

FACULTY OF ENGINEERING & TECHNOLOGY

B.TECH REGULATION – 2017 (Full Time)

(For students admitted from the Academic Year 2017-18)

SEMESTER – 1

Course Code	Course Title	C	L	T/SLr	P/R	Ty/Lb /ETL
BEN17001	TECHNICAL ENGLISH –I	2	1	0/0	2/0	Ту
BMA17001 BMA17002	MATHEMATICS – I/ BIO MATHEMATICS (FOR BIOTECH)	4	3	1/0	0/0	Ту
BPH17001	ENGINEERING PHYSICS	3	2	0/1	0/0	Ту
BCH17001	ENGINEERING CHEMISTRY –I	3	2	0/1	0/0	Ту
BES17001	BASIC ELECTRICAL & ELECTRONICS ENGINEERING	3	2	0/1	0/0	Ту
BES17002	BASIC MECHANICAL & CIVIL ENGINEERING	3	2	0/1	0/0	Ту
	ANNUAL PATTERN (PRA	CTICA	LS)*			
BES17ET1	BASIC ENGINEERING GRAPHICS	2	1	0/0	2/0	ETL
BPH17L01	ENGINEERING PHYSICS LAB	1	0	0/0	2/0	Lb
BCH17L01	ENGINEERING CHEMISTRY LAB	1	0	0/0	2/0	Lb
BES17L01	BASIC ENGINEERING WORSHOP	1	0	0/0	2/0	Lb
BES17ET2	C PROGRAMMING AND LAB	2	1	0/0	2/0	ETL
BES17ET3	ENTREPRENEURIAL SKILL DEVELOPMENT & PROJECT LAB	1	0	0/0	2/0	ETL

Credits Sub Total:26

	SEMESTER –	2							
Course	Course Title	С	L	T/SLr	P/R	Ty/Lb/			
Code						ETL			
BEN17002	TECHNICAL ENGLISH – II	2	1	0/0	2/0	Ту			
BMA17003 BMA17004	MATHEMATICS – II / BIO STATISTICS (FOR BIOTECH)	4	3	1/0	0/0	Ту			
BPH17002	MATERIAL SCIENCE	3	2	0/1	0/0	Ту			
BCH17002	ENGINEERING CHEMISTRY – II	3	2	0/1	0/0	Ту			
BES17003	ENVIRONMENTAL SCIENCE	3	3	0	0/0	Ту			
Credite Sub Total 15									

Credits SubTotal:15

C: Credits L : Lecture T: Tutorial S.Lr: Supervised Learning P: Problem / Practical R: Research Ty/Lb/ETL : Theory /Lab/Embeddded Theory and Lab * Internal Evaluation

Semester : 3

Course Code	Course Title	С	L	T/SLr	P/R	Ty / Lb/ ETL
BMA17005	MATHEMATICS III FOR MECHANICAL AND CIVIL ENGINEERS	4	3	1/0	0/0	Ту
BCE17001	MECHANICS OF SOLIDS	4	3	1/0	0/0	Ту
BCE17002	MECHANICS OF FLUIDS	4	3	1/0	0/0	Ту
BCE17ES1	BASIC ENGINEERING SCIENCE BUILDING SCIENCE AND MATERIALS	3	3	0/0	0/0	Ту
BAR17I01	INTER DISCIPLINARY THEORY - I ENGINEERING GEOLOGY	3	3	0/0	0/0	Ту

Practical:

BCE17ET1	ENGINEERING SURVEY -I	3	2	0/0	2/0	ETL
BCE17L01	BUILDING DRAWING PRACTICE	1	0	0/0	3/0	Lb
BCE17L02	SURVEYING FIELD WORK	1	0	0/0	3/0	Lb
BAR17IL1	INTER DISCIPLINARY LAB I GEOLOGY AND BUILDING MATERIALS LAB	1	0	0/0	2/0	Lb

Credits Sub Total: 24

Semester: 4 Theory:

Course Code	Course Title	С	L	T/SLr	P/R	Ty / Lb/ ETL
BMA17010	NUMERICAL METHODS FOR MECHANICAL AND CIVIL ENGINEERS	4	3	1/0	0/0	Ту
BCE17003	STRENGTH OF MATERIALS	4	3	1/0	0/0	Ту
BCE17004	APPLIED HYDRAULIC ENGINEERING	4	3	1/0	0/0	Ту
BCE17005	CONCRETE AND CONSTRUCTION TECHNOLOGY	3	2	1/0	0/0	Ту
BAR17I02	INTER DISCIPLINARY THEORY II REMOTE SENSING AND GIS	3	2	1/0	0/0	Ту

Practical:

BEN17ET2	SOFT SKILL 1	2	1	0/1	0/0	ETL
BCE17ET3	ENGINEERING SURVEY - II	3	1	0/1	1/1	ETL
BCE17L03	FLUID MECHANICS AND HYDRAULIC MACHINERY LAB	1	0	0/0	2/0	Lb
BCE17L04	STRENGTH OF MATERIALS AND CONCRETE LAB	1	0	0/0	2/0	Lb
BCS17IL7	INTER DISCIPLINARY LAB II BASIC COMPUTER SKILL FOR CIVIL ENGINEERS	1	0	0/0	2/0	Lb
BCE17TS1	TECHNICAL SKILL – I (EVALUATION) ADVANCED SURVEYING FIELD WORK AND GIS LAB	1	0	0/0	0/2	Lb

Credits Sub Total: 27

Semester: 5

Theory:		C	Ŧ	TO ICIT	D/D	TE (
Course	Course Title	С	L	T/SLr	P/R	Ty/
Code						Lb/
						ETL
BCE17006	STRUCTURAL ANALYSIS-I	4	3	1/0	0/0	Ту
BCE17007	DESIGN OF CONCRETE STRUCTURES-I	4	3	1/0	0/0	Ту
BCE17008	SOIL MECHANICS	3	2	1/0	0/0	Ту
BCE17009	TRANSPORTATION ENGINEERING	3	2	1/0	0/0	Ту
BEE17I04	INTER DISCIPLINARY THEORY – III ENERGY CONSERVATION TECHNIQUES	3	2	1/0	0/0	Ту

Practical:

BCE17ET4	WATER RESOURCES AND IRRIGATION ENGINEERING	3	1	0/1	1/1	ETL
BCE17L05	TRANSPORTATION ENGINEERING LAB	1	0	0/0	2/0	Lb
BCE17L06	GEOTECHNICAL ENGINEERING LABORATORY	1	0	0/0	2/0	Lb
BAR17IL2	INTER DISCIPLINARY LAB III	1	0	0/0	2/0	Lb
	SOFTWARE FOR CIVIL ENGINEERS					
BCE17TS2	TECHNICAL SKILL II (EVALUATION) SURVEY CAMP	1	0	0/0	2/0	Lb
BCE17L07	INPLANT TRAINING (EVALUATION) PRACTICAL TRAINING	1	0	0/0	2/0	Lb

Semester: 6

Theory:						
Course Code	Course Title	C	L	T/SLr	P/R	Ty / Lb/ ETL
BCE17010	STRUCTURAL ANALYSIS - II	4	3	1/0	0/0	Ту
BCE17011	FOUNDATION ENGINEERING	3	2	1/0	0/0	Ту
BCE17EXX	ELECTIVE – 1 *(BASED ON STUDENTS INTEREST)	3	2	1/0	0/0	Ту
BAR17I03	INTER DISCIPLINARY THEORY – IV DESIGN OF CONCRETE STRUCTURES – II	3	2	1/0	0/0	Ту
BCE17OEX	(OPEN ELECTIVE-INTERDISCIPLINARY)* *(CHOICE BASED OF STUDENTS INTREST)	3	3	0/0	0/0	Ту
Practical:						
BEN17ET5	SOFT SKILL- II	2	1	0/0	2/0	ETL
BCE17L08	ENVIRONMENTAL AND HYDRAULIC STRUCTURES DRAWING	1	0	0/0	3/0	Lb
BCE17L09	ENVIRONMENTAL ENGINEERING LAB	1	0	0/0	3/0	Lb
BCE17L10	STRUCTURAL ANALYSIS AND DESIGN BASED ON CIVIL ENGINEERING SOFTWARE	1	0	0/0	3/0	Lb
BCE17L11	MINI PROJECT (EVALUATION) INNOVATIVE PROJECT	1	0	0/0	0/2	Lb
BCE17TS3	TECHNICAL SKILL – III (EVALUATION) DETAILING OF R.C. AND STEEL STRUCTURES	1	0	0/0	0/2	Lb

Credits Sub Total: 23

Credits Sub Total : 25

Semester: 7

Course Code	Course Title	C	L	T/SLr	P/R	Ty / Lb/ ETL
BCE17012	DESIGN OF STEEL STRUCTURES	4	3	1/0	0/0	Ту
BCE17013	CONSTRUCTION MANAGEMENT	4	3	1/0	0/0	Ту
BCE17EXX	ELECTIVE 2 *(BASED ON STUDENTS INTEREST)	3	2	1/0	0/0	Ту
BCE17EXX	ELECTIVE 3 *(BASED ON STUDENTS INTEREST)	3	3	0/0	0/1	Ту
BMG17001	MANAGEMENT PAPER - I PRINCIPLES OF MANAGEMENT	3	2	0/1	0/0	Ту
Practical:	·	·	•	•		
BCE17SEX	ELECTIVE (SPECIAL - BASED ON CURRENT TECHNOLOGY) *	3	1	0/1	1/1	ETL
BCE17L12	ADVANCED CONCRETE LAB	1	0	0/0	3/0	Lb
BCE17L13	ESTIMATION AND EVALUATION PRACTICAL	1	0	0/0	3/0	Lb
BCE17L14	PROJECT PHASE – 1	2	0	0/1	0/3	Lb
BFL1700X	FOREIGN LANGUAGE (EVALUATION)	2	1	0/1	0/0	Lb

Semester: 8

Theory:						
Course	Course Title	С	L	T/SLr	P/R	Ty/
Code						Lb/ ETL
BCE17EXX	ELECTIVE 4 *(BASED ON STUDENTS INTEREST)	3	2	0/1	0/0	Ту
BCE17EXX	ELECTIVE 5 * *(BASED ON STUDENTS INTEREST)	3	2	0/1	0/0	Ту
BMG17003	MANAGEMENT PAPER - II TOTAL QUALITY MANAGEMENT	3	2	0/1	0/0	Ту
Practical:	•	÷	•	•		
BCE17L15	Project (Phase – II)	10	0	0/5	0/10	Lb

Credits Sub Total:19

 $C: Credits \ L: Lecture \ T: Tutorial \ S.Lr: Supervised \ Learning \ P: Problem \ / \ Practical \ R: Research \ Ty \ / \ Lb \ / \ ETL: Theory \ Lab \ / \ Embedded \ Theory \ and \ Lab. \ * \ Internal \ evaluation \ (Departmental \ level \ Refer \ Annexure \ for \ evaluation \ methodology) \ 4 \ Credit \ papers \ should \ compulsorily \ have \ either \ P \ R \ component.$

Credit Summary Semester : 1 : 18 Semester : 2 : 23 Semester : 3 : 24 Semester : 4 : 27 Semester : 5 : 25 Semester : 6 : 23 Semester : 7 : 26

Semester: 8 : 19

Total Credits : 185

Department of Civil Engineering ELECTIVE-I

COURSE CODE	COURSE TITLE	С	L	T/SLR	P/R	Ty/Lb/ ETL
BCE17E01	ENVIRONMENTAL ENGINEERING	3	2	1/0	0/0	Ту
BCE17E02	DESIGN OF COMPOSITE STRUCTURES	3	2	1/0	0/0	Ту
BCE17E03	INDUSTRIAL STRUCTURES	3	2	1/0	0/0	Ту
BCE17E04	SMART STRUCTURES AND SMART MATERIALS	3	2	1/0	0/0	Ту

ELECTIVE-II

COURSE CODE	COURSE TITLE	С	L	T/SLR	P/R	Ty/Lb/ ETL
BCE17E05	ESTIMATION AND QUANTITY SURVEYING	3	2	1/0	0/0	Ту
BCE17E06	HOUSING PLANNING AND DESIGN	3	2	1/0	0/0	Ту
BCE17E07	BUILDING TECHNOLOGY AND HABITAT ENGINEERING	3	2	1/0	0/0	Ту
BCE17E08	COST EFFECTIVE BUILDINGS	3	2	1/0	0/0	Ту

ELECTIVE -III

COURSE CODE	COURSE TITLE	С	L	T/SLR	P/R	Ty/Lb/ ETL
BCE17E09	INDUSTRIAL WASTE MANAGEMENT	3	2	1/0	0/0	Ту
BCE17E10	CLEANER PRODUCTION	3	2	1/0	0/0	Ту
BCE17E11	ARCHITECTURE AND TOWN PLANNING	3	2	1/0	0/0	Ту
BCE17E12	DAM ENGINEERING	3	2	1/0	0/0	Ту

ELECTIVE -IV

COURSE CODE	COURSE TITLE	С	L	T/SLR	P/R	Ty/Lb/ ETL
BCE17E13	STRUCTURAL DYNAMICS AND EARTH QUAKE ENGINEERING	3	2	0/1	0/0	Ту
BCE17E14	BRIDGE STRUCTURES	3	2	0/1	0/0	Ту
BCE17E15	STORAGE STRUCTURES	3	2	0/1	0/0	Ту
BCE17E16	TALL BUILDINGS	3	2	0/1	0/0	Ту

ELECTIVE -V

COURSE CODE	COURSE TITLE	С	L	T/SLR	P/R	Ty/Lb/ETL
BCE17E17	HYDROLOGY	3	2	0/1	0/0	Ту
BCE17E18	MUNICIPAL SOLID WASTE MANAGEMENT	3	2	0/1	0/0	Ту
BCE17E19	PRESTRESSED CONCRETE STRUCURES	3	2	0/1	0/0	Ту
BCE17E20	PRE FABRICATED STRUCTURES	3	2	0/1	0/0	Ту

ELECTIVE (SPECIAL -BASED ON CURRENT TECHNOLOGY)

COURSE CODE	COURSE TITLE	С	L	T/SLR	P/R	Ty/Lb/ETL
BCE17SE1	REPAIR AND REHABILITATION OF STRUCTURES	3	1	0/1	1/1	Ту
BCE17SE2	INTELLIGENT BUILDINGS	3	1	0/1	1/1	Ту
BCE17SE3	FINITE ELEMENT ANALYSIS	3	1	0/1	1/1	Ту
BCE17SE4	ENVIRONMENTAL IMPACT ASSESSMENT	3	1	0/1	1/1	Ту

OPEN ELECTIVE

COURSE CODE	COURSE TITLE	С	L	T/SLR	P/R	Ty/Lb /ETL
BCE17OE1	PROFESSIONAL ETHICS	3	3	0/0	0/0	Ту
BCE17OE2	ENVIRONMENT, HEALTH AND SAFETY IN INDUSTRIES	3	3	0/0	0/0	Ту
BCE17OE3	CLIMATE CHANGE AND SUSTAINABLE DEVELOPMENT	3	3	0/0	0/0	Ту
BCE17OE4	INTELLIGENT TRANSPORTATION SYSTEMS	3	3	0/0	0/0	Ту

Subject C BEN170		Subject	Name : 7	ГЕСН	INICAL	ENGL	ISH	- I		С	L	,	T/SLr	P/R
DENI/U	01	Prerequ	isite : No	one						2	1		0/0	2/0
	re T : Tuto : Theory /		·		•	: Projec	tR:	Re	search	C: Cre	dits			
OBJECT	IVES :													
1. Stre	ngthen thei	r vocabula	ry in botl	h tech	nical and	busines	s situ	atio	ns					
	practice in													
	rn the effect	-	-	-										
	rn to give in						and c	comj	prehend	l				
	infer the in			-	-		••		anu					
	in learners				d profess	ional wi	riting	; in I	LSRW s	skills				
	E OUTCON ompleting the	· · ·	· · ·											
CO1	Strengthe	n their acti	ive and te	chnica	al vocabu	lary								
CO2	Understar	nd function	al gramn	nar an	d gain pr	oficienc	y in t	tech	nical wı	riting				
CO3	Learn the	appropria	ate techni	que o	f writing	formal	and	busi	ness let	ters ar	nd j	prepar	e oneself	to read
	the advert	isement ar	nd prepar	e the	resume re	elevantly	7							
CO4	Learn to g	give instru	ctions, su	ggesti	ons, reco	mmend	ation	s an	d comp	rehend	l an	d infer	the info	rmatior
	from the g	given passa	ges											
CO5	Focus on a	academic a	nd techni	ical w	riting									
Mapping	of Course	Outcomes	with Pro	gram	Outcome	es (POs))							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO	7	PO8	PO)]]	PO10	PO11	PO12
CO1				Н								Н		Н
CO2				Н								Н		Н
CO3				Н		M				H		Η		Н
CO4				Н						Н		Η		Н
CO5				H						H		Η		Н
H/M/L in	dicates stre	ength of co	orrelation	H –	High, M	I – Med	ium,	L-	- Low				1	1
Category	Basic Sciences	Engg Sciences	Humanit & Social Sciences		Program core	Program Elective		Ope Elec	en ctives	Practi Projec			nships / nical s	Soft Skills
Approval														
r spproval	-													

M.G.R ND RESEARCH INSTITUTE

INIVERSIT

(An ISO 9001 20

TECHNICAL ENGLISH I 2 1 0/0 2/0

1. Vocabulary, Grammar and Usage - I

Meanings of words and phrases, synonyms and antonyms - affixes: prefixes and suffixes and word formation – nominal compounds, expanding using numbers and approximation – Verb: tense, auxiliary and modal – Voice: active, passive and impersonal passive

2. Vocabulary, Grammar and Usage - II

Infinitives and Gerunds – preposition, prepositional phrases, preposition + relative pronoun-'If' clause, sentences expressing 'cause and effect', 'purpose',

Instructions, suggestions and recommendations

3. Reading

Questions: Wh-pattern, Yes/no questions, tag questions

Comprehension: extracting relevant information from the text, by skimming and scanning and inferring, identifying lexical and contextual meaning for specific information, identifying the topic sentence and its role in each paragraph, comprehending the passage and answering questions - Précis writing

4. Writing

Adjectives: degrees of comparison

Concord: subject-verb agreement

Interpretation of tables and flowcharts: writing a paragraph based on information provided in a table using comparison and contrast, classifying the data and flowchart, describing logical steps involved in specific functions, note - making from a given passage- letter writing, formal: seeking permission to undergo practical training, letter to an editor of a newspaper complaining about civic problems and suggesting suitable solutions

5. Functional English and Practical Components

Listening : Listening to stories, conversation, dialogue, speeches of famous people, and identifying the grammar components

Speaking : Scripting and enacting role plays/ narrating incidents

Reading: Review of books, articles, fiction-Extensive reading/ user manuals, pamphlets, brochures

Writing : paragraph and essay writing using academic vocabulary

Text Book

1. Pushkala. R, PadmasaniKannan.S, Anuradha. V, Chandrasena Rajeswaran. M: Quest: A Textbook of Communication Skills, Vijay Nicole

References

Pushkala R, P.A.Sarada, El Dorado: A Textbook of Communication Skills, Orient Blackswan, 1. 2014

- 2. PadmasaniKannan.S., Pushkala.R. : Functional English
- 3. Hancock, Mark, English Pronunciation in Use; Cambridge Univ. Press, 2013
- 4. McCarthy, Michael et.al., English Vocabulary in Use, Advanced, Cambridge Univ. Press, 2011
- 5. Wren and Martin: Grammar and Composition, Chand & Co, 2006

Web Resources

- 1. https://learnenglish.britishcouncil.org
- 2. www.englishpage.com
- 3. www.writingcentre.uottawa.ca/hypergrammar/preposit.html
- 4. www.better-english.com/grammar/preposition.html
- 5. http://www.e-grammar.org/infinitive-gerund/
- 6. www.idiomsite.com/

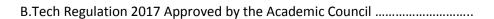
B.Tech Regulation 2017 Approved by the Academic Council

BEN17001

(6)

(6)

Total No of Periods : 30


(6)

(6)

(6)

				Depar	tment of (Civil Eng	ineering	Į				
Subject Code :	:	Subject	Name :		EMATICS			C	L	T/	'SLr	P/R
BMA17001	-	Prerequ	isite : N	one				4	3	1	L/O	0/0
L : Lecture T :	Tutori	al SI r ·	Supervi	sed I ea	rning P ·	Project	R · Rese	earch (└ `∙ Credit	<u> </u>		
T/L/ETL : The			-		•	roject	R . Res		. crean			
OBJECTIVES												
1. Apply the l		-										
2. Use the Ba		-										
3. Identify an		-			-							
4. Understand			-									
5. Apply the	Basic c	oncepts i	n Functi	ions of S	everal var	riables						
COURSE OUT Students completi				5)								
-	-			he given	series of t	ninomial	. expone	ntial &]	logarith	mic		
			on – d	iagonal	matrix i	nto an	equival	ent dia	gonal n	natrix u	ising or	thogona
		rmation.										
		-			function	into an i	nfinite s	eries an	d to sep	arate a	complex	functior
i	into rea	l and ima	iginary j	parts.								
CO4	Apply I	knowledg	e and co	ncepts i	n finding	the deriv	vative of	given f	unction	and to f	ind the n	naxima
r	minima	of the gi	ven func	tion.								
CO5 I	Evaluat	te the par	tial / tot	al differ	entiation a	and max	ima / mi	nima of	a functi	on of se	veral var	iables.
Mapping of Co				-	- T		D 0 F		D 00	Dot	DOI1	DOIO
COs/POs I	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
CO1	Н	Н			М	Μ			Н	Н		Н
CO2	Н	Н			Н	L						Н
CO3	Η	Η			М				Μ	Η		L
					L				Μ	Н		
CO4	Η	Η			L							Μ
CO4 CO5	H H	H H				M			M	M		M H
	Н	Н	orrelatio	n H-			m, L-1	Low				
CO5 H/M/L indicate Category F	Н	H ngth of co Engg	Hun es & S	n H – nanities ocial ences			n Ope			M	hips / cal Skills	
CO5 H/M/L indicate Category F	H es strei Basic	H ngth of co Engg	Hun es & S	nanities ocial	High, M - Program	– Mediu Prograr	n Ope	en	M Practic al /	M		H

BMA17002

1. ALGEBRA

Binomial, Exponential, Logarithmic Series (without proof of theorems) - Problems on Summation, Approximation and Coefficients.

2. MATRICES

Characteristic equation - Eigen values and Eigen vectors of a real matrix - Properties of Eigen values -Cayley - Hamilton theorem(without proof) - Orthogonal reduction of a symmetric matrix to Diagonal form.

3.TRIGONOMETRY

Expansions of Sin n θ , Cos n θ in powers of Sin θ and Cos θ – Expansion of Tan n θ – Expansions of Sinⁿ θ and $\cos^n\theta$ in terms of Sines and Cosines of multiples of θ – Hyperbolic functions – Separation into real and imaginary parts.

4. DIFFERENTIATION

Basic concepts of Differentiation - Elementary differentiation methods - Parametric functions - Implicit function –Leibnitz theorem(without proof) – Maxima and Minima – Points of inflection.

5. FUNCTIONS OF SEVERAL VARIABLES

Partial derivatives – Total differential – Differentiation of implicit functions – Taylor's expansion – Maxima and Minima by Lagrange's Method of undetermined multipliers – Jacobians.

Total no. of periods: 60

Text Books

1. Kreyszig E., Advanced Engineering Mathematics (10th ed.), John Wiley & Sons, (2011).

2. Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).

References

- 1. Grewal B.S., *Higher Engineering Mathematics*, Khanna Publishers, (2012).
- 2. John Bird, Basic Engineering Mathematics (5th ed.), Elsevier Ltd, (2010).
- 3. P.Kandasamy, K.Thilagavathy and K. Gunavathy, Engineering Mathematics Vol. I (4th Revised ed.), S.Chand& Co., Publishers, New Delhi (2000).
- 4. John Bird, *Higher Engineering Mathematics* (5th ed.), Elsevier Ltd, (2006).

ERSIT (An ISO 9001 20

Department of Civil Engineering MATHEMATICS - I

4 3 1/0 0/0

(12)

(12)

(12)

(12)

(12)

Subject Co	de ·	Subject	Name ·I		partment MATHEN				C	L	T/SLr		P/R
BMA1700		Bubjeet					9		C	L	1/SLI		171
		Prerequ	isite : No	one					4	3	1/0		0/0
L : Lecture	T. Tutori		unomico	dIa	orning D	Droia	+ D	Dagaarah		odita			
T/L/ETL :			-		•	Projec	ıĸ.	Research		eans			
OBJECTIV	•			5									
1. Use the		pts in Mat	rices										
2. Underst	and the Bas	sic concept	s in Diffe	renti	ation								
3. Underst	and the Bas	sic concept	s in Integ	gratio	n								
4. Apply th	e Basic cor	ncepts in Ir	iterpolati	ion									
5. Analyze	the Basic c	oncepts in	Numeric	al Di	fferentiat	ion and	Inte	gration					
COURSE COURSE COURSE		· · ·	· /										
CO1		sum, diffe		oduc	t and inv	erse of	matri	xes					
CO2	Find the o	derivative	of the giv	en fu	inction an	d to fin	d the	maxima /	minim	a of the	e given funo	ction.	
CO3	Integrate	the given	function	by u	sing the	method	s of i	ntegration	n and t	o find a	area under	the give	en curve
	and the v	olume of tl	ne solid b	y rev	olution.								
CO4	Evaluate	the value	of funct	ion a	t the giv	en poir	it and	d to find	the pol	ynomia	al expression	ons of t	he given
	function.												
CO5	Find the <i>c</i>	differentia	tion of a f	functi	ion at th	e given	noint	and to fin	d the ii	nteorati	ion of the g	iven fun	ction at
005	the given			-unco	1011 40 011	, Bi , cu	point	unu to m		itegi ut	ion of the g	i v chi run	cuon ut
		-											
Mapping o	f Course O	outcomes v	vith Prog	gram	Outcome	es (POs)						
COs/POs	PO1	PO2	PO3	PO	4 PO5	i P	O6	PO7	PO8	PO9	PO10	PO1 1	PO12
CO1	Н	Н			M		M			Н	Н		Н
CO2	Н	H			Н		L						Н
CO3	Н	Н			M					Μ	Н		L
CO4	Н	Н			L		M			M	Н		Н
CO5	Н	Н					М			Μ	Μ		Н
CO5 H/M/L ind			relation	H –	High, M			L – Low		M	М		Н
	icates stren Basic	ngth of cor Engg	Humaniti	ies	Program	– Med	ium, n	Open	Practi	cal /	nternships /	Soft Sk	
H/M/L ind	icates stren	igth of cor		ies	-	– Med	ium, n		-	cal / 1		Soft Sk	
H/M/L ind	icates stren Basic	ngth of cor Engg	Humaniti & Social	ies	Program	– Med	ium, n	Open	Practi	cal / 1	nternships / Fechnical	Soft Sk	
H/M/L ind	icates stren Basic Sciences	ngth of cor Engg	Humaniti & Social	ies	Program	– Med	ium, n	Open	Practi	cal / 1	nternships / Fechnical	Soft Sk	

BMA17002

BIO MATHEMATICS 3 1/0 0/0

1.MATRICES

Elementary operations on Matrices – Inverse of a Matrix – Solving simultaneous equations (atmost three equations with three unknowns) using Cramer's rule.

2. DIFFERENTIATION

Basic concepts of Differentiation - Elementary differentiation methods - Parametric functions - Implicit function – Maxima and Minima (simple problems).

3.INTEGRATION

Basic concepts of Integration – Methods of Integration – Integration by substitution – Integration by parts – Definite Integrals - Properties of Definite Integrals - Problems on finding Area using single integrals (simple problems).

4.INTERPOLATION

Interpolation: Newton's forward, Newton's backward formulae - Newton's divided differences -Lagrange's polynomial (simple problems).

5. NUMERICAL DIFFERENTIATION AND INTEGRATION (12)

Numerical differentiation with interpolation polynomials (Newton's forward and backward only) -Numerical integration by Trapezoidal and Simpson's (both 1/3rd & 3/8th) rules (simple problems).

Total no. of periods: 60

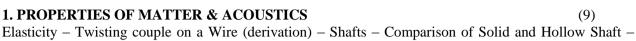
Text Books

- 1. Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).
- 2. H.K.Das, Engineering Mathematics, S.Chand Publishers
- 3. Veerarajan T., Numerical Methods, Tata McGraw Hill Publishing Co., (2007).

References

- 1. Shanti Narayanan, Differential Calculus, S.Chand& Co., New Delhi, (2005).
- 2. Shanti Narayanan, Integral Calculus, S.Chand& Co., New Delhi, (2005).
- 3. John Bird, *Basic Engineering Mathematics* (5th ed.), Elsevier Ltd, (2010).

(12)


(12)

(12)

(12)

				D	epartme	ent of Civ	'il Eng	gineer	ring					
Subject Cod BPH17001	le :	Su	bject Na	ime : EN	GINEEF	RING PH	YSIC	Ś		С	L	T/	SLr	P/R
		Pre	erequisit	e : None						3	2	0	/1	0/0
L : Lecture ' T/L/ETL : T			-		•	0	tR:	Resea	arch C	Cred	its			
OBJECTIV	ES : the relatio	on betw	een Scie	nce, Engi	ineering	& Techn	ology	•						
2. Demons	trate comj	petency	' in unde	erstandin	g basic c	oncepts.								
3. Apply fu	ındamenta	al laws	of Physi	cs in Eng	ineering	g & Techr	nology	/ •						
4. To ident	ify & solv	e appli	ed Physi	cs proble	ms.									
5. Produce	and prese	ent acti	vities as	sociated v	with the	course th	rougł	n effec	ctive tec	hnica	com	municat	tion	
COURSE O	UTCOM	ES (Co	(3 - 3) = (3 - 3)	- 5)										
Students com			, ,	,										
CO1	Demonst	trate co	mpeten	cy in und	erstandi	ng basic	conce	pts.						
CO2	Utilize s	cientifi	c metho	ds for for	rmal inv	restigation	15 & (demo	nstrate	comp	etenc	y with e	xperim	ental methods
				o content		-				-		•		
CO3		-				ering pro	oblem	s.						
CO4	-	-				ay life and			al situa	tions.				
CO5	Think aı	nalytica	ally to in	terpret co	oncepts.									
Mapping of	Course O	utcom	es with	Program	Outcom	nes (POs))							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO	07	PO8	PO)	PO10	PO11	PO12
CO1	Н	H			М	М			L			Μ		
CO2	Н	H	М		Μ	M			L			Μ		L
CO3	Н	Η	H	М		М						Μ		L
CO4	Н	Η	Μ		Μ				Μ					Μ
CO5	Η	Μ	L	H								-		
H/M/L indic	cates stren	igth of	correlat	ion H–	High, N	M – Medi	um,	L – L	ow	1	I		I	I
Category	Basic Sciences	Engg Scien	ces &	umanities Social eiences	Program core	n Progr Elect		Ope Elec	n tives	Practi Projec		Interns Technic Skills	-	Soft Skills
	\checkmark													
Approval	<u> </u>		I		1			1				<u>I</u>	[

M.G.R. ND RESEARCH INSTITUTE

ENGINEERING PHYSICS

UNIVERSITY

Madatansigni, Chuntai (An 150 9001 | 2008 Cartif Department of Civil Engineering

Bending moment – Depression of a Cantilever – Determination of Young's modulus by Depression of a Cantilever – Uniform and non uniform bending (Experiment) – I form of Girders. Viscosity - Definitions - Lubrication - Properties & Types of Lubricant. Acoustics of Buildings -Reverberation – Reverberation time – Sabine's formula for Reverberation Time – Absorption Coefficient and its Determination - Factors affecting Acoustics of Buildings and its Remedial Measures.

2. THERMAL PHYSICS

Thermal conduction – Thermal Expansion – Expansion joints – Bimetallic strips – Thermal conductivity (k) - Lee's Disc method (theory and experiment) - Radial flow of heat -Thermal conductivity of Glass -Thermal conductivity of Rubber Tube – Flow of heat through Compound Media – Thermal Insulation of buildings - Thermal radiation - Concept of Black body radiation - Fundamentals of Low Temperature Physics.

3. ULTRASONICS AND ITS APPLICATIONS

Properties & Production of Ultrosonics - Piezoelectric method - Magnetostriction method - Acoustic Grating - Industrial Applications - Ultrasonic flaw detection (Block Diagram) - Medical Application: Velocity Blood Flow Meter - PhonoCardiography - Ultrasound imaging - Hazards and safety of Ultrasound - NDT of Materials using Ultrasonics.

4. LASER & ITS APPLICATIONS

.Nature of Light - Laser Principle & Characteristics-Ruby laser - Nd- YAG Laser - He-Ne Laser - Co2 Laser - Semiconductor laser - Homo junction & Hetero Junction Laser - Engineering applications -Holography, Surveying – Industrial applications – Cutting, Welding – Medical applications – Surgery

5. FIBER OPTIC COMMUNICATION

Total Internal Reflection – Propagation of Light in Optical Fibres – Numerical aperture and Acceptance Angle – Types of Optical Fibres (material, refractive index, mode) – Fibre Optical Communication system (Block diagram) - Attenuation-Transmitter, Receiver, Dispersion, Modulation/Demodulation Advantages of Fibre Optical Communication System - IMT, PMT, Wavelength Modulated & Polarization Modulated Sensors – Endoscope Applications.

Text Books

- 1. M. Arumugam, "Engineering Physics", Anuradha Publication (2004)
- 2. Dr. Senthil Kumar "Engineering Physics I" VRB Publishers (2016)
- 3. N.S.Shubhashree&R.Murugesan., "Engineering Physics", Sreelakhsmi Publishers(2008)

References

- 4. K. Gaur & S.L. Gupta, "Engineering. Physics", Dhanpat Raj & Sons, VI Edition, (1988)
- 5. Palanisamy, P.K., "Engineering Physics", Scitech Publications (P) Ltd., (2006)

B.Tech Regulation 2017 Approved by the Academic Council

BPH17001

3 2 0/1 0/0.

(9)

(9)

Total No. of Periods : 45

(9)

(9)

(9)

				D	epartmer	nt of Civil	Engineer	ing					
Subject Co		Subj	ect Nar	ne : EN	GINEERI	NG CHE	MISTRY	– I	С	I	L T/	SLr	P/R
BCH1700	1	Prere	equisite	· None					3	,	2 ()/1	0/0
		11010	quisite	· I tolle					5	4		″1	0/0
L : Lecture	T : Tuto	rial SLr	: Superv	vised Le	earning P	: Project	R : Rese	arch	C: Cre	dits			
T/L/ETL :			-		•	U							
OBJECTIV	VES :			-									
		ight into	basic co	ncepts o	of chemica	l thermod	ynamics.						
2. To crea	ate aware	ness abou	t the wa	ter aua	litv paran	neters, wa	ter analy	sis and	l softer	ning	of water fr	om ind	ustrial
perspe				1	J 1	,	·····			0			
		montola	fomfa	tomaga	nd fuel of	مالم							
-	-			-	and fuel co								
						ol methods							
5. Introdu	ucing mod	lern mate	rials suc	ch as co	mposites a	along with	basic co	ncepts	of pol	yme	r chemistry	and p	lastics.
COURSE	OUTCON	MES (Cos	s) : (3 –	5)									
	T												
CO1	Gain a	clear un	derstand	ling of	the basic	s of chem	ical ther	mody	namics	wh	ich include	e conce	epts such
	Enthalp	y, Entrop	oy and F	ree ene	rgy.								
CO2	Obtain	an overa	ll idea o	f Water	· anality r	narameter	s Boiler	requi	rement	s ni	oblems, W	ater so	oftening ar
002		ic Water			quanty h	Jurumeter	s, Donei	requi	emen	., p.	obienis, w	uter by	Jitening ui
	Domest	ic water	treatme	11.									
CO3	Improv	ing the b	oasic kn	owledg	e in elect	rical con	luctance	and	emf ar	nd a	lso unders	tand t	he chemic
	princip	es of stor	age devi	ces.									
004		41 • 6		1 4	•		4 14		•	6	•		41 1
CO4				about c	corrosion	and under	rstand the	e mec	hanism	S OI	corrosion a	ind the	e methods
	corrosio	on control											
CO5	Articula	ate the sci	ence of	polymei	rs and con	nposites.							
Mapping o	f Course	Outcome	s with H	rogran	n Outcom	es (POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P)9	PO10	PO1	1 PO12
CO1	L	Μ											Μ
CO2	Μ	L	Μ	L		L	Η						Μ
CO3	L	Μ	L				L						L
CO4	Μ		L	L									L
CO5	Μ		L										Μ
H/M/L ind	icates stro	ength of c	correlati	on H-	– High, N	I – Mediu	m, $L-I$	Low					
Category	Basic	Engg	Hun	anities	Program	Program	Open		Practic	al /	Internships	/ Sc	ft Skills
	Sciences	Science			core	Electives	-	ives	Project	I	Technical		
			Scie	nces							Skills		
A nn 1	<u> </u>												
Approval													

CAN ISO 9001 2009 Carithed Institution) Department of Civil Engineering ENGINEERING CHEMISTRY – I

1. CHEMICAL THERMODYNAMICS

Introduction, Terminology in thermodynamics –System, Surrounding, State and Path functions, Extensive and intensive properties. Laws of thermodynamics – I and II laws-Need for the II law. Enthalpy, Entropy, Gibbs free energy, Helmholtz free energy - Spontaneity and its criteria. Maxwell relations, Gibbs - Helmholtz equation (relating E & A) and (relating H & G), Van't Hoff equations.

2.TECHNOLOGYOF WATER

Water quality parameters – Definition and expression. Analysis of water – alkalinity, hardness and its determination (EDTA method only). Boiler feed water and Boiler troubles-Scales and sludges, Caustic embrittlement, Priming and Foaming and Boiler corrosion. Water softening processes – Internal and external conditioning – Lime soda, Zeolite, Demineralisation methods. Desalination processes-RO and Electrodialysis .Domestic water treatment.

3. ELECTROCHEMISTRY AND ENERGY STORAGE DEVICES

Conductance – Types of conductance and its Measurement. Electrochemical cells – Electrodes and electrode potential, Nernst equation – EMF measurement and its applications. Types of electrodes-Reference electrodes-Standard hydrogen electrode- Saturated calomel electrode-Quinhydrone electrode –

Determination of P^H using these electrodes.

Reversible and irreversible cells– Fuel cells- H₂–O₂ fuel cell, Batteries-Lead storage battery,Nickel–Cadmium and Lithium-Battery.

4. CORROSION AND PROTECTIVE COATING

Introduction–Causes of Corrosion–Consequences- Factors affecting corrosion. Theories of corrosion-Chemical corrosion and Electrochemical corrosion. Methods of corrosion control – corrosion inhibitors, Sacrificial anode and Impressed current cathodic protection.

Protective coatings- Metallic coatings- Chemical conversion coatings-paints-Constituents and functions.

5.POLYMERS AND COMPOSITES

Monomers – Functionality – Degree of polymerization-Tacticity.Polymers – Classification, Conducting Polymers,Biodegradable polymers- Properties and applications.Plastics – Thermoplastics and thermosetting plastics,Compounding of plastics – Compression moulding, injection moulding and extrusion processes.

Polymer composites-introduction-Types of composites-particle reinforced-fiber reinforced-structural composites-examples. Matrix materials, reinforcement materials-Kevlar, Polyamides, fibers, glass, carbon fibers, ceramics and metals.

Total number of periods : 45

Textbooks

- 1. S.Nanjundan & C.SreekuttanUnnithan, "Applied Chemistry", Sreelakshmi Publications, (2007)
- 2. Dr.R.Sivakumar and Dr.N.Sivakumar" Engineering Chemistry" Tata McGraw Hill Publishing Company Ltd, Reprint 2013.

References

- 1. P.C. Jain & Monika Jain, "Engineering Chemistry", Dhanpat Rai publishing Co., (Ltd.) (2013).
- 2. J. C. Kuriacose & J. Rajaram, "Chemistry in Engineering & Technology", Tata Mc Graw Hill (1996).
- 3. B.R.Puri, L.R.Sharma & M.S.Pathania, "Principles of Physical Chemistry", Vishal publishing co., (2013).

B.Tech Regulation 2017 Approved by the Academic Council

BCH17001

(8)

3 2 0/1 0/0

(10)

(9)

(9)

(9)

Subject Co BES17001		0			SIC ELEC	CTRICAL RING	&		С		L T	/SLr	P/R
			quisite						3		2	0/1	0/0
T . T	T T T (-1 01	C	11		Dusiant	D . D	1	C. C.	14.			
L : Lecture			•		C C	U	K : Kes	earch	C: Cre	eans			
T/L/ETL :	Theory / L	.ab / Em	ibedded	Theory	and Lab								
OBJECTIV	VES :												
1. Unders	stand the co	oncepts o	of circuit	t elemer	nts, circuit	t laws and	coupled	l circu	its.				
2. Acquir	e knowledg	ge on coi	vention	al &noi	n conventi	ional ener	gy produ	uction	•				
	nformation				-								
	y basic the	-				-		ectron	ic gadg	gets.			
	strate digit				d assembl	le simple d	levices.						
COURSE				5)									
Students com													
CO1	Students	underst	and Fun	dament	al laws ar	nd theoren	ns and tl	heir pi	ractical	appl	ications		
CO2	Predict tl	he behav	vior of di	fferent	electric a	nd magnet	tic Circu	iits.					
CO3	Identify	conventi	ional and	d Non-c	onvention	nal Electri	cal powe	er Gen	eratior	ı, Tra	nsmission	and Distr	ibution.
CO4	Identify a	& Apply	schema	tic syml	bols and u	inderstand	the wo	rking	princip	les of	electronic	devices	
CO5	Analyze	basics of	digital e	electron	ics and so	lving prol	olems a	nd des	ign con	nbina	tional circ	uits	
Mapping o	f Course C	Outcome	s with P	rogram	Outcome	es (POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	8 1	PO9	PO10	PO11	PO12
CO1	H	Н	Н	Н								M	L
CO2	Н	H	Н	M	Μ		М					М	
CO3	Н	Μ	Н	Μ	Н		Μ			Μ			L
CO4	H	М		M			М					M	L
CO5	Н	Μ	Н	Μ	Н					M		M	L
H/M/L ind	icates strei	ngth of c	correlati	on H-	- High, M	I – Mediu	m, L –	Low	1		1	1	I
Category	Basic Sciences	Engg Science			Program core	Program Electives	Oper Elec		Practio Projec		Internships Technical Skills	S / Soft S	škills
Approval													
-PP-07ul													

ERSIT

BES17001 BASIC ELECTRICAL & ELECTRONICS ENGINEERING 3 2 0/1 0/0

1. ELECTRIC CIRCUITS

Electrical Quantities - Ohms Law - Kirchhoff's Law - Series and Parallel Connections - Current Division and Voltage Division Rule - Source Transformation – Wye (Y) – Delta (Δ), Delta (Δ) – Wye (Y) Transformation – Rectangular to Polar and Polar to Rectangular.

2. MACHINES & MEASURING INSTRUMENTS

Construction & Principle of Operation of DC motor & DC Generator - EMF equation of Generator - Torque Equation of Motor - Construction & Principle of operation of a Transformer - PMMC - Moving Iron types of meter - Single Phase Induction Type Energy Meter.

3. BASICS OF POWER SYSTEM

Generation of Electric Power (Thermal, Hydro, Wind and Solar) - Transmission & Distribution of Electric Power - Types of Transmission & Distribution Schemes - Representation of Substation.

4. ELECTRON DEVICES

Passive Circuit Components-Classification of Semiconductor-PN Junction Diode-Zener diode- Construction and Working Principle – Applications--BJT-Types of configuration-JFET.

5. DIGITAL SYSTEM

Number System – Binary, Decimal, Octal, Hexadecimal – Binary Addition Subtraction, Multiplication & Division– Boolean Algebra - Reduction of Boolean Expressions - Logic Gates - De-Morgan's Theorem, Adder - Subractor.

Total no of Periods : 45

Text Books

- 1. D P Kothari, I J Nagrath, Basic Electrical Engineering, Second Edition, , Tata McGraw-Hill Publisher
- 2. A Course In Electrical And Electronic Measurements And Instrumentation, A.K. Sawhney, publisher DHANPAT RAI&CO
- 3. Text Book of Electrical Technology: Volume 3: Transmission, Distribution and Utilization, B.L.Theraja, A.K.Theraja, publisher S.CHAND
- 4. Morris Mano, M. (2002) Digital Logic and Computer Design. Prentice Hall of India
- Millman and Halkias1991, Electronic Devices and Circuits, Tata McGraw Hill, 5.

References

1. R.Muthusubramanian, S.Salivahanan, K A Muraleedharan, Basic Electrical, Electronics And Computer Engineering, Second Edition, ,Tata McGraw-Hill publisher.

(9)

(9)

(9)

(9)

(Instanta) and Themedical Channels and Concerning Machinery and Channels (600 095) (An ISO 9001 - 2009 Certified Institution) Department of Civil Engineering

				D	epartme	nt of Civi	l Engine	ering					
Subject (BES170		Sut	oject Nar		SIC MEC GINEER	CHANICA ING	L & CI	VIL	C	L	T/SL	r	P/R
		Prer	equisite	: None					3	2	0/1		0/0
	ure T : Tu 2 : Theory				U	P : Projec ab	ct R : R	esearch	n C: Cree	lits			
OBJECT 1. Lea		s of Inter	rnal Com	bustion	Engines,	, power pl	ants and	l boiler	s				
					-					filling an	d Drill	ling m	achines
3. To i	identify 8	k solve pr	oblems i	n Engine	ering Me	echanics							
4. Lea	rn basics	of Buildi	ng mater	rials and	construc	tion							
5. Kno	ow the ba	sic proce	ss of con	crete, typ	pes of m	asonry Co	onstruct	ion of F	Roads , Ra	ilways, B	ridges	and D	ams
	E OUTC		, ,	,									
Students c	ompleting	the course	were able	to									
CO1	Demons	strate the	working	princip	les of pov	ver plants	, IC Eng	gines an	d boilers.	•			
CO2	Utilize t	he conce	pt of met	als form	- ing, joini	ng proces	s and ap	oply in s	uitable n	achining	proces	SS	
CO3	Identify	and pro	- vide solu	tions for	problem	s in engin	eering n	nechani	cs		-		
CO4	-				<u> </u>		-			concrete n	nix an	d mase	onry
	types		_	_				_					-
CO5	Demons	strate how	v Roads,	Railway	vs, dams,	Bridges h	ave bee	n const	ructed				
Mapping	g of Cour	se Outco	mes with	n Progra	m Outco	mes (POs	5)						
COs/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10) P	011	PO12
Os													
CO1	Н					Μ		Н	H	Н			Н
CO2	Н				L	Μ		Μ	M	M			M
CO3	Н	Η			L	L		Μ	M	M			M
CO4	Н				L	L			M	M			M
CO5	Н				L	L		M	M	M			M
H/M/L i	ndicates s	strength	of correla	ation H	I – High,	M – Mec	lium, L	-Low		<u> </u>	I		
Category	Basic Sciences	Basic SciencesEngg SciencesHumanities & Social SciencesProgram coreProgram ElectivesOpen Electives			Practical Project	Internsl Technic Skills		Soft S	Skills				
						1	1			1		1	

Department of Civil Engineering BASIC MECHANICAL & CIVIL ENGINEERING

BES17002

UNIT-I: THERMAL ENGINEERING

Classification of internal combustion engine – two stroke, four stroke petrol and diesel engines. Classification of Boilers – Cochran boiler – Locomotive boilers – Power plant classification – Working of Thermal and Nuclear power plant.

UNIT- II: MANUFACTURING PROCESS

Metal forming processes – Rolling, forging, drawing, extrusion and sheet metal operations- fundamentals only. Metal Joining processes – Welding - arc and gas welding, Soldering and Brazing. Casting process – Patterns -Moulding tools - Types of moulding - Preparation of green sand mould -Operation of Cupola furnace.

Basics of metal cutting operations – Working of lathe- parts-Operations performed. Drilling machine – Classification – Radial drilling machine - Twist drill nomenclature.

UNIT- III : MECHANICS

Stresses and Strains – Definition – Relationship – Elastic modulus – Centre of gravity – Moment of Inertia – Problems. (Simple Problems Only).

UNIT- IV : BUILDING MATERIALS AND CONSTRUCTION

<u>Materials</u>:Brick - Types of Bricks - Test on bricks - Cement – Types, Properties and uses of cement – Steel - Properties and its uses – Ply wood and Plastics.

<u>Construction</u>:Mortar – Ingredients – Uses – Plastering - Types of mortar - Preparation – Uses – Concrete – Types – Grades – Uses – Curing – Introduction to Building Components (foundation to roof) – Masonry – Types of masonry (Bricks & Stones)

UNIT- V: ROADS, RAILWAYS, BRIDGES & DAMS

Roads – Classification of roads – Components in roads – Railways -Components of permanent way and their function – Bridges – Components of bridges – Dams – Purpose of dams – Types of dams.

Total No. of Periods : 45

Text books

- 1. S. Bhaskar, S. Sellappan, H.N.Sreekanth, (2002), "Basic Engineering" –Hi-Tech Publications
- 2. K. Venugopal, V. Prabhu Raja, (2013-14), "Basic Mechanical Engineering", Anuradha Publications.
- 3. K.V. Natarajan (2000), Basic Civil Engineering, Dhanalakshmi Publishers
- 4. S.C. Sharma(2002), Basic Civil Engineering, Dhanpat Raj Publications

References

- 1. PR.SL. Somasundaram, (2002), "Basic Mechanical Engineering" -, Vikas Publications.
- 2. S.C. Rangawala(2002), Building Material and Construction, S. Chand Publisher

B.Tech Regulation 2017 Approved by the Academic Council

(13)

(9)

(7)

3 2 0/1 0/0

(7)

	Department of CMI Engineering				
Subject Code :	Subject Name : BASIC ENGINEERING GRAPHICS	С	L	T/SLr	P/R
BES17ET1					
		•		0.40	2 /0
	Prerequisite : None	2	I	0/0	2/0

L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory / Lab / Embedded Theory and Lab

OBJECTIVES :

- 1. Learn to know what kind of pencils to be used to sketch lines, numbers, Letters and Dimensioning in drawing sheet.
- 2. Draw Projection of points, line, planes and solids using Drafters
- 3. To identify the angle of projection and development of surfaces, isometric projection and Orthographic projection
- 4. Know the basics of elevation and plan of building.
- 5. Learn the basics of Drafting using AutoCAD Software

COURSE OUTCOMES (Cos): (3-5)Students completing the course were able to Utilize the concept of Engineering Graphics Techniques to draft letters, Numbers, Dimensioning in Indian Standards CO1 CO2 Demonstrate the drafting practice visualization and projection skills useful for conveying ideas in engineering applications. Identify basic sketching techniques of engineering equipments CO3 CO4 Demonstrate the projections of Points, Lines, Planes and Solids. CO5 Draw the sectional view of simple buildings and utilize Auto CAD Software. Mapping of Course Outcomes with Program Outcomes (POs) COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 **PO8** PO9 **PO10** PO11 PO12 CO1 Η Η Н Μ Μ Μ Η Η Η CO₂ Η Η Η Μ Μ Μ Η Η Η CO3 Н Η Η L Μ Μ Μ Μ CO4 Η Η Η Н Μ Μ Μ Η Η CO5 Н H Н Μ L Η Н Η Η Μ H/M/L indicates strength of correlation H – High, M – Medium, L – Low Soft Skills Category Basic Engg Humanities Program Program Open Practical / Internships / Sciences Sciences & Social core Electives Electives Project Technical Sciences Skills $\sqrt{}$ Approval

B.Tech Regulation 2017 Approved by the Academic Council

Department of Civil Engineering **BASIC ENGINEERING GRAPHICS**

CONCEPTS AND CONVENTIONS (Not for examination)

Introduction to drawing, importance and areas of applications - BIS standards - IS: 10711 - 2001 : Technical products Documentation - Size and layout of drawing sheets - IS 9606 - 2001: Technical products Documentation -Lettering – IS 10714 & SP 46 – 2003: Dimensioning of Technical Drawings – IS : 15021 – 2001 : Technical drawings - Projections Methods - drawing Instruments, Lettering Practice - Line types and dimensioning - Border lines, lines title blocks Construction of polygons - conic sections - Ellipse, Parabola, Hyperbola and cyloids.

UNIT- I : PROJECTION OF POINTS, LINES AND PLANE SURFACES

Projection of points and straight lines located in the first quadrant - Determination of true lengths and true inclinations - projection of polygonal surface and circular lamina in simple position only.

UNIT-II: PROJECTION OF SOLIDS

Projection of simple solids like prism, pyramid, cylinder and cone in simple position Sectioning of above solids in simple vertical position by cutting plane inclined to one reference plane and perpendicular to the other.

UNIT- III : DEVELOPMMENT OF SURFACES AND ISOMETRIC PROJECTION

Development of lateral surfaces of simple and truncated solids – prisms, pyramids, cylinders, and cones. Principles of isometric projection – isometric scale – isometric projections of simple solids, like prisms pyramids, cylinders and cones.

UNIT- IV : ORTHOGRAPHICS PROJECTIONS

Orthographic projection of simple machine parts - missing views

BUILDING DRAWING

Building components - front, Top and sectional view of a security shed.

UNIT- V : COMPUTER AIDED DRAFTING

Introduction to CAD – Advantages of CAD – Practice of basic commands – Creation of simple components drawing using CAD software. Total No. of periods:30

Note:First angle projection to be followed.

Text Books

BES17ET1

- 1. Bhatt, N.D. and Panchal, V.M. (2014) Engineering Drawing Charotar Publishing House
- 2. Gopalakrishnan, K.R. (2014) Engineering Drawing (Vol.I& II Combined) Subhas Stores, Bangalore.

References

- Natarajan, K.V (2014) A Text Book of Engineering Graphics, DhanalakshmiPublisheres, Chennai 1.
- Venugopal, K and Prabhu Raja, V. (2010) Engineering Graphics, New Age International (P) Limited 2.

Special Points applicable to University examinations on Engineering Graphics

- 1. There will be five questions, each of either or type covering all UNIT-s of the syllabus
- All questions will carry equal marks of 20 each making a total of 100 2.
- The answer paper shall consists of drawing sheets of A2 size only. The students will be permitted to use 3. appropriate scale to fit solution within A2 size.

(6)

(6)

(3)

M.G.R. ND RESEARCH INSTITUTE UNIVERSITY Maduressal, Chuntai (An ISO 9001 | 2008 Cartif

(3)

2 1 0/0 2/0

(6)

(6)

Subject (BPH17L		Subject	Name : 1	ENGIN	S LAB		С	L	T/SI	Lr	P/R		
		Prerequ	isite : No	one					1	0	0/0)	2/0
L : Lectu	re T : Tuto	ial SLr : S	Supervise	ed Lea	rning P	: Project R	: Resea	arch	C: Credit	S			
T/L/ETL	: Theory /	Lab / Emb	edded Tl	neory a	and Lab								
OBJECT	IVES :												
	emonstrate isplay the al	-	-	-						-		measure	ments.
2. 2.	sping the u	filling to file	usure pr	spereies			icul, iiic	ciiuii	icui, opiic	ui bybt	CIII St		
COURSE	E OUTCON	IES (Cos)	: (3 – 5)										
	ompleting the												
CO1	Recognize	the correc	tness and	precis	ion in th	e results of	measur	emen	its.				
CO2	Construct	and compa	are the pr	opertie	es of var	iety of elect	rical, m	echar	nical, elect	ronic	and opt	tical syste	ems.
CO3	Practice th	e handling	of Electi	rical, E	lectroni	c, Optical &	x Mecha	nical	Equipme	nts			
CO4	Identify a	nd compa	re the th	neoreti	ical and	practical	usage o	of var	rious inst	rume	nts		
CO5													
Mapping	of Course	Outcomes	with Pro	gram (Dutcome	es (POs)							
COs/POs	s PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	8 PO9)]	PO10	PO11	PO12
CO1	H	Н	M	Н	M								
CO2	H	M	M	Н							Μ		
CO3	H	М	Μ	Н	M				M		М		Μ
CO4	H	Н	M	M	H				M				L
H/M/L ir	dicates stre	ength of co	rrelation	H – 1	High, M	– Medium	L - L	.ow					
Category	Basic Sciences	EnggHumanitiesProgramSciences& SocialcoreSciencesSciences		-	Program Open Electives Electives		es	Practical / Project		ernships / hnical lls	Soft S	kills	

Department of Civil Engineering ENGINEERING PHYSICS LAB

BPH17L01

1 0 0/0 2/0

LIST OF EXPERIMENTS (Any Seven)

- 1. Torsional Pendulum Without Masses-Determination of Rigidity Modulus and Moment of Inertia
- 2. Torsional Pendulum With Masses-Determination of Rigidity Modulus and Moment of Inertia
- 3. Non Uniform Bending Determination of Young's Modulus
- 4. Uniform Bending Determination of Young's Modulus
- 5. Poiseuille's Method Determination of Coefficient of Viscosity of a given liquid
- 6. Lee's Disc Determination of Thermal Conductivity of Bad Conductor
- 7. Spectrometer Determination of Refractive Index of a Prism
- 8. Laser Grating Determination of Wavelength of a given Source
- 9. Spectrometer Determination of Wavelength of Mercury Spectrum using Grating
- 10. Transistor Characteristics.

					•	t of Civil I	<u> </u>					
Subject Coc BCH17L01		Subje	ct Name	:ENGI	NEERIN	G CHEM	ISTRY	LAB	C	L	Γ/SLr	P/R
		Prereq	uisite : l	None					1	0	0/0	2/0
L : Lecture	T : Tutor	ial SLr :	Supervi	sed Lea	rning P :	Project 1	R : Res	earch (C: Credits			
T/L/ETL :			-		•							
OBJECTIV	'ES :											
1. To fan	niliarize tl	ne student	s in the	determi	nation of	water qua	lity pa	rametei	s			
2. To hel	p learners	s measure	conduct	tivity and	d EMF us	sing electr	ical equ	iipmen	t.			
3. To cre	- ate aware	ness abou	t corros	ion.		-	-	-				
4. To det	ermine th	e essentia	l param	eters of j	polymers							
COURSE C Students comp				5)								
CO1	Awaren	ness of wa	ter quali	ity parai	meters an	d its deter	rminati	on.				
CO2	Familia	rizing the	conduc	tometric	titration	method.						
CO3	Ability	to measu	e EMF	and perf	form pote	entiometri	c titrati	ions.				
CO4	Measur	ing the M	olecular	weight	of macro	molecules						
CO5	Gaining	g awarene	ess about	corrosi	on.							
Mapping of	Course (Outcomes	with Pi	ogram (Outcome	s (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	M	Н	Н	M	Μ							L
CO2	M	Н		L	Μ				L			
CO3	L	М		L					L			
CO4	M	Μ		L					L			
CO5	L	Μ	L	L								M
H/M/L indi	cates stre	ngth of c	orrelatio	n H–	High, M	– Mediur	n, L –	Low				
Category	Basic Sciences	Engg Science	es & So Scie	Program core	Program Open Electives Electives			Practical / Project	Internship Technic Skills	al	oft Skills	
Approval												

Department of Civil Engineering ENGINEERING CHEMISTRY LAB

BCH17L01

1 0 0/0 2/0

LIST OF EXPERIMENTS (Any Seven)

- (1) Estimation of temporary, permanent and total hardness of water.
- (2) Determination of type and extent of alkalinity in water.
- (3) Estimation of dissolved oxygen in a water sample.
- (4) Conductometric titration of strong acid vs. strong base
- (5) Conductometric precipitation titration using barium chloride and sodium sulphate.
- (6) Determination of Equivalent conductance of strong electrolyte at infinite dilution.
- (7) Determination of single electrode potential.
- (8) Estimation of Fe^{2+i} on by potentiometry.
- (9) Determination of Molecular Weight and Degree of Polymerisation of Polymer by viscometry.
- (10) Determination of rate of corrosion by weight loss method.

		-		D	epartme	nt of Civil	Enginee	ring					
Subject C BES17L		Subject	Name :	BASIC 1	ENGINEI	ERING W	ORKSH	OP	С	L	T/SI	r	P/R
		Prerequ	isite : N	one					1	0	0/0		2/0
T T .		· · 1 GI	0	• 17	·		D D	1	0.0				
L : Lectur T/L/ETL			-		Ũ	P : Project b	K : Ke	search	C: Crea	lits			
OBJECT	IVES :												
1.	Familiari	ze the plu	umbing to	ools, fitt	ings, carp	entry tool	s, etc.						
2.	Identify	basic elec	trical wi	ring and	l measure	ement of el	ectrical	quanti	ities.				
3.	Identify	Electroni	c compoi	nents ,lo	gic gates	and solder	ing proc	ess					
4.	Display s	simple fat	orication	techniq	ues		_						
5.	Execute a	n project i	ndepend	ently an	nd make a	working 1	nodel						
COURSE	E OUTCO	OMES (C	los) : (3 -	- 5)									
Students co	mpleting th	ne course w	vere able to)									
CO1	Demonst	trate fitti	ng tools a	nd carp	entry too	ls, & Perf	orm the	proce	ss of Filir	ig, Chipp	ing, Cu	ıtting.	
CO2	Perform	the proc	ess of fab	rication	of tray, o	cones and f	funnels,	Tee H	alving Cr	oss, Lap	Joint N	Aartis	e& Joints
CO3	Demonst	trate vari	ous types	s of wiri	ngs and o	ther equip	ments.						
CO4	Measure	fundame	ental par	ameters	using the	e electronic	e instrun	nents					
Mapping	of Cours	e Outcor	nes with	Program	m Outcor	nes (POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 P	011	PO12
CO1	H	Н	Н	М	Μ			L	M				L
CO2	Н		Н	L	М			L	L				
CO3	Н		M	L				L	L				
CO4	H	Н	М	L				L	L				М
CO5													
H/M/L in	dicates s	trength o	f correla	tion H	– High, I	M – Medi	um, L-	- Low					
Category	Basic Sciences	Engg Scienc			Program core	Program Electives	Open Elect		Practical Project	/ Interns Techni Skills		Soft S	Skills
Approval			I		l				l			<u>I</u>	
••													

Department of Civil Engineering BASIC ENGINEERING WORKSHOP

1 0 0/0 2/0.

BES17L01

MEP PRACTICE

1. FITTING :

Study of fitting tools and Equipments – Practicing, filing, chipping and cutting – making V-joints, half round joint, square cutting and dovetail joints.

2. CARPENTRY:

Introduction – Types of wood – Tools – Carpentry processes – Joints – Planning practice – Tee Halving Joint – Cross Lap Joint – Maritse and Tenon Joint – Dovetail Joint

3. SHEET METAL:

Study of tools and equipments – Fabrication of tray, cones and funnels.

CIVIL ENGINEERING PRACTICE

- 1. Study of Surveying and its equipments
- 2. Preparation of plumbing line sketches for water supply and sewage lines
- 3. Basic pipe connection using valves, laps, couplings, unions, reduces and elbows in house hold fittings

ELECTRICAL ENGINEERING PRACTICE

- 1. Study of Electronic components and equipments Resistor, colour coding measurement of AC signal parameter (peak-peak, rms period, frequency) using CR
- 2. Soldering practice Components Devices and Circuits Using general purpose PCB
- 3. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
- 4. Fluorescent lamp wiring.
- 5. Stair case wiring

ELECTRONIC ENGINEERING PRACTICE

- 1. Measurement of electrical quantities voltage, current, power & power factor in RLC circuit.
- 2. Measurement of energy using single phase energy meter.
- 3. Measurement of resistance to earth of an electrical equipment.

						ent of Civ							
Subject (BES17E		Subject	Name : C	PRO	GRAN	IMING	AND I	LAB	С	L	, T	'/SLr	P/R
		Dreregu	isite : Nor						•	1		0.40	2/0
		Trerequ							2	1		0/0	2/0
L : Lectu	re T : Tut	orial SL	r : Superv	ised Le	earning	P : Proje	ect R:	Researc	ch C: Ci	edits			
T/L/ETL	: Theory	/ Lab / E	Embedded	Theory	y and L	ab							
OBJECT	IVES :												
1. Outli	ne the bas	sics of C l	Language.										
2. Appl	y fundam	entals in (C program	ming.									
3. Prod	uce and p	resent act	tivities asso	ociated	with th	e course.							
CUIDEI		MES (C	(3-3)	5)									
	ompleting th			5)									
				ita an	d arraa	to o proc							
CO1	-		ge how to v										
CO2			ındamenta	-									
CO3	Work wi	th arrays	s, functions	, point	ers, strı	uctures, S	trings	and File	s in C.				
CO4	Identify	and prov	ide solutio	ns for e	engineer	ring prob	lems in	C prog	ramming	Ş			
Mapping	of Cours	e Outcon	nes with P	rogran	n Outco	omes (PO	s)						
COs/POs	PO1	PO2	PO3 P	04	PO5	PO6	PO7	PO8	PO)	PO10	PO11	PO12
CO1	H	Н			Μ	Μ		Н	N	1			Н
CO2	Н	М			Н	М		M	I	[M
CO3	Н			H		М		M	I	[M
CO4	Н			Μ		М		Н	N	1			M
H/M/L ir	dicates st	rength o	f correlation	on H-	– High,	M – Me	dium,	L – Lov	v			1	
Category	Basic Sciences	Engg Science	Humani s & Socia Science	l c	Program	Program Elective		pen ectives	Practica Project		Internship Technical Skills	s/ So	ft Skills
					_			_					
						-	1						

Department of Civil Engineering C PROGRAMMING AND LAB

1. INTRODUCTION

BES17ET2

Fundamentals, C Character set, Identifiers and Keywords, Data Types, Variables and Constants, Structure of a C Program, Executing a C Program.

2.EXPRESSION AND STATEMENT

Operators, Types-Complex and Imaginary, Looping Statement-For, While, Do, Break, continue, Decision Statement-If, If else, Nested if, Switching Statement, Conditional Operator.

3.ARRAYS AND FUNCTIONS

Defining an Array, Using Array elements as counters, Generate Fibonacci number, Generate Prime Numbers, Initializing Arrays, Multidimensional Arrays, Defining a Function, Function call -types of Function calls -Function pass by value -Function pass by reference, Write a Program in Recursive Function.

4. STRUCTURES AND POINTERS

5. STRINGS AND FILE HANDLING

Strings -Syntax for declaring a string -Syntax for initializing a string -To read a string from keyboard, Files in C -File handling functions -Opening a File closing a file --example: fopen, fclose -Reading data from a File- Problem solving in C

variable -Accessing structure variables, Understanding Pointers -Introduction -Syntax of Pointer.

- 1. www.spoken-tutorials.org
- 2. http://www.learn-c.org/

Reference :

- 1. Stephen G. Kochen" Programming in C- A complete introduction to the C Programming Language. Third Edition, Sams Publishing -2004
- 2. Ajay Mital, "Programming in C: A Practical Approach", Pearson Publication-2010

List of Programs

- 1. Write a program to check 'a' is greater than 'b' or less than 'b' Hint: use if statement.
- 2. Write another program to check which value is greater 'a', 'b' or 'c'. Hint: use else-if statement. (Take values of a, b, c as user inputs)
- 3. Write a Program to find the sum of the series : $x + X^3/3! + X^5/5! + \dots + X^n/n!$
- 4. Write a C Program to solve a Quadratic Equation by taking input from Keyboard
- 5. Write a C Program to arrange 20 numbers in ascending and descending Order. Input the Numbers from Kevboard
- 6. Write a C Program to Multiply a 3 x 3 Matrix with input of members from Keyboard
- Write a program that takes marks of three students as input. Compare the marks to see which student has 7. scored the highest. Check also if two or more students have scored equal marks.
- Write a program to display records of an employee. Like name, address, designation, salary. 8.
- 9. Write a C program, declare a variable and a pointer. Store the address of the variable in the pointer. Print the value of the pointer.
- 10. Write a C program to concatenate String 'best' and String 'bus'. Hint: strcat(char str1, char str2);
- 11. Explore the other functions in string library.
- 12. Write a program to create a file TEST. Write your name and address in the file TEST. Then display it on the console using C program.

B.Tech Regulation 2017 Approved by the Academic Council

(6)

(6)

(6)

(6)Working with Structures -Introduction -Syntax of structures -Declaration and initialization -Declaration of structure

(6)

Total No of Periods: 30

					epartmen							
Subject Coc		Subject	Name :	ENTR	EPRENI	EURIAL	SKILL	4	С	L	T/SLr	P/R
BES17ET3		DEVEI	LOPME	ENT &	PROJE	CT LAB						
		Prerequ	isite · N	one					1	0	0/0	2/0
		Trerequ	15110 . 1 (one			-	Ŭ	0/0	2/0		
L : Lecture ' T/L/ETL : T					U	Project	R : Rese	earch (C: Credits	5	·	
OBJECTIV	ES :											
1. Underst	and how	entrenrer	neurshin	Educat	tion trans	forms ind	ividuals	into su	ccessful la	eaders		
		-	-		er dreams		i i i u u u i s	11100 54	eeessiai n	addist		
Ŧ		-		-	oportuniti							
				-	neurial C							
		ents & cre		-								
•	-	ig in a gro		-								
		0 0										
COURSE C Students comp		· · ·))								
r												
CO1	Develop	o a Busine	ess plan	& impr	ove ability	y to recog	nize bus	iness oj	oportunity	y		
CO2	Do a se	lf analysis	s to build	l a entre	epreneuri	al career.						
CO3	Articul	ate an effe	octivo ol	wator r	- vitch							
CO4	Analyz	e the local	market	enviro	nment & o	demonstra	ate the a	bility to	o find an a	attractive	market	
C05	Apply a	n ethical	underst	anding	& perspec	ctive to ch	ange op	portun	ities to bu	siness sit	uations	
Mapping of	Course	Jutcomo	with D	rogram	Outcomo	(\mathbf{PO}_{c})						
11 0				e			1	T				1
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO11	PO12
CO1		М	Μ	H	М	М	Μ		M	M	M	L
CO2	Н	М		H	М	Н	М	H	H	H	M	M
CO3		М	Μ	Μ		Н		Н	Н	H		
CO4		Н	M	Μ	M	M		Н	M	M	H	
CO5		Μ	Μ	H	Μ	M	H	H	Μ	Μ	Н	L
H/M/L indi	cates stre	ngth of c	orrelatio	on H–	High, M	– Mediu	m, L –	Low	I	I	I	
Category	Basic	Engg	Hum	anities	Program	Program	Ope	n	Practical /	Interns	hips / Soft	Skills
	Sciences		es & So	ocial	core	Elective		tives	Project	Techni		
			Scie	nces						Skills		
Approval					I	1						
TLOUGI												

Department of Civil Engineering BES17ET3 ENTREPRENEURIAL SKILL DEVELOPMENT & PROJECT LAB 1 0 0/0 2/0

1. CHARACTERISTICS OF A SUCCESSFUL ENTREPRENEUR

Introduction to entrepreneurship education – Myths about entrepreneurship – How has entrepreneurship changed the country – Dream it. Do it - Idea planes - Some success stories – Global Legends – Identify your own heroes – entrepreneurial styles – Introduction, concept & Different types - Barrier to Communication – Body language speaks louder than words

2. DESIGN THINKING & RISK MANAGEMENT

Introduction to Design thinking – Myth busters – Design thinking Process - Customer profiling – Wowing your customer – Personal selling – concept & process – show & tell concept – Introduction to the concept of Elevator Pitch - Introduction to risk taking & Resilience – Managing risks (Learning from failures, Myth Buster) – Understanding risks through risk takers – Why do I do? – what do I do ?

3.IDEA GENERATION & EVALUATION

Introduction – Finding your flow – Entrepreneurial CV – your draft action plan - D.I.S.R.U.P.T - A model for ideation – Let's ID8 – Mind mapping for ideas – build your own idea bank – Concept of Decision matrix & paired comparison analysis – 5Q framework.

4. ENTREPRENEURIAL OUTLOOK & CUSTOMER DISCOVERY

Effectuation – Start with your means – Segmentation & targeting – Niche marketing – Find your Niche – Drawing & mapping the consumption chain - outcome driven innovation – This is my customer

5. VALUE PROPOSITION& CAP STONE PROJECT PRESENTATION

Introduction – Value proposition design – customer segment – validation exercise – value propositions & assessing fit – Refine your value proposition – Blue ocean strategy - What is prototyping – Design your experiment – Design your MVP – Learning cards & Capstone Presentation.

Subject (Subject	Name :	TECH	INICA	L ENG	LISH -	II	С	L	T/SI	_r	P/R
BEN170	02	Prerequ	isite : N	one					2	1	0/0		2/0
	re T : Tuto : Theory /				0		ect R :	Resear	ch C:	Cre	dits		
OBJECT	IVES :												
	ngthen the	academic	and inte	rnersor	evhe le	anced vo	cahular	•••					
	ngthen the			•				•	ort wr	iting			
	n to keep tl	U				0,	U			8			
	to know cei	-			•	•		d do pre	senta	tion			
	rove the re					,	0	-					
	E OUTCO			5)									
CO1	strengthe			·	-		e	age usa	ge thr	ougł	ı readin	g poems,	stories,
CO2	texts, new												
CO2	use appro	-			•	-	0	••					
CO3	engage eff	-	-	•							• •		
CO4	equip the				-	-					-	profession	
CO5	learn Eng	5	0					icement	Inter	view	5		
	of Course					-	-	DOG	DO	0	DO10	DO11	DO10
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9	PO10	PO11	PO12
CO1				Н							Η		Н
CO2				Н							Н		Н
CO3				Н		Μ			H	[Н		Н
CO4				Н					H	[Н		Н
CO5				H					H	[Н		Н
H/M/L ir	ndicates str	ength of c	correlatio	on H-	– High,	<u>M – M</u>	edium,	L – Lo	w				
Category	Basic Sciences	Engg Sciences	Humani & Socia Sciences	1 co	rogram ore	Progra Electiv		en ectives	Pract Proje		Interr Techi Skills		Soft Skills
Approva	l								<u> </u>				
• •													

B.Tech Regulation 2017 Approved by the Academic Council

BEN17002

Unit I Vocabulary, Grammar and Usage - I

Verbal analogy - picking out the odd one from a series -finding one word substitute - paragraph writing: using discourse markers, defining / describing an object / device / instrument / machine using topic sentence and its role, unity, coherence and use of cohesive expressionsEssay writing with due emphasis on features such as topical sentence, unity, coherence and cohesive devices

M.G.R ND RESEARCH INSTITUTE

ed h

UNIVERSIT Madatassial, Chuntai (An ISO 9001 | 2008 Cartifi

Department of Civil Engineering

UnitII Vocabulary, Grammar and Usage - II

Cloze - completion of sentences suitably, phrases and idioms, homophones - collocation -Techniques of formatting and drafting reports: writing newspaper reports on accidents, thefts and festivals

Unit III Reading

interpreting pie and bar charts

Unit IV Writing Register: formal and informal - using ellipses in dialogues- framing dialogues-Email: Job Application, Resume

Unit V Functional English and Practical Components

Listening: Media Advertisement

Speaking: oral practice- activities related to professional skills (e.g. Marketing, advertising etc.), role play activities using different speech functions (persuasion, negotiation, giving directions and guidance), conversational etiquette (politeness, strategies, turn-taking, body language).

Reading: reading newspaper/ magazine articles for gathering information

Writing: Note-making from newspaper and magazine articles- follow BEC method

Writing and speaking dialogue writing followed by role play in different situations such as asking permission, requesting and instructing, introducing oneself - activities based on BEC

Text Book

- Pushkala. R, PadmasaniKannan.S, Anuradha. V, ChandrasenaRajeswaran.M Quest : A Textbook of 1 ommunication Skills, Vijay Nicole,
- References
 - 1. Pushkala R, P.A.Sarada, El Dorado: A Textbook of Communication Skills, Orient Blackswan, 2014
 - 2. PadmasaniKannan.S., Pushkala.R. : Functional English
 - 3. Hancock, Mark, English Pronunciation in Use; Cambridge Univ. Press, 2013
 - 4. McCarthy, Michael et.al., English Vocabulary in Use, Advanced, Cambridge Univ. Press, 2011
 - Wren and Martin: Grammar and Composition, Chand & Co, 2006 5.

Web Sources

- 1. https://learnenglish.britishcouncil.org
- www.englishpage.com 2.
- 3. www.writingcentre.uottawa.ca/hypergrammar/preposit.html
- www.better-english.com/grammar/preposition.html 4.
- http://www.e-grammar.org/infinitive-gerund/ 5.
- 6. www.idiomsite.com/

TECHNICAL ENGLISH II

(6)

2 1 0/0 2/0

(6)

(6) Correcting errors in sentencesEditing a passage (correcting the mistakes in grammar, spelling and punctuation) -

(6)

(6)

Total No of Periods :30

			C)eparti	ment of	⁻ Civil Eı	ngine	erin	g				
Subject C		Subject	Name : 1	MATH	IEMAT	ICS – I	[C L	T/S	Lr	P/R
BMA170)03	Prerequ	isite : No	one						4 3	1/0		0/0
L : Lectu	re T : Tuto	rial SLr :	Supervi	sed Le	arning	P : Proi	ect R	R : F	Researc	h C: Ci	edits		
	: Theory /				U	5							
OBJECT	IVES :												
1. Under	stand the B	asic conce	pts in In	tegrati	on								
2. Identif	fy the Basic	concepts	in Multip	ole inte	grals								
3. Use the	e Basic con	cepts in O	rdinary I	Differe	ntial eq	uations							
4. Apply	the Basic co	oncepts of	Analyti	cal Geo	ometry								
5. Analyz	ze the Basic	concepts	of Vecto	r Calc	ulus								
COURSE	E OUTCO	MES (Cos	$() \cdot (3 - 5)$	3									
	ompleting the)									
CO1	Terda			<u> </u>	41	- J			1	4 - 6	1.41	1	
CO1	Integrate	0		•	0		ntegi	rati	on and	to find	1 the ar	ea unde	r curve
	and the v	olume of	a solid k	oy reva	aluatio	n.							
CO2	Evaluate	the mult	iple integ	grals /	area /w	olume	and t	to c	hange	the ord	er of in	egratio	n.
CO3	Solve the	ordinary	differei	ntial e	quatior	and to	o solv	еE	ulers d	ifferen	tial equ	ation.	
CO4	Find the	equation	of plane	es, line	es and s	sphere	and t	to f	ind the	shorte	est dista	nce betv	veen to
	skew line	s.											
CO5		ana dian t		d'		1.1.0	- 4:			dono k	- Com		
CO5	Find the						auve	and	a work	aone t	oy a forc	e and to) verify
	Green/ S	tokes/ Ga	uss dive	rgence	e theore	em							
Mapping	of Course	Outcome	s with Pr	ogram	Outcon	nes (PC	Ds)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н			Μ	Μ				Μ	Μ		Н
CO2	H	H			Μ	H				H	H		Μ
CO3	H	H			M	H				H	H		M
CO4	H	H			L	M				M	H		M
CO5 H/M/L ir	H dicates str	H ength of c	orrelatio	n H_	- High	$M - M_{\ell}$	dium	ιĪ	- I ou		H		Μ
Category	Basic	Engg	Humanit		rogram	Program		Ope		Practica	l / Inte	rnships /	Soft
	Sciences	iences Sciences & Social core Electives Electives							Project		nnical	Skills	
Approval	1		1								<u> </u>		1

B.Tech Regulation 2017 Approved by the Academic Council

BMA17003

1. INTEGRATION Basic concepts of Integration – Methods of Integration – Integration by substitution – Integration by parts – Definite integrals- Properties of definite integrals - Problems on finding Area and Volume using single integrals (simple problems).

Madamesical, Channal 600 09 (An ISO 9001 | 2009 Cartillad Insti-Department of Civil Engineering MATHEMATICS - II

ID RESEARCH INS ERSIT

2. MULTIPLE INTEGRALS

Double integral in Cartesian and Polar Co-ordinates - Change of order of integration - Triple integral in Cartesian Co-ordinates – Spherical Polar Co-ordinates – Change of variables (simple problems).

3.ORDINARY DIFFERENTIAL EQUATIONS

First order differential equations - Second and higher order linear differential equations with constant coefficients and with RHS of the form: e^{ax} , x^n , Sin ax, Cos ax, $e^{ax}f(x)$, x f(x) where f(x) is Sin bx or Cos bx – Differential equations with variable coefficients (Euler's form) (simple problems).

4. THREE DIMENSIONAL ANALYTICAL GEOMETRY

Direction Cosines and Ratios - Equation of a straight line - Angle between two lines - Equation of a plane - Coplanar lines - Shortest distance between skew lines - Sphere - Tangent plane.

5. VECTOR CALCULUS

Scalar and Vector functions - Differentiation - Gradient, Divergence and Curl - Directional derivatives - Irrotational and Solenoidal fields- Line, Surface and Volume integrals - Green's, Stoke's and Gauss divergence theorems (statement only) - Verification.

Total no. of periods: 60

Textbooks

- 1. Kreyszig E., Advanced Engineering Mathematics (10th ed.), John Wiley & Sons, (2011).
- 2. Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).

References

- 1. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).
- 2. John Bird, Basic Engineering Mathematics (5th ed.), Elsevier Ltd, (2010).
- 3. P.Kandasamy, K.Thilagavathy and K. Gunavathy, Engineering Mathematics Vol. I (4th Revised ed.),

S.Chand& Co.,

Publishers, New Delhi (2000).

4. John Bird, Higher Engineering Mathematics (5th ed.), Elsevier Ltd, (2006).

4 3 1/0 0/0

(12)

(12)

(12)

(12)

(12)

rti

							ngine	eerir	ng				
Subject Co		Subject	Name :	BIO S	STATIS	TICS				C L	. T/S	SLr	P/R
BMA170	Tool Image: Prerequisite : None Image:												
L : Lectur	e T : Tuto	orial SLr :	Supervi	sed Le	earning	P : Proj	ect	R : F	Researc	h C: C	redits		
T/L/ETL :	: Theory /	/ Lab / Em	bedded 7	Гheory	and La	.b							
OBJECTI	VES :												
1. Underst	and the B	asic conce	pts in Sta	tistics									
2. Use the	Basic con	cepts in Co	orrelation	ı									
3. Underst	and the B	asic conce	pts in Pro	obabili	ty theor	у							
4. Apply th	he Basic c	oncepts in	Testing o	of Hyp	othesis								
5. Analyze	the Basi	c concepts	in Desigr	ı of Ex	perimen	its							
COURSE	OUTCO	MES (Cos	s) : (3 – 5	j)									
Students cor	npleting the	e course wer	e able to										
CO1	Find the r		faantual	tondo	nor and	to find (han		mag of	dianonai	~ m		
										-			
			ents mea	asures	of skev	vness a	nd l	kurto	orsls a	nd to e	valuate	correlati	on and
	regressio	n.											
CO3	Apply kn	owledge a	nd conce	pts in t	finding	the pro	babi	ility (of a ra	ndom va	ariable a	nd use a	ddition
				-				·					
		-			-								
CO4	Have abil	ity to test a	and to giv	ve cono	clusion in	n testing	g of l	iypot	thesis.				
CO5	Analyze a	and interpr	et results	s throu	igh one v	way and	l two	way	ANO	VA			
Mapping of	of Course	Outcome	s with Pr	ogram	n Outcor	nes (PC	Ds)						
COs/POs						, ,	,	07	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н				Н				Μ		Μ	Μ
CO2	Н	Н				Н				L			Н
CO3	Н	Н	L		L	Μ				L		L	Н
CO4	Н	Н	L		L	Μ				Μ			Н
CO5	Н	Н	H	Μ						Μ			Н
H/M/L inc		-											
Category	Basic Sciences	Engg Sciences	Humanit & Social		rogram ore	Program Electiv		Ope Elec	en ctives	Practica Project		rnships / hnical	Soft Skills
	Sciences	Sciences	Sciences			Licetty	00	LIC		i iojeet	Ski		5KIII5
Approval													
1 ippioval													

BMA17004

1. BASICS OF STATISTICS

Variables - Uni-variate Data - Frequency Distribution - Measures of Central Tendency - Mean - Median - Mode -Quartiles - Measures of Dispersion - The Range - Quartile Deviation - Standard Deviation.

(An ISO 9001 20

2. CORRELATION

Measures of Skewness& Kurtosis - Bi-variate data - Correlation & Regression.

3. PROBABILITY AND RANDOM VARIABLE

Definition of Random Experiment - Sample Space - Events: Mutually exclusive events - Exhaustive events -Dependent events and Independent events - Mathematical and Statistical definition of probability - Theorems of addition and multiplication laws of Probability (Without proof) - Conditional probability (Simple problems).

4. SAMPLING

Tests of Significance - Large Sample Tests - Mean - Proportions - Small Sample Tests - t, F & Chi-square Tests -Independence of Attributes - Goodness of Fit.

5. DESIGN OF EXPERIMENTS

Analysis of Variance: One Way & Two-Way Classification - Design of Experiments - Randomized Block Design -Completely Randomized Block Design - Latin Square Design.

Text books

- 1. Gupta S.C, Kapoor V.K, Fundamentals of Mathematical Statistics, S.Chand& Co, New Delhi (2003).
- Veerarajan T., Probability, Statistics and, Random Processes, Tata McGraw Hill Publishing Co., (2008). 2.

References

- 1. Gupta S.P, Statistical Methods, S.Chand& Co., New Delhi (2003).
- Singaravelu, Probability and Random Processes, Meenakshi Agency, (2017). 2.
- 3. Richard Johnson A., Miller & Freund's Probability and statistics for Engineers (9thed), Prentice Hall of India, (2016).

4 3 1/0 0/0

(12)

(12)

(12)

(12)

Total no. of Periods: 60

Department of Civil Engineering **BIO STATISTICS**

VERSITY

(12)

						f Civil Ei	-	ring				
Subject (Subject	Name :	MATE	RIAL	SCIEN	ICE		С	L	T/SLr	P/R
BPH170	02	Prerequ	isite : N	one					3	2	0/1	0/0
L : Lectu	re T : Tuto	orial SLr	: Superv	ised Le	arning	P : Proj	ect R :	Researc	ch C: Ci	redits		
T/L/ETL	: Theory /	′ Lab / Em	bedded	Theory	and La	ıb						
OBJECT	TVES :											
1. I	Design, con	duct exper	riment ar	nd analy	ze data	ı.						
2. I	Develop a S	cientific a	ttitude at	t micro a	and na	no scale	of mat	erials				
3. U	Understand	the conce	pts of M	odern P	hysics							
4. <i>I</i>	Apply the s	cience of n	naterials	to Engi	neering	g & Tecl	nology	7				
COURSI	E OUTCO	MES (Cos	(3-3)	5)								
Students co	ompleting the	e course wer	e able to									
CO1	Domonstr	ate skills i	2000550	for co	nductin	a rocoo	roh role	tod to a	ontont k	nowloda	and lab	orotori
COI	skills.	ate skins i	lecessar		nuucun	ig resea	ren ren		лиент к	nowieuge	anu iau	oratory
	561115.											
CO2	Apply kn	owledge ar	nd conce	pts in ac	lvanced	l materi	als and	devices.				
CO3	Acquired	Analytica	l, Mathe	matical	skills fo	or solvin	ıg engir	neering p	roblems	•		
CO4	Ability to	design an	d conduc	t experi	ments	as well a	as funct	ion in a	multi dis	sciplinary	v teams.	
CO5	Generate	analytical	thought	to inter	pret re	sults &	place th	nem with	in a broa	ader con	text	
Mapping	of Course	Outcome	s with P	rogram	Outcon	mes (PC	Ds)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	H	Н	Μ	Μ	Μ	L				Μ		L
CO2	Н	Н		Μ	Μ							L
CO3	H	Н	Н	Н	М					Μ		
CO4	H	Н	Н	Н	Μ				Н	Μ		L
CO5	H	М	Μ	Μ	Μ	L			Μ	Μ		L
H/M/L in	ndicates str	ength of c	correlatio	on H-	High,	M - Me	edium,	L – Lov	N			
Category	Basic Sciences	Engg Sciences	Humani & Socia Science	l co	ogram ore	Program Electiv		pen lectives	Practica Project		rnships / nnical ls	Soft Skills
	\checkmark											
Approva	1					1						<u> </u>

Department of Civil Engineering MATERIAL SCIENCE

1. CRYSTAL PHYSICS

Space Lattice – Unit cell – Bravais lattice – Lattice planes – Miller indices – Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for SC, BCC, FCC and HCP structures – Ceramic Materials & Graphite Structures – Crystal GrowthTechniques (Slow Evaporation Method & Melt Growth)

2. CONDUCTING & SUPERCONDUCTING MATERIALS

Introduction - Classical Free electron theory of Metals – Derivation of Electrical conductivity – Thermal Conductivity – Deduction of Wiedemann Franz law – Fermi Energy &Fermi Function – Density of Energy States – Qualitative Analysis of Conductors, Semiconductors and Insulators – Some Examples of Important Electrical Materials Superconducting Materials:Transition temperature – BCS Theory – Properties of Superconductors – Type I &Type II Superconductors – Superconductors – Low & High Temperatures Superconductors – AC& DC Josephson Effects – Applications of Superconductors – Basic Concepts of SQUID, Magnetic Levitation.

3. SEMICONDUCTING MATERIALS

Bonds in Semiconductors – Types – Importance of Germanium & Silicon – Other Commonly Used Semiconducting materials - Carrier concentration in Intrinsic Semiconductors (Electron and Hole Density) – Band Gap Determination – Carrier Transport in Semiconductors – Drift, Mobility and Diffusion – Hall effect – Determination of Hall Coefficient and its Applications – Dilute Magnetic Semiconductors (DMS) & their Applications – Schottky diodes.

4.MAGNETIC& DIELECTRIC MATERIALS

Magnetic Materials: Types – Comparison of Dia, Para and Ferro Magnetism – Heisenberg's interpretation –Domain theory – Hysteresis – Soft and Hard Magnetic Materials – Application of Magnetic Resonance Imaging – Important Magnetic, Insulating & Ferro electric materials.

Dielectric Materials: Electrical Susceptibility – Dielectric Constant – Concept of Polarization – Frequency and Temperature Dependence of Polarization – Dielectric loss – Dielectric breakdown – Commomly used Dielectric materials and their practical applications.

5.OPTICAL, OPTOELECTRONIC AND NEW MATERIALS

Properties & Classification of Optical Materials – Absorption in Metals, Insulators & Semiconductors – Composite Materials – Nano Materials – Bio Materials – MEMS – NEMS – LED's – Organic LED's – LCD's – Laser diodes – Photodetectors – Tunneling – Resonant Tunneling Diodes (RTD's) – Carbon Nanotubes – Various Ttypes of Optical Materials with Properties.

Text Books

- 1. V. Rajendran&Mariakani "Materials Science", Tata McGraw Hill (2004).
- 2. P.K.Palanisamy," Materials science", Scitech Publication(2002).

Reference Books

- 1. Dr. SenthilKumar, "Engineering Physics II" VRB Publishers (2016).
- 2. V. Arumugam, Materials Science", Anuradha Agencies, (2003 Edition).
- 3. Pillai S.O., "Solid State Physics", New Age International, (2005).

B.Tech Regulation 2017 Approved by the Academic Council

BPH17002

3 2 0/1 0/0

(9)

(9)

(9)

(9)

(9)

Total No. of Periods : 45

			0	Departr	nent of	Civil Er	ngineeri	ng				
Subject Co		Subject	Name :	ENGIN	EERIN	G CHE	MISTR	Y – II	C	L	T/SLr	P/R
BCH17002	2											
		Prerequ	isite : No	one					3	2	0/1	0/0
T T 4	T T (· 1 GI	<u> </u>	1 7	• •	<u> </u>	(D	D		1.4		
L : Lecture			-		Ũ	U	ect R:	Researc	n C: Cr	edits		
T/L/ETL :	•	Lao / Em	bedded	Theory	and La	D						
OBJECTIV	ES :											
1. Imj	parting the	basic con	cepts of ph	nase rule	and app	ply the sa	nme to or	ne and tw	o compoi	nent sys	stems.	
2. Int	roducing t	he chemist	ry of engir	neering	material	s such as	cement,	lubrican	ts, abrasi	ves, ref	ractories, al	loys and
nar	o materia	s.										
3 . To	impart a s	ound know	ledge on t	he prin	ciples of	chemistı	y involvi	ng differ	ent applie	cation o	oriented topi	cs
4. Int	roducing s	alient featı	ires of fue	ls and co	ombustio	on.						
5. To	give an ov	erview on 1	nodern an	alvtical	technia	ues						
COURSE	-			-								
Students com			, ,	')								
	proung uro											
CO1	1. U	nderstand	the science	e of phas	se equilil	oria and	apply th	e phase r	ule to dif	erent s	ystems.	
CO2	2. G	ain an over	view of E	ngineeri	ng Mate	rials suc	h as Lim	e, Cemen	t, Lubric	ants, A	brasives,	
	Re	efractories	, Alloys an	d Nano	material	s.						
<u></u>	A B							•				
CO3		-					_		ch as Soa	ps and	Detergents,	also
	ga	ining the b	asic know	ledge al	oout Exp	olosives a	nd Prop	ellants.				
CO4	4. Di	scover the	e fuel Cher	nistry a	nd Com	bustion p	rocess.					
CO5	5. In	ferring fev	v importar	nt Analy	tical Teo	hniques	and thei	r applica	tions.			
Mapping of	f Course	Outcome	s with Pr	ooram	Outcor	nes (PC) s)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO11	PO12
	L	102	105	104	105	100	107	100	107	101		
CO1 CO2			L			L	Μ	-				L L
$\frac{CO2}{CO3}$	M						IVI					
	M	N	T	т		L	1.4					L
CO4	M	M	L	L			Μ					M
CO5	M		<u> </u>		M		1.					H
	icates stre	ength of c			•					. ,		a .
			TT .	HAG I D	ogram	Program	n I Or	ben	Practica	1/	Internship	Soft
Category I	Basic	Engg Sciences	Humanit		0	U U		ectives		.,	-	
Category I		Engg Sciences	Humanit & Social Sciences	l co	ore	Electiv		ectives	Project	.,	s / Technical	
Category I	Basic		& Social	l co	0	U U		ectives		_ ,	s /	
	Basic Sciences		& Social	l co	0	U U		ectives		_ ,	s / Technical	Skills
Category I	Basic		& Social	l co	0	U U		ectives			s / Technical	

Department of Civil Engineering ENGINEERING CHEMISTRY – II

M.G.R. ND RESEARCH INSTITUTE

1. PHASE EOUILIBRIA

Introduction – Definition of terms involved in phase rule. Derivation of Gibbs phase rule – Applications to one component system – water system. Binary system – Eutectic system – Pb – Ag system, Bi – Cd system .Thermal analysis – Cooling curves.

2. MATERIAL CHEMISTRY

Cement – Manufacture, Chemistry of setting and hardening .Lubricants – Requirements of good lubricants, Mechanism, Properties of lubricants, Classification – Examples. Abrasives–Classification –Moh's scale-Hard and soft abrasives, Preparation of artificial abrasives (silicon carbide, boron carbide), Applications of abrasives. Refractories – Classification, Properties-Refractoriness, RUL, Porosity, Thermal spalling Alloys Classification of alloys – Purpose of making alloys - Ferrous and non-Ferrous alloys - Heat treatment Nano materials – properties, carbon nano tubes – properties, fabrication – carbon arc method, laser vapourization method.

3. APPLIED CHEMISTRY

Soaps and detergents : Soaps – Saponification of oils and fats, manufacture of soaps, classification of soap – soft soap, medicated soap, herbal soap, shaving soap and creams.

Detergents - Anionic detergents - manufacture and applications, Comparison of soaps and detergents.

Rocket propellants and explosives: Rocket propellants – characteristics, solid and liquid propellants – examples. Explosives- Introduction, characteristics, classification, Oxygen balance, preparation, properties and uses of detonators, low explosives and high explosives, Dynamites, Gun cotton, Cordite.

Food adulterants- Common adulterants in different foods – milk and milk products, vegetable oils, and fats, spices and condiments, cereals, pulses, sweetening agents and beverages, Contamination with toxic chemicals – pesticides and insecticides.

4. FUELS & COMBUSTION

Introduction to Fuels – classification – Calorific value – GCV, LCV. Solid Fuels–Coal-Proximate Analysis, Metallurgical Coke–Manufacture of Metallurgical Coke – Liquid Fuel–Refining of Petrol, Synthetic Petrol–Manufacturing Process–Hydrogenation of Coal, Polymerization, Cracking–Knocking–Octane Number–Leaded Petrol (or) Anti–knocking – Cetane Number–Ignition Lag–Gaseous fuels–CNG–LPG–Water Gas, Producer gas–Biogas- Combustion–Flue Gas analysis–Orsat's method.

5. ANALYTICAL AND CHARACTERIZATION TECHNIQUES

Electron microscopes: Scanning electron microscope & Transmission electron microscope, instrumentation and applications Absorption and Emission Spectrum - Beer - Lambert's law. Visible and UV Spectroscopy – instrumentation – Block diagram - working. IR Spectroscopy – instrumentation - Block diagram – molecular vibrations – stretching and bending – H_2O , CO_2 . –Characterization of some important organic functional groups. Chromatographic techniques – column, thin layer and paper.

Total number of periods : 45

Textbooks

- 1. C. S.Unnithan, T. Jayachandran & P. Udhayakala, "Industrial Chemistry", Sreelakshmi Publications (2009).
- Dr.R.Sivakumar and Dr.N.Sivakumar" Engineering Chemistry" Tata McGraw Hill Publishing Company Ltd, Reprint 2013.

References

- 1. P.C. Jain & Monika Jain, "Engineering Chemistry", DhanpatRai publishing Co., (Ltd.) (2013).
- 2. B. R. Puri ,L.R. Sharma &M.S.Pathania, "Principles of Physical Chemistry", Vishal publishing co., (2013).

B.Tech Regulation 2017 Approved by the Academic Council

3 2 0/1 0/0

(8)

(10)

(9)

(9)

(9)

			L	Jeparti	nent of	Civil Er	igineer	ing				
Subject C BES1700		Subject	Name :	ENVIR	RONME	NTAL	SCIEN	CE	С	L	T/SLr	P/R
		Prerequ	isite : No	one					3	3	0/0	0/0
L : Lectur	re T : Tuto	orial SLr	: Supervi	ised Le	arning	P : Proj	ect R :	Researc	h C: Ci	edits		
	: Theory /		-		-	-						
OBJECT	IVES :											
1. T	o acquire	knowledge	e of the E	nviron	ment an	d Ecosy	stem &	z Biodive	rsitv			
	o acquire					-			•			
	o know me						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ui poilut				
	o gain und					Fnyir	nmont					
	-		-									
5. T	lo attain fa	millarity (numan	popula	ation an	a Envir	onmen	L				
COUDET		MES (Car	(), (2)	5)								
	E OUTCO		· · ·))								
Stadents Co	in pround and		• 4010 10									
CO1	To known	about En	vironme	nt and l	Ecosyste	em & Bi	odivers	sity				
CO2	To clearly	y compreh	end air,	water,	Soil, Ma	arine, N	oise, T	hermal a	nd Nucl	ear Po	llutions an	d Solid
	Waste ma	inagement	and ide	entify th	he impo	rtance	of natu	ral resou	rces like	e fores	t, water, a	nd food
			and ide	entify tl	he impo	rtance	of natu	ral resou	rces like	e fores	t, water, a	nd food
	resources			-	_				rces like	e fores	t, water, a	nd food
CO3				-	_				irces like	e fores	t, water, a	nd food
CO3 CO4	resources To discov	er water o	conservat	ion and	l waters	shed ma	nageme	ent			t, water, an	
	resources To discov	er water o fy its prol	conservat	ion and	l waters	shed ma	nageme	ent			· · ·	
	resources To discov To identit depletion	er water o fy its prol etc.,	conservat blems an	ion and d conc	l waters erns cl	shed ma limate o	nageme hange,	ent global v	warming	, acid	rain, ozor	ne layer
CO4	resources To discov To identit depletion To explain	er water o fy its prol etc., n family w	conservat blems an	ion and d conc	l waters erns cl	shed ma limate o	nageme hange,	ent global v	warming	, acid	· · ·	ne layer
CO4 CO5	resources To discov To identit depletion To explain environm	er water o fy its prol etc., n family w ent	conservat blems an elfare pr	ion and d conce ogramn	l waters erns cl mes and	shed ma limate o role of	nagemo hange, inform	ent global v	warming	, acid	rain, ozor	ne layer
CO4 CO5 Mapping	resources To discov To identif depletion To explain environm of Course	er water o fy its prol etc., n family w ent Outcome	conservat blems an elfare pr s with Pi	ion and d conce ogramm	l waters erns cl mes and Outcor	shed ma limate of role of nes (PC	nagemo hange, inform	ent global v nation teo	varming chnology	, acid in hur	rain, ozor nan health	ne layer and
CO4 CO5 Mapping COs/POs	resources To discov To identif depletion To explain environm of Course	er water o fy its prol etc., n family w ent	conservat blems an elfare pr	ion and d conce ogramn	l waters erns cl mes and	imate of role of nes (PC	nagemo hange, inform Os) PO7	ent global v nation teo PO8	warming	, acid	rain, ozor nan health	ne layer and PO12
CO4 CO5 Mapping COs/POs CO1	resources To discov To identif depletion To explain environm of Course	er water o fy its prol etc., n family w ent Outcome	conservat blems an elfare pr s with Pi	ion and d conce ogramm	l waters erns cl mes and Outcor	shed ma limate of role of mes (PC PO6 M	nagemo hange, inform Os) PO7 H	ent global v nation teo	varming chnology	, acid in hur	rain, ozor nan health	and PO12 M
CO4 CO5 Mapping COs/POs CO1 CO2	resources To discov To identif depletion To explain environm of Course	er water o fy its prol etc., n family w ent Outcome	conservat blems an elfare pr s with Pi	ion and d conce ogramm	l waters erns cl mes and Outcor	shed ma limate of role of mes (PC PO6 M M	nagemo hange, inform)s) PO7 H H	ent global v nation teo PO8 M	varming chnology	, acid in hur	rain, ozor nan health	and PO12 M M
CO4 CO5 Mapping COs/POs CO1	resources To discov To identif depletion To explain environm of Course	er water o fy its prol etc., n family w ent Outcome	conservat blems an elfare pr s with Pi	ion and d conce ogramm	l waters erns cl mes and Outcor	shed ma limate of role of mes (PC PO6 M	nagemo hange, inform Os) PO7 H	ent global v nation teo PO8	varming chnology	, acid in hur	rain, ozor nan health	and PO12 M M M
CO4 CO5 Mapping COs/POs CO1 CO2 CO3	resources To discov To identif depletion To explain environm of Course	er water o fy its prol etc., n family w ent Outcome	conservat blems an elfare pr s with Pi	ion and d conce ogramm	l waters erns cl mes and Outcor	imate of role of nes (PC PO6 M M M	nagemo hange, inform Ds) PO7 H H H H	ent global v nation teo PO8 M M	varming chnology	, acid in hur PO1 M	rain, ozor nan health	and PO12 M M
CO4 CO5 Mapping COs/POs CO1 CO2 CO3 CO4 CO5	resources To discove To identified depletion To explain environm of Course PO1	er water of fy its proletc., n family went Outcome PO2	conservat	ion and d conce ogramme rogramme PO4	d waters erns cl mes and Outcor PO5	imate of role of PO6 M M M M M M M M	nagemo hange, inform Ds) PO7 H H H H H H H	ent global v nation teo PO8 M M M M	varming PO9	, acid in hur PO1 M M M	rain, ozor nan health	and PO12 M M M M M M
CO4 CO5 Mapping COs/POs CO1 CO2 CO3 CO4 CO5	resources To discove To identified depletion To explain environm of Course PO1	er water of fy its proletc., n family went Outcome PO2	conservat blems an relfare pr s with Pi PO3	ion and d conce ogramm PO4 PO4 on H – ties Pr l co	d waters erns cl mes and Outcor PO5	imate of role of mes (PC PO6 M M M M M M	nagemo hange, inform 0s) PO7 H H H H H H n	ent global v nation teo PO8 M M M M	varming chnology PO9	, acid in hur PO1 M M M	rain, ozor nan health	and PO12 M M M M
CO4 CO5 Mapping COs/POs CO1 CO2 CO3 CO4 CO5 H/M/L in	resources To discove To identified depletion To explaine environm of Course PO1 PO1 controls PO1 PO1 controls PO1 controls PO1 PO1 PO1 PO1 PO1 PO1 PO1 PO1	er water of fy its prol etc., n family w ent Outcome PO2	conservat	ion and d conce ogramm PO4 PO4 on H – ties Pr l co	d waters erns cl mes and Outcor PO5	imate of role of mes (PC PO6 M M M M M M M M Program	nagemo hange, inform 0s) PO7 H H H H H H n	ent global v nation teo PO8 M M M M L – Lov pen	varming chnology PO9	, acid in hur PO1 M M M	rain, ozor nan health	and PO12 M M M M M M Soft
CO4 CO5 Mapping COs/POs CO1 CO2 CO3 CO4 CO5 H/M/L in	resources To discove To identified depletion To explaine environm of Course PO1 PO1 controls PO1 PO1 controls PO1 controls PO1 PO1 PO1 PO1 PO1 PO1 PO1 PO1	er water of fy its prol etc., n family w ent Outcome PO2	conservat	ion and d conce ogramm PO4 PO4 on H – ties Pr l co	d waters erns cl mes and Outcor PO5	imate of role of mes (PC PO6 M M M M M M M M Program	nagemo hange, inform 0s) PO7 H H H H H H H	ent global v nation teo PO8 M M M M L – Lov pen	varming chnology PO9	, acid in hur PO1 M M M	rain, ozor nan health	and PO12 M M M M M M Soft

B.Tech Regulation 2017 Approved by the Academic Council

Department of Civil Engineering ENVIRONMENTAL SCIENCE

Madurinesical, Chuntai (An 150 9001 | 2008 Cartif

ID RESEARCH INS ERSII

Unit I Environment and Ecosystem

Definition, Scope and Importance of environment – need for public awareness – concept, structure and function of an ecosystem - producers, consumers and decomposers - energy flow in the ecosystem. Biodiversity at national and local levels – India

Unit II Environment Pollution

Definition - causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Nuclear hazards (g) E-Wastes and causes, effects and control measures

Unit III Natural Resources

Forest resources: Use and over-exploitation, deforestation. Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems. Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems.

Unit – IV Social Issues and the Environment

From unsustainable to sustainable development – urban problems related to energy – water conservation, rain water harvesting, watershed management - resettlement and rehabilitation of people; its problems and concerns climate change, global warming, acid rain, ozone layer depletion, nuclear accidents ,central and state pollution control boards-Public awareness.

Unit – V Human Population and the Environment

Population growth, variation among nations - population explosion, environment and human health - human rights value education - HIV/AIDS

- women and child welfare - role of information technology in environment and human health

Total Number of Periods : 45

Text Books

- 1. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education (2004).
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGrawHill, NewDelhi, (2006).

References

- 1. Vairamani, S. and Dr. K. Sankaran. Elements of Environmental and Health Science. Karaikudi: KPSV Publications, 5th Edition, July, 2013.
- 2. If thik arudeen, Etal, Environmental Studies, Sooraj Publications, 2005.
- 3. R.Murugesan, Environmental Studies, Millennium Publishers and Distributors, 2nd Edition, July, 2009.

(9)

(9)

3 3 0 0/0

(9)

(9)

(9)

Subject Code: BMA17005		Subject Na MECHAN							Ty/Lb/ ETL	L	T / S.Lr	P/ R	С
		Prerequisite	: MATHF	EMATIC	S II				Ту	3	1/0	0/0	4
L : Lecture T :	Tutori	al SLr : Su	upervised l	Learning	P : Proj	ect R : F	Research	C: Credit	ts T/L/ET	L : Theor	y/Lab/Emt	bedded	
Theory and La	b		1	U	5						5		
OBJECTIVE		г ·				1.	1.	<i>.</i>		. ,	с · .		1.
		e Fourier se lue problem		sis which	i is centr	al to ma	ny applic	cations 11	n engineer	ing apart	from its u	se in so	lving
		the student		er transfo	orm techi	niques us	ed in wid	le variety	of situation	ons.			
To int	troduce	the effective	ve mathem	atical too	ols for the	e solution	ns of part	ial differ			t model sev	veral phy	ysica
proce	sses an	d to develop	o Z transfo	rm techn	iques for	discrete	time syst	tems.					
COURSE OU	TCON	IFS (COs)	• (3-5)										
CO1	1000	To unders		sic conc	epts in pa	artial diff	ferential e	equations	5				
CO2		To unders	tand the ba	sic conc	epts in fo	ourier ser	ies						
CO3		To unders	tand the ba	sic conc	epts in or	ne & two	dimensio	onal heat	and wave	equation	s		
CO4		To unders	tand the ba	sic conc	epts in L	aplace T	ransforms	S					
CO5		To unders	tand the ba	sic conc	epts in Fo	ourier tra	insforms						
Mapping of C	ourse	Outcomes v	with Prog	ram Out	comes (I	POs)							
COs/POs	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н		Н					М				
CO2	Н	Н		Н					М				
C03	Н	Н		Н					М				
C04	Н	Н		Н					М				
C05	Н	Н		Н					М				
COs / PSOs		PSO1	PS	02									
CO1	Н		М										
CO2	Н		М										
C03	Н		М										
C04	Н		М										
C05	Н		М										
H/M/L indicate	es Strei	ngth of Corr	elation H	I- High,	M- Medi	um, L-L	ow		·	-			
			1					al					
Catagoria		ces	Social					hnic					
Category		ien			ves		ect	Tec					
	ces	S SC	anc	ore	ecti	ives	roj	ps / T Skill					
	cien	ring	ties	ιC	ЪЕ	lecti	1/F	ship S	lls				
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	3asi	Ingi	Hun	Prog	Prog	Dpei	rac	Int	soft				
							<u> </u>						
Approval	1	I	1	1	1	1	1	1		1	I	1	
	1												

BMA17005 MATHEMATICS III FOR MECHANICAL & CIVIL ENGINEERS

UNIT I: PARTIAL DIFFERENTIAL EQUATIONS

Formation of PDE by eliminating arbitrary constants and eliminating arbitrary functions – Solutions of standard types of first order equations – Lagrange's equation – Linear partial differential equations of second and higher order with constant coefficients.

UNIT II: FOURIER SERIES

Dirichlet's conditions – General Fourier series – Half range Sine & Cosine series – Complex form of Fourier series – Parseval's identity – Harmonic Analysis.

UNIT III: APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Classification of second order linear partial differential equations – Solutions of one dimensional wave equation, onedimensional heat equation – Steady state solution of two dimensional heat equation (Cartesian coordinates only) – Fourier series solutions.

UNIT IV: LAPLACE TRANSFORMS

Transforms of simple functions – Properties of Transforms – Inverse Transforms – Transforms of Derivatives and Integrals – Periodic functions – Initial and final value theorems – Convolution theorem – Applications of Laplace transforms for solving linear ordinary differential equations up to second order with constant coefficients and Linear simultaneous differential equations of first order with constant coefficients.

UNIT V: FOURIER TRANSFORMS

Statement of Fourier integral theorem – Fourier transform pairs – Fourier Sine and Cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's theorem.

Total No. of Hours: 60

TEXT BOOKS

- 1. Veerarajan T., "Engineering Mathematics" (for first year), Tata McGraw Hill Publishing Co(2008).
- 2. Veerarajan T,,"Engineering Mathematics"(for semester III), Tata McGraw Hill Publishing Co. (2005).
- 3. Singaravelu,"Transforms and Partial Differential Equations"Meenakshi Agency,(2017

REFERENCES

- 1. Kreyszig E, "Advanced Engineering Mathematics" (9th ed.), John Wiley & Sons, (2011).
- 2. Grewal B.S,"Higher Engineering Mathmatics", Khanna Publishers, (2012).

12Hrs.

12Hrs

12Hrs

12Hrs

Subject Code: BCE17001		Subject Na	me: ME	CHANI	CS OF S	SOLIDS			Ty/Lb/ ETL	L	T / S.Lr	P/ R	C
DCE17001		Prerequisite	: None						Ту	3	1/0	0/0	4
L : Lecture T :	Tutori	al SLr : S	upervised	Learning	g P : Proj	ect R : I	Research	C: Credi	ts				
T/L/ETL : The	ory/La	b/Embedde	d Theory a	und Lab	-								
OBJECTIVE	:												
• To learn fun											cylinders		
To know the To understa						iuced str	ess result	tants and	deformati	ons.			
To analyze				state of s	tress and	plane tru	isses						
COURSE OU	TCON	AES (COs)	: (3-5)										
CO1		To apply t machines	he fundan	nental co	ncepts of	stress a	nd strain	in the de	sign of va	arious str	uctural co	omponent	ts ar
CO2		To analyze	e and desig	gn shafts	to transn	nit requir	red power	r					
C03		To analyze	e about the	force in	member	Truss w	ith differ	ent meth	ods				
C04		To determ	ine the ber	nding, sh	ear stress	ses and d	eflection	produce	d in a bear	m subjec	ted to sys	tem of lo	ads
C05		To determ	ine stresse	s due to	impact a	nd sudde	nly appli	ed loads					
Mapping of C	ourse	Outcomes v	with Prog	ram Ou	tcomes (POs)							
COs/POs	POI	l PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PO	12
CO1	Н			М									
CO2	Н		Н									М	
C03	Н			М	L								
C04	Н	Н		Н									
C05	Н	Н				Н					Н		
COs / PSOs		PSO1	PS	52				1					
CO1	Н		Н										
CO2	Н		Н										
C03	Н		Н										
C04	Н		Н										
C05	Н		Н										
H/M/L indicate	es Stre	ngth of Corr	relation 1	H- High,	M- Med	ium, L-L	.OW		1		I	I	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	✓Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills				
Approval		N	Na F		ЦЦ	Сщ			V 1				
rr · ···													

MECHANICS OF SOLIDS

Department of Civil Engineering

(An ISO 9001 20

UNIT I: INTRODUCTION TO FORCE CONCEPT

Equivalent system of forces, rigid bodies, external & internal forces-Application of Statics of Particles-Free body Diagram Concurrent & Non Concurrent Forces - Principles of transmissibility- Equivalent forces & Varignon's theorem. Tension, Compression and Shear stress - Lateral Strain- Poisson's Ratio- Volumetric Strain - Deformation of Simple and Compound Bars - Elastic constants - Composite Sections .

UNIT II: CENTRE OF GRAVITY AND MOMENT OF INERTIA

Areas and volumes - Centroid of simple areas and volumes by integration - Centroid of composite areas - Second moment of areas - Radius of Gyration - Parallel axis and Perpendicular axis theorems - Moment of Inertia of simple areas by Integration -Moment of Inertia of Composite Areas - Mass Moment of Inertia of thin plates and simple solids.

UNIT III: BENDING MOMENT & SHEAR FORCE

Introduction to Bending and S.F- Beams and support conditions - types of supports - types of loads - shear forces and bending moment diagrams for simply supported beams, cantilevers and overhanging beams with all loads.

UNIT IV: ANALYSIS OF STATICALLY DETERMINATE PLANE TRUSSES

Stability and equilibrium of plane frames - Perfect frames - Types of Trusses - Analysis of forces in trusses member - Method of joints - Method of Sections - Tension co-efficient method - Graphical method

UNIT V: BENDING STRESS IN BEAMS & TORSION OF SHAFTS

Theory of simple bending-expression for bending stress-Section modulus-bending stress in symmetrical sections-Theory of torsion-Torsion of circular, hollow circular shafts and power -close coiled helical springs and leaf springs

Total No of Hours: 60

TEXT BOOKS

- Rajput.R.K. "Strength of Materials", S.Chand and Co, New Delhi, 2007. 2. *
- * Bhavikatti. S., "Solid Mechanics", Vikas publishing house Pvt. Ltd, New Delhi, 2010
- * Dr.R.K.Bansal A text book of Strength of Materials, Laxmi Publications, New Delhi 1996.

* S. Ramamirutham and R.Narayanan, Strength of Materials, Dhanpat Rai Publications, New Delhi,1989.

REFERENCES

- Kazimi S.M.A. " Solid Mechanics ", Tata McGraw Hill Publishing Company, New Delhi, 1991.
- * Laudner T.J. and Archer R.R., " Mechanical of Solids in Introduction ",McGraw Hill International Editions
- * William A.Nash, " Theory and Problems of Strength of Material" Schaum's outline series, Mc Graw Hill International Editions 1994

BCE17001

12 Hrs

12 Hrs

12 Hrs

Subject Code:	S	Subject Na	me: M	ECHAN	ICS OF	FLUIDS	5	Ty/L	b/ETL	L	T / S.Lr	P/ R	С
BCE17002											5. LI		
	F	Prerequisite	: None					Ту		3	1/0	0/0	4
L : Lecture T :	Tutoria	al SLr : S	upervised	Learning	g P : Proj	ect R : I	Research	C: Credits	5				1
T/L/ETL : The	ory/Lat	o/Embedde	d Theory a	nd Lab									
OBJECTIVE To know the in To study theory the utilization of	mportai ies thos	e explain tl	ne behavio	r and per	rformanc	e of fluid	l when th	e fluid is t	flowing t		he pipe.]	To unders	stand
COURSE OU													
CO1		To learn a											
CO2		To learn a			-					ncepts of	buoyancy	7	
C03		To have a						•					
C04		To study the						• • •					
C05		To study a					odels an	d various	dimensio	nless nu	mbers		
Mapping of C													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Η				М	М							
CO2	Η	М											
C03	Η											Н	
C04	Η				М								
C05	Η	Н		М									
COs / PSOs]	PSO1	PSO	52									
CO1	Η		Н										
CO2	Η		Н										
C03	Η		Н										
C04	Η		Н										
C05	Н		Н										
H/M/L indicate	es Stren	gth of Corr	relation I	H- High,	M- Medi	ium, L-L	ow			•			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	✓Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills				
Approval			<u>I</u>	<u>I</u>	1	1	1	<u>I</u>	<u>I</u>	_1	I	I	

MECHANICS OF FLUIDS

UNIT I: DEFINITIONS AND FLUID PROPERTIES

Definitions - Fluid and Fluid Mechanics - Dimensions and Units - Fluid properties -Viscosity, Compressibility, Surface tension and Capillarity, Continuum - concept of system and control volume.

UNIT II: FLUID STATISTICS

Pascal's law and Hydrostatic equation - buoyancy -meta centric height - pressure measurement - gauges and manometers.

Stream, streak and path lines - classification of flows - continuity equation - stream and potential functions - flow nets - velocity and acceleration measurement-Problems

UNIT IV: FLUID DYNAMICS

Euler and Bernoulli's equations - application of Bernoulli's equation - discharge measurement -Hagen Poiseuille equation .

UNIT V: FLOW THROUGH PIPES AND DIMENSIONAL ANALYSIS

Darcy Weisbach formula -Major and minor losses of flow in pipes - pipes in series and in parallel - Dimensional analysis - Buckingham π -theorem.

Total No of Hours: 60

TEXT BOOKS

*Dr.R. K. Bansal., "Fluid Mechanics and Hydraulic Machines ", Laxmi Publications 2015.

*Fox, Robert W. And McDonald, Alan T., "Introduction to Fluid Mechanics ",John Willey & sons

REFERENCES

*Streeter, Victor I. And Wylie, Benjamin E., "Fluid Mechanics ", McGraw-Hill Ltd., 1998.

*Natarajan M.K., "Principles of Fluids Mechanics", Anuradha Agencies, Kumbakonam, 1995

B.Tech Regulation 2017 Approved by the Academic Council

UNIT III: FLUID KINEMATICS

8 Hrs

12 Hrs

10 Hrs

19 Hrs

11 Hrs

BCE17002

	1	Subject Na	me : BUI	LDING SC		ND MATI	ERIALS	רן	y/Lb/ETL	L	T / S.Lr	P/ R	С
BCE17ES1		Prerequisite	e: None					Г	у	3	0/0	0/0	3
L : Lecture T :	Tutori	al SLr : S	upervised l	Learning	P : Proje	ect R : R	esearch (C: Cred	lits				
T/L/ETL : The	ory/La	b/Embedde	d Theory a	nd Lab									
OBJECTIVE	: To i	impart knov	vledge on c	lifferent 1	naterials	and prop	oerties						
COURSE OU		understand IES (COs)		ering asp	ects relat	ed to bui	ldings						
At the end of the	he cou	rse, the stud	ent will be	able to:									
CO1		Identify a	nd characte	erize buil	ding mate	erials							
CO2		Understar	d the man	ufacturing	g process	of bricks	s and cen	nent					
CO3		To have a	clear unde	rstanding	g about fo	oundation	and its t	ype					
Mapping of C	ourse	Outcomes	with Prog	am Out	comes (P	POs)							
COs/POs	PO	I PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н										М		
CO2	Н				М	М							
CO3	Н								М			М	
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
C03	Н		Н										
H/M/L indicate	es Strei	ngth of Cor	elation H	I- High, I	M- Medi	um, L-Lo)W						
								lli					
Category	Basic Sciences	-Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skil	Soft Skills				
Approval			1		<u> </u>		<u> </u>					[

BUILDING SCIENCE AND MATERIALS

UNIT I: BRICKS, AGGREGATES AND CEMENT

Bricks - Classification - Manufacturing process - Test on bricks - Aggregate: Natural Stone Aggregate -Industrial By- product - Crushing strength, impact strength, and flakiness - Abrasion resistance - Grading - sand -Bulking. Cement: Cement Ingredients - Manufacturing Process - Types - Testing of Cement

Department of Civil Engineering

(An 15O 9001 2)

UNIT II: MASONRY& MORTAR

BCE17ES1

Masonry - stone masonry - rubble and Ashlar masonry - Brick masonry - Bond - Definition need and scope - Types of bonds - English and Flemish bond - merits and demerits - composite masonry - solid and hollow block masonry-soilcement bricks-Load bearing and non-load bearing walls- Codal provisions. Mortar - Preparation of Lime and Cement Mortar- Concrete - Ingredients - Manufacturing Process - Batching Plant - Ready Mix Concrete - Paints -Plastics - Glass

UNIT III: SUB STRUCTURE AND SUPER STRUCTURE

Substructure - Setting Out of Foundation and Trenches - Excavation and Timbering - Foundation - Shallow Foundation - Deep Foundation. Super Structure.

UNIT IV: FLOOR, ROOF & STAIR CASE

Floors - Types of floor - Details of concrete and terrazzo floors - Roofs - Types of Roofs - Types of Flat roofs sloping roofs -different types and usage - shell roofs - roof coverings-AC sheets-GI sheets-FRP roofs Water proofing treatment of roofs -tar felt treatment- chemical treatment- Types of weathering courses .Stair Case - Definition -Types of Stair - General Dimension and Requirements - Layout of Stair Case.

UNIT V: BUILDING SERVICES

Damp Proofing- Acoustics Treatment - Thermal Insulation - Fire Protection - Ventilation - Earth Quake Protection-Integration of services in buildings - water supply & plumbing layout for a residential building - elevators & escalators - planning & installation - basic components of the electrical system for a residence .

Total No of Hours: 45 hrs

TEXT BOOKS

* B.C.Punmia, Ashok Kumar Jain and Arun Kumar Jain, "Building Construction" - Laxmi Publications (P) ltd., New Delhi.

S.C. *Rangwala, Engineering Materials, Charotar Publishing 8th ed.1983. House, *Arora S.P. and Bindra S.P., Building Construction, Planning Techniques and method of Construction, Dhanpat roy and Sons, 1997.

REFERENCES

*Taylor, G.D .Materials of Construction, USA Longman Inc, 1989.

*Arora and Bindra, Building Materials and Building Construction, Dhanpat Raj

9Hrs

9Hrs

9Hrs

9Hrs

Subject Code	:			DISCIPLI	NARY TH	IEORY -	1		Ty/Lb/ ETL	L	T / S.Lr	P/ R	C
BAR17I01		S	ubject Na	me: EM	NGINEER	ING GE	OLOGY		LIL		5.121		
		Prerequisite	e: None						Ту	3	0/0/	0/0	3
L : Lecture T	: Tuto	rial SLr :	Supervise	ed Learn	ing P:	Project	R : Res	earch C:	Credits				<u> </u>
T/L/ETL : The	eory/L	.ab/Embedo	led Theor	y and L	ab								
OBJECTIVE knowledge in			-				-			-	-		
_					-							Tounda	.1011
COURSE OU	JTCO	MES (CO	s) : (3- 5)) At the	end of	the cou	urse, th	e stude	nt will be	e able to	D:		
CO1		identify a	nd classify	y rock u	sing basi	c geolo	gic class	sification	n systems				
CO2		Understar	id geologi	c conce	pts and a	pproacl	hes.						
CO3		Identify t	he variou	s litholo	gical uni	ts and i	ts applic	ations ir	n civil eng	ineering	5		
Mapping of (Cours	e Outcome	s with Pr	ogram	Outcom	es (POs	5)						
COs/POs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PO	12
CO1	Η						М				М		
CO2	Н						М				М		
C03	Н						М				М		
COs / PSOs		PSO1	PSO	D2									
CO1	Н		Н										
CO2	Н		Н										
C03	Н		Н										
H/M/L indicat	tes Str	ength of Co	orrelation	H- Hi	gh, M- N	Aedium	, L-Low						
Category			es e				ject	/ lii					
	nces	പ്പ	s and lence	ore		tives	Proj	nips / 1 Ski					
	Scie	eerir ces	nitie Sci	am C	am ves	Elec	cal /	Internships echnical Sk	kills				
	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Pro	Internships Technical Sk	Soft Skills				
	Щ	√ ₩ S	S H	<u>ц</u>	СЩ				S				
Approval													

ENGINEERING GEOLOGY

UNIT I : GENERAL GEOLOGY

BAR17I01

Geology in civil engineering - branches of geology - earth structure and composition - elementary knowledge on continental drift and plate tectonics. Seismo tectonics of the Indian plate, seismic zones of India, Weathering - work of rivers, wind, glaciers.

UNIT II: MINERALOGY

Physical properties of minerals - study of rock forming minerals - quartz family. Feldspar family, augite, hornblende, biotite, muscovite, calcite, garnet - properties, behavior and engineering significance of clay minerals -fundamentals of process of formation of ore minerals - coal and petroleum - their origin and occurrence in India.

UNIT III: PETROLOGY

Classification of Soil and Rock, Types of rock and origin: Igneous (extrusive and intrusive), sedimentary and metamorphic rocks, description occurrence, engineering properties of following rocks. Igneous rocks - granite, diorite, gabbro, pegmatite, dolerite and basalt sedimentary rocks sandstone, limestone, shale, conglomerate and breccia. Metamorphic rocks, quartzite, marble, slate, phyllite, gneiss and schist.

UNIT IV : STRUCTURAL GEOLOGY AND GEOPHYSICAL METHOD

Strength Behavior of Soil and Rock, Stress and strain in rock, failure and shear failure of soil and rock, folds, faults and joints in rock, consequences of failure (earthquakes), Bearing on engineering construction. Seismic and electrical methods for civil engineering investigations.

UNIT V : GEOLOGICAL INVESTIGATIONS IN CIVIL ENGINEERING

Geologic Mapping and Remote Sensing, Topographic maps, geologic maps, aerial photographs, LIDAR, SAR, interpretation for civil engineering projects - geological conditions necessary for construction of dams, tunnels, buildings, road cuttings, landslides - causes and preventions. Sea erosion and coastal protection.

TEXT BOOKS

- Parbin singh, "Engineering and General geology", S. K. Kataria & Sons, 2009
- * D. Venkat Reddy "Engineering Geology", Vikas publishing House New Delhi, 2010
- * Krynine and Judd, "Engineering Geology and Geotechniques ", McGraw Hill Book Company, New Delhi 1990.

REFERENCE

- Legeet, "Geology and Engineering ", McGraw Hill Book Company, New Delhi
- * Blyth, "Geology for Engineers", elbs, Pune 1995

9Hrs

9Hrs

9Hrs

9Hrs

9Hrs

Department of Civil Engineering

ERSIT

(An 15O 9001 2)

Total No of Hrs = 45 hrs

Subject Code	:	Subject Na	me: EN	GINEEF	RING SU	RVEYI	NG I		Ty/Lb/	L	T/S.Lr	P/ R	С
BCE17ET1									ETL				
		Prerequisite	e: None						ETL	2	0/0	2/0	3
L : Lecture T :	: Tutori	al SLr : S	upervised l	earning	P : Proje	ect R : R	esearch (C: Credits	5				1
T/L/ETL : The	eory/La	b/Embedde	d Theory a	nd Lab									
OBJECTIVE	:) To	introduce t	he principl	es of vari	ous surve	eying me	thods and	d applica	tions to Civ	vil Engin	eering proj	ects	
COURSE OU	TCON	IES (COs)	:(3-5) A	At the end	d of the c	ourse, the	e student	will be a	ble to:				
CO1		Understar	nd the princ	iples of l	basic surv	vey instru	uments in	n civil eng	gineering f	ields			
CO2		Understar	nd the conc	ept of co	ntouring	and the v	vays of p	lotting					
CO3		Students a	are expecte	d to carry	yout surve	eving wo	orks relate	ed to land	l and civil	engineeri	ng projects		
Mapping of C	ourse		1										
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	H	M	105	M	105	L	10/	100	H	1010			. 2
CO2	Н	М		М		L			Н				
CO3	Н	М		М		L			Н				
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicat	es Strei	ngth of Cor	relation H	I- High, I	M- Mediu	um, L-Lo)w						
								Skill					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	← Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Sk	Soft Skills				
Approval													

B.Tech Regulation 2017 Approved by the Academic Council

ENGINEERING SURVEYING I

UNIT I: INTRODUCTIONS AND CHAIN SURVEYING

Definition - principles - classification - survey instruments - ranging and chaining - reciprocal ranging - setting perpendiculars -- errors - traversing.

UNIT II : COMPASS SURVEYING AND PLANE TABLE SURVEYING

Prismatic compass - surveyor's compass - bearing - systems and conversions - local attraction - magnetic declination dip - adjustment of error - plane table instruments and accessories - merits and demerits - methods - radiation intersection - resection.

UNIT III : LEVELLING AND APPLICATIONS

Level line - horizontal line - levels and staves - sprit level - bench marks - temporary and permanent adjustments - fly and check leveling - reciprocal leveling - longitudinal and cross sections.

UNIT V : THEODOLITE SURVEYING

Theodolite - vernier - description and uses - temporary and permanent adjustments of vernier transit - swinghorizontal angles - vertical angles - measurements of angles and distances - omitted measurements.

Total No. of Hours: 45

Department of Civil Engineering

BCE17ET1

UNIT IV : CONTOURING

Contouring - methods -characteristics and uses of contours - plotting - calculation of areas and volumes- earth work volume.

TEXT BOOKS

*Kanetkar T.P., "Surveying and Levelling", vols. I and II, United Book Corporation, Pune, 1994.

*Punmia B.C., "Surveying ", Vols. I and II, Laxmi Publications, Mumbai, 1999.

*N.N basak., "Surveying and Levelling ", Tata McGraw Hill, New Delhi, 2004.

REFERENCES

*Clark D., Plane and Geodetic Surveying ", vols. I and II and C.B.S. Publishers, New Delhi, Sixth edition, 1991. *James M. Anderson and Edward M. Mikhail, "Introduction to Surveying ", Tata McGraw Hill, New Delhi, 1995

8 Hrs

7 Hrs

12 Hrs

8 Hrs

Subject Code:	Ş	Subject Na	me: BUI	LDING I	DRAWI	NG PRA	CTICE		Ty/Lb/	L	T/S.Lr	P/ R	С
BCE17L01									ETL				
]	Prerequisite	: Basic Eng	gineering	Graphic	S			Lb	0	0/0	3/0	1
L : Lecture T : 7	Futoria	al SLr : Su	pervised L	earning	P : Proje	ct R : R	esearch (C: Credits	8				_
T/L/ETL : Theo	ry/Lał	o/Embedded	l Theory a	nd Lab									
OBJECTIVE : development an					. .					U		vith	
COURSE OUT	COM	IES (COs) :	: (3-5) A	t the end	of the co	urse, the	student	will be al	ole to:				
CO1		know abo	ut the basi	c principl	les of Bu	ilding Dr	awing						
CO2		know Basi	c comman	ds of a po	opular dr	afting pa	ckage						
CO3		Acquire k	nowledge	on plan,	elevatior	n and sec	tion of b	uildings					
Mapping of Co									1				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н					М		М			М		
CO2	Н							М			М		
CO3	Н					М		М			М		
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicates	s Stren	igth of Corre	elation H	l- High, N	M- Mediu	ım, L-Lo)W						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval			1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>					

BCE17L01

BUILDING DRAWING PRACTICE

Experiments

- Basic concept, purpose, function and types of building (Residential, Industrial and Institutional)
- Principles of site selection, orientation of buildings and distribution of space.
- Line plan. Development of plan from a line plan.
- Details of Doors, windows, foundation and stair case etc.
- Single storied residential building with flat and tiled roof.
- Public buildings like office, dispensary, post office, bank etc.
- Factory building with trusses supported on Brick walls and pillars.

Total No of Hours: 30 hrs

TEXT BOOKS

- * Civil Engg. Drawing & House planning B.P.Verma, Khanna publishers, Delhi, 1990
- * Building drawing & detailing Dr. Balagopal & T.S.Prabhu, Spades publishers, Calicut, 1989.

REFERENCES

- * Building drawing Shah, Tata McGraw-Hill, New Delhi,2000.
- Building planning & drawing Dr. N.Kumaraswamy, A.Kameswara Rao, Charotar publishing house.
 Mumbai, 1997.
- * Shah, Kale and Patki, Building drawing, Tata McGraw-Hill New Delhi,,1998.
- * Balagopal T.S. Prabhu, Building drawing and detailing, Spades Publishers
- * Shah & Kale, Building Drawing, Tata McGraw Hill
- * B.P. Verma, Civil Engineering Drawing and housing Planning, Khanna Publishers

Subject Code:	:	Subject Nat	me : SUR	VEYING	FIELD	WORK			Ty/Lb/	L	T/S.Lr	P/ R	C
BCE17L02									ETL				
	F	Prerequisite	e: Surveyin	g I					Lb	0	0/0	3/0	1
L : Lecture T :	Tutori	al SLr : S	upervised l	Learning	P : Proje	ect R : R	esearch	C: Credit	ts				
T/L/ETL : The	ory/La	b/Embedde	d Theory a	nd Lab									
OBJECTIVE	: To tr	ain the stud	ents with t	ne practi	cal know	ledge on	basic su	rveying	methods for	r constru	action and ro	ad purp	ose
COURSE OU	TCOM	IES (COs)	:(3-5)	At the end	l of the c	ourse, th	e student	will be	able to:				
CO1		Experime	nts related	to findin	g height	and dista	nces by t	acheome	etric, single	plane a	nd double pl	ane met	hod.
CO2		Setting ou	it simple cu	irve for c	onstructi	on of roa	d purpos	ses.					
CO3			it of works nd Travers				se of ster	reoscope	for 3-D vie	wing, C	o-ordinate r	neasure	ment
Mapping of C	ourse	Outcomes y	with Prog	am Out	comes (I	POs)							
COs/POs	POI	1	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10) PO11	PO	12
CO1	Н		М			М					М	L	
CO2	Н		М			М					М	L	
CO3	Н		М			М					М	L	
COs / PSOs		PSO1	PS	02									
CO1	М		Н										
CO2	М		Н										
CO3	М		Н										
H/M/L indicate	es Strei	ngth of Corr	relation H	I- High, I	M- Medi	um, L-Lo)W						
Category	s	ciences	id Social		lives	S	ject	Technical Skill					
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills				
Approval								_					

SURVEYING FIELD WORK

UNIT I : CHAIN SURVEYING	4Hrs
Ranging – Chaining – Traverse	
UNIT II : COMPASS SURVEYING	4 Hrs
Traverse	
UNIT III : PLANE TABLE SURVEYING	6 Hrs
Triangulation to find distance between inaccessible points with and without known scale – Three-Point Two-Point Problem.	Problem –
UNIT IV: LEVELLING	8 Hrs
Study of levels and leveling staff - Fly leveling using dumpy level - Fly leveling using tilting level - Che	ck leveling.
UNIT V : THEODOLITE	8 Hrs

UNIT V : THEODOLITE

Study of Theodolite Measurement of angles by reiteration and repetition - Measurement of vertical angles

Total No of Hours: 30

TEXT BOOKS

BCE17L02

- * Punmia B.C., "Surveying ", Vols. III, Laxmi Publications, Mumbai, 1999 and I, II.
- * N.N Basak, "Surveying and Levelling ", Tata McGraw - Hill Publishing Company Limited New Delhi, 2004.

REFERENCES

- Clark D., "Plane and Geodetic Surveying ", Vols. II and C.B.S. Publishers, I and Distributors, New Delhi, * Sixth Edition, 1991.
- * James M. Anderson and Edward M. Mikhail, "Introduction to Surveying ", McGraw Hill Book Company, New Delhi, 1995

Subject Code:		Subject Na	me :						T y/ Lb/	L	T/S.Lr	P/ R	С
BAR17IL1		GEOLOGY	Y AND BU	ULDIN(G MATE	RIALS	LAB		ETL				
		Prerequisite	: Engineer	ring Geol	ogy				Lb	0	0/0	2/0	1
		Building Sc	ience and I	Materials									
L : Lecture T :	Tutoria	al SLr : Su	pervised L	earning	P : Proje	ect R : R	lesearch (C: Credit	S	1		I	
T/L/ETL : The	ory/La	b/Embedded	l Theory a	nd Lab									
OBJECTIVE	: Lear	n to appreci	ate field co	ondition i	n relatio	n to engi	neering p	projects/p	problems an	d unders	tand the pr	oblems.	
COURSE OU	TCOM	IES (COs)	: (3-5) A	t the end	l of the c	ourse, th	e student	will be a	able to:				
CO1		Determin	e engineer	ing prope	erties of s	soils							
CO2		Measure	strike and o	dip of the	e bedding	g planes							
CO3		Interpret	geological	Maps									
CO4		Test on F	Physical Pro	operties of	of Soil								
Mapping of C	ourse	Outcomes v	vith Progr	am Outo	comes (P	POs)							
COs/POs	POI		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	2
CO1	Н					М	М						
CO2	Н					М	М						
C03	Н					М	М						
C04	Н					М	М						
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
C03	Н		Н										
C04	Н		Н										
H/M/L indicate	es Strer	ngth of Corr	elation H	I- High, N	M- Medi	um, L-Lo	ow						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval		I		1	.				1		I	I	
				2047 -		In 11	A		cil				

B.Tech Regulation 2017 Approved by the Academic Council

BAR17IL1

GEOLOGY AND BUILDING MATERIALS LAB

COURSE CONTENT:

ENGINEERING GEOLOGY

- 1. Study of Geological map and section of local area
- 2. Study the various properties of igneous rocks, sedimentary and metamorphic through rocks samples.
- 3. Study the various properties of different minerals and mineral ores through samples.
- 4. Study the various types of folds and faults.
- 5. Physical properties of minerals such as, hardness, colour, streak, etc.
- 6. Numerical Problems related to Dip and Strike
- 7. Study of different geological features through models
- 8. Field visit

BUILDING MATERIALS

- 1. Assessment of physical properties of bricks such as absorption, shape and size, structure, soundness,
- Hardness, presence of soluble salts.
- 2. Hardness, impact and water absorption test etc for stones
- 3. Study on different types of bonds for bricks and stones
- 4. Study on defects in timber

Total No. of Hours: 30

D 15010		Subject Na MECHAN	me: NUN					Ty / Lb/ ETL	L	T/ S.Lr	P/ R	C	
BMA17010													
		Prerequisite Engineers	e: Mathema	tics III H	For Mech	anical &	Civil		Ту	3	1/0	0/0	4
L : Lecture T : 7	Futoria	al SLr : S	upervised I	Learning	P : Proje	ct R : R	esearch C	C: Credi	ts				1
T/L/ETL : Theo	ry/Lał	o/Embedde	d Theory a	nd Lab	· ·								
OBJECTIVE :													
To understand t					oraic and	transcen	dental eq	uations					
To understand the													
To understand the							gration.						
To understand the													
To understand the													
COURSE OUT	COM	IES (COs)	:(3-5) A	t the end	of the co	ourse, the	student v	will be a	able to:				
CO1		They will	able to so	lve the no	on linear	non linea	ar equatio	n					
CO2		The stude	nts will hav	ve a clear	percepti	on of the	power of	f numer	ical techniqu	ues,			
CO3		They wou	ild he able	to demo	nstrate th	e annlie	ations of	these to	echniques to	nrohler	ns drawn f	rom ind	ustry
005			ent and oth				ations of	these to	confiques to	problem	lis urawii i	iom mu	usu y,
		managem		er engine	cring ne	ius.							
Mapping of Co	urse (Outcomes	with Progr	am Outo	comes (P	Os)							
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Η	М		М					M				
CO2	Н	M		M					M				
C03	Н	М		M					M				
COs / PSOs		PSO1	PS										
CO1	М	1501	H	02									
CO2	M		H										
C03	M		H										
H/M/L indicates		orth of Corr		I Uich I	M Madir	m I I c							
H/M/L Indicates	s Stren	igin of Con	elation F	1- підп, і Т		IIII, L-LC			1				
								echnical Skill					
								15					
		s	ial					ica					
		ences	Social					hn					
		ier			ves		Practical / Project						
Category	Basic Sciences	Engineering Sci	Humanities and Sciences	re	Program Electiv	Open Electives	roj	Internships / T					
	enc	ing	es	Program Core	Еľ	cti	/ P	iips	s				
	Sci	Seri	niti es	н	В	Ele	al	hsh	kill				
	ic	ine	nai	gra	gra	[u	ctic	ten	t SI				
	3as	gug	Humanit Sciences	ro	ro	De	rae	In	Soft Skills				
		<u>µ</u>											
	•												
Approval													
- PPi v m													

BMA17010 NUMERICAL METHODS FOR MECHANICAL & CIVIL ENGINEERS

UNIT I : SOLUTION OF EQUATIONS

Solution of Algebraic and Transcendental equations - Method of false position - Iteration method - Newton-Raphson method -Linear system- Applications of: Gauss Elimination method - Gauss-Jordan method - Iterative methods -Gauss-Jacobi method - Gauss-Seidel method - Matrix Inversion by Gauss-Jordan method.

UNIT II: INTERPOLATION

Newton forward and backward differences - Central differences - Sterling's and Bessel's formulae - Interpolation with Newton's divided differences - Lagrange's method.

UNIT III: NUMERICAL DIFFERENTIATION AND INTEGRATION

Numerical Differentiation with interpolation polynomials - Numerical Integration by Trapezoidal and Simpson's (both 1/3 rd & 3/8 th) rules – Two and three point Gaussian Ouadrature formulae – Double integrals using Trapezoidal and Simpson's rules.

UNIT IV: NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS 12 Hrs

Taylor's series - Euler's & Modified Euler's method - Runge Kutta method of fourth order for first & second order differential equations - Milne's predictor-corrector method - Adam-Bashforth's predictor-corrector method.

UNIT V: NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS 12 Hrs

Finite difference solutions for one dimensional heat equation (both implicit & explicit) - Bender-Schmidt method -Crank-Nicolson method - One dimensional wave equation - Two dimensional Laplace and Poisson equations -Liebmann's method.

Total No. of Hours: 60

TEXT BOOKS

- 1. Veerarajan T., Numerical Methods, Tata McGraw Hill Publishing Co., (2007).
- 2. Sastry S.S., Introductory Methods of Numerical Analysis, Prentice Hall of India, (2012).

REFERENCES

- 1. Kandasamy P., Thilagavathy, Gunavathy K., Numerical Methods (Vol.IV), S.Chand & Co., (2008).
- 2. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).

B.Tech Regulation 2017 Approved by the Academic Council

12 Hrs

12Hrs

Subject Code:		Subject Na	me: ST	RENGTI	I OF MA	ATERIA		T y/ Lb/ ETL	L	T / S.Lr	P/ R	C	
BCE17003		Prerequisite	: Mechani	ics of soli	ds				Ту	3	1/0	0/0	4
L : Lecture T : '	Tutori	al SLr : S	upervised	Learning	P : Proje	ect R : R	esearch (C: Credit	as a statement of the s				
T/L/ETL : Theo	ory/La	b/Embedde	d Theory a	und Lab	·								
OBJECTIVE	· ·				on in bea	ms by y	arious me	ethods					
To impart know		-	•						ndina atnaca	as and d	offection		
-	•	-	•						nunng suess	es anu u	enection		
To impart know	vledge	about beha	vior of col	umns, cri	tical load	ls and de	sign of co	olumns					
COURSE OUT	ГСОМ	IES (COs)	:(3-5) A	At the end	of the co	ourse, St	udents w	ill have					
CO1		through k	nowledge	in analysi	s of inde	terminate	e beams a	and use c	of energy me	ethod for	estimating	the slop	pe
		and deflec							0,			,	
CO2		they will b	be in a pos	ition to as	ssess the	behaviou	r of colu	mns,					
		-	_					,					
C03		To knew l											
Mapping of Co	ourse	Outcomes	with Prog	ram Outo	comes (P	Os)							
COs/POs	POI	l PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н	Н	Н		М					М		
CO2	Η	Н	Н	Н		М					М		
CO3	Н	Н	Н	Н		М					М		
COs / PSOs		PSO1		502									
CO1	Н		Н										
CO2	Η		Н										
C03	Η		Н										
H/M/L indicate	s Strei	ngth of Corr	relation l	H- High, l	M- Mediu	um, L-Lo	ow						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	←Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval					<u> </u>	<u> </u>				<u> </u>			

STRENGTH OF MATERIALS

UNIT I : ENERGY PRINCIPLES

Strain energy and strain energy density - Strain energy in tension, shear, flexure and torsion - Castigliano's & Engessor's energy theorems- Principle of Virtual Work- Application of energy theorems for computing deflection in Determinate structures - Maxwell's reciprocal theorem.

UNIT II : DEFLECTIONS

BCE17003

Methods of Deflection Determination of Deflection curve - computation of slopes and deflections in Determinate Beams - Double Integration method - Macaulay's method - Area Moment method - Conjugate Beam method.

UNIT III : INDETERMINATE BEAMS

Propped Cantilever and Fixed Beams - Fixed End Moments and Reactions for Standard cases of Loading -Continuous Beams - Theorem of Three Moments - Analysis of Continuous Beams - S.F. and B.M. Diagrams for Continuous Beams.

UNIT IV: COLUMNS

Eccentrically Loaded Short Columns Middle Third Rule - Core of Section - Columns of Unsymmetrical Sections -Rankine - Gordon Formula Eccentrically Loaded Long Columns. Theories of Failure - Principal Stress, Principal Strain, Shear Stress, Strain Energy and Distortion Energy Theories.

UNIT V: BENDING OF BEAMS

Bending of Beams of Symmetrical and Unsymmetrical Sections - Box sections and its importance --- Winkler Bach Formula - Shear Center Simple problems

TEXT BOOKS

Rajput.R.K. "Strength of Materials", S.Chand and Co, New Delhi, 2007.

Bhavikatti. S., "Solid Mechanics", Vikas publishing house Pvt. Ltd, New Delhi, 2010.

- R.S. Khurmi, "Engineering Mechanics of Solids", Prentice Hall of India, New Delhi, 1997. *
- * S.S Ratan, "Strength of Materials", Tata McGraw Hill Publishing Company, New Delhi, 2008

REFERENCES

- Laudner T.J. and Archer R.R., " Mechanical of Solids in Introduction ",McGraw Hill International Editions, New Delhi, 1994..
- * William A.Nash, " Theory and Problems of Strength of Material" Schaum's outline series, Mc Graw Hill International Editions, New Delhi, 1994

11 Hrs

13 Hrs

13 Hrs

13Hrs

10Hrs

60

Total No of Hours :

ERSIT (An 15O 9001 | 20

Subject Code	: 5	Subject Na	me: APP	PLIED H	IYDRAU	LIC EN	GINEE	RING	Ty/Lb/ ETL	L	T/S.Lr	P/ R	C
BCE17004					1						1/0	0.10	
	ŀ	rerequisite	: Mechanic	s of flui	ds				Ту	3	1/0	0/0	4
L : Lecture T :	Tutoria	1 SLr : Su	pervised L	earning	P : Proje	ct R : R	esearch C	C: Credit	S				
T/L/ETL : The	eory/Lab	/Embedde	d Theory ar	nd Lab									
OBJECTIVE To study theor To study the vo To understand	ies those elocity a the wor	nd dischar king princi	ge measure ple of hydr	ment in	open cha	nnel.	-	pen char	inel .				
CO1			$\frac{1}{1000}$ nts will be a	able to a	pply their	knowled	lge of flu	id mech	anics in ad	ldressing	problems in	n open	
CO2			possess the	e skills to	o solve pr	oblems i	in unifori	m, gradu	ally and ra	pidly var	ied flows i	n steady	state
C03			have know				eries						
Mapping of C COs/POs		PO2	vith Progr PO3				DO7	DO9	DOO	DO10	DO11	DO	10
COS/POS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	М		М							М	М	
CO2	Н	М		М							М	М	
CO3	Н	М		М							М	М	
COs / PSOs		PSO1	PSO	D2									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	es Stren	gth of Corr	elation H	- High, I	M- Mediu	ım, L-Lo)W						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	✓Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval			I	1	I	1	<u> </u>	1	1			I	

APPLIED HYDRAULIC ENGINEERING

4.G.R ND RESEARCH INSTITUTE

FLOW IN OPEN CHANNEL

BCE17004

UNIT I : INTRODUCTION

Open channel flow - types and regime of flow - velocity distribution in open channel - specific energy - critical flow and its computation.

UNIT II : UNIFORM AND RAPIDLY VARIED FLOW

Uniform flow - velocity measurement - manning's and Chezy's formula - determination of roughness coefficients most economical sections- Rectangular, Circular and Trapezoidal channel sections. Hydraulic jump - types - energy dissipation - surges

HYDRAULIC MACHINES

UNIT III: ROTODYNAMIC PUMPS

Introduction - classification - Rotodynamic pumps: centrifugal pumps - work done - losses - specific speed minimum speed to start the pump- multistage pumps- parallel and series.

UNIT IV : POSITIVE DISPLACEMENT PUMPS

Positive displacement pumps - reciprocating pump –work done- slip - air vessels(theory only)

UNIT V : TURBINES

Classification - Pelton wheel turbine -work done-Francis turbine -work done- draft tube -Kaplan turbine -work done.

Total No of Hours: 60

TEXT BOOKS

- 1. Subramanian k., "Flow in open channels ", Tata McGraw Hill Publishing Company, New Delhi, 1994
- 2. Dr. R.K.Bansal., "Fluid Mechanics and Hydraulic Machines ", Lakshmi Publications (p) ltd., Pune, 2015.
- 3. Kumar K.L., "Engineering Fluid Mechanics", Eurasia publishing house (p) ltd. New Delhi, (7th edition), 1995.

REFERENCES

- 1. Ven Te Chow, "Open-channel hydraulics ", McGraw Hill Co., 1996 , New York.
- 2. Ramamirtham S., "Fluid mechanics, Hydraulics and Fluid Machines ", Dhanpat Rai

VERSIT (An 15O 9001 ... 20 Department of Civil Engineering

14 Hrs

14 Hrs

8 Hrs

12 Hrs

Subject Code:	:	Subject Na		NCRETE	AND C	N	T y/ Lb/ ETL	L	T/S.Lr	P/ R	C		
BCE17005		TECHNOI	LOGY						LIL				
	F	Prerequisite	: Building	Science	and mate	rials			Ту	2	1/0	0/0	3
L : Lecture T :	Tutori	al SLr : Su	pervised I	earning	P : Proje	ect R : R	esearch (C: Credit	ts		I		
T/L/ETL : The	ory/La	b/Embedde	d Theory a	nd Lab									
OBJECTIVE	:												
To underst	and va	rious const	ruction pr	ocedures	from su	ib struct	ure to si	iper stri	ucture and	also the	equipmen	t neede	d fo
construction of								aper sur	acture una	uiso uie	equipmen	it neede	u 10
COURSE OU	TCOM	AES (COs)	:(3-5) A	t the end	of the co	ourse, the	student	will be a	ble to:				
CO1		understan	d about cor	ncrete ma	king mat	erials an	d suppler	mentary	cementation	ns materi	als.		
CO2		Design the	concrete r	nix for th	e require	d strengt	h						
		0			1	e			<u> </u>				
CO3		Will acqui	re knowled	lge on ha	ndling of	differen	t types of	f constru	ction equip	ments			
Mapping of C													
COs/POs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO	12
CO1	H		M			M					M		
CO2 CO3	H H		H			M					M		
COS / PSOs	п	PSO1	M PS	\sim	-	М					М		
CO1	Н	1301	Н	02									
CO2	H		H										
CO3	H		Н										
H/M/L indicate		ngth of Corr		I- High, I	M- Mediu	um, L-Lo)W						
								Internships / Technical Skill					
			-					al S					
		ses	es and Social					nic					
		ing Sciences	Ň		ves		çţ	ect					
Category	ses	Sc	and	re	Electives	ctives	Project	L / 3					
	ences	ing		Core				ips	s				
	Sci	eer	niti ces	am	am	Ele	cal	msł	kil				
	Basic Sc	Engineeri	Humaniti Sciences	Program	Program	Dpen Ele	Practical	nteı	Soft Skil				
	\mathbf{Ba}	En	Hu Sc	Pro	Pr	OF	P_{r_i}	I	So				
				N									
Approval			1		1								
-PProvan													
	1												
	1												

BCE17005 CONCRETE AND CONSTRUCTION TECHNOLOGY

UNIT I : CONCRETE MAKING MATERIALS

Manufacture and Components of Portland Cement- Hydration Process- Types of Cement, Aggregates - Classification and Properties Admixtures.

UNIT II: MIX DESIGN

Properties of Fresh Concrete- Workability, Segregation and Bleeding of Concrete - Factors influencing Mix Proportions - I.S and ACI Methods of Mix Design.

UNIT III : PROPERTIES OF HARDENED CONCRETE

Strength - Creep and Shrinkage - Durability of Concrete - Chemical Attack - Different Types of FRC - Properties and Applications.

UNIT IV: SUB STRUCTURE CONSTRUCTION

Piling techniques – Sheet piles – Under water construction of Diaphragm wall and basement – Driving diaphragm walls – Driving well and caisson – Sinking coffer dam – Shoring for deep cutting – Well points – Dewatering and stand by plant equipment for underground open excavation.

UNIT V : SUPER STRUCTURE AND CONSTRUCTION EQUIPMENTS

Construction sequences in cooling Towers, Bunkers, Silos and Chimney – Pre- stressed construction – In situ prestressing in high rise structures – Erecting light weight components on tall structures. Types of earth work equipment's - Tractors, Motor graders, Scrappers - Equipment for compaction – Batching and mixing and concreting.

Total No of Hours : 45

TEXT BOOKS

- * Shetty. M.S., Concrete Technology, S.Chand and Co, Pune, 1984
- * Arora S.P. And Bindra S.P., Building Construction, Planning Techniques and Method of Construction, Dhanpat Roy and Sons, New Delhi, 1997.
- * Peurifoy, R.L., Ledbetter, W.D And Schexnayder, C., 'Consruction Plaaning, Equipment and Methods' V
 Edition McGraw Hill, Singapore, 1995

REFERENCES

- * Krishnasamy. K.T., Concrete Technology, Dhanapt Rai New Delhi 1985
- * Neville, properties of concrete elbs, 1977.
- * Sharma S.C., Building Construction, Khanna Publishers, New Delhi.1998

B.Tech Regulation 2017 Approved by the Academic Council

8 Hrs

9 Hrs

8 Hrs

10 Hrs

Subject Code:		Subject Na	me : REM	OTE SE	INSING	AND G	IS		Ty / Lb/	L	T/S.Lr	P/ R	С
BAR17I02									ETL				
		Prerequisite	: Engineer	ing Geol	ogy				Ту	2	1/0	0/0	3
L : Lecture T : 7	Futori	al SLr : Su	pervised I	earning	P : Proje	ct R : R	esearch (C: Credit	ts				<u> </u>
T/L/ETL : Theo			-	-	5								
OBJECTIVE :	5												
Introduce the pr Fundamental kn Aerial photograp	owled	lge on the pl	nysics of re	emote sei	nsing.	-			anding of C	SIS conc	epts		
COURSE OUT	COM	IES (COs)	: (3-5)										
CO1		Apply the concepts of Electro Magnetic energy, spectrum and spectral signature curves in the practical problems											
CO2		Apply the concepts of satellite and sensor parameters and characteristics of different platforms											
CO3		Apply the	concepts o	f DBMS	in GIS								
C04		Analyze ra				deling in	GIS						
C05		-				•		source i	nformation	system			
Mapping of Co	III MCO (-					,			
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12
CO1	H	101	1.00	M	M	M	10,	100	107	1010	1011	M	
CO2	Н			М	М	М						М	
CO3	Η			М	М	М						М	
CO4	Η			М	М	М						М	
CO5	Η			М	М	М						Μ	
COs / PSOs		PSO1	PS	02									
CO1	Η		Н										
CO2	Η		Н										
CO3	Η		H										
CO4	H		H										
CO5	H	1.60	H										
H/M/L indicates	s Strei	igth of Corr	elation H	I- H1gh, I	vi- Medii	um, L-Lo	ow		1				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	✓Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval			<u> </u>										

B.Tech Regulation 2017 Approved by the Academic Council

REMOTE SENSING AND GIS

UNIT I: INTRODUCTION TO REMOTE SENSING

Definition – components of remote sensing –, Energy sources and radiation principles, electromagnetic radiation (EMR) – EMR spectrum, active and passive remote sensing – platforms — visible, infra red (IR), near IR, middle IR, thermal IR and microwave - black body radiation - Planck's law - Stefan-Boltzman law.

UNIT II : EMR INTERACTION WITH ATMOSPHERE AND EARTH MATERIALS 9 Hrs

Atmospheric characteristics, scattering of EMR - Raleigh, MIE, non-selective and Raman scattering - EMR interaction with water vapour and ozone - atmospheric windows - significance of atmospheric windows - EMR interaction with earth surface materials - radiance, irradiance, incident, reflected, absorbed and transmitted energy reflectance – specular and diffuse reflection surface- spectral signature – spectral signature curves – EMR interaction with water, soil and earth surface

UNIT III: OPTICAL AND MICROWAVE REMOTE SENSING SYSTEMS

Satellites - classification - based on orbits - sun synchronous and geo synchronous - based on purpose - earth resource satellites, communication satellites, weather satellites, spy satellites, spectral, radiometric and spatial resolutions, Multispectral, thermal and hyper spectral sensing, along and across track scanners - description of sensors in land sat, spot, irs series - current satellites - radar - speckle - back scattering - side looking airborne radar synthetic aperture radar - radiometer - geometrical characteristics

UNIT IV: GEOGRAPHIC INFORMATION SYSTEM

GIS – components of GIS, data – spatial and non-spatial – maps – types of maps – projection – types of projection raster and vector data structures - comparison of raster and vector data structure - GIS analysis using raster and vector data - DEM for Slope, Aspect, Flow direction, Flow pathways, Flow accumulation, Streams, Catchment area delineation, retrieval, reclassification, overlaying, buffering - data output.

UNIT V: IMAGE PROCESSING AND APPLICATIONS OF RS & GIS

Visual interpretation of satellite images - elements of interpretation - interpretation keys, Digital Image Processing application of remote sensing and GIS – urban applications - integration of GIS and remote sensing – Remote sensing applications for watershed management, Rainfall runoff modeling, Irrigation management, Flood mapping, Drought assessment, Environment and ecology, urban analysis -resources information systems.

> **Total No of Hours :** 45

TEXT BOOKS

1. Anji Reddy, Remote Sensing and Geographical Information Systems, B.S. Publications, New Delhi, 2001

2. M.G. Srinivas (edited by), Remote Sensing Applications, Nervosa Publishing House, New Delhi, 2001.

REFERENCE

1. Lillesand T.M. And Kiefer R.W. Remote Sensing And Image Interpretation, John Wiley And Sons, Inc, New York, 1987.

2. Janza.F.J., Blue, H.M., Johnston, J.E., "Manual of Remote Sensing Vol.I American Society of Photogrammetry, Virginia, U.S.A, 1975.

3. Burrough P.A, Principle Of Gis For Land Resource Assessment, Oxford, 1990

B.Tech Regulation 2017 Approved by the Academic Council

BAR17I02

9 Hrs

9 Hrs

9 Hrs

Subject	-									' I		P/	С
Code: BEN17ET2	CAREER & CONFIDENCE BUILDING ETL S.Lr R Prerequisite: None ETL 1 0:0 1/0 2 true T : Turonal SLr : Supervised Learning P : Project R : Research C: Credits .												
L : Lecture T	: Tutori	al SLr	: Supervi			: Project	R : Res	search C:		-	0/0	1/0) 2
OBJECTIVI				•									
• To create av	wareness	in stude	nts, vario	ous top c	companie	es helpir	ng them i	improve	their sk	ill set	matrix	, leading	to
develop a p	ositive fi	rame of 1	nind.										
-				-					-	-	-	V's and 1	esume.
-				• •			-						
-				-		-		ion skills	by per	forms	variou	s mock s	essions.
			-	-	-	-			-				
					cruitmen	t techni	ques like	e group	discuss	ion, i	nterviev	ws and t	e able to
1	1												
	-									cal int	erviews	5.	
	1					• 1	-	mock se	ssions.				
Mapping of (COs/POs	1		1	-		1	1	DOV	п		DO10	DO11	DO12
	POI								P	09			
CO1	L	L	L	L	L	М	М	Η	N	1	Н	М	Н
CO2	L	L	L	L	L	М	М	Н	N	1	Н	М	Н
CO3	L	L	L	L	L	М	М	Н	N	1	Н	М	Н
CO4	L	L	L	L	L	М	М	Н	Ν	1	Н	М	Н
COs / PSOs	PS	501	PS	02	PS	03							
CO1													
CO2	L		L		Н								
CO3	-												
CO4	L		L		Н								
H/M/L indica	tes Strer	ngth of C	orrelatio	n H-H	ligh, M-	Mediun	n, L-Lov	v					1
		S						cal					
		ence			es		ct	chni					
	ses	Sci	and	e	ctiv	ves	toje	Тес					
Catagory	ienc	ing	ies ; cien	Coi	Ele	ectiv	/ Pı	/ sd	ls				
Category	Sci	neer	anit 1 S	ram	ram	Ele	ical	nshi	Skil				
	asic	ngiı	lum: ocia	rogı	rogı	pen	ract	hern kill	oft (
	B	Ш	H ∽ ✓	Ъ.	Ъ.	0	d.	N I	✓				
Approval		1	1		1	I	I	1	1	1	<u> </u>	I	

SOFT SKILLS - I CAREER & CONFIDENCE BUILDING BEN17ET2 1012

UNIT - I

Creation of awareness of top companies / improving skill set matrix / Development of positive frame of mind / Creation of self-awareness.

UNIT – II

Group discussions / Do's and don'ts – handling group discussions / what evaluators look for interpersonal relationships / Preparation of Curriculum Vitae / Resume.

UNIT - III

Interview – awareness of facing questions – Do's and don'ts of personal interview / group interview, enabling students to prepare for different proce3dures such as HR interviews and Technical Interviews / self-introductions.

UNIT – IV

Verbal aptitude, Reading comprehension / narration / presentation / Mock Interviews.

UNIT - V

Practical session on Group Discussion and written tests on vocabulary and reading comprehension

Practical component P : Include case studies / application scenarios

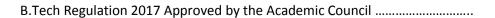
Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 30

Department of Civil Engineering

6 Hrs

6 Hrs


6 Hrs

6 Hrs

6 Hrs

Subject Code:	;	Subject Na	me : ENG	INEERT	TING SU	RVEY-	Π		T y/ Lb/	L	T / S.Lr	P/ R	С
BCE17ET3									ETL				
]	Prerequisite	: Engineer	ring Surv	ey- I				ETL	1	0/1	1/1	3
L : Lecture T :	Tutoria	al SLr : Su	pervised I	earning	P : Proje	ct R : R	esearch (C: Credi	ts				4
T/L/ETL : The	ory/Lal	b/Embedded	l Theory a	nd Lab									
OBJECTIVE	: This	s subject dea	als with ge	odetic me	easureme	nts and C	Control S	urvey m	ethodology	and its a	adjustments	. The stu	udent
is also exposed	to the	Modern Su	rveying.										
COURSE OU	ТСОМ	IES (COs)	: (3-5)										
CO1		The studer	nt will poss	ses know	edge abo	out Tacho	ometric s	urveying	g,				
CO2		To knew C	Control sur	veying, S	urvey ad	justment	s, Astron	omical	surveying ar	nd Photo	ogrammetric	2.	
CO3		Have know and cartog	0	nodern n	nethods o	f survey	ing like I	Photogra	ammetry, To	tal stati	on, Hydrog	raphic s	urvey
Mapping of Co							I			1		1	
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO	
CO1	H H					-	-		<u>M</u>		<u>M</u>		M
CO2 CO3	H					-			M M		<u>M</u>		M M
COs / PSOs		PSO1	PS	$\frac{1}{02}$					IVI		IVI		IVI
CO1	Н	1501	M	02									
CO2	H		M										
CO3	Н		М										
H/M/L indicate	es Strer	ngth of Corr	elation H	I- High, N	A- Mediu	ım, L-Lo	w						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	<-Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval								•					

ENGINEERTING SURVEY- II

UNIT I: ENGINEERING SURVEYS

Curve ranging - Horizontal and vertical curves - Simple Curves - setting with chain and tapes, tangential angles by theodolite, double theodolite - Compound and reverse curves - Transition curves - Functions and requirements -Setting out by offsets and angles - Vertical curves

UNIT II : TACHEOMETRIC SURVEYING

Tacheometric systems - Tangential, stadia and subtense methods - Stadia systems - Horizontal and inclined sights -Vertical and normal staffing - Fixed and movable hairs - Stadia constants - Anallactic lens - Subtense bar.

UNIT III: CONTROL SURVEYING

Working from whole to part - Horizontal and vertical control methods - Triangulation - Signals - Base line -Instruments and accessories - Corrections - Satellite station - Reduction to centre - Trignometric levelling - Single and reciprocal observations - Modern trends.

UNIT IV : SURVEY ADJUSTMENTS

Errors - Sources, precautions and corrections - Classification of errors - True and most probable values -weighted observations - Principle of least squares - Normal equation - Correlates.

UNIT V: PHOTOGRAMMETRY -

Photogrammetry - Introduction - Terrestrial and aerial Photographs - Stereoscopy -Parallax - Electromagnetic distance measurement - Carrier waves - Principles - Instruments Hydrographic Surveying - Tides - MSL - Sounding and methods - Location of soundings and methods - Three point problem - Strength of fix -Sextants and station pointer - River surveys - Measurement of current and discharge -

TEXT BOOKS

- Bannister A. and Raymond S., "Surveying", ELBS, Pune, Sixth Edition, 1992. *
- * Heribert Kahmen and Wolfgang Faig, "Surveying", Walter de Gruyter, 1995.
- * Kanetkar T.P., "Surveying and Levelling", Vols. I and II, United Book Corporation, Pune, 1994.
- Punmia B.C., "Surveying ", Vols. I, II and III, Laxmi Publications, New Delhi, 1999. *

REFERENCES

- * Clark D., "Plane and Geodetic Surveying", Vols. I and II, C.B.S. Publishers and Distributors, Delhi, sixth Edition, 1971.
- * James M. Anderson and Edward M. Mikhail, "Introduction to Surveying ", McGraw Hill Book Company, New Delhi, 1985.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Total No of Hours: 45

Department of Civil Engineering

BCE17ET3

9 Hrs

Subject Code: BCE17L03		Subject I	Name : FL N	UID ME /ACHIN			YDRAU	LIC	Ty/Lb/E TL	L	T/S.Lr	P/ R	C
]	Prerequisite	: Mechanic	s of fluid	ls and hy	draulics			Lb	0	0/0	2/0	1
L : Lecture T :	Tutoria	al SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch (C: Credi	ts				<u> </u>
T/L/ETL : Theo	ory/Lal	b/Embedded	l Theory ar	nd Lab									
OBJECTIVE													
To learn the air		king princip	la compor	ants and	function	of hydro		inmonto					
		•••••	-			•	unc equi	ipments.					
To get hand-on	experi	ience in the	operation of	of hydrau	lic mach	ines.							
COURSE OU	ГСОМ	IES (COs)	: (3-5)										
CO1				1	•	V			1 1				
COI				•					ter and notch				
CO2		Demonstra	ate and con	duct exp	eriment t	o find ch	aracteris	tic curve	es of various	pumps			
CO3		Demonstra	ate and con	duct exp	eriment t	o find ch	aracteris	tic curve	es of various	turbine	s		
Mapping of Co COs/POs	PO1		PO3	am Outc PO4	PO5	Os) PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	H	M	M	104	105	100	10/	100	109	FOID	M	M	. 2
CO2	H	M	M								M	M	
CO3	H	M	M								M	M	
COs / PSOs		PSO1	PS	02									
CO1	Н		H	-									
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	s Strer	ngth of Corr	elation H	- High, N	A- Mediu	ım, L-Lo	w						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval			1	1	<u> </u>	I	I	<u> </u>	1	<u> </u>	I		

BCE17L03 FLUID MECHANICS & HYDRAULIC MACHINERY LAB

i. Ve	W MEASUREMENT nturimeter. fice meter.	6 Hrs
UNIT II : LO	SSES IN PIPES	6 Hrs
Estim	ation of major energy and minor losses in pipes	
UNIT III : PU	JMPS	10 Hrs
Perfor	mance characteristics of	
i.	Rated speed centrifugal pump.	
ii.	Gear pump.	
iii.	Reciprocating pump.	
UNIT IV : TU Perfor	J RBINES mance characteristics of Pelton wheel turbine and Francis turbine.	8 Hrs

Total No of Hours: 30 hrs

TEXT BOOKS

*

- Dr. R. K.Bansal., "Fluid Mechanics And Hydraulic Machines ", Lakshmi Publications (P) Ltd.New Delhi * 2005.
- Fox, Robert w. and Mcdonald, Alan T., "Introduction to Fluid Mechanics ",John Willey & Sons, New Jersey * REFERENCES
- Streeter, Victor L. And Wylie, Benjamin e., "Fluid Mechanics ", McGraw-Hill Ltd.New Delhi, 1998. Natarajan M.K., "Principles of Fluids Mechanics ", Anuradha agencies, Vidayal karuppur, kumbakonam, 1995

Subject Code BCE17L04	CONCRETE LAB ETL Prerequisite: Strength of Materials ,Concrete and construction technology Lb 0 0/0 F: Tutorial SLr : Supervised Learning P : Project R : Research C: Credits heory/Lab/Embedded Theory and Lab	P/ R	C										
Delliflor	_	-	-	of Mater	rials ,Cor	ncrete and	d constru	ction	Lb	0	0/0	2/0	1
L : Lecture T	: Tutori	al SLr : S	upervised I	earning	P : Proje	ect R : R	esearch (C: Credi	ts				
T/L/ETL : The	eory/La	b/Embedde	d Theory a	nd Lab									
Study the beha	perties avior of	f different s	tructural ele							ıts			
COURSE OU	JTCON	AES (COs)	: (3-5)										
CO1													
CO2													
CO3	~						er IS coc	les of pr	actice				
Mapping of C COs/POs					· · ·		PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н			М					M		М		
CO2	Н			М					М		М		
CO3	Н			М					М		М		
COs / PSOs		PSO1	PS	02				1					
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicat	tes Stre	ngth of Cor	relation H	I- High, I	M- Mediu	um, L-Lo)W			1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval				<u> </u>		<u> </u>						<u> </u>	

BCE17L04

STRENGTH OF MATERIALS AND CONCRETE LAB

STRENGTH OF MATERIALS LAB

- 1. Tension test on mild steel and for steel rods.
- 2. Compression test on wooden specimen
- 3. Double shear test on mild steel and aluminum rods.
- 4. Torsion test on mild steel rod.
- 5. Impact test on metal specimen
- 6. Hardness tests on metals like mild steel, brass, copper and aluminum.
- 7. Deflection test on metal beam
- 8. Compression test on helical spring

Total No of Hours: 15

CONCRETE LAB

1. Tests on Cement

a.Specific Gravity,

- b. Normal consistency,
- c. Initial and Final setting time of cement
- 2. Test on Aggregate
 - a. Sieve analysis
 - b. Specific gravity
 - c. Water Absorption
- 3. Tests on Freshly Mixed Concrete
 - Compaction Factor,
 - Slump Value.

Total No of Hours: 15

References:

1. Davis H.E. Trophell.G.E & Hanck, G.F.W., The Testing Of Engineering Materials – Mcgrew Hill, International Book Co.

2. Timoshenko S.P, &Young, D.H. Strength of Materials – East West Press Ltd. 3. Relevant 813 code. Venon john, Engineering Materials, 3rt Edition, McMillan Co.Ltd.

B.Tech Regulation 2017 Approved by the Academic Council

Subject Code: BCS17IL7								IVIL	Ty/Lb/ ETL	L	T / S.Lr	P/ R	C
	IL7 $ \begin{array}{ $	2/0	1										
L : Lecture T :													
T/L/ETL : The													
OBJECTIVE To impart a kr		ge on the ba	isic compu	ter skill									
COURSE OU	TCOM	IES (COs)	: (3-5) A	t the end	of the co	urse the s	students v	will be					
CO1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
CO2													
CO3													
		POI	2										
			. 2										
CO1	Н		М	Н							Н	Н	
CO2	Н		М	Н							Н	Н	
CO3	Н		М	Н							Н	Н	
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
CO3	Н		Н										
H/M/L indicate	es Strei	ngth of Corr	elation H	I- High, I	M- Mediu	um, L-Lo)W						
Category	Basic Sciences	Engineering Sciences	es and S	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Tec	Soft Skills				
Approval					1		1						

BCS17IL7 BASIC COMPUTER SKILL FOR CIVIL ENGINEERS (INTER DISCIPLINARY LAB- II)

APPLICATION PACKAGES

Word

1. To create an advertisement in Word.

2. To illustrate the concept of mail merging in word.

Spread Sheet

3. To create a spread sheet to analyse the marks of the students of a class and also to create appropriate charts.

Power Point

4. To create the presentation for the department using Power Point

Subject Code: BCE17TS1		Subject Na AND GIS I							Ty/Lb/ ETL	L	T / S.Lr	P/ R	C
		Prerequisite Remote sen	-	-	ey I, II ,S	urveying	field wo	ork,	Lb	0	0/0	0/2	1
L : Lecture T :	Tutoria	ıl SLr : Su	pervised I	Learning	P : Proje	ct R : R	esearch (C: Credit	S				1
T/L/ETL : The	ory/Lał	o/Embedded	d Theory a	nd Lab									
OBJECTIVE Setting out sim Setting out of Traversing by	ple cur works	ve for const for found	truction of	road pur	poses.				0				S an
COURSE OU	ТСОМ	ES (COs)	: (3-5)										
CO1		Knowledg											
CO2		Knowledg curves set		nomical	surveying	g includi	ng genera	al field r	narking for	various e	engineering	g project	s an
CO3		knowledge		ng basic	GIS ins	truments							
Mapping of C	ourse (Outcomes v	with Progr						_				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н		Н				Н	Н		М	М	
CO2	Н	Н		Н				Н	Н		М	М	
CO3	Н	Н		Н				Н	Н		М	М	
COs / PSOs		PSO1	PS	02		1							
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	es Stren	gth of Corr	elation H	I- High, I	M- Mediu	ım, L-Lo)W				1		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

BCE17TS1 ADVANCED SURVEYING FIELD WORK AND GIS LAB (Technical skill 1-Evaluation)

a. ADVANCED SURVEYING LAB

UNIT I : TACHEOMETRY

Tangential system (using theodolite, leveling staff)

Stadia system (using theodolite, leveling staff)

Sub tense system (using theodolite, tape, cross staff, leveling staff)

UNIT II: SETTING OUT WORKS

Foundation marking (using theodolite, tape, ranging rods)

Simple curve - right / left handed (using theodolite, tape, ranging rods)

Transition curve (using theodolite, tape, ranging rods)

UNIT III: FIELD ASTRONOMY

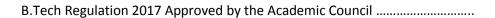
Field observation for the calculation of azimuth (using theodolite, tape), Total

Station

b. Applications of Remote Sensing and GIS Lab

- 1. Introduction to basics of digital images and Data (Vector and Raster)
- 2. Interpretation of satellite images
- 3. Understanding the basic principles of Photogrammetry.
- 4. An introduction to image classification.
- 5. Interpreting RADAR images.
- 6. Extracting information from thermal remote sensing data.
- 7. Using GIS Software for plotting points, lines, polygons on maps.
- 8. Use of GIS in selection of Landfill site.

Total No of Hours: 30 hrs


REFERENCES

- * Clark D, " Plane And Geodetic Surveying ", Vols. I and II, C.B.S. Publishers and Distributors, Delhi, Sixth Edition, 1971.
- * James M. Anderson and Edward M. Mikhail, "Introduction To Surveying ", Mcgraw Hill Book Company, New Delhi, 1985.
- * Wolf P.R. " Elements Of Photogrammetry", Mcgraw Hill Book Company, New Delhi,

B.Tech Regulation 2017 Approved by the Academic Council

BCE17006									ETL		I , SI I		C
	п	roroquisito	· Strongth	of Mator	iale					3	1/0	0/0	4
		_	_						-	5	1/0	0/0	4
L : Lecture T : T	utoria	l SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch (C: Credit	s				
T/L/ETL : Theor	y/Lab	/Embeddec	l Theory a	nd Lab									
									-			-	
COURSE OUT	COM	ES (COs)	: (3-5)										
CO1		Analysis ti	russes, frar	nes and a	arches								
CO2	ETL ETL Prerequisite: Strength of Materials Ty 3 1/0 0/0 Tutorial SLr : Supervised Learning P : Project R : Research C: Credits ory/Lab/Embedded Theory and Lab												
CO3													
							DC-	ETL I I I Ty 3 1/0 0/0 : Credits uctural analysis, i.e., methods for calculating fo Both determinate and indeterminate structures PO8 PO9 PO10 PO11 PO12 H I M I I H I M I I H I M I I H I M I I H I I M I H I I I I I I I I I I I I I I I I I I H I					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н		Н				Н			М		
CO2	Н	Н		Н				Н			М		
CO3	Н	Н		Н				Н			М		
COs / PSOs]	PSO1	PS	02				1					
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicates	Streng	gth of Corr	elation H	I- High, I	M- Mediu	ım, L-Lo	w						
								lli					
Category	Basic Sciences	Engineering Sciences	ies and S	✓Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Ski	Soft Skills				
Approval													

BCE17006

UNIT I: DEFLECTION OF DETERMINATE STRUCTURES

Principles of virtual work for deflections - Deflections of pin-jointed plane frames and rigid Plane Frames.

UNIT II: SLOPE DEFLECTION METHOD

Analysis of continuous Beams – cantilever beams - Continuous beams and rigid frames (with and without sway) - Symmetry and Asymmetry -Portal Frames.

UNIT III: MOMENT DISTRIBUTION METHOD

Stiffness and carry over factors –Balance – Distribution and carryover of moments - Analysis of continuous Beams - Plane rigid frames with and without sway – Structural frames

UNIT IV: SPACE STRUCTURES

Introduction to analysis of space trusses using method of tension coefficients – Beams curved in plan.

UNIT V: MOVING LOADS AND INFLUENCE LINES (DETERMINATE)

Influence lines for reactions in statically determinate structures – influence lines for member forces in pin jointed frames – Influence lines for shear force and bending moment in beam sections

Total No of Hours: 60

TEXT BOOKS

- * R.Vaidyanathan, P.Perumal, Comprehensive Structural Analysis Vol 1 and vol.2, Laxmi Publications, 2004
- * Bhavikatti S.S Structural Analysis Vol 1 and vol.2 ,Vikas Publishing House Pvt. Ltd New Delhi
- * S.Ramamrutham, R.Narayan, Theory of structures, Dhanpatrai publications, 1993

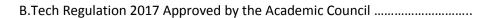
REFERENCES

* Analysis of Structures: Strength and Behaviors T.S. Thandavamoorthy, oxford University press, New Delhi, 2005.

STRUCTURAL ANALYSIS I

12Hrs

12Hrs


12 Hrs

12Hrs

12 Hrs

Subject Code	: S	ubject Na	me : DES	IGN OF (CONCRE	TE STRU	UCTURE	S - I	Ty/Lb/ ETL	L	T/S.Lr	P/ R	C
BCE17007													
	P	rerequisite	e: Strength	of materi	ials				Ту	3	1/0	0/0	4
L : Lecture T :	Tutorial	SLr : S	upervised	Learning	P : Proje	ect R : R	esearch (C: Credit	8				
T/L/ETL : The	eory/Lab/	/Embedde	d Theory a	nd Lab									
OBJECTIVE	: To i	mpart cor	nprehensiv	e knowle	edge on	the desig	n of reir	forced c	oncrete str	ructural e	lements su	ch as b	ean
		-	I		0		,						
		-	of the beh	aviour of	reinforce	ed concre	te and th	e design	philosophi	es			
								8	r r				
CO1		to design	and dataili	na alah									
CO2													
CO2 CO3													
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$												
COs/POs							PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н	Н	Н				М	М		М	М	
CO2	Н	Н	Н	Н				М	М		М	М	
CO3	Н	Н	Η	Н				Μ	М		М	Μ	
COs / PSOs	F	PSO1	PS	02				1					
CO1	Н		Н										
CO2	н		н										
CO3	Н		Н										
H/M/L indicat	es Streng	gth of Corr	relation I	H- High, I	M- Medi	um, L-Lo)w						
								kill					
								al S					
		es	cial					nic					
		enc	So		es		ti ti						
Category	Se	Scit	pu	e	xiiv	es	ojec	/ T(
-	ince	ß	es a	OU	Elec	xiiv	$\mathbf{Pr}_{\mathbf{r}}$	sdi	~				
	cie	erii	iiti6 2S	m (mE	llec	al /	idsi	silis				
	ic S	ine	nan	graı	grai	in E	tic	terr	t Sk				
	3asi	Ing	Hun Scie	Proį	Prof	Dpe	Prac	Int	Soft				
				$\sqrt{1}$									
A													
Approval													

International formation of the Departicle of Cold States of Cold S

Department of Civil Engineering

BCE17007 DESIGN OF CONCRETE STRUCTURES - I

UNIT I: INTRODUCTION AND LIMIT STATE DESIGN OF BEAMS

Properties of different grades of concrete and steel, Permissible stresses, - advantages of limit state method over other methods - understanding the behavior of R.C.C. members. Introduction to IS 456-2000, SP: 16. Characteristic values, partial safety factor, stress strain relationship - stress block parameters, failure criteria Analysis, design and detailing of singly reinforced & doubly reinforced beam.

UNIT II: LIMIT STATE DESIGN FOR SLABS

Design and detailing of one-way and two-way slab panels as per IS code provisions.

UNIT III: LIMIT STATE DESIGN FOR BOND ,ANCHORAGE SHEAR AND TORSION 12 Hrs

Behavior of RC beams in shear and torsion-shear and torsion reinforcement-Limit State Design of R C members for combined bending shear and torsion- use of design aids

UNIT IV : LIMIT STATE DESIGN OF COLUMNS

Basic assumptions - Types of columns - Slenderness' limits for column- minimum eccentricity - Design and detailing of reinforced concrete short columns of rectangular and circular cross sections under axial load.- column under compression and bi axial bending using IS 456;2000.Examples for practices

UNIT V: LIMIT STATE DESIGN OF FOOTINGS

Design and detailing of isolated footing for column subjected to axial loads, Design and detailing of Axially and eccentrically loaded Rectangular footings-Design and detailing of Combined Rectangular footings for Two Columns.

Total No of Hours: 60

TEXT BOOKS

- N.Krishna Raju "Design of Reinforced Concrete Structures", CBS publishers & Distributors. Latest Edition, IS456:200.
- * S.Ramamrudham ,Design of Reinforced Concrete Structures, Dhanpat Rai publishing company(p) Ltd New Delhi.

REFERENCES

- * Ashok K. Jain Reinforced concrete- Limit state design- New chand & Bros, Roorkee 1997.
- * IS: 456- 2000 "Indian Standard for Plain and reinforced concrete code of practice "Bureau of Indian Standard
- * A.P Arul Manikam "Structural Engineering"
- * Design aids to IS 456-1978 (SP16)
- * SP34 Handbook on Concrete Reinforcement and Detailing, BIS 1987.

12 Hrs

12 Hrs

12 Hrs

12 Hrs.

Subject Code:	5	Subject Na	me: SOI	L MECH	IANICS				Ty/Lb/ ETL	L	T / S.Lr	P/ R	C
BCE17008	-		. En sin s							2	1/0	0/0	-
		-	-	-						2	1/0	0/0	3
L : Lecture T : 7	Futoria	I SLr : Su	pervised I	earning	P : Proje	ct R : R	esearch (C: Credit	S				
T/L/ETL : Theo	ry/Lat	/Embeddeo	d Theory a	nd Lab									
conditions; To develop an compression and	under d conse	standing o	f the prin					-					
CO1		Ability to	determine	Index pro	nerties	nd class	ify the so	il					
CO2	D08 ETL Ty 2 1/0 0/0 ure T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits .:												
CO3													
Mapping of Co	urse (Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н					М	М	М					
CO2	Н					М	М	М					
CO3	Н					М	М	М					
COs / PSOs		PSO1	PS	02		1							
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicates	s Stren	gth of Corr	elation H	I- High, N	M- Mediu	ım, L-Lo)W				I	1	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	✓Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval							<u> </u>	1					

SOIL MECHANICS

UNIT I: SOIL CLASSIFICATION AND COMPACTION

Nature of soil - phase relationships - soil description and classification for engineering purposes - IS classification system - soil compaction - theory, comparison of laboratory and field compaction methods – Factors influencing compaction behaviour of soils.

UNIT II: SOILWATER AND WATER FLOW

Soil water - static pressure in water - Effective stress concepts in soils - capillary stress - permeability measurement in the laboratory and field - factors influencing permeability of soil - seepage - introduction to flow nets - simple problems.

UNIT III: STRESS DISTRIBUTIONS AND SETTLEMENT

Effective stress concepts in solids - stress distribution in soil media - use of influence charts - components of settlement - factors influencing settlement of soil - immediate and consolidation settlement - Tergazhi's one dimensional consolidation theory - computation of rate of settlement.

UNIT IV: SHEAR STRENGTH

Shear strength of cohesive and cohesion less soils - Mohr - Coulomb failure theory - saturated soil mass - Pore pressure parameters - Liquefaction.

UNIT V: SLOPE STABILITY

Slope failure mechanisms - types - infinite slopes - finite slopes - total stress analysis for saturated clay - method of slices - friction circle method - use of stability number.

TEXT BOOKS

BCE17008

*V.N.S. Moorthy, "soil mechanics and foundation engineering", UBS publications and distribution Ltd, New Delhi, 1999.

*Gopal Ranjan and Rao A.S.R., "Basic and Applied Soil Mechanics" Wiley eastern ltd., New Delhi, 1997.

*Arora K.R., "Soil mechanics and Foundation Engineering", Standard publishers and distributors,

New Delhi,1997.

REFERENCES

*Holtz R.D. and Kovacs W.D., "Introduction to geotechnical engineering", Prentice - hall, New Delhi, 1995.

*Mccarthy D.F., "Essentials of soil mechanics and foundations", Prentice - Hall, New Delhi, 1997.

*Sutten B.H.C., "Solving problems in soil mechanics", Longman group scientific and technical, U.K. England, 1994

*Dass, B.M, "Principles of geotechnical engineering", Thompson books

10 Hrs

9 Hrs

9 Hrs

9 Hrs

8 Hrs

Total : 45 Hrs

Subject Code BCE17009	:	Subject Na	me: TR	ANSPOF	RTATIO	N ENGI	NEERIN	NG	Ty/Lb/ ETL	L	T / S.Lr	P/ R	C
BCE1/009	_	Prerequisit	e: Soil Med	hanics. S	Survey I,I	I			Ту	2	1/0	0/0	3
I. I. a stores T.		•			-			7. C 1:4	-				
			•	•	P : Proje	CT K : K	esearch	: Credit	S				
	•		· ·										
OBJECTIVE	: To t	inderstand t	he aspects	of design	ı, constru	ction and	1 mainter	nance of	tracks for t	the safe a	nd- efficie	ent move	eme
of public and g	goods.	To have an	overall kno	owledge	of the des	sign and	construc	tion of H	lighway, ai	rport, do	cks, harbor	s and po	orts
a whole .		ETL											
COURSE OU	TCON	AES (COs)	: (3-5)										
CO1		The stude	nts comple	ting this	course w	ould hav	e acquire	d knowl	edge on pla	anning, d	esign, cons	truction	
CO2		the studer	nts will hav	e the abil	lity to Pla								
CO3													
Mapping of C COs/POs			-				DO7	DOV	PO 0	DO10	DO11	DO	12
		r02		r04	103		rU/		r09	F010		rU	12
CO1	Н		М			Η		Μ			Μ		
CO2	Н		М			Н		М			М		
CO3	н					н		М			M		
	11					11		111			101		
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	н		Н										
CO3	Н		Н										
H/M/L indicat	es Stre	ngth of Cor	relation H	I- High, I	M- Medii	um, L-Lo)w						
						1	1		[- 1		
								kill					
								ıl SI					
		SS	cial					nica					
		ence			es		t	echi					
Category	es	Scie	hud	ė	ctiv	es	ojec	/ T (
	enc	ng	es a	Cor	Ele	ctiv	/ Pr	ips	S				
	Sci	eeri	initi ces	am	am	Ele	cal	nsh	kill				
	ısic	ıgin	uma ien(ogr	ogra	pen	acti	ntei	oft S				
	\mathbf{B}_{3}	Er	Hı Sc	<u> </u>	Pr	Ő	Pr		Sc	_			
				N									
				1									
Approval	1	I	1	1	1	1	1	1	1		I	1	

BCE17009

TRANSPORTATION ENGINEERING

UNIT I HIGHWAY PLANNING AND ALIGNMENT

Significance of highway planning –History of road development in India – Classification of highways – Locations and functions – Factors influencing highway alignment – Soil suitability analysis - Engineering surveys for alignment, objectives, conventional and modern methods.

UNIT II GEOMETRIC DESIGN OF HIGHWAYS

Typical cross sections of Urban and Rural roads — Cross sectional elements - Sight distances – Horizontal curves, Super elevation, transition curves, widening at curves – Vertical curves - Gradients, Special consideration for hill roads - Hairpin bends – Lateral and vertical clearance at underpasses.

UNITIII RAILWAYS PLANNING CONSTRUCTION AND MAINTENANCE

Elements of permanent way – Rails, Sleepers, Ballast, rail fixtures and fastenings, - Track Stress, coning of wheels, creep in rails, defects in rails - Geometric design of railways, gradient, super elevation, widening of gauge on curves-Points and Crossings. Tunneling Methods, drainage and ventilation –Calculation of Materials required for track laying - Construction and maintenance of tracks – Modern methods of construction & maintenance

UNIT IV AIRPORT PLANNING & DESIGN

Airport planning, components of airports, airport site selection Runway design- orientation, geometric design and correction for gradients Terminal area, airport layout, airport buildings, passenger facilities, parking area and airport zoning

UNIT V HARBOUR ENGINEERING

Definition of terms - harbors, ports, docks, tides and waves. Harbors – requirements, classification – site investigation for locations, planning and layouts Terminal facilities – port buildings, warehouse, transit sheds, inter-modal transfer facilities, mooring accessories, navigational aids coastal structures piers, breakwaters, wharves, jetties, quays.

Total No of Hrs = 45 hr

TEXT BOOKS

*Saxena Subhash C and Satyapal Arora, A Course In Railway Engineering, Dhanpat Rai And Sons, Delhi, 1998.

*Khanna S K, Arora M G and Jain S S, Airport Planning And Design, Nemchand And Brothers, Roorkee, 1994.

- *Khanna K And Justo C E G, Highway Engineering, Khanna Publishers, Roorkee, 2001.
- * Kadiyali l r, Principles and Practice of Highway Engineering, Khanna technical Publications, Delhi
- * Dr K.P.Subramaniyam, Transportation Engineering, Scitech Publishers, Chennai 2003

REFERENCES

- * IRC standards, 2002
- * Bureau of Indian Standards (bis) publications on highway materials, 1998
- * Rangwala, Railway Engineering, Charotar Publishing House, Mumbai, 1995

B.Tech Regulation 2017 Approved by the Academic Council

8 Hrs

9 Hrs

9 Hrs

9 Hrs

10 Hrs

Subject Code: BEE17I04	5	Subject Na ENI (]	T / S.Lr	P/ R	C								
	I	Prerequisite	: None			Ту	2	1/0	0/0	3			
L : Lecture T :	Tutoria	ıl SLr : Sı	pervised I	earning	P : Proje	ct R : R	esearch (C: Credit	S				
T/L/ETL : The	ory/Lat	/Embedded	l Theory a	nd Lab									
OBJECTIVE To study the environment. COURSE OU	various		•	•		-			ing and co	onstructio	n with rel	evance	to
CO1		Possess kr	owledge o	n hasic e	nerov co	nservatic	n system	ne					
CO2		Design en					n systen	15					
CO3		Able to do				nservati	ve measu	ires					
Mapping of C													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н		Н	Н	Н	М	М					
CO2	Н	Н		Н	Н	Н	М	М					
CO3	Н	Н		Н	Н	Н	М	М					
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	es Stren	gth of Corr	elation H	I- High, I	M- Mediu	ım, L-Lo)W			_			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	✓Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

B.Tech Regulation 2017 Approved by the Academic Council

ENERGY CONSERVATION TECHNIQUES

UNIT I: INTRODUCTION

Fundamentals of energy- Energy Production Systems-Heating, Ventilating and Airconditioning – Solar Energy and Conservation - Energy Economic Analysis - Energy conservation and audits - Domestic energy consumption savings - challenges -primary energy use in buildings - Residential - Commercial - Institutional and public buildings - Legal requirements for conservation of fuel and power in buildings.

UNIT II : ENVIRONMENTAL

Energy and resource conservation - Design of green buildings - Evaluation tools for building energy -Embodied and operating energy - Peak demand - Comfort and Indoor Air quality - Visual and acoustical quality - Land, water and materials ..

UNIT III: DESIGN

Natural building design consideration - Energy efficient design strategies - Contextual factors - Longevity and process Assessment - Renewable Energy Sources and design - Advanced building Technologies - Smart buildings - Economies and cost analysis.

UNIT IV: SERVICES

Energy in building design - Energy efficient and environment friendly building - Thermal phenomena - thermal comfort - Indoor Air quality - Climate, sun and Solar radiation, - Psychometrics - passive heating and cooling systems - Energy Analysis - Active HVAC systems - Preliminary Investigation - Goals and policies - Energy audit -Types of Energy audit- Energy flow diagram - Energy consumption / Unit Production - Identification of wastage-Priority of conservative measures.

UNIT V: ENERGY MANAGEMENT

Energy management of electrical equipment - Improvement of power factor - Management of maximum demand -Energy savings in pumps – Fans – Compressed air systems – Energy savings in Lighting systems – Air conditioning systems – Applications.

Total No. of Hours: 45

REFERENCES

- 1. Moore F., Environmental Control system Mc Graw Hill, Inc. 1994.
- 2. Brown, GZ, Sun, Wind and light: Architectural design strategies, John Wiley & Sons, 1985.
- 3. Cook, J, Award Winning passive Solar Design, Mc Graw Hill, 1984.
- 4. J.R. Waters, Energy conservation in Buildings: A Guide to part L of the Building Regulations, Blackwell Publishing, 2003.

9 Hrs

9 Hrs

9Hrs

9 Hrs

9 Hrs

M.G.R. AND RESEARCH INSTITUTE UNIVERSITY

Department of Civil Engineering

BEE17I04

Subject Code: BCE17ET4		ubject Na VATER F		CES & I	Ty/Lb/ ETL	L	T / S.Lr	P/ R	C				
	P	rerequisite	: Applied	hydraulic	enginee	ring			ETL	1	0/1	1/1	3
L : Lecture T : 7	Tutorial	SLr : Su	pervised l	Learning	P : Proje	ect R : R	esearch (C: Credit	s				_
T/L/ETL : Theo	ry/Lab/	Embedded	l Theory a	nd Lab									
OBJECTIVE :													
To impart know	ledge a	nd skills o	n Planning	g, design,	operatio	n and ma	inagemer	nt of rese	rvoir syste	m			
COURSE OUT													
CO1									ent in Indi				
CO2									of the past				
CO3							nethods o	f irrigati	on includin	ig canal ii	rrigation.		
Mapping of Co							D07	DOQ	DOO	DO10	DO11	DO	10
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н				М	Н	Н	М			М	L	
CO2	Н				М	Н	Н	М			М	L	
CO3	Н				М	Н	Н	М			М	L	
COs / PSOs	F	SO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicates	Streng	th of Corr	elation H	I- High,	M- Medi	um, L-Lo)W						
								=					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	 ← Program Core 	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

BCE17ET4 WATER RESOURCES & IRRIGATION ENGINEERING

UNIT I :WATER RESOURCES

Water resources survey - Water resources of India and Tamilnadu - Description of water resources planning -Estimation of water requirements for irrigation and drinking- Single and multipurpose reservoir - Multi objective -Fixation of Storage capacity -Strategies for reservoir operation - Design flood-levees and flood walls.

UNIT II WATER RESOURCE MANAGEMENT

Economics of water resources planning; - National Water Policy - Consumptive and non- consumptive water use -Water quality - Scope and aims of master plan - Concept of basin as a unit for development - Water budget-Conjunctive use of surface and ground water

UNIT III: IRRIGATION ENGINEERING

Irrigation - Need and mode of Irrigation - Merits and demerits of irrigation - Need - Merits and Demerits - Duty, Delta and Base period – Irrigation efficiencies – Crops and Seasons - Crop water Requirement – . Canal irrigation – Lift irrigation – Tank irrigation – Flooding methods – Merits and Demerits – Sprinkler irrigation – Drip irrigation

UNIT IV : DIVERSION AND IMPOUNDING STRUCTURES

Weirs – elementary profile of a weir – weirs on pervious foundations - Types of Impounding structures - Tanks, Sluices and Weirs - Gravity dams - Earth dams - Arch Dams - Spillways - Factors affecting location and type of dams - Forces on a dam - Hydraulic design of dams

UNIT V: CANAL IRRIGATION

Alignment of canals - Classification of canals - Canal drops - Hydraulic design of drops - Cross drainage works -Hydraulic design of cross drainage works - Canal Head works - Canal regulators - River Training works.

Total No of Hours: 45

TEXT BOOKS

- Asawa, G.L., "Irrigation Engineering", New Age International Publishers, New Delhi, 2000.
- Sharma, R.K., and Sharma, T.K., "Irrigation Engineering", S.Chand and Company, New Delhi, 2000.

REFERENCES

- Basak, N.N., "Irrigation Engineering", Tata McGraw-Hill Publishing Co., New Delhi, 2000.
- Garg, S.K., "Irrigation Engineering," Laxmi Publications, New Delhi, 1999.
- Gupta, B.L., and Amir Gupta, "Irrigation Engineering", SatyaPraheshan, New Delhi

B.Tech Regulation 2017 Approved by the Academic Council

Department of Civil Engineering

10 Hrs

9 Hrs

8Hrs

8 Hrs

10 Hrs

Subject Code:	;	Subject N	Name : TI	RANSPO		ON ENG	GINEER	ING	Ty/Lb/	L	T/S.Lr	P/ R	С
BCE17L05					LAB				ETL				
	Pre	erequisite	: Transport	tation En	gineering	5			Lb	0	0/0	2/0	1
L : Lecture T : 7	Futorial	SLr : Su	pervised L	earning	P : Proje	ct R : R	esearch (C: Credit	S		I		1
T/L/ETL : Theo	ory/Lab/H	Embedded	d Theory ar	nd Lab									
OBJECTIVE :											nd apparen	t), absor	ption
capacity, and fin	neness m	nodulus of	f a fine agg	regate sa	mple and	l to plot a	a gradatio	on curve	for the san	nple.			
COURSE OUT	ГСОМЕ	S (COs)	: (3- 5) At	the end	of the cou	urse the s	tudent sł	nall poss	esses				
CO1			e on testing										
CO2			e on testing										
CO3			e on deflec										
Mapping of Co							1	1	1				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н								Н				
CO2	Н								Н				
CO3	Н								Н				
COs / PSOs	P	SO1	PSO	02									
CO1	Н		М										
CO2	Н		М										
CO3	Н		М										
H/M/L indicates	s Strengt	h of Corr	elation H	- High, N	M- Mediu	ım, L-Lo	w						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval		-		•	•			•		-	I		

BCE17L05

TRANSPORTATION ENGINEERING LAB

LIST OF EXPERIMENTS

- 1. CBR Test of Given soil sample.
- 2. Grading Of aggregates.
- 3. Water Absorption Test on aggregates
- 4. Abrasion test on aggregates.
- 5. Impact Test On aggregates
- 6. Bitumen tests
- 7. Benklemann Beam apparatus.

Total No of Hours: 30

Subject Code:		Subject Na	me :						Ty/Lb/	L	T/S.Lr	P/ R	C
BCE17L06		GEOTECH	INICAL I	ENGINE	ERING	LABOR	ATORY		ETL				
		Prerequisite	: Soil Mec	hanics					Lb	0	0/0	2/0	1
L : Lecture T :	Tutori	al SLr : Su	pervised I	Learning	P : Proje	ct R : R	esearch (C: Credit	S		1		
T/L/ETL : The	ory/La	b/Embedded	d Theory a	nd Lab									
OBJECTIVE	: To i	llustrate sor	ne of the p	rinciples	taught di	uring the	soil mec	hanics c	ourse.				
To impart kno	wledge	of laborate	ory and ind	ex testing	g method	s commo	only used	in Soil a	& foundation	on engine	ering.		
COURSE OU	TCOM	IES (COs)	: (3-5)										
CO1		Knowledg limits	e to deterr	nine Inde	x proper	ties of the	e soils lik	te water	content, sp	ecific gra	wity and A	tterberg	
CO2		Knowledg consolidat		ering pro	operties	like fiel	d densit	y, shea	r strength,	permea	bility, con	npaction	and
CO3		Test the so	oil to asses				e load						
Mapping of C													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12
CO1	Н			Η		Η			Н				
CO2	Н			Н		Н			Н				
CO3	Н			Н		Н			Н				
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	es Strer	ngth of Corr	elation H	I- High, I	M- Mediu	ım, L-Lo)W						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

BCE17L06

GEOTECHNICAL ENGINEERING LABORATORY

LIST OF EXPERIMENTS

- 1. Specific gravity of soil solids
- 2. Grain size distribution Sieve analysis Hydrometer analysis
- 3. Atterberg limits test Liquid limit, Plastic limit and shrinkage limit tests
- 4. Field density Test
- 5. Determination of moisture Density relationship using standard proctor.
- 6. Permeability determination (constant head and falling head methods)
- 7. Direct shear test on cohesion less soil
- 8. Unconfined compression test in cohesive soil
- 9. Tri axial compression test in cohesion less soil
- 10. Laboratory Vane shear test in cohesive soil
- 11. One dimensional Consolidation test (Determination of coefficient of consolidation only)

Total No of Hrs = 30 hrs

REFERENCES

- * "Soil Engineering Laboratory Instruction Manual ", Published by the Engineering College Co-operative Society, Chennai, 1996.
- * Lambe T.W., "Soil Testing for Engineers", John Wiley and Sons, New York, 1990.
- * "I.S.Code of Practice (2720) Relevant Parts ", as amended from time to time..

Subject Code BAR17IL2	:		(INTE) t Name : CIVIL EN		ING D	RAWIN	IG USIN	NG	Ty/Lb/ ETL	L	T / S.Lr	P/ R	C
		Prerequisite	e: Building	Drawing	Practice	;			Lb	0	0/0	2/0	1
L : Lecture T :	: Tutori	al SLr : S	upervised l	Learning	P : Proje	ect R : R	esearch (C: Credit	S				_
T/L/ETL : The	eory/La	b/Embedde	d Theory a	nd Lab									
OBJECTIVE	: Тор	rovide the	student wit	h an appr	eciation	of the cap	pabilities	and limi	tations of t	he AutoC	CAD progra	ım.	
COURSE OU	TCON	IES (COs)	: (3-5)										
CO1		prepare th	ne building	plans sat	isfying tl	ne princip	oles of pla	anning a	nd byelaws	•			
CO2			i, section a										
CO3							ndows, r	oof truss	es and stain	cases			
Mapping of C							DO7	DOO	DOO	DO10	DO11	DO	10
COs/POs	PO	I PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н		Н			Н		М				Н	
CO2	Н		Н			Н		М				Н	
CO3	Н		Н			Н		М				Н	
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicat	es Strei	ngth of Cor	relation H	I- High, I	M- Medi	um, L-Lo)w						
								Ξ					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

BAR17IL2 BUILDING DRAWING USING CIVIL ENGINEERING SOFTWARE

EXPERIMENTS

- 1. Learn and use basic AutoCAD commands manage drawing using layers, colour and line types complete basic cad drawings, with borders, text and dimensions use and edit text and text styles Method of scales in various drawing understand and the use of blocks.
- 2. Development of line plan for residential building. one for single storied building and another for two storied building.
- 3. Submission drawing for residential building including its planning and with area and parking statements and all other details as per the norms and local bye-laws.
- 4. Industrial buildings with roof truss.
- 5. To draw the 3D view of residential building.

Total No of Hours: 30 hrs

TEXT BOOKS

- * Civil Engg. Drawing & House planning B.P.Verma, Khanna publishers, Delhi, 1990
- * Building drawing & detailing Dr. Balagopal & T.S.Prabhu, Spades publishers, Calicut, 1989.

REFERENCES

- * Building drawing Shah, Tata McGraw-Hill, New Delhi,2000.
- Building planning & drawing Dr. N.Kumaraswamy, A.Kameswara Rao, Charotar publishing house. Mumbai,1997.
- * Shah, Kale and Patki, Building drawing, Tata McGraw-Hill New Delhi,,1998.

Subject Code BCE17TS2	:	Subject Na	me: TE(L SKIL Y CAM		VALUA	TION)	Ty/Lb/ ETL	L	T / S.Lr	P/ R	C
		Prerequisite	: Survey fi	ield work	,advance	ed survey	ing field	work	Lb	0	0/0	2/0	1
L : Lecture T	: Tutori	al SLr : Su	pervised I	Learning	P : Proje	ct R : R	esearch (C: Credit	S				
T/L/ETL : The	eory/La	b/Embedded	d Theory a	nd Lab									
OBJECTIVE	: The	student wil	l go to the	outside s	ite so th	at they w	vill realiz	e the pra	ctical diffi	culties ir	taking surv	vevs in f	ield
			8					F				-] ~	
COURSE OU	JTCOM												
CO1		perform su											
CO2		conduct L	S and CS b	by using a	dvanced	equipme	ent						
CO3 Mapping of C	7	prepare co											
COs/POs	POI		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10) PO11	PO	12
			105	101						1010			
CO1	Н	Н			Н	Н	Н	Н	Н		М	Μ	
CO2	Н	Н			Н	Н	Н	Н	Н		М	М	
CO3	Н	Н			Н	Н	Н	Н	Н		М	М	
COs / PSOs		PSO1	PS	02		•							
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicat	tes Strei	ngth of Corr	elation H	I- High, N	M- Mediu	ım, L-Lo	W						
								kill					
								Technical Skill					
		SS	Social					nica					
		Engineering Sciences	So		ves		ect	echi					
Category	es	Scie	nu	ė	ctiv	'es	oje	-					
	enc	ing	ies :	Cor	Ele	ctiv	/ Pr	iips	s				
	Sci	een	uniti ces	am	am	Ele	cal	nsh	kill				
	Basic Sciences	lgin	Humanities and Sciences	Program Core	Program Electi	Dpen Electives	Practical / Proj	Internships /	Soft Skills				
	\mathbf{Ba}	En	Ht Sc	$\mathbf{P}_{\mathbf{r}}$	Pr	OF	Pr		So				
Approval			1	1	<u> </u>	1	1		1		1		

BCE17TS2

SURVEY CAMP

Three weeks survey camp using Theodolite, cross staff, leveling staff, tapes and Plane table

- (i) Triangulation
- (ii) Trilateration
- (iii) Star observation to determine azimuth
- (iv) Rectangulation

* Will be accommodated during preceding winter vacation

Total No of Hours: 30

REFERENCES

- 1. Bannister A. and Raymond S., "Surveying ", ELBS, Pune, Sixth Edition, 1992.
- 2. Heribert Kahmen and Wolfgang Faig, "Surveying", Walter de Gruyter, 1995.
- 3. Kanetkar T.P., "Surveying and Levelling", Vols. I and II, United Book Corporation, Pune, 1994.
- 4. Punmia B.C., "Surveying ", Vols. I, II and III, Laxmi Publications, New Delhi, 1999.
- 5. Clark D., "Plane and Geodetic Surveying", Vols. I and II, C.B.S. Publishers and Distributors, Delhi, sixth Edition, 1971.
- 6. James M. Anderson and Edward M. Mikhail, "Introduction to Surveying ", McGraw Hill Book Company, New Delhi, 1985.
- 7. Wolf P.R. "Elements of Photogrammetry", McGraw Hill Book Company, New Delhi, 1988

Subject Code: BCE17L07	Su	bject Nai	me : INPL PRACT		DN)	Ty/Lb/ ETL	L	T / S.Lr	P/ R	C			
	Pre	erequisite	: ALL						Lb	0	0/0	2/0	1
L : Lecture T :	Tutorial	SLr : Su	pervised L	earning	P : Proje	ct R : R	esearch (C: Credit	s				
T/L/ETL : The	ory/Lab/H	Embedded	l Theory ar	nd Lab									
OBJECTIVE	: To dev	elop techr	nical skill a	nd practi	ical learn	ing in fie	eld work						
	FCOME		(2.5)										
COURSE OU				ound len	owladaa	and ave			nation	field			
CO1 CO2			n correlate						instruction	neid			
CO3			ll be able t										
Mapping of Co							une emper	ienee ge					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н					Н		Н	Н	М	Н	Н	
CO2	Н					Н		Н	Н	М	Н	Н	
CO3	Н					Н		Н	Н	М	Н	Н	
COs / PSOs	PS	501	PSO	02									
CO1		Н	Н	[
CO2		Н	Н	[
CO3		Н	Н	[
H/M/L indicate	s Strengt	h of Corre	elation H	- High, N	M- Mediu	ım, L-Lo)W						
								l Skill					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	cills				
	Basic 9	Engine	Humaniti Sciences	Progra	Progra	Open I	Practic	✓ Interr	Soft Skills				
Approval													

BCE17L07

INPLANT TRAINING

INDUSTRIAL TRAINING

Soil Investigation

Construction-different types of foundation, Highways and Embankments

Prestressing- Bridges

Industrial Structures- steel-fabrication and erection

Specification for various works- measurement and Billing

OFFICE TRAINING

Architectural plan

Latest civil Engineering softwares based on design and analysis

Students have to visit at least one industry relevant to civil engineering as part of industrial training and spend a minimum of 15 days during semester break between VI and VII semester. A report of the same should be submitted at the beginning of the 7th semester and evaluation shall be conducted based on the report, presentation and viva-voce.

Subject Code:	5	Subject Na	me : STR	UCTUR	AL ANA	LYSIS I	Ι		Ty/Lb/ ETL	L	T / S.Lr	P/ R	C
BCE17010	_	Prerequisite	. Structur	al Analy	ia I				Ту	3	1/0	0/0	4
]	Prerequisite	e: Structur	al Analys	515 1				Тy	3	1/0	0/0	4
L : Lecture T :	Tutoria	al SLr : S	upervised l	Learning	P : Proje	ect R : R	esearch (C: Credit	S				
T/L/ETL : The	ory/Lał	o/Embedde	d Theory a	nd Lab									
OBJECTIVE	:												
To impart exter						ctural Ar	nalysis I (Determi	nate to ind	eterminat	e structure	s.)	
To understand		-		lement ai	nalysis.								
COURSE OU	ГСОМ												
CO1		analysis s	uspension	bridges a	nd arches	5							
CO2		will be co	nversant w	ith classi	cal meth	ods of an	alysis.						
CO3		analyse st	ructures by	/ finite el	ement me	ethod							
Mapping of Co									1	l.			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н		Н			М	М			М	М	
CO2	Н	Н		Н			М	М			М	М	
C03	Н	Н		Н			М	М			М	М	
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
C03	Н		Н										
H/M/L indicate	s Stren	igth of Cor	relation H	I- High, I	M- Medi	um, L-Lo)W						
								lli					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	Bâ	En	Hr	_Pr	Pri	Ŏ	-FA	I	So				
Approval													

STRUCTURAL ANALYSIS II

UNIT I: ARCHES

Arches structural forms - Examples of arch structures - Types of arches - Analysis of three hinged, two hinged and fixed arches, parabolic and circular arches - Settlement and temperature effects

UNIT II: SUSPENSION BRIDGES

Analysis of suspension bridges – Un stiffened cables and cables with three hinged stiffening girders – Influence lines for three hinged stiffening girders.

UNIT III: MATRIX METHOD FOR INDETERMINATE FRAMES

Equilibrium and compatibility - Determinate Vs indeterminate structures --Indeterminacy - primary structure -Compatibility conditions - Analysis of indeterminate pin-jointed plane frames, continuous beams. Element and global stiffness and flexibility matrices- Co-ordinate transformations - transformations of stiffness matrices - Analysis of Continuous Beams.

UNIT IV : PLASTIC ANALYSIS OF STRUCTURES

Statically indeterminate axial problems - Beams in pure bending - Plastic moment of resistance - Plastic modulus -Shape factor - Load factor - Plastic hinge and mechanism - Plastic analysis of indeterminate beams and frames -Upper and lower bound theorems.

UNIT V: FINITE ELEMENT METHOD

Introduction- Discretisation of a structure- Displacement functions- Truss element- Beam element- Plane stress and plane strain- Triangular elements

TEXT BOOKS

* R.Vaidyanathan, P.Perumal, Comprehensive Structural Analysis Vol 1 and vol.2, Laxmi Publications, 2004

* S.Ramamrutham, R.Narayan, Theory of structures, Dhanpatrai publications, 1993

* Bhavikatti S.S Structural Analysis Vol 1 and vol.2, Vikas Publishing House Pvt. Ltd New Delhi

REFERENCES

*Matrix analysis of framed structures - William Weaver, Jr & James M.Gere, CBS Publishers & Distributors, Delhi, 1995

*Structural Analysis – A Matrix Approach – G.S.Pandit & S.P.Gupta, Tata McGraw-Hill, New Delhi ,1998

* Manicka Selvam V.K., Elementary Matrix Analysis of Structures, Khanna Publishers Mumbai, 1990.

*Coates R.C., Coutie M.G. and Kong F.K., Structural Analysis, ELBS and Nelson, Newjersey, 1990

B.Tech Regulation 2017 Approved by the Academic Council

BCE17010

12 Hrs

12 Hrs

Total No of Hours: 60

Department of Civil Engineering

12 Hrs

12 Hrs

12Hrs

Subject Code:		Subject Na	me : FOU	NDATIO	ON ENG	INEER	ING		Ty/Lb/ ETL	L	T/S.Lr	P/ R	C
BCE17011		D	a								1.10	0.10	
		Prerequisite	: Soil mec	hanics					Ту	2	1/0	0/0	3
L : Lecture T :	Tutoria	al SLr : Su	pervised l	Learning	P : Proje	ect R : R	esearch (C: Credit	S				
T/L/ETL : The	ory/La	b/Embedded	d Theory a	nd Lab									
OBJECTIVE	: T	'o import k	nowledge	on comm	non meth	nod of s	ub soil i	nvestigat	ion, selecti	on of fo	oundation a	nd desi	gn o
foundation		-	-					-					-
COURSE OU	TCOM	IES (COs)	: (3-5)										
CO1									ed for the so		ace		
CO2								ng structure					
CO3		design a si	uitable fou	ndation	-		y to inve	stigate the	soil cor	dition and	to selec	t and	
Mapping of C COs/POs	PO1		vith Prog PO3	PO4	Comes (P PO5	POs) PO6	PO7	PO8	PO9	PO10	PO11	PO	10
COS/FOS	FUI		r05	r04	FUS	FU0	FO/	FU8	F09	FOID	FUIT	FU	12
CO1	Н	Н		Н		Н		Н					
CO2	Н	Н	Н	Н		Н		Н					
CO3	Н	Н	Н	Н		Н		Н					
COs / PSOs		PSO1	PS	02		1							
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	es Strer	ngth of Corr	elation H	I- High, I	M- Medi	um, L-Lo	ow						
								Skill					
Category	Ices	g Sciences	and Social	ore	ectives	ives	Project	s / Technical Skill					
	Basic Sciences	Engineering Scier	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships	Soft Skills				
				V									
Approval					•	•							

FOUNDATION ENGINEERING

UNIT I: SOIL EXPLORATION

BCE17011

Scope and objectives - method of exploration - auguring and boring - wash boring and rotary drilling - depth of boring - spacing and depth of bore hole - sampling - representative and undisturbed - sampling techniques - split spoon sampler, thin tube sampler, stationary piston sampler - bore log and report - penetration tests (SPT and SCPT) - Selection of foundation.

UNIT II: SHALLOW FOUNDATION

Introduction - location and depth of foundation - codal provision - bearing capacity of shallow foundation on homogeneous deposits - Terzaghi's formula and BIS formula - factors affecting bearing capacity - problems- bearing capacity from in situ tests (SPT, SCPT and plate load) allowable bearing pressure - components of settlement determination of settlement of foundation on granular and clay deposit - total and differential settlement - allowable settlement - codal provision.

UNIT III: FOOTINGS AND RAFTS

Types of foundation - contact pressure distribution below footings, design of footings, isolated footing, combined footing, mat foundation - types - Applications - proportioning- floating foundation - codal provision.

UNIT IV: PILE FOUNDATION

Types of piles and their function - factors influencing the selection of pile - load carrying capacity of single pile in granular and cohesive soils - static formulae - dynamic formulae (engineering news and hiley's) - capacity from insitu tests (SPT and SCPT) - negative skin friction - uplift capacity - group capacity by different methods (feld's rule, converse - Labarra formula and block failure criterion) - settlement of pile groups -interpretation of pile load test (routine test only) - under reamed piles - capacity under compression and uplift .

UNIT V: RETAINING WALLS

Plastic equilibrium in soils - active and passive states - Rankine's theory - cohesionless, effect of water table andcohesive soil - coloumb's wedge theory - condition for critical failure plane - earth pressure on retaining wallsof simple configurations - Rebhann and Culmann's graphical method - stability analysis of retaining walls.

Total No of Hours: 45

TEXT BOOKS

*Arora, K.R. "Soil Mechanics and Foundation Engineering", Standard Publishers and distributors, New Delhi, 1997. *Gopal Ranjan and Rao, "A.S.R. Basic and Applied Soil Mechanics", Wiley Eastern Ltd., New Delhi, 1997. *V.N.S. Moorthy, "Soil Mechanics and Foundation Engineering", UBS Publications and distribution Ltd, New Delhi, 1999.

REFERENCES

*Bowles J.E. "Foundation Analysis and Design", McGraw hill, 1994.

*Dass, B.M., "Principles of Geotechnical Engineering", Thompson Books, Singapore, 5th edition, 2003 *Kaniraj, S.R, "Design Aids in Soil Mechanics and Foundation Engineering", Tata Mcgraw Hill Publishing Company Ltd, New Delhi, 2002

*Swamisaran, "Analysis and Design of Structures - Limit State Design", Oxford Ibh Publishing co Pvt Ltd. New Delhi, 1998

9 Hrs

12 Hrs

8 Hrs

8 Hrs

8Hrs

						t of Civil	-	-				1	-		
Subject Code:		Subject Na	me: (IN	TERDIS	CIPLIN	ARY TH	IEORY	IV)	TY / L/ ETL	L	T/S.Lr	P/ R	С		
		DESIGN (OF CONC	RETE S'	FRUCT	URES – I	II		EIL						
BAR17I03		Prerequisite	e: Design	of Concre	ete Struct	ures – I			ΤY	2	1/0	0/0	3		
L : Lecture T : '	Tutoria	al SLr : S	upervised	Learning	P : Proje	ect R : R	esearch (C: Credit	s				•		
T/L/ETL : Theo	ory/La	o/Embedde	d Theory a	nd Lab											
OBJECTIVE :					-		-	-	-	structure	S				
COURSE OUT		nderstand the stand the stand the stand the standard st		nethods of	of special	ized com	ponents	of RCC s	structures						
			etion of this course, the students should be able to esign retaining walls, staircase and water tanks.												
CO1		1													
CO2		Design Sl	ab using y	ield line t	heory										
CO3		Design m	besign masonry walls for axial and eccentrical loads												
Mapping of Co	ureo (
	Juise	Juteomes	ann 110g		comes (1	03)									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12		
CO1	Н	Н	М	Н		Н	M	М	M		M				
001			1,1								111				
CO2	Н	Н	М	Н		Н	М	М	М		М				
CO3	Н	Н	М	Н		Н	М	М	М		М				
COs / PSOs		PSO1	PS	O2											
CO1	Н		Н												
CO2	Н		Н												
CO3	Н		Н												
H/M/L indicate	s Strer	igth of Corr	elation H	I- High,	M- Medi	um, L-Lo)w								
		-						ill							
Category	Basic Sciences	Basic Sciences Engineering Sciences Humanities and Social Program Core			Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills							
Approval					\ \										

B.Tech Regulation 2017 Approved by the Academic Council

BAR17I03 DESIGN OF CONCRETE STRUCTURES – II

UNIT I : RETAINING WALLS Design of retaining walls – cantilever and counter fort.	11 Hrs
UNIT II : DESIGN OF STAIRCASE AND FLAT SLAB Introduction to ductile detailing & provisions of IS 13920 - Design of Staircases - Design	8 Hrs gn of flat slabs.
UNIT III: DESIGN OF WATER TANK Design of circular and rectangular water tanks resting on ground. Design of staging and	11 Hrs I foundations.
UNIT IV: YIELD LINE THEORY. Application of virtual work method to square, rectangular, circular and triangular slabs.	7 Hrs
UNIT V BRICK MASONRY Design of masonry walls and pillars as per NBC and I.S.codes.	8 Hrs
	No of Hours : 45

TEXT BOOKS

- * Varghese P C, Limit State Design of Reinforced Concrete, Prentice Hal of India, Private, Limited New Delhi, 1997
- * Krishna Raju N. Design of RC structures, CBS Publishers and distributors, New Delhi, 1995.
- * S.Ramamrudham, Design of Reinforced Concrete Structures, Dhanpat Rai publishing company(p) Ltd New Delhi.
- * Dayarathnam.P, Brick and Reinforced Brick Structures, Oxford and IBH Publishing House, 1999.

REFERENCES

- * Mallick and Gupta, Reinforced Concrete Design, Oxford and IBH, Delhi, 1997
- * Design Aides to IS 456-1978 (SP-16)
- * Code of Practice for Plain and Reinforced Concrete IS456-2000.
- * IS 1905:1987, Code of practice for structural use of unreinforced mansonry Bureau of Indian Standards

Subject Cod	e: St	ıbject N	ame :	Soft Sk	ill – II				T / L/		T/	P/	C	
BEN17ET5									ETL		S.Lr	R		
	Pr	erequisi	te: Soft	Skills –	Ι				ETL	1		2	2	
L : Lecture T	: Tuto	rial SI	Lr : Supe	ervised	Learnin	g P:P	roject F	R : Resea	arch C: C	redits			<u> </u>	
T/L/ETL : Th	neory/L	.ab/Emb	edded T	heory a	ind Lab									
OBJECTIV students.	E: Tł	ne main	objectiv	ve is to	strength	en the l	logical a	and arith	metic rea	isoning	skills of	f the		
COURSE O	UTCO	MES (COs):(3- 5)										
CO1	Recog	gnize an	d apply a	arithme	tic know	wledge	in a vari	iety of c	ontexts.					
CO2		bility to identify and critically evaluate philosophical arguments and defend them from riticism.												
~~~														
CO3	Defin	efine data and interpret information from graphs.												
Mapping of	Cours	e Outco	mes wit	h Prog	ram Ou	itcomes	s (POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	012	
CO1	Н	Н	Н	Н	Н	Н	L	L	Н	М	Н	Η		
CO2			М	Н	L	Н	L	Н	Н	Н	Н	L		
CO3	Н	Н	Н	Н	Н	Н	М	М	Н	Н	Н	Η		
COs / PSOs	PS	501	PS	02	PS	O3	PS	504	PSO5					
CO1														
CO2														
H/M/L indica	ates Str	ength of	f Correla	tion I	H- High	, M- M	edium, I	L-Low						
	es	Sciences	nd Social	e	ctives	es	oject	Internships / Technical Skill						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internship: S	Soft Skills					
									$\checkmark$					
Approval														

B.Tech Regulation 2017 Approved by the Academic Council .....



## BEN17ET5

## SOFT SKILL- II

## (Common to all E&T courses)

## **UNIT I Logical Reasoning I**

Logical Statements – Arguments – Assumptions – Courses of Action.

## **UNIT II Logical Reasoning II**

Logical conclusions – Deriving conclusions from passages – Theme detection.

## UNIT III Arithmetical Reasoning I

Number system – H.C.F & L.C.M – Problem on ages – Percentage – Profit & Loss – Ratio & Proportion – Partnership.

## **UNIT IV Arithmetical Reasoning II**

Time & Work – Time & Distance – Clocks – Permutations & Combinations – Heights & Distances – Odd man out and Series.

## **UNIT V Data Interpretation**

Tabulation – Bar graphs – Pie graphs – Line graphs.

## **Reference Book:**

1. R.S.Agarwal, A modern approach to Logical Reasoning, S.Chand & Co., (2017).

2. R.S.Agarwal, A modern approach to Verbal and Non verbal Reasoning, S.Chand & Co., (2017).

3. R.S.Agarwal, Quantitative Aptitude for Competitive Examinations, S.Chand & Co., (2017).

4. A.K.Gupta, Logical and Analytical Reasoning, Ramesh Publishing House, (2014).

5. B.S.Sijwali, Indu sijwali, A new approach to Reasoning (Verbal and Non verbal), Arihant Publishers, (2014).



Subject Code: BCE17L08		Subject N	ame : EN STR	VIRONN UCTUR			HYDRA	ULIC	Ty/Lb/ ETL	L	T / S.Lr	P/ R	C		
		-	e: Environn ngineering	nental eng	gineering	, Water	resources	s and	Lb	0	0/0	3/0	1		
L : Lecture T :	Tutoria	1 SLr : S	upervised I	Learning	P : Proje	ct R : R	esearch (	C: Credi	ts		_				
T/L/ETL : The	ory/Lab	/Embedde	d Theory a	nd Lab											
OBJECTIVE	· Th	e nurnose	of this co	ourse is	to impar	t the kn	owledge	about	the design	of irrig	ation and e	nvironn	enta		
engineering str															
COURSE OU	тсом	OMES (COs) : ( 3- 5)													
CO1			xperience i	n drawin	g of irrig	ation eng	gineering	structu	res						
CO2			xperience i												
CO3			olan elevati		*			<u> </u>							
Mapping of C	ourse C	outcomes v	with Progr	am Outo	comes (P	Os)									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	) PO11	PO	12		
CO1	Η							Η	Н		М				
CO2	Η							Η	Н		М				
CO3	Η							Η	Н		Н				
COs / PSOs		PSO1	PS	02											
CO1	Н		Н												
CO2	Н		Н												
CO3	Н		Н												
H/M/L indicate	es Stren	gth of Corr	relation H	I- High, N	I M- Mediu	ım, L-Lo	)W								
								Skill							
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills						
Approval							√ √								

## Department of Civil Engineering ENVIRONMENTAL AND HYDRAULIC STRUCTURES DRAWING

## UNIT I: WATER SUPPLY AND TREATMENT

Design & Drawing of flocculate, clarifier - Rapid sand filter - House service connection for water supply and drainage.

## **UNIT II: SEWAGE TREATMENT & DISPOSAL**

Design and Drawing of screen chamber - Grit channel - Primary clarifier - Activated sludge process - Aeration tank - Secondary clarifiers - Sludge digester - Sludge drying beds - Waste stabilization ponds - Septic tanks and disposal arrangements - Manholes.

## **UNIT III: IMPOUNDING STRUCTURES**

Gravity dam, Tank Surplus Weir, Tank Sluice with tower road - Drawing showing plan, Elevation, half section including foundation details.

## **UNIT IV: CANAL TRANSMISSION STRUCTURES**

Aqueducts – Syphon Aqueducts – Super passage – Canal siphon – Canal Drops- Drawing Showing plan, elevation and foundation details.

## **UNIT V: CANAL REGULATION STRUCTURES**

Canal head works- Canal Regulator - Canal escape- Proportional Distributors - Drawing showing detailed plan, elevation and foundation.

### **TEXT BOOKS**

- Modi, P.N., "Environmental Engineering I & II", Standard Book House, Delhi 6
- SathyanarayanaMurthy "Irrigation Design and Drawing" Published by Mrs L.Banumathi, Tuni east Godavari District.A.P. 1998.
- * Sharma R.K. Irrigation Engineering and Hydraulic Structures Oxford and IBH Publishing co., New Delhi 2002.

### REFERENCES

- Peary, H.S., ROWE, D.R., Tchobanoglous, G., "Environmental Engineering", McGrawHill Book Co., New Delhi, 1995.
- * Metcalf & Eddy, "Wastewater Engineering (Treatment and Reuse)", 4thedition, Tata McGraw-Hill, New Delhi, 2003.
- * Garg S.K., "Irrigation Environmental Engineering and design StructuresI", Khanna Publishers, New Delhi, 17th Reprint, 2003.
- Manual on Water Supply and Treatment, CPHEEO, Government of India, New Delhi, 1999
- * Manual on Sewerage and Sewage Treatment, CPHEEO, Government of India, New Delhi.

**BCE17L08** 

7 Hrs

# 5 Hrs

5 Hrs

## 5Hrs

# **Total No of Hours: 30**



8 Hrs



Subject Code:		Subject	Name : E		MENTA RATORY		INEERI	NG	Ty/Lb/ ETL	L	T / S.Lr	<b>P/ R</b>	C
BCE17L09													
		Prerequisite	: Environ	mental Er	ngineerin	g			Lb	0	0/0	3/0	1
L : Lecture T :	Tutoria	al SLr : Su	pervised I	earning	P : Proje	ct R : Re	esearch C	C: Credi	ts		1		
T/L/ETL : The	ory/La	b/Embeddeo	d Theory a	nd Lab									
OBJECTIVE	: To ii	npart know	ledge on p	reparatio	n of reag	ents, test	ing vario	us wate	r and waste	water q	uality paran	neters .	
COURSE OU	TCOM	IES (COs)	: (3-5)										
CO1		To get har	nd-on expe	rience in	the opera	tion of e	quipment	ts like p	H meter, Tl	DS mete	r, turbidity	meter, e	tc.
CO2		To analyze	e water and	ł wastewa	ater volu	ng certa	in equipme	nts					
CO3							to chara	cterize v	wastewater	and cond	luct treatab	ility stuc	lies.
Mapping of C					comes (P								
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO	12
CO1	Н	Н	М		Н		Н	Н	М		М		
CO2	Н	М	М		Н		Н	Η	М		М		
CO3	Н	М	М		Н		Н	Η	М		М		
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	es Strer	ngth of Corr	elation H	I- High, N	M- Mediu	ım, L-Lo	w						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval			<u> </u>	1	I	I	I	<u> </u>	1		<u> </u>	<u> </u>	



BCE17L09

ENVIRONMENTAL ENGINEERING LABORATORY

## LIST OF EXPERIMENTS

- a) Determination of pH.
   b) Determination of Turbidity.
- 2. Determination of Hardness.
- 3. Determination of Alkalinity.
- 4. Determination of Residual Chlorine.
- 5. Estimation of Chlorides.
- 6. Estimation of Ammonia Nitrogen.
- 7. Estimation of Sulphate.
- 8. Determination of optimum coagulant dose.
- 9. Determination of specific conductivity.
- 10. Estimation of available chlorine in Bleaching Powder.
- 11. Determination of dissolved Oxygen.
- 12. Determination of suspended settleable, volatile and fixed solids
- 13. B.O.D. Test.
- 14. C.O.D. Test.

## Total No of Hours: 30

## **REFERENCE BOOKS**

- * Trivedi and Goel Chemical and biological methods for water pollution studies. New Delhi,2000.
- * A course Manual Water and wastewater analysis. National Environmental Engineering Research Institute. Nagpur – publication.
- * Standard Methods for Examination of water and Waste water APHa, AWWA and WPCF, 1985 Edition.



Subject Code: BCE17L10		Subject Na BASED OI						ESIGN	Ty/Lb/ ETL	L	T/S.Lr	P/ R	C			
		Prerequisite structures I		al Analys	is I & II,	design o	f concrete	e	Lb	0	0/0	3/0	1			
L : Lecture T :	Tutori	al SLr : S	upervised I	Learning	P : Proje	ect R : R	esearch (	C: Credit	is				<u> </u>			
T/L/ETL : The	ory/La	b/Embedde	d Theory a	nd Lab												
OBJECTIVE	: Co	ncurrent Er	urrent Engineering based user environment for model development, analysis, design, visualization ar													
verification. Th									1							
COURSE OU	ГСОМ	IES (COs)	: (3-5)													
CO1		They will	have know	ledge of	designin	g a beam	,column	and slat	o as per cod	le						
CO2							nd optim	ized me	mbers selec	tion con	sisting of d	esign .				
CO3			sualize and													
Mapping of Co									1							
COs/POs	POI		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO	12			
CO1	H	Н	H	Н							Н	H				
CO2	H	H	H	H			-			-	H	H				
CO3	H	H	H	<u>Н</u> О2							Н	H				
COs / PSOs CO1	Н	PSO1	H PS	02												
COI	11		11													
CO2	Н		Н													
CO3	Η		Н													
H/M/L indicate	s Strei	ngth of Corr	elation H	I- High, I	M- Medi	um, L-Lo	)W									
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills							
Approval		<u> </u>	1	<u> </u>		<u> </u>					<u> </u>					



# BCE17L10 STRUCTURAL ANALYSIS AND DESIGN BASED ON CIVIL ENGINEERING SOFTWARE

## LIST OF EXPERIMENTS

- 1. Introduction to staad pro Joint, Member/Element, Mesh Generation with flexible user-controlled numbering
- 2. Analyse and design any beam with any loading type and any kind of supports.
- 3. Analyse and design of any 2D Frame with any loading type for any load sets.
- 4. Portal frame with 5 load combinations- Analysis
- 5. Analysis of beam with moving load
- 6. Analyse steel structures with truss elements.

## Total No of Hours: 30

## TEXT BOOK

- * Structural design and drawing (Reinforced Concrete and Steel)-N. Krishna Raju, University publishers 3rd Edn, 2009.
- * Design Of Steel Structures- B.C.Punmia, Ashok Kumar Jain, Arun kumar Jain ,Lakshmi Publications Pvt Ltd, 1999.

## REFERENCE

- * Krishnamoorthy D- Structural Design and drawing Vol II CBS Publishers and distributors Delhi 1990.
- Krishnamoorthy D- Structural Design and drawing Vol III (steel structures) CBS Publishers and Distributors Delhi 1990.



Subject Code:	S	Subject Nan	ne: MINI	PROJE	СТ				Ty/Lb/ ETL	L	T/S.Lr	P/ R	С
BCE17L11									EIL				
	I	Prerequisite	: ALL						Lb	0	0/0	0/2	1
L : Lecture T : '	Tutoria	ıl SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	C: Credits					<u> </u>
T/L/ETL : Theo	ory/Lab	/Embedded	l Theory ar	nd Lab									
OBJECTIVE	: Th	e objective	of projec	t work is	to enab	le the st	udents to	work in	convenie	nt group	os of not m	ore than	four
members in a g	roup oi	n a project i	nvolving d	esign rel	ated to ci	vil engin	eering.						
COURSE OUT	ГСОМ												
CO1		Work in a											
CO2		Explore in							ta				
CO3 Mapping of Co	nireo (	Develop d					i neia rec	luiremen	ts				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	) PO11	PO	12
CO1	H	H	H	H	H	H	H	H	Н	Н	H	H	
CO2	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	
CO3	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	
COs / PSOs		PSO1	PS	$\overline{)}$									
CO1	Н	1501	Н	52									
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	s Stren	gth of Corr	elation H	- High, N	M- Mediu	ım, L-Lo	W						
Category	s Strength of Corres Basic Sciences Engineering Sciences		Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													



## BCE17L11

## MINI PROJECT OBJECTIVE

The objective of project work is to enable the students to work in convenient groups of not more than four members in a group on a project involving design related to civil engineering. Every project work shall have a guide who is a member of the faculty of the university.

Three periods per week shall be allotted in the time table for this important activity and this time shall be utilized by the students to receive directions from the guide, on library reading, laboratory work, computer analysis or field work as assigned by the guide and also to present in periodical seminars the progress made in the project. Each student shall finally produce a comprehensive report covering background information, design data, design, detailing, drawing and conclusions. This final report shall be typewritten form as specified in the guidelines. The continuous assessment and semester evaluation may be carried out as specified in the guidelines to be issued from time to time.



Subject Code:	S	ubject Nar	ne : TECI	HNICAL	SKILL	III (EV	ALUAT	ION)	Ty/Lb/ ETL	L	T / S.Lr	P/ R	C
BCE17TS3		DETA	LING OF	R.C. AN	ND STEI	EL STRU	UCTUR	ES					
	Р	rerequisite	: Building	Drawing	g Practice	•			Lb	0	0/0	0/2	1
L : Lecture T :	Tutoria	SLr : Su	pervised I	earning	P : Proje	ct R : R	esearch C	C: Credit	is s				<u> </u>
T/L/ETL : The	ory/Lab	/Embedded	l Theory a	nd Lab									
OBJECTIVE	To Im	part know	ledge on va	arious sof	twares u	sed in civ	vil engine	eering					
COURSE OU	тсом	ES (COs)	: (3-5)										
CO1		Acquire la	test civil e	ngineerin	g softwa	res							
CO2		May able					al traini	ng					
		May exten	d the softw	vare knov	vledge fo	r researc	h purpos	e					
Mapping of C													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Η	Н	Н	Н							Н	Н	
CO2	Η	Н	Н	Н							Н	Н	
C03	Н	Н	Н	Н							Н	Н	
COs / PSOs	]	PSO1	PS	02									
CO1	Н		Η										
CO2	Н		Н										
C03	Н		Н										
H/M/L indicate	es Streng	gth of Corr	elation H	I- High, N	M- Mediu	ım, L-Lo	W						
Category	licates Strength of Correlation H- High,				Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval		<b>I</b>	<b>I</b>	1	I	I	ı 	1	I		I		



## BCE17TS3

## DETAILING OF R.C. AND STEEL STRUCTURES

## **TECHNICAL SKILL III (EVALUATION)**

## **Course Outline:**

Student should learn about detailing of Reinforced concrete structures and steel structures detailing and quantity of steel calculation.

## R.C.C Member

- 1. One way slab
- 2. Two way slab
- 3. Cantilever slab
- 4. Beam
- 5. Column
- 6. Footing

## Steel Structures

- 1.Roof Trusses
- 2. Beam Column joint
- 3.Gantry Girder
- 4.Plate Girder



Subject Code:		Subject Na	me : <b>DESI</b>	GN OF S	STEEL S	TRUCI	URES		Ty/Lb/ ETL	L	T / S.Lr	P/ R	C
BCE17012	╞	Prerequisit	e: Structura	l analysi	s I & II				Ту	3	1/0	0/0	4
L : Lecture T : '	Tutori	al SLr : S	upervised l	Learning	P : Proje	ct R : R	esearch	C: Credi	ts				_
T/L/ETL : Theo	ory/La	b/Embedde	d Theory a	nd Lab									
<b>OBJECTIVE:</b>	Toi	ntroduce th	e student to	material	behavio	ur and Lo	oad and l	Resistan	ce Factor D	esign me	thodology.		
To design and a										8			
COURSE OUT				1									
CO1								ructural	steel memb	ers subje	cted to con	pressive	e,
			d bending f										
CO2 CO3							oof trusse	es and ga	antry girder	s.			
Mapping of Co	JURGO		and analyz										
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Η	Н	Н	Н		M	М	Μ					
CO2	Η	Н	Н	Н		М	М	М					
CO3	Η	Н	Η	Н		М	М	М					
COs / PSOs		PSO1	DS	02									
CO1	Н	P301	H H	02									
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	s Stre	ngth of Cor	relation H	I- High, I	M- Medi	um, L-Lo	ow		Г				
Category	S	ciences	ties and Social		Electives	S	Project	hips / Technical Skill					
	Basic Sciences	Engineering Sciences	Humanities ar Sciences		Program Elect	Open Electives	Practical / Pro	Internships /	Soft Skills				
Approval													

## **DESIGN OF STEEL STRUCTURES**

### UNIT I INTRODUCTION

BCE17012

Properties of steel – Structural steel sections – Limit State Design Concepts – Loads on Structures – Connections using rivets, welding, bolting – Design of bolted and welded joints – Eccentric connections - Efficiency of joints.

### UNIT II TENSION MEMBERS

Types of sections – Net area – Net effective sections for angles and Tee in tension – Design of connections in tension members – Use of lug angles – Design of tension splice – Concept of shear lag

#### **UNIT III COMPRESSION MEMBERS**

Types of compression members – Theory of columns – Basis of current codal provision for compression member design – Slenderness ratio – Design of single section and compound section compression members – Design of laced and battened type columns – Design of column bases – Gusseted base

#### **UNIT IV BEAMS**

Design of laterally supported and unsupported beams – Built up beams – Beams subjected to uniaxial and biaxial bending – Design of plate girders - Intermediate and bearing stiffeners – Flange and web splices.

## UNIT V ROOF TRUSSES AND INDUSTRIAL STRUCTURES

Roof trusses – Roof and side coverings – Design of purlin and elements of truss; end bearing – Design of gantry girder.

#### Total No of Hours: 60

## **TEXTBOOKS:**

1. Gambhir. M.L., "Fundamentals of Structural Steel Design", McGraw Hill Education India Pvt. Ltd., 2013

2. Shiyekar. M.R., "Limit State Design in Structural Steel", Prentice Hall of India Pvt. Ltd, Learning Pvt. Ltd., 2 nd Edition, 2013.

3. Subramanian.N, "Design of Steel Structures", Oxford University Press, New Delhi, 2013.

#### **REFERENCES:**

1. Narayanan.R.et.al. "Teaching Resource on Structural Steel Design", INSDAG, Ministry of Steel Publications, 2002

2. Duggal. S.K, "Limit State Design of Steel Structures", Tata McGraw Hill Publishing Company, 2005

3. Bhavikatti.S.S, "Design of Steel Structures" By Limit State Method as per IS:800–2007, IK International Publishing House Pvt. Ltd., 2009

4. Shah.V.L. and Veena Gore, "Limit State Design of Steel Structures", IS 800–2007 Structures Publications, 2009.

5. IS 800 :2007, General Construction In Steel - Code of Practice, (Third Revision), Bureau of Indian Standards, New Delhi, 2007

B.Tech Regulation 2017 Approved by the Academic Council .....

#### Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE UNIVERSITY Instance formation (Section 1995) (An ISO 2001 (2006 Cartification))

Department of Civil Engineering

12 Hrs

12 Hrs

## 12 Hrs

## 12 Hrs

12 Hrs



Subject Code:		Subject Nar	ne: CONS	TRUCT	ION MA	NAGEN	AENT		Ty/Lb/ ETL	L	T/S.Lr	P/ R	C
BCE17013													
	I	Prerequisite	: NONE						Ту	3	1/0	0/0	4
L : Lecture T : T	Futoria	l SLr : Su	pervised I	earning	P : Proje	ct R : R	esearch C	C: Credit	S S				I
T/L/ETL : Theo	ory/Lab	/Embedded	l Theory a	nd Lab									
<b>OBJECTIVE</b> : To make the stu To introduce a c	dents a				on techni	ques and	practice	8.					
COURSE OUT													
CO1				e able to	plan con	struction	projects,	schedul	le the activi	ities usin	g network o	liagrams	5,
CO2					-		1 0				ws and bud	-	
		use the pro						I J	2			0 0	
CO3		Knowledg	-			-							
Mapping of Co	urco (	e				1 5							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н					Н	М	М		М		Н	
CO2	Η					Н	М	М		М		Н	
CO3	Н					Н	М	М		М		Н	
COs / PSOs		PSO1	PS	02									
CO1	Н	- ~	H										
CO2	Н		Н										
CO3	Н		Η										
H/M/L indicates	s Stren	gth of Corr	elation H	I- High. N	M- Mediu	ım. L-Lo	w						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Arogram Core     Arogram Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

## CONSTRUCTION MANAGEMENT

## **UNIT I: NETWORK TECHNIQUES**

Introduction to network techniques - Use of CPM and PERT for planning - Scheduling and control of construction work, bar charts Error in networks, Types of nodes and node numbering systems.

## UNIT II: CONSTRUCTION PLANNING

Basic concepts in the development of construction plan - Planning for construction and site facilities using networks -Preparation of construction schedules for jobs, materials, and equipment using CPM.

## **UNIT III: COST CONTROL OF CONSTRUCTION**

Construction quality control and inspection - Significance of variability and estimation of risks - Construction cost control - Crashing of networks.

## **UNIT IV : QUALITY AND SAFETY DURING CONSTRUCTION**

Importance of Quality and safety - Organizing for quality and safety - safety measures - Prevention of fire at construction site - Elements and organization of quality - Quality assurance techniques.

## UNIT V MANAGEMENT INFORMATION SYSTEM

Definition of MIS - Requirement of MIS - Database approach - Types of project information - Accuracy and use of information.

## **Total No of Hours: 60**

## **TEXT BOOKS**

- Chitkara, K.K "Consruction Project Management Planning "Scheduling And Control, Tata Mc Graw Hill Publishing Co., Newdelhi, 1998.
- * S. Seetharaman - Construction Engineering & Management, Dhanpat Rai Publications , Pune, 1995.

## REFERENCES

- * Construction Management - Sangareddy And Meyyappan, Prathibha Publications, Cbe, 1994.
- Moder. J., C. Phillips And Davis, "Project Management With Cpm, Pert And Precedence * Diagramming, 1999.
- * Prasanna Chandra, " Project Management ", Tmh ,New Delhi,1997.

B.Tech Regulation 2017 Approved by the Academic Council .....



12 Hrs

# 12 Hrs



BCE17013

12 Hrs

12 Hrs

12 Hrs



Subject Code:			MAN	AGEMI	ENT PAI	PER -I			Ty/Lb/	L	T/S.Lr	P/ R	С	
BMG17001	S	bubject Nan	ne: <b>PRINC</b>	IPLES (	OF MAN	IAGEM	ENT		ETL					
	P	Prerequisite	NONE						Ту	2	0/1	0/0	3	
L : Lecture T : 7	Futorio	1 61 61	nomicod I	armina	D · Droia	ot D · D	agarah (	. Cradita						
			-	-	r . rioje		csearch C	. Creans	•					
T/L/ETL : Theo	ory/Lab	/Embedded	Theory an	d Lab										
<b>OBJECTIVE</b> :	То	increasing	organizati	onal effe	ectivenes	s, To acl	hieve op	timum ut	tilization of	f variou	s resources	.To hav	e co-	
ordination betwe	een var	rious depart	ment in the	e organiz	ation.									
COURSE OUT	COM	ES (COs) :	(3-5)											
CO1		students w												
		manageria	functions	like plan	ning, org	anizing,	leading a	& controllin	ıg					
CO2		Have come	havia kno	wladaa o	n intorno	tional	anagama	nt						
CO3		Have same basic knowledge on international aspect of management Able to apply managerial skill in working environment												
Mapping of Co							onnent							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2	
CO1						М		М		М	М	Н		
CO2						М		М		М	М	Н		
CO3						М		М		М	М	Н		
COs / PSOs	1	PSO1	PSC	22										
COS / PSOS	L	P301	L	)2										
CO2	L		L											
CO3			L											
H/M/L indicates	s Streng	gth of Corre	elation H	- High, N	/- Mediu	m, L-Lo	W					•		
Category	L L S Strength of Corres s Strength of Corres Bassic Sciences Englineering Sciences		Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills	<ul> <li>✓ Management Science</li> </ul>				
Approval														

## PRINCIPLES OF MANAGEMENT

## **OBJECTIVES:**

**BMG17001** 

To increasing organizational effectiveness, To achieve optimum utilization of various resources.

To have co-ordination between various department in the organization.

## **UNIT-I**

**UNIT-II** 

Management: Importance - Definition - Nature and Scope of Management Process - Role and Functions of a Manager - Levels of Management - Development of Scientific Management and other Schools of thought and approaches.

Planning: Nature - Importance - Forms - Types - Steps in Planning - Objectives - Policies - Procedures and Methods – Natures and Types of Policies – Decision – making – Process of Decision – making – Types of Decision.

## **UNIT-III**

Organisation: Types of Organisations - Organisation Structure - Span of Control and Committees -Departmentalisation - Informal Organisation.

### **UNIT-IV**

Authority - Delegation - Decentralisation - Difference between Authority and Power - Responsibility - Recruitment - Sources, Selection, Training - Direction - Nature and Purpose.

## **UNIT-V**

Co-ordination - Need, Type and Techniques and requisites for excellent Co-ordination - Controlling - Meaning and Importance - Control Process.

> **Total No of Hours :** 45

#### **Reference Books**

1. C.B.Gupta, Management Theory & Practice -Sultan Chand & Sons - New Delhi.

2. L.M.Prasad, Principles & Practice of Management - Sultan Chand & Sons - New Delhi.

- 3. P.C. Tripathi & P.N Reddy, Principles of Managements Tata Mc.Graw Hill New Delhi.
- 4. Weihrich and Koontz, Management A Global Perspective.
- 5. N.Premavathy, Principles of Management Sri Vishnu Publication Chennai.

6. J.Jayasankar, Business Management - Margham Publication - Chennai.



Department of Civil Engineering

9Hrs

9Hrs

9Hrs

9Hrs

#### 9Hrs



Subject Code:		Subject Na	me: ADV	ANCED	CONCE	RETE LA	AB		Ty/Lb/ ETL	L	T / S.Lr	P/ R	C
BCE17L12									EIL				
		Prerequisite concrete str		and cons	struction	technolog	gy, desig	n of	Lb	0	0/0	3/0	1
L : Lecture T :	Tutori	al SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch (	C: Credit	S				<u> </u>
T/L/ETL : The	ory/La	b/Embedde	d Theory a	nd Lab									
OBJECTIVE			-										
				6	.1		-: C - 1						
To determine th	ie app	ropriate mix	proportion	n of norm	al concre	ete at spe	cified pro	operties					
To prepare the	specii	nens for fur	ther testing										
COURSE OUT	ГСОМ	IES (COs)	: (3-5)										
CO1			le to desig										
CO2									t with the s				
CO3							with ecc	friendly	y innovativ	e prodnc	ts		
Mapping of Co							1	1					
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO	12
CO1	H	Н	Н	H	H	H	H	H	H		H	M	
CO2	H	Н	Н	H	H	H	H	H	H		H	M	
CO3	Η	H	Н	Н	Н	Н	Н	Н	Н	-	H	М	
COs / PSOs		PSO1	PS	$\frac{1}{2}$									
CO1	Н	1001	Н	02									
CO2	H		Н										
CO3	Н		Н										
H/M/L indicate	s Strei	ngth of Corr	elation H	I- High, N	M- Mediu	ım, L-Lo	W		I	-1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	← Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													



### BCE17L12

## ADVANCED CONCRETE LAB

## LIST OF EXPERIMENTS

- 1. Crushing Value Test
- 2. Mix design using test parameters and assessing the strength of concrete
- 3. Mortar cube preparation and testing
- 4. Cube compression test
- 5. Tension test of concrete cylinder split test
- 6. Flexural test on concrete specimen
- 7. Test using Vee Bee consistometer
- 8. Flow Table Test

**Total No of Hours: 30** 



Subject Code: BCE17L13		Subject Nar ESTIN	ne: IATION A	AND EV.	ALUAT	ION PRA	ACTICA	L	Ty/Lb/ ETL	L	T / S.Lr	P/ R	C		
	-	Prerequisite	: Estimatio	n and qu	antity sur	rveying			Lb	0	0/0	3/0	1		
L : Lecture T : T T/L/ETL : Theo OBJECTIVE :	ory/La	b/Embeddeo	d Theory a	nd Lab	-					valuation	reports	I			
COURSE OUT	ICON	IES (COs)	(3-5)												
CO1			ble to estim	ate the va	arious str	uctures a	s per the	norms							
CO2							r me								
CO3			Student able to valuate the existing structures Student able to connect the actual scenario in the construction industry												
Mapping of Co	ourse								· · ·						
COs/POs	PO	l PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	2		
CO1	Η	Н	Н	Н		Н		Н	Н	М	Н	Η			
CO2	Η	Н	Н	Н		Н		Н	Н	М	Н	Η			
CO3	Η	Н	Н	Н		Н		Н	Н	М	Н	Η			
COs / PSOs		PSO1	PS	52	PSO5										
CO1	Η		Н												
CO2	Η		Н												
CO3	Η		Н												
H/M/L indicates	s Strei	ngth of Corr	elation H	- High, N	M- Mediu	ım, L-Lo	W	1	1						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives		Internships / Technical Skill	Soft Skills						
Approval															



Department of Civil Engineering ESTIMATION AND EVALUATION PRACTICAL

BCE17L13

## LIST OF EXPERIMENTS:

- 1. Detailed Estimate [Duration and Cost] for a two storey building.
- 2. Detailed estimate for following projects:

[i] a culvert.

- [ii] stretch of road about 1 Km long including earthwork.
- [iii] Elevated water tanks.
- [iv] Manholes, Septic tanks.
- [v] Water supply Scheme and
- [vi] Drainage Scheme.
- 3. Estimate of Electrification Work for a Material Testing Laboratory.
- 4. Time Estimate by Network Analysis.
- 5. Estimation of Air Conditioning requirements for a Library.
- 6. Valuation reports for:
- [i] A hotel
- [ii] A Theatre
- [iii] An Educational Building

## Total No of Hours : 30

### **BOOKS/REFERENCES**

- 1. B.N.Dutta-Estimating and Costing in Civil Engineering, UPSPD
- 2. Delhi Schedule Rates, C.P.W.D.



Subject Code:		Subject Nar	ne: PROJ	ЕСТ РН	ASE-I				Ty/Lb/ ETL	L	T/S.Lr	<b>P/ R</b>	С
BCE17L14							EIL						
		Prerequisite	: ALL						Lb	0	0/1	0/3	2
L : Lecture T :	Tutoria	al SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	C: Credits		•			-
T/L/ETL : Theo	ory/Lal	b/Embedded	l Theory a	nd Lab									
OBJECTIVE	: То	guide the s	tudents su	ch a way	that the	students	carry ou	it a comp	orehensive	work or	n the choser	n topic v	which
will stand them	in goo	od stead as t	hey face re	al life sit	uations.								
COURSE OU	ГСОМ	IES (COs)	: ( 3- 5)										
CO1		Work in a						skills					
CO2		Explore in											
CO3 Mapping of Co		Develop p					equireme	ents					
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	) PO11	PO	12
CO1	H	H	H	H	H	H	H	H	H	Н	H	H	
CO2	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	
CO3	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	
COs / PSOs		PSO1	PS	D2									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	s Strer	ngth of Corr	elation H	- High, N	M- Mediu	ım, L-Lo	w						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project     ■	Internships / Technical Skill	Soft Skills				
Approval													
-ppio,ui													



### BCE17L14

## **PROJECT PHASE-I**

#### **OBJECTIVE**

To guide the students such a way that the students carry out a comprehensive work on the chosen topic which will stand them in good stead as they face real life situations

The objective of project work is to enable the students to work in convenient groups of not more than four members in a group on a project involving theoretical and experimental studies related to civil engineering. Every project work shall have a guide who is a member of the faculty of the university.

Each student shall finally produce a comprehensive report covering background information, literature survey, problem statement, project work details and conclusions. This final report shall be typewritten form as specified in the guidelines.

The continuous assessment and semester evaluation may be carried out as specified in the guidelines to be issued from time to time.



Subject Code	: Sı	ubject Na	ame : ]	Foreign	Langua	age(Eva	luation)	)	T/L/	L	T/	<b>P/ R</b>	C
BFL1700X									ETL		S.Lr		
	Pı	rerequisit	e: NIL						L	1	0/1	0/0	2
L : Lecture T	: Tutori	al SLr	Supervis	ed Lear	ning P:	Project	R : Res	search C	C: Credits				•
T/L/ETL : The	eory/La	b/Embed	ded Theor	ry and L	ab								
OBJECTIVE effectively in a		-			•			-	-				Jage.
COURSE OU	JTCON	IES (CO	os) : ( 3- 5	)									
CO1	Achie	eve funct	ional prof	iciency i	n listeni	ng, spea	aking, re	ading, a	and writing	З.			
CO2	Deve	lop an ir	nsight into	the nat	ure of la	anguage	itself, tl	he proc	ess of lang	uage an	d culture	e acquisi	tion.
CO3	Deco	de, analy	ze, and ir	iterpret	authent	ic texts	of differ	ent ger	ires.				
Mapping of C	Course	Outcome	es with Pr	ogram	Outcom	nes (POs	5)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PO	12
CO1	L	L	L	L	L	Н	L	Н	М	Н	Н	L	
CO2	М	L	L	L	L	Н	L	Н	Н	Н	Н	L	
CO3	L	L	М	М	L	Н	М	Н	М	Н	Н	L	
COs / PSOs	Р	SO1	PS	02	PS	503	PS	SO4	PSO5				
CO1													
CO2													
H/M/L indicat	tes Strei	ngth of C	orrelation	H-H	igh, M-	Medium	i, L-Low	1					
Category	Basic Sciences	Engineering Sciences	<ul> <li>Humanities and Social</li> <li>Sciences</li> </ul>	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval			<u> </u>				<u> </u>	<u> </u>				<u> </u>	



Subject Code:		bject Nan DTAL QU					[	T / L/ ETL	L	T/S Lr	Р	С		
BMG17003	-	uisite: Bas nentation	ic Know	ledge as o	quality te	chniques	and	L	2	0/1	0	3		
L : Lecture T : Tut	orial P	P: Project	C: Credi	its										
<b>OBJECTIVE:</b>														
<ul> <li>To acquaint the students with the basic concept of Total Quality (TQ) from design assurance to service assurance.</li> <li>To give understand International Quality Certification Systems – ISO 9000 and other standards.</li> <li>To apply in design manufacturing, quality control and services, and to closely interlink management of quality, reliability and maintainability for total product assurance.</li> <li>To understand concepts related to quality of services in contemporary environment.</li> </ul>														
CO1		To maintain quality in all aspects												
CO2		To understand the basic tools for quality control												
CO3		To bring out zero defect products												
Mapping of Cour	Mapping of Course Outcomes (COs) with Program Outcomes (POs) & Program Specific Outcomes (PSOs)													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO	7 PO8	PO9	PO10	PO11	PO12		
CO1	Н	М	Н	М	М	L	L	Н	Н	Н	М	Н		
CO2	М	М	М		М	L		Н			Н	М		
CO3	Н	Н	М	М	Н	М	М	Н	Н	М	М	Н		
H/M/L indicates S	trength o	of Correlat	ion H-	High, M	- Mediun	n, L-Low	V			1	1	1		
	Basic Sciences	Engineering Sciences Ummonities	and Social	Program Core Program	Flactives Open Electives	Practical / Proiect		Internships / Soft Skills	Management	Science				
Category														
Approval														

B.Tech Regulation 2017 Approved by the Academic Council .....

#### TOTAL QUALITY MANAGEMENT

## **OBJECTIVE**

BMG17003

Meeting the customer's requirements is the primary objective and the key to organisational survival and growth.; The second objective of TQM is continuous improvement of quality. The management should stimulate the employees in becoming increasingly competent and creative.

**UNITI: INTRODUCTION** 

Definition of quality, dimensions of quality, quality planning, quality costs - analysis techniques for quality costs, basic concepts of total quality management, historical review, principles of TQM, leadership - concepts, role of senior management. Quality council, quality statements, strategic planning, Deming philosophy, BARRIEs to TQM implementation.

#### UNIT II: TQM PRINCIPLES

Customer satisfaction – customer perception of quality, customer complaints, service quality, customer retention, employee involvement - motivation, empowerment, teams, recognition and reward, performance appraisal, benefits, continuous process improvement – juran trilogy, pdsa cycle, 5s, kaizen, supplier partnership – partnering, sourcing, supplier selection, supplier rating, relationship development, performance measures - basic concepts, strategy, performance measure.

#### UNIT III: STATISTICAL PROCESS CONTROL (SPC)

The seven tools of quality, statistical fundamentals – measures of central tendency and dispersion, population and sample, normal curve, control charts for variables and attributes, process capability, concept of six sigma, new seven management tools.

#### UNIT IV: TQM TOOLS

Benchmarking - reasons to benchmark, benchmarking process, quality function deployment (QFD) - house of quality, QFD process, benefits, taguchi quality loss function, total productive maintenance (TPM) - concept, improvement needs, FMEA - stages of FMEA.

#### **UNIT V : QUALITY SYSTEMS**

Need for iso 9000 and other quality systems, iso 9000:2000 quality system - elements, implementation of quality system, documentation, guality auditing, gs 9000, iso 14000 – concept, requirements and benefits.

#### **TEXT BOOKS**

* Dale h. Besterfiled, et at., Total Quality Management, Pearson Education Asia, 1999. (Indian Reprint 2002). REFERENCE

- James R. Evans & William M.Sidsay, The Management And Control Of Quality, (5th edition), South -Western (Thomson Learning), 2002 (isbn 0 – 324 – 06680 – 5)
- Feigenbaum.A.V. "Total Quality Management, Mcgraw Hill, 1991.
- Oakland.J.S. "Total Quality Management Butterworth Hcinemann Ltd., Oxford. 1989.
- Narayana V. And Sreenivasan, N.S. Quality management Concepts And Tasks, New Age International 1996.
- Zeiri. "Total Quality Management For Engineers Wood Head Publishers, 1991.

B.Tech Regulation 2017 Approved by the Academic Council .....

### **Total No of Hours: 45**

# 9 Hrs

9 Hrs

9 Hrs

9 Hrs

## 9 Hrs

3003





Subject Code:		Subject Nar	ne: <b>PROJ</b>	ЕСТ РН	ASE-II				Ty/Lb/ ETL	L	T/S.Lr	P/ R	C
BCE17L15											0.15	0/10	10
		Prerequisite	: ALL						Lb	0	0/5	0/10	10
L : Lecture T :	Tutoria	al SLr : Su	upervised I	Learning	P : Proje	ct R : R	esearch (	C: Credits	5				
T/L/ETL : The	ory/Lal	o/Embeddee	d Theory a	nd Lab									
OBJECTIVE	: Tł	ne objective	e of projec	t work is	to enab	le the st	udents to	work in	convenie	nt group	s of not m	ore than	fou
members in a g	roup o	n a project i	nvolving t	heoretica	l and exp	erimenta	l studies	related to	o civil engi	ineering.			
COURSE OU'	ГСОМ	IES (COs)	: (3-5) St	tudents w	ill be abl	e to							
CO1			team and o					skills					
CO2			novative i										
CO3 Mapping of Co			rojects bas				equireme	ents					
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	H	H	H	Н	H	H	H	H	H	H	H	H	
CO2	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	
CO3	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	es Strer	igth of Corr	elation H	I- High, N	M- Mediu	ım, L-Lo	)W						
								kill					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	Basi	Eng	Hun Scie	Prog	Prog	Ope	∠Prac	Int	Soft				
Approval			<u> </u>	1	1		1				<b> </b>	<u> </u>	



## BCE17L15

## **PROJECT PHASE-II**

## **OBJECTIVE**

The objective of project work is to enable the students to work in convenient groups of not more than four members in a group on a project involving theoretical and experimental studies related to civil engineering. Every project work shall have a guide who is a member of the faculty of the university.

Fourteen periods per week shall be allotted in the time table for this important activity and this time shall be utilized by the students to receive directions from the guide, on library reading, laboratory work, computer analysis or field work as assigned by the guide and also to present in periodical seminars the progress made in the project. Each student shall finally produce a comprehensive report covering background information, literature survey, problem statement, project work details and conclusions. This final report shall be typewritten form as specified in the guidelines. The continuous assessment and semester evaluation may be carried out as specified in the guidelines to be issued from time to time.



ELECTIVE SYLLABUS

B.Tech Regulation 2017 Approved by the Academic Council .....



Subject Code:		Subject Na	me : ENV	IRONM	ENTAL	G	Ty/Lb/	L	T/S.Lr	P/ R	С		
BCE17E01									ETL				
		Prerequisite	: None						Ту	2	1/0	0/0	3
L : Lecture T : 7	Tutoria	al SLr : Su	pervised L	earning	P : Proje	ct R : R	esearch C	C: Credits	5				<u> </u>
T/L/ETL : Theo	ry/Lal	o/Embeddec	l Theory ai	nd Lab									
<b>OBJECTIVE</b> :	To ir	npart knowl	edge in fui	ndamenta	al theory	and desig	gn of con	ventiona	l water trea	itment fa	cilities.		
To impart know	ledge	in fundame	ental theory	and des	ign of co	nvention	al wastev	water trea	tment faci	lities .			
To impart know	ledge	on the princ	ciples used	to desigi	n advance	ed waster	water trea	atments.					
COURSE OUT	COM	IES (COs)	: (3-5)										
CO1	an insight into the structure of drinking water supply and waste water systems, including water t treatment and distribution												
CO2		an understanding of water quality and waste water criteria and standards, and their relation to pub											
CO3		the ability to design and evaluate water supply and waste water project alternatives on basis of chosen											
Mapping of Co	urse	Outcomes v	vith Progr	am Outo	comes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	2
CO1	Н	М	М		Н		Н	Н				М	
CO2	Н	М	М		Н		Н	Н				М	
CO3	Н	М	М		Н		Н	Н				М	
COs / PSOs		PSO1	PS	D2									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicates	Strer	igth of Corr	elation H	- High, N	M- Mediu	ım, L-Lo	w						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core		Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval					· 			· · · · ·					

B.Tech Regulation 2017 Approved by the Academic Council .....

## ENVIRONMENTAL ENGINEERING

## UNIT I : PLANNING FOR WATER SUPPLY SYSTEMS

**UNIT II: WATER TREATMENT** 

Scope of environmental engineering – role of environmental engineer – Public water supply systems – objectives – design period – population forecasting – water demand – sources of water – sources selection – water quality – characterization – sources of wastewater –estimation of storm runoff.

Screening - types of screening - plain sedimentation – sedimentation with coagulation – settling & flotation - filtration - disinfection

## UNIT III : SEWAGE TREATMENT – PRIMARY TREATMENT

Objectives – unit operations & processes – principles, functions and design of screen, grit chambers and primary sedimentation tanks.

#### UNIT IV : SEWAGE TREATMENT – SECONDARY TREATMENT

Secondary treatment – activated sludge process and trickling filter; other treatment methods – stabilization ponds and septic tanks – advances in sewage treatment.

### UNIT V: SEWAGE DISPOSAL AND SLUDGE MANAGEMENT

Methods – dilution – self purification of surface water bodies – oxygen sag curve – land disposal – sewage farming – deep well injection – soil dispersion system. Thickening – sludge digestion – biogas recovery - drying beds – conditioning and dewatering – sludge disposal.

## Total No of Hours: 45

### TEXT BOOKS

- * Garg, S.K., Environmental Engineering, Vols. I &II, Khanna Publishers, New Delhi, 1994
- * C.S.Shah, Water Supply And Sanitation, Galgotia Publishing Company, New Delhi, 1994

#### REFERENCES

- * Manual on Water Supply And Treatment, Ministry Of Urban Development, Government Of India, New Delhi, 1999.
- * Manual on sewerage and sewage treatment, CPHEEO, Ministry Of Urban Development, Government Of India, New Delhi, 1993.
- * H.S.Peavy, D.R.Rowe and George Tchobanoglous, Environmental Engineering, Mcgraw-Hill Book Company, New Delhi, 1995.

B.Tech Regulation 2017 Approved by the Academic Council .....

# Objectives

**BCE17E01** 

## 9 Hrs

#### 9 Hrs



Department of Civil Engineering

9 Hrs

9 Hrs

9 Hrs



Subject Code:		Subject Na	me :	Deb	artineilt		Enginee	ii ii ig	TY / L/	L	T/S.Lr	P/ R	C
BCE17E02		- DESIGN C	OF COMP	OSITE S	TRUCT	URES			ETL				
		Prerequisite					ires		TY	2	1/0	0/0	3
L : Lecture T : '								Credite		2	1/0	0/0	5
L. Lecture T.	1 utori	al SLL.S	uperviseu i	zaming	r . rioje	π. κ	esearen C	. Creans	)				
T/L/ETL : Theo	ory/La	b/Embedde	d Theory a	nd Lab									
<b>OBJECTIVE</b> : structures	: To (	develop an	understand	ing of the	e behavio	our and d	esign stud	dy of Stee	el concrete	compos	ite element	s and	
COURSE OUT	ГСОМ	IES (COs)	: (3-5)										
At the end of th	is cou	rse students	will be in	a positio	n to								
CO1		Design co	mposite be	ams, colu	umns, tru	sses and	box-gird	er bridge	s including	g the rela	ited connect	tions.	
CO2		They will	get exposu	re on cas	e studies	related t	o steel-co	oncrete c	onstruction	s of buil	dings		
CO3		Apply the	concepts o	of compo	site const	ruction i	n enginee	ering					
Mapping of Co	ourse	Outcomes	with Progr	am Outo	comes (P	Os							
COs/POs	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12
CO1	Н	Н	Н	Н		М			M		М		
CO2	Н	Н	Н	Н		М			M		М		
CO3	Н	Н	Н	Н		М			M		М		
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	s Strer	ngth of Corr	relation H	I- High, I	M- Mediu	um, L-Lo	)W						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Arogram Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval					<b>I</b> √		I		¥4				

B.Tech Regulation 2017 Approved by the Academic Council .....



# BCE17E02 DESIGN OF COMPOSITE STRUCTURES

UNIT I INTRODUCTION	9 Hrs
Introduction to steel - concrete composite construction - Coes - Composite action -	Serviceability and - Construction
issues.	
UNIT II DESIGN OF CONNECTIONS	9 Hrs
Shear connectors – Types – Design of connections in composite structures – Degree	of shear connection – Partial
shear interaction	
UNIT III DESIGN OF COMPOSITE MEMBERS	9 Hrs
Design of composite beams, slabs, columns, beam - columns - design of composite t	russes.
UNIT IV COMPOSITE BOX GIRDER BRIDGES	9 Hrs
Introduction - behaviour of box girder bridges - design concepts.	
UNIT V CASE STUDIES	9 Hrs
Case studies on steel - concrete composite construction in buildings - seismic behavior	our of composite structures.
Tat	al No of Hours A5

Total No of Hours : 45

# **REFERENCES:**

- Johnson R.P., "Composite Structures of Steel and Concrete Beams, Slabs, Columns and Frames for Buildings", Vol.I, Blackwell Scientific Publications, 2004.
- 2. Oehlers D.J. and Bradford M.A., "Composite Steel and Concrete Structural Members, Fundamental behaviour", Pergamon press, Oxford, 1995.
- 3. Owens.G.W and Knowles.P, "Steel Designers Manual", Steel Concrete Institute(UK), Oxford Blackwell Scientific Publications, 1992.



Subject Code:	s Su	bject Na	me: IN		artment		-	ering	TY / L/	L	T/S.Lr	P/ R	С
• BCE17E03		U							ETL				
Dell'Illo	Pr	erequisite	e: Design o	f steel an	d concre	te structu	ires		TY	2	1/0	0/0	3
L : Lecture T :	Tutorial	SLr : S	upervised l	Learning	P : Proje	ect R : R	esearch (	C: Credits	5				
T/L/ETL : The	ory/Lab/I	Embedde	d Theory a	nd Lab									
OBJECTIVE				ne of the	special a	spects w	ith respe	ct to Civi	l Engineer	ing struct	ures in ind	ustries.	
COURSE OU At the end of the				e able to.									
CO1	Discu	ss the pla	nning and	function	al require	ments of	Industri	al structu	res.				
CO2	Disco	ver the n	eed to lear	n about th	ne design	concepts	s, and co	nstructior	nal aspects	of			
	Indust	trial struc	ture.										
CO3	Analy	se and ev	aluate the	importar	ce of var	ious con	struction	materials	s for Indust	rial			
	Const	ruction.											
Mapping of C	ourse Or	itcomes	with Prog	ram Out	comes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	2
CO1	Н	Н	Н	Н		M	М		M		M		
CO2	Н	Н	Н	Н		М	М		М		М		
CO3	Н	Н	Н	Н		М	М		М		М		
COs / PSOs	P	SO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	es Strengt	h of Corr	relation H	I- High, I	M- Medi	um, L-Lo	)W						
Category	ces	s Sciences	and Social	ıre	ectives	ves	roject	Internships / Technical Skill					
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	- Program Electives	Open Electives	Practical / Project	Internship	Soft Skills				
Approval										1			

B.Tech Regulation 2017 Approved by the Academic Council .....



# INDUSTRIAL STRUCTURES

BCE17E03

UNIT I: PLANNING	9Hrs
Classification of Industries and Industrial structures - General requirements for industries like cer	nent, chemical and
steel plants – Planning and layout of buildings and components.	
UNIT II: FUNCTIONAL REQUIREMENTS	9Hrs
Lighting – Ventilation – Accounts – Fire safety – Guidelines from factories act.	
UNIT III: DESIGN OF STEEL STRUCTURES	9Hrs
Industrial roofs – Crane girders – Mill buildings – Design of Bunkers and Silos	
UNIT IV: DESIGN OF R.C. STRUCTURES	9Hrs
Silos and bunkers - Chimneys - Principles of folded plates and shell roofs	
UNIT V: PREFABRICATION	9Hrs
Principles of prefabrication - Prestressed precast roof trusses- Functional requirements for Precas	t concrete units
Total No. of Hours:	45
TEXT BOOKS	τ.
*Reinforced Concrete Structural elements – P. Purushothaman	
*Pasala Dayaratnam – Design of Steel Structure - 1990	
REFERENCES	
*Henn W. Buildings for Industry, Vols. I and II, London Hill Books, 1995	
*Handbook on Functional Requirements of Industrial buildings SP32 - 1086 Bureau of Indian S	tandards, New Delhi

*Handbook on Functional Requirements of Industrial buildings, SP32 – 1986, Bureau of Indian Standards, New Delhi 1990

*Course Notes on Modern Developments in the Design and Construction of Industrial Structures, Structural Engineering Research Centre, Madras, 1982



Subject Code:		Subject Na	ime	Вср	artmen		Engine	ening	TY / L/	L	T/S.Lr	<b>P/ R</b>	С
BCE17E04		SMART S	STRUCTU	RES AN	D SMA	RT MA	FERIAL	.S	ETL				
		Prerequisit	e: Concrete	and Cor	struction	1 Techno	logy		TY	2	1/0	0/0	3
L : Lecture T : T/L/ETL : The			-	-	P : Proje	ect R : F	Research	C: Credi	ts				1
OBJECTIVE:					insight in	to the la	test deve	lopment	s regarding s	smart ma	terials and	their use	e in
structures. Furt	her, th	is also deal	s with struc	-	-			-					
COURSE OU			. ,										
At the end of th CO1	ns cou				vinlos un	dortving	tha baha	viorofe	mart materia	1			
CO1 CO2					-				and transdue				
002		technolog	-	pering p	meipies	in sinar	sensor,	actuator					
CO3		Use princ	iples of me			process	ing, drive	e and cor	ntrol techniq	ues nece	ssary to de	veloping	;
CO4			ctures and	•		on the de	sion an	alveie m	anufacturing	r and			
04									evices with s				
		processin	g and contr	ol capab	ilities to e	engineer			es and prod	0			
Mapping of C			ę										
COs/POs	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12
CO1	Н			Н	Н	Н	Н	Н			М	М	
CO2	Н			Н	Н	Н	Н			М	М		
CO3	Н			Н	Н	Н	Н	Н			М	М	
CO4	Н			Н	Н	Н	Н	Н			М	М	
COs / PSOs		PSO1	PS	02		1							
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
CO4	Н		Н										
H/M/L indicate	es Strei	ngth of Cor	relation H	I- High,	M- Medi	um, L-L	ow		I			I	
Category	ces	g Sciences	and Social	Jre	ectives	ives	roject	Internships / Technical Skill					
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	-Program Electives	Open Electives	Practical / Project	Internship	Soft Skills				
Approval													

B.Tech Regulation 2017 Approved by the Academic Council .....

# BCE17E04 SMART STRUCTURES AND SMART MATERIALS

### UNIT I: INTRODUCTION

Introduction to Smart Materials and Structures – Instrumented structures functions and response – Sensing systems – Self diagnosis – Signal processing consideration – Actuation systems and effectors.

### UNIT II: MEASURING TECHNIQUES

Strain Measuring Techniques using Electrical strain gauges, Types – Resistance – Capacitance – Inductance – Wheatstone bridges – Pressure transducers – Load cells – Temperature Compensation – Strain Rosettes.

### UNIT III: SENSORS

Sensing Technology – Types of Sensors – Physical Measurement using Piezo Electric Strain measurement – Inductively Read Transducers – The LVOT – Fiber optic Techniques. Chemical and Bio-Chemical sensing in structural Assessment – Absorptive chemical sensors – Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement.

### UNIT IV: ACTUATORS

Actuator Techniques – Actuator and actuator materials – Piezoelectric and Electrostrictive Material – Magnetostructure Material – Shape Memory Alloys – Electro rheological Fluids– Electro magnetic actuation – Role of actuators and Actuator Materials.

# UNIT V: SIGNAL PROCESSING AND CONTROL SYSTEMS

Data Acquisition and Processing – Signal Processing and Control for Smart Structures – Sensors as Geometrical Processors – Signal Processing – Control System – Linear and Non-Linear.

# Total No of Hours : 45

### **TEXT BOOKS**

*Brain Culshaw – Smart Structure and Materials Artech House – Borton. London-1996.

### REFERENCES

*L. S. Srinath – Experimental Stress Analysis – Tata McGraw Hill, 1998.

*J. W. Dally & W. F. Riley - Experimental Stress Analysis - Tata McGraw Hill, 1998.

B.Tech Regulation 2017 Approved by the Academic Council .....



9Hrs

9Hrs

9Hrs

# 9Hrs





Subject Code:		Subject Na	me	Dep	artment		Enginee	ering	TY / L/	L	T/S.Lr	P/ R	C
-		-		A=					ETL			1/ <b>N</b>	
BCE17E05		ESTIMAT	TON AND	QUAN'	TITY SU	JRVEYI	NG						
	I	Prerequisite	: NIL						TY	2	1/0	0/0	3
L : Lecture T : T	lutoria	l SLr : Su	upervised I	earning	P : Proje	ct R : R	esearch (	C: Credit	S				<u> </u>
T/L/ETL : Theo	ry/Lat	/Embedde	d Theory a	nd Lab									
<b>OBJECTIVE :</b>	То	study the f	unctional p	lanning o	of buildin	igs as pe	r standar	ds; To stu	idy the esti	mate typ	es and term	ns involv	ed in
estimation; To	study	the import	ant specifi	cations 1	necessary	for the	works i	n buildir	ngs; To stu	dy the d	concepts of	f tender	s and
contracts;													
COURSE OUT				11 /									
At the end of thi	s cour					1 6 1	4 41			1			
CO1		=					-	nuty of v	vorks invol	vea.			
CO2		•	analysis o		-	-							
CO3 CO4		<b>1</b>	pecification						nlyandar	nitom,	rke		
							1 WORKS,	water sup	ply and sa	mary wo	JI K S		
Mapping of Co	urse (	Outcomes v	with Progr	am Outo	comes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	2
CO1	Н	Н		Н		М		М	Н		Н	Н	
CO2	Н	Н		Н		М		М	Н		Н	Н	
CO3	Н	Н		Н		М		М	Н		Н	Н	
CO4	Н	Н		Н		М		М	Н		Н	Н	
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
CO4	Н		Н										
H/M/L indicates	Stren	gth of Corr	elation H	I- High, I	M- Mediu	ım, L-Lo	ow				1		
								kill					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	<ul> <li></li></ul>	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	Bí	<u> </u>	Hı Sc	Pr	_pr	Ō	Pr	I	Sc				
Approval		<b>I</b>	<u> </u>	1	<u> </u>	1				<u> </u>	<b> </b>		

B.Tech Regulation 2017 Approved by the Academic Council .....

#### REFERENCES

- * G.S.Birdie, A Text Book On Estimating And Costing, Dhanpat Rai And Sons, New Delhi, 1995.
- * Mr. B.Kanagasabapathy, M/S. Ehilalarasi Kanagasabapathy, Fixation of Fair Rent, Thiruchirappalli, 1995.

**ESTIMATION AND QUANTITY SURVEYING** 

Types of estimates- units of measurements-methods of estimates - advantages- estimation of load bearing and framed structures -estimate of quantities in residential building- calculation of quantities of brick work, RCC, PCC, white washing ,color washing and painting / varnishing – calculation of brick work and RCC works in arches – estimate of joineries for paneled and glazed doors ,windows, ventilators, handrails etc.

### **UNIT II: ESTIMATE OF OTHER STRUCTURES**

Estimating of septic tank, soak pit – Sanitary and water supply installations – Water supply pipe line – Sewer line – Tube well - Open well - Estimate of bituminous and cement concrete roads-estimation of retaining walls and culverts.

## UNIT III: SPECIFICATIONS AND TENDERS

Data -schedule of rates- analysis of rates-specifications-sources-detailed and general specifications - tenders- etender contracts- contracts types- preparation of tender notice and documents-arbitration and legal requirements

### **UNIT IV: VALUATION**

**BCE17E05** 

**UNIT I: ESTIMATION** 

Necessity – basics of value engineering –capitalized value – depreciation and its methods – escalation _ value of building - calculation of standard rent - mortgage- lease.

# **UNIT V: REPORT PREPARATION AND CASH FLOW**

Principle of report preparation - report on estimate of residential building- commercial building -culvert - roads water supply and sanitary installations - tube wells - open wells.

### **TEXT BOOKS**

- * B.N.Dutta, Estimating And Costing In Civil Engineering –UBS publishers and distribution Pvt Ltd, 2003.
- Mr. B.Kanagasabapathy, M/S. Ehilalarasi Kanagasabapathy, Practical Valuation Vol I, Thiruchirappalli, 1995.
- Kohl, D.D and Kohli, R.C., "A Text Book of Estimating and Costing (Civil)", S.Chand & amp; CompanyLtd., 2004.
- Rangwala, "Estimating, Costing and Valuation", Charotar Publishing House Pvt Ltd., 2012.

Department of Civil Engineering



B.Tech Regulation 2017 Approved by the Academic Council .....

# 9 Hrs

9 Hrs

# 9 Hrs

9 Hrs

# 9 Hrs

# Total No of Hrs = 45 hrs



Subject Code:	:	Subject Na	me	Dep	artment		Enginee	ing	TY / L/	L	T/S.Lr	P/ R	С
BCE17E06		HOUSING	G PLANNI	NG ANI	) DESIG	GN			ETL				
		Prerequisite	: Building	Drawing	Practice	e			TY	2	1/0	0/0	3
L : Lecture T :		•	-				esearch (	^{¬.} Credit		-	1,0	0,0	
T/L/ETL : The			•	•	1 . 110je		esearen v	e. crean	.0				
OBJECTIVE	•	house plai	-		ction or	working	drawing	s that d	efine all the	e constru	iction speci	fication	s of a
residential hou all building sys	use A	truly succes	ssful projec	t is one	where pr	oject goa	als are id	entifies e	early on and		-		
COURSE OU	TCOM	IES (COs)	: (3-5)										
After successfu	ul comp	pletion of th	is course, t	he studer	nts should	d be able	to						
CO1		Plan the b	uildings, as	s per the l	law and 1	rules and	regulatio	ons					
CO2		Analyze tl	ne slum cle	arance pi	roject and	d prepare	e plan for	plot ma	p cost flow				
CO3		identify th	e financing	g agencie	s and its	function	s						
Mapping of C	ourse	Outcomes v	with Progr	am Outo	comes (P	POs)							
COs/POs	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н				Н		Н			Н		
CO2	Н	Н				Н		Н			Н		
CO3	Н	Н				Н		Н			Н		
COs / PSOs		PSO1	PS	02									
CO1	Н		Н	-									
CO2	H		H										
CO3	H		H										
		1.00											
H/M/L indicate	es Strer	igth of Cori	relation H	I- High, N	M- Medi	um, L-Lo	)W	1				1	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core		Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

B.Tech Regulation 2017 Approved by the Academic Council .....

# HOUSING - PLANNING AND DESIGN

# UNIT I: INTRODUCTION TO HOUSING

Definition of Basic Terms - House, Home, Household, Apartments - Objectives of National Housing Policies, Principle of Sustainable Housing, Housing Laws at State level, Local bodies' Bye-laws at Urban and Rural Level and Development Control Regulations, Institutions for Housing at National, State and Local levels.

## UNITII: HOUSING PROGRAMMES

Basic Concepts - Contents and Standards for Housing Programmes - Sites and Services, Neighbourhood, Open Development Plots, Apartments, Rental Housing, Co-operative Housing, Slum Housing Programme, Role of Public, Private and Non-Government Organisations.

#### UNIT III: PLANNING AND DESIGN OF HOUSING PROJECTS

Formulation of Housing Projects - Site Analysis, Layout Design, Design of Housing Units (Design Problems).

#### **UNIT IV: CONSTRUCTION TECHNIQUES AND COST-EFFECTIVE MATERIALS** 9Hrs

New Constructions Techniques - Cost Effective Modern Construction Materials, Building Centers - Concept, Functions and Performance Evaluation.

### UNIT V: HOUSING FINANCE AND PROJECT APPRAISAL

Appraisal of Housing Projects - Housing Finance, Cost Recovery - Cash Flow Analysis, Subsidy and Cross Subsidy, Pricing of Housing Units, Rents, Recovery Pattern (Problems).

**Total No of Hours :** 

### **TEXT BOOKS**

**BCE17E06** 

- Meera Mehta and Dinesh Mehta, Metropolitan Housing Markets, Sage Publications Pvt. Ltd., New Delhi, 1999.
- * Francis Cherunilam and Odeyar D Heggade, Housing in India, Himalaya Publishing House, Bombay, 1997.

### REFERENCES

- * Development Control Rules for Chennai Metropolitan Area, CMA, Chennai, 200.
- UNCHS, National Experiences with Shelter Delivery for the Poorest Groups, UNCHS (Habitat), Nairobi, * 1994.
- * National Housing Policy, 1994, Government of India.

9Hrs

9Hrs

9Hrs

9Hrs

45





Subject Code: BCE17E07		Subject N BUILDI ENGINE	NG TECHN	OLOGY	Y AND H	IABITA	Г		TY / L/ ETL	L	T/S.Lr	P/ R	С
		Prerequis	te: none						TY	2	1/0	0/0	3
L : Lecture T : T	Futori	al SLr:	Supervised I	Learning	P : Proje	ct R : Re	esearch C	C: Credit	S			I	I
T/L/ETL : Theo	ory/La	b/Embedd	ed Theory a	nd Lab									
<b>OBJECTIVE :</b>													
COURSE OUT													
After successful	com												
CO1		-	se the variou				-						
CO2 CO3			and the impound the impo							· : 1:1.	l'		
Mapping of Co	urse		1				entilatio	n and an	r movemen	t in duite	nng.		
	uise	Outcome	with 110g		Junes (1	03)							
COs/POs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2
CO1	Н				Н		Н				М		
CO2	Н				Н		Н				М		
CO3	Н				Н		Н				М		
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicates	s Stre	ngth of Co	rrelation H	I- High, N	M- Mediu	ım, L-Lo	w						
				1	1	T	1	1	I				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	✓ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval					<u> </u>								

#### **BCE17E07 BUILDING TECHNOLOGY AND HABITAT ENGINEERING**

# **UNIT I BUILDING STONES**

Requirement of good building stone- characteristics - testing.Lime: Properties- Classifications -Manufacture -Testing of lime. Pozzolona: Natural and Artificial pozzolonas. Timber - Defects - Seasoning - Decay - Preservation, Tiles-Flooring and roofing tiles-specification-tests. Paints varnishes and distempers, Common constituents, types and desirable properties.

# UNIT II MISCELLANEOUS MATERIALS

Insulating Materials - Thermal and sound insulating material desirable properties and type. Geosynthetics and its applications .Lintels -Arches - Stairs- different types and its components. Doors, Windows and Ventilations -Classification - Technical terms-Classification and Types

## UNIT III ROOF

**REFERENCES:** 

Types of roofs - wooden trusses .Finishing works - Plastering, pointing, painting, white washing, colour washing, distempering; Damp proofing ant termite treatment.

### UNIT IV CLIMATE AND COMFORT

Global climatic factors - Elements of climates - Classification of tropical climates- site climate .The desirable conditions- Thermal comfort factors-Thermal comfort indices - Effective temperature

### UNIT V THERMAL CONTROL

Means of thermal control - Mechanical control- structural control- ventilation and air movement

**Total No of Hours :** 45

#### * Gurucharan Singh, Building materials,,1996

- Rangwala S. C, Engineering Materials, Charotar Publishing House, 1992, Anand
- Punmia B. C, Building Construction, Laxmi Publications, 1999, New Delhi.
- * Rangwala S. C, Building Construction, Charotar Publishing House, 1992, Anand
- Huntington W.C, Building Construction, John Wiley, 1959, New York. *
- * Koenigsberger, Manual of Tropical Housing and Building, Orient Longman Ltd

B.Tech Regulation 2017 Approved by the Academic Council .....



# 9Hrs

9Hrs

# 9Hrs

# 9Hrs



Subject Code:		-	ect Nar						_	TY / L/ ETL	L	T / S.Lr	P/ R	С
BCE17E08		COS	ST EFF	ECTIVE	BUILDI	NGS								
		Prere	equisite:	Concrete	and Cons	struction	Technolo	ogy		TY	2	1/0	0/0	3
L : Lecture T : 7	Futor	ial S	SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	C: Credit	S	1	1		
T/L/ETL : Theo	ory/La	ab/Em	bedded	Theory an	id Lab									
<b>OBJECTIVE :</b>														
COURSE OUT					. 1	. 1 1								
After successful CO1	com	pletio	n of this	s course, th	ne studen	ts should	be able	to						
01		Idei	ntify the	e cost effec	tive tech	niques ai	nd enviro	onmental	friendly	materials i	in constr	uction		
CO2		TI			1 . 1 1									
CO3				e effects of I the green					ction fie	1d				
Mapping of Co	urse							i consuu		14.				
				- 8- 1			,							
COs/POs	PO	1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2
CO1	Η	]	Н			Н	Н		Н			Н	Н	
CO2	Η	]	Н			Н	Н		Н			Н	Н	
CO3	Н	]	Н			Н	Н		Н			Н	Н	
COs / PSOs		PSO	1	PSC	PSO2									
CO1	Н			Н										
CO2	Η			Н										
CO3	Η			Н										
H/M/L indicates	s Stre	ngth c	of Corre	elation H	- High, N	1- Mediu	m, L-Lo	W						
								1			1			
Category	Sa		Sciences	nd Social	2)	tives	Se	ject	Internships / Technical Skill					
	Basic Sciences		Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships ,	Soft Skills				
			-			$\sqrt{1}$				•				
Approval														
						<u> </u>	hutha A							



#### BCE17E08 COST EFFECTIVE BUILDINGS

#### UNIT I: INTRODUCTION TO COST EFFECTIVE CONSTRUCTION

Introduction to the concept of cost effective construction -Uses of different types of materials and their availability -Stone and Laterite blocks- Burned Bricks- Concrete Blocks- Stabilized Mud Blocks- Lime-Poszolana Cement-Gypsum Board- Light Weight Beams- Fiber Reinforced Cement Components- Fiber Reinforced Polymer Composite-Bamboo- Availability of different materials-Recycling of building materials – Brick- Concrete- Steel- Plastics -Environmental issues related to quarrying of building materials.

### UNIT II: TECHNOLOGIES & METHODS IN CONSTRUCTION 12 Hours

Environment friendly and cost effective Building Technologies - Different substitute for wall construction Flemish Bond - Rat Trap Bond – Arches – Panels - Cavity Wall - Ferro Cement and Ferro Concrete constructions – different pre cast members using these materials - Wall and Roof Panels – Beams – columns - Door and Window frames -Water tanks - Septic Tanks - Alternate roofing systems - Filler Slab - Composite Beam and Panel Roof -Preengineered and ready to use building elements - wood products - steel and plastic - Contributions of agencies

#### UNIT III: GLOBAL WARMING & THE RELEVANCE OF GREEN BUILDINGS 07 Hours

Global Warming – Definition - Causes and Effects - Contribution of Buildings towards Global Warming - Carbon Footprint – Global Efforts to reduce carbon Emissions - Green Buildings – Definition - Features- Necessity – Environmental benefit - Economical benefits- Health and Social benefits - Major Energy efficient areas for buildings – Embodied Energy in Materials- Green Materials - Comparison of Initial cost of Green V/s Conventional Building -Life cycle cost of Buildings.

#### **UNIT IV: GREEN BUILDING**

Green Buildings – Definition - Features- Necessity – Environmental benefit - Economical benefits - Health and Social benefits - Major Energy efficient areas for buildings - Embodied Energy in Materials-Green Materials -Comparison of Initial cost of Green V/s Conventional Building - Life cycle cost of Buildings.

#### **UNIT V: GREEN DESIGN**

Green Design – Definition - Principles of sustainable development in Building Design - Characteristics of Sustainable Buildings – Sustainably managed Materials - Integrated Lifecycle design of Materials and Structures (Concepts only)

#### **REFERENCES:**

* K S Jagadeesh, B V Venkatta Rama Reddy & K S Nanjunda Rao ,Alternative Building Materials and Technologies , New Age International Publishers.

- * Asko Sarja ,Integrated Life Cycle Design of Structures , SPON Press.
- * D S Chauhan and S K Sreevasthava , Non conventional Energy Resources , New Age International Publishers.

* Laurie Backer, Buildings How to Reduce Cost, Cost Ford.

07 Hours

# 07 Hours

### Total No of Hours : 45

# 12Hours



Subject Code	:	Subject Na	me			of Civil			TY / L/	L	T/S.Lr	P/ R	C
BCE17E09		INDUSTR	IAL WAS	TE MA	NAGEM	ENT			ETL				
		Prerequisite							TY	2	1/0	0/0	3
L : Lecture T :	Tutori	al SLr : Su	pervised I	Learning	P : Proje	ct R : R	esearch (	C: Credits	5				1
T/L/ETL : The	ory/La	b/Embedded	d Theory a	nd Lab									
OBJECTIVE	: Т	'o impart kn	owledge of	n various	environ	nental leg	gislations	5.					
		o understan											
		o impart kno	-	n the poll	ution pot	ential of	major in	dustries a	and the met	thods of c	ontrolling	the sam	e.
COURSE OU After successfu				he studer	nts should	t he ahle	to						
CO1	ui com							nd water	environme	nt.			
CO2									zation tech				
CO3			e impacts		-	-				1			
Mapping of C	ourse	-	-										
COs/POs	PO	l PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н			M	Н	Н	Н	Н		М	Н	Н	
CO2	Н			М	Н	Н	Н	Н		М	Н	Н	
CO3	Н			М	Н	Н	Н	Н		М	Н	Н	
COs / PSOs		PSO1	PS	02		1							
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	es Strei	ngth of Corr	elation H	I- High, I	M- Mediu	ım, L-Lo	w						
								ill					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	Ä	Ē	H X	- Ed	-4 √		4		Ň				
Approval													

# INDUSTRIAL WASTE MANAGEMENT

# UNIT I: INTRODUCTION

**BCE17E09** 

Types of industries and industrial pollution – Characteristics of industrial wastes – Population equivalent – Bioassay studies – effects of industrial effluents on streams, sewer, land, sewage treatment plants and human health – Hazardous Wastes – Environmental legislations related to prevention and control of industrial effluents and hazardous wastes – Pollution Control Boards.

# **UNIT II: CLEANER PRODUCTION**

Waste management Approach – Waste Audit – Volume and strength reduction – material and process modifications – Recycle, reuse and byproduct recovery – Applications.

# UNIT III: TREATMENT OF INDUSTRIAL WASTEWATER

Equalisation – Neutralisation – removal of suspended and dissolved organic solids - Chemical oxidation – Removal of dissolved inorganics – Combined treatment of industrial and municipal wastes – Residue management.

# UNIT IV: 4. TREATMENT AND DISPOSAL OF HAZARDOUS WASTES

Physio chemical treatment - solidification - incineration - Secured landfills - Legal Provisions.

# UNIT V: CASE STUDIES

Sources, Characteristics, waste treatment flow sheets for selected industries such as Textiles, Tanneries, Dairy, Sugar, Paper, distilleries, Steel plants, Refineries, fertilizer, thermal power plants.

#### Total No. of Hours: 45

### **TEXT BOOKS**

*M.N.Rao & A.K.Dutta, Wastewater Treatment, Oxford IBH Publication, 1995.

*W .W. Eckenfelder Jr., Industrial Water Pollution Control, McGraw-Hill Book Company, New Delhi, 1994.

### REFERENCES

*T.T.Shen, Industrial Pollution Prevention, Springer, 1999.

*R.L.Stephenson and J.B.Blackburn, Jr., Industrial Wastewater Systems Hand book, Lewis Publisher, New York,

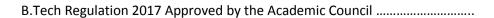
*H.M.Freeman, Industrial Pollution Prevention Hand Book, McGraw Hill Inc., New Delhi, 1995.

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE UNIVERSITY Instance I barries ACOLOGY (An ISO 9001 12006 Cartification)

# Department of Civil Engineering

# 9Hrs

9Hrs


# --

9Hrs





Subject Code:	:	Subject Na	me		artment			0	TY / L/	L	T/S.Lr	P/ R	C
BCE17E10		CLEANE	R PRODU	CTION					ETL				
	F	Prerequisite							TY	2	1/0	0/0	3
L : Lecture T :	Tutori	al SLr : S	upervised I	earning	P : Proje	ect R : R	esearch	C: Credit	is		<u> </u>	I	<u> </u>
T/L/ETL : The	ory/La	b/Embedde	d Theory a	nd Lab									
OBJECTIVE	: ]	To develop	a basic kno	wledge a	bout the	cleaner p	oroductio	on and ap	ply the sam	e in the	field applic	ation.	
	r	Fo educate	the studen	ts on con	nplete m	anageme	ent princ	iples rela	ated to Clea	aner Pro	duction and	d Contro	ol of
	]	Industrial	Pollution.										
COURSE OU	TCOM	IES (COs)	: (3-5)										
The students co	omplet	-				1 1	1						
CO1 CO2		-	sustainable plan and in	-			-		pt				
CO2 CO3		•		-		-			e minimiza	tion tech	niques		
Mapping of C	ourse						T				1		
COs/POs	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
										1010			
CO1	Н	Н		Н	Η	Н	Н	Н			Н	М	
CO2	Н	H H H H					Н	Н			Н	М	
CO3	Н	Н		Н	Н	Н	Н	Н			Н	М	
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	es Strei	ngth of Cor	relation H	I- High, I	M- Mediu	um, L-Lo	)W						
								lli					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	kills				
	Basic	Engin	Humaniti Sciences	Progra	∽Progra	Open	Practic	Inter	Soft Skills				
Approval													



#### **BCE17E10**

#### **UNIT I : INTRODUCTION**

Sustainable Development - Indicators of Sustainability - Sustainability Strategies - Barriers to Sustainability -Cleaner Production (CP) in Achieving Sustainability - Environmental Policies and Legislations - Regulations to Encourage Pollution Prevention and Cleaner Production - Regulatory versus Market Based Approaches

**CLEANER PRODUCTION** 

### **UNIT II : CLEANER PRODUCTION CONCEPT**

Definition - Importance - Benefits - Promotion - Barriers - Role of Industry, Government and Institutions -Environmental Management Hierarchy - Source Reduction Techniques - Process and equipment optimisation, reuse, recovery, recycle, raw material substitution.

### **UNIT III: CLEANER PRODUCTION PROJECT DEVELOPMENT AND IMPLEMENTATION 9 Hrs**

Overview of CP Assessment Steps and Skills, Preparing for the Site Visit, Information Gathering, and Process Flow Diagram, Material Balance, Establishing a Program - Organizing a Program - Preparing a Program Plan - Measuring Progress - Pollution Prevention and Cleaner Production Awareness Plan - Waste audit - Environmental Statement.

#### UNIT IV: LIFE CYCLE ASSESSMENT

Elements of LCA - Life Cycle Costing - Eco Labelling - Design for the Environment - International Environmental Standards - ISO 14001 - Environmental audit.

### **UNIT V: CASE STUDIES**

Industrial applications of CP, LCA, EMS and Environmental Audits.

Total No of Hours : 45

### REFERENCES

* Paul L Bishop (2000) " Pollution Prevention: Fundamentals and Practice " McGraw-Hill International New York.

*World Bank Group (1998) "Pollution Prevention and Abatement Handbook"

*"Towards Cleaner Production ", World Bank and UNEP, Washington D.C.

*Prasad modak, C.Viswanathan and Mandar parasnis (1995)"Cleaner Production Audit ",

Environmental System Reviews, No.38, Asian Institute of Technology, Bangkok.

9 Hrs

9 Hrs



9 Hrs



Subject Code	: 5	Subject Na	me					-	TY/L/	L	T/S.Lr	P/ R	C
BCE17E11		ARCHITH	ECTURE .	AND TO	WN PL	ANNINO	Ĵ		ETL				
		Prerequisite							TY	2	1/0	0/0	3
L : Lecture T :	Tutoria	1 SLr : Su	upervised l	Learning	P : Proje	ect R : R	esearch	C: Credit	.s				1
T/L/ETL : The	eory/Lab	/Embedde	d Theory a	nd Lab									
OBJECTIVE	: To in	npart know	ledge on a	architectu	ral desig	n of strue	ctures as	s per the	zoning regu	ilations			
COURSE OU		· · ·	· · ·										
After successf	ul comp						to						
CO1		1	rchitectura	-									
CO2 CO3		perform L	e land requ		as per the	ezoning	regulatio	ons					
Mapping of C	Course C				comes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н	М			Н	Н	Н	М		Н	М	
CO2	Н	Н	М			Н	Н	Н	М		Н	М	
CO3	Н	Н	М			Н	Н	Н	М		Н	М	
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicat	es Stren	oth of Corr	elation F	I- High	M- Medi	um L-Lo	)W						
								Internships / Technical Skill					
		ces	Social					hnicí					
Catagory		cien			ives	s	ject	Tec					
Category	Basic Sciences	Engineering Sciences	Humanities and Sciences	ore	Program Electives	Open Electives	Practical / Project	/ sd					
	Scie	erir	nitie es	Program Core	mE	Elec	al/	nshi	kills				
	sic ;	gine	Humanit Sciences	ogra	ogra	en l	actic	nter	Soft Skills				
	Ba	En	Ht Sc	Pr(		OF	Pr;	I	So				
					$\checkmark$								
	_												
Approval													



### BCE17E11 ARCHITECTURE AND TOWN PLANNING

#### **UNIT I: ARCHITECTURAL DEVELOPMENT:**

Natural and built environment, historic examples, factors influence architectural development.

### UNIT II: PRINCIPLES OF ARCHITECTURAL DESIGN:

Design methods, primary elements, form, space, organization, circulation, proportion and scale, ordering principles;

#### UNIT III: FUNCTIONAL PLANNING OF BUILDINGS:

Planning, designing and construction, general building requirements, permit and inspection (as per the National building Code);

# UNIT IV: EVOLUTION OF TOWNS:

History and trends in town planning: origin and growth, historical development of town planning in ancient valley civilizations; Objects and necessary of town planning; Surveys and analysis of a town; New Concepts in town planning: Garden city movement, Linear city and Satellite city concepts, Neighborhood Planning;

#### UNIT V: PLANNING PRINCIPLES, PRACTICE AND TECHNIQUES: 9Hr

Elements of City plan, Estimating future needs, Planning standards, Zoning - its definition, procedure and districts, height and bulk zoning, F. A. R., Master Plan; Concepts of Urban planning, Design and Landscaping.

#### **Total No of Hours: 45**

#### **TEXT BOOKS**

* B. Gallion and S. Eisner, The Urban Pattern: City planning and Design - C B S publishers, 5th edition, 2005.

*D. K. Francis Ching, Architectures: Form, Space and Order, John Wiley, 2nd edition 1996.

#### REFERENCES

*National Building Code of India 2005, BIS, New Delhi.

*S. Eisner, A. B. Gallion and S. Eisner, The Urban Pattern: City planning and Design, John Wiley 6th edition 1996.

B.Tech Regulation 2017 Approved by the Academic Council .....

### 9Hrs

9Hrs

9Hrs

9Hrs



Subject Code:	5	Subject Na	me	Dep		of Civil			TY / L/	L	T/S.Lr	<b>P</b> / <b>R</b>	C
BCE17E12		DAM ENG	INEERIN	١G					ETL				
	I	Prerequisite	: Irrigatio	on Engine	eering				TY	2	1/0	0/0	3
L : Lecture T :	Tutoria	1 SLr : Su	pervised I	earning	P : Proje	ect R : Re	esearch (	C: Credit	S				
T/L/ETL : The	ory/Lab	/Embedded	l Theory a	nd Lab									
OBJECTIVE	: To	o impart a k	nowledge	on types	of dam,i	ts functio	ns and d	esign pri	nciples.				
COURSE OU													
At the end of th	ne cours												
CO1		Analyse an		•									
CO2		Analyse an	-										
		Design spi					res						
Mapping of Co	ourse (	Jutcomes v	with Progr	am Outo	comes (P	'Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	2
CO1	Н	Н	Н	Н	М	Н		Н			М	М	
CO2	Н	Н	Н	Н	М	Н		Н			М	М	
CO3	Н	Н	Н	Н	М	Н		Н			М	М	
COs / PSOs		PSO1 PSO2											
CO1	Н		Н										
CO2	Н		Н										
Co3	Н		Н										
H/M/L indicate	s Stren	gth of Corr	elation H	I- High, N	M- Mediu	um, L-Lo	W						
		es	Social					nical Skill					
Category	Basic Sciences	Engineering Sciences	Humanities and So Sciences	Program Core	Arogram Electives     Arogram Electives     Arogram     A	Open Electives	Practical / Project	Internships / Technical SI	Soft Skills				
					, v								
Approval													

# B.Tech Regulation 2017 Approved by the Academic Council .....

# **BCE17E12**

#### UNIT I: INTRODUCTION

Types of Dam, merits and demerits, dam site selection, selection of dam, Forces acting on gravity Dam, Methods of analysis of gravity Dam, Modes of failure and stability requirements, Design criteria and factor of safety.

# UNIT II: GRAVITY DAM

Elementary profile of a gravity dam, Low and high gravity dams, Zoning of dams, Galleries in dams, Temperature control in mass concrete; gravity dams subjected to earthquakes.

# UNIT III: BUTTRESS AND ARCH DAMS

Buttress and Arch dams, Types, selection, merits and demerits, Elementary design Principles of Arch and Buttress dams.

# **UNIT IV: EARTH DAM**

Earth Dam their component and functions, causes of failure. Factors influencing the design of an earthdam. Design criteria for Earth Dam.

UNIT V: **SPILLWAY** 

Elementary idea of design for spillway and energy dissipaters.

# TEXT BOOKS

* R.S. Varshney "Concrete Dams", by 1982, NCB, Roorkee

*Design of Small Dams, USBR 1960, Calcutta, Oxford and IBH

*W.P. Creager, J. Justin, Daud Hinds, "Engineering for Dams" Vol. I-III, Wiley, N.Y., USA.

* IS: 6512-1984, Criteria for Design of solid Gravity Dams.

*IS:1893-1984, , Criteria for Earthquake resistant Design of structures.

# REFERENCES

* NPTEL course materials from different IITs

9Hrs

9Hrs

9Hrs

9Hrs

9Hrs

**Total No of Hours: 45** 

FRSIT (An 15O 9001

Department of Civil Engineering

DAM ENGINEERING





Subject Code:	S	ubject Na	me	Dep	artment		LIIgillee	ing	TY / L/	L	T/S.Lr	P/ R	C
BCE17E13									ETL				
BCEI/EIS		STRUCTU	RAL DYNAI	VIICS AN	DEARTH	QUAKE	ENGINEE	RING					
	F	Prerequisite	e: Structura	l Analysi	s I & II				TY	2	0/1	0/0	3
L : Lecture T : '	Tutoria	1 SLr : S	upervised I	earning	P : Proje	ct R : R	esearch (	C: Credit	S		1		
T/L/ETL : Theo	ory/Lab	/Embedde	d Theory a	nd Lab									
<b>OBJECTIVE</b> :	: T	o develop :	systematica	lly from	basic pri	nciples o	of structu	ral dynai	nics the cha	aracteris	tic of dynan	nic beha	viour
of the structure,					I	1		5			5		
To expose impo				ries of ca	use of ea	rthquake	e and me	asureme	nt of its effe	ects on th	ne structure	as loads	3
COURSE OUT	ГСОМ	ES (COs)	: (3-5)										
At the end of th	e cours												
CO1		-						1	of structur	al syster	ns		
CO2			ledge to an	•		•	•		-				
CO3			-	-			mic load	ing as pe	r code prov	isions.			
Mapping of Co	ourse C	outcomes v	with Progr	am Outo	comes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н	Н	Н		Н		М				М	
CO2	Н	Н	Н	Н		Н		М				М	
CO3	Н	Н	Н	Н		Н		М				M	
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	s Stren	gth of Corr	relation H	I- High, N	I M- Mediu	ım, L-Lo	)w						
				1									
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	✓Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval								-			<b>I</b>		

# BCE17E13 STRUCTURAL DYNAMICS AND EARTH QUAKE ENGINEERING

# UNIT I : SINGLE DEGREE OF FREEDOM SYSTEMS

Formulation of equation of motion-free and forced vibrations-response to dynamic Loading-effect of damping

# **UNIT II : MODAL ANALYSIS**

Free and forced vibration of un-damped and damped MDOF systems- equation of Motions- evaluation of natural frequencies and modes

# UNIT III : INTRODUCTION TO EARTH QUAKE ENGINEERING

Elements of engineering seismology- characteristics of earth quake engineering- earth quake history- Indian seismicity.

# UNIT IV : BEHAVIOUR OF STRUCTURES AND SOIL

Performance of structures under past earth quakes- lessons learnt from past earth Quakes- behavior of soil under earth quake loading- soil liquefaction- soil structure Interaction effects.

# UNIT V : EARTH QUAKE RESISTANT DESIGN

Concept of Earth quake resistant design- provisions of seismic code IS-1893 (part I)- 2002- response spectrum-design spectrum- seismic coefficient- design of buildings.

# TEXT BOOKS

- 1. Clough R. W, and Penzien J, Dynamics of structures, Second Edition, Mc Graw-Hill International edition, New Delhi, 1993
- 2. Mario Paz, structural dynamics- theory and computations, Third Editions CBS Publishers, New Delhi, 1990.

# REFERENCES

- Minoru Wakabayashi, Design of earth quake resistant buildings,Mc Graw- Hill book company, New York 1986
- 2. Anil K Chopra, Dynamics Of Structures- Theory and applications to Earth quake engineering, Prentice hall inc, 2001



**Total No of Hours: 45** 

#### CALIFIC CALIFICATION ALL AND RESEARCH INSTITUTE Madurate a flowed to bounds act of the Carified Madurates al, Channeal 400 (195 (An 190 900) 1.2000 Carified Institution()

Department of Civil Engineering

9 hrs

9 hrs

9 hrs

9 hrs



Subject Code:		Subject Na	me						TY / L/	L	T/S.Lr	<b>P/ R</b>	С
BCE17E14		BRIDGE STI	RUCTURES						ETL				
		Prerequisite	U						TY	2	0/1	0/0	3
L : Lecture T : 7	Futoria	al SLr : S	upervised I	earning	P : Proje	ct R : Re	esearch C	C: Credit	s				
T/L/ETL : Theo	ry/La	b/Embedde	d Theory a	nd Lab									
<b>OBJECTIVE :</b>													
To make the stu site conditions.	dent t	o know abo	out various	bridge str	uctures,	selection	of appro	priate br	ridge structu	ures and	design it fo	r given	
COURSE OUT	CON	IES (COs)	: (3-5)										
At the end of the				ole to									
CO1					in propo	rtioning	and desig	gn of brid	dges in tern	ns of aest	hetics, geo	graphica	ıl
		location a	nd function	ality.									
CO2		•	-				-		tanding of o	-			
CO3									es and carry		sign of bri	dge star	ting
			-	-	-		ge, geom	etry to si	zing of its e	elements			
Mapping of Co	urse	Outcomes	with Progr	am Outc	omes (P	Us)							
COs/POs	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	2
CO1	Н	Н	Н	Н		Н		Н			М	М	
CO2	Н	Н	Н	Н		Н		Н			М	М	
CO3	Н	Н	Н	Н		Н		Н			М	М	
COs / PSOs		PSO1	PS	02									
CO1	Η		Н										
CO2	Η		Н										
CO3	Н		Н										
H/M/L indicates	s Strer	ngth of Cor	relation H	I- High, N	A- Mediu	ım, L-Lo	w					1	
Category	S	iciences	nd Social		tives	SS	ject	Internships / Technical Skill					
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core		Open Electives	Practical / Project	Internships /	Soft Skills				
Approval													

### **BRIDGE STRUCTURES**

Design of through type steel highway bridges for IRC loading - Design of stringers, cross girders and main girders -Design of deck type steel highway bridges for IRC loading - Design of main girders.

# UNIT II: STEEL BRIDGES

**UNIT I: INTRODUCTION** 

**BCE17E14** 

Design of pratt type truss girder highway bridges - Design of top chord, bottom chord, web members - Effect of repeated loading - Design of plate girder railway bridges for railway loading - Wind effects - Design of web and flange plates - Vertical and horizontal stiffeners.

# UNIT III: REINFORCED CONCRETE SLAB BRIDGES

Design of solid slab bridges for IRC loading - Design of kerb - Design of tee beam bridges - Design of panel and cantilever for IRC loading.

## **UNIT IV: REINFORCED CONCRETE GIRDER BRIDGES**

Design of tee beam - Courbon's theory - Pigeaud's curves - Design of balanced cantilever bridges - Deck slab - Main girder - Design of cantilever - Design of articulation.

### **UNIT V: PRESTRESSED CONCRETE BRIDGES**

Design of prestressed concrete bridges - Preliminary dimensions - Flexural and torsional parameters -Courbon's theory - Distribution coefficient by exact analysis - Design of girder section - Maximum and minimum prestressing forces - Eccentricity - Live load and dead load shear forces - cable zone in girder -Check for stresses at various sections - Check for diagonal tension - Diaphragms - End block - Short term and long term deflections.

### Total No. of Hours: 45

### TEXT BOOKS

* Johnson Victor D., "Essentials of Bridge Engineering", Oxford and IBH Publishing Co., New Delhi, 1990.

* Ponnuswamy S., "Bridge Engineering ", Tata McGraw Hill, New Delhi, 1996.

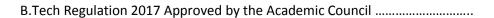
#### REFERENCES

* Phatak D.R., " Bridge Engineering ", Satya Prakashan, New Delhi, 1990.

B.Tech Regulation 2017 Approved by the Academic Council .....



# 9Hrs


9Hrs

#### 9Hrs

9Hrs



Subject Code:	S	Subject Na	me	Dep		Of CIVII	Linginice		TY / L/	L	T/S.Lr	P/ R	C
BCE17E15	s	TORAGE ST	RUCTURE	S					ETL				
	F	Prerequisit	e: Design	of steel st	tructures				TY	2	0/1	0/0	3
	Ι	Design of co	oncrete stru	uctures I	& II								
L : Lecture T : T	Futoria	1 SLr : Su	pervised I	earning	P : Proje	ect R : R	esearch (	C: Credit	8				
T/L/ETL : Theo	ry/Lab	/Embedded	d Theory a	nd Lab									
<b>OBJECTIVE :</b> To introduce the steel and concre	e stude		•	concepts	of desig	n of stor	age struc	tures like	2				
COURSE OUT													
At the end of the CO1	e cours	the stude design cor			ures								
CO1 CO2		design con		-									
CO3		Design pre											
Mapping of Co	ourse C					Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12
CO1	Н	Н	Н	Н		Н	М	Н	М			М	
CO2	Н	Н	Н	Н		Н	М	Н	М			М	
CO3	Н	Н	Н	Н		Н	М	Н	М			М	
COs / PSOs	]	PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicates	Stren	gth of Corr	elation H	I- High, N	M- Mediu	um, L-Lo	w				·		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	<ul> <li>✓ Program Electives</li> </ul>	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													



# **BCE17E15**

Design of rectangular riveted steel water tank - Tee covers - Plates - Stays - Longitudinal and transverse beams -Design of staging – Base plates – Foundation and anchor bolts – Design of pressed steel water tank – Design of stays - Joints - Design of hemispherical bottom water tank - side plates - Bottom plates - joints - Ring girder - Design of staging and foundation.

STORAGE STRUCTURES

# **UNITH: CONCRETE WATER TANKS**

**UNIT I: STEEL WATER TANKS** 

Design of Circular tanks - Hinged and fixed at the base - IS method of calculating shear forces and moments - Hoop tension - Design of intze tank - Dome - Ring girders - Conical dome - Staging - Bracings - Raft foundation -Design of rectangular tanks - Approximate methods and IS methods - Design of under ground tanks - Design of base slab and side wall - Check for uplift.

# **UNIT III: STEEL BUNKERS AND SILOS**

Design of square bunker – Jansen's and Airy's theories – IS Codal provisions – Design of side plates – Stiffeners – Hooper – Longitudinal beams – Design of cylindrical silo – Side plates – Ring girder – stiffeners.

# UNIT IV: CONCRETE BUNKERS AND SILOS

Design of square bunker - Side Walls - Hopper bottom - Top and bottom edge beams - Design of cylindrical silo -Wall portion – Design of conical hopper – Ring beam at junction.

# UNIT V: PRESTRESSED CONCRETE WATER TANKS

Principles of circular prestressing - Design of prestressed concrete circular water tanks.

**Total No. of Hours:** 45

# **TEXT BOOKS**

*Rajagopalan K., Storage Structures, Tata McGraw-Hill, New Delhi, 1998.

*Krishna Raju N Advanced Reinforced Concrete Design, CBS Publishers, New Delhi, 1998.

# Department of Civil Engineering

# 15Hrs

5Hrs

5Hrs

5Hrs



Subject Code:	S	ubject Na	me	Dep			Enginee		TY / L/	L	T/S.Lr	P/ R	С
BCE17E16	Т	ALL BUI	LDINGS						ETL				
	P	rerequisite	: Structura	l analysis	s I & II				TY	2	0/1	0/0	3
L : Lecture T : T	Tutorial	SLr : Su	pervised I	earning	P : Proje	ect R : R	esearch (	C: Credit	s				
T/L/ETL : Theo	ry/Lab/	Embedded	d Theory a	nd Lab									
<b>OBJECTIVE :</b>	To in	troduce va	rious aspe	cts of pla	nning of	Tall Bui	ldings ; 🛛	Го know	about diffe	rent type	s of loads ;	To intro	oduce
various structura	al syste	ms for me	dium rise	ouildings	with the	ir behavi	our and	analysis;	To introdu	ice vario	us structura	ıl systen	ns for
high rise buildin	igs with	h their beh	aviour and	analysis;	To imp	art know	ledge ab	out stabi	lity analysi	s of vario	ous systems	s and to 1	know
about advanced	topics.												
COURSE OUT				_									
CO1			of this cout of this cout of the thick of the the termination of terminatio of termination of termination of terminat		tudent sh	ould hav	e an und	lerstandiı	ng on the be	ehaviour	of tall build	lings	
CO2					wledge a	bout the	rudimen	tary prin	ciples of de	signing t	all building	gs as per	the
<u>CO</u> 2		existing co		locati	a for 1	darrel	mart f1	wich -					
CO3 Mapping of Co		-	t design ph with Progr	-		-	nent of h	nigh rise	structures				
				-			_						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12
CO1	Н	Н	Н	Н		Н	Н	Н	М		М	М	
CO2	Н	Н	Н	Н		Н	Н	Н	М		М	М	
CO3	Н	Н	Н	Н		Н	Н	Н	М		М	М	
COs / PSOs	F	SO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicates	Streng	gth of Corr	elation H	I- High, N	M- Mediu	um, L-Lo	w						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	<ul> <li>✓ Program Electives</li> </ul>	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

B.Tech Regulation 2017 Approved by the Academic Council .....

#### TALL BUILDINGS

## UNIT I: INTRODUCTION

**BCE17E16** 

The Tall Building in the Urban Context - The Tall Building and its Support Structure - Development of High Rise Building Structures - General Planning Considerations. Dead Loads - Live Loads-Construction Loads -Snow, Rain, and Ice Loads - Wind Loads-Seismic Loading - Water and Earth Pressure Loads - Loads - Loads Due to Restrained Volume Changes of Material - Impact and Dynamic Loads - Blast Loads - Combination of Loads.

#### UNIT II: THE VERTICAL STRUCTURE PLANE

Dispersion of Vertical Forces- Dispersion of Lateral Forces - Optimum Ground Level Space - Shear Wall Arrangement - Behaviour of Shear Walls under Lateral Loading. The Floor Structure or Horizontal Building Plane Floor Framing Systems-Horizontal Bracing- Composite Floor Systems The High - Rise Building as related to assemblage Kits Skeleton Frame Systems - Load Bearing Wall Panel Systems - Panel - Frame Systems - Multistory Box Systems.

#### UNIT III: Common high-rise building structures and their Behaviour under load 9Hrs

The Bearing Wall Structure- The Shear Core Structure - Rigid Frame Systems- The Wall - Beam Structure: Interspatial and Staggered Truss Systems - Frame - Shear Wall Building Systems - Flat Slab Building Structures -Shear Truss - Frame Interaction System with Rigid - Belt Trusses - Tubular Systems-Composite Buildings -Comparison of High - Rise Structural Systems Other Design Approaches Controlling Building Drift Efficient Building Forms - The Counteracting Force or Dynamic Response.

#### UNIT IV: APPROXIMATE STRUCTURAL ANALYSIS AND DESIGN OF BUILDING 9Hrs

Approximate Analysis of Bearing Wall Buildings The Cross Wall Structure - The Long Wall Structure The Rigid Frame Structure Approximate Analysis for Vertical Loading - Approximate Analysis for Lateral Loading -Approximate Design of Rigid Frame Buildings-Lateral Deformation of Rigid Frame Buildings The Rigid Frame -Shear Wall Structure - The Vierendeel Structure - The Hollow Tube Structure.

#### **UNIT V: OTHER HIGH-RISE BUILDING STRUCTURE**

Deep - Beam Systems -High-Rise Suspension Systems - Pneumatic High -Rise Buildings - Space Frame Applied to High - Rise Buildings - Capsule Architecture.

#### TEXT BOOKS

*Wolfgang Schueller " High-Rise Building Structures", John Wiley&Sons.

*Bryan Stafford Smith And Alex Coull, " Tall Building Structures ", Analysis And Design, John Wiley And Sons, Inc., 1991.

#### REFERENCES

*Coull, A. and Smith, Stafford, B. " Tall Buildings ", Pergamon Press, London, 1997.

*LinT.Y. and Burry D.Stotes, "Structural Concepts and Systems for Architects and Engineers", John Wiley, 1994.

*Lynn S.Beedle, Advances in Tall Buildings, CBS Publishers and Distributors, Delhi, 1996.

B.Tech Regulation 2017 Approved by the Academic Council .....

9Hrs

9Hrs

## 9Hrs

# **Total No. of Hours :45**





Subject Code:		Subject Na	me	- 99	artment			8	TY / L/	L	T/S.Lr	P/ R	C
BCE17E17		HYDROL							ETL				
		Prerequisite	: Applied I	Hydraulio	cs				TY	2	0/1	0/0	3
L : Lecture T :	Tutori	al SLr : Su	upervised L	earning	P : Proje	ct R : R	esearch (	C: Credit	.S				<u> </u>
T/L/ETL : The	ory/La	b/Embedde	d Theory ar	nd Lab									
OBJECTIVE		get exposi							· ·		•		
precipitation, e									ing of run	off;. To	understan	d estima	ation,
forecasting and COURSE OU				ize comp	outer appl	lications	in nyaro	logy					
CO1			nts gain the of precipitation of the other of the other of the other oth		dge neede	ed on hy	drologic	cycle, hy	drometeor	ology and	1		
CO2					the vario	ous meth	ods of fie	eld meas	urements a	nd empir	ical		
		formulae t routing	for estimati	ng the va	arious los	ses of pr	recipitatio	on, stream	m flow, floo	od and fl	ood		
CO3		•	nts will kno	ow the ba	sics of g	roundwa	ter and h	ydraulic	s of subsurf	ace flow	S		
Mapping of C	ourse				-								
COs/POs	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12
			105				10/		109	1010			12
CO1	Н	Н		Н	Н	Н		Н			Μ	М	
CO2	Н	Н		Н	Н	Н		Н			М	М	
CO3	Н	Н		Н	Н	Н		Н			М	М	
COs / PSOs		PSO1	PS	52									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	es Strei	ngth of Corr	elation H	- High, I	M- Mediu	ım, L-Lo	)W						
								III					
								ul Sk					
		ses	Social					mica					
		ienc	d Sc		ves		ect	Tech					
Category	nces	lg Sc	s and	ore	lecti	tives	Proj	, / sd					
	Scie	erin	nitie æs	m C	m E	Elec	cal /	nshi	kills				
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	Bí	Ē	H Sc	Pr	_P P	Ō	Pr	+	Š				
Approval													

# B.Tech Regulation 2017 Approved by the Academic Council .....

# BCE17E17

# UNIT I: INTRODUCTION

Definition & Scope- Practical applications-Hydrological cycle – Transitory systems- formation, Types and forms of precipitation – Winds and their movement–Climate & weather season in India-Catchment area

HYDROLOGY

# UNITII: PRECIPITATION

Measurement of Precipitation-Recording & Non- Recording Rain Gauges-Intensity duration Analysis-Intensity frequency duration Analysis- Average depth of precipitation over an areas-Depth area duration analysis-Rain gauge network.

Introduction- Evaporation process- Factors affecting Evaporation- Evaporation Eestimation-Evaporation measurement- Evapotranspiration- Factors affecting infiltration-measurement of infiltration- Infiltration Equations

# UNITIV: STREAM FLOW MEASUREMENT & HYDROGRAPH ANALYSIS 9Hrs

Introduction-Measurement of stage-discharge measument –area velocity method (Current meter method)-moving boat method- Stage discharge relationships – Flow measurements – Features of hydrograph- base flow-Hydrograph seperation

# UNIT V: GROUND WATER HYDROLOGY

**UNITHI EVAPORATION & INFILTRATION** 

Occurrence of ground water – Types of aquifer – Dupuit's assumptions – Darcy's law – Estimation of aquifer parameters – Pump tests.

# REFERENCES

* Jeya Rami Reddy.P,Hydrology, Laximi Publications, New Delhi, 2004.

*Subramanya K.,Hydrology,Tata McGraw Hill Co., New Delhi, 1994

*Patra.K.C, Hydrology and Water Resources Engineering, Narosa Publications, 2008, 2 nd Edition, New Delhi.

* Chow V.T., Maidment D.R., Mays L.W., " Applied Hydrology, McGraw Hill Publications, New

York, 1995

Department of Civil Engineering



9Hrs

9Hrs

Total No. of Hours : 45

9Hrs



Subject Code:	5	Subject Na	me					_	TY/L/	L	T/S.Lr	P/ R	C
BCE17E18	I	MUNICIPA	AL SOLID	WASTI	E MANA	GEMEN	NT		ETL				
		Prerequisite			-				TY	2	0/1	0/0	3
L : Lecture T : T	utoria	al SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	: Credits	5				
T/L/ETL : Theo	ry/Lat	o/Embedded	l Theory an	ld Lab									
<b>OBJECTIVE :</b>	The	e student is	expected to	o know al	bout the	various e	ffects and	d legislat	tions for the	e munici	pal solid w	aste.	
To understand the	ne vari	ious sources	s, character	ization, p	processing	g and the	disposal	method	s of munici	pal solid	wastes.		
COURSE OUT													
	on of	f the course, student will be able to: understand the nature and characteristics of municipal solid wastes and the											
CO1		regulatory											
CO2		ability to	plan waste	minimi					ion, transp	ort, pro	cessing and	l dispos	al of
		municipal			•								
CO3 Mapping of Co	urse (	identify an	0										
mapping of Co	uise (	Jucomes	, in 110gr		onies (1	03)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	.2
CO1	Н			Н	Н	Н	Н	Н	М		Μ	Н	
CO2	Н			Н	Н	Н	Н	Н	М		М	Н	
CO3	Н			Н	Н	Н	Н	Н	М		М	Н	
COs / PSOs		PSO1	PSC	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicates	Stren	gth of Corr	elation H	- High, N	I- Mediu	m, L-Lo	W						
Category	Ices	g Sciences	and Social	ore	ectives	ives	Project	Internships / Technical Skill					
-	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	✓ Program Electives	Open Electives	Practical / Project	Internship	Soft Skills				
Approval													

# MUNICIPAL SOLID WASTE MANAGEMENT

## UNIT I: SOURCES AND TYPES

**BCE17E18** 

Sources and types of solid wastes in a Municipality; Quantity - factors affecting generation of solid wastes; characteristics - methods of sampling and characterization; Effects of improper disposal of solid wastes - public health effects. Principle of solid waste management - social & economic aspects; Public awareness; Role of NGOs; Legislation.

## **UNIT II: ON-SITE STORAGE & PROCESSING**

On-site storage methods – materials used for containers – on-site segregation of solid wastes – public health & economic aspects of storage - options under Indian conditions - Critical Evaluation of Options.

## UNIT III: COLLECTION AND TRANSFER

Methods of Collection – types of vehicles – Manpower – collection routes; transfer stations – selection of location, operation & maintenance; options under Indian conditions.

### UNIT IV: OFF-SITE PROCESSING

Processing techniques and Equipment; Resource recovery from solid wastes - composting, incineration, options under Indian conditions.

# UNIT V: DISPOSAL

Dumping of solid waste; sanitary landfills – site selection, design and operation of sanitary landfills.

### **TEXT BOOKS**

*George Techobanoglous et.al., Integrated Solid Waste Management, McGraw Hill Publishers, 1993.

*B.Bilitewski, G.HardHe, K.Marek, A.Weissbach, and H.Boeddicker, Waste Management, Springer, 1994.

# REFERENCES

*Manual on Municipal Solid Waste Management, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 200

*R.E.Landreth and P.A.Rebers, Municipal Solid Wastes – problems and Solutions, Lewis Publishers, 1997

*Bhide A.D. and Sundaresan, B.B., Solid Waste Management in Developing Countries; INSDOC, 1993.



9Hrs

# 9Hrs

# 9Hrs

**Total No. of Hours :** 

#### 45

# 9Hrs



Subject Code	:	Subject N	ame				Enginee	0	T / L/	L	T/S.Lr	P/ R	С
BCE17E19		PRESTRI	ESSED CO	NCRET	E STRU	CTURE	S		ETL				
		Prerequisit	e: Deisgn o	of concret	e structu	res I & I	[		TY	2	0/1	0/0	3
L : Lecture T :	Tutori	al SLr : S	Supervised	Learning	P : Proj	ect R : R	Research (	C: Credit	s				
T/L/ETL : The	ory/La	b/Embedde	ed Theory a	ind Lab									
OBJECTIVE Analysis of pre Determination COURSE OU	estress of loss	and the res	ete & Anch	ses using	different	concept	s is dealt	here;		-	-		
CO1		Student s	hall have a	knowled	ge on me	thods of	prestress	ing					
CO2			hould be al					ncrete str	uctural ele	ments.			
CO3 Manuing of C			s a knowled	-	1		ion						
Mapping of C	ourse	Outcomes	with Prog	ram Out	comes (F	POS)							
COs/POs	PO	I PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	2
CO1	Н	Н	Н	Н		Н	Н	Н	М		М	М	
CO2	Н	Н	Н	Н		Н	Н	Н	М		М	М	
CO3	Н	Н	Н	Н		Н	Н	Н	М		М	М	
COs / PSOs		PSO1 PSO2		O2	1	1		_1					
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	es Strei	ngth of Cor	relation l	H- High,	M- Medi	um, L-Lo	ow						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval		I			1				<u> </u>		I	I	

B.Tech Regulation 2017 Approved by the Academic Council .....

# B.Tech Regulation 2017 Approved by the Academic Council .....

#### **BCE17E19** PRESTRESSED CONCRETE STRUCTURES

# **UNIT I : INTRODUCTION - THEORY AND BEHAVIOUR**

Basic concepts - Advantages - Materials required - Systems and methods of pre -stressing - Analysis of sections - Stress concept - Strength concept - Load balancing concept - Effect of loading on the tensile stresses in tendons.

# **UNIT II: DEFLECTION**

Deflections - Factors influencing deflections - Calculation of deflections - Short term and long term deflections -Losses of pre-stress - Losses of prestress - types - losses due to elastic deformation of concrete - shrinkage of concrete - creep of concrete - friction - anchorage slip - Estimation of crack width

# **UNIT III: DESIGN**

Flexural strength - Simplified procedures as per codes - strain compatibility method - Basic concepts in selection of cross section for bending - stress distribution in end block, Design of anchorage zone reinforcement - Limit state design criteria.

**UNIT IV : CIRCULAR PRESTRESSING** 9Hrs General features & Design of prestressed concrete tanks - Prestressed concrete Poles, Shapes, Features &

Design- Prestressed concrete sleepers - Development - Types- Design, Static & dynamic loads

# **UNIT V: COMPOSITE CONSTRUCTION**

Analysis for stresses – Estimate for deflections – Flexural and shear strength of composite members– General aspects - pretension pre-stressed bridge decks - Post tensioned pre-stressed bridge decks -Advantages over R.C.C bridges- Design Principles of post tensioned prestressed concrete slab bridge deck, T Beam slab bridge deck & Continuous two span beam deck

# **TEXT BOOKS**

*Krishna Raju N., Prestressed concrete, Tata McGraw Hill Company, New Delhi, 2011

* S.Ramamrutham, Prestressed concrete, Dhanpatrai Publishing company, 2014

*Mallic S.K. and Gupta A.P., Prestressed concrete, Oxford and IBH Publishing Co.Pvt. Ltd. 1997.

*Rajagopalan.N, Prestressed Concrete, Alpha Science, 2002.

# REFERENCES

*Ramaswamy G.S., Modern Prestressed Concrete Design, Arnold Heinimen, New Delhi, 1990

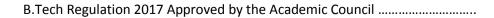
*Lin T.Y. Design of prestressed concrete structures, Asia Publishing House, Bombay 1995

9Hrs

9Hrs

9Hrs

# 9Hrs


# **Total No of Hours: 60**

.G ID RESEARCH INS ERSIT Chargest (An ISO 9001 20





Subject Code	: S	ubject Na	me	2.06			Enginee		TY / L/	L	T/S.Lr	P/ R	C
BCE17E20	P	REFABR	CATED	STRUC	TURES				ETL				
	Р	rerequisite	e: NIL						TY	2	0/1	0/0	3
L : Lecture T :	Tutorial	SLr : S	upervised l	Learning	P : Proje	ect R : R	esearch (	C: Credit	s				
T/L/ETL : The	ory/Lab	/Embedde	d Theory a	nd Lab	Ū								
OBJECTIVE	: To	impart kr	nowledge to	o students	s on mod	ular cons	struction,	industria	alised const	ruction a	nd design	of	
prefabricated e	elements	and const	ruction me								Ũ		
COURSE OU			: (3-5)										
The student sh CO1			me of the p	refabrica	ted elem	ente							
CO1 CO2			nd the cons				orefabrica	nted elen	ents				
CO3			various co										
Mapping of C							<u> </u>						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	2
CO1	Н	Н	Н	Н		Н		М			М	М	
CO2	Н	Н	Н	Н		Н		М			М	М	
CO3	Н	Н	Н	Н		Н		М			М	М	
COs / PSOs	I	PSO1	PS	02				1					
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	es Streng	gth of Cor	relation H	I- High, I	M- Medi	um, L-Lo	ow		-				
			al					cal Skill					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	✓Program Electives	Open Electives	Practical / Project	Internships / Technical Sk	Soft Skills				
Approval													



# UNIT I: INTRODUCTION

**BCE17E20** 

Need for prefabrication - Principles - Materials - Modular coordination - Standardization - Systems - Production -Transportation - Erection.

# UNIT II: PREFABRICATED COMPONENTS

# Behaviour of structural components - Large panel constructions - Construction of roof and floor slabs - Wall panels Columns – Shear walls.

UNIT III: DESIGN PRINCIPLES

Disuniting of structures- Design of cross section based on efficiency of material used - Problems in design because of joint flexibility - Allowance for joint deformation.

# UNIT IV: JOINT IN STRUCTURAL MEMBERS

Joints for different structural connections – Dimensions and detailing – Design of expansion joints.

# UNIT V: DESIGN FOR ABNORMAL LOADS

Progressive collapse - Code provisions - Equivalent design loads for considering abnormal effects such as earthquakes, cyclones, etc., - Importance of avoidance of progressive collapse.

# **Total No. of Hours: 45**

# *CBRI, Building materials and components, India, 1990

*Gerostiza C.Z., Hendrikson C. and Rehat D.R., Knowledge based process planning for construction and manufacturing, Academic Press Inc., 1994

# REFERENCES

TEXT BOOKS

*Koncz T., Manual of precast concrete construction, Vols. I, II and III, Bauverlag, GMBH, 1971. *Structural design manual, Precast concrete connection details, Society for the studies in the use of precast concrete, Netherland Betor Verlag, 1978.

# PREFABRICATED STRUCTURES

# ERSIT (An 15O 9001 2)

Department of Civil Engineering

9Hrs

# 9Hrs

# 9Hrs

# 9Hrs



Subject Code:	5	Subject Na	me	Dep	artment		Linginiee	ering	TY / L/	L	T/S.Lr	<b>P/ R</b>	С
BCE17SE1		-	AND REF	IABILIT	ATION	OF STR	RUCTUI	RES	ETL				
	I	Prerequisite	e: Concrete	and Con	struction	Technol	ogy		TY	1	0/1	1/1	3
L : Lecture T : 7	Futoria	l SLr:S	upervised I	earning	P : Proie	ect R : R	esearch (	C: Credit	s				
T/L/ETL : Theo			-	-	J								
OBJECTIVE	/1 y/ Lat		a meory a										
	. 1	•		1	1. 6		1 1.11		c				
1. To make the		-			-								
2. To make the	e stude	ents to gain	n the know	vledge or	n assessr	nent of	distresse	d structu	res, repairi	ng of st	ructures an	d demo	lition
procedures.													
COURSE OUT													
After successful	l comp						to						
CO1			aintenance	-		-							
CO2			durability										
CO3							litation a	nd retrof	itting techn	iques			
Mapping of Co	ourse (	Jutcomes	with Progi	am Outo	comes (P	'US)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н	Н	Н	Н	Н	Н	Н			Н	Н	
CO2	Н	Н	Н	Н	Н	Н	Н	Н			Н	Н	
CO3	Н	Н	Н	Н	Н	Н	Н	Н			Н	Н	
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	s Stren	gth of Cor	relation H	I- High, I	M- Medin	um, L-Lo	ow						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core		Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

### BCE17SE1 REPAIR AND REHABILITATION OF STRUCTURES

# UNIT I MAINTENANCE AND REPAIR STRATEGIES

Maintenance- Repair and Rehabilitation. Facts of Maintenance - Importance of Maintenance- Various aspects of Inspection- Assessment procedure for evaluating a damaged structure, Causes of deterioration.

#### UNIT II STRENGTH AND DURABILITY OF CONCRETE

Quality assurance for concrete – Strength, Durability and Thermal properties, of concrete - Cracks, different types, causes – Effects due to climate, temperature, Sustained elevated temperature, Corrosion - Effects of cover thickness.

#### UNIT III SPECIAL CONCRETES

Polymer concrete, Sulphur infiltrated concrete, Fibre reinforced concrete, High strength and High-performance concrete, Vacuum concrete, Self-compacting concrete, Whisper concrete Geopolymer concrete, Reactive powder concrete, Concrete made with industrial wastes.

#### UNIT IV TECHNIQUES FOR REPAIR AND PROTECTION METHODS

Non-destructive Testing Techniques, Epoxy injection, Shoring, Underpinning, Corrosion protection techniques – Corrosion inhibitors, Corrosion resistant steels, Coatings to reinforcement, Cathodic protection.

#### UNIT V RETROFITTING AND DEMOLITION TECHNIQUES

Strengthening of Structural elements, Repair of structures distressed due to corrosion, fire, Leakage, earthquake – Engineered demolition methods - Case studies.

# Total No of Hours: 45

# **TEXTBOOKS:**

* Shetty M.S., "Concrete Technology - Theory and Practice", S. Chand and Company, 2008.

* Gambhir. M.L., "Concrete Technology", McGraw Hill, 2013

* Denison Campbell, Allen and Harold Roper, "Concrete Structures, Materials, Maintenance and Repair", Longman Scientific and Technical UK, 1991.

# **REFERENCES:**

* Ravi Shankar. K. Krishnamoorthy. T.S, "Structural Health Monitoring, Repair and Rehabilitation of Concrete Structures", Allied Publishers, 2004.

* Dov Kominetzky. M.S., "Design and Construction Failures", Galgotia Publications Pvt. Ltd., 2001

* CPWD and Indian Buildings Congress, Hand book on Seismic Retrofit of Buildings, Narosa Publishers, 2008.

* Allen R.T. & Edwards S.C, Repair of Concrete Structures, Blakie and Sons, UK, 1987

B.Tech Regulation 2017 Approved by the Academic Council .....



9 hrs

9 hrs

9 hrs

9 hrs

9 hrs



Subject Code:	5	Subject Na	me	Dept	artment		Linginee		TY / L/	L	T/S.Lr	P/ R	C
BCE17SE2		INTELLIC	GENT BUI	LDING	S				ETL				
	1	Prerequisite	NONE						TY	1	0/1	1/1	3
L : Lecture T : 7	utoria	al SLr : Su	pervised L	earning	P : Proje	ct R : R	esearch C	C: Credits	5				
T/L/ETL : Theo	ry/Lał	o/Embedded	l Theory ar	ld Lab									
OBJECTIVE													
1. To enable stu	udents	to establis	h a broad k	nowledg	ge on the	concept	s of intel	ligent bu	ildings.				
2. To enable stu				-		-				on and	optimizatio	n of bu	ilding
structure, servic				nnology,	manage	ment and	d valued-	added se	ervices.				
COURSE OUT		IES(COS):	( 3- 3)										
001		Student wi	ll possess s	sound kn	owledge	on interc	lisciplina	ry conce	pts				
CO2													
CO3		Student un Student wi		-		-		-	racteristics				
Mapping of Co	urse (						n building	gs					
in the price of the second sec	uibe (	succomes v	in i ogn			00)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н	Н	Н	Н	Н					М		
CO2	Н	Н	Н	Н	Н	Н					М		
CO3	Н	Н	Н	Н	Н	Н					М		
COs / PSOs		PSO1	PSO	02				1					
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicates	Sthre	ength of Cor	relation 1	H- High,	M- Med	ium, L-L	.ow		·		·	•	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core		Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval							1						

#### INTELLIGENT BUILDINGS

#### **UNIT I : Intelligent building characteristics:**

Features and benefits of intelligent buildings. The anatomy of intelligent buildings. Environmental aspect. The marketplace and other driving forces behind the emergence of intelligent buildings.

#### UNIT II: Building automation systems & controls:

Philosophy, system configuration, system modules, distributed systems, communication protocol and on-line measurements. Fire protection, security and energy management. Control objectives. Sensors, controllers and actuators. Control system schematics system design. Microprocessor based controllers & digital controls. Examples of sub-systems such as: Digital Addressable Lighting Interface (DALI)

#### **UNIT III : Modern intelligent vertical transportation systems:**

Sky lobby, double-deck lifts, twin lifts, advanced call registration systems, large scale monitoring systems, applications of artificial intelligence in supervisory control, energy saving measures related to lift systems/escalator systems, other modern vertical transportation systems, such as: gondola systems, materials handling systems, etc.

#### **UNIT IV : Communication and security systems:**

Voice communication systems, local area network, wireless LAN, Digital TV, CCTV, digital CCTV, teleconferencing, cellular phone system, and CABD. SMATV. Data networking. Short- and long-haul networks. Wideband network. Office automations. Public address/sound reinforcement systems. Digital public address system. Modern security systems

#### **UNIT V : Integrating the technologies and systems:**

The impact of information technology on buildings and people. Shared tenant services. Interaction and integration between building structure, systems, services, management, control and information technology. Application & design software packages.

# **Total No of Hours: 45**

#### REFERENCES

*Clements-Croome, Derek, Intelligent Buildings: An introduction, Routledge, 2014

*Shengwei Wang, Intelligent Buildings and Building Automation, Spon Press, 2010

*Jim Sinopoli, Smart Building Systems for Architectures, Owners and Builders, Elsevier, 2010 4. P. Manolescue, Integrating Security into Intelligent Buildings, Cheltenharn, 2003

*Dobbelsteen, Smart Building in a Changing Climate, Techne Press, 2009

*Oliviero, Cabling [electronic resource]: The Complete Guide to Copper and Fiberooptic Networking, John Wiley & Sons, 2014

*W.T. Grondzik, & A.G. Kwok, Mechanical and Electrical Equipment for Buildings, Wiley, 2015

**BCE17SE2** 

# 9 Hrs

9 Hrs

9 Hrs

9 Hrs

9 Hrs

# **TITUTE** ERSITY (An 150 9001 1



Subject Code:		Subject Na	me	Dep	artment		Enginee	ering	TY / L/	L	T/S.Lr	P/ R	С
BCE17SE3		FINITE E			VSIS				ETL				
Dellible											0.11	4.4	
		Prerequisite		•					ΤY	1	0/1	1/1	3
L : Lecture T :			-	-	P : Proje	ect R : R	esearch (	C: Credit	S				
T/L/ETL : The	ory/Lal	b/Embedded	l Theory a	nd Lab									
OBJECTIVE													
The objective													
of various finit				-	propriate	e elemen	ts to solv	ve physic	al and engi	neering	problems v	vith emp	ohasi
on structural an		-		ations.									
COURSE OU' After successfu				he studei	nts should	d be able	to						
CO1		Students v	vill be in a					s for any	physical pr	oblems u	ising		
CO2		FE technic		the diffe	rential eq	milibriun	n equatio	ns and th	neir relation	shin in tl	าค		
002		analysis of	-		tential eq	lamonan	il equatio	no una u		sinp in u			
~~~		-											
CO3		apply num					analysis						
Mapping of C	ourse	Outcomes v	vith Progr	am Out	comes (P	'Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н	Н	Н							Н	Н	
CO2	Н	Н	Н	Н							Н	Н	
CO3	Н	Н	Н	Н							Н	Н	
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	s Strer	igth of Corr	elation H	I- High, I	M- Medi	um, L-Lo)W						
								dill					
		iences	l Social		ves		ect	rechnical Sk					
Category	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	✓ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
					V V								
Approval													

BCE17SE3 FINITE ELEMENT ANALYSIS

UNIT I: INTRODUCTION – VARIATIONAL FORMULATION

General filed problems in Engineering – Modelling – Discrete and Continuous models – Characteristics – Difficulties involved in solution – The relevance and place of the finite element method – Historical comments – Basic concept of FEM, Boundary and initial value problems – Gradient and divergence theorems – Functionals – Variational calculus – Variational formulation of VBPS. The method of weighted residuals – The Ritz method.

UNIT II: FINITE ELEMENT ANALYSIS OF ONE DIMENSIONAL PROBLEMS 8Hrs

One dimensional second order equations – discretisation of domain into elements – Generalised coordinates approach – derivation of elements equations – assembly of elements equations – imposition of boundary conditions – solution of equations – Cholesky method – Post processing – Extension of the method to fourth order equations and their solutions – time dependant problems and their solutions – example from heat transfer, fluid flow and solid mechanics.

UNIT III: FINITE ELEMENT ANALYSIS OF TWO DIMENSIONAL PROBLEMS 9Hrs

Second order equation involving a scalar-valued function – model equation – Variational formulation – Finite element formulation through generalised coordinates approach – Triangular elements and quadrilateral elements – convergence criteria for chosen models – Interpolation functions – Elements matrices and vectors – Assembly of element matrices –boundary conditions – solution techniques.

UNIT IV: ISOARAMETRIC ELEMENTS AND FORMULATION

Natural coordinates inn 1, 2 and 3 dimensions – use of area coordinates for triangular elements in - 2 dimensional problems – Isoparametric elements in 1,2 and 3 dimensional – Largrangean and serendipity elements – Formulations of elements equations in one and two dimensions - Numerical integration.

UNIT V: APPLICATIONS TO FIELD PROBLEMS IN TWO DIMENSION 1

Equations of elasticity – plane elasticity problems – axis symmetric problems in elasticity Bending of elastic plates – Time dependent problems in elasticity – Heat – transfer in two dimensions – incompressible fluid flow.

Total No. of Hours : 45

TEXT BOOKS

*J.N.Reddy, "An Introduction to Finite Element Method", McGraw-Hill Book Co., Intl. Edition, 1985.

REFERENCES

*Rienkiewics, "The finite element method, Basic formulation and linear problems", Vol.1, 4/e, McGraw-Hill,Book Co.

*S.S.Rao, "The Finite Element Method in Engineering", Pergaman Press, 1989.

*C.S.Desai and J.F.Abel, "Introduction to the Finite Element Method", Affiliated East West Press 1972

8Hrs

10 hrs

Subject Code:		Subject Na	me	Dep	artment				TY / L/	L	T/S.Lr	P / R	C
BCE17SE4		ENVIRO	NMENTA	L IMPA	ACT ASS	SESSME	NT		ETL				
		Prerequisite	: Environn	nental En	gineering	5			TY	1	0/1	1/1	3
L : Lecture T : 7	Futoria	al SLr : S	upervised L	earning	P : Proje	ct R : R	esearch (C: Credits	5	1			
T/L/ETL : Theo	ory/Lal	b/Embedde	d Theory a	nd Lab									
OBJECTIVE													
To know the ob	jective	es, capabilit	y, and limi	tations of	fenviron	mental in	npact ass	sessment.					
To learn method	dologi	es and legal	aspects of	environr	nental in	pact asse	essment;						
COURSE OUT	FCON	IES (COs)	: (3-5)										
CO1		carry out	scoping and	l screenir	ng of dev	elonmen	tal projec	cts for en	vironmenta	l and so	cial assessr	nents	
CO2			fferent met		-	-	1 0						
CO3		1	onmental in	0			1	1			·		
Mapping of Co	ourse							itar mana	₅ -ment pia	113			
						/							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12
CO1	Н	Н		Н	Н	Н	Н	Н			Н	Н	
CO2	Н	Н		Н	Н	Н	Н	Н			Н	Н	
CO3	Н	Н		Н	Н	Н	Н	Н			Н	Н	
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicates	s Strer	igth of Corr	relation H	I- High, N	M- Mediu	ım, L-Lo)W						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	✓Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

ENVIRONMENTAL IMPACT ASSESSMENT BCE17SE4

UNIT I: INTRODUCTION

Impact of development on environment and Environmental Impact Assessment (EIA) and Environmental Impact Statement (EIS) - Objectives - Historical development - EIA capability and limitations - Legal provisions on EIA.

UNIT II: METHODOLOGIES

Methods of EIA - Strengths, weaknesses and applicability - Appropriate methodology - Case studies.

UNIT III: PREDICTION AND ASSESSMENT

Socio Economic Impact - Assessment of Impact on land, water and air, energy impact; Impact on flora and fauna; Mathematical models; public participation – Reports – Exchange of Information – Post Audit – Rapid EIA.

UNIT IV: MATHEMATICAL MODELS FOR ASSESSMENT

Use the mathematical models in EIA – Water quality, air quality and noise; assumptions and limitations.

UNIT V: ENVIRONMENTAL MANAGEMENT PLAN

Plan for mitigation of adverse impact on environment – options for mitigation of impact on water, air and land, flora and fauna, addressing the issues related to the project affected people.

*Canter, R.L. Environmental Impact Assessment, McGraw Hill Inc., New Delhi, 1996.

*S.K.Shukla and P.R.Srivastava, Concepts in Environmental Impact Analysis, Common Wealth Publishers, New Delhi, 1992.

REFERENCES

TEXT BOOKS

- * John G.Rau and David C Hooten (Ed)., Environmental Impact Analysis Handbook, McGraw Hill Book Company, 1990.
- * Environmental Assessment Source book, Vol. I, II & III. The World Bank, Washington, D.C., 1991.
- * Judith Petts, Hand book of Environmental Impact Assessment Vol. I & II, Blackwell Science, 1999.

Department of Civil Engineering

9Hrs

9Hrs

9Hrs

9Hrs

45

9Hrs

Total No. of Hours:

Subject Code:		Subject Na	me	Dep			Enginee	ing	TY / L/	L	T/S.Lr	P/ R	С
BCE17OE1		PROFES	SSIONAL	ETHICS	5				ETL				
		Prerequisite	NIL						TY	3	0/0	0/0	3
L : Lecture T : 7	Futoria	al SLr : Su	upervised I	earning	P : Proje	ct R : R	esearch (C: Credits	s				
T/L/ETL : Theo	ory/La	b/Embedde	d Theory a	nd Lab									
OBJECTIVE													
This Code of Et	hics p	rovides gui	dance for c	ar sharing	g organiz	ations by	y establis	hing sha	red expecta	tions and	l professio	nal busir	ness
While this Code			5		e		,			now these	e objectives	s should	be
reached, leaving	-		-	signatory	to best o	perate in	each of	our com	munities.				
COURSE OUT													
After successful	l comp						to						
CO1 CO2			d the ethica ding an eng			-	vt of ita :	mpost	a sociate:				
CO2 CO3			ding an eng										
Mapping of Co	iirse (1		1		ingins of	Enginee	.15				
COs/POs	POI		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	2
CO1						М		Н	Н	Н	Н	Н	
CO2						М		Н	Н	Н	Н	Н	
CO3						М		Н	Н	Н	Н	Н	
COs / PSOs		PSO1	PSO2										
CO1	Н		Н										
CO2	Н		Н										
CO3	Η		Н										
H/M/L indicate	s Strer	ngth of Corr	elation H	I- High, N	M- Mediu	ım, L-Lo)W						
								П					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	 ✓ Open Electives 	Practical / Project	Internships / Technical Skil	Soft Skills				
Approval								<u> </u>					

PROFESSIONAL ETHICS

UNIT I: ENGINEERING ETHICS

Senses of engineering ethics – variety of moral issues – types of inquiry – moral dilemmas. Moral autonomy – kohlberg's theory – gilligan's theory – consensus and controversy – professions and professionalism – professional ideals and virtues - theories about right action - self-interest - customs and religion - use of ethical theories

UNIT II: ENGINEERING AS SOCIAL EXPERIMENTATION

Engineering as experimentation – engineers as responsible experimenters – codes of ethics – a balanced outlook on law - the challenger case study.

UNIT III : ENGINEER'S RESPONSIBILITY FOR SAFETY

Safety and risk – assessment of safety and risk – risk benefit analysis – reducing risk – the three mile island and chernobyl case studies

UNIT IV: RESPONSIBILITIES AND RIGHTS

Collegiality and loyalty - respect for authority - collective bargaining - confidentiality - conflicts of interest occupational crime - professional rights - employee rights - discrimination.

UNIT V : GLOBAL ISSUES

Multinational corporations – environmental ethics – computer ethics – weapons development – engineers as managers - consulting engineers - engineers as expert witnesses and advisors - moral leadership - sample code of conduct.

Total No of Hours : 45

TEXT BOOKS

- * Mike martin and Roland Schinzinger, Ethics In Engineering, McGraw hill, New York, 1996
- * Charles D Fledderman, engineering ethics, prentice hall, New Mexico, 1999

REFERENCES

- * Laura Schlesinger, How Could You Do That: The Abdication Of Character, Courage, And Conscience, Harper Collins, new york, 1996.
- * Stephen Carter, Integrity, Basic Books, new york 1996.
- * Tom Rusk, The Power Of Ethical Persuasion: From Conflict To Partnership At Work And In Private Life, Viking, New York, 1996

B.Tech Regulation 2017 Approved by the Academic Council

BCE170E1

9 Hrs

9 Hrs

9 Hrs

9Hrs

Subject Code:	;	Subject Na	me						TY/L/	L	T/S.Lr	P/ R	C	
BCE17OE2		ENVIRON INDUSTRI		EALTH	AND SA	FETY I	N		ETL					
]	Prerequisite	: NIL						TY	3	0/0	0/0	3	
L : Lecture T : 7	Futoria	al SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	C: Credit	S					
T/L/ETL : Theo	ry/Lal	b/Embedded	d Theory ar	nd Lab										
OBJECTIVE To understand t safety in various	s indu	stries	-	uman he	alth, env	ironment	al safety	, electric	cal safety, s	afety aga	inst accide	ents and	fire	
COURSE OUT	COM				1 6									
CO1		Students lo	earn the oc	cupationa	al safety a	and hygie	ene							
CO2														
CO3			erstand the ossesses an				_		v in indust	ries				
	ourse (-	adent possesses an awareness on environment, health and safety in industries comes with Program Outcomes (POs)											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	2	
CO1	H			_	Н	Н	Н			H	H			
CO2	H				Н	H	H H	H			H	H		
CO2	H				H	H	H	H			H	H		
		DIGI	DG		п	п	п	п			п	п		
COs / PSOs		PSO1	PSO	52										
CO1	Н		Н											
CO2	Η		Н											
CO3	Н		Н											
H/M/L indicates	s Stren	igth of Corr	elation H	- High, N	/I- Mediu	ım, L-Lo	w							
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	 ✓ Open Electives 	Practical / Project	Internships / Technical Skill	Soft Skills					
Approval							<u> </u>							

BCE170E2 ENVIRONMENT, HEALTH AND SAFETY IN INDUSTRIES

UNIT I : INTRODUCTION

Need for developing Environment, Health and Safety systems in work places, Status and relationship of Acts, Regulations and Codes of Practice, Role of trade union safety representatives .International initiatives, Ergonomics and work place.

UNIT II: OCCUPATIONAL HEALTH AND HYGIENE

Definition of the term occupational health and hygiene, Categories of health hazards, Exposure pathways and human responses to hazardous and toxic substances, Advantages and limitations of environmental monitoring and occupational exposure limits, Hierarchy of control measures for occupational health risks, Role of personal protective equipment and the selection criteria.

UNIT III: WORKPLACE SAFETY AND SAFETY SYSTEMS

Features of the satisfactory design of work premises HVAC, ventilation. Safe installation and use of electrical supplies, Fire safety and first aid provision, Significance of human factors in the establishment and effectiveness of safe systems, Safe systems of work for manual handling operations, Control methods to eliminate or reduce the risks arising from the use of work equipment, Requirements for the safe use of display screen equipment, Procedures and precautionary measures necessary when handling hazardous substances, Contingency arrangements for events of serious and imminent danger.

UNIT IV: TECHNIQUES OF ENVIRONMENTAL SAFETY

Functions and techniques of risk assessment, inspections and audits, Investigation of accidents- Principles of quality management systems in health and safety management.

UNIT V: EDUCATION AND TRAINING

Factors to be considered in the development of effective training programmes, Principles and methods of effective training, Feedback and evaluation mechanism.

Total No. of Hours: 45

REFERENCES

- Environmental and Health and Safety Management by Nicholas P. Cheremisinoff and Madelyn L. Graffia, William Andrew Inc. NY, 1995
- The Facility Manager's Guide to Environmental Health and Safety by Brian Gallant, Government Inst Publ. Effective Environmental, Health, and Safety Management Using the Team Approach by Bill Taylor, Culinary and Hospitality Industry Publications Services 2005

9 Hrs

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code:	5	Subject Na	me				-		TY / L/	L	T/S.Lr	P / R	C
BCE17OE3		CLIMATE	CHANGE	E AND S	USTAIN	ABLE			ETL				
	1	DEVELOP	MENT										
	I	Prerequisite	: None						TY	3	0/0	0/0	3
L : Lecture T : 7	Futoria	l SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	C: Credit	S				
T/L/ETL : Theo	ory/Lab	/Embedded	l Theory ar	ıd Lab									
OBJECTIVE													
To understand t	he Ear	th's Climate	e System a	nd the co	ncept of	Global W	Varming,	the imp	act of clima	ate chang	e on societ	y and its	5
mitigation meas													
COURSE OUT				o oblo to									
At the end of the CO1	ne cou	rse the stud	ient will d	e able to									
001		Understan	d the globa	l climate	change a	and its ef	fects						
CO2					0								
		Learn abou											
CO3		Understan					ergy cons	servation					
Mapping of Co COs/POs	PO1	PO2	PO3	am Outc PO4	PO5	Os) PO6	PO7	PO8	PO9	PO10	PO11	POI	2
	101	102	105	104					109	1010			. 2
CO1					Н	Н	Н	Н			Н	Н	
CO2					Н	Н	Н	Н			Н	Н	
CO3					Н	Н	Н	Н			Н	Н	
COs / PSOs		PSO1	PSO	02				•					
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicates	s Stren	gth of Corr	elation H	- High, N	A- Mediu	ım, L-Lo	w					I	
								ill					
								Internships / Technical Skill					
		Se	Social					nica					
		ence			'es		ct	ech					
Category	ces	Sci	and	re	sctiv	ves	roje	s / T					
	iene	ring	ties	CO	Ele	ecti	l / P	hips	lls				
	c Sc	inee	nani nce	ram	ram	n El	tica	erns	Ski				
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Int	Soft Skills				
						V			01				
			1	1	1	1	1	1		1	<u> </u>	1	
Approval													
11													

BCE170E3 CLIMATE CHANGE AND SUSTAINABLE DEVELOPMENT

UNIT I : EARTH'S CLIMATE SYSTEM

Introduction-Climate in the spotlight — Climate Classification - Global Wind Systems -Cloud Formation and Monsoon Rains – Storms and Hurricanes – The Hydrological Cycle – Global Ocean Circulation – Solar Radiation – The Earth's Natural Green House Effect – Green House Gases and Global Warming – Carbon Cycle.

UNIT II : OBSERVED CHANGES AND ITS CAUSES

Observation of Climate Change – Changes in patterns of temperature, precipitation and sea level rise – Observed effects of Climate Changes – Patterns of Large Scale Variability – Drivers of Climate Change – Climate Sensitivity and Feedbacks – The Montreal Protocol – UNFCCC – IPCC.

UNIT III : IMPACTS OF CLIMATE CHANGE

Impacts of Climate Change on various sectors -Methods and Scenarios – Projected Impacts for Different Regions– Uncertainties in the Projected Impacts of Climate Change – Risk of Irreversible Changes.

UNIT IV: CLIMATE CHANGE ADAPTATION AND MITIGATION MEASURES 9 Hrs

Adaptation Strategy/Options in various sectors -Key Mitigation Technologies and Practices –Carbon sequestration – Carbon capture and storage (CCS)- Waste (MSW & Bio waste, Biomedical, Industrial waste – International and Regional cooperation.

UNIT V : CLEAN TECHNOLOGY AND ENERGY

Clean Development Mechanism –Carbon Trading examples of future Clean Technology – Biodiesel – Natural Compost – Eco- Friendly Plastic – Alternate Energy – Hydrogen – Bio-fuels – Solar Energy – Wind – Hydroelectric Power.

Total No. of Hours: 45

REFERENCES

1. Anil Markandya, Climate Change and Sustainable Development: Prospects for Developing Countries, Routledge, 2002

2. Heal, G. M., Interpreting Sustainability, in Sustainability: Dynamics and Uncertainty, Kluwer Academic Publ., 1998

3. Jepma, C.J., and Munasinghe, M., Climate Change Policy – Facts, Issues and Analysis, Cambridge University Press, 1998

4. Munasinghe, M., Sustainable Energy Development: Issues and Policy in Energy, Environment and Economy:

Asian Perspective, Kleindorfor P. R. et. al (ed.), Edward Elgar, 1996

5. Dash Sushil Kumar, "Climate Change – An Indian Perspective", Cambridge University Press India Pvt. Ltd, 2007.

9 Hrs

9 Hrs

/ 1115

9 Hrs

Subject Code:		Subject Na	me	Бер	artinent		Enginee	ing	TY / L/	L	T/S.Lr	P/ R	С		
BCE17OE4		INTELLIGE	NT TRANS			STEMS			ETL						
	_	Prerequisite	: NIL						TY	3	0/0	0/0	3		
L : Lecture T :	Tutori	al SLr : S	upervised L	earning	P : Proje	ct R : R	esearch (C: Credit	s						
T/L/ETL : The			-	-	5										
OBJECTIVE															
To expose the	recent	advanceme	nts in Trans	port Syst	tems										
COURSE OU	TCOM	IES (COs)	: (3- 5) Or	o complet	tion of th	e course	the stude	ents wou	ld have						
CO1		Knowled	ge on the v	arious pr	inciples a	and aspec	ets of Inte	elligent 7	Fransport S	ystem.					
CO2		Knowledg	ge on inters	ection ma	anageme	nt									
CO3		Knowledg	Knowledge on advanced transport system												
Mapping of C	ourse	Outcomes [•]	with Progr	am Outo	comes (P	POs)									
COs/POs	PO	l PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12		
CO1		Н		Н		Н		Н			Н	Н			
CO2		Н		Н		Н		Н			Н	Н			
CO3		Н		Н		Н		Н			Н	Н			
COs / PSOs		PSO1	PS	D2											
CO1	Н		Н												
CO2	Н		Н												
CO3	Н		Н												
H/M/L indicate	es Strei	ngth of Corr	relation H	- High, N	I M- Mediu	um, L-Lo)W				<u> </u>				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	 ✓ Open Electives 	Practical / Project	Internships / Technical Skill	Soft Skills						
Approval						1									

Department of Civil Engineering INTELLIGENT TRANSPORTATION SYSTEMS

UNIT I INTRODUCTION TO INTELLIGENT TRANSPORT SYSTEM

Definition - Role and Responsibilities - Advanced Traveller Information System - Fleet Oriented ITS Services -Electronic Toll Collection - Critical issues - Security - Safety 21

UNIT II ITS ARCHITECTURE AND HARDWARE

Architecture - ITS Architecture Framework - Hardware Sensors - Vehicle Detection - Techniques - Dynamic Message Sign - GPRS - GPS - Toll Collection

UNIT III INTERSECTION MANAGEMENT

Video Detection - Virtual Loop - Cameras - ANPR - IR Lighting - Integrated Traffic Management - Control Centre - Junction Management Strategies

UNIT IV ADVANCED TRANSPORT MANAGEMENT SYSTEM

ATMS - Route Guidance - Issues - Travel Information - Pre Trip and Enroute Methods - Historical - Current -Predictive Guidance - Data Collection - Analysis - Dynamic Traffic Assignment (DTA) - Components - Algorithm

UNIT V ADVANCED TRAVELLER AND INFORMATION SYSTEM

Basic ATIS Concepts - Smart Route System - Data Collection - Process - Dessemination to Travelers - Evaluation of Information - Value of Information - Business Opportunities

Total No. of Hours: 45

REFERENCES:

1. Intelligent Transport Systems, Intelligent Transportation Primer, Washington, US, 2001

2. Henry F.Korth, and Abraham Siberschatz, Data Base System Concepts, McGraw Hill, 1992

3. E. Turban, "Decision Support and Export Systems Management Support Systems", Maxwell Macmillan, 1998

4. Sitausu S.Mittra, "Decision Support Systems - Tools and Techniques", John Wiley, New York, 1986 5. Cycle W.Halsapple and Andrew B.Winston, "Decision Support Systems - Theory and Application", Springer Verlog, New York, 1987

BCE170E4

8 Hrs

9 Hrs

10 Hrs

10 Hrs