> F/CDD/004 Rev.00.dt.20.03.2020

CURRICULUM AND SYLLABUS (2022 REGULATION)

(for the students admitted in 2022-23 onwards)

MASTER OF TECHNOLOGY DESIGN ENGINEERING (PART TIME)

DEPARTMENT OF MECHANICAL ENGINEERING

DEPARTMENT VISION

To educate, nurture and motivate the upcoming Engineering professionals with moral and ethical values to become a committed punctilious Engineers to the Nation.

DEPARTMENT MISSION

- **M1:** Providing quality education through well-structured curricula supplemented with Practical training, guest lectures by eminent professionals, field visits to leading industries and also in- plant training.
- M2: Enhancing skills through faculty development programme.
- M3: Providing ambience for innovative projects and extra-curricular activities
- **M4:** Equipping the department with contemporary infra-structure and the state of art R&D centre to cater to the needs of research scholars and industries
- **M5:** Providing training to students in emerging areas like robotics and CAD/CAM.
- **M6:** Nurturing students having creative ideas to adopt innovative projects which can be subsequently commercialized.

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

PEO1: In depth and research based knowledge in design engineering to recognize, inquire, analyze and solve complex engineering design problems.

PEO2: The competencies to work well in local and international team environments and to be effective written and oral communicators.

PEO3: The ability to recognize the importance of, and engage in life-long learning through self study and continuing education

PEO4: Ability to undertake research in emerging areas and to adapt oneself to changing needs of the society considering sustainability as well as societal, environmental and public health aspects.

PROGRAM OUTCOMES

PO1	An ability to independently carry out research investigation and development
	work to solve practical problems
PO2	An ability to write and present an analytical assignment and report writing.
PO3	An ability to apply knowledge of design concepts to solve engineering problems.
PO4	An ability to identify, select and apply appropriate techniques, resources and design tools to model and analyze engineering design problems.
PO5	An ability to engage in life- long learning for solving design problems taking into consideration sustainability, societal, ethical and environmental aspects

LIST OF PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Ability to Design and analyze of mechanical components, assemblies and systems

PSO2: Ability to integrate various automation processes for product design and development.

PSO3: Ability to use advanced software tools in design and development of product.

M.Tech: Design Engineering (PT)

Curriculum – 2022 Regulation

(For M. Tech (PT) Students admitted in 2022-23 onwards)

	SEMESTER I						
Sl.	Course Code	Course Name	Ty/Lb/	Teac	ching Sch	eme	Credits
No			IE	L	T/SLr	P/R	
1.		Applied Mathematics for Design Engineers	Ту	3	1/0	0/0	4
2.	EMCC22001	Research Methodology and IPR	Ту	3	0/0	0/0	3
3.		Computer Aided Design and Manufacturing	Ту	3	0/0	0/0	3
4.	EMDE22L01	Computer Aided Design Lab-I (Modeling)	Lb	0	0/0	4/0	2
5.	EMCC22IXX	Audit Course-1	IE	2	0/0	0/0	0
		Total		11	1	4	12

	SEMESTER II						
Sl.	Course Code	Course Name	Ty/Lb/ IE	Teac	ching Sch	eme	Credits
No .			112	L	T/SLr	P/R	
1	EMDE22002	Advanced Finite Element Methods	Ту	3	1/0	0/0	4
2	EMDE22EXX	Programme Elective -1	Ту	3	0/0	0/0	3
3	EMDE22EXX	Programme Elective -2	Ту	3	0/0	0/0	3
4	EMDE22L04	Computer Aided Design Lab-II (Analysis)	Lb	0	0/0	4/0	2
5	EMCC22IXX	AuditCourse-2	IE	2	0/0	0/0	0
		Total		11	1	4	12

DEEMED TO BE UNIVERSITY University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) V.R. High Road, Maduravoyal, Chennai-95. Tamiln

Ferryar E.v.	K. High Koau, Maduravoyar, Chemiar-93. Tammadu, India.
	SEMESTER III

		SEMESTER	RIII				
Sl.No	Course Code	Course Name	Ty/Lb/ IE	Teaching Scheme		eme	Credits
•			112	L	T/SLr	P/R	
1.	EMDE22003	Robotics and Sensors	Ty	3	0/0	0/0	3
2.	EMDE22EXX	Elective-3	Ту	3	0/0	0/0	3
3.	EMDE22EXX	Elective-4	Ту	3	0/0	0/0	3
4.	EMDE22L03	Robot simulation Lab	Lb	0	0/0	4/0	2
		Total		9	0	4	11

	SEMESTER IV						
Sl.	Course Code	Course Name	Ty/Lb/ IE	Teac	hing Sc	heme	Credits
No			II.	L	T/S Lr	P/R	
1	EMDE22004	Mechanical Vibrations	Ту	3	1/0	0/0	4
2	EMDE22EXX	Elective 5	Ty	3	0/0	0/0	3
3	EMDE22L02	Rapid Prototyping Lab	Lb	0	0/0	4/0	2
4	EMDE22I01	Term Paper	IE	0	0/0	0/4	2
		Total		6	1	8	11

	SEMESTER V						
Sl.				Tea	ching Scl	heme	Credits
No .			IE	L	T/SLr	P/R	
1.	EMDE22D005	Optimization Techniques	Ту	3	1/0	0/0	4
2.	EMCC22OEX	Open Elective	Ту	3	0/0	0/0	3
3.	EMDE22L05	Dissertation Phase-I	Lb	0	0/0	5/5	5
		Total		6	1	10	12

	SEMESTER VI							
Sl. No	Course Code	Course Name	Ty/Lb/IE	Teacl	ning Sche	me	Credits	
				L	T/S.Lr	P/R		
1	EMDE22L06	Dissertation Phase-II	Ту	0	0/0	10/10	10	
		Total		0	0	20	10	

Ty/Lb/IE:Theory/Lab/Internal Evaluation.

L/T/SLr/P/R: Lecture/Tutorial/Supervised Learning/Practical/Research

EDUCATIONAL AND RESEARCH INSTITUTE

		PROGRAMME ELECTIVES (T	THEORY)			
S.No	Sub. Code	Title of Subjects	Ty/ Lb	L	T	P	C
		PROGRAMME ELECTIVE -1					
1.	EMDE22E01	Advanced Machine Design	Ту	3	0	0	3
2.	EMDE22E02	Design for Manufacturing and Assembly	Ту	3	0	0	3
3.	EMDE22E03	Advanced Stress Analysis	Ту	3	0	0	3
		PROGRAMME ELECTIVE -2					
4.	EMDE22E04	Advanced Material Technology	Ту	3	0	0	3
5.	EMDE22E05	Rapid Prototyping	Ту	3	0	0	3
6.	EMDE22E06	Advanced Mechanism Design	Ту	3	0	0	3
		PROGRAMME ELECTIVE -3					
7.	EMDE22E07	Tribology in Design	Ту	3	0	0	3
8.	EMDE22E08	Computational Fluid Dynamics	Ту	3	0	0	3
9.	EMDE22E09	Creep, Fatigue and Fracture	Ty	3	0	0	3
		PROGRAMME ELECTIVE -4					
10.	EMDE22E10	Design of Material Handling Equipment	Ту	3	0	0	3
11.	EMDE22E11	Artificial Intelligence and Expert Systems	Ту	3	0	0	3
12.	EMDE22E12	Optimization in Engineering Design	Ту	3	0	0	3
		PROGRAMME ELECTIVE -5					
13.	EMDE22E13	Product Design and Development Strategies	Ту	3	0	0	3
14.	EMDE22E14	Product Life Cycle Management	Ty	3	0	0	3
15.	EMDE22E15	Design Thinking and Innovation	Ту	3	0	0	3

EDUCATIONAL AND RESEARCH INSTITUTE

		OPEN ELECTIVE					
S.No	Subject Code	Title of Subject	Ty/Lb	L	T/S Lr	P/ R	C
1	EMCC22OE1	Business Analytics	Ty	3	0/0	0/0	3
2	EMCC22OE2	Industrial Safety	Ту	3	0/0	0/0	3
3	EMCC22OE3	Cost Management of Engineering Projects	Ту	3	0/0	0/0	3
4	EMCC22OE4	Composite Materials	Ту	3	0/0	0/0	3
5	EMCC22OE5	Waste to Energy	Ту	3	0/0	0/0	3

		AUDIT COURSE 1&2					
Sl.No	Course Code	Course Name	Ty/Lb		Teacl Schei		
				L	T/SLr	P	C
1	EMCC22I01	English for Research paper Writing	Ty	2	0/0	0/0	0
2	EMCC22I02	Disaster Management	Ту	2	0/0	0/0	0
3	EMCC22I03	Sanskrit for Technical Knowledge	Ту	2	0/0	0/0	0
4	EMCC22I04	Value Education	Ту	2	0/0	0/0	0
5	EMCC22I05	Constitution of India	Ту	2	0/0	0/0	0
6	EMCC22I06	Pedagogy Studies	Ту	2	0/0	0/0	0
7	EMCC22I07	Stress Management by Yoga	Ту	2	0/0	0/0	0
8	EMCC22I08	Personality Development through Life Enlightenment Skills	Ту	2	0/0	0/0	0
9	EMCC22I09	Research Publication Ethics	Ту	2	0/0	0/0	0

Summary of Credits:

Semester	Credits
I	12
II	12
III	11
IV	11
V	12
VI	10
Total	68 Credits

SEMESTER I

Subject Code EMMA22002	Subje	ect Name: DI	APPLIED ESIGN EN			TICS FOR	Ty Lt		T/ S.Lr	P/R	C
	Prerequisi	te: UG level	Numerica	l metho	ods		T	y 3	1/0	0/0	4
L : Lecture T : Tut Ty/Lb/ETL : Theo					oject R	: Research	C: Credits	<u> </u>		1	ı
OBJECTIVES:	Ty/ Edo/ Ellic	ocadea Thee	ny ana Bac								
The student shou	ld be made	e to:									
 To learn th 	ne to find th	e solution of	f algebraic	equatic	ons						
		ng to differe	-	_							
		ng and innov	_								
COURSE OUTC	OMES (CO)s):									
CO1		to understa	nd Functio	ns to fi	nd solut	ions of alge	braic equa	tions a	nd Syste	ms of	
	linear equ					J	•		J		
CO2	To Under	stand the pro	oblems and	d solve	the diffe	erential equa	tions				
CO3	To be able	to understa	nd and sol	ve the p	oarabolio	equations					
CO4		and use the					ns by usin	g hype	erbolic e	quations	S
CO5	To Unders	stand the pro	oblem of e	lliptic e	equation	and solve l	y numeri	cal me	thods		
Mapping of Cour	se Outcom	es with Pro	gram Out	comes ((POs)						
COs/POs	PO1	PO2	PO3	P	O4	PO5	PSO1		PSO2	PSO	3
CO1	2	3	2		2	3					
CO2	3	2	1		2	2					
CO3	3	3	1		2	2					
CO4	3	2	2		2	1					
CO5	3	3	1		2	1					
3/2/1 Indicates St	rength Of (Correlation	, 3 – High	, 2- Me	dium, 1	- Low				•	
Category	Basic Sciences Engineering Sciences	Humanities and Social Sciences Program Core		Open Electives	Practical / Project		Internships / Technical Skill	Soft Skills			

Subject Code EMMA22002	Subject Name: APPLIED MATHEMATICS FOR DESIGN ENGINEERS	Ty/ Lb/	L	T/ S.Lr	P/R	С
	Prerequisite: UG level Numerical methods	Ty	3	1/0	0/0	4

UNIT I NUMERICAL SOLUTIONS TO ALGEBRAIC EQUATIONS

12

Systems of linear equations: Gauss Elimination method, pivoting techniques, Thomas algorithm for tridiagonal system – Jacobi, Gauss Seidel, SOR iteration methods - Systems of nonlinear equations: Fixed point iterations, Newton Method, Eigen value problems: power method, inverse power method-Faddeev – Leverrier Method.

UNIT II NUMERICAL SOLUTIONS TO DIFFERENTIAL EQUATIONS 12

Runge Kutta Methods for system of IVPs, numerical stability, Adams-Bashforth multistep method, solution of stiff ODEs, BVP: Shooting method, Direct method, Orthogonal collocation method, Orthogonal collocation with finite element method, Galerkin finite element method.

UNIT III FINITE DIFFERENCE METHODS FOR PARABOLIC EQUATIONS 12

Parabolic equations: explicit and implicit finite difference methods, weighted average approximation - Dirichlet and Neumann conditions – Two dimensional parabolic equations – ADI method.

UNIT IV FINITE DIFFERENCE METHODS FOR HYPERBOLIC EQUATIONS 12

First order hyperbolic equations – method of characteristics, different explicit and implicit methods; numerical stability analysis, method of lines – Wave equation: Explicit scheme- Stability of above schemes.

UNIT V FINITE DIFFERENCE METHODS FOR ELLIPTIC EQUATIONS 12

Laplace and Poisson's equations in a rectangular region: Five point finite difference schemes, Leibmann's iterative methods, Dirichlet and Neumann conditions – Laplace equation in polar coordinates: finite difference schemes – approximation of derivatives near a curved boundary while using a square mesh.

Total no. of Periods: 60

Reference Books:

- 1. Saumyen Guha and Rajesh Srivastava, "Numerical methods for Engineering and Science", Oxford Higher Education, New Delhi, 2010.
- 2. Gupta S.K., "Numerical Methods for Engineers", New Age Publishers, 1995
- **3.** Burden, R.L., and Faires, J.D., "Numerical Analysis Theory and Applications", Cengage Learning, India Edition, New Delhi, 2009.
- **4.** Jain M. K., Iyengar S. R., Kanchi M. B., Jain, "Computational Methods for Partial Differential Equations", New Age Publishers, 1993.
- **5.** Morton K.W. and Mayers D.F., "Numerical solution of partial differential equations", Cambridge University press, Cambridge, 2002.
- **6.** Sastry S.S., *Introductory Methods of Numerical Analysis*, Prentice Hall of India, (2003).

EDUCATIONAL AND RESEARCH INSTITUTE

Subject Cod EMCC22001		Subj	ect Name :		RCH M D IPR	(ETHO)	DO	LOGY	7 r	Гу/Lb	L	T/ S.Lr	P/R	С
		Prerequi	isite: core s	ubjects						Ту	3	0/0	0/0	3
T/L/: Theor	y/Lab L	: Lecture	T : Tutori	al P:I	Practical	l/Projec	t R	R : Rese	earc	h C: Cr	edits T	T/L Theo	ry/Lab	
OBJECTIVI	E: The go	oal is to en	nphasize th	e importa	ance of i	nnovatio	on a	nd crea	ativi	ty by un	derstan	ding the	research	
concepts and														
COURSE O	UTCOM	ES (COs)	: By doing	g this cou	ırse stud	dents wi	ill							
CO1			esearch pro			by Ana	ılyzi	ing res	searc	ch relate	d infor	mation a	nd its	
			following r											
CO2			nat today's					uter, Ir	ıforr	nation T	Technol	logy, but	tomorrov	V
	WO	rld willbe	ruled by id	eas, conc	ept, and	creativi	ty.							
CO3			g that when											
			s to empha								ual Pro	perty R	ight to b	e
CO4			ongstudent								C41			1
CO4			hat IPR pro											
			R & D, whowth and so			ion or ne	ew	and bet	uer J	products	s, and n	ı turn bri	ings abou	ι,
CO5			technical p			on proce	DCCA	e of I	2igh	te and I	Juties 1	of Patent	tee Pater	
COS			; Licensing											It
Mapping of							ituit	23, 1 (01)	1 1	30103410	rigico	inents (1)	D113)	
					PO5		F	PSO2	D	202				
Cos/Pos	PO1	POZ	PO3	PO4	PU5	PSO1		PSU2	P	SO3				
CO1	2	3	2	2	3	2		2		1				
CO2	3	2	1	2	2					2				
CO3	3	3	1	2	2			3		1				
CO4	3	2	2	2	1	2		3		1				
CO5	2	2	2	2	2	2		3		1				
3/2/1 indicate	es Streng	gth of3 Co	rrelation	3- High,	, 2- Med	ium, 1-	Lov	v	ı	I				
		<u> </u>											1	
									_					
		S	al						echnical					
		ences	Social		80				hh:					
)II		cie.			ives	s	PC		r -					
oge	ces	N N	an	ore	ect	ive	Jr.	3,	/ S					
Category	ier	Liui.	ties	ŭ	ı El	ect	1/		hip	IIs				
	Basic Sciences	Engineering Sci	Humanities and Sciences	Program Core	Program Electiv	Open Electives	Practical / Proie	2	Internships / T	Soft Skills				
	ısic	 ngi	um ien	130.	ıgo.	pen	30	4	nte	ft (
	B	H H	ΞΫ́	P.	Pr	Ō	P	-		Š				
			1	•			1				1	1	J	

Subject Code: EMCC22001	Subject Name : RESEARCH METHODOLOGY AND IPR	Ty/Lb	L	T/ S.Lr	P/R	С
	Prerequisite: core subjects	Ty	3	0/0	0/0	3

T/L/: Theory/Lab L: Lecture T: Tutorial P: Practical/Project R: Research C: Credits T/L Theory/Lab

UNIT 1: SELECTION, ANALYSIS AND STATEMENT OF THE RESEARCH PROBLEM;

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

UNIT 2: RESEARCH DESIGN

6

Types of Study, Types of Data, Measures of Variability, Setting up the Hypotheses, data collection techniques and tools, sampling, Describing data – Charts and graphs; Data processing – Categorization, coding, summarization.

UNIT 3: DATA ANALYSIS AND REPORT WRITING:

6

Statistical measures, Regression and correlation, significance test; Report writing – Purpose, format, content, editing and evaluation. Using Citation tools; Report for specific purposes – Theses, Journals, Grant application. Oral presentation to an audience; use of project management digital tools and plagiarism checking.

UNIT 4: INTRODUCTION TO INTELLECTUAL PROPERTY

6

Types of intellectual property rights – Patent, Copyright, Trade Mark, Industrial Design, Geographical Indication, Trade Secrets - Traditional Knowledge. Elements of Patentability - Novelty, Non Obviousness (Inventive Steps), Industrial Application – Non patentable inventions – Process of patenting – National and International – Form and Fees for IP India

UNIT 5: PRIOR ART SEARCH, PATENT DRAFTING

6

Drafting patent Claims – Types of claims - Registration Procedure, Rights and Duties of Patentee; Patent infringement; Licensing – Franchising - Joint ventures; Non-Disclosure Agreements (NDAs) - Material Transfer Agreements (MTAs).

Total Number of Hours: 30

REFERENCES:

- C. Vijayalakshmi and C. Sivapragasam (2011) Research Methods Tips and Techniques, , MJP Publishers
- 2. Deboraj Rumsey (2010) Statistics Essentials for Dummies, Wiley Publishing Incorporated
- 3. Bouchoux (2013) Intellectual Property, DELMAR CENGAGE Learning, USA
- 4. V K Ahuja (2017) Law Relating to Intellectual Property Rights, LexisNexis Butterworths India

IMPORTANT WEB LINKS

- 5. https://www.wipo.int/portal/en/index.html
- 6. http://ipindia.nic.in/
- 7. https://www.epo.org
- 8. https://www.uspto.gov

Subject Code EMDE22001	A	ND M	Name: (CTURI	ING			N Ty/	Lb	L	T/S.Lr	P/R	С
		rerequis Ianufact	site: Eng turing Te	ineering echnolog	g Graph ov	ics and			Ty	3	0/0	0/0	3
T/L/: Theory						tical/ P	roject	R : Res	earch	C: Cre	edits	1	
DBJECTIVE:	The stud	lents wi	ill learn										
	ose the ba												
• princip	les of par	t progra	mming p	process	plannin	g and p	roduct d	lata mar	nagem	ent			
COURSE OU	TCOME	ES (CO	s) : The	student	ts will b	e able	to						
CO1	Unders	tand va	rious Co	mputer	r Graph	ics alg	orithms	and trai	nsform	nation s	ystems		
CO2			wledge o		tical ar	nd geoi	netric f	orm of	variou	is curve	es to solve	the	
CO3	Modell	ing of 3	BD surfac	ces, wire	e frames	s and b	oundar	y repre	sentat	ion in a	geometric	model	ing
CO4	Apply	comput	er aided	process	plannir	ng techi	niques ai	nd mode	ern ma	nufacti	uring syst	em	
CO5	Prepare	e CNC p	oart prog	rammin	g to per	rform n	nanufact	uring a	nd con	nputer	process	contro	1.
Mapping of C	Course O	utcome	s with P	rogram	Outco	mes (P	Os)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3					
CO1	1	1	3	2	1	1	1	3					
CO2	2	1	3	3	1	3	2	3					
CO3	1	3	3	3	1	3	2	3					
CO4	3	2	3	2	1	1	3	3					
CO5	3	2	1	1	1	1	3	3					
3/2/1 indicate	s Strengt	ch of Co	orrelatio	n 3- H	igh, 2-	Mediu	m, 1-Lo	W					
Category	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Audit Course							

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution)

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code: EMDE22001	Subject Name: COMPUTER AIDED DESIGN AND MANUFACTURING	Ty/Lb	L	T/S.L r	P/R	C	
	Prerequisite: Engineering Graphics and Manufacturing Technology	Ту	3	0/0	0/0	3	
T/I / · Theory/I ah	I · Lactura T · Tutorial P · Practical/Project R · Rese	arch C	Crad	ite			٦

T/L/: Theory/Lab L: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

UNIT I: INTRODUCTION

9

Definition, Interactive Computer Graphics-Line and Circle plotting algorithm (DDA & Bresenham's), Transformation, Translation, Rotation, Scaling & Mirroring, Concatenated Transformation, Clipping Algorithm, Hidden Line Removal, Explicit and implicit equations, parametric equations.

UNIT II: SPLINES AND CURVES

9

Cubic Splines-Algebraic and geometric form of cubic spline, tangent vectors, parametric space of a curve, blending functions, four point form, reparametrization, truncating and subdividing of curves. Graphic construction and interpretation, composite pc curves. Bezier Curves-Bernstein basis, equations of Bezier curves, properties, derivatives. B-Spline basis, equations, knot vectors, properties, and derivatives.

UNIT III: SURFACES AND SOLIDS

Q

Bi-cubic surfaces, Coon's surfaces, Bezier surfaces, B-Spline surfaces, surfaces of revolutions, Sweep surfaces, ruled surfaces, tabulated cylinder, bilinear surfaces, Gaussian curvature. Tri-cubic solid, Algebraic and geometric form.3Dwire frames, Boundary representation, half space modeling, spatial cell, cell decomposition, classification problem.

UNIT IV: PRODUCTION PLANNING AND CONTROL

9

Group Technology, Computer Aided Process Planning: Retrieval & Generative CAPP, Production Planning, Material Requirement Planning (MRP), mechanism of MRP, benefits, and Capacity Planning. Production Control, Factory Data Collection system, Just-in-Time, Automated Material Handling System, Data Flow in Manufacturing System, Product Data Management System.

UNIT V: COMPUTER NUMERICAL CONTROL

9

Introduction to NC, Principles and Classifications of CNC, DNC, Part Programming, Adaptive control machining systems, adaptive control optimization system, adaptive control constraint system, applications to machining processes, computer process monitoring, hierarchical structure of computers in manufacturing, and computer process control.

Total No. of Periods: 45

REFERENCES

- 1. Ibrahim Zeid, CAD/CAM. Tata McGraw Hill
- 2. Roger and Adams, Elements of Computer Graphics. Tata McGraw Hill
- 3. Micheal Mortenson, E. Geometric Modeling. McGraw Hill Publishers
- 4. Lalit Narayan, K. MallikarjunaRao, K. and Sarcar, M.M.M. Computer Aided Design and Manufacturing, PHI Publishers

University with Graded Autonomy Status
(An ISO 21001 : 2018 Certified Institution)

	Pe	riyar E.V.R. Hi	igh Road, Ma	duravoyal, (Chennai-9	5. Tamilr	ıadu, Indi	a.		
Subject	Sub	ject Name :	COMPUTI	ER AIDED	DESIG	N Ty/L	b L	T/S.Lr	P/R	C
Code:	LAI	B-I (MODEI	LING)							
EMDE22L01	Elen	equisite: Eng nent Method					b 0		4/0	2
T/L/: Theory	y/Lab L	: Lecture T	Tutorial l	P :Practica	l/ Projec	t R:Re	search C	: Credits		
OBJECTIVE :										
To fan	niliarize tl	he students w	ith the worl	king of CA	D modell	ing.				
To ma	ke the stu	dents aware	of design at	itomation a	nd docun	nentation	•			
COURSE O	UTCOM	ES (COs) : 7	The student	s will be al	ole to					
CO1	Understand	the basic concep	ots of CAD so	ftwares						
CO2	Create desig	n using various	design softwar	re like, CREO	, CATIA a	nd solid wo	orks.			
CO3	Create solid	and surface mo	dels of mechan	ical componer	nts					
	Prepare as	ssembly of va	arious Mech	anical com	ponents					
		esign docume								
Mapping of	Course O	outcomes wit	th Program	Outcomes	(POs)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3		
CO1	1	2	2	3	2	2	2	3		
		_			_			_		
CO2	2	2	3	3	2	3	2	3		
CO3	3	2	3	3	2	2	2	3		
CO4	3	2	3	3	2	3	2	3		
CO4	3	2	3	3	2	3	2	3		
CO5	2	2	3	3	2	3	2	3		
3/2/1 indicate	es Streng	th of Correl	ation 3- H	igh, 2- Me	dium, 1-l	Low				
		S								
_	Program Core	Program Electives Open Electives		Internships Technical Skill	2					
Category	m (es 3lec	al/	Internshi Technical Skill	3					
ıteg	grai	grai Xtiv n E	tic.	it Chi						
Ca	rog	Program Electives Open Ele	Practical.	Te Ts	3					
	<u> </u>	 	<u> </u>		4					

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution)

Periyar E	.V.R. High Road, M	laduravoyal, C	hennai-95. T	amilnadu, I	ndia.	
					1	_

Subject Code:	Subject Name: COMPUTER AIDED DESIGN	Ty/Lb	L	T	P/R	C
EMDE22L01	LAB-I (MODELING)			/S.Lr		
	Prerequisite: Engineering Graphics and Finite	Lb	0	0/0	3/0	2
	Element Method					
T/L/: Theory/Lab	L: Lecture T: Tutorial P: Practical/ Project R:	Research	C: Cr	edits		

I MODELLING:

- Introduction to modeling techniques- Types of modeling- wire frame, surface and solid modeling Solid modeling Extrude, Revolve, Sweep, etc and Variational sweep, Loft, etc.
- Generation of surfaces of revolution, surfaces of extrusion, surfaces by skinning operation etc.
- Assembly-Constraints, Exploded Views, Interference check
- Creation of different Mechanical Components like Crank shaft, Connecting rod, Piston and etc. Exercises will be given using packages like CREO/CATIA/ Solidworks etc.

Total no. of Periods: 30

SEMESTER II

Subject Code: EMDE22002			lame : A			INITE		Ty/I	b L	T /SLr	P/R	С
		erequis aterials		gineerir	ng Mec	hanics, S	Strength	of Ty	3	1/0	0/0	4
T/L/: Theory/I	Lab L :	Lectu	re T : Tu	ıtorial	P :Pra	ctical/ P	roject R	: Resear	ch C:	Credits		
OBJECTIVE: To learn and approximate skills needed to COURSE OUT	effectiv	vely eva	luate fin	ite elen	nent ana	alyses.		nic proble	em to o	develop th	ne know	ledge and
CO1								problems	in pla	ate and sh	ell elem	ents
CO2	Solve	the pro	blems of	Elasto	-Plastic	ity,Visco	plasticity	y using It	erative	Techniq	ues	
CO3	Form	ulate dy	namic p	roblems	solutio	on in Fre	e, Transie	nt and Fo	rced F	Response	in vibrat	tions
CO4	Solve	the Flu	id flow	and he	at trans	sfer pro	blems us	ing FEA				
CO5	Estim	ate the	errors wl	nile solv	ving the	FEA pr	oblems					
Mapping of Co	urse O	utcome	es with F	Progran	n Outc	omes (P	Os)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PO3				
CO1	2	2	3	2	2	1	3	2				
CO2	2	2	3	3	2	2	2	3				
CO3	3	2	3	3	1	2	1	2				
CO4 CO5	3	2 2	3	3	1	3	2	2				
1/2/3 indicates	Streng			on 3- I	 High, 2-	Mediu	1	-				
Category	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Audit Course						

Subject Code:	Subject Name: ADVANCED FINITE ELEMENT	Ty / Lb	L	T	P/R	С
EMDE22002	ANALYSIS	-		/SLr		
	Prerequisite: Engineering Mechanics,	Ty	3	1/0	0/0	4
	Strength of Materials					
T/L/: Theory/La	b L : Lecture T : Tutorial P : Practical/ Project R :	Research (C: Cr	edits		

UNIT I: BENDING OF PLATES AND SHELLS

12

Review of Elasticity Equations-Bending of Plates and Shells-Finite Element Formulation of Plate and Shell elements-Conforming and Non Conforming Elements – C0 and C1 Continuity Elements-Application and Examples

UNIT II: NON-LINEAR PROBLEMS

12

Introduction-IterativeTechniques-Material-non-Linearity-Elasto-Plasticity-Plasticity, Visco plasticity-Geometric Non linearity-large displacement Formulation-Application in Metal Forming Process and contact problems

UNIT III: DYNAMIC PROBLEM

12

Direct Formulation - Free, Transient and Forced Response - Solution Procedures- Subspace Iterative Technique -Houbolt, Wilson, Newmark - Methods - Examples

UNIT IV: FLUID MECHANICS AND HEAT TRANSFER

12

Governing Equations of Fluid Mechanics- Inviscid and Incompressible Flow-Potential Formulations-Slow Non-Newtonian Flow-Metal and Polymer Forming-Navier Stokes Equation-Steady and Transient Solutions.

UNIT V: ERROR ESTIMATES AND ADAPTIVE REFINEMENT

12

Error norms and Convergence rates- high refinement with adaptivity-Adaptive refinement

Total No. of Periods: 60

REFERENCES

- 1. Zeinkiewicz, O.C. and Taylor, R. L. (1991) The Finite element Method. Fourth Edition, Volumes 1 & 2, McGraw Hill International Edition, Physics services
- 2. Cook R.D. (1989) Concepts and Applications of Finite Element Analysis. John Wiley & Sons Inc.
- 3. Bathe K.J. (1990) Finite Element Procedures in Engineering Analysis. Prentice Hall

Subject Code:	\mathbf{L}_{I}	AB-II (Analys	COMPUT is)				Ty / Lb	L	T /SLr	P/R	С
EMDE22L0	Pro	erequisi ethod	te: Eng	ineering G	raphics ar	d Finite	Element	Lb	0	0/0	4/0	2
T/L/: Theor			ure T	: Tutorial	P :Practi	cal/ Proj	ect R:	Research	C: Cre	edits		1
OBJECTIVE	E: The st	tudents	will le	arn								
>	To acqu	uire the kn	owledge	on analysis of	the machine o	omponents.						
>	To und	erstand the	concepts	s of finite elem	nent Methods	-						
COURSE O	UTCO	MES (C	(Os):	The studer	nts will be	able to						
CO1	Design sin	mple mod	lels in A	nsys.								
CO2	Create sta	tic and D	ynamic a	analysis.								
CO3	Prepare t	he object	in Ansy	s and perform	n thermal ana	alysis		·				
CO4	Develop t	he produc	ct and pe	rform mode f	frequency an	alysis.						
CO5	Prepare a	2D and 3	D mode	and perform	heat transfe	r analysis.						
Mapping of)					
COs/POs	PO1	P	O2	PO3	PO4	PO5	PSO	1 PSO2	PSO	03		
CO1	1			2	2	2	1		3			
CO2	3			3	3	2	3	2	3			
CO3	3	+		3	3	3	3	1	3			
CO4	3			3	3	2	2	2	3			
CO5	3			3	3	2	3		3			
3/2/1 indicat	tes Strei	ngth of	Correl	ation 3-	High, 2- N	Iedium,	1-Low			<u> </u>		
Category	Program Core	Program Electives	Open Electives	Practical / <	Internships / Technical Skill	Audit Course						

Subject Code: MME22DL04	Subject Name : COMPUTER AIDED DESIGN LAB-II (ANALYSIS)	Ty / Lb	L	T /SLr	P/R	С
	Prerequisite: CAD diagrams and Finite Element Method	Lb	0	0/0	4/0	2
T/L/: Theory/Lab	L: Lecture T: Tutorial P:Practical/ Project R: Re	esearch (C: Cre	edits		

I. ANALYSIS:

- Introduction to FEM-Analysis software's -ANSYS
- Structural and fluid analysis.- One dimensional, Two dimensional and Three dimensional Elements Based Problems.
- Thermal Analysis Conduction, Convection and Radiation heat transfer Problems.

II. LIST OF EXPERIMENTS

Analysis of Mechanical Components – Use of FEA Packages.

- 1. Stress analysis of a plate with a circular hole.
- 2. Stress analysis of rectangular L bracket.
- 3. Stress analysis of beams (Cantilever, Simply supported, Fixed ends).
- 4. Mode frequency analysis of a 2 D component.
- 5. Thermal stress analysis of a 2D component.
- 6. Conductive heat transfer analysis of a 2D component.
- 7. Convective heat transfer analysis of a 2D component

Total no. of Periods: 60

SEMESTER III

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution)

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.	

Subject Code: EMDE22003		Ü	ame : R	OBOT	ICS A	ND SEN	ISORS	Ty / Lb	L	T/SL r	P/R	C		
	Pro	erequisi	te: Nil					Ty	3	0/0	0/0	3		
T/L/: Theory/La	ab L :	Lectur	e T : Tu	torial I	P :Prac	tical/ Pr	oject R :	Research	C: C 1	redits				
OBJECTIVE: T Functioning and learn about anal	l appli lyzing	cations robot k	of Robo inemati	ots and cs and	also stu robot p	ıdy abou rogram	it the driv				_			
COURSE OUTCOMES (COs): The students will be able to CO1 Understand the Robot motion, drives and applications														
CO2	Ar	nalyze v	alyze various kinematic transformation of robot links											
CO3	Aı	nalyze tł	yze the Robot control systems and End effectors.											
CO4	Cr	eate var	te various Robot programming methods											
CO5														
Mapping of Cou	rse O	utcome	s with P	rogram	Outco	mes (PC	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3						
CO1	3	2	3	3	2	3	3	3						
CO2	3	2	3	3	2	3	3	3						
CO3	3	2	3	3	2	3	3	3						
CO4	3	2	3	3	2	3	3	3						
CO5	3	2	3	3	2	3	3	3						
1/2/3 indicates S	trengt	th of Co	rrelatio	n 3 Hi	gh, 2- N	/ledium	, 1-Low							
Category	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Audit Course								

University with Graded Autonomy Status

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

	Subject Code: EMDE22003	Subject Name: ROBOTICS AND SENSORS	Ty / Lb	L	T/S Lr	P/R	C				
		Prerequisite: Nil	Ty	3	0/0	0/0	3				
ſ	T/I / · Theory/I ab I · I acture T · Tutorial P · Practical/Project P · Passarch C · Credits										

T/L/: Theory/Lab L: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

UNIT I: INTRODUCTION

9

Basic concepts-Robot anatomy-robot configurations-Basic Robot motions-Types of drives-Applications-Material Handling-Processing-Assembly and Inspection -Safety considerations.

UNIT II: TRANSFORMATIONS AND KINEMATICS

9

Vector operations-Translational transformations and Rotational transformations-Properties of transformation Matrices-Homogeneous transformations and Manipulator-Forward solution-Inverse solution

UNIT III: CONTROLS AND END EFFECTORS

9

Control system concepts-Analysis-control of joints-Adaptive and optimal control-End effectors-Classification-Mechanical-Magnetic-Vacuum-Adhesive-Drive systems-Force analysis and Gripper design

UNIT IV: ROBOT PROGRAMMING

6

Methods -Languages-Computer control and Robot Software-VAL system and Language

UNIT V: SENSORY DEVICES

12

Non-optical and optical position sensors-Velocity and Acceleration-Range-Proximity-touch-Slip-Force-Torque-Machine vision-Image components-Representation - Hardware-Picture coding-Object recognition and Categorization-Software consideration- Case Studies

Total No. of Periods: 45

REFERENCES

- 1. Fu, K.S. Gonzalez, R. and Lee, C.S.G. (1987) Robotics control, sensing, vision, and Intelligence. McGraw Hill Book Co
- 2. Klafter, R.D. Cmielewski, T.A. and Negin, M. (1994) Robot Engineering an Integrated approach. New Prentice Hall of India
- 3. Deb, S.R. (1994) Robotics Technology and Flexible Automation. Tata McGraw Hill Publishing Co, Ltd
- 4. Craig J.J. (1999) Introduction to Robotics Mechanics and Control. Addison Wesley
- 5. Groover, M.P. (1995) Industrial robotics Technology, programming and applications. McGraw Hill Book Co
- 6. http://www.robotics.com

University with Graded Autonomy Status
(An ISO 21001 : 2018 Certified Institution)

		Periyar	E.V.R. H	igh Road	, Madur	avoyal, Ch	ennai-95.	Tamiĺnadu,	India.						
Subject Cod	le:	Subje	ct Namo	e: ROB	OTICS	SIMULA	ATION	Ty/Lb	L	T/S	P/R	C			
EMDE22L0	3	LAB								Lr					
		Prereg	uisite: l	Robotics	and Se	nsors		Lb	0	0/0	4/0	2			
T/L/: Theo	ry/Lab	L:Leo	cture T	: Tutori	al P:P	ractical/ l	Project I	R : Resear	ch C:	Credits					
OBJECTIVE	E: The	student	will earr	1											
								botics and	sensor	rs					
COURSE O															
CO1	Meas	ure and	calibrat	e the sta	tic and	dynamic r	responses	of a machi	ne stru	icture oi	machin	e tool			
CO2	Interf	face diff	ace different systems for control purpose												
CO3	Deve	lop an i	p an intelligent system for material handling												
CO4	Desig	gn and develop a robot for different applications													
CO5	Anal	yze usin	g contro	ol system	ns										
Mapping of	Cours	e Outco	mes wi	th Progi	ram Ou	itcomes (I	POs)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3							
CO1	2	1	3	3	2	2	3	2							
CO2	2	1	3	3	2	2	3	2							
CO3	2	1	3	3	2	2	3	2							
CO4	2	1	3	3	2	2	3	2							
CO5	2	1	3	3	2	2	3	2							
1/2/3 indicat	tes Str	ength of	f Correl	ation 1	- High	, 2- Mediu	ım, 3-Lo	W							
	4)		S S			/ s									
_	ore		tive			nips 1									
ory	п(l a	es	al /		msl soir Sou									
Category	 3raı	 jrai	itiv n E	tic		Internships									
Ca	Program Core	Program	Electives Open Electives	Practical Project		Internships Tracknical — Audit Course									
					/	7									

University with Graded Autonomy Status

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code:	LAB	Ty / Lb	L	T/S Lr	P/R	C
EMDE22L03	Prerequisite: Robotics and Sensors	Lb	0	0/0	4/0	2
T/L/: Theory/Lab	L: Lecture T: Tutorial P: Practical/ Project R	R : Researc	ch C: (Credits		

- 1. Development of strain gauge set up to measure strain in a statically loaded machine structure and calibration of the same.
- 2. Measurement of damping ratio of a machine tool base from free vibration studies using an impact hammer and an accelerometer pick up with data acquisition system.
- 3. Interfacing a stepper motor with PC for controlling speed, direction and number of steps using Virtual instrumentation platform.
- 4. Co-ordinated motion of multiple actuators, electro pneumatic systems in a desired sequence using Virtual instrumentation platform.
- 5. Development of an intelligent conveyor system to sort metallic & non-metallic components
- 6. Development of a pick and place robot
- 7. Development of an obstacle avoidance robot
- 8. Development of a path following robot
- 9. Determining the response time of a control system using PI and PID controllers
- 10. Determining the positioning accuracy of a linear slide using open loop and closed loop controls

Total No. of Periods: 60

SEMESTER IV

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution)

Subject Coc EMDE2200		Subjec	ct Name	: MEC	HANIC	AL VI	BRATIO	NS	Ty / Lb		T /SLr	P/R	C	
LIVIDEZZO		erequ	isite: Str	ength of	Materia	als & D	esign of		Ty	3	1/0	0/0	4	
	M	lachin	e Eleme	nts			_							
T/L/ : Theo	ry/Lab	L : L	ecture T	: Tutor	ial P :I	Practica	al/ Projec	et R:R	esearch	C: Cr	edits			
OBJECTIV	Æ: At tl	he end	l of this	course, t	he stude	nt will								
• fully	understa	nd an	d apprec	iate the i	importai	nce of v	ibrations	in mech	anical d	esign o	f machine	e parts th	at	
operate in vi	ibratory	condi	tions.											
• be ab	le to obt	ain lin	near vibra	atory mo	dels of	dynami	c systems	s with cl	nanging o	omple	xities (SI	OF, ME	OF).	
• be ab	le to wri	te the	differen	tial equa	tion of 1	motion	of vibrate	ory syste	ms.	-				
COURSE (OUTCO	MES	(COs):	The stu	dents w	ill be a	ble to							
CO1	Unders	tand f	undame	ntal conc	cept of s	ingle de	egree of f	reedom	for force	d vibra	tion syste	ems		
CO2	Describ	ne the	free vi	bration	of sprin	ng-cont	oled syst	em - M	ass cour	led sv	stem for	two des	rees	
002	freedo	escribe the free vibration of spring-coupled system - Mass coupled system for two degrees of eedom												
CO3		valuate the Eigen-values and mode shapes of natural vibrations of beams and response to harmonic												
		excitations using orthogonal properties of natural modes.												
CO4	Determ	nine na	atural fre	quencie	s and me	ode sha	pes of M	DOF an	d continu	ous sy	stems usi	ng		
			al metho											
CO5			-			_	s used in	vibratio	n contro	s.				
Mapping of	f Course	e Outo	comes w	ith Prog	gram O	utcome	s (POs)							
COs/POs	PO1		PO2	PO3	PO4	PO5	PSO1	PSO	PSC	03				
CO1	3		2	3	3	3	3	2	4	2				
CO2	3		2	3	3	3	3	2	2	2				
CO3	3		2	3	3	3	3	2	1	2				
CO4	3		2	3	3	3	3	2		2				
CO5	3		2	3	3	3	3	2	2	2				
1/2/3 indica	ites Stre	ngth	of Corre	elation	1- High	, 2- Me	edium, 3-	Low						
		e e		/es		/ S0	d)							
>		Program Core		Open Electives	_	Internships Fechnical	Audit Course							
Category		am	Program Electives	Ele	cal	Internshi Technical	ပ္ပ							
ate		gra	Program Electives	en	Practical Project	Inte	ıdit							
O		Prc	Prc Ele	Ор	Prz Prc	I	Au							

Subject Code: EMDE22004	Subject Name : MECHANICAL VIBRATIONS	Ty / Lb	L	T /SLr	P/R	C
	Prerequisite: Strength of Materials & Design of	Ty	3	1/0	0/0	4
	Machine Elements					

UNIT I: FUNDAMENALS OF VIBRATION

12

Review of Single degree freedom systems - Response to arbitrary periodic executions - Duhamel's integral - Impulse response function - Virtual work - Lagrange's equations - Single degree freedom forced vibration with elastically coupled viscous dampers - System identification from frequency response - Transient vibration - Laplace transformation formulation.

UNIT II: TWO DEGREE FREEDOM SYSTEM

12

Free vibration of spring-coupled system - Mass coupled system - Bending variation of two degree freedom system - Forced vibration - Vibration Absorber - Vibration isolation.

UNIT III: MULTI DEGREE FREEDOM SYSTEM

12

Normal mode of vibration - Flexibility matrix and stiffness matrix - Eigen value and Eigen vector — Orthogonal properties - Modal matrix - Modal analysis - Forced vibration by matrix inversion - Modal damping in forced vibration - Numerical methods of fundamental frequencies.

UNIT IV: VIBRATION OF CONTINUOUS SYSTEMS

12

Systems governed by wave equations - Vibration of strings - Vibration of rods - Euler 's equation for beams - Effect of Rotary inertia and shear deformation - Vibration of plates.

UNIT V: VIBRATION CONTROL

12

Introduction – Reduction of vibration at source- Control of vibration- By structural Design- Material Selection- Located Additions- Artificial Damping- Resilient Isolation, Vibration Isolation- Vibration Absorbers.

Total No. of Periods: 60

REFERENCES

- 1. Rao, J. S. & Gupta, K. (1984) Ind. Course on Theory and Practice Mechanical Vibration. New Age International (P) Ltd
- 2. Thomson, W.T. (1990) Theory of Vibration with Applications. CBS Publishers and Distributers
- 3. Den Hartog, J.P. (1990) Mechanical Vibrations. Dover Publications
- 4. Rao, S.S. (1995) Mechanical Vibrations. Addison Wesley Longman

Subject Code: EMDE22L02		ubject I	Name : I	RAPID		OTYPIN			/ Lb	L	T/ SLr	P/R	С	
	Pr	erequis	ite: Non	e				I	Lb	0	0/0	4/0	2	
T/L/: Theory/L	ab L :	Lectur	e T : Tu	torial 1	P :Prac	tical/ Pro	ject R:	Resear	ch C:	Cred	its			
OBJECTIVE: T	he stud	lents wi	ill learn											
To Design as	nd fabri	icate wo	orking m	odels fo	or the co	onceptual	testing ap	plicatio	ons					
COURSE OUT														
CO1	Desci	ribe the	differen	ces and	of the a	pplication	n of a rang	ge of ad	lditive	manı	ufacturin	g proce	sses.	
CO2	Optin produ													
CO3	Build	comple	omplex engineering assemblies in plastic material with less process planning.											
CO4	Impro	ve surface finish of fabricated plastic components for the engineering applications.												
CO5	Desig	sign and fabricate working models for the conceptual testing applications.												
Mapping of Co	urse Oı	utcome	s with P	rogram	Outco	mes (POs	s)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO 3						
CO1	3	2	3	3	2	3	3	3						
CO2	3	2	3	3	2	3	3	3						
CO3	3	2	3	3	2	3	3	3						
CO4	3	2	3	3	2	3	3	3						
CO5	3	2	3	3	2	3	3	3						
3/2/1 indicates S	Strengt	h of Co	rrelatio	n 3- H	igh, 2-	Medium,	1-Low							
Category	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Audit Course								
				✓										

Subject Code: EMDE22L02	Subject Name: RAPID PROTOTYPING LAB	Ty / Lb	L	T/ SLr	P/R	С	
	Prerequisite: None	Lb	0	0/0	4/0	2	
T/L/: Theory/Lab L: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits							

- 1. Review of CAD Modeling Techniques and Introduction to RP
- 2. Forming Groups & Assigning Creative Idea
- 3. Generating STL files from the CAD Models & Working on STL files
- 4. Modeling Creative Designs in CAD Software
- 5. Assembling Creative Designs in CAD Software
- 6. Processing the CAD data in Catalyst software (Selection of Orientation, Supports generation, Slicing, Tool path generation)
- 7. Simulation in Catalyst Software
- 8. Sending the tool path data to FDM machine
- 9. Fabricating the physical part on FDM machine
- 10. Removing the supports & post processing (cleaning the surfaces)
- 11. Demonstrating Creative Working Models
- 12. Converting CT/MRI scan data into STL file using MIMICS software (Demo)

Total No. of Periods: 60

(An ISO 21001 : 2018 Certified Institution)

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code: EMDE22I01	Subject Name : TERM PAPER	Ty / Lb/IE	L	T	P	С				
	Prerequisite: None	IE	0	0/0	0/4	2				
T/L/: Theory/Lab	T/L/: Theory/Lab L: Lecture T: Tutorial P:Practical/Project R: Research C: Credits									

A term paper is an elaborate research-based work on a particular topic in the domain of study. The student must choose a topic of his interest from the domain of study for a term paper. The term paper can be an original research article or review article. In case of review article, the student must refer at least 50 research/review articles and critically review other researcher's work. The term paper may be 10-20 pages in length. The general guidelines for writing the term paper as follows:

- 1. Abstract
- 2. Introduction to explain about the broad and general statement on the topic chosen.
- 3. Aim /Objective of the term paper.
- 4. Description of methodology, concepts and arguments.
- 5. Identify the research gap and suggest possible future works.
- 6. Conclusion

Three reviews will be conducted to monitor the progress of the work. At the end of the semester, presentation must be made by the student and Viva-Voce examination will be conducted by the Internal Examiner duly appointed by the Head of the department and the students will be evaluated.

SEMESTER V

EDUCATIONAL AND RESEARCH INSTITUTE

Subject Code EMDE22005	: Subj	ect Name	: OPTI	MIZATI	ON TEC	HNIQUE	S	Ty /	L	T/S Lr	P/R	C	
				e of Man	agement	Science		Ty	3	1/0	0/0	4	
		es Quanti											
L : Lecture T :					P: Proje	ct R: Res	earch	C: Cred	its				
T/L/ETL: The				and Lab.									
OBJECTIVE		dent will											
Mathematical				oblem									
Algorithms for			urces										
COURSE OU													
CO1						vith differe	ent me	ethods					
CO2	Analyze t	alyze the transportation and assignment problems											
CO3	Understa	erstand the concept of project management techniques											
CO4		the queuing theory problems ate the Queuing models and Replacement Models											
CO5	Simulate	the Queu	ing mod	els and R	eplaceme	ent Models							
Mapping of C	ng of Course Outcomes (COs) with Program Outcomes (POs) & Program Specific Outcomes (PSOs)												
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PS	SO2	PSO3				
CO1	3	2	2	2	1				2				
CO2	3	2	2	2	1				2				
CO3	3	2	2	2	1				2				
CO4	3	2	2	2	1				2				
CO5	3	2	2	2	1				2				
COs / PSOs	PS	01	PS	SO2	PS	503							
3/2/1 indicate	es Strength	of Corre	lation 3	3- High, 2-	- Medium	1, 1-Low							
Category	Basic Sciences	Engineering Sciences Humanities and	Social Sciences	rrogram Core	Open Electives	Practical / Project	Internships /	Soft Skills					

Subject Code: EMDE22005	Subject Name: OPTIMIZATION TECHNIQUES	Ty / Lb	L	T/S Lr	P/R	С
	<u>Prerequisite:</u> Knowledge of Management Science besides Quantitative Techniques	Ту	3	1/0	0/0	4

UNIT- I: LINEAR PROGRAMMING

12

Formulation of LPP - Standard form of LPP - Graphical method - Simplex method - Big M method - Two phase method.

UNIT- II: TRANSPORTATION AND ASSIGNMENT

12

Formulation of Transportation problem – North West corner method – Least cost method – Vogel's approximation method – Optimality test – MODI method – Degeneracy – Assignment problem: Hungarian method – Travelling salesman problem.

UNIT- III: CPM, PERT AND SEQUENCING MODELS

12

Network representation – Fulkerson's rule – Critical path method – Scheduling of activities – Earliest and Latest times – Float and Slack times – PERT – Probability for project duration – Sequencing Models: Introduction – Basic Terminologies – Processing n jobs on 2, 3, and machines – Johnson's method.

UNIT- IV: QUEUING MODELS

12

Elementary concepts – Pure Birth and Death process – Single server Markovian models with infinite and finite capacity – Multi server Markovian models with infinite and finite capacity.

UNIT- V: SIMULATION AND REPLACEMENT MODELS

12

Simulation: Introduction – Monte-Carlo Technique – Generation of Random numbers – Applications to Queuing models – Replacement Models: Introduction – Individual Replacement policy – Money value (not considered and considered) – Group Replacement policy – Comparison of Individual and Group Replacement policies.

Total No. of Periods: 60

TEXT BOOKS

1) Sundaresan V. et.al. (2009), "Resource Management Techniques", A.R. Publications.

- 1) Panneerselvam R. (2011), "Operations Research" (2nd ed.), Prentice Hall of India.
- 2) Hamdy A. Taha (2010), "Operations Research: An Introduction" (09th ed.), Pearson.
- 3) Hillier, Lieberman (2005), "Introduction to Operations Research" (8th ed.) (IAE), Tata McGraw Hill Publishing
- 4) Hira D.S., Gupta P.K., (2007) "Operations Research", S.Chand & Co.

Subject Code: MME22DL05	Subject Name: DISSERTATION PHASE-I	Ty / Lb	L	T/S. Lr	P/R	С
	Prerequisite: All core papers	Lb	0	0	5/5	5
T/L Theory/Lab L: I	Lecture T: Tutorial P:Practical/Project R:	Research C	: Credit	s		

Students should select the area of the project work and complete the literature survey. Student should identify the problem of study and start the work. Students are expected to do the project work individually. A guide will be allotted to each student based on the area of the Project work. Project reviews will be conducted once in a fortnight to assess the development of the project work.

At the end of the semester students should submit a report of the work completed and should appear for a Project Viva- voce examination conducted by the internal examiner.

Continuous assessment mark (50 marks) will be awarded based on the performance in the reviews.

End semester mark (50 marks) will be awarded for project viva voce examination.

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

SEMESTER VI

Subject Code:	Subject Name: DISSERTATION PHASE-II	Ty/Lb	L	T/S.	P/R	C
EMDE22L06				Lr		
	Prerequisite: All core papers	Lb	0	0/0	10/10	10
T/L Theory/Lab L	Lecture T : Tutorial P : Practical/Project R : 1	Research	C: Cr	edits		

Students are expected to do a Project work either in an Industry or at the University in the area of specialization individually. Each student will be allotted a guide based on the area of Project work

Number of reviews will be conducted during the semester to monitor the development of project. Students have to submit the thesis at the end of the semester and appear for the Project Viva-Voce examination conducted by one internal examiner and one external examiner.

It is mandatory that the student should have presented his project work as a technical paper in National/international conference /Journals. A copy of the certificate in proof of paper presentation should be enclosed in the project report.

50% weightage (100 marks) will be given for the continuous assessment and 50% weightage (100 marks) for the Project viva a voce examination.

PROGRAM ELECTIVE -I

Periyar E.V.R.	High Road,	Maduravoyal,	Chennai-95.	Tamiĺnadu, India.	

Subject Code: EMDE22E01		bject N ESIGN	ame : A	DVAN	CED M	IACHINE		Ty / Lb	L	T/ S.L r	P/R	С
	Pro Ma	erequisi achine E	te: Mecl Elements	nanics o -I&II	f Mach	ines-I&II, I	Design of	Ty	3	0/0	0/0	3
T/L/: Theory/	Lab L	: Lectu	re T : Tu	utorial	P :Pra	ctical/ Pro	ject R : F	Research (C: C	redits		
OBJECTIVE:												
To study behav												
To study statis	tical tec	chniques	s and its	applicat	tions in	mechanica	l design					
COURSE OU'	TCOM	ES (CC	s): The	studen	ts will	be able to						
CO1	Demo	nstrate 1	he abilit	y to ide		eds of the	customer a	and conve	rt the	em in to	technica	l
	•		of a pro									
CO2						rability, ass n finding di				reliabilit	y are als	0
CO3	Solve	problen	ns in uns	ymmeti	rical ber	nding and s	hear cente	er.				
CO4	Analy	ze torsi	on proble	ems in s	olid and	d thin section	on					
CO5	Desig	n the co	mponent	s consi	dering s	trength bas	ed reliabi	lity.				
Mapping of Co	ourse C	Outcom	es with I	Progran	n Outco	omes (POs)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3				
CO1	3	2	3	3	2	3	2	2				
CO2	3	2	3	3	2	3	2	2				
CO3	3	2	3	3	2	3	2	2				
CO4	3	2	3	3	2	3	2	2				
CO5	3	2	2	3	2	3	2	2				
3/2/1 indicates	Streng	gth of C	orrelatio	on 3-	High, 2	- Medium	, 1-Low					
Category	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Audit Course						
		V										

Subject Code: EMDE22E01	Subject Name : ADVANCED MACHINE DESIGN	Ty / Lb	L	T/S .Lr	P/R	С
	Prerequisite: Mechanics of Machines-I&II, Design of Machine Elements-I&II	Ty	3	0/0	0/0	3
T/L/: Theory/La	b L : Lecture T : Tutorial P :Practical/ Project	R : Resea	rch C:	Credits	•	

UNIT I: INTRODUTION

Mechanical design process, Phases and interactions of design process, design for sustainability, use of standards and codes in design. Tribological considerations in design, Human factors in design.

UNIT II: DESIGN FOR MANUFACTURING & ASSEMBLY:

Design consideration and recommendation for machining, casting, extrusion, etc. design consideration and recommendation for assembly processes.

UNIT III: UNSYMMETRICAL BENDING AND SHEAR CENTRE:

Concept of shear center in symmetrical and unsymmetrical bending, stress and deflections in beams subjected to unsymmetrical bending, shear center for thin wall beam cross section, open section with one axis of symmetry, general open section, and closed section.

UNIT IV. THEORY OF TORSION:

Torsion of prismatic bars of solid section and thin walled section. Analogies for torsion, membrane analogy, fluid flow analogy and electrical analogy. Torsion of conical shaft, bar of variable diameter, thin walled members of open cross section in which some sections are prevented from warping, Torsion of noncircular shaft.

UNIT V: DESIGN BASED ON RELIABILITY:

9

Design for Reliability, strength based reliability, approach to robust design.

Experimental Stress Analysis: Strain gauges, photo elasticity, non-destructive testing, brittle coating.

Total no. of Periods: 45

- 1. Mechanical Design Process, D G Ullman, McGraw Hill Book Company
- 2. Design of Machine Elements, V B Bhandari McGraw Hill
- 3. Design for Manufacturing and Assembly, O Molloy, E A Warman, S Tilley, Springer
- 4. Advance Strength of Materials, Sandhu Singh, Khanna Publishers
- Strength of Materials, S S Ratan, McGraw Hill 6. Experimental Stress Analysis, J W Dally, W F Riley, McGraw Hill

University with Graded Autonomy Status

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject	Subject Name : DESIGN FOR	Ty/Lb	L	T/S.	P/R	С
Code:	MANUFACTURING AND ASSEMBLY			Lr		
EMDE22E02	Prerequisite: Manufacturing Technology I,	Ty	3	0/0	0/0	3
	Manufacturing Technology II					

T/L/: Theory/Lab L: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

OBJECTIVE: The students will learn

- Rules and Requirements of designing to ease manufacturing and assembly
- To expose basics of form design
- Manufacturing constraints that influence the design of parts and part systems to understand infeasible or impractical designs
- Assembly considerations and assembly costs in evaluations

COURSE O	OUTCOMES (COs): The students will be able to
CO1	Understand the general aspects of Design for manufacturing and Assembly
CO2	Apply the concept of DFM for casting, forming & machining
CO3	Demonstrate the principles of DFA to increase manufacturing efficiency in assembly processes.
CO4	Design/redesign components for casting, forging and machining process.
CO5	Apply Boothroyd method of DFM for product design and assembly.

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
CO1	3		3	3	2	3	1	2
CO2	3		3	3	2	3	1	2
CO3	3		3	3	2	3	1	2
CO4	3		3	3	2	3	1	2
CO5	3		3	3	2	3	1	2

3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Audit Course			
		$\sqrt{}$							

Subject	Subject Name : DESIGN FOR	Ty/Lb	${f L}$	T/S.Lr	P/R	C
Code:	MANUFACTURING AND ASSEMBLY					
EMDE22E02	Prerequisite: Manufacturing Technology-I, Manufacturing Technology II	Ty	3	0/0	0/0	3
T/L/: Theory/L	ab L : Lecture T : Tutorial P :Practical/ Proj	ect R : R	esearch (C: Credits		

UNIT I: INTRODUCTION

Q

General design principles for manufacturability - strength and mechanical factors, Process capability - Feature tolerances - Geometric tolerances - Assembly limits -Datum features - Tolerance stacks.

UNIT II: FORM DESIGN - CASTING

9

Production methods on form design - Casting considerations - Requirements and rules - Redesign of components for castings and Case studies.

UNIT III: FORM DESIGN – FORGING

9

Forging considerations - Requirements and rules - Redesign of components for forging and Case studies.

UNIT IV: FORM DESIGN - MACHINING

9

Machining considerations - Requirements and rules -Redesign of components for Machining and Case studies.

UNIT V: DESIGN FOR ASSEMBLY METHODS

9

Approaches to design for assembly - Qualitative evaluation procedures, knowledge based approach, Computer aided DFA methods. Assimilability measures. Boothroyd - Dewhurst DFA method - Redesign of a simple product - Case studies.

Total No. of Periods: 45

- 1. Harry Peck, (1983) Design for Manufacture. Pittman Publication
- 2. Alan Redford and Chal, (1994) Design for Assembly Principles and Procedures. McGraw Hill International
- 3. Robert Matousek, (1963) Engineering Design A Systematic Approach. Blackie & Sons Ltd
- 4. James G. Bralla, (1986) Hand Book of Product Design for Manufacturing. McGraw Hill Co
- 5. Swift, K.G. (1987) Knowledge Based Design for Manufacture.

EDUCATIONAL AND RESEARCH INSTITUTE

University with Graded Autonomy Status
(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject			ne: AD	VANCI	ED STI	RESS	T	y / Lb	L	T/S. Lr	P/R	С
Code:		LYSIS	Ctma	n a + h	of M	terial	0	Ty	3	0/0	0/0	3
EMDE22E03	Des	ign o	f Mac	ngtn hine	elem	iteriai ents	S ,	1 y	3	0/0	0/0	3
T/L/: Theory							ject R	: Rese	arch C	: Credits		
OBJECTIVE :	-					ures an			linear	stress		
analysis prob	olems us	sing and	alytical a	and fini	te elem	ent tech	niques					
COURSE OU	TCOME	S (COs) : The s	student	s will b	e able to						
CO1						d probler	n solvin	g meth	ods			
CO2	Apply	the ene	rgy met	hod for	analys	sis of str	ess, stra	ain and	defle	ction proble	ems	
CO3	Detern	nine the	effects	of torso	n in var	ious mec	hanical	elemen	ts			
CO4	Solve	problen	ns in uns	ymmetr	ical ber	ding						
CO5	Calcul	ate shea	r center,	, contact	t stresse	s and pre	essurized	dcyline	lers and	d rotating di	scs	
Mapping of C	ourse Oi	itcomes	with P	rogram	Outco	nes (POs	s)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSC)3			
CO1	3	1	3	3	2	3	1	2	,			
CO2	3	1	3	3	2	3	1	2	,			
CO3	3	1	3	3	2	3	1	2				
CO4	3	1	3	3	2	3	1	2				
CO5	3	1	3	3	2	3	1	2	,			
3/2/1 indicates	Strengt	h of Co	rrelatio	n 3- H	ligh, 2-	Medium	, 1-Lov	V				
			SS		/ .							
	Program Core		Open Electives		Internships echnical	rse						
ory	n C	n Se	lec	al /	nsł ica	ņo						
Category	rar	Program Electives	п Е	Practical , Project	Internshi Technical	Audit Course						
Ca	rog	rog Jec)pe	rac roje	Ir Te	pnv						
	<u> </u>	▼ 五	<u> </u>			₹						
							1					

Subject	Subject Name: ADVANCED STRESS	Ty/Lb	L	T/S.	P/R	C
Code:	ANALYSIS			Lr		
EMDE22E03	Prerequisite: Strength of Materials,	Ty	3	0/0	0/0	3
	Design of Machine elements					

T/L/: Theory/Lab L: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

UNIT 1: THEORY OF ELASTICITY

9

Theory of Elasticity, Analysis of stress, Analysis of stain, Elasticity problems in two dimensions and three dimensions, Mohr's circle for three dimensional stresses. Stress tensor, Air's stress function in rectangular and polar coordinates.

UNIT II: ENERGY METHOD

9

Energy method for analysis of stress, strain and deflection The three theorem's -theorem of virtual work, theorem of least work, Castiglioni's theorem, Rayleigh Ritz method, Galerikin's method, Elastic behavior of anisotropic materials like fiber reinforced composites.

UNIT III: THEORY OF TORSION

9

Torsion of prismatic bars of solid section and thin walled section. Analogies for torsion, membrane analogy, fluid flow analogy and electrical analogy. Torsion of conical shaft, bar of variable diameter, thin walled members of open cross section in which some sections are prevented from warping, Torsion of noncircular shaft.

UNIT IV: UNSYMMETRICAL BENDING

9

Unsymmetrical Bending and Shear Centre Concept of shear center in symmetrical and unsymmetrical bending, stress and deflections in beams subjected to unsymmetrical bending, shear center for thin wall beam cross section, open section with one axis of symmetry, general open section, and closed section.

UNIT V: PRESSURIZED CYLINDERS

9

Pressurized Cylinders and Rotating Disks Governing equations, stress in thick walled cylinder under internal and external pressure, shrink fit compound cylinders, stresses in rotating flat solid disk, flat disk with central hole, disk with variable thickness, disk of uniform strength, Plastic action in thick walled cylinders and rotating disc.

Total no. of Periods: 45

- 1.Boresi, A.P. and K. P. Chong, Elasticity in Engineering Mechanics, Second Edition, John Wiley & Sons, 00
- 2. Budynas, R. G. Advance strength and Applied Stress Analysis, Second Edition, WCB/McGraw Hill 1999
- 3. Dally, J. W. and W.F. Riley, Experimental Stress Analysis, McGraw Hill International, Third Edition, 1991
- 4. Theory of Elasticity Timoshenko and Goodier, Mc Graw Hill
- 5. Advanced Strength of Materials, Vol. 1,2 Timoshenko, CBS
- 6. Advanced Strength of Materials Den Harteg Advanced Vibrations.

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

PROGRAMME ELECTIVE -II

University with Graded Autonomy Status
(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code:	Subject Name : ADVANCED MATERIALS	Ty/Lb	L	T/S.	P/R	(
EN (DESSEE)	TECHNOLOGY			Ιr		

EMDE22DE04 TECHNOLOGY Lr

Prerequisite: Engineering Metallurgy Ty 3 0/0 0/0 3

Prerequisite: Engineering Metallurgy Ty 3 0/0	0/0
T/L/: Theory/Lab L: Lecture T: Tutorial P:Practical/Project R: Research C: Credits	
OBJECTIVE: The students will learn	
A 1 11 CC	

• About different category of materials.

 Materials relevance between alloying, heat treatment and mechanisms influencing, the structure, properties and applications

COURSE	OUTCOMES (COs): The students will be able to
CO1	Understand properties and applications of ferrous and nonferrous metals
CO2	Analyze the relevance of alloying and heat treatment of metals
CO3	Explore the basics of newer materials ,like Nano-materials, Bio materials and composites
CO4	Identify the Characteristics and applications of the newer materials
CO5	Understand fission and fusion reactors and evaluate the applications of Nuclear materials.

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
CO1	1		2	1	1	1		
CO2	1		2	1	1	1		
CO3	1		2	1	1	1		
CO4	1		2	1	1	1		
CO5	1		2	1	1	1		

3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Audit Course			
		✓							

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution)

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code:	Subject Name: ADVANCED MATERIALS	Ty/Lb	L	T/S.Lr	P/R	С
EMDE22E04	TECHNOLOGY					
	Prerequisite: Engineering	Ty	3	0/0	0/0	3
	Metallurgy	_				
T/L/: Theory/Lab L:	Lecture T: Tutorial P:Practical/Project R:	Research	C: Cre	edits		

UNIT I: INTRODUCTION TO FERROUS MATERIALS.

9

Plain carbon steels, their properties and application: plain carbon steels, effects of alloying elements in plain carbon steels. Alloy steels, tools steels, stainless steels, low and high temperature resisting steels, high strength steels, selections, specifications, form and availability of steel. Cast irons-white, grey, modular malleable and alloy cast irons. Recognised patterns of distribution of graphite flakes in grey cast iron

UNIT II: NONFERROUS MATERIALS

9

Ultra light materials. Properties and application, brasses, bronzes, cupro-nickel alloys, aluminium, magnesium and titanium alloys, bearing materials. Heat treatment of nonferrous materials—soputionizing, Aging and precipitations hardening.

UNIT III: NANOMATERIAL

9

Introduction to Nanomaterials-types-Nano powder-Nanodots-Nanotubes- Nano fluids-Fullerene-Different shape-properties and characteristics and applications. Refractory materials and coatings for high temperature applications. Smart Materials-introduction, types and applications. Thin film shape memory alloys

UNIT IV: BIO-MATERIALS AND COMPOSITES

9

Classes and application of materials in medicine and dentistry. Stress strain behaviour of bone. The mechanical properties including elasticity, hardness, viscoelasticity, surface and fatigue properties of skin; soft tissues; bone; Biocompatible materials and its applications. The effects of degradation and corrosion. Composites-metal, polymers and ceramics- applications

UNIT V: NUCLEAR MATERIALS

9

Introduction to nuclear materials. Materials for nuclear fuel in fission and fusion reactors, Fissile and fertile materials. Control & Construction Materials for Nuclear reactors, Moderators, Heat Exchangers. Radiation proof materials. Brief discussion of safety and radioactive waste disposal.

Total No. of Periods: 45

- 1. Buddy Ratner, D. Hoffman, A.S. and Lemons, J.E. (2004) Biomaterials Science- An Introduction to Materials in
- 1. Medicine. Second Edition, Academic Press
- 2. Joon Park, B. & Lakes Roderic, S. (1992) Biomaterials: An Introduction. Second Edition, Plenum Press
- 3. Edited by Davis, J. R. (2003) Handbook of Materials for Medical Devices. ASM international
- 4. Lamarsh, J.R. Introduction to Nuclear Engineering
- 5. Callister, W.D. Jr, Material Science & Engineering Addition. Wesley Publishing Co

Subject Code: EMDE22E05	Subject Name: RAPID PROTOTYPING	Ty/Lb	L	T/S.Lr	P/R	C
	Prerequisite: Manufacturing Technology, Powder Metallurgy	Ty	3	0/0	0/0	3

T/L/: Theory/Lab L: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

OBJECTIVE: The students will learn

- Basic Principles of rapid prototyping and its applications in various fields, reverse engineering techniques.
- To familiarize students with different fabrication processes in rapid prototyping systems.
- Mechanical properties and geometric issues relating to specific rapid prototyping applications.

COURSE (
CO1	Under	stand th	e proces	s of rap	id proto	otyping ar	nd its appl	lications							
CO2	Apply	cad mo	deling c	oncepts	and tec	hniques i	n RP								
CO3	Under systen		e operati	ing prin	ciples,	capabiliti	es, and lin	nitations	of liqui	d an	d solid ba	sed RPT			
CO4	Appre	Appreciate the operating principles, capabilities and limitations of powder based RPT systems													
CO5	Demonstrate the principles of 3D printing and laser based RP Techniques														
Mapping of	Course	Outco	mes with	Progr	am Ou	tcomes (1	POs)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3							
CO1	2		3	3	2	3	3	3							
CO2	2		3	3	2	3	3	3							
CO3	2		3	3	2	3	3	3							
CO4	2		3	3	2	3	3	3							
CO5	2		3	3	2	3	3	3							
3/2/1 indica	tes Stre	ngth of	Correla	tion 3	- High,	2- Mediu	ım, 1-Lo	W							
Category	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Audit Course									

Subject Code: EMDE22E05	Subject Name: RAPID PROTOTYPING	Ty / Lb	L	T/S.Lr	P/R	С
	Prerequisite: Manufacturing Technology, Powder Metallurgy	Ty	3	0/0	0/0	3
7D/T / 7D1 /T		4 D D	1.0	C 1'4		

T/L/: Theory/Lab L: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

UNIT I: INTRODUCTION

8

Need - Development of RP systems - RP process chain - Impact of Rapid Prototyping on Product Development -Digital prototyping - Virtual prototyping- Rapid Tooling - Benefits- Applications.

UNIT II: REVERSE ENGINEERING AND CAD MODELING

10

Basic concept- Digitization techniques – Model Reconstruction – Data Processing for Rapid Prototyping: CAD model preparation, Data Requirements – geometric modeling techniques: Wire frame, surface and solid modeling – data formats – Data interfacing, Part orientation and support generation, Support structure design, Model Slicing and contour data organization, direct and adaptive slicing, Tool path generation.

UNIT III LIQUID BASED AND SOLID BASED RAPID PROTOTYPING SYSTEMS 10 Stereolithography (SLA): Apparatus: Principle, per-build process, part-building, post build processes, photo polymerization of SL resins, part quality and process planning, recoating issues, materials, advantages, limitations and applications. Solid Ground Curing (SGC): working principle, process, strengths, weaknesses and application. Fused deposition Modeling (FDM): Principles, details of processes, process variables, types, products, materials and applications: Laminated object Manufacturing (LOM): Working Principles, details of processes, products, materials, advantages, limitations and applications—Case studies.

UNIT IV POWDER BASED RAPID PROTOTYPING SYSTEMS

10

Selective Laser Sintering (SLS): Principles, process, Indirect and direct SLS – powder structures, modeling of SLS, materials, post processing, post curing, surface deviation and accuracy, Applications. Laser Engineering Net Shaping (LENS): Processes, materials, products, advantages, limitations and applications – Case Studies.

UNIT V OTHER RAPID PROTOTYPING TECHNOLOGIES

7

Three dimensional Printing (3DP): Principle, basic process, Physics of 3DP, types of printing, process capabilities, material system. Solid based, Liquid based and powder 3DP **Applications** based systems, strength and weakness, and case studies. Shape process, Deposition Manufacturing (SDM): Introduction, basic shape decomposition, mold SDM applications. Selective Laser Melting, Electron Beam Melting manufacturing.

Total No. of Periods: 45

TEXT BOOKS:

- 1. Rapid prototyping: Principles and applications, second edition, Chua C.K., Leong K.F., and Lim C.S., World Scientific Publishers, 2003.
- 2. Rapid prototyping, Andreas Gebhardt, Hanser Gardener Publications, 2003.

- 1. Rapid Prototyping and Engineering applications: A tool box for prototype development, Liou W.Liou, Frank W.Liou, CRC Press, 2007.
- 2. Rapid Prototyping: Theory and practice, Ali K. Kamrani, Emad Abouel Nasr, Springer, 2006.
- 3. Rapid Tooling: Technologies and Industrial Applications, Peter D.Hilton, Hilton/Jacobs, Paul F.Jacobs, CRC press, 2000.

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution)

Periyar E.V.R. High Road, Maduravoyal, Chennai	-95. Tamilr	ıadu, Indi	a.
	_		TE /C

Subject Code: EMDE22E06			ame : A				Т	Ty / Lb	L	T/S.Lr	P/R	С			
ENIDE22E00			te: Mec			hines		Ty	3	0/0	0/0	3			
T/L/: Theory/Lal							ect R:	Resear	ch C: C	redits					
OBJECTIVE: Th	e stude	nts will	learn m	ethods	of kine	matic a	nalysis	and sy	nthesis	of simple m	echanis	ms			
and basic concept	s of spa	tial me	chanism	ıS			•	·		-					
COURSE OUTC	OMES ((COs):	The stu	dents w	ill be a	ble to									
CO1															
Apply the concept of kinematic analysis to find velocity and acceleration of mechanisms															
CO3 Study the various methods of synthesis of simple mechanism.															
CO4 Formulate the synthesis of various linkages.															
CO5 Analyze the spatial mechanisms															
Mapping of Cour	Mapping of Course Outcomes with Program Outcomes (POs)														
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO 1	PSO 2	PSO 3							
CO1	3	2	3	3	2	3	1	1							
CO2	3	2	3	3	2	3	1	1							
CO3	3	2	3	3	2	3	1	1							
CO4	3	2	3	3	2	3	1	1							
CO5	3	2	3	3	2	3	1	1							
3/2/1 indicates Str	rength o	orcorre	eiation	3- High	n, 2- M	edium,	1-LOW								
Category	Program Core	Program	Open Electives	Practical / Project	Internships / Technical	Audit Course									

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution)

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code:	Subject Name : ADVANCED	Ty/Lb	L	T/S.Lr	P/R	C				
EMDE22E06	MECHANISM DESIGN									
	Prerequisite: Mechanics of Machines	Ty	3	0/0	0/0	3				
T/I / · Theory/I oh I	T/I / Theory/I ab I . Lecture T . Tuterial D . Dreetical / Dreignt D . Descerab C . Credits									

T/L/: Theory/Lab L: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

UNIT I: INTRODUCTION TO KINEMATICS

9

Review of fundamentals of kinematics--Mobility, kinematic inversion, Graphical position analysis, algegric position analysis, position analysis techniques, displacement difference between two points, rotation and translation, apparent displacement and absolute displacement.

UNIT II: VELOCITY AND ACCELERATON

9

Velocity and acceleration of simple and complex mechanisms using graphical method.

UNIT III: SYNTHESIS

9

Type, Number and. Dimensional synthesis - Function generation, path generation, body guidance. Two position synthesis of crank and rocker mechanism. Crank and rocker mechanism with optimum transmission angle. Three position synthesis, Four position synthesis, point precision reduction, precision position, structural error, chebychev spacing.

UNIT IV: SYNTHESIS OF LINKAGES

9

Coupler curve synthesis, cognate linkages, Robert-Chebychev theorem, Blocks method of synthesis, Freudenstein's equation, Analytical synthesis using complex algebra, Synthesis of dwell mechanisms.

UNIT V: SPATIAL MECHANISM

9

Introduction, exception in the mobility of mechanisms, the position analysis problem, Velocity and acceleration analysis.

Total No. of Periods: 45

- 1. Sandor, G.N. and Erdman, A.G. (1984) Advanced Mechanism Design Analysis and Synthesis. Prentice Hall
- 2. Shigley, J.E. and Uicker, J.J. (1995) Theory of Machines and Mechanisms. McGraw Hill
- 3. Amitabha Ghosh and Ashok Kumar Mallik, (1999) Theory of Mechanism and Machines. EWLP
- 4. Nortron R.L. (1999) Design of Machinery. McGraw Hill
- 5. Kenneth Waldron, J. and Gary Kinzel, L. (1999) Kinematics, Dynamics and Design of Machinery. John Wiley & sons

PROGRAMME ELECTIVE – III

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution)

<u> </u>			E.V.R. Hig									T 20 T	
Subject Code EMDE22E07	e: Su	bject N	lame : T	RIBOL	OGY I	N DES	IGN	Ty	/ Lb	L	T/S. Lr	P/R	C
MIDEZZEU/	Dro	roguisite	e: Engin	ooring N	/lochoni	ios Dos	ion of	7	Гу	3	0/0	0/0	3
		chine El		cering i	vicciiaiii	ics, Des	ign or	1	ı y	3	0/0	0/0	
T/L/ : Theor				utorial	P :Pra	ctical/ F	Project	tR:	Resea	rch C	: Credits		
OBJECTIVI							•						
	les on Fri					wiii be a	ible to	unae	istanu				
	e Engine	-											
	sion and (_		et meen	anics								
	and Ro	_		earings									
COURSE O					ts will	be able	to						
CO1		,	s of frict					ical s	ituatio	ns			
							_						
CO2						ırement	techni	iques	and ef	tect of	surface te	xture on	
CO3			ehavior o			4 - 4	.11	1 .	-14:-			:44:	
		elect materials and lubricants to suggest a tribological solution to a particular situation.											
CO4	Desig	Design a hydrodynamic bearing using various bearing charts											
CO5	Under	stand th	ne 1-D ar	nd 2-D p	roblem	s by fin	ite dif	feren	ce met	hod.			
Mapping of	Course (Outcom	es with I	Progran	n Outco	omes (P	Os)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	P	SO2	PSO	3			
CO1	1	1	1	2	1	1							
CO2	1	1	1	2	1	1							
CO3	1	1	1	2	1	1							
CO4	1	1	1	2	1	1							
CO5	1	1	1	2	1	1							
3/2/1 indicate	es Streng	gth of C	orrelati	on 3-	High, 2	- Medi	ım, 1-	Low		•			
	d)		es		/ S								
_	Program Core		Open Electives		Internships echnical	Audit Course							
Category	 	m es]]ec	al /	Internshi Technical	Cou							
ıteg	gra	gra tiv	n E	ctic	nte chi	lit (
$C_{\mathfrak{g}}$		Program Electives)pe	Practical / Project	I	Auc							
		7				7		1					

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution)

Periyar E.V.	R. High Road	, Maduravoyal, Chenna	i-95. Tar	nilnadu, Indi	ia.

Subject Code:	Subject Name : TRIBOLOGY IN DESIGN	Ty / Lb	L	T/S.	P/R	C			
EMDE22E07				Lr					
	Prerequisite: Engineering Mechanics, Design	Ty	3	0/0	0/0	3			
	of Machine Elements	_							
T/I / · Theory/I sh I · I acture T · Tuterial P · Practical / Project R · Research C · Credits									

T/L/ : Theory/Lab L : Lecture T : Tutorial P :Practical/ Project R : Research C : Credits

UNIT I: SURFACES, FRICTION AND WEAR

9

Topography of the surfaces - Surface features - Surface interaction - Theory of Friction - Sliding and Rolling Friction, Friction properties of metallic and non-metallic materials - friction in extreme conditions - Wear, types of wear - Mechanism of wear - Wear resistance materials - Surface treatment - Surface modifications -Surface coatings.

UNIT II: LUBRICATION THEORY

9

Lubricants and their physical properties- Viscosity and other properties of oils –Additives and selection of Lubricants- Lubricants standards ISO,SAE,AGMA, BIS standards – Lubrication Regimes –Solid Lubrication-Dry and marginally lubricated contacts- Boundary Lubrication Hydrodynamic lubrication — Elasto and plasto hydrodynamic - Magneto hydrodynamic lubrication

- Hydro static lubrication - Gas lubrication.

UNIT III: DESIGN OF FLUID FILM BEARINGS

9

Design and performance analysis of thrust and journal bearings - Full, partial, fixed and pivoted journal bearings design - Lubricant flow and delivery - power loss, Heat and temperature, rotating loads and dynamic loads in journal bearings - Hydrostatic Bearing design.

UNIT IV: ROLLING ELEMENT BEARINGS

Q

Geometry and Kinematics - Materials and manufacturing processes - contact stresses - Hertzian stress equation - Load divisions - Stresses and deflection - Axial loads and rotational effects, Bearing life capacity and variable loads - ISO standards - Oil films and their effects - Rolling Bearings Failures.

UNIT V: FINITE DIFFERENCE METHOD

Q

Finite difference approach, Classification of partial differential equations, Parabolic, Hyperbolic and elliptic equations, Discretisations of the 1-Dimensional, 2-Dimensional partial differential equations and its solutions and error and stability analysis, fundamentals of fluid flow modeling.

Total No. of Periods : 45

- 1. Cameron, A. (1981) Basic Lubrication Theory. Ellis Herward Ltd.
- 2. Hulling, J. (Editor), (1984) Principles of Tribology. MacMillan.
- 3. Williams, J.A. (1994) Engineering Tribology. Oxford Univ. Press.
- 4. Neale, M.J. (1995) Tribology Hand Book. Butterworth Heinemann.
- 5. http://www.csetr.org/link.htm
- 6. http://www.me.psu.edu/research/tribology.htm

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution)

Subject Name: COMPUTATIONAL EMDE 22E08 FLUID DYNAMICS Prerequisite: Fluid Mechanics Ty 3 0/0 0/0 T/L/: Theory/Lab L: Lecture T: Tutorial P: Practical/Project R: Research C: Credits OBJECTIVE: To develop finite volume discretized forms of the governing equations for diffusion processes. To develop finite volume discretized forms of the convection-diffusion processes. To develop pressure based algorithms for flow processes. To introduce various turbulence models, Eddy Simulation and Direct Numerical Simulation.									
Prerequisite: Fluid Mechanics Ty 3 0/0 0/0 T/L/: Theory/Lab L: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits OBJECTIVE: To develop finite volume discretized forms of the governing equations for diffusion processes. To develop finite volume discretized forms of the convection-diffusion processes. To develop pressure based algorithms for flow processes. To introduce various turbulence models,	I .								
T/L/: Theory/Lab L: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits OBJECTIVE: To develop finite volume discretized forms of the governing equations for diffusion processes. To develop finite volume discretized forms of the convection-diffusion processes. To develop pressure based algorithms for flow processes. To introduce various turbulence models,	I .								
OBJECTIVE: To develop finite volume discretized forms of the governing equations for diffusion processes. To develop finite volume discretized forms of the convection-diffusion processes. To develop pressure based algorithms for flow processes. To introduce various turbulence models,	.•								
processes. To develop finite volume discretized forms of the convection-diffusion processes. To develop pressure based algorithms for flow processes. To introduce various turbulence models,	.•								
processes. To develop finite volume discretized forms of the convection-diffusion processes. To develop pressure based algorithms for flow processes. To introduce various turbulence models,									
To develop pressure based algorithms for flow processes. To introduce various turbulence models,									
	Large								
•	Č								
COURSE OUTCOMES (COs): The students will be able to									
CO1 Understand the governing equations and boundary conditions in Finite different meth	ods								
CO2 Analyze various discretization techniques for both steady and unsteady conduction he	nt								
transfer problems.									
CO3 Analyze the various incompressible flow problems by Finite-Volume method.									
CO4 Analyze various discretization techniques for both steady and unsteady convection he	Analyze various discretization techniques for both steady and unsteady convection heat								
transfer problems									
^	Select and use the different turbulence models according to the type of flows.								
	solvet and ass the different tarbalence models decording to the type of flows.								
Mapping of Course Outcomes with Program Outcomes (POs)									
COs/POs PO1 PO2 PO3 PO4 PO5 PSO PSO PSO									
CO1 3 2 3 3 2 3 3 CO2 3 2 3 3 2 3 3									
CO1 3 2 3 3 2 3 3 CO2 3 2 3 3 2 3 3 CO3 3 2 3 3 2 3 3									
CO1 3 2 3 3 2 3 3 CO2 3 2 3 3 2 3 3 CO3 3 2 3 3 2 3 3 CO4 3 2 3 3 2 3 3									
CO1 3 2 3 3 2 3 3 3 CO2 3 2 3 3 2 3 3 3 CO3 3 2 3 3 2 3 3 3 CO4 3 2 3 3 2 3 3 3 CO5 3 2 3 3 2 3 3 3									
CO1 3 2 3 3 2 3 3 CO2 3 2 3 3 2 3 3 CO3 3 2 3 3 2 3 3 CO4 3 2 3 3 2 3 3									
CO1 3 2 3 3 2 3 3 3 CO2 3 2 3 3 2 3 3 3 CO3 3 2 3 3 2 3 3 3 CO4 3 2 3 3 2 3 3 3 CO5 3 2 3 3 2 3 3 3									
CO1									
CO1									
CO1									
CO1									
CO1									
CO1									

	Subject Name: COMPUTATIONAL	Ty / Lb	L	T/S.Lr	P/R	C
EMDE22E08	FLUID DYNAMICS					_
	Prerequisite: Fluid Mechanics	Ty	3	0/0	0/0	3
T/I / . Theory/I	ah I. I acture T. Tutorial D. Dractical/ Dra	icat D . Doc	noonah (. Credita		

T/L/: Theory/Lab L: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

UNIT I: GOVERNING DIFFERENTIAL EQUATIONS AND FDM

Q

Classification, Initial and Boundary Conditions, Initial and Boundary value problems. Finite Difference Method, Central, Forward, Backward Difference, Uniform and Non-uniform Grids, Numerical Errors, Grid Independence Test.

UNIT II: CONDUCTION HEAT TRANSFER

9

Steady, one-dimensional conduction, Two and Three dimensional Steady state problems, Transient One dimensional and Two dimensional problems.

UNIT III: INCOMPRESSIBLE FLUID FLOW

9

Governing Equations, Stream function – Vorticity Method, Determination of Pressure for Viscous flow, Simple procedure of Patankar and Spalding, Computation of Boundary layer flow, Finite Difference Approach.

UNIT IV: CONVECTION HEAT TRANSFER AND FEM

9

Steady One Dimensional and Two Dimensional Convection-Diffusion, Unsteady One Dimensional Convection- Diffusion, Unsteady Two Dimensional Convection – Diffusion – Introduction to Finite Element Method-Solution of Steady Heat Conduction by FEM- Incompressible flow – Simulation by FEM.

UNIT V: TURBULENCE MODELS

9

Algebraic models –One Equation model, K-I Models, Standard, High and Low Reynolds Number models, Prediction of Fluid flow and Heat transfer using Standard Codes.

Total No. of Periods: 45

- 1. Muralidhar, K. and Sundararajan, T. (1995) Computational Fluid Flow and Heat Transfer. Narosa Publishing House
- 2. Ghoshdasdidar, P.S. (1998) Computer Simulation of Flow and Heat Transfer. Tata McGraw Hill Publishing Company Limited
- 3. Subhas, V. Patankar, (1980) Numerical Heat Transfer Fluid Flow. Hemisphere Publishing Corporation
- 4. Taylor, C. and Hughes, J.B. (1981) Finite Element Programming of Navier Stoke Equation. Pine Ridge Press Ltd
- 5. Anderson, D.A. Tannehill, J.C. and Pletcher, R.H. (1984) Computational Fluid Mechanics and Heat transfer. Hemisphere Publishing Corporation
- 6. Fletcher, C.A.J. (1987) Computational Techniques for Fluid Dynamics-Fundamental and General Techniques. Springer –Verlag
- 7. Fletcher, C.A.J. (1987) Computational Techniques for Different Flow Categories. Springer Verlag
- 8. Bose T.K. (1997) Numerical Fluid Dynamics. Narosa Publishing House

University with Graded Autonomy Status
(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code: EMDE22E09	FR	RĂCTU	RE	ĺ		GUE AN	D Ty	/ Lb	L	T/S. Lr	P/R	C
	Pre M M	erequisi e c h a r a t e r i a	te: Eng ics, S	gineer treng	ing th of	•		Ту	3	0/0	0/0	3
T/L/: Theory/Lal				ial P:l	Practica	al/ Proje	ct R : F	Researc	h C: C	redits	1	
OBJECTIVE: To enhance the ki analysis, and failu			e areas o	f failur	e of eng	gineering	g structu	ıres, fa	ilure m	nechanisn	ns, failur	e
COURSE OUTC												
CO1	elastop	lastic c	leforma	tion					rmatio	n, plastic	and	
CO2	Unders	tand the	mechan	ism of	crack fo	ormation	and its g	rowth				
CO3	Demon	strate th	ne mech	anics c	of creep	and its	stages					
CO4	Estimat	e the fa	tigue life	e of a co	mpone	nt with o	r withou	t crack	in it.			
CO5	Unders	tand the	concept	t of frac	ture me	echanics						
Mapping of Cour	se Outc	omes w	ith Prog	gram O	utcome	es (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO	03			
CO1	2	1	2	2	1	2						
CO2	2	1	2	2	1	2						
CO3	2	1	2	2	1	2						
CO4	2	1	2	2	1	2						
CO5	2	1	2	2 11:-	1	2	1 T					
3/2/1 indicates Str	rengtn o	i Corre	elation	3- Hig	n, 2- M	ledium, 1	1-LOW					
Category	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Audit Course						

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code:	Subject Name : CREEP, FATIGUE	Ty / Lb	L	T/S.	P/R	С
EMDE22E09	AND FRACTURE			Lr		
	Prerequisite: Engineering Mechanics, Strength of Materials	Ту	3	0/0	0/0	3
T/I / . The comm/I als I	. Lecture T. Tutowiel D. Duestical/Duest	ast D. Dag	aanah Ca (

T/L/: Theory/Lab L: Lecture T: Tutorial P:Practical/ Project R: Research C: Credits

UNIT I: ELEMENTS OF SOLID MECHANICS

9

The geometry of stress and strain, elastic deformation, plastic and elastoplastic deformation-limit analysis

UNIT II: CRACK GROWTH

9

Two dimensional elastic fields-Analytical solutions- Yielding near a crack front-Irwins approximation-plastic Zone size-Dugdaale model-J integral and its relation to crack opening displacement. Griffth analysis-Linear Fracture Mechanics-Crack opening displacement-Dynamic energy balance-crack arrest

UNIT III: CREEP

Mechanics of creep, inter-granular, trans-granular creep, Creep test, Creep strain rate-time curves, Deformation mechanism map; High temperature properties of materials; Long time creep-stress-time relations; Creep contribution to the fracture mechanism; DVM, DVL German-standard, Hatifield time yield test.

UNIT IV: FATIGUE CRACK GROWTH CURVE

9

Empirical relation describing crack growth by Fatigue-Life calculations for a given load amplitude-effects of changing the load spectrum-Effects of Environment

UNIT V: ELEMENTS OF APPLIED FRACTURE MECHANICS

9

Examples of crack-growth Analysis for cyclic loading-leak before break- crack initiation under large scale yielding-Thickness as a Design parameter-crack instability in Thermal or Residual-stress fields.

Total No. of periods: 45

- 1. David Broek, (1978) Elementary Engineering Fracture Mechanics. Fifthoff and Noerdhoff International
- 1. Publisher
- 2. Kare Hellan, (1985) Introduction to Fracture Mechanics. McGraw Hill Book Company
- 3. Preshant Kumar, (1999) Elements of Fracture Mechanics. Wheeler Publishing
- 4. Thomas Courtney, H. (2000) Mechanical Behaviour of Materials. 2nd. Ed. Long Grove, Waveland Press, Inc
- 5. William Hosford, F. (2010) Mechanical Behaviour of Materials. 2nd. Ed. Cambridge University Press
- 6. Keith Bowman, Mechanical Behaviour of Materials. John Wiley & Sons
- 7. http://www.elsevier.com/locate/enfracmech

PROGRAMME ELECTIVE –IV

University with Graded Autonomy Status
(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Coc EMDE22E	10 H	ANDLI	lame : D NG EQI	JIPME	NTS			Ty / Lb	L	T/S. Lr	P/R	С
	P	rerequisi	te: Stren Elements	gth of N	I aterial	s, Design	ı of	Ty	3	0/0	0/0	3
T/L/: Theo					P:Prac	tical/ Pr	oject]	R : Resea	rch C:	Credits		
OBJECTIV	E: At the	end of th	nis course	e, the st	udent w	ill be ab	le to ui	nderstand				
	damental l	•	_		_							
	•	•	-				pe, Dru	ım, Hook	, Chain,	Pulley and	Girder et	ic.
	ign of arre											
COURSE (•	,					ng Equipr	nant			
CO2								• • •		Pulley syste	ama.	
CO2									ropes, I	runey syste	:1118,	
CO3	Sprockets & drums, forged hooks and eye hooks and Girders. Design of various hoisting elements like, forged hooks and eye hooks and Girders.											
CO4	Ŭ	Design a Conveyors and Selection based on the Application.										
	CO5 Design of Bucket and Cage Elevator. Mapping of Course Outcomes with Program Outcomes (POs)											
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO	2 PSO	03			
CO1	2		3	3	2	3	3	3				
CO2	2		3	3	2	3	3	3				
CO3	2		3	3	2	3	3	3				
CO4	2		3	3	2	3	3	3				
CO5	2		3	3	2	3	3	3				
3/2/1 indica	ites Streng	th of Co	orrelatio	n 3- F	ligh, 2-	Mediur	n, 1-L	ow				
			SS		/ 5							
_	Core		tive		nips al	rse						
gory	m (es u	Elec	al /	rnsł nic <i>z</i>	Ωon						
Category	Program Core	Program Electives	Open Electives	Practical / Project	Internships Technical	Audit Course						
Ü	Pro	Pro Ele	Ope	Practica Project		Au						
		V					_					

Subject Code:	Subject Name: DESIGN OF MATERIAL	Ty/Lb	L	T/S.Lr	P/R	C
EMDE22E10	HANDLING EQUIPMENTS					
	Prerequisite: Strength of Materials, Design of	Ty	3	0/0	0/0	3
	Machine Elements					

T/L/ : Theory/Lab L : Lecture T : Tutorial P :Practical/ Project R : Research C: Credits

UNIT I: INTRODUCTION TO MATERIALS HANDLING EQUIPMENT

Overview - consideration in material handling system design, ten principles of material handling. Types of material handling equipments-trolleys, industrial trucks, AGV, monorails and other rail guided vehicles, conveyors, cranes, hoists and elevators.

UNIT II: DESIGN OF HOISTS

Design of hoisting elements: Welded and roller chains - Hemp and wire ropes - Design of ropes, pulleys, pulley systems, sprockets and drums, Load handling attachments. Design of forged hooks and eye hooks - crane grabs - lifting magnets - Grabbing attachments - Design of arresting gear -Brakes: shoe, band and cone types.

UNIT III: DRIVES OF HOISTING GEAR

Hand and power drives - Travelling gear - Rail travelling mechanism - cantilever and monorail cranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings.

UNIT IV: CONVEYORS

Types - description - design and applications of Belt conveyors, apron conveyors and escalators Pneumatic conveyors, Screw conveyors and vibratory conveyors.

UNIT V: ELEVATORS

Bucket elevators: design - loading and bucket arrangements - Cage elevators - shaft way, guides, counter weights, hoisting machine, safety devices - Design of fork lift trucks.

Total No. of Periods: 45

NOTE: Use of Approved Data Book is permitted in examination

- 1. Rudenko, N. (1970) Materials handling equipment. ELnvee Publishers
- 2. Mikell Groover, P. (2006) Automation, Production system and computer integrated Manufacturing. Second
- 3. Edition, Prentice Hall of India Pvt. Ltd
- 4. Alexandrov, M. (1981) Materials Handling Equipments. MIR Publishers
- 5. Boltzharol, A. (1958) Materials Handling Handbook. The Ronald Press Company
- 6. P.S.G. Tech, (2003) Design Data Book. Kalaikathir Achchagam
- 7. Lingaiah. K. and Narayana Iyengar, (1983) Machine Design Data Hand Book. Vol.1 & 2, Suma Publishers
- 8. Spivakovsy, A.O. and Dyachkov, V.K. (1985) Conveying Machines. Volumes I and II, MIR **Publishers**

Subject Code: MME22DE11	Subject Name : ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS	Ty / Lb	L	T/S. Lr	P/R	С
	Prerequisite: Computer Aided Design and Manufacturing	Ty	3	0/0	0/0	3

T/L/: Theory/Lab L: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

OBJECTIVE:

- > To study the idea of intelligent agents and search methods.
- > To study about representing knowledge.
- To study the reasoning and decision making in uncertain world.
- > To construct plans and methods for generating knowledge.
- To study the concepts of expert systems.

COURSE OU	TCOMES (COs): The students will be able to
CO1	Understand the basic concepts of AI and Expert systems
CO2	Apply the knowledge and reasoning in decision making
CO3	Predict the uncertainty using the probability techniques
CO4	Apply various planning and learning strategies
CO5	Understand the importance of expert systems
Mapping of Co	ourse Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	2	3	3
CO2	2	2	2	2	3	2	2	3
CO3	2	3	3	2	3	2	2	3
CO4	3	2	3	2	3	2	2	3
CO5	2	2	2	2	3	2	3	3

3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Audit Course			
		$\sqrt{}$							

University with Graded Autonomy Status

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code:	Subject Name :	Ty/	L	T/S.Lr	P/R	C
MME22DE11	ARTIFICIAL INTELLIGENCE AND	Lb				
	EXPERT SYSTEMS					
	Prerequisite: Computer Aided	Ty	3	0/0	0/0	3
	Design and Manufacturing	·				
PROJET / PROJ. OF 1 3		. T	1 0	C 114		

T/L/: Theory/Lab L: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

UNIT I. INTRODUCTION

9

Introduction to AI: Intelligent agents – Perception –Natural language processing – Problem – Solving agents – Searching for solutions: Uniformed search strategies – Informed search strategies.

UNIT II KNOWLEDGE AND REASONING

9

Adversarial search – Optimal and imperfect decisions – Alpha, Beta pruning – Logical agents: Propositional logic – First order logic – Syntax and semantics – Using first order logic – Inference in first order logic.

UNIT III UNCERTAIN KNOWLEDGE AND REASONING

8

Uncertainty – Acting under uncertainty – Basic probability notation – Axioms of probability – Baye's rule – Probabilistic reasoning – Making simple decisions.

UNIT IV PLANNING AND LEARNING

9

Planning: Planning problem – Partial order planning – Planning and acting in non-deterministic domains – Learning: Learning decision trees – Knowledge in learning – Neural networks – Reinforcement learning – Passive and active.

UNIT V EXPERT SYSTEMS

10

Definition – Features of an expert system – Organization – Characteristics – Prospector – Knowledge Representation in expert systems – Expert system tools – MYCIN – EMYCIN.

Total no of periods:45

TEXTBOOKS

- 1. Stuart Russel and Peter Norvig, 'Artificial Intelligence A Modern Approach', Second Edition, Pearson Education, 2003 / PHI.
- 2.Donald A.Waterman, 'A Guide to Expert Systems', Pearson Education.

REFERENCE BOOKS

- 1. George F.Luger, 'Artificial Intelligence Structures and Strategies for Complex Problem Solving', Fourth Edition, Pearson Education, 2002.
- 2. Elain Rich and Kevin Knight, 'Artificial Intelligence', Second Edition Tata McGraw Hill, 1995.

EDUCATIONAL AND RESEARCH INSTITUTE

University with Graded Autonomy Status
(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code:			ame : O			N IN	Ty/Ll)	L	T/S.Lr	P/R	С	
EMDE22E12			ERING										
	Pre	erequisi	te: Eng	ineer	ing		T	\mathbf{y}	3	0/0	0/0	3	
		echan ateria	ics, Š	treng	th of								
T/L/: Theory/I				torial 1	P :Prac	tical/ P	roject	R : Res	earch C:	Credits			
OBJECTIVE:							Tojece						
	formal d	ocian o	atimizati	on prob	lom								
To formulate a formal design optimization problem To Solve the problem													
To Assess and validate solution results													
	OURSE OUTCOMES (COs): The students will be able to												
CO1		se Variational principle for optimization											
CO2		pply the dynamic programming to solve problems of discrete and continuous variables.											
	11.	Model the real world problem and simulate it.											
CO3	Model	the rea	l world p	problem	and sii	nulate 1	ıt.						
CO4	Apply	the con	cept of r	non-line	ar prog	rammir	ng.						
CO5			sitivity a	•									
Mapping of Co	urse O	utcome	s with P	rogram	Outco	mes (P	Os)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO	PSO	PSO					
						1	2	3					
CO1	2	2	3	3	2	1	1	2					
CO2	2	2	3	3	2	1	1	2					
CO3	2	2	3	3	2	1	1	2					
CO4	2	2	3	3	2	1	1	2					
CO5	2	2	2	3	2	1	1	2					
3/2/1 indicates	Strengt	h of Co	rrelatio	n 3- I	Iigh, 2-	Mediu	ım, 1-L	ow					
			S		/								
	ore		ive		ips	se							
Ţ	Ŭ		ect		rsh: cal	ınc							
Category	Program Core	Program Electives	Open Electives	Practical / Project	Internships Technical	Audit Course							
	ıgc	ogr ecti	en	Practica Project	Int Sc	ıdit							
	Pro	Pr Ele	Oŗ	Pr: Pr(I	Αυ							
		$\sqrt{}$											
	<u> </u>	l .		1			I .						

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution)

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code:	Subject Name : OPTIMIZATION IN	Ty / Lb	${f L}$	T/S.Lr	P/R	C
EMDE22E12	ENGINEERING DESIGN					
	Prerequisite: Engineering	Ty	3	0/0	0/0	3
	Mechanics, Strength of	v				
	Materials					

T/L/: Theory/Lab L: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

UNIT I: CLASSICAL OPTIMIZATION TECHNIQUES

9

Single variable optimization with and without constraints, Multi-variable optimization without constraints, multi-variable optimization with constraints- method of Lagrange multipliers, Kuhn-Tucker conditions.

UNIT II: NUMERICAL METHODS FOR OPTIMIZATION

0

Nelder Mead's Simplex search method, Gradient of a function, steepest descent method, Newton's method, types of penalty methods for handling constraints.

UNIT III: GENETIC ALGORITHM (GA)

9

Differences and similarities between conventional and evolutionary algorithms, working principle, reproduction, crossover, mutation, termination criteria, different reproduction and crossover operators, GA for constrained optimization, draw backs of GA, multi-objective GA, Non-dominated sorted GA, convergence criterion, applications of multi-objective problems.

UNITIV: APPLICATIONS OF OPTIMIZATION IN DESIGN AND MANUFACTURING SYSTEMS 9

Some typical applications like optimization of path synthesis of a four-bar mechanism, minimization of weight of a cantilever beam, optimization of springs and gears, general optimization model of a machining process, optimization of arc welding parameters, and general procedure in optimizing machining operations sequence.

UNIT V: INTRODUCTION TO NEURAL NETWORKS

9

Introduction, Humans and Computers, Organization of the Brain, Biological Neuron, Biological and Artificial Neuron Models, Hodgkin-Huxley Neuron Model, Integrate and- Fire Neuron Model, Spiking Neuron Model, Characteristics of ANN, McCulloch- Pitts Model, Historical Developments, Potential Applications of ANN.

Total No. of Periods: 45

- 1. Jasbir Arora, Optimal design. McGraw Hill (International) Publishers
- 2. Kalyanmoy Deb, Optimization for Engineering Design. PHI Publishers
- 3. Rao, S.S. Engineering Optimization. New Age Publishers
- 4. Johnson Ray, C. (1990) Optimum Design of mechanical elements. John Wiley & Sons
- 5. Kalyanmoy Deb, Multi objective Genetic algorithms. PHI Publishers
- 6. Hertz, Krogh and Palmer, Introduction to the theory of Neural Computation
- 7. Yegnanarayana, B. Artificial Neural Networks. PHI Publishers
- 8. David Goldberg, E. (1989) Genetic Algorithms. Addison Wesley

PROGRAMME ELECTIVE -V

Subject Code:	Subject Name :PRODUCT DESIGN AND	Ty / Lb	L	T/S.Lr	P/R	С
EMDE22E13	DEVELOPMENT STRATEGIES					
	Prerequisite: Design of Machine Elements-I, Design of Machine Elements-II	Ty	3	0/0	0/0	3

T/L/: Theory/Lab L: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

OBJECTIVE: At the end of this course, the student will be able to

- Develop, design, manufacture, and test an electromechanical system.
- Hands-on experiences in the interpretation of product/customer specifications, concept development, engineering drawings, design for prototyping, and manufacturing will be utilized in the instruction of the engineering design process.

	icering (0 1											
 Accurate 	ely docu	ment th	eir produ	ict desi	gn expe	rience t	hrough	an engi	neering notebo	ok.			
COURSE OUT	COMES	S (COs)	: The s	tudents	will be	able to)						
CO1	Descri	ibe an e	ngineerii	ng desig	gn and d	levelopi	ment pr	ocess					
CO2	Gain	Gain the knowledge of creative thinking for quality management											
CO3	Analy	Analyze the various design consideration in product development											
CO4	Apply	Apply the various product development strategies in product design											
CO5	Under	stand th	ne design	factors	in Va	lue eng	ineerin	g					
Mapping of Cou	ırse Ou	tcomes	with Pr	ogram	Outcon	nes (PC	(s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO	PSO	PSO					
						1	2	3					
CO1	3	2	3	3	3	3	2	3					
CO2	3	2	3	3	3	3	2	3					
CO3	3	2	3	3	3	3	2	3					
CO4	3	2	3	3	3	3	2	3					
CO5	3	2	3	3	3	3	2	3					
3/2/1 indicates S	Strength	of Cor	relation	3- H	igh, 2-	Mediur	n, 1-Lo	w					
	e		/es		/ S0	0							

Category	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Audit Course			
		$\sqrt{}$							

Subject Code: EMDE22E13	Subject Name :PRODUCT DESIGN AND DEVELOPMENT STRATEGIES	Ty/Lb	L	T/S.Lr	P/R	C
	Prerequisite: Design of Machine Elements-I, Design of Machine Elements-II	Ty	3	0/0	0/0	3
TELET / TELL /T 1 1		D	1 0	O 114		

T/L/: Theory/Lab L: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

UNIT I: INTRODUCTION

9

Essential factors of product design-requirements of good design-factors affecting product design-product development process tools- Design by evolution and innovation- Asimow's model-Journeys in product development- product engineering – nature and scope- Product design practice in industry.

UNIT II: CREATIVITY

9

Creative thinking and organizing for product innovation criteria – method and tools for directed creativity – challenges of quality management – Case studies – Mumbai's Dabbawalas – creativity by less learned- Creativity on wheel chair – MARICO (case study)- Patent –design patents- patent application steps – sale of patent rights.

UNIT III: DESIGN CONSIDERATIONS

9

Functional and production design – form design – influence of basic design, mechanical loading and material on form design – Design for manufacture and assembly – Design for robustness – Design for production – Design for stiffness and rigidity – strength consideration in product design – optimization in design – Project analysis – Mechanical estimating and costing.

UNIT IV: PRODUCT DEVELOPMENT STRATEGIES

9

Planning and preparation – Resources – Talent –striving, thinking, relating – Quality assurance in product design – Strategy for product development – Case studies.

UNIT V: HUMAN AND VALUE ENGINEERING

q

Human beings as applicator of forces – Anthropometry – design of controls and displays – man/machine information exchange – aesthetic and ergonomic considerations – Value engineering – maximum value-Normal degree of value – value analysis of job plan – Idea generation check-list – Cost reduction through value engineering case study on tap switch control assembly – Economic factors influencing design – Material and process selection.

Total No. of Periods: 45

- 1. Kavin & Krishn, Product Design Techniques in reverse engineering & New product development, Pearson Education
- 1. Paul Plsek, E. Creativity, Innovation and Quality. Prentice Hall of India Private Limited
- 2. Jones, J.C. (1970) Design Methods. Interscience
- 3. Buhl, H. (1960) Creative Engineering Design. Iowa State University Press
- 4. Dieter, G.E. (1983) Engineering Design. McGraw Hill
- 5. Niebel, B.W. & Draper, A.B. (1974) Product Design and Process Engineering. McGraw Hill
- 6. Harry Peck, (1973) Designing for Manufacturing. Sir Issac Pitman and Sons Ltd.

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution)

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code:	Subject Name : PRODUCT LIFE CYCLE	Ty/Lb	L	T/S.Lr	P/R	C
EMDE22E14	MANAGEMENT					1
	Prerequisite: Computer Aided Design	Ty	3	0/0	0/0	3
	and Manufacturing	·				

T/L/: Theory/Lab L: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

OBJECTIVE: Students can understand product lifecycle management, its applications and the key considerations for a successful product lifecycle management. This will provide an in depth understanding and analysis of product life cycle management and the key challenges with implementing the strategies to improve product pipelines, shorten the time for the introduction of products into the market and enhance profits. Armed with these knowledge students should be able to devise a successful strategy to improve any product's life cycle.

COURSE OU'	TCOM	FS (C()c) · The	a studo	nte will	he ahle	to						
CO1			product 1					ints					
CO2	Unde	rstand a	and creat	e the co	mpone	nts of typ	pical PD	M setup					
CO3	Creat	Create Work Flow Templates and Integrate them											
CO4	Analy	Analyze Change Management issues, request, investigation and proposal											
CO5	Unde	Understand the importance of PLM and corporate challenges											
Mapping of Co	apping of Course Outcomes with Program Outcomes (POs)												
COs/POs	PO1 PO2 PO3 PO4 PO5 PSO1 PSO2 PSO3												
CO1	2	2	2	2	2			2					
CO2	2	2	2	2	2			2					
CO3	2	2	2	2	2			2					
CO4	2	2	2	2	2			2					
CO5	2	2	2	2	2			2					
3/2/1 indicates	Streng	gth of C	Correlati	on 3-	High,	2- Medi	um, 1-L	ow					
Category	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Audit Course							
		\checkmark											

Subject Code:	Subject Name : PRODUCT LIFE CYCLE	Ty/Lb	L	T/S.Lr	P/R	С
EMDE22E14	MANAGEMENT					
	Prerequisite: Computer Aided	Tv	3	0/0	0/0	3
	Design and Manufacturing	J				
T/L/: Theory/Lab	L: Lecture T: Tutorial P: Practical/ Projec	t R: Res	earch	C: Credits		

UNIT I: INTRODUCTION

9

Introduction to Product Data Management (PDM) – Present Market Constraints – Need for Collaboration – Internet and Developments in Server – Client Computing.

UNIT II: COMPONENTS OF PDM

9

Components of a Typical PDM Setup – Hardware and Software Document Management – Creation and viewing of Documents - Creating Parts – Version and Version Control of Parts and Documents – Case Studies.

UNIT III: CONFIGURATION MANAGEMENT

9

Base Lines – Product Structure – Configuration Management – Case Studies. Automating Information Flow - Work Flow – Creation of Work Flow Templates - Work Flow Integration.

UNIT IV: CHANGE MANAGEMENT

Q

Change Management: Change Issue – Change Request – Change Investigation – Change Proposal – Change Activity – Case Studies.

UNIT V: IMPORTANCE OF PLM

g

Emergence of PLM- pre-PLM environment, paradigm, grid- Corporate challenges- service industry in PLM – a challenging project – importance, benefits & applications.

Total No. of Periods: 45

- 1. David Bedworth, Mark Henderson & Philip Wolfe, (1991) Computer Integrated Design and Manufacturing, Tata McGraw Hill Inc
- 2. John Stark, (2011) Product Life Cycle management 21st century paradigm for product realization. 2nd edition, Springer
- 3. Antti Saaksvuori & Anselmi Immonen, (2008) Product life cycle management. 3rd edition, Springer

Subject Code:	Subje	ect N	lame: ON	DESIG	N T	HINKI	NG A	AND T	y / Lb	L	T/S. Lr	P/R	С
		equisite							Ty	3	0/0	0/0	3
EMDE22E15		equisite	•						- 3		0,0	0,0	
L : Lecture T : 'T/L/ETL : Theo						Project	R : Rese	earch C:	Credits		·	·	
OBJECTIVES	: The s	tudent w	vill learn										
		cs of cranditions		nponent	s of diff	erent m	odes by	which	these co	omponer	nts fail un	der static	and
OURSE OUT	COMES	S (COs)	:										
CO1	Unders	stand the	fundame	ntal conc	cepts of o	design th	ninking						
CO2	2.2 •		vledge of				in produ	ct devel	opment				
CO3			w idea for										
CO4			oduct desi			S							
CO5			usiness id										
Mapping of Co								T					
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PSO 1	PSO2	PSO	3				
CO1	3	2	3	3	2	2	1	2					
CO2	3	2	3	3	2	2	1	2					
CO3	3	2	3	3	2	2	1	2					
CO4	3	2	3	3	2	2	1	2					
CO5	3	2	3	3	2	2	1	2					
3/2/1 indicates \$	Strengt	h of Cor	relation	3- Hig	h, 2- M	edium, 1	l-Low		•				
C a t e g o r	Basic Science	Engineerin g Science	Humanities and social Science	Program Core	♦ Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project	, <u> </u>			

Subject Code:	Subject Name: INNOVATION	DESIGN	THINKING	AND	Ty / Lb	L	T/S.Lr	P/R	C
EBME22E15	Pre requisite:				Ту	3	0/0	0/0	3

Unit I Introduction to Design Thinking

9

Introduction to elements and principles of Design, basics of design-dot, line, shape, form as fundamental design components. Principles of design. Introduction to design thinking, history of Design Thinking, New materials in Industry.

Unit II Design Thinking Process

9

Design thinking process (empathize, analyze, idea & prototype), implementing the process in driving inventions, design thinking in social innovations. Tools of design thinking -person, costumer, journey map, brain storming, product development. Activity: Every student presents their idea in three minutes, Every student can present design process in the form of flow diagram or flow chart etc. Every student should explain about product development.

Unit III Innovation 9

Art of innovation, Difference between innovation and creativity, role of creativity and innovation in organizations. Creativity to Innovation. Teams for innovation, Measuring the impact and value of creativity. Activity: Debate on innovation and creativity, Flow and planning from idea to innovation, Debate on value-based innovation.

Unit IV Product Design

9

Problem formation, introduction to product design, Product strategies, Product value, Product planning, product specifications. Innovation towards product design Case studies. Activity: Importance of modeling, how to set specifications, Explaining their own product design.

Unit V Design Thinking in Business Processes

9

Design Thinking applied in Business & Strategic Innovation, Design Thinking principles that redefine business –Business challenges: Growth, Predictability, Change, Maintaining Relevance, Extreme competition, Standardization. Design thinking to meet corporate needs. Design thinking for Startups. Defining and testing Business Models and Business Cases. Developing & testing prototypes. Activity: How to market our own product, About maintenance, Reliability and plan for startup.

Total Hours 45

Text Books

- 1. Change by design, Tim Brown, Harper Bollins (2009)
- 2. Design Thinking for Strategic Innovation, Idris Mootee, 2013, John Wiley & Sons.

Reference Books

- 1. Design Thinking in the Classroom by David Lee, Ulysses press
- 2. Design the Future, by Shrrutin N Shetty, Norton Press
- 3. Universal principles of design-William lidwell, kritinaholden, Jill butter.
- 4. The era of open innovation –chesbrough.

OPEN ELECTIVE

Subject Code: Subject Name BUSINESS A	NALYTICS Ty/Lb	L	T/S.Lr	P/R	С
---------------------------------------	----------------	---	--------	-----	---

DEEMED TO BE UNIVERSITY
University with Graded Autonomy Status
(An ISO 21001 : 2018 Certified Institution)

Periyar E.V.R. High Road, Maduravoyal, (Chennai-95. Tamilnadu, India.

	Per	riyar E.V	.R. High	ı Road, M	ladurav	oyal, Che	nnai-95.	Tamilnac	lu, In	dia.			
EMCC22OE1													
		Prerec	quisite:	Nil				Ty	3	0/0	C	0/0	3
L : Lecture T : 7	Futorial	P :	Projec	et R:R	esearc	h C: Cre	edits T/L	: Theor	y/Lal)	•		
Objectives: Und data mining techt To gain anunders support manager business data. Use decision-mamanagement took software, banking COURSE OUT CO1	niques and standing o ial decisio king tools ls. Analyz g andfinar	I unders If how m In makin I Operate I ce and so I ce, spo I COs): will de i cally in will de g tosupp	tand renanagering. To ions resolve protest, pha At the monstrumon	elationships use but become search te oblems furmaceut end of tate knowing decisinate the assiness decisions are search terms.	ips bety siness familia chniqu rom di ical, ae his cou vledge ons bas bility t	ween the analytics ar with pressure with pressure of the state of the	underlying to formula	ng busin ulate and needed to ss proces such as r would b . Student eep analy ills in pr	ess prosolved solved by development of the solved by the s	rocesses e busines elop, rep ng analy facturing le to l demons	of an org ss proble port, and rtical and g, service strate the	ganiz ms a analy e, reta	ation nd to yze ail,
Mapping of Cou					•			to clear,	actio	nable ins	signis		
	nse Oute	omes w											
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3					
CO1	1	1	1	1	1								
CO2	1	1	1	1	1								
CO3	1	1	1	1	1								
3/2/1 indicates S	 Strength o	f Corre	elation	3- Hig	h. 2- N	<u> </u> // Medium.	1-Low						
	T				,,		· · · ·				1		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills	Audit course			

Subject Code:	Subject Name BUSINESS	Ty / Lb	L	T/S.	P/R	С
EMCC22OE1	ANALYTICS			Lr		
	Prerequisite: Nil	Ty	3	0/0	0/0	3
L : Lecture T : Tutorial	P: Project R: Research C: Credits	T/L: Theo	ry/Lab			

UNIT I: BUSINESS ANALYTICS

9

Overview of Business analytics, Scope of Business analytics, Business Analytics Process, Relationship of Business Analytics Process and organization, competitive advantages of Business Analytics.

Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modelling, sampling and estimation methods overview.

UNIT II: TRENDINESS AND REGRESSION ANALYSIS

9

Modelling Relationships and Trends in Data, simple Linear Regression.

Important Resources, Business Analytics Personnel, Data and models for Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics Technology.

UNIT III: ORGANIZATION STRUCTURES

0

Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes.

Descriptive Analytics, predictive analytics, predictive Modelling, Predictive analytics analysis, Data Mining, Data Mining Methodologies, Prescriptive analytics and its step in the business analytics Process, Prescriptive Modelling, nonlinear Optimization.

UNIT IV: FORECASTING TECHNIQUES

9

Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with Casual Variables, Selecting Appropriate Forecasting Models.

Monte Carlo Simulation and Risk Analysis: Monte Carle Simulation Using Analytic Solver Platform, New-Product Development Model, Newsvendor Model, Overbooking Model, Cash Budget Model.

UNIT V: DECISION ANALYSIS

(

45

Formulating Decision Problems, Decision Strategies with the without Outcome Probabilities, Decision Trees, The Value of Information, Utility and Decision Making.

Total No. of Periods:

- 1. Chens, W.F. and Han, D.J. (1987) Plasticity for structural engineering. Springer Verlag.
- 2. Victor E.S. Mechanics of Materials –II.

EDUCATIONAL AND RESEARCH INSTITUTE

Subject Code:		Subject	Name I	NDUS	TRIAI	L SAFE	TY	Гу / Lb	I	T/S.Lr	P/R	C		
EMCC22OE2		Prerequi	site: Nil					Ty	3	3 0/0	0/0) 3		
L : Lecture T : Tu	torial	P : P	roject F	R: Rese	earch (C: Cred	its T/	L: The	ory/L	ab	I			
Objectives: Under			protecti	ons put	in plac	ce to ens	sure pl	ant and	facto	ory worker	protection	from		
hazardsthat could cause injury. COURSE OUTCOMES (COs): At the end of this course the students would be able to														
	•	,							d be a	able to				
CO1		ferent saf					industi	ry						
CO2														
CO3	To und	understand the periodic and preventive maintenance												
Mapping of Cours	se Outco	mes with	Progra	m Out	comes	(POs)								
COs/POs	PO	D1 PO2	PO3	PO4	PO5	PSO1	PSC	2 PS	03					
CO1	3	3	3	3	3									
CO2	3	3	3	3	3									
CO3	3	3	3	3	3									
3/2/1 indicates Str	ength of	Correla	tion 3-	High,	2- Me	dium, 1	-Low							
Category	Basic Sciences	Engineering	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Audit course					
						~								

University with Graded Autonomy Status

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code:	Subject Name INDUSTRIAL SAFETY	Ty/Lb	L	T/S.Lr	P/R	С				
EMCC22OE2	Prerequisite: Nil	Ty	3	0/0	0/0	3				
L : Lecture T : Tutorial	P: Project R: Research C: Credits T/L: Theory/Lab									

UNIT-I: INDUSTRIAL SAFETY

9

Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

UNIT-II: FUNDAMENTALS OF MAINTENANCE ENGINEERING

9

Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

UNIT-III: WEAR AND CORROSION AND THEIR PREVENTION

9

Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

UNIT-IV: FAULT TRACING

9

Fault tracing-concept and importance, decision treeconcept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

UNIT-V: PERIODIC AND PREVENTIVE MAINTENANCE

9

Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

Total No. of Periods: 45

- 1. Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services.
- 2. *Maintenance Engineering, H. P. Garg, S. Chand and Company.*
- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London.

Subject Code: EMCC22OE3	Subject Nat ENGINEEL	RING PI			MENT	OF	Ту	/ Lb	L	T/S. Lr		C
	Prerequisite	Nil						Ty	3	0/0	0/0	3
L : Lecture T : Tutoria	l P:Pr	oject R	: Resear	rch C:	Credit	s T/L: 7	Theory	y/Lab				
Objectives : To understa	•	•	Ü		Ü	Ü		1 5		ness.		
COURSE OUTCOME								e able	to			
CO1	Understa		•									
CO2	Know C		•				1 3					
CO3	To famil				_	for cost	manag	gement				
Mapping of Course Ou	tcomes with	Progran	1 Outco	mes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PS	SO2 1	PSO3			
CO1	1	3	1	1	1							
CO2	1	3	1	1	1							
CO3	1	3	1	1	1							
3/2/1 indicates Strength	of Correlat	ion 3-1	High, 2-	Medi	um, 1-l	Low	L	I				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills	Audit course		

Subject Code: EMCC22OE3	Subject Name: COST MANAGEMENT OF ENGINEERING PROJECTS	Ty / Lb	L	T/S. Lr	P/R	С
	Prerequisite: Nil	Ty	3	0/0	0/0	3
L : Lecture T : Tutorial	P: Project R: Research C: Credits T/L:	Theory/Lat)			

UNIT I: INTRODUCTION AND OVERVIEW

9

Introduction and Overview of the Strategic Cost Management Process

UNIT II: COST CONCEPTS

9

Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

UNIT III: PROJECTS

9

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and non- technical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

UNIT IV: COST BEHAVIOR AND PROFIT PLANNING

9

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

UNIT V: QUANTITATIVE TECHNIQUES FOR COST MANAGEMENT

q

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

Total No. of Periods: 45

- 1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting
- 3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
- 4. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher
- 5. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.

Subject Code: EMCC22OE4		Subjec	t Name	e CON		SITE		/ Lb	L	T/S.		P/R	С	
	_		uisite: N				ŗ	Гу	3	0/0		0/0	3	
L : Lecture T : Tut	torial	F	? : Proj	ect R	: Res	search C	: Credi	ts T/L:	Theor	ry/Lab	L.			
Objectives: To und	lerstar	nd natu	ire of th	e com	posite	e materia	al and ap	ply the	m whe	rever re	quire	d		
COURSE OUTCOMES (COs): At the end of this course the students would be able to														
CO1														
CO2 Understand the synthesis of different types of metal matrix materials														
Understand the polymeric composite materials and the characteristic feature of composite materials														
Mapping of Course Outcomes with Program Outcomes (POs)														
COs/POs	PO	1 PC)2 PC)3 P()4	PO5	PSO1	PSC	D2 PS	О3				
CO1	1	2	3	3		2	2							
CO2	1	2	3	3		2	2							
CO3	1	2	3	3		2	2							
3/2/1 indicates Stre	ength	of Cor	relatio	n 3-]	High	, 2- Med	lium, 1-	Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills	Audit course				
							•							

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution)

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code: EMCC22OE4	Subject Name: COMPOSITE MATERIALS	Ty / Lb	L	T/S.Lr	P/R	C
	Prerequisite: Nil	Ty	3	0/0	0/0	3
L : Lecture T : Tutorial	P: Project R: Research C: Credits	T/L: Theor	rv/Lab			

UNIT-I: INTRODUCTION:

9

Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

UNIT – II: REINFORCEMENTS:

9

Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Isostrain and Isostress conditions.

UNIT – III: MANUFACTURING OF METAL MATRIX COMPOSITES:

9

Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing. Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

UNIT-IV: MANUFACTURING OF POLYMER MATRIX COMPOSITES:

9

Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

UNIT – V: STRENGTH:

9

Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

Total No. of Periods: 45

TEXT BOOKS:

- 1. Material Science and Technology Vol 13 Composites by R.W.Cahn VCH, West Germany.
- 2. Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R. Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2007.

- 1. Hand Book of Composite Materials-ed-Lubin.
- 2. Composite Materials K.K.Chawla.
- 3. Composite Materials Science and Applications Deborah D.L. Chung.

Subject Code EMCC22OE		Subj	ect Nam	e WAS	TE TO	ENERGY	Ty / 1	Lb	L	T/S. Lr	P/R	С			
		Prere	quisite: I	Vil			Ty		3	0/0	0/0	3			
L: Lecture	Γ : Tutor	ial P	: Project	R:R	esearch	C: Credits	T/L: Tl	neory	/Lab						
Objectives T	o unders	tand the co	ncept of	produci	ing ener	rgy from the	waste m	ateri	al						
COURSE O		` ,								e to					
CO1			• •			ch can be co									
CO2			-			biomass pyro				and comb	oustion				
CO3	Underst	lerstand the production and characterization of biogas technology													
Mapping of	Course C	rse Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSC)3						
CO1	1	1	1	1	1	1									
CO2	1	1	1	1	1	1									
CO3	1	1	1	1	1	1									
3/2/1 indicat	es Streng	th of Corr	elation	3- Hig	h, 2- M	ledium, 1-L	ow								
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships /	Soft Skills	Audit course					
						✓									

Subject Code: EMCC22OE5	Subject Name WASTE TO ENERGY	Ty / Lb	L	T/S. Lr	P/R	С
	Prerequisite: Nil	Ty	3	0/0	0/0	3
L : Lecture T : Tutorial	P: Project R: Research C: Credits	T/L: Theo	ry/Lab			

UNIT-I: INTRODUCTION TO ENERGY FROM WASTE:

9

Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digesters

UNIT-II: BIOMASS PYROLYSIS:

9

Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

UNIT-III: BIOMASS GASIFICATION:

9

Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.

UNIT-IV: BIOMASS COMBUSTION:

9

Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

UNIT-V: BIOGAS:

Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants - Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

Total No. of Periods: 45

- 1. Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.
- 2. Biogas Technology A Practical Hand Book Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.
- 3. Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.
- 4. Biomass Conversion and Technology, C. Y. Were Ko-Brobby and E. B. Hagan, John

AUDIT COURSE 1 & 2

Subject Code: EMCC22I01		Subject RESEA					Ty/	Lb	L	T/S. Lr	P/R		С		
		Prerequ	isite: Ni	1			,	Ту	2	0/0	0/	0	0		
L : Lecture T : Tu	ıtorial	P :	Project	R : Re	esearch	C: C	redit	s T/L:	Theory	/Lab	I .	I			
Objectives To know the art of submission. COURSE OUTCO	OMES	(COs):	At the e	nd of t	his cou	rse th	e stu	dents v	vould be	e able to		rst-tin	ne		
CO1	Understand that how to improve your writing skills and level of readability Learn about what to write in each section														
CO3	Understand the skills needed when writing a Title rse Outcomes with Program Outcomes (POs)														
Mapping of Cour	of Course Outcomes with Program Outcomes (POs)														
COs/POs	PO1	PO2	PO3	PO4	PO5	PSC	D1	PSO2	PSO3						
CO1	1	1	1	1	1	3		1	1						
CO2	1	1	1	1	1	3		1	1						
CO3	1	1	1	1	1	3		1	1						
3/2/1 indicates Str	ength o	of Corre	ation	3- Hig	h, 2- M	lediui	n, 1-I	Low							
Category	Basic Sciences	Engineering	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships /	Soft Skills	Audit course					
										/					

Subject Code: EMCC22I01	Subject Name ENGLISH FOR RESEARCH PAPER WRITING	Ty / Lb/IE	L	T/S.Lr	P/R	С
	Prerequisite: Nil	IE	2	0/0	0/0	0
L : Lecture T : Tutorial	P: Project R: Research C: C	redits T/L:	Theory/La	ıb		

UNIT-I:

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

UNIT-II:

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

UNIT-III: 4

Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.

UNIT-IV:

Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature

UNIT-V:

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first-time submission.

Total No. of Periods: 20

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book.
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

EDUCATIONAL

Subject Code: EMCC22I02				lame: I		TER		Ty /			T/ S.Lr	P/ I	2	С
				site: Nil				IE		2	0/	0/	0	0
L: Lecture T: Tut							: Credits		•					
Objectives: Learn to	o demo	onstra	te a crit	tical und	derstan	ding of	f key cond	cepts in o	disaster	risk rec	luction	and h	umar	nitarian
response. COURSE OUTCO	MEC (CO_{c}	\ • A + +1	ho and a	of this	0011FC0	the stud	onte wo	uld bo o	blo to				
CO1		, ,					on and hu				diev an	d prac	tico f	from
COI			rspecti		21 115K	icaucti	on and nu	iiiaiiitai	ian respe	nise po	nicy and	u prac	tice i	10111
Develop an understanding of standards of humanitarian response and practical relevance in specifictypes of disasters and conflict situations.														
									P 1 - P	P				
CO3	_						weakness		aster ma	nagem	ent app	roach	es,	
					g in di	fferent	countries	, particu	larly the	ir hom	e count	ry or t	the	
planning and programming in different countries, particularly their home country or the countries they work in														
Mapping of Course	Mapping of Course Outcomes with Program Outcomes (POs)													
COs/POs	J	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PS()3				
CO1	1	1	1	1	1	1	3	1	1					
CO2	1	1	1	1	1	1	3	1	1					
CO3	1	1	1	1	1	1	3	1	1					
3/2/1 indicates Stre	ength o	f Cor	relatio	n 3-1	High, 2	2- Med	ium, 1-L	ow						
		ces			re	ectives	ves	roject	/		e e			
Category		Basic Sciences	Engineering Sciences	Humanities andSocial	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills	Audit course			
											_			

Subject Code:	Subject Name: DISASTER	Ty/	L	T/S.Lr	P/R	C
EMCC22I02	MANAGEMENT	Lb/IE				
	Prerequisite: Nil	IE	2	0/0	0/0	0
L : Lecture T : Tutorial	P: Project R: Research C: Credits	T/L: Theo	ry/Lab)		

UNIT-I: INTRODUCTION

4

Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

UNIT-II: REPERCUSSIONS OF DISASTERS AND HAZARDS

4

Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem.

Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

UNIT-III: DISASTER PRONE AREAS IN INDIA

4

Study of Seismic Zones; Areas Prone To Floods and Droughts, Landslides and Avalanches; Areas Prone To Cyclonic and Coastal Hazards with Special Reference to Tsunami; Post-Disaster Diseases and Epidemics

UNIT-IV: DISASTER PREPAREDNESS AND MANAGEMENT

4

Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

UNIT-V: RISK ASSESSMENT AND DISASTER MITIGATION

8

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival.

Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs Of Disaster Mitigation in India.

Total No. of Periods: 20

SUGGESTED READINGS:

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.
- 2. Sahni, Pardeep Et.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.
- 3. Goel S. L., Disaster Administration And Management Text And Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi.

Periyar E.V.R.	High Road,	Maduravoyal,	Chennai-95.	Tamilnadu, India.

	ereanis			EDGE			b/IE						
.1 1	or equi	site: Nil	l				IE	2	0/0	0/0	0		
					: Credits								
memory power. The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature.													
COURSE OUTCOMES (COs): At the end of this course the students would be able to													
CO1 Understanding basic Sanskrit language													
								unders	tood				
						gic in st	udents						
itcomes	with P	rogran	1 Outc	omes (POs)								
PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	P	PSO3					
1	1	1	1	1	3	1	1						
1	1	1	1	1	3	1	1						
1	1	1	1	1	3	1	1						
h of Co	rrelatio	on 3-1	High, 2	2- Med	ium, 1-L	ow	I	L					
Basic Sciences	Engineering Sciences	Humanities and Social	Program Core	Program Electives	Open Electives	Practical / Project	Internships /	Technical Soft Skills	,				
									~				
	S (COs derstanderent Saing a loutcomes PO1 1 1 1 1 1 1 1 1 1 1 1 1	n functioning, to ineering schola S (COs): At the derstanding bacterist Sanskrit I ing a logical lattcomes with P PO1 PO2 1 1 1 1 h of Correlation	n functioning, to development of the end of	n functioning, to develop the ineering scholars equipped w S (COs): At the end of this derstanding basic Sanskrit lancient Sanskrit literature abouting a logical language will help the end of PO1 PO2 PO3 PO4 PO1 PO2 PO3 PO4 1 1 1 1 1 1 1 1 1 h of Correlation 3- High, 2	n functioning, to develop the logic in ineering scholars equipped with San S (COs): At the end of this course derstanding basic Sanskrit language acient Sanskrit literature about sciencing a logical language will help to detcomes with Program Outcomes (PO1 PO2 PO3 PO4 PO5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	n functioning, to develop the logic in mathem ineering scholars equipped with Sanskrit will S (COs): At the end of this course the study derstanding basic Sanskrit language acient Sanskrit literature about science & techning a logical language will help to develop logicateomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PSO1 1 1 1 1 1 1 3 1 1 1 1 3 h of Correlation 3- High, 2- Medium, 1-Logical Sanskrit will	n functioning, to develop the logic in mathematics, so ineering scholars equipped with Sanskrit will be able S (COs): At the end of this course the students would derstanding basic Sanskrit language cient Sanskrit literature about science & technology or ing a logical language will help to develop logic in structomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PSO1 PSO2 1 1 1 1 1 1 3 1 1 1 1 1 3 1 h of Correlation 3- High, 2- Medium, 1-Low	n functioning, to develop the logic in mathematics, science & ineering scholars equipped with Sanskrit will be able to explose the students would be derstanding basic Sanskrit language a logical language will help to develop logic in students atcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PSO1 PSO2 For incompanies with the program of the	n functioning, to develop the logic in mathematics, science & other ineering scholars equipped with Sanskrit will be able to explore the S (COs): At the end of this course the students would be able to derstanding basic Sanskrit language recent Sanskrit literature about science & technology can be understanding a logical language will help to develop logic in students at the suitable of the students of the stud	n functioning, to develop the logic in mathematics, science & other subjects ineering scholars equipped with Sanskrit will be able to explore the huge known in the scholar science with Sanskrit language recent Sanskrit literature about science & technology can be understood in a logical language will help to develop logic in students atcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PSO1 PSO2 PSO3	S (COs): At the end of this course the students would be able to derstanding basic Sanskrit language scient Sanskrit literature about science & technology can be understood ing a logical language will help to develop logic in students atcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PSO1 PSO2 PSO3		

(An ISO 21001 : 2018 Certified Institution)

	Periyar E.V.R. High Road, Maduravoyal, Chennai-95.	. Tamilnad	u, India	
$\alpha \cdot 1 \cdot $	C 1 * AN CANGEDIE FOR	TE /	Ŧ	TIP.

Subject Code: EMCC22I03	Subject Name: SANSKRIT FOR TECHNICAL KNOWLEDGE	Ty / Lb/IE	L	T/S.Lr	P/R	C
	Prerequisite: Nil	IE	2	0/0	0/0	0
L : Lecture T : Tutori	al P: Project R: Research C: Credits T/L	: Theory/	Lab			

UNIT-I:

- Alphabets in Sanskrit,
- Past/Present/Future Tense,
- Simple Sentences

UNIT-II:

- Order
- Introduction of roots
- Technical information about Sanskrit Literature

UNIT-III:

• Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics.

Total No. of Periods: 20

SUGGESTED READING

- 1. "Abhyaspustakam" Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
- 2. "Teach Yourself Sanskrit" Prathama Deeksha-Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
- 3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

Subject Code: EMCC22I04		Su	bject N	lame V	ALUE	EDU	CATION		Ty / .b/IE	L	T / S.Lr	P/R	С
		Pre	erequisi	te: Nil					IE	2	0/0	0/0	0
L: Lecture T: Tut	orial	F	P: Proj	ject R :	Resea	rch C	: Credits	Γ/L: Th	eory/L	ab			<u> </u>
Objectives .Underst	rtance o	of ch	aracter			_					dents. L	et them	should
COURSE OUTCOMES (COs): At the end of this course the students would be able to CO1 Knowledge of self-development													
CO2 Learn the importance of Human values CO3 Developing the overall personality													
CO3 Developing the overall personality Mapping of Course Outcomes with Program Outcomes (POs)													
Mapping of Course	Outco	mes	with P	rogram	Outco	omes (POs)						
COs/POs	P	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PS	503			
CO1	1		1	1	1	1	3	1	1				
CO2	1		1	1	1	1	3	1	1				
CO3	1		1	1	1	1	3	1	1				
3/2/1 indicates Stre	ngth of	f Cor	relatio	n 3- I	High, 2	- Med	ium, 1-Lo	W					
Category	Docio Cojanoac	Dasic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills	Audit course		
											_		

Subject Code: EMCC22I04	Subject Name VALUE EDUCATION	Ty / Lb/IE	L	T / S.Lr	P/R	С
	Prerequisite: Nil	IE	2	0/0	0/0	0
L : Lecture T : Tutorial	P: Project R: Research C: Credits T/L:	Theory/L	ab			

UNIT-I:

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles.

Value judgments.

UNIT-II:

Importance of cultivation of values. Sense of duty. Devotion, Self- reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism. Love for nature, Discipline.

UNIT-III:

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance. True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature

UNIT-IV:

Character and Competence –Holy books Vs Blind faith. Self-management and Good health. Science of reincarnation. Equality, Non-violence, Humility, Role of Women.

All religions and same message. Mind your Mind, Self-control. Honesty, studying effectively

Total No. of Periods: 20

SUGGESTED READING

1 Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

University with Graded Autonomy Status

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code: EMCC22I05	Subject Name: CONSTITUTION OF INDIA	Ty / Lb/IE	L	T / S.Lr	P/R	С
	Prerequisite: Nil	IE	2	0/0	0/0	0
L · Lecture T · Tutor	rial P · Project R · Research C · Credits	T/I . The	orv/Lal	<u> </u>		

Objectives Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective. To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution. **COURSE OUTCOMES (COs):** At the end of this course the students would be able to know Discuss the growth of the demand for civil rights in India for the bulk of Indians before the CO₁ arrival of Gandhi in Indian politics. CO₂ Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India. CO₃ . Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adultsuffrage in the Indian Constitution. **CO4** Discuss the passage of the Hindu Code Bill of 1956. Mapping of Course Outcomes with Program Outcomes (POs) COs/POs PO1 PO₂ PO₃ PO4 PO5 PSO₁ PSO₂ PSO₃ CO₁ 1 1 1 1 1 3 1 1 CO₂ 1 3 1 1 1 1 1 1 CO₃ 1 1 1 1 1 3 1 1 CO₄ 1 1 1 1 1 3 1 1 3/2/1 indicates Strength of Correlation 3- High, 2- Medium, 1-Low Program Electives Practical / Project Open Electives Basic Sciences Program Core Audit course Internships Engineering Humanities andSocial Soft Skills **Technical** Sciences

Subject Code: EMCC22I05	Subject Name: CONSTITUTION OF INDIA	Ty / Lb/IE	L	T/ S.Lr	P/R	С
21/10/02/100	Prerequisite: Nil	IE	2	0/0	0/0	0
L: Lecture T: Tutor	rial P: Project R: Research C: Credits	T/L: The	eory/Lal	b		

UNIT-I: HISTORY OF MAKING OF THE INDIAN CONSTITUTION:

History, Drafting Committee, (Composition & Working)

UNIT-II: PHILOSOPHY OF THE INDIAN CONSTITUTION:

Preamble, Salient Features

UNIT-III: CONTOURS OF CONSTITUTIONAL RIGHTS & DUTIES:

Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

UNIT-IV: ORGANS OF GOVERNANCE:

Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions

UNIT-V: LOCAL ADMINISTRATION AND ELECTION COMMISSION:

District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Pachayati raj: Introduction, PRI: Zila Pachayat. Elected officials and their roles, CEO Zila Pachayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy.

Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

Total No. of Periods: 20

SUGGESTED READING

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

4

4

EDUCATIONAL

Subject Code: EMCC22I06		STÜDIES Lb/IE									С		
	P	Prerequisite: Nil IE 2 0/0 0/0 0											
L : Lecture T : Tutoria								Theory/La					
		be able to: 4. Review existing evidence on the review topic to inform programme design and											
policy making undertake development.	•		Ü					•			0 1	o guide	the
COURSE OUTCOMES	` /												
CO1	What ped developing	~ ~	•	es are	being t	ised by	teach	ners in for	nal an	d info	ormal cl	assroom	is in
CO2		ne evide	nce on t	he effe	ectivene	ess of t	hese p	oedagogica	al prac	tices,	in what	conditi	ons,
СОЗ	How can guidance	teacher material	educations best su	on (cur apport	riculun effectiv	ve peda		rum) and tl	ne sch	ool cı	ırriculuı	m and	
Mapping of Course Ou	tcomes wi	th Prog	ram Ot	itcome	es (POs	s)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PSO)1	PSO2	PSO3	3			
CO1	1	1	1	1	1	3		1	1				
CO2	1	1	1	1	1	3		1	1				
CO3	1	1	1	1	1	3		1	1				
3/2/1 indicates Strength	of Corre	ation	3- High	n, 2- M	ledium	, 1-Lo	w			<u> </u>			
Category	Basic Sciences	Engineering Sciences	Humanities andSocial	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills	Audit course			
										~			

University with Graded Autonomy

(An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code: EMCC22I06	Subject Name : PEDAGOGY STUDIES	Ty / Lb/IE	L	T/S.Lr	P/R	С
	Prerequisite: Nil	IE	2	0/0	0/0	0
L : Lecture T : Tutorial	P: Project R: Research C: Credits T/L: T	Cheory/Lab)			

UNIT I:

Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education. Conceptual framework, Research questions. Overview of methodology and Searching.

UNIT II:

Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education.

UNIT III:

Evidence on the effectiveness of pedagogical practices. Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies.

UNIT IV:

Professional development: alignment with classroom practices and follow- up support, Peer support. Support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes.

UNIT V:

Research design, Contexts, Pedagogy, Teacher education, Curriculum and assessment, Dissemination and research impact.

Total No. of Periods: 20

Suggested reading

- 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.
- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.
- 4. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.

EDUCATIONAL AND RESEARCH INSTITUTE

Subject Code EMCC22I0	1	Subject N MANAGI Prerequis	EMENT	BYY	OGA	e of Yo	oga -	Ty Lb/	IE	L 2	T / S.Lr	P/ R 0/0	C 0
• (Objectiv		site . Da	SIC IXII	owicug	c or To	ga				0,0	0/0	
	•	es estand the	Dogio C	'oncont	a of V	200							
		knowledg				oga							
		re knowledg				d Droot	ico o	f Voc	oconoc				
										uit etr	ess busting	throu	ah voqa
CO1		rstand the					iic Kii	io wice	ige abe	out su	css ousting	3 unou	gii yoga
CO2		cnowledge				<i>35</i> u							
CO3		nderstand											
CO4		re knowle				d Practi	ice of	You	eanac				
CO5		the know			_								
Mapping of C								i yoga	•				
COs/POs	Po	D1 PO2	PO3	PO4	PO5	PSO	l P	SO2	PSO:	3			
CO1	1	1	1	1	1	3	1		1				
CO2	1	1	1	1	1	3	1		1				
CO3	1	1	1	1	1	3	1		1				
CO4	1	1	1	1	1	3	1		1				
CO5	1	1	1	1	1	3	1		1				
3/2/1 indicate	s Streng	th of Cor	relation	1 3- H	ligh, 2	- Medi	um, 1	l-Low	7	I			
Category	Basic Sciences	Engineerin o Sciences	Humanities andSocial	Program Core	Program Electives	Open Electives	Practical / Project	Internships /	Technical Skill	Soft Skills	Audit course		
											/		

Subject Name: STRESS MANAGEMENT BY YOGA	Ty / Lb/IE	L	T/S.Lr	P/R	С
Prerequisite: Basic Knowledge of Yoga	IE	2	0/0	0/0	0

UNIT I:

Definitions of Eight parts of yoga. (Ashtanga)

UNIT II:

- Yam and Niyam. Do's and Don't's in life.
- i) Ahinsa, satya, astheya, bramhacharya and aparigraha Shaucha, santosh, tapa, swadhyay, ishwarpranidhan

UNIT III:

- Asan and Pranayam
- i) Various yog poses and their benefits for mind & body
- ii) Regularization of breathing techniques and its effects-Types of pranayama

Total No. of Periods: 20

SUGGESTED READING

- 1. 'Yogic Asanas for Group Tarining-Part-I": Janardan Swami Yogabhyasi Mandal, Nagpur
- 2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, Advaita Ashrama (Publication Department), Kolkata

Subject Code: EMCC22I08		DE EN	VELC LIGH	TENM	T THI	ROUG	H LIFE	Ty Lb/	IE		T / S.Lr	P/R	С
			requisi					Ι			0/0	0/0	0
L: Lecture T: To				•			C: Credit						
Objectives To lear								a person	with stal	ble m	ind, pleas	sing	
personality and det								1 4	111	11 4			
COURSE OUTC		`										11. 1	1.
CO1	Study of thehigh				ad-Gee	eta will	help the	student 11	i develop	oing h	is person	ality and	achieve
CO2	Ŭ				ed Gee	ta will	lead the r	ation an	d mankin	d to r	eace and	l prosperi	tv
CO3	•						veloping			_			- ,
Mapping of Cour	·								<u> </u>			·	
COs/POs	P	01	PO2	PO3	PO4	PO5	PSO1	PSO2	PSC)3			
COS/1 OS	1	01	102	103	104	103		1502	150)3			
CO1	1		1	1	1	1	3	1	1				
CO2	1		1	1	1	1	3	1	1				
CO3	1		1	1	1	1	3	1	1				
3/2/1 indicates Str	rength o	of Co	orrelat	ion 3-	High,	2- Me	dium, 1-l	Low	1				
Category	Basic Sciences		Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills	Audit course		
											/		

Subject Code: EMCC22I08	Subject Name PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS	Ty / Lb/IE	L	T/S.Lr	P/R	С
	Prerequisite: Nil	IE	2	0/0	0/0	0
L : Lecture T : Tutorial	P: Project R: Research C: Credits	T/L: Theor	ry/Lab			

UNIT I:

Neetisatakam-Holistic development of personality

- Verses- 19,20,21,22 (wisdom)
- Verses- 29,31,32 (pride & heroism)
- Verses- 26,28,63,65 (virtue)
- Verses- 52,53,59 (dont's)
- Verses- 71,73,75,78 (do's)

UNIT II:

- Approach to day to day work and duties.
- Shrimad Bhagwad Geeta: Chapter 2-Verses 41, 47,48,
- Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 23, 35,
- Chapter 18-Verses 45, 46, 48.

UNIT III:

- Statements of basic knowledge.
- Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68
- Chapter 12 -Verses 13, 14, 15, 16,17, 18
- Personality of Role model. Shrimad Bhagwad Geeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42,
- Chapter 4-Verses 18, 38,39
- Chapter18 Verses 37,38,63

Total No. of Periods: 20

SUGGESTED READING

1. "Srimad Bhagavad Gita" by Swami Swarupananda Advaita Ashram

(Publication Department), Kolkata

2. Bhartrihari's Three Satakam (Niti-sringar-vairagya) by P.Gopinath,Rashtriya Sanskrit Sansthanam, New Delhi.

C

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution) Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code:	Subject Name: RESEARCH AND PUBLICATION	Ty/	L	T/S.Lr	P /	
EMCC22I09	ETHICS	Lb/IE			R	

EMCC22I09	ETHICS	Lb/IE			R	
	Prerequisite: core subjects	IE	2	0/0		0
					0/0	
						_

T/L/: Theory/Lab L: Lecture T: Tutorial P: Practical/Project R: Research C: Credits T/L Theory/Lab

OBJECTIVE:

- To understand the philosophy of science and ethics, research integrity and publication ethics.
- To identify research misconduct and predatory publications.
- To understand indexing and citation databases, open access publications, research metrics (citations, h-index, impact Factor, etc.).

	, I
COURSE OUT	COMES (COs): By doing this course students will
CO1	Understand the ethical issues related to Research and Publication
CO2	Get to know about different types of plagiarism and ways for avoiding plagiarism
CO3	Know about best practices and guidelines in publication ethics and also learns to avoid Publication misconduct
CO4	Get to know about Violation of publication ethics, authorship and contributor ship and get to identify about Predatory publishers and journals.
CO5	Get to know about various open sources database and research metrics like indexing, citation etc.,

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
CO1	1	1	1	1	1	1	1	1
CO2	1	1	1	1	1	1	1	1
CO3	1	1	1	1	1	1	1	1
CO4	1	1	1	1	1	1	1	1
CO5	1	1	1	1	1	1	1	1

1/2/3 indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Audit course	
									/	

University with Graded Autonomy Status (An ISO 21001 : 2018 Certified Institution)

Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

Subject Code:	Subject Name: RESEARCH AND	Ty/	L	T/S.Lr	P/R	C	
EMCC22I09	PUBLICATION ETHICS	Lb/IE					
	Prerequisite: Core subjects	IE	2	0/0	0/0	0	
T/L / • Theory/Lab L • Lecture T • Tutorial P • Practical/Project R • Research C • Credits T/L Theory/Lab							

Unit I introduction 4

Introduction to philosophy: Definition, nature and scope, concept, branches - Ethics: Definition, moralphilosophy, nature of moral judgments and reactions – Ethics with respect to Science and Research Intellectual honesty and research integrity

Unit II: Scientific Conduct

4

Scientific misconducts: Falsification, Fabrication, and Plagiarism (FFP)

Redundant Publications: Duplicate and over lapping publications, salami slicing – Selective reportingand misrepresentation of data

Unit III: Publication Ethics -I

4

Publication ethics: Definition, introduction and importance – Best practices/standards setting initiatives and guidelines: COPE, WAME etc. Publication misconduct: definition, Concept, problems that lead to unethical behavior and vice-versa, types.

Unit IV: Publication Ethics – II

4

Violation of publication ethics, authorship and contributor ship – Identification of publication misconduct, complaints and appeals – Predatory publishers and journals – Subject specific ethicalissues, Complaints and appeals: examples and fraud from India and Abroad

Unit V: Data Bases and Research Metrics

4

Open Access publication and Initiatives – Indexing databases – Citation databases, Web of Science, Scopus, etc. – Impact factor of journals as per Journal Citation report .SNIP, SJR, IPP, Cite Score - Metrics: h-index,gindex,i10index,altmetrics – Conflict of interest.

Total No. of Periods: 20

References:

- 1. Bird A 2006, Philosophy of Science, Routledge
- 2. MacIntyre & Alasdair, 1967, A Short History of Ethics, London.
- 3. Chaddah, P20 1 8, Ethics in Competitive Research: Do not get scooped; do not get plagiarized, ISBN: 9789387480865.
- 4. On Being a Scientist: A Guide to Responsible Conduct in Research, 2009, National Academy of Sciences, National Academy of Engineering and Institute of Medicine. 3rd edition, National Academies Press.
- 5. Resnik, D. B 201 1, what is ethics in research & why is it important. National Institute of Environmental Health Sciences, pp.1—10. https://www.niehs.nih.gov/research/reso_uuces/bioethics/whatis/index.cfm
- 6. Bcall, J 2012, Predatory publishers are corrupting open access, Nature, Vol. 489, no.7415,pp. 179—179. https://d0i.org/IO.1 03 8/48917%
- 7. Ethics in Science Education, 2019Indian National Science Academy (INSA), Research and Governance, ISBN: 978-81-939482-1-7. http://www.insaindia.rcs.Wpdf/Ethics_Book.pdf