

B.Tech. Civil Engineering (Part Time) Curriculum & Syllabus 2017 Regulation

	I SEMESTER								
			С	L	T/SLr	P/R	Ty / Lb/ ETL		
S.No	Sub. Code	Subject Name					EIL		
1.	BMA17022	Mathematics - I for Civil Engineers	4	3	1/0	0/0	Ту		
2.	BCE17001	Mechanics of solids	4	3	1/0	0/0	Ту		
3.	BCE17005	Concrete and Construction Technology	3	2	1/0	0/0	Ту		
4.	BAR17I01	Engineering Geology	3	3	0/0	0/0	Ту		
5.	BAR17IL1	Geology and building materials lab	1	0	0/0	2/0	Lb		

Credits Sub Total: 15

	II SEMESTER								
S.No	Sub. Code	Subject Name	С	L	T/SLr	P/R	Ty / Lb/ ETL		
1.	BMA17025	Mathematics – II for Civil & Chemical Engineers	4	3	1/0	0/0	Ту		
2.	BCE17ET1	Engineering Survey I	3	2	0/0	2/0	ETL		
3.	BCE17002	Mechanics of Fluids	4	3	1/0	0/0	Ту		
4.	BCE17003	Strength of Materials	4	3	1/0	0/0	Ту		
5.	BCE17L04	Strength of Materials and Concrete Lab	1	0	0/0	2/0	Lb		
	Credits Sub Total: 16								

III SEMESTER

		~	_			
		С	L	T/SLr	P/R	Ty / Lb/
Sub Codo	Subject Name					ETL
Sub. Code	Subject Name					
D. (17010	Numerical Methods for mechanical and	4	3	1/0	0/0	Ту
BMA1/010	civil engineers					
BCE17ET3	Engineering Survey II	3	1	0/1	1/1	ETL
BCE17004	Applied Hydraulic Engineering	4	3	1/0	0/0	Ту
BCE17EXX	ELECTIVE-1	3	2	1/0	0/0	Ту
BCE17L03	Fluid Mechanics & Hydraulic Machinery Lab	1	0	0/0	2/0	Lb
	BCE17004 BCE17EXX	BMA17010 Numerical Methods for mechanical and civil engineers BCE17ET3 Engineering Survey II BCE17004 Applied Hydraulic Engineering BCE17EXX ELECTIVE-1 Fluid Mechanics & Hydraulic	Numerical Methods for mechanical and civil engineers4BMA17010Numerical Methods for mechanical and civil engineers4BCE17ET3Engineering Survey II3BCE17004Applied Hydraulic Engineering4BCE17EXXELECTIVE-13Fluid Mechanics & Hydraulic1	Sub. CodeSubject NameImage: Constraint of the sector	Sub. CodeSubject NameImage: Constraint of the cons	Sub. CodeSubject NameImage: Constraint of the state of the sta

Credits Sub Total: 15

	IV SEMIESTER									
S.No	Sub. Code	Subject Name	C	L	T/SLr	P/R	Ty / Lb/ ETL			
1.	BCE17006	Structural Analysis I	4	3	1/0	0/0	Ту			
2.	BCE17007	Design of Concrete Structures I	4	3	1/0	0/0	Ту			
3.	BEE17I04	Energy conservation techniques	3	2	1/0	0/0	Ту			
4.	BCE17008	Soil Mechanics	3	2	1/0	0/0	Ту			
5.	BCE17L06	Geotechnical Engineering Lab	1	0	0/0	2/0	Lb			

Credits Sub Total: 15

	V SEMESTER								
S.No	Sub. Code	Subject Name	С	L	T/SLr	P/R	Ty / Lb/ ETL		
1.	BCE17010	Structural Analysis II	4	3	1/0	0/0	Ту		
2.	BAR17I03	Design of Concrete Structures II	3	2	1/0	0/0	Ту		
3.	BCE17011	Foundation Engineering	3	2	1/0	0/0	Ту		
4.	BCE17009	Transportation Engineering	3	2	1/0	0/0	Ту		
5.	BCE17ET4	Water resources and irrigation engineering	3	1	0/1	1/1	ETL		

Credits Sub Total: 16

	VI SEMESTER								
			С	L	T/SLr	P/R	Ty / Lb/		
S.No	Sub. Code	Subject Name					ETL		
1.	BCE17012	Design of Steel Structures	4	3	1/0	0/0	Ту		
2.	BCE17EXX	Elective II *(Based on students interest)	3	2	1/0	0/0	Ту		
3.	BCE17EXX	Elective III *(Based on students interest)	3	3	0/0	0/1	Ту		
4.	BCE17013	Construction Management	4	3	1/0	0/0	Ту		

Credits Sub Total: 14

	VII SEMESTER								
			С	L	T/SLr	P/R	Ty / Lb/ ETL		
S.No	Sub. Code	Subject Name							
1.	BCE17EXX	Elective IV *(Based on students interest)	3	2	0/1	0/0	Ту		
2.	BCE17SEX	Elective (Special based on current technology)*	3	1	0/1	1/1	ETL		
3.	BCE17L15	Project	8	0	0/4	0/8	Lb		

Credits Sub Total: 14

 $C: Credits \ L: Lecture \ T: Tutorial \ S.Lr: Supervised \ Learning \ P: Problem \ / \ Practical \ R: Research \ Ty\/Lb\/ETL: Theory\/Lab\/Embedded \ Theory \ and \ Lab.* \ Internal \ evaluation \ (Departmental \ level \ Refer \ Annexure \ for \ evaluation \ methodology) \ 4 \ Credit \ papers \ should \ compulsorily \ have \ either \ P\/R \ component.$

Credit Summary

Semester : 1	: 15
Semester: 2	: 16
Semester : 3	: 15
Semester: 4	: 15
Semester : 5	: 16
Semester : 6	: 14
Semester: 7	: 14

Total Credits : 105

DEPARTMENT OF CIVIL ENGINEERING FACULTY OF ENGINEERING & TECHNOLOGY B.TECH REGULATION – 2017 (PART TIME)

(For students admitted from the Academic Year 2017-18)

ELECTIVE-I

COURSE CODE	COURSE TITLE	С	L	T/SLR	P/R	Ty/Lb/ ETL
BCE17E01	ENVIRONMENTAL ENGINEERING	3	2	1/0	0/0	Ту
BCE17E02	DESIGN OF COMPOSITE STRUCTURES	3	2	1/0	0/0	Ту
BCE17E03	INDUSTRIAL STRUCTURES	3	2	1/0	0/0	Ту
BCE17E04	SMART STRUCTURES AND SMART MATERIALS	3	2	1/0	0/0	Ту

ELECTIVE-II

COURSE CODE	COURSE TITLE	С	L	T/SLR	P/R	Ty/Lb/ ETL
BCE17E05	ESTIMATION AND QUANTITY SURVEYING	3	2	1/0	0/0	Ту
BCE17E06	HOUSING PLANNING AND DESIGN	3	2	1/0	0/0	Ту
BCE17E07	BUILDING TECHNOLOGY AND HABITAT ENGINEERING	3	2	1/0	0/0	Ту
BCE17E08	COST EFFECTIVE BUILDINGS	3	2	1/0	0/0	Ту

ELECTIVE -III

COURSE CODE	COURSE TITLE	С	L	T/SLR	P/R	Ty/Lb/ ETL
BCE17E09	INDUSTRIAL WASTE MANAGEMENT	3	2	1/0	0/0	Ту
BCE17E10	CLEANER PRODUCTION	3	2	1/0	0/0	Ту
BCE17E11	ARCHITECTURE AND TOWN PLANNING	3	2	1/0	0/0	Ту
BCE17E12	DAM ENGINEERING	3	2	1/0	0/0	Ту
BCE17E19	PRESTRESSED CONCRETE STRUCURES	3	2	0/1	0/0	Ту
BCE17E20	PRE FABRICATED STRUCTURES	3	2	0/1	0/0	Ту

Ty/Lb/ COURSE С T/SLR P/R **COURSE TITLE** L CODE ETL STRUCTURAL DYNAMICS AND EARTH QUAKE BCE17E13 Ту 3 2 0/1 0/0 ENGINEERING **BRIDGE STRUCTURES** BCE17E14 Ту 3 2 0/1 0/0 BCE17E15 **STORAGE STRUCTURES** Ту 3 2 0/1 0/0 BCE17E16 Ту TALL BUILDINGS 3 2 0/0 0/1 **BCE17E17** Ty HYDROLOGY 3 2 0/0 0/1 BCE17E18 MUNICIPAL SOLID WASTE MANAGEMENT Ту 3 2 0/0 0/1

ELECTIVE -IV

ELECTIVE (SPECIAL -BASED ON CURRENT TECHNOLOGY)

COURSE CODE	COURSE TITLE	С	L	T/SLR	P/R	Ty/Lb/ETL
BCE17SE1	REPAIR AND REHABILITATION OF STRUCTURES	3	1	0/1	1/1	Ту
BCE17SE2	INTELLIGENT BUILDINGS	3	1	0/1	1/1	Ту
BCE17SE3	FINITE ELEMENT ANALYSIS	3	1	0/1	1/1	Ту
BCE17SE4	ENVIRONMENTAL IMPACT ASSESSMENT	3	1	0/1	1/1	Ту

Subject Code: BMA 17022	:	Subject Na		THEM. VIL ENGI		I			Ty/Lb/ETL	L	T / S.Lr	P/ R	C
		Prerequisite	: None						Ту	3	1/0	0/0	4
L : Lecture T :		-		earning	P : Proje	ect R : R	lesearch	C: Cre	edits T/L/ETL :	Theor	y/Lab/Emb	edded	
Theory and La													
OBJECTIVE To in		nowledge o	n matrices,	trigonoi	metry and	l fourier	series						
COURSE OU	TCOM	IES (COs)	: (3-5) A	the end	of the co	urse the	student s	hall be	e able				
CO1		To unders	tand the ba	sic conc	epts in Al	lgebra							
CO2		To unders	tand the ba	sic conc	epts in M	atrices							
CO3		To unders	tand the ba	sic conc	epts in Ti	rignomet	ry						
CO4		To unders	tand the ba	sic conc	epts in fu	nctions of	of several	l varia	bles				
CO5		To unders	tand the ba	sic conc	epts in Fo	ourier sei	ries						
Mapping of C	ourse	Outcomes	with Prog	ram Out	comes (P	Os)							
COs/POs	POI		PO3	PO4	PO5	PO6	PO7	PO	8 PO9	PO1) PO11	PO	12
CO1	Н	Н		Н					М				
CO2	Н	Н		Н					М				
C03	Н	Н		Н					М				
C04	Н	Н		Н					М				
C05	Н	Н		Н					М				
COs / PSOs		PSO1	PS	02									
CO1	Н		М										
CO2	Н		М										
C03	Н		М										
C04	Н		М										
C05	Н		М										
H/M/L indicate	es Strei	ngth of Cor	elation H	I- High,	M- Medi	um, L-L	ow					I	-
Category	 ▲ Basic Sciences 	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills				
	\checkmark												
Approval													

BMA 17022

UNIT I ALGEBRA

Binomial, Exponential, Logarithmic Series (without proof of theorems) - Problems on Summation, Approximation and Coefficients.

UNIT II MATRICES

Characteristic equation - Eigen values and Eigen vectors of a real matrix - Properties of Eigen values - Cayley - Hamilton theorem (without proof) – Orthogonal reduction of a symmetric matrix to Diagonal form.

UNIT III TRIGONOMETRY

Expansions of Sin $n\theta$, Cos $n\theta$ in powers of Sin θ and Cos θ – Expansion of Tan $n\theta$ – Expansions of Sinⁿ θ and $Cosn^n \Theta$ in terms of Sines and Cosines of multiples of Θ – Hyperbolic functions – Separation into real and imaginary parts.

UNIT IV FUNCTIONS OF SEVERAL VARIABLES

Partial derivatives - Total differential - Differentiation of implicit functions - Taylor's expansion - Maxima and Minima by Lagrange's Method of undetermined multipliers – Jacobians.

UNIT V FOURIER SERIES

Dirichlet's conditions - General Fourier series - Half range Sine & Cosine series - Parseval's identity -Harmonic Analysis.

TEXT BOOKS:

- 1. Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).
- 2. Veerarajan T., Engineering Mathematics (for semester III), Tata McGraw Hill Publishing Co., (2005).
- 3. Singaravelu, Transforms and Partial Differential Equations, Meenakshi Agency, (P) Ltd., (2017). REFERENCES
- 1. Kreyszig E., Advanced Engineering Mathematics (10 th ed.), John Wiley & Sons, (2011).
- 2. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).

12 Hrs

12 Hrs

12 Hrs

12 Hrs

12 Hrs

Total No. of Hrs: 60

DEPARTMENT OF CIVIL ENGINEERING

MATHEMATICS - I FOR CIVIL ENGINEERS

Subject Code: BCE17001	: [Subject Na	me : ME	CHANI	CS OF S	OLIDS			Ty/Lb/ ETL	L	T / S.Lr	P/ R	С
		Prerequisite							Ту	3	1/0	0/0	4
L : Lecture T :	Tutoria	al SLr : S	upervised	Learning	P : Proj	ect R : I	Research	C: Credi	ts				
T/L/ETL : The	ory/La	b/Embedde	d Theory a	ind Lab									
OBJECTIVE	:												
• To learn fun											ylinders		
To know th						luced str	ess result	tants and	deformati	ons.			
To understa													
To analyze				state of s	tress and	plane tru	usses						
COURSE OU	ICON		: (3- 5) the fundam	antal ac	noonts of	strong of	nd strain	in the de	aion of u	rious str	untural cor	nonant	0.00
COI		machines			licepts of	suess a	liu sualli	in the de	sign of va	ulous su		nponem	.s all
CO2			e and desig	n shafts	to transn	nit requir	ed power	r					
C03			e about the	e		-	-		ods				
C04			ine the ber							m subiec	ted to syste	m of lo	ads
C05			ine stresse	-				-	a 111 a 000a	in sucjee			uus
Mapping of C	'ourse (-		ing uppn	eu louus					
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н			M									
CO2	Н		Н									М	
C03	Н			М	L								
C04	Н	Н		Н									
C05	Н	Н				Н					Н		
COs / PSOs		PSO1	PSO	02									
CO1	Н		Н										
CO2	Н		Н										
C03	Н		Н										
C04	Н		Н										
C05	Н		Н										
H/M/L indicate		ngth of Cor	relation I	H- High,	M- Medi	ium, L-L	ow			1			
	Basic Sciences	ad		ore				s / al					
Catagory	cier	srin	ties cial	J C	L S	s	/ P	ship nice	lls				
Category	c S	nee	Soc Soc	ran	ran tive	n tive	tica	Internships Technical	Ski				
	asi	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical , Project	Inté Té	Soft Skills				
	Щ		NaH		дщ	ОШ			3				
Approval													
приота	1												

S. Ramamirutham and R.Narayanan, Strength of Materials, Dhanpat Rai Publications, New Delhi, 1989.

Bhavikatti. S., "Solid Mechanics", Vikas publishing house Pvt. Ltd, New Delhi, 2010

Dr.R.K.Bansal A text book of Strength of Materials, Laxmi Publications, New Delhi 1996.

* Kazimi S.M.A. " Solid Mechanics ", Tata McGraw Hill Publishing Company, New Delhi, 1991.

Rajput.R.K. "Strength of Materials", S.Chand and Co, New Delhi, 2007. 2.

- * Laudner T.J. and Archer R.R., " Mechanical of Solids in Introduction ",McGraw Hill International Editions
- * William A.Nash, "Theory and Problems of Strength of Material" Schaum's outline series, Mc Graw Hill International Editions 1994

member - Method of joints - Method of Sections - Tension co-efficient method - Graphical method

UNIT III: BENDING MOMENT & SHEAR FORCE

Introduction to Bending and S.F- Beams and support conditions – types of supports – types of loads - shear forces and bending moment diagrams for simply supported beams, cantilevers and overhanging beams with all loads.

UNIT IV: ANALYSIS OF STATICALLY DETERMINATE PLANE TRUSSES

Stability and equilibrium of plane frames - Perfect frames - Types of Trusses - Analysis of forces in trusses

UNIT V: BENDING STRESS IN BEAMS & TORSION OF SHAFTS

Theory of simple bending-expression for bending stress-Section modulus-bending stress in symmetrical sections-Theory of torsion-Torsion of circular, hollow circular shafts and power -close coiled helical springs and leaf springs

Total No of Hours: 60

12 Hrs

UNIT I: INTRODUCTION TO FORCE CONCEPT

BCE17001

solids.

TEXT BOOKS

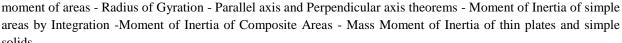
REFERENCES

*

*

*

Equivalent system of forces, rigid bodies, external & internal forces-Application of Statics of Particles-Free body Diagram Concurrent & Non Concurrent Forces - Principles of transmissibility- Equivalent forces & Varignon's theorem. Tension, Compression and Shear stress - Lateral Strain- Poisson's Ratio- Volumetric Strain -Deformation of Simple and Compound Bars - Elastic constants - Composite Sections .


EDUCATIONAL AND RESEARCH INSTITUTE UNIVERSITY

12 Hrs

12 Hrs

12 Hrs

12 Hrs

DEPARTMENT OF CIVIL ENGINEERING **MECHANICS OF SOLIDS**

UNIT II: CENTRE OF GRAVITY AND MOMENT OF INERTIA

Areas and volumes - Centroid of simple areas and volumes by integration - Centroid of composite areas - Second

Subject Code:	Sul	bject Nai	ne : CON	CRETE	AND C	OF CIV	UCTION		T y/ Lb/	L	T/S.Lr	P/R	С
BCE17005		CHNOL							ETL				
	Pre	requisite:	Building	Science a	nd mater	ials			Ty	2	1/0	0/0	3
L : Lecture T : T							search C	: Credits			1/0	0/0	5
T/L/ETL : Theo	ry/Lab/E	mbedded	Theory an	d Lab									
OBJECTIVE :													
To understar	nd vario	us constr	ruction pro	cedures	from su	b structu	ire to su	per stru	cture and a	also the	equipmen	t neede	d for
construction of v	various ty	pes of st	ructures fro	om found	ation to	super stru	ucture						
COURSE OUT													
CO1	u	nderstand	about con	crete mal	king mate	erials and	l supplen	nentary o	cementation	s materi	als.		
CO2	De	esign the	concrete m	ix for the	e required	l strength	1						
CO3	W	ill acquir	e knowledg	ge on han	dling of	different	types of	construe	ction equipn	nents			
Mapping of Co	urse Ou	tcomes w	vith Progra	am Outc	omes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2
CO1	Н		М			М					М		
CO2	Н		Н			М					М		
CO3	Н		М			М					М		
COs / PSOs	PS	01	PSC)2									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicates	Strength	n of Corre	elation H	- High, N	1- Mediu	m, L-Lo	W						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

B.Tech Civil Engineering – 2017 Regulation

BCE17005 CONCRETE AND CONSTRUCTION TECHNOLOGY

UNIT I : CONCRETE MAKING MATERIALS

Manufacture and Components of Portland Cement- Hydration Process- Types of Cement, Aggregates - Classification and Properties Admixtures.

UNIT II: MIX DESIGN

Properties of Fresh Concrete- Workability, Segregation and Bleeding of Concrete - Factors influencing Mix Proportions - I.S and ACI Methods of Mix Design.

UNIT III : PROPERTIES OF HARDENED CONCRETE

Strength - Creep and Shrinkage - Durability of Concrete - Chemical Attack - Different Types of FRC - Properties and Applications.

UNIT IV: SUB STRUCTURE CONSTRUCTION

Piling techniques – Sheet piles – Under water construction of Diaphragm wall and basement – Driving diaphragm walls – Driving well and caisson – Sinking coffer dam – Shoring for deep cutting – Well points – Dewatering and stand by plant equipment for underground open excavation.

UNIT V : SUPER STRUCTURE AND CONSTRUCTION EQUIPMENTS

Construction sequences in cooling Towers, Bunkers, Silos and Chimney – Pre- stressed construction – In situ prestressing in high rise structures – Erecting light weight components on tall structures. Types of earth work equipment's - Tractors, Motor graders, Scrappers - Equipment for compaction – Batching and mixing and concreting.

Total No of Hours :

TEXT BOOKS

- * Shetty. M.S., Concrete Technology, S.Chand and Co, Pune, 1984
- * Arora S.P. And Bindra S.P., Building Construction, Planning Techniques and Method of Construction, Dhanpat Roy and Sons, New Delhi, 1997.
- Peurifoy, R.L., Ledbetter, W.D And Schexnayder, C., 'Construction Plaaning, Equipment and Methods' V
 Edition McGraw Hill, Singapore, 1995

REFERENCES

- * Krishnasamy. K.T., Concrete Technology, Dhanapt Rai New Delhi 1985
- * Neville, properties of concrete elbs, 1977.
- * Sharma S.C., Building Construction, Khanna Publishers, New Delhi.1998

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE UNIVERSITY (Califord & Demain for Demains) of COX (A 1995) (An 1950 9001 : 2009 Curriled Institution) DEPARTMENT OF CIVIL ENGINEERING

8 Hrs

10 Hrs

8 Hrs

9 Hrs

10 Hrs

45

Subject Code BAR17I01	:	Subject	Name : E	NGINE	EERING	GEOI	JOGY		Ty/Lb/ ETL	L	T/ S.Lr	P/ R	C
		Prerequisite	e: None						Ту	3	0/0	0/0	3
L : Lecture T :	: Tuto	rial SLr :	Supervise	ed Learn	ing P:	Project	R : Rese	earch C:	Credits				
T/L/ETL : The	eory/L	.ab/Embedo	led Theor	y and La	ab								
OBJECTIVE knowledge in													
COURSE OU	JTCO	MES (CO	s) : (3- 5)	At the	end of	the cou	rse, the	student	t will be a	able to:			
CO1		identify a	nd classify	y rock us	sing basi	c geolog	gic class	ificatior	n systems				
CO2		Understar	d geologi	c conce	pts and a	pproach	les.						
CO3								ations ir	i civil engi	ineering	5		
Mapping of C	Course	e Outcome	s with Pr	ogram (Outcom	es (POs)						
COs/POs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10) PO1	1 PO	12
CO1	Η						М				Μ		
CO2	Η						М				М		
C03	Η						М				М		
COs / PSOs	_	PSO1	PSG	02									
CO1	Η		Н										
CO2	Η		Н										
C03	Н		Н										
H/M/L indicat	es Str	ength of Co	orrelation	H- Hi	gh, M- N	Aedium,		1 1		-			
Category	Basic Sciences	 ✓ Engineering Sciences 	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval		ł		1	1	1	1	I I			I	1	

B.Tech Civil Engineering – 2017 Regulation

BAR17I01

UNIT I : GENERAL GEOLOGY

Geology in civil engineering - branches of geology - earth structure and composition - elementary knowledge on continental drift and plate tectonics. Seismo tectonics of the Indian plate, seismic zones of India, Weathering - work of rivers, wind, glaciers.

EDUCATIONAL AND RESEARCH INSTITUTE UNIVERSITY

ENGINEERING GEOLOGY

DEPARTMENT OF CIVIL ENGINEERING

(As 1973 0000 - 20

UNIT II: MINERALOGY

Physical properties of minerals - study of rock forming minerals - quartz family. Feldspar family, augite, hornblende, biotite, muscovite, calcite, garnet - properties, behavior and engineering significance of clay minerals fundamentals of process of formation of ore minerals - coal and petroleum - their origin and occurrence in India.

UNIT III: PETROLOGY

Classification of Soil and Rock, Types of rock and origin: Igneous (extrusive and intrusive), sedimentary and metamorphic rocks, description occurrence, engineering properties of following rocks. Igneous rocks - granite, diorite, gabbro, pegmatite, dolerite and basalt sedimentary rocks sandstone, limestone, shale, conglomerate and breccia. Metamorphic rocks, quartzite, marble, slate, phyllite, gneiss and schist.

UNIT IV : STRUCTURAL GEOLOGY AND GEOPHYSICAL METHOD

Strength Behavior of Soil and Rock, Stress and strain in rock, failure and shear failure of soil and rock, folds, faults and joints in rock, consequences of failure (earthquakes), Bearing on engineering construction. Seismic and electrical methods for civil engineering investigations.

UNIT V : GEOLOGICAL INVESTIGATIONS IN CIVIL ENGINEERING

Geologic Mapping and Remote Sensing, Topographic maps, geologic maps, aerial photographs, LIDAR, SAR, interpretation for civil engineering projects - geological conditions necessary for construction of dams, tunnels, buildings, road cuttings, landslides - causes and preventions. Sea erosion and coastal protection.

TEXT BOOKS

- Parbin singh, "Engineering and General geology", S. K. Kataria & Sons, 2009
- D. Venkat Reddy "Engineering Geology", Vikas publishing House New Delhi, 2010
- Krynine and Judd, "Engineering Geology and Geotechniques", McGraw Hill Book

Company, New Delhi 1990.

REFERENCE

- Legeet, "Geology and Engineering", McGraw Hill Book Company, New Delhi
- Blyth, "Geology for Engineers", elbs, Pune 1995

9Hrs

9Hrs

9Hrs

9Hrs

Total No of Hrs = 45 hrs

Califord Caller				DEPAR	TMENT	OF CIV	IL ENG	JINEEF		T	TICT	D/D	C
Subject Code: BAR17IL1	S	ubject Nai	ne :						T y/ Lb/ ETL	L	T/S.Lr	P/ R	С
DARI/ILI	0	GEOLOGY	AND BU	ILDING	MATE	RIALS I	LAB						
		Prerequisite			ogy				Lb	0	0/0	2/0	1
		Building Sci											
L : Lecture T : T	lutoria	l SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	C: Credit	s				
T/L/ETL : Theo	ry/Lab	/Embedded	Theory ar	nd Lab									
OBJECTIVE :	Learn	to apprecia	ate field co	ndition in	n relation	to engir	neering p	rojects/p	oroblems and	d unders	tand the pro-	oblems.	
COURSE OUT	COM	ES (COs) :	(3-5) A	t the end	of the co	ourse, the	student	will be a	able to:				
CO1		Determine	e engineeri	ng prope	rties of s	oils							
CO2		Measure s	strike and d	lip of the	bedding	planes							
CO3		Interpret g	geological	Maps									
CO4			hysical Pro		f Soil								
Mapping of Co	urse O					Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	2
CO1	Н					М	М						
CO2	Н					М	M	1		1			
C03	Н					М	M						
C04	Н					M	M						
COs / PSOs		PSO1	PSC	02		111	101						
CO1	Н		Н										
CO2	Н		Н										
C03	Н		Н										
C04	Н		Н										
H/M/L indicates	Streng	gth of Corre	elation H	- High, N	I- Mediu	m, L-Lo	w				I		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
-pprover													

GEOLOGY AND BUILDING MATERIALS LAB

BAR17IL1

ENGINEERING GEOLOGY

- 1. Study of Geological map and section of local area
- 2. Study the various properties of igneous rocks, sedimentary and metamorphic through rocks samples.
- 3. Study the various properties of different minerals and mineral ores through samples.
- 4. Study the various types of folds and faults.
- 5. Physical properties of minerals such as, hardness, colour, streak, etc.
- 6. Numerical Problems related to Dip and Strike
- 7. Study of different geological features through models
- 8. Field visit

BUILDING MATERIALS

1. Assessment of physical properties of bricks such as absorption, shape and size, structure, soundness,

Hardness, presence of soluble salts.

- 2. Hardness, impact and water absorption test etc for stones
- 3. Study on different types of bonds for bricks and stones
- 4. Study on defects in timber

Total No. of Hours: 30

Subject Code BMA 17025		Subject Na FOR CIVI						T	y/Lb/ETL	L	T / S.Lr	P/ R	C
]	Prerequisite	: MATHI	EMATIC	CS I			Т	y	3	1/0	0/0	4
L : Lecture T :		al SLr : S	upervised	Learning	P : Proj	ect R : F	Research	C: Cred	its T/L/ETI	: Theor	y/Lab/Emb	bedded	
Theory and La OBJECTIVE		nnart know	iledge on r	artial dif	ferential	equation	Lanlace	and Fo	urier transfo	rms			
		-		urtiur un	rerentiur	equation	, Lupiace	und I (71115			
COURSE OU CO1	TCOM		: (3-5) tand the ba	sic conc	ents in n	artial diff	ferential e		15				
CO2								•	at and wave	aquation	0		
					-				at and wave	equation	.8		
CO3			tand the ba		1	1		S					
CO4		To unders	tand the ap	plicatior	is of Lap	lace Trai	nsforms						
CO5		To unders	tand the ba	asic conc	epts in \overline{F}	ourier tra	insforms						_
Mapping of C	ourse	Outcomes	with Prog	ram Out	comes (l	POs)							
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н		Н					М				
CO2	Н	Н		Н					М				
C03	Н	Н		Н					М				
C04	Н	Н		Н					М				
C05	Н	Н		Н					М				
COs / PSOs		PSO1	PS	02				l					
CO1	Н		М										
CO2	Н		М										
C03	Н		М										
C04	Н		М										
C05	Н		М										
H/M/L indicate	es Strer	igth of Cor	relation I	I- High,	M- Medi	um, L-L	ow						
Category			Social					hnical					
Category	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	STITING TIDE				
	N												
Approval													

TEXT BOOKS

- 1. Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).
- 2. Veerarajan T., Engineering Mathematics (for semester III), Tata McGraw Hill Publishing Co., (2005).
- 3. Singaravelu, Transforms and Partial Differential Equations, Meenakshi Agency, (2017). REFERENCES
- 1. Kreyszig E., Advanced Engineering Mathematics (10th ed.), John Wiley & Sons, (2011).
- 2. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).

UNIT IV LAPLACE TRANSFORMS II

Periodic functions - Initial and final value theorems - Convolution theorem - Applications of Laplace transforms for solving linear ordinary differential equations up to second order with constant coefficients.

UNIT III LAPLACE TRANSFORMS I

only)- Fourier series solutions.

Transforms of simple functions – Properties of Transforms – Inverse Transforms – Transforms of Derivatives and Integrals.

UNIT V FOURIER TRANSFORM

Statement of Fourier integral theorem - Fourier transform pairs - Fourier Sine and Cosine transforms - Properties - Transforms of simple functions - Convolution theorem - Parseval's theorem.

UNIT I PARTIAL DIFFERENTIAL EQUATIONS

BMA 17025

Formation of PDE by eliminating arbitrary constants and eliminating arbitrary functions – Solutions of standard types of first order equations – Lagrange's equation – Linear partial differential equations of second and higher order with constant coefficients.

UNIT II APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

DUCATIONAL AND RESEARCH INSTITUTE

DEPARTMENT OF CIVIL ENGINEERING

MATHEMATICS – II (FOR CIVIL & CHEMICAL ENGINEERS)

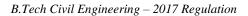
12 Hrs

Classification of second order linear partial differential equations - Solutions of one dimensional wave equation, one-dimensional heat equation - Steady state solution of two dimensional heat equation (Cartesian coordinates

12 Hrs

12 Hrs

Total no. of hrs: 60


12 Hrs

12 Hrs

Subject Code: BCE17ET1		Subject Na	me: EN				VIL ENO NG I		Ty/Lb/ ETL	L	T / S.Lr	P/ R	C
		Prerequisite							ETL	2	0/0	2/0	3
L : Lecture T : '	Tutori	al SLr : Su	pervised I	Learning	P : Proje	ct R : R	esearch (C: Credit	s				
T/L/ETL : Theo	•												
OBJECTIVE :										vil Engin	eering proj	ects	
COURSE OUT	ГСОМ	IES (COs)	:(3-5) A	At the end	of the c	ourse, the	e student	will be a	ble to:				
CO1		Understan	d the princ	iples of b	asic surv	vey instru	ments in	civil en	gineering fi	ields			
CO2		Understan	d the conc	ept of cor	ntouring	and the w	vays of p	lotting					
CO3					<u> </u>			0	1 and civil	engineeri	ng projects	-	
Mapping of Co	ourse							<u></u>			<u>ne projecto</u>		
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	2
CO1	Η	М		М		L			Н				
CO2	Η	М		М		L			Н				
CO3	Η	М		М		L			Н				
COs / PSOs		PSO1	PS	02									
CO1	Η		Н										
CO2	Η		Н										
CO3	Η		Н										
H/M/L indicate	s Strei	ngth of Corr	elation H	I- High, N	M- Mediu	ım, L-Lo	W	T					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	←Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval							<u> </u>	<u> </u>					

UNIT I: INTRODUCTIONS AND CHAIN SURVEYING

Definition - principles - classification - survey instruments - ranging and chaining - reciprocal ranging - setting perpendiculars -- errors - traversing.

UNIT II : COMPASS SURVEYING AND PLANE TABLE SURVEYING 7 Hrs

Prismatic compass - surveyor's compass - bearing - systems and conversions - local attraction - magnetic declination - dip - adjustment of error - plane table instruments and accessories - merits and demerits - methods radiation - intersection - resection.

UNIT III : LEVELLING AND APPLICATIONS

Level line - horizontal line - levels and staves - sprit level - bench marks - temporary and permanent adjustments fly and check leveling - reciprocal leveling - longitudinal and cross sections.

UNIT IV : CONTOURING

Contouring - methods -characteristics and uses of contours - plotting - calculation of areas and volumes- earth work volume.

UNIT V : THEODOLITE SURVEYING

Theodolite - vernier - description and uses - temporary and permanent adjustments of vernier transit - swinghorizontal angles - vertical angles - measurements of angles and distances - omitted measurements.

Total No. of Hours: 45

TEXT BOOKS

*Kanetkar T.P., "Surveying and Levelling", vols. I and II, United Book Corporation, Pune, 1994.

*Punmia B.C., "Surveying", Vols. I and II, Laxmi Publications, Mumbai, 1999.

*N.N basak., "Surveying and Levelling", Tata McGraw Hill, New Delhi, 2004.

REFERENCES

*Clark D., Plane and Geodetic Surveying ", vols. I and II and C.B.S. Publishers, New Delhi, Sixth edition, 1991.

*James M. Anderson and Edward M. Mikhail, "Introduction to Surveying ", Tata McGraw Hill, New Delhi, 1995

ENGINEERING SURVEYING I

BCE17ET1

12 Hrs

8 Hrs

10 Hrs

8 Hrs

Subject Code: BCE17002		Subject Na	me: M	ECHAN	ICS OF	FLUIDS	5	Ty/L	b/ETL	L	T / S.Lr	P/ R	C
		Prerequisite	: None					Ту		3	1/0	0/0	4
L : Lecture T :	Tutori	al SLr : S	upervised 1	Learning	P : Proj	ect R : I	Research	C: Credit	s			•	
T/L/ETL : The	ory/La	b/Embedde	d Theory a	nd Lab									
OBJECTIVE To know the in To study theory the utilization of	mporta ies tho	se explain t	he behavio	r and per	formanc	e of fluid	l when th	e fluid is	flowing t		ne pipe. T	o unders	stanc
COURSE OU			-										
CO1		To learn a		sics of fl	luid mecl	hanics ar	d variou	s properti	es of fluic	ds			
CO2			bout the va								buoyancy		
C03			clear unde								5 5		
C04			he basics o	-									
C05		-	bout vario							nless nu	nbers		
Mapping of C	ourse	,											
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Η				М	М							
CO2	Н	М											
C03	Η											Η	
C04	Н				М								
C05	Η	Н		М									
COs / PSOs		PSO1	PSO	02									
CO1	Н		Н										
CO2	H		Н		ļ								
C03	H		Н								_		
C04	H		Н										
C05	H	4 60	H	T TT' 1		• • •							
H/M/L indicate		ngth of Cor	relation H	-	M- Medi	ium, L-L	.ow	.	T				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	 Program Core 	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval				1	1	1		1	1				

B.Tech Civil Engineering - 2017 Regulation

UNIT I: DEFINITIONS AND FLUID PROPERTIES

Definitions - Fluid and Fluid Mechanics - Dimensions and Units - Fluid properties -Viscosity, Compressibility, Surface tension and Capillarity, Continuum - concept of system and control volume.

DEPARTMENT OF CIVIL ENGINEERING

MECHANICS OF FLUIDS

UNIT II: FLUID STATISTICS

Pascal's law and Hydrostatic equation - buoyancy -meta centric height - pressure measurement - gauges and manometers.

UNIT III: FLUID KINEMATICS

Stream, streak and path lines - classification of flows - continuity equation - stream and potential functions -flow nets - velocity and acceleration measurement-Problems

UNIT IV: FLUID DYNAMICS

Euler and Bernoulli's equations - application of Bernoulli's equation - discharge measurement -Hagen Poiseuille equation.

UNIT V: FLOW THROUGH PIPES AND DIMENSIONAL ANALYSIS

Darcy Weisbach formula -Major and minor losses of flow in pipes – pipes in series and in parallel – Dimensional analysis - Buckingham π -theorem.

TEXT BOOKS

*Dr.R. K. Bansal., "Fluid Mechanics and Hydraulic Machines", Laxmi Publications 2015.

*Fox, Robert W. And McDonald, Alan T., "Introduction to Fluid Mechanics ", John Willey & sons

REFERENCES

*Streeter, Victor I. And Wylie, Benjamin E., "Fluid Mechanics", McGraw-Hill Ltd., 1998.

*Natarajan M.K., "Principles of Fluids Mechanics", Anuradha Agencies, Kumbakonam, 1995

BCE17002

EDUCATIONAL AND RESEARCH INSTITUTE UNIVERSITY

8 Hrs

11 Hrs

10 Hrs

12 Hrs

19 Hrs

Total No of Hours: 60

Subject Code: BCE17003	S	ubject Na	me: STI					GINEE	T y/ Lb/ ETL	L	T / S.Lr	P/ R	C
	Р	rerequisite	: Mechani	cs of soli	ds				Ty	3	1/0	0/0	4
L : Lecture T : 7						ect R : R	esearch (C: Credi	ts			1	
T/L/ETL : Theo	ory/Lab	/Embeddeo	1 Theory a	nd Lab									
OBJECTIVE :													
To impart know									inding stress	es and d	eflection		
To impart know													
COURSE OUT	COM												
CO1		through kr and deflec				terminate	beams a	and use	of energy me	ethod for	estimating	the slop	pe
CO2		they will b	e in a posi	tion to as	sess the	behaviou	r of colu	mns,					
C03		To knew b	eams and	failure of	materia	ls.							
Mapping of Co	ourse O	utcomes v	with Prog	am Outo	comes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12
CO1	Н	Н	Н	Н		М					М		
CO2	Н	Н	Н	Н		М				1	М		
CO3	Н	Н	Н	Н		М					М		
COs / PSOs	J	PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
C03	Н		Н										
H/M/L indicate:	s Streng	gth of Corr	elation H	I- High, I	M- Medi	um, L-Lo	W						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	AProgram Core Apr	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval			I	1	1	1	1		1	1	I		

STRENGTH OF MATERIALS

UNIT I : ENERGY PRINCIPLES

Strain energy and strain energy density - Strain energy in tension, shear, flexure and torsion - Castigliano's & Engessor's energy theorems- Principle of Virtual Work- Application of energy theorems for computing deflection in Determinate structures – Maxwell's reciprocal theorem.

UNIT II : DEFLECTIONS

BCE17003

Methods of Deflection Determination of Deflection curve - computation of slopes and deflections in Determinate Beams - Double Integration method – Macaulay's method – Area Moment method – Conjugate Beam method.

UNIT III: INDETERMINATE BEAMS

Propped Cantilever and Fixed Beams - Fixed End Moments and Reactions for Standard cases of Loading -Continuous Beams - Theorem of Three Moments - Analysis of Continuous Beams - S.F. and B.M. Diagrams for Continuous Beams.

UNIT IV: COLUMNS

Eccentrically Loaded Short Columns Middle Third Rule - Core of Section - Columns of Unsymmetrical Sections -Rankine - Gordon Formula Eccentrically Loaded Long Columns. Theories of Failure - Principal Stress, Principal Strain, Shear Stress, Strain Energy and Distortion Energy Theories.

UNIT V: BENDING OF BEAMS

Bending of Beams of Symmetrical and Unsymmetrical Sections – Box sections and its importance — Winkler Bach Formula - Shear Center Simple problems

TEXT BOOKS

Rajput.R.K. "Strength of Materials", S.Chand and Co, New Delhi, 2007.

Bhavikatti. S., "Solid Mechanics", Vikas publishing house Pvt. Ltd, New Delhi, 2010.

- R.S. Khurmi, "Engineering Mechanics of Solids", Prentice Hall of India, New Delhi, 1997. *
- S.S. Ratan, "Strength of Materials", Tata McGraw Hill Publishing Company, New Delhi, 2008

REFERENCES

- Laudner T.J. and Archer R.R., " Mechanical of Solids in Introduction ",McGraw Hill International Editions, New Delhi, 1994..
- William A.Nash, " Theory and Problems of Strength of Material" Schaum's outline series, Mc Graw Hill International Editions, New Delhi, 1994

13 Hrs

13 Hrs

11 Hrs

10Hrs

13Hrs

Total No of Hours :60

Subject Code: BCE17L04		ubject Na ONCRET	me : STR TE LAB	ENGTH	OF MA	FERIAL	S AND		Ty/Lb/ ETL	L	T / S.Lr	P/ R	С
			: Strength	of Mater	ials ,Con	crete and	l construe	ction	Lb	0	0/0	2/0	1
		chnology											
L : Lecture T : '	Tutorial	SLr : Su	pervised I	Learning	P : Proje	ct R : Re	esearch C	C: Credi	ts				
T/L/ETL : Theo	ory/Lab/	Embedded	l Theory a	nd Lab									
OBJECTIVE :	:												
Learn the prop		different	materials 1	ike steel,	concrete	timber,	bricks an	d other	materials				
Study the behav										ts			
COUDSE OU	FCOM		(2.5)										
COURSE OUT			s on cemer	t og por I	S and as a	foratio	2						
<u>CO1</u> CO2								Codes	of Practice;				
CO3	,	To do test	s on fresh a	and harde	ned conc	rete as n	er IS cod	es of pr	actice				
Mapping of Co									actice				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10) PO11	PO	12
CO1	Н			M					M		M		
CO2	Н			М					М		М		
CO3	Н			М					М		М		
COs / PSOs	F	SO1	PS	02				•					
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	s Streng	th of Corr	elation F	I- High, N	M- Mediu	ım, L-Lo	w	1	1				
			IE					cal Skill					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	-Practical / Project	Internships / Technical Skill	Soft Skills				
Approval							\checkmark						

BCE17L04

STRENGTH OF MATERIALS AND CONCRETE LAB

STRENGTH OF MATERIALS LAB

- 1. Tension test on mild steel and for steel rods.
- 2. Compression test on wooden specimen
- 3. Double shear test on mild steel and aluminum rods.
- 4. Torsion test on mild steel rod.
- 5. Impact test on metal specimen
- 6. Hardness tests on metals like mild steel, brass, copper and aluminum.
- 7. Deflection test on metal beam
- 8. Compression test on helical spring

Total No of Hours: 15

CONCRETE LAB

- 1. Tests on Cement
 - a.Specific Gravity,
 - b. Normal consistency,
 - c. Initial and Final setting time of cement
- 2. Test on Aggregate
 - a. Sieve analysis
 - b. Specific gravity
 - c. Water Absorption
- 3. Tests on Freshly Mixed Concrete

Compaction Factor, Slump Value.

Total No of Hours: 15

References:

1. Davis H.E. Trophell.G.E & Hanck, G.F.W., The Testing Of Engineering Materials – Mcgrew Hill, International Book Co.

2. Timoshenko S.P, &Young, D.H. Strength of Materials – East West Press Ltd. 3. Relevant 813 code. Venon john, Engineering Materials, 3rt Edition, McMillan Co.Ltd.,

Subject Code: BMA17010	5	Subject Na	me: NUN	MERICA	L MET	HODS			Ty / Lb/ ETL	L	T/ S.Lr	P/ R	C
DWA1/010		(F	OR MECHA	ANICAL 8	CIVIL E	NGINEER	S)		LIL				
	I	Prerequisite							Ту	3	1/0	0/0	4
		Engineers											
L : Lecture T : 7	Futoria	al SLr : Su	pervised I	earning	P : Proje	ct R : Re	esearch C	C: Credit	ts	•			
T/L/ETL : Theo	ory/Lab	/Embedded	l Theory a	nd Lab									
OBJECTIVE :													
To understand	the bas	sic concepts	in solutio	n of alge	braic and	transcen	dental eq	uations.					
To understand t													
To understand t	he basi	ic concepts	in numerio	cal differ	entiation	and integ	ration.						
To understand t	he basi	ic concepts	in numerio	cal soluti	ons of OI	DE.							
To understand t	he basi	ic concepts	in numerio	cal soluti	ons of PE	DE.							
COURSE OUT	ГСОМ	ES (COs)	: (3-5) A	t the end	of the co	ourse, the	student v	will be a	ble to:				
CO1		They will											
CO2									ical techniqu	ues.			
CO3									chniques to		ns drawn f	rom ind	ustry
		manageme								P. 50101			
Mapping of Co	urso (
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	H	M	105	M	105	100	107	100	M	1010	1011	10	12
CO2	H	M		M					M				
C03	H	M		M					M				
COs / PSOs		PSO1	PS		-				IVI				
CO1	М	1301	H	02	-							-	
CO1 CO2	M		H										
C02 C03	M		H										
		ath of Com		I II: -1- I	M Madia								
H/M/L indicates	s Stren	gth of Corr	elation F	I- Hign, I	vi- Medit	ım, L-Lo	W		1				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval	1,∼												

DEPARTMENT OF CIVIL ENGINEERING NUMERICAL METHODS

BMA17010

(FOR MECHANICAL & CIVIL ENGINEERS)

UNIT I : SOLUTION OF EQUATIONS

Solution of Algebraic and Transcendental equations - Method of false position - Iteration method - Newton-Raphson method -Linear system- Applications of: Gauss Elimination method - Gauss-Jordan method - Iterative methods - Gauss-Jacobi method - Gauss-Seidel method - Matrix Inversion by Gauss-Jordan method.

UNIT II: INTERPOLATION

Newton forward and backward differences - Central differences - Sterling's and Bessel's formulae - Interpolation with Newton's divided differences - Lagrange's method.

UNIT III: NUMERICAL DIFFERENTIATION AND INTEGRATION

Numerical Differentiation with interpolation polynomials - Numerical Integration by Trapezoidal and Simpson's (both 1/3 rd & 3/8 th) rules - Two and three point Gaussian Quadrature formulae - Double integrals using Trapezoidal and Simpson's rules.

UNIT IV: NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS 12 Hrs

Taylor's series - Euler's & Modified Euler's method - Runge Kutta method of fourth order for first & second order differential equations - Milne's predictor-corrector method - Adam-Bashforth's predictor-corrector method.

UNIT V: NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS 12 Hrs

Finite difference solutions for one dimensional heat equation (both implicit & explicit) - Bender-Schmidt method -Crank-Nicolson method - One dimensional wave equation - Two dimensional Laplace and Poisson equations -Liebmann's method.

> **Total No. of Hours:** 60

TEXT BOOKS

- 1. Veerarajan T., Numerical Methods, Tata McGraw Hill Publishing Co., (2007).
- 2. Sastry S.S., Introductory Methods of Numerical Analysis, Prentice Hall of India, (2012).

REFERENCES

- Kandasamy P., Thilagavathy, Gunavathy K., Numerical Methods (Vol.IV), S.Chand & Co., (2008). 1.
- 2. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).

12 Hrs

12Hrs

12Hrs

Subject Code: BCE17ET3	S	ubject Na	me : ENG	INEERI	TING SU	RVEY-	II		T y/ Lb/ ETL	L	T/S.Lr	P/ R	C
			: Engineer						ETL	01	0/1	1/1	3
L : Lecture T : Tu	utorial	SLr : Su	pervised I	earning	P : Proje	ct R : R	esearch (C: Credit	ts				
T/L/ETL : Theory	•		•										
OBJECTIVE :				odetic me	easureme	nts and C	Control S	urvey m	ethodology	and its a	adjustments	. The st	uden
is also exposed to	the N	lodern Sur	veying.										
COURSE OUT	OMI	ES (COs)	(3-5)										
CO1			t will poss	ses know	ledge abo	out Tacho	metric s	urveving	<u>,</u>				
CO2			1		U			, (surveying ar	nd Photo	ogrammetri		
CO3									ammetry, To				urve
		and cartog					8 1				, <i>j</i>	T-T- D	
Mapping of Cou		utcomes v		am Outo	comes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Η								М		М		Μ
CO2	Η								М		М		М
CO3	Η								М		M		М
COs / PSOs		SO1	PS	02									
	Н		М										
	Н		М										
	Н		М										
H/M/L indicates	Streng	th of Corr	elation H	I- High, N	M- Medi	ım, L-Lo	w		1	1			
			IE					cal Skill					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	 Program Core 	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval						<u> </u>							

B.Tech Civil Engineering – 2017 Regulation

ENGINEERTING SURVEY- II

UNIT I: ENGINEERING SURVEYS

BCE17ET3

Curve ranging - Horizontal and vertical curves - Simple Curves - setting with chain and tapes, tangential angles by theodolite, double theodolite - Compound and reverse curves - Transition curves - Functions and requirements -Setting out by offsets and angles - Vertical curves

EDUCATIONAL AND RESEARCH INSTITUTE

DEPARTMENT OF CIVIL ENGINEERING

UNIT II : TACHEOMETRIC SURVEYING

Tacheometric systems - Tangential, stadia and subtense methods - Stadia systems - Horizontal and inclined sights -Vertical and normal staffing - Fixed and movable hairs - Stadia constants - Anallactic lens - Subtense bar.

UNIT III: CONTROL SURVEYING

Working from whole to part - Horizontal and vertical control methods - Triangulation - Signals - Base line -Instruments and accessories - Corrections - Satellite station - Reduction to centre - Trignometric levelling - Single and reciprocal observations - Modern trends.

UNIT IV : SURVEY ADJUSTMENTS

Errors - Sources, precautions and corrections - Classification of errors - True and most probable values -weighted observations - Principle of least squares - Normal equation - Correlates.

UNIT V: PHOTOGRAMMETRY -

Photogrammetry - Introduction - Terrestrial and aerial Photographs - Stereoscopy -Parallax - Electromagnetic distance measurement - Carrier waves - Principles - Instruments Hydrographic Surveying - Tides - MSL -Sounding and methods - Location of soundings and methods - Three point problem - Strength of fix -Sextants and station pointer - River surveys - Measurement of current and discharge -

TEXT BOOKS

- Bannister A. and Raymond S., "Surveying", ELBS, Pune, Sixth Edition, 1992.
- Heribert Kahmen and Wolfgang Faig, "Surveying", Walter de Gruyter, 1995. *
- * Kanetkar T.P., "Surveying and Levelling", Vols. I and II, United Book Corporation, Pune, 1994.
- * Punmia B.C., "Surveying", Vols. I, II and III, Laxmi Publications, New Delhi, 1999.

REFERENCES

- Clark D., "Plane and Geodetic Surveying", Vols. I and II, C.B.S. Publishers and Distributors, Delhi, sixth Edition, 1971.
- * James M. Anderson and Edward M. Mikhail, "Introduction to Surveying ", McGraw Hill Book Company, New Delhi, 1985.

9 Hrs

9 Hrs

9 Hrs

Total No of Hours: 45

9 Hrs

9 Hrs

Subject Code: BCE17004	S	ubject Na	me: APP	LIED H	YDRAU	LIC EN	GINEEI	RING	Ty/Lb/ ETL	L	T / S.Lr	P/ R	C
		rerequisite							Ту	3	1/0	0/0	4
L : Lecture T : 7	Tutoria	l SLr : Su	pervised I	earning	P : Proje	ct R : R	esearch (C: Credi	ts				
T/L/ETL : Theo	ry/Lab	/Embedded	l Theory a	nd Lab									
OBJECTIVE :													
To study theorie							d in an o	pen chai	nnel.				
To study the vel													
To understand t	he wor	king princi	ple of hydi	aulic ma	chines an	id its use	8						
COURSE OUT	COM	ES (COs)	: (3-5)										
CO1		The studen channels	nts will be	able to ap	oply their	knowled	lge of flu	uid mech	nanics in ad	dressing	problems in	n open	
CO2		They will conditions	-	e skills to	solve pi	oblems i	n unifor	m, gradı	ually and ra	pidly var	ied flows in	n steady	sta
C03		They will		ledge in	hydraulic	machine	eries						
Mapping of Co													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	М		М							М	М	
CO2	Н	М		М							М	М	
CO3	Н	М		М							М	М	
COs / PSOs]	PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicates	s Streng	gth of Corr	elation H	I- High, N	M- Mediu	ım, L-Lo	W						
Category		ICES	ocial					hnical Skill					
	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Arogram Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

B.Tech Civil Engineering – 2017 Regulation

TEXT BOOKS

1. Subramanian k., "Flow in open channels ", Tata McGraw Hill Publishing Company, New Delhi, 1994

2. Dr. R.K.Bansal., "Fluid Mechanics and Hydraulic Machines", Lakshmi Publications (p) ltd., Pune, 2015.

3. Kumar K.L., "Engineering Fluid Mechanics", Eurasia publishing house (p) ltd. New Delhi,

(7th edition), 1995.

REFERENCES

- 1. Ven Te Chow, "Open-channel hydraulics ", McGraw Hill Co., 1996 , New York.
- 2. Ramamirtham S., "Fluid mechanics, Hydraulics and Fluid Machines", Dhanpat Rai

FLOW IN OPEN CHANNEL

UNIT I: INTRODUCTION

BCE17004

Open channel flow - types and regime of flow - velocity distribution in open channel - specific energy - critical flow and its computation.

UNIT II: UNIFORM AND RAPIDLY VARIED FLOW

most economical sections- Rectangular, Circular and Trapezoidal channel sections. Hydraulic jump - types - energy dissipation - surges

HYDRAULIC MACHINES

UNIT III: ROTODYNAMIC PUMPS

Introduction - classification - Rotodynamic pumps: centrifugal pumps - work done - losses - specific speed minimum speed to start the pump- multistage pumps- parallel and series.

UNIT IV: POSITIVE DISPLACEMENT PUMPS

Positive displacement pumps - reciprocating pump -work done- slip - air vessels(theory only)

UNIT V: TURBINES

Classification - Pelton wheel turbine -work done-Francis turbine -work done- draft tube -Kaplan turbine -work done.

Uniform flow - velocity measurement - manning's and Chezy's formula - determination of roughness coefficients -

EDUCATIONAL AND RESEARCH INSTITUTE UNIVERSITY

DEPARTMENT OF CIVIL ENGINEERING

APPLIED HYDRAULIC ENGINEERING

12 Hrs

14 Hrs

14 Hrs

8 Hrs

Total No of Hours: 60

12 Hrs

Subject Code:		Subject N	Name : FL	DEPAR UID ME					Ty/Lb/E	L	T/S.Lr	P/R	С
BCE17L03		Subject		ACHIN			101010	210	TL	-	1,011	1, 1	Ũ
		Prerequisite							Lb	0	0/0	2/0	1
L : Lecture T : 7							esearch (C: Credit		0	0/0	2/0	1
T/L/ETL : Theo			1	U					-				
	•	J/ Linibeddee	i Theory a	lu Lau									
OBJECTIVE :					c	61 1							
To learn the ain							ulic equi	pments.					
To get hand-on				of nyarau	lic mach	ines.							
COURSE OUT				licohorgo	in nings	Vonturi	matar or	ificamat	er and notch				
				-									
CO2									es of various				
CO3							aracteris	tic curve	es of various	turbine	S		
Mapping of Co COs/POs	PO1		PO3	PO4	omes (P PO5	Os) PO6	PO7	PO8	PO9	PO10	PO11	PO1	2
COS/POS CO1	H	M	M M	r04	105	100	FU/	FU8	FU9	1010	M	M	. 2
<u>CO1</u> CO2	Н	M	M								M	M	
CO3	H	M	M								M	M	
COs / PSOs		PSO1	PS	$\frac{1}{02}$							IVI	111	
CO1	Н	1501	Н	02									
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicates	s Stren	gth of Corr	elation H	I- High, N	I- Mediu	ım, L-Lo	W						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Aractical / Project	Internships / Technical Skill	Soft Skills				
Approval							V						

BCE17L03 FLUID MECHANICS & HYDRAULIC MACHINERY LAB

UNIT I : FLOW MEASUREMENT i. Venturimeter. ii. Orifice meter.	6 Hrs
UNIT II : LOSSES IN PIPES	6 Hrs
Estimation of major energy and minor losses in pipes	
UNIT III : PUMPS	10 Hrs
Performance characteristics of	
i. Rated speed centrifugal pump.	
ii. Gear pump.	
iii. Reciprocating pump.	
UNIT IV : TURBINES	8 Hrs
Performance characteristics of Pelton wheel turbine and Francis turbine.	
	of Hours: 30 hrs
TEXT BOOKS	otions (D) I til Nom Dell

- * Dr. R. K.Bansal., "Fluid Mechanics And Hydraulic Machines ", Lakshmi Publications (P) Ltd.New Delhi 2005.
- * Fox, Robert w. and Mcdonald, Alan T., "Introduction to Fluid Mechanics ",John Willey & Sons, New Jersey

REFERENCES

- * Streeter, Victor L. And Wylie, Benjamin e., "Fluid Mechanics ", McGraw-Hill Ltd.New Delhi, 1998.
- * Natarajan M.K., "Principles of Fluids Mechanics ", Anuradha agencies, Vidayal karuppur, kumbakonam, 1995

Subject Code: BCE17006	S	ubject Na	me : STR	UCTUR	AL ANA	LYSIS	I		Ty/Lb/ ETL	L	T / S.Lr	P/ R	C
	F	rerequisite	: Strength	of Materi	als				Ту	3	1/0	0/0	4
L : Lecture T :	Tutoria	l SLr : Su	upervised I	earning	P : Proje	ect R : R	esearch (C: Credit	8				
T/L/ETL : The	•		•										
OBJECTIVE	: This	course intr	oduces stu	dents to t	he classi	cal meth	ods of st	ructural a	analysis, i.e	e., metho	ds for calc	ulating f	orce
and displaceme	ents in s	structures of	lue to give	n loads a	and impo	osed defo	rmations	. Both d	eterminate	and inde	eterminate	structure	es ar
covered.													
COURSE OU	гсом	ES (COs)	: (3-5)										
CO1			russes, frar	nes and a	irches								
CO2		Analyse st	tructures for	or moving	g loads								
CO3		Will be co	nversant w	ith classi	cal meth	ods of an	alysis.						
Mapping of Co					comes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO	12
CO1	Н	Н		Н				Н			М		
CO2	Н	Н		Н				Н			М		
CO3	Н	Н		Η				Н			М		
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	s Streng	gth of Corr	elation H	l- High, M	M- Medi	um, L-Lo	W	1					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	✓ Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval			1	1	1	1	1	1			I	I	

B.Tech Civil Engineering – 2017 Regulation

REFERENCES

TEXT BOOKS

Publications,2004

*

*

Analysis of Structures: Strength and Behaviors T.S. Thandavamoorthy, oxford University press, New Delhi, 2005.

Bhavikatti S.S Structural Analysis Vol 1 and vol.2, Vikas Publishing House Pvt. Ltd New Delhi

S.Ramamrutham, R.Narayan, Theory of structures, Dhanpatrai publications, 1993

R.Vaidyanathan, P.Perumal, Comprehensive Structural Analysis Vol 1 and vol.2, Laxmi

Symmetry and Asymmetry -Portal Frames.

UNIT III: MOMENT DISTRIBUTION METHOD

Stiffness and carry over factors -Balance - Distribution and carryover of moments - Analysis of continuous Beams - Plane rigid frames with and without sway - Structural frames

UNIT V: MOVING LOADS AND INFLUENCE LINES (DETERMINATE) 12 Hrs

Influence lines for reactions in statically determinate structures – influence lines for member forces in pin jointed frames - Influence lines for shear force and bending moment in beam sections

Total No of Hours: 60

12Hrs

12Hrs

12 Hrs

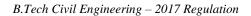
STRUCTURAL ANALYSIS I

UNIT I : DEFLECTION OF DETERMINATE STRUCTURES

Principles of virtual work for deflections - Deflections of pin-jointed plane frames and rigid Plane Frames.

UNIT II: SLOPE DEFLECTION METHOD 12Hrs Analysis of continuous Beams - cantilever beams - Continuous beams and rigid frames (with and without sway) -

UNIT IV: SPACE STRUCTURES


Introduction to analysis of space trusses using method of tension coefficients - Beams curved in plan.

BCE17006

EDUCATIONAL AND RESEARCH INSTITUTE UNIVERSITY

Subject Code: BCE17007	S	Subject Na	me: DES	IGN OF (CONCRE	TE STRU	UCTURE	S - I	Ty/Lb/ ETL	L	T / S.Lr	P/ R	C
		Prerequisite							Ту	3	1/0	0/0	4
L : Lecture T :	Tutoria	1 SLr : St	upervised l	Learning	P : Proje	ect R : R	esearch (C: Credit	S				
T/L/ETL : The	ory/Lab	/Embedde	d Theory a	nd Lab									
OBJECTIVE		-	nprehensiv	e knowle	edge on t	the desig	n of rein	forced c	concrete str	ructural e	lements su	ch as be	eams
columns, slabs		0											
To bring about							te and th	e design	philosophi	es			
COURSE OU	ГСОМ					new							
CO1		to design a											
CO2		0	and detaili	0									
CO3		to design a											
Mapping of Co							1	1					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н	Н	Н				М	М		М	Μ	
CO2	Н	Н	Н	Н				М	М		М	Μ	
CO3	Н	Н	Н	Н				М	М		М	Μ	
COs / PSOs		PSO1	PSO2										
CO1	Н		Н										
CO2	Н		H										
CO3	Η		Н										
H/M/L indicate	s Stren	gth of Cori	relation I	I- High, N	M- Medi	um, L-Lo)W	-	r	- r		- r	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences		Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval		<u> </u>	1	1	<u> </u>	<u> </u>	<u> </u>		<u> </u>		I	<u> </u>	

DESIGN OF CONCRETE STRUCTURES - I

UNIT I: INTRODUCTION AND LIMIT STATE DESIGN OF BEAMS

Properties of different grades of concrete and steel, Permissible stresses, - advantages of limit state method over other methods - understanding the behavior of R.C.C. members. Introduction to IS 456-2000, SP: 16. Characteristic values, partial safety factor, stress strain relationship - stress block parameters, failure criteria Analysis, design and detailing of singly reinforced & doubly reinforced beam.

UNIT II: LIMIT STATE DESIGN FOR SLABS

Design and detailing of one-way and two-way slab panels as per IS code provisions.

UNIT III: LIMIT STATE DESIGN FOR BOND ,ANCHORAGE SHEAR AND TORSION 12 Hrs

Behavior of RC beams in shear and torsion-shear and torsion reinforcement-Limit State Design of R C members for combined bending shear and torsion- use of design aids

UNIT IV : LIMIT STATE DESIGN OF COLUMNS

Basic assumptions - Types of columns – Slenderness' limits for column- minimum eccentricity - Design and detailing of reinforced concrete short columns of rectangular and circular cross sections under axial load.- column under compression and bi axial bending using IS 456;2000.Examples for practices

UNIT V: LIMIT STATE DESIGN OF FOOTINGS

Design and detailing of isolated footing for column subjected to axial loads, Design and detailing of Axially and eccentrically loaded Rectangular footings-Design and detailing of Combined Rectangular footings for Two Columns.

Total No of Hours: 60

TEXT BOOKS

- * N.Krishna Raju "Design of Reinforced Concrete Structures", CBS publishers & Distributors. Latest Edition, IS456:200.
- * S.Ramamrudham ,Design of Reinforced Concrete Structures, Dhanpat Rai publishing company(p) Ltd New Delhi.

REFERENCES

- * Ashok K. Jain Reinforced concrete- Limit state design- New chand & Bros, Roorkee 1997.
- * IS: 456- 2000 "Indian Standard for Plain and reinforced concrete code of practice "Bureau of Indian Standard
- * A.P Arul Manikam "Structural Engineering"
- * Design aids to IS 456-1978 (SP16)
- * SP34 Handbook on Concrete Reinforcement and Detailing, BIS 1987.

EDUCATIONAL AND RESEARCH INSTITUTE UNIT OF A STATE OF A

BCE17007

12 Hrs

12 Hrs

12 Hrs

12 Hrs.

Subject Code: BEE17I04		Subject Na EN	me : ERGY CO	ONSERV	ATION	TECHN	IQUES		Ty/Lb/ ETL	L	T / S.Lr	P/ R	C
		Prerequisite	: None						Ту	2	1/0	0/0	3
L : Lecture T :	Tutori	al SLr : Si	upervised I	Learning	P : Proje	ect R : R	esearch (C: Credit	s	•			
T/L/ETL : The	ory/La	b/Embedde	d Theory a	nd Lab									
OBJECTIVE To study the environment.		s energy sa	aving and	manager	nent tec	hniques	applied	to build	ing and co	onstructio	on with rel	evance	to
COURSE OU	TCOM	IES (COs)	: (3-5) At	the end	of the co	urse the s	student sl	hall					
CO1			nowledge o			nservatio	on system	ıs					
CO2			ergy efficie										
CO3			energy au				ve measu	ires					
Mapping of C								-					
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12
CO1	Н	Н		Н	Н	Н	М	М					
CO2	Н	Н		Н	Н	Н	М	М					
CO3	Н	Н		Н	Н	Η	М	М					
COs / PSOs		PSO1	PS	02									
CO1	H		H										
CO2	H		H										
CO3	H	1.60	H			.							
H/M/L indicate	es Strei	igth of Cori	relation F	I- High, I	VI- Medi	um, L-Lo	ow						
Category	Basic Sciences	✓Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval		I	1	1	<u>I</u>	1	1	1	<u> </u>	1	 		

B.Tech Civil Engineering – 2017 Regulation

ENERGY CONSERVATION TECHNIQUES

UNIT I: INTRODUCTION

BEE17I04

Fundamentals of energy- Energy Production Systems-Heating, Ventilating and Airconditioning – Solar Energy and Conservation – Energy Economic Analysis – Energy conservation and audits – Domestic energy consumption - savings - challenges -primary energy use in buildings - Residential - Commercial - Institutional and public buildings - Legal requirements for conservation of fuel and power in buildings.

UNIT II : ENVIRONMENTAL

Energy and resource conservation – Design of green buildings – Evaluation tools for building energy – Embodied and operating energy - Peak demand - Comfort and Indoor Air quality - Visual and acoustical quality - Land, water and materials ..

UNIT III: DESIGN

Natural building design consideration – Energy efficient design strategies – Contextual factors – Longevity and process Assessment - Renewable Energy Sources and design - Advanced building Technologies - Smart buildings – Economies and cost analysis.

UNIT IV: SERVICES

Energy in building design – Energy efficient and environment friendly building – Thermal phenomena – thermal comfort – Indoor Air quality – Climate, sun and Solar radiation, - Psychometrics – passive heating and cooling systems - Energy Analysis - Active HVAC systems - Preliminary Investigation - Goals and policies - Energy audit - Types of Energy audit- Energy flow diagram - Energy consumption / Unit Production - Identification of wastage- Priority of conservative measures.

UNIT V: ENERGY MANAGEMENT

Energy management of electrical equipment - Improvement of power factor - Management of maximum demand -Energy savings in pumps - Fans - Compressed air systems - Energy savings in Lighting systems - Air conditioning systems - Applications .

Total No. of Hours: 45

REFERENCES

- 1. Moore F., Environmental Control system Mc Graw Hill, Inc. 1994.
- 2. Brown, GZ, Sun, Wind and light: Architectural design strategies, John Wiley & Sons, 1985.
- 3. Cook, J, Award Winning passive Solar Design, Mc Graw Hill, 1984.
- 4. J.R. Waters, Energy conservation in Buildings: A Guide to part L of the Building Regulations, Blackwell Publishing, 2003.

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE UNIVERSITY / Am 15/3 00/01 - 20

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code: BCE17008	5	Subject Na	me: SOI	L MECH	IANICS				Ty/Lb/ ETL	L	T / S.Lr	P/ R	C
		Prerequisite							Ту	2	1/0	0/0	3
L : Lecture T : 7	Futoria	al SLr : Su	pervised L	earning	P : Proje	ct R : R	esearch (C: Credit	ts				
T/L/ETL : Theo	ory/Lał	o/Embeddeo	d Theory a	nd Lab									
OBJECTIVE	: Pro	ovide the d	escription	and class	sificatio	n of soil	l and an	alysis o	of stresses	in soils	under diff	erent lo	ading
conditions;													
To develop an			f the prin	ciples of	effectiv	e stress	in satur	ated soi	ls, and its	applicat	tion to one	dimens	sional
compression and													
COURSE OUT	COM						0 1						
CO1			determine										
CO2			engineerii			ugh stand	lard tests						
CO3			e of Proper										
Mapping of Co							D07	DOO	DOO	DO 10	DO11	DO	10
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	.2
CO1	H					M	M	M		-			
CO2	H					M	M	M		-			
CO3	Η	DCO1	DC			М	М	М		-			
COs / PSOs		PSO1	PS	52									
CO1	H		H										
CO2	H H		H H										
CO3		ath of Com		TT:-1- N	/ Madia								
H/M/L indicates	s Stren	igth of Corr	elation H	I- Hign, M	vi- Medit	ım, L-Lo	w I						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences		Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval		I	<u> </u>		<u>I</u>	1	1		1	1	I	L	

SOIL MECHANICS

UNIT I: SOIL CLASSIFICATION AND COMPACTION

Nature of soil - phase relationships - soil description and classification for engineering purposes - IS classification system - soil compaction - theory, comparison of laboratory and field compaction methods - Factors influencing compaction behaviour of soils.

UNIT II: SOILWATER AND WATER FLOW

Soil water - static pressure in water - Effective stress concepts in soils - capillary stress - permeability measurement in the laboratory and field - factors influencing permeability of soil - seepage - introduction to flow nets - simple problems.

UNIT III: STRESS DISTRIBUTIONS AND SETTLEMENT

Effective stress concepts in solids - stress distribution in soil media - use of influence charts - components of settlement - factors influencing settlement of soil - immediate and consolidation settlement - Tergazhi's one dimensional consolidation theory - computation of rate of settlement.

UNIT IV: SHEAR STRENGTH

Shear strength of cohesive and cohesion less soils - Mohr - Coulomb failure theory - saturated soil mass - Pore pressure parameters - Liquefaction.

UNIT V: SLOPE STABILITY

Slope failure mechanisms - types - infinite slopes - finite slopes - total stress analysis for saturated clay - method of slices - friction circle method - use of stability number.

TEXT BOOKS

BCE17008

*V.N.S. Moorthy, "soil mechanics and foundation engineering", UBS publications and distribution Ltd, New Delhi, 1999.

*Gopal Ranjan and Rao A.S.R., "Basic and Applied Soil Mechanics" Wiley eastern ltd., New Delhi, 1997.

*Arora K.R., "Soil mechanics and Foundation Engineering", Standard publishers and distributors,

New Delhi, 1997.

REFERENCES

*Holtz R.D. and Kovacs W.D., "Introduction to geotechnical engineering", Prentice - hall, New Delhi, 1995.

*Mccarthy D.F., "Essentials of soil mechanics and foundations", Prentice - Hall, New Delhi, 1997.

*Sutten B.H.C., "Solving problems in soil mechanics", Longman group scientific and technical, U.K. England, 1994

*Dass, B.M, "Principles of geotechnical engineering", Thompson books

9 Hrs

10 Hrs

8 Hrs

9 Hrs

9 Hrs

Total: 45 Hrs

EDUCATIONAL AND RESEARCH INSTITUTE DEPARTMENT OF CIVIL ENGINEERING

Subject Code: BCE17L06		Subject Na GEOTECH		ENGINE	ERING	LABOR	ATORY	<i>.</i>	Ty/Lb/ ETL	L	T / S.Lr	P/ R	C
]	Prerequisite	: Soil Mec	hanics					Lb	0	0/0	2/0	1
L : Lecture T :	Tutoria	al SLr : Su	pervised I	earning	P : Proje	ct R : R	esearch (C: Credit	ts				
T/L/ETL : The	ory/Lal	o/Embedded	d Theory a	nd Lab									
OBJECTIVE	: To i	llustrate sor	ne of the p	rinciples	taught dı	iring the	soil mec	hanics c	ourse.				
To impart kno	wledge	of laborato	ry and ind	ex testing	method	s commo	nly used	in Soil a	& foundatio	on engine	ering.		
COURSE OU	TCOM												
CO1		Knowledg limits	e to detern	nine Inde	x propert	ies of the	e soils lik	te water	content, spe	ecific gra	wity and At	terberg	
CO2		Knowledg consolidat		ring pro	perties 1	ike fiel	d densit	y, shea	r strength,	permea	bility, con	paction	and
CO3	_	Test the so	oil to assess				e load						
Mapping of C	ourse (with Progr	am Outc	comes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12
CO1	Η			Н		Η			Н				
CO2	Η			Н		Η			Н				
CO3	Η			Н		Η			Н				
COs / PSOs		PSO1	PS	02									
CO1	H		Н										
CO2	H		Н										
CO3	H	4 60	H										
H/M/L indicate	es Stren	igth of Corr	elation H	I- High, N	VI- Medii	im, L-Lo	w		1				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval	1	I	1	1	<u>ı</u>	<u>ı</u>	1		1		I	1	

BCE17L06

GEOTECHNICAL ENGINEERING LABORATORY

LIST OF EXPERIMENTS

- 1. Specific gravity of soil solids
- 2. Grain size distribution Sieve analysis Hydrometer analysis
- 3. Atterberg limits test Liquid limit, Plastic limit and shrinkage limit tests
- 4. Field density Test
- 5. Determination of moisture Density relationship using standard proctor.
- 6. Permeability determination (constant head and falling head methods)
- 7. Direct shear test on cohesion less soil
- 8. Unconfined compression test in cohesive soil
- 9. Tri axial compression test in cohesion less soil
- 10. Laboratory Vane shear test in cohesive soil
- 11. One dimensional Consolidation test (Determination of coefficient of consolidation only)

Total No of Hrs = 30 hrs

REFERENCES

- * "Soil Engineering Laboratory Instruction Manual ", Published by the Engineering College
 Co-operative Society, Chennai, 1996.
- * Lambe T.W., "Soil Testing for Engineers ", John Wiley and Sons, New York, 1990.
- * "I.S.Code of Practice (2720) Relevant Parts ", as amended from time to time..

Subject Code: BCE17010	S	ubject Na	me : STR	UCTUR	AL ANA	LYSIS I	I		Ty/Lb/ ETL	L	T/S.Lr	P/ R	C
			e: Structura						Ту	3	1/0	0/0	4
L : Lecture T : T	'utorial	SLr : Su	upervised I	Learning	P : Proje	ect R : R	esearch (C: Credit	S				
T/L/ETL : Theo	ry/Lab/	Embedde	d Theory a	nd Lab									
OBJECTIVE :													
To impart extend	ded kno	owledge o	n the conce	epts taugh	nt in Stru	ctural An	alysis I (Determi	nate to inde	eterminat	e structure	s.)	
To understand th	ne basi	c concepts	of finite el	lement an	alysis.								
COURSE OUT	COM	ES (COs)	: (3-5)										
CO1			uspension l	oridges a	nd arches	3							
CO2		will be co	nversant w	ith classi	cal metho	ods of an	alysis.						
CO3		analyse st	ructures by	finite ele	ement me	ethod	·						
Mapping of Co	urse O	utcomes	with Progr	am Outo	comes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н		Η			Μ	Μ			Μ	Μ	
CO2	Н	Η		Н			Μ	Μ			Μ	Μ	
C03	Н	Η		Η			Μ	Μ			Μ	Μ	
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
C03	Н		Н										
H/M/L indicates	Streng	gth of Cori	elation F	I- High, I	M- Medi	um, L-Lo	W	1		- 1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Arogram Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval						1		_ <u></u>					

B.Tech Civil Engineering – 2017 Regulation

BCE17010

UNIT I: ARCHES

Arches structural forms - Examples of arch structures - Types of arches - Analysis of three hinged, two hinged and fixed arches, parabolic and circular arches - Settlement and temperature effects

UNIT II : SUSPENSION BRIDGES

Analysis of suspension bridges - Un stiffened cables and cables with three hinged stiffening girders - Influence lines for three hinged stiffening girders.

UNIT III: MATRIX METHOD FOR INDETERMINATE FRAMES

Equilibrium and compatibility - Determinate Vs indeterminate structures -Indeterminacy - primary structure -Compatibility conditions - Analysis of indeterminate pin-jointed plane frames, continuous beams. Element and global stiffness and flexibility matrices- Co-ordinate transformations - transformations of stiffness matrices -Analysis of Continuous Beams.

UNIT IV : PLASTIC ANALYSIS OF STRUCTURES

Statically indeterminate axial problems – Beams in pure bending – Plastic moment of resistance – Plastic modulus - Shape factor - Load factor - Plastic hinge and mechanism - Plastic analysis of indeterminate beams and frames -Upper and lower bound theorems.

UNIT V : FINITE ELEMENT METHOD

Introduction- Discretisation of a structure- Displacement functions- Truss element- Beam element- Plane stress and plane strain- Triangular elements

* R.Vaidyanathan, P.Perumal, Comprehensive Structural Analysis Vol 1 and vol.2, Laxmi Publications, 2004

* S.Ramamrutham, R.Narayan, Theory of structures, Dhanpatrai publications, 1993

* Bhavikatti S.S Structural Analysis Vol 1 and vol.2, Vikas Publishing House Pvt. Ltd New Delhi

REFERENCES

TEXT BOOKS

*Matrix analysis of framed structures - William Weaver, Jr & James M.Gere, CBS Publishers & Distributors, Delhi, 1995

*Structural Analysis – A Matrix Approach – G.S.Pandit & S.P.Gupta, Tata McGraw-Hill, New Delhi ,1998

* Manicka Selvam V.K., Elementary Matrix Analysis of Structures, Khanna Publishers Mumbai, 1990.

*Coates R.C., Coutie M.G. and Kong F.K., Structural Analysis, ELBS and Nelson, Newjersey, 1990.

DEPARTMENT OF CIVIL ENGINEERING

STRUCTURAL ANALYSIS II

12 Hrs

12 Hrs

12Hrs

12 Hrs

12 Hrs

Total No of Hours: 60

Subject Code:		ibject Na ESIGN O	me : OF CONC	RETE S'	FRUCTI	URES -	п		TY / L/ ETL	L	T / S.Lr	P/ R	C
BAR17I03			: Design						TY	2	1/0	0/0	3
L : Lecture T : Tu	utorial	SLr : Su	ipervised	Learning	P : Proje	ect R : R	esearch (C: Credit	s				4
T/L/ETL : Theory	y/Lab/	Embeddeo	d Theory a	and Lab									
OBJECTIVE :	To bri	ng an exp	osure on a	dvanced	topics in	structura	l design d	comprisii	ng of RCC	structure	s		
			ne design 1	methods of	of special	ized com	ponents	of RCC s	structures				
COURSE OUTO													
After successfu													
CO1		-	aining wa			vater tanl	KS.						
CO2 CO3		-	ab using y asonry wal		-	aantriaal	looda						
Mapping of Cou							loads						
mapping of Cou		utcomes v	with 110g		comes (1	03)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	2
CO1	Н	Н	М	Н		Н	М	М	М		М		
CO2	Н	Н	М	Н		Н	М	М	М		М		
CO3	Н	Н	М	Н		Н	М	М	М		М		
COs / PSOs	Р	SO1	PS	502									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicates	Streng	th of Corr	elation l	H- High,	M- Medi	um, L-Lo)w						
Category								nical Skill					
	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Sh	Soft Skills				
	Ba	En	Hu Sci	Prc	Prc	Op	Pra	П	Sof				
Approval		N		1									

B.Tech Civil Engineering – 2017 Regulation

UNIT I: RETAINING WALLS 11 Hrs Design of retaining walls - cantilever and counter fort. UNIT II: DESIGN OF STAIRCASE AND FLAT SLAB Introduction to ductile detailing & provisions of IS 13920 - Design of Staircases - Design of flat slabs. **UNIT III: DESIGN OF WATER TANK** Design of circular and rectangular water tanks resting on ground. Design of staging and foundations.

UNIT IV: YIELD LINE THEORY. Application of virtual work method to square, rectangular, circular and triangular slabs.

UNIT V BRICK MASONRY

Design of masonry walls and pillars as per NBC and I.S.codes.

TEXT BOOKS

BAR17I03

- * Varghese P C, Limit State Design of Reinforced Concrete, Prentice Hal of India, Private, Limited New Delhi, 1997
- * Krishna Raju N. Design of RC structures, CBS Publishers and distributors, New Delhi, 1995.
- * S.Ramamrudham, Design of Reinforced Concrete Structures, Dhanpat Rai publishing company(p) Ltd New Delhi.
- * Dayarathnam.P, Brick and Reinforced Brick Structures, Oxford and IBH Publishing House, 1999.

REFERENCES

- Mallick and Gupta, Reinforced Concrete Design, Oxford and IBH, Delhi, 1997
- * Design Aides to IS 456-1978 (SP-16)
- * Code of Practice for Plain and Reinforced Concrete - IS456-2000.
- * IS 1905:1987, Code of practice for structural use of unreinforced masonry Bureau of Indian Standards

DESIGN OF CONCRETE STRUCTURES - II

8 Hrs

11 Hrs

7 Hrs

8 Hrs

Total No of Hours : 45

Subject Code: BCE17011	:	Subject Na	me : FOU	NDATIO	ON ENG	INEERI	NG		Ty/Lb/ ETL	L	T/S.Lr	P/ R	C
		Prerequisite	: Soil mec	hanics					Ту	2	1/0	0/0	3
L : Lecture T :	Tutori	al SLr : Su	upervised I	earning	P : Proje	ct R : R	esearch (C: Credi	ts				
T/L/ETL : The	ory/La	b/Embedde	d Theory a	nd Lab									
OBJECTIVE	: Т	'o import k	nowledge	on comm	non meth	nod of su	ıb soil iı	ivestiga	tion, selecti	ion of fo	oundation a	nd desi	gn of
foundation													
COURSE OU	TCOM												
CO1									ed for the so		ace		
CO2									ng structure				
CO3					dent acq	uires the	capacity	v to invo	estigate the	soil con	dition and	to selec	t and
		design a s											
Mapping of C							1	1					
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	H	Н	**	H		H		H					
CO2	H	H	H	H		H		H					
CO3	Η	H	H	H		Н		Н					
COs / PSOs CO1	Н	PSO1	H PS	02									
CO1 CO2	Н		Н							-			
CO2 CO3	H		Н										
H/M/L indicate		orth of Corr		I- High, N	I M- Medii	um I-Io	1337						
		igui oi con			vi- ivicuit								
								Internships / Technical Skill					
Category		Engineering Sciences	Humanities and Social Sciences					chnica					
		cier	d d		ive		iect	Тес					
	ces	Š	an	ore	ecti	ives	roj	s/					
	ien	ring	ies	Ŭ	E	ecti	/ F	hip	$\mathbf{I}\mathbf{S}$				
	Sc	leei	anit	am	am.	El	ical	ms	Skil				
	Basic Sciences	ıgir	Humaniti Sciences	Program Core	Program Electives	Open Electives	Practical / Project	nte	Soft Skills				
	B	Ēr	Hr Sc	<u>d</u>	Pr	ō	Pr	Г	Sc				
Approval			1	1	1	1	I	1	I		I	I	

B.Tech Civil Engineering – 2017 Regulation

*Arora, K.R. "Soil Mechanics and Foundation Engineering", Standard Publishers and distributors, New Delhi, 1997. *Gopal Ranjan and Rao, "A.S.R. Basic and Applied Soil Mechanics", Wiley Eastern Ltd., New Delhi, 1997. *V.N.S. Moorthy, "Soil Mechanics and Foundation Engineering", UBS Publications and distribution Ltd, New Delhi, 1999.

REFERENCES

TEXT BOOKS

*Bowles J.E. "Foundation Analysis and Design", McGraw hill, 1994.

*Dass, B.M, "Principles of Geotechnical Engineering", Thompson Books, Singapore, 5th edition, 2003

*Kaniraj, S.R, "Design Aids in Soil Mechanics and Foundation Engineering", Tata Mcgraw Hill Publishing Company Ltd, New Delhi, 2002

*Swamisaran, "Analysis and Design of Structures - Limit State Design", Oxford Ibh Publishing co Pvt Ltd. New Delhi, 1998

8 Hrs

UNIT IV: PILE FOUNDATION

UNIT V: RETAINING WALLS

Types of piles and their function - factors influencing the selection of pile - load carrying capacity of single pile in

UNIT III: FOOTINGS AND RAFTS

Types of foundation - contact pressure distribution below footings, design of footings, isolated footing, combined footing, mat foundation - types - Applications - proportioning- floating foundation - codal provision.

granular and cohesive soils - static formulae - dynamic formulae (engineering news and hiley's) - capacity from insitu tests (SPT and SCPT) - negative skin friction - uplift capacity - group capacity by different methods (feld's rule, converse - Labarra formula and block failure criterion) - settlement of pile groups -interpretation of pile load test (routine test only) - under reamed piles - capacity under compression and uplift .

Plastic equilibrium in soils - active and passive states - Rankine's theory - cohesionless, effect of water table and cohesive soil - coloumb's wedge theory - condition for critical failure plane - earth pressure on retaining walls of simple configurations - Rebhann and Culmann's graphical method - stability analysis of retaining walls.

UNIT II: SHALLOW FOUNDATION

Introduction - location and depth of foundation - codal provision - bearing capacity of shallow foundation on homogeneous deposits - Terzaghi's formula and BIS formula - factors affecting bearing capacity - problemsbearing capacity from in situ tests (SPT, SCPT and plate load) allowable bearing pressure - components of settlement - determination of settlement of foundation on granular and clay deposit - total and differential settlement - allowable settlement - codal provision.

UNIT I: SOIL EXPLORATION

BCE17011

Scope and objectives - method of exploration - auguring and boring - wash boring and rotary drilling - depth of boring - spacing and depth of bore hole - sampling - representative and undisturbed - sampling techniques - split spoon sampler, thin tube sampler, stationary piston sampler - bore log and report - penetration tests (SPT and SCPT) - Selection of foundation.

8 Hrs

8Hrs

Total No of Hours: 45

FOUNDATION ENGINEERING

9 Hrs

Subject Code: BCE17009	S	Subject Na	me: TRA	NSPOR	TATION	N ENGI	NEERIN	IG	Ty/Lb/ ETL	L	T / S.Lr	P/ R	C
		Prerequisite							Ту	2	1/0	0/0	3
L : Lecture T : 7	Futoria	1 SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	C: Credit	S				
T/L/ETL : Theo	ory/Lab	/Embedded	Theory ar	nd Lab									
OBJECTIVE :	To ur	nderstand th	e aspects o	of design	, construe	ction and	mainten	ance of	tracks for th	ie safe a	nd– efficie	nt move	ement
of public and go	oods. T	o have an o	overall kno	wledge o	of the des	ign and o	construct	ion of H	lighway, air	port, doo	cks, harbor	s and po	rts as
a whole .				U		U					,	1	
COURSE OUT	COM												
CO1									edge on plan				
CO2 CO3						n and De	sign vari	ous civi	l Engineerin	ig aspect	is of Railwa	ays,	
Mapping of Co	ureo (Knowledge											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	2
C01	H	102	M	101	105	H	107	M	10,	1010	M	101	
CO2	H		M			Н		M			М		
CO3	Н					Н		М			М		
COs / PSOs		PSO1	PSO	02		•		•					
CO1	Η		Н										
CO2	Η		Н										
CO3	Η		Н										
H/M/L indicates	s Stren	gth of Corre	elation H	- High, N	/- Mediu	ım, L-Lo	W		n		n		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	✓ Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval		I	1	1	1	1	1	1	1	1	I	I	

DEPARTMENT OF CIVIL ENGINEERING TRANSPORTATION ENGINEERING

UNIT I HIGHWAY PLANNING AND ALIGNMENT

Significance of highway planning –History of road development in India – Classification of highways – Locations and functions – Factors influencing highway alignment – Soil suitability analysis - Engineering surveys for alignment, objectives, conventional and modern methods.

UNIT II GEOMETRIC DESIGN OF HIGHWAYS

Typical cross sections of Urban and Rural roads — Cross sectional elements - Sight distances – Horizontal curves, Super elevation, transition curves, widening at curves – Vertical curves - Gradients, Special consideration for hill roads - Hairpin bends – Lateral and vertical clearance at underpasses.

UNITIII RAILWAYS PLANNING CONSTRUCTION AND MAINTENANCE

Elements of permanent way – Rails, Sleepers, Ballast, rail fixtures and fastenings, - Track Stress, coning of wheels, creep in rails, defects in rails - Geometric design of railways, gradient, super elevation, widening of gauge on curves- Points and Crossings. Tunneling Methods, drainage and ventilation –Calculation of Materials required for track laying - Construction and maintenance of tracks – Modern methods of construction & maintenance

UNIT IV AIRPORT PLANNING & DESIGN

Airport planning, components of airports, airport site selection Runway design- orientation, geometric design and correction for gradients Terminal area, airport layout, airport buildings, passenger facilities, parking area and airport zoning

UNIT V HARBOUR ENGINEERING

Definition of terms - harbors, ports, docks, tides and waves. Harbors – requirements, classification – site investigation for locations, planning and layouts Terminal facilities – port buildings, warehouse, transit sheds, intermodal transfer facilities, mooring accessories, navigational aids coastal structures piers, breakwaters, wharves, jetties, quays.

Total No of Hrs = 45 hr

TEXT BOOKS

*Saxena Subhash C and Satyapal Arora, A Course In Railway Engineering, Dhanpat Rai And Sons, Delhi, 1998.

*Khanna S K, Arora M G and Jain S S, Airport Planning And Design, Nemchand And Brothers, Roorkee, 1994.

*Khanna K And Justo C E G, Highway Engineering, Khanna Publishers, Roorkee, 2001.

* Kadiyali l r, Principles and Practice of Highway Engineering, Khanna technical Publications, Delhi

* Dr K.P.Subramaniyam, Transportation Engineering, Scitech Publishers, Chennai 2003

REFERENCES

- * IRC standards, 2002
- * Bureau of Indian Standards (bis) publications on highway materials, 1998

* Rangwala, Railway Engineering, Charotar Publishing House, Mumbai, 1995

BCE17009

9 Hrs

9 Hrs

9 Hrs

8 Hrs

Subject Code: BCE17ET4		Subject Na			DIGIN		anne		Ty/Lb/ ETL	L	T/S.Lr	P/ R	С
BCEI/E14		WATER I					GINEE	RING					
		Prerequisite							ETL	1	0/1	1/1	3
L : Lecture T :	Tutori	al SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch (C: Credit	ts				
T/L/ETL : The	ory/La	b/Embedde	d Theory a	nd Lab									
OBJECTIVE	:												
To impart know				, design,	operation	n and ma	nagemen	t of rese	ervoir syster	n			
COURSE OU	ГСОМ	IES (COs)	: (3- 5)										
CO1		Students v	vill come to	o know al	oout wate	er resourd	ces and n	nanagen	nent in India	a			
CO2		Students w	vill come to	how th	e irrigati	on mana	gement p	oractices	of the past	, present	and future		
CO3		The stude	nt will gain	knowled	lge on di	fferent m	ethods o	f irrigati	on includin	g canal i	rrigation.		
Mapping of Co	ourse	Outcomes v	vith Progr	am Outc	omes (P	Os)							
COs/POs	POI	l PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Η				М	Н	Н	М			М	L	
CO2	Η				М	Н	Н	М			М	L	
CO3	Η				М	Н	Н	М			М	L	
COs / PSOs		PSO1	PSO	02									
CO1	Η		Н										
CO2	Η		Н										
CO3	Η		Н										
H/M/L indicate	s Strei	ngth of Corr	elation H	- High, N	A- Mediu	ım, L-Lo	W				•		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	-Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval						<u> </u>	<u> </u>		1			<u> </u>	

B.Tech Civil Engineering – 2017 Regulation

UNIT I :WATER RESOURCES

Water resources survey - Water resources of India and Tamilnadu - Description of water resources planning -Estimation of water requirements for irrigation and drinking- Single and multipurpose reservoir - Multi objective -Fixation of Storage capacity -Strategies for reservoir operation - Design flood-levees and flood walls.

UNIT II WATER RESOURCE MANAGEMENT

Economics of water resources planning; - National Water Policy - Consumptive and non- consumptive water use -Water quality - Scope and aims of master plan - Concept of basin as a unit for development - Water budget-Conjunctive use of surface and ground water

UNIT III : IRRIGATION ENGINEERING

Irrigation – Need and mode of Irrigation – Merits and demerits of irrigation – Need – Merits and Demerits – Duty, Delta and Base period - Irrigation efficiencies - Crops and Seasons - Crop water Requirement - . Canal irrigation -Lift irrigation – Tank irrigation – Flooding methods – Merits and Demerits – Sprinkler irrigation – Drip irrigation

UNIT IV : DIVERSION AND IMPOUNDING STRUCTURES

Weirs – elementary profile of a weir – weirs on pervious foundations - Types of Impounding structures - Tanks, Sluices and Weirs – Gravity dams – Earth dams – Arch Dams – Spillways – Factors affecting location and type of dams - Forces on a dam - Hydraulic design of dams

UNIT V: CANAL IRRIGATION

Alignment of canals – Classification of canals – Canal drops – Hydraulic design of drops – Cross drainage works – Hydraulic design of cross drainage works - Canal Head works - Canal regulators - River Training works.

Total No of Hours: 45

TEXT BOOKS

Asawa, G.L., "Irrigation Engineering", New Age International Publishers, New Delhi, 2000.

Sharma, R.K., and Sharma, T.K., "Irrigation Engineering", S.Chand and Company, New Delhi, 2000.

REFERENCES

- Basak, N.N., "Irrigation Engineering", Tata McGraw-Hill Publishing Co., New Delhi, 2000.
- Garg, S.K., "Irrigation Engineering," Laxmi Publications, New Delhi, 1999. *
- Gupta, B.L., and Amir Gupta, "Irrigation Engineering", SatyaPraheshan, New Delhi *

DEPARTMENT OF CIVIL ENGINEERING

WATER RESOURCES & IRRIGATION ENGINEERING

BCE17ET4

10 Hrs

10 Hrs

8 Hrs

8Hrs

Subject Code: BCE17012		Subject Nai	me : DESI	GN OF S	STEEL S	STRUCI	URES		Ty/Lb/ ETL	L	T/S.Lr	P/ R	C
		Prerequisite	: Structura	l analysi	s I & II				Ту	3	1/0	0/0	4
L : Lecture T :	Tutori	al SLr : S	upervised l	earning	P : Proje	ect R : R	esearch (C: Credit	ts				
T/L/ETL : The	ory/La	b/Embedde	d Theory a	nd Lab									
OBJECTIVE:							oad and I	Resistance	ce Factor De	esign me	thodology.		
To design and				l compre	ssion mer	mbers.							
COURSE OU	TCOM												
CO1								ructural	steel memb	ers subje	cted to con	npressive	e,
			d bending t										
CO2							oof trusse	es and ga	antry girder	s.			
CO3			and analy										
Mapping of C							1	1		1			
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Η	Н	Н	Η		М	Μ	Μ		_			
CO2	Η	Н	Н	Н		М	Μ	Μ		_			
CO3	Н	Н	Н	Н		М	М	М					
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	es Strei	ngth of Corr	elation I	I- High, I	M- Mediu	um, L-Lo	ow		1				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval			1		<u> </u>	<u> </u>		1		<u> </u>			

B.Tech Civil Engineering – 2017 Regulation

DESIGN OF STEEL STRUCTURES

UNIT I INTRODUCTION

BCE17012

Properties of steel – Structural steel sections – Limit State Design Concepts – Loads on Structures – Connections using rivets, welding, bolting – Design of bolted and welded joints – Eccentric connections - Efficiency of joints.

UNIT II TENSION MEMBERS

Types of sections – Net area – Net effective sections for angles and Tee in tension – Design of connections in tension members – Use of lug angles – Design of tension splice – Concept of shear lag

UNIT III COMPRESSION MEMBERS

Types of compression members – Theory of columns – Basis of current codal provision for compression member design – Slenderness ratio – Design of single section and compound section compression members – Design of laced and battened type columns – Design of column bases – Gusseted base

UNIT IV BEAMS

Design of laterally supported and unsupported beams – Built up beams – Beams subjected to uniaxial and biaxial bending – Design of plate girders - Intermediate and bearing stiffeners – Flange and web splices.

UNIT V ROOF TRUSSES AND INDUSTRIAL STRUCTURES

Roof trusses – Roof and side coverings – Design of purlin and elements of truss; end bearing – Design of gantry girder.

Total No of Hours: 60

TEXTBOOKS:

 Gambhir. M.L., "Fundamentals of Structural Steel Design", McGraw Hill Education India Pvt. Ltd., 2013
 Shiyekar. M.R., "Limit State Design in Structural Steel", Prentice Hall of India Pvt. Ltd, Learning Pvt. Ltd., 2 nd Edition, 2013.

3. Subramanian.N, "Design of Steel Structures", Oxford University Press, New Delhi, 2013.

REFERENCES:

1. Narayanan.R.et.al. "Teaching Resource on Structural Steel Design", INSDAG, Ministry of Steel Publications, 2002

2. Duggal. S.K, "Limit State Design of Steel Structures", Tata McGraw Hill Publishing Company, 2005

3. Bhavikatti.S.S, "Design of Steel Structures" By Limit State Method as per IS:800–2007, IK International Publishing House Pvt. Ltd., 2009

4. Shah.V.L. and Veena Gore, "Limit State Design of Steel Structures", IS 800–2007 Structures Publications, 2009.
5. IS 800 :2007, General Construction In Steel - Code of Practice, (Third Revision), Bureau of Indian Standards, New Delhi, 2007

12 Hrs

12 Hrs

12 Hrs

12 Hrs

Subject Code: BCE17013		Subject Nar	ne: CONS	TRUCT	ION MA	NAGEN	MENT		Ty/Lb/ ETL	L	T / S.Lr	P/ R	C
		Prerequisite	: NONE						Ту	3	1/0	0/0	4
L : Lecture T :	Tutori	al SLr : Su	pervised l	Learning	P : Proje	ect R : R	esearch (C: Credi	ts				
T/L/ETL : The	ory/La	b/Embedded	d Theory a	nd Lab									
OBJECTIVE To make the st		aware of the	e various c	onstructi	on techni	iques and	l practice	s.					
To introduce a	concep	ots of projec	ts formula	tion									
COURSE OU	TCOM												
CO1		The studen	nt should b	e able to	plan con	struction	projects	, schedu	le the activi	ities usin	g network o	liagrams	3,
CO2		Determine use the pro						project	by creating	g cash flo	ws and bud	lgeting a	ind to
CO3		Knowledg	e about di	fferent m	ethods of	plannin	g						
Mapping of C	ourse	Outcomes v	with Prog	am Out	comes (P	Os)							
COs/POs	PO	l PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	H					H	M	M		M		H	
CO2	H					H	M	M		M		H	
CO3	Н					Η	М	Μ		М		Н	
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	es Strei	ngth of Corr	elation H	I- High, I	M- Mediu	um, L-Lo)w						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

BCE17013

UNIT I: NETWORK TECHNIQUES

Introduction to network techniques - Use of CPM and PERT for planning - Scheduling and control of construction work, bar charts Error in networks, Types of nodes and node numbering systems.

UNIT II: CONSTRUCTION PLANNING

Basic concepts in the development of construction plan - Planning for construction and site facilities using networks - Preparation of construction schedules for jobs, materials, and equipment using CPM.

UNIT III: COST CONTROL OF CONSTRUCTION

Construction quality control and inspection - Significance of variability and estimation of risks - Construction cost control - Crashing of networks.

UNIT IV : QUALITY AND SAFETY DURING CONSTRUCTION 12 Hrs

Importance of Quality and safety - Organizing for quality and safety - safety measures - Prevention of fire at construction site - Elements and organization of quality - Quality assurance techniques.

UNIT V MANAGEMENT INFORMATION SYSTEM

Definition of MIS – Requirement of MIS – Database approach – Types of project information – Accuracy and use of information.

TEXT BOOKS

- Chitkara, K.K "Consruction Project Management Planning "Scheduling And Control, Tata Mc Graw -Hill Publishing Co., Newdelhi, 1998.
- S. Seetharaman Construction Engineering & Management, Dhanpat Rai Publications ,Pune,1995.

REFERENCES

- Construction Management Sangareddy And Meyyappan, Prathibha Publications, Cbe, 1994.
- Moder. J., C. Phillips And Davis, "Project Management With Cpm, Pert And Precedence Diagramming,1999
- Prasanna Chandra, " Project Management ", Tmh ,New Delhi,1997.

CONSTRUCTION MANAGEMENT

```
12 Hrs
```

12 Hrs

12 Hrs

12 Hrs

Total No of Hours: 60

Subject Code: BCE17L15		Subject Nar	ne: PROJ	ЕСТ					Ty/Lb/ ETL	L	T / S.Lr	P/ R	C
		Prerequisite							Lb	0	0/4	0/8	8
L : Lecture T :	Tutoria	al SLr : Su	pervised I	Learning	P : Proje	ct R : Re	esearch C	C: Credit	S				
T/L/ETL : The	ory/Lal	o/Embedded	l Theory a	nd Lab									
OBJECTIVE	: Tl	ne objective	of projec	t work is	to enab	le the st	udents to	work in	n convenie	nt group	s of not m	ore than	four
members in a g		•								• •			
COURSE OU	ГСОМ	IES (COs)	: (3-5) S	tudents w	ill be abl	e to							
CO1		Work in a					research	skills					
CO2		Explore in	novative i	deas in ci	vil engin	eering fie	eld						
CO3		Develop p	rojects bas	ed on ind	lustrial a	nd field r	equireme	ents					
Mapping of Co	ourse (Outcomes v	vith Progr	am Outo	comes (P	Os)							
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12
CO1	Η	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	
CO2	Η	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	
CO3	Η	Н	Н	Н	Н	Н	Н	Н	Н	Η	Н	Н	
COs / PSOs		PSO1	PS	02									
CO1	Η		Н										
CO2	Η		Н										
CO3	Н		Н							_			
H/M/L indicate	s Strer	igth of Corr	elation F	I- High, N	M- Mediu	ım, L-Lo	W	1	r	-1		- r	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval		I	1		1	1		1	I		1	1	

BCE17L15

PROJECT

OBJECTIVE

The objective of project work is to enable the students to work in convenient groups of not more than four members in a group on a project involving theoretical and experimental studies related to civil engineering. Every project work shall have a guide who is a member of the faculty of the university.

Fourteen periods per week shall be allotted in the time table for this important activity and this time shall be utilized by the students to receive directions from the guide, on library reading, laboratory work, computer analysis or field work as assigned by the guide and also to present in periodical seminars the progress made in the project. Each student shall finally produce a comprehensive report covering background information, literature survey, problem statement, project work details and conclusions. This final report shall be typewritten form as specified in the guidelines. The continuous assessment and semester evaluation may be carried out as specified in the guidelines to be issued from time to time.

ELECTIVE SYLLABUS

(PART TIME)

B.Tech Civil Engineering – 2017 Regulation

Subject Code: BCE17E01		Subject Na	me : ENV	IRONM	ENTAL	ENGIN	EERIN	G	Ty/Lb/ ETL	L	T / S.Lr	P/R	C
		Prerequisite	: None						Ту	2	1/0	0/0	3
L : Lecture T : '	Tutoria	al SLr : Su	upervised I	earning	P : Proje	ct R : R	esearch (C: Credit	ts				
T/L/ETL : Theo	ory/Lal	b/Embedde	d Theory a	nd Lab									
OBJECTIVE :	To ir	npart know	ledge in fu	ndamenta	al theory	and desig	gn of con	vention	al water trea	atment fa	acilities.		
To impart know	wledge	e in fundam	ental theory	y and des	ign of co	nvention	al wastev	water tre	atment faci	lities .			
To impart know	ledge	on the prin	ciples used	to design	n advance	ed wastev	water trea	atments.					
COURSE OUT	ГСОМ	IES (COs)	: (3-5)										
CO1		treatment	and distrib	ution		-			•		uding water	-	
CO2			0								elation to p		alth
CO3							and waste	e water j	project alter	natives	on basis of o	chosen	
Mapping of Co								1					
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10) PO11	PO	12
CO1	Η	М	М		Н		Н	Н				Μ	
CO2	Η	М	М		H		Н	Η				Μ	
CO3	Η	М	М		Н		Н	Н				М	
COs / PSOs		PSO1	PS	02									
CO1	H		H										
CO2	H		H										
CO3	H	1 10	H										
H/M/L indicate	s Strer	igth of Cori	elation F	l- High, I	M- Mediu	ım, L-Lo	w	1	1	1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core		Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval		·	<u>.</u>	<u>.</u>	·		<u>.</u>		•	•		·	

B.Tech Civil Engineering – 2017 Regulation

ENVIRONMENTAL ENGINEERING

UNIT I : PLANNING FOR WATER SUPPLY SYSTEMS

Scope of environmental engineering – role of environmental engineer – Public water supply systems – objectives – design period – population forecasting – water demand – sources of water – sources selection – water quality – characterization - sources of wastewater -estimation of storm runoff.

UNIT II: WATER TREATMENT

Screening - types of screening - plain sedimentation - sedimentation with coagulation - settling & flotation filtration - disinfection

UNIT III : SEWAGE TREATMENT – PRIMARY TREATMENT

Objectives – unit operations & processes – principles, functions and design of screen, grit chambers and primary sedimentation tanks.

UNIT IV : SEWAGE TREATMENT - SECONDARY TREATMENT 9 Hrs

Secondary treatment - activated sludge process and trickling filter; other treatment methods - stabilization ponds and septic tanks - advances in sewage treatment.

UNIT V: SEWAGE DISPOSAL AND SLUDGE MANAGEMENT

Methods – dilution – self purification of surface water bodies – oxygen sag curve – land disposal – sewage farming - deep well injection - soil dispersion system. Thickening - sludge digestion - biogas recovery - drying beds conditioning and dewatering - sludge disposal.

TEXT BOOKS

Garg, S.K., Environmental Engineering, Vols. I &II, Khanna Publishers, New Delhi, 1994

* C.S.Shah, Water Supply And Sanitation, Galgotia Publishing Company, New Delhi, 1994

REFERENCES

- Manual on Water Supply And Treatment, Ministry Of Urban Development, Government Of India, New Delhi, 1999.
- Manual on sewerage and sewage treatment, CPHEEO, Ministry Of Urban Development, Government Of * India, New Delhi, 1993.
- * H.S.Peavy, D.R.Rowe and George Tchobanoglous, Environmental Engineering, Mcgraw-Hill Book Company, New Delhi, 1995.

BCE17E01

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Total No of Hours: 45

EDUCATIONAL AND RESEARCH INSTITUTE UNIVERSITY

Precausite :Design of steel and concrete structures TY 2 1.0 0.0 3 1: :Lecture T: Tutorial SLr : Supervised Learning P : Project R : Research C: Credits TV/LETL : Theory/Lab/Embedded Theory and Lab TV 2 1.0 0.0 3 OBJECTIVE : To develop an understanding of the behaviour and design study of Steel concrete composite elements and structures COURSE OUTCOMES (COS) : (3-5) At the end of this course students will be in a position to COURSE OUTCOMES (COS) : (3-5) At the end of this course students will be in a position to COURSE OUTCOMES (COS) : (3-5) At the end of this course students will be in a position to COURSE OUTCOMES (COS) : (3-5) At the end of this course students will be in a position to COURSE OUTCOMES (COS) : (3-5) At the end of this course students will be in a position to COURSE OUTCOMES (COS) : (3-5) At the out of the concepts of composite constructions of buildings COURSE OUTCOMES (COS) : (3-5) COURSE OUTCOMES (COS) : (3-5) COURSE OUTCOMES (COS) : (3-5) COURSE OUTCOMES (COS) : (3-5) <th>Subject Code: BCE17E02</th> <th></th> <th>Subject Na DESIGN O</th> <th></th> <th>OSITE S</th> <th>STRUCT</th> <th>URES</th> <th></th> <th></th> <th>TY / L/ ETL</th> <th>L</th> <th>T / S.Lr</th> <th>P/R</th> <th>C</th>	Subject Code: BCE17E02		Subject Na DESIGN O		OSITE S	STRUCT	URES			TY / L/ ETL	L	T / S.Lr	P/R	C
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								ures		TY	2	1/0	0/0	3
OBJECTIVE : To develop an understanding of the behaviour and design study of Steel concrete composite elements and structures COURDED CONDEX (COS) : (3 - 5) At the end of this course students will be in a position to COURD CONDEX (COS) : (3 - 5) At the end of this course students will be in a position to COURD CONDEX (COS) : (3 - 5) At the end of this course students will be in a position to COURD CONDEX (COS) : (3 - 5) At the end of this course students will be in a position to CO2 They will get exposure on case studies related to steel-concrete constructions of buildings CO3 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 Mapping of Course Students with Program Outcomes (PO5) CO3 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO3 H H H M M I M M I I I I I I I <t< td=""><td>L : Lecture T : '</td><td>Tutoria</td><td>1 SLr : Su</td><td>pervised l</td><td>earning</td><td>P : Proje</td><td>ect R : R</td><td>lesearch (</td><td>C: Credit</td><td>ts</td><td></td><td></td><td>•</td><td></td></t<>	L : Lecture T : '	Tutoria	1 SLr : Su	pervised l	earning	P : Proje	ect R : R	lesearch (C: Credit	ts			•	
structures COURSE COS): (3:5) COURSE COS): (3:5) COURSE COS): (3:6) COURSE COS): (3:6) COURSE COS): (3:6) COURSE COS: CONTONIES will get exposure on case studies related to steel-concrete constructions of buildings COS COS POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 COS/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO1 PO12 COS/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO10 PO12 COS/POS PS01 PS02 M M M M M M M CO3 H H H M M I I I I I I CO		•												
COURSE OUTCOMES (COs): (3 - 5) At the end of this course students will be in a position to CO1 Descination to monomic beams, columns, trusses and box-girder bridges including the related connections. CO2 They will get exposure on case studies related to steel-concrete constructions of buildings CO3 Apply the concepts of composite construction in engineering Mapping of Course Outcomes with Program Outcomes (POs) COs/Pos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 H H H H M <t< td=""><td></td><td>To d</td><td>evelop an ι</td><td>understand</td><td>ing of the</td><td>e behavio</td><td>our and d</td><td>esign stud</td><td>dy of Ste</td><td>eel concrete</td><td>composi</td><td>te element</td><td>s and</td><td></td></t<>		To d	evelop an ι	understand	ing of the	e behavio	our and d	esign stud	dy of Ste	eel concrete	composi	te element	s and	
At the end of this course students will be in a position to CO1 Design composite beams, columns, russes and box-ginder bridges including the related connections. CO2 They will get exposure on case studies related to steel-concrete constructions of buildings CO3 Apply the concrete construction in engineering Mapping of Course vite construction in engineering CO3 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO3/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO3/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO3/POS PO1 PO1 PO1 PO12 PO1 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO3/POS PS01 PS02 PS0 PO		COM		. (2.5)										
CO1 Design composite beams, columns, trusses and box-girder bridges including the related connections. CO2 They will get exposure on case studies related to steel-concrete constructions of buildings CO3 Apply the concepts of composite construction in engineering Mapping of Course PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO3 H H H H M M M M M M M CO4 H H H H H M					a positio	n to								
CO2 They will get exposure on case studies related to steel-concrete constructions of buildings CO3 Apply the concepts of composite construction in engineering Mapping of Course vitter Program Outcomes (POS) CO3 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO3 PO1 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO3 PO1 P1		is cour					isses and	box-gird	er bridg	es including	g the relat	ted connect	tions.	
CO3 Apply the concepts of composite construction in engineering. Mapping of Course Outcomes with Program Outcomes (POS) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO5/POS PO1 H H H H H M	CO2													
Mapping of Course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 COs/POs PO1 H H H H H M I M </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>construction</td> <td>of our</td> <td>411150</td> <td></td> <td></td>										construction	of our	411150		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ourse (
$ \begin{array}{ c c c } \hline \begin{tabular}{ c c } \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				-										
$ \begin{array}{ c c c c } \hline \begin{tabular}{ c c } \hline \end{tabular} \hline \end{tabular} \\ \hline \begin{tabular}{ c c } \hline \end{tabular} \hline \end{tabular} \\ \hline \begin{tabular}{ c c } \hline \end{tabular} \\ \hline \end{tabular} \\ \hline \end{tabular} \\ \hline \begin{tabular}{ c c } \hline \end{tabular} \\ \hline tabul$	COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
$ \begin{array}{ c c c c } \hline \begin{tabular}{ c c } \hline \end{tabular} \hline \end{tabular} \\ \hline \end{tabular} \hline \end{tabular} \hline \end{tabular} \\ \hline \end{tabular} \hline \end{tabular} \hline \end{tabular} \\ \hline \begin{tabular}{ c c } \hline \end{tabular} \hline \end{tabular} \\ \hline \end{tabular} \hline \end{tabular} \hline \hline \hline \end{tabular} \hline \hline tabular$								_			_			
$ \begin{array}{ c c c c } \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	COI	н	Н	н	Н		М			М		М		
$ \begin{array}{ c c c c } \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	CO2	II	II	TT	II		м			м		M		
$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	02	п	п	п	п		IVI			IVI		IVI		
$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	CO3	Н	Н	Н	Н		М			М		М		
Image: Solution of the constraint of the constrai	000													
CO2 H H H H Image: Color H H Image: Color H H Image: Color H Image: Color H Image: Color H Image: Color Image: Color H Image: Color	COs / PSOs		PSO1	PS	02									
CO2 H H H H Image: Color H H Image: Color H H Image: Color H Image: Color H Image: Color H Image: Color Image: Color H Image: Color														
Category Cat	CO1	Н		Н										
Category Cat														
H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low Basic Sciences Humanities and Sciences Category Sciences Category Nogram Core Program Core Sciences Soft Skills Open Electives Soft Skills Soft Skills	CO2	Н		Н										
H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low Basic Sciences Humanities and Sciences Category Sciences Category Nogram Core Program Core Sciences Soft Skills Open Electives Soft Skills Soft Skills	CO3	н		н										
Category Contractions Sciences Basic Sciences Basic Sciences Basic Sciences Contracting Sciences Contracting Sciences Contracting Sciences Contractions and Social Sciences Contractions and Scienc	005													
	H/M/L indicate	s Stren	gth of Corr	elation H	I- High,	M- Mediu	um, L-Lo	ow						
									_					
									Skil					
	-			IL					cal 5					
	Category		ces	oci					hnic					
			ien			ves		ect	[ec]					
		ces	Sc	and	ore	ecti	ves	roje	s / 1					
		ien	ring	ies	ů.	E	ecti	/ P	hip	\mathbf{Is}				
		Sc	neeı	anit	ram	ram	E	ical	surs	Skil				
		asic	ngi	lum cier	rogi	rogi	per	ract	Inte	oft				
Approval		В	<u>Щ</u>	Ň	<u> </u>	$\sqrt{1}$				Ś				
Approval			L	1			<u> </u>	1	1	I	1	1	I	
	Approval													

(As 1973 0000 - 20

DESIGN OF COMPOSITE STRUCTURES

UNIT I INTRODUCTION	9 Hrs	
Introduction to steel - concrete composite construction - Coes - Composite action - Servicea	bility and -	
Construction issues.		
UNIT II DESIGN OF CONNECTIONS	9 Hrs	
Shear connectors – Types – Design of connections in composite structures – Degree of shear	connection – Par	tial
shear interaction		
UNIT III DESIGN OF COMPOSITE MEMBERS	9 Hrs	
Design of composite beams, slabs, columns, beam - columns - design of composite trusses.		
UNIT IV COMPOSITE BOX GIRDER BRIDGES	9 Hrs	
Introduction - behaviour of box girder bridges - design concepts.		
UNIT V CASE STUDIES	9 Hrs	
Case studies on steel - concrete composite construction in buildings - seismic behaviour of co	omposite structure	es.
Total No of	Hours: 45	5

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE UNIVERSITY al, Chennai, 600.095

Contribut to DEPARTMENT OF CIVIL ENGINEERING

(minution)

REFERENCES:

BCE17E02

- 1. Johnson R.P., "Composite Structures of Steel and Concrete Beams, Slabs, Columns and Frames for Buildings", Vol.I, Blackwell Scientific Publications, 2004.
- 2. Oehlers D.J. and Bradford M.A., "Composite Steel and Concrete Structural Members, Fundamental behaviour", Pergamon press, Oxford, 1995.
- 3. Owens.G.W and Knowles.P, "Steel Designers Manual", Steel Concrete Institute(UK), Oxford Blackwell Scientific Publications, 1992.

Subject Code: BCE17E03	Su	bject Na	me: INI	DUSTRI	AL STR	UCTUR	ES		TY / L/ ETL	L	T / S.Lr	P/ R	C
	Pre	erequisite	: Design of	steel and	d concret	e structu	res		TY	2	1/0	0/0	3
L : Lecture T : T								C: Credit	s				
T/L/ETL : Theo	•												
OBJECTIVE :				ne of the	special as	spects wi	th respec	t to Civi	il Engineeri	ng struct	ures in ind	ustries.	
COURSE OUT				.1.1									
At the end of thi													
CO1			e planning			-							
CO2				learn abo	out the de	sign con	cepts, an	d constru	uctional asp	ects of			
~~~		ndustrial											
CO3		Analyse ai Constructi		the impo	ortance of	t various	construc	ction mat	terials for In	Idustrial			
Mapping of Co				am Qute	omes (P	() ()							
mapping of Co	uise ou	itcomes v	ini i i ogi		omes (1	03)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	.2
CO1	Н	Н	Н	Н		М	М		М		М		
CO2	Н	Н	Н	Н		М	М		М		М		
CO3	Н	Н	Н	Н		М	М		М		М		
COs / PSOs	PS	501	PSO	52		1		1					
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicates	Strengt	h of Corr	elation H	- High, N	A- Mediu	ım, L-Lo	W			1		I	
			IE					cal Skill					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technic	Soft Skills				
	Basic	Engi	Humaniti Sciences	Prog	←Prog	Oper	Pract	Inté	Soft				
Approval		1	1	I	,	I	I				I	<b>I</b>	



# INDUSTRIAL STRUCTURES

BCE17E03

UNIT I: PLANNING	9Hrs
Classification of Industries and Industrial structures - General requirements for industries like certain	nent, chemical
and steel plants – Planning and layout of buildings and components.	
UNIT II: FUNCTIONAL REQUIREMENTS	9Hrs
Lighting – Ventilation – Accounts – Fire safety – Guidelines from factories act.	
	011
UNIT III: DESIGN OF STEEL STRUCTURES	9Hrs
Industrial roofs – Crane girders – Mill buildings – Design of Bunkers and Silos	
UNIT IV: DESIGN OF R.C. STRUCTURES	9Hrs
Silos and bunkers – Chimneys – Principles of folded plates and shell roofs	JIIIS
shos and bunkers – eminineys – i micipies of folded plates and shen foors	
UNIT V: PREFABRICATION	9Hrs
Principles of prefabrication - Prestressed precast roof trusses- Functional requirements for Precas	t concrete units
Total No. of Hours:	45
TEXT BOOKS	
*Reinforced Concrete Structural elements – P. Purushothaman	
<ul> <li>*Reinforced Concrete Structural elements – P. Purushothaman</li> <li>*Pasala Dayaratnam – Design of Steel Structure - 1990</li> </ul>	
*Pasala Dayaratnam – Design of Steel Structure - 1990	
*Pasala Dayaratnam – Design of Steel Structure - 1990 REFERENCES	tandards, New
*Pasala Dayaratnam – Design of Steel Structure - 1990 <b>REFERENCES</b> *Henn W. Buildings for Industry, Vols. I and II, London Hill Books, 1995	tandards, New
<ul> <li>*Pasala Dayaratnam – Design of Steel Structure - 1990</li> <li><b>REFERENCES</b></li> <li>*Henn W. Buildings for Industry, Vols. I and II, London Hill Books, 1995</li> <li>*Handbook on Functional Requirements of Industrial buildings, SP32 – 1986, Bureau of Indian Structure Structure - 1990</li> </ul>	
<ul> <li>*Pasala Dayaratnam – Design of Steel Structure - 1990</li> <li><b>REFERENCES</b></li> <li>*Henn W. Buildings for Industry, Vols. I and II, London Hill Books, 1995</li> <li>*Handbook on Functional Requirements of Industrial buildings, SP32 – 1986, Bureau of Indian S Delhi 1990</li> </ul>	



Subject Code: BCE17E04		ıbject Na MART S	me TRUCTU	RES AN	D SMAI	RT MAT	TERIAL	S	TY / L/ ETL	L	T / S.Lr	P/ R	C
		Prerequisite: Concrete and Construction Technology								2	1/0	0/0	3
L : Lecture T : 7								C: Credit	TY	1 -	-, •	0, 0	
T/L/ETL : Theo	ory/Lab/l	Embedde	d Theory a	nd Lab	-								
<b>OBJECTIVE:</b>										smart ma	terials and	their use	e in
structures. Furth				tures wh	ich can s	elf adjus	t their sti	ffness wi	ith load.				
COURSE OUT													
At the end of th								2					
CO1			physical p	1	-	-							
CO2		rstand the ologies;	engineerii	ng princi	ples in sn	nart sens	or, actua	tor and ti	ansducer				
CO3		Use principles of measurement, signal processing, drive and control techniques necessary to developing smart tructures and products Appreciate and suggest improvement on the design, analysis, manufacturing and											
CO4	applic	cation issu	es involve	d in inte	grating sr	nart mat	erials and	d devices	cturing and with signal d products				
Mapping of Co	ourse Ou	itcomes v	with Progr	am Out	comes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12
CO1	Η			Η	Н	Н	Η	Н			М	Μ	
CO2	Н			Н	Н	Н	Н	Н			М	М	
CO3	Н			Н	Н	Н	Н	Н			М	М	
CO4	Н			Н	Н	Н	Н	Н			М	М	
COs / PSOs	Р	SO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
CO4	Н		Н										
H/M/L indicates	s Streng	th of Corr	elation H	I- High, I	M- Medi	um, L-L	ow			-			
Category		nces	Social		Sc		t t	schnical Skill					
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval				<u> </u>	$\checkmark$						<u> </u>		

# BCE17E04 SMART STRUCTURES AND SMART MATERIALS

# UNIT I: INTRODUCTION

Introduction to Smart Materials and Structures – Instrumented structures functions and response – Sensing systems – Self diagnosis – Signal processing consideration – Actuation systems and effectors.

# UNIT II: MEASURING TECHNIQUES

Strain Measuring Techniques using Electrical strain gauges, Types – Resistance – Capacitance – Inductance – Wheatstone bridges – Pressure transducers – Load cells – Temperature Compensation – Strain Rosettes.

# UNIT III: SENSORS

Sensing Technology – Types of Sensors – Physical Measurement using Piezo Electric Strain measurement – Inductively Read Transducers – The LVOT – Fiber optic Techniques. Chemical and Bio-Chemical sensing in structural Assessment – Absorptive chemical sensors – Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement.

# UNIT IV: ACTUATORS

Actuator Techniques – Actuator and actuator materials – Piezoelectric and Electrostrictive Material – Magnetostructure Material – Shape Memory Alloys – Electro rheological Fluids– Electro magnetic actuation – Role of actuators and Actuator Materials.

# UNIT V: SIGNAL PROCESSING AND CONTROL SYSTEMS

Data Acquisition and Processing – Signal Processing and Control for Smart Structures – Sensors as Geometrical Processors – Signal Processing – Control System – Linear and Non-Linear.

Total No of Hours :45

# TEXT BOOKS

*Brain Culshaw – Smart Structure and Materials Artech House – Borton. London-1996.

### REFERENCES

*L. S. Srinath – Experimental Stress Analysis – Tata McGraw Hill, 1998.
*J. W. Dally & W. F. Riley – Experimental Stress Analysis – Tata McGraw Hill, 1998.



# 9Hrs

# 9Hrs

# 9Hrs

9Hrs



Subject Code: BCE17E05		Subject Na ESTIMAT		TY / L/ ETL	L	T/S.Lr	P/ R	C					
		Prerequisite		-					TY	2	1/0	0/0	3
L : Lecture T :				Learning	P : Proje	ct R : R	esearch (	C: Credits	6	1 1		1	
T/L/ETL : The	ory/Lat	o/Embedde	d Theory a	nd Lab									
<b>OBJECTIVE</b>	: To	study the f	unctional p	olanning o	of buildin	igs as per	r standard	ls; To stu	dy the esti	mate type	s and term	s involv	ved in
estimation; To	study	the impor	ant specif	ications 1	necessary	for the	works i	n buildin	gs; To stu	idy the c	oncepts of	f tender	s an
contracts;													
COURSE OU													
At the end of the	his cour												
CO1								ntity of w	orks invol	ved.			
CO2		Carry out	analysis c	of rates an	d bill pre	paration	•						
CO3			pecificatio										
CO4							l works, v	water sup	ply and sa	nitary wo	rks		
Mapping of C									-	-		T	
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н		Н		М		М	Н		Н	Н	
CO2	Н	Н		Н		М		М	Н		Н	Н	
CO3	Н	Н		Н		М		М	Н		Н	Н	
CO4	Н	Н		Н		М		М	Н		Н	Н	
COs / PSOs		PSO1	PS	02		1							
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
CO4	Η		Н										
H/M/L indicate	es Stren	gth of Cor	relation I	H- High, I	M- Mediu	ım, L-Lo	)W	· · · ·		T	-		
Category		Ices	Social					hnical Skill					
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	<u> </u>	ш	ЧХ	<u> </u>	- T - T		Ā		Ň				
Approval		I	1	1	1'	1	1			l	1	<u> </u>	

### ESTIMATION AND QUANTITY SURVEYING

### **UNIT I: ESTIMATION**

**BCE17E05** 

Types of estimates- units of measurements-methods of estimates - advantages- estimation of load bearing and framed structures -estimate of quantities in residential building- calculation of quantities of brick work, RCC, PCC, white washing ,color washing and painting / varnishing - calculation of brick work and RCC works in arches - estimate of joineries for paneled and glazed doors, windows, ventilators, handrails etc.

### UNIT II: ESTIMATE OF OTHER STRUCTURES

Estimating of septic tank, soak pit – Sanitary and water supply installations – Water supply pipe line – Sewer line – Tube well - Open well - Estimate of bituminous and cement concrete roads-estimation of retaining walls and culverts.

### UNIT III: SPECIFICATIONS AND TENDERS

Data -schedule of rates- analysis of rates-specifications-sources-detailed and general specifications - tenders- etender contracts- contracts types- preparation of tender notice and documents-arbitration and legal requirements

### **UNIT IV: VALUATION**

Necessity – basics of value engineering –capitalized value – depreciation and its methods – escalation _ value of building - calculation of standard rent - mortgage- lease.

### **UNIT V: REPORT PREPARATION AND CASH FLOW**

Principle of report preparation - report on estimate of residential building- commercial building -culvert - roads water supply and sanitary installations – tube wells – open wells.

# Total No of Hrs = 45 hrs

### **TEXT BOOKS**

- B.N.Dutta, Estimating And Costing In Civil Engineering –UBS publishers and distribution Pvt Ltd, 2003.
- Mr. B.Kanagasabapathy, M/S. Ehilalarasi Kanagasabapathy, Practical Valuation Vol I, Thiruchirappalli, 1995.
- Kohl, D.D and Kohli, R.C., "A Text Book of Estimating and Costing (Civil)", S.Chand & amp; CompanyLtd., 2004.
- Rangwala, "Estimating, Costing and Valuation", Charotar Publishing House Pvt Ltd., 2012.

### REFERENCES

- G.S.Birdie, A Text Book On Estimating And Costing, Dhanpat Rai And Sons, New Delhi, 1995.
- Mr. B.Kanagasabapathy, M/S. Ehilalarasi Kanagasabapathy, Fixation of Fair Rent, Thiruchirappalli, 1995.



# 9 Hrs

9 Hrs

9 Hrs

9 Hrs



Subject Code: BCE17E06		ubject Na IOUSIN(	ime G PLANN	ING ANI	D DESIG	SN			TY / L/ ETL	L	T / S.Lr	P/ R	C
	P	rerequisite	e: Building	g Drawing	g Practice	9			TY	2	1/0	0/0	3
L : Lecture T :	Tutorial	SLr : S	upervised l	Learning	P : Proje	ect R : R	esearch C	C: Credit	s				
T/L/ETL : The	ory/Lab/	Embedde	d Theory a	nd Lab									
OBJECTIVE	: A	house pla	n is a set o	f constru	ction or	working	drawing	s that d	efine all the	e constru	ction speci	fication	s of a
residential hou		-			-				-	d where t	he interdep	endenc	ies of
all building sys				rently fro	m the pla	anning ar	nd progra	mming p	hase.				
COURSE OU													
After successfu													
CO1			uildings, a	1			-						
CO2		-		-	-		-	plot map	cost flow				
CO3			e financing				S						
Mapping of Co	ourse O	utcomes	with Prog	am Outo	comes (P	'Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н				Н		Н			Н		
CO2	Н	Н				Н		Н			Н		
CO3	Н	Н				Н		Н			Н		
COs / PSOs	F	SO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	es Streng	th of Corr	relation H	I- High, I	M- Mediu	um, L-Lo	)W						
								Skill					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical 9	cills				
	Basic S	Engine	Humaniti Sciences	Progra	←Progra	Open E	Practic	Interr	Soft Skills				
Approval		1	1	1	1	1		1			1	1	

### **BCE17E06** HOUSING - PLANNING AND DESIGN

# **UNIT I: INTRODUCTION TO HOUSING**

Definition of Basic Terms - House, Home, Household, Apartments - Objectives of National Housing Policies, Principle of Sustainable Housing, Housing Laws at State level, Local bodies' Bye-laws at Urban and Rural Level and Development Control Regulations, Institutions for Housing at National, State and Local levels.

### UNITII: HOUSING PROGRAMMES

Basic Concepts - Contents and Standards for Housing Programmes - Sites and Services, Neighbourhood, Open Development Plots, Apartments, Rental Housing, Co-operative Housing, Slum Housing Programme, Role of Public, Private and Non-Government Organisations.

### UNIT III: PLANNING AND DESIGN OF HOUSING PROJECTS 9Hrs

Formulation of Housing Projects - Site Analysis, Layout Design, Design of Housing Units (Design Problems).

### **UNIT IV: CONSTRUCTION TECHNIQUES AND COST-EFFECTIVE MATERIALS** 9Hrs

New Constructions Techniques - Cost Effective Modern Construction Materials, Building Centers - Concept, Functions and Performance Evaluation.

### UNIT V: HOUSING FINANCE AND PROJECT APPRAISAL

Appraisal of Housing Projects - Housing Finance, Cost Recovery - Cash Flow Analysis, Subsidy and Cross Subsidy, Pricing of Housing Units, Rents, Recovery Pattern (Problems).

### **TEXT BOOKS**

- Meera Mehta and Dinesh Mehta, Metropolitan Housing Markets, Sage Publications Pvt. Ltd., New Delhi, 1999.
- Francis Cherunilam and Odeyar D Heggade, Housing in India, Himalaya Publishing House, Bombay, 1997.

### REFERENCES

- Development Control Rules for Chennai Metropolitan Area, CMA, Chennai, 200.
- * UNCHS, National Experiences with Shelter Delivery for the Poorest Groups, UNCHS (Habitat), Nairobi, 1994.
- National Housing Policy, 1994, Government of India.



### 9Hrs

9Hrs

45

**Total No of Hours :** 



Subject Code: BCE17E07	1	ubject Na 3UILDIN NGINEE	G TECHN	OLOGY	Y AND E	IABITA	Г		TY / L/ ETL	L	T / S.Lr	P/ R	C
The Treat and The T		rerequisite			D . D				TY	2	1/0	0/0	3
L : Lecture T : T T/L/ETL : Theo			•	-	P : Proje	CIKIK	esearch (	.: Crean	lS				
OBJECTIVE :	•	Embedded		IU Lau									
COURSE OUT			(3-5)										
After successful				he studer	nts should	d be able	to						
CO1		-	the variou				-						
CO2			d the impo										
CO3							ventilatio	on and ai	r movemen	t in buil	ding.		
Mapping of Co	ourse O	utcomes v	vith Progr	am Outo	comes (P	POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	) PO11	PO	12
CO1	Н				Н		Н				М		
CO2	Н				Н		Н				М		
CO3	Н				Н		Н				М		
COs / PSOs	I	PSO1	PSO	02		-1		_					
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicates	s Streng	gth of Corr	elation H	- High, I	M- Medi	um, L-Lo	)W				I		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

## Requirement of good building stone- characteristics - testing.Lime: Properties- Classifications -Manufacture -

Testing of lime. Pozzolona: Natural and Artificial pozzolonas. Timber - Defects - Seasoning - Decay - Preservation, Tiles- Flooring and roofing tiles-specification-tests. Paints varnishes and distempers, Common constituents, types and desirable properties.

Insulating Materials - Thermal and sound insulating material desirable properties and type. Geosynthetics and its applications .Lintels -Arches - Stairs- different types and its components. Doors, Windows and Ventilations -Classification - Technical terms-Classification and Types

UNIT III ROOF

**BCE17E07** 

UNIT I BUILDING STONES

Types of roofs – wooden trusses .Finishing works - Plastering, pointing, painting, white washing, colour washing, distempering; Damp proofing ant termite treatment.

conditions- Thermal comfort factors-Thermal comfort indices - Effective temperature

### **UNIT V THERMAL CONTROL**

Means of thermal control - Mechanical control- structural control- ventilation and air movement

#### **REFERENCES:**

- Gurucharan Singh, Building materials,,1996
- Rangwala S. C, Engineering Materials, Charotar Publishing House, 1992, Anand
- Punmia B. C, Building Construction, Laxmi Publications, 1999, New Delhi.
- Rangwala S. C, Building Construction, Charotar Publishing House, 1992, Anand
- Huntington W.C, Building Construction, John Wiley, 1959, New York. *
- Koenigsberger, Manual of Tropical Housing and Building, Orient Longman Ltd *

# UNIT IV CLIMATE AND COMFORT

UNIT II MISCELLANEOUS MATERIALS

Global climatic factors - Elements of climates - Classification of tropical climates- site climate .The desirable

**Total No of Hours :** 45

B.Tech Civil Engineering - 2017 Regulation

EDUCATIONAL AND RESEARCH INSTITUTE UNIVERSITY DEPARTMENT OF CIVIL ENGINEERING

**BUILDING TECHNOLOGY AND HABITAT ENGINEERING** 

9Hrs

9Hrs

9Hrs

# 9Hrs



Precequisite: Concrete and Construction Technology         TY         2         1/0         0.0           L : Lecture T : Tutorial         SL : Supervised Learning         P. Project R : Research C: Credits         0.00           OBJECTIVE:           COURSE OUTCOMES (COS) : (3-5)           After successful completion of this course, the students should be able to           COI           Identify the cost effective techniques and environmental friendly materials in construction           CO3           Understand the green building and its benefits in construction field.           Mapping of Course Outcomes with Program Outcomes (POs)           CO3           PO1           PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO           CO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO           CO3         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H <th>Subject Code BCE17E08</th> <th>:</th> <th>Subject Na COST EF</th> <th></th> <th>BUILD</th> <th>INGS</th> <th></th> <th></th> <th></th> <th>TY / L/ ETL</th> <th>L</th> <th>T / S.Lr</th> <th>P/ R</th> <th>C</th>	Subject Code BCE17E08	:	Subject Na COST EF		BUILD	INGS				TY / L/ ETL	L	T / S.Lr	P/ R	C		
T/L/ETL : Theory/Lab/Embedded Theory and Lab         OBJECTIVE :         COURSE OUTCOMES (Cos) : (3-5)         After successful completion of this course, the students should be able to         CO1       Identify the cost effective techniques and environmental friendly materials in construction         CO2       Identify the effects of global warming in construction       Environmental friendly materials in construction         CO3       Understand the green building and its benefits in construction field.       Mapping of Course Outcomes with Program Outcomes (POs)         COs/POs       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO         CO1       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H											2	1/0	0/0	3		
OBJECTIVE :         COURSE OUTCOMES (COs) : (3-5)         After successful completion of this course, the students should be able to         COI         Identify the cost effective techniques and environmental friendly materials in construction         CO2         Identify the effects of global warming in construction         CO3       Understand the green building and its benefits in construction field.         Mapping of Course Outcomes Wth Program Outcomes (POs)         COs/POs       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO         COs/POs       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO         CO1       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H	L : Lecture T :	Tutori	al SLr : S	upervised l	Learning	P : Proje	ect R : R	Research (	C: Credit	S						
COURSE OUTCOMES (COs) : (3-5)         After successful completion of this course, the students should be able to         CO1         Identify the cost effective techniques and environmental friendly materials in construction         CO2         Identify the cost effective techniques and environmental friendly materials in construction         CO2         Identify the cost effective techniques and environmental friendly materials in construction         CO3         Understand the green building and its benefits in construction field.         Mapping of Course Outcomes with Program Outcomes (POs)         COs/POs       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO         COs/POs       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO         COs/POs       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO         CO3       H       H       H       H       H       H       H <td< td=""><td>T/L/ETL : The</td><td>eory/La</td><td>b/Embedde</td><td>d Theory a</td><td>nd Lab</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	T/L/ETL : The	eory/La	b/Embedde	d Theory a	nd Lab											
After successful completion of this course, the students should be able to         CO1       Identify the cost effective techniques and environmental friendly materials in construction         CO2       Identify the effects of global warming in construction         CO3       Understand the green building and its benefits in construction field.         Mapping of Course Outcomes with Program Outcomes (POs)         CO3       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO         CO3       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO         CO3       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       I       I       I       I       I       I       I       I       I	OBJECTIVE	:														
CO1       Identify the cost effective techniques and environmental friendly materials in construction         CO2       Identify the cost effective techniques and environmental friendly materials in construction         CO3       Understand the green building and its benefits in construction field.       Mapping of Course Outcomes with Program Outcomes (POs)         COs/POs       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO         CO1       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I																
Identify the cost effective techniques and environmental friendly materials in construction         CO2         Identify the effects of global warming in construction         CO3       Understand the green building and its benefits in construction field.         Mapping of Course Vutcomes with Program Outcomes (POS)         CO3       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO         COs/POs       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO         COs/POS       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO         COs/POS       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO         CO3       H       H       H       H       H       H       H       H       Image: PO10       PO11       PO11       PO11       PO11       PO11       PO11       PO11       PO11		ul comp	pletion of th	nis course,	the stude	nts shoul	d be able	e to								
CO2       Identify the effects of global warming in construction         CO3       Understand the green building and its benefits in construction field.       Mapping of Course Outcomes with Program Outcomes (POs)         COs/POs       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO         CO3       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       I       I       I       I       I       I       I       I       I       I       I	COI		Identify t	he cost effe	ctive tec	hniques :	nd envir	onmental	l friendly	materials	in constr	uction				
OO Understand the green building and its benefits in construction field.         Mapping of Course Outcomes with Program Outcomes (POs) $COS/POs$ POI       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO $COS/POs$ POI       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO $CO1$ H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H <t< td=""><td>CO2</td><td></td><td>Identify t</td><td></td><td></td><td>liniques t</td><td></td><td>onnenta</td><td>i intentary</td><td>materials</td><td>in constr</td><td>action</td><td></td><td></td></t<>	CO2		Identify t			liniques t		onnenta	i intentary	materials	in constr	action				
Mapping of Course Outcomes with Program Outcomes (POs)COs/POsPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11POCO1HHHHHHHHHHHCO2HHHHHHHHHHCO3HHHHHHHHHHCO3PS01PS02Image: Second																
COs/Pos       P01       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO         C01       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       Image: Set in the set																
CO1       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I	Mapping of C	ourse	Outcomes	with Prog	ram Out	comes (F	'Us)									
CO2       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I	COs/POs	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CO1	Н	Н			Н	Н		Н			Н	Н			
COs / PSOs       PSO1       PSO2       Image: Cost of the second secon	CO2	Н	Н			Н	Н		Н			Н	Н			
CO1       H       H       Image: Second se	CO3	Н	Н			Н	Н		Н			Н	Н			
CO2     H     H       CO3     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H     H       H	COs / PSOs		PSO1	PS	02											
CO3     H     H       H/M/L indicates Strength of Correlation     H- High, M- Medium, L-Low	CO1	Н		Н												
H/M/L indicates Strength of Correlation     H- High, M- Medium, L-Low       Category     a	CO2	Н		Н												
Category	CO3	Н		Н												
Category 8 10 10 10 10 10 10 10 10 10 10 10 10 10	H/M/L indicat	es Strer	ngth of Cor	relation H	I- High, I	M- Medi	um, L-Lo	ow								
	Category	asic Sciences	ngineering Sciences	lumanities and Social ciences	rogram Core	rogram Electives	pen Electives	ractical / Project		oft Skills						
Approval		B		ŇH	<u> </u>		0	<u> </u>		Ň						



#### **BCE17E08**

#### **COST EFFECTIVE BUILDINGS**

#### **UNIT I: INTRODUCTION TO COST EFFECTIVE CONSTRUCTION**

#### 12Hours

**12 Hours** 

Introduction to the concept of cost effective construction -Uses of different types of materials and their availability -Stone and Laterite blocks- Burned Bricks- Concrete Blocks- Stabilized Mud Blocks- Lime-Poszolana Cement-Gypsum Board- Light Weight Beams- Fiber Reinforced Cement Components- Fiber Reinforced Polymer Composite- Bamboo- Availability of different materials-Recycling of building materials – Brick- Concrete- Steel-Plastics - Environmental issues related to quarrying of building materials.

#### UNIT II: TECHNOLOGIES & METHODS IN CONSTRUCTION

Environment friendly and cost effective Building Technologies - Different substitute for wall construction Flemish Bond - Rat Trap Bond – Arches – Panels - Cavity Wall - Ferro Cement and Ferro Concrete constructions – different pre cast members using these materials - Wall and Roof Panels – Beams – columns - Door and Window frames - Water tanks - Septic Tanks - Alternate roofing systems - Filler Slab - Composite Beam and Panel Roof -Pre-engineered and ready to use building elements - wood products - steel and plastic - Contributions of agencies

#### UNIT III: GLOBAL WARMING & THE RELEVANCE OF GREEN BUILDINGS 07 Hours

Global Warming – Definition - Causes and Effects - Contribution of Buildings towards Global Warming - Carbon Footprint – Global Efforts to reduce carbon Emissions - Green Buildings – Definition - Features- Necessity – Environmental benefit - Economical benefits- Health and Social benefits - Major Energy efficient areas for buildings – Embodied Energy in Materials- Green Materials - Comparison of Initial cost of Green V/s Conventional Building - Life cycle cost of Buildings.

#### **UNIT IV: GREEN BUILDING**

Green Buildings – Definition - Features- Necessity – Environmental benefit - Economical benefits - Health and Social benefits - Major Energy efficient areas for buildings - Embodied Energy in Materials-Green Materials -Comparison of Initial cost of Green V/s Conventional Building - Life cycle cost of Buildings.

#### **UNIT V: GREEN DESIGN**

Green Design – Definition - Principles of sustainable development in Building Design - Characteristics of Sustainable Buildings – Sustainably managed Materials - Integrated Lifecycle design of Materials and Structures (Concepts only)

#### Total No of Hours : 45

#### **REFERENCES:**

* K S Jagadeesh, B V Venkatta Rama Reddy & K S Nanjunda Rao ,Alternative Building Materials and Technologies , New Age International Publishers.

- * Asko Sarja ,Integrated Life Cycle Design of Structures , SPON Press.
- * D S Chauhan and S K Sreevasthava , Non conventional Energy Resources , New Age International Publishers.
- * Laurie Backer, Buildings How to Reduce Cost, Cost Ford.

#### 07 Hours

07 Hours



Subject Code BCE17E09	:	Subject Na INDUSTF		STE MA	NAGEM	IENT			TY / L/ ETL	L	T / S.Lr	P/ R	C	
		Prerequisit							TY	2	1/0	0/0	3	
L : Lecture T							Research	C: Credit	S					
T/L/ETL : The	eory/La	b/Embedde	d Theory a	nd Lab										
OBJECTIVE	С: Т	'o impart kr	owledge o	n various	environ	mental le	egislation	ıs.						
	Т	o understan	d the treat	nent of in	ndustrial	wastes.								
		o impart kn	-	n the poll	lution po	tential of	major i	ndustries	and the me	thods of c	ontrolling	the sam	e.	
COURSE OU														
After successf	ful com							1 /	•					
CO1					-				environme					
CO2						-			zation tech	niques.				
CO3	Tomman	Identify the impacts on environment due to various industrial effluents.         e Outcomes with Program Outcomes (POs)												
mapping of C	Jourse	Outcomes	with Prog		comes (F	(US)								
COs/POs	PO	I PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	
CO1	Н			М	Н	Н	Н	Н		М	Н	Н		
CO2	Н			М	Н	Н	Н	Н		М	Н	Н		
CO3	Н			М	Н	Н	Н	Н		М	Н	Н		
COs / PSOs		PSO1	PS	02				·						
CO1	Н		Н											
CO2	Н		Н											
CO3	Н		Н											
H/M/L indicat	tes Strei	ngth of Cor	relation H	I- High, I	M- Medi	um, L-L	ow							
Category		ences	Social		es		ct	echnical Skill						
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technic	Soft Skills					
Approval					N									

#### B.Tech Civil Engineering – 2017 Regulation

#### INDUSTRIAL WASTE MANAGEMENT

#### **UNIT I: INTRODUCTION**

**BCE17E09** 

Types of industries and industrial pollution – Characteristics of industrial wastes – Population equivalent – Bioassay studies – effects of industrial effluents on streams, sewer, land, sewage treatment plants and human health – Hazardous Wastes – Environmental legislations related to prevention and control of industrial effluents and hazardous wastes – Pollution Control Boards.

#### **UNIT II: CLEANER PRODUCTION**

Waste management Approach – Waste Audit – Volume and strength reduction – material and process modifications – Recycle, reuse and byproduct recovery – Applications.

#### UNIT III: TREATMENT OF INDUSTRIAL WASTEWATER

Equalisation – Neutralisation – removal of suspended and dissolved organic solids - Chemical oxidation – Removal of dissolved inorganics – Combined treatment of industrial and municipal wastes – Residue management.

#### UNIT IV: 4. TREATMENT AND DISPOSAL OF HAZARDOUS WASTES

Physio chemical treatment - solidification - incineration - Secured landfills - Legal Provisions.

#### **UNIT V: CASE STUDIES**

Sources, Characteristics, waste treatment flow sheets for selected industries such as Textiles, Tanneries, Dairy, Sugar, Paper, distilleries, Steel plants, Refineries, fertilizer, thermal power plants.

Total No. of Hours: 45

#### **TEXT BOOKS**

*M.N.Rao & A.K.Dutta, Wastewater Treatment, Oxford IBH Publication, 1995.

*W .W. Eckenfelder Jr., Industrial Water Pollution Control, McGraw-Hill Book Company, New Delhi, 1994.

#### REFERENCES

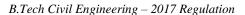
*T.T.Shen, Industrial Pollution Prevention, Springer, 1999.

*R.L.Stephenson and J.B.Blackburn, Jr., Industrial Wastewater Systems Hand book, Lewis Publisher, New York,

*H.M.Freeman, Industrial Pollution Prevention Hand Book, McGraw Hill Inc., New Delhi, 1995.



#### 9Hrs


9Hrs

9Hrs

#### 9Hrs



Subject Code: BCE17E10	:	Subject Na CLEANE	ame R PRODU	ICTION					TY / L/ ETL	L	T / S.Lr	P/ R	C	
		Prerequisit							TY	2	1/0	0/0	3	
L : Lecture T :				Learning	P : Proj	ect R : R	esearch	C: Credit	S			1	1	
T/L/ETL : The	eory/La	b/Embedde	d Theory a	nd Lab										
OBJECTIVE	: 7	Го develop	a basic kno	wledge a	about the	cleaner	production	on and ap	ply the sam	ne in the f	ield applic	ation.		
	r	Fo educate	the studer	nts on co	mplete n	nanagem	ent princ	ciples rela	ated to Cle	aner Prod	luction and	d Contro	ol of	
		Industrial				C								
COURSE OU														
The students concerned to the students concerned to the students of the studen	ompleti				monton	dalaanar	product	ion conco	nt					
		_	insight to sustainable development and cleaner production concept ability to plan and implement cleaner production program											
CO2 CO3		-												
	ourse	ability to conduct waste audit in an industry and implement waste minimization techniques Outcomes with Program Outcomes (POs)												
			-				-							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	
CO1	Н	Н		Н	Н	Н	Н	Н			Н	М		
CO2	Н	Н		Н	Н	Н	Н	Н			Н	М		
CO3	Н	Н		Н	Н	Н	Н	Н			Н	М		
COs / PSOs		PSO1	PS	02										
CO1	Н		Н											
CO2	Н		Н											
CO3	Н		Н											
H/M/L indicate	es Strer	ngth of Cor	relation I	H- High,	M- Medi	um, L-Le	ow							
			I					al Skill						
Category	iences	Engineering Sciences	Humanities and Social Sciences	1 Core	Program Electives	ectives	Practical / Project	Internships / Technical	lls					
	Basic Sciences	Enginee	Humanit Sciences	Program Core	<	Open Electives	Practical	Interns	Soft Skills					
Approval		I		<u> </u>	v		_1		<u> </u>			<u> </u>		



### **CLEANER PRODUCTION**

#### **UNIT I : INTRODUCTION**

**BCE17E10** 

Sustainable Development - Indicators of Sustainability - Sustainability Strategies - Barriers to Sustainability -Cleaner Production (CP) in Achieving Sustainability - Environmental Policies and Legislations - Regulations to Encourage Pollution Prevention and Cleaner Production - Regulatory versus Market Based Approaches

#### **UNIT II : CLEANER PRODUCTION CONCEPT**

Definition - Importance - Benefits - Promotion - Barriers - Role of Industry, Government and Institutions -Environmental Management Hierarchy - Source Reduction Techniques - Process and equipment optimisation, reuse, recovery, recycle, raw material substitution.

#### UNIT III: CLEANER PRODUCTION PROJECT DEVELOPMENT AND IMPLEMENTATION 9 Hrs

Overview of CP Assessment Steps and Skills, Preparing for the Site Visit, Information Gathering, and Process Flow Diagram, Material Balance, Establishing a Program - Organizing a Program - Preparing a Program Plan -Measuring Progress - Pollution Prevention and Cleaner Production Awareness Plan - Waste audit - Environmental Statement.

#### **UNIT IV: LIFE CYCLE ASSESSMENT**

Elements of LCA - Life Cycle Costing - Eco Labelling - Design for the Environment - International Environmental Standards - ISO 14001 - Environmental audit.

#### **UNIT V: CASE STUDIES**

Industrial applications of CP, LCA, EMS and Environmental Audits.

Total No of Hours :

#### REFERENCES

* Paul L Bishop (2000) " Pollution Prevention: Fundamentals and Practice " McGraw-Hill International New York.

*World Bank Group (1998) "Pollution Prevention and Abatement Handbook"

*"Towards Cleaner Production ", World Bank and UNEP, Washington D.C.

*Prasad modak, C.Viswanathan and Mandar parasnis (1995)"Cleaner Production Audit ",

Environmental System Reviews, No.38, Asian Institute of Technology, Bangkok.

## 9 Hrs

9 Hrs

45



```
9 Hrs
```



Subject Code:		Subject Na					~		TY/L/	L	T/S.Lr	P/ R	C	
BCE17E11		ARCHIT		AND TO	WN PL	ANNIN	J		ETL		1.10	0.15	+	
		Prerequisit		r .	<b>D D</b> :				TY	2	1/0	0/0	3	
L : Lecture T :	Tutori	al SLr : S	upervised	Learning	P : Proje	ect $\mathbf{R} : \mathbf{R}$	esearch (	C: Credit	S					
T/L/ETL : The	•		-											
OBJECTIVE		-	-	architectu	ral desig	n of strue	ctures as	per the z	zoning regu	lations				
COURSE OU														
After successfu	ul comp						to							
CO1		1	rchitectura	-										
CO2			ne land req		as per the	ezoning	regulatio	ns						
CO3			rform Land scape design comes with Program Outcomes (POs)											
Mapping of C	ourse	Outcomes	PO2     PO3     PO4     PO5     PO6     PO7     PO8     PO9     PO10     PO11     PO12											
COs/POs	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	
CO1	Н	Н	М			Н	Н	Н	М		Н	М		
CO2	Н	Н	М			Н	Н	Н	М		Н	М		
CO3	Н	Н	M			Н	Н	Н	М		Н	М		
COs / PSOs		PSO1	PS	802										
CO1	Н		Н											
CO2	Н		Н											
CO3	Н		Н											
H/M/L indicate	es Strer	igth of Cor	relation I	H- High, I	M- Medi	um, L-Lo	)W							
								kill						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
	Basi	Eng	Hun Scie	Pro£	∠Prog	Ope	Prac	Int	Soft					
Approval		I	1		1	-1	-1	-	1		I	I		

### BCE17E11 ARCHITECTURE AND TOWN PLANNING

#### UNIT I: ARCHITECTURAL DEVELOPMENT:

Natural and built environment, historic examples, factors influence architectural development.

#### UNIT II: PRINCIPLES OF ARCHITECTURAL DESIGN:

Design methods, primary elements, form, space, organization, circulation, proportion and scale, ordering principles;

#### UNIT III: FUNCTIONAL PLANNING OF BUILDINGS:

Planning, designing and construction, general building requirements, permit and inspection (as per the National building Code);

#### **UNIT IV: EVOLUTION OF TOWNS:**

History and trends in town planning: origin and growth, historical development of town planning in ancient valley civilizations; Objects and necessary of town planning; Surveys and analysis of a town; New Concepts in town planning: Garden city movement, Linear city and Satellite city concepts, Neighborhood Planning;

#### UNIT V: PLANNING PRINCIPLES, PRACTICE AND TECHNIQUES:

Elements of City plan, Estimating future needs, Planning standards, Zoning - its definition, procedure and districts, height and bulk zoning, F. A. R., Master Plan; Concepts of Urban planning, Design and Landscaping.

#### **Total No of Hours: 45**

#### **TEXT BOOKS**

- * B. Gallion and S. Eisner, The Urban Pattern: City planning and Design C B S publishers, 5th edition, 2005.
- *D. K. Francis Ching, Architectures: Form, Space and Order, John Wiley, 2nd edition 1996.

#### REFERENCES

*National Building Code of India 2005, BIS, New Delhi.

*S. Eisner, A. B. Gallion and S. Eisner, The Urban Pattern: City planning and Design, John Wiley 6th edition 1996.

#### Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE UNIVERSITY Challense in Domain due in Information (2000) Maddeenvoyal, Chemissi (2000) (An ISO 9001 - 2008 Contribut Institution) DEPARTMENT OF CIVIL ENGINEERING

9Hrs

9Hrs

9Hrs

9Hrs

1



Subject Code BCE17E12	:	Subject Na DAM EN		NG					TY / L/ ETL	L	T/S.Lr	P/ R	C
	_	Prerequisit			neering				TY	2	1/0	0/0	3
L : Lecture T :						ect R : R	esearch (	C: Credit	S				
T/L/ETL : The	eory/La	b/Embedde	ed Theory a	ind Lab									
OBJECTIVE	: Т	'o impart a	knowledge	on types	of dam,i	ts function	ons and d	esign pri	inciples.				
COURSE OU At the end of t				able to:									
CO1			and design										
CO2		-	and design										
1			oillways an				ires						
Mapping of C	Course	Outcomes	with Prog	ram Out	comes (F	'Os)							
COs/POs	PO	I PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н	Н	Н	М	Н		Н			М	М	
CO2	Н	Н	Н	Н	М	Н		Н			М	М	
CO3	Н	Н	Н	Н	М	Н		Н			M	М	
COs / PSOs		PSO1	PS	502									
CO1	Н		Н										
CO2	Н		Н										
Co3	Н		Н										
H/M/L indicat	es Strei	ngth of Cor	relation 1	H- High, I	M- Medi	um, L-Lo	)W						
			I					cal Skill					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Sk	Soft Skills				
	Basi	Eng	Hun Scie	Proį	∠Prog	Ope	Prac	Int	Sofi				
Approval		·			•		•				·	- 1	

#### B.Tech Civil Engineering – 2017 Regulation

#### DAM ENGINEERING

#### UNIT I: INTRODUCTION

UNIT II: GRAVITY DAM

Types of Dam, merits and demerits, dam site selection, selection of dam, Forces acting on gravity Dam, Methods of analysis of gravity Dam, Modes of failure and stability requirements, Design criteria and factor of safety.

Elementary profile of a gravity dam, Low and high gravity dams, Zoning of dams, Galleries in dams, Temperature control in mass concrete; gravity dams subjected to earthquakes.

#### UNIT III: BUTTRESS AND ARCH DAMS

Buttress and Arch dams, Types, selection, merits and demerits, Elementary design Principles of Arch and Buttress dams.

#### UNIT IV: EARTH DAM

Earth Dam their component and functions, causes of failure. Factors influencing the design of an earthdam. Design criteria for Earth Dam.

UNIT V: SPILLWAY

Elementary idea of design for spillway and energy dissipaters.

#### **TEXT BOOKS**

* R.S. Varshney "Concrete Dams", by 1982, NCB, Roorkee

*Design of Small Dams, USBR 1960, Calcutta, Oxford and IBH

*W.P. Creager, J. Justin, Daud Hinds, "Engineering for Dams" Vol. I-III, Wiley, N.Y., USA.

* IS: 6512-1984, Criteria for Design of solid Gravity Dams.

*IS:1893-1984, , Criteria for Earthquake resistant Design of structures.

#### REFERENCES

* NPTEL course materials from different IITs



### 9Hrs

9Hrs

9Hrs

9Hrs

9Hrs

**Total No of Hours: 45** 

BCE17E12



Subject Code BCE17E19		Subject Na PRESTRH	ame ESSED CO	NCRET	E STRU	CTURE	S		T / L/ ETL	L	T / S.Lr	P/ R	C			
			e: Deisgn o					~ ~	ΤY	2	0/1	0/0	3			
L : Lecture T :	: Tutori	al SLr : S	upervised	Learning	P : Proje	ect R : R	lesearch	C: Credit	S							
T/L/ETL : The	eory/La	b/Embedde	ed Theory a	nd Lab												
OBJECTIVE	: Pi	restressing	methods, p	rinciples	and conc	epts are	essential	for the ba	asic conce	pt of the s	ubject .					
Analysis of pro-				-		-										
Determination				norage zo	ne stresse	es in end	block ca	n be brou	ight out us	ing IS me	thod					
COURSE OU	JTCON	IES (COs)	: (3-5)													
CO1		Student s	hall have a	knowled	ge on me	thods of	prestress	sing								
CO2			hould be at		-		-	-	uctural ele	ments.						
CO3					-	-										
	Course		Possesses a knowledge on composite construction utcomes with Program Outcomes (POs)													
COs/POs	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12			
CO1	Н	Н	Н	Н		Н	Н	Н	М		М	М				
CO2	Н	Н	Н	Н		Н	Н	Н	М		М	М				
CO3	Н	Н	Н	Н		Н	Н	Н	М		М	М				
COs / PSOs		PSO1	PS	02												
CO1	Н		Н													
CO2	Н		Н													
CO3	Н		Н													
H/M/L indicat	es Strei	ngth of Cor	relation I	H- High, I	M- Medi	um, L-Lo	ow			•						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	← Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	skills							
	Basic	Engin	Humaniti Sciences	Progr	<- Progr.	Open	Practi	Inter	Soft Skills							
Approval		·	•	•	•		•	<u>.</u>		•						

#### **BCE17E19** PRESTRESSED CONCRETE STRUCTURES

#### **UNIT I : INTRODUCTION - THEORY AND BEHAVIOUR**

Basic concepts - Advantages - Materials required - Systems and methods of pre -stressing - Analysis of sections - Stress concept - Strength concept - Load balancing concept - Effect of loading on the tensile stresses in tendons.

#### **UNIT II : DEFLECTION**

Deflections - Factors influencing deflections - Calculation of deflections - Short term and long term deflections -Losses of pre-stress - Losses of prestress - types - losses due to elastic deformation of concrete - shrinkage of concrete - creep of concrete - friction - anchorage slip - Estimation of crack width

#### **UNIT III: DESIGN**

Flexural strength - Simplified procedures as per codes - strain compatibility method - Basic concepts in selection of cross section for bending - stress distribution in end block, Design of anchorage zone reinforcement - Limit state design criteria.

#### UNIT IV : CIRCULAR PRESTRESSING

General features & Design of prestressed concrete tanks – Prestressed concrete Poles, Shapes, Features &

Design- Prestressed concrete sleepers – Development – Types- Design, Static & dynamic loads

#### **UNIT V : COMPOSITE CONSTRUCTION**

Analysis for stresses - Estimate for deflections - Flexural and shear strength of composite members- General aspects - pretension pre-stressed bridge decks - Post tensioned pre-stressed bridge decks - Advantages over R.C.C bridges- Design Principles of post tensioned prestressed concrete slab bridge deck, T Beam slab bridge deck & Continuous two span beam deck

#### Total No of Hours: 60

### *Krishna Raju N., Prestressed concrete, Tata McGraw Hill Company, New Delhi, 2011

* S.Ramamrutham, Prestressed concrete, Dhanpatrai Publishing company, 2014

*Mallic S.K. and Gupta A.P., Prestressed concrete, Oxford and IBH Publishing Co.Pvt. Ltd. 1997.

*Rajagopalan.N, Prestressed Concrete, Alpha Science, 2002.

#### REFERENCES

TEXT BOOKS

*Ramaswamy G.S., Modern Prestressed Concrete Design, Arnold Heinimen, New Delhi, 1990

*Lin T.Y. Design of prestressed concrete structures, Asia Publishing House, Bombay 1995

## EDUCATIONAL AND RESEARCH INSTITUTE UNIVERSITY DEPARTMENT OF CIVIL ENGINEERING

9Hrs

9Hrs

### 9Hrs

## 9Hrs



Subject Code: BCE17E20		Subject Na PREFABR		STRUC	TURES				TY / L/ ETL	L	T / S.Lr	P/ R	C
		Prerequisite							TY	2	0/1	0/0	3
L : Lecture T : 7	Tutoria	al SLr : S	upervised I	Learning	P : Proje	ct R : R	esearch (	C: Credit	S				
T/L/ETL : Theo	•		•										
<b>OBJECTIVE</b> :					s on mod	ular cons	struction,	industria	alised const	ruction	and design o	of	
prefabricated el				thods.									
COURSE OUT The student sha			: (3-5)										
CO1	II De a		ne of the p	refahrica	ted eleme	onte							
CO2			id the cons				rofobrio	atad alan	anta				
CO3 Mapping of Co	ourse (		various co with Prog		e.								
<u>CO.</u> /DO.	DO 1	DO2	DO2	DO 4	DOS	DOC	D07	DOR	DOO	DO1(			10
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	) PO11	PO	.2
CO1	Н	Н	Н	Н		Н		М			М	М	
CO2	Н	Н	Н	Н		Н		М			М	М	
CO3	Н	Н	Н	Н		Н		М			М	М	
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	s Stren	gth of Corr	relation H	I- High, I	M- Mediu	ım, L-Lo	ow						
								lli					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	<u> </u>	<u> </u>	ΗŇ	- d	d √	0	- d		Ň				
Approval													

#### B.Tech Civil Engineering – 2017 Regulation

### BCE17E20

#### UNIT I: INTRODUCTION

Need for prefabrication – Principles – Materials – Modular coordination – Standardization – Systems – Production – Transportation – Erection.

PREFABRICATED STRUCTURES

#### UNIT II: PREFABRICATED COMPONENTS

# Behaviour of structural components – Large panel constructions – Construction of roof and floor slabs – Wall panels – Columns – Shear walls.

### UNIT III: DESIGN PRINCIPLES

Disuniting of structures- Design of cross section based on efficiency of material used – Problems in design because of joint flexibility – Allowance for joint deformation.

#### UNIT IV: JOINT IN STRUCTURAL MEMBERS

Joints for different structural connections - Dimensions and detailing - Design of expansion joints.

### UNIT V: DESIGN FOR ABNORMAL LOADS

Progressive collapse – Code provisions – Equivalent design loads for considering abnormal effects such as earthquakes, cyclones, etc., - Importance of avoidance of progressive collapse.

### TEXT BOOKS

*CBRI, Building materials and components, India, 1990

*Gerostiza C.Z., Hendrikson C. and Rehat D.R., Knowledge based process planning for construction and manufacturing, Academic Press Inc., 1994

### REFERENCES

*Koncz T., Manual of precast concrete construction, Vols. I, II and III, Bauverlag, GMBH, 1971. *Structural design manual, Precast concrete connection details, Society for the studies in the use of precast concrete, Netherland Betor Verlag, 1978.



## 9Hrs

9Hrs

#### 0Um

**Total No. of Hours: 45** 

### 9Hrs

9Hrs



Subject Code: BCE17E13	STR	ject Name UCTURA INEERIN		IICS AN	D EAR	TH QUA	KE		TY / L/ ETL	L	T/S.Lr	P/ R	C		
		equisite: St						~~~	TY	2	0/1	0/0	3		
L : Lecture T : T			1	Ũ	P : Proje	ct R : R	esearch (	C: Credits	5						
T/L/ETL : Theorem	ry/Lab	/Embedded	l Theory ar	nd Lab											
<b>OBJECTIVE</b> :				•		sic prine	ciples of	structura	al dynamics	s the cl	naracteristic	e of dyn	amic		
behaviour of the							1					1 1.			
To expose impor		-		ries of ca	use of ea	rtnquake	and mea	asuremen	t of its effe	cts on tr	ie structure	as loads			
At the end of the				e to											
CO1				of structura	l systen	ns									
CO2		The knowl	-	-		-									
CO3		The knowledge to design the structures for seismic loading as per code provisions. <b>utcomes with Program Outcomes (POs)</b>													
Mapping of Co	urse O	utcomes with Program Outcomes (POs)													
COs/POs	PO1	PO2	PO3	PO4	PO9	PO10	PO11	PO1	2						
CO1	Н	Н	Н	Н		Н		М				М			
CO2	Н	Н	Н	Н		Н		М				М			
CO3	Н	Н	Н	Н		Н		М				М			
COs / PSOs		PSO1	PSO	52		•		•							
CO1	Н		Н												
CO2	Н		Н												
CO3	Н		Н												
H/M/L indicates	Streng	gth of Corr	elation H	- High, N	M- Mediu	ım, L-Lo	w								
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	<ul> <li>✓ Program Electives</li> </ul>	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills						
Approval															

## edition, New Delhi, 1993

2. Mario Paz, structural dynamics- theory and computations, Third Editions CBS Publishers, New Delhi, 1990.

1. Clough R. W, and Penzien J, Dynamics of structures, Second Edition, Mc Graw-Hill International

#### REFERENCES

TEXT BOOKS

frequencies and modes

- 1. Minoru Wakabayashi, Design of earth quake resistant buildings, Mc Graw-Hill book company, New York 1986
- 2. Anil K Chopra, Dynamics Of Structures- Theory and applications to Earth quake engineering, Prentice hall inc, 2001

Performance of structures under past earth quakes- lessons learnt from past earth Quakes- behavior of soil under

Elements of engineering seismology- characteristics of earth quake engineering- earth quake history- Indian seismicity.

#### **UNIT IV : BEHAVIOUR OF STRUCTURES AND SOIL**

earth quake loading- soil liquefaction- soil structure Interaction effects.

#### **UNIT V : EARTH QUAKE RESISTANT DESIGN**

design spectrum- seismic coefficient- design of buildings.

Concept of Earth quake resistant design- provisions of seismic code IS-1893 (part I)- 2002- response spectrum-

B.Tech Civil Engineering - 2017 Regulation

**BCE17E13** STRUCTURAL DYNAMICS AND EARTH QUAKE ENGINEERING

EDUCATIONAL AND RESEARCH INSTITUTE UNIVERSITY

DEPARTMENT OF CIVIL ENGINEERING

#### **UNIT I : SINGLE DEGREE OF FREEDOM SYSTEMS**

Formulation of equation of motion-free and forced vibrations-response to dynamic Loading-effect of damping

## **UNIT II : MODAL ANALYSIS**

**UNIT III : INTRODUCTION TO EARTH QUAKE ENGINEERING** 

9 hrs

9 hrs

# **Total No of Hours: 45**

9 hrs

9 hrs Free and forced vibration of un-damped and damped MDOF systems- equation of Motions- evaluation of natural

9 hrs



Subject Code: BCE17E14		Subject Na BRIDGE S		IRES					TY / L/ ETL	L	T/S.Lr	P/ R	C
	F	Prerequisite	: Design o	f concret	e structur	es I & II	[		TY	2	0/1	0/0	3
L : Lecture T : T								C: Credit					
T/L/ETL : Theo	ry/Lab	/Embedde	d Theory a	nd Lab									
<b>OBJECTIVE :</b>													
To make the stu	dent to	know abo	ut various	bridge st	ructures,	selection	n of appro	opriate bi	ridge struct	ures and	design it fo	or given	
site conditions.													
COURSE OUT At the end of the													
CO1	e cours				in propo	rtioning	and desig	an of bri	dges in tern	ns of aest	thetics geo	graphic	<u></u>
		location a			in propo	ntioning	and desig	gii or ori	ages in tern	15 01 205	inclies, geo	grapine	.1
CO2									tanding of o				
CO3									es and carry			dge star	ting
							ge, geom	etry to si	zing of its e	elements			
Mapping of Co	urse (	Jutcomes	with Prog	ram Outo	comes (P	US)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н	Н	Н		Н		Н			М	М	
CO2	Н	Н	Н	Н		Н		Н			М	М	
CO3	Н	Н	Н	Н		Н		Н			М	М	
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicates	s Stren	gth of Corr	elation H	I- High, I	M- Mediu	um, L-Lo	ow			1		<b>I</b>	
								l Skill					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	Ba	En	Hu Sci	Prc	<pro< td=""><td>Op</td><td>Pra</td><td>Ir</td><td>Sof</td><td></td><td></td><td></td><td></td></pro<>	Op	Pra	Ir	Sof				
Approval		1	1	1	1 4	1	1	1	L		I		

### B.Tech Civil Engineering - 2017 Regulation

#### **BCE17E14**

#### **UNIT I: INTRODUCTION**

Design of through type steel highway bridges for IRC loading - Design of stringers, cross girders and main girders -Design of deck type steel highway bridges for IRC loading - Design of main girders.

#### **UNIT II: STEEL BRIDGES**

Design of pratt type truss girder highway bridges - Design of top chord, bottom chord, web members - Effect of repeated loading - Design of plate girder railway bridges for railway loading - Wind effects - Design of web and flange plates - Vertical and horizontal stiffeners.

#### UNIT III: REINFORCED CONCRETE SLAB BRIDGES

Design of solid slab bridges for IRC loading - Design of kerb - Design of tee beam bridges - Design of panel and cantilever for IRC loading.

#### UNIT IV: REINFORCED CONCRETE GIRDER BRIDGES

Design of tee beam - Courbon's theory - Pigeaud's curves - Design of balanced cantilever bridges - Deck slab -Main girder - Design of cantilever - Design of articulation.

#### **UNIT V: PRESTRESSED CONCRETE BRIDGES**

Design of prestressed concrete bridges - Preliminary dimensions - Flexural and torsional parameters -Courbon's theory - Distribution coefficient by exact analysis - Design of girder section - Maximum and minimum prestressing forces - Eccentricity - Live load and dead load shear forces - cable zone in girder -Check for stresses at various sections - Check for diagonal tension - Diaphragms - End block - Short term and long term deflections.

#### Total No. of Hours: 45

### TEXT BOOKS

Johnson Victor D., "Essentials of Bridge Engineering", Oxford and IBH Publishing Co., New Delhi, 1990.

Ponnuswamy S., "Bridge Engineering ", Tata McGraw Hill, New Delhi, 1996.

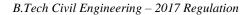
### REFERENCES

Phatak D.R., "Bridge Engineering", Satya Prakashan, New Delhi, 1990.



**BRIDGE STRUCTURES** 

# 9Hrs


### 9Hrs

#### 9Hrs

9Hrs



Subject Code: BCE17E15		Subject Na STORAGE		URES					TY / L/ ETL	L	T / S.Lr	P/ R	C	
		Prerequisit Design of c							TY	2	0/1	0/0	3	
L : Lecture T : '	Tutoria	al SLr : S	upervised l	Learning	P : Proje	ect R : R	esearch (	C: Credit	s			•		
T/L/ETL : Theo	ory/Lał	o/Embedde	d Theory a	nd Lab										
<b>OBJECTIVE</b> To introduce the steel and concre	e stude			concepts	s of desig	n of stor	age struc	tures like	2					
COURSE OUT At the end of th		se the stude	nt shall be											
CO1		design con		-										
CO2 CO3		design steel material storage structures         Design prestressed water tanks												
Mapping of Co	ourse (					POs)								
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	
CO1	Н	Н	Н	Н		Н	М	Н	M			М		
CO2	Н	Н	Н	Н		Н	М	Н	М			М		
CO3	Н	Н	Н	Н		Н	М	Н	М			М		
COs / PSOs		PSO1	PS	02										
CO1	Н		Н											
CO2	Н		Н											
CO3	Н		Н											
H/M/L indicate	s Stren	gth of Corr	elation H	I- High, I	M- Medi	um, L-Lo	ow		L	1				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	←Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
Approval			1	1		1	1	1			I			



#### BCE17E15

# STORAGE STRUCTURES

#### UNIT I: STEEL WATER TANKS

Design of rectangular riveted steel water tank – Tee covers – Plates – Stays – Longitudinal and transverse beams – Design of staging – Base plates – Foundation and anchor bolts – Design of pressed steel water tank – Design of stays – Joints – Design of hemispherical bottom water tank – side plates – Bottom plates – joints – Ring girder – Design of staging and foundation.

#### UNITII: CONCRETE WATER TANKS

Design of Circular tanks – Hinged and fixed at the base – IS method of calculating shear forces and moments – Hoop tension – Design of intze tank – Dome – Ring girders – Conical dome – Staging – Bracings – Raft foundation – Design of rectangular tanks – Approximate methods and IS methods – Design of under ground tanks – Design of base slab and side wall – Check for uplift.

#### UNIT III: STEEL BUNKERS AND SILOS

Design of square bunker – Jansen's and Airy's theories – IS Codal provisions – Design of side plates – Stiffeners – Hooper – Longitudinal beams – Design of cylindrical silo – Side plates – Ring girder – stiffeners.

#### UNIT IV: CONCRETE BUNKERS AND SILOS

Design of square bunker – Side Walls – Hopper bottom – Top and bottom edge beams – Design of cylindrical silo – Wall portion – Design of conical hopper – Ring beam at junction.

#### UNIT V: PRESTRESSED CONCRETE WATER TANKS

Principles of circular prestressing - Design of prestressed concrete circular water tanks.

### TEXT BOOKS

*Rajagopalan K., Storage Structures, Tata McGraw-Hill, New Delhi, 1998.

*Krishna Raju N Advanced Reinforced Concrete Design, CBS Publishers, New Delhi, 1998.

#### 15Hrs

15Hrs

#### 5Hrs

5Hrs

### 5Hrs

Total No. of Hours: 45





Subject Code: BCE17E16		ibject Nai ALL BUI							TY / L/ ETL	L	T / S.Lr	P/ R	C		
Dell'Lio			: Structural	analysis	I & II				TY	2	0/1	0/0	3		
L : Lecture T : T						ct R : Re	esearch C	C: Credit							
T/L/ETL : Theo	ry/Lab/I	Embedded	l Theory ar	nd Lab											
<b>OBJECTIVE :</b>	To int	roduce va	rious aspec	ts of plai	nning of '	Tall Buil	dings ; T	o know	about differe	ent type	s of loads ;	To intro	oduce		
various structura	al syster	ns for me	dium rise t	ouildings	with the	r behavi	our and a	analysis;	To introduc	e vario	us structura	l systen	ns for		
high rise buildin	igs with	their beha	viour and	analysis;	To impa	art know	ledge abo	out stabil	lity analysis	of vario	ous systems	and to 1	know		
about advanced	topics.														
COURSE OUT															
CO1			of this cou to lateral bu		udent sh	ould hav	e an unde	erstandin	ig on the bel	naviour	of tall build	lings			
CO2	]	The students should have knowledge about the rudimentary principles of designing tall buildings as per the													
CO3		existing codes.													
		implement design philosophies for the development of high rise structures Outcomes with Program Outcomes (POs)													
			0				1								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	.2		
CO1	Н	Н	Н	Н		Н	Н	Η	М		М	М			
CO2	Н	Н	Н	Н		Н	Н	Η	М		М	М			
CO3	Н	Н	Н	Н		Н	Н	Η	М		М	М			
COs / PSOs	Р	SO1	PSO	02		L									
CO1	Н		Н												
CO2	Н		Н												
CO3	Н		Н												
H/M/L indicates	Streng	th of Corr	elation H	- High, N	/I- Mediu	m, L-Lo	W								
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills						
Approval															

# TALL BUILDINGS

#### BCE17E16

#### UNIT I: INTRODUCTION

The Tall Building in the Urban Context - The Tall Building and its Support Structure - Development of High Rise Building Structures - General Planning Considerations. Dead Loads - Live Loads-Construction Loads -Snow, Rain, and Ice Loads - Wind Loads-Seismic Loading –Water and Earth Pressure Loads - Loads - Loads Due to Restrained Volume Changes of Material - Impact and Dynamic Loads - Blast Loads -Combination of Loads.

#### UNIT II: THE VERTICAL STRUCTURE PLANE

Dispersion of Vertical Forces- Dispersion of Lateral Forces - Optimum Ground Level Space - Shear Wall Arrangement - Behaviour of Shear Walls under Lateral Loading. The Floor Structure or Horizontal Building Plane Floor Framing Systems-Horizontal Bracing- Composite Floor Systems The High - Rise Building as related to assemblage Kits Skeleton Frame Systems - Load Bearing Wall Panel Systems - Panel – Frame Systems -Multistory Box Systems.

#### UNIT III: Common high-rise building structures and their Behaviour under load 9Hrs

The Bearing Wall Structure- The Shear Core Structure - Rigid Frame Systems- The Wall - Beam Structure: Interspatial and Staggered Truss Systems - Frame - Shear Wall Building Systems - Flat Slab Building Structures -Shear Truss - Frame Interaction System with Rigid - Belt Trusses - Tubular Systems-Composite Buildings -Comparison of High - Rise Structural Systems Other Design Approaches Controlling Building Drift Efficient Building Forms - The Counteracting Force or Dynamic Response.

#### UNIT IV: APPROXIMATE STRUCTURAL ANALYSIS AND DESIGN OF BUILDING 9Hrs

Approximate Analysis of Bearing Wall Buildings The Cross Wall Structure - The Long Wall Structure The Rigid Frame Structure Approximate Analysis for Vertical Loading – Approximate Analysis for Lateral Loading -Approximate Design of Rigid Frame Buildings-Lateral Deformation of Rigid Frame Buildings The Rigid Frame -Shear Wall Structure - The Vierendeel Structure - The Hollow Tube Structure.

#### **UNIT V: OTHER HIGH-RISE BUILDING STRUCTURE**

Deep - Beam Systems -High-Rise Suspension Systems - Pneumatic High -Rise Buildings - Space Frame Applied to High - Rise Buildings - Capsule Architecture.

#### Total No. of Hours :45

### *Wolfgang Schueller " High-Rise Building Structures", John Wiley&Sons.

*Bryan Stafford Smith And Alex Coull, " Tall Building Structures ", Analysis And Design, John Wiley And Sons, Inc., 1991.

#### REFERENCES

TEXT BOOKS

*Coull, A. and Smith, Stafford, B. " Tall Buildings ", Pergamon Press, London, 1997.

*LinT.Y. and Burry D.Stotes, " Structural Concepts and Systems for Architects and Engineers ", John Wiley, 1994.

*Lynn S.Beedle, Advances in Tall Buildings, CBS Publishers and Distributors, Delhi, 1996.



## 9Hrs

9Hrs



Subject Code: BCE17E17		Subject Na HYDROL(							TY / L/ ETL	L	T / S.Lr	P/ R	C
		Prerequisite		Iydraulic	cs				TY	2	0/1	0/0	3
L : Lecture T : 7	Futoria	al SLr : Su	pervised L	earning	P : Proje	ct R : R	esearch (	C: Credit	S			-	
T/L/ETL : Theo	•												
<b>OBJECTIVE</b> :									epts in hydr				
precipitation, e forecasting and									ing of run	off;. To	understan	d estima	ation,
COURSE OUT					uter appi	lications	III IIyuloi	logy					
COURSEOUT	0010		. (5 5)										
CO1		The studer formation	-		lge neede	ed on hyd	lrologic o	cycle, hy	drometeoro	logy and	1		
CO2					the vario	ous meth	ods of fie	eld meas	urements an	d empir	ical		
		formulae f							n flow, floo				
CO3		routing The studer	nts will kno	w the ba	sics of g	roundwa	ter and h	ydraulic	s of subsurfa	ace flow	s		
Mapping of Co	ourse (				0		•						
	DO 1	DOA	DO2	DO 4	DOT	DOC	D07	DOO	DOO	DO10	DO11		10
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12
CO1	Н	Н		Н	Н	Η		Н			М	М	
CO2	Н	Н		Н	Н	Н		Н			М	М	
CO3	Н	Н		Н	Н	Н		Н			М	М	
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicates	s Stren	gth of Corr	elation H	- High, N	M- Mediu	ım, L-Lo	)W						
			T										
Category		suces	Social		es		st	echnical Skill					
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core		Open Electives	Practical / Project	Internships / Technical S	Soft Skills				
Approval													

#### B.Tech Civil Engineering – 2017 Regulation

#### HYDROLOGY

#### **UNIT I: INTRODUCTION**

**BCE17E17** 

Definition & Scope- Practical applications-Hydrological cycle – Transitory systems- formation, Types and forms of precipitation - Winds and their movement-Climate & weather season in India-Catchment area

#### **UNITII: PRECIPITATION**

Measurement of Precipitation-Recording & Non- Recording Rain Gauges-Intensity duration Analysis-Intensity frequency duration Analysis- Average depth of precipitation over an areas-Depth area duration analysis-Rain gauge network.

#### **UNITILI EVAPORATION & INFILTRATION**

Introduction- Evaporation process- Factors affecting Evaporation- Evaporation Eestimation-Evaporation measurement- Evapotranspiration- Factors affecting infiltration-measurement of infiltration- Infiltration Equations

#### **UNITIV: STREAM FLOW MEASUREMENT & HYDROGRAPH ANALYSIS** 9Hrs

Introduction-Measurement of stage-discharge measument -area velocity method (Current meter method)-moving boat method- Stage discharge relationships - Flow measurements - Features of hydrograph- base flow-Hydrograph seperation

#### **UNIT V: GROUND WATER HYDROLOGY**

Occurrence of ground water - Types of aquifer - Dupuit's assumptions - Darcy's law - Estimation of aquifer parameters - Pump tests.

#### REFERENCES

* Jeya Rami Reddy.P,Hydrology, Laximi Publications, New Delhi, 2004.

*Subramanya K., Hydrology, Tata McGraw Hill Co., New Delhi, 1994

*Patra.K.C, Hydrology and Water Resources Engineering, Narosa Publications, 2008, 2 nd Edition, New Delhi.

* Chow V.T., Maidment D.R., Mays L.W., " Applied Hydrology, McGraw Hill Publications, New

York, 1995



9Hrs

9Hrs

9Hrs

9Hrs

**Total No. of Hours : 45** 



Subject Code BCE17E18		bubject Na //UNICIP	ame AL SOLII	D WAST	E MAN	AGEMH	ENT		TY / L/ ETL	L	T / S.Lr	P/ R	C
			e: Environi						TY	2	0/1	0/0	3
L : Lecture T	: Tutoria	l SLr : S	upervised l	Learning	P : Proje	ect R : R	lesearch	C: Credit	S				
T/L/ETL : The	eory/Lab	/Embedde	d Theory a	nd Lab									
OBJECTIVE	E: The	student is	expected t	to know a	about the	various	effects a	nd legisla	tions for th	e municij	pal solid w	aste.	
To understand	l the vari	ous source	es, characte	rization,	processii	ng and th	e dispos	al method	ls of munic	ipal solid	wastes.		
COURSE OU	JTCOM	ES (COs)	: (3-5)										
After comple	etion of												
CO1			d the natur				-						
CO2			-	-	-			-	tion, transp	ort prod	ressing and	1 dispos	sal o
002		•	solid wast		isution u		ii storug	, conce	uon, uuns	join, prot	cosing an	a anspor	, ai (
CO3		-	nd design v		tainment	systems							
Mapping of C	Course C	outcomes	with Prog	ram Out	comes (F	POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н			Н	Н	Н	Н	Н	М		М	Н	
CO2	Н			Н	Н	Н	Н	Н	М		М	Н	
CO3	Н			Н	Н	Н	Н	Н	М		М	Н	
COs / PSOs		PSO1	PSO2										
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicat	tes Stren	gth of Cor	relation H	H- High,	M- Medi	um, L-L	ow						
								Skill					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skil	kills				
	Basic	Engin	Humaniti Sciences	Progra	<- Progra	Open	Practi	Inter	Soft Skills				
Approval			<u> </u>	<u> </u>			1		<u> </u>	1	<u> </u>		

#### MUNICIPAL SOLID WASTE MANAGEMENT

#### UNIT I: SOURCES AND TYPES

**BCE17E18** 

Sources and types of solid wastes in a Municipality; Quantity – factors affecting generation of solid wastes; characteristics – methods of sampling and characterization; Effects of improper disposal of solid wastes – public health effects. Principle of solid waste management – social & economic aspects; Public awareness; Role of NGOs; Legislation.

#### UNIT II: ON-SITE STORAGE & PROCESSING

On-site storage methods – materials used for containers – on-site segregation of solid wastes – public health & economic aspects of storage – options under Indian conditions – Critical Evaluation of Options.

#### UNIT III: COLLECTION AND TRANSFER

Methods of Collection – types of vehicles – Manpower – collection routes; transfer stations – selection of location, operation & maintenance; options under Indian conditions.

### UNIT IV: OFF-SITE PROCESSING

Processing techniques and Equipment; Resource recovery from solid wastes – composting, incineration, options under Indian conditions.

### UNIT V: DISPOSAL

### $Dumping \ of \ solid \ waste; \ sanitary \ land fills - site \ selection, \ design \ and \ operation \ of \ sanitary \ land fills.$

#### TEXT BOOKS

*George Techobanoglous et.al., Integrated Solid Waste Management, McGraw Hill Publishers, 1993.

*B.Bilitewski, G.HardHe, K.Marek, A.Weissbach, and H.Boeddicker, Waste Management, Springer, 1994.

### REFERENCES

*Manual on Municipal Solid Waste Management, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 200

*R.E.Landreth and P.A.Rebers, Municipal Solid Wastes - problems and Solutions, Lewis Publishers, 1997

*Bhide A.D. and Sundaresan, B.B., Solid Waste Management in Developing Countries; INSDOC, 1993.



### 9Hrs

#### 9Hrs

9Hrs

9Hrs

#### 9Hrs

Total No. of Hours :

45



Subject Code: BCE17SE1	5	Subject Na REPAIR A		ABILIT	ATION	OF STR	UCTUR	RES	TY / L/ ETL	L	T / S.Lr	P/ R	C
		Prerequisite							TY	1	0/1	1/1	3
L : Lecture T : 7	Futoria	ll SLr : Su	pervised L	earning	P : Proje	ct R : R	esearch (	C: Credit	S				
T/L/ETL : Theo	ory/Lat	/Embedded	l Theory ar	nd Lab									
OBJECTIVE													
1. To make the	studer	nts to gain th	ne knowled	lge on qu	ality of c	concrete,	durabilit	y aspect	s, causes of	deteriora	ation.		
2. To make the	e stude	ents to gain	the know	ledge on	assessn	nent of c	listressed	l structu	res, repairi	ng of sti	uctures an	d demo	lition
procedures.													
COURSE OUT				_									
After successful CO1	l comp	letion of the suggest ma					to						
CO1 CO2		assess the		_	-		climatic	conditio	ns				
CO3									itting techni	iques			
Mapping of Co	ourse (								U	1			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12
05/105	101	102	105	104	105	100	107	100	109	1010	1011	101	. 2
CO1	Н	Н	Н	Н	Н	Н	Н	Н			Н	Н	
CO2	Н	Н	Н	Н	Н	Н	Н	Н			Н	Н	
CO3	Н	Н	Н	Н	Н	Н	Н	Н			Н	Н	
COs / PSOs		PSO1	PSO	02		1		_					
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicates	s Stren	gth of Corr	elation H	- High, N	A- Mediu	ım, L-Lo	)W					I	
								skill					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	✓ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

### UNIT II STRENGTH AND DURABILITY OF CONCRETE Quality assurance for concrete – Strength, Durability and Thermal properties, of concrete - Cracks, different types,

Maintenance- Repair and Rehabilitation. Facts of Maintenance - Importance of Maintenance- Various aspects of

causes - Effects due to climate, temperature, Sustained elevated temperature, Corrosion - Effects of cover thickness.

Polymer concrete, Sulphur infiltrated concrete, Fibre reinforced concrete, High strength and High-performance concrete, Vacuum concrete, Self-compacting concrete, Whisper concrete Geopolymer concrete, Reactive powder concrete, Concrete made with industrial wastes.

#### UNIT IV TECHNIQUES FOR REPAIR AND PROTECTION METHODS

Non-destructive Testing Techniques, Epoxy injection, Shoring, Underpinning, Corrosion protection techniques -Corrosion inhibitors, Corrosion resistant steels, Coatings to reinforcement, Cathodic protection.

#### UNIT V RETROFITTING AND DEMOLITION TECHNIQUES

Strengthening of Structural elements, Repair of structures distressed due to corrosion, fire, Leakage, earthquake -Engineered demolition methods - Case studies.

#### **TEXTBOOKS:**

* Shetty M.S., "Concrete Technology - Theory and Practice", S. Chand and Company, 2008.

* Gambhir. M.L., "Concrete Technology", McGraw Hill, 2013

* Denison Campbell, Allen and Harold Roper, "Concrete Structures, Materials, Maintenance and Repair", Longman Scientific and Technical UK, 1991.

#### **REFERENCES:**

* Ravi Shankar. K. Krishnamoorthy. T.S, "Structural Health Monitoring, Repair and Rehabilitation of Concrete Structures", Allied Publishers, 2004.

* Dov Kominetzky, M.S., "Design and Construction Failures", Galgotia Publications Pvt. Ltd., 2001

* CPWD and Indian Buildings Congress, Hand book on Seismic Retrofit of Buildings, Narosa Publishers, 2008.

* Allen R.T. & Edwards S.C, Repair of Concrete Structures, Blakie and Sons, UK, 1987

### BCE17SE1

UNIT III SPECIAL CONCRETES

## UNIT I MAINTENANCE AND REPAIR STRATEGIES

Inspection- Assessment procedure for evaluating a damaged structure, Causes of deterioration.

9 hrs

Total No of Hours: 45

9 hrs

9 hrs

9 hrs



DEPARTMENT OF CIVIL ENGINEERING

**REPAIR AND REHABILITATION OF STRUCTURES** 

9 hrs



Subject Code: BCE17SE2		Subject Na INTELLI	ime GENT BU	ILDING	S				TY / L/ ETL	L	T / S.Lr	P/ R	C
	I	Prerequisite	: NONE						TY	1	0/1	1/1	3
L : Lecture T :	Tutoria	1 SLr : S	upervised l	Learning	P : Proje	ect R : R	esearch (	C: Credi	ts				
T/L/ETL : The	ory/Lab	/Embedde	d Theory a	nd Lab									
OBJECTIVE													
1. To enable st 2. To enable s	tudents	to unders	tand that is	ntelligend	e of a b	uilding o	can be ad	chieved	by integrati	on and o	optimizatio	n of bui	ldin
structure, servi				nnology,	managen	nent and	valued-a	aaea ser	vices.				
CO1		20 (000)											
		Student w	ill possess	sound kr	owledge	ary conc	epts						
CO2		Student u	nderstand t	he requir	ements f	or intellio	ent huild	tings ch	aracteristics				
CO3			fill learn th	-			-	-	aracteristics				
Mapping of C	ourse (							0					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
C01	Н	Н	Н	Н	Н	Н					M		
	н	н	п	н	п						IVI		
CO2	Н	Н	Н	Н	Н	Н					М		
CO3	Н	Н	Н	Н	Н	Н					М		
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
H/M/L indicate	es Sthre	ngth of Co	rrelation	H- High,	M- Med	lium, L-I	Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	Ba	En	Hı Sc	Pr	$\sim_{\rm Pr}$	O ^t	Pr		So			_	
Approval					<u> </u>	1	-1		I		I	I	

#### B.Tech Civil Engineering – 2017 Regulation

#### INTELLIGENT BUILDINGS

#### **UNIT I : Intelligent building characteristics:**

**BCE17SE2** 

Features and benefits of intelligent buildings. The anatomy of intelligent buildings. Environmental aspect. The marketplace and other driving forces behind the emergence of intelligent buildings.

#### UNIT II : Building automation systems & controls:

**UNIT III : Modern intelligent vertical transportation systems:** 

Philosophy, system configuration, system modules, distributed systems, communication protocol and on-line measurements. Fire protection, security and energy management. Control objectives. Sensors, controllers and actuators. Control system schematics system design. Microprocessor based controllers & digital controls. Examples of sub-systems such as: Digital Addressable Lighting Interface (DALI)

Sky lobby, double-deck lifts, twin lifts, advanced call registration systems, large scale monitoring systems, applications of artificial intelligence in supervisory control, energy saving measures related to lift systems/escalator systems, other modern vertical transportation systems, such as: gondola systems, materials handling systems, etc.

#### **UNIT IV : Communication and security systems:**

Voice communication systems, local area network, wireless LAN, Digital TV, CCTV, digital CCTV, teleconferencing, cellular phone system, and CABD. SMATV. Data networking. Short- and long-haul networks. Wideband network. Office automations. Public address/sound reinforcement systems. Digital public address system. Modern security systems

#### UNIT V : Integrating the technologies and systems:

The impact of information technology on buildings and people. Shared tenant services. Interaction and integration between building structure, systems, services, management, control and information technology. Application & design software packages.

#### **Total No of Hours: 45**

#### REFERENCES

*Clements-Croome, Derek, Intelligent Buildings: An introduction, Routledge, 2014

*Shengwei Wang, Intelligent Buildings and Building Automation, Spon Press, 2010

*Jim Sinopoli, Smart Building Systems for Architectures, Owners and Builders, Elsevier, 2010 4. P. Manolescue,

Integrating Security into Intelligent Buildings, Cheltenharn, 2003

*Dobbelsteen, Smart Building in a Changing Climate, Techne Press, 2009

*Oliviero, Cabling [electronic resource]: The Complete Guide to Copper and Fiberooptic Networking, John Wiley & Sons, 2014

*W.T. Grondzik, & A.G. Kwok, Mechanical and Electrical Equipment for Buildings, Wiley, 2015



### 9 Hrs

#### 9 Hrs

9 Hrs

9 Hrs



Subject Code: BCE17SE3	2	Subject Na FINITE E		ANALY	YSIS				TY / L/ ETL	L	T / S.Lr	P/ R	C
		Prerequisite							ΤY	1	0/1	1/1	3
L : Lecture T : T	Futoria	al SLr : Su	pervised L	earning	P : Proje	ct R : Re	esearch C	C: Credit	8				
T/L/ETL : Theo	ry/Lał	o/Embedded	l Theory a	nd Lab									
OBJECTIVE													
The objective i	is to e	quip studen	ts with fun	damental	s of finit	e elemen	t princip	les so as	to enable the	hem to u	nderstand	the beha	viour
of various finite	elem	ents and to	be able to	select ap	propriate	element	s to solv	e physic	al and engi	neering p	oroblems w	ith emp	hasis
on structural and	d therr	nal enginee	ring applic	ations.									
COURSE OUT													
After successful CO1	comp							for one	physical pr	ahlama u	aina		
COI		FE technic		position	to develo	p compu	ter codes	for any	physical pr	obients u	sing		
CO2					ential eq	uilibrium	equation	ns and th	eir relation	ship in th	ie		
		analysis of											
CO3 Mapping of Co	urse (	apply num					analysis						
	uise (	Jucomes	vitil i logi		onies (1	()							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	.2
CO1	Н	Н	Н	Н							Н	Н	
CO2	Н	Н	Н	Н							Н	Н	
CO3	Н	Н	Н	Н							Н	Н	
COs / PSOs		PSO1	PS	02									
CO1	Н		Н										
CO2	H		Н										
CO3	Н		Н										
H/M/L indicates	s Stren	gth of Corr	elation H	- High, N	M- Mediu	ım, L-Lo I	w						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	✓Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													



#### BCE17SE3 FINITE ELEMENT ANALYSIS

### **UNIT I: INTRODUCTION - VARIATIONAL FORMULATION**

General filed problems in Engineering - Modelling - Discrete and Continuous models - Characteristics -Difficulties involved in solution - The relevance and place of the finite element method - Historical comments -Basic concept of FEM, Boundary and initial value problems – Gradient and divergence theorems – Functionals – Variational calculus – Variational formulation of VBPS. The method of weighted residuals – The Ritz method.

#### UNIT II: FINITE ELEMENT ANALYSIS OF ONE DIMENSIONAL PROBLEMS 8Hrs

One dimensional second order equations - discretisation of domain into elements - Generalised coordinates approach – derivation of elements equations – assembly of elements equations – imposition of boundary conditions - solution of equations - Cholesky method - Post processing - Extension of the method to fourth order equations and their solutions - time dependant problems and their solutions - example from heat transfer, fluid flow and solid mechanics.

#### UNIT III: FINITE ELEMENT ANALYSIS OF TWO DIMENSIONAL PROBLEMS 9Hrs

Second order equation involving a scalar-valued function – model equation – Variational formulation – Finite element formulation through generalised coordinates approach – Triangular elements and quadrilateral elements – convergence criteria for chosen models - Interpolation functions - Elements matrices and vectors - Assembly of element matrices -boundary conditions - solution techniques.

#### UNIT IV: ISOARAMETRIC ELEMENTS AND FORMULATION

Natural coordinates inn 1, 2 and 3 dimensions - use of area coordinates for triangular elements in - 2 dimensional problems - Isoparametric elements in 1,2 and 3 dimensional - Largrangean and serendipity elements -Formulations of elements equations in one and two dimensions - Numerical integration.

#### UNIT V: APPLICATIONS TO FIELD PROBLEMS IN TWO DIMENSION

Equations of elasticity – plane elasticity problems – axis symmetric problems in elasticity Bending of elastic plates -Time dependent problems in elasticity - Heat - transfer in two dimensions - incompressible fluid flow.

#### **Total No. of Hours :** 45

#### TEXT BOOKS

*J.N.Reddy, "An Introduction to Finite Element Method", McGraw-Hill Book Co., Intl. Edition, 1985.

#### REFERENCES

*Rienkiewics, "The finite element method, Basic formulation and linear problems", Vol.1, 4/e, McGraw-Hill, Book Co.

*S.S.Rao, "The Finite Element Method in Engineering", Pergaman Press, 1989.

*C.S.Desai and J.F.Abel, "Introduction to the Finite Element Method", Affiliated East West Press 1972

# 8Hrs

#### 10Hrs

10 hrs



Subject Code:		Subject Na							TY/L/	L	T/S.Lr	P/ R	C	
BCE17SE4			NMENTA		ETL									
I I I I I T		Prerequisit							TY	1	0/1	1/1	3	
L : Lecture T :			•	-	P : Proje	CT R : R	esearch	C: Credit	S					
T/L/ETL : The	ory/La	b/Embedde	d Theory a	nd Lab										
OBJECTIVE														
To know the ob	ojective	es, capabili	y, and limi	tations of	f environ	mental in	npact as	sessment	•					
To learn metho	dologi	es and lega	l aspects of	environi	nental in	npact ass	essment;							
COURSE OU	ГСОМ	IES (COs)	: (3-5)											
CO1		carry out	scoping and	d screeni	ng of dev	elopmen	tal proje	cts for er	vironmenta	al and soc	cial assessr	nents		
CO2			scoping and screening of developmental projects for environmental and social assessments ifferent methodologies for environmental impact prediction and assessment											
CO3							vironmer	ntal mana	igement pla	ns				
Mapping of Co	ourse	Outcomes	with Prog	ram Outo	comes (P	POs)								
COs/POs	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	
CO1	Н	Н		Н	Н	Н	Н	Н			Н	Н		
CO2	Η	Н		Н	Н	Н	Н	Н			Н	Н		
CO3	Η	Н		Н	Н	Н	Н	Н			Н	Н		
COs / PSOs		PSO1	PSO2											
CO1	Н		Н											
CO2	Н		Н											
CO3	Н		Н	Н										
H/M/L indicate	s Strer	ngth of Cor	relation H	I- High, I	M- Medi	um, L-Lo	)W							
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	<ul> <li>✓ Program Electives</li> </ul>	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
Approval														

#### BCE17SE4 ENVIRONMENTAL IMPACT ASSESSMENT

#### UNIT I: INTRODUCTION

Impact of development on environment and Environmental Impact Assessment (EIA) and Environmental Impact Statement (EIS) - Objectives - Historical development - EIA capability and limitations - Legal provisions on EIA.

#### **UNIT II: METHODOLOGIES**

Methods of EIA – Strengths, weaknesses and applicability – Appropriate methodology – Case studies.

#### UNIT III: PREDICTION AND ASSESSMENT

Socio Economic Impact - Assessment of Impact on land, water and air, energy impact; Impact on flora and fauna; Mathematical models; public participation - Reports - Exchange of Information - Post Audit - Rapid EIA.

#### UNIT IV: MATHEMATICAL MODELS FOR ASSESSMENT

Use the mathematical models in EIA – Water quality, air quality and noise; assumptions and limitations.

#### UNIT V: ENVIRONMENTAL MANAGEMENT PLAN

Plan for mitigation of adverse impact on environment - options for mitigation of impact on water, air and land, flora and fauna, addressing the issues related to the project affected people.

> **Total No. of Hours:** 45

#### **TEXT BOOKS**

*Canter, R.L. Environmental Impact Assessment, McGraw Hill Inc., New Delhi, 1996.

*S.K.Shukla and P.R.Srivastava, Concepts in Environmental Impact Analysis, Common Wealth Publishers, New Delhi, 1992.

#### REFERENCES

- * John G.Rau and David C Hooten (Ed)., Environmental Impact Analysis Handbook, McGraw Hill Book Company, 1990.
- * Environmental Assessment Source book, Vol. I, II & III. The World Bank, Washington, D.C., 1991.
- * Judith Petts, Hand book of Environmental Impact Assessment Vol. I & II, Blackwell Science, 1999.



#### 9Hrs

9Hrs

9Hrs

### 9Hrs