

FACULTY OF COMPUTER APPLICATIONS

BCA-DIGITAL TECHNOLOGY Full Time Program- Curriculum & Syllabus
Program Structure for BCA-DT (Full Time)

FACULTY OF COMPUTER APPLICATIONS

Bachelor of Computer Applications

BCA – DIGITAL TECHNOLOGY

(Full Time)

Outcome Based Curriculum & Syllabus

REGULATION 2025

(For the Students admitted from 2025-26 onwards)

Dr. M.G.R
EDUCATIONAL AND RESEARCH INSTITUTE
(Deemed to be university)
University with Graded Autonomy Status
Maduravoyal, Chennai-600095, Tamil Nadu, India
(An ISO 9001:2015 Certified Institution)

FACULTY OF COMPUTER APPLICATIONS

BCA-DIGITAL TECHNOLOGY Full Time Program- Curriculum & Syllabus
Program Structure for BCA-DT (Full Time)

DECLARATION

I, **Dr. Viji Vinod** Head of **Faculty of Computer Applications**, hereby declare that this copy of the syllabus for **Bachelor of Computer Applications – Digital Technology (BCA - DT)** Full time **2025 Regulation** from page no. 1 to 216 is the final version which is being taught in the class and uploaded in our University website. I assure that the Syllabus available in our University website is verified and found correct. The Curriculum and Syllabus has been approved by our Academic Council / Vice Chancellor.

Date:

Signature

FACULTY OF COMPUTER APPLICATIONS

BCA-DIGITAL TECHNOLOGY Full Time Program- Curriculum & Syllabus **Program Structure for BCA-DT (Full Time)**

Faculty of Computer Applications

VISION

To become a leading centre for computer applications, fostering an environment of constant learning and innovation.

MISSION

M1 : To create and maintain an environment for the pursuit of academic excellence with the use of computing technology.

M2 : To develop intellectual strength of students and guiding them towards technical, professional and entrepreneurship excellence.

M3 : To nurture analytical skills, inter- personal skills and build higher level of attitude, ethics and confidence.

M4 : To identify areas of cooperation with Industries and Institutions and implement them well within time-frame to mutual advantage and satisfaction.

M5 : Collaborate with industry and other agencies for academic and research programs.

QUALITY POLICY:

Imparting quality education and achieve academic excellence through planning, leadership, brilliance, inspiration and effectiveness.

PROGRAM EDUCATION OBJECTIVE: PEO

PEO 1: To demonstrate a sound knowledge in key areas of Computer Sciences and Industrial Computing

PEO 2: To demonstrate a substantial understanding of concepts in key areas of Computer Sciences

PEO 3: To carry out the required analysis and synthesis involved in Computer Systems, Information systems and Computer Applications

PEO 4: To demonstrate professional competence in developing software and in its design and implementation.

PEO 5: To develop sound Practical Skills to enable them to addressing problems which arise from Computer systems and Applications.

FACULTY OF COMPUTER APPLICATIONS

BCA-DIGITAL TECHNOLOGY Full Time Program- Curriculum & Syllabus

Program Structure for BCA-DT (Full Time)

PROGRAM OUTCOME: POs

PO1: Disciplinary knowledge: Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate programme of study.

PO2: Communication Skills: Ability to understand and express thoughts and ideas effectively in writing and orally; and present complex information in a clear and concise manner to different groups.

PO3: Critical and Reflective thinking: Capability to apply analytic thought to analyze and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence; formulate coherent arguments; critically evaluate practices, policies and theories by following scientific approach. Critical sensibility, with self awareness and reflexivity of both self and society.

PO4: Research-related skills : Ability to recognize cause-and-effect relationships, define problems, formulate hypotheses, test hypotheses, analyze, interpret and draw conclusions from data, ability to plan, execute and report the results of an experiment or investigation.

PO5: Team work and Leadership qualities : Function effectively as an individual, and as a team member or leader in diverse teams, and in multidisciplinary environment.

PO6: Information/digital literacy: Capability to use ICT in a variety of learning situations, demonstrate ability to access, evaluate, and use a variety of relevant information sources; and use appropriate software for analysis of data and further presentation.

PO7: Multicultural competence and knowledge of heritage: Possess knowledge of the values and beliefs of multiple cultures to effectively engage globally in a multicultural society and interact respectfully with diverse groups. Ability to understand and propagate heritage values.

PO8: Moral and ethical awareness: Ability to embrace moral/ethical values in conducting one's life, formulate a position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work. Appreciating environmental and sustainability issues; and adopting objective, unbiased and truthful actions in all aspects of work.

PO9: Life long learning: Ability to update knowledge and skills, participating in learning activities throughout life, through self-paced and self-directed learning aimed at personal development, meeting economic, social and cultural objectives.

FACULTY OF COMPUTER APPLICATIONS

BCA-DIGITAL TECHNOLOGY Full Time Program- Curriculum & Syllabus Program Structure for BCA-DT (Full Time)

PROGRAM SPECIFIC OUTCOME: PSOs

PSO 1 : Logical and Problem Solving Skills :

Ability to analyse the software problem and design, formulate and obtain solution to the problem through learning of Mathematical fundamentals to problem solving.

PSO 2 : Project based learning : Ability to develop information and Computing skills through innovative techniques in modern IT environment to become an IT Professional or for higher studies.

PSO 3: Social Responsibility and Environment Awareness : An understanding of computational Professionalism through leadership and team building by means of environmental awareness and social responsibility.

PSO 4 : Business, Entrepreneurial and Industrial Knowledge : Ability to cultivate industrial business through learning of entrepreneurship.

Mapping PEOs with Mission

PEOs	M1	M2	M3	M4	M5
PEO1	3	3	2	3	3
PEO2	3	3	1	3	3
PEO3	2	3	2	3	3
PEO4	2	3	3	3	3
PEO5	3	3	2	3	3

Mapping PEOs with POs & PSOs

PEOs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
PEO1	2	3	1	3	2	3	3	2	3	2	3	1	3
PEO2	3	3	3	3	3	3	3	3	3	3	3	3	3
PEO3	2	3	2	3	2	3	3	2	3	2	3	2	3
PEO4	3	3	3	3	3	3	3	3	3	3	3	3	3
PEO5	2	3	1	3	2	3	3	2	3	3	3	3	3

Strength of Correction: 3-High, 2-Medium, 1-Low

FACULTY OF COMPUTER APPLICATIONS

BCA-DIGITAL TECHNOLOGY Full Time Program- Curriculum & Syllabus
Program Structure for BCA-DT (Full Time)

Table 1: Semester wise Credit Distribution Format: BCA – DT 2025

Semester	Core Courses	Ability Enhancement Courses	Multi-Disciplinary Elective course	Value Added Courses	Skill Enhancement Courses	Discipline Specific Elective	Total
I	3	2	2	2	10	0	19
II	14	0	0	2	5	0	21
III	11	0	0	2	4	3	20
IV	10	0	0	0	7	3	20
V	0	0	0	0	6	15	21
VI	4	1	0	0	4	10	19

Category-wise distribution

Description	Core Courses	Ability Enhancement Courses	Multi-Disciplinary Elective course	Value added Courses	Skill Enhancement courses	Discipline Specific Elective	Total
BCA	42	3	2	6	36	31	120

***3 Years BCA Program Total credits: 120**

FACULTY OF COMPUTER APPLICATIONS

BCA-DIGITAL TECHNOLOGY Full Time Program- Curriculum & Syllabus Program Structure for BCA-DT (Full Time)

Table 2 LIST OF DISCIPLINE SPECIFIC ELECTIVES – Appendix I

S. No	Course Code	Course Title	L	T	P	Credit	Exam
1	CBCA25E01	Basics of Data Analytics using spreadsheet	2	0	2	3	ETL
2	CBCA25E02	Data visualization	2	0	2	3	ETL
3	CBCA25E03	Introduction to Data Science	3	0	0	3	TY
4	CBCA25E04	Data mining and warehousing	3	0	0	3	TY
5	CBCA25E05	Mobile Computing	3	0	0	3	TY
6	CBCA25E06	Information Security	3	0	0	3	TY
7	CBCA25E07	Software Project Management	3	0	0	3	TY
8	CBCA25E08	Internet of things	3	0	0	3	TY
9	CBCA25E09	Management Information System	3	0	0	3	TY
10	CBCA25E10	Open Source Programming	4	1	0	5	TY
11	CBCA25E11	Software Testing	4	1	0	5	TY
12	CBCA25E12	Business Intelligence & Analytics	4	1	0	5	TY
13	CBCA25E13	Cloud computing for data analytics	3	0	4	5	ETL
14	CBCA25E14	Big data Analytics	3	0	4	5	ETL
15	CBCA25E15	Introduction to ML	3	0	4	5	ETL
16	CBCA25E16	Data Security and Privacy	4	1	0	5	TY
17	CBCA25E17	Natural Language Processing	3	0	4	5	ETL
18	CBCA25E18	Digital Image Processing	4	1	0	5	TY
19	CBCA25E19	Augmented Reality & Virtual Reality	4	1	0	5	TY
20	CBCA25E20	Block Chain Technology	4	1	0	5	TY
21	CBCA25E21	Time Series Analysis	3	0	4	5	ETL

FACULTY OF COMPUTER APPLICATIONS

BCA-DIGITAL TECHNOLOGY Full Time Program- Curriculum & Syllabus Program Structure for BCA-DT (Full Time)

22	CBCA25E22	Deep Learning with Python	3	0	4	5	ETL
23	CBCA25E23	Thinking Restful Services	3	0	4	5	ETL
24	CBCA25E24	Deep Learning with Watson	3	0	4	5	ETL
25	CBCA25E25	Building Application using LLM-L1	3	0	4	5	ETL
26	CBCA25E26	Building Application using LLM-L2	3	0	4	5	ETL

Table 3: List of Indian Knowledge System - Appendix II

S. No	Course Code	Course Title	L	T	P	Credit	Exam
1.	CBCA25MD1	Indian Knowledge Systems and Traditions	2	0	0	2	IE
2.	CBCA25MD2	Indian Culture and Civilization	2	0	0	2	IE
3.	CBCA25MD3	Indian Vision for Human Society (Vishva Kalyan thru Vasudhaiva Kutumbkam)	2	0	0	2	IE
4.	CBCA25MD4	Indian Science, Engineering and Technology (Past, Present and Future)	2	0	0	2	IE
5.	CBCA25MD5	Indian Town Planning and Architecture	2	0	0	2	IE
6.	CBCA25MD6	Indian Mathematics and Astronomy	2	0	0	2	IE
7.	CBCA25MD7	Indian Aesthetics (including Music and Music Instruments)	2	0	0	2	IE
8.	CBCA25MD8	Indian Health, Wellness and Psychology (including Ayurved)	2	0	0	2	IE

FACULTY OF COMPUTER APPLICATIONS

BCA-DIGITAL TECHNOLOGY Full Time Program- Curriculum & Syllabus
Program Structure for BCA-DT (Full Time)

Table 4: List of Indian or Foreign Language I & II- Appendix III

S. No	Course Code	Course Title	L	T	P	Credit	Exam
1.	CBCA25A02	TAMIL - I	1	1	0	0*	IE
2.	CBCA25A03	HINDI -I	1	1	0	0*	IE
3.	CBCA25A04	SANSKRIT - I	1	1	0	0*	IE
4.	CBCA25A05	FRENCH -I	1	1	0	0*	IE
5.	CBCA25A06	GERMAN -I	1	1	0	0*	IE
6.	CBCA25A07	JAPANESE -I	1	1	0	0*	IE
7.	CBCA25A08	SPANISH -I	1	1	0	0*	IE
8.	CBCA25A10	TAMIL- II	1	1	0	0*	IE
9.	CBCA25A11	HINDI - II	1	1	0	0*	IE
10.	CBCA25A12	SANSKRIT- II	1	1	0	0*	IE
11.	CBCA25A13	FRENCH - II	1	1	0	0*	IE
12.	CBCA25A14	GERMAN - II	1	1	0	0*	IE
13.	CBCA25A15	JAPANESE - II	1	1	0	0*	IE
14.	CBCA25A16	SPANISH - II	1	1	0	0*	IE

FACULTY OF COMPUTER APPLICATIONS

BCA-DIGITAL TECHNOLOGY Full Time Program- Curriculum & Syllabus Program Structure for BCA-DT (Full Time)

Table 5: Yoga/Sports/NCC/NSS/Disaster Management - Appendix IV

S. No	Course Code	Course Title	L	T	P	Credit	Exam
1.	CBCA25VA3	Yoga	0	0	4	2	IE
2.	CBCA25VA4	Sports	0	0	4	2	IE
3.	CBCA25VA5	NCC	0	0	4	2	IE
4.	CBCA25VA6	NSS	0	0	4	2	IE
5.	CBCA25VA7	Disaster Management	0	0	4	2	IE

GENERAL COURSE STRUCTURE AND THEME

A. Definition of Credit

1 Hr. Lecture (L) per week	1 Credit
1 Hr. Tutorial (T) per week	1 Credit
1 Hr. Practical (P) per week	0.5 Credit
2 Hr. Practical (P) per week	2 Credit

B. Course Code and Definition

Course Code	Definition
L	Lecture
T	Tutorial
P	Practical
C	Core Courses
A	Ability Enhancement Courses
MD	Multi-Disciplinary Elective Courses
VA	Value Added Courses
S	Skill Enhancement Courses
E	Discipline Specific Elective
OE	Open Elective

FACULTY OF COMPUTER APPLICATIONS

BCA-DIGITAL TECHNOLOGY Full Time Program- Curriculum & Syllabus Program Structure for BCA-DT (Full Time)

SEMESTER I

S. No	Course Code	Course Title	L	T	P	Credit	Exam
3 weeks compulsory induction program (UVH – I)							
1	CBCA25C01	Mathematics Foundations to Computer Science-I	3	0	0	3	TY
2	CBDT25S01	Relational Database Management Systems and SQL queries	3	0	4	5	ETL
3	CBDT25S02	Object Oriented Programming in Java	3	0	4	5	ETL
4	CBCA25A01	General English – I	1	1	0	2	TY
5	CBCA25MDX	Indian Knowledge System^	2	0	0	2	IE
6	CBCA25VA1	Environmental Science and Sustainability	2	0	0	2	TY
7	CBCA25AXX	Indian or Foreign Language I	1	1	0	0*	IE
TOTAL							19

Credits Sub Total: 19

SEMESTER II

S. No	Course Code	Course Title	L	T	P	Credit	Exam
1	CBCA25C02	Mathematics Foundations to Computer Science-II	3	0	0	3	TY
2	CBDT25C01	Data Structures and Algorithms	3	0	4	5	ETL
3	CBCA25C04	Operating System	2	0	0	2	TY
4	CBDT25S03	Advanced Coding in Java	3	0	4	5	ETL
5	CBCA25C05	Web Technologies	3	0	2	4	ETL
6	CBCA25VA2	Indian Constitution	2	0	0	2	IE
7	CBCA25AXX	Indian or Foreign Language II	1	1	0	0*	IE
TOTAL							21

Credits Sub Total: 21

FACULTY OF COMPUTER APPLICATIONS

BCA-DIGITAL TECHNOLOGY Full Time Program- Curriculum & Syllabus
Program Structure for BCA-DT (Full Time)

SEMESTER III

S. No	Course Code	Course Title	L	T	P	Credit	Exam
1	CBCA25C06	Object Oriented Modeling and Design	3	0	0	3	TY
2	CBDT25C02	Building Interactive webpage using modern Javascript	3	0	4	5	ETL
3	CBDT25C03	Building Single Page Application using React	3	0	4	4	ETL
4	CBCA25C08	Software Engineering	3	0	0	3	TY
5	CBCA25EXX	Professional Elective – I	1	0	4	3	ETL/TY
6	CBCA25VAX	Yoga/Sports/NCC/NSS/Disaster Management	0	0	4	2	IE
TOTAL							20

Credits Sub Total: 20

SEMESTER IV

S. No	Course Code	Course Title	L	T	P	Credit	Exam
1	CBCA25C09	Entrepreneurship and Startup Ecosystem	1	1	0	2	IE
2	CBCA25C10	Computer Networks	3	0	0	3	TY
3	CBDT25S04	Build Back-end Application using Spring- L1	3	0	4	5	ETL
4	CBCA25C11	Artificial Intelligence	3	0	4	5	ETL
5	CBCA25EXX	Professional Elective – II	1	0	4	3	ETL/TY
6	CBCA25S06	Design Thinking And Innovation	1	1	0	2	IE
TOTAL							20

Credits Sub Total: 20

FACULTY OF COMPUTER APPLICATIONS

BCA-DIGITAL TECHNOLOGY Full Time Program- Curriculum & Syllabus Program Structure for BCA-DT (Full Time)

SEMESTER V

S. No	Course Code	Course Title	L	T	P	Credit	Exam
1	CBCA25EXX	Professional Elective—III	3	0	4	5	ETL/TY
2	CBCA25EXX	Professional Elective IV	3	0	4	5	ETL/TY
3	CBCA25EXX	Professional Elective V	3	0	4	5	ETL/TY
4	CBDT25S05	Professional Skills 1	0	2	0	2	IE
5	CBCA25S08	Internship / Technical Skill / Capstone Project	0	0	8	4	IE
6	CBCA25S09	Major Project [evaluation in 6th semester]	-	-	-	0	-
TOTAL						21	

Credits Sub Total: 21

SEMESTER VI

S. No	Course Code	Course Title	L	T	P	Credit	Exam
1	CBDT25C4	Gen AI Advanced Prompt Engineering and LLMs	2	0	4	4	ETL
2	CBCA25EXX	Professional Elective VI	3	0	4	5	ETL/TY
3	CBCA25EXX	Professional Elective VII	3	0	4	5	ETL/TY
4	CBDT25S06	Professional Skills 2	0	1	0	1	IE
5	CBCA25S09	Major Project	0	0	8	4	LB
TOTAL						19	

Credits Sub Total: 19

Credit Summary

Semester: I : 19

Semester: II : 21

Semester: III : 20

Semester: IV : 20

Semester: V : 21

Semester: VI : 19

Total: 120

FACULTY OF COMPUTER APPLICATIONS

BCA-DIGITAL TECHNOLOGY Full Time Program- Curriculum & Syllabus
Program Structure for BCA-DT (Full Time)

SEMESTER – I

FACULTY OF COMPUTER APPLICATIONS

BCA-DIGITAL TECHNOLOGY Full Time Program- Curriculum & Syllabus

Program Structure for BCA-DT (Full Time)

OBJECTIVES

- To understand the concepts in sets and relations
- To understand the Basic concepts in several Mathematical functions
- To understand the Basic concepts in Counting and Recurrence relation
- To understand the Basic concepts in Graph theory
- To understand the Basic concepts in Matrix algebra

COURSE OUTCOMES (COs)

CO1	Provide a basic understanding of fundamental mathematical concepts such as sets, functions, matrix algebra, and discrete mathematics.
CO2	This course enables the students to use mathematical models and techniques to analyze and understand problems in computer science.
CO3	This course demonstrates how the mathematical principles give succinct abstraction of computer science problems and help them to efficiently analyze.
CO4	Able to formulate problems and solve recurrence relations.
CO5	Able to model and solve real-world problems using graphs and trees.

Mapping of Course Outcomes with Program outcomes (Pos)

(1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low

FACULTY OF COMPUTER APPLICATIONS

BCA-DIGITAL TECHNOLOGY Full Time Program- Curriculum & Syllabus **Program Structure for BCA-DT (Full Time)**

CBCA25C01 MATHEMATICS FOUNDATION TO COMPUTER SCIENCE – I

UNIT I: Set, Relation

9 Hours

Set, Set Operations, Properties of Set operations, Subset, Venn Diagrams, Cartesian Products, Relations on a Set, Properties of Relations, Representing Relations using matrices and digraphs.

UNIT II: Function

9 Hours

Exponential, Logarithmic and Polynomial Functions:

UNIT III: Counting and Recurrence Relation

9 Hours

Basics of counting, Pigeonhole principle, permutation, combination, Binomial coefficients, Binomial theorem, Recurrence relations, modeling recurrence relations with examples like Fibonacci numbers, the tower of Hanoi problem.

UNIT IV: Elementary Graph Theory

9 Hours

Basic terminologies of graphs, connected and disconnected graphs, subgraph, paths and cycles, complete graphs, digraphs, weighted graphs, Euler and Hamiltonian graphs.

Trees, properties of trees, concept of spanning tree. Planar graphs. Definitions and basic results on the topics mentioned.

UNIT V: Matrix Algebra

9 Hours

Types of matrices, algebra of matrices-addition, subtraction and multiplication of matrices, determinant of a matrix, symmetric and skew-symmetric matrices, orthogonal matrix, rank of a matrix, inverse of a matrix, applications of matrices to solve system of linear equations, Eigen values and Eigen vectors, Caley-Hamilton theorem.

Total : 45
hours

Text Books

1. Garg, Reena, Engineering Mathematics, Khanna Book Publishing Company, 2024. (AICTE Recommended Textbook)
2. Garg, Reena, Advanced Engineering Mathematics, Khanna Book Publishing Company, 2023.
3. Kolman B., Busby R. and Ross S., Discrete Mathematical Structures, 6th Edition, Pearson Education, 2015.
4. DeoNarsingh, Graph Theory with Application to Engineering and Computer Science, Prentice Hall, India, 1979.
5. Vasishtha A. R. and Vasishtha A. K., Matrices, Krishna Prakashan, 2022.

FACULTY OF COMPUTER APPLICATIONS

BCA-DIGITAL TECHNOLOGY Full Time Program- Curriculum & Syllabus
Program Structure for BCA-DT (Full Time)

Reference Books

1. Grimaldi Ralph P. and Ramana B. V., Discrete and Combinatorial Mathematics: An Applied Introduction, Fifth Edition, Pearson Education, 2007.
2. Rosen Kenneth H. and Krithivasan Kamala, Discrete Mathematics and its Applications, McGraw Hill, India, 2019.
3. West Douglas B., Introduction to Graph Theory, Second Edition, Pearson Education, 2015.

Web Resources

1. <https://nptel.ac.in/courses/106103205>
2. <https://nptel.ac.in/courses/111101115>

FACULTY OF COMPUTER APPLICATIONS

BCA-DIGITAL TECHNOLOGY Full Time Program- Curriculum & Syllabus Program Structure for BCA-DT (Full Time)

CBDT25S01	Relational Database Management System and SQL Queries	L	T	P	C	TY/Lb/IE
	Prerequisite :Digital tools, Basics spreadsheets skills, Basic problem-solving and time commitment	3	0	4	5	ETL
Course Designed by – Faculty of Computer Applications						

OBJECTIVES:

- To understand the fundamentals of **SQL syntax and MySQL operations** for efficient data retrieval and manipulation.
- To explore **joins, subqueries, and aggregation functions** for building complex and meaningful queries.
- To gain knowledge of **database design principles**, including normalization and relational integrity using keys and constraints.
- To automate routine tasks through **procedures, triggers**, and scheduling operations in MySQL.
- To introduce **JSON handling and NoSQL concepts** using MySQL's XDevAPI for modern application needs.

COURSE OUTCOMES (COs)

CO1	Understand basic terminology of computers, problem solving, programming languages and their evolution (Understand)													
CO2	Create specification from problem requirements by asking questions to disambiguate the requirement statement. (Create)													
CO3	Design the solution from specification of a problem and write pseudo code of the algorithm using basic building blocks or structured programming constructs (Sequence, Selection and Repetition statement). (Create)													
CO4	Translate an algorithm into a C computer program (Create)													
CO5	Testing and analysing programs using debugging tools. (Analyze)													
	Mapping of Course Outcomes with Program outcomes (Pos)													
	(1/2/3 indicates strength of correlation) 3-HIGH, 2-Medium, 1-Low													

1	Cos/PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4	
2	CO1	3	2	3	3	2	2	3	2	2	3	2	2	2	
	CO2	2	2	3	2	3	3	2	3	3	2	2	1	3	
	CO3	3	2	2	1	3	3	1	3	3	3	3	3	2	
	CO4	3	3	3	2	1	3	2	1	3	3	3	2	3	
	CO5	2	3	2	3	3	3	3	3	3	3	2	2	3	
3	Category	CC		AEC		MDE		VAC		SEC		DSE		OE	
										✓					
4	Approval						Meeting of Academic Council								

FACULTY OF COMPUTER APPLICATIONS

BCA-DIGITAL TECHNOLOGY Full Time Program- Curriculum & Syllabus Program Structure for BCA-DT (Full Time)

CBDT25S01 RELATIONAL DATABASE MANAGEMENT SYSTEM AND SQL QUERIES

UNIT 1: 9 Hours

SELECT Queries: MySQL Setup, SELECT, WHERE, AND/OR, comparison operators, String Functions, Date Functions.

Joins: Inner Join, Outer Join, Left Join, Right Join, Primary Key, Foreign Key.

Data Summarization: Aggregation Functions, Group By Clause, Having Clause, Order By Clause.

Subqueries: Scalar Query, Tabular Query, Correlated / Non-Correlated Subqueries.

DML Queries: Insert Query, Update Query, Delete Query, Index.

UNIT 2 : 12 Hours

Database Design: Entities, Attributes, Entity Relationships, Normalization (1NF, 2NF, 3NF).

DDL Commands: Create Command, Alter Command, Constraints (NOT NULL, UNIQUE, CHECK), Grant – Revoke Permissions.

Database Consistency: ACID properties, Locking Mechanisms, Temporary Tables, Views.

UNIT 3 12 Hours

Automate Database Operations: Create Procedure, Create Trigger, Schedule Operations, Repetitive Task Automation.

JSON and NoSQL: JavaScript Object Notation – JSON, JSON Data Type, JSON_OBJECT(), JSON_EXTRACT(), NoSQL Databases, XDevAPI, XDevAPI CRUD Methods.

UNIT 4 12 Hours

Project and Summative Assessment: Project Planning and Design, Solution Development, Testing and Debugging, Review and Refactoring, Project Documentation and Presentation, Summative Quiz.

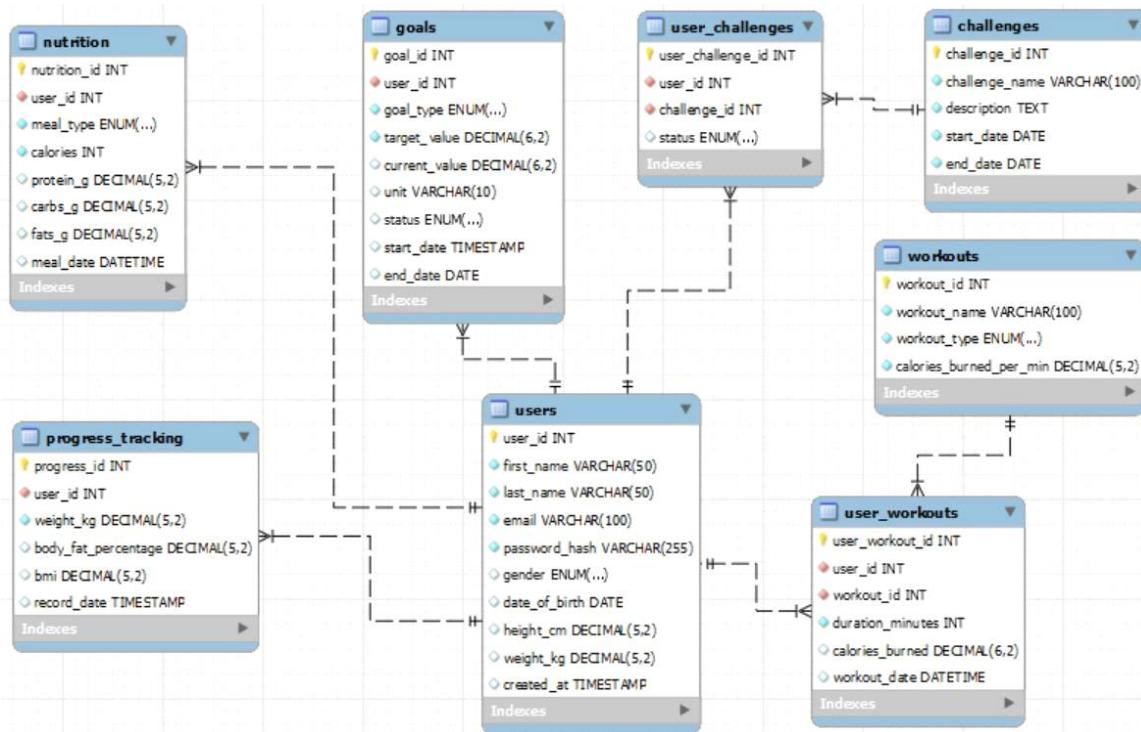
Total : 45 hours

Text Books (Latest Edition):

1. **Dr. P.S. Deshpande**, *SQL and PL/SQL for Oracle 11g (Black Book)*, Dreamtech Press
2. **Benjamin Rosenzweig & Elena Silvestrova**, *Oracle PL/SQL by Example*, Pearson Education
3. **Sharon Allen & Evan Terry**, *Beginning MySQL*, Wrox Publishing
4. **Kristina Chodorow**, *MongoDB: The Definitive Guide*, O'Reilly Media
5. **Vikram Vaswani**, *MySQL: The Complete Reference*, McGraw Hill Education

Reference Book:

1. **Raghu Ramakrishnan & Johannes Gehrke**, *Database Management Systems*, McGraw Hill Education
2. **Thomas Connolly & Carolyn Begg**, *Database Systems: A Practical Approach to Design, Implementation and Management*, Pearson Education
3. **Ajay Kumar Bhalla**, *Practical DBMS & SQL*, Khanna Book Publishing Co.


FACULTY OF COMPUTER APPLICATIONS

BCA-DIGITAL TECHNOLOGY Full Time Program- Curriculum & Syllabus Program Structure for BCA-DT (Full Time)

CBDT25S01 RELATIONAL DATABASE MANAGEMENT SYSTEM AND SQL QUERIES

List of Lab Programs:

You're a developer working on Cult Fitness Buddy, a platform that tracks workouts, meals, and progress. The system is powered by a relational database in MySQL, ensuring accurate tracking, seamless updates, and insightful reports. Below is the ER diagram representing the database structure.

Based on the above design, your task is to write queries for the following exercises:

1. You need to set up MySQL and check if the Users table has any records. Write the MySQL commands to:
 - a. Show all databases.
 - b. Select the Fitness database.
 - c. Display all tables.
 - d. Retrieve all user records.
2. Find users who burned over 500 calories in a single workout and retrieve their workout duration and calories burned.
3. Create a leaderboard showing the first three letters of each user's name along with their registration year.
4. List users along with the challenges they have joined, including those who haven't joined any challenges.
5. Analyze workout trends and user performance by completing the following tasks:
 - a. Count total workouts logged.
 - b. Find the average workout duration.

FACULTY OF COMPUTER APPLICATIONS

BCA-DIGITAL TECHNOLOGY Full Time Program- Curriculum & Syllabus

Program Structure for BCA-DT (Full Time)

- c. Identify the highest and lowest calories burned in a workout.
- d. Count unique users who have logged workouts.
6. Identify and fix the issue in the below-given join query:
SELECT user_id, challenge_name FROM User_Challenges UC INNER JOIN Challenges C;
7. Identify the top 5 users with the highest total calories burned.
8. Insert a new user, Ramesh Tete, into the system with his email and today's registration date.
9. Improve email search speed by optimizing queries for large datasets.
10. As a developer of Cult Fitness Buddy, you're expanding the database to include trainers, classes, and memberships for better user engagement:
 - a. Identify at least four key entities and their attributes.
 - b. Define primary keys for each entity.
 - c. Write SQL CREATE TABLE statements to implement this structure.
11. Enforce data integrity:
 - a. Ensure emails are unique.
 - b. Make phone numbers mandatory.
 - c. Prevent negative membership durations.
12. Manage user roles and permissions:
 - a. Grant trainers access to only class data.
 - b. Allow admins full database access.
13. Optimize leaderboard queries by creating a view to retrieve the top 5 users with the highest total calories burned.
14. Add a JSON column to store user preferences for diet and workout.
15. Write a query to retrieve the diet preference from the stored JSON data.

FACULTY OF COMPUTER APPLICATIONS
BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)

CBDT25S02	Object Oriented Programming in Java	L	T	P	C	TY/Lb/IE
	Prerequisite:Digital tools,database essentials,Basic problem-solving and time commitment	3	0	4	5	ETL
	Course Designed by – Faculty of Computer Applications					

OBJECTIVES:

- To introduce the basics of **Java programming**, including variables, data types, operators, input methods, and control structures.
- To develop problem-solving skills using **modular programming techniques**, such as methods, exception handling, and recursion.
- To explore **string manipulation**, array operations, and common algorithms like sorting and searching.
- To understand core **Object-Oriented Programming (OOP)** concepts such as classes, objects, inheritance, polymorphism, and interfaces.
- To apply theoretical knowledge in a **hands-on Java project**, focusing on design, development, debugging, and documentation.

COURSE OUTCOMES (COs)

CO1	Learn the basics of Java programming, including variables, datatypes, loops, arrays, and decision-making structures.
CO2	Develop problem-solving skills by creating functions,manipulating strings, and applying recursion to solve complex problems.
CO3	Dive into sorting,searching algorithms, and access modifiers to handle large datasets efficiently and secure your data.
CO4	Gain a solid understanding of OOP concepts like classes,objects,inheritance, and polymorphism to write clean, reusable, and maintainable code.
CO5	Design Robust Applications: Learn to design scalable Java applications using abstract classes, interfaces, and other advanced OOP principles for real-world problem-solving.
	Mapping of Course Outcomes with Program outcomes (Pos)

(1/2/3 indicates strength of correlation) 3-HIGH, 2-Medium, 1-Low

1	Cos/ PSOs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
2	CO1	3	2	3	3	2	2	3	2	2	3	3	2	2
	CO2	2	2	3	2	3	3	2	3	3	2	2	1	3
	CO3	3	2	2	1	3	3	1	3	3	3	3	3	2
	CO4	3	3	3	2	1	3	2	1	3	3	3	2	3
	CO5	2	3	2	3	3	3	3	3	3	3	2	2	3
3	Category		CC	AEC	MDE	VAC		SEC		DSE		OE		
									✓					
4	Approval						Meeting of Academic Council							

FACULTY OF COMPUTER APPLICATIONS

**BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)**

CBDT25S02

OBJECT ORIENTED PROGRAMMING IN JAVA

UNIT-1

9 Hours

Introduction to Java: Program Structure, `println()` Method, Variables, Datatypes, Operators, Scanner class
Control Structures: Relational Operators, Logical Operators, Ternary Operator, if Statement, if...else Statement, if...else if Statement, switch case, for Loop, while Loop, do...while Loop
Arrays: 1-Dimensional Arrays, 2-Dimensional Arrays, Array Operations, Debug Errors

UNIT-2

12 Hours

Modular Programming: Function Definition, Arguments, Parameters, Return Value, Exception Handling, try...catch Block, finally, throw and throws
Strings: String, String Buffer, String Builder, String Operations
Sorting Searching: Sorting, Bubble Sort, Searching, Linear Search, Recursion

UNIT-3

12 Hours

Introduction to Object Oriented Programming: Class, Object, Constructor, Default Constructor, Parameterized Constructor, this Keyword, Access Specifiers – private, public, protected, static, final
Inheritance and Polymorphism: Inheritance Types, super Keyword, Polymorphism, Overloading, Overriding, Static Binding, Dynamic Binding
Abstract Classes and Interfaces: Abstract Class, Abstract Methods, Interface

UNIT-4

12 Hours

Project and Summative Assessment: Project Planning and Design, Solution Development, Testing and Debugging, Review and Refactoring, Project Documentation and Presentation, Summative Quiz

Total : 45 hours

Text Books (Latest Edition):

1. **E. Balagurusamy**, *Programming with Java: A Primer*, McGraw Hill Education
2. **Herbert Schildt**, *Java: The Complete Reference*, McGraw Hill Education
3. **Kathy Sierra & Bert Bates**, *Head First Java*, O'Reilly Media
4. **Dr. R. Nageswara Rao**, *Core Java: An Integrated Approach*, Dreamtech Press

Reference Book:

1. **Cay S. Horstmann**, *Core Java Volume I – Fundamentals*, Pearson Education
2. **Y. Daniel Liang**, *Introduction to Java Programming and Data Structures*, Pearson Education
3. **Budi Kurniawan**, *Beginning Java Object Oriented Programming*, Apress

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus Program Structure for BCA-DT (Full Time)

CBDT25S02

OBJECT ORIENTED PROGRAMMING IN JAVA

List of Lab Programs

1. Write a Java program that takes your name, age and favorite color as input and prints a greeting message.
2. Create a simple calculator that accepts two numbers and an operator (+, -, *, /) and performs the operation. Handle any invalid input provided the user.
3. Write a program that accepts and swaps two numbers without using a third variable.
4. Develop a menu-driven program that lets users choose between different mathematical operations using a switch statement.
5. Write a Java program to print the Fibonacci series up to n terms using a loop. Also do the same with the help of recursive function.
6. Create a function that calculates the factorial of a number.
7. Implement a function that checks whether a given number is prime.
8. Write a program that takes n numbers as input, stores them in an array, and prints the largest and smallest numbers.
9. Implement a program that reverses the elements of a one-dimensional array.
10. Write a program that checks if a given string is a palindrome (same forward and backward).
11. Implement a program that reverses a string using StringBuilder or StringBuffer.
12. Write a recursive function to find the sum of digits of a given number.
13. Write a program that takes two numbers as input and handles division by zero using try- catch-finally.
14. Create a custom exception called InvalidAgeException that gets thrown if a user enters an age below 18 for registration.
15. Develop a Banking System with a base class for bank accounts, using static variables for shared attributes. Extend it to modify withdrawal behaviour via method overriding, enforce a minimum balance, and use the final keyword to restrict modifications while ensuring encapsulation.

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus

Program Structure for BCA-DT (Full Time)

CBCA25A01	GENERAL ENGLISH – I		L	T	P	C	TY/Lb/IE						
			1	1	0	2	Ty						
Prerequisite – +2 Level													
Course Objectives	Course designed by – Department of English												
<ol style="list-style-type: none"> 1. To provide learning environment to practice listening, speaking, reading and writing skills. 2. To assist the students to carry on the tasks and activities through guided instructions and materials. 3. To effectively integrate English language learning with employability skills and training. 4. To provide hands-on experience through case-studies, mini-projects, group and individual presentations. 													
Course Outcomes (COs)													
<ol style="list-style-type: none"> 1. Possess Language skills (LSRW) to communicate in English without any inhibition. 2. Express with appropriate lexis and syntax in English for social and academic communication 3. Demonstrate content knowledge through appropriate language use for academic success. 4. Analyze and interpret any genre of literature in English for research, projects, placement 5. Engage themselves in organized academic and business writing with professional ethics. 													
Mapping of course outcomes (COs) with Program Outcomes (POs)& Program Specific Outcomes <small>(3/2/1 indicates the strength of correlation) 3= High; 2= Medium; 1= Low</small>													
Cos/ PSOs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO 4
CO1	3	3	3	3	3	3	3	1	3	3	3	3	3
CO2	3	3	3	3	3	3	3	1	3	3	3	3	3
CO3	3	3	3	3	3	3	3	1	3	3	3	3	3
CO4	3	3	3	3	3	3	3	1	3	3	3	3	3
CO5	3	3	3	3	3	3	3	1	3	3	3	3	3
Category	CC		AEC		MD E		VAC		SEC		DSE		OE
			✓										
4. Approval				Meeting of Academic Council									

FACULTY OF COMPUTER APPLICATIONS

**BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)**

CBCA25A01

GENERAL ENGLISH – I

Unit I: Vocabulary Building

6 Hours

The concept of Word formation, Root words from foreign languages and their use in English, Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives, Synonyms, antonyms, and standard abbreviations.

Unit II: Basic Writing Skills

6 Hours

Sentence structures, Use of phrases and clauses in sentences, Importance of proper punctuation, Creating coherence, Organizing principles of paragraphs in documents, Techniques for writing precisely, Formal and Informal letters.

Unit III: Identifying Common Errors in Writing

6 Hours

Subject-Verb agreement, Noun-Pronoun agreement, Misplaced modifiers, Articles, Prepositions, Redundancies.

Unit-IV: Nature and Style of sensible Writing

6 Hours

Describing, Defining, Classifying, providing examples or evidence, writing introduction and conclusion, Module V: Writing Practices, Comprehension, Précis Writing, Essay Writing

Unit-V: Oral Communication

6 Hours

(This Module involves interactive practice sessions in Language Lab)

Listening Comprehension, Pronunciation, Intonation, Stress and Rhythm, Common Everyday Situations: Conversations and Dialogues, Communication at Workplace, Interviews, Formal Presentations

Total : 30 hours

Text/Reference Books:

1. AICTE's Prescribed Textbook: Communication Skills in English (with Lab Manual), Anjana Tiwari, Khanna Book Publishing Co., 2023.
2. Effective Communication Skills. Kul Bhushan Kumar, Khanna Book Publishing, 2022.
3. Practical English Usage. Michael Swan. OUP. 1995.
4. Remedial English Grammar. F.T. Wood. Macmillan 2007
5. On Writing Well. William Zinsser. Harper Resource Book. 2001
6. Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
7. Communication Skills. Sanjay Kumar and PushpLata. Oxford University Press. 2011.
8. Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press.

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)

Indian Knowledge System[^]

CBCA25MDX	Indian Knowledge System[^]	L	T	P	C	TY/Lb/IE
		2	0	0	2	IE
Course Designed by – Faculty of Computer Applications						

***For Detailed Course Refer Appendix – II**

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum & Syllabus

Program Structure for BCA-DT (Full Time)

CBCA25VA1	ENVIRONMENTAL SCIENCE AND SUSTAINABILITY	L	T	P	C	TY/Lb/ IE	
		2	0	0	2		
	Prerequisite –Nil						
	Course Designed by – Faculty of Computer Applications						

OBJECTIVES :

1. To acquire knowledge of the Environment and Ecosystem & Biodiversity
2. To acquire knowledge of the different types of Environmental pollution
3. To know more about Natural Resources and social issues and the Environment
4. To attain familiarity of human population and Environment.

COURSE OUTCOMES (Cos) :

Students completing the course were able to

CO1	To know about Environment and Ecosystem & Biodiversity
CO2	Clearly comprehend air, water, Soil, Marine, Noise, Thermal and Nuclear Pollutions and Solid Waste management and identify the importance of natural resources.
CO3	Understand about the natural resources and environmental problems associated with climate change, global warming, acid rain, ozone layer depletion etc., and explain possible solution.

Mapping of Course Outcomes with Program Outcomes (POs)

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	2	1	1	1	2	1	2	2	2	3	1	2	2
CO2	2	1	1	1	2	1	2	2	2	3	2	2	2
CO3	2	1	1	1	2	1	2	2	2	1	2	1	2
Basic Sciences		Engg Sciences		Humanities & Social Sciences		Program core	Program 2 Electives	Open Electives	Practical / Project	Internships / Technical Skills			Soft Skills
Category	CC	AEC		MDE		VAC		SEC	DSE	OE			
						✓							
Approval						Meeting of Academic Council							

FACULTY OF COMPUTER APPLICATIONS

**BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)**

CBCA25VA1 ENVIRONMENTAL SCIENCE AND SUSTAINABILITY

UNIT-I Understanding Environment, Natural Resources, and Sustainability 6 Hours

Fundamental environmental concepts and their relevance to business operations; Components and segments of the environment, the man-environment relationship, and historical environmental movements.

UNIT-II Natural Resources, and Sustainability 6 Hours

Concept of sustainability; Classification of natural resources, issues related to their overutilization, and strategies for their conservation. Sustainable practices in managing resources, including deforestation, water conservation, energy security, and food security issues. The conservation and equitable use of resources, considering both inter-generational and inter-generational equity, and the importance of public awareness and education.

UNIT-III: Ecosystems, Biodiversity, and Sustainable Practices 6 Hours

Various natural co-systems, learning about their structure, functions, and ecological characteristics. The importance of biodiversity, the threats it faces, and the methods used for its conservation. Ecosystem resilience, homeostasis, and carrying capacity, emphasizing the need for sustainable ecosystem management. Strategies for in-situ and ex-situ conservation, nature serves, and the significance of India a mega diverse nation.

UNIT- IV Environmental Pollution, Waste Management, and Sustainable Development 6 Hours

Various types of environmental pollution, including air, water, noise, soil, and marine pollution, and their impacts on businesses and communities. Causes of pollution, such as global climate change, ozone layer depletion, the green house effect, and acid rain with a particular focus on pollution episode in India. Importance of adopting cleaner technologies; Solid waste management; Natural and man-made disasters, their management, and the role of businesses in mitigating disaster impacts.

UNIT-V Social Issues, Legislation, and Practical Applications 6 Hours

Dynamic interactions between society and the environment, with focus on sustainable development and environmental ethics. Role of businesses in achieving sustainable development goals and promoting responsible consumption. Overview of key environmental legislation and the judiciary's role in environmental protection, including the Water (Prevention and Control of Pollution) Act of 1974, the Environment (Protection) Act of 1986, and the Air (Prevention and Control of Pollution) Act of 1981. Environmental justice, environmental refugees, and the settlement and rehabilitation of affected populations; Ecological economics, human population growth, and demographic changes in India.

Total : 30 hours

Text Books (Latest Editions)

1. Poonia, M.P. *Environmental Studies*, Khanna Book Publishing Co.
2. Bharucha, E. *Text book of Environmental Studies*, Orient Blackswan Private Ltd.
3. Dave, D., & Katewa, S.S. *Text Book of Environmental Studies*. Cengage Learning India Pvt. Ltd.
4. Rajagopalan, R. *Environmental studies: from crisis to cure*, Oxford University Press.
5. Miller, G.T. & Spoolman, S. *Living in the Environment*. Cengage.

FACULTY OF COMPUTER APPLICATIONS

**BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)**

References:-

1. <https://www.ourplanet.com>
2. <https://www.undp.org/content/undp/en/home/sustainable-development-goals.html>
3. www.myfootprint.org
4. <https://www.globalchange.umich.edu/globalchange1/current/lectures/kling/ecosystem/ecosystem.html>

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus

Program Structure for BCA-DT (Full Time)

CBCA25AXX	Indian or Foreign Language I	L	T	P	C	TY/Lb/IE
		1	1	0	0	IE
Course Designed by – Faculty of Computer Applications						

***For Detailed Course Refer Appendix – III**

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)

SEMESTER – II

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus

Program Structure for BCA-DT (Full Time)

CBCA25C02	MATHEMATICS FOUNDATION TO COMPUTER SCIENCE - II	L	T	P	C	TY/Lb/ IE	
		3	0	0	3	Ty	
	Prerequisite –Basic Level						
	Course Designed by – Faculty of Mathematics						

OBJECTIVES

- To understand the concepts in Logic
- To understand the Basic concepts in Algebraic structures
- To understand the Basic concepts in Numerical Methods
- To understand the Basic concepts in Linear Programming
- To understand the Basic concepts in Transportation problem

COURSE OUTCOMES (COs)

CO1	This course helps the students to understand correct lines of arguments and proofs.
CO2	This course introduces mathematical techniques that are foundations for understanding advanced computational methods, including numerical methods and optimization.
CO3	This course helps the students to understand various problem-solving strategies and methods to tackle both theoretical and practical challenges in computer science.
CO4	Use statistical methodology and tools in the problem-solving process.
CO5	To understand various graphs in different geometries related to edges.

Mapping of Course Outcomes with Program outcomes (Pos)

(1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low

1	Cos/ PSOs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
2	CO1	2		3	3		1			2	3	2		
	CO2	2		3	3		1			2	3	2		
	CO3	2		2	3		1			2	3	2		
	CO4	2		3	3		1			2	3	2		
	CO5	2		2	3		1			2	3	2		
3	Category	CC		AEC		MDE		VAC		SEC		DSE		OE
		✓												
4	Approval					Meeting of Academic Council								

FACULTY OF COMPUTER APPLICATIONS

**BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)**

CBCA25C02

MATHEMATICS FOUNDATION TO COMPUTER SCIENCE – II

UNIT I:

9 hours

Logic and Methods of Proofs:

Propositions, logical operations (basic connectives), compound statements, construction of truth table, quantifiers, conditional statements, tautology, contradiction, contingency, logical equivalence. Conjunctive Normal Forms (CNF) and Disjunctive Normal Forms (DNF), Mathematical Induction.

UNIT II:

9 hours

Algebraic Structures:

Semi-group, Monoid, Group, Subgroup. (Definition and Simple problems only)

Unit III:

9 hours

Numerical Methods:

Concept and importance of errors in numerical methods. Solution of algebraic and trancendetal equations. Bisection method and Newton-Raphson methods. Numerical Interpolation : Newton's Forward and Newton's Backward interpolation formula and Lagrange's formula.

UNIT IV:

9 hours

Optimization Techniques:

Linear programming: Introduction, LP formulation, Graphical method for solving LPs with two variables, Simplex Method.

UNIT V:

9 hours

Transportation problem: Definition, Linear form, North-west corner method, Least cost method, Vogel's approximation method for finding feasible solution, MODI method for finding optimum solution.

Total : 45 hours

Text Books

1. Kolman B., Busby R. and Ross S., Discrete Mathematical Structures, 6th Edition, Pearson Education, 2015.
2. Sastry S. S., Introductory Methods of Numerical Analysis, Fifth Edition, PHL, 2022.
3. TahaHamdy A., Operations Research: An Introduction, Eighth Edition, Pearson Prentice Hall, 2003.
4. S.B. Singh, Discrete Structures, Khanna Book Publishing, 2023 (AICTE Recommended Textbook)

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus Program Structure for BCA-DT (Full Time)

Reference Books

1. Rosen Kenneth H. and Krishivasan Kamala, Discrete Mathematics and its Applications, McGraw Hill, India, 2019.
2. Chakravorty J. G. and Ghosh P. R., Linear Programming and Game Theory, Moulik Library, 2017.
3. Sharma J. K., Operations Research: Theory and Applications, Fourth Edition, Macmillan Publishers, 2007.

Web Resources

1. <https://nptel.ac.in/courses/111107127>
2. <https://www.math.iitb.ac.in/~siva/si50716/SI507lecturenotes.pdf>

FACULTY OF COMPUTER APPLICATIONS
BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)

CBDT25C01	Data Structures and Algorithms					L	T	P	C	TY/Lb/IE
						3	0	4	5	ETL
	Prerequisite: Programming in Java, Object-Oriented Concepts									
	Course Designed by – Faculty of Computer Applications									

OBJECTIVES

- Implement and manipulate arrays, linked lists, stacks, queues, trees, and graphs.
- Analyze time and space complexity (Big O notation) for data operations.
- Choose the most appropriate data structure for a given application scenario.
- Demonstrate the use of recursion in tree and graph traversal.

COURSE OUTCOMES (COs)

CO1	Understand the fundamental concepts of Data Structures and their applications.													
CO2	Develop problem-solving skills using Data Structures.													
CO3	Implement Data Structures using C programming language.													
CO4	Implement various data structures using a programming language													
CO5	Design and develop algorithms using appropriate data structures for real-world problem solving.													

Mapping of Course Outcomes with Program outcomes (Pos)

(1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low

1	Cos/ PSOs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
2	CO1	3	3	3	3	2	2	3	2	2	2	3	3	2
	CO2	3	3	3	2	3	2	2	3	2	1	2	2	3
	CO3	2	2	1	3	3	3	3	3	1	3	3	3	3
	CO4	3	1	2	3	3	1	3	3	1	2	3	3	3
	CO5	2	3	3	3	3	2	3	3	2	3	2	3	3
3	Category	CC	AEC	MDE	VAC	SEC	DSE	OE						
		✓												
4	Approval	Meeting of Academic Council												

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus Program Structure for BCA-DT (Full Time)

CBDT25C01

DATA STRUCTURES AND ALGORITHMS

UNIT-1

9 hours

Searching and Sorting Fundamentals: Linear Search, Binary Search, Interpolation Search, Bubble Sort, Selection Sort, Insertion Sort, Comparison of Sorting and Searching Algorithms, Real-world Applications, Algorithm Efficiency: Big O, Big Theta, Big Omega, Basics of Recursion

UNIT-2

12 hours

Advanced Algorithms and Linear Data Structures: Merge Sort, Quick Sort, Heap Sort, Stack Operations (Push, Pop, Peek), Queue Operations (Enqueue, Dequeue), Circular Queue, Deque, Priority Queue, Linked Lists (Singly, Doubly, Circular), Recursive Linked List Operations, Hashing Techniques, Collision Handling, Load Factor, Rehashing

UNIT-3

12 hours

Non-Linear Data Structures and Optimization Techniques: Tree Terminology, Binary Tree Traversals (Inorder, Preorder, Postorder), BST Operations using Recursion, Graph Concepts, Graph Representation (Adjacency Matrix & List), BFS, DFS, Shortest Path Algorithms (Dijkstra's, Bellman- Ford, A*), Greedy Algorithms (Activity Selection, Huffman Coding), Dynamic Programming (Memoization, Tabulation, Fibonacci)

UNIT-4

12 hours

Project and Summative Assessment: Choose a problem statement, Implement searching and sorting algorithms, Utilize stacks, queues, linked lists, trees, and graphs, Apply recursion and dynamic programming techniques, Analyse and optimize performance, Present the solution and provide a code walkthrough. Summative Quiz.

Total : 45 hours

Text Books

1. **Sahni, S.** (2011). *Data Structures, Algorithms and Applications in Java*. 2nd edition. India: Universities Press.
2. **Karumanchi, N.** (2011). *Data Structures and Algorithms Made Easy*. CareerMonk Publications.

Reference Books

1. **Weiss, M.A.** (2014). *Data Structures and Algorithm Analysis in Java*. 3rd edition. Pearson Education.
2. **Cormen, T.H., Leiserson, C.E., Rivest, R.L., & Stein, C.** (2009). *Introduction to Algorithms*. 3rd edition. MIT Press.
3. **Lafore, R.** (2002). *Data Structures and Algorithms in Java*. 2nd edition. Sams Publishing.
4. **Goodrich, M.T., Tamassia, R., & Goldwasser, M.H.** (2014). *Data Structures and Algorithms in Java*. 6th edition. Wiley.

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus Program Structure for BCA-DT (Full Time)

CBDT25C01

DATA STRUCTURES AND ALGORITHMS LAB

List of Lab Programs

1. Write a program to implement Linear Search and Binary Search algorithms on both sorted and unsorted arrays.
2. Create a program that compares the performance of different sorting algorithms (Bubble Sort, Selection Sort, and Insertion Sort) on various input sizes.
3. Implement a function to perform Binary Search on a sorted array and analyse its time complexity.
4. Write a program to implement Merge Sort and Quick Sort algorithms and compare their efficiency in terms of time complexity.
5. Implement a Stack using arrays. Perform basic stack operations: Push, Pop, and Peek.
6. Create a Queue using arrays and implement the basic operations: Enqueue and Dequeue.
7. Design a program that implements a Circular Queue and demonstrate its application in round-robin scheduling.
8. Implement a Priority Queue using arrays and apply it to simulate scheduling tasks based on priority.
9. Create a program to implement a Singly Linked List with basic operations such as Insertion, Deletion, and Traversal.
10. Design and implement a Doubly Linked List, and perform operations like insertion and deletion at both ends.
11. Write a recursive function to reverse a Linked List.
12. Implement a program to demonstrate Hashing using open addressing and chaining for collision resolution.
13. Create a program to build and traverse a Binary Tree (Inorder, Preorder, Postorder traversal).
14. Write a program to implement a Binary Search Tree (BST), with operations like insertion, search, and deletion.
15. Develop a program that demonstrates the BFS (Breadth-First Search) and DFS (Depth-First Search) algorithms on a graph.
16. Implement Dijkstra's Algorithm to find the shortest path in a weighted graph.
17. Design a solution to the Activity Selection Problem using Greedy Algorithms.
18. Implement the Huffman Coding algorithm for data compression.
19. Write a dynamic programming solution to the Fibonacci Sequence using both recursive and tabulation methods.
20. Design and implement a program to solve the Knapsack Problem using Dynamic Programming.

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus

Program Structure for BCA-DT (Full Time)

CBCA25C04	OPERATING SYSTEM	L	T	P	C	TY/Lb/ IE
		2	0	0	2	TY
	Prerequisite – Familiar with Basic Hardware and software aspects of computer system organization.					

Course Designed by – Faculty of Computer Applications

OBJECTIVES:

- Understand the role of Operating Systems
- Explore OS Components and Architecture
- Learn Process Management

COURSE OUTCOMES (COs)

CO1	Explain the fundamentals of the operating system.													
CO2	Comprehend multithreaded programming, CPU scheduling, process management, process synchronization,													
CO3	Compare the performance of CPU scheduling algorithms													
CO4	Identify the features of I/O and File handling methods.													
CO5	Evaluate and apply different CPU scheduling and deadlock handling algorithms.													

Mapping of Course Outcomes with Program outcomes (Pos)

(1/2/3 indicates strength of correlation) 3-HIGH, 2-Medium, 1-Low

1	COs/ Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
2	CO1	3	2	3	3	3	2	3	3	2	3	3	2	2
	CO2	2	3	3	1	2	3	1	2	3	2	2	3	3
	CO3	3	2	2	3	3	1	3	3	1	3	3	1	2
	CO4	2	3	3	2	1	3	2	1	3	3	1	2	3
	CO5	3	3	2	3	2	3	3	2	3	2	3	3	3
3	Category	CC			AEC		MDE		VAC		SEC		DSE	
		✓											OE	
4	Appro						Meeting of Academic Council							

FACULTY OF COMPUTER APPLICATIONS

**BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)**

CBCA25C04

OPERATING SYSTEM

UNIT I

6 hours

Operating Systems Overview: Introduction, Evaluation of OS, Components & services of OS, Structure, Architecture, Types of OS, Batch systems, Concepts of Multiprogramming and Time Sharing, Parallel, Distributed and real time systems.

Operating Systems Structures: Operating system services and systems calls, system programs, operating system structure, operating systems generations.

UNIT II

6 hours

Process Management: Process concepts, Process states, Process State Transitions, Process Scheduling, Process Control Block, Threads, Concepts of Multithreads, Benefits of Threads, Types of Threads

Process Scheduling: Definition, Scheduling objectives, Scheduling algorithms, CPU Scheduling, Preemptive and Non- Preemptive Scheduling algorithms (FCFS, SJF and RR), Performance evaluation of the Scheduling algorithms

UNIT III

6 hours

Process Synchronization: Introduction, Inter-Process Communication, Race Conditions, Critical Section Problem, Mutual Exclusion, Semaphores, Monitors

Deadlocks: System Model, Deadlock Characterization, Deadlock Prevention, Detection And Avoidance, Banker's Algorithm, Recovery From Deadlocks.

UNIT IV

6 hours

Memory Management: Logical and Physical address map, Swapping, memory allocation, MFT, MVT, Internal and External fragmentation and Compaction, Paging, Segmentation.

Virtual Memory: Demand Paging, Page Replacement Algorithms, Allocation of Frames, Thrashing

I/O Management: Principles of I/O hardware: Disk structure, Disk Scheduling Algorithms

UNIT V

6 hours

File System: Concept of A File, Access Methods, Directory Structure, File System Mounting, File Sharing, Protection. File System Implementation: File System Structure, File System Implementation, Directory Implementation, Allocation Methods, Free-Space Management, Efficiency and Performance, Comparison of UNIX and Windows.

Total : 30 hours

FACULTY OF COMPUTER APPLICATIONS
BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)

TEXT BOOKS:

1. Ekta Walia, Operating Systems Concepts, Khanna Publishing House, 2022 (AICTE Recommended Textbook).
2. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne (2006), Operating System Principles, 7th edition or later edition, Wiley India Private Limited, New Delhi.
3. Stallings (2006), Operating Systems, Internals and Design Principles, 5th edition, Pearson Education, India.

REFERENCE BOOKS:

1. Andrew S. Tanenbaum (2007), Modern Operating Systems, 2nd edition, Prentice Hall of India, India.
2. Deitel & Deitel (2008), Operating Systems, 3rd edition, Pearson Education, India.

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus

Program Structure for BCA-DT (Full Time)

CBDT25S03	Advanced Coding in Java	L	T	P	C	TY/Lb/ IE
	Prerequisite: Java programming fundamentals, Object-oriented concepts, Basic problem-solving and time commitment	3	0	4	5	ETL
	Course Designed by – Faculty of Computer Applications					

OBJECTIVES

1. To enable the students to understand about the basic computing concepts.
2. To understand the binary system and system languages
3. To developing skills and enable them to excel in the MS- Office packages

COURSE OUTCOMES (COs)

CO1	To introduce the object oriented programming system concepts												
CO2	To introduce syntax and semantics of C++ programming language												
CO3	To develop modular programs using C++												
CO4	To setup C++ environment to create, debug and run programs												
CO5	Develop applications using inheritance, polymorphism, and dynamic binding to promote code reuse and flexibility.												
	Mapping of Course Outcomes with Program outcomes (Pos)												

(1/2/3 indicates strength of correlation) 3-HIGH, 2-Medium, 1-Low

1	COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
2	CO1	3	2	3	3	2	2	3	2	2	3	3	2	2
	CO2	3	3	3	1	2	3	1	2	3	2	2	1	3
	CO3	3	2	2	1	3	3	1	3	3	3	3	1	3
	CO4	3	3	3	2	1	3	2	1	3	3	3	2	3
	CO5	3	3	2	3	2	3	3	2	3	2	3	2	3
3	Category	CC		AEC		MD E		VAC		SEC		DSE		OE
										✓				
4	Appro						Meeting of Academic Council							

FACULTY OF COMPUTER APPLICATIONS

**BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)**

CBDT25S03

ADVANCED CODING IN JAVA

UNIT-1

9 hours

Exception Handling: Types of Exceptions, Checked vs Unchecked Exceptions, try...catchBlock, finallyBlock, throwKeyword, throwsClause

User-Defined Exceptions: Creating Custom Exception Classes, Throwing User-Defined Exceptions, Handling User-Defined Exceptions

Error Handling Best Practices: Exception Propagation, Stack Trace Analysis, Defensive Coding

UNIT-2

12 hours

Java Collections Framework: Introduction to Collections, Collection Interfaces – List, Set, Map, Collection Hierarchy

Ordered Collections: ArrayList, LinkedList, Vector, Stack – Methods and Use Cases

Unordered Collections: HashSet, LinkedHashSet – Characteristics and Operations

UNIT-3

12 hours

Generics in Java: Generic Classes, Generic Methods, Bounded Types, Wildcards

Lambda Expressions: Syntax and Usage, Functional Interfaces, Lambda with Collections

Functional Programming Concepts: Predicate, Consumer, Function Interfaces, Stream API Basics

UNIT-4

12 hours

Project and Summative Assessment: Application of Exception Handling and Collections, Use of Lambda Expressions in Project Logic, Testing and Debugging, Solution Optimization, Final Presentation and Documentation, Summative Quiz

Total : 45 hours

Text Books

1. Schildt, H. (2022). *Java: The Complete Reference*. 12th edition. McGraw-Hill Education.
2. Balaguruswamy, E. (2023). *Programming with JAVA: A Primer*. 7th edition. McGraw Hill Education.

Reference Books

1. Basham, B., Sierra, K., & Bates, B. (2008). *Head First Java*. 2nd edition. O'Reilly Media.
2. Venkat Subramaniam (2014). *Functional Programming in Java*
3. Mughal, K.A., & Rasmussen, R.W. (2008).
4. Horstmann, C.S. (2019). *Core Java Volume I-Fundamentals*. 11th edition. Pearson Education.

FACULTY OF COMPUTER APPLICATIONS
BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)

ADVANCED CODING IN JAVA

List of Lab Programs

1. Write a Java program that divides two numbers entered by the user and handles ArithmeticException when division by zero occurs.
2. Create a program that simulates an ATM withdrawal. Throw a custom InsufficientFundsException if the user tries to withdraw more than the balance.
3. Develop a program that reads an array of integers from the user and stores them in an ArrayList. Display all even numbers using a lambda expression.
4. Implement a student directory using a HashMap where roll number is the key and student name is the value. Include options to add, remove, and search.
5. Create a LinkedHashSet to store a list of unique cities entered by the user and print them in the order they were entered.
6. Design a program using TreeMap to store product names and their prices. Display all entries in ascending order of product names.
7. Write a generic method that accepts an array of any type and prints all its elements.
8. Create a generic class Box<T> with methods to set and get the value. Instantiate it with different data types.
9. Implement a lambda expression that takes a list of strings and prints only those strings that start with the letter 'A'.
10. Write a program using HashSet to remove duplicate elements from an array of integers.
11. Develop a phonebook application using a Map to store names and phone numbers. Include a search function using the name as a key.
12. Create a program that throws a user-defined exception InvalidAgeException if the user enters an age less than 0 or greater than 150.
13. Write a Java program to demonstrate the use of Comparator and Comparable to sort a list of student objects by name and marks.
14. Use lambda expressions and forEach to print all elements of a List<String> in uppercase.
15. Build a simple inventory management system using ArrayList to store items and their quantities. Allow adding, updating, and removing items.
16. Create a program that uses Optional to avoid NullPointerException when accessing object properties.
17. Write a Java program to group a list of strings by their first character using Map and lambda expressions.
18. Implement a program that filters and prints numbers greater than 50 from a List<Integer> using the Stream API.
19. Design a mini-address book where each entry is a Person object (with name, email, and phone), stored in a HashMap. Perform CRUD operations.
20. Develop a Java application that logs different types of exceptions to a file for debugging using try-catch and FileWriter.

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus

Program Structure for BCA-DT (Full Time)

	WEB TECHNOLOGIES	L	T	P	C	TY/Lb/
						IE
CBCA25C05	Prerequisite – Proficiency in at least one programming language, such as Python, Java, or C++. Understanding of programming concepts such as loops, conditionals, functions, and data structures like arrays, lists. Course Designed by – Faculty of Computer Applications	3	0	2	4	ETL

OBJECTIVES

- Understand the Fundamentals of the Web
- Develop Skills in Front-End Web Development
- Master Back-End Web Technologies
- Explore Web Development Tools and Standards
- Understand Security and Performance

COURSE OUTCOMES (COs)

CO1	To understand the concepts and architecture of the World Wide Web, Markup languages along with Cascading Style Sheets.												
CO2	To understand the concepts of event handling and data validation mechanisms.												
CO3	To understand the concepts of embedded dynamic scripting on client and server side Internet Programming												
CO4	To develop modern interactive web applications												
CO5	Design and implement server-side applications using technologies such as Node.js, PHP, or Python with backend frameworks.												
	Mapping of Course Outcomes with Program outcomes (Pos)												

(1/2/3 indicates strength of correlation) 3-HIGH, 2-Medium, 1-Low

1	COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
2	CO1	3	3	3	3	2	2	2	3	2	3	3	3	2
	CO2	2	3	3	3	2	3	3	3	2	3	2	2	1
	CO3	3	2	2	1	3	3	2	3	3	3	3	1	3
	CO4	3	2	2	3	2	3	2	1	3	2	3	2	3
	CO5	3	3	3	3	2	3	2	3	2	2	3	3	3
3	Category	CC			AEC		MDE		VAC		SEC	DSE		OE
		✓												
4	Approv								Meeting of Academic Council					

FACULTY OF COMPUTER APPLICATIONS
BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)

CBCA25C05

WEB TECHNOLOGIES

UNIT: 1 INTRODUCTION TO HTML **9 Hours**

History of HTML- Objective- Basic Structure of HTML- Header Tags- Body Tags- Paragraph Tags- Tags for creating FORM – TABLE-TEXTAREA-ANCHOR- IMAGE-PIC-LISTS-DIV-NAVBAR- Intro to CSS- - Types-selectors and Responsiveness of a web page

UNIT :2 INTRODUCTION TO BOOTSTRAP **12 Hours**

Introduction to Bootstrap- Downloads- Linking – Using Classes of Bootstrap- Understanding the Grid System in Bootstrap- Intro to WWW, Protocols- Applications and development tools- Web browsers- DNS- Web hosting Provider- Webservers-types- Web hosting in Cloud- Types of web hosting

UNIT: 3 INTRODUCTIONS TO JAVA SCRIPT **12 Hours**

Functions and Events-Document Object model traversing using JavaScript- Output system: Alert-Throughput- Input box- Console Variables-Arrays-Date and String handling- Manipulating CSS through JS- Form Validation: - Required Validator- Length Validator- Pattern Validator.

UNIT: 4 ADVANCED JAVA SCRIPT / INTRODUCTION TO XML **12 Hours**

Combining HTML, CSS and JAVA SCRIPT- Intro to AJAX- Purpose – advantages- disadvantages. Introduction to XML: uses – key concepts-DTD 8 schemas- XSL-XSLT. Intro to XHTML-JSON

Total : 45 hours

Text Books:

1. Laura Lemay, Mastering HTML, CSS & Java Script Web Publishing, BPB Publications, 2016
2. Thomas A. Powell, The Complete Reference HTML &CSS, 5th Edition, 2017
3. HTML and CSS: Design and Build Websites" by Jon Duckett
4. Learning Bootstrap 5" by Matt Lambert.

References:

1. Silvio Moreto, Bootstrap 4 By Example, eBook, 2016
2. Tanweer Alam, Web Technologies, Khanna Book Publishing, 2011
3. Beginning Web Programming with HTML, XHTML, and CSS" by Jon Duckett
4. Web Technologies: A Computer Science Perspective" by Jeffrey C. Jackson
5. Internet and World Wide Web: How to Program" by Paul Deitel, Harvey Deitel, Abby Deitel

Web References:

1. www.javatpoint.com
2. www.W3schools.com
3. <https://www.geeksforgeeks.org/web-technology/>
4. <https://www.freecodecamp.org/>
5. https://www.tutorialspoint.com/web_development_tutorials.htm

FACULTY OF COMPUTER APPLICATIONS
BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)

WEB TECHNOLOGIES

List of Lab Programs:

1. Create your Class timetable using Table Tag and format with External CSS
2. Create your Resume using all HTML- text, size, color and format with Inline CSS
3. Write a HTML/ JAVASCRIPT page to create a login page with regular expressions for validations.
4. Develop a Simple Calculator for addition, Subtraction, Multiplication and Division using Java Script.
5. Create a webpage using Frame with rows and columns where will have HEADER FRAME, LEFT FRAME, RIGHT FRAME and STATUS BAR FRAME.
6. Design a webpage for your college containing description of courses, department, faculties, library - using list, href and anchor tags.
7. Write a JavaScript program using Switch Case.
8. Create XML file to store Student Information – Reg No, Name, Mobile No, DOB, and Email-ID
9. Write a Java Script program using built in Java Script Objects
10. Write a program to retrieve date from a text file and displaying it using AJAX
11. Create your college website using inline, internal and external CSS
12. Create XSL file to convert XML file to XHTML file
13. Write a program for populating values from JSON text.
14. Create XML Scheme for (0).
15. Write a program to transform JSON text to Java Script Object.

FACULTY OF COMPUTER APPLICATIONS
BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)

CBCA25VA2	INDIAN CONSTITUTION	L	T	P	C	TY/Lb/ IE
		2	0	0	2	IE
	Prerequisite –Nil					
	Course Designed by – Faculty of Computer Applications					

OBJECTIVES

1. To enable students to know the key aspects of Indian constitution
2. To enable them to operationalize Indian constitution

COURSE OUTCOMES (COs)

CO1	Knowing how the constitution of India was framed												
CO2	Awareness about fundamental rights and duties												
CO3	Understanding government formation both union and state												
CO4	Idea about judiciary functions and powers												
CO5	Knowledge about election commission and the functions												

(1/2/3 indicates strength of correlation) 3-HIGH, 2-Medium, 1-Low

1	COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
2	CO1	3	2	2	3	3	2	2	2	1	3	3	2	3
	CO2	3	2	2	3	2	3	2	3	1	3	3	3	3
	CO3	3	3	2	2	3	2	1	2	1	2	3	3	2
	CO4	3	3	3	2	3	2	3	2	1	3	1	1	2
	CO5		3						2	2	1	3	2	
3	Category	CC		AEC		MDE		VAC		SEC		DSE		OE
									✓					
4	Appro	Meeting of Academic Council												

FACULTY OF COMPUTER APPLICATIONS

**BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)**

CBCA25VA2

INDIAN CONSTITUTION

UNIT-I An Economic History of the Constitution of India 6 Hours

Historical understanding of the constitution as an economic document. Understanding the Preamble, Starting from the land reform cases in the 1950s to the validity of the bitcoin ban imposed by the RBI, this module signpost all of the important economic moments in the constitutional history of post-colonial India; Constitutional design, Legal Regulation and economic justice.

UNIT-II Fundamental Rights and Business in India 6 Hours

Article 19 (1) (g), grants every citizen the right, to practice any profession, or to carry on any profession, occupation, trade, or business. Like other fundamental rights, this right is subject to reasonable restrictions imposed by the state. This particular provision of the Constitution has been one of the most severely litigated freedoms. Fundamental Duties.

UNIT-III Fiscal Federalism 6 Hours

Article articles 301 to 307 of the Constitution pertains to Trade, Commerce and Inter course within the Territory of India; Challenges associated with fiscal federalism in India including the vertical fiscal imbalance; Article 280 of the Constitution.

UNIT-IV Constitutional battles 6 Hours

This module will be taught through key case studies that demonstrate the complex and fascinating overlap between the constitution and business and shall use Saurabh Kirpal's book Fifteen Judgments.

UNIT-V Constitutional and economy 6 Hours

Cases that Shaped India's Financial Landscape as our guide through this landscape. The case studies include the banning of diesel engine cars, Telecom regulation and ownership of broadcast media, Demonetization, Aadhaar, the lifting of restrictions on dealing in Crypto currencies.

TOTAL: 30 HOURS

References:-

- The Oxford Handbook of the Indian Constitution, Oxford university press.

Cases

1. Rustom Cavasjee Cooper V. Union of India,(1970)1SCC248
2. State of Rajasthan v. Mohan Lal Vyas, AIR 1971 SC 2068 (confirmation of a private monopoly, non-violation of fundamental right)
3. Mithilesh Garg v. Union of India, (1992) 1 SCC 168 : AIR 1992 SC 221 (Right to carry on business, not breached when it is liberalized)
4. Chintaman Rao V. The State of Madhya Pradesh, AIR 1951SC118 (scope of reasonable restrictions in relation to trade and occupation)
5. Cooverjee B.Bharucha V. Excise Commissioner, Ajmer, AIR1954 SC220 (there as on ableness of the restriction imposed may depend upon the nature of the business and prevailing conditions including public health and morality).

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)

CBCA25AXX	Indian or Foreign Language II	L	T	P	C	TY/Lb/IE
		1	1	0	0	IE
Course Designed by – Faculty of Computer Applications						

***For Detailed Course Refer Appendix – III**

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)

SEMESTER – III

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus

Program Structure for BCA-DT (Full Time)

CBCA25C06	OBJECT ORIENTED MODELING AND DESIGN	L	T	P	C	TY/L b/IE
		3	0	0	3	TY
Prerequisite - Basic knowledge of object basis and Unified modeling language diagrams.						
Course Designed by – Faculty of Computer Applications						

OBJECTIVES

- Develop a working understanding of formal object-oriented analysis and design processes.
- Develop an appreciation for and understanding of the risks inherent to large-scale software development-
- Develop the skills to determine which processes and OOAD techniques should be applied to a given project.

COURSE OUTCOMES(Cos)

Students completing this course were able to

CO1	To understand the Basic concepts of object oriented system development.
CO2	To understand the methodology and UML.
CO3	To understand the concept of object oriented analysis identifying use case.
CO4	To understand the concept of object oriented design.
CO5	To understand the concept of software quality assurance.

Mapping of Course Outcome with Program Outcome(POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	3	3	2	2	3	2	2
CO2	2	2	3	2	3	3	2	3	3
CO3	3	2	2	1	3	3	1	3	3
CO4	3	3	3	2	1	3	2	1	3
CO5	2	3	2	3	3	3	3	3	3
Cos/PSOs	PS01	PS02	PS03	PS04					
CO1	3	3	2						
CO2	2	2	1						
CO3	3	3	3						
CO4	3	3	2						
CO5	3	2	2						

3/2/1Indicates Strength Of Correlation, 3 –High, 2-Medium, 1-Low

Category	CC	AEC	MDE	VAC	SEC	DSE	OE
	✓						
Approval	Meeting of Academic Council						

FACULTY OF COMPUTER APPLICATIONS

**BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)**

CBCA25C06

OBJECT ORIENTED MODELING AND DESIGN

UNIT I

9 Hours

Introduction OOSD Methodology - Unified approach - Object basics - Object state and properties - Behavior Methods -Messages - Information hiding - Class hierarchy - Relationships – Associations - Aggregations- Identity - Dynamic binding - Persistence - Meta classes - Object oriented system development life cycle - S/W device process- High quality Software Object Oriented System Development- Reusability.

UNIT II

9 Hours

Methodology and UML Introduction – Survey – Rumbugh- Booch- Jacobson methods – Patterns – Frameworks - Unified approach – Unified modeling language - Static and Dynamic models - UML diagrams - Class diagram - Use case diagrams -Dynamic modeling diagrams - Interaction Diagrams- sequence diagrams.

UNIT III

9 Hours

Object Oriented Analysis Identifying Usecase - Business object analysis - Usecase driven object oriented analysis- Usecase model – Documentation - Introduction- classification theory- Approaches for Identifying classes - Identifying object- relationships- attributes- methods - Super-sub class-Aggregation Class Responsibility - Object responsibility.

UNIT IV

9 Hours

Object Oriented Design -Design process – Axioms - Corollaries - Designing classes - Class visibility - Refining attributes - Methods and protocols - Object storage and object interoperability – DBMS - Object relational systems - Designing interface objects - Macro and Micro level processes - The purpose of a view layer interface

UNIT V

9 Hours

Software Quality assurance - Testing strategies - Object orientation testing - Test cases - Test Plan - Debugging principles -Usability - Satisfaction-Usability testing-Satisfaction testing - Software Reviews and Inspections - Test Metrics and Measurements.

Total : 45 hours

REFERENCES:

1. Ali Bahrami (2003), Object Oriented System Development, McGraw Hill International Edition.
2. Craig Larman(2002) Applying UML and Patterns (2nd ed.) Pearson.
3. James Rumbaugh (2004) Object Oriented Modeling Language (2nd ed.), PHI.

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus

Program Structure for BCA-DT (Full Time)

CBDT25C02	Building Interactive Webpage using modern Javascript	L	T	P	C	TY/Lb/ IE
	Prerequisite: Basic problem-solving techniques, Programming, database, and time commitment	3	0	4	5	ETL
	Course Designed by – Faculty of Computer Applications					

OBJECTIVES:

- Understand HTML5 structure, semantic elements, and responsive design using CSS and Bootstrap.
- Learn JavaScript fundamentals including variables, control flow, functions, and unit testing.
- Work with arrays, objects, JSON, and REST APIs for dynamic web applications.
- Manipulate the DOM and handle events for interactive user experiences.
- Apply skills in a hands-on project involving design, development, testing, and presentation.

COURSE OUTCOMES (COs)

CO1	Build websites that automatically adjust to different screen sizes, ensuring optimal user experience across all devices.													
CO2	Use the latest HTML and CSS standards to structure and style your web pages, creating rich, accessible, and visually appealing designs.													
CO3	Leverage the power of the Bootstrap framework to accelerate the development of responsive and consistent layouts.													
CO4	Add interactive features to your pages using modern JavaScript (ES6), making your web applications engaging and dynamic.													
CO5	Apply skills in a hands-on project involving design, development, testing, and presentation.													
	Mapping of Course Outcomes with Program outcomes (Pos)													
	(1/2/3 indicates strength of correlation) 3-HIGH, 2-Medium, 1-Low													

1	Cos/ PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4		
2	CO1	3	2	3	3	2	2	3	2	2	3	3	2	2		
	CO2	2	2	3	2	3	3	2	3	3	2	2	1	3		
	CO3	3	2	2	1	3	3	1	3	3	3	3	3	2		
	CO4	3	3	3	2	1	3	2	1	3	3	3	2	3		
	CO5	2	3	2	3	3	3	3	3	3	3	2	2	3		
3	Category		CC		AEC		MDE		VAC		SEC		DSE		OE	
4	Approval							Meeting of Academic Council								

FACULTY OF COMPUTER APPLICATIONS

**BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)**

CBDT25C02 BUILDING INTERACTIVE WEBPAGE USING MODERN JAVASCRIPT

UNIT-1

9 HOURS

Webpage: HTML Document Anatomy, Markup Language, Tags, Paired Tags, Unpaired Tags, HTML5 Elements – Heading, Paragraph, Image, Anchor, List, Live Server Deployment, Emmet Toolkit.

Semantic Design: Semantic Elements, Header, Nav, Article, Footer, Section, Table, ARIA Labels.

Styling: Cascading Style Sheets, CSS Selectors, CSS Properties, Page Layouts, CSS Box Model, Block Element, Inline Element, Position Properties, Z-Index, Flexbox Model.

Responsive Webpage Design: Responsive Design Patterns, CSS Flexbox, CSS Grid, CSS Media Query, Bootstrap Framework, Bootstrap Grid System, Bootstrap Components, Bootstrap Utilities

UNIT-2

12 HOURS

Introduction to JavaScript: Variables, Constants, Declarations, Hoisting, Primitive Datatypes, Literals, Template Literals, Operators, typeof operator

Control Structures: Conditional Constructs, if statement, if...else statement, if...else if statement, Nested if, switch case, Loop Constructs, for loop, while loop, do...while loop. **Modular Programming:** Function Definition, Function Call, Arguments, Parameters, Return Values,

Variable Scope, Default Parameters, In-built Functions

Unit Testing: Unit Testing, Mocha, Chai, describe()Function, it()Function, Mocha Hooks.

UNIT-3

12 HOURS

Arrays and Objects: Data modelling, Object, Property, Methods, Array Structure, Array Length, Indexing, for...ofLoop, Array Destructuring, Spread Operator, Array Methods, Arrow Function,

JSON and REST APIs: JavaScript Object Notation – JSON, Conversions, Client-Server

Architecture, Representational State Transfer – REST, HTTP, Request, Response, HTTP Methods,

Status Codes **DOM:** Document Object Model - Elements, Properties and Methods, Events, Form

Validation **JavaScript Promise Object:** Synchronous, Asynchronous, Callbacks, Promise Object, Axios API

UNIT-4

12 HOURS

Project and Summative Assessment: Project Planning and Design, Solution Development, Testing and Debugging, Review and Refactoring, Project Documentation and Presentation, Summative Quiz

Total : 45 hours

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus Program Structure for BCA-DT (Full Time)

Text Books

1. Duckett, J. (2014). *HTML and CSS: Design and Build Websites*. 1st edition. India: Wiley India Pvt. Ltd.
2. Robbins, J.N. (2018). *Learning Web Design: A Beginner's Guide to HTML, CSS, JavaScript, and Web Graphics*. 5th edition. O'Reilly Media.

Reference Books

1. Freeman, E., & Robson, E. (2014). *Head First HTML and CSS*. 2nd edition. O'Reilly Media.
2. Bovey, J., & Sharp, H. (2022). *Interaction Design: Beyond Human-Computer Interaction*. 5th edition. Wiley.
3. Krug, S. (2014). *Don't Make Me Think: A Common Sense Approach to Web Usability*. 3rd edition. New Riders.
4. Norman, D.A. (2013). *The Design of Everyday Things*. Revised and Expanded Edition. Basic Books.

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus Program Structure for BCA-DT (Full Time)

CBDT25C02

BUILDING INTERACTIVE WEBPAGE USING MODERN JAVASCRIPT

List of Lab Programs

1. Create a webpage using HTML5 semantic elements to showcase two historical landmarks of your country, including a header, main content section with images, and a footer.
2. Design a responsive webpage layout using CSS Flexbox and CSS Grid that adapts to different screen sizes for a personal portfolio website.
3. Style a navigation bar using CSS properties and selectors to include a brand logo, menu items, and a call-to-action button.
4. Use the Bootstrap framework to create a three-column pricing table with different subscription plans, ensuring responsiveness.
5. Implement a webpage with a fixed header and footer while allowing the main content to scroll, demonstrating the use of CSS position properties and the Z-index.
6. Write a program to accept user's first name, last name, and age, then print a greeting message with these inputs.
7. Create a simple calculator which logs the results along with their data types using the typeof operator.
8. Write a program that takes a student's marks (out of 100) as input and assign a grade based on the following criteria:
 - a. 90+ → A
 - b. 80-89 → B
 - c. 70-79 → C
 - d. 60-69 → D
 - e. Below 60 → F
9. Create a program that takes a traffic light color (red, yellow, green) as input and prints the corresponding action:
 - a. Red → "Stop"
 - b. Yellow → "Get Ready"
 - c. Green → "Go"
10. Write a program that takes an integer input and prints its reverse using a while loop. Example:
Input = 1234, Output = 4321
11. Ask the user for a number (N) and print its multiplication table up to 10.
12. Write a program that calculates the sum of digits of a given number Example:
Input = 678, Output = $6 + 7 + 8 = 21$
13. Create a function that takes a number as input and returns its factorial.
14. Write a function that checks if a given number is prime or not.
15. Write unit tests using Mocha and Chai to verify if a given function correctly returns the square of a number.
16. Create an array of student objects with properties like name, age, and marks, and filter students who scored above 80.
17. Create an array of employee objects with properties like name, designation, salary, and experience, then filter employees with more than 5 years of experience. Increase the salary of employees with less than 3 years of experience by 10% using array methods.
18. Convert a JavaScript object containing product details into JSON format and parse it back into an object.
19. Fetch data from a public REST API and display specific details like name, price, and availability on a webpage.

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus

Program Structure for BCA-DT (Full Time)

20. Create a shopping cart system where users can add, remove, and view cart items dynamically using DOM manipulation.
21. Implement form validation for a login form, ensuring the username is at least 5 characters long. Validate a password field to require at least one uppercase letter, one number, and a minimum of 8 characters. Display error messages dynamically if form validation fails, preventing submission.
22. Create a JavaScript program that fetches weather data asynchronously using the Axios API and displays temperature and conditions.
23. Create a JS program to fetch posts from <https://jsonplaceholder.typicode.com/posts> and display the title and body of the first 5 posts. Handle failed responses gracefully.

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus

Program Structure for BCA-DT (Full Time)

CBDT25C03	Building Single Page Applications using React	L	T	P	C	TY/Lb/ IE
	Prerequisite: Design responsive and interactive webpages using HTML5, CSS3, Bootstrap, Modern JavaScript.	2	0	4	4	ETL
	Course Designed by – Faculty of Computer Applications					

OBJECTIVES:

- Understand React fundamentals, component structure, and JSX rendering.
- Manage component state and handle events effectively using hooks like useState and useEffect.
- Apply styling techniques including CSS Modules and Material Design in React.
- Implement form handling, validation, and dynamic inputs using react-hook-form.
- Build a complete React project with routing, testing, debugging, and documentation.

COURSE OUTCOMES (COs)

CO1	Get started with React fundamentals, including components, JSX, the virtual DOM, and declarative rendering techniques to build dynamic SPAs.														
CO2	Manage component state using React Hooks and fetch data from remote servers for dynamic application behaviour.														
CO3	Implement unit testing with Jest and React Testing Library to ensure application reliability.														
CO4	Style React components using modern CSS techniques and Material Design for responsive, user-friendly interfaces.														
CO5	Handle user interactions with forms, create flexible forms using react-hook-form, and implement navigation with React Router for multi-page apps.														
	Mapping of Course Outcomes with Program outcomes (Pos)														
	(1/2/3 indicates strength of correlation) 3-HIGH, 2-Medium, 1-Low														

1	Cos/ PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4	
2	CO1	3	2	3	3	2	2	3	2	2	3	3	2	2	
	CO2	2	2	3	2	3	3	2	3	3	2	2	1	3	
	CO3	3	2	2	1	3	3	1	3	3	3	3	3	2	
	CO4	3	3	3	2	1	3	2	1	3	3	3	2	3	
	CO5	2	3	2	3	3	3	3	3	3	3	2	2	3	
3	Category		CC	AEC	MDE	VAC		SEC			DSE			OE	
								✓							
4	Approval							Meeting of Academic Council							

FACULTY OF COMPUTER APPLICATIONS

**BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)**

CBDT25C03

BUILDING SINGLE PAGE APPLICATIONS USING REACT

UNIT-1

9 HOURS

React Fundamentals: Components, JSX, Virtual DOM, Declarative Rendering, **Static Single Page Applications (SPA):** SPA vs MPA (Multi-Page Application), Structure, Design, and Layout, **Rendering components:** Conditional rendering, lists and keys, props

UNIT-2

12 HOURS

State Management: useState, Component State, Event Handling, lift state up, **Data Fetching:** Remote Data Retrieval, useEffect

UNIT-3

12 HOURS

Styling Components: CSS Modules, CSS in JS, Material Design, **Form Handling:** Controlled Components, Forms in React, **Extensible Forms:** react-hook-form, Form Validation, Handling Dynamic Inputs, **Routing:** React Router, View Navigation

UNIT-4

12 HOURS

Project and Summative Assessment: Project Planning and Design, Solution Development, Testing and Debugging, Review and Refactoring, Project Documentation and Presentation, Summative Quiz

Total : 45 hours

Text Books

1. Banks, A., & Porcello, E. (2020). *Learning React: Modern Patterns for Developing React Apps*. 3rd edition. O'Reilly Media.
2. Marder, A. (2022). *React Projects: Build modern web applications using React 18 with TypeScript and Tailwind CSS*. Packt Publishing.

Reference Books

1. Griffiths, D. & Griffiths, L. (2020). *Head First React: A Brain-Friendly Guide to Building Web Apps with React and Redux*. O'Reilly Media.
2. Wieruch, R. (2022). *The Road to React: Your journey to master plain yet pragmatic React.js*. 2022 Edition. Independently Published.
3. Accomazzo, A., Murray, N., & Lerner, A. (2020). *Fullstack React: The Complete Guide to ReactJS and Friends*. Fullstack.io.
4. Tello, C. (2023). *Mastering React Test-Driven Development: Build rock-solid, well-tested web apps with React, Redux, and GraphQL*. Packt Publishing.

FACULTY OF COMPUTER APPLICATIONS

**BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)**

CBDT25C03 BUILDING SINGLE PAGE APPLICATIONS USING REACT

List of Lab Programs

1. Create a React component that displays a personalized welcome message using JSX and updates dynamically based on user input.
2. Develop a simple SPA layout using React components for a header, main content, and footer.
3. Build a Card component that receives title, description, and image as props and renders them dynamically.
4. Implement a navigation bar component with static links and explain the advantage of using reusable components in SPAs.
5. Create a button component that accepts a label as a prop and displays an alert with a custom message when clicked.
6. Create a React component that uses useState to toggle between light and dark mode when a button is clicked.
7. Build a counter component that increments or decrements a number when buttons are clicked, ensuring the state updates correctly.
8. Fetch and display a list of users from a remote API using useEffect, showing their names and emails in a list.
9. Write a simple unit test using Jest and React Testing Library to check if a button click updates the displayed count.
10. Lift state up by creating a parent component that tracks a selected item and updates child components when the selection changes.
11. Style a React component using CSS Modules and dynamically apply different styles based on a state value.
12. Implement a to-do list using controlled components, where users can add, edit, and delete tasks using form inputs.
13. Create a form using react-hook-form that validates user input, ensuring the email and password fields meet specific criteria.
14. Use useRef to manage focus on an input field when a button is clicked in a form component.
15. Build a React Router setup with at least three pages (Home, About, Contact) and navigation links between them.
16. Fetch product details from an API and display them in a styled card layout using Material UI components.
17. Design a responsive navigation bar using Material UI components and ensure it adapts to different screen sizes.
18. Implement a login form using Material UI, applying proper form validation and displaying error messages when input criteria are not met.

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus

Program Structure for BCA-DT (Full Time)

CBCA25C08	SOFTWARE ENGINEERING	L	T	P	C	TY/Lb/ IE
		3	0	0	3	TY
	Prerequisite –Basic understand of Software, Applications, Programming fundamentals.					
	Course Designed by –Faculty of Computer Applications					

OBJECTIVES

- Understand Software Development Processes
- Develop Systematic Engineering Practices
- Enhance Problem Solving and Design Skills
- Improve Software Quality

COURSE OUTCOMES (COs)

CO1	To Acquire a comprehensive understanding of the software development lifecycle and its application in contemporary software engineering practices.
CO2	To Develop proficiency in project management methodologies and strategic decision-making for successful software project execution.
CO3	To Master the art of software design, development, and testing to produce robust and efficient software solutions.
CO4	Implement software testing techniques for quality assurance and debugging.
CO5	Use project management tools and techniques to manage time, cost, and resources effectively.

Mapping of Course Outcomes with Program outcomes (POs)

(1/2/3 indicates strength of correlation) 3-HIGH, 2-Medium, 1-Low

1	COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO 1	PSO 2	PSO 3	PSO 4
2	CO1	3	2	3	3	3	2	3	3	2	3	3	2	2
	CO2	2	3	3	1	2	3	1	2	3	2	2	3	3
	CO3	3	2	2	3	3	1	3	3	1	3	3	1	2
	CO4	2	3	3	2	1	3	2	1	3	3	1	2	3
	CO5	3	3	2	3	2	3	3	2	3	3	2	3	3
3	Category		CC	AEC	MDE	VAC		SEC	DSE			OE		
			✓											
4	Approval					Meeting of Academic Council								

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus Program Structure for BCA-DT (Full Time)

CBCA25C08

SOFTWARE ENGINEERING

UNIT I

9 Hours

Introduction: The evolving role of software, changing nature of software, layered technology, a process framework, Process models' The waterfall model, incremental process models, evolutionary process models, the unified process.

Agile software development: Agility Principles, Agile methods, Plan-driven and agile development, Extreme programming, Scrum, A Tool Set for the Agile Process.

UNIT II

9 Hours

Software Requirements Engineering: Functional and non-functional requirements, the software requirements document, Requirements specification, Requirements engineering processes, Requirements elicitation and analysis, Requirements validation, Requirements management .

Risk management: Reactive Vs proactive risk strategies, software risks, risk identification, risk projection, risk refinement, RMMM, RMMM plan.

UNIT III

9 Hours

Project Planning: Software pricing, Plan-driven development, Project scheduling. Agile planning, estimation techniques.

Design: Design process and design quality, design concepts, the design model, software architecture, data design, architectural design, Basic structural modeling, class diagrams, sequence diagrams, Collaboration diagrams, use case diagrams, component diagrams.

UNIT IV

9 Hours

Testing Strategies: A strategic approach to software testing, test strategies for conventional software, black-box and white-box testing, validation testing, system testing, the art of debugging.

Product metrics: Software quality, metrics for analysis model, metrics for design model, metrics for source code, metrics for testing, metrics for maintenance.

UNIT V

9 Hours

Quality Management: Quality concepts, software quality assurance, software reviews, formal technical reviews, statistical software quality assurance, software reliability. **Release Management:** Release planning, development and build plans, release strategies, risk management, and post-deployment monitoring.

Product sustenance: Maintenance, updates, End of life, migration strategies.

Total : 45 hours

Text Books

1. Software Engineering, N S Gill, Khanna Publishing House, 2023 (AICTE Recommended Textbook).
2. Software Engineering, Ian Somerville, 9th edition, Pearson education.
3. Software Engineering A practitioner's Approach, 8th edition, Roger S Pressman, Bruce R Maxim McGraw Hill Education, 2015.

Reference Books

1. Stephen Schach, Software Engineering 7th ed, McGraw-Hill, 2007.
2. Software Engineering' Principles and Practice Hans van Vliet.

FACULTY OF COMPUTER APPLICATIONS

**BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)**

CBCA25EXX	Professional Elective-I	L	T	P	C	TY/Lb/IE
		1	0	4	3	ETL/TY
	Course Designed by – Faculty of Computer Applications					

Refer to Appendix-I for Professional Electives and choose either one specialization from the basket

CBCA25VAX	YOGA/SPORTS/NCC/NSS/DISASTER MANAGEMENT AND PHYSICAL FITNESS	L	T	P	C	TY/Lb/IE
		0	0	4	2	IE
	Prerequisite – +2					
	Course Designed by – Faculty of Computer Applications					

***For Detailed Course Refer Appendix – IV**

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)

SEMESTER – IV

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus

Program Structure for BCA-DT (Full Time)

CBCA25C09	ENTREPRENEURSHIP AND STARTUP ECOSYSTEM	L	T	P	C	TY/Lb/IE
		1	1	0	2	IE
	Prerequisite : +2					
	Course Designed by – Faculty of Computer Applications					

OBJECTIVES

1. To enrich the students towards the knowledge of entrepreneurial skills and to make the students understand the approaches to attain the goals of the business.
2. To recognize the value of problem solving, effective business management and entrepreneurial thinking to business development.
3. To identify the key factors and be able to apply the key entrepreneurial process – command and control, calculated risk-taking and opportunity recognition to business development

COURSE OUTCOMES (Cos) Students completing this course Will be able to

CO1	Provide information related to entrepreneurship
CO2	Make students state the importance of entrepreneurial development
CO3	State the importance of business idea generations
CO4	Gain knowledge on various EDP organized by Government Sectors
CO5	Provide them the nature of economic development and entrepreneurial growth.

Mapping of Course Outcome with Program Outcome (POs)

1	COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
2	CO1	2	3	2	3	3	3	3	2	3	3	3	2	2
	CO2	3	3	3	3	3	3	3	3	3	2	2	3	2
	CO3	3	2	3	3	2	3	3	3	2	3	3	2	3
	CO4	2	3	2	3	3	3	3	2	3	3	3	3	3
	CO5	3	3	3	3	2	3	2	3	3	3	2	3	2

3/2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- Low

Category	CC	AEC	MDE	VAC	SEC	DSE	OE
	✓						
Approval	Meeting of Academic Council						

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus Program Structure for BCA-DT (Full Time)

CBCA25C09

ENTREPRENEURSHIP AND STARTUP ECOSYSTEM

Unit 1: Introduction to Entrepreneurship & Family Business	6 Hours
<ul style="list-style-type: none">▪ Definition and Concept of entrepreneurship▪ Entrepreneur Characteristics▪ Classification of Entrepreneurs▪ Role of Entrepreneurship in Economic Development –Start-ups	
Unit 2: Family Business	6 Hours
Knowing the characteristics of Family business with discussion on few Indian cases of Family Business like Murugappa, Dabur, Wadia, Godrej, Kirloskar etc.	
Unit 3: Evaluating Business opportunity	6 Hours
<ul style="list-style-type: none">▪ Sources of business ideas and opportunity recognition▪ Guesstimating the market potential of a business idea▪ Feasibility analysis of the idea▪ Industry, competition and environment analysis	
Unit 4: Building Blocks of starting ventures	6 Hours
<ul style="list-style-type: none">▪ Low cost Marketing using digital technologies▪ Team building from scratch▪ Venture Funding▪ Establishing the value-chain and managing operations▪ Legal aspects like IPR and compliances	
Unit 5: Start-up Ecosystem	6 Hours
<ul style="list-style-type: none">▪ Know the components of the start-up ecosystem including Incubators, Accelerators, Venture Capital Funds, Angel Investors etc.▪ Know various govt. schemes like Start-up India, Digital India, MSME etc.▪ Sources of Venture Funding available in India▪ Source of Technology, Intellectual Property management	

Total : 30 hours

Text Books (Latest Edition):

1. Startup India Learning Program by Start Up India available at www.startupindia.gov.in
2. Entrepreneurship, Rajeev Roy, Oxford University Press-family Business Management by Rajiv Agarwal, Sage Publishing
3. Anish Tiwari , “Mapping the Startup Ecosystem in India”, Economic & Political Weekly.

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus

Program Structure for BCA-DT (Full Time)

CBCA25C10	COMPUTER NETWORKS	L	T	P	C	TY/L b/IE					
Prerequisite - Basic Networking Knowledge: Familiarity with basic networking concepts such as IP addressing and network topologies.											
Course Designed by – Faculty of Computer Applications											

OBJECTIVES

- Understand the basic concepts and principles of computer networking.
- Familiarize students with the layered architecture (OSI and TCP/IP models).
- Explain protocols, standards, and technologies used in each layer.
- Provide knowledge of addressing, routing, and switching.
- Develop skills in designing and analyzing small to medium-sized networks.
- Introduce network security, wireless networks, and emerging trends.

COURSE OUTCOMES (COs)

CO1	Understand the fundamental concepts of Computer Networks and their applications.												
CO2	Develop problem-solving skills related to network design, implementation, and troubleshooting												
CO3	Implement network protocols and configure network devices.												
CO4	Configure basic networking components and troubleshoot network issues.												
CO5	Understand basic concepts of network security, firewalls, and encryption.												
	Mapping of Course Outcomes with Program outcomes (POs)												
	(1/2/3 indicates strength of correlation) 3-HIGH, 2-Medium, 1-Low												

1	COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO 2	PSO 3	PSO 4	
2	CO1	3	2	3	2	2	2	2	2	2	3	3	2	3	
	CO2	3	3	2	3	1	3	3	1	3	2	3	1	3	
	CO3	3	3	3	1	3	2	1	3	2	3	2	3	2	
	CO4	3	3	3	2	3	3	2	3	3	3	2	1	3	
	CO5	3	3	3	3	2	3	3	2	3	3	3	1	3	
3	Category	CC		AEC		MDE		VAC		SEC		DSE		OE	
		✓													
4	Approval	Meeting of Academic Council													

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum & Syllabus Program Structure for BCA-DT (Full Time)

CBCA25C10

COMPUTER NETWORKS

UNIT I: Introduction to Computer Networks

9 Hours

Overview of Computer Networks: Definition and Objectives, Applications and Examples. **Network Components and Architecture, Network Models:** OSI Model: Layers and Functions, TCP/IP Model: Layers and Functions. **Network Topologies:** Physical vs. Logical Topologies, Common Topologies: Star, Ring, Bus, Mesh, Hybrid, Advantages and Disadvantages of Each Topology. **Data Transmission:** Analog vs. Digital Signals, Transmission Modes: Simplex, Half-Duplex, Full-Duplex, Bandwidth and Latency **Networking Devices:** Routers, Switches, Hubs, Bridges, Gateways, Functions and Configurations of Each Device.

UNIT II: Data Link Layer

9 Hours

Data Link Layer Fundamentals: Functions of the Data Link Layer, Framing, Error Detection, and Error Correction, Flow Control Mechanisms. **Ethernet:** Ethernet Standards and Frame Structure, MAC Addressing and ARP, Ethernet Switching: Basic Concepts and Methods.

UNIT III: Networking Protocols & Network Layer

9 Hours

Network Protocols: Introduction to TCP/IP Protocol Suite, IP Addressing: IPv4 and IPv6 Subnetting and CIDR Notation. **Address Resolution Protocol (ARP):** ARP Operation and Table, ARP Spoofing and Security Considerations. **Virtual LANs (VLANs):** Concept of VLANs, VLAN Tagging and Configuration, Benefits and Use Cases. **Network Layer:** IP Routing: Static vs. Dynamic Routing, Routing Protocols: RIP, OSPF, BGP, Network Address Translation (NAT),

UNIT IV: Transport Layer

9 Hours

Transport Layer: TCP vs. UDP: Characteristics and Use Cases, TCP Handshake and Connection Management, Flow Control and Congestion Control in TCP, **Congestion Control Algorithms:** Techniques: Slow Start, Congestion Avoidance, Fast Retransmit, Fast Recovery, TCP Variants: TCP Reno, TCP Vegas. **Quality of Service (QoS):** QoS Principles and Mechanisms, Differentiated Services (DiffServ) and Integrated Services (IntServ). **Network Security Fundamentals:** Threats and Vulnerabilities, Basic Security Mechanisms: Firewalls, VPNs, Encryption

UNIT V: Application Layer and Emerging Technologies

9 Hours

Application Layer Protocols: HTTP/HTTPS: Structure and Operation, FTP, SMTP, POP3, IMAP: Protocols and Uses, DNS: Domain Name System and Resolution

Network Applications: Web Browsing, Email Communication, File Transfer, Voice over IP (VoIP) and Streaming. **Emerging Technologies:** Software-Defined Networking (SDN), Network Function Virtualization (NFV), Internet of Things (IoT) and Its Impact on Networking. **Network Management:** SNMP: Simple Network Management Protocol, Network Monitoring Tools and Techniques. **Future Trends in Networking:** 5G and Beyond, Network Automation and Artificial Intelligence in Networking.

Total : 45 hours

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus Program Structure for BCA-DT (Full Time)

Text Books:

- Andrew S. Tanenbaum, "*Computer Networks*", 5th Edition, Pearson Education, 2011.
- James F. Kurose and Keith W. Ross, "*Computer Networking: A Top-Down Approach*", 8th Edition, Pearson, 2021.

Reference Books:

1. Behrouz A. Forouzan, "*Data Communications and Networking*", 5th Edition, McGraw-Hill Education, 2012.
2. Larry L. Peterson and Bruce S. Davie, "*Computer Networks: A Systems Approach*", 6th Edition, Morgan Kaufmann, 2019.
3. Bhavneet Sidhu, *An Integrated Approach to Computer Networks*, Khanna Publishing House, 2023.
4. *Mastering PC Hardware & Networking*, Khanna Publishing House, 2024.

Web Resources:

1. Cisco Networking Academy – Online Courses and Resources
2. NetworkLessons.com – Tutorials on Various Networking Topics

FACULTY OF COMPUTER APPLICATIONS
BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)

CBDT25S04	Build Back-end Application using Spring-L1	L	T	P	C	TY/Lb/
						IE
	Prerequisite: Java Programming Fundamentals, Object-Oriented Programming Concepts, Exception Handling, Lambda Expressions, Java Collections	3	0	4	5	ETL
	Course Designed by – Faculty of Computer Applications					

OBJECTIVES:

- Understand Spring Framework fundamentals, including IoC, Dependency Injection, and bean lifecycle.
- Build Spring Boot applications with auto-configuration and property management.
- Develop RESTful web services with HTTP methods and JSON data handling.
- Integrate Spring Data JPA for database operations and manage full-stack application flow.
- Apply knowledge in a hands-on project involving development, testing, debugging, and documentation.

COURSE OUTCOMES (COs)

CO1	Build and configure backend applications using the Spring Framework and Spring Boot.
CO2	Structure and manage Java web applications efficiently using Maven build automation.
CO3	Apply Inversion of Control (IoC) and Dependency Injection (DI) using annotations to create flexible, maintainable applications.
CO4	Develop RESTful web services with Spring Boot and test them using tools like Postman.
CO5	Perform data persistence operations using Spring Data JPA and connect applications to relational databases.
	Mapping of Course Outcomes with Program outcomes (Pos)
	(1/2/3 indicates strength of correlation) 3-HIGH, 2-Medium, 1-Low

1	Cos/ PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4	
2	CO1	3	2	3	3	2	2	3	2	2	3	3	2	2	
	CO2	2	2	3	2	3	3	2	3	3	2	2	1	3	
	CO3	3	2	2	1	3	3	1	3	3	3	3	3	2	
	CO4	3	3	3	2	1	3	2	1	3	3	3	2	3	
	CO5	2	3	2	3	3	3	3	3	3	3	2	2	3	
3	Category	CC		AEC		MDE		VAC		SEC		DSE		OE	
										✓					
4	Approval						Meeting of Academic Council								

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)

CBDT25S04

BUILD BACK-END APPLICATION USING SPRING-L1

UNIT 1

9 HOURS

Introduction to Spring and Project Setup: Overview of Spring Framework and Spring Boot, Java Web Application Architecture, Introduction to Backend Development, Maven Installation and Setup, Maven Commands, Structuring and Packaging Java Applications

Spring Core Concepts: Inversion of Control (IoC), Dependency Injection (DI), Types of DI – Constructor and Setter Injection, Bean Lifecycle, Bean Scopes, Autowiring using Annotations

Modular Programming: @Component, @Autowired, @Scope, @Bean, Java-based Configuration vs XML-based

UNIT 2

12 HOURS

Spring Boot Fundamentals: Building a Spring Boot Application Skeleton, Auto-Configuration, application.properties and application.yml, Running Applications with Spring Boot

RESTful Web Services: REST Principles, Creating REST Controllers using @RestController, Handling HTTP Methods – GET, POST, PUT, DELETE, Request and Response Handling (JSON), Testing APIs using Postman

UNIT 3

12 HOURS

Spring Data JPA Integration: Introduction to JPA, Spring Data JPA Configuration, Creating JPA Repositories, CRUD Operations with JpaRepository, Connecting to Relational Databases

Full-stack Application Flow: Integrating Controller, Service, and Repository Layers, Exception Handling in REST APIs, Logging and Debugging, Running and Building Applications with Maven

UNIT 4

12 HOURS

Project and Summative Assessment: Project Planning and Design, Solution Development, Testing and Debugging, Review and Refactoring, Project Documentation and Presentation, Summative Quiz

Total : 45 hours

Text Books

1. Johnson, R., Hoeller, J., Arendsen, A., & Harrop, R. (2021). *Professional Java Development with the Spring Framework*. Wiley India Pvt. Ltd.
2. Walls, C. (2022). *Spring in Action*. 6th edition. Manning Publications.

Reference Books

1. Mak, M. (2022). *Spring Boot in Practice*. Manning Publications.
2. Craig, W. (2019). *Spring Boot: Up & Running*. O'Reilly Media.
3. Bain, K. (2016). *Learning Spring Boot 2.0: Simplify the development of lightning-fast applications*. Packt Publishing.
4. Sengupta, P. (2021). *Beginning Spring Boot 2: Applications and Microservices with the Spring Framework*. Apress.

FACULTY OF COMPUTER APPLICATIONS

**BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)**

CBDT25S04

BUILD BACK-END APPLICATION USING SPRING-L1

List of Lab Programs

1. Set up a basic Maven project and define dependencies for Spring Boot and JPA.
2. Create a simple Java application using Spring Framework with constructor-based and setter-based Dependency Injection.
3. Develop a Spring application that demonstrates the use of @Component, @Autowired, and @Beanannotations.
4. Implement and test different Bean scopes (singleton, prototype) and observe their behavior.
5. Build a basic Spring Boot application with a proper package structure and run it using Maven.
6. Create a REST controller that handles CRUD operations for a Product entity.
7. Use Postman to test various REST endpoints and analyze request-response cycles.
8. Develop a Spring Boot service that accepts a POST request with JSON data and returns a response.
9. Connect your Spring Boot application to a relational database using JPA and Hibernate.
10. Create a JPA entity and corresponding repository interface to perform database operations.
11. Perform CRUD operations on a Usertable using JpaRepository.
12. Add exception handling to your REST service using @ControllerAdviceand custom exceptions.
13. Log API requests and responses using Spring's logging mechanisms.
14. Demonstrate the difference between constructor injection and field injection in a sample service.
15. Use Maven to build and package your Spring Boot application into a .jarfile.
16. Deploy your Spring Boot application locally and verify API endpoints.
17. Design and implement a service layer that encapsulates business logic between controller and repository.
18. Create a reusable utility class and demonstrate its use within multiple components using DI.
19. Write unit tests for a service class using JUnit and mock dependencies using Mockito.
20. Implement a complete backend for a Bookstore or Inventory Management System using Spring Boot and JPA.

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus

Program Structure for BCA-DT (Full Time)

CBCA25C11	ARTIFICIAL INTELLIGENCE	L	T	P	C	TY/Lb/ IE
		3	0	4	5	ETL
Prerequisite - Basic understanding of computer science concepts, including data structures and algorithms. Proficiency in minimum one programming language, such as Python.						
Course Designed by – Faculty of Computer Applications						

OBJECTIVES

- Understand the definition, history, and evolution of Artificial Intelligence.
- Identify different fields and applications of AI (e.g., robotics, computer vision, natural language processing, machine learning).
- Develop foundational skills in programming languages commonly used in AI (e.g., Python).
- Apply AI techniques to solve real-world problems (e.g., image classification, sentiment analysis, chatbots).
- Evaluate the ethical, legal, and societal implications of AI technologies.

COURSE OUTCOMES (COs)

CO1	Understand the characteristics of rational agents, and the environment in which they operate, and gain insights about problem-solving agents.
CO2	Gain insights about Uninformed and Heuristic search techniques and apply them to solve search applications.
CO3	Appreciate the concepts of knowledge representation using Propositional logic and Predicate calculus and apply them for inference/reasoning.
CO4	Obtain insights about Planning and handling uncertainty through probabilistic reasoning and fuzzy sets.
CO5	Obtain a basic understanding of the AI domains and their applications and examine the legal and ethical issues of AI

Mapping of Course Outcomes with Program outcomes (POs)

(1/2/3 indicates strength of correlation) 3-HIGH, 2-Medium, 1-Low

1	COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO 8	PO9	PSO 1	PSO 2	PSO 3	PSO 4	
2	CO1	3	2	3	3	2	2	3	2	2	3	3	2	2	
	CO2	3	3	3	1	2	3	1	2	3	2	3	2	3	
	CO3	3	1	2	2	3	3	2	3	3	3	2	1	3	
	CO4	3	3	3	2	1	3	2	1	3	3	3	1	3	
	CO5	3	3	2	3	2	3	3	2	3	2	3	3	3	
3	Category		CC	AEC		MDE		VAC		SEC		DSE		OE	
	✓														
4	Approval		Meeting of Academic Council												

FACULTY OF COMPUTER APPLICATIONS

**BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)**

CBCA25C11

ARTIFICIAL INTELLIGENCE

Unit I: Introduction to AI

9 Hours

What is AI? Artificial Intelligence and its applications, Artificial Intelligence Techniques, Intelligent Advantages, and limitations of AI, Application domains of AI. Agents: Agents and environment, Learning Agents, the concept of Rationality, the nature of environment, the structure of Agents. Knowledge-Based Agents: Introduction to Knowledge-Based Agents. Problem-solving: Problem-solving agents. Hotbeds of AI Innovation.

UNIT II: Advanced Search Techniques

12 Hours

Problem solving techniques State space search, control strategies, heuristic search, Uninformed Search: DFS, BFS, Iterative Deepening Search. Informed Search: Best First Search, A* search, AO* search. Production system characteristics- Generate and test, Hill climbing-Constraints and Constraint Satisfaction Problems (CSPs), Mean-end analysis, Min-Max Search, Alpha-Beta Pruning.

UNIT III: Logical Reasoning and Uncertainty

12 Hours

Logic: Propositional logic, First-order predicate logic, Unification and lifting. Inference: Forward chaining, Backward chaining, Resolution, Truth maintenance systems. Handling Uncertainties: Non-monotonic reasoning, Probabilistic reasoning, Forward vs. Backward reasoning.

UNIT IV: Knowledge Representation of AI

12 Hours

Knowledge Representation schemes and reasoning Mapping between facts and representations, Approaches to knowledge representation, procedural vs declarative knowledge, Matching, conflict resolution, Expert systems:- Introduction, basic concepts, structure of expert systems, Introduction to Fuzzy set theory, fuzzy logic Weak and Strong filler structures, semantic nets, frame, conceptual dependency, scripts,

Total : 45 hours

Text Books:

1. M.C Trivedi, A Classical Approach to Artificial Intelligence, Khanna Book Publishing Company, 2024(AICTE Recommended Textbook)
2. Artificial Intelligence: A modern approach by Stuart Russel, Pearson Education, 2010
3. Artificial Intelligence by Rich and Knight, The McGraw Hill, 2017.
4. Nilsson Nils J, Artificial Intelligence: A new Synthesis, Morgan Kaufmann Publishers Inc San Francisco, CA, ISBN: 978-1-55-860467-4

References:

1. Dan W Patterson, Introduction to Artificial Intelligence & Expert Systems, PHI Learning 2010
2. Rajiv Chopra, Data Science with Artificial Intelligence, Machine Learning and Deep Learning, Khanna Book Publishing Company, 2024
3. M.C Trivedi, Introduction to AI AND Machine Learning, Khanna Book Publishing Company, 2024
4. Russell, S and Norvig, P, "Artificial Intelligence – A Modern Approach", 3rd edition, Prentice Hall

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus Program Structure for BCA-DT (Full Time)

5. Van Hirtum, A & Kolski, C (2020) Constraing Satisfaction Problems: Algorithms and Applications. Springer
6. Rajiv Chopra, Machine Learning and Machine Intelligence, Khanna Book Publishing Company, 2024
7. M.C. Trivedi, Data Science and Data Analytics Using Python, Khanna Book Publishing
8. Daphne Koller and Nir friedman, “Probabilistic Graphical Models”, MIT Press, 2009.

Web References:

1. <https://www.edx.org/course/artificial-intelligence-ai> 8. <https://www.udemy.com/course/artificial-intelligence-az/>

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus Program Structure for BCA-DT (Full Time)

CBCA25C11

ARTIFICIAL INTELLIGENCE

List of Lab Programs

1. Write a Python program to simulate a simple reflex agent. Extend it to a model-based agent (include environment state).
2. Design a Python class for a Knowledge-Based Agent that uses simple if-else rules. Show how it can update its knowledge base and make decisions accordingly.
3. Demonstrate basic problem-solving using Breadth-First Search on a simple grid.
4. Implement Depth-First Search (DFS) on a small graph
1. 3.Solve the Water Jug Problem using Breadth First Search (BFS)
5. Implement a Hill Climbing search to find the peak in a numeric dataset
6. Implement **A*** search and **Best First Search** for solving 8-puzzle or pathfinding.
7. Implement the Minimax search algorithm for 2-player games. You may use a game tree with 3 plies.
8. Solve the 4-Queens Problem as a CSP backtracking problem.
9. Use constraint propagation to solve a Magic Square puzzle
10. Apply optimization techniques to find the maximum value in a list
11. Represent and evaluate propositional logic expressions.
12. Implement a basic rule-based expert system for weather classification.
13. Implement a basic AI agent with simple decision-making rules.
14. Implement a basic Rule-Based Chatbot.
15. Use constraint propagation to solve a Magic Square puzzle

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)

CBCA25EXX	Professional Elective-II	L	T	P	C	TY/Lb/IE
		1	0	4	3	ETL/TY
Course Designed by – Faculty of Computer Applications						

Refer to Appendix-I for Professional Electives and choose either one specialization from the basket

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus

Program Structure for BCA-DT (Full Time)

CBCA25S06	DESIGN THINKING AND INNOVATION	L	T	P	C	Ty/Lb /IE
		1	1	0	2	IE
	Prerequisite - +2					

Course Designed by – Faculty of Management Studies

OBJECTIVES

1. To understand the principles of Design Thinking, a creative solution-based approach to problem solving.
2. To understand the practice of design thinking for Strategic Innovation

COURSE OUTCOMES (COs)

CO1 Apply design thinking concepts to give solution

CO2 Understanding the process of design thinking

CO3 Knowledge on innovation

CO4 Practicing innovation using design thinking

CO5 Use of design thinking in business

(H/M/L indicates strength of correlation) H-HIGH, M -Medium, L-Low

1	COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
2	CO1	3	2	3	3	2	2	3	2	2	3	3	2	2
	CO2	3	3	3	1	2	3	1	2	3	2	2	1	3
	CO3	3	2	2	1	3	3	1	3	3	3	3	1	3
	CO4	3	3	3	2	1	3	2	1	3	3	3	2	3
	CO5	3	3	2	3	2	3	3	2	3	3	3	2	2
3	Category		CC		AEC		MDE		VAC		SEC	DSE		OE
											✓			
4	Approval		Meeting of Academic Council											

FACULTY OF COMPUTER APPLICATIONS

**BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)**

CBCA25S06

DESIGN THINKING AND INNOVATION

Unit 1: Basics of Design Thinking

6 Hours

1. Understand the concept of innovation and its significance in business
2. Understanding creative thinking process and problem solving approaches
3. Know Design Thinking approach and its objective
4. Design Thinking and customer centricity – real world examples of customer challenges, use of Design Thinking to Enhance Customer Experience, Parameters of Product experience, Alignment of Customer Expectations with Product.

Unit 2: Design Thinking Process and Success Stories

6 Hours

1. Discussion of a few global success stories like AirBnB, Apple, IDEO, Netflix etc.
2. Explain the four stages of Design Thinking Process – Empathize, Define, Ideate, Prototype, Implement

Unit 3: Learning to Empathize and Define the Problem

6 Hours

1. Know the importance of empathy in innovation process – how can students develop empathy using design tools
2. Observing and assimilating information
3. Individual differences & Uniqueness Group Discussion and Activities to encourage the understanding, acceptance and appreciation of individual differences.
4. What are wicked problems
5. Identifying wicked problems around us and the potential impact of their solutions

Unit 4: Ideate, Prototype and Implement

6 Hours

1. Know the various templates of ideation like brainstorming, systems thinking
2. Concept of brainstorming – how to reach consensus on wicked problems
3. Mapping customer experience for ideation
4. Know the methods of prototyping, purpose of rapid prototyping.
5. Implementation

Unit 5: Feedback, Re-Design & Re-Create

6 Hours

1. Feedback loop, focus on User Experience, address ergonomic challenges, user focused design
2. Final concept testing,
3. Final Presentation – Solving Problems through innovative design concepts & creative solution

TOTAL: 30 Hours

Text Books (Latest Edition):

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus Program Structure for BCA-DT (Full Time)

1. E Balaguruswamy , Developing Thinking Skills (The way to Success), Khanna Book Publishing Company
2. Tim Brown,“Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation”, *Harvard Business Review*
3. 8 steps to Innovation by R T Krishnan & V Dabholkar, Collins Publishing

Reference Book

1. Design Thinking by Nigel Cross, Bloomsbury

FACULTY OF COMPUTER APPLICATIONS
BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)

SEMESTER – V

FACULTY OF COMPUTER APPLICATIONS

**BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)**

CBCA25EXX	Professional Elective-III	L	T	P	C	TY/Lb/IE
		3	0	4	5	ETL/TY
	Course Designed by – Faculty of Computer Applications					

Refer to Appendix-I for Professional Electives and choose either one specialization from the basket

CBCA25EXX	Professional Elective-IV	L	T	P	C	TY/Lb/IE
		3	0	4	5	ETL/TY
	Course Designed by – Faculty of Computer Applications					

Refer to Appendix-I for Professional Electives and choose either one specialization from the basket

CBCA25EXX	Professional Elective-V	L	T	P	C	TY/Lb/IE
		3	0	4	5	ETL/TY
	Course Designed by – Faculty of Computer Applications					

Refer to Appendix-I for Professional Electives and choose either one specialization from the basket

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus

Program Structure for BCA-DT (Full Time)

CBDT25S05	Professional Skills 1	L	T	P	C	TY/Lb/ IE
	Prerequisite: Complete all previous courses and the capstone project	0	2	0	2	IE
	Course Designed by – Faculty of Computer Applications					

OBJECTIVES:

- Develop a growth mindset by mastering time management and task prioritization.
- Learn effective communication and collaboration skills for working well in teams.
- Build confidence and positivity for successful interview preparation.
- Understand conflict management and interpersonal sensitivity in professional settings.
- Demonstrate skills through a practical project involving presentations and role-plays.

COURSE OUTCOMES (COs)

CO1	Cultivate a growth mindset and embrace challenges and view setbacks as opportunities for growth.													
CO2	Work effectively in diverse teams, navigate workplace dynamics, and resolve conflicts. Prioritize tasks and manage time efficiently to meet deadlines													
CO3	Practice empathetic and professional communication in interviews, presentations, and team settings													
CO4	Demonstrate readiness for professional interviews by applying interview preparation techniques, maintaining a positive attitude, and focusing on personal strengths													
CO5	Apply learned skills in real-world scenarios through creating presentations or role-plays that showcase time management, conflict resolution, teamwork, and interview strengths.													
	Mapping of Course Outcomes with Program outcomes (Pos)													
	(1/2/3 indicates strength of correlation) 3-HIGH, 2-Medium, 1-Low													

1	Cos/ PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
2	CO1	3	2	3	3	2	2	3	2	2	3	3	2	2
	CO2	2	2	3	2	3	3	2	3	3	2	2	1	3
	CO3	3	2	2	1	3	3	1	3	3	3	3	3	2
	CO4	3	3	3	2	1	3	2	1	3	3	3	2	3
	CO5	2	3	2	3	3	3	3	3	3	3	2	2	3
3	Category		CC	AEC		MDE	VAC		SEC		DSE		OE	
4	Approval							Meeting of Academic Council						

FACULTY OF COMPUTER APPLICATIONS

**BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)**

CBDT25S05

Professional Skills 1

UNIT 1

8 HOURS

Adopt a growth mindset: Managing Time Effectively, Prioritize Tasks, Say No Politely, Manage Conflicts.

UNIT 2

8 HOURS

Working Well in Teams: Asking for Help, Clear Communication Skills, Understanding Others' Feelings.

UNIT 3

7 HOURS

Interview Preparation: Navigate Interviews, Interview Pre-prep, being positive, Focus on Strength.

UNIT 4

7 HOURS

Professional Practice Project: Create a presentation or role-play showcasing team conflict resolution, time management, and strengths for interviews.

Total : 30 hours

Text Books (Latest Edition):

1. **K. Alex, *Soft Skills: Enhancing Employability and Career Development***, S. Chand Publishing
2. **Stephen R. Covey, *The 7 Habits of Highly Effective People***, Simon & Schuster
3. **Dale Carnegie, *How to Win Friends and Influence People***, Simon & Schuster

Reference Book:

1. **Daniel Goleman, *Emotional Intelligence: Why It Can Matter More Than IQ***, Bantam Books

FACULTY OF COMPUTER APPLICATIONS
BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)

CBDT25S05

Professional Skills 1

List of Lab Programs

- Write about a personal experience where you faced a challenge or setback. How did you overcome it? If given another chance, what would you do differently?
- Explain how you planned, prioritized, resolved conflicts and completed the projects as per the deadlines.
- Role-plays to simulate time management and saying no politely.
- Work in small teams to complete a group task. evaluate each member's role, contributions, and team dynamics.
- Identify a skill you struggle with and seek assistance from a peer, mentor, or faculty member. Document how you framed the request and the outcome.
- Assess others project and capture the details their thoughts, feelings, and needs to practice understanding others' perspectives.
- Participate in a mock interview as a candidate and assess self-performance
- Participate in a mock interview as an interviewer and provide constructive feedback on each other's strengths and improvement areas.
- Write a self-analysis report identifying personal strengths, weaknesses, and strategies for improvement in a workplace setting.

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus

Program Structure for BCA-DT (Full Time)

CBCA25S08	Internship/Technical Skill/Capstone Project	L	T	P	C	TY/Lb/IE
	Course Designed by – Faculty of Computer Applications	0	0	8	4	IE

INTERNSHIP / Technical Skill

CO1: Apply theoretical knowledge to real world problems by participating in professional settings, gaining practical experience in a relevant industry.

CO2: Knowing the depth of the activities in the area of specialization

CO3: Take part in activities and learn by practice

1	COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
2	CO1	3	2					2			3		3	3
3	CO2	3	3					1	2		2	3		3
4	CO3	3	3	2				1			2	3	3	3

Students will have an opportunity to expose their knowledge and talent to make an innovative project. Students are supposed to do innovative projects useful to industries/society in the area of relevant field, inter and multi-disciplinary areas, under the guidance of a staff member. They have to prepare a project report and submit to the department.

At the end of the semester Viva-Voce examination will be conducted by the internal Examiner duly appointed by the Head of the department and the students will be evaluated.

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus

Program Structure for BCA-DT (Full Time)

CBCA25S09	Major Project [evaluation in 6th sem]	L	T	P	C	TY/Lb/IE
	Course Designed by – Faculty of Computer Applications	-	-	-	0	-

Major Project [evaluation in 6th sem]

CO1: Application of theoretical concepts

CO2: Problem solving and innovation

CO3: Foundation for final project/major project

CO4: Technical and project planning skills

CO5: Teamwork and communication

- Student will be formed into groups
- Guide will be allocated
- Need to finalize area and topic
- Need to prepare review report
- Finalize objectives and hypotheses
- Frame questionnaire or survey tool if required
- Meeting and getting the guides at every stage
- Certificate from the company has to be submitted to the department.

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)

SEMESTER – VI

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus

Program Structure for BCA-DT (Full Time)

CBDT25C04	Gen AI Advanced Prompt Engineering and LLMs	L	T	P	C	TY/Lb/IE
		2	0	4	4	ETL
	Prerequisite: Proficiency in Java Programming, Spring Boot, Maven, REST APIs, HTTP Methods, JSON, Postman					
	Course Designed by – Faculty of Computer Applications					

OBJECTIVES:

- Understand the fundamentals of prompt engineering, including structure and optimization techniques.
- Learn to interact with large language models (LLMs) using Java API calls and handle responses effectively.
- Explore practical GenAI use cases like text generation, summarization, and sentiment analysis in backend services.
- Study real-world LLM applications across industries and evaluate ethical considerations in AI use.
- Apply knowledge through a hands-on project involving design, development, testing, and documentation.

COURSE OUTCOMES (COs)

CO1	Use advanced prompt engineering techniques to optimize outputs from Large Language Models (LLMs).
CO2	Learn to programmatically interact with LLMs using Java SDKs and REST APIs via tools like the Java HTTP Client.
CO3	Understand and apply ethical practices in GenAI, including bias mitigation, data privacy, regulatory compliance, and fairness in AI systems.
CO4	Build foundation skills for integrating GenAI capabilities into real-world Java applications.
CO5	
	Mapping of Course Outcomes with Program outcomes (Pos)
	(1/2/3 indicates strength of correlation) 3-HIGH, 2-Medium, 1-Low

1	Cos/ PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
2	CO1	3	2	3	3	2	2	3	2	2	3	3	2	2
	CO2	2	2	3	2	3	3	2	3	3	2	2	1	3
	CO3	3	2	2	1	3	3	1	3	3	3	3	3	2
	CO4	3	3	3	2	1	3	2	1	3	3	3	2	3
	CO5	2	3	2	3	3	3	3	3	3	3	2	2	3
3	Category	CC	AEC	MDE	VAC	SEC			DSE			OE		
						√								
4	Approval					Meeting of Academic Council								

FACULTY OF COMPUTER APPLICATIONS

**BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)**

CBDT25C04

Gen AI Advanced Prompt Engineering and LLMs

UNIT-1

7 HOURS

Introduction to Prompt Engineering: Basics of Prompt Engineering, Prompt Structure, Optimization Techniques, Complex Prompts, Common Pitfalls, Troubleshooting. **Interaction with LLMs using Java:** Using Java HTTP Client, Making API Calls to OpenAI/Hugging Face, Request Handling, Response Processing, Error Handling. **GenAI Use Cases in Backend Services:** Text Generation, Summarization, Sentiment Analysis, Text Classification, Language Translation, Use Cases, Output Quality.

UNIT-2

7 HOURS

Case Studies and Real-World Applications: LLM-Enabled Backend Applications in Customer Service, Education, Marketing, and more domains.

UNIT-3

7 HOURS

Ethics and Responsible AI: Biases in AI, Bias Mitigation, Privacy Safeguards, Regulatory Compliance, Fairness, Ethical Frameworks, Accountability Measures.

UNIT-4

9 HOURS

Project and Summative Assessment: Project Planning and Design, Solution Development, Testing and Debugging, Review and Refactoring, Project Documentation and Presentation, Summative Quiz

Total : 30 hours

Text Books

1. **Brown, T., et al. (2020). *Language Models are Few-Shot Learners*.** OpenAI Research Paper. [Available online]
2. **Vaswani, A., et al. (2017). *Attention is All You Need*.** Advances in Neural Information Processing Systems (NeurIPS). [Available online]

Reference Books

1. **Jurafsky, D., & Martin, J.H. (2024). *Speech and Language Processing*.** 3rd Edition (Draft). Pearson. (Latest chapters on transformers, language models, and prompt engineering.)
2. **Ruder, S. (2022). *Natural Language Processing with Transformers*.** O'Reilly Media.
3. **Zhou, J., & Ji, Z. (2023). *Prompt Engineering for Large Language Models: Techniques and Applications*.** Springer.
4. **Sharma, A. (2023). *Practical Guide to Large Language Models and Prompt Engineering*.** Packt Publishing.

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus Program Structure for BCA-DT (Full Time)

CBDT25C04

Gen AI Advanced Prompt Engineering and LLMs

List of Lab Programs

1. Design an optimized few-shot prompt for generating technical documentation (e.g., API usage guides). Use prompt variations to reduce hallucinations and ensure accurate information retrieval.
2. Develop a Java-based REST client that interacts with an LLM API (e.g., OpenAI or Hugging Face) to generate contextual customer support responses. Experiment with zero-shot, one-shot, and few-shot prompts to evaluate differences.
3. Implement and evaluate chain-of-thought prompting for summarizing long legal or technical documents. Compare results with direct summarization prompts to assess output clarity and completeness.
4. Build a Spring Boot chatbot service that refines user-generated prompts before sending them to an LLM. Integrate the ReAct prompting method to enable reasoning and self-correction in conversations.
5. Create an API-driven content pipeline using Java and Spring Boot to automate blog post generation. Store generated content in a MongoDB or relational database.
6. Build a feedback processing service that uses LLM-powered sentiment analysis and categorizes responses. Apply chain-of-thought reasoning to improve the classification of complex feedback.
7. Integrate multiple GenAI APIs (e.g., OpenAI + Hugging Face) in a backend workflow to first generate content and then detect and flag toxic or biased text using few-shot and ReAct prompting methods.
8. Implement a Java-based translation microservice using an LLM API to translate text between dialects. Use few-shot prompting and evaluate translation quality across regional variants.
9. Develop an LLM-enabled resume screening API that extracts, classifies, and ranks applicant details based on job role fit. Secure the service using JWT-based authentication.
10. Build a domain-specific knowledge assistant (e.g., for legal or healthcare domains) powered by few-shot prompting and chain-of-thought reasoning. Implement as a Spring Boot microservice.
11. Design a backend service that generates marketing email templates tailored to customer segments. Use GenAI and structured data inputs to personalize output.
12. Create an FAQ generator microservice that parses product documentation and user queries to produce relevant FAQs. Use few-shot and chain-of-thought prompting for multi-step question handling.
13. Develop a tool to compare LLM outputs from different providers (e.g., OpenAI vs Hugging Face) for political or policy content. Analyze bias and inconsistencies in generated summaries.
14. Implement an AI audit backend module that flags potentially biased, unfair, or ethically questionable content. Use ReAct prompting and chain-of-thought logic to explain each flag raised.
15. Build a legal document reviewer tool that analyzes contracts for fairness. Use few-shot prompting and CoT (Chain-of-Thought) to reason through clauses and detect implicit bias.

FACULTY OF COMPUTER APPLICATIONS

**BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)**

CBCA25EXX	Professional Elective-VI	L	T	P	C	TY/Lb/IE
		3	0	4	5	ETL/TY
	Course Designed by – Faculty of Computer Applications					

Refer to Appendix-I for Professional Electives and choose either one specialization from the basket

CBCA25EXX	Professional Elective-VII	L	T	P	C	TY/Lb/IE
		3	0	4	5	ETL/TY
	Course Designed by – Faculty of Computer Applications					

Refer to Appendix-I for Professional Electives and choose either one specialization from the basket

FACULTY OF COMPUTER APPLICATIONS
BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)

CBDT25S06	PROFESSIONAL SKILLS 2	L	T	P	C	TY/Lb/
						IE
	Prerequisite: Digital tools, Basic spreadsheet skills, Basic problem-solving and time commitment	0	1	0	1	IE
	Course Designed by – Faculty of Computer Applications					

OBJECTIVES:

- Master behavioral interview techniques and build confidence under pressure.
- Develop a strong personal brand through professional LinkedIn and social media profiles.
- Learn effective networking, outreach strategies, and professional communication etiquette.
- Apply skills by creating a LinkedIn portfolio and documenting industry engagement.
- Participate in a mock networking event to practice real-world professional interactions.

COURSE OUTCOMES (COs)

CO1	Learn to articulate strengths, answer behavioural questions, and handle interviews with confidence.													
CO2	Build a strong LinkedIn profile, learn professional etiquette, and practice outreach to expand career opportunities.													
CO3	Develop effective networking and outreach skills, including crafting professional messages, practicing proper etiquette, and managing a positive online presence.													
CO4	Demonstrate the ability to document and present professional achievements and networking efforts through a comprehensive LinkedIn portfolio.													
CO5	Apply communication, networking, and professional branding skills by conducting a mock networking event to simulate real-world industry interactions.													
	Mapping of Course Outcomes with Program outcomes (Pos)													
	(1/2/3 indicates strength of correlation) 3-HIGH, 2-Medium, 1-Low													

1	Cos/ PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
2	CO1	3	2	3	3	2	2	3	2	2	3	3	2	2
	CO2	2	2	3	2	3	3	2	3	3	2	2	1	3
	CO3	3	2	2	1	3	3	1	3	3	3	3	3	2
	CO4	3	3	3	2	1	3	2	1	3	3	3	2	3
	CO5	2	3	2	3	3	3	3	3	3	3	2	2	3
3	Category		CC	AEC	MDE	VAC		SEC			DSE		OE	
								✓						
4	Approval						Meeting of Academic Council							

FACULTY OF COMPUTER APPLICATIONS

**BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)**

CBDT25S06

PROFESSIONAL SKILLS 2

UNIT 1

3 HOURS

Interview Excellence: Behavioural Questions, Handling Pressure, Confidence in Responses

UNIT 2

4 HOURS

Personal Branding: Build a professional LinkedIn profile, Showcase Skills on Social Platforms

UNIT 3

4 HOURS

Networking & Outreach: Industry Connections, Messaging, Etiquette, Online Presence

UNIT 4

4 HOURS

Project: Develop and showcase a professional LinkedIn portfolio, document outreach effort, and conduct a mock networking event.

Total : 15 hours

Text Books

1. Duarte, D.L., & Snyder, N.T. (2011). *Mastering Virtual Teams: Strategies, Tools, and Techniques That Succeed*. 3rd edition. Jossey-Bass.
2. Roberts, C. (2015). *Collaboration Tools for Project Managers: How to Choose, Get Started and Collaborate with Technology*. Wiley.

Reference Books

1. Lencioni, P. (2002). *The Five Dysfunctions of a Team: A Leadership Fable*. Jossey-Bass.
2. Tannenbaum, S.I., & Salas, E. (2021). *Teams That Work: The Seven Drivers of Team Effectiveness*. Oxford University Press.
3. Pink, D.H. (2011). *Drive: The Surprising Truth About What Motivates Us*. Riverhead Books.
4. Shapiro, J. (2020). *The Collaborative Organization: A Strategic Guide to Solving Your Internal Business Challenges Using Emerging Social and Collaborative Tools*. Wiley.

FACULTY OF COMPUTER APPLICATIONS
BCA-Full Time Program- Curriculum &Syllabus
Program Structure for BCA-DT (Full Time)

CBDT25S06

PROFESSIONAL SKILLS 2

List of Lab Programs

- Participate in a mock interview as both candidate and interviewer.
- Provide constructive feedback on interview performance.
- Review different LinkedIn profiles and critique them.
- Create/update your own profile and peer-review.
- Identify professionals and send personalized connection requests.
- Create a LinkedIn post/portfolio highlighting capstone project and skills.

FACULTY OF COMPUTER APPLICATIONS

BCA-Full Time Program- Curriculum &Syllabus

Program Structure for BCA-DT (Full Time)

CBCA25S09	Major Project	L	T	P	C	TY/Lb/IE
	Course Designed by – Faculty of Computer Applications	0	0	8	4	LB

CO1: Understand the concept, use them in ideas and transform its applications.**CO2: Implement the technology to bring a new product.****CO3: Apply different algorithms and derive coding modules for execution****CO4: Complete knowledge of database concept pertaining to product developed.****CO5: Illustrate the completed project as document that stand as the source of reference**

1	COs /POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
2	CO1	3	2					2			3	3	2	
	CO2	3	3				1	2		2	3	3	2	
	CO3	3	3	2			1			2	3	3	2	
	CO4	3	3	3	3	2	2	2	3	2	3	3	2	3

- Groups will be retained or re-formed, focusing on project continuity and progress.
- Continued mentorship by the allocated guide, with emphasis on independent problem-solving.
- Finalize detailed system design and architecture based on prior review and feedback.
- Develop and validate detailed project plan including timelines and milestones.
- Implement core modules, integrating algorithms and technologies as per objectives.
- Conduct extensive testing, debugging, and optimization of the developed product.
- Perform data collection through surveys, questionnaires, or experiments if required.
- Document the entire development lifecycle and prepare interim and final reports.
- Conduct regular review meetings with guide and possibly industry experts.
- Obtain and submit a certificate or proof of project collaboration/industry involvement (if applicable) to the department.
 - Prepare for project demonstration and viva voce presentation at the semester end.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

APPENDIX I

Discipline Specific Electives

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E01	BASICS OF DATA ANALYTICS USING SPREADSHEET	L	T	P	C	Ty/Lb/IE
			2	0	2	3
	Prerequisite : Knowledge on basics of mathematical & Statistical concepts such as arithmetic, percentages, averages Course Designed by: Faculty of Computer Applications					

OBJECTIVES

- To understand the general purpose of MS Excel and its built in functions for data analysis.
- To understand the importance of ROC curve and its use in finding the fitness of classification model.
- To know the basics of macros in MS Excel.
- To understand the working knowledge in MS Excel for linear regression analysis.

COURSEOUTCOMES(Cos)

students will be able to do data analytics using MS Excel

CO1	In this course, you will learn how to perform data analysis using Excel's most popular features
CO2	You will learn how to create pivot tables from a range with rows and columns in Excel.
CO3	Pivots are used in many different industries by millions of users who share the goal of reporting the performance of companies and organizations.
CO4	In addition, Excel formulas can be used to aggregate data to create meaningful reports.
CO5	To complement, pivot charts and slicers can be used together to visualize data and create easy to use dashboards.

Mapping of Course Outcome with Program Outcome(POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	3	3	2	2	3	2	2
CO2	2	3	3	1	2	3	1	2	3
CO3	3	2	2	3	3	1	3	3	1
CO4	3	3	3	2	1	3	2	1	3
CO5	3	3	2	3	2	3	3	2	3
Cos/PSOs	PS01		PS02		PS03		PS04		
CO1	3		3		2		2		
CO2	2		2		3		1		
CO3	3		3		1		3		
CO4	3		3		2		3		
CO5	2		3		3		2		

3/2/1 Indicates Strength Of Correlation, 3 – High, 2 – Medium, 1 – Low

Category	H&S	Program core	Program Elective	Open elective	Skill enhancing elective	Inter disciplinary/Allied	Skill component	Practical Project/ Internship	others
			✓						

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E01

BASICS OF DATA ANALYTICS USING SPREADSHEET

UNIT I: Introduction to Data Analytics

7 hours

Understanding data and its types (structured, unstructured, semi-structured) - What is Data Analytics - Types of Data Analytics - Importance of Data Analytics - Applications of Data Analytics.

UNIT II: Spreadsheet Navigation and Formatting

7 hours

Selecting Columns & Rows, Changing Column Width & Row Height, Auto fitting Columns & Rows, Hiding/Unhiding Columns & Rows, Inserting & Deleting Columns & Rows, Cell, Address of a cell, Components of a cell – Format, value, formula, Use of paste and paste special

UNIT III : Formulas, Functions, and Basic Charts

7 hours

Creating Formulas, Formula Functions : Sum, Average, if, Count, max, min, Upper, Lower, Using AutoSum, Advance Formulas: Concatenate, Vlookup, Hlookup, Match, Countif, Text, Trim - Creating Charts, Different types of chart, Formatting Chart Objects, Changing the Chart Type, Showing and Hiding the Legend, Showing and Hiding the Data Table

UNIT IV : Advanced Charts, Data Analysis, and PivotTables

9 hours

Creating Charts, Different types of chart, Formatting Chart Objects, Changing the Chart Type, Showing and Hiding the Legend, Showing and Hiding the Data Table- Data Analysis : Sorting, Filter, Text to Column, Data Validation- PivotTables : Creating PivotTables, Manipulating a PivotTable, Using the PivotTable Toolbar, Changing Data Field, Properties, Displaying a PivotChart, Setting PivotTable Options, . Adding Subtotals to PivotTables

Total:30 hours

Text Book:

1. "Spreadsheet Modeling and Decision Analysis: A Practical Introduction to Business Analytics" by Cliff T Ragsdale, Cengage learning asia pet. 2015

REFERENCE BOOKS

2. "Excel 2019 Bible" by Michael Alexander, Richard Kusleika, and John Walkenbach, John Wiley & Sons, 25 Sept 2018
3. "Mastering Excel" by WebTech Solutions, Khanna Publishing House, 2024.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E01

BASICS OF DATA ANALYTICS USING SPREADSHEET

List of lab programs:

1. Basic Arithmetic and Logical Functions (SUM, AVERAGE, MIN, MAX, ROUND, IF, AND, OR, IFERROR)
2. Importing Data from Various Sources (CSV, text files)
3. Data Transformation Techniques (Text-to-columns, data validation)
4. Text Functions for Data Manipulation (TRIM, CLEAN, TEXT, RIGHT, LEFT, MID)
5. Lookup and Reference Functions (VLOOKUP, HLOOKUP, INDEX, MATCH)
6. Data Aggregation Techniques (SUMIFS, COUNTIFS, AVERAGEIFS)
7. Creating Various Chart Types (Bar, line, pie, scatter)
8. Data Visualization Best Practices (Choosing the right chart, formatting, styling)
9. Creating and Customizing PivotTables
10. Create and Customizing Pivot Charts

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E02	DATA VISUALIZATION	L	T	P	C	Ty/Lb/ IE								
						2	0	2	3	ETL				
Prerequisite: Basic knowledge of data structures, such as tables and databases. Basic understanding of data analysis concepts and familiarity with data types.														
Course Designed by: Faculty of Computer Applications														

OBJECTIVES

- To give overview of descriptive and inferential statistics.
- To provide basics of R and Python.
- To manipulate and visualize data using R, python and Watson Studio.
- To focus on plots using Matplotlib and seaborn.
- To analyze data using various visualization tools.
- To create maps in python using folium.

COURSE OUTCOMES (Cos)

Students completing this course were able to

CO1	Differentiate descriptive and inferential statistics.
CO2	Use R to do statistics and to visualize data.
CO3	Visualize analyzed data using IBM Watson Studio.
CO4	Familiar with python scripts used for visualization.
CO5	Use advance visualization tool and seaborn functionalities.

Mapping of Course Outcome with Program Outcome (POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	3	2	3	2	2	3	2
CO2	3	3	3	1	3	3	1	3	3
CO3	3	2	2	2	2	3	2	2	3
CO4	3	3	3	1	1	3	1	1	3
CO5	2	3	3	3	2	3	3	2	3
Cos/PSOs	PS01	PS02	PS03	PS04					
CO1	3	3	1	2					
CO2	2	3	2	3					
CO3	3	2	1	3					
CO4	3	3	2	3					
CO5	2	3	3	3					

3/2/1 Indicates Strength Of Correlation, 3-High, 2-Medium, 1-Low

Category	H&S	Program core	Program Elective	Open elective	Skill enhancing elective	Interdisciplinary/Allied	Skill component	Practical Project/ Internship	others
			✓						

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E02

DATA VISUALIZATION

UNIT I : INTRODUCTION TO STATISTICS

7 hours

Data , Data collection methods–Descriptive Statistics – Measures of Central Tendency & Dispersion –Inferential Statistics– Population , Sampling methods –Random Variables, Probability Distribution , Normal Distribution .

UNIT II : VISUALIZATION USING R

7 hours

Basics of R programming , Data manipulation with R(Packages : dplyr, tidyr , data.table , lubridate) Data visualization with R (ggplot2 package)

UNIT III : DATA ANALYSIS USING PYTHON

7 hours

Basics of Python ,Numpy Library – Arrays creation , Indexing , Slicing , Aggregation , Reshaping , Pandas Library – Series , Data Frame , using csv & excel files , Data cleaning & manipulation , Merging & Joining.

UNIT IV:VISUALIZATION USING PYTHON

9 hours

Matplotlib Library – Line plot , Scatter plot , Histogram , Histogram , Box plot , Pie chart . Seaborn Library – Basic plots , Pair plots , Heatmaps .

Total: 30 hours

TEXT BOOKS:

1. "Storytelling with Data: A Data Visualization Guide for Business Professionals" by Cole Nussbaumer Knaflic, Wiley; 1st edition, 2015.
2. "The Visual Display of Quantitative Information" by Edward Tufte, Graphics Press USA; 2nd edition, 2001.

REFERENCE BOOKS:

1. Fundamentals of Data Visualization by Claus O Wilke 2019.
2. "Data Visualization: A Practical Introduction" by Kieran Healy, Princeton University Press, 2018.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E02

DATA VISUALIZATION

List of lab programs:

1. Do the data manipulation operations for iris and mtcars dataset using dplyr package and obtain the results for following functions:
 - i. filter
 - ii. select
 - iii. arrange
 - iv. summarise
 - v. mutate
2. Create a data frame and do the following operations using tidyr package
 - i. gather
 - ii. spread
 - iii. separate
 - iv. unite
3. Do the following operations for any external dataset using data.table package
 - i. Select a subset row
 - ii. Select a column with particular values
 - iii. Select columns with multiple values
 - iv. Select a column to return a vector
 - v. Select multiple columns
 - vi. Returns the sum and standard deviation
 - vii. Sum of selected columns
4. Do the following visualizations for any external csv file
 - i. Line graph
 - ii. Bar graph
 - iii. Histogram
 - iv. Scatter plot
 - v. Pie chart
5. Do the following Data analysis for your own Data set using pandas package.
 - i. Make the first column as index
 - ii. Select single column and print the data
 - iii. Select multiple columns and print the data
 - iv. Select single column and print the last five elements of the data.
 - v. Select multiple rows and print the first five elements of the data
 - vi. Select multiple rows and columns from the data set and print it.
 - vii. Select all the rows and some columns (more than two) from the data set and print it.
 - viii. Print the same data set again and delete the first column from the data set and print it.
 - ix. Change the 1st, 2nd and 3rd columns name and print it
6. a. Reading and Writing CSV/Excel Files using Pandas
b. Pandas Series and Data Frame Operations
7. Data cleaning and Manipulation using Pandas
a. Data Cleaning: Handling Missing Values and Outliers.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus **Program Structure for BCA DT (Full Time)**

b. Data Manipulation: Sorting, Filtering, and Grouping

8. Consider any csv file and do the following visualization using matplotlib package

- Line graph /with style
- Bar Graph
- Histogram
- Scatter plot
- Pie chart

9. Merge the two data sets (any two csv files) and perform the following join operations

- Natural join
- Full outer join
- Left outer join
- Right outer join

10. Do the following operations for your own data using pandas

- Descriptive data analytics using pandas
- Print the data based on particular year, particular month and particular data
- Filter the data based on conditions (any conditions)
- Select any two columns and do the pandas sort operations (ascending and descending)

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E03	INTRODUCTION TO DATA SCIENCE	L	T	P	C	Ty/Lb/ IE
		3	0	0	3	TY
	Prerequisite: Basic understanding of statistics (mean, variance), familiarity with spreadsheets/databases Course Designed by: Faculty of Computer Applications					

OBJECTIVES

- To understand the overview and definition of Data Science with its crucial role in current business world.
- To understand the importance of mathematics & Statistics in Data Science.
- To understand the role of machine learning techniques in Data Science and its different types.
- To know the integrated role of computers and its components in Data Science
- To understand the flow and process model of data science project management.

COURSE OUTCOMES (Cos)

Students completing this course were able to

CO1	Describe what Data Science is and the skill sets needed to be a data scientist
CO2	Explain the significance of exploratory data analysis (EDA) in data science
CO3	Ability to learn the supervised learning, SVM
CO4	Apply basic machine learning algorithms (Linear Regression)
CO5	Explore the Networks, Page Rank

Mapping of Course Outcome with Program Outcome (POs)

Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	2	2	3	2	3	2	2
CO2	3	3	3	1	2	3	1	2	3
CO3	3	3	2	3	1	3	1	3	3
CO4	3	3	3	2	3	3	2	1	3
CO5	3	2	3	1	3	2	3	2	3
Cos/PSOs	PS01		PS02		PS03		PS04		
CO1	3		3		2		3		
CO2	2		1		2		2		
CO3	2		3		2		2		
CO4	3		3		2		3		
CO5	3		3		2		3		

3/2/1 Indicates Strength Of Correlation, 3 – High, 2 – Medium, 1 – Low

Category	H&S	Programcore	Program Elective	Open elective	Skill enhancing elective	Interdisciplinary/Allied	Skill component	Practical Project/ Internship	others
			✓						

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E03

INTRODUCTION TO DATA SCIENCE

Unit – I: Introduction to Data Science **9 hours**

Evolution of Data Science – Data Science Roles – Stages in a Data Science Project – Applications of Data Science in various fields – Data Security Issues.

Unit – II: Data Collection and Data Pre-Processing **9 hours**

Data Collection Strategies – Data Pre-Processing Overview – Data Cleaning – Data Integration and Transformation – Data Reduction – Data Discretization.

UNIT– III: Exploratory Data Analytics **9 hours**

Descriptive Statistics – Mean, Standard Deviation, Skewness and Kurtosis – Box Plots – Pivot Table – Heat Map – Correlation Statistics – ANOVA.

UNIT– IV: Model Development **9 hours**

Simple and Multiple Regression – Model Evaluation using Visualization – Residual Plot – Distribution Plot – Polynomial Regression and Pipelines – Measures for In-sample Evaluation – Prediction and Decision Making.

UNIT– V: Model Evaluation **9 hours**

Generalization Error – Out-of-Sample Evaluation Metrics – Cross Validation – Overfitting – Under Fitting and Model Selection – Prediction by using Ridge Regression – Testing Multiple Parameters by using Grid Search.

Total: 45 hours

TEXT BOOKS:

1. Data Smart: Using Data Science to Transform Information into Insight 1st Edition by John W. Foreman. (2015) Wiley Publication.
2. Data Science from Scratch: First Principles with Python 1st Edition by Joel Grus .

REFERENCE BOOKS:

1. Jojo Moolayil, “Smarter Decisions : The Intersection of IoT and Data Science”, PACKT, 2016.
2. Cathy O’Neil and Rachel Schutt , “Doing Data Science”, O'Reilly, 2015.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E04	DATA MINING AND WAREHOUSING	L	T	P	C	Ty/Lb/ IE
		3	0	0	3	TY
	Prerequisite: : Familiarity with data analysis tools, especially SQL, NoSQL ,SAS, and Hadoop. Course Designed by: Faculty of Computer Applications					

OBJECTIVES

- Be familiar with mathematical foundations of data mining tools.
- To Understand and implement classical models and algorithms in data warehouses and data mining.
- To Characterize the kinds of patterns that can be discovered by association rule mining, classification and clustering.
- To Develop skill in selecting the appropriate data mining algorithm for solving practical problems.

COURSE OUTCOMES(Cos)

Students completing this course were able to

CO1	Understand the functionality of the various data mining and data warehousing component
CO2	Appreciate the strengths and limitations of various data mining and data warehousing models.
CO3	Explain the analyzing techniques of various data
CO4	Describe different methodologies used in data mining and data warehousing.
CO5	Compare different approaches of data warehousing and data mining with various technologies.

Mapping of Course Outcome with Program Outcome(POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	2	2	3	2	3	2	2
CO2	3	3	3	1	2	3	1	2	3
CO3	3	3	2	3	1	3	1	3	3
CO4	3	3	3	2	3	3	2	1	3
CO5	3	2	3	1	3	2	3	2	3
Cos/PSOs	PS01		PS02		PS03		PS04		
CO1	3		3		2		3		
CO2	2		1		2		2		
CO3	2		3		2		2		
CO4	3		3		3		3		
CO5	3		3		2		3		

3/2/1 Indicates Strength Of Correlation, 3 – High, 2 – Medium, 1 – Low

Category	H&S	Program core	Program Elective	Open elective	Skill enhancing elective	Interdisciplinary/Allied	Skill component	Practical Project/ Internship	others
			✓						

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E04

DATA MINING AND WAREHOUSING

UNIT I : INTRODUCTION TO DATA WAREHOUSING 9 hours

Introduction to Data Warehousing – Defining features , architecture of a Data Warehousing – Data Warehousing Schema – Dimensional modeling – ETL Process – Testing, Growth and maintenance - OLAP in Data Warehousing.

UNIT II : DATA MINING FUNDAMENTALS AND PREPROCESSING 9 hours

Data Mining - Data Mining Functionalities – Data Preprocessing – Data Cleaning – Data Integration and Transformation – Data Reduction –Mining Frequent patterns , Associations & correlations - Efficient and Scalable Frequent Item set Mining Methods – Mining Various Kinds of Association rules

UNIT III : CLASSIFICATION AND PREDICTION TECHNIQUES 9 hours

Classification and Prediction - Issues Regarding Classification and Prediction – Classification by Decision Tree Induction – Bayesian Classification – Rule Based Classification – Classification by Back propagation – Support Vector Machines - Prediction – Accuracy and Error Measures – Evaluating the Accuracy of a Classifier or Predictor.

UNIT IV: CLUSTERING AND UNSUPERVISED LEARNING 9 hours

Cluster Analysis - Types of Data in Cluster Analysis – A Categorization of Major Clustering Methods – Partitioning Methods – Hierarchical methods – Density-Based Methods – Grid-Based Methods – Model-Based Clustering Methods

UNIT V : MINING COMPLEX DATA AND APPLICATIONS 9 hours

Mining Object, Spatial, Multimedia, Text and Web Data: Multidimensional Analysis and Descriptive Mining of Complex Data Objects – Spatial Data Mining – Multimedia Data Mining – Text Mining – Mining the World Wide Web

Total: 45 hours

TEXT BOOKS:

1. Jiawei Han & Micheline Kamber(2008), Data Mining Concepts and Techniques (2nd ed) , Elsevier, Reprit.
2. Alex Berson& Stephen J. Smith(2007) , Data Warehousing, Data Mining & OLAP, Tata McGraw – Hill Edition.
3. Soman,K,P, ShyamDiwakar&Ajay,V(2006),Insight into Data mining Theory and Practice, Easter Economy Edition, Prentice Hall of India.

REFERENCES:

1. Gupta,G,K(2006),Introduction to Data Mining with Case Studies, Easter Economy Edition, Prentice Hall of India.
2. Pang-Ning Tan, Michael Steinbach & Vipin Kumar(2007), Introduction to Data Mining, Pearson Education.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E05	MOBILE COMPUTING	L	T	P	C	Ty/Lb/ IE
		3	0	0	3	TY
	Prerequisite: Mobile Communication and Network Security Course Designed by: Faculty of Computer Applications					

OBJECTIVES

- To introduce the concepts of Mobile Computing and its Principle.
- To impart the basic concepts of Radio Frequency and the Transmission of Radio Signals.
- To familiarize the concepts of Telecommunication and its Networks.
- To provide the knowledge of Wireless LAN and its architecture.
- To understand the Mobile Network and Transport Layer and its technology.

COURSE OUTCOMES(Cos)

Students completing this course were able to

CO1	Understand the basic concepts of Mobile Computing.
CO2	Applying the radio frequency in mobile computing are used in communication devices such as transmitters, receiver, etc. waves are a form of electromagnetic radiation with identified radio frequencies.
CO3	Implement the basic concept of Medium access or multiplexing methods are FDMA, CDMA, TDMA and SDMA the mechanism.
CO4	Evaluate the Wireless LAN-Design goals-Wireless transmission technology, Settings for wireless LAN-IEEE802.11-Architecture. Simultaneously use of equipment and reduce the wiring expense.
CO5	Create Physical design, Technology, Alter the Transmission and physical security. A conceptual division of methods in the layered architecture of protocols in the network stack in the Internet protocol.

Mapping of Course Outcome with Program Outcome(POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	3	3	2	2	3	2	2
CO2	3	3	3	1	2	3	1	2	3
CO3	3	2	2	1	3	3	1	3	3
CO4	3	3	3	2	1	3	2	1	3
CO5	2	3	1	3	2	3	3	2	3
Cos/PSOs	PS01		PS02		PS03		PS04		
CO1	3		3		3		2		
CO2	2		1		2		3		
CO3	3		3		1		1		
CO4	3		3		2		3		
CO5	2		1		3		3		
3/2/1 Indicates Strength Of Correlation, 3 – High, 2 – Medium, 1 – Low									
Category	H&S	Program core	Program Elective	Open elective	Skill enhancing elective	Interdisciplinary/Allied	Skill component	Practical Project/ Internship	others
			✓						

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E05

MOBILE COMPUTING

UNIT I: Fundamentals of Wireless Transmission

9 hours

Wireless-Wireless networks in comparison to fixed networks-Mobile communication: Development – Principles of mobile communication – Overview of mobility and portability- Issues for portability- Effects of device portability – Applications-Reference model

UNIT II: Radio Transmission

9 hours

Frequency – Signals – antennas –Signal propagation- Multiplexing – Modulation-Spread Spectrum(DSSS,FHSS).

UNIT III: Medium access control

9 hours

Motivation for specialized MAC,SDMA,FDMA,TDMA,CDMA, Comparison of the Medium access mechanism- Telecommunication Networks –GSM, Satellite communication.

UNIT IV : Wireless LAN

9 hours

Advantages of Wireless LAN-Design goals-Wireless transmission technology-Settings for wireless LAN-IEEE 802.11: System architecture-Bluetooth

UNIT V : Mobile Network Layer and Transport Layer

9 hours

Mobile IP-DHCP-Traditional TCP-Congestion control – mechanism to alter the transmission - Classical TCP Improvements

Total : 45 hours

TEXT BOOKS:

1. Jochen Schiller (2014) Mobile Communications(2nd ed.), Pearson Education
2. Nithyanandam .S,Ambika.M,Gayathri K.S., —Mobile Computing, Dhanpat Rai & co.(P)Ltd

REFERENCE BOOK:

1. William C.Y.Lee(1995) Mobile Cellular Telecommunications(2nd ed.) , Mc-Graw- Hill.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E06	INFORMATION SECURITY	L	T	P	C	Ty/Lb/I E
		3	0	0	3	TY
	Prerequisite: Concept of Information handling Course Designed by: Faculty of Computer Applications					

OBJECTIVES

- To introduce the concepts of Information Security, and its Characteristics.
- To impart the basic concepts of Security Investigation and its Ethical and Professional Issues.
- To familiarize the concepts of Security Analysis and Risk Management.
- To provide knowledge about Information Security Policy Standards and NIST framework
- To understand the Physical design and cryptography and its technology.

COURSE OUTCOMES (Cos)

Students completing this course were able to

CO1	Understand the basic concepts of Information Security.
CO2	Apply the concepts of security investigation in Business needs, Legal and professional ethics.
CO3	Expose the ongoing process of identifying security risks and implementing plans to address them.
CO4	Implement ISO 17799 (Indian Standard) and BS 7799 (British Standard) Information Security Policy standards establish guidelines and general principles for maintaining and improving Information Security Management. Protect Industrial assets from Cyber threats using NIST framework.
CO5	Detecting vulnerability exploits against a target Computer by Intrusion Detection System.

Mapping of Course Outcome with Program Outcome (POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	3	3	2	2	3	2	2
CO2	3	3	3	2	1	3	2	1	3
CO3	3	2	2	1	3	3	1	3	3
CO4	3	3	3	2	1	3	2	1	3
CO5	3	3	2	3	2	3	3	2	3
Cos/PSOs	PS01		PS02		PS03		PS04		
CO1	3		3		2		2		
CO2	2		2		1		3		
CO3	3		2		1		3		
CO4	3		3		3		3		
CO5	2		3		3		3		
3/2/1 Indicates Strength Of Correlation, 3 – High, 2 – Medium, 1 – Low									
Category	H&S	Program core	Program Elective	Open elective	Skill enhancing elective	Interdisciplinary/Allied	Skill component	Practical Project/ Internship	others
			✓						

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E06

INFORMATION SECURITY

UNIT I: Introduction

9 hours

History, What is Information Security? Critical Characteristics of Information - NSTIISCC Security Model - Components of an Information System - Securing the Components - Balancing Security and Access - The SDLC - The Security SDLC

UNIT II: Security Investigation

9 hours

Need for Security - Business Needs, Threats, Attacks, Legal, Ethical and Professional Issues

UNIT III: Security Analysis

9 hours

Risk Management: Identifying and Assessing Risk, Assessing and Controlling Risk

UNIT IV: Logical Design

9 hours

Blueprint for Security - Information Security Poicy - Standards and Practices - ISO 17799/BS 7799 - NIST Models - VISA International Security Model - Design of Security Architecture - Planning for Continuity

UNIT V : Physical Design

9 hours

Security Technology – IDS - Scanning and Analysis Tools – Cryptography - Access Control Devices - Physical Security - Security and Personnel.

Total: 45 Hours

TEXT BOOK:

1. Michael E Whitman and Herbert J Mattord(2003) , —Principles of Information Security, Vikas Publishing House, New Delhi.

REFERENCE BOOKS:

1. Micki Krause, Harold F. Tipton(2004), — Handbook of Information Security Management, Vol 1-3 CRC Press LLC.
2. Stuart Mc Clure, Joel Scrambray, George Kurtz(2003), —Hacking Exposed, Tata McGraw-Hill.
3. Matt Bishop(2002), “ Computer Security Art and Sciencl, Pearson/PHI.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E07	SOFTWARE PROJECT MANAGEMENT	L	T	P	C	Ty/Lb/ IE
		3	0	0	3	TY
	Prerequisite: Basic knowledge in Software Engineering.					

Course Designed by: Faculty of Computer Applications

OBJECTIVES

- To impart the basic concepts of Project Management Frame work.
- To provide project planning and scheduling project monitoring and selection of appropriate project approach.
- To Learn about the Project Management Knowledge to discuss the notion of risks and their risk management and to study Resource allocation.
- To follow International standards for Software Quality & To examine case study for the Project.

COURSE OUTCOMES (Cos)

Students completing this course were able to

CO1	Understand the fundamentals of software project management, including its scope, importance, and role in the software development life cycle.
CO2	Apply project planning techniques, including project scheduling, effort estimation, and resource allocation.
CO3	Identify, analyze, and manage risks associated with software projects.
CO4	Use project monitoring and control mechanisms to track progress and ensure project alignment with goals.
CO5	Demonstrate the ability to work as part of a project team, manage communication, and resolve conflicts effectively.

Mapping of Course Outcome with Program Outcome (POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	3	3	2	2	3	2	2
CO2	3	3	3	2	1	3	2	1	3
CO3	2	2	2	1	3	3	1	3	3
CO4	3	3	3	3	1	3	3	1	3
CO5	3	3	2	3	2	3	3	2	3
Cos/PSOs	PS01		PS02		PS03		PS04		
CO1	3		3		2		2		
CO2	2		2		2		3		
CO3	3		3		1		3		
CO4	3		1		3		3		
CO5	2		3		3		2		

3/2/1 Indicates Strength Of Correlation, 3 – High, 2 – Medium, 1 – Low

Category	H&S	Program core	Program Elective	Open elective	Skill enhancing elective	Interdisciplinary/Allied	Skill component	Practical Project/ Internship	others
			✓						

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E07

SOFTWARE PROJECT MANAGEMENT

UNIT I : Introduction to Software Projects **9 hours**

An Overview of Project Planning – Project Management and Evaluation .

UNIT II: Selection of an appropriate Project approach **9 hours**

Software effort Estimation -Activity Planning :- Project Schedules – Sequencing and Scheduling Projects – Network Planning Model – forward and backward pass-Identifying the Critical path-Activity float-Shortening Project Duration – Identifying Critical Activities-precedence networks.

UNIT III: Software quality assurance plan & Risk Management **9 hours**

Resource Allocation – Monitoring and Control, Reviews and Audits – Management.

UNIT IV : Models **9 hours**

ISO 9000 model, CMM model – Comparisons - ISO 9000 weaknesses - Managing People and Organizing Teams – Software Quality -Planning for Small Projects.

UNIT V : Case Study **9 hours**

PRINCE Project Management, BS 6079:1996

Total: 45 hours

TEXT BOOK:

1. Mike Cotterell, Bob Hughes , —Software Project Management|, Inclination/Thomas Computer Press, 4th Edition, 2004. Chapters : 1-13

REFERENCES BOOKS:

1. Darrel Ince, H.Sharp and M.Woodman,|| Introduction to Software Project Management and Quality Assurance|, Tata McGraw Hill, 1995.
2. Philip.B.Crosby, Quality is Free: The Art of Making Quality Certain, Mass Market, 1992.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E08	INTERNET OF THINGS	L	T	P	C	Ty/Lb/ IE
	Prerequisite: Basic knowledge in Networks and Internet Concepts	3	0	0	3	TY
	Course Designed by: Faculty of Computer Applications					

OBJECTIVES

- To impart the basic design and communication model of Internet of Things.
- To understand State of the Art- Internet of Things Architecture.
- To provide knowledge about protocols used in Internet of Things.
- To introduce about various interface applied in Internet of Things.
- To classify the real world Internet of Things Design constraints and its implementation.
- To provide ideas of automation and its applications using Internet of Things.

COURSE OUTCOMES (Cos)

Students completing this course were able to

CO1	Understand the fundamental concepts, architecture, and components of IoT systems
CO2	Identify and apply various sensors, actuators, and embedded systems used in IoT applications.
CO3	Demonstrate the ability to interface hardware components (e.g., Arduino, Raspberry Pi) and implement basic IoT solutions.
CO4	Collect, process, and transmit data from IoT devices to cloud platforms for storage and analysis.
CO5	Evaluate security, privacy, and ethical concerns in IoT systems.

Mapping of Course Outcome with Program Outcome (POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	2	2	3	2	2	3	2
CO2	3	3	3	1	2	3	1	2	3
CO3	3	3	2	3	1	3	3	1	3
CO4	3	3	3	2	3	3	2	3	3
CO5	3	2	3	1	3	2	1	3	2
Cos/PSOs	PS01		PS02		PS03		PS04		
CO1	3		3		2		3		
CO2	2		1		2		2		
CO3	2		3		2		2		
CO4	3		3		3		3		
CO5	3		3		2		3		

3/2/1 Indicates Strength Of Correlation, 3 – High, 2 – Medium, 1 – Low

Category	H&S	Program core	Program Elective	Open elective	Skill enhancing elective	Interdisciplinary/Allied	Skill component	Practical Project/ Internship	others
			✓						

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E08

INTERNET OF THINGS

UNIT I : IOT INTRODUCTION

9 hours

Introduction - Physical Design - Logical Design - IOT Communication Model - IOT Enabling Technologies - IOT Levels and Deployment Templates.

UNIT II: IOT NETWORK ARCHITECTURE

9 hours

One M2M IOT Standardized Network Architecture- IOTWF (IOT World Forum) - IOT Architecture- M2M (Machine to Machine) –SDN (Software Defined Network) –NFV (Network Function Virtualization).

UNIT III: IOT PROTOCOLS

9 hours

NFC (Near Field Communication)- RFID (Radio Frequency Identification System) -ZIGBEE SPMI (System Power Management Interface)-SPI (Serial Peripheral Interface)-Wireless vs. Wired Communication GSM-GPRS-LTE (Long Term Evolution).

UNIT IV : IOT DESIGN

9 hours

Design Methodology-Microcontroller- System on Chip (SoC)-IOT System Building Blocks- Arduino- Raspberry- pi

UNIT V : DOMAIN SPECIFIC IOT

9 hours

Home Automation- Cities- Agriculture- Environment-Health and Life Style- Industry

Total: 45 hours

TEXT BOOKS:

1. From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence by Jan Holler, Vlasios Tsiatsis, Catherine Mulligan, Stefan Avesand, Stamatios Karnouskos and David Boyle
2. Vijay Madisetti and Arshdeep Bahga, —Internet of Things (A Hands-on-Approach)®, 1st Edition, VPT, 2014.

REFERENCE BOOK:

1. Francis daCosta, —Rethinking the Internet of Things: A Scalable Approach to Connecting Everything®, 1st Edition, Apress Publications, 2013

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E09	MANAGEMENT INFORMATION SYSTEM	L	T	P	C	Ty/Lb/IE
		3	0	0	3	TY
	Prerequisite: Basic Knowledge in Information System					

Course Designed by: Faculty of Computer Applications

OBJECTIVES

- Enables to know the basic purpose of studying MIS and how it is important in the field of computer applications.
- Briefing about how MIS plays key role in communicating the information in efficient manner.
- To identify the challenges and enabling to choose the best course of action.
- Enabling MIS to bring out the strength of the management & making it as opportunity for overall growth of the organization.
- Imparting knowledge on how MIS is making decision as effective, quick & timely manner.

COURSE OUTCOMES(Cos)

Students completing this course were able to

CO1	Understand the role and importance of Management Information Systems in business decision-making and organizational strategy.
CO2	Identify and explain the components and types of information systems, including TPS, MIS, DSS, and ERP.
CO3	Analyze how information systems support business operations, management, and competitive strategies.
CO4	Evaluate the ethical, legal, and security issues associated with information systems in organizations.
CO5	Apply knowledge of MIS to solve real-world business problems through case studies or projects.

Mapping of Course Outcome with Program Outcome(POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	3	3	2	2	3	2	2
CO2	3	3	3	1	2	3	1	2	3
CO3	3	2	2	1	3	3	1	3	3
CO4	3	3	3	2	2	3	2	2	3
CO5	3	3	2	3	2	3	3	2	3
Cos/PSOs	PS01		PS02		PS03		PS04		
CO1	3		3		2		2		
CO2	2		2		1		3		
CO3	3		3		1		3		
CO4	3		3		2		3		
CO5	2		3		3		3		

3/2/1 Indicates Strength Of Correlation, 3 - High, 2 - Medium, 1 - Low

Category	H&S	Program core	Program Elective	Open elective	Skill enhancing elective	Interdisciplinary/Allied	Skill component	Practical Project/ Internship	others
			✓						

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E09

MANAGEMENT INFORMATION SYSTEM

UNIT I: Foundation of Information System

9 hours

Introduction to Information System and MIS – Decision support and decision making systems - systems approach - the systems view of business - MIS organization within company - Management information and the systems approach

UNIT II: Information Technology

9 hours

A manager's overview - managerial overviews - computer hardware and software - DBMS - RDBMS – Telecommunication

UNIT III: Conceptual system design

9 hours

Define the problems - set systems objective - establish system – constraints - determine information needs determine information sources - develop alternative conceptual design and select one document the system concept - prepare the conceptual design report

UNIT IV: Detailed system design

9 hours

Inform and involve the organization - aim of detailed design - project management of MIS detailed design - identify dominant and trade of criteria - define the sub systems - sketch the detailed operating sub systems and information flow - determine the degree of automation of each operation - inform and involve the organization again - inputs outputs and processing - early system testing – software - hardware and tools propose an organization to operate the system - document the detailed design - revisit the manager user

UNIT V : Implementation evaluation and maintenance of the MIS

9 hours

Plan the implementation - acquire floor space and plan space layouts - organize for implementation - develop procedures for implementation - train the operating personnel - computer related acquisitions - develop forms for data collection and information dissemination - develop the files test the system - cut-over - document the system - evaluate the MIS control and maintain the system - Pitfalls in MIS development.

Total: 45 hours

TEXT BOOK:

1. W. S. Jawadekar(2002), Management Information System, Tata McGraw Hill.

REFERENCES BOOKS:

1. Robert G. Murdick, Loel E. Ross & James R. Claggett, Information System for Modern Management (3rd Ed), PHI.
2. Brian, O, Management Information System, TMH.
3. Davis Olson, Management Information System, McGraw Hill.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E10	OPEN SOURCE PROGRAMMING	L	T	P	C	Ty/Lb/IE
		4	1	0	5	TY
	Prerequisite: Concept of Information handling	Course Designed by: Faculty of Computer Applications				

OBJECTIVES

- Understand concepts, strategies, and methodologies related to open source software development.
- Impart the business, economy, societal and intellectual property issues of open source software.
- Be familiar with open source software products and development tools currently available on the market.
- To provide knowledge about IoT.
- To understand knowledge about Big Data through case studies.

COURSE OUTCOMES (Cos)

Students completing this course were able to

CO1	Understand the basic concepts of Open Source Programming.
CO2	Applying the Principles and Methodologies of Free Open Source Software (FOSS) allow users to freely run, modify and also to freely distribute copies of either the original version or their modified version.
CO3	Implement the case studies like Apache, BSD, Linux, Mozilla (Firefox), Wikipedia, Joomla, GCC, Open Office
CO4	Imparting the Definitions, overview, definitions and concepts of IoT, things that are embedded with software, electronics, network, and sensors that allows these objects to collect and exchange data.
CO5	Understand the Introduction to Big Data, Distributed file system gets analytics using the map reduce algorithms.

Mapping of Course Outcome with Program Outcome (POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	3	3	2	2	3	2	2
CO2	3	3	3	1	2	3	1	2	3
CO3	3	2	2	1	3	3	1	3	3
CO4	3	3	3	2	1	3	2	1	3
CO5	3	3	2	3	2	3	3	2	3
Cos/PSOs	PS01		PS02		PS03		PS04		
CO1	3		3		2		2		
CO2	2		2		1		3		
CO3	3		3		1		3		
CO4	3		3		2		3		
CO5	2		3		3		3		

3/2/1 Indicates Strength Of Correlation, 3 – High, 2 – Medium, 1 – Low

Category	H&S	Programcore	Program Elective	Open elective	Skill enhancing elective	Interdisciplinary/Allied	Skill component	Practical Project/ Internship	others
			✓						

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E10

OPEN SOURCE PROGRAMMING

UNIT I : Introduction to Open Source

12 hours

Definition, Open Source History, Initiatives , Free Software, Free Software vs. Open Source software, Public Domain Software, FOSS does not mean no cost. History: BSD, The Free Software Foundation and Open Source GNU Project.

UNIT II : Principle and methodologies

12 hours

Philosophy: Software Freedom, Open Source Development Model Licences and Patents: What Is A License, Important FOSS Licenses (Apache, BSD,GPL, LGPL), copyrights and copy lefts, Patents Economics of FOSS : Zero Marginal Cost, Income-generation opportunities

UNIT III : Case Studies

12 hours

Apache, BSD, Linux, Mozilla (Firefox), Wikipedia, Joomla, GCC, Open Office. Starting and Maintaining an Open Source Project, Open Source Hardware, Open Source Design, Open source Teaching. and Open source media.

UNIT IV : IoT

12 hours

Definitions - overview, applications, potential & challenges, and architecture. IoT examples: Case studies, e.g. sensor body-area-network and control of a smart home.

UNIT V : INTRODUCTION TO BIG DATA

12 hours

Distributed file system – Big Data and its importance, Four Vs, Drivers for Big data, Big data analytics, Big data applications. Algorithms using map reduce, Matrix-Vector Multiplication by Map Reduce.

Total: 60 hours

TEXT BOOKS:

1. https://tavaana.org/sites/default/files/introduction_to_opensource.pdf
2. Chris Eaton, Dirk deroos et al.(2012) , —Understanding Big data ||, McGraw Hill.

REFERENCE BOOK:

1. Greg Elmer , Ganaele Langlois , Dr. Joanna Redden (2015), — Compromised Data: From Social Media to Big Data, Bloomsbury Academic Publishing.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E11	SOFTWARE TESTING	L	T	P	C	Ty/Lb/I E	
		4	1	0	5	TY	
Prerequisite: OOAD & Programming Knowledge in Software							
Course Designed by: Faculty of Computer Applications							

OBJECTIVES

- To introduce the fundamental concept of Software Testing.
- To describe the principles, issues and solutions of Blackbox, Whitebox and various types of Testing
- To illustrate Software Testing Lifecycle Model and RAD, Web and Database Testing
- To impart the essential characteristics of Automation Testing Tools
- To discuss the function of quality factors

COURSE OUTCOMES (Cos)

Students completing this course were able to

CO1	Understand the fundamental principles of software testing.
CO2	Apply various software testing techniques and strategies.
CO3	Design effective test cases and test plans.
CO4	Use software testing tools and frameworks.
CO5	Evaluate software quality using testing metrics and standards.

Mapping of Course Outcome with Program Outcome(POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	3	3	2	2	3	2	2
CO2	3	3	3	1	2	3	1	2	3
CO3	3	2	2	1	3	3	1	3	3
CO4	3	3	3	2	1	3	2	1	3
CO5	3	3	2	3	2	3	3	2	3
Cos/PSOs	PS01		PS02		PS03		PS04		
CO1	3		3		2		2		
CO2	2		2		1		3		
CO3	3		3		1		3		
CO4	3		3		2		3		
CO5	2		3		3		3		

3/2/1 Indicates Strength Of Correlation, 3 – High, 2 – Medium, 1 – Low

Category	H&S	Program core	Program Elective	Open elective	Skill enhancing elective	Interdisciplinary/Allied	Skill component	Practical Project/ Internship	others
			✓						

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E11

SOFTWARE TESTING

UNIT I: Testing Environment And Test Processes **12 hours**

Introduction – World Class Software Testing Model – Building a Software Testing Environment - Overview of Software Testing Process – Organizing for Testing : Requirement Specifications (Software, User, market, Business) – Static & Dynamic Testing : Verification & Validation - Analyzing and Reporting Test Results – Post Implementation Analysis

UNIT II: Developing the Test Plan **12 hours**

Using White Box Approach to Test design – Code Functional Testing – Coverage and Control Flow Graphs – Using Black Box Approaches to Test Case Design – Random Testing – Requirements based testing –Decision tables –State-based testing – Cause-effect graphing – Error guessing – Compatibility testing – Levels of Testing : Functionality Testing - Performance Testing - Unit Testing - Integration Testing - System Testing – User Acceptance Testing - Compatibility Testing

UNIT III: Software Testing Life Cycle **12 hours**

Software Testing Life Cycle: SDLC & STLC , Stages – System Study – Test case design, Review, Approval, Execution - Test case Templates: Header - Body & Footer Templates – Traceability Matrix - Defect Tracking Templates – Postmortem Report (Achievements & Comments) – Rapid Application Development Testing – Testing in a Multiplatform Environment – Testing Software System Security - Testing Web Applications – Web based system – Web Technology Evolution – Testing a Data base

UNIT IV: TEST AUTOMATION **12 hours**

Introduction : Software Testing Tools (Win Runner, Load Runner) - Software Test Automation – Skills needed for Automation – Scope of Automation – Design and Architecture for Automation – Requirements for a Test Tool – Challenges in Automation – Tracking the Bug

UNIT V: Quality Assurance & Quality Control **12 hours**

Complexity Metrics and Models – Quality Management Metrics - Defect Removal Effectiveness Quality Function Deployment – Taguchi Quality Loss Function.

Total: 60 hours

TEXT BOOK:

1. Srinivasan Desikan and Gopalaswamy Ramesh(2007) —Software Testing – Principles and Practices, Pearson Education.

REFERENCES BOOKS:

1. William Perry(2007), —Effective Methods of Software Testing, Third Edition, Wiley Publishing 2007
2. Naresh Chauhan(2010) , —Software Testing Principles and Practices || Oxford University Press , New Delhi , 2010.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E12	BUSINESS INTELLIGENCE & ANALYTICS	L	T	P	C	Ty/Lb/ IE				
						4 1 0 5 TY				
Prerequisite: Basic SQL, Excel, data warehousing concepts, familiarity with BI tools (Power BI/Tableau), and understanding of business metrics/KPIs.										
Course Designed by: Faculty of Computer Applications										

OBJECTIVES

- Explain the Business Intelligence, Analytics and Decision Support system
- List the technologies for Decision making, Automated decision systems
- Explain sentiment analysis techniques
- Illustrate Multi-criteria Decision making systems, predictive modelling techniques

COURSEOUTCOMES(Cos)

At the end of the course, the students will be able to

CO1	Able to analyze Business Intelligence.
CO2	Explain the technologies for Decision making
CO3	Apply predictive modelling techniques(can be attained through assignment or CIE)
CO4	Apply sentiment analysis techniques(can be attained through assignment or CIE)
CO5	Able to analyze Analytics and Decision Support

Mapping of Course Outcome with Program Outcome(POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	3	3	2	2	3	2	2
CO2	3	3	3	1	2	3	1	2	3
CO3	3	2	2	1	3	3	1	3	3
CO4	3	3	3	2	1	3	2	1	3
CO5	3	3	2	3	2	3	3	2	3
Cos/PSOs	PS01	PS02	PS03	PS04					
CO1	3	3	2	2					
CO2	2	2	1	1					
CO3	3	3	1	1					
CO4	3	3	2	2					
CO5	2	3	3	3					

3/2/1IndicatesStrengthOfCorrelation,3 –High,2-Medium,1-Low

Category	H&S	Programcore	Program Elective	Open elective	Skill enhancing elective	Interdisciplin ary/Allied	Skill component	Practical Project/ Internship	others
			✓						

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E12

BUSINESS INTELLIGENCE & ANALYTICS

UNIT I: INTRODUCTION TO BUSINESS INTELLIGENCE 12 hours
Introduction to Digital Data and Its Types – Structured, Semi-Structured and Unstructured, Introduction to OLTP and OLAP (MOLAP, ROLAP, HOLAP), BI Definitions and Concepts, BI Framework.

UNIT II: COMPONENTS OF BUSINESS INTELLIGENCE 12 hours
Data Warehousing Concepts and Its Role in BI; BI Infrastructure Components - BI Process, BI Technology, BI Roles and Responsibilities, Business Applications of BI, BI Best Practices.

UNIT III: BASICS OF DATA INTEGRATION 12 hours
Concepts of Data Integration, Needs and Advantages of using Data Integration, Introduction to Common Data Integration Approaches; Meta Data - Types and Sources, Introduction to Data Quality, Data Profiling Concepts and Applications, Introduction to ETL using Kettle.

UNIT IV: MULTI-DIMENSIONAL DATA MODELING 12 hours
Introduction to Data and Dimension Modeling, Multidimensional Data Model, ER Modeling vs. Multi-Dimensional Modeling, Concepts of Dimensions, Facts, Cubes, Attribute, Hierarchies, Star and Snowflake Schema. Introduction to Business Metrics and KPIs, Creating Cubes using Microsoft Excel.

UNIT V: BASICS OF ENTERPRISE REPORTING 12 hours
A Typical Enterprise, Malcolm Baldrige - Quality Performance Framework, Balanced Scorecard, Enterprise Dashboard, Balanced Scorecard vs. Enterprise Dashboard, Enterprise Reporting using MS Access / MS Excel, Best Practices in the Design of Enterprise Dashboards.

Total: 60 hours

TEXT BOOKS:

1. David Loshin, *Business Intelligence*, Elsevier Science and Technology, Second Edition, 2012.

REFERENCE BOOKS:

1. RN Prasad and Seema Acharya, *Fundamentals of Business Analytics*, Wiley India, 2011.
2. Mike Biere, *Business Intelligence for the Enterprise*, Pearson, 2010.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E13	CLOUD COMPUTING FOR DATA ANALYTICS	L	T	P	C	Ty/Lb/IE	
		3	0	4	5	ETL	
Prerequisite: : Basic understanding of cloud platforms (e.g., AWS), foundational programming skills							
Course Designed by: Faculty of Computer Applications							

OBJECTIVES

- Cloud computing is a colloquial expression used to describe a variety of different computing concepts that involve a large number of computers involves a large number of computers that are connected through a real-time communication network.
- In science, cloud computing is a synonym for distributed computing over a network and means the ability to run a program on many connected computers at the same time.
- This course covers basic concepts of cloud types, services and security etc.

COURSE OUTCOMES(Cos)

At the end of the course, the students will be able to

CO1	Learn the underlying principles of Cloud Technology and various types of cloud computing architecture and types.
CO2	Evaluate between different cloud solutions offered by various providers based on their merits and demerits.
CO3	Understand the Cloud Cost Management and Selection of Cloud Provider
CO4	Understand the IT governance in cloud computing.
CO5	Track the Ten cloud do and do not's.

Mapping of Course Outcome with Program Outcome(POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	3	2	3	2	2	3	2
CO2	2	3	3	1	3	3	1	3	3
CO3	3	2	3	2	2	3	2	2	3
CO4	3	2	3	3	1	3	3	1	3
CO5	2	2	3	3	2	3	3	2	3
Cos/PSOs	PS01		PS02		PS03		PS04		
CO1	3		3		2		1		
CO2	3		2		3		2		
CO3	2		3		3		2		
CO4	3		3		2		3		
CO5	3		3		3		3		

3/2/1 Indicates Strength Of Correlation, 3 – High, 2 – Medium, 1 – Low

Category	H&S	Programcore	Program Elective	Open elective	Skill enhancing elective	Interdisciplinary/Allied	Skill component	Practical Project/ Internship	others
			✓						

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E13

CLOUD COMPUTING FOR DATA ANALYTICS

UNIT 1: Introduction

9 hours

Characteristics, Cloud Models, Cloud Computing Concepts and Technologies, Cloud Computing Services and Platform, Virtualization, Elastic Compute Cloud, Auto Scaling, Elastic Load Balancing, Virtual Private Cloud

UNIT 2: Cloud Application Development

12 hours

Design Considerations, Design Methodologies, Reference Architectures for Cloud Applications, Introduction to Python Framework, RESTful Web API

UNIT 3 : Serverless Applications

12 hours

Introduction to Serverless Computing, Serverless Use Cases, Serverless Design Patterns, Lambda, Serverless Concepts

UNIT 4: Cloud Storage

12 hours

Elastic Block Store (EBS), Storage Gateway, Relational Databases, NoSQL Databases. Batch Analytics and Real-time Analytics - HDFS, Hadoop, MapReduce, Pig, Sparks

Total: 45 hours

TEXT BOOK:

1. **Arshdeep Bahga & Vijay Madisetti**, *"Cloud Computing Solutions Architect: A Hands-On Approach"*, 2019, First Edition, VPT Publisher

REFERENCES:

1. **Douglas E. Comer**, *"The Cloud Computing Book: The Future of Computing Explained"*, 2021, First Edition, CRC Press
2. **Ian Foster and Dennis E. Gannon**, *"Cloud Computing for Science and Engineering"*, 2017, First Edition, The MIT Press, Cambridge, Massachusetts

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E13

CLOUD COMPUTING FOR DATA ANALYTICS

List of Programs:

1. Install Virtual box/VMware/ Equivalent open source cloud Workstation with different flavors of Linux or Windows OS on top of windows 8 and above.
2. Install a C compiler in the virtual machine created using a virtual box and execute Simple Programs
3. Find a procedure to transfer the files from one virtual machine to another virtual machine.
4. Create and host static websites using cloud service providers.
5. Create VMs to deploy simple applications.
6. Deploy SaaS/PaaS/IaaS applications.
7. Develop cloud application with Python web application framework.
8. Develop applications using Map Reduce programming model
9. Install Google App Engine. Create a hello world app and other simple web applications using python/java
10. Install Hadoop single node cluster and run simple applications like word count

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E14	BIG DATA ANALYTICS	L	T	P	C	Ty/Lb/ IE
		3	0	4	5	ETL
	Prerequisite: Basic Programming knowledge in Java or Python Course Designed by: Faculty of Computer Applications					

OBJECTIVES

- This course aimed to Introduce the concepts of big data analytics to the students.
- Introduces the big data framework, its characteristics and use cases associated with it.
- A concise introduction to Hadoop framework will prepare students to handle industry scenarios of big data analytics.

COURSEOUTCOMES(Cos)

Students completing this course were able to

CO1	Understand the characteristics of big data
CO2	Explore Hadoop framework and its components
CO3	Use HDFS and Map Reduce to analyze various industry use cases of big data analytics.
CO4	Understand the YARN Infrastructure
CO5	Learning different Sorting, Shuffling.

Mapping of Course Outcome with Program Outcome(POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	3	3	2	2	3	2	2
CO2	2	3	3	1	2	3	1	2	3
CO3	3	2	2	3	3	1	3	3	1
CO4	3	3	3	2	1	3	2	1	3
CO5	3	3	2	3	2	3	3	2	3
Cos/PSOs	PS01		PS02		PS03		PS04		
CO1	3		3		2		2		
CO2	2		2		3		1		
CO3	3		3		1		3		
CO4	3		3		2		3		
CO5	2		3		3		2		

3/2/1IndicatesStrengthOfCorrelation,3 –High,2-Medium,1-Low

Category	H&S	Programcore	Program Elective	Open elective	Skill enhancing elective	Interdisciplinary/Allied	Skill component	Practical Project/ Internship	others
			✓						

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E14

BIG DATA ANALYTICS

UNIT I - Introduction to Big Data, Characteristics and its Use Case **9 hours**

Introduction – Why Big data - What is big data – Facts about Big Data - Importance of Big Data Evaluation of Big Data – Market Trends – Sources of Data Explosion – Types of Data – Case Study for Netflix and the house of card. Need of Big Data – Big Data and its sources – Characteristics of Big Data – Difference between Traditional IT Approach and Big Data Technology – Capabilities of Big Data – Handling Limitations of Big Data - Technologies Supporting Big Data - Big Data Use Cases.

UNIT II - Introduction to Hadoop **12 hours**

Introduction – Why Hadoop – What is Hadoop – History and Milestone of Hadoop – Core Components of Hadoop – Difference between Regular File System and HDFS – Common Hadoop Shell Commands – Hadoop Configuration.

UNIT III - Hadoop Distributed File System (HDFS) **12 hours**

Concepts and Architecture - Data Flow (File Read, File Write) - Fault Tolerance - Java Base API - Different Daemons in Hadoop cluster (NameNode, Secondary NameNode, Job Tracker, Task Tracker and DataNode) - Loading a dataset into the HDFS.

UNIT IV - INTRODUCTION TO YARN and MapReduce **12 hours**

What is YARN – YARN Infrastructure - Introduction of MapReduce – Analogy of MapReduce – MapReduce Architecture - Example of MapReduce – Sorting, Shuffling – Reducing – Combiner – Partitioner – Creating MapReduce program by using Eclipse.

Total : 45 hours

TEXT BOOKS:

1. Seema Acharya (Author), Subhashini Chellappan, Big Data and Analytics (2015). Wiley Publication.
2. Data Science and **Big Data Analytics**: Discovering, Analyzing, Visualizing and Presenting Data (2015), EMC Education Services

REFERENCES BOOKS:

1. Big Data, Black Book: Covers Hadoop 2, MapReduce, Hive, YARN, Pig, R and Data Visualization (2016), DT Editorial Services
2. Tom White, Hadoop: The Definitive Guide, 4th Edition (2015)

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E14

BIG DATA ANALYTICS

List of Lab Programs:

1. Install and Configure Hadoop (Set up Hadoop and understand its processes)
2. Implement Basic Commands in Hadoop (Learn to manipulate big data using Hadoop commands)
3. Implement HDFS and Explore Its Characteristics (Understand HDFS and its features)
4. Explore the Properties of YARN (Learn about resource management in Hadoop)
5. Import Data from MySQL into HDFS (Integrate relational data with Hadoop)
6. Import Data from MS Excel into HDFS (Integrate Excel data with Hadoop)
7. Implement Reducer in Hadoop (Write reducer programs for data aggregation)
8. Implement Partitioner in Hadoop (Optimize data distribution to reducers)
9. Implement Nested MapReduce (Solve complex problems using nested MapReduce)
10. Create a scenario based on real time domain

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E15	INTRODUCTION TO ML	L	T	P	C	Ty/Lb/ IE			
Prerequisite: Basic knowledge of statistics and probability. Familiarity with fundamental programming concepts and proficiency in Python									
Course Designed by: Faculty of Computer Applications									

OBJECTIVES

- To understand the basic concepts of machine learning.
- To understand and build supervised learning models.
- To understand and build unsupervised learning models.
- To evaluate the algorithms based on corresponding metrics identified

COURSE OUTCOMES(Cos)

Students completing this course were able to

CO1	Explain the basic concepts of machine learning.
CO2	Construct supervised learning models.
CO3	Construct unsupervised learning algorithms.
CO4	Evaluate and compare different models
CO5	Modify existing machine learning algorithms to improve classification efficiency

Mapping of Course Outcome with Program Outcome(POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	3	2	3	3	3	2	2	2
CO2	2	2	3	3	3	2	2	3	3
CO3	3	2	2	2	3	2	2	2	2
CO4	2	3	2	2	3	3	1	3	3
CO5	2	3	2	2	3	3	3	3	2
Cos/PSOs	PS01		PS02		PS03		PS04		
CO1	2		2		2		1		
CO2	2		3		3		1		
CO3	2		2		2		2		
CO4	2		2		2		1		
CO5	3		2		1		1		

3/2/1IndicatesStrengthOfCorrelation,3 –High,2-Medium,1-Low

Category	H&S	Programcore	Program Elective	Open elective	Skill enhancing elective	Interdisciplin ary/Allied	Skill component	Practical Project/ Internship	others
			✓						

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E15

INTRODUCTION TO ML

UNIT 1: Introduction to Machine Learning	9	hours
Fundamentals of Machine Learning – Applications – Types of Machine Learning – Challenges of Machine Learning – Testing and Validating		
UNIT 2: Training a ML Model	12	hours
End-to-End Machine Learning Project – Working with Real Data – Get the Data – Explore and Visualize the Data – Prepare the Data for Machine Learning Algorithms		
UNIT 3: Classification and Regression	12	hours
Support Vector Machine – Naive Bayes – Decision Tree – KNN algorithm – Regression – Linear Regression – Ridge Regression		
UNIT 4: Ensemble Approaches	12	hours
Voting Classifiers – Bagging and Pasting – Random Forests – Boosting – Stacking - Unsupervised Learning: k-means clustering – Limits of K-means – Hierarchical clustering – Expected Maximization Algorithm.		

Total:45 hours

TEXT BOOKS::

1. **Aurelien Geron**, “*Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow*”, 2019, 2nd Edition, O'Reilly Media, Inc.
2. **Ethem Alpaydin**, “*Introduction to Machine Learning*”, 2020, Fourth Edition, MIT Press.

REFERENCES:

1. **Stephen Marsland**, “*Machine Learning: An Algorithmic Perspective*”, 2014, Second Edition, CRC Press.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E15

INTRODUCTION TO ML

List of Lab programs:

1. Develop a Python program to create a NumPy array and apply matrix operations.
2. Develop a Python program to create a pandas DataFrame from a list of data.
3. Develop a Python program to analyze the dataset using pandas and matplotlib library.
4. Develop a program to compute Mean, Median, Mode, Variance, and Standard Deviation using datasets
5. Develop a Python program to implement Simple Linear Regression and plot the graph.

6. Develop a Python program to classify English text using Naive Bayes' theorem.

7. Develop a Python program to implement a single-layer perceptron.
8. Implement the Naive Bayesian classifier for a sample training dataset stored as a CSV file.
9. Compute the accuracy of the classifier, considering a few test datasets.

10. Implement the basic Averaging method & Max Voting ensemble methods to focus on a classification problem.
11. Implement the k-Nearest Neighbor algorithm to classify the iris dataset. Print both correct and wrong predictions.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E16	DATA SECURITY AND PRIVACY	L	T	P	C	Ty/Lb/IE
		4	1	0	5	TY
	Prerequisite: Networking Fundamentals, Introduction to Databases, Security Fundamentals Course Designed by: Faculty of Computer Applications					

OBJECTIVES

- To become familiar with the fundamental concepts of data security and privacy mechanisms along with an understanding of hiding data in text and images.

COURSEOUTCOMES(Cos)

At the end of the Course the student will be able to

CO1	To learn the basic concepts related to data security
CO2	To understand and apply the concepts of encryption standards
CO3	To understand hash functions and to learn the basic concepts of hiding data in text and images.
CO4	To understand the concepts of privacy, authentication, web and email security.
CO5	To understand the different types of symmetric key ciphers.

Mapping of Course Outcome with Program Outcome(POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	3	3	2	2	3	2	2
CO2	3	3	3	2	1	3	2	1	3
CO3	3	2	2	1	3	3	1	3	3
CO4	3	3	3	2	1	3	2	1	3
CO5	3	3	2	3	2	3	3	2	3
Cos/PSOs	PS01		PS02		PS03		PS04		
CO1	3	3	2				2		
CO2	2	2	1				3		
CO3	3	2	1				3		
CO4	3	3	3				3		
CO5	2	3	3				3		

3/2/1IndicatesStrengthOfCorrelation,3 –High,2-Medium,1-Low

Category	H&S	Programcore	Program Elective	Open elective	Skill enhancing elective	Interdisciplin ary/Allied	Skill component	Practical Project/ Internship	others
			✓						

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E16

DATA SECURITY AND PRIVACY

UNIT I: SECURITY ARCHITECTURE & OPERATING SYSTEM SECURITY FUNDAMENTALS

12 hours

Security Architecture: Introduction to Information Systems, Database Management Systems (DBMS), and Information Security Architecture, Asset Types and Value, Security Methods -Operating System Security Fundamentals: Overview of Operating Systems, Security Environment, Components, Authentication Methods, User Administration, Password Policies, Vulnerabilities and E-mail Security.

UNIT II: ADMINISTRATION OF USERS & PROFILES, PASSWORD POLICIES, PRIVILEGES AND ROLES

12 hours

User Administration: Authentication: Creating Users (SQL Server), Modifying/Removing Users, Default and Remote Users, Database Links, Linked Servers, Best Practices for Administrators and Managers- Profiles, Password Policies, Privileges, and Roles: Defining and Using Profiles, Designing Password Policies, Granting/Revoking User Privileges and Roles.

UNIT III: DATABASE APPLICATION SECURITY MODELS & VIRTUAL PRIVATE DATABASES

12 hours

Database Application Security Models: Types of Users, Security Models, Application Types, Data Encryption - Virtual Private Databases (VPD): Overview of VPD, Implementation using Views and Application Context (Oracle), Row/Column-Level Security in SQL Server.

UNIT IV: AUDITING DATABASE ACTIVITIES

12 hours

Auditing Tools and Methods: Oracle Auditing: Creating DDL Triggers, Auditing Database/Server Activity, SQL Server 2000 Auditing, Case Study: Security and Auditing Project.

UNIT V: PRIVACY-PRESERVING DATA MINING TECHNIQUES

12 hours

Introduction to Privacy-Preserving Data Mining (PPDM) Algorithms, Randomization Methods, Group-Based Anonymization, Distributed Privacy-Preserving Data Mining, Challenges: Curse of Dimensionality, Applications of PPDM.

Total : 60 hours

TEXT BOOKS::

1. Hassan A.(2009) Afyouni, Database Security and Auditing (Third Edition)
2. Charu C. Aggarwal, Philip S. Yu(2008), Privacy Preserving Data Mining: Models and Algorithms

REFERENCES:

1. Ron Ben Natan (2005), Implementing Database Security and Auditing

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E17	NATURAL LANGUAGE PROCESSING	L	T	P	C	Ty/Lb/ IE
		3	0	4	5	ETL
	Prerequisite: Basic programming (Python), understanding of probability/statistics Course Designed by: Faculty of Computer Applications					

OBJECTIVES

- To learn the fundamentals of natural language processing.
- To learn the word level analysis methods .
- To explore the syntactic analysis concepts.
- To understand the semantics and pragmatics.
- To learn to analyze discourses and Lexical Resources.

COURSE OUTCOMES(Cos)

At the end of the Course the student will be able to

CO1	To learn the fundamentals of natural language processing.
CO2	To learn the word level analysis methods.
CO3	To explore the syntactic analysis concepts.
CO4	To understand the semantics and pragmatics.
CO5	To learn to analyze discourses and Lexical Resources.

Mapping of Course Outcome with Program Outcome(POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	3	3	2	2	3	2	2
CO2	3	3	3	1	2	3	1	2	3
CO3	3	1	2	2	3	3	2	3	3
CO4	3	3	3	2	1	3	2	1	3
CO5	3	3	2	3	2	3	3	2	3
Cos/PSOs	PS01		PS02		PS03		PS04		
CO1	3		3		2		2		
CO2	2		3		2		3		
CO3	3		2		1		3		
CO4	3		3		1		3		
CO5	2		3		3		3		

3/2/1 Indicates Strength Of Correlation, 3 – High, 2 – Medium, 1 – Low

Category	H&S	Programcore	Program Elective	Open elective	Skill enhancing elective	Interdisciplinary/Allied	Skill component	Practical Project/ Internship	others
			✓						

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E17

NATURAL LANGUAGE PROCESSING

UNIT 1: Introduction to NLP

9 hours

Origins of NLP, Language and Knowledge. The Challenges of NLP, Language and Grammar. NLP Applications- Text Processing :Regular Expressions, Text Normalization: Tokenization – Stemming – Lemmatization, Sentence Segmentation, Edit Distance

UNIT 2: X-Fram Language Models:

12 hours

N-grams - Evaluating Language Models - Sampling sentences from a language model - Generalization and Zeros - Smoothing. Text Classification :Supervised Text Classification - Naive Bayes, Evaluation: Precision, Recall, F-measure. Avoiding Hams in Classification. Logistic Regression - The sigmoid function - Classification with Logistic Regression. Gradient Descent.

UNIT 3: Parts of Speech and Named Entities

12 hours

Part-of-Speech Tagging. Named Entities and Named Entity Tagging. Markov Models. Hidden Markov Models. HMM Part-of-Speech Tagging

UNIT 4: Semantic Analysis Lexical Semantics

12 hours

Word Similarity- Word Relatedness- Semantic Frames and Roles- Connotation. Vector Semantics. Words and Vectors- Document Dimensions- Word Dimensions. Cosine for Measuring Similarity. TF-IDF

Total : 45 hours

TEXT BOOK:

1. Daniel Jurafsky, James H. and Martin, "Speech and Language Processing", 2023, Third Edition, Pearson.

REFERENCE BOOKS:

1. Siddiqui and Tiwary U.S., "Natural Language Processing and Information Retrieval", 2008, Oxford University.
2. Manning, Christopher, and Hinrich Schutze. "Foundations of statistical natural language processing". MIT press, 1999.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E17

Natural Language Processing

List of Lab Programs:

1. Word Analysis
2. Word Generation
3. Morphology
4. N-Grams
5. N-Grams Smoothing
6. POS Tagging: Hidden Markov Model
7. POS Tagging: Viterbi Decoding
8. Building POS Tagger
9. Chunking
10. Building Chunker

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E18	DIGITAL IMAGE PROCESSING	L	T	P	C	Ty/Lb/IE			
						4			
Prerequisite: Digital Signal Processing						TY			
Course Designed by: Faculty of Computer Applications									

OBJECTIVES

To study the image fundamentals and mathematical transforms necessary for image processing.

- To study the image enhancement techniques
- To study image restoration procedures.
- To study the image compression procedures.

COURSEOUTCOMES(Cos)

At the end of the Course the student will be able to

CO1	Review the fundamental concepts of a digital image processing system
CO2	Analyze images in the frequency domain using various transforms
CO3	Evaluate the techniques for image enhancement and image restoration
CO4	Categorize various compression techniques. CO5: Interpret Image compression standards
CO5	Interpret image segmentation and representation techniques.

Mapping of Course Outcome with Program Outcome(POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	3	3	2	2	3	2	2
CO2	3	3	3	2	1	3	2	1	3
CO3	3	2	2	1	3	3	1	3	3
CO4	3	3	3	2	1	3	2	1	3
CO5	3	3	2	3	2	3	3	2	3
Cos/PSOs	PS01		PS02		PS03		PS04		
CO1	3		3		2		2		
CO2	2		2		1		3		
CO3	3		2		1		3		
CO4	3		3		3		3		
CO5	2		3		3		3		

3/2/1 Indicates Strength Of Correlation, 3 – High, 2 – Medium, 1 – Low

Category	H&S	Programcore	Program Elective	Open elective	Skill enhancing elective	Interdisciplin ary/Allied	Skill component	Practical Project/ Internship	others
			✓						

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E18

DIGITAL IMAGE PROCESSING

UNIT I: Digital Image Fundamentals & Image Transforms **12 hours**

Digital Image Fundamentals: Sampling and quantization, Relationship between pixels **Image Transforms:** 2-D FFT and its properties, Walsh transform, Hadamard transform, Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT).

UNIT II: Image Enhancement **12 hours**

Spatial Domain Techniques: Point operations (types, gray-level transformations), Histogram manipulation, Local/neighborhood operations (median filter), Spatial domain high-pass filtering - **Frequency Domain Techniques:** Filtering in the frequency domain, Deriving frequency domain filters from spatial filters, Direct generation of frequency domain filters, Low-pass (smoothing) and high-pass (sharpening) filters.

UNIT III: Image Restoration **12 hours**

Degradation models, Algebraic restoration approaches, Inverse filtering, Least Mean Square (LMS) filters, Constrained Least Squares Restoration.

UNIT IV: Image Segmentation & Morphological Processing **12 hours**

Image Segmentation: Detection of discontinuities, Edge linking and boundary detection , Thresholding , Region-oriented segmentation - **Morphological Image Processing:** Dilation and erosion, Structuring element decomposition ,Combining dilation and erosion (opening, closing), Hit-or-Miss transformation

UNIT V: Image Compression **12 hours**

Redundancies and their removal methods, Fidelity criteria, Image compression models, Huffman and arithmetic coding, Error-free compression, Lossy compression, Lossy and Lossless Predictive Coding, Transform Based Compression, JPEG 2000 Standards.

Total : 60 hours

TEXT BOOKS:

1. Digital Image Processing- Rafeal C. Gonzalez, Richard E. Woods, 3rd Edition, Pearson, 2008
2. Digital Image Processing- S Jayaraman, S. Essakkirajan, T. Veerakumar-TMH,2010

REFERENCE BOOKS:

1. **Digital Image Processing** — Rafael C. Gonzalez, Richard E. Woods, 3rd Edition, Pearson.
2. **Digital Image Processing and Analysis: Human and Computer Vision Applications with CVIP Tools** — Scott E. Umbaugh, 2nd Edition, CRC Press, 2011.
3. **Introduction to Digital Image Processing with Matlab** — Alasdair McAndrew, Thomson Course.
4. **Fundamentals of Digital Image Processing** — A.K. Jain, PHI, 1989.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E19	AUGMENTED REALITY & VIRTUAL REALITY	L	T	P	C	Ty/Lb/ IE
		4	1	0	5	TY
	Prerequisite: Programming basics (C++/Python), familiarity with computer graphics principles, and understanding of human-computer interaction (HCI) concepts. Course Designed by: Faculty of Computer Applications					

OBJECTIVES

- To learn the fundamentals of sensation, perception, and perceptual training.
- To have the scientific, technical, and engineering aspects of augmented and virtual reality systems.
- To learn the Evaluation of virtual reality from the lens of design.
- To learn the technology of augmented reality and implement it to have practical knowledge.

COURSEOUTCOMES(Cos)

At the end of the Course the student will be able to

CO1	Describe the concept of virtual reality and Communication Media. (L2)
CO2	Understand current virtual reality hardware and software. (L2)
CO3	Understand various modeling approaches. (L2)
CO4	Illustrate the concepts of Human Factors and Applications of VR. (L2)
CO5	Build a Virtual Reality Application. (L3)

Mapping of Course Outcome with Program Outcome(POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	3	3	2	2	3	2	2
CO2	3	3	3	2	1	3	2	1	3
CO3	3	2	2	1	3	3	1	3	3
CO4	3	3	3	2	1	3	2	1	3
CO5	3	3	2	3	2	3	3	2	3
Cos/PSOs	PS01		PS02		PS03		PS04		
CO1	3		3		2		2		
CO2	2		2		1		3		
CO3	3		2		1		3		
CO4	3		3		3		3		
CO5	2		3		3		3		

3/2/1 Indicates Strength Of Correlation, 3 –High, 2-Medium, 1-Low

Category	H&S	Programcore	Program Elective	Open elective	Skill enhancing elective	Interdisciplinary/Allied	Skill component	Practical Project/ Internship	others
			✓						

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E19

AUGMENTED REALITY & VIRTUAL REALITY

UNIT I: INTRODUCTION

12 hours

Introduction to Virtual Reality (VR) and Augmented Reality (AR): Definitions, , Benefits of VR, Components of VR Systems, Introduction to AR and AR Technologies, Input Devices: 3D Position Trackers, Types of Trackers, Navigation and Manipulation Interfaces, Gesture Interfaces, Gesture Input Devices, Output Devices: Graphics Displays (Personal/Large Volume), Human Visual/Auditory Systems, Sound Displays.

UNIT II: VR MODELING

12 hours

Geometric Modeling: Virtual Object Shape, Visual Appearance, Kinematics Modeling: Transformation Matrices, Object Position, Invariants, Hierarchies, Viewing the 3D World, Physical Modeling: Collision Detection, Surface Deformation, Force Computation/Smoothing/Mapping, Behavior Modeling and Model Management.

UNIT III: VR PROGRAMMING

12 hours

VR Programming Tools: Toolkits, Scene Graphs, World ToolKit vs. Java 3D (Comparison).

UNIT IV: APPLICATIONS

12 hours

Human Factors: Methodology, Terminology, Health/Safety, Societal Impact, Medical, Military, Manufacturing, Robotics, Business, Education, Entertainment Applications, Emerging Applications and Information Visualization.

UNIT V: AUGMENTED REALITY

12 hours

Introduction to AR, Computer Vision for AR, Interaction, Modeling, Annotation, Navigation, Wearable Devices.

Total : 60 hours

TEXT BOOKS:

1. Charles Palmer, John Williamson, "Virtual Reality Blueprints: Create compelling VR experiences for mobile", Packt Publisher, 2018
2. Dieter Schmalstieg, Tobias Hollerer, "Augmented Reality: Principles & Practice", Addison Wesley, 2016

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E20	BLOCK CHAIN TECHNOLOGY	L	T	P	C	Ty/Lb/ IE	
		4	1	0	5	TY	
Prerequisite: Be well versed in concepts such as cryptography, consensus, hash functions, distributed ledgers, smart contracts And any other concepts integral to understanding block chain's inner workings.							
Course Designed by: Faculty of Computer Applications							

OBJECTIVES

- To assess blockchain applications in a structured manner
- To impart knowledge in blockchain techniques and able to present the concepts clearly and structured.
- To get familiarity with future currencies and to create own cryptotoken.

COURSE OUTCOMES (Cos)

Students completing this course were able to

CO1	Understand the various technologies and its business use.
CO2	Analyse the blockchain applications in a structure manner.
CO3	Explain the modern concepts of blockchain technology systematically.
CO4	Handle the cryptocurrency.
CO5	Understand the modern currencies and its market ussage

Mapping of Course Outcome with Program Outcome (POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	3	3	2	2	3	2	2
CO2	3	3	3	2	1	3	2	1	3
CO3	3	2	2	1	3	3	1	3	3
CO4	3	3	3	2	1	3	2	1	3
CO5	3	3	2	3	2	3	3	2	3
Cos/PSOs	PS01		PS02		PS03		PS04		
CO1	3		3		2		2		
CO2	2		2		1		3		
CO3	3		2		1		3		
CO4	3		3		3		3		
CO5	2		3		3		3		

3/2/1 Indicates Strength Of Correlation, 3 – High, 2 – Medium, 1 – Low

Category	H&S	Programcore	Program Elective	Open elective	Skill enhancing elective	Interdisciplinary/Allied	Skill component	Practical Project/ Internship	others
			✓						

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E20

BLOCK CHAIN TECHNOLOGY

UNIT 1: INTRODUCTION

12 hours

Need for Distributed Record Keeping, Modeling faults and adversaries, Byzantine Generals problem, Consensus algorithms and their scalability problems, Nakamoto's concept with Blockchain based cryptocurrency, Technologies Borrowed in Blockchain – hash pointers, consensus, byzantine fault-tolerant distributed computing, digital cash etc.

UNIT 2: BASIC DISTRIBUTED COMPUTING & CRYPTO PRIMITIVES

12 hours

Atomic Broadcast, Consensus, Byzantine Models of fault tolerance, Hash functions, Puzzle friendly Hash, Collision resistant hash, digital signatures, public key crypto, verifiable random functions, Zero-knowledge systems

UNIT 3: BITCOIN BASICS

12 hours

Bitcoin blockchain, Challenges and solutions, proof of work, Proof of stake, alternatives to Bitcoin consensus, Bitcoin scripting language and their use

UNIT 4: ETHEREUM BASICS

12 hours

Ethereum and Smart Contracts, The Turing Completeness of Smart Contract Languages and verification challenges, Using smart contracts to enforce legal contracts, comparing Bitcoin scripting vs. Ethereum Smart Contracts, Writing smart contracts using Solidity & JavaScript

UNIT 5: PRIVACY, SECURITY ISSUES IN BLOCKCHAIN

12 hours

Pseudo-anonymity vs. anonymity, Zcash and Zk-SNARKS for anonymity preservation, attacks on Blockchains: Sybil attacks, selfish mining, 51% attacks advent of algorand; Sharding based consensus algorithms to prevent these attacks

Total : 60 hours

TEXT BOOK:

1. Josh Thompson, Blockchain: The Blockchain for Beginnings, Guid to Blockchain Technology and Blockchain Programming, Create Space Independent Publishing Platform, 2017.

REFERENCE BOOKS:

1. Narayanan, Bonneau, Felten, Miller and Goldfeder, —Bitcoin and Cryptocurrency Technologies – A Comprehensive Introduction, Princeton University Press.
2. Imran Bashir, —Mastering Blockchain: Distributed ledger technology, decentralization, and smart contracts explained, Packt Publishing.
3. Merunas Grincalaitis, —Mastering Ethereum: Implement Advanced Blockchain Applications Using Ethereum supported Tools, Services, and Protocols, Packt Publishing.
4. Prof. Sandip Chakraborty, Dr. Praveen Jayachandran, —Blockchain Architecture Design And Use Cases [MOOC], NPTEL: <https://nptel.ac.in/courses/106/105/106105184>

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E21	TIME SERIES ANALYSIS	L	T	P	C	Ty/Lb/IE
		3	0	4	5	ETL
Prerequisite: Basic statistics, probability, linear algebra, calculus, and familiarity with regression analysis and stochastic processes						
Course Designed by: Faculty of Computer Applications						

OBJECTIVES

- To understand the basic concepts of time series analysis
- To understand the elementary time series models and model evaluation techniques.
- To understand the integration process of non-stationary data set.
- To understand the importance of ARMA and ARIMA models for forecasting.

COURSEOUTCOMES(Cos)

Understand the different elementary models related to time series analysis

CO1	Apply different model evaluation technique to identify better model to forecast.
CO2	Understand the importance of stationarity in building time series models.
CO3	Understand the use of Granger Causality and Johansen Cointegration method.
CO4	Apply VAR model to the dynamic behaviour of financial time series conditions. Select the order of Vector Auto Regression model for better forecast of time series data
CO5	Build the model using ARCH and GARCH technique for non-constant variance data

Mapping of Course Outcome with Program Outcome(POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	3	3	2	2	3	2	2
CO2	3	3	3	1	2	3	1	2	3
CO3	3	2	2	1	3	3	1	3	3
CO4	3	3	3	2	1	3	2	1	3
CO5	2	3	1	3	2	3	3	2	3
Cos/PSOs	PS01	PS02	PS03	PS04					
CO1	3	3	3	2					
CO2	2	1	2	3					
CO3	3	3	1	1					
CO4	3	3	2	3					
CO5	2	1	3	3					

3/2/1IndicatesStrengthOfCorrelation,3 –High,2-Medium,1-Low

Category	H&S	Programcore	Program Elective	Open elective	Skill enhancing elective	Interdisciplinary/Allied	Skill component	Practical Project/ Internship	others
			✓						

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E21

TIME SERIES ANALYSIS

UNIT 1: INTRODUCTION TO TREND **9 hours**

Introduction to times series data, application of time series from various fields, Components of a time series, Decomposition of time series. **Trend**: Estimation of trend by free hand curve method, method of semi averages, fitting a various mathematical curve, and growth curves.

UNIT 2: TREND AND SEASONAL COMPONENT **12 hours**

Method of moving averages. Detrending. Effect of elimination of trend on other components of the time series. **Seasonal Component**: Estimation of seasonal component by Method of simple averages, Ratio to Trend, Ratio to moving average and Link relatives.

UNIT 3: FORECASTING **12 hours**

Variate component method: Stationary Time series: Weak stationary, autocorrelationfunction and correlogram of moving average .**Forecasting**: Exponential smoothing methods, Short term forecasting methods: Brown's discounted regression, Box-Jenkins Method.

UNIT 4: CYCLIC COMPONENT **12 hours**

Deseasonalization . Cyclic Component: Harmonic Analysis. **Some Special Processes**: Moving-average (MA) process and Autoregressive (AR) process of orders one and two, Estimation of the parameters of AR (1) and AR (2) – Yule-Walker equations.

Total : 45 hours

TEXT BOOK:

1. Chatfield C. (1980): The Analysis of Time Series –An Introduction, Chapman & Hall.

REFERENCE BOOKS:

1. Kendall M.G. (1976): Time Series, Charles Griffin.
2. Mukhopadhyay P. (2011): Applied Statistics, 2nd ed. Revised reprint, Books and Allied

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E21

TIME SERIES ANALYSIS

List of Lab Programs:

1. Fitting and plotting of modified exponential curve
2. Fitting and plotting of Gompertz curve
3. Fitting and plotting of logistic curve
4. Fitting of trend by Moving Average Method
5. Measurement of Seasonal indices Ratio-to-Trend method
6. Measurement of Seasonal indices Ratio-to-Moving Average method
7. Measurement of seasonal indices Link Relative method
8. Calculation of variance of random component by variate difference method
9. Forecasting by exponential smoothing
10. Forecasting by short term forecasting methods.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E22	DEEP LEARNING WITH PYTHON	L	T	P	C	Ty/Lb/ IE
		3	0	4	5	ETL
	Prerequisite: Basic Python programming, foundational mathematics (linear algebra, calculus), introductory machine learning concepts Course Designed by: Faculty of Computer Applications					

OBJECTIVES

- To introduce the idea of artificial neural networks and their architecture
- To introduce techniques used for training artificial neural networks
- To enable design of an artificial neural network for classification
- To enable design and deployment of deep learning models for machine learning problems

COURSE OUTCOMES (Cos)

Understand the different elementary models related to time series analysis

CO1 Able to understand the mathematics behind functioning of artificial neural networks.

CO2 Able to analyze the given dataset for designing a neural network based solution

CO3 Able to carry out design and implementation of deep learning models.

CO4 Able to design and deploy simple TensorFlow-based deep learning solutions to classification problems

CO5 Able to carry out signal/image processing applications

Mapping of Course Outcome with Program Outcome(POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	3	3	2	2	3	2	2
CO2	3	3	3	1	2	3	1	2	3
CO3	3	2	2	1	3	3	1	3	3
CO4	3	3	3	2	1	3	2	1	3
CO5	2	3	1	3	2	3	3	2	3
Cos/PSOs	PS01	PS02	PS03	PS04					
CO1	3	3	3	2					
CO2	2	1	2	3					
CO3	3	3	1	1					
CO4	3	3	2	3					
CO5	2	1	3	3					

3/2/1 Indicates Strength Of Correlation, 3 – High, 2 – Medium, 1 – Low

Category	H&S	Programcore	Program Elective	Open elective	Skill enhancing elective	Interdisciplinary/Allied	Skill component	Practical Project/ Internship	others
			✓						

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E22

DEEP LEARNING WITH PYTHON

UNIT I: INTRODUCTION TO NEURAL NETWORKS **9 hours**

AI, ML, DL – Definitions, Differences, Neurons, Neural Networks, Applications, Perceptron – Structure, Learning Algorithm, Limitations, Multi-Layer Perceptrons (MLP), Activation Functions (Sigmoid, ReLU, Tanh, Softmax), Backpropagation Algorithm.

UNIT II: DEEP LEARNING WITH PYTHON LIBRARIES **12 hours**

Python Overview, NumPy – Arrays, Operations, Pandas – DataFrames, Manipulation, TensorFlow, PyTorch – Installation, Setup, Simple Neural Networks, Keras.

UNIT III: CONVOLUTIONAL NEURAL NETWORKS (CNNS) & RECURRENT NEURAL NETWORKS (RNNs) **12 hours**

CNN – Architecture, Convolutional Layers, Pooling Layers, Fully Connected Layers, Activation Functions, Image Recognition, Computer Vision.

RNN – Structure, Working, LSTM, GRU, Sequential Data, NLP, Time Series Prediction.

UNIT IV: TRAINING AND OPTIMIZING DEEP LEARNING MODELS **12 hours**

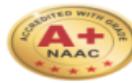
Gradient Descent – Batch, Stochastic, Mini-Batch, Adam, RMSprop, Adagrad. Regularization – Dropout, L1, L2, Batch Normalization. Hyperparameter Tuning – Learning Rate Scheduling, Model Evaluation – Confusion Matrix, Accuracy, Precision, Recall, F1-Score.

Total : 45 hours

Text Book:

1. François Chollet, "Deep Learning with python" second Edition, November 2021

FACULTY OF COMPUTER APPLICATIONS


BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E22

DEEP LEARNING WITH PYTHON

List of Lab Programs:

1. Implement a single-layer perceptron for binary classification using NumPy (AND/OR gate).
2. Build an MLP from scratch using NumPy and train it using backpropagation.
3. Create a basic neural network using Keras to classify MNIST handwritten digits.
4. Implement a Convolutional Neural Network (CNN) using Keras and train it on CIFAR-10 dataset.
5. Implement a Recurrent Neural Network (RNN) using Keras for character-level text prediction.
6. Build an LSTM model for IMDB movie reviews sentiment analysis using TensorFlow/Keras.
7. Train an MLP with and without dropout and L2 regularization, compare performance.
8. Optimize hyperparameters (learning rate, layers, activation functions) using GridSearchCV or Keras Tuner.
9. Modify an MLP/CNN model to include batch normalization and Adam optimizer, analyze improvements.
10. Train a classification model and compute confusion matrix, accuracy, precision,

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E23	THINKING RESTFUL SERVICES	L	T	P	C	Ty/Lb/ IE
		3	0	4	5	ETL
	Prerequisite: Java Programming Fundamentals, Object-Oriented Programming Concepts, Advanced Java Concepts, Working with Spring Boot Course Designed by: Faculty of Computer Applications					

OBJECTIVES

- Learn to develop RESTful APIs using Spring Boot, including HTTP methods and JSON handling.
- Understand NoSQL concepts and perform CRUD operations with MongoDB via Spring Data.
- Implement robust exception handling and apply unit and integration testing strategies.
- Secure RESTful services using Spring Security with JWT-based authentication.
- Build and deploy a complete, secure REST API project integrating all core concepts.

COURSE OUTCOMES (Cos)

Understand the different elementary models related to time series analysis

CO1	Build and test RESTful APIs using Spring Boot for effective backend communication.
CO2	Managesemi-structured and unstructured data using NoSQL databases like MongoDB.
CO3	Implement Spring Data Mongo Repositories to perform CRUD operations and interact with NoSQL databases.
CO4	Handle exceptions gracefully in RESTful services using Spring's exception handling features And domain-specific exceptions.
CO5	Perform unit and integration testing on service, data, and controller layers using JUnit and Mockito.

Mapping of Course Outcome with Program Outcome(POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	3	3	2	2	3	2	2
CO2	3	3	3	1	2	3	1	2	3
CO3	3	2	2	1	3	3	1	3	3
CO4	3	3	3	2	1	3	2	1	3
CO5	2	3	1	3	2	3	3	2	3
Cos/PSOs	PS01	PS02	PS03	PS04					
CO1	3	3	3	2					
CO2	2	1	2	3					
CO3	3	3	1	1					
CO4	3	3	2	3					
CO5	2	1	3	3					

3/2/1 Indicates Strength Of Correlation, 3 – High, 2 – Medium, 1 – Low

Category	H&S	Programcore	Program Elective	Open elective	Skill enhancing elective	Interdisciplinary/Allied	Skill component	Practical Project/ Internship	others
			✓						

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E23

THINKING RESTFUL SERVICES

UNIT1: RESTful API Development and Data Handling:

9 hours

Introduction to REST Architecture, Building RESTful APIs with Spring Boot, HTTP Methods and Status Codes, RESTful URL Design Principles, Request and Response Handling (JSON), Creating REST Controllers. Introduction to NoSQL and MongoDB, Document-oriented Storage Concepts, Spring Data MongoDB Configuration, Creating Mongo Repositories, CRUD Operations with Mongo Repository, Managing Semi-structured and Unstructured Data

UNIT 2 : Exception Handling and Testing Strategies

12 hours

Spring Boot Exception Handling, Global Exception Handling with @ControllerAdvice, Domain-Specific Exceptions, Unit Testing with JUnit and Mockito, Testing Controller, Service, and Repository Layers, Integration Testing in Spring Boot

UNIT3 : Securing RESTful Applications

12 hours

Introduction to Spring Security, JWT Authentication Flow, Generating and Validating JWT Tokens, Securing End Points with JWT, Stateless Authentication Best Practices.

UNIT4 : Project and Summative Assessment

12 hours

Build a secure, tested RESTful API with MongoDB, implement authentication with JWT, and deploy the solution. Summative Quiz.

Total : 45 hours

TEXTBOOK:

1. **Rajput, D. (2022). *Learning Spring Boot 3.0: Simplify the development of production-grade applications using Spring Boot 3.0*.** Packt Publishing.

REFERENCE BOOKS:

1. **Walls, C. (2022). *Spring in Action* (6th ed.). Manning Publications.**
2. **Gutierrez, F. (2023). *Pro Spring Boot 3: An Authoritative Guide to Building Microservices, Web and Enterprise Applications, and Best Practices*.** Apress.
3. **Bradshaw, S., & Chodorow, K. (2019). *MongoDB: The Definitive Guide* (3rd ed.). O'Reilly Media.**
4. **Gulati, S. (2021). *Test-Driven Development with JUnit 5: Build robust software with JUnit 5, Mockito, Testcontainers, and Spring Boot*.** Packt Publishing.
5. **Mak, L. (2021). *Spring Security in Action: Powerful security for the web and cloud*.** Manning Publications.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E23

THINKING RESTFUL SERVICES

List of Lab programs:

1. Create a Spring Boot RESTful API that handles CRUD operations for a Product entity using standard HTTP methods.
2. Design RESTful URLs and test endpoints using Postman for an e-commerce backend.
3. Connect a Spring Boot application to MongoDB, create a document model (e.g., Customer), and perform CRUD operations using Mongo Repository.
4. Store and retrieves semi-structured data (like JSON with nested fields) in MongoDB and expose it via REST endpoints.
5. Handle valid inputs or missing data using @ExceptionHandler and @ControllerAdvice in a Spring Boot service.
6. Define and use domain-specific exceptions for better API error reporting (e.g., UserNotFoundException, InvalidOrderException).
7. Write unit tests for a service class using JUnit and mock dependencies with Mockito.
8. Test controller endpoints using @WebMvc Test and simulate HTTP requests using MockMvc.
9. Perform integration testing of the entire API workflow—from controller to repository.
10. Implement user authentication using Spring Security and JWT token generation on login.
11. Secure certain API endpoints with JWT and allow public access to others (e.g., login, registration).
12. Validate JWT tokens in request headers and extract user information to personalize responses.
13. Use Maven commands to build and package your Spring Boot application into a deployable .jar.
14. Log requests and responses for a Spring Boot application using slf4j and @Slf4j annotations.
15. Create a backend service for a To Do List or Task Manager with secure login, MongoDB data persistence, and full test coverage.
16. Handle large nested JSON structures and store them efficiently in MongoDB using embedded documents.
17. Add pagination and sorting to your Mongo repository methods and expose them through API.
18. Simulate a login workflow using Postman with JWT token generation and secured data access.
19. Deploy the RESTful application locally or on a cloud platform (optional stretch goal).
20. Document the API using Swagger/OpenAPI (bonus practice for project-ready API design)

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E24	DEEP LEARNING WITH WATSON	L	T	P	C	Ty/Lb/ IE
		3	0	4	5	ETL
	Prerequisite: Fundamentals of Deep Learning Course Designed by: Faculty of Computer Applications					

OBJECTIVES

- To understand and apply deep learning concepts using IBM Watson's AI platform.
- This includes building, training, and deploying deep learning models for tasks such as image recognition, natural language processing, and predictive analytics, leveraging Watson's tools and cloud-based infrastructure.
- The goal is to gain hands-on experience in integrating deep learning solutions into real-world applications using Watson Studio and related services.

COURSEOUTCOMES(Cos)

Understand the different elementary models related to time series analysis

CO1	To Understand the need and applications of Deep Learning.
CO2	To Understand what a Neural Network and its functions.
CO3	To work Forward Propagation & Backward Propagation. Multi-Layer Perceptron Architecture.
CO4	To Understand issues with RNNs, CNN
CO5	To Understand the components of LSTM – Cell State, ForgetGate, Input Gate, Output Gate.

Mapping of Course Outcome with Program Outcome(POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	3	3	2	2	3	2	2
CO2	3	3	3	1	2	3	1	2	3
CO3	3	2	2	1	3	3	1	3	3
CO4	3	3	3	2	1	3	2	1	3
CO5	2	3	1	3	2	3	3	2	3
Cos/PSOs	PS01	PS02	PS03	PS04					
CO1	3	3	3					2	
CO2	2	1	2					3	
CO3	3	3	1					1	
CO4	3	3	2					3	
CO5	2	1	3					3	

3/2/1 Indicates Strength Of Correlation, 3 – High, 2 – Medium, 1 – Low

Category	H&S	Programcore	Program Elective	Open elective	Skill enhancing elective	Interdisciplinary/Allied	Skill component	Practical Project/ Internship	others
			✓						

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E24

DEEP LEARNING WITH WATSON

UNIT I – Introduction to Deep Learning **9 Hours**

Fundamentals of Deep Learning - Neural Networks & Optimization- Deep Learning Frameworks- Advanced Deep Learning Techniques- Overview of Model Evaluation and Hyperparameter Tuning- Handling Overfitting and Regularization Techniques

UNIT II – Introduction to Neural Networks **12 Hours**

Fundamentals of Neural Networks-Introduction to Neural Networks Layers- Multi-Layer Perceptrons (MLPs)- Training and Optimization of Neural Networks - Advanced Neural Network Architectures-Neural Network Applications

UNIT III – Training a Neural Network **12 Hours**

Introduction to Forward and Backpropagation - Optimization Techniques-Activation and Loss Functions- Regularization and Generalization-Hyperparameter Tuning and Model Evaluation- Advanced Training Techniques

UNIT IV – Deep Learning Algorithms (CNN, RNN, and LSTM) **12 Hours**

Introduction to TensorFlow - Building Neural Networks with TensorFlow and Keras - Convolutional Neural Networks (CNNs) for Image Processing - Recurrent Neural Networks (RNNs) and Sequence Models- Deploying and Scaling Deep Learning Models using IBM Watson Service

Total : 45 hours

Text BOOK:

Deep Learning Unleashed on IBM Power Systems Servers" (2018)

Deep Learning with Python" by François Chollet (First published in 2017; updated in 2021)

Neural Networks and Deep Learning: A Textbook" by Charu C. Aggarwal (2018)

Reference Book:

Deep Learning: Foundations and Concepts" by Christopher Bishop (2023)

Artificial Intelligence: A Modern Approach" by Stuart J. Russell and Peter Norvig (4th Edition, 2020)

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E24

DEEP LEARNING WITH WATSON

List of Lab Programs:

1. Implement a simple neural network with one hidden layer using NumPy (without deep learning libraries). Train it on a small dataset.
2. Construct a Multi-Layer Perceptron (MLP) using TensorFlow/Keras for classifying handwritten digits (use MNIST dataset).
3. Compare different activation functions (ReLU, Sigmoid, Tanh) in a neural network and analyze their effect on training.
4. Build an advanced neural network (such as an autoencoder) using Keras and analyze its performance on image reconstruction.
5. Implement forward and backpropagation from scratch for a simple feedforward network and visualize the weight updates.
6. Train a neural network with different loss functions (MSE, Cross-Entropy) and evaluate their impact on model accuracy.
7. Tune hyperparameters (learning rate, batch size, number of layers) using GridSearchCV or Random Search and evaluate results.
8. Train a Convolutional Neural Network (CNN) on the CIFAR-10 dataset and evaluate its performance.
9. Implement data augmentation techniques (rotation, flipping, scaling) and observe their impact on CNN performance.
10. Build a Recurrent Neural Network (RNN) for text classification or sentiment analysis using TensorFlow/Keras.
11. Train an LSTM model on a time-series dataset (such as stock price prediction) and analyze its forecasting accuracy.
12. Deploy a trained deep learning model using IBM Watson Service, make predictions using a cloud-based API, and integrate the results into a Flask application.
13. A research team wants to generate artificial handwritten digits to expand their dataset for training better digit classifiers.
14. Spam Email Classifier: A company wants to filter spam emails. Build a simple neural network using NumPy (without TensorFlow/Keras) to classify emails as spam or not.
15. Self-Driving Car Image Recognition: Train a Convolutional Neural Network (CNN) on the CIFAR-10 dataset to classify road signs.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E25	BUILDING APPLICATIONS USING LLM-L1	L	T	P	C	Ty/Lb/ IE
		3	0	4	5	ETL
	Prerequisite: DigitalTools, GenAI, Database, Programming, Problem-solving and Python skills. Course Designed by: Faculty of Computer Applications					

OBJECTIVES

- Understand the fundamentals of chatbots and virtual assistants, including types, architectures, components, and the role of NLP in conversational AI.
- Set up a Python development environment and integrate Large Language Models (LLMs) using APIs and libraries to create basic chatbot functionalities.
- Design and develop functional chatbots with features like intent recognition, entity extraction, context management, and dynamic response generation.

COURSE OUTCOMES (Cos)

Understand the different elementary models related to time series analysis

CO1	Understand the architecture and workflow of chatbots and virtual assistants.
CO2	Set up development environments like configuring tools like Python, relevant libraries, and LLM APIs for seamless chatbot development.
CO3	Learn to programmatically access LLMs for conversational applications using Python libraries.
CO4	Design and build functional chatbots that can handle real-world tasks, such as FAQs or customer support.
CO5	Implement key features such as intent recognition, context management, and response generation.

Mapping of Course Outcome with Program Outcome (POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	3	3	2	2	3	2	2
CO2	3	3	3	1	2	3	1	2	3
CO3	3	2	2	1	3	3	1	3	3
CO4	3	3	3	2	1	3	2	1	3
CO5	2	3	1	3	2	3	3	2	3
Cos/PSOs	PS01	PS02	PS03					PS04	
CO1	3	3	3					2	
CO2	2	1	2					3	
CO3	3	3	1					1	
CO4	3	3	2					3	
CO5	2	1	3					3	

3/2/1 Indicates Strength Of Correlation, 3 – High, 2 – Medium, 1 – Low

Category	H&S	Programcore	Program Elective	Open elective	Skill enhancing elective	Interdisciplinary/Allied	Skill component	Practical Project/ Internship	others
			✓						

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E25

BUILDING APPLICATIONS USING LLM –L1

UNIT1: Introduction to Chat bots and Virtual Assistants: **9 hours**

Types of Chatbots, UseCases of Virtual Assistants, Overview of Conversational AI, Architecture of Chatbot Systems, Components of Virtual Assistant, Overview of NLP in Chatbot Development.

Setting up the Development Environment: Installing Python, Python Libraries, Configuration of Python Environment, Introduction to LLM APIs, Cloud Platforms for LLM Integration.

Integrating LLMs with Python: Introduction to LLMs, Accessing LLM APIs, Python Libraries for Chatbot Development, Simple Chatbot API Integration.

UNIT2 : Designing Functional Chatbots **12 hours**

Basic FAQ Chatbot, Intent Recognition, Entity Extraction, Conversational Flow, Context Management, Dynamic Responses.

Advanced Features in Chatbot Development: Response Generation Techniques, Handling Ambiguity, Multi-turn Conversations, Intent Classification, Data Labelling for Chatbots, Machine Learning for Chatbots.

Integrating External Data Sources: Connecting to APIs, Integrating Databases, Querying Data, Handling API Responses.

UNIT3: Deploying Chatbots **12 hours**

Chatbot Deployment, Web Application Integration, Messaging Platform Integration, Webhooks, Real-time Communication, Chatbot Testing, Debugging.

Performance Optimization and Error Handling: Troubleshooting, Debugging, Performance Optimization, Load Balancing, Optimizing API Calls, Handling Unexpected Inputs.

UNIT4 : Project and Summative Assessment **12 hours**

Project Planning and Design, Solution Development, Testing and Debugging, Review and Refactoring, Project Documentation and Presentation, Summative Quiz.

Total : 45 hours

TEXTBOOK:

1. Pereira, F. (2023). *Building Chatbots with Python: Using Natural Language Processing and Machine Learning*. Apress.

REFERENCE BOOKS:

1. Poria, S., & Cambria, E. (2021). *Deep Learning for Natural Language Processing*. Springer.
2. Brownlee, J. (2022). *Developing Chatbots with Python: NLP and AI Techniques for Conversational Interfaces*. Machine Learning Mastery.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E25

BUILDING APPLICATIONS USING LLM –L1

List of Lab programs:

1. Build a Basic FAQ Chatbot: Design and implement a simple FAQ-based chatbot that can answer predefined questions related to a company's services using Python and LLM APIs.
2. Intent Recognition: Create a chatbot capable of recognizing user intent by classifying input into specific categories (e.g., booking, inquiries, complaints) using NLP techniques.
3. Context Management in Chatbots: Implement context management in a chatbot to maintain the state of the conversation across multiple user interactions, ensuring a personalized user experience.
4. Dynamic Response Generation: Build a chatbot that can generate dynamic responses based on user input, utilizing LLMs for natural language processing and understanding.
5. Integrating External Data Sources: Integrate the chatbot with an external API (e.g., weather, product catalog, customer database) to fetch real-time data and provide dynamic responses based on external inputs.
6. Database Integration for Chatbots: Implement a chatbot that interacts with a database to retrieve user-specific information or provide personalized responses based on stored data.
7. Handling Ambiguity in Conversations: Design a chatbot capable of handling ambiguous user input by asking clarifying questions and refining responses based on the user's feedback.
8. Integrating a Chatbot with a Messaging Platform: Build a chatbot that can be deployed on a messaging platform (e.g., WhatsApp, Facebook Messenger), enabling it to interact with users in real time.
9. Testing and Debugging Chatbots: Develop a chatbot and perform rigorous testing to identify and fix issues, ensuring that the bot handles unexpected inputs and edge cases gracefully.
10. Deploying Chatbot on a Web Application: Design and deploy a functional chatbot within a web application, integrating it into an existing website and providing a seamless user experience.
11. Designing an E-commerce Assistant Chatbot: Build a chatbot that acts as an e-commerce assistant, helping users search for products, add them to the cart, and assist with checkout.
12. Handling Unstructured Data with LLMs: Create a chatbot that processes unstructured data, like customer feedback, and provides actionable insights through text analysis using LLMs.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E26	BUILDING APPLICATIONS USING LLM-L2	L	T	P	C	Ty/Lb/ IE
		3	0	4	5	ETL
	Prerequisite: Digital Tools, GenAI, Database, Programming, Problem-solving and Python skills.					

OBJECTIVES

1. Learn about different AI agents (autonomous, task-based, static/dynamic) and their system architectures.
2. Design agent behaviors, manage states, schedule tasks, and implement event-driven programming.
3. Connect agents to APIs, databases, and external services for real-time data interaction.
4. Coordinate multiple agents, manage communication, resolve conflicts, and share workflows.
5. Improve system performance, scalability, handle errors, and debug multi-agent environments efficiently.

COURSEOUTCOMES(Cos)

Understand the different elementary models related to time series analysis

CO1	Develop independent AI agents capable of performing dynamic, task-based actions.
CO2	Build multi-agent systems that collaborate and interact effectively in shared workflows.
CO3	Integrate agents with external systems such as databases, APIs, and third-party services.
CO4	Implement advanced LLM capabilities, including tool use, knowledge retrieval, and decision-making.
CO5	Optimize agent workflows for efficiency, scalability, and error handling.

Mapping of Course Outcome with Program Outcome(POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	3	3	2	2	3	2	2
CO2	3	3	3	1	2	3	1	2	3
CO3	3	2	2	1	3	3	1	3	3
CO4	3	3	3	2	1	3	2	1	3
CO5	2	3	1	3	2	3	3	2	3
Cos/PSOs	PS01		PS02		PS03		PS04		
CO1	3		3		3		2		
CO2	2		1		2		3		
CO3	3		3		1		1		
CO4	3		3		2		3		
CO5	2		1		3		3		

3/2/1 Indicates Strength Of Correlation, 3 – High, 2 – Medium, 1 – Low

Category	H&S	Programcore	Program Elective	Open elective	Skill enhancing elective	Interdisciplinary/Allied	Skill component	Practical Project/ Internship	others
			✓						
CBCA25E26	Course Designed by: Faculty of Computer Applications								

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E26

BUILDING APPLICATIONS USING LLM-L2

UNIT 1: Introduction to AI Agents

9 hours

Types of AI Agents, Autonomous Agents, Task-Based Actions, Static vs Dynamic Agents, Agent Architectures, Multi-Agent Systems.

Building Independent AI Agents: Single-Agent System, Agent Behavior Design, Actionable Tasks, Task Scheduling, State Management, Event-Driven Programming.

Interacting with External Systems: Connecting to APIs, Database Integration, Querying External Databases, Integrating External Services, Webhooks, REST APIs for Agents.

UNIT 2: Advanced LLM Capabilities

12 hours

Tool Use in LLMs, Knowledge Retrieval Mechanisms, Decision-Making Models, Reasoning with LLMs, Task-Oriented LLM Applications.

Multi-Agent System Design: Collaborative Agents, Shared Workflow, Agent Coordination, Agent Communication Protocols, Conflict Resolution, Synchronization of Agents.

Agent Task Management: Task Decomposition, Prioritizing Tasks, Task Assignment, Resource Allocation, Task Completion Feedback, Real-time Monitoring.

UNIT 3 : Optimization Techniques

12 hours

Performance Tuning, Workflow Optimization, Scalability of Agent Systems, Load Balancing, Parallel Processing for Agents.

Error Handling and Debugging: Error Types in Multi-Agent Systems, Exception Handling, Debugging Tools, Log Management, Traceback Analysis.

UNIT 4 : Project and Summative Assessment

12 hours

Project Planning and Design, Solution Development, Testing and Debugging, Review and Refactoring, Project Documentation and Presentation, Summative Quiz

Total : 45 hours

TEXTBOOK:

1. Pereira, F. (2023). *Building Chatbots with Python: Using Natural Language Processing and Machine Learning*. Apress.

REFERENCE BOOKS:

1. Dibia, V. (2024). *Multi-Agent Systems with AutoGen*. Manning Publications.
2. Russell, S., & Norvig, P. (2020). *Artificial Intelligence: A Modern Approach* (4th ed.). Pearson
3. Auffarth, B. (2023). *Generative AI with LangChain: Build Large Language Model (LLM) Apps with Python, ChatGPT, and Other LLMs*. Packt Publishing.
4. Kleppmann, M. (2017). *Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems*. O'Reilly Media.
5. Lanham, M. (2025). *AI Agents in Action*. Manning Publications.
6. Poria, S., & Cambria, E. (2021). *Deep Learning for Natural Language Processing*. Springer.

FACULTY OF COMPUTER APPLICATIONS

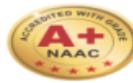
BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25E26

BUILDING APPLICATIONS USING LLM-L2

List of Lab programs:

1. Develop a single-agent system that autonomously performs a simple task (e.g., scheduling a meeting) based on specific triggers. Ensure the agent's actions are stateful and respond to dynamic inputs.
2. Create an agent that listens for specific events (e.g., new data entry in a database) and performs actions accordingly, such as sending an alert or triggering a task.
3. Design an agent that can query a database (e.g., SQL or NoSQL) for specific records based on dynamic input and process the results to perform a task, like generating a report.
4. Develop a multi-agent system where agents communicate with each other to complete a collaborative task (e.g., scheduling resources in a project management tool).
5. Implement an AI agent that uses an LLM to retrieve and process relevant knowledge from a knowledge base (e.g., FAQs or documents) to answer user queries.
6. Create a decision-making model for an agent that makes dynamic, context-dependent decisions (e.g., route optimization for deliveries based on traffic data).
7. Develop two or more agents that must resolve conflicts (e.g., resource allocation) when trying to complete tasks in a shared workflow, using predefined rules or negotiation protocols.
8. Integrate a third-party service (e.g., payment gateway) into an agent system using webhooks, triggering events based on external service responses and automating subsequent actions.
9. Build an LLM-powered application where the agent assists with a task such as customer support, booking appointments, or generating reports based on user input.
10. Implement a real-time monitoring system that tracks agent progress on assigned tasks, provides feedback on task completion, and updates task statuses.
11. Optimize an AI agent's performance by tuning various parameters (e.g., response time, Resource usage) for an existing workflow to ensure it works efficiently under load.


Design a multi-agent system and implement advanced debugging tools to trace issues, handle errors, and ensure smooth operation with minimal downtime.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

APPENDIX II

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25MDX	INDIAN KNOWLEDGE SYSTEMS	L	T	P	C	Ty/Lb/ IE
		2	0	0	2	IE
	Prerequisite: A basic understanding of Indian history, culture, and philosophical thought is essential.					

Course Designed by: Faculty of Computer Applications

OBJECTIVES

- **To introduce students to the richness and diversity of Indian Knowledge Systems**, including philosophy, science, mathematics, medicine, architecture, arts, language, and literature.
- **To promote interdisciplinary understanding** by integrating traditional knowledge with contemporary academic disciplines.
- To develop a critical appreciation for India's contributions to global knowledge and civilization.
- To encourage research and innovation through the application of traditional Indian knowledge in modern contexts.

COURSE OUTCOMES (Cos)

Understand the different elementary models related to time series analysis

CO1	Understand the foundational concepts, history, and evolution of Indian Knowledge Systems across diverse domains such as philosophy, science, arts, and governance.
CO2	Analyze the contributions of ancient Indian scholars in fields like mathematics, astronomy, medicine (Ayurveda), linguistics, and architecture.
CO3	Appreciate the interconnection between traditional Indian knowledge and modern scientific principles.
CO4	Apply insights from Indian ethical, ecological, and educational traditions to contemporary global challenges.
CO5	Demonstrate awareness of the relevance and application of IKS in modern-day disciplines such as sustainable development, holistic health, and integrative learning.

Mapping of Course Outcome with Program Outcome (POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	3	3	2	2	3	2	2
CO2	3	3	3	1	2	3	1	2	3
CO3	3	2	2	1	3	3	1	3	3
CO4	3	3	3	2	1	3	2	1	3
CO5	2	3	1	3	2	3	3	2	3
Cos/PSOs	PS01	PS02	PS03	PS04					
CO1	3	3	3					2	
CO2	2	1	2					3	
CO3	3	3	1					1	
CO4	3	3	2					3	
CO5	2	1	3					3	

3/2/1 Indicates Strength Of Correlation, 3 - High, 2 - Medium, 1 - Low

Category	H&S	Program core	Program Elective	Open elective	Skill enhancing elective	Inter disciplinary/ Allied	Skill component	Practical Project/ Internship	others
						✓			

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25MD1	INDIAN KNOWLEDGE SYSTEMS AND TRADITIONS	L	T	P	C	Ty/Lb/IE	
		2	0	0	2	IE	
Prerequisite: Knowledge of India's social structure and traditional practices.							
Course Designed by: Faculty of Computer Applications							

IKS-I: Indian Knowledge Systems and Traditions

Course Objectives:

- To sensitize the students about context in which they are embedded i.e. Indian culture and civilisation including its Knowledge System and Tradition.
- To help students to understand the knowledge, art and creative practices, skills and values in ancient Indian system.
- To help to study the enriched scientific Indian heritage.
- To introduce the contribution from Ancient Indian system & tradition to modern science & Technology.

Detailed Contents:

Module 1: Introduction to IKS 15 hours

(Any eight of total sessions assigned for Literary activity)

Introductory lecture on the any eight topics below:

1. Indian Knowledge System
2. Indian Culture & Civilization
3. Ancient Indian Chemistry
4. Ancient Indian Metallurgy
5. Ancient Indian Mathematics
6. Ancient Indian Astronomy
7. Indian Astronomical Instruments
8. Indian Knowledge System (Upveda: Ayurveda)
9. Indian Knowledge System (Upveda: Gandharveda)
10. Indian Knowledge System (Vedangas: Shiksha, Kalpa, Vyakarana)
11. Indian Knowledge System (Vedangas: Jyotisha, Nirukta, Chandas)
12. Indian Architecture I: Sthapatya-Veda
13. Indian Architecture II: Temples
14. Indian Architecture III: Town & Planning
15. Indian Philosophical System

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

Module 2: Introduction to Creative Practices **15 hours**
(Twenty Lectures with at least Five different topics of total session under Creative activity)
Introductory lecture on the topics below:

1. Dhatuvada: art of metallurgy
2. Akara jnana: art of mineralogy
3. Vastuvidya: art of engineering
4. Yantmatratika: art of mechanics
5. Takshana: art of carpentry
6. Chalitakayooga: art of practicing as a builder of shrines
7. Rajjuvidya: art of testing silver and jewels
8. Maniraga jnana: art of tinging jewels
9. Sucivayakarma: art of needleworks and weaving
10. Vadya vidya: art of playing on musical instruments
11. Geet vidya: art of singing
12. Nritya vidya: art of dancing
13. Natya vidya: art of theatricals
14. Alekhya vidya: art of painting
15. Viseshakacchedaya vidya: art of painting the face and body with color
16. Udagavadya: art of playing on music in water
17. Manasi kavyakriya: art of composing verse
18. Bhushanayojana: art of applying or setting ornaments
19. Citrasakapupabhaksha vikarakriya: art of preparing varieties of delicious food
20. Dasanavasanapanganraga: art of applying preparations for cleansing the teeth, cloths and painting the body
21. Utsadana: art of healing or cleaning a person with perfumes
22. Vastragopana: art of concealment of cloths
23. Balakakridanaka: art of using children's toys
24. Tandulakusalibali: art of preparing offerings from rice and flowers
25. Pushpastaranam: art of making a covering of flowers for a bed

Total : 30 hours

References:

- Textbook on IKS by Prof. B. Mahadevan, IIM Bengaluru
- Kapur K. and Singh A.K (Eds) (2005). Indian Knowledge Systems, Vol. 1. Indian Institute of Advanced Study, Shimla.
Tatvabodh of Sankaracharya, Central Chinmaya Mission Trust, Bombay, 1995.
- The Cultural Heritage of India, Vol. I. Kolkata: Ramakrishna Mission Publication, 1972.
- Nair, Shantha N. Echoes of Ancient Indian Wisdom. New Delhi: Hindology Books, 2008.
- Dr. R. C. Majumdar, H. C. Raychaudhuri and Kalikinkar Datta: An Advanced History of India (Second Edition) published by Macmillan & Co., Limited, London, 1953.
- Rao, N. (1970). The Four Values in Indian Philosophy and Culture. Mysore: University of Mysore.
- Avari, B. (2016). India: The Ancient Past: A History of the Indian Subcontinent from c. 7000 BCE to CE 1200. London: Routledge.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25MD2	INDIAN CULTURE AND CIVILIZATION	L	T	P	C	Ty/Lb/IE
		2	0	0	2	IE
Prerequisite: Knowledge of India's social structure and traditional practices.						
Course Designed by: Faculty of Computer Applications						

IKS-II: Indian Culture and Civilization

Course Objectives:

- To introduce fundamentals of Ancient Indian Education to understand the pattern and purpose of studying vedas, vedangas, upangas, upveda, purana & Itihasa.
- To help students to trace, identify and develop the ancient knowledge systems.
- To help to understand the apparently rational, verifiable and universal solution from ancient Indian knowledge system for the holistic development of physical, mental and spiritual wellbeing.
- To build in the learners a deep rooted pride in Indian knowledge, committed to universal human right, well-being and sustainable development.

Detailed Contents:

Module 1: Introduction to IKS **6 hours**

Caturdaśa Vidyāsthānam, 64 Kalas, Shilpa Śāstra, Four Vedas, Vedāṅga, Indian Philosophical Systems, Vedic Schools of Philosophy (Sāṃkhya and Yoga, Nyaya and Vaiśeṣika, Pūrvā-Mīmāṃsā and Vedānta), Non-Vedic schools of Philosophical Systems (Cārvāka, Buddhist, Jain), Puranas (Maha-puranas, Upa-Puranas and Sthala-Puranas), Itihasa (Ramayana, Mahabharata), Niti Sastras, Subhasitas

Module 2: Foundation concept for Science & Technology **6 hours**

Linguistics & Phonetics in Sanskrit (panini's), Computational concepts in Astadhyayi Importance of Verbs, Role of Sanskrit in Natural Language Processing, Number System and Units of Measurement, concept of zero and its importance, Large numbers & their representation, Place Value of Numerals, Decimal System, Measurements for time, distance and weight, Unique approaches to represent numbers (Bhuta Samkhya System, Kaṭapayādi System), Pingala and the Binary system, Knowledge Pyramid, Prameya – A Vaiśeṣikan approach to physical reality, constituents of the physical reality, Pramāṇa, Saṃśaya

Module 3: Indian Mathematics & Astronomy in IKS **6 hours**

Indian Mathematics, Great Mathematicians and their contributions, Arithmetic Operations, Geometry (Sulba Sutras, Aryabhatīya-bhasya), value of π , Trigonometry, Algebra, Chandah Sastra of Pingala,

FACULTY OF COMPUTER APPLICATIONS

**BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)**

Indian Astronomy, celestial coordinate system, Elements of the Indian Calendar Aryabhatiya and the Siddhantic Tradition Pancanga – The Indian Calendar System Astronomical Instruments (Yantras) Jantar Mantar or Raja Jai Singh Sawal

Module 4: Indian Science & Technology in IKS **6 hours**

Indian S & T Heritage, sixty-four art forms and occupational skills (64 Kalas)
Metals and Metalworking technology (Copper, Gold, Zinc, Mercury, Lead and Silver), Iron & Steel, Dyes and Painting Technology, Town & Planning Architecture in India, Temple Architecture, Vastu Sastra

Module 5: Humanities & Social Sciences in IKS **6 hours**

Health, Wellness & Psychology, Ayurveda Sleep and Food, Role of water in wellbeing Yoga way of life
Indian approach to Psychology, the Triguna System
Body-Mind-Intellect- Consciousness Complex. Governance, Public Administration & Management reference to ramayana, Artha Sastra, Kautilyan State.

Total : 30 hours

References:

1. Textbook on IKS by Prof. B Mahadevan, IIM Bengaluru.
2. Kapur K and Singh A. K (Eds) 2005). Indian Knowledge Systems, Vol. 1. Indian Institute of Advanced Study, Shimla. Tattvabodh of sankaracharya, Central chinmay mission trust, Bombay, 1995.
3. Nair, Shantha N. Echoes of Ancient Indian Wisdom. New Delhi: Hindology Books, 2008.
4. SK Das, The education system of Ancient hindus, Gyan publication house, India
5. BL Gupta,Value and distribution system in india, Gyan publication house, India
6. Reshma ramdhoni, Ancient Indian Culture and Civilisation, star publication ,2018
7. Supriya Lakshmi Mishra, Culture and History of Ancient India (With Special Reference of Sudras), 2020.
8. Gambirananda, Swami, Tr. *Upanishads with the Commentary of Sankaracharya*. Kolkata: Advaita Ashrama publication Department, 2002.
9. Ranganathananda, Swami. *The Message of the Upanishads*. Bombay: Bharathya Vidya Bhawan, 1985.
10. Om Prakash, Religion and Society in Ancient India, Bhariya Vidhya Prakashan, E 1985
11. J Auboyer, Daily Life in Ancient India from Approximately 200 BC to AD 700, Munshi ram Manoharlal publication, 1994.
12. DK Chakrabarty, Makkan Lal, History of Ancient India (Set of 5 Volumes), Aryan book International publication, 2014
13. Dr. Girish Nath Jha, Dr. Umesh Kumar Singh and Diwakar Mishra, Science and Technology in Ancient Indian Texts, DK Print World limited,
14. Swami BB Vishnu, Vedic Science and History - Ancient Indian's Contribution to the Modern World, gosa publication, 2015
15. Chatterjee, S.C. The Nyaya Theory of Knowledge. Calcutta: University of Calcutta Press, 1950.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus Program Structure for BCA DT (Full Time)

16. Dasgupta, Surendra. *A History of Indian Philosophy*. Delhi: Motilal Banarsidas, 1991. Vols III & IV.
17. Mercier, Jean L. *From the Upanishads to Aurobindo*. Bangalore: Asian Trading Corporation, 2001.
18. M. Hiriyanna, *Essentials of Indian Philosophy*. London: Diane Publications, 1985.
19. Hume, Robert Ernest, *The Thirteen Principal Upanishads*. Virginia: Oxford University Press, 1931.
20. Radhakrishnan, S. *Principal Upanishads*. New York: Harper Collins, 1963.
21. Satprakashananda. *The Methods of Knowledge according to Advaita Vedanta*. Calcutta: Advaita Ashram, 2005.
22. Potter, K.H. *Encyclopaedia of Indian Philosophies*, Vol.III. Delhi: Motilal Banarasidass, 2000.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25MD3	INDIAN VISION FOR HUMAN SOCIETY (VISHVA KALYAN THRU VASUDHAIVA KUTUMBKAM)	L	T	P	C	Ty/Lb/ IE
		2	0	0	2	IE
Prerequisite: Knowledge of India's social structure and traditional practices.						
Course Designed by: Faculty of Computer Applications						

IKS-III: Indian Vision for Human Society (Vishwa Kalyan thru Vasudhaiva Kutumbakam)

Course Objectives

- To help the learner to understand the concept of “vasudhaiva kutumbakam” and its realization process as an base for the development of vision for a humane society.
- To help to identify the universality in humans and its coexistence in existence To introduce the sense of responsibility, duties and participation of individual for establishment of fearless society.
- To help to understand the apparently rational, verifiable and universal solution from ancient Indian knowledge system for the holistic development of physical, mental and spiritual wellbeing of one and all, at the level of individual, society, nation and ultimately the whole world.

Detailed contents:

Module 1: The world view & Vision of Human Society **6 hours**

The concept of non-duality of Prakriti (Jad) and Purush (Chetana), human as coexistence of Jad & Chetan, pancha-mahabhutas, the root of sorrow and suffering, freedom from sorrow, salvation, eternal peace truth (vyaharika satya), ultimate truth. The acceptance of various systems of philosophy for realization of truth and complementariness in society in ancient Indian system.

Module 2: Aspiration and Purpose of Individual and Human Society **6 hours**

Aims of Human life; at individual level and societal level. At societal level; Four purusarthas Dharma, Artha, Kama, Moksha. Individual level; Abhyudaya (progress),

Nihsreyasa (perfection) Pravrtti, Nivrtti. Dharma; Dharma sutras (Gautama, apastamba, baudhayana, vasistha). Dharma-Shastra; (manusmriti, naradasmriti, visnusmriti, yajnavalkya smriti) sociology, different stages of life like studenthood, householdership, retirement and renunciation, rites and duties, judicial matters, and personal laws (Aachara, Vyavahara, Prayaschitta). Artha; Kauthilya Arthashastra, Kamandakiya Nitisara, Brihaspati Sutra, Sukra Niti, Moksha: Human liberation (Ignorance to Knowledge)

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

Module 3: Program for Ensuring Human Purpose: at Individual and Societal level –I

6 hours

Fundamental concept of Nitishastra: Satyanishtha Aur Abhiruchi (Ethics, Integrity & aptitude), The true nature of self; Shiksha Valli, Bhrigu Valli (concept of Atman-Brahman (self, soul). The true constitution of Human: Ananda Valli (Annamaya Kosha, Pranamaya Kosha, Manomaya Kosha, Vijnanamaya Kosha, Anandamaya Kosha), The four states of consciousness (Waking state, Dreaming state, Deep Sleep State, Turiya the fourth state), Consciousness (seven limbs and nineteen mouths), Prajna, Awareness. The Life Force Prana (Praana-Apaana-Vyaana-Udaana- Samaana)

Module 4: Program for Ensuring Human Purpose: at Individual and Societal level –II

6 hours

Differentiating Vidya and Avidya, human bondages, Higher and Lower Knowledge (Para Vidhya & Apara Vidhya), Concept of Sattva, Rajas, Tamas and need of balancing the same, Patanjali yog sutra; Yama, Niyama, Asanas, pranayams, pratyahara, dharna, dhyana, Samadhi, Sixteen category of padartha, pramans (pratyaksh, anuman, upaman, shabda). Saadhana chatushtayama (viveka, vairagya, mumukshatavam, shadsampatti (sama, dama, uparama, titiksha, shradha, samadhana), Understanding Nitya Karma, Naimittika Karma, Kamy karma, prayaschitta karma, Nishidha Karma.

Meditation and Progressive meditation (Narada's education), Ativadin to self-knowledge, Jyan yog, Karma yog, sanyas yog in aspect to harmonious practice in society

Module 5: Practices for Ensuring Human Purpose – III

6 hours

Practice in philosophy, architecture, grammar, mathematics, astronomy, metrics, sociology, economy and polity, ethics, geography, logic, military science, weaponry, agriculture, mining, trade and commerce, metallurgy, shipbuilding, medicine, poetics, biology and veterinary science.

Total : 30 hours

References:

1. Maharaj swami chidatmanjee, Ancient Indian Society, Anmol publication pt ltd, indi
2. S. C. Maner jee, Society in Ancient India: Evolution Since the Vedic Times Based on Sanskrit, Pali, Pakrit and Other Classical Sources: No. 1 (Reconstructing Indian History and Culture), DK printing, India
3. Rao, N. 1970. The Four Values in Indian Philosophy and Culture. Mysore: University of Mysore.
4. Chakabarti, K. 2001. Religious Process: The Puranas and the Making of Regional Tradition, Delhi, OUP.
5. Kuhn, T. 1970. The Structure of Scientific Revolutions, (2nd ed.). University of Chicago Press, USA.
6. Keith, A. (1925). The religion and philosophy of the Veda and Upanishadas.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus Program Structure for BCA DT (Full Time)

7. Shendge, M. (1977). The civilized demons. The Harappans in Rgveda. New Delhi: Abhinav Publications
8. Kane, P. 1941. History of Dharmashastra. Vol II, Part I. Poona: Bhandarkar Oriental Research Institute.
9. The Religion and Philosophy of the Veda and Upanishads. Delhi: Motilal Banarsidass.
10. Parpola, A. 2007. 'Human Sacrifice in India in Vedic Times and Before', Chapter VIII, in The Strange World of Human Sacrifice, ed., J. Bremmer. Leuven, Belgium: Peeters.
11. Textbook on IKS by Prof. B Mahadevan, IIM Bengaluru.
12. Kapur K and Singh A K (Eds) 2005). Indian Knowledge Systems, Vol. 1. Indian Institute of Advanced Study, Shimla. Tatvabodh of sankaracharya, Central chinmay mission trust, Bombay, 1995.
13. Keith, Arthur Berriedale. The Religion and Philosophy of the Veda and Upanishads. 2 Vols. Delhi: Motilal Banarsidass, 1970.
14. Keith, A. (1925). The religion and philosophy of the Veda and Upanishads. Delhi: Motilal Banarsidass Publishers.
15. Nar, Shanna N. Echoes of Ancient Indian Wisdom. New Delhi: Hindology Books, 2008.
16. R C Dutt, A history of civilization in ancient India, vol 1, Taylor & Francis, US
17. R C Dutt, A history of civilization in ancient India, vol 2, Taylor & Francis, US
18. SK Das, The education system of Ancient hindus, Gyan publication house, India
19. BL Gupta,Value and disattribution system in india, Gyan publication house, India
20. Reshma ramdhoni, Ancient Indian Culture and Civilisation, star publication ,2018
21. Supriya Lakshmi Mishra, Culture and History of Ancient India (With Special Reference Of Sudras), 2020.
22. Om Prakash, Religion and Society in Ancient India, Bhariya Vidhya Prakashan, 1985
23. J Auboyer, Daily Life in Ancient India from Approximately 200 BC to AD 700, Munshi ram Manoharlal publication, 1994.
24. DK Chakrabarty, Makkhan Lal, History of Ancient India (Set of 5 Volumes), Aryan book internation publication, 2014
25. Dr. Girish Nath Jha, Dr. Umesh Kumar Singh and Diwakar Mishra, Science and Technology in Ancient Indian Texts, DK Print World limited,
26. Swami BB Vishnu, Vedic Science and History - Ancient Indian's Contribution to the Modern World, gosai publication, 2015
27. Chatterjee, S.C. The Nyaya Theory of Knowledge. Calcutta: University of Calcutta Press, 1950.
28. Vidyabhusana, S.C. A History of Indian Logic. Delhi: Motilal Banarsidass Publication, 1971.
29. Dasgupta, Surendra. A History of Indian Philosophy. Delhi: Motilal Banarsidass, 1991. Vols. III & IV.
30. Mercier, Jean L. From the Upanishads to Aurobindo. Bangalore: Asian Trading Corporation, 2001.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25MD4	INDIAN SCIENCE, ENGINEERING AND TECHNOLOGY (PAST, PRESENT AND FUTURE)	L	T	P	C	Ty/Lb/IE
		2	0	0	2	IE
Prerequisite: Knowledge of India's social structure and traditional practices.						
Course Designed by: Faculty of Computer Applications						

IKS-IV: Indian Science, Engineering and Technology (Past, Present and Future)

Course Objectives

- To familiarize learners with major sequential development in Indian science, engineering and technology.
- To review & strengthen the ancient discovery and research in physics, chemistry, maths, metallurgy, astronomy, architecture, textile, transport, agriculture and Ayurveda etc.
- To help students to trace, identify and develop the ancient knowledge systems to make meaningful contribution to development of science today
- To help to understand the apparently rational, verifiable and universal solution from ancient Indian knowledge system for the scientific, technological and holistic development of physical, mental and spiritual wellbeing.

Detailed contents:

Module 1: Indian Traditional Knowledge; Science and Practices **6 hours**

Introduction to the Science and way of doing science and research in India, Ancient Science in Intra & Inter Culture Dialogue & coevolution.

Traditional agricultural practices, Traditional water-harvesting practices, Traditional Livestock and veterinary Sciences, Traditional Houses & villages, Traditional Forecasting, Traditional Ayurveda & plant based medicine, Traditional writing Technology

Module 2: Ancient Indian Science (Physics, Chemistry, Maths) **6 hours**

Physics in India: Vaisheshika darshan, Atomic theory & law of motion, theory of panchamahaboota, Brihat Shathaka (divisions of the time, unit of distance), bhaskaracharya (theory of gravity, surya siddhanta & siddhanta shiromani), Lilavati (gurutvakashan Shakti).

Chemistry in India: Vatsyayana, Nagarjuna, Khanda, Al-Biruni, Vaghbata – building of the ras-shala (laboratory), working arrangements of ras-shala, material and equipment, Yāsodhara Bhaṭṭa - process of distillation, apparatus, saranasamskarita, saranataila.

Mathematics in India: Baudhayana's Sulbasutras, Aryabhata, Bhaskaracharya-I, Severus Sebokht, Syria, Brahmagupta, Bhaskaracharya-II, Jyeshtadeva

Module 3: Ancient Indian Science (metallurgy, Astronomy, Architecture) **6 hours**

Metallurgy in India: Suvarṇa (gold) and its different types, prosperities, Rajata (silver), Tamra (copper), Loha (iron), Vanga (tin), Naga / sisa (lead), Pittala (brass)

FACULTY OF COMPUTER APPLICATIONS

**BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)**

Astronomy in India

Vedang Jyotish, aryabhatta siddhanta, Mahabhasakriya, Laghubhaskariya, vatesvarasiddhanta, Sisyadhirvddhida, Grahashay, Goladhyaya, Karabakatuhala (Aryabhata, Varahamihira, Brahmagupta, Vatesvara, Bhaskara, Paramesvara, Nilakantha Somayaji, Jyeshtadeva, Sankara Varman)

Architecture in India:

Nagara (northern style), Vesara (mixed style), and Dravida (southern style), Indian vernacular architecture, Temple style, cave architecture, rock cut architecture, kalinga architecture, chandels architecture, rajput architecture, jain architecture, sikh architecture, Maratha architecture Indo-Islamic architectural, Indo-Saracenic revival architecture, Greco Buddhist style.

Module 4: Ancient Indian Science (Textile, Agriculture, Transport) 6 hours

Textile Technology in India:

Cotton (natural cellulose fiber), silk, wool (natural protein fibers), bast and leaf fibers, mridhuhatudhaphitambaram (meaning a practice of fumigating the fabric with incense smoke before use as a part of the finishing process), stadhautavasanayugma (bleached white—a finishing process); suchasth, sutradharana (needle and thread – tools for stitching); dyeing, washing spinning and weaving technology.

Agriculture in India:

krishisuktas, Krishiparashara, Brihatsamhita, Types of crops, Manures, Types of land- devamatrka, nadimatrka, use of animals in warfare, animal husbandry, Animals for medicines. Ancient transport in India

Module 5: Ancient Indian Science (Ayurveda & Yoga) 6 hours

Ayurveda for Life, Health and Well-being:

Introduction to Ayurveda: understanding Human body and Pancha maha bhuta, the communication between body & mind, health regimen for wellbeing, introduction to yoga (raja yoga, astang yoga, gyan yoga), understanding of Indian psychological concept, consciousness, tridosha & triguna.

Total : 30 hours

References:

1. Textbook on IKS by Prof. B Mahadevan, IIM Bengaluru.
2. Kapur K and Singh A.K (Eds) 2005. Indian Knowledge Systems, Vol. 1. Indian Institute of Advanced Study, Shimla. Tatvabodh of sankaracharya, Central chinmay mission trust, Bombay, 1995.
3. Nair, Shantha N. Echoes of Ancient Indian Wisdom. New Delhi: Hindology Books, 2008.
4. SK Das, The education system of Ancient hindus, Gyan publication house, India
5. R P Kulkarni, Glimpse of Indian Engineering and Technology (Ancient & Medieval period, Munshiram Manoharlal Publishers Pvt. Ltd. 2018
6. AK Pathak, Science and Technology in India, Anshika prakashan pratapgarh, 2016

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

7. PB Sharma, S. Narain, Doctors Scientists and Engineers of Ancient India, Kalpaz Publications 2017
8. NVP, Uniththiri, Indian Scientific Traditions (Professor K.N. Neelakantan Elayath)
9. Anonyms, *History of Science in India - Volume-I Part-I (Physics, Mathematics and Statistics)*, The National Academy of Science, India & the Ramkrishna Mission Institute of Culture, 2014
10. R. N. Basu, T. K. Bose, C. S. Cakraborty, *History of Science in India - Agricultural Science (Volume V)*, The National Academy of Science, India & the Ramkrishna Mission Institute of Culture, 2014
11. A. Gosh, *History of Science in India (Volume-I Part-II Astronomy)*, The National Academy of Science, India & the Ramkrishna Mission Institute of Culture, 2014
12. Dharmpal, *Indian Science and Technology in the Eighteenth Century*, Rashtrotthana Sahitya, 1983
13. S. Biswal, B. L. Ray, *Vedic Science and Technology*, DK Printworld, 2009
14. A. K. Bag, *History of Technology in Indian* (Set of 3 Volumes), Indian National Science Academy, 1997
15. A. R. Vasudev Murty, *Science and Technology in Ancient India as Reflected in the Mahabharata*, Sanskrit Bharati, 2019

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25MD5	INDIAN TOWN PLANNING AND ARCHITECTURE	L	T	P	C	Ty/Lb/IE	
		2	0	0	2	IE	
Prerequisite: Knowledge of India's social structure and traditional practices.							
Course Designed by: Faculty of Computer Applications							

IKS-V: Indian Town Planning and Architecture

Course Objectives

- To develop the knowledge and analysis on the understanding of eco-friendly, robust and scientific planning and architecture system of ancient India.
- To understand the importance of functional, aesthetic, psychological, culture and socio religious concept of ancient India architecture.
- To help the learners to trace, identify and develop the approach, process and material used in town and planning, construction and architecture
- To review and analyse the importance and significance of visual and performing arts and design in temples, houses, forts, caves and community places.
- To understand the various eco-friendly technology accepted in ancient civilization

Detailed contents:

Module 1: The Introduction to ancient Architecture **6 hours**

Introduction to relationship between Man, Nature, Culture and city forms. Study of determinants (Natural and man-made) influencing location, growth & pattern of human settlements including types of settlements growth (Organic and Planned) and settlement forms.

Architecture as satisfying human needs: functional, aesthetic and psychological outline of components and aspects of architectural form-site, structure, skin, materials, services, use, circulation, expression, character, experience.

Understanding of the causative forces - the cultures, history, socio religious practices and institution, political and economic conditions, issues of land, climate and technology, Historical and Primitive Architecture.

Module 2: Ancient Architecture as Expression of Art & Design **6 hours**

Relationship between Art and Design with man, space and environment. Expression in Art and Architecture - concept of space, sense of enclosure- openness, robustness, dynamism, spatial geometry, Eco-friendliness.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

Architecture through use of elements of visual arts such as point, line, plane, form, space, colour, texture, light, solids and voids, shadow and shade etc. Understanding of effect of scale, proportions, order, material effects such as textures, patterns, light, sound, temperature etc in architectural spaces.

Allied visual and performing arts and its relationship to build environments using colour theory, symbolism, glass painting, scriptural writing, clay moulding, stone carving.

Important Indian architecture as per elements space & form Form: specific geometry form (sphere, cube, pyramid, cylinder and cone and its sections as well as their derivatives) Space: build form space, open space, Internal and External space, Continuous spaces Centralized, Linear, Radial Clustered, Grid space Different type of Materials used for construction in Ancient Indian architecture.

Clay products: Classification of bricks, Fire Brick, Fly Ash Bricks, Tiles, Terra- cotta, Earthenware, Porcelain, Stoneware. **Stones:** Uses of Stones, Qualities of Good Building Stones, Dressing, Common Building Stones of India. **Glass:** Different Glass forms and their Suitability, **Timber:** Different Forms and their Suitability **Metals:** Ferrous & Nonferrous Metals and Alloys, and, their Suitability, limitations, precautions **Paints and Varnishes:** Different types and their Suitability, limitations, precautions

Module 3: Ancient Architecture Principle & Planning

6 hours

Design: Principles of designing - Composition of Plan. Inception and development of the early Hindu temple form with reference to Vedic and Buddhist planning principles and design elements; Development of regional styles and manifestations thereof; Evolution of temple complexes and temple towns;

Planning: Residence- site selection, site orientation- aspect, prospect, grouping, circulation, privacy, furniture requirements, services and other factors. Vastu shastra and its importance in building interrelationship with human, nature and cosmos

Town Planning: Town plans of Harappa, Mohenjodaro, Pataliputra, Delhi. Vastu shastra and its application in city layout.

Module 4: Ancient Architecture-I

6 hours

The settlement planning pattern, elements, associated forms, typical Vedic village, towns (Dandaka, Nandyavarta etc.), typology of Shelters and civic buildings of ancient architecture in reference to following civilization: Indus Valley, Aryan/vedic Civilisation, Buddhist Architecture, Indo Aryan & Dravidian Architecture.

Role of Shilpasasthasras and Arthashastra in settlement planning.

Important architecture: Great baths, Development of fortification, walled towns, structures developed eg: Stupas, Viharas, Chaityas, Stambhas, Toranas, sacred railing etc.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

Study of worshipping places with especial reference to Indo Aryan / Nagara style & Dravidian style (Chola, Chalukya, Pallava, Satavahana, Hoysala, Vijayanagara etc.), design of shikharas & gopuram, rock-cut and structural examples of temples.

Module 5: Ancient Architecture-II

6 hours

Evolution of Hindu Temples in different period: Gupta, Aihole, Badami, Pattadakkal, Mahabalipuram, Indo Aryan Style in Orrisa, Khajuraho, Gujarat, Rajasthan. Dravidian Style in Chola, Chalukyan, Pandya, Pallava, Hoysala Style, Revival of Hindu architecture of South India at Vijayanagara and Madurai

Tradition Indian villages & House: Regional house construction, interior & importance e.g. Rajasthani house, bhungas of kutch, nalukettu of kerala, Ikra of assam, manduva logili or illu of Andra Pradesh, wadas of Maharashtra, Mud houses of Madhya Pradesh, kathkuni of himachal Pradesh, khanjaghara of orisa, Taq and dhajji diwari of Kashmir etc.

Scientific achievements though ancient architect: Jantar Mantar, Musical Pillars of Vitthal temple, Sundial of konark temple, construction of eight shiva temple in straight line from Kedarnath to rameshwaram at longitude 79°E 41'54, Veerbhadra temple with 70 hanging pillars, Ellora caves excavating the mountain, Jaipur plan pink city etc.

Total : 30 hours

References:

1. Textbook on IKS by Prof. B Mahadevan, IIM Bengaluru.
2. Kapur K and Singh A K (Eds) 2005). Indian Knowledge Systems, Vol. 1. Indian Institute of Advanced Study, Shimla. Tatvabodh of sankaracharya, Central chinmay mission trust, Bombay, 1995.
3. Nar, Shanna N. Echoes of Ancient Indian Wisdom. New Delhi: Hindology Books, 2008.
4. Dr. V. Ganapati Sthapati, Building Architecture of Sthapatya Veda
5. Binode Behari Dutt, Town planning in ancient India, Life Span Publishers & Distributors
6. NR Dave, A Study of The Hindu Science of Architecture and its Practice with Special Reference to Rajavallabha, Bharti vaidhya Bhavan, 2011
7. M W Meister, South India Lower Dravidadesa - Encyclopaedia of Indian Temple Architecture (Set of 2 Books)- An Old and Rare Books, American Institute of Indian Studies, 1999
8. D N Shukla Civil Architecture in Ancient India (Part-I) Mehar chand lakshmidas publication, 2016.
9. S Maheshwari, R Garg, Ancient Indian Architecture, CBS publisher, 2001
10. B Dagens, Mayamata: An Indian Treatise on Housing Architecture and Iconography (An Updated Edition with revised Glossary), Motilal banrsidas, 2017
11. V K Bansal, Maha Vastu, Om Book Internation 2011
12. SS Das, The Miracles of Vaastu Shastra, pustak mahal, delhi, 2013,
13. Anant Shashikala, The Penguin Guide to Vaastu, the classical Indian science of architecture & design, penguin India, 2000

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25MD6	INDIAN MATHEMATICS AND ASTRONOMY	L	T	P	C	Ty/Lb/IE	
		2	0	0	2	IE	
Prerequisite: Knowledge of India's social structure and traditional practices.							
Course Designed by: Faculty of Computer Applications							

IKS-VI: Indian Mathematics and Astronomy

Course Objectives

- To provide information about great mathematicians and astronomers who given significant contribution in Indian mathematics and astronomy.
- To help students to trace, identify, practice and develop the significant Indian mathematic and astronomical knowledge.
- To help to understand the astronomic significance with the human holistic development of physical, mental and spiritual wellbeing
- Enumerate the main characteristics of education system in Vedic and post Vedic period to enrich the intellectual imagination and diminish the dogmatic assurance which closes the mind against speculation

Detailed contents:

Module 1: The Introduction to Ancient Mathematics & Astronomy **6 hours**

Introduction to Brief introduction of inception of Mathematics & Astronomy from vedic periods. Details of different authors who has given mathematical & astronomical sutra (e.g. aryabhatta, bhaskara, brahmagupta, varamahira, budhyana, yajanvlkya, panini, pingala, bharat muni, sripati, mahaviracharya, madhava, Nilakantha somyaji, jyeshtadeva, bhaskara-II, shridhara)

Periodical enlisting of Mathematical & Astrological achievement in India. Evolution of Indian Numerals (Brahmi (1st century), Gupta (4th century) & Devanagri Script (11th century)

Module 2: Ancient Mathematics –I **6 hours**

Veda & Sulvasutras (Pythagoras theorem, Square root & Squaring Circle) (baudhayana sulbhasutra, apastamba sulbhasutra, katyayana sulbhasutra, manava sulbhasutra, maitrayana sulbhasutra, varaha sulbhasutra, vadhula sulbhasutra, Pingala's chandrasutras, sunya, yaat-tavat, Aryabhatta (Aryabhatiya, Asanna, ardha-jya, kuttaka), bhaskara (trigonometry, shridhara, mahavira), Bhaskara Acharya (Sidantashiromani), Varamahira panchasiddhantika.

Module 3: Ancient Mathematics –II **6 hours**

FACULTY OF COMPUTER APPLICATIONS

**BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)**

Brahmagupta (vargaprakrati, bhramasphuta siddhanta, bhavana), ayatavrtta, ganitasarasamgraha, lilavathi, ganesadaivajna, randavantika, suryasiddhanta, grahalaghava, sadratnamala, mandavrtta, sigrhartta, Bijaganita, Bakshali manuscript

Golavada, Madhyamanayanaprakara, Mahajyayanaprakara (Method of Computing Great Sines), Lagnaprakarana, Venvaroha, Sphutacandrapti, Aganita-grahacara, Chandravakyani (Table of Moon-mnemonics)

Module 4: Ancient Astronomy –I

6 hours

Parahita system of astronomy and drk system of astronomy, Manda samskara, sighra samskara.

Vedanga Jyotisha (astronomical calculations, calendrical studies, and establishes rules for empirical observation), Aryabhatiya (earth rotation, shining of moon), Brahmasphutasiddhanta (motion of planets), varahmihira (pancasiddhantika), Mahabhaskariya, lahubhaskariya & aryabhatiya bhashya (Planetary longitudes, heliacal rising and setting of the planets, conjunctions among the planets and stars, solar and lunar eclipses, and the phases of the moon), Sisyadhidveddhida (grahadhyaya, goladhyaya), siddantasiromani, karanakutuhala (planetary positions, conjunctions, eclipses, cosmography), siddantasekhara, yantra-kirnavali, Sphutanirnaya, Uparagakriyakrama.

Module 5: Ancient Astronomy –II

6 hours

Positional astronomy (sun, planets, moon, coordinate systems, precision of the equinox and its effects, eclipses, comets and meteors), Mahayuga & Kalpa system Yuga system, ayanas, months, tithis and seasons, time units, sun and moon's motion, planet position, ayanachalana, zero-precision year, katapayadi system, Indian nakshatra system, astronomy

Instruments for naked eye astronomy (vedic observatories), The principal and application of Samrat Yantra, Jai Prakash Yantra, Disha Yantra, Rama Yantra, Chakra Yantra, Rashiwalya Yantra, Dingash Yantra, Utaansh Yantra

Total : 30 hours

Reference:

1. Textbook on IKS by Prof. B Mahadevan, IIM Bengaluru.
2. R P Kulkarni, Glimpses of Indian Engineering and Technology (Ancient & Medieval period, Munishiram Manoharlal Publishers Pvt. Ltd. 2018
3. AK Pathak, Science and Technology in India, Anshika prakashan pratapgarh, 2016
4. NVP, Unithiri, Indian Scientific Traditions (Professor K.N. Neelakantan Elayath Felicitation Volume), publication division univeristy of Calicut, 2006
5. Dharmpal, Indian science and technology in the eighteen century, rashtrotthana sahitya, 1983
6. S Biswal, B L ray, vedic Science and technology, DK Print world, 2009
7. A Kolachana, Studies in Indian Mathematics and Astronomy, Hindustan Book agency

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus Program Structure for BCA DT (Full Time)

8. S B Rao, Indian Mathematics and Astronomy: Some Landmarks (Revised Third Edition), Bhartiya Vidhya Bhavan, 2012,
9. GG Josheph, Indian Mathematics: Engaging with the World from Ancient to Modern Times, speaking Tiger, 2016
10. BS Yadav, Ancient Indian Leaps into Mathematics, brikausher publication, 2010
11. DP Chatopadhyay, Ravinder kumar, Mathematics, Astronomy, and Biology in Indian Tradition: Some Conceptual Preliminaries (Phispc Monograph Series on History of Philosophy, Science and Culture in India, No 3), Munshiram manohal publication, 1995
12. BV subbarayappa, The Tradition of Astronomy in India: History of Science, Philosophy and Culture in Indian Civilization Vol. IV, Part 4: Jyothisastra (History of Science, Philosophy & Culture in Indian Civilization), centre for studies in civilization, 2008
13. GE Clark, The Aryabhatiya of Aryabhata: An Ancient Indian Work on Mathematics and Astronomy, Kesinger publication, 2010
14. Anonyms, Hindu Astronomy: Anuradha, Bharani, Hindu Chronology, Hindu Calendar, Indian Astronomy, Kerala School of Astronomy and Mathematics, Jyoti, Book LLC, 2011
15. KV Sharma. Ganita yuktibhasa (Analytical Exposition of the Rationales of Indian Mathematics and Astronomy, Kindle, 2021
16. R Mercier, Studies on the Transmission of Medieval Mathematical Astronomy (Variorum Collected Studies), routledge publication, 2004

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25MD7	INDIAN AESTHETICS (INCLUDING MUSIC AND MUSIC INSTRUMENTS)	L	T	P	C	Ty/Lb/IE
Prerequisite: Knowledge of India's social structure and traditional practices.		2	0	0	2	IE
Course Designed by: Faculty of Computer Applications						

IKS-VII: Indian Aesthetics (including Music and Music Instruments)

Course Objectives

- To provide information about the foundations of Indian aesthetics as integral part of Indian culture
- To help to understand the importance of Indian aesthetics in individual realization of the truth arises by realizing the harmony within.
- To help learner to trace, identify and develop the Indian aesthetics to correlate human creative practices
- To build the learners a deep rooted pride in Indian aesthetic knowledge, committed to universal human right, well-being and sustainable development.

Detailed contents:

Module 1: The Introduction to Indian Aesthetics **6 hours**

The nature of aesthetics, principle, its relation to philosophy and literature:

Indian traditions. Sadanga its origin and Applications of Six limbs in Indian Aesthetics Introduction to Alamkara, Rasa, Dhvani, Vakrokti, Auchitya

Module 2: Ancient Music and Music Instruments-I **6 hours**

Rasa Siddhanta, the concept of Rasa, constituent of rasa (Bhav, abhinay, Sthayibhava, Vibhava, Vyabhicharibhava), number of rasa, Rasasvadana Bharata's Natya Shastra and its Critics, Abhinavagupta's Rasa Siddhanta., Kavyaprayojana, Sadhāranikarana, Sahridaya, Rasavighna.

DhvaniSiddhanta, the Concept of Dhvani, Sphota, Pratibha, classification of Dhvani (Laukika Vyayga, Alaukika Vyayga, Avivaksita Vacya, Vivaksitanyakara Vacya) Anandavardana's Dhanyaloka, with reference to Abhidha, lakshana, Vyanjana and Tatpary, extension of dhvani siddhanta to music, dance and drama.

Alamkara Siddhanta, proponent, classification of alamkara, sabdalamkara (Anuprāsa, Yamaka, Slesha, Dhvanyātmakatā), Arthālamkāra (Upamā, Drstanta, Virodha)

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

Module 3: Ancient Music and Music Instruments-II

6 hours

VakroktiSiddhanta, Kuntaka's Vakroktijivita, Classification of Vakrokti (Varna- vinyasa vkrata (Phonetic Obliquity), Pada-purvardha vkrata (Lexical Obliquity) & Pada-parardha vkrata (Grammatical Obliquity), Vakya-vkrata (Sentential obliquity), Prakarana-vkrata (Episodic obliquity), Prabandha-vkrata (Compositional obliquity)) Different Classes of Musical Instrument as per Natyashastra of Bharat, Gana Vadya, Avanaddha Vadya, sushira vadya, tata/tantu vadya. Brief introduction to following indian instruments Veena, Ghatam, Gootuvadhyam, Flute, Thavil, Nadaswaram, Mridangam, Plain- drum, Harmonium, Sitar, Sarod, Shehnai, Tabla, Maddalam, violin, morsing, Tambura.

Module 4: Ancient Dance & Drama

6 hours

Natyaveda: inception from Veda (pathya words(rigveda), abhinaya gestures (Yajureda), geet music (samaveda), rasa emotions (atharvaveda), Natya Shastra, Nata-nritya, geet- nritya, roop-nritya, bhav-nritya

Indian traditional and folk dances (bharatnatyam, kuchipudi, kathakali, yakshagan, Bhangra, Bihu, Ghumura Dance, Sambalpuri, Chhau and Garba

Module 5: Ancient Art

6 hours

Architecture, sculptures & popular art forms of Pallava& Cholas period, Chalukya & Rastrakuta period, Chandela/Hosalya period, Rajput period. Rock cut architecture, cave architecture, stupa, temples, sculpture Hindu Shilpa texts as per Vishnudharmotara-puran, Samaranana, Sutracharana, Sukranitisara, Silparatham.

Total : 30 hours

Reference:

1. History of Indian Music by Swami Prajananda, Ram Krishna vedanta math, Kolkata
2. Prof. P. Sambamoorthy: A History of Indian Music, published by the Indian Music Publishing House, Madras-1.
3. Huttugur Krishnacharya (Hubli: Introduction to the Study, of Bharatiya Sangita- sastra, pts. I & II in the Journal of the Music Academy, Madras, vol. 1, January, 1930.
4. Dr. Saratchandra Shridhar Paranj, Bharatiya Sangit-ki Rupa-Rekha (Hindi) upto the Gupta period, published in the Nada-Rwpa, second issue, College of Music and Fine Arts, Banaras Hindu University, 1963
5. Prof. G. S. Ghurye: Bharata-Natya and its Costume, published by the Popular Book Depot, Bombay.
6. Swami Prajnanananda: Historical Development of Indian Music, published by Firma K. L. Mukhopadhyay, Calcutta, 1960.

FACULTY OF COMPUTER APPLICATIONS

**BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)**

7. Swami Prajnanananda : (Bharatiya Sangiter Ltihasaf vols. I & II (Sangita Samskriti] from the primitive period to the 7th century A.D.) In Bengali (published by the Ramakrishna Vedanta Math, Calcutta), Second Edition.
8. Swami Prajnanananda: Raga O Rupa, vols. I & II (in Bengali) published by the Ramakrishna Vedanta Math, Calcutta.
9. Dr. R. C. Majumdar, H. C. Raychaudhuri and Kalikinkar Datta: An Advanced History of India (Second Edition) published by Macmillan & Co., Limited, London, 1953.
10. Shri K. A. Nilakanta Sastri: A History of South India (Second Edition) published by Oxford University Press, 1958.
11. Kak, S. (2002). Early Indian Music. In: Buenconsejo, J. (Ed., 2003). A search in asia for a new theory of music. P. 59-76. Quezon City: UP Center for Ethnomusicology, University of the Philippines.
12. Lalita Ramkrishna, Ancient Indian Classical Music, shubhi publications
13. E Rosenthal, The Story of Indian Music and Its Instruments: A Study of the Present and a Record of the Past, piligrims publication, 2007.
14. Swami Parmananda, A History of Indian Music - Volume One: Ancient Period, shri ram Krishna math, 1963
15. E Clementa Introduction to the Study of Indian Music; An Attempt to Reconcile Modern Hindustani Music with Ancient Musical Theory and to Propound an Accurate and ... of the Subject of Indian Musical Intonation, Franklin Classical trade press, 2018
16. SC Benerjee Fundamentals of Ancient Indian Music and Dance, Asian Book Corporation, 1976
17. Samita Redday, Ancient Indian Music, cyber Tech Publications, 2018.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25MD8	INDIAN HEALTH, WELLNESS AND PSYCHOLOGY (INCLUDING AYURVED)	L	T	P	C	Ty/Lb/IE	
		2	0	0	2	IE	
Prerequisite: Knowledge of India's social structure and traditional practices.							
Course Designed by: Faculty of Computer Applications							

IKS-VIII: Indian Health, Wellness and Psychology (including Ayurved)

Course Objectives

- Understanding the fundamental principles of Indian health systems such as Ayurveda and yoga which are useful in maintaining the health of a healthy person
- Practical implementation of health principles to correct the intake of our food, air, water and sunlight to achieve perfect health.
- Understanding traditional way of cleansing the body regularly, strengthening body with Yogic exercises, maintaining the internal balance to prevent diseases.
- Understanding our unique Mind Body Constitution and choosing the right lifestyle suitable to maintain the internal balance.
- Understanding the influence of external environment on internal health and ways to synchronise our body and mind with nature to ensure smooth functioning of all organ systems of our body.
- Understanding mind and its dynamics through knowledge of Ayurveda and Yoga and using the knowledge to maintain harmony between body and mind to achieve perfect mental health.

Detailed contents:

Module 1: Understanding human body

6 hours

Introduction to Ayurveda, the Knowledge of Life, Health and treatment aspects in Ayurveda, Influence of Pancha maha bhuta on Internal environment of Human being, Understanding composition of Human body through the concept of Dosha Dhatu Mala, Understanding Prakruthi, the Mind – Body Constitution.

Module 2: Understanding the communication between body & Mind

6 hours

Establishing communication between body and mind by understanding the language of body. Understanding the concept of Agni, Koshta, Sara and Ojas and their relevance in enhancing our immunity to protect from various infections. Looking at the world through the lenses of Dravya, Guna and Karma Applying the principle of Samanya and Visesha in every aspect of life to achieve perfect health.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

Module 3: Introduction to Health Regimen **6 hours**

Understanding Swastha vritta, the healthy regimen to maintain state of wellbeing Dinacharya, the Daily regimen including Daily detoxification, exercise, Intake of Food, Water, Air and Sunlight, work and ergonomics, Rest and sleep hygiene. Ritu charya, the seasonal regimen, Sadvritta and the concept of social wellbeing, understanding trividha upastambhas, three pillars to health, Concept of Shadrasha in choosing appropriate nourishment to the body and mind.

Module 4: Introduction to Yoga **6 hours**

Definition, Meaning and objectives of Yoga, Relevance of yoga in modern age. Brief Introduction of Hatha yoga, Raja yoga, Karma yoga, Gyana Yoga, Bhakti yoga Understanding eight steps of Ashtanga yoga, Understanding Shatkriyas, the six cleansing procedures of Yoga

Module 5: Introduction to Indian Psychology **6 hours**

Concept of Manas in Ayurveda and understanding Mind Body harmony, Triguna based Psychology in Ayurveda and Yoga, Influence of Tri dosha on Mind, Mind body intellect and consciousness complex, Understanding Consciousness and solution to issues within Human Mind.

Total : 30 hours

Reference:

1. The Charaka Samhita
2. The Susruta Samhita
3. Teh Ashtanga Hridaya
4. Dr Deepak Chopra, Perfect Health--Revised and Updated: The Complete Mind Body Guide, Harmony publication, 2001
5. Vasant lad, Ayurveda, the Science of Self-healing: A Practical Guide: Science of Self- healing, lotus press, 1984
6. The Hatha yoga pradipika
7. The Patanjali yoga sutras
8. The Gheranda samhita
9. BKS Iyengar, Light on Yoga: The Classic Guide to Yoga by the World's Foremost Authority, thronson publication, 2006
10. Swamy Satyananda Saraswati, Asana, Pranayama, Mudra and Bandha, Bihar School of Yoga, 2002

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

APPENDIX III

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25A02	TAMIL I	L	T	P	C	Ty/Lb/IE
		1	1	0	0	IE
Prerequisite: +2 Tamil Course Designed by: Faculty of Computer Applications						

CBCA25A02

TAMIL I

6 மணிநேரம்

அ) மரபுக்கவிதை

1. செந்தமிழ்நாடு - மகாகவிபாரதியார்
2. தமிழின்இனிமை, இன்பத்தமிழ், எங்கள்தமிழ், சங்கநாதம் -பாரதிதாசன்
3. தமிழ்வளர்க்கசபதம் - நாமக்கல்கவிஞர்வெ.இராமலிங்கம்பிள்ளை
4. கோயில்வழிபாடு, வாழ்க்கைக்கத்துவம் - கவிமணிதேசிகவிநாயகம்பிள்ளை

ஆ) புதுக்கவிதை

1. பாட்டாளிகளின்குரல் - பட்டுக்கோட்டைகலியாணசந்தரம்
2. மகாத்மாகாந்தியடிகள் - கவிஞர்வாலி
3. காகிதப்பட்டுக்கள் - நா.காமராச
4. வள்ளுவர்வழங்கும்விடுதலை - ஈரோடுதமிழன்பன்

அலகு - 2

6 மணிநேரம்

நாட்டுப்புறாலக்கியம்

1. பொதுஅறிமுகம்
2. நாட்டுப்புறாலக்கியவகைகள்

அலகு - 3

6 மணிநேரம்(அ)

சிறுகதைகள்

1. தேங்காய்த்துண்டுகள் (மு.வரதராசனார்)
2. அறம்(மாலன்)

ஆ) உரைநடை

1. மு.வ.என்னும்மந்திரம் (இரா.மோகன்)
2. தமிழிசைஇயக்கம் (க.வெள்ளைவாரணனார்)

அலகு - 4

6 மணிநேரம்

புதுக்கவிதை - தோற்றமும்வளர்ச்சியும்

அலகு - 5

6 மணிநேரம்

அ) இலக்கணம்

1. வழக்கு
2. தொகாநிலைத்தொடர்

ஆ) மொழிப்பயிற்சி

1. தன்வினை -பிறவினை
2. ஒருமைபன்மையக்கம்

Total: 30 Hours

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25A10	TAMIL – II	L	T	P	C	Ty/Lb/ IE
		1	1	0	0	IE
	Prerequisite: +2 Tamil Course Designed by: Faculty of Computer Applications					

அலகு - 1

6 மணிநேரம்

அ) மரபுக்கவிதை

1. கும்மிப்பாடல் - சுத்தானந்தபாரதியார்
2. தமிழ்த்தாய்வாழ்த்து - மனோன்மணியம்பெ. சுந்தரம்பிள்ளை
3. விடுதலைவினைத்துறைமை - கவியரசர்கண்ணதாசன்

ஆ) புதுக்கவிதை

1. உலகம் - வைரமுத்து
2. இன்னமுதமாமழை - பேரா. முனைவர்பொற்கோ
3. தமிழ்ப்பற்று - மீரா

அலகு - 2

6 மணிநேரம்

நாட்டுப்புறாலக்கியம்

நாட்டுப்புறக்கலைகள்

அலகு - 3

6 மணிநேரம்

அ) சிறுகதைகள்

1. நாற்காலியும்நான்குதலைமுறைகளும் (திலகவதி)
2. அன்னையும்பிதாவும் (இராஜாஜி)
3. விடியுமா? (கு.ப.ராஜகோபாலன்)

ஆ) உரைநடை

மதுரைமாநகரம் (ரா.பி.சேதுப்பிள்ளை)

அலகு - 4

6 மணிநேரம்

1. உரைநடை - தோற்றமும்வளர்ச்சியும்
2. சிறுகதை - தோற்றமும்வளர்ச்சியும்

அலகு - 5

6 மணிநேரம்

அ) இலக்கணம்

1. பிறமொழிச்சொற்களைநீக்குதல்
2. விண்ணப்பம் எழுதுதல்

Total: 30 Hours

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25A03	HINDI - I	L	T	P	C	Ty/Lb/ IE	
		1	1	0	0	IE	
Prerequisite: Knowledge of Language							
Course Designed by: Faculty of Computer Applications							

UNIT - I Hindi ka parichay I

1. Swar (Vowels)
- 2 Vyanjan (Consonants)
3. Writing practice

UNIT - II Hindi ka parichay II

1. Vyanjan with matras
2. Writing practice

UNIT-III Shabadavali Nirman I

1. Days of the week, Months
2. Numbers (1 – 50)
3. Animals & Fruits, Writing practice

UNIT-IV Shabadavali Nirman II

1. Colors
2. Body Parts
3. Family members, Writing practice

UNIT-V Shabadavali Nirman III

1. Two and three letter formation of words
2. Identify the picture with words

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25A11	Subject Name: HINDI - II	L	T	P	C	Ty/Lb/
						IE
Prerequisite: Knowledge of Hindi		1	1	0	0	
Course Designed by: Faculty of Computer Applications						

UNIT – I Buniyadi vyakaran I (Basic Grammnar)

1 Noun

2. Gender

UNIT – II Buniyadi vyakaran II(Basic Grammar)

1.Pronouns(I,you, he she etc.)

2.Verbs (Common verbs usage)

UNIT-III Simple sentence formation

1. Simple sentence structure(sub +verb+ object)
2. Tense(Present, past, future) basic

UNIT-IV Speaking and Listening

1. Introduction, asking for directions, etc.
2. Description of self, family and daily routine

UNIT-V Daily usage words and sentences

1. Everyday Dialogues
2. Sentence correction and rearrangement

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus

Program Structure for BCA DT (Full Time)

CBCA25A04	SANSKRIT- I	L	T	P	C	Ty/Lb/IE
		1	0	0	0	TY
	Prerequisite: Nil Course Designed by: Faculty of Computer Applications					

Syllabus

UNIT I :

1. Alphabets in Sanskrit
2. Swar(Vowels)
3. Vyanjan (Consonants) & Matras.

6 hours

UNIT II :

1. Noun and Pronoun.
2. Gender (Masculine, feminine and Neuter)

6 hours

UNIT III :

1. Singular,Dual&Plural
2. Introduction of roots

6 hours

UNIT IV:

1. Numbers 1 to 25
2. Days of the week and name of the months

6 hours

UNIT V:

1. Two and three letters words.
2. Day to day words

6 hours

1. Pravesha,Parichaya,siksha and Covidha book structured by Samskrita Bharati
2. "Abhyaspustakam" - Dr. Vishwas, Samskrita-Bharti Publication, New Delhi

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus

Program Structure for BCA DT (Full Time)

CBCA25A12	SANSKRIT- II	L	T	P	C	Ty/Lb/IE
		1	0	0	0	TY
	Prerequisite: Nil					
	Course Designed by: Faculty of Computer Applications					

Syllabus

Unit	Content	Hours
1	Basic grammar 1. Verb 2. Subjects / objects 3. Sentence making	3
2	1.Tenses(Dhaturoop) Different types of tenses	5
3	1. Simple sentences formation with cases	2
4.	1. Speaking - self introduction, Description of family and daily routine. 2. Technical concepts and communications	3
5	1. Writing small sentences	2

Suggested reading

1. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd..., New Delhi.
2. "Teach Yourself Sanskrit" Prathama Deeksha-VempatiKutumbshastri, Rashtriya SanskritSansthanam, New Delhi Publication

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus

Program Structure for BCA DT (Full Time)

CBCA25A05	FRENCH – I	L	T	P	C	Ty/Lb/I E	
		1	0	0	0	TY	
Prerequisite: Nil							
Course Designed by: Faculty of Computer Applications							

UNIT I

6 hours

Les Salutations, Les Nombres (1-20), Les alphabets, Les Pronoms Sujets, Les Langues, Les Nationalités, Les Verbes : Parler, être, avoir,

UNIT II

6 hours

Les Nombres (21-100), L'heure, Les Pays, Les propositions des pays, Les articles définis, Les articles indéfinis, Les Verbes : s'appeler, Aimer et habiter.

UNIT III

6 hours

Les verbes : Aller, Venir, Les Articles Contractés, La Négation, Les Adjectifs Démonstratifs, Futur Prôche, Model Verbs, Adjectifs Possessifs.

UNIT IV

6 hours

Les articles partitifs, Les Verbes : Faire, Jouer. La Famille, Les Couleurs, Les lieux dans la ville,

UNIT V

6 hours

Les Verbes: Lire, Écrire, Regarder, Voir, Écouter, Entendre

Total periods: 30

TEXT BOOKS:

1. Écho A1, J.Girardet & J.Pecheur, CLE International, 2nd Edition
2. Saison A1, Jean Giraudoux, Goyal publisher, 1st Edition

REFERENCE BOOKS:

1. Alter Ego A1, Veronique M Kizirian & Annie Berthet, Hachette, 1st Edition
2. Cosmopolite A1, Nathalie Hirschsprung & Tony Tricot, Goyal Publisher 1st edition

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus

Program Structure for BCA DT (Full Time)

CBCA25A13	FRENCH - II	L	T	P	C	Ty/Lb/I E	
		1	0	0	0	TY	
Prerequisite: Nil							
Course Designed by: Faculty of Computer Applications							

UNIT - I

6 hours

FuturProche, PronomsToniques, Les Verbes : Devoir, Pouvoir, Vouloir, Savoir. Le Vocabulaire : Les Loisirs (Sports, Spectacles et Activités)

UNIT - II

6 hours

Passé Composé, Le voix Active et Passive, Comparaison, AdjectifsPossessifs.

UNIT - III

6 hours

Les Articles Partitifs, Emploi des Articles, Le Vocabulaire : Les Voyages, Les Transports, La nourriture, La Forme possessive : <<à + pronom>>

UNIT - IV

6 hours

Le ConjugaisonPronominale, L'Impératifs, L'expression de la quantité, Les activitésquotidiennes, Les achats, L'argent

UNIT - V

6 hours

Prépositions et adverbes des lieux, L'Imparfait, Les moments de la vie, La famille, Emploi du passé composé et de l'imparfait, L'enchainement des idées (alors, donc, mais)

Total periods: 30

TEXT BOOKS:

- 1.Écho A1, J.Girardet&J.Pecheur, CLE International, 2nd Edition
- 2.Saison A1, Jean Giraudoux, Goyal publisher, 1st Edition

REFERENCE BOOKS:

1. Alter Ego A1, Veronique M Kizirian& Annie Berthet, Hachette, 1st Edition
2. Cosmopolite A1, Nathalie Hirschsprung& Tony Tricot, Goyal Publisher 1st editionCosmopolite A1

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus

Program Structure for BCA DT (Full Time)

CBCA25A06	Subject Name: GERMAN - I	L	T	P	C	Ty/Lb/IE
		1	0	0	0	TY
	Prerequisite: Nil Course Designed by: Faculty of Computer Applications					

UNIT - I

6 hours

Das Alphabet, Die Zahlen von ein -hundert, Begrüßung, Verabschiedung ,Sich Vortstellen , W – Fragen. Grammatik :- W- Frage, Aussagetasz, Verban und Personnelpronomen

UNIT - II

6 hours

Genders in Deutsch,,Die Personelpronomen, Definite /Indefinite / Negative Articles, Jemanden kennenzlernen,Landkarte. Grammatik – bestimmter Artikel : der,die , das , Nomen: Singular und Plural, aussagesatz, negationartikel

UNIT - III

6 hours

Possessivpronomen,Verbkonjugation, Ja/Nein Fragen, Satzstruktur Grammatik : Regelmäßige, Unregelmäßige, hilfsverben- Sein/haben, Unbestimmer Artikel

UNIT - IV

6 hours

Wie spät ist es, Tageszeiten, Die, Wochentage, Die Monate, das Wetter, Die Himmelsrichtungen, Die familie,Klassenzimmer – Substantive , Countries and Languages,Negation , Like /Dislike. Grammatik: Akkusative, Verbenmit accusative, wörterorden und lernen, artikelimdativ, Präpositionmit +Dativ

UNIT - V

6 hours

Nominativ,Dativ, Accusative, Einkaufen, Im Flugzueg, Im kaufhaus, Jobsuche. Grammatik : Personalpronomen im Akkusativ mich, dich, modelverban müssen,können,wollen

Total periods: 30

TEXT BOOKS &REFERENCE BOOKS:

1. Shritte International, Daniela Niebisch, Fraz Spreeht, Angela Pude
2. Netzwerk A1, Stefanie Dengler, Paul Rusch, Helen Schmitz, Tanja Sieber

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus

Program Structure for BCA DT (Full Time)

CBCA25A14	Subject Name: GERMAN - II	L	T	P	C	Ty/Lb/IE
		1	0	0	0	TY
	Prerequisite: Nil Course Designed by: Faculty of Computer Applications					

UNIT - I

Deutschsprachige Länder, Adresse, Meine Familie, Lebensmittel einkaufen, Meine Wohnung, Das Zimmer ist nicht groß, Zahlen von hunder zu eine million.

UNIT - II

Die Pronomen und Verben, Verben Stamm endung mit "s", "ss", "ß", "x" or "z", Genders und Artikel, Mein Tag, Tageszeiten, Montag bis Freitag. Geschlecht der Substantive, Wochende, Freizeit und Hobbys, Wetter – Grammatik : Akkusativ : bestimmter Artikel, Akkusativ: unbestimmter Artikel

UNIT - III

Kinder und Schule, Akkusativ unbestimmter Artikel, Tagesablauf, Stress im Büro, Am Computer, Termine vereinbaren, Die Jahreszeiten und das Wetter, Tagesablauf, Stress im Büro, Am Computer

UNIT - IV

Verben Grundlagen der Zeitform, Die Gruppe der Substantive, Die Verneinung, Hauptsätze und Nebensätze. Verben mit Dativ und Akkusativ; Konjunktiv II; Substantive als Indikatoren der Zeit, Kasus

UNIT - V

Grammatik : Präpositionen der Zeit, Satzverknüpfungen: Konjunktionen, Die Gruppe der Substantive, Indikatoren für den Raum, Adjektive Visuelle Klasse für das Hören

Total periods: 30

TEXT BOOKS &REFERENCE BOOKS:

1. Shritte International, Daniela Niebisch, FrazSpeeht, Angela Pude
2. Netzwerk A1, Stefanie Dengler, Paul Rusch, Helen Schmitz, Tanja Sieber

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus

Program Structure for BCA DT (Full Time)

CBCA25A07	Subject Name: JAPANESE – I	L	T	P	C	Ty/Lb/IE
		1	0	0	0	TY
	Prerequisite: Nil Course Designed by: Faculty of Computer Applications					

UNIT - I

6 hours

Introduction, Roumaji, Hiragana, Self Introduction, Family relations, Numbers(1-100)

UNIT - II

6 hours

Numbers(101-1000), Numbers(1001-10,000), Katakana, Body parts, and Pronouns

UNIT - III

6 hours

Introduction to particles(wa, mo, ka, desu, ni, ga, de), Imasu, Arimasu, Counters

UNIT - IV

6 hours

Adjective i-ending, and Na Ending

UNIT - V

6 hours

Verbs (24 forms)

Total periods: 30

TEXT BOOKS:

1. Genki, Eri Bnno, Yoka Ikeda, Yutaka Ohno, Chikkao Shinogawa, Kyoko Tokoshiki, The Japanese Publishing Company

REFERENCE BOOKS:

1. Minna No Nihongo, 3A Corporation, Goyal Publication

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus

Program Structure for BCA DT (Full Time)

CBCA25A15	Subject Name: JAPANESE – II	L	T	P	C	Ty/Lb/IE
		1	0	0	0	TY
	Prerequisite: Nil Course Designed by: Faculty of Computer Applications					

UNIT - I 6 hours

Grammerpaterns Te form, Te moiidesu, Te ha ikemasen, te kara,mashouka.

UNIT - II 6 hours

Te imasu, Continuoustense, te kudasai

UNIT - III 6 hours

Te iku, Counting people

UNIT - IV 6 hours

Informal speech (dictionaryform)Using the particle « ga » Verbsformslike and dislike, negativeform te kudasai

UNIT - V 6 hours

Pasttense, - karaform(because), qualifying nouns with verbs and adjectives.

Total hours: 30

TEXT BOOKS:

1. Genki, EriBnno, Yoka Ikeda, Yutaka Ohno, ChikkaoShinogawa, Kyoko Tokoshiki, The Japanese Publishing Company

REFERENCE BOOKS:

2. Minna No Nihongo, 3A Corporation, Goyal Publication

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus

Program Structure for BCA DT (Full Time)

CBCA25A08	Subject Name: SPANISH - I	L	T	P	C	Ty/Lb/IE
		1	0	0	0	TY
Prerequisite: Nil						
Course Designed by: Faculty of Computer Applications						

UNIT - I

6 hours

Los Saludos y Despedidas, Los Alfabetos, Los Numeros (1-20), Sonidos y Letras: H, C/Qa, G/J, B/V, C/Z, R, R/rr, Ch, G/Gu, Ll, N, Aficiones.

UNIT - II

6 hours

Los Numeros(21-100), Pronombres Personales: Yo, Tu, El, Eyya, Nosotros, Vosotros, Ustedes, Usted. Ser verbos: Soy, Eres, Es, Somos, Sois, Son. Nacionalidad, Profesiones.

UNIT - III

6 hours

Singular y Plural, Conversion de Singular a Plural. Masculino y Feminino, conversion de masculino afeminino. Tener verbos: Tengo, Tienes, Tiene, Tenemos, Teneis, Tienen. Llevar verbos.

UNIT - IV

6 hours

Vocabulario de Colores, Casa, Bebidas, Ciudad, Clima, Colegio, Comida, Medios, Saludos, Verduras. Artículos definidos, Artículos indefinidos.

UNIT - V

6 hours

Estar verbos: Estoy, Estas, Esta, Estamos, Estais, Estan. Reflexive verbos: Me, Te, Se, Nos, Os, Se. Cuantificadores, Preguntar y Responder.

Total periods: 30

TEXT BOOK:

1. Aula internacional 1, Jaime corpora & Eva Garcia, diffusion, Nueva edicion

REFERENCE BOOK:

1. Grammatica de uso A1-B2, Luis Aragones, Ramon Palencia, smeLe, Nueva edicion

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus

Program Structure for BCA DT (Full Time)

CBCA25A16	Subject Name: SPANISH - II	L	T	P	C	Ty/Lb/IE
		1	0	0	0	TY
	Prerequisite: Nil					
	Course Designed by: Faculty of Computer Applications					

UNIT – I

6 hours

El Abecedario – a saludar y a despedidas – Las nacionalidades – las profesiones y sobre las palabras - LosNumeros(1- 100) – La presentacion – hablar – dias de la semana y meses.

UNIT – II

6 hours

SobretemporadasenEspanolyotrapaises – pronombrepersonales – articlesdefinidos, indefinidos y sus usos – verbosregulares – Hablar,comer, vivir con oraciones de ejemplo – conversion de singular a plural- Identificando masculine o femenino.

UNIT – III

6 hours

Verbos irregulares mas frequentes – Ser, Estar, Ir, Tener, Decir, Poder, Querer,Pedir, Conocer con oraciones de ejemplo – Los Numerous 1000 y vocabulario – Numeros – Telefonicos – direcciones cardinals y medios de transporte – preguntarpordirecciones y describir un camino.

UNIT – IV

6 hours

El VocabulariodeAnimales – Avion – Cuerpo – Familia – Deporte – Geografia – Aficiones – Colores, Casa – Bebidas – Ciudad – Clima – Colegio –Ropa — Saludos – Tiempo – Transporte.

UNIT – V

6 hours

A hablar de Clima – Explicar: Un/Una/Unas/Unos y oraciones – Explicar: Mucho/Muha/Muchos/Muchasy oraciones – preguntas: Que/Cual/Cuales/Cuantos/Cuantas/Donde- Escuchar y escribir

Total periods: 30

TEXT BOOK:

1. Aulainternacional 1, Jaime corps& Eva Garcia, diffusion, Nueva edicion

REFERENCE BOOK:

1. Grammatica de uso A1-B2, Luis Aragones, Ramon Palencia, smeLe, Nueva edicion

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus

Program Structure for BCA DT (Full Time)

APPENDIX IV

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus
Program Structure for BCA DT (Full Time)

CBCA25VAX	YOGA/SPORTS MANAGEMENT/NCC/NSS/DISASTER MANAGEMENT	L 0	T 0	P 4	C 2	TY/Lb/IE IE

OBJECTIVES

- i. Understand yoga's significance and its practical applications for holistic well-being.
- ii. Explore subtle energy systems and their role in enhancing health through yogic practices.
- iii. Examine various paths of yoga to foster self-realization and spiritual growth.
- iv. Master the Eight Limbs of Yoga for physical, mental, and spiritual harmony.
- v. Apply yogic principles to manage psycho-somatic ailments and promote resilience

COURSE OUTCOMES (COs)

CO1	Understanding the principles and benefits of yoga
CO2	Enhancing behavior through yogic practice
CO3	Knowing the yoga and applying as a tool for stress reduction
CO4	Understanding the link between yoga and Indian Philosophy
CO5	Extrapolate the role of yoga in health care

Mapping of Course Outcomes with Program outcomes (POs)

(1/2/3 indicates strength of correlation) 3-HIGH, 2-Medium, 1-Low

1	COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO 1	PSO 2	PSO 3	PSO4	
2	CO1	2	3					2	1	1	3				
	CO2	2	3					2	3		1	3	3		
	CO3	2	3					3	3		1	3	3		
	CO4	2	2					2	2		1	3			
	CO5	2	2					3	2		1	3	3		
3	Category		CC		AEC		MDE		VAC		SEC		DSE		OE
									✓						
4	Approval								Meeting of Academic Council						

Note: All the theoretical contents shall be delivered through the practical workshop mode only. No class room teaching is encouraged in this course.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus

Program Structure for BCA DT (Full Time)

CBCA25VA3	YOGA	L	T	P	C	TY/Lb/IE
		0	0	4	2	IE

Yoga course is designed to provide students with a comprehensive understanding of physical fitness, wellness, and nutrition. This course explores the meaning and importance of yoga in the modern era, the role of sports in maintaining physical fitness, and the various components of physical wellness. Students will also learn about the significance of nutrition and weight management, equipping them with the knowledge to promote a healthy and balanced lifestyle. Through this course, students will gain insights into the holistic approach to health and well-being.

Unit-I **6 Hours**

- o Yoga: Meaning and definition
- o Importance of yoga in 21st century
- o Introduction to Yogic Anatomy and Physiology
- o Yoga & sports, Yoga for healthy lifestyle
- o Types of Yoga: - Hatha yoga, laya yoga, mantra yoga, bhakti yoga, karma yoga, jnana yoga, raj yoga
- o Study of Chakras, Koshas, Pranas, Nadis, Gunas, Vayus and its application in Yogic practices.
- o Ashtang Yoga: - Yama, niyama, asana, pranayama, Pratyahar, dharna, dhyan, Samadhi : Benefits, Utilities & their psychological impact on body and mind. According to yoga concept of normality in modern psychology, concept of personality & its development, yogic management of psycho-somatic ailments: frustration, anxiety, depression

Unit- 2 **6 Hours**

- o Sports for Physical Fitness: Meaning and definition
- o Physical Activity – Concept, Benefits of Participation in Physical Activities
- o Components and Significance of Physical Fitness -Health, Skill and Cosmetic Fitness

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus

Program Structure for BCA DT (Full Time)

- Types of Physical Activities – Walking, Jogging, Running, Calisthenics, Rope Skipping, Cycling, Swimming, Circuit Training, Weight training, Adventure Sports
- Principles of Physical Fitness, Warming Up, Conditioning, Cooling Down, Methods to Develop and Measure Health and Skill related components of Physical Fitness
- Measurement of Health Related Physical Fitness (HRPF)

Unit -3 **6 Hours**

- Physical Wellness: Concept, Components
- Types of wellness: psychological, social, emotional, and spiritual.
- Significance with reference to Positive Lifestyle 2.2
- Concepts of Quality of Life and Body Image
- Factors affecting Wellness
- Wellness Programmes

Unit-4: Nutrition **6 Hours**

- Concept of Nutrients, Nutrition, Balanced Diet, Dietary Aids and Gimmicks
- Energy and Activity- Calorie Intake, Energy Balance Equation

Unit-5: Weight Management Obesity **6 Hours**

- Concept, Causes, Obesity Related Health Problems
 - Weight Management through Behavioural Modifications

TOTAL: 30 Hours

Text Books / References (Latest Edition):

1. Anand O P. Yog Dawra Kaya Kalp. Sewasth Sahitya Perkashan. Kanpur.
2. Brown, J.E. Nutrition Now Thomson-Wadsworth.
3. Kamlesh, M. L. & Singh, M. K., Physical Education (Naveen Publications).
4. Kansal, D.K. Text book of Applied Measurement, Evaluation & Sports Selection. Sports & Spiritual Science Publications, New Delhi.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus

Program Structure for BCA DT (Full Time)

CBCA25VA4	SPORTS MANAGEMENT	L	T	P	C	TY/Lb/IE
		0	0	4	2	IE

Sports Management course is designed to provide undergraduate students with a broad, foundational understanding of the dynamic field of sports management. This course will familiarize students with the fundamental principles and concepts of sports management, including its scope, organizational structure, and ethical considerations. Students will gain insights into the roles of marketing and sponsorship in the sports industry, as well as develop proficiency in financial management techniques specific to sports organizations. Additionally, the course will explore the application of analytics and technology in sports, enhancing the strategic decision-making and fan engagement capabilities.

Course Objective(s):

- i. Understand the fundamental principles and concepts of sports management, including its scope, organizational structure, and ethical considerations.
- ii. Analyse the role of marketing and sponsorship in the sports industry, with a focus on branding, target audience segmentation, and event management.
- iii. Develop proficiency in financial management techniques specific to the sports industry, including revenue generation, cost management, and investment strategies.
- iv. Explore the application of analytics and technology in sports, including performance evaluation, strategic decision-making, and fan engagement.
- v. Apply theoretical knowledge to practical scenarios through case studies and projects, fostering critical thinking and problem-solving skills in sports management contexts.

Course Content:

Unit 1: Introduction to Sports Management , Definition and scope of sports management ,Significance of sports management in society and its evolution over time ,Organizational structure of sports: amateur, professional, and non-profit entities ,Roles and responsibilities of key personnel: managers, coaches, and agents ,Governance bodies in sports: FIFA, IOC, and NCAA ,Legal issues: contracts, negotiations, intellectual property rights ,Ethical considerations: fair play and doping

Unit 2: Sports Marketing and Sponsorship .Unique aspects of sports marketing .Fan engagement strategies .Target audience identification and segmentation .Branding strategies for sports teams and

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus **Program Structure for BCA DT (Full Time)**

athletes. Sponsorship and endorsement deals . Negotiating and managing partnerships . Event management: planning, organizing, and promoting sports events.

Unit 3: Financial Management in Sports

Revenue generation in sports: ticket sales, broadcasting rights, merchandise sales ,Financial models: budgeting and forecasting ,Cost management: player salaries, facility expenses, operational costs ,Investment opportunities in sports ,Risk management techniques specific to sports organizations

Unit 4: Sports Analytics and Technology,Introduction to sports analytics,Evaluating player performance,Devising game strategies ,Fan engagement through technology ,Analytical techniques: statistical analysis, data visualization, predictive modeling,Key performance indicators (KPIs) in sports ,Applications of analytics: talent scouting, injury prevention, performance optimization.

TextBooks:

1. Pedersen,P.M.,Thibault,L.,&Pedersen,P.M.(2019).Contemporary Sport Management. Human Kinetics.
2. Hoye, R., Smith, A. C. T., Nicholson, M., et al. (2021). Sports Management: Principles and Applications. Routledge.
3. Chelladurai, P., & Kerwin, S. (2017). Introduction to Sport Management: Theory and Practice. Human Kinetics.
4. Hoye,R.,Cuskelly,G.,&Nicholson,M.(2019).SportsGovernance:AGuideforSport Organizations. Routledge.
5. Conrad,M.(2018).The BusinessofSports:APrimerforJournalists.Routledge.
6. Shank,M.D.(2019).SportsMarketing:AStrategicPerspective.Pearson.
7. Collett,P.,&Fenton,W.(2019).TheSponsorshipHandbook:EssentialTools,Tipsand Techniques for Sponsors and Sponsorship Seekers. Kogan Page.
8. Fullerton,S.Jr.,&Funk,D.C.(2019).SportsMarketing:APracticalApproach. Routledge.
9. Conrad,M.(2019).WinninginSportsBusiness:EssentialMarketing,Finance, and Management Strategies. Routledge.
10. McCarty, L. A., & McPherson, G. (2019). Sports Event Management: The Caribbean Experience. Routledge.
11. Brown,M.T.,Rascher,D.,&Leeds,M.A.(2017).FinancialManagementintheSport Industry. Routledge.
12. Winfree, J. A., & Rosentraub, M. S. (2017). Sports Finance and Management: RealEstate, Entertainment, and the Remaking of the Business. Taylor & Francis.
13. Foster,G.,O'Reilly,N.,&Cuskelly,G.(2018).SportsBusinessManagement:Decis

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus

Program Structure for BCA DT (Full Time)

ion Making Around the Globe. Routledge.

14. Brown, M. T., & Shick, D. M. (2019). Financial Management in the Sport Industry. Routledge.
15. Conrad,M.(2018).The BusinessofSports:APrimerforJournalists.Routledge.
16. Alamar, B. C. (2013). Sports Analytics: A Guide for Coaches, Managers, and Other Decision Makers. Columbia University Press.
17. Miller,T.W.(2019).SportsAnalyticsandDataScience:WinningtheGamewith Methods and Models. FT Press.
18. Marchi,M.,Albert,J.,&Baumer,B.(2014).AnalyzingBaseballDatawithR.Chap man and Hall/CRC.
19. Schumaker,R.P.,Hwang,R.S.Y.,&Chen,H.(2016).SportsDataMining.Routledge.
20. Alamar, B. C. (2013). Sports Analytics: A Guide for Coaches, Managers, and Other Decision Makers. Columbia University Press.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus

Program Structure for BCA DT (Full Time)

CBCA25VA5	National Cadet Corps (NCC)	L	T	P	C	TY/Lb/IE
		0	0	4	2	IE

This course develops essential skills in discipline, leadership, and tactical operations through structured curriculum and practical exercises. It emphasizes the role of drills in fostering discipline, leadership, and teamwork, and includes comprehensive weapon handling training with a focus on safety protocols. The course teaches map reading, understanding topographical features, and navigating diverse terrains. Practical units cover the history and objectives of the National Cadet Corps (NCC), various maneuvers, parade formations, saluting protocols, and field and battlecraft techniques. By the end, learners will master discipline, leadership, weapon handling, and tactical decision-making, effectively utilizing terrain features for strategic advantages.

Course Objective(s):

1. Understand the foundational role of drill in fostering discipline and leadership within a group, enabling effective command towards achieving common goals.
2. Appreciate the importance of grace and dignity in executing foot drill movements, recognizing their significance in enhancing performance and teamwork.
3. Comprehend the criticality of weapon handling and detailed safety measures, emphasizing the importance of accident prevention through strict adherence to safety protocols.
4. Develop an awareness of diverse terrain types and their strategic significance in battle craft, enabling informed decision-making and effective utilization of terrain features for tactical advantage.

Course Content(Practical):

Unit 1:

Overview of NCC, its history, aims, objectives, and organizational structure, Incentives and duties associated with NCC cadetship; Maneuvers: Foot drill, Word of Command, Attention, and stand at ease, and Advanced maneuvers like turning and sizing; Parade formations: Parade line, open line and closed line; Saluting protocols, parade conclusion, and dismissal procedures. Marching styles: style march, double time march, and slow march

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus

Program Structure for BCA DT (Full Time)

Unit 2:

Weapon Training, Handling fire arms, Introduction and characteristics of the 22rifle; Handling Firearm techniques, emphasizing safety protocols and Best practices.

Unit 3:

Map Reading (MR): Topographical forms and technical terms, including relief, contours, and gradients, crucial for understanding terrain features; Cardinal points, magnetic variation and grid convergence

Unit 4:

Field Craft & Battle Craft (FC & BC): Fundamental principles and techniques essential for effective field and battle craft operations; Methods of judging distance, including estimation, pacing, and visual cues

References:

- DGNCC Cadet's Hand Book-Common Subjects-AllWings
- Tiwari,R.(2019).NCC:GroomingFeelingofNationalIntegration,Leadership and Discipline among Youth. Edwin Incorporation.
- Chhetri,R.S.(2010).Grooming Tomorrows Leaders,The National Cadet Corps.
- [Directorate General National Cadet Corps](#)(2003).National Cadet Corps,Youth in Action.
- Vanshpal,Ravi(2024).TheNCCDays,NotionPress.

Course Outcome(s):

1. Mastery of Discipline and Leadership through Drill Learners would demonstrate the ability to effectively command a group, foster discipline, and work collaboratively towards achieving shared objectives.
2. Mastery of Grace and Dignity in Foot Drill Performance Learners would demonstrate an understanding of how these qualities enhance performance and foster teamwork within a group setting.
3. Proficient Weapon Handling and Safety Adherence Learners would showcase a thorough understanding of the criticality of safety measures, emphasizing accident prevention through strict adherence to safety protocols.
4. Enhanced Tactical Awareness and Strategic Decision-Making Learners would gain the ability to make informed decisions and effectively utilize terrain features to gain tactical advantage during operations.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus

Program Structure for BCA DT (Full Time)

CBCA25VA6	National Service Scheme (NSS)	L	T	P	C	TY/Lb/IE
		0	0	4	2	IE

This course provides students with an in-depth understanding of the National Service Scheme (NSS), including its history, philosophy, aims, objectives and organizational structure. It equips students with knowledge about various NSS programmes and activities, emphasizing their relevance and importance. The course also develops skills in community mobilization, teaching students effective techniques for engaging and mobilizing community stakeholders. Additionally, it cultivates an appreciation for volunteerism and shramdan (voluntary labor), highlighting their role in community development initiatives. By the end of the course, students will have a comprehensive understanding of NSS, enhanced leadership and team-building skills, and a strong sense of social awareness and patriotism.

Course Objective(s):

1. To provide students with an understanding of the history, philosophy, and basic concepts of the National Service Scheme (NSS).
2. To familiarize students with the aims, objectives, and organizational structure of NSS.
3. To equip students with knowledge about NSS programmes, activities, and their relevance.
4. To develop an understanding of community mobilization techniques and their importance in NSS activities.
5. To cultivate an appreciation for volunteerism, shramdan (voluntary labor), and their role in community development initiatives.

Course Content:

Unit 1: Introduction and Basic Concepts of NSS

National Service Scheme (NSS) - history, philosophy, and fundamental concepts, aims and objectives, providing clarity on the organization's overarching goals. Symbols of NSS - Emblem, flag, motto, song, and badge; Organizational structure of NSS

Unit 2: NSS Programmes and Activities

Diverse programmes and activities conducted under the aegis of the National Service Scheme (NSS); Significance of commemorating important days recognized by the United Nations, Centre, State Government, and University; Examination of the methodology for adopting villages/slums and conducting surveys; Financial patterns of the NSS scheme

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus **Program Structure for BCA DT (Full Time)**

Unit 3:Community Mobilization

Dynamics of community mobilization within the framework of the National Service Scheme (NSS); Functioning of community stakeholders; The conceptual lens of community development

Unit 4: Volunteeris and Shramdan in the Indian Context:Roles and Motivations within the NSS Framework

Ethos of volunteerism and shramdan (voluntary labor) within the cultural context of India and the framework of the National Service Scheme (NSS); Motivations and constraints shaping volunteer engagement;Role of NSS volunteers in initiatives such as the Swatch Bharat Abhiyan and Digital India

References:

1. Ministry of Youth Affairs and Sports, Government of India. (2022). National Service Scheme (NSS) Manual.
2. Agarwalla,S.(2021).NSS and Youth Development. Mahaveer Publications
3. Bhattacharya,P.(2024).Stories Of NSS(English Version). Sahityasree.
4. Borah, R. and Borkakoty, B. (2022). NSS in Socioeconomic Development. Unika Prakashan.
5. Wondimu, H., & Admas, G. (2024). The motivation and engagement of student volunteers in volunteerism at the University of Gondar. *Discover Global Society*, 2(1), 1-16.
6. Saha, A. K. (2002). Extension Education–The Third Dimension Needs and Aspirations of Indian Youth. *Journal of Social Sciences*, 6(3), 209-214.
7. Mills, S. (2013). “An instruction in good citizenship”: scouting and the historical geographies of citizenship education. *Transactions of the Institute of British Geographers*, 38(1), 120–134. <http://www.jstor.org/stable/24582445>
8. Mishra,S.K.,Sachdev,S.,Marwaha,N.,&Avasthi,A.(2016).Studyofknowledge and attitude among college-going students toward voluntary blood donation from north India. *Journal of blood medicine*, 19-26.
9. Mukherji,B.(2007).Community Development in India. Orient Longmans.
10. History Background of NSS and its Philosophy,Aims and Objectives
11. <https://www.osmania.ac.in/NSS%20URL/9.%20%20Historical%20Background%20of%20NSS%20and%20its%20Philosophy,%20Aim.pdf>
12. InDefenceofNationalism<https://www.mkgandhi.org/indiadreams/chap03.htm>
13. Unlocking Youth Potential for Nation Building:Strengthening NYKS and NSS
14. <https://www.undp.org/india/projects/strenghtening-nyks-and-nss>

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus

Program Structure for BCA DT (Full Time)

CourseOutcome(s):

1. Students will demonstrate an understanding of the history, philosophy and objectives of the National Service Scheme (NSS), thereby fostering increased social awareness and patriotism among them.
2. Students will be able to organize and conduct various NSS programmes and activities effectively and through it understand the importance of leadership and team building.
3. Students will develop skills in community mobilization and partnership building.
4. Students will appreciate the importance of volunteerism and shramdan in societal development and thus, be able to understand role of community participation.

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus

Program Structure for BCA DT (Full Time)

CBCA25VA7	DISASTER MANAGEMENT	L	T	P	C	TY/Lb/IE
		0	0	4	2	IE

In our rapidly evolving 21st-century world, challenges emerge in diverse forms, transcending borders and intertwining economic, societal, and environmental realms. These challenges profoundly affect vulnerable communities, magnifying their susceptibility to climate-related shocks and disasters. As we navigate through these complexities, it becomes increasingly evident that aligning strategies with global Sustainable Development Goals (SDGs) across various geographical scales is paramount. This alignment incorporates perspectives of environmental sustainability, climate adaptation, and disaster resilience. In light of these considerations, this course aims to equip students with the knowledge and skills necessary to address and mitigate the impacts of disasters in a holistic manner.

Course Objective(s):

- To provide understanding of the concepts related to disaster
- To highlight the importance and role of disaster management
- To enhance awareness of institutional processes and management strategies to mitigate the impacts of disasters

Course Content:

Unit 1:Concepts and Terminologies

Understanding key concepts of Hazards, disasters; Disaster types and causes (Geophysical, Hydrological, Meteorological, Biological and Atmospheric; Human-made); Global trends in disasters - Impacts (Physical, Social, Economic, Political, Environmental and Psychosocial); Defining Vulnerability(Physical Vulnerability; Economic Vulnerability; Social Vulnerability)

Unit 2:Key concepts of Disaster Management Cycle

Components of disaster management cycle (Phases: Response and recovery, Risk assessment, Mitigation and prevention, Preparedness planning, Prediction and warning); Disaster risk reduction (DRR), Community based disaster risk reduction

Unit 3:Initiatives at national and international level

Disaster Risk Management in India and at international level: Related policies, plans, programmes and legislation; International strategy for disaster reduction and other

FACULTY OF COMPUTER APPLICATIONS

BCA- General Full Time Program - Curriculum & Syllabus **Program Structure for BCA DT (Full Time)**

initiatives

Unit 4:Emergency Management

Explosion and accidents(Industrial,Nuclear,Transport and Mining)- Spill(Oil and Hazardous material); Threats (Bomb and terrorist attacks) - Stampede and conflicts Training and Demonstration Workshops (at least two workshops) be organized in association with the NIDM, NDRF, NCDC, Param Military, Fire Brigade, CISF, local administration etc.

Readings

1. Sharma,S.C.(2022),Disaster Management,Khanna Book Publishing.
2. Clements,B.W.,(2009):Disasters and Public Health:Planning and Response,Elsevier Inc.
3. Dunkan, K., and Brebbia, C. A., (Eds.) (2009): Disaster Management and Human Health Risk: Reducing Risk, Improving Outcomes, WIT Press, UK.
4. Singh, R. B. (ed.), (2006) Natural Hazards and Disaster Management: Vulnerability and Mitigation, Rawat Publications, New Delhi.
5. Ramkumar,Mu,(2009)Geological Hazards:Causes,Consequences and Methods of Containment, New India Publishing Agency, New Delhi.
6. Modh,S.(2010)Managing Natural Disaster: Hydrological, Marine and Geological Disasters, Macmillan, Delhi.
7. Carter,N.(1991)Disaster Management: A Disaster Management Handbook. Asian Development Bank, Manila.
8. Govt.of India(2008)Vulnerability Atlas of India. BMTPC, New Delhi.
9. Govt.of India(2011)Disaster Management in India. Ministry of Home Affairs, New Delhi.
10. Matthews,J.A.,(2002)Natural Hazards and Environmental Change,Bill McGuire,Ian Mason.

E-Resources

- <http://www.ndma.gov.in/en/>
- <http://nidm.gov.in/>
- <https://www.unisdr.org/>
- <http://www.emdat.be>
- <https://www.weather.gov/safety/>
- <https://www.preventionweb.net/risk/vulnerability>