1 indicates St	renath	2 Dof Co	J rrelation	3. Н	igh 2-	5 Mediı	um 1.I	5 .0W								
	rengu			<u> </u>	1g11, 2-	Witcuit	, 1-1	2011								
							ury	nt	ct							
	ce		nd e	e		e	lina	one	roje							
	ien	ng	es a enc	Cor	ш	ctiv	scip	ubo	I/J							
iteg v	c S	eeri ce	miti Sci	am (igra tive	Ele	Di	C	tica							
or,	asio	ienc	uma cial	3gr	Prc lect	ben	nter	kill	ract							
	В	En Sc	Hı so(Pr	e	, of	I	\mathbf{v}	<u>д</u>							
						√										

SubjectCode:	Subject Name: VIRTUAL AND	Ту /	L	Т	P/ R	С
	AUGMENTED REALITY	Lb/ETL		/S.Lr		
EBME22OE8	Prerequisite: NIL	Ту	3	0/0	0/0	3

UNIT I INTRODUCTION

The three I's of virtual reality-commercial VR technology and the five classic components of a VR system -Input Devices: (Trackers, Navigation, and Gesture Interfaces): Three-dimensional position trackers, navigation and manipulation-interfaces and gesture interfaces-Output Devices: Graphics displays-sound displays & haptic feedback.

UNIT II VR DEVELOPMENT PROCESS

Geometric modeling - kinematics modeling - physical modeling - behaviour modeling - model Management.

UNIT III CNTENT CREATION CONSIDERATION FOR VR

Methodology and terminology-user performance studies-VR health and safety issues-Usability of virtual reality system- cyber sickness -side effects of exposures to virtual reality environment

UNIT IV VR ON THE WEB & VR ON THE MOBILE

JS-pros and cons-building blocks (WebVR, WebGL, Three.js, device orientation events)- frameworks (A-frame, React VR)-Google VR for Android-Scripts, mobile device configuration, building to android -cameras and interaction-teleporting-spatial audio-Assessing human parameters-device development and drivers-Design Haptics

UNIT V APPLICATIONS OF VR & AR

Mechanical applications-Robotics applications- Advanced Real time Tracking- other applications- games, movies, simulations.

TEXT BOOKS:

C. Burdea& Philippe Coiffet, "Virtual Reality Technology", Second Edition, Gregory, John Wiley & 1. Sons, Inc., 2008

2.Jason Jerald. 2015. The VR Book: Human-Centred Design for Virtual Reality. Association for Computing Machinery and Morgan & Claypool, New York, NY, USA.

REFERENCES:

1. Augmented Reality: Principles and Practice (Usability) by Dieter Schmalstieg& Tobias Hollerer, Pearson Education (US), Addison-Wesley Educational Publishers Inc, New Jersey, United States, 2016. ISBN:9780321883575

2. Practical Augmented Reality: A Guide to the Technologies, Applications, and Human Factors for AR and VR (Usability), Steve Aukstakalnis, Addison-Wesley Professional; 1 edition, 2016.

3. The Fourth Transformation: How Augmented Reality & Artificial Intelligence Will Change Everything, Robert Scoble&Shel Israel, Patrick Brewster Press; 1 edition, 2016.

Total No. of Periods : 45

0

9

9

OPEN ELECTIVE LABS

Subject Cod	e: Sub EN	oject Na GINES	me: I AND ST	NTERI 'EAM I	NAL CO LAB	OMBU	STION	Ty	/ Lb/	L	T S.Li	/ P/]	R	С			
EBME22OL	1							E	TL								
	Pr	erequis	ite: Nil					1	Lb	0	0/0	3/0)	1			
L : Lecture T	: Tutor	ial SL	r : Super	vised L	earning	g P : Pro	oject R	: Resear	ch C:	Cre	edits						
T/L/ETL : Th	eory/La	ab/Emb	edded Th	neory ar	nd Lab		-										
OBJECTIVI	ES: The	e studen	t will lea	rn													
• To ev	valuate	the perf	ormance	of stear	n turbin	IC engi	ines.										
COURSE O	UTCO	MES (C	COs): (3	3- 5)													
CO1	Unders	tand the o	concept of	working	and perf	of steam	m turbines										
CO2	Analyz	e the peri	formance a	nd heat b	balance te	st of IC o	engines	es									
CO3	Determ	ine and I	Draw perfo	ormance	character	istics cur	rve of IC	engines									
CO4	Descri	be work	ting of ste	am gene	erators, C	Condens	er and t	urbines									
CO5	Analyz	e the perf	formance c	haracteri	stics of s	steam gei	nerator										
Mapping of	Course	Outco	mes with	Progra	am Out	tcomes	(Pos)	1	1			1	r —				
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P O	9	PO10	PO11	P 12	O 2			
CO1	3	2		2	1		2										
CO2	3	1		2			2										
CO3	2			3			3										
CO4	3	1		2			2										
CO5	Μ			3			3										
Cos / PSOs]	PSO1	F	PSO2]	PSO3		PSO4									
CO1		3	2														
CO2	ź	2	2														
CO3	, ,	2	2														
CO4		2	2														
CO5		2	2														
3/2/1 indicates	Strengt	h of Coi	rrelation	3- Hig	h, 2- Me	edium, 1	l-Low	Г	r			1					
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project								
–																	

Subject Code: FBME22OL1	Subject Name : INTERNAL COMBUSTION ENGINES & STEAM LAB	Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
	Prerequisite: Nil	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS:

- 1. Study of IC engines components and loading devices.
- 2. Valve timing and port timing diagrams of 2stroke and 4stroke petrol and diesel engines
- 3. Performance test on single cylinder 4-stroke petrol engine.
- 4. Performance test on single cylinder 4-stroke diesel engine.
- 5. Heat balance test on 4-stroke single cylinder diesel engine.
- 6. Study of steam generators, Condenser and turbines.
- 7. Performance test on a steam generator

EDUCATIONAL AND RESEARCH INSTITUTE	Solution Wirk op 50
DEEMED TO BE UNIVERSITY	* * * *
University with Graded Autonomy Status	
(An ISO 21001 : 2018 Certified Institution)	

Subject Code:	: 1	Subject I	Name: (COMPU	TER A	IDED D	ESIGN	&	Ty/Lb/	T	T /	D/D	C		
EDMEAOLA	5	SIMULA	TION LA	AB					ETL	L	SLr	1/K	C		
EBME22OL2]	Prerequi	site:						Lb	0	0/0	3/0	1		
L : Lecture T :	Tutoria	I SLr:	Supervis	ed Learr	ing P:	Project	R : Rese	earch C:	Credits	1 1					
T/L/ETL : The	ory/Lat	/Embedo	led Theor	y and La	ıb										
OBJECTIVE	S: The	student v	vill												
• G	et pract	ical know	vledge thro	ough pra	ctice on	CNC M	lachines	and rela	ated softwa	are					
OURSE OUT	COME	S (COs)	: The stu	dent wi	l be abl	e to									
CO1	Unde	rstand the	e fundame	entals of	design a	nd draw	rings (Le	evel 2)							
CO2	Unde	rstand the	e different	comma	nds in A	uto CAI	D/ Solid	works o	or CATIA	Software	s(Level 2	:)			
CO3	Draw	the macl	hine parts,	assemb	ly and d	etailed d	rawing	using so	oftwares (L	level 4)					
CO4	Expo	se to the	numerical	analysis	s of desig	gned par	t (Level	vel 2)							
CO5	Analy	ze and in	nterpret th	e design	from th	e FEA s	oftware	(Level 4	4)						
Mapping of C	ourse (Outcome	s with Pro	ogram (Outcome	es (POs)	I	1			1				
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12		
CO1	2	3	3	-	3	2	2	3	3	3	2		2		
CO2	3	3	3	3	3	2	2	3	3	3	2	1	2		
CO3	3	3	3	3	3	2	2	3	3	3	2	2	2		
CO4	3	3	3	3	3	2	2	3	3	3	2	1	2		
CO5	3	3	3	3	3	2	2	3	3	3	2	-	2		
Cos / PSOs	PS	501	PSC	02	PS	03	PS	504							
CO1		3	3		2 2										
CO2		3	3		2		3								
CO3		3	3			2		3							
CO4		3	3		,	2		3							
CO5		3	3		,	2		3							
3/2/1 indicates	s Streng	gth of Co	orrelation	3- Hig	gh, 2- M	edium, 1	1-Low								
			0												
			Science												
		e	ial S												
ory		ienc	soc		tive		ary	nt	ct						
tega	ce	Sci	pun	e	lec	e	lina	one	roje						
Cai	ien	ng	es a	Cor	me	ctiv	scip	du	I/P						
	c Sc	eeri	niti	m	gra	Ele	Di	Co	ica						
	asia	gin	ıma	31gc	Prc	nen	nter	kill	ract						
	В	En	Hr	Pr		, ot	Sl In		Ъ,			<u> </u>			
						✓			\checkmark						

Subject Code: EBME22OL2	Subject Name : COMPUTER AIDED DESIGN & SIMULATION LAB	Ty/Lb/E TL	L	T/ SLr	P/R	С
	Prerequisite:	Lb	0	0/0	3/0	1

List of Experiments

1. CAD LAB

Introduction to computer Aided Design and Drafting Packages.

2D - Drawing using Auto CAD/ Solid works or CATIA Software

2D sectional views, part drawing, assembly drawing, detailed drawing.

Dimensioning, annotations, symbols - Welding, Surface finish, threads, Text, Bill of Materials, Title Block.

Exercises – Knuckle joint, Gib & Cotter joint, Screw Jack, Foot step bearing.

Orthographic views, Isometric views.

Solid modeling features-Boolean operations.

2.SIMULATION LAB

Simulation of Mechanical Components and Linkages using CATIA/FEA Software

			Periyar E.V	/.R. High R	oad, Madu	iravoyal, C	hennai-95	. Tamilna	du, India.	<u>г_ г</u>	[1 -	
Subject Code	: Su	bject N	Name: E	NGINE	ERING	HET MET	ROLO	GY	Ty / Lb/	L	T /	P/ R	С	
			LAE	5					ETL		S.Lr			
EBME22OL3		••								•	0.40	2/0	1	
X X X											0/0	3/0		
L: Lecture T:	Tutoria	I SLr:	Supervis	ed Leari	ning P : 1	Project I	R : Rese	arch C:	Credits					
1/L/EIL: The	ory/Lab	Embed	ded Theor	ry and L	ad									
OBJECTIVES	: . Ctudor	40 mill 1	0.000											
	. Studen	its will i ilor moo	surement	method										
Calibrat	Calibration of measuring instruments													
 Micro structures of various ferrous and non ferrous materials using microscopes. 														
Heat tree	atment	nrocesse	es of mater	rials		as mater	iuis usiii	5 mero	scopes.					
- fieut de		p1000550	is of mate	liuis.										
Course outcomes (cos) : The Student will be able to														
CO1	CO1 Gain practical knowledge about the linear and angular measurements (Level 3)													
CO2	Demon	strate th	e differen	t types o	of form r	neasure	ments (L	evel 3)		,				
CO3	Unders	tand the	various n	nethods (of prepa	ration fo	or micros	structur	e analysis.	(Level 2)			
CO4	Analyze and identify the microstructures of metals (Level 4)													
CO5	Measure and analyze the hardness of the materials after heat treatments (Level 4)													
Mapping of C	ourse C	Outcome	es with Pr	ogram	Outcom	es (Pos)								
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	
CO1	3	2	2	-	3	3	2	2	3	2	2		2	
CO2	3	2	2	-	3	3	2	2	3	2	2		2	
CO3	3	3	2	2	2	2	2	2	3	3	2		2	
CO4	3	3	2	2	2	2	2	2	3	3	2		2	
CO5	3	3	2	2	2	2	2	2	3	3	2		2	
Cos / PSOs		PSO1		PSO2		PSO3		PSO4						
CO1		3	3			2		3						
CO2		3	3			2		3						
CO3		3	3		,	2		2						
CO4	3	3	3		,	2		2						
CO5		3	3		,	2		2						
			cial		0									
			soc		tive		ary	nt	sct					
	ce		pu	n)	lec	Ø	lina	one	'Oje					
	ene	ഖ	s a	Ore	ne	tiv	cip	npc	/P1					
	Sci	erii	itie	n C	rai	llec	Dis	Cor	cal					
~	sic	ine	nce	rai	rog	п	er I	II (icti					
or	Ba	ing	lun cie	rog	P	be	Int	Ski	Prɛ					
lteg		ШS	ЗЦN						✓		-			
Ca														

Subject Code:	Subject Name: ENGINEERING METROLOGY	Ty / Lb/	L	Τ /	P/ R	C
EBME22OL3	LAB	ETL		S.Lr		
	Prerequisite: Nil	Lb	0	/0	3/0	1

LIST OF EXPERIMENTS

- 1. Measurement of Dimensions using Vernier Height Gauge
- 2. Measurement of Dimensions using Vernier Depth Micrometer
- 3. Measurement of Gear Nomenclature using Gear Tooth Vernier
- 4. Angular Measurement using Vernier Height Gauge and Sine Bar
- 5. Angular Measurement using Sine Bar, Slip Gauge and Dial Gauge
- 6. Thread Measurement using Profile Projector
- 7. Measurement of Dimensions using Tool Makers Microscope
- 8. Angular measurement using Bevel Protractor
 - 9. Calibration of Dial Gauge using Slip Gauge
 - 10. Flatness of given work piece using Autocollimator

Subject Code:	Subj	ect Name	: AUT	OMAT	TONL	AR			Ty/Lb/	L	T/	P/R	С
EBME22OL4									ETL		SLr		
	Prer	Prerequisite: NIL							Lb	0	0/0	3/0	1
L : Lecture T : T/L/ETL : Theor	L : Lecture T : Tutorial S Lr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab												
OBJECTIVES :	The st	tudent w	ill learn										
 To practice simple programs on microprocessors and micro controllers. To design and implement pneumatic and hydraulic circuits with automation studio software and with kits 													
OURSE OUTCOMES (COs) :													
CO1	Write Simple programs on microprocessors and micro controllers.												
CO2	Ι	Design a	nd implei	nent hy	draulic	circuits	s with a	utomati	on studio	software	e and wit	h kit	
CO3	Ι	Design a	nd implei	nent pn	eumatio	c circui	ts with a	automa	tion studio	o softwa	e and w	th kit	
CO4	ŀ	Knowled	ge of ind	ustrial 1	obots								
CO5	Knowledge in PLC trainer kit												
Mapping of Cou	urse Ou	tcomes w	ith Progra	m Outco	omes (PC)s)	-			<u>.</u>	-		
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	1		3		3								3
CO2	1		3		3								3
CO3	1		3		3								3
CO4	1		1		1								3
CO5	1		1		2								3
Cos / PSOs	P	501	PSC	02	PSO3 PSO4			SO4					
C01		1	3		3 3		3						
CO2		3	3			3		3					
CO3		3	3			3		3					
CO4		3	3			3		3					
CO5		1	3			3		3					
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				

Subject Code:	Subject Name : AUTOMATION LAB	Ty/Lb/	L	Τ/	P/R	С
EBME22OL4		ETL		SLr		
	Prerequisite: NIL	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS:

- 1. Exercises in PLC Trainer Kit.
- 2. Exercises in Pneumatic / Hydraulic Trainer Kit.
- 3. Exercises in Electro Pneumatic kit.
- 4. Exercises in Industrial Robot.
- 5. Exercises in microprocessors and micro controllers.
- 6. Design of pneumatic and hydraulic circuits using Automation Studio software.

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu	, India.

SubjectCode:	S	ubject	Nam	e :	VIRT	UAL	AN	D	Ty/Lb/	L	T/	P/R	С
EBME22OL5	A					LAB			ETL		S.Lr		
	P	rerequ	isite: NI						Lb	0	0/0	3/0	1
L:LectureT:Tuto	rial	SLr:S	Supervise	edLeari	ningP:H	ProjectF	R:Resea	archC:0	Credits				
T/L/ETL:Theory	/Lab/E	mbedd	edTheory	vandLa	b								
OBJECTIVE: ()BJE(CTIVE	Thestude	entswil	llearn								
To introduce	e the re	elevance	e of this	course	to the	existin	ig techi	nology	through de	emonstra	tions, ca	ise stud	ies and
 To understand virtual reality, augmented reality and using them to build Biomedical engineering applications 													ions
COURSEOUTCOMES(COs) : The students will be able to													
CO1 Understand the seting of Unity and Visual Studio for VR development													
CO2	Demoi	nstrate t	he worki	ng of H	HTC V	ive and	Googl	e Card	board				
CO3	Apply	the kno	wledge o	of VR a	& AR o	on chang	ge the c	olour a	and texture	of Game	object.		
CO4	Create an immersive environment for living room tennis court												
CO5	Apply the knowledge of assembly of Gear box and tailstock using VR & AR.												
Mapping of Cou	rseOu	tcomes	withPro	gram(Jutcon	nes (PC	Ds)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	2	3	1	2	3	2	3	3	3
CO2	3	3	3	3	3	3	1	3	2	2	3	2	3
CO3	3	3	3	3	3	3	1	2	3	3	3		3
CO4	3	3	3	3	3	3	1	2	3	3	2		3
CO5	3	2	3	2	3	3	1	2	3	3	2	3	3
COs /PSOs	P	SO1	PS	02	P	SO3	P	SO4					
CO1		3	3			3		3					
CO2	Í	3	3			3	í	3					
CO3		3	3			3		3					
<u>CO4</u>		3	3			3		3					
<u>C05</u>		2	3			3		5					
			al										
			soci		ive		ry	Jt	ct				
	ee		pud 8	Ð	lect	e	lina	onei	oje				
ory	ien	ng	es a	Cor	me	ctiv	scip	npo	I/P				
Iteg	c Sc	eeri ce	niti ce	am	gra	Ele	Di	CO	tica				
Ca	asi	ngin iene	uma ien(ogr	Prc	pen	nter	ikill	rac				
		Er	Hı Sc	Ρr		Ō	Π						
						ľ							

Subject	Subject Name: VIRTUAL REALITY AND	Ту /	L	Т	P/ R	С
-	AUGMENTED REALITY LAB	Lb/ETL		/S.Lr		
Code:EBME22OL5	Prerequisite: NIL	Lb	0	3/0	3/0	1

List of Experiments

- 1. Installation of Unity and Visual Studio, setting up Unity for VR development
- 2. Demonstration of the working of HTC Vive
- 3. Demonstration of the working of Google Card board
- 4. Develop a scene in Unity that includes a cube, plane and sphere
- 5. Change the colour and material of Game object
- 6. Change the texture of Game object
- 7. Create an immersive environment (living room)
- 8. Create an immersive environment (tennis court)
- 9. Assembly of Gear box using VR & AR
- 10. Assembly of tailstock using VR & AR