

F/CDD/004 Rev.00.dt.20.03.2020

CURRICULUM AND SYLLABUS (2022 REGULATION) (for the students admitted in 2022-23 onwards)

MASTER OF TECHNOLOGY DESIGN ENGINEERING (FULL TIME)

DEPARTMENT OF MECHANICAL ENGINEERING

M.Tech-Design Engineering-2022 Regulation

DEPARTMENT VISION

To educate, nurture and motivate the upcoming Engineering professionals with moral and ethical values to become a committed punctilious Engineers to the Nation.

DEPARTMENT MISSION

- M1: Providing quality education through well-structured curricula supplemented with Practical training, guest lectures by eminent professionals, field visits to leading industries and also in- plant training.
- M2: Enhancing skills through faculty development programme.
- M3: Providing ambience for innovative projects and extra-curricular activities
- M4: Equipping the department with contemporary infra-structure and the state of art R&D centre to cater to the needs of research scholars and industries
- M5: Providing training to students in emerging areas like robotics and CAD/CAM.
- **M6:** Nurturing students having creative ideas to adopt innovative projects which can be subsequently commercialized.

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

PEO1: In depth and research based knowledge in design engineering to recognize, inquire, analyze and solve complex engineering design problems.

PEO2: The competencies to work well in local and international team environments and to be effective written and oral communicators.

PEO3: The ability to recognize the importance of, and engage in life-long learning through self study and continuing education

PEO4: Ability to undertake research in emerging areas and to adapt oneself to changing needs of the society considering sustainability as well as societal, environmental and public health aspects.

PROGRAM OUTCOMES

PO1	An ability to independently carry out research investigation and development
	work to solve practical problems
PO2	An ability to write and present an assignment and report writing.
PO3	An ability to apply knowledge of design concepts to solve engineering
	problems.
PO4	An ability to identify, select and apply appropriate techniques, resources and
	design tools to model and analyze engineering design problems.
PO5	An ability to engage in life- long learning for solving design problems taking
	into consideration sustainability, societal, ethical and environmental aspects

LIST OF PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Ability to Design and analyze of mechanical components,

assemblies and systems

PSO2: Ability to integrate various automation processes for product

design and development.

PSO3: Ability to use advanced software tools in design and development of product.

M.Tech: Design Engineering (FT) Curriculum – 2022 Regulation

(For students admitted in 2022-23 onwards)

	SEMESTER I										
SI.	Course Code	Course Name	Ty/Lb/	Teach	Credits						
NO				L	T/SLr	P/R					
1	EMMA22002	Applied Mathematics for Design Engineers	Ту	3	1/0	0/0	4				
2	EMDE22001	Computer Aided Design and Manufacturing	Ту	3	0/0	0/0	3				
3	EMDE22EXX	Programme Elective1	Ту	3	0/0	0/0	3				
4	EMDE22EXX	Programme Elective 2	Ту	3	0/0	0/0	3				
5	EMDE22L01	Computer Aided Design Lab –I (Modeling)	Lb	0	0/0	4/0	2				
6	EMDE22L02	Rapid Prototyping Lab	Lb	0	0/0	4/0	2				
7	EMCC22001	Research Methodology and IPR	Ту	3	0/0	0/0	3				
8	EMCC22IXX	AuditCourse1	IE	2	0/0	0/0	0				
		Total		17	01	8	20				

	SEMESTER II											
Sl.No	Course Code	Course Code Course Name		Teac	Credits							
•			IL	L	T/SLr	P/R						
1	EMDE22002	Advanced Finite Element Methods	Ту	3	1/0	0/0	4					
2	EMDE22003	Robotics and Sensors	Ту	3	0/0	0/0	3					
3	EMDE22EXX	Programme Elective 3	Ту	3	0/0	0/0	3					
4	EMDE22EXX	Programme Elective 4	Ту	3	0/0	0/0	3					
5	EMDE22L03	Robotics simulation Lab	Lb	0	0/0	4/0	2					
6	EMDE22L04	Computer Aided Design Lab –II (Analysis)	Lb	0	0/0	4/0	2					
7	EMCC22IXX	AuditCourse-2	IE	2	0/0	0/0	0					
8	EMDE22I01	Term paper	IE	0	0/0	0/4	2					
		Total		14	01	12	19					

	SEMESTER III												
Sl.	Course Code	Course Name	Ty/Lb/	Teach	ing Sch	eme	Credits						
NO			п	L	T/S Lr	P/R							
1	EMDE22004	Mechanical Vibrations	Ту	3	1/0	0/0	4						
2	EMDE22EXX	Programme Elective 5	Ту	3	0/0	0/0	3						
3	EMOL22I01	Open Elective- NPTEL/SWAYAM/Any MOOC Approved BY AICTE/UGC	IE	3	0/0	0/0	3						
4	EMDE22I02	Summer Internship	IE	0	0/0	4/0	2						
5	EMDE22L05	Dissertation Phase-I	Lb	0	0/0	5/5	5						
		Total		9	01	14	17						

SEMESTER IV											
Sl. No	Course Code	Course Name	Ty/Lb/ IE	eme	Credit						
110				L	T/SLr	P/R	5				
1	EMDE22L06	Dissertation Phase-II	Lb	0	0/0	10/10	10				
2	EMDE22I03	Research Publication	IE	0	0/0	2/2	2				
		Total		0	0	24	12				

		ELECTIVES (THEORY)				
S.No	Sub. Code	Title of Subjects	Ty/ Lb	L	Т	Р	С
		PROGRAMME ELECTIVE -1					
1.	EMDE22E01	Advanced Machine Design	Ту	3	0	0	3
2.	EMDE22E02	Design for Manufacturing and Assembly	Ту	3	0	0	3
3.	EMDE22E03	Advanced Stress Analysis	Ту	3	0	0	3
		PROGRAMME ELECTIVE -2					
4.	EMDE22E04	Advanced Material Technology	Ту	3	0	0	3
5.	EMDE22E05	Rapid Prototyping	Ту	3	0	0	3
6.	EMDE22E06	Advanced Mechanism Design	Ту	3	0	0	3
		PROGRAMME ELECTIVE -3					
7.	EMDE22E07	Tribology in Design	Ту	3	0	0	3
8.	EMDE22E08	Computational Fluid Dynamics	Ty	3	0	0	3
9.	EMDE22E09	Creep, Fatigue and Fracture	Ty	3	0	0	3
		PROGRAMME ELECTIVE -4					
10.	EMDE22E10	Design of Material Handling Equipment	Ту	3	0	0	3
11.	EMDE22E11	Artificial Intelligence And Expert Systems	Ту	3	0	0	3
12.	EMDE22E12	Optimization in Engineering Design	Ту	3	0	0	3
		PROGRAMME ELECTIVE -5					
13.	EMDE22E13	Product Design and Development Strategies	Ту	3	0	0	3
14.	EMDE22E14	Product Life Cycle Management	Ту	3	0	0	3
15.	EMDE22E15	Design Thinking and Innovation	Ту	3	0	0	3

		AUDIT COURSE 1&2					
Sl.No	Course Code	Course Name	Ty/Lb		Teachi	ng Sch	neme
				L	T/SLr	Р	C
1	EMCC22I01	English for Research paper Writing	Ту	2	0/0	0/0	0
2	EMCC22I02	Disaster Management	Ту	2	0/0	0/0	0
3	EMCC22I03	Sanskrit for Technical Knowledge	Ту	2	0/0	0/0	0
4	EMCC22I04	Value Education	Ту	2	0/0	0/0	0
5	EMCC22I05	Constitution of India	Ту	2	0/0	0/0	0
6	EMCC22I06	Pedagogy Studies	Ту	2	0/0	0/0	0
7	EMCC22I07	Stress Management by Yoga	Ту	2	0/0	0/0	0
8	EMCC22I08	Personality Development through Life Enlightenment Skills	Ту	2	0/0	0/0	0
9	EMCC22I09	Research Publication Ethics	Ту	2	0/0	0/0	0

Summary of Credits:

Semester	Credits
Ι	20
Π	19
III	17
IV	12
Total	68 Credits

SEMESTER I

M.Tech-Design Engineering-2022 Regulation

Subject Code EMMA22002	Subj	ect Name: DI	t Name: APPLIED MATHEM DESIGN ENGINEERS					y/ L b/	T/ S.Lr	P/R	C		
	Prerequis	ite: UG level	Numerica	l metho	ods		Т	y 3	1/0	0/0	4		
L : Lecture T : Tut	orial S.L	r : Supervise	d Learning	g P:Pr	oject R :	Research C	C: Credits						
Ty/Lb/ETL : Theo	ry/Lab/Em	bedded Theo	ory and Lab)	-								
OBJECTIVES :													
The student shou	ild be mad	e to:											
• To learn th	 Forearring to find the solution of algebraic equations Having problem solving to differential equations 												
 Having problem solving to differential equations. Having aritical thinking and inpovetive skills 													
Having critical thinking and innovative skills													
COURSE OUTC	OMES (CO	Os):							. ~				
CO1	To be abl	e to understa	nd Functio	ons to fi	nd solution	ons of algeb	oraic equa	ations at	nd Syste	ms of			
<u>CO2</u>	To Unde	ations: rstand the pr	oblems and	1 solve	the differ	ential equat	ions						
C02	To be abl	e to understa	nd and sol	ve the r	arabolic	equations	.10115						
CO4	To be don To Derive	e and use the	numerical	solutio	on of a giv	ven problem	ns by usir	ig hvne	rbolic e	nuatior	18		
CO5	To Under	To Understand the problem of elliptic equation and solve by numerical methods											
Mapping of Cour	se Outcom	es with Pro	gram Out	comes	(POs)								
COs/POs	PO1	PO2	PO3	P	04	PO5	PSO1]	PSO2	PSC	03		
CO1	2	3	2		2	3							
CO2	3	2	1		2	2							
CO3	3	3	1		2	2							
CO4	3	2	2		2	1							
CO5	3	3	1		2	1							
3/2/1 Indicates St	rength Of	Correlation	<u>, 3 – High</u>	, 2- Me	<u>dium, 1-</u>	Low			<u> </u>				
Category	Basic Sciences	Humanities and Social Sciences Program Core	Program Electives	Open Electives	Practical / Project		Internships / Technical Skill	Soft Skills					

Subject Code EMMA22002	Subject Name: APPLIED MATHEMATICS FOR DESIGN ENGINEERS	Ty/ Lb/	L	T/ S.Lr	P/R	C
	Prerequisite: UG level Numerical methods	TY	3	1/0	0/0	4

UNIT I NUMERICAL SOLUTIONS TO ALGEBRAIC EQUATIONS

Systems of linear equations: Gauss Elimination method, pivoting techniques, Thomas algorithm for tridiagonal system – Jacobi, Gauss Seidel, SOR iteration methods - Systems of nonlinear equations: Fixed point iterations, Newton Method, Eigen value problems: power method, inverse power method-Faddeev – Leverrier Method.

UNIT II NUMERICAL SOLUTIONS TO DIFFERENTIAL EQUATIONS

Runge Kutta Methods for system of IVPs, numerical stability, Adams-Bashforth multistep method, solution of stiff ODEs, BVP: Shooting method, Direct method, Orthogonal collocation method, Orthogonal collocation with finite element method, Galerkin finite element method.

UNIT III FINITE DIFFERENCE METHODS FOR PARABOLIC EQUATIONS 12

Parabolic equations: explicit and implicit finite difference methods, weighted average approximation - Dirichlet and Neumann conditions – Two dimensional parabolic equations – ADI method.

UNIT IVFINITE DIFFERENCE METHODS FOR HYPERBOLIC EQUATIONS12First order hyperbolic equations – method of characteristics, different explicit and implicit methods;numerical stability analysis, method of lines – Wave equation: Explicit scheme- Stability of above schemes.

UNIT VFINITE DIFFERENCE METHODS FOR ELLIPTIC EQUATIONS12Laplace and Poisson's equations in a rectangular region: Five point finite difference schemes, Leibmann's
iterative methods, Dirichlet and Neumann conditions – Laplace equation in polar coordinates: finite
difference schemes – approximation of derivatives near a curved boundary while using a square mesh.12

Total no. of Periods: 60

12

12

Reference Books:

- 1. Saumyen Guha and Rajesh Srivastava, "Numerical methods for Engineering and Science", Oxford Higher Education, New Delhi, 2010.
- 2. Gupta S.K., "Numerical Methods for Engineers", New Age Publishers, 1995
- **3.** Burden, R.L., and Faires, J.D., "Numerical Analysis Theory and Applications", Cengage Learning, India Edition, New Delhi, 2009.
- 4. Jain M. K., Iyengar S. R., Kanchi M. B., Jain, "Computational Methods for Partial Differential Equations", New Age Publishers, 1993.
- 5. Morton K.W. and Mayers D.F., "Numerical solution of partial differential equations", Cambridge University press, Cambridge, 2002.
- 6. Sastry S.S., Introductory Methods of Numerical Analysis, Prentice Hall of India, (2003).

Subject Code: EMDE22001	ect Code:Subject Name: COMPUTER AIDED DESIGNDE22001AND MANUFACTURING								Ty/ Lb/	L	T/ S.Lr	P/R	С
	P T	rerequis echnolo	ite: Engi gy	neering	g Graph	ics and	Manufa	acturing	Ту	3	0/0	0/0	3
T/L/: Theory/	Lab L :	Lectur	e T : Tut	torial I	P:Prace	tical/ P	roject	R : Rese	earch C	: Cred	lits	•	
OBJECTIVE: 1	The stu	dents wi	ill learn										
 To expose the basics of computer based modeling principles of part are growning process planning and product data management 													
• principles of part programming process planning and product data management													
COURSE OUT	ГСОМІ	ES (COs	s) : The s	student	s will b	e able 1	to						
CO1	Unders	stand va	rious Co	mputer	Graph	ics alg	orithms	and trar	nsformat	ion sys	stems		
CO2	Apply engine	the knov ering de	wledge o sign prob	f analy olems	tical an	d geor	netric f	orm of	various	curves	to solve	the	
CO3	Model	ling of 3	D surfac	es, wire	frames	and b	oundar	y repres	sentatio	n in ge	ometric	mode	ling
CO4	Apply	compute	er aided p	process	plannin	g techn	iques a	nd mode	ern manu	ıfactur	ing syst	em	
CO5	Prepar	e CNC p	oart progi	ammin	g to per	form m	anufact	uring ar	nd comp	uter p	rocess	contro	ol.
Mapping of Co	ourse O	utcome	s with Pr	ogram	Outco	mes (P	Os)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3					
CO1	1	1	3	2	1	1	1	3					
CO2	2	1	3	3	1	3	2	3					
CO3	1	3	3	3	1	3	2	3					
CO4	3	2	3	2	1	1	3	3					
CO5	3	2	1	1	1	1	3	3					
3/2/1 indicates	Streng	th of Co	rrelation	n 3-H	igh, 2-]	Mediu	n, 1-Lo	W					
Category	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Audit Course							
	N												

Subject Code: EMDE22001	Subject Name: COMPUTER AIDED DESIGN AND MANUFACTURING	Ty/ Lb/	L	T/ S.Lr	P/R	С					
	Prerequisite: Engineering Graphics and Manufacturing Technology	Ту	3	0/0	0/0	3					
T/L/: Theory/Lab	T/L/·Theory/Lab L.·Lecture T·Tutorial P·Practical/Project R·Research C·Credits										

UNIT I: INTRODUCTION

Definition, Interactive Computer Graphics-Line and Circle plotting algorithm (DDA & Bresenham's), Transformation, Translation, Rotation, Scaling & Mirroring, Concatenated Transformation, Clipping Algorithm, Hidden Line Removal, Explicit and implicit equations, parametric equations.

UNIT II: SPLINES AND CURVES

Cubic Splines-Algebraic and geometric form of cubic spline, tangent vectors, parametric space of a curve, blending functions, four point form, reparametrization, truncating and subdividing of curves. Graphic construction and interpretation, composite pc curves. Bezier Curves-Bernstein basis, equations of Bezier curves, properties, derivatives. B-Spline basis, equations, knot vectors, properties, and derivatives.

UNIT III: SURFACES AND SOLIDS

Bi-cubic surfaces, Coon's surfaces, Bezier surfaces, B-Spline surfaces, surfaces of revolutions, Sweep surfaces, ruled surfaces, tabulated cylinder, bilinear surfaces, Gaussian curvature. Tri-cubic solid, Algebraic and geometric form.3Dwire frames, Boundary representation, half space modeling, spatial cell, cell decomposition, classification problem.

UNIT IV: PRODUCTION PLANNING AND CONTROL

Group Technology, Computer Aided Process Planning: Retrieval & Generative CAPP, Production Planning, Material Requirement Planning (MRP), mechanism of MRP, benefits, and Capacity Planning. Production Control, Factory Data Collection system, Just-in-Time, Automated Material Handling System, Data Flow in Manufacturing System, Product Data Management System.

UNIT V: COMPUTER NUMERICAL CONTROL

Introduction to NC, Principles and Classifications of CNC, DNC, Part Programming, Adaptive control machining systems, adaptive control optimization system, adaptive control constraint system, applications to machining processes, computer process monitoring, hierarchical structure of computers in manufacturing, and computer process control.

Total No. of Periods: 45

REFERENCES

- 1. Ibrahim Zeid, CAD/CAM. Tata McGraw Hill
- 2. Roger and Adams, Elements of Computer Graphics. Tata McGraw Hill
- 3. Micheal Mortenson, E. Geometric Modeling. McGraw Hill Publishers
- 4. Lalit Narayan, K. MallikarjunaRao, K. and Sarcar, M.M.M. Computer Aided Design and Manufacturing, PHI Publishers

9

9

9

Q

Subject Cod EMDE22L0	le:)1	Subjec LAB-I	IGN	Ty/ Lb/	L		T/ S.Lr	P/R	C					
		Prerequ	isite: E	ngineering	g Graphics	and	Finite	Element	Lb	0)	0/0	4/0	2
T/L/: Theo	rv/Lah	Vietnoc	l ture T :	: Tutorial	P :Pract	ical/	Proiec	t R : Re	searc	h C:	: Cre	dits		
	The a	tudont			1 .11400		rojec		scurc	n C.		uns		
$\sum_{i=1}^{n} T_{i} f_{i}$	2: Ine s miliarize	the stu	s will lea idents u	a rn vith the wo	orking of (model	lina						
\rightarrow To m	ake the s	students	aware	of design	automation	עה. n and	docur	nentation						
COURSE O		MES ((Os): 1	The stude	nts will be		to	nentation	•					
CO1	Understa	nd the ba	sic concer	ots of CAD	softwares	uon								
CO2	Create de	sign usin	g various	design softw	vare like. CR	EO. (CATIA a	and solid w	orks.					
CO3	Create so	lid and su	irface mo	dels of mech	anical compo	onents								
CO4	Prepare	assem	olv of va	arious Med	chanical co	ompo	nents							
C05	Prenare	design	docum	entation		- mp								
Mapping of	Course	Outco	mes wit	th Program	m Outcon	nes (]	POs)							
	PO1	T		PO3	PO4		PO5	DSO1	DSC	2	DC	03		
05/105	101	1	02	105	104		103	1301	150	J <u>4</u>	15	03		
CO1	1			2	2		2	1				3		
CO2	3			3	3		2	3	2			3		
CO3	3			3	3		3	3	1			3		
CO4	3			3	3		2	2	2			3		
CO5	3			3	3		2	3				3		
3/2/1 indica	tes Stre	ngth of	Correl	ation 3-2	High, 2- N	/ledi	ım, 1-	Low						
Category	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Audit Course								

Subject Code: EMDE22L01	Subject Name : COMPUTER AIDED DESIGN LAB-I (MODELING)	Ty/Lb/ IE	L	T /S.Lr	P/R	С
	Prerequisite: Engineering Graphics and Finite Element Method	Lb	0	0/0	4/0	2
T/L/: Theory/Lab	L : Lecture T : Tutorial P :Practical/ Project R :	Research	C: Cr	edits		

I MODELLING:

- Introduction to modeling techniques- Types of modeling- wire frame, surface and solid modeling Solid modeling Extrude, Revolve, Sweep, etc and Variational sweep, Loft, etc.
- Generation of surfaces of revolution, surfaces of extrusion, surfaces by skinning operation etc.
- Assembly-Constraints, Exploded Views, Interference check
- Creation of different Mechanical Components like Crank shaft, Connecting rod, Piston and etc. Exercises will be given using packages like CREO/CATIA/ Solid works etc.

Total no. of Periods: 60

Subject Code: EMDE22L02	S	ubject I	T/S	5.L	P/R	С							
	Pr	rerequisi	ite: Non	e				Lb	0	0)/0	4/0	2
T/L/: Theory/L	ab L :	Lectur	e T : Tu	torial l	P :Prac	tical/ Pro	ject R :	Research	C: Cr	edits		ľ	
OBJECTIVE: T	he stud	lents wi	ll learn										
• To Design an	nd fabr	icate wo	orking mo	odels fo	or the co	onceptual	testing ap	plications					
COURSE OUT	COME	ES (COs	s) : The s	student	s will b	e able to							
CO1	Desci	ribe the	difference	ces and	of the a	pplication	n of a rang	ge of addit	ive ma	anufac	turing	g proce	esses.
CO2	Optir produ	nize the iced.	process	parame	ters of]	FDM mac	hine to ir	nprove the	qualit	ty of th	he par	ts	
CO3	Build	l comple	ex engine	ering a	ssembli	es in plas	tic materi	al with les	s proc	ess pla	anning	g.	
CO4	Impro	ove surf	ace finis	h of fab	ricated	plastic co	mponents	s for the en	gineer	ring ap	oplica	tions.	
CO5	Desig	gn and fa	abricate	working	g model	s for the c	conceptua	l testing a	oplicat	ions.			
Mapping of Co	urse O	utcome	s with P	rogram	Outco	mes (POs	5)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3					
CO1	3	2	3	3	2	3	3	3					
CO2	3	2	3	3	2	3	3	3					
CO3	3	2	3	3	2	3	3	3					
CO4	3	2	3	3	2	3	3	3					
CO5	3	2	3	3	2	3	3	3					
3/2/1 indicates S	Strengt	th of Co	rrelatio	n 3-H	igh, 2-	Medium,	1-Low						
Category	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Audit Course							
				~									

Subject Code: EMDE22L02	Subject Name : RAPID PROTOTYPING LAB	Ty / Lb	L	T/S. Lr	P/R	С
	Prerequisite: None	Ту	0	0/0	4/0	2
T/L/ : Theory/Lab	L : Lecture T : Tutorial P :Practical/ Project R : F	Research	C: C	redits		

- 1. Review of CAD Modeling Techniques and Introduction to RP
- 2. Forming Groups & Assigning Creative Idea
- 3. Generating STL files from the CAD Models & Working on STL files
- 4. Modeling Creative Designs in CAD Software
- 5. Assembling Creative Designs in CAD Software
- 6. Processing the CAD data in Catalyst software (Selection of Orientation, Supports generation,
- Slicing, Tool path generation)
- 7. Simulation in Catalyst Software
- 8. Sending the tool path data to FDM machine
- 9. Fabricating the physical part on FDM machine
- 10. Removing the supports & post processing (cleaning the surfaces)
- 11. Demonstrating Creative Working Models
- 12. Converting CT/MRI scan data into STL file using MIMICS software (Demo)

Total No. of Periods: 60

Subject Code: EMCC22001		Subjec	t Name : I	RESEAR	RCH ME IPR	Y AND	Ty / Lb	L	T/S.Lr	P/R	C		
	-	Prerequis	site: core s	ubjects					Ty	3	0/0	0/0	3
T/L/ : Theory/La	ab L :	Lecture	T : Tutori	al P:I	Practical	l/Projec	t R:R	esearch	C: Cre	dits '	T/L The	ory/Lab	.I
OBJECTIVE: T	he goa	l is to em	phasize th	e importa	ance of in	nnovatio	on and c	reativity	by und	erstai	nding the	research	
concepts andethic	es whic	ch will aid	d to build t	he natior	n IPR sta	tus.							
COURSE OUTC	COME	S (COs)	: By doing	g this cou	urse stuc	lents wi	11						
CO1	Unde	erstand re	search pro	blem for	mulation	by Ana	lyzing 1	research	related	infor	mation a	nd its	
	exec	ution byf	ollowing r	esearch e	ethics								
CO2	Unde	erstand th	at today's	world is	controlle	ed by Co	mputer,	Inform	ation Te	echno	ology, but	tomorrov	W
~~~	worl	d willbe i	uled by id	eas, conc	ept, and	creativi	ty.					<u> </u>	
CO3	Unde	erstanding	g that when	n IPR wo	ould take	such im	portant	place in	growth	of 11	idividual	s & natioi	n,
	1t 1S	needless	to empha	asize the	need of	f inforn	nation a	bout In	tellectua	al Pro	operty R	ight to b	e
<u>CO1</u>	Und	oretand th	of IDD pro	s in gene	rai & en	gineerin on inco	g in par	invonto	re for fu	irthar	rasaarah	work on	d
004	inveg	tmentin	R & D wh	heetion p	to creat	ion of n	aw and l	nivenio	roducts	and i	n turn hr	ings abou	u t
	econ	omic gro	wth and so	cial bene	efits			Jetter pi	ouuers,	and I	ii tuiii oi	ings abou	ι,
CO5	Draf	ting of t	echnical r	atents. r	egistratio	on proce	esses of	Rights	and D	uties	of Paten	tee: Pater	nt
000	infrii	ngement;	Licensing	– Franch	nising - J	oint ven	tures: N	on-Disc	losure A	Agree	ements (N	IDAs)	
Mapping of Cou	rse Oı	itcomes	with Prog	ram Out	comes (]	Pos)	,			0		,	
Cos/Pos Po	01	PO2	PO3	PO4	PO5	PSO1	PSO	2 PS	03				
	-						- 50						
CO1	2	3	2	2	3	2	2		1				
CO2	3	2	1	2	2				2				
CO3	3	3	1	2	2		3	;	1				
CO4	3	2	2	2	1	2	3	5	1				
CO5	2	2	2	2	2	2	3	6	1				
3/2/1 indicates St	trengt	h of3 Co	rrelation	3- High	, 2- Med	ium, 1-]	Low						
								al					
		es	cial					nic					1
~		enc	Soc		es		ct	ech					l
ror	es	Sci	pu	e	ctiv	es	oje	/ T6					
ateg	suc	gu	e se	Or	Elec	tiv	Pr	sdi					
Ű	Scie	eri	nitie es	E E	mI	Elec	al /	idst	dills				l
	ic	jine	nar	gra	gra	en I	ctic	ill	t SI				
	Bas	Eng	Hur Scie	Pro	Pro	Opé	Pra	Sk	Sof				
1				1		-				1			



Subject Code:	Subject Name : RESEARCH METHODOLOGY	Ty / Lb	L	Т	P/R	С
EMCC22001	AND IPR			/S.Lr		
	Prerequisite: core subjects	Ту	3	0/0	0/0	3

T/L/: Theory/Lab L : Lecture T : Tutorial P : Practical/Project R : Research C: Credits T/L Theory/Lab

## UNIT 1: SELECTION, ANALYSIS AND STATEMENT OF THE RESEARCH PROBLEM;

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

## **UNIT 2:** *RESEARCH DESIGN*

Types of Study, Types of Data, Measures of Variability, Setting up the Hypotheses, data collection techniques and tools, sampling, Describing data – Charts and graphs ; Data processing – Categorization, coding, summarization.

## **UNIT 3: DATA ANALYSIS AND REPORT WRITING**

Statistical measures, Regression and correlation, significance test; Report writing – Purpose, format, content, editing and evaluation. Using Citation tools; Report for specific purposes – Theses, Journals, Grant application. Oral presentation to an audience; use of project management digital tools and plagiarism checking.

## **UNIT 4: INTRODUCTION TO INTELLECTUAL PROPERTY**

Types of intellectual property rights – Patent, Copyright, Trade Mark, Industrial Design, Geographical Indication, Trade Secrets - Traditional Knowledge. Elements of Patentability - Novelty, Non Obviousness (Inventive Steps), Industrial Application – Non patentable inventions – Process of patenting – National and International – Form and Fees for IP India

## **UNIT 5: PRIOR ART SEARCH, PATENT DRAFTING**

Drafting patent Claims – Types of claims - Registration Procedure, Rights and Duties of Patentee; Patent infringement; Licensing – Franchising - Joint ventures; Non-Disclosure Agreements (NDAs) - Material Transfer Agreements (MTAs).

## **Total Number of Hours: 30**

## **REFERENCES:**

- 1. C. Vijayalakshmi and C. Sivapragasam (2011) Research Methods Tips and Techniques, , MJP Publishers
- 2. Deboraj Rumsey (2010) Statistics Essentials for Dummies, Wiley Publishing Incorporated
- 3. Bouchoux (2013) Intellectual Property, DELMAR CENGAGE Learning, USA
- 4. V K Ahuja (2017) Law Relating to Intellectual Property Rights, LexisNexis Butterworths India

## IMPORTANT WEB LINKS

- 5. <u>https://www.wipo.int/portal/en/index.html</u>
- 6. <u>http://ipindia.nic.in/</u>
- 7. <u>https://www.epo.org</u>
- 8. <u>https://www.uspto.gov</u>

6

6



# **SEMESTER II**



Subject Code: EMDE22002	Su El	ıbject N LEMEN	Name : A NT ANA	DVAN LYSIS	CED F	Ту /	Lb	L	T/SLr	P/R	С		
	Pr M	erequis aterials	site: Eng	gineerir	ng Mec	hanics, S	Strength	of Ty	,	3	1/0	0/0	4
T/L/: Theory/I	Lab L :	Lectu	re T : Tı	itorial	P :Pra	ctical/ P	roject R	: Resea	rch	C: (	Credits		
<b>OBJECTIVE:</b>													
To learn and ap	ply fini	te elem	ent solut	ions to a	structur	al, therm	al, dynan	nic prob	lem	to d	levelop the	e know	ledge and
skills needed to	effectiv	vely eva	aluate fin	ite elen	nent ana	alyses.							
COURSE OUT	COM	ES (CO	s) : The	studen	ts will	be able t	0						
CO1	Demo	onstrate	the Finit	e Eleme	ent forn	nulation	for linear	problen	ns in	pla	te and she	ll elem	ents
CO2	Solve	the pro	blems of	Elasto	Plastic	ity,Visco	plasticit	y using 1	[tera	tive	Techniqu	es	
CO3	Form	ulate dy	mamic p	roblems	solutio	on in Free	e, Transie	nt and F	Force	ed R	esponse ir	n vibrat	tions
CO4	Solve	the Flu	id flow	and he	at trans	sfer prol	olems us	ing FEA	4				
CO5	Estim	ate the	errors wl	nile solv	ving the	FEA pr	oblems						
Mapping of Co	urse O	utcom	es with <b>F</b>	rogran	n Outco	omes (P	Os)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PO3					
CO1	2	2	3	2	2	1	3	2					
CO2	2	2	3	3	2	2	2	3					
CO3	3	2	3	3	1	2	1	2					
CO4	3	2	3	3	1	3	2	2					
CO5	1	2	1	1	1	1	1	1					
1/2/3 indicates	Streng	th of C	orrelatio	on 3-H	High, 2-	Mediur	n, 1-Low						
Category	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Audit Course							
	_ ✓												



Subject Code:	Subject Name : ADVANCED FINITE ELEMENT	Ty / Lb	L	T/S.Lr	P/R	С
EMDE22002	ANALYSIS					
	Prerequisite: Engineering Mechanics,	Ту	3	1/0	0/0	4
	Strength of Materials	, i				
T/L/: Theory/La	b L : Lecture T : Tutorial P :Practical/ Project R :	Research	C: C	redits		

## **UNIT I: BENDING OF PLATES AND SHELLS**

Review of Elasticity Equations-Bending of Plates and Shells-Finite Element Formulation of Plate and Shell elements-Conforming and Non Conforming Elements – C0 and C1 Continuity Elements-Application and Examples

## **UNIT II: NON-LINEAR PROBLEMS**

Introduction-IterativeTechniques-Material-non-Linearity-Elasto-Plasticity-Plasticity, Visco plasticity-Geometric Non linearity-large displacement Formulation-Application in Metal Forming Process and contact problems

## **UNIT III: DYNAMIC PROBLEM**

Direct Formulation - Free, Transient and Forced Response - Solution Procedures- Subspace Iterative Technique -Houbolt, Wilson, Newmark - Methods – Examples

## UNIT IV: FLUID MECHANICS AND HEAT TRANSFER

Governing Equations of Fluid Mechanics- Inviscid and Incompressible Flow-Potential Formulations-Slow Non-Newtonian Flow-Metal and Polymer Forming-Navier Stokes Equation-Steady and Transient Solutions.

## UNIT V: ERROR ESTIMATES AND ADAPTIVE REFINEMENT

Error norms and Convergence rates- high refinement with adaptivity-Adaptive refinement

## Total No. of Periods: 60

## REFERENCES

- 1. Zeinkiewicz, O.C. and Taylor, R. L. (1991) The Finite element Method. Fourth Edition, Volumes 1 & 2, McGraw Hill International Edition, Physics services
- 2. Cook R.D. (1989) Concepts and Applications of Finite Element Analysis. John Wiley & Sons Inc
- 3. Bathe K.J. (1990) Finite Element Procedures in Engineering Analysis. Prentice Hall

12

12

12

12



Subject Code:	Su	bject N	ame : R	OBOT	ICS A	ND SEI	NSORS	Ty / Lb	L	T/S.Lr	P/R	С
ENIDE22003	Pre	erequisi	te: Nil					Ту	3	0/0	0/0	3
T/L/: Theory/L	Lab L :	Lectur	e T : Tu	torial I	P :Prac	tical/ Pr	oject R :	Research (	C: Cro	edits	11	
<b>OBJECTIVE:</b>	The stu	dents v	vill learr	n to und	lerstan	d the ba	sic conce	pts associat	ed wi	th the des	ign an	d
Functioning and	d appli	cations	of Robo	ots and	also stu	idy aboi	ut the driv	ves and sen	sors u	ised in Ro	bots a	nd
learn about ana	lyzing	robot k	kinemati	cs and	robot p	rogram	ming					
COURSE OUT	COME	ES (COs	s) : The	student	s will b	e able t	0					
CO1	Ur	nderstan	d the Ro	bot mot	tion, dri	ves and	applicatio	ns				
CO2	Ar	nalyze v	various k	inemati	c transf	ormatio	n of robot	links				
CO3	Ar	nalyze tł	ne Robot	control	system	is and Ei	nd effector	ſS.				
CO4	Cr	eate var	ious Roł	oot prog	rammir	ng metho	ods					
CO5	Ev	aluate a	pplicatio	ons of v	arious r	obot sen	sors.					
Mapping of Co	urse O	utcome	s with P	rogram	Outco	mes (PC	)s)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3				
CO1	3	2	3	3	2	3	3	3				
CO2	3	2	3	3	2	3	3	3				
CO3	3	2	3	3	2	3	3	3				
CO4	3	2	3	3	2	3	3	3				
CO5	3	2	3	3	2	3	3	3				
1/2/3 indicates S	Strengt	h of Co	orrelatio	n 3 Hi	gh, 2- N	Aedium	, 1-Low					
ory	n Core	n es	lectives	al /	rnships / nical	Course						
Categ	Prograi	Progra1 Electiv	Open F	Practic. Project	Inter Techi	Audit (						
		<ul> <li>✓</li> </ul>										



Subject Code: EMDE22003	Subject Name : ROBOTICS AND SENSORS	Ty / Lb	L	T/S. Lr	P/R	С
	Prerequisite: Nil	Ту	3	0	0	3
T/L/ : Theory/Lab	L: Lecture T: Tutorial P: Practical/Project R: R	esearch C	: Credi	its		

## **UNIT I: INTRODUCTION**

Basic concepts-Robot anatomy-robot configurations-Basic Robot motions-Types of drives-Applications-Material Handling-Processing-Assembly and Inspection -Safety considerations.

## UNIT II: TRANSFORMATIONS AND KINEMATICS

Vector operations-Translational transformations and Rotational transformations-Properties of transformation Matrices-Homogeneous transformations and Manipulator-Forward solution-Inverse solution

## **UNIT III: CONTROLS AND END EFFECTORS**

Control system concepts-Analysis-control of joints-Adaptive and optimal control-End effectors-Classification-Mechanical-Magnetic-Vacuum-Adhesive-Drive systems-Force analysis and Gripper design

## **UNIT IV: ROBOT PROGRAMMING**

Methods -Languages-Computer control and Robot Software-VAL system and Language UNIT V: SENSORY DEVICES

## UNIT V: SENSORY DEVICES

Non-optical and optical position sensors-Velocity and Acceleration-Range-Proximity-touch-Slip-Force-Torque-Machine vision-Image components-Representation - Hardware-Picture coding-Object recognition and Categorization-Software consideration- Case Studies

## **Total No. of Periods: 45**

## REFERENCES

- 1. Fu, K.S. Gonzalez, R. and Lee, C.S.G. (1987) Robotics control, sensing, vision, and Intelligence. McGraw Hill Book Co
- 2. Klafter, R.D. Cmielewski, T.A. and Negin, M. (1994) Robot Engineering an Integrated approach. New Prentice Hall of India
- 3. Deb, S.R. (1994) Robotics Technology and Flexible Automation. Tata McGraw Hill Publishing Co, Ltd
- 4. Craig J.J. (1999) Introduction to Robotics Mechanics and Control. Addison Wesley
- 5. Groover, M.P. (1995) Industrial robotics Technology, programming and applications. McGraw Hill Book Co
- 6. http://www.robotics.com

6

12

9



Subject Code: EMDE22L03	Su LA Pre	bject N AB erequisi	ame : R	<b>OBOT</b>	ICS SI	MULAT	ION	Ty / Lb	L 0	T/S.Lr 0/0	P/R 4/0	C 2
T/L/: Theory/L	ab L :	Lectur	e T : Tu	torial I	P:Prac	tical/ Pr	oject R :	Research (	C: Cre	edits	1 1	
OBJECTIVE: 7 • Practical	Fhe stu skill ir	ident wi n Conce	ill earn epts, des	ign, apj	plicatio	n and co	ontrol of 1	obotics an	d sens	sors		
COURSE OUT	COME	ES (COs	s) : The	student	<u>s will b</u>	e able to	)					
C01	N to	leasure ool	and calil	orate the	e static	and dyna	mic respo	onses of a m	achine	e structure	or mac	hine
CO2	Ir	nterface	differen	t systen	ns for co	ontrol pu	rpose					
CO3	D	Develop	an intelli	igent sy	stem fo	r materia	al handling	5				
CO4	D	Design a	nd devel	op a rot	ot for c	lifferent	applicatio	ns				
CO5	A	nalyze	using co	ntrol sy	stems							
Mapping of Cou	urse O	utcome	s with P	rogram	Outco	mes (PO	s)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3				
CO1	2	1	3	3	2	2	3	2				
CO2	2	1	3	3	2	2	3	2				
CO3	2	1	3	3	2	2	3	2				
CO4 CO5	$\frac{2}{2}$	1	3	3	$\frac{2}{2}$	2	3	2	-			
1/2/3 indicates S	∠ Strengt	h of Co	rrelatio	n 3 Hi	∠ gh. 2- N	∠ Aedium.	1-Low	Δ				
	, ci ciigi				<b>5, -</b>		, 1 20					
Category	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Audit Course						
				✓								



Subject Code: EMDE22L03	Subject Name : ROBOTICS SIMULATION LAB	Ty / Lb	L	T/S. Lr	P/R	С
	Prerequisite: Robotics and Sensors	Lb	0/0	0	4/0	2
T/L/ : Theory/Lab	L : Lecture T : Tutorial P :Practical/ Project R	: Researc	ch C: (	Credits		

## LIST OF EXPERIMENTS

1.Development of strain gauge set up to measure strain in a statically loaded machine structure and calibration of the same.

2. Measurement of damping ratio of a machine tool base from free vibration studies using an impact hammer and an accelerometer pick up with data acquisition system.

3. Interfacing a stepper motor with PC for controlling speed, direction and number of steps using Virtual instrumentation platform.

4. Co-ordinate motion of multiple actuators, electro – pneumatic systems in a desired sequence using Virtual instrumentation platform.

5. Development of an intelligent conveyor system to sort metallic & non-metallic components

6. Development of a pick and place robot

7. Development of an obstacle avoidance robot

8. Development of a path following robot

9. Determining the response time of a control system using PI and PID controllers

10. Determining the positioning accuracy of a linear slide using open loop and closed loop controls

**Total No. of Periods: 60** 



Subject Code:	St L	ıbject I AB-II (	Name : ( Analysis	COMPUT	ER AID	ED D	ESIG	N	Ty / Lb	L	T/S.Lr	P/R	C
EMDE22L0	4 Pro	erequis ethod	ite: Engi	neering G	raphics ar	nd Fin	ite El	ement	Lb	0	0/0	4/0	2
T/L/ : Theor	y/Lab l	L:Lec	ture T :	Tutorial	P :Practi	ical/ I	Proje	ct R:	Research	C: Cr	edits		1
OBJECTIVE	: The st	tudents	s will lea	rn									
$\succ$	To acquire the knowledge on analysis of the machine components.												
$\succ$	To und	erstand th	e concepts	of finite elem	ent Methods								
COURSE O	UTCO	MES (O	C <b>O</b> s) : T	'he studer	nts will be	able	to						
CO1	Design si	mple mo	dels in Ans	sys.									
CO2	Create sta	ceate static and Dynamic analysis.											
CO3	Prepare t	epare the object in Ansys and perform thermal analysis											
CO4	Develop the product and perform mode frequency analysis.												
CO5 Prepare a 2D and 3D model and perform heat transfer analysis.													
Mapping of	Course	Outco	mes witl	h Prograr	n Outcon	nes (İ	Os)						
COs/POs	<b>PO1</b>	F	<b>PO2</b>	PO3	PO4	P	05	PSO1	PSO2	PSC	03		
CO1	1			2	2		2	1		3	;		
CO2	3			3	3	3 2 3		3	2	3			
CO3	3			3	3		3	3	1	3			
CO4	3			3	3		2	2	2	3			
CO5	3			3	3		2	3		3			
3/2/1 indicat	tes Strei	ngth of	Correla	ation 3-1	High, 2- N	Aediu	m, 1-	Low					
Category	Program Core	Program Electives	Open Electives	Practical /	Internships / Technical Skill	Audit Course							



Subject	Su	COMPUT	TER AID	E <b>D D</b> I	ESIG	N	Ty / Lb	L	T/S.Lr	P/R	C		
Code: EMDE22L0	<b>L</b> A <b>Pre</b>	<b>AB-II (</b> ereauis	Analysi ite: Engi	s) ineering G	raphics ar	nd Fin	ite El	ement	Lb	0	0/0	4/0	2
	Me	ethod			rupines ui	14 1 111		omone	10	Ů	0/0	., 0	
T/L/ : Theor	ry/Lab I	L : Lec	ture <b>T</b> :	Tutorial	P :Practi	ical/ P	roje	$\mathbf{ct} \mathbf{R}: \mathbf{I}$	Research	n C: Cr	edits		
OBJECTIVE	BJECTIVE: The students will learn												
$\succ$	To acquire the knowledge on analysis of the machine components.												
~	To understand the concepts of finite element Methods												
COURSE O	COURSE OUTCOMES (COs) : The students will be able to												
CO1	Design sin	mple mo	dels in An	isys.									
CO2	Create sta	eate static and Dynamic analysis.											
CO3	Prepare t	pare the object in Ansys and perform thermal analysis											
CO4	Develop t	relop the product and perform mode frequency analysis.											
CO5	CO5   Prepare a 2D and 3D model and perform heat transfer analysis.												
Mapping of	Course	Outco	mes wit	h Prograr	n Outcon	nes (P	Os)						
COs/POs	PO1	F	<b>PO2</b>	PO3	PO4	P	05	PSO1	PSO2	PSC	03		
CO1	1			2	2		2	1		3	;		
CO2	3			3	3		2	3	2	3			
CO3	3			3	3		3	3	1	3			
								-					
CO4	3			3	3		2	2	2	3			
CO5	2			2	2		2	2		2			
005	5			3	3		2	3		5			
3/2/1 indicat	tes Strei	ngth of	Correl	ation 3-1	High, 2- N	/lediu	m. 1-	Low					
		8			8,								
			SS		~								
~	Core		tive		hips 1	Irse							
(or)	m C	es B	llec	al /	rnsl nice	Cou							
iteg	grai	grai Xiv	пЕ	stic ect	nte chu cill	lit (							
Ca	Prof	Prog Elec	Dpe	Prac	Sk Te	Auc							
			)			7							



Subject Code:	Subject Name : COMPUTER AIDED DESIGN	Ty/	L	T/S.Lr	P/R	С			
MME22DL04	LAB-II (ANALYSIS)	Lb							
	Prerequisite: Engineering Graphics and Finite Element	Lb	0	0/0	4/0	2			
	Method								
T/L/: Theory/Lab L : Lecture T : Tutorial P :Practical/ Project R : Research C: Credits									

## I. ANALYSIS:

- Introduction to FEM-Analysis software's -ANSYS
- Structural and fluid analysis.- One dimensional, Two dimensional and Three dimensional Elements Based Problems.
- Thermal Analysis Conduction, Convection and Radiation heat transfer Problems.

## **II. LIST OF EXPERIMENTS**

Analysis of Mechanical Components – Use of FEA Packages.

- 1. Stress analysis of a plate with a circular hole.
- 2. Stress analysis of rectangular L bracket.
- 3. Stress analysis of beams (Cantilever, Simply supported, Fixed ends).
- 4. Mode frequency analysis of a 2 D component.
- 5. Thermal stress analysis of a 2D component.
- 6. Conductive heat transfer analysis of a 2D component.
- 7. Convective heat transfer analysis of a 2D component

Total no. of Periods: 60



Subject Code: EMDE22I01	Subject Name : TERM PAPER	Ty / Lb/IE	L	T/S.Lr	P/R	С			
	Prerequisite: NIL	IE	0	0/0	0/4	2			
T/L/ : Theory/Lab L : Lecture T : Tutorial P :Practical/ Project R : Research C: Credits									

A term paper is an elaborate research-based work on a particular topic in the domain of study. The student must choose a topic of his interest from the domain of study for a term paper. The term paper can be an original research article or review article. In case of review article, the student must refer at least 50 research/review articles and critically review other researcher's work. The term paper may be 10 -20 pages in length. The general guidelines for writing the term paper as follows:

- 1. Abstract
- 2. Introduction to explain about the broad and general statement on the topic chosen.
- 3. Aim /Objective of the term paper.
- 4. Description of methodology, concepts and arguments.
- 5. Identify the research gap and suggest possible future works.
- 6. Conclusion

Three reviews will be conducted to monitor the progress of the work. At the end of the semester, presentation must be made by the student and Viva-Voce examination will be conducted by the Internal Examiner duly appointed by the Head of the department and the students will be evaluated.



# **SEMESTER III**



Subject Cod EMDE2200	ode: Subject Na 04			: MEC	HANIC	AL VI	BRATIC	DNS	Ту /	Lb	L	T/SLr	P/R	C
	Pre	erequi	site: Sti	ength of	Materia	als & D	esign of		Ту	7	3	1/0	0/0	3
	M	achine	Eleme	nts										
	T/L / : Theomy/Lab L : Lecture T : Tutorial D : Prestical/Draiset D : Descender C: Credite													
T/L/: Theor	ry/Lab	L:Le	cture 'I	: Tutor	ial P:	Practica	al/ Proje	ct R :	Rese	arc	h C: C	credits		
OBJECTIV	<b>OBJECTIVE:</b> At the end of this course, the student will • fully understand and appreciate the importance													
of vibrations in mechanical design of machine parts that operate in vibratory conditions. • be able to obtain														
linear vibratory models of dynamic systems with changing complexities (SDOF, MDOF). • be able to write														
the differenti	ial equat	tion of	motion	of vibra	tory sys	stems.								
COURSE O	UTCO	MES (	( <b>COs</b> ) :	The stu	dents w	vill be a	ble to							
CO1	Underst	nderstand fundamental concept of single degree of freedom for forced vibration systems												
CO2	Describ	escribe the free vibration of spring-coupled system - Mass coupled system for two degrees												
	of free	f freedom												
CO3	Evaluat	valuate the Eigen-values and mode shapes of natural vibrations of beams and response to harmonic												
COA	excitati	ons us	ing orth	nogonal p	properti	$\frac{1}{1}$ es of na	tural mo	des.	1				•	
CO4	Determ	ine national	tural fre	equencies	s and m	ode sha	pes of M	DOF	and co	ontir	nuous	systems us	sing	
C05	CO5 Gain the Knowledge of various terminologies used in vibration controls													
Manning of	Course		omes u	vith Prog	ram O	utcome	e (POs)	viora			015.			
		Juic					<b>D</b> CO1	DC		DCC		1		
COs/POs	PO1	J	PO2	PO3	PO4	PO5	PSO1	PSC	J2	PSC	)3			
CO1	3		2	3	3	3	3	2	2		2			
CO2	3		2	3	3	3	3	2	2		2	-		
CO3	3		2	3	3	3	3	2	2		2			
CO4	3		2	3	3	3	3	2	2		2			
CO5	3		2	3	3	3	3	2	2		2			
1/2/3 indicat	tes Stre	ngth o	of Corr	elation	1- High	1, 2- Me	edium, 3	-Low						
						n	rse							
,		n	n es	es	al /	nsł	Cou							
103		grai e	grai	in Stiv	stic	nteı /	lit (							
Jate		Pro; Cor	Pro ₂ Elec	Dpe Elec	Prac Proj	I ps	Auc							
		$\overline{}$		Ĭ					L					



Subject Code: EMDE22004	Subject Name : MECHANICAL VIBRATIONS	Ty / Lb	L	T /SLr	P/R	С
	Prerequisite: Strength of Materials & Design of	Ту	3	1/0	0/0	3
	Machine Elements					

## UNIT I: FUNDAMENALS OF VIBRATION

Review of Single degree freedom systems - Response to arbitrary periodic executions - Duhamel's integral - Impulse response function - Virtual work - Lagrange's equations - Single degree freedom forced vibration with elastically coupled viscous dampers - System identification from frequency response - Transient vibration - Laplace transformation formulation.

## **UNIT II: TWO DEGREE FREEDOM SYSTEM**

Free vibration of spring-coupled system - Mass coupled system - Bending variation of two degree freedom system - Forced vibration - Vibration Absorber - Vibration isolation.

## **UNIT III: MULTI DEGREE FREEDOM SYSTEM**

Normal mode of vibration - Flexibility matrix and stiffness matrix - Eigen value and Eigen vector – Orthogonal properties - Modal matrix - Modal analysis - Forced vibration by matrix inversion - Modal damping in forced vibration - Numerical methods of fundamental frequencies.

## UNIT IV: VIBRATION OF CONTINUOUS SYSTEMS

Systems governed by wave equations - Vibration of strings - Vibration of rods - Euler 's equation for beams - Effect of Rotary inertia and shear deformation - Vibration of plates.

## **UNIT V: VIBRATION CONTROL**

Introduction – Reduction of vibration at source- Control of vibration- By structural Design- Material Selection- Located Additions- Artificial Damping- Resilient Isolation, Vibration Isolation- Vibration Absorbers.

## **Total No. of Periods: 60**

## REFERENCES

- 1. Rao, J. S. & Gupta, K. (1984) Ind. Course on Theory and Practice Mechanical Vibration. New Age International (P) Ltd
- 2. Thomson, W.T. (1990) Theory of Vibration with Applications. CBS Publishers and Distributers
- 3. Den Hartog, J.P. (1990) Mechanical Vibrations. Dover Publications
- 4. Rao, S.S. (1995) Mechanical Vibrations. Addison Wesley Longman

#### M.Tech-Design Engineering-2022 Regulation

## 12

## 12

12

#### 12



Subject Code: EMOL22I01	Subject Name : Open Elective (On Line Course through NPTEL/SWAYAM/Any MOOC)	Ty/Lb /IE	L	T/SLr	P/R	С
	Prerequisite: NIL	IE	3	0/0	0/0	3

Students should register for the online course with minimum course duration of 8 weeks through the online portals such as NPTEL/SWAYAM/Any MOOC in the beginning of the semester. The course can be core/interdisciplinary in such a way that the same course is not repeated during the course of his study.

Students are expected to attend the online classes regularly and submit the weekly assignments before the due dates. Students should appear for the online examination and submit the certificate at the end of the semester. Internal examination will be conducted by the examiners duly appointed by the head of the department.



Subject Code: EMDE22I02	Subject Name : SUMMER INTERNSHIP	Ty/Lb /IE	L	T/SLr	P/R	С
	Prerequisite: NIL	IE	0	0/0	4/0	2

Students are supposed to undergo internship in related Industries for a minimum period of 30 days cumulatively during the semester. They have to prepare a report on the Internship with a certificate in proof from competent authority in the industry. At the end of the semester Viva-Voce examination will be conducted by the Examiners duly appointed by the Head of the department and the students will be evaluated.



Subject Code: EMDE22DL05	Subject Name : DISSERTATION PHASE-I	Ty / Lb	L	T/S.Lr	P/R	C			
	Prerequisite: All core papers	Lb	0	0/0	5/5	5			
T/L Theory/Lab L: Lecture T : Tutorial P :Practical/ Project R : Research C: Credits									

Students should select the area of the project work and complete the literature survey. Student should identify the problem of study and start the work. Students are expected to do the project work individually. A guide will be allotted to each student based on the area of the Project work. Project reviews will be conducted once in a fortnight to assess the development of the project work.

At the end of the semester students should submit a report of the work completed and should appear for a Project Viva- voce examination conducted by the internal examiner.

Continuous assessment mark (50 marks) will be awarded based on the performance in the reviews.

End semester mark (50 marks) will be awarded for project viva voce examination.


## **SEMESTER IV**



Subject Code:	Subject Name : DISSERTATION PHASE-II	Ty / Lb	L	T/S.	P/R	С
<b>EMDE22L06</b>				Lr		
	Prerequisite: All core papers	Lb	0	0/0	10/10	10
T/L Theory/Lab L	: Lecture T : Tutorial P :Practical/ Project R : 1	Research	C: Cr	edits		

Students are expected to do a Project work either in an Industry or at the University in the area of specialization individually. Each student will be allotted a guide based on the area of Project work

Number of reviews will be conducted during the semester to monitor the development of project. Students have to submit the thesis at the end of the semester and appear for the Project Viva-Voce examination conducted by one internal examiner and one external examiner.

It is mandatory that the student should have presented his project work as a technical paper in National/international conference /Journals. A copy of the certificate in proof of paper presentation should be enclosed in the project report.

50% weightage (100 marks) will be given for the continuous assessment and 50% weightage (100 marks) for the Project viva a voce examination.



Subject Code:	Subject Name : RESEARCH	Ty / Lb/IE	L	T/S. Lr	P/R	С
ENIDE22105	Prerequisite: All core papers	IE	0	0/0	0/4	2
T/L Theory/Lab La	Lecture T : Tutorial P :Practical/ Project R	R : Research	C: Cr	edits		

Students are supposed to prepare and publish the article based on either his term paper or area of research in peer reviewed referred journal. Code of research publication ethics should be followed. After publishing the article students should present a seminar in presence of department faculties and PG students. At the end of semester viva examination will be conducted by the examiners appointed by the Head of the department.



# **PROGRAM ELECTIVE –I**



Subject Code: EMDE22E01	Su DF	bject N ESIGN	ame : A	DVAN	CED M		Ty / Lb	L	T/S.L r	P/R	С		
	Pre Ma	erequisi achine E	te: Mecl Elements	nanics c -I&II	of Mach	ines-I&	II, D	esign of	Ту	3	0/0	0/0	3
T/L/ : Theory/La	ab L : I	Lecture	T:Tut	orial P	:Pract	ical/ Pr	oject	t R:Re	search C:	Cre	edits		
<b>OBJECTIVE:</b>													
To study behavio	our of n	nechani	cal comp	onents	under fa	atigue a	nd ci	reep.					
To study statistic	al tech	niques a	and its ap	plicatio	ons in m	lechanic	cal de	esign					
COURSE OUT	COMES	S (COs)	) : The s	tudents	will be	able to	)						
CO1	Demo	nstrate	the abilit	y to ide	ntify ne	eds of t	he cu	ustomer a	and conve	rt th	em in to	technica	ıl
	specifi	ications	of a pro	duct	2								
CO2	Under	stand th	e creativ	vity, ma	nufactu	rability,	asse	embly, m	aintainabi	lity,	reliabili	ty are al	so
COA	impor	tant asp	ects of d	esign of	ther that	n findin	g dir	nensions	and stress	ses.			
03	Solve	problen	ns in uns	ymmeti	rical bei	nding ar	id sh	ear cente	er.				
CO4	Analy	ze torsi	on proble	ems in s	solid an	d thin se	ection	n					
CO5	Design	n the co	mponent	ts consi	dering s	trength	base	d reliabi	lity.				
Mapping of Cou	rse Ou	tcomes	with Pr	ogram	Outcon	nes (PO	)s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO	1	PSO2	PSO3				
CO1	3	2	3	3	2	3		2	2				
CO2	3	2	3	3	2	3		2	2				
CO3	3	2	3	3	2	3		2	2				
CO4	3	2	3	3	2	3		2	2				
$\frac{CO5}{1/2/2}$ in diagter S	3	2	2	3	2 ~h 2 N	3	. 1 T	2	2				
1/2/3 indicates S	trength	I OI COI	relation	3- HI	gn, 2- 1	leaium	l, I-I	70M					
Category	Program Core	-Program Electives	Open Electives	Practical / Project	Internships / Technical	Audit Course							
		N											



Subject Code:	Subject Name : ADVANCED MACHINE	Ty / Lb	L	T/S.	P/R	С
<b>EMDE22E01</b>	DESIGN			Lr		
	Prerequisite: Mechanics of Machines-I&II,	Ту	3	0/0	0/0	3
	Design of Machine Elements-I&II	-				
T/L/ : Theory/La	b L : Lecture T : Tutorial P :Practical/ Project	R : Resea	rch C:	Credits		

#### **UNIT I: INTRODUTION**

Mechanical design process, Phases and interactions of design process, design for sustainability, use of standards and codes in design. Tribological considerations in design, Human factors in design.

#### UNIT II: DESIGN FOR MANUFACTURING & ASSEMBLY:

Design consideration and recommendation for machining, casting, extrusion, etc. design consideration and recommendation for assembly processes.

#### UNIT III: UNSYMMETRICAL BENDING AND SHEAR CENTRE:

Concept of shear center in symmetrical and unsymmetrical bending, stress and deflections in beams subjected to unsymmetrical bending, shear center for thin wall beam cross section, open section with one axis of symmetry, general open section, and closed section.

#### UNIT IV. THEORY OF TORSION:

Torsion of prismatic bars of solid section and thin walled section. Analogies for torsion, membrane analogy, fluid flow analogy and electrical analogy. Torsion of conical shaft, bar of variable diameter, thin walled members of open cross section in which some sections are prevented from warping, Torsion of noncircular shaft.

#### UNIT V: DESIGN BASED ON RELIABILITY:

Design for Reliability, strength based reliability, approach to robust design.

Experimental Stress Analysis: Strain gauges, photo elasticity, non-destructive testing, and brittle coating.

#### Total no. of Periods: 45

9

#### **REFERENCES:**

- 1. Mechanical Design Process, D G Ullman, McGraw Hill Book Company
- 2. Design of Machine Elements, V B Bhandari McGraw Hill
- 3. Design for Manufacturing and Assembly, O Molloy, E A Warman, S Tilley, Springer
- 4. Advance Strength of Materials, Sandhu Singh, Khanna Publishers
- Strength of Materials, S S Ratan, McGraw Hill 6. Experimental Stress Analysis, J W Dally, W F Riley, McGraw Hill

9

9

9



Subject Code:	Su	bject N	Name : I	DESIGN	N FOR	SEMBI	īv		Ty / Lb	L	T/S. Lr	P/R	С		
EMDE22E02	Pre	ereauisi	ite: Man	ufacturi	ng Tec	hnology			Tv	3	0/0	0/0	3		
T/L/: Theory/	Lab L		ture T : '	Tutoria	l P:P	ractical	/ Pro	ject R : F	Research	<b>C: C</b>	redits		-		
OBJECTI	VE: T	he stud	lents wi	l learn				0							
Rules an	d Req	uireme	ents of de	signing	to ease	manuf	actur	ing and as	sembly						
To expos	se bas	ics of f	orm desi	gn				e	•						
Manufac	turing	g constr	aints tha	t influe	nce the	design	of pa	rts and par	t systems	s to ur	nderstand	infeasi	ble		
or impr	actica	l desig	ns												
<ul> <li>Assembl</li> </ul>	y con	siderati	ions and	assemb	ly costs	in eval	uatic	ons							
COURSE OUT	ГСОМ	AES (C	COs) : T	he stud	ents wi	ll be ab	le to								
CO1	Und	erstand	the gene	eral aspe	ects of l	Design	for n	nanufacturi	ng and A	sseml	oly				
CO2	App	ly the c	the concept of DFM for casting, forming & machining												
CO3	App	y principles of DFA to increase manufacturing efficiency in assembly processes.													
CO4	Desi	gn/rede	esign cor	nponen	ts for ca	asting, f	orgin	ng and mac	hining p	rocess	•				
CO5	App	ly Boot	hroyd m	ethod o	f DFM	for pro	duct	design and	assembl	y.					
Mapping of Co	ourse	Outcor	mes with	Progra	am Ou	tcomes	(PO	s)							
COs/POs 1	PO1	PO2	PO3	PO4	PO5	PSO	1	PSO2	PSO3						
CO1	3		3	3	2	3		1	2						
CO2	3		3	3	2	3		1	2						
CO3	3		3	3	2	3		1	2						
CO4	3		3	3	2	3		1	2						
	3	(1 6	3	3	2	3	•	1	2						
3/2/1 indicates	Stren	igth of	Correla	tion 3.	· High,	2- Med	ium	, I-Low							
	0		SS		2 /										
	Ore		tive		hips al	Irse									
Sory	u n	m 'es	Elec	al / t	trns  nica	Cou									
ateg	gra	gra ctiv	en I	ctic ject	Inte ech	dit (									
Ŭ,	Prc	Pro Ele	Op	Pra Pro	Ţ	Au									
	T														

T/L/: Theory/Lab L: Lecture T: Tutorial P:Practical/Project R: Research C: Credits

Tv / Lb

Tv

#### **UNIT I: INTRODUCTION**

Subject

**EMDE22E02** 

Code:

General design principles for manufacturability - strength and mechanical factors, Process capability - Feature tolerances - Geometric tolerances - Assembly limits -Datum features - Tolerance stacks.

#### **UNIT II: FORM DESIGN - CASTING**

Subject Name : DESIGN FOR

MANUFACTURING AND ASSEMBLY

Prerequisite: Manufacturing Technology

Production methods on form design - Casting considerations - Requirements and rules - Redesign of components for castings and Case studies.

#### **UNIT III: FORM DESIGN – FORGING**

Forging considerations - Requirements and rules - Redesign of components for forging and Case studies.

#### **UNIT IV: FORM DESIGN - MACHINING**

Machining considerations - Requirements and rules -Redesign of components for Machining and Case studies.

#### **UNIT V: DESIGN FOR ASSEMBLY METHODS**

Approaches to design for assembly - Qualitative evaluation procedures, knowledge based approach, Computer aided DFA methods. Assimilability measures. Boothroyd - Dewhurst DFA method -Redesign of a simple product - Case studies.

#### **Total No. of Periods: 45**

#### REFERENCES

- 1. Harry Peck, (1983) Design for Manufacture. Pittman Publication
- 2. Alan Redford and Chal, (1994) Design for Assembly Principles and Procedures. McGraw Hill International
- 3. Robert Matousek, (1963) Engineering Design A Systematic Approach. Blackie & Sons Ltd
- 4. James G. Bralla, (1986) Hand Book of Product Design for Manufacturing. McGraw Hill Co
- 5. Swift, K.G. (1987) Knowledge Based Design for Manufacture.

46



9

P/R

0/0

С

3

T/S.

0/0

Lr

L

3

#### 9

9

9



Subject Code:	Subj	ect Nan	ne: AD	VANC	ED STI	RESS AN	JALYSIS	5 Ty/ Lb	L	T/S.Lr	P/R	С	
EMDE22E03	Prere	quisite:	Stren f Mac	ngth	of Ma	aterial	s ,	Ty	3	0/0	0/0	3	
T/L/ : Theory/L	ab L :	Lecture	e T : Tut	torial H	P:Pract	tical/ Pro	ject R :	Research	C: Cr	edits			
OBJECTIVE: analysis proble	Ability ems us	to ana ing ana	alyze pla alytical a	ate/she and fini	ll struct te elem	tures and nent tech	d to solv iniques.	e nonline	ar stre	ess			
COURSE OUT	COME	S (COs	): The s	student	s will b	e able to							
CO1	Unders	stand th	e theory	of elast	icity an	d problen	n solving	methods					
CO2	Apply	the ene	rgy met	hod for	r analys	sis of str	ess, strai	n and def	flection	n problen	ns		
CO3	Detern	nine the	effects of	of torsic	on in va	rious mec	chanical e	elements					
CO4	Solve	problem	ns in uns	ymmetr	ical ber	ding							
CO5	Calcul	culate shear center, contact stresses and pressurized cylinders and rotating discs											
Mapping of Co	urse Ou	itcomes	s with Pr	ogram	Outco	mes (POs	5)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3					
CO1	3	1	3	3	2	3	1	2					
CO2	3	1	3	3	2	3	1	2					
CO3	3	1	3	3	2	3	1	2					
<u>CO4</u>	3	1	3	3	2	3	1	$\frac{2}{2}$	-				
1/2/2 indicator 6	3 Stanaarti		<u> </u>	3	2	3 Madium	1 3 L orr	2					
1/2/5 mulcates 5	strengt		rrelation	і 1-п	Ign, 2- 1	vieuluiii,	<b>3-L</b> 0W						
Category	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Audit Course							
		, i i i i i i i i i i i i i i i i i i i											



Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code:	Subject Name : ADVANCED STRESS ANALYSIS	Ty / Lb	L	T/S. Lr	P/R	С
EMDE22E03	Prerequisite: Strength of Materials, Design of Machine elements	Ту	3	0/0	0/0	3
T/L/: Theory/La	ab L : Lecture T : Tutorial P :Practical/ Project R : Re	esearch C	: Crea	lits		

#### **UNIT 1: THEORY OF ELASTICITY**

Theory of Elasticity, Analysis of stress, Analysis of stain, Elasticity problems in two dimension and three dimensions, Mohr's circle for three dimensional stresses. Stress tensor, Air's stress function in rectangular and polar coordinates.

#### **UNIT II: ENERGY METHOD**

Energy method for analysis of stress, strain and deflection The three theorem's -theorem of virtual work, theorem of least work, Castiglioni's theorem, Rayleigh Ritz method, Galekin's method, Elastic behavior of anisotropic materials like fiber reinforced composites.

#### **UNIT III: THEORY OF TORSION**

Torsion of prismatic bars of solid section and thin walled section. Analogies for torsion, membrane analogy, fluid flow analogy and electrical analogy. Torsion of conical shaft, bar of variable diameter, thin walled members of open cross section in which some sections are prevented from warping, Torsion of noncircular shaft.

#### UNIT IV: UNSYMMETRICAL BENDING

Unsymmetrical Bending and Shear Centre Concept of shear center in symmetrical and unsymmetrical bending, stress and deflections in beams subjected to unsymmetrical bending, shear center for thin wall beam cross section, open section with one axis of symmetry, general open section, and closed section.

#### **UNIT V: PRESSURIZED CYLINDERS**

Pressurized Cylinders and Rotating Disks Governing equations, stress in thick walled cylinder under internal and external pressure, shrink fit compound cylinders, stresses in rotating flat solid disk, flat disk with central hole, disk with variable thickness, disk of uniform strength, Plastic action in thick walled cylinders and rotating disc.

#### **REFERENCES:**

1.Boresi, A.P. and K. P. Chong, Elasticity in Engineering Mechanics, Second Edition, John Wiley & Sons, 00 2. Budynas, R. G. Advance strength and Applied Stress Analysis, Second Edition, WCB/ McGraw Hill 1999

- 3. Dally, J. W. and W.F. Riley, Experimental Stress Analysis, McGraw Hill International, Third Edition, 1991
- 4. Theory of Elasticity Timoshenko and Goodier, Mc Graw Hill
- 5. Advanced Strength of Materials, Vol. 1,2 Timoshenko, CBS
- 6. Advanced Strength of Materials Den Harteg Advanced Vibrations.

#### M.Tech-Design Engineering-2022 Regulation

#### 9

Total no. of Periods: 45

#### 9

9

## 9

#### 9

#### 9 a



# **PROGRAMME ELECTIVE –II**



Subject Code: EMDE22DE04	8	Subject N FECHN(	ame : A DLOGY	DVAN	CED M	IATERIA	ALS	Ty / Lb	L	T/S. Lr	P/R	C
	F	Prerequisi	te: Eng	ineer	ing N	Metallu	ırgy	Ту	3	0/0	0/0	3
T/L/: Theory/I	Lab L : L	ecture T	: Tutori	al P:P	ractical	l/ Project	R : Res	earch C:	Credit	s		
<b>OBJECTIVE:</b>	The stude	ents will	learn									
About di	fferent cat	egory of	materials	3.								
Materials	relevance	e between	ı alloying	g, heat t	reatmen	nt and mee	chanisms	influenci	ng , the	structu	ire , prop	erties
and app	lications											
COURSE OUT	COMES	(COs) : '	The stud	ents wi	ill be at	ole to						
CO1	Underst	and prope	erties and	applica	ations of	f ferrous a	and nonfo	errous me	tals			
CO2	Analyze	the relev	ance of a	alloying	and he	at treatme	ent of me	tals				
CO3	Explore	the basic	s of new	er mater	rials ,lik	e Nano-n	naterials,	Bio mate	rials an	d comp	osites	
CO4	Identify	the Chara	acteristic	s and ap	plicatio	ons of the	newer m	aterials				
CO5	Underst	and fissio	on and fu	sion rea	actors a	nd evalua	te the app	plications	of Nuc	lear ma	terials.	
Mapping of Co	urse Outo	comes wi	th Progr	am Ou	tcomes	(POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	3			
CO1	1		2	1	1	1	1					
CO2	1		2	1	1	1	1					
CO3	1		2	1	1	1	1					
CO4	1		2	1	1	1	1					
CO5	1		2	1	1	1	1					
1/2/3 indicates	Strength	of Corre	lation 3	High,	2- Med	ium, 1-Lo	DW					
			s		<u> </u>				T T			
	ore		tive		uips 1	rse						
ory	n C	n es	lect	al /	nsh iica	jou						
teg	grai	gran	n E	tica	nter	it C						
Ca	Prof	Prog Elec	Ope	Prac Proj	I Te	Aud						
			- <b>-</b>									



Subject Code: EMDE22E04	Subject Name : ADVANCED MATERIALS TECHNOLOGY	Ty / Lb	L	T/S.L r	P/R	С
	Prerequisite: Engineering Metallurgy	Ту	3	0/0	0/0	3
T/L/: Theory/Lab L:	Lecture T : Tutorial P :Practical/ Project R : Re	search C:	Credit	S		

### UNIT I: INTRODUCTION TO FERROUS MATERIALS.

Plain carbon steels, their properties and application: plain carbon steels, effects of alloying elements in plain carbon steels. Alloy steels, tools steels, stainless steels, low and high temperature resisting steels, high strength steels, selections, specifications, form and availability of steel. Cast irons-white, grey, modular malleable and alloy cast irons. Recognised patterns of distribution of graphite flakes in grey cast iron

### **UNIT II: NONFERROUS MATERIALS**

Ultra light materials. Properties and application, brasses, bronzes, cupro-nickel alloys, aluminium, magnesium and titanium alloys, bearing materials. Heat treatment of nonferrous materials–soputionizing, Aging and precipitations hardening.

#### UNIT III: NANOMATERIAL

Introduction to Nanomaterials-types-Nano powder-Nanodots-Nanotubes- Nano fluids-Fullerene-Different shape-properties and characteristics and applications. Refractory materials and coatings for high temperature applications. Smart Materials-introduction, types and applications. Thin film shape memory alloys

### UNIT IV: BIO-MATERIALS AND COMPOSITES

Classes and application of materials in medicine and dentistry. Stress strain behaviour of bone. The mechanical properties including elasticity, hardness, visco elasticity, surface and fatigue properties of skin; soft tissues; bone; Biocompatible materials and its applications. The effects of degradation and corrosion. Composites-metal, polymers and ceramics- applications

### **UNIT V: NUCLEAR MATERIALS**

Introduction to nuclear materials. Materials for nuclear fuel in fission and fusion reactors, Fissile and fertile materials. Control & Construction Materials for Nuclear reactors, Moderators, Heat Exchangers. Radiation proof materials. Brief discussion of safety and radioactive waste disposal.

#### **Total No. of Periods: 45**

### REFERENCES

- 1. Buddy Ratner, D. Hoffman, A.S. and Lemons, J.E. (2004) Biomaterials Science- An Introduction to Materials in
- 1. Medicine. Second Edition, Academic Press
- 2. Joon Park, B. & Lakes Roderic, S. (1992) Biomaterials: An Introduction. Second Edition, Plenum Press
- 3. Edited by Davis, J. R. (2003) Handbook of Materials for Medical Devices. ASM international
- 4. Lamarsh, J.R. Introduction to Nuclear Engineering
- 5. Callister, W.D. Jr, Material Science & Engineering Addition. Wesley Publishing Co

9

9

9

9

9



Subject Cod EMDE22E0	e: 5	Subject	Name :	RAPII	PRO7	TOTYPI	NG	Ty / L	b L	T/S. Lr	P/R	С
	-	Prerequi Metallur	site: Ma	nufactu	ring Te	chnology	, Powder	Ту	3	0/0	0/0	3
T/L/: Theor	y/Lab	L : Lec	ture T :	Tutoria	al P :P	ractical/	Project <b>H</b>	R : Researc	n C: C	redits		
OBJECTIVE	: The	students	s will lea	rn								
Basic Pri	nciples	s of rapic	l prototy	ping an	d its app	olications	in variou	s fields, rev	erse er	gineeri	ng	
technique	es.											
• To famili	larize s	tudents	with diffe	erent fa	bricatio	n process	es in rapio	d prototypin	g syste	ems.		
Mechanie	cal pro	perties a	nd geom	etric iss	ues rela	ting to sp	ecific rap	oid prototypi	ng app	olication	18.	
COURSE O	UTCO	MES (O	COs) : T	he stud	ents wi	ll be able	to					
CO1	Un	derstand	l the proc	cess of r	apid pr	ototyping	and its ap	oplications				
CO2	Ар	ply cad	modeling	g concep	pts and	technique	s in RP					
CO3	Un RP	derstand T systen	l the oper ns	rating p	rinciple	s, capabil	ities, and	limitations	of liqu	id and s	olid base	ed
CO4	Ap sys	preciate stems	the oper	ating pr	inciples	s, capabili	ties and 1	imitations o	f powc	ler base	d RPT	
CO5	De	monstra	te the pri	nciples	of 3D p	printing a	nd laser b	ased RP Tec	hniqu	es		
Mapping of	Cours	e Outco	mes with	n Progr	am Ou	tcomes (I	POs)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3				
CO1	2		3	3	2	3	3	3				
CO2	2		3	3	2	3	3	3				
CO3	2		3	3	2	3	3	3				
CO4	2		3	3	2	3	3	3				
CO5	2		3	3	2	3	3	3				
3/2/1 indicat	es Stre	ength of	Correla	tion 3	- High,	2- Mediu	ım, 1-Lov	W				
			Sa		/							
	Core		tive		uips u	rse						
jory	U u	es n	Elec	al /	rnsl nic <i>ɛ</i>	Cou						
ateg	grai	grau ctiv	en F	ctic ject	inte Schi	dit (						
Ŭ	Pro	Pro	Op(	Pra. Pro	I J	Auc						
		Ň										

ED	UCATIONAL AND RESEARCH I DEEMED TO BE UNIVERSIT University with Graded Autonomy Statu (An ISO 21001 : 2018 Certified Institution		TU	TE	Souther With	A GRADE
Subject Code: EMDE22E05	Subject Name : RAPID PROTOTYPING	Ty/Lb	Ľ	T/S. Lr	P/R	С
	Prerequisite: Manufacturing Technology, Powder Metallurgy	Ту	3	0/0	0/0	3

T/L/: Theory/Lab L : Lecture T : Tutorial P :Practical/ Project R : Research C: Credits

#### **UNIT I: INTRODUCTION**

8

Need - Development of RP systems - RP process chain - Impact of Rapid Prototyping on Product Development –Digital prototyping - Virtual prototyping- Rapid Tooling - Benefits- Applications. **UNIT II: REVERSE ENGINEERING AND CAD MODELING** 10

Basic concept- Digitization techniques – Model Reconstruction – Data Processing for Rapid Prototyping: CAD model preparation, Data Requirements – geometric modeling techniques: Wire frame, surface and solid modeling – data formats – Data interfacing, Part orientation and support generation, Support structure design, Model Slicing and contour data organization, direct and adaptive slicing, Tool path generation.

UNIT III LIQUID BASED AND SOLID BASED RAPID PROTOTYPING SYSTEMS 10 Stereolithography (SLA): Apparatus: Principle, per-build process, part-building, post build processes, photo polymerization of SL resins, part quality and process planning, recoating issues, materials, advantages, limitations and applications. Solid Ground Curing (SGC): working principle, process, strengths, weaknesses and application. Fused deposition Modeling (FDM): Principles, details of processes, process variables, types, products, materials and applications: Laminated object Manufacturing (LOM): Working Principles, details of processes, products, materials, advantages, limitations and applications –Case studies.

#### UNIT IV POWDER BASED RAPID PROTOTYPING SYSTEMS

10 Selective Laser Sintering (SLS): Principles, process, Indirect and direct SLS – powder structures, modeling of SLS, materials, post processing, post curing, surface deviation and accuracy, Applications. Laser Engineering Net Shaping (LENS): Processes, materials, products, advantages, limitations and applications – Case Studies. UNIT V OTHER RAPID PROTOTYPING TECHNOLOGIES 7

Three dimensional Printing (3DP): Principle, basic process, Physics of 3DP, types of printing, process capabilities, material system. Solid based, Liquid based and powder 3DP Applications Shape based systems, strength and weakness, and case studies. Manufacturing basic process, Deposition (SDM): Introduction. shape decomposition. applications. Selective Laser Melting, Electron Beam Melting - Rapid mold SDM and manufacturing.

#### **Total No. of Periods: 45**

#### **TEXT BOOKS:**

1. Rapid prototyping: Principles and applications, second edition, Chua C.K., Leong K.F., and Lim C.S., World Scientific Publishers, 2003.

2. Rapid prototyping, Andreas Gebhardt, Hanser Gardener Publications, 2003.

### **REFERENCES:**

1. Rapid Prototyping and Engineering applications : A tool box for prototype development, Liou W.Liou, Frank W.Liou, CRC Press, 2007.

2. Rapid Prototyping: Theory and practice, Ali K. Kamrani, Emad Abouel Nasr, Springer, 2006. 3. Rapid Tooling: Technologies and Industrial Applications, Peter D.Hilton, Hilton/Jacobs, Paul F.Jacobs, CRC press, 2000.



Subject Code: EMDE22E06	Su DI	bject N ESIGN	ame : A	DVAN	CED M	IECHAN	ISM	Ty / Lb	L	T/S. Lr	P/R	C		
	Pre	erequisi	te: Mec	hanics of	of Mac	hines		Ту	3	0/0	0/0	3		
T/L/ : Theory/Lab	L : Le	cture T	: Tutor	ial P:I	Practica	al/ Projec	t R:Re	search C:	Cre	dits				
<b>OBJECTIVE:</b> Th	e stude	nts will	learn m	ethods	of kine	matic an	alysis a	nd synthes	sis of	simple	mechanis	sms		
and basic concept	s of spa	tial me	chanism	S										
COURSE OUTCO	OMES (	( <b>COs</b> ) :	The stu	dents w	vill be a	ble to								
CO1	Ur	Iderstan	d the bas	sic conc	epts of	kinematic	s and an	alysis						
CO2	Ap	ply the	concept	of kine	matic a	nalysis to	find velo	ocity and a	ccele	ration of	mechani	sms		
CO3	Stı	udy the	y the various methods of synthesis of simple mechanism.											
CO4	Fo	rmulate	alate the synthesis of various linkages.											
CO5	Ar	alyze tl	lyze the spatial mechanisms											
Mapping of Cours	se Outc	omes w	ith Prog	ram O	utcome	s (POs)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO:	3					
CO1	3	2	3	3	2	3	1	1						
CO2	3	2	3	3	2	3	1	1						
CO3	3	2	3	3	2	3	1	1						
CO4	3	2	3	3	2	3	1	1						
CO5	3	2	3	3	2	3	1	1						
1/2/3 indicates Str	ength o	of Corre	elation	3 High,	2- Me	dium, 1-L	<b>JOW</b>							
Category	Program Core	Program	Open Electives	Practical / Project	Internships / Technical	Audit Course								

T/L/: Theory/Lab L : Lecture T : Tutorial P : Practical/ Project R : Research C: Credits

### **UNIT I: INTRODUCTION TO KINEMATICS**

Review of fundamentals of kinematics--Mobility, kinematic inversion, Graphical position analysis, algegric position analysis, position analysis techniques, displacement difference between two points, rotation and translation, apparent displacement and absolute displacement.

### **UNIT II: VELOCITY AND ACCELERATON**

Velocity and acceleration of simple and complex mechanisms using graphical method.

### **UNIT III: SYNTHESIS**

Type, Number and. Dimensional synthesis - Function generation, path generation, body guidance. Two position synthesis of crank and rocker mechanism. Crank and rocker mechanism with optimum transmission angle. Three position synthesis, Four position synthesis, point precision reduction, precision position, structural error, chebychev spacing.

### **UNIT IV: SYNTHESIS OF LINKAGES**

Coupler curve synthesis, cognate linkages, Robert-Chebychev theorem, Blocks method of synthesis, Freudenstein's equation, Analytical synthesis using complex algebra, Synthesis of dwell mechanisms.

### **UNIT V: SPATIAL MECHANISM**

REFERENCES

Introduction, exception in the mobility of mechanisms, the position analysis problem, Velocity and acceleration analysis.

- 1. Sandor, G.N. and Erdman, A.G. (1984) Advanced Mechanism Design Analysis and Synthesis. **Prentice Hall**
- 2. Shigley, J.E. and Uicker, J.J. (1995) Theory of Machines and Mechanisms. McGraw Hill
- 3. Amitabha Ghosh and Ashok Kumar Mallik, (1999) Theory of Mechanism and Machines. **EWLP**
- 4. Nortron R.L. (1999) Design of Machinery. McGraw Hill
- 5. Kenneth Waldron, J. and Gary Kinzel, L. (1999) Kinematics, Dynamics and Design of Machinery. John Wiley & sons

9

9

9

9

#### 9

**Total No. of Periods: 45** 



# **PROGRAMME ELECTIVE – III**



Subject Code EMDE22E07	: Su	bject N	ame : T	RIBOL	OGY I	N DESI	GN		Ty / Lb	L	T/S. Lr	P/R	С
	Prei	requisite	e: Engino	eering N	Aechan	ics, Desi	gn of		Ту	3	0/0	0/0	3
	Mao	chine El	ements-l	, Desig	n of Ma	chine El	ements	-II					
T/L/: Theory	y/Lab L	: Lectu	re T : Tı	ıtorial	P :Pra	ctical/ P	roject	R : R	esearch	C: Cı	redits		
OBJECTIVE	E: At the	end of t	his cours	se, the s	tudent	will be a	ble to u	nderst	and				
Theorie	es on Fri	ction, W	lear and	Lubrica	ation								
Surface	e Engine	ering an	d Contac	et mech	anics								
Corros	ion and <b>(</b>	Coatings	5										
• Journa	and Rol	lling Ele	ement Be	arings									
COURSE OU	JTCOM	ES (CC	<b>(s</b> ) : The	studen	ts will	be able t	to						
CO1	Apply	theorie	s of frict	ion and	wear to	various	practic	al situ	ations				
CO2	Under tribolo	stand th	e variou havior c	s surfac of a surf	e measi ace.	urement	techniq	ues ar	nd effect of	of sur	face te	exture on	
CO3	Select	materia	ls and lu	bricant	s to sug	gest a tri	bologic	al sol	ution to a	ı parti	icular s	ituation.	
CO4	Design	esign a hydrodynamic bearing using various bearing charts											
CO5	Under	stand th	e 1-D an	d 2-D p	oroblem	s by fini	te diffei	rence	method.				
Mapping of (	Course C	Outcom	es with <b>H</b>	Program	n Outc	omes (P	Os)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	2 PS	03				
CO1	1	1	1	2	1	1							
CO2	1	1	1	2	1	1							
CO3	1	1	1	2	1	1							
CO4	1	1	1	2	1	1							
CO5	1	1	1	2	1	1							
1/2/3 indicate	es Streng	gth of C	orrelatio	on 1-1	High, 2-	Mediu	n, 3-Lo	W					
			s		~								
	ore		ive		ips	se							
ory	Ŭ	L S	lect	1/	nsh ical	our							
Catego	rogran	rogran lective	pen E	ractica toject	Inter Techn	udit C							
-	P1	E E E	0	4 4		A							
		N											



Subject Code: EMDE22E07	Subject Name : TRIBOLOGY IN DESIGN	Ty / Lb	L	T/S. Lr	P/R	С				
	Prerequisite: Design of Machine Elements	Ту	3	0/0	0/0	3				
T/L/ : Theory/Lab L : Lecture T : Tutorial P :Practical/ Project R : Research C: Credits										

#### **UNIT I: SURFACES, FRICTION AND WEAR**

Topography of the surfaces - Surface features - Surface interaction - Theory of Friction - Sliding and Rolling Friction, Friction properties of metallic and non-metallic materials - friction in extreme conditions - Wear, types of wear - Mechanism of wear - Wear resistance materials - Surface treatment - Surface modifications -Surface coatings.

#### **UNIT II: LUBRICATION THEORY**

Lubricants and their physical properties- Viscosity and other properties of oils -Additives and selection of Lubricants- Lubricants standards ISO, SAE, AGMA, BIS standards - Lubrication Regimes -Solid Lubrication-Dry and marginally lubricated contacts- Boundary Lubrication Hydrodynamic lubrication — Elasto and plasto hydrodynamic - Magneto hydrodynamic lubrication

- Hydro static lubrication - Gas lubrication.

#### **UNIT III: DESIGN OF FLUID FILM BEARINGS**

Design and performance analysis of thrust and journal bearings - Full, partial, fixed and pivoted journal bearings design - Lubricant flow and delivery - power loss, Heat and temperature, rotating loads and dynamic loads in journal bearings - Hydrostatic Bearing design.

#### **UNIT IV: ROLLING ELEMENT BEARINGS**

Geometry and Kinematics - Materials and manufacturing processes - contact stresses - Hertzian stress equation - Load divisions - Stresses and deflection - Axial loads and rotational effects, Bearing life capacity and variable loads - ISO standards - Oil films and their effects - Rolling Bearings Failures.

#### **UNIT V: FINITE DIFFERENCE METHOD**

Finite difference approach, Classification of partial differential equations, Parabolic, Hyperbolic and elliptic equations, Discretisations of the 1-Dimensional, 2-Dimensional partial differential equations and its solutions and error and stability analysis, fundamentals of fluid flow modeling.

> **Total No. of Periods** : 45

#### REFERENCES

- 1. Cameron, A. (1981) Basic Lubrication Theory. Ellis Herward Ltd.
- 2. Hulling, J. (Editor), (1984) Principles of Tribology. MacMillan.
- 3. Williams, J.A. (1994) Engineering Tribology. Oxford Univ. Press.
- 4. Neale, M.J. (1995) Tribology Hand Book. Butterworth Heinemann.
- 5. http://www.csetr.org/link.htm
- 6. http://www.me.psu.edu/research/tribology.htm

9

## 9

9

#### 9



Subject Cod EMDE22E08	e: Su B DY	bject N (NAMI	ame : C ICS	OMPU	TATIC	ONAL FL	UID	Ty / Lb	L	T/S. Lr	P/R	C
	Pre	erequisi	te: Flui	id Me	echan	ics		Ту	3	0/0	0/0	3
T/L/ : Theor	y/Lab ]	L:Lect	ture T : '	Tutoria	al P :Pı	ractical/ P	roject l	R : Reseau	ch C	: Credit	<b>S</b>	
OBJECTIV	E: To	develop	p finite v	olume o	discretiz	zed forms	of the go	overning e	quatic	ons for di	iffusion•	
processes. To	o develo	op finite	e volume	discret	ized for	ms of the	convecti	on-diffusi	on pro	ocesses.	•	
To develop p	ressure	based a	lgorithm	s for flo	ow proc	esses.• T	o introdu	ice various	s turbi	ulence m	odels, La	arge
Eddy Simulat	tion and	l Direct	Numeric	cal• Sin	nulation	l <b>.</b>						
COUDER OF												
COURSE O	UTCO	MES (C	(Os): TI	ne stud	ents wi	ll be able	to dome con	ditions in	Finita	difformer	t moth of	10
COI	Under	istand t	ine gover	ning eq	luations	and boun	dary con	anitions in	rinne	amerer	it method	18
CO2	Analy	ze vario	ous discr	etizatio	n techn	iques for t	oth stead	dy and uns	steady	conduct	tion heat	
	transf	isfer problems.										
CO3	Analy	lyze the various incompressible flow problems by Finite-Volume method.										
CO4	Analy	ze vario	ous discr	etizatio	n techn	iques for t	oth stead	dy and uns	steady	convect	tion heat	
	transf	nsfer problems										
CO5	Select and use the different turbulence models according to the type of flows.											
Manning of	Course	Outco	mos with	Progr	am Au	teomes (P						
mapping or	Course	Outco	mes with	lliugi		comes (1	03)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3				
CO1	3	2	3	3	2	3	3	3				
CO2	3	2	3	3	2	3	3	3				
CO3	3	2	3	3	2	3	3	3				
CO4	3	2	3	3	2	3	3	3				
CO5	3	2	3	3	2	3	3	3				
1/2/3 indicat	es Strei	ngth of	Correla	tion 1	- High,	2- Mediu	m, 3-Lo	W				
			Se		\							
	Core		tive		nips 1	ITSe						
ý	В	n es	llec	al /	msh nica	Cou						
601	grai	grai ctiv	йН	ctic ject	ntei schi	lit (						
Cate	Pro	Pro: Elec	Opé	Pra( Proj	T J	Auc						
		 ✓										



Subject Code: EMDE22E08	Subject Name : COMPUTATIONAL FLUID DYNAMICS	Ty / Lb	L	T/S.L r	P/R	С			
	Prerequisite: Fluid Mechanics	Ту	3	0/0	0/0	3			
T/L/: Theory/Lab L : Lecture T : Tutorial P : Practical/ Project R : Research C: Credits									

### UNIT I: GOVERNING DIFFERENTIAL EQUATIONS AND FDM

Classification, Initial and Boundary Conditions, Initial and Boundary value problems. Finite Difference Method, Central, Forward, Backward Difference, Uniform and Non-uniform Grids, Numerical Errors, Grid Independence Test.

#### UNIT II: CONDUCTION HEAT TRANSFER

Steady one-dimensional conduction, Two and Three dimensional Steady state problems, Transient One dimensional and Two dimensional problems.

#### UNIT III: INCOMPRESSIBLE FLUID FLOW

Governing Equations, Stream function – Vorticity Method, Determination of Pressure for Viscous flow, Simple procedure of Patankar and Spalding, Computation of Boundary layer flow, Finite Difference Approach.

#### UNIT IV: CONVECTION HEAT TRANSFER AND FEM

Steady One Dimensional and Two Dimensional Convection-Diffusion, Unsteady One Dimensional Convection- Diffusion, Unsteady Two Dimensional Convection – Diffusion – Introduction to Finite Element Method-Solution of Steady Heat Conduction by FEM- Incompressible flow – Simulation by FEM.

#### **UNIT V: TURBULENCE MODELS**

Algebraic models –One Equation model, K-I Models, Standard, High and Low Reynolds Number models, Prediction of Fluid flow and Heat transfer using Standard Codes.

#### Total No. of Periods: 45

9

9

9

9

#### REFERENCES

- 1. Muralidhar, K. and Sundararajan, T. (1995) Computational Fluid Flow and Heat Transfer. Narosa Publishing House
- 2. Ghoshdasdidar, P.S. (1998) Computer Simulation of Flow and Heat Transfer. Tata McGraw Hill Publishing Company Limited
- 3. Subhas, V. Patankar, (1980) Numerical Heat Transfer Fluid Flow. Hemisphere Publishing Corporation
- 4. Taylor, C. and Hughes, J.B. (1981) Finite Element Programming of Navier Stoke Equation. Pine Ridge Press Ltd
- 5. Anderson, D.A. Tannehill, J.C. and Pletcher, R.H. (1984) Computational Fluid Mechanics and Heat transfer. Hemisphere Publishing Corporation
- 6. Fletcher, C.A.J. (1987) Computational Techniques for Fluid Dynamics-Fundamental and General Techniques. Springer –Verlag
- 7. Fletcher, C.A.J. (1987) Computational Techniques for Different Flow Categories. Springer –Verlag
- 8. Bose T.K. (1997) Numerical Fluid Dynamics. Narosa Publishing House



Subject Code: EMDE22E09	Su Su	bject N RACTU	lame : C IRE	REEP,	FATIO	GUE AN	<b>JD</b>	Ty / Lb	L	T/S. Lr	P/R	C	
	Pro St	erequisi	te: Eng	ineer Mater	ing N	Mecha	nics,	Ту	3	0/0	0/0	3	
T/L/: Theory	/Lab L : Le	cture T	<b>Tutor</b>	ial P:I	Practica Practica	al/ Proj	ect R: R	lesearch (	C: Cr	edits			
OBJECTIVE	:												
To enhance th analysis, and f	e knowledg failure prev	ge in the ention.	e areas o	f failur	e of eng	gineerin	g structu	res, failu	re me	echanisn	ns, failur	e	
COURSE OU	TCOMES	( <b>COs</b> ) :	The stu	dents w	vill be a	ble to							
CO1	Understand	the ge	ometry	of stres	s and s	strain, e	lastic de	formatio	n, pla	stic and	l elastop	lastic	
	deformatio	on						-					
CO2	Understand	the me	chanism	of cracl	k forma	tion and	its grow	th					
CO3	Demonstrat	te the n	nechanic	es of cr	eep and	d its sta	ges						
CO4	Estimate th	e fatigu	e life of a	a compo	onent w	ith or w	ithout cra	ick in it.					
CO5	Understand	the cor	ncept of f	racture	mecha	nics							
Mapping of C	Mapping of Course Outcomes with Program Outcomes (POs)												
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	3				
CO1	2	1	2	2	1	2							
CO2	2	1	2	2	1	2							
CO3	2	1	2	2	1	2							
CO4	2	1	2	2	1	2							
CO5	2	1	2	2	1	2							
1/2/3 indicates	s Strength o	of Corro	elation	3- High	а, 2- Ме	dium, 1	-Low						
tegory	am Core	am ives	Electives	tical / ect	tternships / chnical	t Course							



Subject Code:	Subject Name : CREEP, FATIGUE AND	Ty / Lb	L	T/S.	P/R	С
EMDE22E09	FRACTURE			Lr		
	Prerequisite: Engineering Mechanics,	Ту	3	0/0	0/0	3
	Strength of Materials	-				
T/L/ : Theory/Lab L	: Lecture T : Tutorial P :Practical/ Project R : R	esearch (	C: Cre	edits		

#### **UNIT I: ELEMENTS OF SOLID MECHANICS**

The geometry of stress and strain, elastic deformation, plastic and elastoplastic deformation-limit analysis

#### **UNIT II: CRACK GROWTH**

Two dimensional elastic fields-Analytical solutions- Yielding near a crack front-Irwins approximation-plastic Zone size-Dugdaale model-J integral and its relation to crack opening displacement. Griffth analysis-Linear Fracture Mechanics-Crack opening displacement-Dynamic energy balance-crack arrest

#### **UNIT III: CREEP**

Mechanics of creep, inter-granular, trans-granular creep, Creep test, Creep strain rate-time curves, Deformation mechanism map; High temperature properties of materials; Long time creep-stress-time relations; Creep contribution to the fracture mechanism; DVM, DVL German-standard, Hatifield time yield test.

#### **UNIT IV: FATIGUE CRACK GROWTH CURVE**

Empirical relation describing crack growth by Fatigue-Life calculations for a given load amplitudeeffects of changing the load spectrum-Effects of Environment

#### **UNIT V: ELEMENTS OF APPLIED FRACTURE MECHANICS**

Examples of crack-growth Analysis for cyclic loading-leak before break- crack initiation under large scale yielding-Thickness as a Design parameter-crack instability in Thermal or Residual-stress fields.

#### **Total No. of periods: 45**

### **REFERENCES**

- 1. David Broek, (1978) Elementary Engineering Fracture Mechanics. Fifthoff and Noerdhoff International
- 1. Publisher
- 2. Kare Hellan, (1985) Introduction to Fracture Mechanics. McGraw Hill Book Company
- 3. Preshant Kumar, (1999) Elements of Fracture Mechanics. Wheeler Publishing
- 4. Thomas Courtney, H. (2000) Mechanical Behaviour of Materials. 2nd. Ed. Long Grove, Waveland Press, Inc
- 5. William Hosford, F. (2010) Mechanical Behaviour of Materials. 2nd. Ed. Cambridge University Press
- 6. Keith Bowman, Mechanical Behaviour of Materials. John Wiley & Sons
- 7. http://www.elsevier.com/locate/enfracmech

62

9

9

9

## 9



# **PROGRAMME ELECTIVE –IV**



Subject Cod EMDE22E1	e: Su 0 H	ıbject N ANDLI	ame : D NG EOI	ESIGN JIPME	OF M	<b>A</b> L	Ty / Lb	L	T/S. Lr	P/R	С		
	Pr	erequisi	te: Stren	gth of N	Iaterial	s, Mecha	nics of	Ту	3	0/0	0/0	3	
	M	achines,	Design	of Macl	nine Ele	ements							
T/L/: Theor	y/Lab L :	Lectur	e T : Tu	torial l	P:Prac	tical/ Pr	oject R :	Research C	: Cre	dits			
OBJECTIV	E: At the e	end of th	is course	e, the st	udent w	ill be ab	le to unde	rstand					
Funda	mental kn	owledge	e of Mate	rial Ha	ndling H	Equipme	nt.						
• Desig	n and anal	ysis of I	loisting	Equipm	ent's L	ike, Rop	e, Drum, I	Iook, Chain	, Pulle	ey and G	irder etc	).	
Design	n of arresti	ng gear	, Convey	ors and	Elevat	ors.							
COURSE O	UTCOM	ES (CO	s) : The s	student	s will b	e able to	)						
CO1	Understa	nd the b	asic Fun	dament	als of M	laterial I	Handling I	Equipment.					
CO2	Design of	of variou	ıs hoistin	g elem	ents like	e, chains	, Hemp an	d wire ropes	, Pulle	ey syster	ms,		
	Sprocket	kets & drums, forged hooks and eye hooks and Girders.											
CO3	Design of	sign of various hoisting elements like, forged hooks and eye hooks and Girders.											
CO4	Design a	esign a Conveyors and Selection based on the Application.											
CO5	Design of	f Bucke	t and Ca	ge Elev	ator.								
Mapping of	Course O	utcome	s with P	rogram	Outco	mes (PC	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3					
CO1	2		3	3	2	3	3	3					
CO2	2		3	3	2	3	3	3					
CO3	2		3	3	2	3	3	3					
CO4	2		3	3	2	3	3	3					
CO5	2		3	3	2	3	3	3					
1/2/3 indicat	es Strengt	th of Co	orrelatio	n 1-H	igh, 2-	Medium	1, 3-Low						
			SS		/ 5								
	Core		tive		uips I	rse							
ory	n C	es a	llec	al /	msł nicź	Cou							
lteg	grai	grai	пE	stic	nter schr	lit (							
Ca	Pro§	Prof Elec	ope	Prac Proj	I Te	Aud							
			<b>.</b>			7							



Subject Code: EMDE22E10	Subject Name : DESIGN OF MATERIAL HANDLING EQUIPMENTS	Ty / Lb	L	T/S. Lr	P/R	С
	Prerequisite: Strength of Materials, Mechanics of Machines, Design of Machine Elements	Ту	3	0/0	0/0	3
T/L/ : Theory/Lab	L : Lecture T : Tutorial P :Practical/ Project R : R	esearch C	: Cree	lits		

#### UNIT I: INTRODUCTION TO MATERIALS HANDLING EQUIPMENT

Overview - consideration in material handling system design, ten principles of material handling. Types of material handling equipments-trolleys, industrial trucks, AGV, monorails and other rail guided vehicles, conveyors, cranes, hoists and elevators.

#### UNIT II: DESIGN OF HOISTS

Design of hoisting elements: Welded and roller chains - Hemp and wire ropes - Design of ropes, pulleys, pulley systems, sprockets and drums, Load handling attachments. Design of forged hooks and eye hooks – crane grabs - lifting magnets - Grabbing attachments - Design of arresting gear - Brakes: shoe, band and cone types.

#### **UNIT III: DRIVES OF HOISTING GEAR**

Hand and power drives - Travelling gear - Rail travelling mechanism - cantilever and monorail cranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings. UNIT IV: CONVEYORS 9

Types - description - design and applications of Belt conveyors, apron conveyors and escalators Pneumatic conveyors, Screw conveyors and vibratory conveyors.

#### **UNIT V: ELEVATORS**

Bucket elevators: design - loading and bucket arrangements - Cage elevators - shaft way, guides, counter weights, hoisting machine, safety devices - Design of fork lift trucks.

#### **Total No. of Periods: 45**

NOTE: Use of Approved Data Book is permitted in examination

### REFERENCES

- 1. Rudenko, N. (1970) Materials handling equipment. ELnvee Publishers
- 2. Mikell Groover, P. (2006) Automation, Production system and computer integrated Manufacturing. Second
- 3. Edition, Prentice Hall of India Pvt. Ltd
- 4. Alexandrov, M. (1981) Materials Handling Equipments. MIR Publishers
- 5. Boltzharol, A. (1958) Materials Handling Handbook. The Ronald Press Company
- 6. P.S.G. Tech, (2003) Design Data Book. Kalaikathir Achchagam
- 7. Lingaiah. K. and Narayana Iyengar, (1983) Machine Design Data Hand Book. Vol.1 & 2, Suma Publishers
- 8. Spivakovsy, A.O. and Dyachkov, V.K. (1985) Conveying Machines. Volumes I and II, MIR Publishers

9

9

9

9



Subject Code: EMDE22DE1	1 A S	ubject RTIFI YSTEN	Name : CIAL IN IS	TELLI	GENC	E AND I	EXPERT		љ	L	T/S.Lr	P/R	С
	P	rerequi	site: Co	mput	er Ai	ded D	esign	Ту		3	0/0	0/0	3
T/L/ : Theory/	Lab L	: Lectu	<b>re T : T</b>	utorial	P:Pra	actical/ F	Project	R : Rese	arch	C: (	Credits		
<b>OBJECTIVE</b> :	:												
To study	the ide	a of inte	elligent a	gents an	d searcl	h method	s.						
To stud	y about	represe	nting kno	wledge	Irina in 1		hluour						
$\succ$ To stud	y the rea	asoning ans and	methods	for gen	king in erating l	uncertain knowledg	i woria. Te						
<ul><li>To study</li></ul>	y the co	ncepts o	of expert	systems		kilo wiedz	50.						
COURSE OU	тсом	IES (CO	<b>Os) : Th</b>	e stude	nts will	be able	to						
CO1	Under	rstand tl	ne basic	concept	s of Al	and Exp	pert syste	ems					
CO2	Apply	the kn	owledge	and rea	isoning	in decisi	on maki	ng					
CO3	Predic	et the ur	ncertaint	y using	the pro	bability t	techniqu	es					
CO4	Apply	variou	s plannir	ng and l	earning	strategie	es						
CO5	Under	rstand tl	ne impor	tance of	f exper	t system	S						
Mapping of C	ourse (	Dutcom	es with ]	Progra	m Outo	comes (P	Os)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3					
CO1	3	3	2	2	2	2	3	3					
CO2	2	2	2	2	3	2	2	3					
CO3	2	3	3	2	3	2	2	3					
CO4	3	2	3	2	3	2	2	3					
CO5	2	2	2	2	3	2	3	3					
1/2/3 indicates	Streng	gth of C	Correlati	on 3 -	· High,	2- Medi	um, 1-L	OW					
Category	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Audit Course							
		$\checkmark$											



Subject Code: EMDE22DE11	Subject Name : ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS	Ty / Lb	L	T/S.Lr	P/R	С
	Prerequisite: Computer Aided Design and Manufacturing	Ту	3	0/0	0/0	3
T/L/ : Theory/Lab	L : Lecture T : Tutorial P :Practical/ Project	R : Resea	rch C:	Credits		

#### **UNIT I. INTRODUCTION**

Introduction to AI: Intelligent agents – Perception –Natural language processing – Problem – Solving agents – Searching for solutions: Uniformed search strategies – Informed search strategies. UNIT II KNOWLEDGE AND REASONING 9

Adversarial search – Optimal and imperfect decisions – Alpha, Beta pruning – Logical agents: Propositional logic – First order logic – Syntax and semantics – Using first order logic – Inference in first order logic.

#### UNIT III UNCERTAIN KNOWLEDGE AND REASONING

Uncertainty – Acting under uncertainty – Basic probability notation – Axioms of probability – Baye's rule – Probabilistic reasoning – Making simple decisions.

#### UNIT IV PLANNING AND LEARNING

Planning: Planning problem – Partial order planning – Planning and acting in nondeterministic domains – Learning: Learning decision trees – Knowledge in learning – Neural networks – Reinforcement learning – Passive and active.

#### UNIT V EXPERT SYSTEMS

Definition – Features of an expert system – Organization – Characteristics – Prospector – Knowledge Representation in expert systems – Expert system tools – MYCIN – EMYCIN.

#### **Total no of periods:45**

9

10

#### TEXTBOOKS

1. Stuart Russel and Peter Norvig, 'Artificial Intelligence A Modern Approach', Second Edition, Pearson Education, 2003 / PHI.

2.Donald A.Waterman, 'A Guide to Expert Systems', Pearson Education.

#### **REFERENCE BOOKS**

1. George F.Luger, 'Artificial Intelligence – Structures and Strategies for Complex Problem Solving', Fourth Edition, Pearson Education, 2002.

2. Elain Rich and Kevin Knight, 'Artificial Intelligence', Second Edition Tata McGraw Hill, 1995.



Subject Code: EMDE22E12	Su EN	bject N NGINE	ame : O ERING	PTIMI DESIG	ZATIO	ON IN	]	Гу / Lb	L	T/S.Lr	P/R	С	
	Pre	erequisi	te: NIL					Ту	3	0/0	0/0	3	
T/L/: Theory/I	Lab L :	Lectur	e T : Tu	torial ]	P :Prac	tical/ Pro	ject R :	Research	h C: (	Credits			
<b>OBJECTIVE:</b>													
To formulate a f	formal d	lesign o	ptimizati	on prob	lem								
To Solve the pro	oblem		-	-									
To Assess and v	validate	solution	results										
COURSE OUT	ГСОМЕ	ES (CO	s): The	student	ts will b	e able to							
CO1	Use V	ariation	al princi	ple for o	optimiza	ation							
CO2	Apply	ply the dynamic programming to solve problems of discrete and continuous variables.											
CO3	Model	del the real world problem and simulate it.											
CO4	Apply	ply the concept of non-linear programming.											
CO5	Carry	out sens	sitivity a	nalysis									
Mapping of Course Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PS	03				
CO1	2	2	3	3	2	1	1		2				
CO2	2	2	3	3	2	1	1		2				
CO3	2	2	3	3	2	1	1		2				
CO4	2	2	3	3	2	1	1		2				
CO5	2	2	2	3	2	1	1		2				
1/2/3 indicates	Strengt	h of Co	orrelatio	n 3-H	ligh, 2-	Medium,	1-Low						
	re		ves		/ sd	e							
Σ.	Co		ecti	<ul> <li></li></ul>	shij 2al	ours							
100 301	am	am ves	Εle	cal x	ern	ů C							
ate	gr	ogri Scti	en	acti ijeć	Int ecł	dit							
0	Prc	Pr. Ele	Op	Pré Pre	L	Au							



Subject Code: EMDE22E12	Subject Name : OPTIMIZATION IN ENGINEERING DESIGN	Ty / Lb	L	T/S.Lr	P/R	С			
	Prerequisite: NIL	Ту	3	0/0	0/0	3			
T/L/: Theory/Lab L : Lecture T : Tutorial P : Practical/ Project R : Research C: Credits									

### **UNIT I: CLASSICAL OPTIMIZATION TECHNIQUES**

Single variable optimization with and without constraints, Multi-variable optimization without constraints, multi-variable optimization with constraints- method of Lagrange multipliers, Kuhn-Tucker conditions.

#### UNIT II: NUMERICAL METHODS FOR OPTIMIZATION

Nelder Mead's Simplex search method, Gradient of a function, steepest descent method, Newton's method, types of penalty methods for handling constraints.

#### UNIT III: GENETIC ALGORITHM (GA)

Differences and similarities between conventional and evolutionary algorithms, working principle, reproduction, crossover, mutation, termination criteria, different reproduction and crossover operators, GA for constrained optimization, draw backs of GA, multi–objective GA, Non-dominated sorted GA, convergence criterion, applications of multi-objective problems.

## UNITIV: APPLICATIONS OF OPTIMIZATION IN DESIGN AND MANUFACTURING SYSTEMS 9

Some typical applications like optimization of path synthesis of a four-bar mechanism, minimization of weight of a cantilever beam, optimization of springs and gears, general optimization model of a machining process, optimization of arc welding parameters, and general procedure in optimizing machining operations sequence.

#### **UNIT V: INTRODUCTION TO NEURAL NETWORKS**

Introduction, Humans and Computers, Organization of the Brain, Biological Neuron, Biological and Artificial Neuron Models, Hodgkin-Huxley Neuron Model, Integrate and-Fire Neuron Model, Spiking Neuron Model, Characteristics of ANN, McCulloch- Pitts Model, Historical Developments, Potential Applications of ANN.

#### **Total No. of Periods: 45**

#### REFERENCES

- 1. Jasbir Arora, Optimal design. McGraw Hill (International) Publishers
- 2. Kalyanmoy Deb, Optimization for Engineering Design. PHI Publishers
- 3. Rao, S.S. Engineering Optimization. New Age Publishers
- 4. Johnson Ray, C. (1990) Optimum Design of mechanical elements. John Wiley & Sons
- 5. Kalyanmoy Deb, Multi objective Genetic algorithms. PHI Publishers
- 6. Hertz, Krogh and Palmer, Introduction to the theory of Neural Computation
- 7. Yegnanarayana, B. Artificial Neural Networks. PHI Publishers
- 8. David Goldberg, E. (1989) Genetic Algorithms. Addison Wesley

**9** ou

9

9



## **PROGRAMME ELECTIVE –**V

M.Tech-Design Engineering-2022 Regulation



Subject Code: EMDE22E13		Subject Name :PRODUCT DESIGN AND DEVELOPMENT STRATEGIES				AND S	Ty / L	) I	5 T/ Li	′S. r	P/R	C	
	Pre	Prerequisite: NIL						Ту	3	3 0	)/0	0/0	3
T/L/: Theory/Lab L : Lecture T : Tutorial P : Practical/ Project R : Research C: Credits													
<b>OBJECTIVE:</b> At	the er	nd of thi	s course,	, the stu	dent wi	ll be abl	e to						
• Develop, design, manufacture, and test an electromechanical system.													
• Hands-on experiences in the interpretation of product/customer specifications, concept development,													
engineering drawings, design for prototyping, and manufacturing will be utilized in the instruction of										of			
the engineering design process.													
Accurately		$\frac{1}{2}$	ir produc	t design	1 experi	ence the	ough an	engineer	ing not	teboo	k.		
COURSE OUTCO		S(CUS)	on on gir		docign	able to	lonmont	process					
	L	escribe	an engn	leering	design		elopment	l process					
CO2	C	bain the	e knowle	edge of	creati	ve thinl	king for	quality	manag	geme	ent		
CO3	A	nalyze	the vario	us desi	gn cons	ideratio	n in prod	uct devel	opmen	ıt			
CO4	A	pply th	e various	s produ	ct deve	lopment	strategie	es in pro	duct de	esign			
CO5	U	Indersta	nd the de	esign fa	ctors in	Value	enginee	ering					
Mapping of Cours	se Ou	tcomes	with Pr	ogram	Outcon	nes (PO	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSC	D2 P	SO3				
CO1	3	2	3	3	3	3	2	2	3				
CO2	3	2	3	3	3	3	2	2	3				
CO3	3	2	3	3	3	3	2	2	3				
CO4	3	2	3	3	3	3	2	2	3				
CO5	3	2	3	3	3	3	2	2	3				
1/2/3 indicates Strength of Correlation 1- High, 2- Medium, 3-Low													
Category	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Audit Course							
		$\checkmark$											



Subject Code: EMDE22E13	Subject Name :PRODUCT DESIGN AND DEVELOPMENT STRATECIES	Ty / Lb	L	T/S. Lr	P/R	С			
ENIDEZZEIS	Prerequisite: NIL	Ту	3	0/0	0/0	3			
T/L/: Theory/Lab L: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits									

#### **UNIT I: INTRODUCTION**

Essential factors of product design- requirements of good design- factors affecting product designproduct development process tools- Design by evolution and innovation- Asimow's model-Journeys in product development- product engineering – nature and scope- Product design practice in industry.

#### **UNIT II: CREATIVITY**

Creative thinking and organizing for product innovation criteria – method and tools for directed creativity – challenges of quality management – Case studies – Mumbai's Dabbawalas – creativity by less learned- Creativity on wheel chair – MARICO (case study)- Patent –design patents- patent application steps – sale of patent rights.

#### UNIT III: DESIGN CONSIDERATIONS

Functional and production design – form design – influence of basic design, mechanical loading and material on form design – Design for manufacture and assembly – Design for robustness – Design for production – Design for stiffness and rigidity – strength consideration in product design – optimization in design – Project analysis – Mechanical estimating and costing.

#### **UNIT IV: PRODUCT DEVELOPMENT STRATEGIES**

Planning and preparation – Resources – Talent –striving, thinking, relating – Quality assurance in product design – Strategy for product development – Case studies.

#### **UNIT V: HUMAN AND VALUE ENGINEERING**

Human beings as applicator of forces – Anthropometry – design of controls and displays – man/machine information exchange – aesthetic and ergonomic considerations – Value engineering – maximum value-Normal degree of value – value analysis of job plan – Idea generation check-list – Cost reduction through value engineering case study on tap switch control assembly – Economic factors influencing design – Material and process selection.

#### REFERENCES

- 1. Kavin & Krishn, Product Design Techniques in reverse engineering & New product development, Pearson Education
- 1. Paul Plsek, E. Creativity, Innovation and Quality. Prentice Hall of India Private Limited
- 2. Jones, J.C. (1970) Design Methods. Interscience
- 3. Buhl, H. (1960) Creative Engineering Design. Iowa State University Press
- 4. Dieter, G.E. (1983) Engineering Design. McGraw Hill
- 5. Niebel, B.W. & Draper, A.B. (1974) Product Design and Process Engineering. McGraw Hill
- 6. Harry Peck, (1973) *Designing for Manufacturing*. Sir Issac Pitman and Sons Ltd.

### Total No. of Periods: 45

9

9

9

9

72



Subject Code: EMDE22E14	Sı M	Subject Name : PRODUCT LIFE CYCLE MANAGEMENT					Ty / I	b	L	T/S.Lı	r P/R	C	
	Prerequisite: Computer Aided Design						n Ty		3	0/0	0/0	0 3	
T/L/: Theory/Lab L : Lecture T : Tutorial P :Practical/ Project R : Research C: Credits													
<b>OBJECTIVE:</b> Students can understand <b>the</b> product lifecycle management and its applications and the key													
considerations for a successful product lifecycle management.										licy			
COURSE OUTCOMES (COs) : The students will be able to													
CO1	Analy	yze the	product I	ife cycl	e stage	s and the	constrai	nts					
CO2	Unde	rstand a	and creat	e the co	mpone	nts of typ	pical PDI	M setup					
CO3	Creat	e Worl	c Flow T	emplate	es and	Integrate	them						
CO4	Analy	yze Cha	nge Mar	agemei	nt issue	s, reques	t, investi	gation a	nd proj	posa	al		
CO5	Unde	rstand t	he impo	rtance o	f PLM	and corp	orate cha	allenges					
Mapping of Co	ourse	Outcom	nes with	Progra	m Out	comes (H	POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3					
CO1	2	2	2	2	2			2					
CO2	2	2	2	2	2			2					
CO3	2	2	2	2	2			2					
CO4	2	2	2	2	2			2					
CO5	2	2	2	2	2			2					
1/2/3 indicates	Stren	gth of (	Correlat	ion 3	- High,	2- Medi	um, 1-L	ow					
Category	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Audit Course							
		$\checkmark$											



Subject Code: EMDE22E14	Subject Name : PRODUCT LIFE CYCLE MANAGEMENT	Ty / Lb	L	T/S.Lr	P/R	С			
	Prerequisite: Computer Aided Design and Manufacturing	Ту	3	0/0	0/0	3			
T/L/: Theory/Lab L: Lecture T: Tutorial P:Practical/Project R: Research C: Credits									

#### **UNIT I: INTRODUCTION**

Introduction to Product Data Management (PDM) – Present Market Constraints – Need for Collaboration – Internet and Developments in Server – Client Computing.

#### **UNIT II: COMPONENTS OF PDM**

Components of a Typical PDM Setup – Hardware and Software Document Management – Creation and viewing of Documents - Creating Parts – Version and Version Control of Parts and Documents – Case Studies.

#### **UNIT III: CONFIGURATION MANAGEMENT**

Base Lines – Product Structure – Configuration Management – Case Studies. Automating Information Flow - Work Flow – Creation of Work Flow Templates - Work Flow Integration.

#### **UNIT IV: CHANGE MANAGEMENT**

Change Management: Change Issue – Change Request – Change Investigation – Change Proposal – Change Activity – Case Studies.

#### **UNIT V: IMPORTANCE OF PLM**

Emergence of PLM- pre-PLM environment, paradigm, grid- Corporate challenges- service industry in PLM – a challenging project – importance, benefits & applications.

#### **Total No. of Periods: 45**

9

9

9

9

9

### REFERENCES

- 1. David Bedworth, Mark Henderson & Philip Wolfe, (1991) Computer Integrated Design and Manufacturing, Tata McGraw Hill Inc
- 2. John Stark, (2011) Product Life Cycle management 21st century paradigm for product realization. 2nd edition, Springer
- 3. Antti Saaksvuori & Anselmi Immonen, (2008) Product life cycle management. 3rd edition, Springer


Subject Code:	Subj	ect Nam	e: DESI	GN THI	INKING	G AND IN	NOVAT	TION	Ty / L	b L	, T/S Lr	•	P/R	C
EMDE22E15	Pro r	oquisito	•						Ту	3	0/0	)	0/0	3
	1101	cquisite	•						- 5		0/1		0/0	
L : Lecture T :	Tutorial	S Lr	: Supervis	ed Lear	ning P:	Project 1	R : Resea	rch C:	Credits		•			
T/L/ETL : The	ory/Lab/	/Embedd	led Theor	y and La	ıb									
OBJECTIVES	S: The s	tudent w	vill learn											
Solid 1	mechani	cs of cr	acked con	mponent	s of dif	which 1	these co	mpor	nents	fail	under s	tatic and		
Tatigue		nations.												
OURSE OUT	COMES	<u>S (COs)</u>	•											
CO1	Unders	stand the	fundame	ntal cond	$\frac{1}{1}$	design thi	inking	1 1						
CO2	Apply	the knov	vledge of	design ti	ninking j	process ir	n product	develo	pment					
CO3	Davala	te the ne	w luea lo	r produc	t creatio	ns								
C04	Develo	p the pro		ign and s	strategies	8								
CU5 Monning of C	Create	a new b	usiness id	ea for a s	startup.									
	DO1	ncone	s with Pro	ogram C	Dutcome	S (PUS)	DCOA	DCO						
Cos/Pos	POI	PO2	PO3	PO4	PO5	PSOI	PSO2	PSO	3					
COI	3	2	3	3	2	2	1	2						
CO2	3	2	3	3	2	2	1	2						
CO3	3	2	3	3	2	2	1	2						
CO4	3	2	3	3	2	2	1	2						
CO5	3	2	3	3	2	2	1	2						
3/2/1 indicates	Strengt	h of Coi	relation	3- Hig	h, 2- M	edium, 1-	-Low							
	Ice		and			je	v							
ıry	cien	e Ľ.	ienc		E E	ctiv	nar	Jent	П					
ego	c S	eer	Sci	am	igra tive	Ele	ipli	Iodi	tica	ect				
Cat	asi	lgin Sci	uma cial	ogr	Prc	ben	nter Disc	[kill Jom	rac	Proj				
	н	щы	Hı so	йŬ	Ū.	Ō		s O	L L	$\leq$				
					✓									



Subject Code:	Subject Name: INNOVATION	DESIGN	THINKING	AND	Ty/Lb	L	T/S.Lr	P/R	C
EMDE22E15	Pre requisite:				Ту	3	0/0	0/0	3
TT . TT .		ml · l ·					0		

#### **Unit I Introduction to Design Thinking**

Introduction to elements and principles of Design, basics of design-dot, line, shape, form as fundamental design components. Principles of design. Introduction to design thinking, history of Design Thinking, New materials in Industry.

#### **Unit II Design Thinking Process**

Design thinking process (empathize, analyze, idea & prototype), implementing the process in driving inventions, design thinking in social innovations. Tools of design thinking -person, costumer, journey map, brain storming, product development. Activity: Every student presents their idea in three minutes, Every student can present design process in the form of flow diagram or flow chart etc. Every student should explain about product development.

#### **Unit III Innovation**

Art of innovation, Difference between innovation and creativity, role of creativity and innovation in organizations. Creativity to Innovation. Teams for innovation, Measuring the impact and value of creativity. Activity: Debate on innovation and creativity, Flow and planning from idea to innovation, Debate on value-based innovation.

## Unit IV Product Design

Problem formation, introduction to product design, Product strategies, Product value, Product planning, product specifications. Innovation towards product design Case studies. Activity: Importance of modeling, how to set specifications, Explaining their own product design.

## **Unit V Design Thinking in Business Processes**

Design Thinking applied in Business & Strategic Innovation, Design Thinking principles that redefine business –Business challenges: Growth, Predictability, Change, Maintaining Relevance, Extreme competition, Standardization. Design thinking to meet corporate needs. Design thinking for Startups. Defining and testing Business Models and Business Cases. Developing & testing prototypes. Activity: How to market our own product, About maintenance, Reliability and plan for startup.

#### Text Books

1. Change by design, Tim Brown, Harper Bollins (2009)

2. Design Thinking for Strategic Innovation, Idris Mootee, 2013, John Wiley & Sons.

# **Reference Books**

1. Design Thinking in the Classroom by David Lee, Ulysses press

2. Design the Future, by Shrrutin N Shetty, Norton Press

3. Universal principles of design-William lidwell, kritinaholden, Jill butter.

4. The era of open innovation –chesbrough.

9

9

9

**Total No. of Periods: 45** 



# AUDIT COURSE 1 & 2

Subject Code:		Subjeo RESE	et Nar ARCI	ne EN H PAF	GLIS PER	SH FO	)R	Ty Lb/	7/ IE	L	T/S. Lr	P/I	R C
EMCC22I		WRITING											
01	ſ	Prereq	uisite:	Nil				I	E	2	0/	0/0	0 0
L : Lecture T	: Tuto	rial	<b>P</b> :	Proje	ct R	: Rese	earcl	1 C: (	Credit	s T	• /L: Th	eory	/Lab
submission. COURSE OU CO1 CO2	TCOM Unde Learr	IES (C) rstand t	<b>Os) :</b> hat ho what t	At the w to in o write	end mprove	of this ve you ach se	s cou ir wr ctior	<b>irse t</b> iting	<b>he stu</b> skills	<b>den</b> and	ts wou level c	<b>ild be</b> of rea	e <b>able to</b> dability
<b>CO3</b>	Unde	rstand t	he ski	lls nee	ded v	when v	vriti	ng a T	Title				
Mapping of C	Course	Outcon	ies wi	th Pro	ogran	1 Out	com	es (P	Os)				
COs/POs	PO1	PO2	PO 2	PO4	PO	5 PSC	D1	PSO	PSO:	3			
CO1	1	1	1	1	1	3		1	1				
CO2	1	1	1	1	1	3		1	1				
CO3	1	1	1	1	1	3		1	1				
	s Stren	gth of (	Corre	lation	3-1	 High,	2- N	Iediu	m, 1-]	Low	7		
3/2/1 indicate			T										
3/2/1 indicate													



Subject Code: EMCC22I01	Subject Name ENGLISH FOR RESEARCH PAPER WRITING	Ty / Lb/ IE	L	T/S.Lr	P/R	С
	Prerequisite: Nil	IE	2	0/0	0/0	0
L : Lecture T : Tutorial	<b>P</b> : <b>Project R</b> : <b>Research C</b> : <b>Credits</b>	T/L: Theo	ry/La	ıb		

#### **UNIT-I:**

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

## **UNIT-II:**

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

#### **UNIT-III:**

Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.

#### **UNIT-IV:**

Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature

#### **UNIT-V:**

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submission.

#### **Total No. of Periods: 20**

## **REFERENCES:**

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book.
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

4

4

4

4



Subject Code: EMCC22I02	Subject Name: DISASTER     Ty / Lb/     L     T/S.Lr       MANAGEMENT     IE     2     0/0												C
	-	Prere	equisi	te: Nil				1	Е	2	0/0	0/0	0
L : Lecture T : Tutor	rial P : P	roject	R : F	Researc	h C: Cr	edits 7	/L: Theorem	ry/Lab			ł	1	
<b>Objectives:</b> Learn to	o demon	strate	a crit	tical uno	derstan	ding of	f key con	cepts in	disas	ter risl	reduction	and hum	anitarian
response.													
COURSE OUTCO	MES (C	<u>:(Os) :</u>	At th	he end	of this	course	e the stud	ents wo	uld t	be able	e to		-
COI	Critica multip	lly eva lepers	aluate spectiv	e disaste ves.	er risk i	reducti	on and hu	ımanitar	ian r	espons	e policy an	d practice	e from
CO2	Develo	Develop an understanding of standards of humanitarian response and practical relevance in											e in
	specifi	pecifictypes of disasters and conflict situations.											
CO3	critical	ritically understand the strengths and weaknesses of disaster management approaches,											
	plannii	anning and programming in different countries, particularly their home country or the											
	countri	countries they work in											
Mapping of Course	e Outcor	nes w	vith P	rogran	1 Outc	omes (	POs)						
COs/POs	P	01 I	PO2	PO3	PO4	PO5	PSO1	PSO2		PSO3			
CO1	1	1	1	1	1	1	3	1	1				
CO2	1	1	1	1	1	1	3	1	1				
CO3	1	1	1	1	1	1	3	1	1				
3/2/1 indicates Stre	ength of	Corre	elatio	on 3-1	High, 2	2- Med	ium, 1-L	ow	l				
						/es		ct					
	ces		h.0		ore	ectiv	ives	Proje			se		
Cory	ien	.	ring	ties al	Ŭ	ΠEI	ect	1/I	ips	lls	our		
lteg	Sc		neer Ices	ani	am.	cam	E	ica	hst	Ski	t		
Ca	asic	•	ngii cier	lum	rogi	rogi	per	ract	ntern	oft	idi		
	В	ŗ	щŇ	H aı	P	P	0	P	Ir	Ñ	A		
											~		



Subject Code: EMCC22I02	Subject Name: DISASTER MANAGEMENT	Ty / Lb/ IE	L	T/S.Lr	P/R	С
	Prerequisite: Nil	IE	2	0/0	0/0	0
L : Lecture T : Tutorial P : P	roject R : Research C: Credits T/L: Theory/	Lab				

#### **UNIT-I: INTRODUCTION**

Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

#### UNIT-II: REPERCUSSIONS OF DISASTERS AND HAZARDS

Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem.

Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

#### **UNIT-III: DISASTER PRONE AREAS IN INDIA**

Study of Seismic Zones; Areas Prone To Floods and Droughts, Landslides and Avalanches; Areas Prone To Cyclonic and Coastal Hazards with Special Reference to Tsunami; Post-Disaster Diseases and Epidemics

#### UNIT-IV: DISASTER PREPAREDNESS AND MANAGEMENT

Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

#### UNIT-V: RISK ASSESSMENT AND DISASTER MITIGATION

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival.

Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs Of Disaster Mitigation in India.

#### **Total No. of Periods: 20**

#### **SUGGESTED READINGS:**

1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.

2. Sahni, Pardeep Et.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.

3. Goel S. L., Disaster Administration And Management Text And Case Studies", Deep &Deep Publication Pvt. Ltd., New Delhi.

4

4

4

4



Subject Code: EMCC22I03		Su	bject N	ame SA TE	ANSK CHNI	RIT F CAL K	OR NOWLE	EDGE	Ty / Lb/ IE	L	T/S.Lr	P/R	С
		Pre	erequisi	ite: Nil					IE	2	0/0	0/0	0
L : Lecture T : Tutor	rialP	: Proje	ct R : I	Researcl	h C: Cr	edits T	/L: Theor	ry/Lab				l	
Objectives To get a	a worl	king kr	nowledg	ge in illı	ustriou	s Sansl	crit, the so	cientific	language	in th	e world L	earning	of
Sanskrit to improve	brain	n functioning, to develop the logic in mathematics, science & other subjects enhancing the											g the
memory power.The	engin	ineering scholars equipped with Sanskrit will be able to explore the huge knowledge from											from
ancient literature.													
COURSE OUTCO	MES		): At t	he end	of this	course	e the stud	ents wo	build be at	ole to			
	Und	ierstan	ding ba	sic Sans	skrit la	nguage		1	1	1	1		
	Anc	$\frac{1}{1}$	anskrit	iteratur	e abou	t science	ce & techi	nology	can be und	lerst	000		
	Ben	ng a lo	gical la	nguage	will he	lp to d	evelop log	gic in si	tudents				
Mapping of Course	e Out	comes	with P	rogran	1 Outc	omes (	POs)						
COs/POs		<b>PO1</b>	PO2	PO3	PO4	PO5	PSO1	PSO2	2 PSO3				
CO1		1	1	1	1	1	3	1	1				
CO2		1	1	1	1	1	3	1	1				
CO3		1	1	1	1	1	3	1	1				
3/2/1 indicates Stre	ngth	of Co	rrelatio	on 3-1	High, 2	2- Med	ium, 1-L	ow					
Category	-	Basic Sciences	Engineering Sciences	Humanities andSocial	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills	Audit course		
											<ul> <li></li> </ul>		



Subject Code: EMCC22I03	Subject Name SANSKRIT FOR TECHNICAL KNOWLEDGE	Ty / Lb/ IE	L	T/S.Lr	P/R	С
	Prerequisite: Nil	IE	2	0/0	0/0	0
L : Lecture T : Tutorial P : P	roject R : Research C: Credits T/L: Theory/Lab	)				

#### UNIT-I:

- Alphabets in Sanskrit,
- Past/Present/Future Tense,
- Simple Sentences

#### UNIT-II:

- Order
- Introduction of roots
- Technical information about Sanskrit Literature

#### **UNIT-III:**

• Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics.

#### **Total No. of Periods: 20**

8

8

4

#### SUGGESTED READING

- 1. "Abhyaspustakam" Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
- 2. "Teach Yourself Sanskrit" Prathama Deeksha-Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
- 3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.



Subject Code:		Su	bject N	ame V	ALUE	EDU	CATION	Г	y / Lb/	L	T/S.Lr	P/R	С
ENICC22104		Pre	requisi	te: Nil					IE	2	0/0	0/0	0
L : Lecture T : Tut	orial	P	· : Proj	ject R :	Resea	rch C:	Credits	Γ/L: Tł	neory/La	b			
<b>Objectives</b> .Underst	and val	ue of	educa	tion and	l self- d	levelor	oment, Imb	oibe goo	od values	in st	tudents. Lo	et them s	hould
knowabout the impo	ortance of	of cha	aracter			•	,	U					
COURSE OUTCO	MES (O	S (COs) : At the end of this course the students would be able to											
CO1	Know	ledge	e of sel	f-develo	opment	,							
CO2	Learn	the in	mporta	nce of I	Human	values							
CO3	Devel	oping	g the ov	verall pe	ersonal	ity							
Mapping of Course	e Outco	mes	with P	rogram	Outco	omes (l	POs)						
COs/POs	P	PO1	PO2	PO3	PO4	PO5	PSO1	PSO	2 PS	03			
C01	1		1	1	1	1	3	1	1				
CO2	1		1	1	1	1	3	1	1				
CO3	1		1	1	1	1	3	1	1				
3/2/1 indicates Stre	ngth of	[°] Cor	relatio	n 3-1	High, 2	- Medi	ium, 1-Lo	W					
Category	Rasir Srienres	Dasic Octelices	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills	Audit course		
											~		



Subject Code: EMCC22I04	Subject Name VALUE EDUCATION	Ty / Lb/ IE	L	T/S.Lr	P/R	С
	Prerequisite: Nil	IE	2	0/0	0/0	0
L : Lecture T : Tutorial	P : Project R : Research C: Credits T/L	: Theory/La	b			

#### **UNIT-I:**

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles. Value judgments.

#### UNIT-II:

Importance of cultivation of values. Sense of duty. Devotion, Self- reliance.Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism. Love for nature, Discipline.

#### UNIT-III:

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance. True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature

#### **UNIT-IV:**

Character and Competence –Holy books Vs Blind faith. Self-management and Good health. Science of reincarnation. Equality, Non-violence, Humility, Role of Women.

All religions and same message. Mind your Mind, Self-control. Honesty, studying effectively Total No. of Periods: 20

#### SUGGESTED READING

1 Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

4

4

6



Subject Code EMCC22I05	: 5	Su IN	bject N DIA	Name :	CONS	STITU	TION OF	Ту	/ Lb/ IE	L	T/	S.Lr	P/R	С
	-	Pre	erequis	ite: Nil					IE	2	0/0	)	0/0	0
L : Lecture T	' <b>: Tu</b> t	torial	Р	: Proje	ect R:	Resea	rch C: Cr	edits T/L	: Theory	/Lal	)			
<b>Objectives</b> Un	nderst	and th	e prem	ises info	orming	the tw	in themes	of liberty	and freed	om	from	a civil	l rights	
perspective. T	o add	ress th	e grow	th of In	dian op	oinion 1	regarding 1	nodern In	dian intel	lectu	ıals'	consti	tutiona	ıl role
and entitlement	nt to c	ivil an	d econ	omic rig	ghts as	well as	s the emerg	gence of n	ationhood	l in t	he ea	arly ye	ars of	Indian
nationalism To	o addı	ress th	e role											
of socialism in	i India	a after	the cor	nmence	ment o	of the B	Bolshevik F	Revolutior	n in 1917	and	its in	npact of	on the	nitial
COURSE OF	India:	n Cons	$\frac{\text{stitution}}{(\mathbf{CO}_{\text{s}})}$	1. • <b>At th</b>	anda	fthic	ourso the	studonts	would be	h oh	la ta	know		
	Disc	nuce th	$\frac{(COS)}{a}$	th of the	doma	nd for	civil rights	in India f	or the bul	$\frac{1}{2}$ and $\frac{1}{2}$	Indi	ans ba	fore th	o orrivol
COI	ofG	andhi i	in India	in politi	CS.		civii iigiits	ini muta i		K UI	mui		iore ui	
CO2	Disc	Discuss the intellectual origins of the framework of argument that informed the												
	cond	ceptual	lization	ofsocia	l refor	ms lea	ding to rev	olution in	India.					
CO3	. Dis	. Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP]												
	under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct													
	elect	tions the	hrough	adultsu	ffrage	in the l	Indian Con	stitution.						
CO4	Disc	cuss th	e passa	ge of th	e Hind	u Code	e Bill of 19	56.						
Mapping of C	Cours	e Outo	comes	with Pr	ogram	Outco	omes (POs	5)						
COs/POs		PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3					
CO1		1	1	1	1	1	3	1	1					
CO2		1	1	1	1	1	3	1	1					
CO3		1	1	1	1	1	3	1	1					
<u> </u>		1	1	1	1	1	2	1	1					
004		1	1	1	1	1	5	1	1					
3/2/1 indicate	s Stre	ength	of Cor	relation	3- H	igh, 2	- Medium	, 1-Low						
Category		Basic Sciences	Engineering Sciences	Humanities andSocial	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Skill	Soft Skills	Audit course		
		]		[	]	]				- 1	•1	, ,		



Subject Code: EMCC22I05	Subject Name : CONSTITUTION OF INDIA	Ty / Lb	L	T/S.Lr	P/R	С
	Prerequisite: Nil	Ту	2	0/0	0/0	0
L : Lecture T : Tutor	ial P : Project R : Research C: Credits 7	/L: Theory	/Lab			

#### UNIT-I: HISTORY OF MAKING OF THE INDIAN CONSTITUTION:

History, Drafting Committee, (Composition & Working)

#### UNIT-II: PHILOSOPHY OF THE INDIAN CONSTITUTION:

Preamble, Salient Features

#### **UNIT-III: CONTOURS OF CONSTITUTIONAL RIGHTS & DUTIES:**

Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

#### **UNIT-IV: ORGANS OF GOVERNANCE:**

Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions

## UNIT-V: LOCAL ADMINISTRATION AND ELECTION COMMISSION:

District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Pachayati raj: Introduction, **PRI:** Zila Pachayat. Elected officials and their roles, CEO Zila Pachayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy.

**Election Commission**: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

#### **Total No. of Periods: 20**

#### SUGGESTED READING

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

4

Δ

4



Subject Code:	S	ıbject N	Name :	PEDA	GOG	Y STU	DIES	Ty / L	/b/	L	T/S.Lr	P/R	С	
EMCC22I06	_							IE		_	0/0	0/0	0	
	Pı	erequis	ite: Nil					IE		2	0/0	0/0	U	
L : Lecture T : Tutorial F	: Project 1	R : Rese	arch C:	Credit	s T/L:	Theory	//Lab							
<b>Objectives</b> Students wil	l be able to	4. Rev	iew exis	sting ev	vidence	e on the	e review	v topic to	o info	rm pr	ogramm	e desigr	and	
policy making undertaken by the DfID, other agencies and researchers. 5. Identify critical evidence gaps to guide the														
development. COURSE OUTCOMES (COs) : At the end of this course the students would be able to know														
COUKSE OUTCOMES (COS) : At the end of this course the students would be able to Know         CO1         What node actical practices are being used by teachars in formal and informatic language in the students would be able to Know											as in			
	developin	v nat pedagogical practices are being used by teachers in formal and informal classrooms in												
<u>CO2</u>	What is th	evelopingcountries?												
02	and withv	v nat is the evidence on the effectiveness of these pedagogical practices, in what conditions, nd withwhat population of learners?												
CO3	How can	low can teacher education (curriculum and practicum) and the school curriculum and												
guidancematerials best support effective pedagogy?														
Mapping of Course Outcomes with Program Outcomes (POs)														
COs/POs	PO1	PO2	PO3	PO4	PO5	PSC	)1 I	PSO2	PSO	3				
C01	1	1	1	1	1	3	1		1					
CO2	1	1	1	1	1	3	1		1					
CO3	1	1	1	1	1	3	1		1					
3/2/1 indicates Strength	n of Correl	ation	3- Higł	n, 2- M	edium	, 1-Lo	w							
Category	Basic Sciences	Engineering Sciences	Humanities andSocial	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills	Audit course				
										<ul> <li></li> </ul>				



Subject Code: EMCC22I06	Subject Name : PEDAGOGY STUDIES         I06         Prerequisite: Nil         T : Tutorial P : Project R : Research C: Credits T/L: The		L	T/S.Lr	P/R	С
	Prerequisite: Nil	IE	2	0/0	0/0	0
L : Lecture T : Tutorial F	P: Project R: Research C: Credits T/L: Theory/	Lab				

#### **UNIT I:**

Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education. Conceptual framework, Research questions. Overview of methodology and Searching.

#### **UNIT II:**

Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education.

## **UNIT III:**

Evidence on the effectiveness of pedagogical practices. Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies. 4

## **UNIT IV:**

Professional development: alignment with classroom practices and follow- up support, Peer support. Support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes.

#### UNIT V:

Research design, Contexts, Pedagogy, Teacher education, Curriculum and assessment, Dissemination and research impact.

## **Total No. of Periods: 20**

#### Suggested reading

- 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.
- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.
- 4. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.

2

4

2



Subject Cod	le:	Su MA	bject N NAGE	ame: S EMENT	TRESS BY Y	S OGA			Ty / Lb IE	/	L	T/S.Lr	P/R	C
ENICC221	107	Pr	erequisi	ite : Bas	sic Kno	owledg	e of Y	oga	IE		2 (	0/0	0/0	0
•	Obje	ctives	•					0						
•	ToU	ndersta	nd the	Basic C	oncept	s of Yo	oga							
•	To G	ain kno	wledge	e on Asł	ntanga	yoga								
To Acquire knowledge of Techniques and Practice of Yogasanas														
To understand stress and the causes. To Attain the knowledge about stress busting through yoga												gh yoga		
CO1 Understand the Basic Concepts of Yoga														
CO2	Gain knowledge on Ashtanga yoga													
CO3	Т	o Unde	rstand s	stress ar	nd the c	auses								
CO4	A	cquire	knowle	dge of T	Technic	ues an	d Pract	tice of	Yogasan	as				
CO5	A	ttain th	e know	ledge at	oout str	ess bus	sting th	rough	yoga					
Mapping of	Cours	se Out	comes v	with Pr	ogram	Outco	omes (l	POs)						
COs/POs		PO1	PO2	PO3	PO4	PO5	PSO	1	PSO2	I	PSO3			
CO1		1	1	1	1	1	3		1	1				
CO2		1	1	1	1	1	3		1	1				
CO3		1	1	1	1	1	3		1	1				
CO4		1	1	1	1	1	3		1	1				
CO5		1	1	1	1	1	3		1	1				
3/2/1 indicat	es Str	ength	of Cor	relation	<b>3-</b> H	ligh, 2	- Medi	um, 1	-Low			I		
Category		Basic Sciences	Engineerin gSciences	Humanities andSocial	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills	Audit course			
											~			



Subject Code: EMCC22I07	Subject Name: STRESS MANAGEMENT BY YOGA	Ty / Lb/ IE	L	T/S.Lr	P/R	С
	Prerequisite : Basic Knowledge of Yoga	IE	2	0/0	0/0	0
UNIT I:		· · · · ·				8
Definitions of Eight	parts of yoga. (Ashtanga)					
UNIT II:						8
• Yam and N i) Ahinsa, satya, a Shaucha, santosh, ta	liyam. Do`s and Don't's in life. stheya, bramhacharya and aparigraha apa, swadhyay, ishwarpranidhan					
UNIT III:						4
• Asan and P	ranayam					
i) Various yog	poses and their benefits for mind & body					
ii) Regularization Types of pra	on of breathing techniques and its effect anayama	ts-				

## **Total No. of Periods: 20**

## SUGGESTED READING

1. 'Yogic Asanas for Group Tarining-Part-I'': Janardan Swami Yogabhyasi Mandal, Nagpur

2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, Advaita Ashrama (Publication Department), Kolkata



Subject Code: EMCC22I08		Subje DEVI ENLI	ect Nan ELOPN IGHTE	ne: PEF MENT ( NMEN	RSONA THRO T SKI	ALITY UGH I LLS	Гу / Lb/ IE	L	T/S.Lr	P/R	С		
	F	Prerec	quisite:	Nil					IE	2	0/0	0/0	0
L : Lecture T : Tu	utorial		P:Pr	oject R	: Rese	earch (	C: Credit	s T/L:	Theory/La	ab	•		
<b>Objectives</b> To learn to achieve the highest goal happily. To become a person with stable mind, pleasing													
personality and determination. To awaken wisdom in student COURSE OUTCOMES (COs) : At the end of this course the students would be able to know													
COL Study of Shrimed Decryard Costs will halp the student in developing his personality and achieve													
COI	thehig	y of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve indest goal in life											cineve
CO2	The p	erson	who h	as studi	ed Gee	ta will	lead the n	nation an	nd mankin	d to p	eace and p	orosperity	y
CO3	Study	of N	leetisha	takam v	vill hel	p in de	veloping	versatile	e personali	ity of	students.		
Mapping of Course Outcomes with Program Outcomes (POs)													
COs/POs	I	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSC	)3			
CO1	1	1	1	1	1	1	3	1	1				
CO2	1	1	1	1	1	1	3	1	1				
CO3	1	1	1	1	1	1	3	1	1				
3/2/1 indicates Str	rength	of C	orrelat	ion 3-	High,	2- Me	dium, 1-l	Low					
Category		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills	Audit course		
											<ul> <li></li> </ul>		



Subject Code: EMCC22I08	Subject Name: PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS	Ty / Lb/ IE	L	T/S.Lr	P/R	С								
	Prerequisite: Nil	IE	2	0/0	0/0	0								
UNIT I:						8								
Neetisatakan	n-Holistic development of personality													
• Verses-	- 19,20,21,22 (wisdom)													
• Verses-	- 29,31,32 (pride & heroism)													
• Verses-	- 26,28,63,65 (virtue)													
• Verses-														
• Verses	• Verses- 71,73,75,78 (do's)													
UNIT II:						8								
<ul> <li>Approa</li> </ul>	ich to day to day work and duties.													
• Shrima	d Bhagwad Geeta : Chapter 2-Verses 41, 47,4	.8,												
• Chapte	r 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,	13,17, 23, 35,												
• Chapte	r 18-Verses 45, 46, 48.													
UNIT III:						4								
• Statem	ents of basic knowledge.													
• Shrima	d Bhagwad Geeta: Chapter2-Verses 56, 62, 68	8												
• Chapte	r 12 - Verses 13, 14, 15, 16,17, 18													
• Persona	ality of Role model. Shrimad Bhagwad Geeta:	Chapter2-Ver	ses 1	7,										
Chapte	r 3-Verses 36,37,42,	-												
• Chapte	r 4-Verses 18, 38,39													
	10 11 07 00 60													

• Chapter18 – Verses 37,38,63

#### **Total No. of Periods: 20**

#### SUGGESTED READING

1. "Srimad Bhagavad Gita" by Swami Swarupananda Advaita Ashram

(Publication Department), Kolkata

2. Bhartrihari's Three Satakam (Niti-sringar-vairagya) by P.Gopinath,Rashtriya Sanskrit Sansthanam, New Delhi.



Subject Code EMCC22I0	: )9	Subje PUB	ect Name : LICATIO	RESEA		Ty/	' Lb/ E	L	T / S.I	ſ	P/ R	С		
		Preree	quisite: cor	e subject	s			I	E	2	0/0		0/0	2
T/L/: Theory/	Lab L	Lecture	T : Tutoria	al P:P	ractical/F	Project R	: Researc	h C: Cr	edits T/l	L The	ory/Lat	)		
OBJECTIVE	:													
• To un	dersta	nd the p	hilosophy	of scier	ice and e	ethics, re	esearch i	ntegrity	and pu	ublica	ation et	hics	•	
• To identify research misconduct and predatory publications.														
• To understand indexing and citation databases, open access publications, research metrics (citations, h-												s, h-		
index, impact Factor, etc.).														
COURSE OUTCOMES (COs) : By doing this course students will														
CO1	Understand the ethical issues related to Research and Publication													
CO2	G	et to kn	ow about	differen	t types o	of plagia	rism and	ways f	or avoi	ding	plagia	rism		
CO3	K	now abo	out best pra	ctices and	d guidelin	nes in pu	blication	ethics ar	nd also l	earns	to avoi	d Pu	blicati	on
	m	iscondu	ıct											
CO4	G	et to kn	ow about	Violatio	n of pub	olication	ethics, a	authorsh	nip and	cont	ributor	ship	and g	et
	to	identif	y about Pr	edatory	publishe	ers and j	ournals.							
CO5 Get to know about various open sources database and research metrics like indexing, citation etc.,														
Mapping of Course Outcomes with Program Outcomes (POs)														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 P	011	PO12	2
CO1	2	3	3	3	3	2	3	3	2	3	3	2	3	
CO2	2	3	3	3	3	2	3	3	2	3	3	2	3	
CO3	2	3	3	3	3	2	3	3	2	3	3	2	3	
CO4	2	3	3	3	3	3	3	3	3	3	3	3	3	
CO5	2	3	3	3	3	2	3	3	2	3	3	2	3	
COs / PSOs	]	PSO1	PSC	)2	PS	503								
CO1	2		3		3									
CO2	2		3		3									
<u>CO3</u>	2		3		3									
C04	2		3		3									
$\frac{1}{2}$ indicate	2 c Stror	ath of (	Correlation	3 High	<u> </u>	ium 1 T	OW							
1/2/3 mulcate	s Strei			Iligii	l, 2- Mieu	10111, 1-1	20 W							
Category	Basic Sciences	Engineering Sciences	Humanities and Socia Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills	Audit course				
										<b>~</b>	/			





## **Unit I introduction**

Introduction to philosophy: Definition, nature and scope, concept, branches - Ethics: Definition, moralphilosophy, nature of moral judgments and reactions – Ethics with respect to Science and Research Intellectual honesty and research integrity

#### **Unit II: Scientific Conduct**

Scientific misconducts: Falsification, Fabrication, and Plagiarism (FFP)

Redundant Publications: Duplicate and over lapping publications, salami slicing – Selective reporting and misrepresentation of data

#### **Unit III: Publication Ethics –I**

Publication ethics: Definition, introduction and importance – Best practices/standards setting initiatives and guidelines: COPE, WAME etc. Publication misconduct: definition, Concept, problems that lead to unethical behavior and vice-versa, types.

#### **Unit IV: Publication Ethics – II**

Violation of publication ethics, authorship and contributor ship – Identification of publication misconduct, complaints and appeals – Predatory publishers and journals – Subject specific ethicalissues, Complaints and appeals: examples and fraud from India and Abroad.

## Unit V: Data Bases and Research Metrics

Open Access publication and Initiatives – Indexing databases – Citation databases, Web of Science, Scopus, etc. – Impact factor of journals as per Journal Citation report .SNIP, SJR, IPP, Cite Score - Metrics: h-index,gindex,i10index,altmetrics – Conflict of interest.

## **References:**

- 1. Bird A 2006, Philosophy of Science, Routledge
- 2. MacIntyre & Alasdair, 1967, A Short History of Ethics, London.
- 3. Chaddah, P20 1 8, Ethics in Competitive Research: Do not get scooped; do not get plagiarized, ISBN: 9789387480865.
- 4. On Being a Scientist: A Guide to Responsible Conduct in Research, 2009, National Academy of Sciences, National Academy of Engineering and Institute of Medicine. 3rd edition, National Academies Press.
- 5. Resnik, D. B 201 1, what is ethics in research & why is it important. National Institute of Environmental Health Sciences, pp.1—10. https://www.niehs.nih.gov/research/reso_uuces/bioethics/whatis/index.cfm
- Bcall, J 2012, Predatory publishers are corrupting open access, Nature, Vol. 489, no.7415,pp. 179—179. https://d0i.org/IO.1 03 8/48917%
- 7. Ethics in Science Education, 2019Indian National Science Academy (INSA), Research and Governance, ISBN: 978-81-939482-1-7. <u>http://www.insaindia.rcs.Wpdf/Ethics_Book.pdf</u>.

4

4

4

4

**Total No. of Periods: 20**