

SEMESTER 1

COURSE	COURSE TITLE	С	L	T/SLr	P/R	Ty/Lb
CODE						/ETL
BMA17007	PROBABILITY AND RANDOM	4	3	1/0	0/0	Ту
	PROCESS					
BCS17I01	C++ AND DATA STRUCTURES	3	3	0/0	0/0	Ту
BEC17002	DIGITAL ELECTRONICS	4	3	1/0	0/0	Ту
BEC17ET1	ELECTRICAL MACHINES AND PCB	3	1	0/2	1/1	ETL
	DESIGN					
BEC17L02	DIGITAL SYSTEM DESIGN LAB	1	0	0/0	3/0	Lb

Credits Sub Total: 15

SEMESTER 2

COURSE	COURSE TITLE	С	L	T/SLr	P/R	Ty/Lb/
CODE						ETL
BMA17012	MATHEMATICS-IV FOR	4	3	1/0	0/0	Ту
	ELECTRONICS ENGINEERS					
BEI17I01	MEASUREMENTS AND	3	3	0/0	0/0	Ту
	INSTRUMENTATION					
BEC17003	SOLID STATE DEVICES	3	3	0/0	0/0	Ту
BEC17ET2	ANALYSIS OF	3	1	0/2	1/1	ETL
	ELECTROMAGNETIC FIELD					
	THEORY					
BEC17001	CIRCUIT THEORY	4	3	1/0	0/0	Ту

Credits Sub Total: 17

SEMESTER 3

COURSE	COURSE TITLE	С	L	T/SLr	P/R	Ty/Lb/
CODE						ETL
BCS17I02	COMPUTER NETWORKS	3	3	0/0	0/0	Ту
BEC17005	SIGNALS AND SYSTEMS	4	3	1/0	0/0	Ту
BEC17006	ELECTRONIC CIRCUITS	3	3	0/0	0/0	Ту
BEC17ET3	DESIGN AND	3	1	0/2	1/1	ETL
	IMPLEMENTATION OF LINEAR					
	INTEGRATED CIRCUITS					
BEC17L16	ELECTRONIC CIRCUITS AND	1	0	0/0	3/0	Lb
	DEVICES LAB					

Credits Sub Total: 14

SEMESTER 4

COURSE	COURSE TITLE	C	L	T/SLr	P/R	Ty/Lb/
CODE						ETL
BEC17004	CONTROL SYSTEM FOR	4	3	1/0	0/0	Ту
	ELECTRONICS ENGINEERS					
BEC17007	TRANSMISSION LINES AND	4	3	1/0	0/0	Ту
	WAVEGUIDES					
BEC17010	COMMUNICATION SYSTEM	3	3	0/0	0/0	Ту
BEC17EXX	ELECTIVE-I	3	3	0/0	0/0	Ту
BEC17L17	COMMUNICATION	1	0	0/0	3/0	Lb
	ENGINEERING LAB					

Credits Sub Total: 15

SEMESTER 5

COURSE CODE	COURSE TITLE	C	L	T/SLr	P/R	Ty/Lb/ ETL
BEC17013	INTRODUCTION TO VLSI AND	4	3	1/0	0/0	Ту
	EMBEDDED SYSTEM DESIGN					-
BEC17011	DIGITAL COMMUNICATION	4	3	1/0	0/0	Ту
BEC17009	MICROPROCESSOR AND	3	3	0/0	0/0	Ту
	MICROCONTROLLER					
BEC17EXX	ELECTIVE-II	3	3	0/0	0/0	Ту
BEC17L12	VLSI AND EMBEDDED	1	0	0/0	3/0	Lb
	SYSTEM DESIGN LABI					

Credits Sub Total: 15

SEMESTER 6

COURSE CODE	COURSE TITLE	C	L	T/SLr	P/R	Ty/Lb/ ETL
BEC17014	OPTICAL COMMUNICATION AND NETWORKS	4	3	1/0	0/0	Ту
BEC17008	DIGITAL SIGNAL PROCESSING	4	3	1/0	0/0	Ту
BEC17012	ANTENNA AND WAVE	3	3	0/0	0/0	Ту

B.Tech Regulation 2017 Approved by the Academic Council 21.06.2017

	PROPAGATION					
BEC17EXX	ELECTIVE-III	3	3	0/0	0/0	Ту
BEC17L14	PROJECT PHASE-I	2	0	0/0	3/0	Lb

Credits Sub Total: 14

SEMESTER 7

COURSE CODE	COURSE TITLE	С	L	T/SLr	P/R	Ty/Lb/ ETL
BEC17EXX	ELECTIVE-IV	3	3	0/0	0/0	Ту
BEC17L15	PROJECT PHASE-II	10	3	1/0	0/0	Lb

Credits Sub Total: 13

C : Credits L : Lecture T : Tutorial S.Lr : Supervised Learning P : Problem / Practical R : Research

Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab

* Internal evaluation (Departmental level Refer Annexure for evaluation methodology)

4 Credit papers should compulsorily have either P/R component.

Credit Summary

Semester 1	: 15
Semester 2	: 17
Semester 3	: 14
Semester 4	: 15
Semester 5	: 15
Semester 6	: 14
Semester 7	:13

Total Credits : 105

		LIST OF ELECTIVES				
S.No	Sub. Code	Title of the Subject	L	Т	Р	C
1.	BEC17E01	Biomedical Instrumentation	3	0	0	3
2.	BEC17E02	Pattern Recognition	3	0	0	3
3.	BEC17E03	Device Modeling	3	0	0	3
4.	BEC17E04	Quantum computing	3	0	0	3
5.	BEC17E05	Microwave Engineering	3	0	0	3
6.	BEC17E06	Real Time Operating Systems	3	0	0	3
7.	BEC17E07	Power Electronics	3	0	0	3
8.	BEC17E08	Cryptography and -Network Security	3	0	0	3
9.	BEC17E10	Disaster Management	3	0	0	3
10.	BEC17E11	Television & Video Engineering	3	0	0	3
11.	BEC17E12	Operating Systems	3	0	0	3
12.	BEC17E13	Visual Programming	3	0	0	3
13.	BEC17E14	Bio-Signal Processing	3	0	0	3

14.	BEC17E15	Digital Image Processing	3	0	0	3
15.	BEC17E16	Neural networks and its Applications	3	0	0	3
16.	BEC17E17	Advanced Microprocessors	3	0	0	3
17.	BEC17E18	Database Management Systems	3	0	0	3

	Dr.M.G.R. Educational and Research Instit (Deemed to be University U/S 3 of the UGC Act 1956)	tute (A NAAC	
	Ap ISO 9001:2008 Certified Institution		ALCONT A	
Subject	Subject Name: ARGBABILITY AND RANDOM T/ L	Τ/	P /	С

Code: BMA17007	Subject Name: MROBABILITY, CHERANDONS PROCESS Department of Electronics and Communication	T/ L/ nElEngi		T/ S.Lr ring	P/ R	C
	Prerequisite: Mathematics – I, Mathematics - II	Ту	3	1	0	4
L : Lecture 7	: Tutorial SLr : Supervised Learning P : Project R : R	esearch	C: C	redits		

T/L/ETL : Theory/Lab/Embedded Theory and Lab

OBJECTIVE :

• To understand the basic concepts in probability and random process and its application in signal processing.

COURSE OUTCO	OMES (Cos) : (3- 5)
CO1	To understand the Basic concepts

Monning of Course	Outcomes with Program Outcomes (POs)
CO5	To understand the Basic concepts in Spectral Density
CO4	To understand the Basic concepts in Correlation
CO3	To understand the Basic concepts in Random process
CO2	To understand the Basic concepts in Distribution
CO1	To understand the Basic concepts in Probability

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	М	Н								М
CO2	Н	Н	М	Н								М
CO3	Н	Н	М	Н								М
CO4	Н	Н	М	Н								М
CO5	Η	Η	Μ	Η								Μ
COs / PSOs	PS	01	PS	O2	PS	03						
CO1	М		Н		Μ							
CO2	М		Н		М							
CO3	М		Н		М							
CO4	М		Н		М							
CO5	М		Н		М							
H/M/L indica	tes Stre	ength of	f Corre	lation	H- Hig	gh, M-1	Mediur	n, L-Lo	W			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
	✓											
Approval										1		

BMA17007 PROBABILITY AND RANDOM PROCESS 3 1 0 4

UNIT- I: RANDOM VARIABLES

Baye's Theorem – Applications - Random Variables – Distribution functions – Moments – Moment Generating functions –Chebychev's Inequality (statement and application only) – Function of Random Variables.

UNIT - II: STANDARD DISTRIBUTIONS

Marginal and Conditional Distributions – Applications of Discrete Distributions: Binomial – Poisson – Geometric – Applications of Continuous distributions: Uniform – Exponential– Normal distributions – Central Limit theorem (statement applications only).

UNIT-III: RANDOM PROCESS

Stationary Process – Ergodic Process – Poisson Process – Applications: Birth and Death Process – Markov Process – Markov Chains.

UNIT-IV: CORRELATION

Auto Correlation – Auto Covariance – Cross Correlation – Cross Covariance.

UNIT -V: SPECTRAL DENSITY

Spectral Density - Cross Spectral Density - Applications to Linear Systems with Random Inputs and Outputs.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total Number of Hours: 60 Hrs

TEXTBOOKS:

- 1. Veerarajan T., "Probability, Statistics and, Random Processes", Tata McGraw Hill Publishing Co., (2008).
- 2. Singaravelu, "Probability and Random Processes", Meenakshi Agency, (2008).
- 3. Kandasamy P., Thilagavathy K., Gunavathi K., "Probability and Queuing theory", S.Chand& Co., (2010).

REFERENCE BOOKS:

- 1. Gupta S.C., Kapoor V.K., "Fundamentals of Mathematical Statistics", S.Chand& Co., (2007).
- 2. Richard Johnson A., "Miller & Freund's Probability and statistics for

B.Tech Regulation 2017 Approved by the Academic Council 21.06.2017

12 Hrs

12 Hrs

12 Hrs

12 Hrs

artent 10 cargo	r.M.G.R. Educational and Research Institute (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution Maduravoyal, Chennai - 95	A NAAC	
Subject Code	Subject Name : C++ AND DATA partment of Electronics and Communication Engineering STRUCTURES	P /	С
	STRUCTURES S.Lr	R	
RCS17101			

Engineers" (8thed), Prentice Hall of India, (2009).

	-	Pi		site: Pro						Ty	3 0	0	3
L : Leo	cture T :	Tuto	rial S	Lr : Su	pervise	d Leari	ning P	: Proje	ct R : R	esearch C	: Credits	;	
T/L/E	ГL : The	eory/L	.ab/Em	bedded	Theory	y and L	ab						
OBJE	CTIVE	:											
•				•		-	0	•	oncepts				
•							U		0	amounts	of data		
•				plemer					ires				
•				ematic									
•				-			-	-	oblems				
•	Get to	o kno	w abou	it the t	rending	g progi	rammi	ng tecl	nnologie	es.			
	RSE OU ts will be			COs):	(3-5)								
CO1	Posses	s an i	nsight i	into wh	at is in	volved	in the c	levelop	ment of	classes ar	nd how it	t can be	
	impler	nente	d using	C++									
CO2	Attain	the ba	asic abi	ility to a	analyze	, test a	nd orga	inize hi	ige data				
CO3	Master	r a vai	riety of	data st	ructure	s and th	neir imp	olemen	tations.				
CO4	Master	r diffe	erent alg	gorithm	design	techni	ques (b	orute-fo	orce, divi	de and co	nquer, g	reedy, etc	2.)
CO5	Apply	and i	mpleme	ent lear	ned alg	orithm	design	techni	ques and	l data stru	ctures to	solve pro	blems.
Mapp	ing of C	Course	e Outco	omes w	ith Pro	ogram	Outco	mes (P	Os)				
COs/P	Os	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		Н	Н	Н	Н	Н	М	М	М	М	M	Н	Н
CO2		Н	Н	Н	Н	Н	М	М	М	Н	Н	Н	Н
CO3		Н	Н	Н	Н	Н	М	М	М	Н	Н	Н	Н
CO4		Н	Н	Н	Н	Н	М	М	М	Н	Н	Н	Н
CO5		Н	Н	Н	Н	Н	М	М	М	Н	Н	Н	Н
COs /	PSOs	P	501	PS	O2	PS	03	P	'SO4	PSO5			
CO1		Н		М		М							
CO2		М		Н		М							

print 10 carp		(Deemed to b An ISO Madur	e University U/S 3 o 9001:2008 Certific avoyal, Ch			A NAAC	June
CO3	M	M	M	 	8		
005	141	141	141				
CO4	М	М	М				

Μ

H/M/L indic	H/M/L indicates Strength of Correlation						Mediu	m, L-L	ow		I	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
		✓		<u> </u>			✓					
Approval		1	1			1	1	1	1		I	

BCS17I01C++ AND DATA STRUCTURES3 0 0 3

UNIT-I: INTRODUCTION TO OOPS9 Hrs

Object Oriented Concepts – Basics of C++ Environment. Definition – Data Members – Function Members – Control Statements-Overloading Operators – Functions – Friends – Class derivation – Virtual Functions – Abstract Base Classes.

UNIT – II: CLASSES, INHERITANCE & TEMPLATES

Constructor – Default constructors – Copy Constructors – Destructors – Static members – Constant Members – Free Store Operators-Multiple Inheritances- Exception Handling – Streams - Class Templates – Function Templates

10 Hrs

9 Hrs

UNIT - III: LINEAR DATA STRUCTURES

CO5

Μ

Μ

Stacks, Queues & Lists Implementation and Application Singly linked list – Doubly linked lists

UNIT - IV: NON LINEAR DATA STRUCTURES

Trees - Binary Trees - Binary Search Tree - Tree Traversals - AVL Trees

UNIT V: SEARCHING AND SORTING

Searching - Linear search-Binary Search.Sorting- Insertion sort, Bucket sort, Heap sort, Merge sort, Quick sort.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45Hrs

TEXTBOOKS :

- 1. Balagurusamy.E, "*Object oriented programming with C++*", Tata McGraw-Hill publishing company limited, Addison Wesley
- 2. E.Horowitz, S.Sahani&S.Rajasekharan, "Fundamentals of data structure in C++", Computer science press.
- 3. Stanley B.Lippman, "The C++ Primer", Addison Wesley Publishers, 4th Edition, 2005.

REFERENCE BOOKS:

- 1. Weiss Mark Allen. "Data Structures and Algorithms Analysis in C", Pearson Education, 2/e, 1997
- 2. E.Horowitz, S.Sahani&S.Rajasekharan, "Computer Algorithms", Galgotia 1999.
- Gary J. Bronson, "Object Oriented Program Development using C++", Thomson Learning, 4th Edition 2005. Brett D. McLaughlin, Gary Pollice, David West" Head First Object-Oriented Analysis & Design" O'Reilly Media, 2007.
- 4. Gilberg&Forugan, "Data Structures: A Pseudo Code Approach using C++ ", Thomson Learning 1st Edition, 2002.
- 5. Gary J. Bronson, "Object oriented program development using Java, Thomson Learning, 2nd Revised Edition 2005.

	Depa	rtmen	t of E	lectroi	nics ai	nd Co	mmur	nicatio	n Eng	ineerin	g	
		ncepts			1100 M						8	
L : Lecture T	: Tutor	ial Sl	Lr : Sup	pervised	l Learn	ing P:	Project	tR:Re	esearch	C: Credi	ts	•
T/L/ETL : Th	neory/L	ab/Emł	bedded	Theory	and La	ıb						
OBJECTIVI												
s • T F • T r • T s	implific To Desig PGA. To Desig egisters To analy ynchror	cation o gn and gn and gn and zer sta nous an	of Boole implem implem te diagn id async	ean exp aent log aent seq cam, sta chronou	ression ic gates uential te table is seque	, Karna s, comb logic c es and in ential c	ugh ma vination vircuits ts reduc ircuits.	ap and (al logic like Flij	QuineM circuits o flops, d design	organs th cklusky s, PAL, F counters n and imp	methodo PLA and and shi	ft
• I COURSE O			-		ies and	classif	y differ	ent type	es of me	mories.		
					1	1	. 1	. 1 D 1	1	-1	1.	
CO1	theore	em conc		d apply	v Karna				•	ebra and methodo	•	
CO2			shall de GA in c			•		sign and	d imple	ment log	gic gates	s, PAL,
CO3			will d lip flop				•	•	nd imp	lement s	sequentia	al logic
CO4					•		0			es and its l circuits		ion and
CO5			will be a the memo		•	ifferent	logic f	amilies	and wil	l able to	differen	tiate
Mapping of	Course	Outco	mes wi	ith Pro	gram (Dutcom	nes (PO	s)				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Η	Н	М	Н	Н	Н	М	Н	Н	М	Н	М
CO2	Н	Н	М	Н	Н	Н	М	Н	Н	М	Н	М
CO3	Н	Н	М	Н	Н	Н	М	Н	Н	М	Н	Н
CO4	Н	Н	М	Н	Н	Н	М	М	Н	Μ	Н	Н
CO5	Н	М	М	М	Н	Н	М	Μ	Н	Μ	Н	Н
COs / PSOs	PS	01	PS	02	PS	03						
CO1	Н		Н		М							
CO2	Н		Н		М							
CO3	Н		Н		М							
CO4	Н		Н		М							
CO5	М		М		М							
H/M/L indica	ites Stre	ength o	f Corre	lation	H- Hig	gh, M-	Mediur	n, L-Lo	W	-		

Maduravoval, Chennai - 95 **Department of Electronics and Communication Engineering**

(Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution

Engineering Sciences rogram Electives Technical Skill Practical / Project Internships Social Sciences Humanities and **Dpen** Electives **Basic Sciences** rogram Core Soft Skills Approval

BEC17002

Category

UNIT - I: BOOLEAN ALGEBRA

Boolean Algebra - De Morgan's Law - Simplifications of Boolean Expression - Sum of Products and Product of Sums - Karnaugh Map(up to 5 variables) - Quince McClusky Method of Simplification (Including Don't care conditions)

DIGITAL ELECTRONICS

Logic gates - AND, OR, NOT, NOR, NAND and EX-OR - Combinational Logic- Arithmetic Circuits - Half adder - Full adder, Half Subtractor - Decimal Adder - Excess 3 Adder - Code Converters - Multiplexer -Demultiplexer- Encoder - Decoder - Design of General Combinational Logic Circuit. PAL, PLA and FPGA.

UNIT- III: SEQUENTIAL LOGIC DESIGN

UNIT - II: COMBINATIONAL LOGIC

Building Blocks Of Sequential Logic-Rs, JK, Master-Slave, D And T Flip-Flop, Design of Asynchronous and Synchronous Counters - Binary and BCD Counters - Shift Registers.

UNIT - IV: SEQUENTIAL MACHINES

Basic Models Of Sequential Machines - Concept of State Diagram - State Table - State Reduction - Design and Implementation of Synchronous Sequential Circuits .Design and Implementation of Asynchronous Sequential Circuits.

UNIT- V: LOGIC FAMILIES AND MEMORY DEVICE

Characteristics of RTL, DTL, TTL, Families - Schottky, Clamped TTL, ECL, IIL - Classification of memories -ROM - ROM organization - PROM - EPROM - EEPROM - EAPROM, RAM

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 60 Hrs

12 Hrs

12 Hrs

12 Hrs

12 Hrs

12Hrs

Dr.M.G.R. Educational and Research Institute

3104

Textbooks:

- 1. Charles H. Roth, "Fundamentals of Logic Design", Thompson Learning, 5th Edition
- 2. FLOYD:" Digital Fundamentals", 10th Edition Universal Book Stall, New Delhi.1993
- 3. Morris Mano, "Digital Electronics and Design", Prentice Hall of India, 2000

Reference Books:

- 1. John F.Wakerly, "Digital Design", Fourth Edition, Pearson/PHI, 2008
- 2. John.M Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.
- 3. Charles H.Roth. "Fundamentals of Logic Design", 6th Edition, Thomson Learning, 2013.
- 4. Donald P.Leach and Albert Paul Malvino, "*Digital Principles and Applications*", 6th Edition, TMH, 2006.
- 5. Donald D.Givone, "Digital Principles and Design", TMH, 2003

	Prere Circu	-	Basic	Electri	cal and	l Electro	onic		ETL	2 0/0	2/0) 3
L : Lecture T			Lr : Su	pervise	d Learr	ning P	: Projec	t R : R	lesearch	C: Cred	its	
T/L/ETL : Th						0	5					
OBJECTIV	E :											
	•		•	-		• •		C macl				
			•		v		•	cial ma				
Ű					• •			-		d instru	nents.	
Ū.			•			•		esign pr				
• To a	nalyze	how co	ompone	nts are	assemt	oled and	d tested	in PCI	3.			
COURSE O			COs):	(3-5)								
The Students v			1 '	•	• 1	c 1°CC		6 4 4	- 1·			
CO1	Analy	ze the	workin	g princ	iples of	f differe	ent type	es of A	C machi	nes.		
CO2	Analy	ize the	worki	ng of w	prione e	special	machin	96				
02	Anary	ze the	WUIKII		unous s	special	macini	63				
CO3	Identi	fy diffe	erent ty	pes of e	electroi	nic com	ponent	s and ir	strumer	nts.		
CO4	Analy	ze and	design	PCB's								
CO5	Asser	nble an	d test c	lifferen	t comp	onents	in PCI	B's				
Mapping of	Course	Outco	omes w	ith Pro	gram	Outcor	nes (PC	Ds)				
					-							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	Н	Н	Н	М	М	М	М	М	-	М
CO2	Н	Н	Н	Н	Н	М	М	М	М	-	М	М
CO3	Н	Н	Н	Н	Н	М	М	М	М	M	-	M
CO4	Н	Н	Н	Н	Н	M	M	M	M	-	М	M
CO5	H	Н	Н	Н	H	M	M	M	M	М	-	M
COs / PSOs		01		02		03						
CO1	Н		Н		-							
CO2	Н		Н		М							-
CO3	Н		Н		М							
CO4	Н		Н		-							
CO5	Н		Н		М							
H/M/L indica	tes Stro	ength o	f Corre	lation	H- Hi	gh, M-	Mediu	m, L-Lo	ow			<u> </u>

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	▲Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
Approval		1	1							1	1	

BEC17ET1 ELECTRICAL MACHINES AND PCB DESIGN 2 0/0 2/0 3

UNIT-I: AC MACHINES

Transformers - Principle of Operation of single phase Transformer – EMF Equation- Auto Transformers – Three Phase Transformers – Constructional Details. Induction motors- Construction Details - Types – Principle of Operation – Torque Equation. Synchronous machines - Construction of Synchronous machines – Classification - Induced EMF Equation

UNIT-II: SPECIAL MACHINES

Principle of operation-Universal Motor – Switched Reluctance Motor – Permanent magnet Stepper Motor and Variable Reluctance stepper motor – DC and AC Servo Motor – Tachogenerator - Linear Induction Motor.

UNIT III: INTRODUCTION TO BASICS OF ELECTRONIC COMPONENTS AND INSTRUMENTS 12 Hrs

Study of electronic components: passive: -R,L,C –Types of R,L,C-Analysis of Colour code in R,C :Active: –Diode, BJT, FET,MOSFET :Electronic Instruments: CRO : -Measurements of Voltage &Frequency, Function generator:- Frequency Measurements in Various Range and Wave Form : Power Supply: -Fixed and Variable :Multi-meter:-Measurement of Voltage ,Current, Frequency, R,L,C : IC tester:-Linear ICs and Non Linear ICs: Solder practice.

UNIT IV: PCB DESIGN PROCESS12 Hrs

Conception Level Introduction: Specifying Parts, Packages and Pin Names, Libraries and Checking foot prints of the components, Partlist, Netlist, Making Netlist Files, Placing Parts, Routing Traces, Modifying Traces, Mounting Holes, Adding Text, PCB Layout, DRC, Pattern Transfer.

UNIT V: ASSEMBLING AND TESTING

9 Hrs

9 Hrs

Identifying the components and its location on the PCB, soldering of active and passive components, Testing the assembled circuit for correct functionality.

Total Number of Hours: 45 Hrs

ETL

Practical component P : Include case studies / application scenarios Research component R : Future trends / research areas / Comparative Analysis

TEXT BOOKS :

1. S. K. Bhattacharya, "*Electrical Machines*", TMH Publications N. Delhi. 2.Kothari.D.P and Nagrath.I.J., "*Electrical Machines*", Tata McGraw Hill Publishing Co.Ltd, New Delhi, 5th edition 2002.

REFERENCES:

1. Orcad User manual.

2. Raghbir Singh Khandpur, "Printed Circuit Boards: Design, Fabrication, and Assembly", (McGraw-Hill Electronic Engineering-2006)

3. Dr. MurugeshKumar.K. "*DC Machines & Transformers*", Vikas Publishing House Pvt Ltd.,2nd edition 2003.

4. Deshpande M. V., "Electrical Machines" PHI Learning Pvt. Ltd., New Delhi, 2011.

5. Department Laboratory Manual.

		Depa	rtmer	nt of E	lectro	nics a	nd Co	mmu	nicatio	n Eng	ineeri	ng	
				ite: Ele						Lb	0 0/0		0 1
L : Lect	ure T	: Tuto	rial S	Lr : Su	pervise	d Learr	ning P	Projec	tR:Re	esearch	C: Crec	lits	
T/L/ET	L : Th	eory/L	.ab/Em	bedded	Theory	y and L	ab						
OBJEC	CTIVI	E :											
	٠		•					•	bra in S				
	•		-					•	sequen	•	c circui	ts.	
	•	To	implem	ent star	ndard I	C's in i	mpleme	enting d	ligital ci	rcuits.			
COURS The Stud				COs):	(3-5)								
CO1				nent of	various	s laws o	of Boole	an alor	ebra in S	OP and	POS f	orms	
001		•	•					C			1051	51115.	
CO2	Imp	lement	variou	s comb	ination	al logic	circuit	s and co	ode conv	verters.			
CO3	Desi	ign and	l imple	ment di	fferent	types of	of multi	plexer a	and dem	ultiplex	ers.		
CO4	Desi	ion and	limpla	mont ve	rious s	aquanti	al circu	uite lika	flin flo		tore an	d register	
		-	-			-			-			-	5.
CO5	Use	the sta	ndard l	C's in	implem	enting	combin	ational	and seq	uential	logic ci	rcuits.	
Mappir	ng of (Course	e Outco	omes w	ith Pro	gram (Outcon	nes (PC)s)				
COs/PC)s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		Н	Н	Н	Н	Н	М	М	М	M	М	-	M
CO2		Η	Н	Н	Н	Н	М	М	М	М	-	М	М
CO3		Н	Н	Н	Н	Н	М	М	М	М	М	-	М
CO4		Н	Н	Н	Н	Н	М	М	М	М	-	Μ	М
CO5		Н	Н	Н	Н	Н	М	М	М	М	М	-	М
COs / P	SOs	PS	01	PS	O2	PS	03						
CO1		М		М		-							
CO2		М		М		М							
CO3		М		М		М							
CO4		М		М		-							
CO5		М		М		М							
H/M/L	indica	ites Str	ength c	of Corre	ation	H- Hi	gh, M-	Mediu	n, L-Lo	w			

									U		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	▲Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

LIST OF EXPERIMENTS:

- 1. Implementation of BOOLEAN FUNCTIONS using logic gates –POS &SOP form.
- 2. Implementation of MULTIBIT ADDERS & SUBTRACTORS (2 & 3 BITS).
- 3. Design and implementation of code converters using logic gates
- i) BCD to excess-3 code and vice versa
- ii) Binary to gray and vice-versa
- 4. Design and implementation of Magnitude Comparator (2-Bit).
- 5. Multiplexer & De multiplexer logic circuit design
- 6. Design and implementation of FLIP FLOPS
- 7 .Implementation of STUDY OF REGISTERS
- 8. Construction and verification of COUNTERS.
- 9. Implementation of combinational logic functions using standard ICs
- 10. Implementation of sequential logic functions using standard ICs

References:

- Lab manual, Department of ECE, DR.MGR UNIVERSITY.
- Maheswari.L.K and Anand.M.M.S, "Laboratory Manual for Introductory Electronic Experiments", New Age, 2010
- PoornachandraRao.S and Sasikala.B, "Handbook of Experiments in Electronics and Communication".

Subject	Der	partenna	n a f	leatro	NC6 PI	nd Gø	mmu	nicatio	nrĘngi	ngei	ring	P /	C	
Code:		ECTRO					IUN		L/	_	S.Lr	R	Ũ	
BMA17012									ETL					
		equisite:							Ту	3	1	0	4	
L : Lecture T	: Tu	torial S	Lr : Su	pervise	d Learn	ing P:	Projec	t R:R	esearch	C: Cr	edits			
T/L/ETL : T	heory	/Lab/Em	bedded	Theory	y and La	ab								
OBJECTIV														
	•	the basic stand the			•							rent.		
COURSE O The student			COs):	(3-5)										
CO1			nd the I	Basic C	oncepts	in solu	tion of	Algebr	aic and	Trans	actiona	1		
001		Understand the Basic Concepts in solution of Algebraic and Transactional equations.												
CO2		*												
CO3		Understand the Basic Concepts in Interpolation Understand the Basic Concepts in Numerical Differentiation and integration.												
					-					and 1	megrat	1011.		
CO4		Understa			-		•							
CO5	1	Understa	nd the I	Basic C	oncepts	s in Cor	nplex ii	ntegrati	on.					
Mapping of	Cour	rse Outco	omes w	ith Pro	ogram (Outcon	nes (PC	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 PC	D11	PO12	
CO1	Н	Н	М]	М	
CO2	Н	Н	М]	М	
CO3	Н	Н	М		М						М]	М	
CO4	Η	Η	М		Μ						М]	М	
CO5	Η	Η	М		Μ						М]	М	
Cos / PSOs		PSO1		02		03	PS	04	PSO5					
CO1	Μ		Н		Μ									
CO2	M		H		M									
CO3	M		H		M									
CO4	M		H		M									
CO5	M	1	H	1	M	1 1 4		T T						
H/M/L indic	ates S	strength c	of Corre	lation	H- H1	gn, M-	Mediur	n, L-Lo	ow I					
Category	▲ Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
	3asi	ng	Hun Scie	Prof	Prof	Ope	rac	Ir	Soft					
	Ĩ ✓									1				
Approval			<u> </u>	<u> </u>	I	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	<u> </u>			

BMA17012 MATHEMATICS IV FOR ELECTRONICS ENGINEERS 3104

UNIT- I: SOLUTION OF EQUATIONS

Solution of Algebraic and Transcendental Equations - Method of false position -Iteration method- Newton-Raphson method – Solution of linear system of equations – Gauss Elimination method – Gauss – Jordan method- Iterative methods - Gauss - jcobi method - Gauss - Sedial method - matrix Inversion by Gauss -Jordan method.

UNIT - II :INTERPOLATION

Newton forward and backward differences – Central differences – Stirling's and Bessel's formulae – Interpolation with Newton's divided differences – Lagrange's method.

UNIT- III :NUMERICAL DIFFERENTIATION AND INTEGRATION

Numerical differentiation with interpolation polynomials - Numerical integration by Trapezoidal and Simpson's (both 1/3 rd& 3/8 th) rules – Two and three point Gaussian Quadrature formulae – Double integrals using Trapezoidal and Simpson's rules.

UNIT-IV: ANALYTIC FUNCTIONS

Analytic functions - Cauchy Riemann equations in Cartesian and Polar form - Properties of analytic functions - Construction of analytic functions - Simple Transformations - Standard transformations : w = z2, w = ez, w = sin z, w = cosh z – Bilinear transformations.

UNIT- V: COMPLEX INTEGRATION

Cauchy's integral theorem (without proof) - Cauchy's integral formulae (without proof) - Taylor's and Laurent's series(without proof) - Singularities: Types - Residues - Cauchy's residue theorem (without proof) - Evaluation of real integrals by Contour Integration (excluding poles on real axi

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysi

Total no. of hrs. 60

Text Books :

1. Veerarajan, T. (2008) Engineering Mathematics (for first year). Tata McGraw Hill Publishing Co.

2. Veerarajan, T. (2007) Numerical Methods. Tata McGraw Hill Publishing Co.

3. Sastry, S.S. (2012) Introductory Methods of Numerical Analysis. Prentice Hall of India .

4. Kreyszig, E. (2011) Advanced Engineering Mathematics.9th Ed. John Wiley & Sons.

5.Kandasamy P., (2008)Thilagavathy, Gunavathy K., Numerical Methods (VOL.IV), S.Chand& Co ..

6. Grewal B.S., (2012)Higher Engineering Mathematics, Khanna publishers.

12 Hrs

12 Hrs

12 Hrs

12 Hrs

De	epartm						unica	tion Ei	U	ring				
	Pre	erequisi	te: Ele	ctronic	Circui	t			Ту	3 0)	0 3		
L : Lecture T : T	utorial	SLr : S	upervis	sed Lea	rning 1	P : Proj	ect R :	Resear	ch C: C	redits				
T/L/ETL : Theor	y/Lab/Ei	mbedde	d Theo	ory and	Lab									
OBJECTIVE :														
										eir const				
applicati			of opera	ation, st	tandard	s and u	nits of	measure	ements .	Basic me	easurem	ent and		
transduce			anoton	andai	anal an	-1	:n		nta					
 Important Instrume 	ntation s	standard	l protoc	cols.	gnai an	aryzers	in mea	sureme	ins					
 Instrume Relevand 														
Provide s		with op	portun	ities to	develo	p basic	skills i	n the de	sign of o	electroni	c equipr	nents		
using PL	.С.													
COURSE OUT		· · ·		,	. 1		11 .	(17		1 1				
Upon successful CO1										ucers, Id	ontifu			
COI		0			0			• I		ciated w	•			
		ments a			-				015 4550		itil the			
CO2								tronic e	auipme	nt signal	generat	ors and		
		ignal analyzers.												
CO3		Gain knowledge about Instrumentation standard protocolsHART and Foundation Fieldbus												
CO4		The students will use various laboratory instruments like cathode ray oscilloscope,												
		function generators and analyze various patterns.												
CO5	To de	velop b	asic ski	ills in t	he desig	gn of el	ectroni	c equip	ments us	sing PLC				
Mapping of Cou	irse Out	comes	with P	rogran	1 Outco	omes (I	POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	Н	L	L	М	М	L	L	М	Н	Н	Н	Н		
CO2	Н	Н	Н	Н	Н	Н	Н	М	М	Н	М	М		
CO3	Η	L	L	М	Н	Н	М	L	Η	Н	Η	Н		
CO4	Η	Н	Н	М	М	М	Н	L	Μ	Н	Η	Н		
CO5	Η	Н	Н	М	М	М	Н	L	Μ	Н	Η	Н		
COs / PSOs		01		02		03								
CO1	Η		L		Н									
CO2	Н		Н	Н		Н								
CO3	Н		М		Н									
CO4	Н		Н		М									
CO5	Н		Н		Н									
H/M/L indicates	Strength	of Cor	relatior	n H-I	High, M	I- Medi	um, L-	Low		L	1	1		

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
Approval		1					1	1		1	1	

BEI17I01MEASUREMENTS AND INSRUMENTATION3 0 0 3

UNIT I: TRANSDUCERS

Transducer definition, classification, and performance characteristics.Potentiometer and its types, loading effect, sensitivity, piezo-resistive, equivalent circuits, charge and voltage sensitivity.Measurements, Instrumentation, Errors in Measurements, Calibration and Standard.

UNIT II:SIGNAL GENERATOR AND SIGNAL ANALYZERS

A.F. Generator, Pulse Generator, AM / FM Signal Generator, Function Generator, Sweep Frequency Generator, Wave Analyzers, Spectrum Analyzers, Logic Analyzer, Distortion Analyzers, Network Analyzer.

UNIT III: INSTRUMENTATION STANDARD PROTOSCOLS

Definition of protocol, HART Protocol: Introduction, frame structure, programming, implementation examples, benefits, advantages and limitation. Foundation Fieldbus H1: Introduction, frame structure, programming, implementation examples, benefits, advantages and limitation. Comparison of HART, Foundation Fieldbus, Devicenet, Profibus, Controlnet, Industrial Ethernet.

UNIT IV: DATA DISPLAY AND RECORDING SYSTEM

CRO, Single Beam, Dual Trace, Double Beam CRO, Digital Storage and Analog Storage Oscilloscope, Sampling Oscilloscope, Power Scope, Curve Tracer, Analog, Digital Recorders and Printers – Case Study on LissajousPattern.

UNIT V: COMPUTER CONTROLLED TEST SYSTEM

Programmable logic controllers (PLC) Introduction, architecture, definition of discrete state process control, PLC Vs PC, PLC Vs DCS, relay diagram, ladder diagram, ladder diagram examples, relay sequencers, timers/counters, high speed counter, PLC design, study of at least one industrial PLC

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

9 Hrs

9 Hrs

9 Hrs

Total Number of Hours: 45 Hrs

Textbooks:

- Rangan C.S. "Instrumentation Devices and Systems", Tata McGraw Hill, 1998. 1.
- SandeepRedkar, "Foundation Fieldbus control system", Rockwell Automation, 2010, 2.
- A. K. Shawney "Electronics and Electrical Instrumentation" Tata McGraw Hill, 1975. 3.

Reference Books:

- Bouwels A.J., "Digital Instrumentation", McGraw Hill, 1986.
 Barney .C, "Intelligent Instrumentation ", Prentice Hall of India, 1985.
- 3. Oliver and Cage, "Electronic Measurements and Instruments and Instrumentation", McGraw Hill, 1975.
- 4. Deobelin, "Measurements Systems", McGraw Hill, 1990.
- 5. Cooper, "Electronic Instrumentation and Measurement Techniques", Prentice Hall of India, 1988.

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

OBJECTIVE :

- To learn crystal structures of elements used for fabrication of semiconductor devices.
- To study energy band structure of semiconductor devices.
- To understand Fermi levels, movement of charge carriers, Diffusion current and Drift current.
- To study behavior of semiconductor junction under different biasing conditions and Power devices. Varactor diode, Zener diode, Schottky diode, etc. To study VI Characteristics of devices and limitations in factors like current, power frequency.

COURSE OUTCOMES (COs) : (3- 5)									
The students wil									
CO1	Understand crystal structures of elements used for fabrication of semiconductor devices.								
CO2	Familiar with energy band structure of semiconductor devices.								
CO3	Understand Fermi levels, movement of charge carriers, Diffusion current and Drift current.								
CO4	Know about Power devices. Varactor diode, Zener diode, Schottky diode, etc.								
CO5	Understand VI Characteristics of devices and limitations in factors like current,								
	power frequency								

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н		М	L	М	М	L	Н	Н	М	М	М
CO2	Н			М		Η	М	М	М	М		
CO3	Н	Н				М	М	Н	М		Н	М
CO4	Н	Μ				Η	Н	Н	Μ	М	М	L
CO5	Η	Η	Μ	Μ	Μ	Μ			М	М	М	М
COs / PSOs	PS	01	PSO2		PS	PSO3		PSO4				
CO1	Н		М	М								
CO2	Н		М		М							
CO3	Н		М									
CO4	Н		М		М							
C05	Н		Н		М							
H/M/L indica	of Corre	lation	H- Hi	gh, M-	Mediu	m, L-Lo	W	•	•	•		

Category	Basic Sciences	 Engineering Sciences 	Humanities and Social Sciences	▲ Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

BEC17003 SOLID STATE DEVICES

UNIT- I: SEMICONDUCTOR DIODES

Theory of PN Junction Diode - VI characteristics - Static and Dynamic Resistance - Effect of Temperature on Diodes - Space Charge and Diffusion Capacitance - Zener Diode - Avalanche and Zener Break Down Mechanisms - Zener Diode as a Voltage Regulator.

UNIT-II: BJT & BIASING

Principles of Transistor Action – Current Components – Cut Off, Active & Saturation Region – I/P & O/P characteristics CE, CB and CC. Small Signal Large Signal ' β ', Break Down & Switching Characteristics – Transistor Biasing – Bias Stabilization – Bias Compensation – Thermal Runaway – Design with Heat Sink.

UNIT-III: FET & MOSFET

Construction Feature & Working Principles of JFET, MOSFET Depletion and Enhancement Mode, Biasing of FET, and MOSFETS, Transmission Gate using CMOS.

UNIT- IV: POWER DEVICES

Charge Transfer Device, UJT, SCR, Diac, Triac, GTO, MCT and Introduction to Gallium Arsenide Devices, FinFET, LDR, Photo Voltaic cell, Varactor diode.

UNIT- V: SMALL SIGNAL MODEL

Small Signal Model of Transistor- Analysis of Amplifiers using Small Signal Model. Common Emitter, Common Base, Common Collector, Common Source, Common Drain, Common Gate, Multistage Amplifiers.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45 Hrs

B.Tech Regulation 2017 Approved by the Academic Council 21.06.2017

9 Hrs

9 Hrs

9 Hrs

9 Hrs

3 0

A

3

Textbooks:

- 1. Nandita Das Gupta, Amitava Das Gupta, "Semiconductor Devices", Prentice Hall of India, 2005
- Sedra and Smith, "Microelectronic Circuits" Oxford University Press, 2004 2.
- 3. Mohammed Gausi and Spencer, "Introduction to Electronics Circuit Design", Pearson Education, 2004

Reference Books:

- 1. Boylestad, Robert. L and Nashelsky Louis ," Electronic Devices and Circuit theory" Prentice Hall of India,6th Edition, 2001
- 2. William & Harris, "Electronic Devices and Circuits", Tata McGraw Hill International Editions, 2000
- MillmanHalkias, "*Electron Devices*", Tata McGraw Hill, 2000.
 Donald neamam, "Micro electronics", Tata McGraw Hill, 2007.
 Sedra smith, "*Micro Electronic Circuits*" Fifth edition,2013.

										ation E	0	<u> </u>			
			requisi			<u> </u>					ГL C			2	3
L : Lect	ure T :	Tutori	al SI	r : Sup	pervise	d Lear	ning F	P:Proj	ect I	R : Resea	rch C: C	Credits			
T/L/ETI	. : The	eory/La	b/Emb	edded	Theory	y and I	Lab								
OBJEC			.1 1			. ,	1	1	1.0	1 .		• • •			1
	m	o study agneto	the ba statics	sic cor	ncepts	in vect	or calc	ulus ar	nd fu	ndament	al ideas	in electro	ostati	lcs a	nd
	• T	o under	rstand	the cor	ncepts	of curi	ent de	nsity a	nd to	learn ho	ow to so	olve the e	electr	osta	tic
	1	o learn		navior	of time	vorvi	ng fial	he and	flow	of electr	omagne	tic powe	r		
	1			14 101	or think	var yr	ing men	us and	now	of electi	omagne	ne powe	1.		
COURS	E OU	TCON	AES (O	COs):											
CO1	The s	student	s will t	be able	to app	ly the	vector	calculı	ıs in	the field	of elect	rostatics	and		
	electrodynamics.														
CO2					their a	ability	to ana	alyze t	he b	ehavior o	of elect	ric field	cont	inuc	ous
	across an interface.														
CO3	The students will hone their inferences to solve complex electrostatic problems.														
CO4	The students will demonstrate their skills in analyzing the effects of magnetic fields.														
CO5	The students will apply their understanding of wave equations to design an antenna.														
Mappin	g of C	Course	Outco	mes wi	ith Pro	ogram	Outco	mes (I	POs)						
COs/PO	s	PO1	PO	РО	PO	PO	PO	PO	PO	8 PO	PO1	PO11	PO	12	
			2	3	4	5	6	7		9	0				
CO1		Η	М	М	Μ	М	Н				М	Μ			
CO2		Η	Н	Н	Н	М	Н				М	М			
CO3		Н	М	М	Н	Н	Н	М	Η	М	М	Н	Η		
CO4		Н	Н	Н	Н	Н	Μ	Μ	Η		М		Η		
CO5		Н	Μ		Μ	Μ	Μ	Н		Н	М	Н	Η		
COs / PS	SOs	PS	01	PS	O2	PS	603								
CO1		Н		Н		М									
CO2		Η		Н											
CO3		Н		Н		М									
CO4		Н		Н											
CO5						М									
H/M/L i	ndicat	es Stre	ngth of	Corre	lation	H- H	igh, M	- Medi	um,	L-Low	1	<u> I </u>	1		

Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

BEC17ET2 ANALYSIS OF ELECTRO MAGNETIC FIELD THEORY 0 1 2 3

UNIT I: VECTOR ANALYSIS

Scalars and Vectors, Cartesian, Cylindrical and Spherical Coordinate System, Integrals containing vectors, Gradient, Divergence and Curl, Divergence theorem and Stoke's theorem

Lab Experiments

- Vector Representation and Coordinate Systems using Software Package: 'CAEME'
- Coordinate Systems and Conversion using 'CAEME' Software

UNIT II: ELECTROSTATICS

Fundamental Postulates of Electrostatics in free space, Coulomb's law, Determination of Electric field, Gauss's law and its applications, Electric potential, Electric Flux Density and Dielectric constant, Boundary Conditions for Electrostatic fields, Determination of Capacitance and Electrostatic Energy,

Lab Experiments

- Electrical Field and Potential inside the Parallel Plate Capacitor
- Capacitance and Inductance of Transmission Lines
- Simulation of Electric Field and Potential Inside Capacitors

UNIT III: ELECTROSTATIC SOLUTIONS AND STEADY ELECTRIC CURRENTS

Laplace's Equations and Poisson's Equations, Uniqueness theorem, Boundary Value Problems in Cartesian, Cylindrical and Spherical Coordinate System, Current Density, Electromotive Force, Continuity Equation, Boundary Conditions for Current Density.

Lab Experiments

• Simulation of Electric Field and Potential Inside Capacitors

9Hrs

9Hrs

UNIT IV: MAGNETOSTATICS

Fundamental Postulates of Magneto statics in free space, Vector Magnetic Potential, Biot-Savart's law and its applications, Scalar Magnetic Potential, Magnetic Field Intensity and Relative Permeability, Boundary Conditions for Magneto static fields, Determination of Inductance and Magneto static Energy, Determination of magnetic Force and Torque.

Lab Experiments

- Magnetic Field outside a Straight Conductor
- Magnetic Field of Coils
- Magnetic Force on a Current Carrying Conductor
- Inductance of Transmission Lines

UNIT V: TIME-VARYING FIELDS AND ELECTROMAGNETIC POWER 9 Hrs

Faraday's Law of Electromagnetic Induction, Maxwell's Equations (Integral and Differential Form), Wave Equations for a source-free region, Poynting vector and Poynting theorem.

Lab Experiments

- Electromagnetic Induction
- E.M Wave Radiation and Propagation

Total Number of Hours: 45 Hrs

Textbooks

- 1. David K.Cheng, "Field and Wave Electromagnetics", McGraw Hill Inc., Third Edition, Malaysia, 1995
- 2. William H. Hayt& John A.Buck, "Engineering Electromagnetics", TataMc-Graw-Hill 7th Edition 2005. .
- 3. Y.Mallikarjunareddy, "Eletromagnetic fields", Universities press, Edition 2013.

Reference Books:

- 1. John D Kraus, "Electromagnetics", Tata McGraw Hill Book Co., New York, Third Edition, 1989.
- Joseph A Edminister, "Theory and Problems of Electro Magnetics", Schaum's Outline Series Tata McGraw Hill, New York, 1986
- 3. Mathew N. O. Sadiku, "*Elements of Electromagnetics*", Oxford International Student Edition, Fourth Edition
- 4. David J.Griffiths, "Introduction to Electrodynamics", Pearson Education Limited 2014.
- 5. S.P.Seth, "Elements of Electromagnetic Fields", DhanpatRai& Co.

Dr.M.G.R. Educational and Research Ins	titute 🅼	AAC
(Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	No.	***
Maduravoval Channai 95		
Subject Code: Subject Name : CIRCUIT THEORY T / L/	L T/	P/ C
BEC17001 Department of Electronics and Communication Engi	neeri isg _r	R

		-	ite: Ma		ical kno	owledge	e, basic		<u> </u>	3	1	0	4
			concep		1 7	· D	D '		Ту			0	Ľ
L : Lecture T	: Tuto	rial S	Lr : Sup	pervise	d Learr	iing P	: Projec	t R : R	esearch	C: Cre	dits		
T/L/ETL : Th	neory/L	ab/Eml	bedded	Theory	and L	ab							
OBJECTIV													
•						cuit ele	ements	lumped	circuits,	wavef	forms, ci	rcuit	
			etwork					ا ما ما ما		h	1	4	1.
•		orems	e electi	ical ne	twork l	ising m	esn and	i nodal	analysis	by app	nying ne	twor	К
•			thods of	circuits	s analys	is in tim	e domai	n and fr	equency of	domain			
•	Τοι	underst	and the	concep	ot of res				parallel		s and to l	cnow	/ the
		-	f couple										
•	Obt	aining	equation	ns to so	olve cir	cuits in	steady	state ar	nd transie	ent stat	e		
COURSE O	UTCO	MES (COs):	(3- 5)									
CO1	The st	udent v	will be a	able to	unders	tand the	conce	pt of cir	cuits, ne	twork	theorem	s and	1
	variou	ıs circu	it laws										
CO2	The s	tudent	will be	able to	o analy	se and	solve a	a given	electrica	al netw	orks usi	ng n	nesh
		odal an	•										
CO3				one thei	ir infere	ences to	o analy:	ze circu	uits anal	ysis in	time do	nain	and
	-	ency do											
CO4						heir sk	ills in	underst	anding	the co	ncept of	var	ious
005			d coupl			1 .	1	1 .		1			
CO5							ling to	derive	the ana	lyze th	e equati	ons	with
Mapping of			ving ci				nog (D(
				-					-1	1			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10) PO11	P	012
CO1	Н	Н		Η	Η	Η	Η	Н	Н		Η		
CO2	Н	Н		Н	Н	Н	М	Н	Н		Н		
CO3	Н	Н	М	Н	Н	Н	Μ	Н	Η		Η	Η	
CO4	Н	Μ		Η	Н	Н		Н	Н	Μ	Η	H	
CO5	Н	Μ			Н	Н		Μ	Н	Μ	Н	Η	
COs / PSOs		01	PS	02		03							
CO1	Н		Н		М								
CO2	Н		Н										
CO3	Н		Н		М								
CO4	Н		Н										
CO5					М								
H/M/L indica	tes Str	ength o	f Corre	lation	H- Hi	gh, M-	Mediu	m, L-Lo)W				

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
		~		~			~	~			
Approval										•	

BEC17001

CIRCUIT THEORY

UNIT-I: BASIC CIRCUIT CONCEPTS

V-I Relationships Of R, L And C – Independent Sources – Dependent Sources – Kirchhoff's Laws - Simple Resistive Circuits – Network Reduction – Voltage Division – Current Division – Source Transformation. Formation of Matrix Equations and Analysis Using Mesh-Current and Node-Voltage Methods.

UNIT-II: AC FUNDAMENTALS

AC Quantity, Phasor Representation – Analysis Of Simple Series And Parallel Circuits – Power And Power Factor – Analysis Mesh Current And Node Voltage Methods – Series Resonance And Parallel Resonance

UNIT-III: NETWORK THEOREM AND DUALITY

Useful Circuit Analysis techniques - Linearity and superposition, Thevenin and Norton Equivalent Circuits, Maximum Power Transfer, Super position theorem - Delta-Wye Conversion. Duals, Dual circuits.

UNIT- IV: TRANSIENT ANALYSIS

Transient Concepts-Behavior Of Circuit Elements Under Switching Conditions and Their Representation-Forced and Free Response of RL, RC And RLC Circuits with D.C. And Sinusoidal Excitations Using Laplace Transform Method – Natural Frequency and Damping Factor

UNIT-V: COUPLED CIRCUITS

Mutual Inductance – Coefficient Of Coupling – Ideal Transformer – Analysis Of Multi Winding Couple Circuits – Single & Double Tuned Circuits – Critical Coupling.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 60 Hrs

12 Hrs

12 Hrs

3 1 0 4

12Hrs

12 Hrs

Textbooks :

- 1. A.Sudhakar&ShyanmugamS.Palli" *Circuits & Network Analysis & Synthesis*", 4th Edition, Tata McGraw Hill, 2010
- 2. Bruce Carlson, "Circuits: Engineering Concepts and Analysis of Linear Electric Circuits", Thomson Learning, 1st Edition, 2002
- 3. M.L Soni& J.C. Gupta, " *Electric Circuit Analysis*", DhanpatRai& Sons, New Delhi, 1999.

Reference Books:

- 1. Hyatt, W.H. Jr and Kimmerly, J.E., "*Engineering Circuits Analysis*", McGraw Hill International Editions, 1993.
- 2. Edminister, J.A., "*Theory and Problems of Electric Circuits*", Schaum's Outline Series McGraw Hill Book Company, 2nd Edition, 1983.
- 3. Paranjothi S.R., "Electric Circuit Analysis", New Age International Ltd., Delhi, 2nd Edition, 2000.
- 4. Artice.M. Davis, "Linear Circuits Analysis", Thomson Learning 2002
- 5. Roy Choudhury, "Networks and Systems", New Age International Ltd, 1992

Dr.M.G	R. Educational and Resear	ch Ins	titu	te N	AAC)
Subject Code: Subject BCS17102	Name COMPUTER NETWORK Sct 1956) An ISO 9001:2008 Certified Institution	T / L/ ETL	L	T / S.Lr	P/ R	С
Prerequi	site: Maduravoyal, Chennai - 95 Communication System	Ту	3	0	0	3

L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

OBJECTIVE :

- To understand different storage media and OSI layers
- To introduce the features of different I/O peripheral devices and their interfaces.
 To introduce the students the functions of different layers
- To introduce the students the functions of different layers.
- To introduce IEEE standard employed in computer networking.
- To make students to get familiarized with different protocols and network components.

COURSE OUTCOMES (COs) : (3- 5)

The Students will able to

CO1		Describe	e the ba	sic con	cepts o	of data c	commu	nication	and OS	l layers.		
CO2		Analyze	data li	nk cont	rol pro	tocol.						
CO3		Explain	differen	nt stand	lards ar	nd proto	ocols u	sed in L	AN			
CO4		Express	the dut	ies of n	etwork	suppo	rt layer	and W.	AN proto	cols		
CO5		Define t	he func	tions of	f upper	OSI la	yer					
Mapping of	Cour	se Outco	omes w	ith Pro	gram	Outcor	nes (PO	Os)				
COs/POs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н							Н	Н	М		
CO2	Н	Н			М							
CO3	М	М	М		Н		М	М				Н
CO4	Η		М	М		М	М		М			Н
CO5	Η	М				Н			М	М	М	М
COs / PSOs	F	PSO1	PS	02	PS	03	PS	SO4	PSO5			
CO1	Н		Η									
CO2	Н		М		Н							
CO3			Η		М							
CO4												
CO5	М		М		Н							
H/M/L indica	ites S	trength o	of Corre	lation	H- Hi	gh. M-	Mediu	m, L-Lo)W	l	1	<u> </u>

Dr.M.G.R. Educational and Research Institute (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution Maduravoyal, Chennai - 95

Department of Electronics and Communication Engineering

Approval	Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
Approval											✓		
	Approval		•	•		•	•	•			•	•	1

UNIT-I DATA COMMUNICATION

BCS17I02

Introduction, Basic Transmission concepts of OSI Reference Model, Transmission of Digital Data -Electrical Interface, Modems- rate-modem standards-Guided Media-Twisted -pair Cable-Coaxial cable-Performance-Error Detection and Correction (CRC) - Time and Frequency domains Signals

COMPUTER NETWORKS

UNIT -II DATA LINK CONTROL AND PROTOCOLS

Flow Control and Error Control, Stop And Wait, Sliding Windows, Automatic Repeat (ARQ), Asynchronous Protocols, - X Modem, Y Modem, Synchronous Protocols - Character Oriented and Bit Oriented Protocols (HDLC).

UNIT- IIILOCAL AREA NETWORKS

IEEE 802 Standards, LLC, MAC Layer Protocols -CSMA/CD Ethernet, Token Bus, Token Ring, FDDI, Distributed Queue Dual Bus, Switched Multimegabit Data Service

UNIT- IVWIDE AREA NETWORKS

Switching, Duties of the Transport Layer, ATM Protocol -Architecture Header Structure, Function of AAL Layer, Internetworking Devices, Repeater, Bridge, Routers and Gateways, Routing Algorithms. LinkStateand Distance Vector routing.

UNIT- VUPPER OSI LAYERS

Session Layer Protocols, Presentation Layer - CryptographyData Security, Brief Introduction to Encryption / Decryption, Authentication -Data Compression, Application Layer Protocols, MHS, File Transfer .

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Total Number of Hours: 45 Hrs

Textbooks :

- 1. Behrous A. ForouzanEtal, "Data Communication and Networking", Tata McGraw Hill, 2nd Edition, 2000.
- 2. William A, Shay, "Understanding Data Communications and Networks", Thomson Learning, 3rd Edition 2003.
- 3. Miller, "Data and Network Communications", Thomson Learning
- 4. Gallo, "Computer Communications and Networking Technologies", Thomson Learning, 1st edition 2001.

Reference Books:

- 1. William Stallings, "Data and Computer Communication", Prentice Hall of India, Fifth Edition 1997.
- 2. Andrew S. Tanenbaum, "Computer Networks", prentice hall of India, Third Edition 1996.
- 3. Fred Hallsall, "Data Communication Computer Networks and Open System", Addison Wesley, 1992

L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

OBJECTIVE :

- To study the representation of discrete and continuous signals and systems.
- To study the analysis of continuous time systems using Laplace and Fourier transforms.
- To study the analysis of discrete time systems using DFT and Z transforms.

COURSE OUTCOMES (COs) : (3- 5) The student

CO1 Will be able to classify continuous and discrete time signals and systems.

CO2 Will analyze continuous signals and its spectrum with transforms.

CO3 Will be able to determine the response of continuous time systems with transforms and state variable approach.

CO4 Will analyze discrete signals and its spectrum with transforms.

CO5 Will analyze discrete signals and its spectrum with transforms.

Mapping of Course Outcomes with Program Outcomes (POs)

					8		(~)				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	Н	Н	Н		М			М	М	М
CO2	Н	Н	Н	Н	Н		М			М	М	М
CO3	Н	Н	Н	Н	Н		М			M	М	М
CO4	Н	Н	Н	Н	Н		Μ			М	М	М
CO5	Н	Н	Н	Н	Н		Μ			М	М	М
COs / PSOs	PS	01	PS	02	PS	03						
CO1	H	ł	N	Л								
CO2	H	ł	N	Л								
CO3	H	ł	N	Л								
CO4	H	H	N	Л								
CO5	H	ł	N	Л								
H/M/L indica	tes Stre	ngth of	Correl	lation	H- Hig	gh, M-	Mediur	n, L-Lo	w	1	1	1

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	▲Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval			•								

BEC17005

SIGNALS AND SYSTEMS

UNIT- I: CLASSIFICATION OF SIGNALS AND SYSTEMS

Continuous Time Signals (CT signals), Discrete Time Signals (DT Signals) – Step, Ramp, Pulse, Impulse, Exponential, Classification of CT and DT signals - Periodic and aperiodic, Random Signals, CT Systems and DT Systems, Classification of Systems – Linear Time Invariant Systems(LTI).

UNIT - II: ANALYSIS OF C.T SIGNALS

Fourier series Analysis, Spectrum of C.T. Signals, Fourier Transform and Laplace Transform -Properties of Fourier Transform - Applications in Signal Analysis.

UNIT- III: LTI - CT SYSTEMS

Differential Equation, Block Diagram Representation, Impulse Response, Step Response, Convolution Integral, Frequency Response, Fourier and Laplace Transforms in Signal Analysis, State Equations and Matrix.

UNIT - IV: ANALYSIS OF D.T. SIGNALS

Spectrum of D.T. Signals, Discrete Time Fourier Transform (DTFT), Discrete Fourier Transform (DFT), Properties of DFT, Properties of Z – Transform in Signal Analysis, Inverse Z-Transform.

UNIT - V: LTI - DT SYSTEMS

Difference Equations, Block Diagram Representation, Impulse Response, Convolution, Frequency Response, Z - Transform Analysis, Realization of Digital Filters - Direct Form-I, Direct Form-II, Transposed, Parallel, Cascade Structure, State Variable Equation and Matrix.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total Number of Hours: 60 Hrs

1. Alan V Oppenheim, "Signals and Systems", Prentice Hall of India Pvt. Ltd, 2nd Edition, 1997.

Textbooks:

12Hrs

12 Hrs

12 Hrs

12 Hrs

12 Hrs

4 A

3 1

- 2. Roger E. Zeimer et al, "Signals and Systems": Continuous and Discrete, McMillan, 2nd Edition, 1990
- 3. Hwei P. Hsu, Schaum's Outline Series, "Signals and Systems", McGraw Hill Companies, 2nd Edition.

Reference Books:

- 1. Douglas K Lindner, "Signals and Systems", McGraw Hill International, 1999.
- 2. Simon Haykin and Barry Van Veen," Signals and Systems", John Wiley and Sons, Inc., 1999.
- 3. Robert A. Gabel and Richard A. Roberts," Signals and Linear Systems", John Wiley, 3rd Edition, 1987.

[artmer					ommu	nicatio	U	1 1	U	
L : Lecture T		Prerequis					Droia	ot D · D	Ty	3 (0 3
T/L/ETL : Th			-			-	. Flojet	Л К.К	esearch	C. Cleui	LS	
OBJECTIV	•											
• C • T • N	On cor The ma Aetho	npletion ethods of d of calc n of powe	f biasin ulating	g trans cutoff	istors a frequer	nd Desincies ar	ign of s	simple a				
COURSE O The Students				(3-5)								
CO1		Model v		types of	f rectifi	ers.						
CO2		Use the	differer	nt ampl	ifier in	depend	ently					
CO3		Construe	ct the fe	edback	c ampli	fiers an	d oscil	lators.				
CO4		Calculat	e the de	elay and	d swite	hing tir	ne mult	tivibrato	or.			
CO5		Detect th	ne effic	iency o	of powe	r ampli	fier.					
Mapping of	Cours	se Outco	omes w	ith Pro	gram	Outcor	nes (PC	Os)				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	H H H M M							Н	М	Н	Н
CO2	Н	Н	Н	Н	Н	М		Н	М	М	Н	Н
CO3	Н	Н	Н	Н	Н			М	Н	Н	Н	М
CO4	Н	Н	Н	Н	Н				Н	Н	М	М
CO5	Η	Н	М	Н	Н				Н	М		Н
COs / PSOs	P	SO1	PS	02	PS	O3						
CO1	Н		М		М							
CO2	Η				Н							
CO3	Н				Н							
CO4	Н		М		Н							
CO5	H	1	H	1	H	1 1 7		T T				
H/M/L indica	ates St	trength o	1 Corre	lation	H- H1	gh, M-	Mediu	m, L-Lo	OW			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	◆Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
Approval				•								

(Deemed to be University U/S 3 of the UGC Act 1956)

UNIT I: RECTIFIER & POWER SUPPLY9 Hrs

Half & Full Wave Rectifies – Filters – Shunt, Inductor, LC Section & Ripple Factor, *π*filters Calculation for C, L and LC Filters - Voltage Regulators - Zener - Series Voltage Regulator - Shunt Voltage Regulator - SMPS-IC Voltage Regulators.

UNIT II: AMPLIFIERS

Amplifiers - Frequency Response of RC Coupled Amplifiers - Frequency Response of Emitter follower, Gain BandWidth Product - FET - Amplifier at Low and High Frequency Cascaded Amplifiers

UNIT III: FEED BACK AMPLIFIER & OSCILLATORS

Four Basic Type of Feedback - Effect of Feedback on Amplifier Performance-Examples of Different types of Feedback Amplifiers-Voltage Series & Shunt Feedback, Current Series & Shunt Feedback - Condition for Oscillation Barkhaushen Criteria - LC Oscillators - Hartley & Colpitts - RC Oscillators - Wein Bridge, RC Phase Shift CrystalOscillator.

UNIT IV: MULTIVIBRATORS

Collector Coupled & Emitter Coupled AstableMultivibrator, - Mono Stable, BistableMultivibrator-TriggeringMethods - Storage Delay and Calculation of Switching Time - Schmitt Trigger Circuits, Speed up Capacitor in Switching – UJT based Relaxation Oscillator.

UNIT V: POWER AMPLIFIER

Classification - Class A, B, C & AB, Class B-push pull - Class B Complementary Symmetry, Class S, and Power sections Classifications, Efficiency, Distortion in Amplifiers-Tuned Amplifiers.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45 Hrs

Textbooks :

- 1. Mohammed. H. Rashid, "Micro Electronic Circuits, Analysis and Design", Thomson Learning
- David. A. Bell, "Solid state Pulse Circuits", Prentice Hall India, 4th Edition, 2000. 2.
- 3. Angsumansarkar, "Solid State Microelectroni and Optoelectronic Devices" University press, 2012.
- 4. Mohammed. H. Rashid, "Micro Electronic Circuits, Analysis and Design", Thomson Learning
- David. A. Bell, "Solid state Pulse Circuits", Prentice Hall India, 4th Edition, 2000. 5.
- 6. Angsumansarkar, "Solid State Microelectroni and Optoelectronic Devices" University press, 2012.

Reference Books:

- 1. MillmanTaub, "H Pulse Digital & Switching waveform ", Tata McGraw Hill International, 2001
- 2. Jacob Millman, Cristas C. Halkias," Integrated Electronics", Tata McGraw Hill., Edition 199
- 3. MillmanTaub, "H Pulse Digital & Switching waveform ", Tata McGraw Hill International, 2001

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Dr.M.G.R. Educational and Research Institute

An ISO 9001:2008 Certified Institution Maduravoval, Chennai - 95

ELECTRONIC CIRCUITS

4. Jacob Millman, Cristas C. Halkias," *Integrated Electronics*", Tata McGraw Hill., Edition 1991.

	F P	. M.G .	(De	emed to b	e Universi	ty U/S 3 of	f the UGC	Act 1956)	h Ins	titute	NA	AC	
Subject Cod	e:	Subject N IMPLEN	ame :	DESI	GN AN	Dertifie	d Institu	tion 	T / L/			P /	С
BEC17ET3									ETL			R	
	Dej	NTERE Prerequis	ite: Ele	lectronic	<u>hiesa</u> Circuit	nd Co	mmu	nicatio	<u>n Eng</u> i Etl	neerir	1g 0/0	2/0	3
L : Lecture T							Projec	tR:Re	1			2/0	
T/L/ETL : Th	neory	/Lab/Em	bedded	Theory	and L	ab	-						
OBJECTIV	T T T T	o introdu o underst o learn th o design a o learn th	and the e desig active f	applican n of co ilters a	ations c mparate nd PLL	of operators, sign	tional a nal gen	erators a	and time	rs.			
COURSE O				(3-5)									
The Students	will												
CO1		Underst	and the	basics	of linea	ar IC's.							
CO2		Apply o	p-amp	for vari	ous app	olication	ns.						
CO3		Design of	compar	ators ar	nd signa	al gener	ators u	sing op-	amp.				
CO4		Design a	active f	ilters ar	nd PLL								
CO5		Underst	and and	l apply	data co	nverter	s for re	al time a	applicati	on.			
Mapping of	Coui												
COs/Pos	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	012
CO1	Н	-	Н	М	М	М	М		М	М	М	M	
CO2	Н	Н	Н	М	М	Н	Н		М	М	М	-	
CO3	Η	Н	Н	Н	Η	М	М				М	Μ	
CO4	Η	Η	Н	Н	Н	Η	М	М			Μ	-	
CO5	H	M	M	M	M	M				М	М	Μ	
COs / PSOs	ł	PSO1	PS	02	PS	503							
CO1		Η]	Η									
CO2		Н]	Η									
CO3		Н		Η									
CO4		Н		Η									
CO5		Н		Η									
H/M/L indica	ates S	strength o	f Corre	lation	H- Hi	gh, M-	Mediu	n, L-Lo	W				

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	▲ Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

BEC17ET3

1 0/0 2/03

DESIGN AND IMPLEMENTATION OF LINEAR INTEGRATED CIRCUITS

UNIT-I: INTRODUCTION TO INTEGRATED CIRCUITS

Integrated circuit and its classification, Introduction to Operational amplifier, Ideal Op-Amp, DC & AC Characteristics, Slew rate and methods of improving slew rate, CMRR, PSRR, Frequency Response and Compensation techniques.

Lab Experiments:

- Measure input bias current, input offset current, input offset voltage of the given op-amp
- Design voltage follower to measure slew rate.
- Measure CMRR for a given circuit and Compare measured value with calculated value

UNIT-II: APPLICATIONS OF OPAMP IC741

Inverter and Non-Inverter - Summer and Subtractor – Multiplier and Divider – Differentiator and Integrator – Instrumentation Amplifier – AC Amplifier – Op- Amp Circuits using Diodes, Precision Rectifier – Clipper and Clamper – Sample and Hold Circuit – Log and Antilog Amplifiers.

Lab Experiments:

- Design an Inverting and Non Inverting amplifier for required gain using IC741
- Design and realize adder and subtractor using IC741.
- Design Integrator and Differentiator using IC741.

9Hrs

Design Clipper and Clamper Circuit using IC741.

UNIT-III: COMPARATORS AND SIGNAL GENERATORS

Applications of Comparators - Regenerative Comparators (Schmitt Trigger) - Square Wave Generator (AstableMultivibrator) - MonostableMultivibrator - Triangular Wave Generator - Saw Tooth Wave Generator -Sine Wave Generators.

Lab Experiments:

- Design Schmitt trigger using IC741 for given values of UTP & LTP
- Design Monostablemultivibrator for required pulse width using IC741.
- Design Astablemultivibrator for required frequency and duty cycle using IC741

UNIT-IV: ACTIVE FILTERSAND PLL

RC Active Filters: Low pass - High pass - Band pass - Band reject - Notch - First order, Second order Filters-Switched Capacitor Filters - Counter Timers.

PLL Basic Principles - Phase Detector and Comparator: Analog and Digital Voltage Controlled Oscillator -Low pass Filter - PLL – Applications of PLL

Lab Experiments: (PSPICE)

- Design & Obtain frequency response of First order HPF & LPF filters
- Design & Obtain frequency response of Notch, BPF & BRF filters

UNIT V: IC REGULATORS AND DATA CONVERTERS:

IC voltage regulators: Introduction, Fixed voltage regulators, SMPS, current limiting and current foldback techniques using IC723.

DAC/ADC Techniques - Integrating DAC /ADC Specifications, High Speed A/D Converters

Lab Experiments: (PSPICE)

- Design a voltage regulator for a given voltage.
- Calculate line, load regulation for a voltage regulator using IC723
- Construct a 4-bit R-2R ladder type DAC
- Set up a 4-bit successive approximation type ADC and study its performance

TEXT BOOKS:

- 1. James. M. Fiore, "Operational Amplifiers and Linear Integrated Circuits", First Edition, Thomson Learning.
- 2. Roy Choudhury and Shail Jain, "Linear Integrated Circuits", Wiley Eastern Ltd., 1991.

9Hrs

9Hrs

3. Coughlin and Dirscol, "Operational Amplifiers and Linear Integrated Circuits", Prentice Hall of India Pvt., Ltd., 1992

REFERENCE BOOKS:

- 1. Millman and Halkias, "Integrated Electronics", McGraw Hill, 1992.
- Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", Third Edition, T MH, 2002.
- 3. Ramakant A. Gayakwad, "Op amp and Linear Integrated Circuits", Fourth edition, PHI.

					ctronic			mmu	nicatio	Lb	ineerin	g 3/0) 1
L : Lectu	ıre T							: Projec	t R:Re	-			1
T/L/ETL					-		-	5					
OBJEC	TIVE	E :											
			•	-			• •		fier circ	uits.			
							oltage r						
			•			•			y circuit acteristi				
			•	-	-		analyz						
COURS													
The Stude	ents w	ill be a	ble to										
CO1	Desi	gn and	l imple	ment di	ifferent	types o	of rectif	ier circ	uits.				
CO2	Testi	ing and	d Verif	ication	of circu	it theor	rems						
CO3	Perfe	orm ha	nds on	design	on diff	erent a	mplifie	r circui	ts.				
CO4	Testi	ing and	d verifi	cation of	of Reso	nant Ci	rcuits						
CO5		U U							1	hahari			
COS	Perio	orm na	inds on	design	ing osc	mator C	circuits	and and	alyze its	Denavio	Dr.		
Mappin	g of (Course	e Outco	omes w	ith Pro	ogram (Outcon	nes (PC)s)				
COs/POs	s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		Н	Н	Н	Н	Н	М	М	М	M	М	М	-
CO2		Η	Н	Н	Н	Н	М	М	М	М	М	-	М
CO3		Н	Н	Н	Н	Н	М	М	М	M	-	М	-
CO4		Н	Н	Н	Η	Н	М	М	М	М	-	-	М
CO5		Н	Н	Н	Η	Н	М	М	М	-	М	М	-
COs / PS	SOs	PS	01	PS	02	PS	03						
CO1		Н		Н		М							
CO2		Н		Н		М							
CO3		Н		Н		М							
CO4		Η		Н		М							
CO5		Н		Н		М							
H/M/L ii	ndica	tes Str	ength o	of Corre	elation	 H- Hi	gh, M-	Mediu	n, L-Lo	w			

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

BEC17L16 ELECTRONICCIRCUITS & DEVICES LAB

0031

- 1. VERIFICATION OF SUPERPOSITION THEOREM, MPT, THEVENIN & NORTON THEOREM
- 2. CHARACTERISTICS OF P-N JUNCTION & ZENER DIODE
- 3. I/P & O/P OF CHARACTERISTICS OF BJT & FINDING β OF THE TRANSISTOR
- 4. CHARACTERISTICS OF JFET
- 5. Half Wave and Full Wave Rectifiers
- 6. MOSFET CHARACTERISTICS
- 7. STUDY OF RESONANT CIRCUITS
- 8. FREQUENCY RESPONSE OF CE AMPLIFIER
- 9. HARTLEY AND COLPITTS OSCILLATOR
- 10. WIEN BRIDGE AND RC PHASE SHIFT OSCILLATOR

L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

OBJECTIVE :

- To learn the basic elements of control system with mathematical model.
- To understand the time response of first and second order system feedback.
- To learn the frequency response of systems using bode plot and polar plot.
- To check the stability of Control system using various techniques.
- To study different compensators and advance control system concepts using state variables.

COURSE OUTCOMES (COs) : (3-5)

The student will be able to

The student wit	
CO1	Model physical systems using block diagram and signal grew.
CO2	Analyze the system using time response.
CO3	The open loop and closed loop analysis of systems in frequency domain.
CO4	Check the stability of the given system using root locus and Nyquist Plot.
CO5	Choose the compensator for the given system and do the analysis using state variables.

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	Н	Н	Н		М		М	М	М	
CO2	Н	Н	Н	Н	Н		М		М	М	М	
CO3	Н	Н	Н	Н	Н		Μ		М	М	М	
CO4	Н	Η	Н	Н	Н		Н		М	М	М	
CO5	Н	Η	Н	Η	Н		Н		Н	Μ	М	
COs / PSOs	PS	01	PS	02	PS	03						
CO1	Н		Н									
CO2	Н		Н									
CO3	Н		Н									
CO4	Н		Н									
CO5	Н		Н									
H/M/L indica	ates Stro	ength o	f Corre	lation	H- Hi	gh, M-	Mediu	n, L-Lo	W	1	1	1

Category	Basic Sciences	▲Engineering Sciences	Humanities and Social Sciences	▲Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

BEC17004 CONTROL SYSTEMS FOR ELESTRONICS ENGINEERS 3 1 0 4

UNIT- I: SYSTEM REPRESENTATION

Control Systems - Basic elements in control systems - Open and Closed loop systems - Mathematical models of physical systems - Transfer function - Block diagram reduction techniques - Signal flow graph.

UNIT- II: TIME RESPONSE

Standard Test Signals-Time Domain study of first order and second order feedback control systems -Time domain Specifications - I and II order System Response - Error Coefficients - Generalized Error Series -Steady State Error - P, PI, PID Controllers.

UNIT - III: FREQUENCY RESPONSE

Frequency Response - Bode plot - Polar plot - Constant M and N circles - Determination of Closed Loop Response from Open Loop Response - Correlation between Frequency Domain and Time Domain Specifications.

UNIT- IV: STABILITY OF CONTROL SYSTEM

Characteristics Equation - Location of Roots in S plane for stability - Routh Hurwitz Criterion - Root Locus Construction - Effect of Pole, Zero Addition - Gain Margin and Phase Margin - Nyquist Stability Criterion.

UNIT - V: COMPENSATORS AND STATE SPACE ANALYSIS

Lag, Lead, Lag Lead Compensators- State Space Analysis - State Space Formulation - State Variables - Phase variables and Canonical Variables -Concept of Controllability & Observabliity

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total Number of Hours: 60 Hrs

Textbooks:

1. K. Ogata, 'Modern Control Engineering', 4th edition, Pearson Education, New Delhi, 2003 / PHI.

B.Tech Regulation 2017 Approved by the Academic Council 21.06.2017

12 Hrs

12 Hrs

12Hrs

12 Hrs

	Department of Electronics and Commun	ication Engi	neer	ing		
Subject	Subject Name : TRANSMISSION LINES	T/L/ETL	L	T /	P /	С
Code:	& WAVE GUIDES			S.Lr	R	

- 2. I.J. Nagrath& M. Gopal, 'Control Systems Engineering', New Age International Publishers, 2003.
- 3. B.C. Kuo, 'Automatic Control Systems', Prentice Hall of India Ltd., New Delhi,7th edition, 1995.

Reference Books:

- 1. M. Gopal, 'Control Systems, Principles & Design', Tata McGraw Hill, New Delhi, 2002.
- 2. M.N. Bandyopadhyay, 'Control Engineering Theory and Practice', Prentice Hall of India, 2003.
- 3. A.Nagoorkani, "Control System Engineering" RBA Publications.
- 4. Stefani ,Shanian, Savant, Hostetter, " *Design of Feedback Control Systems*"4th edition, Oxford university press 2002.

	Depa	artmei	nt of E	lectro	nics a	nd Co	ommun	ication	ı Engi	neerir	ıg		
	Pro	erequisi	ite: Eleo	ctro Ma	agnetic	Field		0		3	1	0	4
L : Lecture 7	Γ : Tuto	rial S	Lr : Su	pervise	d Lear	ning P	: Project	R : Res	search (C: Cred	its		
T/L/ETL : T	heory/L	.ab/Em	bedded	Theory	y and L	ab							
OBJECTIV	Е:												
							l losses a						
		•	· ·	•	n in trai	nsmissi	on lines	at Radio	freque	ncies a	nd analy	ze t	hem
	er loss-l				1						1		1. 1. 1.
10 3	-	-	gn unde	erstand	ing abo	out imp	edance	transfori	nation	and m	atching	in I	nıgn
	uencies		erent ch	aracter	istics c	f TF a	nd TM w	aves					
							les and b		of TE	& TM	guides	in tl	hese
	eguides		i una r	cetungt	iui viu	ve guit		Jenu vioi	01 1L	a 1101	Surdes		nese
	e												
COURSE C	UTCO	MES ((COs):	(3-5)									
CO1	v	Vill be f	familiar	with t	ransmis	ssion li	nes and v	various lo	osses a	ssociate	d with i	ŀ	
CO2							signal 1						s at
002			quencie	•				propu <u>B</u> ar		1000 100	5 001101		,
CO3			•		erstand	diffe	ent imp	edance	transm	ission	technia	165	and
205							e to solv						una
CO4			<u> </u>				ior of 7			•			a of
004		nedium		ippreen	ate the	UCIIav	101 01		wave	5 111 01	nerent	typt	5 01
CO5				a anals	170 and	Jundar	stand di	fforont t	where a	of wave	mides	and	the
005				•			ill gain t		• •		•		
							•	ne abiit	y to de	rive the	e field ed	Juai	IOIIS
			igular a	-			·	<u> </u>					
Mapping of	Cours	e Outco	omes w	ith Pro	ogram	Outcor	nes (PO	s)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	012
CO1	Н	Н	М	Н	М			М	Н	М	М	Ν	1
CO2	Н	Н	М	Н	М			М	Н	М	М	Ν	1
										1	1		

H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low

Η

Η

Η

 $PSO\overline{2}$

Μ

Μ

Μ

PSO3

Μ

Μ

Μ

Η

Η

Η

Μ

М

Μ

Μ

Μ

Μ

Μ

Μ

Μ

CO3

CO4

CO5

COs /

PSOs CO1

CO2

CO3

CO4

CO5

Η

Η

Η

Η

Η

Η

Η

Η

Η

Η

Η

PSO1

Η

М

Μ

Η

Η

Η

Η

Η

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
				~				~			
Approval											

BEC17007 TRANSMISSION LINES AND WAVEGUIDES 1 3 0 4

UNIT: I TRANSMISSION LINE THEORY

General Theory of Transmission Lines - The transmission line, A General Solution - The Infinite Line -Wavelength, Velocity of propagation - Waveform Distortion - The Distortion-less line - Loading and Different methods of loading - Line not terminated in Z0 - Reflection Co-efficient - Calculation of Current, Voltage, Power Delivered and Efficiency of transmission - Input and transfer Impedance - Open and short circuited lines - Reflection loss .

UNIT: II HIGH FREQUENCY TRANSMISSION LINES

Transmission lines equations at radio frequencies - Line of Zero dissipation - Voltage and Current on the dissipation-less line - Standing waves, Nodes, Standing wave ratio - Input impedance of the dissipation-less line – Power and impedance measurement on lines.

UNIT: III IMPEDANCE MATCHING IN HIGH FRENCY LINES

Impedance matching: Quarter wave transformer - Impedance matching by Single and double stubs - Smith chart, Problems and Solutions.

UNIT: IV **GUIDED WAVES**

Waves between parallel planes of perfect conductors - Transverse electric and transverse magnetic waves -Characteristics of TE and TM Waves - Transverse Electromagnetic waves - Velocities of propagation -Component uniform plane waves between parallel planes - Attenuation of TE and TM waves in parallel plane guides

UNIT: V **RECTANGULAR AND CIRCULAR WAVEGUIDES**

Transverse Magnetic Waves in Rectangular Wave guides - Transverse Electric Waves in Rectangular Waveguides-Impossibility of TEM waves in waveguides - Solution of field equations in cylindrical co-ordinates - TM and TE waves in circular guides

Practical component P : Include case studies / application scenarios

14 Hrs

12 Hrs

12 Hrs

12 Hrs

Department of Electronics and Communication Engineering Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 60 Hrs

Textbooks :

- 1. J.D. Ryder "Networks, Lines and Fields", PHI, New Delhi, 2003.
- 2. E.C. Jordan and K.G. Balmain "Electro Magnetic Waves and Radiating System," PHI, New Delhi, 2003.
- 3. UmeshSinha "Transmission lines and networks", Sathyaprakashan, 2010

Reference Books:

- 1. David K. Cheng," Field and Waves in Electromagnetism", Pearson Education, 1989.
- 2. Ramo, Whineery and Van Duzer: "Fields and Waves in Communication Electronics" John Wiley, 2003.
- 3. David M. Pozar: "Microwave Engineering" 2nd Edition John Wiley
- 4. G.S.N Raju: "*Electromagnetic Field Theory and Transmission Lines*", Pearson Education, First edition 2005.
- 5. John D Kraus and Daniel A Fleisch: "Electromagnetics with Applications", McGraw Hill Book Co, 2005

	Dr.l	M.G.		emed to be	Universit		the UGC		Ins	titu	te	ANAAC	- AL
Subject Code		ubject	Nam	ladom	ew6yt	ad ch	NnSY aSi		T / L/	L	Τ/	P/ R	С
BEC17010	Depa	rtmer	nt of E	lectro	nics a	nd Co	mmur	nication	ETL Engi	neer	.S.Lr ing		
	Р	rerequi	site: Pro	obabilit	y and ra	andom	process	5	Ту	3	0	0	3
L : Lecture T	: Tuto	rial S	Lr : Suj	pervised	l Learn	ing P:	Project	t R : Res	earch (C: Cre	edits		<u> </u>
T/L/ETL : The	eory/L	.ab/Eml	bedded	Theory	and La	ab							
□ To pro	ious A ovide	some de	epth and		n noise	perform	nance o	stems. f various nnel codi					
COURSE OU Students will			COs):	(3-5)									
CO1		Explai	n abou	t differe	ent type	es of No	ise						
CO2		Interp	ret abou	ıt contii	nuous v	vave mo	odulatio	on system	ıs				
CO3		Expres	ss the g	eneratio	on & de	emodula	ation of	FM syst	ems.				
CO4		Define	e differe	ent type	s of pu	lse mod	lulation	l					
CO5		Descri	be the	basics o	of inform	mation	coding						
Mapping of C	Course	e Outco	omes w	ith Pro	gram (Outcom	es (PO	s)					
COs/POs	POI	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO	PO	1 PO	1 PC	D1
		2							9	0	1	2	
CO1	Н					М	Н	М	М	Н		М	
CO2	Н	М	Н	М		М	М				Н	Н	
CO3	Н	М	М	М	М	М	М				Н	Н	
CO4	Н		М								М	Н	
CO5	М	М	Н	М	М	М	М	М	М	М	М	Н	
COs / PSOs	Р	SO1	PS	502	PS	503							
CO1	Н		М		М								
CO2	Н		Н		Н								
CO3	Н		Н		Н								
CO4	Н		М		Н								
CO5	Н		М		М								
H/M/L indicat	tes Str	ength o	f Corre	lation	H- Hig	gh, M- I	Medium	n, L-Low	,	I		I	

Categor y	Basic Sciences	 Engineering Sciences 	Humanities and Social Sciences	▲Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval										·	

BEC17010 COMMUNICATION SYSTEMS

UNIT - I: NOISE

Basic Communication Systems - Need for Modulation in Communication Systems - Noise - Sources of Noise -Types of Noise - External Noise - Thermal Agitation - Shot Noise - Noise Figure - Signal to Noise Ratio -Equivalent Noise Resistance.

UNIT- II: CONTINUOUS - WAVE MODULATION

Bandpass Signal Transmission - Amplitude Modulation - AM modulators - Single- Sideband Amplitude Modulation - SSB Generation - AM Transmitter - SSB Transmitter - Vestigial Sideband Modulation -Demodulation - Double Side Band Amplitude Modulation - Single Side Band and VSB Modulation -Modulators.

UNIT- III: EXPONENTIAL CONTINUOUS – WAVE MODULATION

Angle Modulation : Phase Frequency – Frequency modulation – Bandwidth of FM signal: Frequency Analysis – Narrowband FM and PM Signal: Phase Representation - FM Generation - FM Demodulators - Stereophonic FM Broadcast: Transmission and Reception – Non-linear Distortion and Interference in FM Signals – Detectors, AM Transmitter. FM Transmitter – Broadband Transmitter and Receiver FM Receivers, Communication Receivers.

UNIT- IV: MODULATION TECHNIQUES AND PULSE MODULATION

Phase Modulation - Noise Triangle - Pre-Emphasis and De-Emphasis - Stereophonic FM Multiplex System -Comparison of Wideband and Narrow Band FM - AFC, Introduction - Sampling Theorem -Quantization, Quantization Error, PAM, PTM, PM, PCM - Telegraph.

UNIT -V: INFORMATION THEORY

Introduction - Entropy, Information rate, classification of codes, Kraft McMillan inequality, Source coding theorem, Shannon - Fano coding, Huffman coding, Extended Huffman coding - Joint and conditional entropies, Mutual information - Discrete memory less channels - BSC, BEC- Channel capacity, Shannon limit.

Practical component P : Include case studies / application scenarios Research component R :

Future trends / research areas / Comparative Analysis

Total Number of Hours: 45 Hrs

9 Hrs

9 Hrs

3 0

3 Δ

9 Hrs

Textbooks :

- 1. Roy Blake, "Electronic Communication Systems", Thomson Learning 2nd Edition, , 2002.
- 2. George Kennedy: "Electronic Communication Systems", Tata McGraw Hill publications, 1992.
- 3. R Bose, "Information theory, Coding and Cryptography", TMH 2007.

Reference Books:

1. Taub& Schilling," Principles of Communication", Tata McGraw Hill, 1986

2. Simon Haykins, "Principles of Communications", Prentice Hall of India. 2001

OBJECTIVE :

- To learn the concepts of analog pulse modulation techniques.
- To study the working of digital modulation system.
- To study the different types of information coding.

COURSE OUTCOMES (COs) : (3- 5)

The Students will be able to

	Understand and apply the concept of analog pulse modulation.													
CO2	Gene	rate co	des for	transm	ission	of data.								
CO3	Apply	y digita	ıl modu	lation	techniq	ues.								
Mapping of	f Cours	e Outc	omes v	vith Pr	ogram	Outco	omes (I	POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO9	PO10	PO11	PO12	
CO1	Н	Н	Н	Н	М	М	М	-		М	М		М	
CO2	Н	Н	Н	Н	-	М	М	М		М	М		М	
CO3	Н	H H M											М	
COs / PSOs	PS	H H H M M M M M M PSO1 PSO2 PSO3 Image: Constraint of the second s												
CO1	Н		Н		Μ									
CO2	Η		Н		Μ									
	H		H		М									
CO3 H/M/L indic		rength o		elation		ligh, M	- Medi	um, L-	Low					
		Engineering Sciences		Program Core		Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					

BEC17L17 COMMUNICATION ENGINEERING LABORATORY 0 0 3 1

- 1. DESIGN AND TESTING OF AMPLITUDE MODULATION AND DEMODULATION.
- 2. DESIGN AND TESTING OF FREQUENCY MODULATION AND DEMODULATION.
- 3. DESIGN AND TESTING OF PULSE AMPLITUDE MODULATION & DEMODULATION.
- 4. DESIGN AND TESTING OF PULSE WIDTH MODULATION & PULSE POSITION

MODULATION.

- 5. DESIGN AND TESTING OF PRE-EMPHASIS AND DE-EMPHASIS.
- 6. DESIGN AND TESTING OF NARROW FREQUENCY MODULATION.
- 7. DESIGN AND TESTING OF ASK, FSK AND PSK
- 8. STUDY OF LINE CODING AND DECODING TECHNIQUES
- 9. STUDY OF SAMPLING
- 10. STUDY OF PULSE CODE MODULATION

	Dep	oartmer	nt of E	lectro	nics aı	nd Co	mmun	icatio	n Engi	nee	ring	5		
BEC17013									ETL					
	Pr	rerequisit	e: Digi	tal Elec	tronics	and Da	ta struc	tures	Ty	3	1	()	4
L : Lecture T			<u> </u>						2	C: Cr	edit	s		
T/L/ETL : Th	neory/	Lab/Em	bedded	Theory	and La	ıb								
OBJECTIV	Е:													
		ne basics												
		he desigr						g CMOS	5.					
To leTo le		MOS se		0		0		ng HDI						
\succ To st							enn usin	Ig IIDL	•					
COURSE O														
The students	will b	be able to)											
CO1		Underst	and the	basics	of MOS	S Transi	istor.							
CO2		Design of	combina	ational	circuits	using (CMOS	logic.						
CO3		Design s	•			0								
CO4		Write pr	0		0	•		0		erilog	•			
CO5		Underst	and the	basics	of 16F8	377 PIC	Microo	controll	er.					
Mapping of	Cour	se Outco	omes wi	ith Pro	gram (Outcom	es (PO	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10	PO11	PC	D12
CO1	Н	Η	М	М	М	М	М		М	Η		М		
CO2	Η	H	H	Η	Н	Μ	М		М	Μ		H		
CO3	H	H	H	H	H	M			M	M		H		
CO4	H	M	M	M	H	M			M	M		M		
CO5	H	L	M	M	H	M			М	Μ		М		
COs / PSOs	P	SO1		02		03								
CO1		H		H		M A							_	
CO2 CO3		H H		H H		<u>И</u> И								
CO4		H		H		M M								
CO5		Н		H										
H/M/L indica	ates St	trength o	f Corre	lation	H- Hig	gh, M- 1	Medium	n, L-Lov	W					
						-								
Category	nces	Engineering Sciences	s and Social	ore	lectives	tives	Project	Internships / Technical Skill						
	Basic Sciences	Engineerin	Humanities and Sciences	▲ Program Core	Program Electives	Open Electives	Practical / Project	Internshi	Soft Skills					
Approval				<u> </u>										

BEC17013 INTRODUCTION TO VLSI DESIGN AND EMBEDDED SYSTEMS 3 1 0 4

UNIT I MOS TRANSISTOR THEORY

Introduction - NMOS and PMOS transistor, Threshold voltage, Body effect, MOS device - Basic DC equations ,Second order effects, MOS models, Small signal AC characteristics, Complementary CMOS Inverter, Power dissipation and scaling of MOS transistors.

UNIT II DESIGNING COMBINATIONAL LOGIC CIRCUITS

Static CMOS design - Complementary CMOS, Propagation Delay and Power Consumption in static CMOS, Pseudo NMOS Logic, Pass Transistor Logic, Transmission gates, Dynamic CMOS Design -Basic principle, Speed and Power dissipation of Dynamic logic, Signal integrity issues in dynamic design, CMOS Domino logic, np CMOS logic.

UNIT III DESIGNING SEQUENTIAL LOGIC CIRCUITS

Introduction - Timing metrics for sequential circuits, Classification of memory elements, Static latches and registers – The bi-stability principle, Multiplexer based latch, Master slave edge triggered register, Static SR flip flop, Dynamic latches and registers - Dynamic transmission gate edge triggered registers, clocked CMOS register.

UNIT IV: VHDL & VERILOG PROGRAMMING

VHDL background - VHDL requirement, Elements of VHDL, operators, Basic concepts in VHDL, Structural modeling, Behavioral modeling and Dataflow modeling in VHDL and Simple programs, Verilog HDL - Basic concepts - Gate Level modeling, Dataflow modeling and Behavioral modeling - Simple programs.

UNIT V PIC MICROCONTROLLER

Introduction - PIC16F877 Micro controller overview, Special Function Registers, I/O Ports, Timers, Oscillators, Capture/ Compare and PWM module, Serial communication module, Analog module and Instruction set.

Practical component P : Include case studies / application scenarios **Research** component **R** : Future trends / research areas / Comparative Analysis

Total Number of Hours: 60 Hrs

Textbooks :

- 1. Neil H.E. Weste, Kamran Eshraghian, "Principles of CMOS VLSI Design A system perspective", second edition, Addison Wesley, 1997.
- 2. Jan M.Rabaey, AnanthChandrakasan, BorivojeNikolic, "Digital Integrated Circuits : A Design perspective", second edition, Prentice Hall of India, 2003.
- 3. ZainalabedinNavabi, "VHDL Analysis and modeling of Digital Systems", Second edition, Mcgraw -Hill International Editions, 1998.

Reference Books:

1. A. Pucknell, Kamran Eshraghian, "Basic VLSI Design", Third Edition, Prentice Hall of India,2007.

12Hrs

12Hrs

12Hrs

12Hrs

D	r.M.G.R. Educational and Research In	nstit	ute (MAAC	ahne
Subject Code: BEC17011	Subject Name ^{Deemed} in Clayersity U/S 3 of the UGC Act 1936T / L/ COMMUNICATION COMMUNICATION COMMUNICATION COMMUNICATION	L	T / S.Lr	P/ R	С
D	Prerequisite: Communication System, epattment afd Electronics cass, Manuautrication En	3	1 ering	0	4

- 2. R.Jacob Baker, Harry W.Li, David E. Boyce, "*CMOS circuit design, Layout and Simulation*", Prentice Hall of india, 2005
- 3. J.Baskar, "A VHDL Primer", Third edition, Pearson Education, 2004.
- 4. Samir Palnitkar, "*Verilog HDL, A Guide to Digital Design and Synthesis*", second edition, Pearson Education, 2003.
- 5. pic-microcontroller.com / free- ebook- pic-microcontrollers.

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

OBJECTIVE :

- To study detection, estimation and discuss the process of sampling, quantization and coding that are fundamental to the digital transmission of analog signals. To understand the concepts of different digital modulation techniques and their applications in our day to day life
- П
- To learn error control coding which encompasses techniques for the encoding and decoding of digital data streams for their reliable transmission over noisy channels.

COURSE OUTCOMES (COs) : (3-5)

CO1	The st	tudents	will be	able to	apply	the san	npling	process	in real	-time sys	stems and	l to		
	detect	and es	timate t	he like	ly outp	ut of a	commi	inicatio	on syste	m				
CO2	The s	student	s will	show	their a	ability	to des	sign a	system	withou	t distort	ion and		
	interfe	terference he students will hone their inferences to develop various modulation technologies for												
CO3	The s	tudents	will ho	ne thei	r infer	ences to	o devel	lop var	ious mo	dulation	technolo	ogies for		
	the sta	ate of tl	ne art co	mmun	ication	•								
CO4	The s	student	s will	demon	strate	their s	skills i	in gen	erating	a uniqu	ue code	for the		
	inform	nation	to be tra	nsmitte	ed acro	ss a cha	annel.							
CO5	The s	students	s will a	pply t	heir ur	nderstai	nding t	o imp	rove the	e systen	n efficier	ncy in a		
	multip	oath en	vironme	ent.										
Mapping of	Course	e Outco	omes w	ith Pro	gram	Outcor	nes (P	Os)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	Н	М	М	М	М	Н				М	М			
CO2	Н	Н	Н	Н	М	Н				М	М			
CO3	Н	М	Μ	Н	Н	Н	М	Н	Μ	М	Н	Н		
CO4	Н	Н	Н	Н	Н	М	М	Н		М		Н		
CO5	Н	М		М	М	М	Н		Н	М	Н	Н		
COs / PSOs	PS	01	PS	02	PS	03								
CO1	Н		Н		М									
CO2	Н		Н											
CO3	Н		Н		Μ									
CO4	Н		Н											
CO5	Н		Н		М									
H/M/L indica	ates Str	ength c	of Corre	lation	H- Hi	gh, M-	Mediu	m, L-L	ωW					

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

DIGITAL COMMUNICATION

UNIT- I: DETECTION, ESTIMATION AND SAMPLING PROCESS

Model of Digital Communication System, Gram Schmidt OrthogonalizationProcedure, Matched Filters, Correlation Receivers, Error Probability, Maximum Likelihood Estimation, Linear Prediction and Prediction Filters, Sampling Theorem, Quadrature Sampling of Band-Pass Signals, Reconstruction of a message from its samples

UNIT - II: WAVEFORM CODING TECHNIQUES AND BASEBAND SHAPING 12 hrs

PCM and TDMA Principles, Channel Noise and Error Probability, Quantization Noise and SNR, Differential Pulse Code Modulation and Delta ModulationSpeech Coding at Low Bit Rates, Power Spectra of PAM Signals, Inter Symbol Interference, Nyquist Criterion for distortionless baseband transmission, Correlative Coding and Precoding, Eye Patterns and Equalization Techniques.

UNIT - III: DIGITAL MODULATION TECHNIQUES

Coherent Binary Modulation Techniques, Coherent Quadrature Modulation Techniques, NonCoherent Binary Modulation Techniques, Power Spectra, BandwidthEfficiency, Bit versus Symbol Error Probabilities

UNIT - IV: ERROR CONTROL CODING

Need for Coding, Types of Codes, Linear Block Codes, Cyclic Codes, Convolution Codes, Maximum Likelihood Decoding of convolutional Codes, Distance Properties and Sequential Decoding of convolutional Codes, Trellis coding, Viterbi coding.

UNIT - V: SPREAD SPECTRUM SYSTEMS

Pseudo Noise Sequences, Generation and Correlation Properties, Direct Sequence Spread Spectrum Systems, Frequency Hop System, Signal Space Dimension and Processing Gain , Probability of Error, Antijam and Multipath Performance.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

12 hrs

12 hrs

3

1 0

12 hrs

4

12 hrs

BEC17011

Total Number of Hours: 60 Hrs

Textbooks

- 1. Simon Haykin, "Digital communications", John Wiley & Sons, 1988
- 2. John. G. Proakis, "Digital Communication", McGraw Hill Inc., Third Edition, Malaysia, 1995
- 3. B.P. Lathi," *Modern Digital and Analog communication system*", Oxford publications, Third edition.

Reference Books:

- 1. Roy Blake, "Electronic Communication systems", , Thomson Learning, 2nd edition 2002
- 2. M.K. Simen, "Digital Communication Techniques Signal Design & Detection", Prentice Hall of India, 1999.
- 3. Bernard Sklar, "Digital Communication: Fundamentals and Applications", Prentice Hall, 2011 Edition
- 4. UpamanyuMadhow, "Fundamentals of Digital Communication", Cambridge University Press, 2008
- 5. Robert G. Gallager, "Principles of Digital Communication", Cambridge University Press 2008.

Subjec	t Code	e: Su	bject N	lameM	adere) PRØ@	essor	SIAND	- 95	T / L/	L	Τ/	P/ R	С
BEC17	009	Depa	FRAG	<u>ANEG</u>	P <mark>ectFB</mark> 1	nics ar	nd Cor	nmun	ication	Effyir	eer	ingLr		
		Pr	erequisi	te: Dig	ital Eleo	ctronics	8			0	3	0	0	3
L : Lec	ture T	: Tuto	rial Sl	Lr : Sup	pervised	l Learni	ing P:	Project	R : Rese	arch C	: Cre	edits		
T/L/ET	L : Th	eory/L	.ab/Emł	oedded	Theory	and La	ıb							
OBJE	CTIVE	C :												
	8086	micro	process	or.		-			mbly lan			gram of	8085 a	and
	To le	arn the	e functio	ons of 8	3051 mi	crocon	troller a	nd ARN	M process	sor and	their	r applic	ations.	
COUR	SE OU	JTCO	MES (C O s) :										
CO1			ts will b and logi			assemt	bly lang	uage pr	ogram ii	n 8085	and	8086 to	perfor	m
CO2	The s	studen	ts will s	how th	eir abili	ty to in	terface	periphe	rals with	microp	oroce	ssors		
CO3	The s	studen	ts will h	one the	eir infer	ences to	o develo	op a har	dware us	ing 805	51 m	icrocon	troller	
CO4		studer cation		demoi	nstrate	their s	kills in	writing	g an AL	P in 8	3051	to do	real ti	me
CO5		studen I proce		apply t	heir und	derstand	ding to	do a pi	oject to	develoj	p an	applica	tion us	ing
Mappi	ng of (Cours	e Outco	omes wi	ith Pro	gram (Outcom	es (POs	5)					
COs/PO	Ds	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO 0	01 PC	01 PC 2) 1
CO1		Н	М	М	М	М	Н				M	M		
CO2		Н	Н	Н	Н	Н	Н		М		M	M	М	
CO3		М	М	М	М	Н	Н	М	Н		M	Н	М	
CO4		Н	Н	Н	Н	Н		М	Н		M		Н	
CO5		Н	М		М	М	М	Н		Н	M	Н	Н	
COs / F	PSOs	PS	501	PS	02	PS	503							
CO1		Н		Н		М								

Educational and Research Institute (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution Maduravoyal, Chennai - 95	A A A
(Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	NAAC

	Depa	ırtmer	nt of El	ectror	nics an	d Cor	nmun	icatior	ı Engin	eering	5	
CO2	H		Н									
CO3	М		Н									
CO4	Н		М									
CO5					М							
H/M/L indi	cates Str	ength o	f Correl	ation	H- Hig	h, M- N	/ledium	, L-Low	7	I		
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core ≮	Program Electives ≮	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
Approval		I	I		I		I	I		I	I	

BEC17009 MICROPROCESSOR AND MICROCONTROLLER 3 0 0 3

UNIT-I: CPU 8085 & 8086

8085 Architecture -Instruction set -Addressing modes —Assembly language-Simple Programming – Counters –Time delays-Interrupts –Intel 8086 internal architecture–8086 Addressing modes – instruction set -8086 Assembly language-Interrupts

UNIT-II: PERIPHERALS INTERFACING

Interfacing serial I/O(8251)-Parallel I/O(8255) –Keyboard and display controller (8279)-ADC/DAC Interfacing-Timer (8253).Programmable Interrupt Controller (8259), DMA controller, Applications of 8085

UNIT-III: 8051 MICROCONTROLLER

8051 Microcontroller hardware I/O pins, Ports and circuits-External memory –Counters and Timers-Serial Data I/O –Interrupts.

UNIT – IV 8051 PROGRAMMING AND APPLICATIONS

8051 Instruction set –Addressing Modes –Assembly Language Programming -8051 interfacing LCD, ADC, Sensors, Stepper motors, Motors, Keyboard and DAC

9 Hrs

9 Hrs

Department of Electronics and Communication Engineering UNIT-V INTRODUCTION TO ARM PROCESSOR

9 Hrs

ARM Architecture –ARM programmer's model- ARM development tools-memory hierarchy-ARM assembly language programming-Simple Examples-Architectural support for operating system- ARM instruction Set-Embedded ARM Applications

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 60 Hrs

Textbooks:

- 1. Krishna Kant, "*Microprocessor and Microcontrollers*", Eastern Company Edition, Prentice Hall of India, New Delhi , 2007.
- 2. R.S. Gaonkar, '*Microprocessor Architecture Programming and Application*', with 8085, Wiley Eastern Ltd., New Delhi, 2013.
- 3. Soumitra Kumar Mandal, "*Microprocessor Microcontroller Architecture, Programming & Interfacing using 8085,8086,8051*", McGraw Hill Edu, 2013.

References:

- 1. Furber, S., "ARMSystemon Chip Architecture" Addison Wesley trade Computer Publication, 2000.
- 2. Peatman, J.B, "*Design with PIC Microcontrollers*" Pearson Education, 3rd Edition, 2004
- 3. Mazidi,M.A, "*PIC Microcontroller*" Rollin McKinley, Danny Causey, Prentice Hall of India,2007
- 4. A. Pal, "Microprocessors: Principles and Applications"
- 5. Crisp John Crisp ,"Introduction to Microprocessors and Microcontrollers"

	r.M.G.R. Educational and Researc	h In	stit	ute (MAAC	aureo.
Subject Code:	Subject Name : YLSL& EMBEDDED SYSTEM	Τ/	L	Τ/	P/* *	С
BEC17L13	DESIGN LABMaduravoyal, Chennai - 95	L/		S.Lr	R	
	-	ETL	•			
	epartment of Electronics and Communication	<u>in Eng</u>	ine			
	Prerequisite: Introduction of VLSI& embedded	Lb	0	0/0	3/0	1
	system design					

L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

OBJECTIVE :

- To design and simulate combinational logic circuits using Xilinx.
- To design and simulate sequential logic circuits.
- To interface ADC, DAC, DC motor, stepper motor with PIC microcontroller.

COURSE OUTCOMES (COs) : (3-5)

The Students will be able to

CO1	Write programs to implement combinational circuits like adder, multiplexer, de multiplexer
	etc.,

CO2 Simulate sequential circuits like FFs, counters, shift registers.

CO3 Interface I/O devices, ADC, DAC, motors with microcontroller.

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	Н	Η	Η	Μ	Μ	М	М	М	М	-
CO2	Н	Н	Н	Н	Η	М	М	М	М	М	-	М
CO3	Н	Н	Н	Н	Η	М	М	Μ	Μ	Μ	Μ	-
COs / PSOs	PS	01	PS	PSO2		PSO3						
CO1	Н		Н	Н		М						
CO2	Н		Н		М							
CO3	Н		Н	Н		М						

H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
							~				

BEC17L13 VLSI & EMBEDDED SYSTEM DESIGN LAB0031

LIST OF EXPERIMENTS

Approval

SIMULATION OF DIGITAL CIRCUITS USING XILINX

- 1. DESIGN AND TESTING OF ADDER AND SUBTRACTOR
- 2. DESIGN AND TESTING OF MULTIPLEXER, DEMULTIPLEXER, ENCODER , DECODER .
- 3. DESIGN AND TESTING OF MAGNITUDE COMPARATOR WITH 4/8 BITS.
- 4. DESIGN AND TESTING OF JK, D, T AND SR FLIP FLOPS, AND REGISTERS
- 5. DESIGN AND TESTING OF SYNCHRONOUS & ASYNCHRONOUS COUNTERS.
- 6. DESIGN AND TESTING OF SHIFT REGISTERS (RIGHT / LEFT).

INTERFACING WITH PIC MICROCONTROLLER

- 7. ADC INTERFACE WITH LM35.
- 8. STEPPER MOTOR INTERFACE
- 9. TRAFFIC LIGHT CONTROLLER INTERFACE
- 10. DC MOTOR INTERFACE
- 11. LCD DISPLAY INTERFACE.
- 12. LED INTERFACE

		rerequis							Ty	3	0	0	3
L : Lecture T	: Tut	orial S	Lr : Su	pervise	d Learr	ning P	: Projec	ct R : R	esearch	C: Credi	ts		<u> </u>
T/L/ETL : Tł	neory/	Lab/Em	bedded	Theory	y and L	ab							
OBJECTIV	E :												
	earn ti ectors		eleme	nts of	optical	fiber t	ransmi	ssion li	nk, type	s of fibe	ers, Slic	ing	and
• To u	nderst	and the	differer	nt kind	of loss	and sys	tem de	sign coi	nsiderati	on.			
		he vario differen	-			aterials	, LED	structu	res, qua	intum ef	ficiency	, La	lser
• To le	earn tl	he fiber	optical	l receiv	vers suc	ch as P	IN, AF	PD diod	es, nois	e perfori	mance i	n ph	ioto
		eceiver o	•		•								
		ifferent t			l netwo	orks.							
COURSE O				(3-5)									
CO1		Design a		es of fil	bers.								
CO2		Design l											
CO3		Include	lude newer technique for designing optical sources.										
CO4		Design e	efficien	t optica	l detec	tors usi	ng inno	ovative i	dea.				
CO5		Impleme	ent mod	lern tec	hnolog	y for de	esignin	g optica	l networ	·ks.			
Mapping of	Cours	se Outco	omes w	ith Pro	ogram	Outcor	nes (PO	Os)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	012
CO1	Η	Н	Н	Н	М		Н	М		Н	М	Η	
CO2	Н	Н	Н	М	М		М	Н		Н	Н	Η	
CO3	Н	Н	Н	Н	М		М			Н	М	M	
CO4	Н	Н	Н	Н	М		М			Н	М	Μ	
CO5	Н	Н	Н	Н	Н		М	Н	Н	Н	Н	Η	
COs / PSOs	Р	SO1	PS	O2	PS	03							
CO1	Н		Н		М								
CO2	Н		H H										
CO3	Н		Н										
CO4	Н		Н										
CO5	Н		Н		М							1	
H/M/L indica	ates St	trength o	of Corre	elation	H- Hi	gh, M-	Mediu	m, L-Lo	ow				

Category	 ▲ Basic Sciences 	 ▲ Engineering Sciences 	Humanities and Social Sciences	 ▲ Program Core 	Program Electives	Open Electives	Practical / Project	 Internships / Technical Skill 	Soft Skills		
Approval											

BEC17014 OPTICAL COMMUNICATION AND NETWORKS 3 0 0 3

UNIT I: INTRODUCTION TO OPTICAL FIBERS

The General System - Evolution of Fiber Optical System - Elements of an Optical Fiber Transmission Link - Cylindrical Fiber - Single Mode Fibers and Multimode Fibers -Fiber Splicing and Connectors.

UNIT II: OPTICAL LOSSES AND DESIGN

Absorption Losses, Scattering Losses - Bending Losses - Core and Cladding Losses - Signal Distortion in SM Fibers - Point to Point Links - System Design Consideration - Line Power Budget – Rise Time Budget.

UNIT III: OPTICAL SOURCES

Direct and Indirect Band Gap Material - LED Structures - LED Power and Efficiency - Modulation -Laser Diodes Structures and Radiation Pattern – Single Mode Lasers – Modulation of Laser Diodes.

UNIT IV: OPTICAL DETECTORS

PIN and APD Diodes - Photo Detector Noise, SNR, Detector Response Time, Avalanche Multiplication Noise - Comparison of Photo Detectors - Fundamentals Receiver Operation - FET **Pre-amplifiers**

UNIT V: OPTICAL NETWORKS

Operational Principles of WDM - Introduction to Optical Networks - Principles of SONET/SDH, OFDM, OTDM – Multiplexing and De multiplexing techniques - Synchronization.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

12Hrs

12Hrs

12Hrs

12Hrs

Total Number of Hours: 60Hrs

Textbooks :

- 1. Gerd Keiser, "Optical Fiber Communication System", McGraw Hill, International, Singapore 3rd ed., 2000.
- John M. Senior, "Optical Fiber Communication principles and practice" Prentice Hall of India private limited, 1996.
 Rajiv Ramaswami and Kumar N. Sivarajan, "A Practical Perspective "," Harcourt Asia Ptv Ltd.,
- Second Edition, 2004.

Reference Books:

- 1. J. Gower, "Optical communication system", Prentice Hall of India, 2001.
- 2. Govind P. Agrawal "Fiber-Optic Communication Systems", Wiley India 3rd Edition
- 3. C. Siva Ram Moorthy and Mohan Gurusamy, "WDM Optical Networks: Concept, Design and Algorithms", Prentice Hall of India, Ist Edition, 2002. 54
- 4. P.E. Green, Jr., "Fiber Optic Networks", Prentice Hall, NJ, 1993.
- 5. Biswanath Mukherjee, "Optical WDM Networks", Springer Series, 2006.

BEC17012	PROCESSING	on l E h gi ETL	neer	ing S.Lr	r/ R	C
	Prerequisite: Signals and System	Ту	3	1	0	4

	Depa	rtmer	nt of E	lectro	nics a	nd Co	mmu	nicatio	n Eng	ineerin	g	
									0			
L : Lecture T	: Tuto	rial S	Lr : Suj	pervise	d Learr	ning P	: Projec	t R : R	esearch	C: Credi	ts	
T/L/ETL : Th	neory/L	.ab/Eml	bedded	Theory	and L	ab						
OBJECTIVI	To To To	underst learn th underst	and the e conce and the	design epts and concer	techni design ts and	ques of techni applica	digital iques of itions of	IIR filte	FIR filt – rate sa	s. ers. mpling.		
COURSE O		MES (COs):	(3-5)								
The students												
CO1	E	Be able	to apply	y Fouri	er trans	sform c	oncepts	5.				
CO2	I	lave the	e ability	to des	ign IIR	filters.						
CO3	ŀ	lave the	e ability	to des	ign FIF	R filters						
CO4	A	Apply M	Iulti rat	e samp	lings te	echniqu	es for s	system d	lesign.			
CO5	Ι	Describe	e the m	odules	in the a	rchitec	ture of	digital s	ignal pr	ocessor.		
Mapping of	Course	e Outco	omes w	ith Pro	gram (Outcor	nes (PC	Os)				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	Н	Н	Н	М						М
CO2	Н	Н	Н	Н	Н	М	М	L	М	М		М
CO3	Н	Н	Н	Н	Н						М	
CO4	Н	Н	Н	Н	Н	Н			Μ			
CO5	Н	Н	М	Μ	М	М	М	Μ	М	М	Μ	М
COs / PSOs	PS	01	PS	O2	PS	03						
CO1	Н		Н									
CO2	Н		Н				1					
CO3	Н		Н									
CO4	Н		Н									
CO5	М		М		Н							
H/M/L indica	ates Str	ength o	f Corre	lation	H- Hi	gh, M-	Mediu	m, L-Lo)W	1	1	1

Category	Basic Sciences	 ▲ Engineering Sciences 	Humanities and Social Sciences	▲ Program Core	Program Electives	Open Electives	 Practical / Project 	Internships / Technical Skill	Soft Skills			
Approval				<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>

BEC17012 DIGITAL SIGNAL PROCESSING

UNIT I **DFT AND FFT**

Discrete Fourier Transform (DFT) - Properties-Convolution of Sequences - Linear Convolution - Circular Convolution - Introduction to Radix-2 FFT- Properties - DIT (FFT)-DIF (FFT) - Algorithms of Radix-2FFT-Computing Inverse DFT by doing a direct DFT.

3

1 0 4

UNIT II **DESIGN OF IIR FILTER**

IIR Filters- Properties of IIR Filters - Analog Low pass Filter Design - Butterworth Filter - Chebyshev Filter -Design of IIR Filters from Analog filters - Approximation of Derivatives - Impulse Invariance - Bilinear Transformation – The Matched z- Transformation - Frequency Transformation.

UNIT III DESIGN OF FIR FILTER

FIR Filters - Characteristics of FIR Filters with Linear Phase-Properties of FIR Filters-Design of FIR Filters using Windows-Fourier Series Method-Frequency sampling Method - Limit cycle oscillations- Zero- Input Limit cycle oscillations- Overflow Limit cycle oscillations- Signal Scaling.

UNIT IVMULTIRATE SIGNAL PROCESSING

Multirate Signal Processing- Interpolation - Decimation - Single and Multistage Realization - Filter Bank Implementation - Applications-Sub Band Coding.

OVERVIEW OF DIGITAL SIGNAL PROCESSOR UNIT V

Overview of Digital Signal Processors - Application of Digital Signal Processor - Memory Architecture of DSP Processor - Von Neumann Architecture - Harvard Architecture - Architecture of TMS32C5X Processor -Addressing modes - Pipelining .

Practical component P : Include case studies / application scenarios

12 Hrs

12 Hrs

12 Hrs

12Hrs

Department of Electronics and Communication Engineering Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 60 Hrs

Textbooks :

- 1. John . G. Proakis and DimitrisC.Manolakis, " *Digital Signal Processing Principles, Algorithms and Applications,*" Pearson Education, Third edition 2006.
- 2. Sanjitk.Mitra "*Digital signal processing*", A Computer Based Approach, Tata McGraw Hill, New delhi, 2001.
- 3. A.V.Oppenheim, R.W. Schafer and J.R. Buck, "*Discrete Time Signal Processing*", 8th Indian reprint, Pearson 2004.

Reference Books:

- 1. Ashok Ambardar," Analog and Digital Signal Processing", 2ndEdition, Thomson Learning 2000.
- 2. Ashok Ambardar,"*Analog and Digital Signal Processing A Modern Introduction*", Ist edition Thomson Learning 2006
- 3. Johnny R.Johnson,"Introduction to Digital Signal Processing", Minthprinting, September 2001.
- 4. M.D.Srinath, P.K.Rajasekaran, R.Vishwanathan "Introduction to Statistical Signal Processing With Application", Prentice-Hall of India Pvt.Ltd., New Delhi, 1999.
- 5. B.Venkataramani, M.Bhaskar, "Digital Signal Processors, Architecture, Programming and Application", Tata McGraw Hill, New Delhi, 2003.

	r.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956)		titu	te (A	
Subject Code:	Subject Name : An ISANYERNAS AND WAWE on PROPAGATION aduravoyal, Chennai - 95	T / L/	L	Τ/	P /	С
BEC17012	PROPAGATION aduravoyal, Chennai - 95	ETL		S.Lr	R	
D	ePartmenteoFMFectFonSics and Communicatio	n Engi	neeri	ing	0	3
		Ŭ		-		1

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

OBJECTIVE :

- To study Antenna Parameters.
- To study Radiation Resistance, Antenna Efficiency Measurement.
- To study Antenna Arrays.
- To study different types Antennas
- To study Radio wave propagation.

COURSE OUTCOMES (COs) : (3- 5)

COURSEO			CO3).	(5-5)									
CO1	A	Ability to understand the knowledge about antenna basics. Ability to write about the radiation from a current element.											
CO2	A	Ability t	o write	about	the radi	ation fi	rom a c	urrent e	lement.				
CO3	A	Ability t	o analy	ze the	antenna	arrays	•						
CO4	A	Ability t	o expla	in vari	ous typ	es of ar	ntenna.						
CO5		•	-			• -		-	ropagati	on.			
Mapping of	Cours	e Outco	omes w	ith Pro	gram (Outcon	nes (PC)s)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	Н	Н	Н	Н	Н	Н	М	М	М	L	М	М	
CO2	Н	Н	Н	Н	Н	Н	М	М	М	L	М	М	
CO3	Н	Н	Н	Н	Н	М	М	М	М	L	М	М	
CO4	Н	Н	Н	Н	Н	М	М	М	М	L	М	М	
CO5	Η	Н	Н	Н	Н	М	М	Μ	М	L	М	М	
COs / PSOs	PS	501	PS	O2	PS	03							
CO1	Н		Н		М								
CO2	Н		Н		М								
CO3	Н		Н		М								
CO4	Н		Н		М								
CO5	Н		Н		М								
H/M/L indica	ates Str	ength o	f Corre	lation	H- Hi	gh, M-	Mediu	m, L-Lo	W				
Category	Basic Sciences	Engineering Sciences Humanities and Social Sciences Program Core Program Electives Open Electives Practical / Project Internships / Technical Skill Soft Skills											

Dr.M.G.R. Educational and Research Institute (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution Maduravoval, Chennai - 95

Department of Electronics and Communication Engineering

	✓	✓					
Approval					I		

BEC17012 ANTENNAS AND WAVE PROPAGATION

UNIT - I ANTENNA BASICS

Antenna Parameters - Gain, Directivity, Effective Aperture Polarization, Beam width, Balun, Ground System, Top loading, monopole and Half wave dipole antenna, Short linear antenna, Beam solid angle, Antenna Temperature.

UNIT - II RADIATION PRINCIPLE AND ANTENNA TERMINOLOGIES

Principle of Radiation, pattern, Antenna Terminologies - Reciprocity Theorem, Friss Formula, Slot Antennas, SWR.(Standing Wave Radiators)

UNIT - III ANTENNA ARRAYS

Arrays - Two Element Arrays - Uniform Linear Array - Broadside Array - End fire array - Principle of Pattern Multiplication - Binomial Arrays.

UNIT - IV SPECIAL ANTENNA

Dish Antenna - Helical Antenna, Biconical Antenna, Microstip Patch Antenna, Turnstile Antenna, Yagi - uda antenna, Loop Antenna, Antenna Low and Medium Frequencies.

UNIT - V WAVE PROPAGATION

Wave Propagation - Surface Wave Propagation , Structure of the Ionosphere, Space Wave Propagation-Determination of Critical Frequencies - Maximum Usable Frequency - Effect of Earth's Magnetic Field -Fading - Super Refraction - Scatter Propagation.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 60Hrs

Textbooks :

- 1. Constantine A.Balanis, "Antenna theory analysis and design" JohnWiley, 2nd Edition 2007.
- 2. G.S.V. Raju, "Antenna wave propagation", pearson education, 2004.
- 3. R.E. Collins, "Antenna and Radio wave propagation".

Reference Books:

1. John D. Kraus, Ronald J Marhefka. "Antenna for all Appplications" Tata McGraw Hill 3nd Edition.2007.

12 Hrs

12 Hrs

12 Hrs

12 Hrs

12 Hrs

3 0 0 3

Dr.M.C	G.R. Educational and Rese (Deemed to be University U/S 3 of the UGC Ac An ISO 9001:2008 Certified Institution Madurayoval, Chennai	t 1956) on	titu	te (AAC	
Subject Code: Subject	t Name : BIOMEDICAL entemplectropics and Communi	T/	L	Τ/	P /	С
BEC17E01 Depostr	entent lectronics and Communi	cation _L pngi	neeri	ngLr	R	
		ETL				

- 2. A.R.Harish, M. Sachidanada, "Antenna and wave propagation", Oxford university press, 2007.
- 3. W.L.Stutzman and G.A. Thiele, "Antenna analysis and design", John willey, 2000.

		erequisi ntrol Sy		sureme	nt and]	Instrum	entatio	n,	Ту	3	0	0	3
L : Lecture T				ervised	Learni	ng P:	Project	R : Re	search (C: Crea	lits		
T/L/ETL : Th	heory/L	.ab/Emb	edded 7	Theory	and La	b							
• To st • To u • To u	tudy the tudy ho ndersta ndersta ndersta UTCO		easure b vorking se of ra eed and	iochem of unit diation	ical and s which for dia	d variou will he gnostic	us phys elp to re and the	iologica estore n erapy	ormal f	nation unctior	iing		
CO1	Enabl	e the stu	dents to	o devel	op knov	vledge	of how	instrun	nents wo	ork in t	he variou	IS	
	-					-	nd ther	eby reco	ognize t	heir lir	nitations.		
CO2		ret techi											
CO3		iarize s					1	pment'	s and t	their te	chnical	aspe	cts.
CO4	Introd	luce stuc	lents to	the me	asurem	ents inv	volved	in some	medica	ıl equip	oment's.		
CO5	Under	rstanding	g the p	roblem	and al	oility to	o identi	ify the	necessi	ty of e	quipmen	t's t	o a
	specif	ïc probl	em.										
Mapping of	Cours	e Outco	mes wi	th Prog	gram O	outcom	es (PO	s)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10) PO11	PC	D12
CO1	М					Н	Н	Н	Н		Н	Η	
CO2				М		Н	Η	М	Н		М	M	
CO3		М		М		Н	Н	Н	Н	М	Н	Μ	
CO4					М	Н	Н	Н	Н	Μ	М	Μ	
CO5		M	M		M	Н	Н	Η	Н	М	М	M	
COs / PSOs	P	501	PS	02	PS	03							
CO1					Н								
CO2			М		Η								
CO3			М		Η								
CO4	Н		М		Н								
CO5	Н		М		Н								
H/M/L indica	ates Str	ength of	f Correl	ation	H- Hig	<u>h, M- N</u>	Medium	n, L-Lov	N				

Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

BIOMEDICAL INSTRUMENTATION 30 0 3

UNIT I: BASIC PHYSIOLOGY

BEC17E01

Cells and their Structures - Transport of Ions Through Cell Membrane - Resting and Excited State -Transmembrane Potential – Action Potential – Bio-Electric Potential – Nervous System – Physiology of Muscles - Heart and Blood Circulation - Respiratory System - Urinary System.

UNIT II: BASIC TRANSDUCER PRINCIPLES AND ELECTRODES 9 Hrs

The Transducer Principles – Active Transducers – Passive Transducers – Transducer for Bio-Medical Application – Electrode Theory- Bio-Potential Electrode – Bio-Chemical Transducer.

UNIT III: CARDIOVASCULAR SYSTEM

The Heart and Cardiovascular System - Blood Pressure - Characteristics of Blood Flow - Heart Sounds - Electro Cardiograph – Measurements of Blood Pressure – Measurement of Blood Flow and Cardiac O/P Plethysmography – Measurements of Heart Sounds

UNIT IV: X-RAY AND RADIOISOTOPE INSTRUMENTATION:

X-ray Imaging Radiography - Fluoroscopy - Image Intensifiers - Angiography - Medical use of Radioisotopes – Beta Radiations – Detectors – Radiation Therapy.

UNIT V:BIO-TELEMETRY

Introduction to Bio-Telemetry - Physiological Parameters Adaptable to Bio-Telemetry - The Components of Bio-Telemetry Systems - Implantable Units - Applications of Telemetry in Patient Care – Application of Computer in Bio-Medical Instrumentation, Anatomy of Nervous System – Measurement from the Nervous System – EEG – EMG.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

9 Hrs

9 Hrs

9 Hrs

Total Number of Hours: 45 Hrs

Text books:

- 1. M. Arumugam, "Bio-medical Instrumentation" Anuradha Agencies Publishers, 1992.
- 2. Khandpur," Handbook on Biomedical Instrumentation" Tata McGraw Hill Co Ltd., 1989.

References:

- 1. Leusis Cromwell Fred, J. Werbell and Erich A.pfraffer, "Biomedical instrumentation and Measurements" Prentice Hall of India, 1990.
- 2. Joseph J. Carr and John M. Brown, "Introduction to Biomedical equipment Technology", John Wiley and Sons, New York, 1997

Dr.M.G.R. Educational and Research Institute (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	MAAC	akin
Subject Code: Subject Name: PATTERN RECOGNITION T/L/ L T/	P /	С
BEC17E02 Department of Electronics and Communication Hangineersing	r R	

	Pı	rerequis	site: Pro	obabilit	ty Rand	lom Pro	ocess		Ту	3	0	0	3
L : Lecture T	: Tuto	Tutorial SLr : Supervised Learning P : Project R : Research C: Credits											
T/L/ETL : Th	eory/L	ab/Eml	bedded	Theory	y and L	ab							
OBJECTIVI	E :												
• To le	arn the	differe	nt tech	niques	of patte n decisi	ern reco	gnitior	n and tr	aining.				
• To le • Study	arn var / the di	10us ru fferent	les avai approa	ches of	n decisi patterr	on mak i classi	ting. fication	and ap	plication	n in c	linical d	iagno	osis
					-			-	-			-	
COURSE O													
The students CO1				a notta	m recog	mition	oon off	for a col	ution				
		•		•									
CO2								1 0	techniqu				
CO3					-				and reco	gnitio	on.		
CO4	^				ral, feat			nginee	ring.				
CO5	Recal	ll the ap	oplicati	ons of	neural p	process	ing.						
Mapping of	Course	Outco	omes w	ith Pro	ogram (Outcor	nes (PO	Os)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	010 PC	011	PO12
CO1	Н	Н	М	Н		М		М	Н	Μ			Н
CO2	Н	Н	М						М	Η			М
CO3	Н	М	М						М	Н			М
CO4	Н	Η	Н	М		М			Н	Η	М		Η
CO5	Н			Μ	М				Н	Μ			Н
COs / PSOs	PS	01	PS	02	PS	03							
CO1													
CO2			М										
CO3			М										
CO4	М		М		М								
CO5													
H/M/L indica	tes Stre	ength o	f Corre	lation	H- Hi	gh, M-	Mediu	m, L-L	ow	•			

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval		1								1	

BEC17E02	PATTERN RECOGNITION	3	0	0	3
UNIT-I	FUNDAMENTALS OF PATTERN RECOGNITION				9 Hrs
Basic Conce Recognition	pts of Pattern Recognition - Decision Theoretic Algorithms - St	ructur	al Patte	ern	
UNIT-II	INTRODUCTORY NEURAL NETWORKS				9Hrs
Artificial Ne Derivations.	ural Network Structures - Supervised Training via Error back P	ropaga	ation:		
UNIT-III	ADVANCED FUNDAMENTALS OF NEURAL NETWO	RKS			9 Hrs
UNIT-II INTRODUCTORY NEURAL NETWORKS 9Hrs Artificial Neural Network Structures - Supervised Training via Error back Propagation: Derivations.				k	
UNIT-IV	NEURAL, FEATURE AND DATA ENGINEERING				9 Hrs
Neural Engin	neering and Testing of FANNs - Feature and Data Engineering				
UNIT- V	TESTING AND APPLICATIONS				9 Hrs
	arative Studies of forward Artificial Neural Networks-Pattern r sifications& recognition- Speech recognition- Neural proce cognition.	•			

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total Number of Hours: 45 Hrs

D	· · · · · · · · · · · · · · · · · · ·		10	• • •	. .		•			
Subject Code	Bubject Name :	eggeronies a	Ad to omm	unicatio	n-Engi	nee	ring	D /	C	1
Subject Code:	Subject Name :	DEVICE M	ODELING		I / L9/		Iμ	r /	U	1
									1	

Text Books:

- 1. Caral g. Looney," Pattern Recognition Using Neural Networks–Theory and Algorithms for Engineering andScientists"–New York Oxford University Press 1997.
- 2. Earl Gose, Richard Johnsonbaugh, Steve Jost, "Pattern Recognition and Image Analysis", Prentice Hall of India Pvt. Ltd., New Delhi, 1999.

REFERENCES:

- 1. P. A. Devijver and J. Kittler, "*Pattern Recognition*", Prentice-Hall International, Englewood Cliffs, NJ, 1980.
- 2. William Gibson, *Pattern Recognition*, Science fiction, 2003

	Depa	artmei	nt of E	lectro	nics a	nd Co	mmu	nicatio	n Engi	ineer	ing		
BEC17E03									ETL		S.Lr	R	
	Pr	erequis	ite: Sol	id State	e Devic	e			Ту	3	0	0	3
L : Lecture	Γ : Tuto	rial S	Lr : Su	pervise	d Learn	ing P	Projec	tR:R	esearch	C: Cre	edits		
T/L/ETL : T	heory/I	.ab/Em	bedded	Theory	and L	ab							
OBJECTIV	′ Е :												
	To unde		•					~					
	To unde			grated	BJI an	a MOS	device	S					
COURSE C The Student													
CO1			orief ab	out inte	grated	passive	device	s.					
CO2	Prese	Present a review on monolithic technologies.											
CO3		Analyze different models of integrated bipolar transistor.											
CO4		Solve the basic equations of integrated MOS transistor.											
CO5	Recal	Recall the concepts of spice modeling.											
Mapping of	Cours	e Outco	omes w	ith Pro	gram	Outcon	nes (PC)s)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO1	1 F	PO12
CO1	Н	Н	M	Н			М	М	Н	Н			
			IVI	11									-
CO2	Н	М					Н	Н	Η	Η		Ν	М
CO3	Н	Н	М	Н	М			М	Н	Μ	М		Ν
CO4	H	H	Н	Н	М				H		М		M
CO5	H	M	Da		DO		М		Н	Н		ł	ł
COs / PSOs	PS	01	PS	PSO2 PSO3									
CO1	Н		М		М	М							
CO2	Н				Н								
CO3	Н		Н		Н								
CO4													
	Н		Н										
CO5	Н		Μ										
H/M/L indic	ates Str	ength c	of Corre	lation	H- Hi	gh, M-	Mediu	n, L-Lo	W				
								al					
		Se	Social					Internships / Technical Skill					
		ence			es		ct	[ecł					
Category	es	Scie	and	e	ctiv	/es	oje(ps / T Skill					
	enc	ing	ies :	Cot	Ele	ctiv	/ Pr	ship. S	S				
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	ems	Soft Skills				
	asic	ngir	Humanit	1go:	igoi	pen	acti	Int	oft (
	B	Щ	К	$\mathbf{P_{1}}$	$\mathbf{P}_{\mathbf{i}}$	O	P 1		Ň	1			

Dr.M.G.R. Educational and Research Institute (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution Maduravoyal, Chennai - 95

Department of Electronics and Communication Engineering

	Department of Electronics and Communication Engineering													
					✓									
Approval														

BEC17E03

UNIT I: INTEGRATED PASSIVE DEVICES:

Types and Structures of Resistors and Capacitors in Monolithic Technology – Dependence of Model Parameters on Structure.

DEVICE MODELING

UNIT II: INTEGRATED DIODES:

Junction and Schottky Diodes in Monolithic Technologies – Static and Dynamic Behavior – Small and Large Signal Models– SPICE Models.

UNIT III: INTEGRATED BIPOLAR TRANSISTOR:

Types and Structures in Monolithic Technologies – Basic Model (Eber Moll_-Cunmel – Poon Model – Dynamic Model, Parasitic Effects – SPICE Model –Parameter Extraction.

UNIT IV: INTEGRATED MOS TRANSISTOR:

n-MOS and p-MOS Transistor – Threshold Voltage -Threshold Voltage Equations – MOS Device Equations – Basic DC Equations Second Order Effects – MOS Models Small Signal AC Characteristics – MOSFET SPICE Model Level 1,2,3,4

UNIT V: SPICE MODELLING

Advanced Concepts of Large Signal & Low Signal Modeling

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total Number of Hours: 45 Hrs

Text books:

- 1. Daniel Foty, "MOSFET Modeling with Spice" prentice hall, 1997.
- 2. Neil Weste and Kamran Eshranghian "Principles of CMOS VLSI Design, A System Perspective", "Addition Wesley, 1993.

References:

9 Hrs

9 Hrs

9 Hrs

9 Hrs

9 Hrs

3003

- 1. Jacob Millman& Arvin Millman, "Micro Electronics", McGraw Hill (Second Edi) 1987.
- 2. M. Satyagi, John Wiley" *Introduction to Semi-conductor materials and devices*", New Edition

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

OBJECTIVE :

- To understand the building blocks of a quantum computer.
- To understand the principles, quantum information and limitation of quantum operations formalizing.
- To understand the various quantum algorithms.

	101	indersta	nu uie v	anous	quantun	ii aigoii	unns.					
COURSE OU			: () :(3- 5)								
The Students			1	• •					1	•,•		
CO1	1	Jemons	rate the	import	ance of	quantui	m comp	outing an	d superp	osition s	states.	
CO2	F	Possess a	a deep in	nsight o	n Quan	tum ope	erator a	nd its Ap	plicatio	ns.		
CO3	A	Attain th	e know	ledge al	riety of	quantur	n gates a	nd build	l quantur	n circuit	s.	
CO4 Apply the concept of different quantum algorithms and have the insight of QKE).
CO5 Recognize, test and correct various Quantum errors through Quantum error co										error con	recting	
	С	odes.										
Mapping of (Course	Outcor	nes wit	h Progi	am Ou	tcomes	(POs)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н				Н				М		М	Н
CO2	Н	Н	М		М				М		М	Н
CO3	Н		Н		Н						Н	
CO4	Μ			Н	Н						М	Μ
CO5	Η	Н	Н	Μ	Μ	Μ	Μ	Μ				Μ
COs / PSOs	PS	501	PS	O2	PS	03						
CO1		Н	N	Л	М							
CO2		Н	I	H								
CO3		Н	N	Л	I	H						
CO4			N	Л								
CO5		Н	I	H	Н							
H/M/L indica	tes Stre	ength of	Correla	tion H	I- High	, M- Me	edium, 1	L-Low	<u> </u>	1	I	1

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

BEC17E04

QUANTUM COMPUTING

UNIT I: INTRODUCTION

Introduction to Quantum Computing- Power of Quantum Computing- Quantum Information-Quantum Computers. The Wave and the Corpuscular Nature of Light Photon Behavior, State Description, Measurement in Multiple Bases, Superposition States – The Superposition probability Rule.

UNIT II: QUANTUM MECHANICS

Quantum Postulates – State space, Evolution, Quantum Measurement, Distinguishing Quantum states, Projective measurements, POVM measurements -Quantum Mechanics-Hilbert Space-Linear Operators Tensor and Outer Products-Quantum Operators- Application Quantum mechanism: Super dense Coding -Double Silt Experiments.

UNIT III: QUBITS AND QUANTUM GATES

Qubits, Bloch Sphere Representation-Rotation Operation-The Measurement of a Single Qubits-A Pair of Qubits- Bell States- Qubits as Spin Half- Integer Particles- Qubits as Polarized Photon-Entanglement, Exchange of Information / Teleportation – Quantum Coping Circuit - The Non-Cloning Theorem-Quantum Gates – Universal Quantum Gate Gates – Matrix Representation – Quantum Circuits- Single and Multiple Qubit Controlled Operations.

UNIT IV: QUANTUM ALGORITHM

Turing Machine - Quantum Parallelism-Deutsch's Problem, Deutsch – Jozsa Algorithm - QFT(Quantum Fourier Transform)-Short's Factoring Algorithm-Simon's Algorithm-Quantum Search Algorithm- Quantum key distribution - Mathematical Models of Quantum Computers - Introduction Different implementations of quantum computer.

9 Hrs

9 Hrs

3003

9 Hrs

Department of Electronics and Communication Engineering UNIT V: QUANTUM ERROR CORRECTION

9 Hrs

Quantum error correction and simple examples – The Three Qubit flip code, Three Qubit Phase flip code, The Shor Code - Brief Introduction to Quantum Computing Software - Quantum error-correcting codes:Error models, Criteria for a good code: reversible operations.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45 Hrs

Textbooks :

- 1. Dan C. Marinescu, Gabriela M. Marinescu, "Approaching Quantum Computing", Pearson Education 2008-09.
- 2. M.A. Neilson and I.L .Chuang "*Quantum computing and Quantum information*", Cambridge University Press,2009.
- 3. Vishal Sahani "Introduction to Quantum Computing", TATA McGraw-Hill Publishing Company Limited.

Reference Books:

- 1. A.Yu.Kitaev, A.H.Shen, M.N.Vyalyi, "Classical and Quantum Computation", American Mathematical Society.
- 2. Mark.M.Wilde, "Quantum information theory" Cambridge university press.
- 3. J.A.Jones, "Quantum information, computation and communication" Cambridge University Press.
- 4. Scott Aaronson, "Quantum computing since Democritus", Cambridge University Press 2013.

Department of Electronics and Communication Engineering							
Subject Code:	Subject Name : MICROWAVE	T / L7	L	T/	P /	С	
BEC17E05	ENGINEERING	ETL		S.Lr	R		

										n Engi	neerin	g	
			-	ite: Tra and Wa				Wavegi	uides,	Ту	3 0	() 3
L : Lectu	re T							Projec	t R:Re	esearch	C: Credit	s	
T/L/ETL : Theory/Lab/Embedded Theory and Lab													
OBJEC	ΓΙΥ			~				~					
	•			licrowa assive r					heir S-]	Paramet	er analys	is.	
	•								applica		or unary:		
COURS					(3-5)								
The stude CO1					riction	ofmior		nacius	daviaa	and the	ir conttor	ina noro	motor
01		derstand the characteristics of microwave passive devices and their scattering parameter alysis.											
CO2		· ·	erstand the concept of microwave generators and amplifiers.										
CO3			erstand the concepts of microwave solid state devices and their characteristics.										
CO4			lerstand the concepts of microwave transistors in RF circuits.										
CO5	Me	easure different parameters like frequency, wavelength, power, VSWR in RF circuits.											
Mapping	g of	Course	e Outco	omes w	ith Pro	gram (Outcon	nes (PC)s)				
COs/POs	5	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		Н	Н	Н	Н	Н	М			М		М	
CO2		Н	Н	Н	Н	Н	М			М		М	
CO3		Н	Н	Н	Н	Н	Μ			М		М	
CO4		H	Н	Н	H	H	M			М		М	
CO5 COs / PS	Oa	H PS	H	H PS	H	H	<u>M</u> O3			M		М	
	US					r5	05						<u> </u>
CO1		ŀ	H	Ν	1								
CO2		I	Η	Ν	1								
CO3		I	Η	Ν	1								
CO4		I	Η	Ν	1								
CO5		ł	H	Ν	1								
H/M/L in	ndica	ates Str	ength o	of Corre	lation	H- Hi	gh, M-	Mediur	n, L-Lo	W			
									ıl				
			ŝ	ial					nice				
Categor	v		ance	Soc		SS		÷	,ech				
U		Se	Scie	pu	(D	ti ve	es	ojec	ps / T Skill				
		enci	ng	es a	Cor	Elec	ctiv	/ Pro	hips Sl	S			
		Sci	eeri	uniti ces	am	am	Ele	cal	Internships / Technical Skill	kill			
		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Inte	Soft Skills			
		Bí	Ē	Hı Sc	\mathbf{Pr}	$\mathbf{P}_{\mathbf{r}}$	Ó	\mathbf{Pr}		Sc			L

Dr.M.G.R. Educational and Research Institu (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution Maduravoyal, Chennai - 95	te NAAC
Department of Electronics and Communication Engineer	ing

	2 cp a				 	 5	
			√				
Approval							

BEC17E05 MICROWAVE ENGINEERING

UNIT I:MICROWAVE PASSIVE DEVICES

Transmission Lines for use at Microwave Frequencies - Attenuators, Directional Couplers, Terminators, Phase Shifters, Faraday Rotation Isolators and Circulators, Field Displacement Isolators, Microwave Filters, Frequency Meters, Hybrid Junctions - Scattering Analysis.

UNIT II: MICROWAVE GENERATORS

Limitations of Conventional Tubes at Very High Frequencies - Velocity - Modulated Tubes, Two -Cavity Klystron Amplifiers, Reflex Klystron Oscillators - Periodic Slow Wave Structures and their Use in Travelling Wave Tube Amplifiers, Focusing Techniques, TWTA Performance Characteristics - Electron Motion in Crossed Electric and Magnetic Fields - Magnetron Oscillators, Hartree Equation Rieke Diagram and Performance Charts .

UNIT III: MICROWAVE SOLID-STATE DEVICES

Varactor Diodes, Manley - Rowe Relations, Low Noise Parametric Amplifiers - Transferred -Electron Devices and Their Operation, Cavity - Controlled Modes, LSA Mode-Avalanche - Transit Time Devices and Their Operation, TRAPATT Mode, BARITT mode, PIN Diodes and Their use as Attenuators and Switches.

UNIT IV: MICROWAVE CIRCUITS

Small - Signal Equivalent Circuits, High-Frequency Applications, Performance Criteria and Limitations of BJTs and FETs – HEMTs – Fabrication Techniques.

UNIT V: MICROWAVE MEASUREMENTS

Slotted - Line Techniques - Measurements of Wavelength - Measurement of Low and High VSWR -Measurement of Frequency and Frequency Meters - Measurement of Insertion Loss and Attenuation by Substitution Methods - Measurement of Low and High Powers at Microwave Frequencies -Modern Measurement Techniques using Automatic Network Analyzer and Spectrum Analyzer.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total Number of Hours: 45 Hrs

Textbooks:

- Annapurna Das, Sisir. K. Das, "Microwave Engineering", Tata McGraw Hill Co., Ltd., 1999. 1. Reprint 2001.
- 2. Samuel Y. Liao: "Microwave Devices and Circuits", Prentice Hall of India - 3rd Edition (2003)
- SubalKar, "Microwave Engineering", Universities press(India) private limited 1st Edition 3. (2016)

Reference Books:

1. D.M. Pozer, "Microwave Engineering", Addison – Wesley, 1998.

10Hrs

9 Hrs

9 Hrs

8 Hrs

9 Hrs

3003

Subject Code:	Subject Name : REAL TIME OPERATING	Τ/	L	Τ/	P /	С
BEC17E06	SYSTEMS	L/		S.Lr	R	

- R.E. Collins: *"Foundations for Microwave Engineering"*, IEEE Press Second Edition (2002)
 David K. Cheng," *Field and Waves in Electromagnetism*", Pearson Education, 1989.

							-		ETL		0	
	Pı	rerequisi	te: Ope	rating S	Systems	s Conce	epts		Ту	3 ()	0 3
L : Lecture '	T : Tuto	orial SI	Lr : Sup	ervised	l Learni	ing P:	Project	R : Re	esearch	C: Cre	dits	
T/L/ETL : T	Theory/I	Lab/Emt	bedded '	Theory	and La	ıb	-					
•	Review To und To und	of elem erstand t erstand t	he emb he queu	edded	tools.	-	stems.					
COURSE C The Student			COs):									
CO1			differen	t betwe	en the	general	compu	ting sy	stem an	d the e	mbedded	l system
CO2	Ident	ify diffe	rent sof	tware a	rchitec	ture.						-
CO3	Beco	me awar	e of the	eleme	nts of R	RTOS.						
CO4	Imple	Implement the design concepts of RTOS.										
CO5	Use t	he embe	dded so	oftware	develo	pment	tools.					
Mapping of	f Cours	e Outco	mes wi	th Pro	gram (Outcom	es (PO	s)				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO1	PO12
CO1	Н	Н	М	Н		М			Н	Н	М	М
CO2	Н	Н	Н	Н	М	М			Н	Н	М	
CO3	М	М						М		Н	М	Н
CO4	Н	Н	Н	Н	Н	Н			Н	Н	Η	
CO5	Η	Н	Н	Н	Η	Η	Η	Μ	Н	Н	Η	Н
COs / PSOs	PS	SO1	PS	02	PS	503						
CO1	М		М									
CO2	М		Н									
CO3	М				М							
CO4												
CO5	Η		Н		М							
H/M/L indic	cates St	rength of	f Correl	lation	H- Hig	gh, M- 1	Mediun	n, L-Lo	W	1	I	

Basic	Engineering Humanities a Sciences	Program	▲ Program	Open Electives	Practical	Internships Sk	Soft Skills		
Approval									

BEC17E06 REAL TIME OPERATING SYSTEMS

UNIT- I EMBEDDED SYSTEM FUNDAMENTALS

Introduction, Characteristics of embedded systems and challenges in system Design –design issues in embedded real-time systems, critical performance issues in embedded real-time systems.

UNIT - II SURVEY OF SOFTWARE ARCHITECTURES

Round -robin, Round-Robin with interrupts, queues. Function- scheduling architecture, Real time operating system architecture, Scheduling architecture.

UNIT-III ELEMENTS OF REAL TIME OPERATING SYSTEMS 9 Hrs

Tasks & Task States, Tasks & data, Semaphores & shares data, Message queues, Mailboxes and Pipes, Timer functions, events, Memory management and Interrupt Routines in an RTOS environment.

UNIT -IVBASIC DESIGN USING REAL-TIME OPERATING SYSTEMS 9 Hrs

Principles, encapsulating semaphores & queues, hard real-time scheduling considerations, saving memory space, savingpower.

UNIT- VEMBEDDED TOOLS

Embedded software development tools- host and target machines, linker/locators for embedded software, getting embedded software into the target system. Debugging techniques- testing on host system, instruction set simulators, the assert, macro using laboratory tools.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

9 Hrs

9 Hrs

9 Hrs

3003

Total Number of Hours: 45Hrs

Text books:

1. Wayne Wolf, "Computers as Components- Principles of Embedded Computing Systems Design", Academic press, 2001.

2. David E. Simon, "An Embedded Software Primer", Pearson education, 1999.

References:

- 1. Arnold S. Berger, "Embedded Systems Design- an Introduction to Processes, Tools & Techniques", CMP books, 2002.
- 2. Jean J. Labrosse, "Embedded Systems Building Blocks", CMP books, 2002.
- 3. Michael Barr, "Programming Embedded Systems in C andC++", O'Reilly, 1999.

anent Branch		(Deemed to be University I An ISO 9001:2008 C	Channai - 95	h Ins	titu	te 🥊	AAC		
Subject Code:	Subject Nam	e : POWER ELE	CTRONICS	Τ/	L	Τ/	P /	С	I

Subject Cod BEC17E07	e: Su	bject N	Name : t of F	POW	ER EL	ECTR nd Co	ONICS	- Ju	T/ nr Eng	L	T/ 1607 n	P/ R	C
BEC1/EU/	Depa	tillet		iectio	iiics a	nu Co	mmu	incatio	ETL	ineer	1987 L	K	
	Pre	erequisi	ite: Ele	ctronic	Circuit	s, Elect	ronic		Ty	3	0	0	3
<u> </u>		vices	<u> </u>	<u> </u>	1 7	· D	D '		1		1.		
L : Lecture T				L		U	Projec	t R : R	esearch	C: Cre	dits		
T/L/ETL : Th	neory/L	ab/Emł	bedded	Theory	and La	ab							
OBJECTIV			_	_				_			_		
	•	-					•			-	protection allel fund		s of
						ls of SC		I SCKS.	Series a	inu pai		lion	5 01
						upplies.							
	udy of						1 1 100						
^l To le	earn abo	out mot	or cont	rol, cha	rges, S	MPS ar	id UPS	•					
COURSE O													
The Students				•	• •,	<u> </u>			1				
CO1	Analy	ze pow	er elect	ronic c	ircuits	for volt	age and	curren	t control	and pro	otection		
CO2	Analy	ze swit	ching c	haracte	ristics	of trans	istors a	nd SCR	S.				
CO3	Apply	Apply the function phase controlled converters.											
CO4	Demo	Demonstrate the applications of inverters and choppers.											
CO5	Devel	op the a	applicat	tions sp	ecific t	o powe	r electr	onics in	industr	ies.			
Mapping of	Course	Outco	omes w	ith Pro	gram (Outcon	nes (PC)s)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10) PO11	PC	012
CO1	Н	Н	Н	Н	Н	М	М	М		M	М	M	
CO2	Н	Н	Н	Н	Н	М	М	М			М	M	
CO3	Н	Н	Н	Н	Н	M	М	М		M	M		
CO4	Н	Н	Н	Н	Н	М	М	М				М	
CO5	Н	Η	Н	Н	Н	М	М	М		М	М	Μ	
COs / PSOs	PS	01	PS	02	PS	503							
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
CO4	Н		Н										
CO5	H H				М								
H/M/L indica	ates Stre	ength o	f Corre	lation	H- Hi	gh, M-	Mediur	n, L-Lo	W	I			

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval		1									

BEC17E07 POWER ELECTRONICS

UNIT-I: POWER ELECTRONIC DEVICES

Characteristics of Power Devices - Characteristics of SCR - Two Transistor Model of SCR, Characteristics of TRIAC, BJT, MOSFET, IGBT, GTO both Static and Switching Characteristics - Protection of Thyristors against Over Voltage - Over Current, dv/dt and di/dt.

UNIT-II: TRIGGERING& COMMUTATION TECHNIQUES

Turn on Circuits for SCR - Triggering with Single Pulse & Train of Pulses - Triggering with Microprocessor - Different Techniques of Commutation - Natural and Forced Commutation - Series & Parallel Operations.

UNIT-III: PHASE CONTROLLED CONVERTERS

Converters – Single Phase – Three Phase – Half Controlled and Fully Controlled Rectifiers with R, RL and RLE Loads - Waveforms of Load Voltage and Line Current - Harmonic Factor, Power Factor, Ripple Factor, Distortion Factor - Operation with Freewheeling Diode - Effect of Source Inductance - Dual Converter.

UNIT-IV: INVERTERS & CHOPPERS

Voltage and Current Source Inverters, Resonant, Series Inverter - Basic Series Inverter, Modified, Improved - PWM Techniques - Single Phase AC Choppers with R and RL Load - Half Wave and Full Wave - DC Choppers - Various Classes of Operation - Buck, Boost and Buck - Boost Type Choppers – Merits and Applications.

UNIT-V: AC VOLTAGE CONTROLLERS & INDUSTRIAL APPLICATIONS

Single-Phase and Three-Phase AC Voltage Controllers - Sequence Control of AC Voltage Regulators.Cycloconverters - Single-Phase and Three-Phase Cycloconverters, SMPS & UPS - Static Compensators - HVDC Transmission System.

Practical component P : Include case studies / application scenarios

9 Hrs

9 Hrs

9Hrs

9 Hrs

9 Hrs

3003

Department of Electronics and Communication Engineering Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45Hrs

Text books:

- 1. Rashid, M.H., "Power Electronics Circuits Devices and Applications", Prentice Hall of India, 3rd Edition, 2004.
- 2. Singh.M.D and Kanchandani, "Power Electronics", Tata McGraw Hill & Hill publication Company Ltd, New Delhi, 2002.

References:

- Dubey, G.K., Doradia, S.R., Joshi, A. and Sinha, R.M., "Thyristorised Power Controllers", Wiley Eastern Limited, 1986.
- 2. Lander, W., "Power Electronics", McGraw Hill and Company, Third Edition, 1993.
- 3. P.S. Bimbhra, "*Power Electronics*", Khanna Publishers, 3rd Edition, 1999.

Dr.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956) Ap 15O 9001:2008 Certified Institution	h Ins	titu	te	A	
Subject Code:Subject NameCRYPTOGRAPHY ANDBEC17E08NETWORK SECURITY	Τ/	L	Τ/	P /	С
BEC17E08 NETWORK SECURITY	L/		S.Lr	R	
Department of Electronics and Communicatio	nÆngi	neer	ing		
Prerequisite: Computer Networks	Ту	3	0	0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

OBJECTIVE :

- To study the various cryptographic algorithms, firewall. To study Integrity, Authentication. To study about wireless network security concepts.

COURSE OUTCOMES (COs) :

The students	The students will be able to							
CO1	Identify different types of attacks and techniques used for transmission of information.							
CO2	Encrypt and decrypt messages using different types of ciphers.							
CO3	Verify message using well know signature generation and verification algorithms.							
CO4	To have a clear knowledge on network security, web security and firewalls.							
CO5	To test and identify the various security attack issues in wireless systems.							

Mapping of Course Outcomes with Program Outcomes (POs)

	000200	0						.,				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	Н	Н	-	М			Н	Н	М	Н
CO2	Н	Н	Н	Н	Н	Н		М	М	Н	Н	Н
CO3	Н	Н	Н	Н	М	Н		М	Η	Н	М	Н
CO4	Н	М	Н	Н	Н	Н	М	М		Н	М	Н
CO5	Н	Н	Н	Н	Н	Н		Н	Η	Н	Н	М
COs / PSOs	PS	501	PS	02	PS	03						
CO1	Н		М		М							
CO2	Н		Н		М							
CO3	Н		Н		М							
CO4	Н											
CO5	Н		Н		Н							
H/M/L indica	ates Stre	ength of	Correla	ation	H- Hig	h, M- N	Medium	n, L-Lov	v	1		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			

BEC17E08 CRYPTOGRAPHY AND NETWORK SECURITY 3003

UNIT –I: INTRODUCTION ON SECURITY

Security Goals, Types of Attacks: Passive attack, active attack, attacks on confidentiality, attacks on Integrity and availability. Security services and mechanisms, Techniques: Cryptography, Steganography, Revision on Mathematics for Cryptography.

UNIT- II: SYMMETRIC & ASYMMETRIC KEY ALGORITHMS

Substitution Ciphers, Transposition Ciphers, Stream and Block Ciphers, Data Encryption Standards (DES), Advanced Encryption Standard (AES), RC4, Principle of asymmetric key algorithms, RSA Key distribution.

UNIT –III: INTEGRITY, AUTHENTICATION AND KEY MANAGEMENT 9 Hrs

Message Integrity, Hash functions: SHA, Digital signatures: Digital signature standards. Authentication Entity Authentication: Biometrics, Key management Techniques, Introduction to Quantum Cryptography.

UNIT- IV: NETWORK SECURITY, FIREWALLS AND WEB SECURITY 9 Hrs

Introduction on Firewalls, Types of Firewalls, Firewall Configuration and Limitation of Firewall. IP Security Overview, IP security Architecture, authentication Header, Security payload, security associations, Key Management. Web security requirement, secure sockets layer, transport layer security, secure electronic transaction, dual signature

UNIT- V: WIRELESS NETWORK SECURITY

Security Attack issues specific to Wireless systems: Worm hole, Tunneling, DoS WEP for Wi-Fi network, Security for 4G networks: Secure Ad hoc Network, Secure Sensor Network **Practical component P : Include case studies / application scenarios**

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45Hrs

9 Hrs

9 Hrs

9 Hrs

References:

1. Behrouz A. Fourouzan, "Cryptography and Network security" Tata McGraw-Hill, 2008

2. William Stallings, "Cryptographyand Network security: principles and practice", 2nd Edition, Prentice Hall of India, New Delhi, 2002

- 3. AtulKahate, "Cryptography and Network security", 2nd Edition, Tata McGraw-Hill, 2008
- 4. R.K.Nichols and P.C. Lekkas ,""Wireless Security", McGraw-Hill Professional, New York, NY, USA, 2001

	T.M.G.R. Educational and Resear (Deemed to be University U/S 3 of the UGC Act 1956 An ISO 9001:2008 Certified Institution		stit	ute 🤇	ANAAC	outre .
Subject	Subject Name MDIRASING MACAGEMHNT95	Τ/	L	Τ/	P /	C
Code: BEC17E10 D	epartment of Electronics and Communicati	on En ETL	gine	S.Lr ring	R	
	Prerequisite: BPE 13001, BPE 13002	Ту	3	0	0	3
	Environment and health sciences					

5. H. Yang et al., "*Security in Mobile Ad Hoc Networks: Challenges and Solution*", IEEE Wireless Communications, Feb. 2004.
6. Securing Ad Hoc Networks, *IEEE Network Magazine*, vol. 13, no. 6, pp. 24-30, December 1999.

L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

OBJECTIVE :

• Disaster management refers to the policies, programs, administrative actions and operations undertaken to address a Natural or man-made disaster through preparedness, mitigation, response and recovery.

COURSE OUTCOMES (COs) :

The Students												
CO1				ypes of	hazard	and di	sasters.					
CO2	Demo	nstrate	knowle	edge of	risk m	anagen	nent.					
CO3	Implei	ment th	e risk r	eductio	on tech	niques	during	emerge	ncy.			
CO4	Aware	e of the	relatio	nship b	etween	disaste	er and o	levelop	ment.			
CO5	Aware	e of the	variou	s risk n	nanager	ment in	India.					
Mapping of	Course	e Outco	omes w	ith Pro	ogram	Outco	mes (P	Os)				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	М		М	М	М	М	Н	Н		Н		Н
CO2	М		Н	Н	Н	Н	Н	Н	Н	М	Н	Н
CO3	Н		Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
CO4	М			М	Н	Н	Н	Н	М	М	М	М
CO5	М			М	М	Н	Н	Н	М	М		
COs / PSOs	PS	01	PS	O2	PS	03		•				
CO1					М							
CO2			М		М							
CO3					М							
CO4					Н							
CO5					Н							
H/M/L indic	ates Stre	ength o	of Corre	elation	H- Hi	igh, M-	• Mediu	ım, L-L	ow			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			

BEC17E10DISASTER MANAGEMENT

Approval

UNIT-I INTRODUCTION TO DISASTERS:

Concepts, and definitions-Disaster, Hazard, Vulnerability, Resilience, Risks Disasters: Classification, Causes, Impacts - including social, economic, political, environmental, health, psychosocial, etc.)

UNIT-II RISK MANAGEMENT

Goals and objectives of ISDR Programme- Risk identification - Risk sharing - Disaster and development: Development plans and disaster management -Alternative to dominant approach disaster-development linkages -Principle of risk partnership.

UNIT-III RISK REDUCTION

Trigger mechanism - constitution of trigger mechanism - risk reduction by education -disaster information network - risk reduction by public awareness Application of various technologies: Data bases - RDBMS - Management Information systems - Decision support system and other systems -Geographic information systems Remote sensing-an insight - contribution of remote sensing and GIS - Case study.

UNIT-IV INTER-RELATIONSHIPS BETWEEN DISASTERS AND DEVELOPMENT:9 Hrs

Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc., Climate Change Adaptation, Relevance of indigenous knowledge, appropriate technology and local resources financial arrangements - areas of improvement -disaster preparedness - emergency response.

UNIT-V DISASTER RISK MANAGEMENT IN INDIA

Hazard and Vulnerability profile of India Components of Disaster Relief: Water, Food, Sanitation, Shelter, and Health, Waste Management Institutional arrangements (Mitigation, Response and Preparedness, DM Act and Policy, Other related policies, plans, programmes and legislation)

Practical component P : Include case studies / application scenarios

9 Hrs

9 Hrs

9 Hrs

9 Hrs

0 3

3 0

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45Hrs

- 1. PardeepSahni, MadhaviMalalgoda and Ariyabandu, "Disaster risk reduction in Southasia", PHI
- 2. AmitaSinvhal, "Understanding earthquake disasters" TMH, 2010.

References:

Text books:

1. PardeepSahni, AlkaDhameja and Uma Medury, "Disaster mitigation: Experiences and reflections".

	Depa	atmer		Liectio	incs a	nu Co	mmu	incatit	U	ineerii	ig		
									ETL				
		erequis		ommuni	cation s	systems	, Micro	wave	Ту	3	0	0	3
L : Lecture T	`: Tuto	rial S	Lr : Su	ipervise	d Learr	ning P	: Projec	tR:R	esearch	C: Cred	lits		
T/L/ETL : Th	neory/L	.ab/Em	bedded	l Theory	y and L	ab							
OBJECTIV	Е:												
	•	•		•		V Pictu	res, Co	mposite	e Video	Signal,	Receive	r Pict	ture
				nera Tu									
	•	-	-								systems.		
10 St	•				•		•		-		L systen	1.	
⁻ 10 st	tudy the	e advan	ced to	pics in 1	l elevisi	on syst	ems and	1 Video	Engine	ering.			
COURSE O			COs)	:									
The Students CO1			and rec	all the f	undam	antale o	f tolovi	sion					
01													
CO2	Descr	ibe the	variou	s comp	onents	of mono	ochrom	e TV re	ceiver.				
CO3	Distin	iguish t	betwee	n variou	is colou	ır TV sy	ystems.						
CO4	Identi	fy the c	charact	er of co	lour TV	/ receiv	er.						
CO5	Bewa	re of re	cent tr	ends and	d techn	ologies	of TV.						
Mapping of	Cours	e Outco	omes v	vith Pro	ogram	Outcon	nes (PC)s)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	012
CO1	Н	М	Н	М		М		М		Н	М		
CO2	Н	М	Η	М		М			М	Н			
CO3	Н	М	Μ				М		М	М			
CO4	Н	Н		Н						М	М	Η	
CO5	Н									М		Μ	
COs / PSOs	PS	501	P	SO2	PS	503							
CO1	Н		Н		М								
CO2	Н		Η										
CO3	М		М										
CO4	Η		М		М								
CO5					М								
H/M/L indica	ates Str	ength c	of Corr	elation	H- Hi	gh, M-	Mediu	n, L-Lo	w	ı	1		

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
					•						
Approval											

BEC17E11 TELEVISION AND VIDEO ENGINEERING 3 003

UNIT- I: FUNDAMENTALS OF TELEVISION

Characteristics of Eye and Television Pictures - Resolution and Brightness Gradation- Theory of Scanning, Camera Tubes - Videocon and Silicon Diode Array Videocon- Monochrome Picture Tube, Composite.

UNIT-II:MONOCHROME TELEVISION RECEIVER

Transmission and Propagation of TV signal- TV Antenna, Receiver VHF Tuners - Vision IF Subsystem, Inter Carrier Sound System, and Video Amplifiers - Synchronous Separation AFC and Deflection Oscillators - Frame and Line Deflection Circuits.

UNIT-III: COLOUR TELEVISION SYSTEMS

Color Characteristics – Color Cameras Color Picture Tubes, Color signal Generation and Encoding, NTSC, PAL and SECAM Systems.

UNIT- IV: COLOUR TELEVISION RECEIVERS

Block Diagram of PAL-D Receivers, Luminance Channel, Chrominance amplifier, Color Burst Separation and Burst phase Discriminators, R, G, B Matrix and Drives.

UNIT-V:SPECIAL TOPICS IN TELEVISION

Digital Tuning Techniques, Remote Control, Introduction to Cable and Satellite Television, Video Tape Recorders, Videodisc system, Fundamental of Digital TV and High Definition Television.

Practical component P : Include case studies / application scenarios Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45Hrs

Text books:

- 1. Gulati. R.R "*Modern Television Practice, Principle of Technology and Servicing*", New Age International Pvt. Ltd., 2002.
- 2. R.R. Gulati "Monochrome and colour television", New age International Publisher, 2003

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code:	Subject Name : OPERATING SYSTEMS	T / L/	L	Τ/	P /	C
BEC17E12		ETL		S.Lr	R	

References:

- 1. Dhake A, M., "Television and Video Engineering", Tata McGraw Hill, 1995.
- 2. Grob. B. Herndon. C.E., "Basic Television and Video Systems", McGraw Hill 1999.

	Depa	ntmer	nt of F	lectro	nics a	nd Co	mmu	nicatio	on Eng	ineerin	g	
	-				tures, C				Ty	3 0	0	3
L : Lecture T	: Tuto	rial S	Lr : Su	pervise	d Learr	ning P	Projec	t R:R	esearch	C: Credi	ts	•
T/L/ETL : Th	eory/L	.ab/Em	bedded	Theory	y and L	ab						
OBJECTIVE	E :											
• T	o have	e an ove	erview	of diffe	rent typ	bes of o	perating	g syster	ns			
• T	o knov	w the co	ompone	ents of a	an opera	ating sy	vstem					
• T	o have	a thore	ough kr	nowledg	ge of pr	ocess n	nanagei	ment				
• T	o have	a thore	ough kr	nowledg	ge of st	orage n	nanager	nent				
• T	o knov	w the co	oncepts	of I/O	and file	e systen	1					
COURSE OU						•						
The Students			,									
				tructure	es and h	istory o	of opera	ating sy	stems.			
CO2	Proce	ss mana	agemen	t conce	epts incl	luding	schedul	ing				
CO3	Be fai	miliar v	vith mu	ltithrea	ding							
CO4	Prese	nt and c	locume	nt conc	epts of	memor	y mana	igemen	t scheme	es.		
CO5	Appre	eciate se	econda	ry stora	ge man	agemei	nt					
Mapping of (Course	e Outco	omes w	ith Pro	ogram (Outcon	nes (PC)s)				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	М	М		М		М	М	Н		
CO2	Н	Н	Н	Н					М	Н	М	
CO3	Н	М	М						М	М		
CO4	Н	М	М							Н	М	М
CO5	Н	М					М			М	М	
COs /	PS	01	PS	02	PS	03						
PSOs												
CO1												
CO2			М		Н							
CO3			М		М							
CO4					Н							
CO5					Μ							
H/M/L indica	tes Str	ength c	of Corre	elation	H- Hi	gh, M-	Mediu	m, L-Lo) W			

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

BEC17E12 OPERATING SYSTEMS

UNIT-I: **INTRODUCTION**

Mainframe Systems - Desktop Systems - Multi Processor Systems - Distributed Systems - Cluster Systems - Real Time Systems-Hardware Protection-System Components-Handheld Systems-Operating System Services-System Calls-System Programs-System Structure-Visual Machines-System Design and Implementation.

UNIT- II: PROCESS MANAGEMENT

Process Concept-Process Scheduling-Operation on Process-Co-operating Processes- Inter Process Communication-Threads-Overview-Multithreading Models. CPU Scheduling-Basic Concepts-Scheduling Criteria-Scheduling Algorithms-Multiple-Processor Scheduling-Real Time Scheduling-Algorithm Evaluation

UNIT -1II: SYNCHRONIZATION ANDDEADLOCKS

Process Synchronization-The Critical Section Problem-Synchronization Hardware-Semaphores-Classical Problems Of Synchronization-Deadlocks-System Model-Deadlock Characterization-Methods Of Handling Deadlocks-Deadlock Prevention-Deadlock Avoidance-Deadlock Detection-Recovery form Deadlock.

UNIT-1V: MEMORY MANAGEMENT

Background-Swapping-Contiguous Memory Allocations - Virtual Memory – Address Translation – Paging – Segmentation – Segmentation with Paging - Static Paging Algorithm – Dynamic Paging Algorithm

UNIT -V: FILES AND SECONDARY STORAGE MANAGEMENT

File Systems - File Concepts - Access Methods - Directory Structure - File System Mounting - File Sharing – Protection – File System Structure – File System Implementation – Recovery – Disk Structure – Disk Scheduling – Disk Management

9 Hrs

3 0 0 3

9 Hrs

9 Hrs

9 Hrs

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45Hrs

Text books:

- 1. Silberschatz, Galvin, GAGNE "Operating System Concepts" John Wiley & Sons INC, 6th Edition, 2002
- 2. William Stallings, "Operating Systems", Prentice Hall of India, 1997.

References:

- 1. D.M. Dhamdhere, "Operating Systems", Tata McGraw Hill, 2002
- 2. Charles Crowley, "Operating Systems: A Design Oriented Approach", Tata McGraw Hill 1999.
- 3. Andrew S. Tanenbaum, "Modern Operating Systems", Prentice Hall of India, 1995.
- 4. Harvey M. Deitel, "Operating Systems", Second Edition, Pearson Education Pvt. Ltd, 2002.

Prerequisite: Oops, Data structures	Ту	3	0	0	3
L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: R	lesearch (C: C	redits		
T/L/ETL : Theory/Lab/Embedded Theory and Lab					

OBJECTIVE :

- To introduce the concepts of windows programming
- To introduce GUI programming using Microsoft Foundation Classes
- To enable the students to develop programs and simple applications using Visual C++
- To make the students to understand the simple application using visual C+++
- To develop a deep knowledge about advanced concept for windows applications.

COURSE OUTCOMES (COs) :

The student												
CO1							ng the t	ools of	visual ei	nvironme	nt in ter	ms of
~~~			nmand									
CO2	Imple	ement s	pecializ	zed new	GUI c	ompone	ents.					
CO3	Appl	y visual	progra	mming	to soft	ware de	evelopn	nent by	designir	ng projec	ts.	
CO4	Use v	visual p	rogram	ming er	nvironn	nent to	create s	imple v	visual ap	plication	s.	
CO5	Motiv	vate to u	underst	and cor	cepts a	nd tool	s for wi	indows	applicat	ions.		
Mapping o	f Cours	e Outc	omes w	ith Pro	ogram (	Outcon	nes (PC	)s)				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	Н	М	Н	М	М	Н	Н	Н	Н	Н
CO2	Н	Н	Η	М	М	Н	Н	М	Н	Н	Н	Н
CO3	Н	Н	Η	Н	М	Н	Н	Н	Н	М	Н	Н
CO4	Н	Н	Н	Н	М	Н	Н	Н	Н	М	Н	Η
CO5	Н	М	Н	М	Н	Н	Н	Н	Н	Н	Н	Η
COs / PSOs	PS	01	PS	02	PS	03						
CO1	Н		Н		М							
CO2	Н		Н		Н							
CO3	Н		М		Н							
CO4	Н		М		Н							<u> </u>
CO5	Н		Н		Н					1		
H/M/L indi	cates Str	ength o	of Corre	elation	H- Hi	gh, M-	Mediu	m, L-Lo	DW		<u>I</u>	<u> </u>

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
					•						
Approval											

#### **BEC17E13** VISUAL PROGRAMMING

#### **UNIT I: FORMS AND CONTROL**

Customizing a Form-Writing Simple Programs-Toolbox-Creating Controls-Name Property-Command Button-Access Keys-

Image Controls-Text Boxes-Labels-Message Boxes-Grid-Editing Tools-Variables-Data Types-String -Numbers.

#### **UNIT II: FUNCTIONS AND EVENTS**

Displaying Information-Determinate Loops-Indeterminate Loops-Conditionals-Built-In Functions-Functions and Procedures- Lists-Arrays-Sorting and Searching-Records-Control Arrays-Combo Boxes-Grid Control-Projects with Multiple forms-Do Events and Sub Main-Error Trapping.

#### **UNIT III:** MENUS AND MOUSE ACTIVITY

VB Objects-Dialogue Boxes-Common Controls-Menus-MDI Forms-Testing, Debugging and Optimization-Working with Graphics- Monitoring Mouse Activity-File Handling-File System Controls-File System Objects-COM/OLE-Automation-DLL Services-OLE Drag and Drop.

#### VISUAL C++ PROGRAMMING **UNIT IV:**

Visual C++ Components - Developing Simple Applications - Microsoft Foundation Classes -Controls – Message Handling

- Document View Architecture - Dialog Based Applications - Mouse and Keyboard Events - Reading and Writing Documents - SDI and MDI Environments - Splitter Windows and Multiple Views.

#### UNIT V: ADVANCED CONCEPTS

Concepts and Tools for Windows Application - Procedure Oriented Windows Applications -Windows Applications using the MFC – Application and Class Wizards – Getting Started with OLE – Getting Started with Active X Controls - COM and DHTML

#### Practical component P : Include case studies / application scenarios

#### **Research component R : Future trends / research areas / Comparative Analysis**

# 9 Hrs

9Hrs

3 00 3

#### 9 Hrs

9 Hrs





#### **Total Number of Hours: 45Hrs**

#### Text books:

- 1. Gary Cornell-"Visual Basic 6 from the Ground Up"-Tata McGraw Hill, New Delhi, 1999
- 2. David Kruglirski J, "Inside Visual C++", Microsoft Press 1993.
- 3. CHRIS H.PAPPAS & WILLIAM H.MURRAY –"*The Complete reference–Visual C++*", Tata McGraw Hill, edition 1999, Chapter 1, 2,3,4,16-27 (IV & V unit)

#### **References:**

- 1. Deitel&Deitel, T.R.Nieto, "Visual Basic 6, How to program", Prentice Hall of India, 1999.
- 2. Lars Klander, "Core visual C++6", Pearson Education Asia, 2000.
- 3. Gray J.Bronson, "A first book of Visual C++", Vikas Publishing House Thomson Learning) 2000.
- 4. Steven Holzner –"Visual Basic 6–Programming Black Book" by Dream tech Press ,edition 2000
- 5. Noel Jerke-"Visual Basic 6(The Complete Reference)"-Tata McGraw Hill, New Delhi1999.

	Dr.M.G.R. Educational and Researc (Deemed to be University U/S 3 of the UGC Act 1956)	h Instit	ute 🌔	ANAAC	
Subject Code	Subject Name : ABIO-SIGNAE PROCESSING Maduravoyal, Chennai - 95	T / L/	L T/	P/	С
<b>BEC17E14</b>	Waduravoyai, Chennai - 95	ETL	S.L	r R	
	DepBiggiggigiter Sizeals and Systands Communicatio	n Enginee	ring 0	0	3
L : Lecture T	Tutorial SLr : Supervised Learning P : Project R : Re	esearch C: C	redits		
T/L/ETL : Th	ory/Lab/Embedded Theory and Lab				
OBJECTIV	•				
□ To in	oduce the concepts of spectrum in biosignal				
□ To in	oduce adaptive filtering and wavelet detection in biosign	nal.			
□ To ur	erstand the biosignal classification and recognition				



COURSE O			<b>Os</b> ):									
The students												
CO1	Identi	Identify various types of signals.										
CO2	Solve	probler	ns in tin	ne serie	s analys	sis.						
CO3	Imple	ment va	rious ac	laptive	filters.							
CO4	Classi	fy and 1	ecogniz	the b	io signa	ls						
CO5	Be aw	vare of a	pplicati	ons of l	bio sign	al proce	essing					
Mapping of	Course	Outcor	nes witl	h Prog	ram Ou	itcomes	s (POs)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Η	Н	М		М				Н		Н
CO2	Н	Н	Н	Н		Μ			Н	Н	Н	Н
CO3	Н	Н	Н	Н	Н				Н	Н	М	М
CO4	Н	Н	Н	М	М				М	М	М	Н
CO5	Н	М	М			М		М				
COs / PSOs	PS	01	PS	02	PS	03						
CO1	Н				Н							
CO2	Н				Η							
CO3	Н		Н		Η							
CO4	Н				Н							
CO5					М							
H/M/L indica	ites Stre	ngth of	Correla	tion H	I- High	, M- Me	edium, l	L-Low	I			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
Approval		1	1	1	1	1	1	I	1		1	1



#### **UNIT I: SIGNAL, SYSTEM AND SPECTRUM**

Characteristics of Some Dynamic Signals – Bio-Electric Signals, Impedance, Acoustic Signals, Mechanical Signals, Bio-Magnetic Signals, Bio-Chemical Signals, Signal Conversion – Simple Signal Conversion Systems, Conversion Requirements for Bio-Medical Signals. Basics of Digital Filtering – FIR and IIR filters. Spectral Analysis – Power Spectral Densities Function, Cross Spectral Density and Co-Herence Function, Cepstral Analysis and Homomorphic Filtering, Estimation of Mean with Finite Time Signal

#### UNIT II: TIME SERIES ANALYSIS AND SPECTRAL ESTIMATION 9 Hrs

Time Series Analysis – Linear Prediction Models, Process Order Estimation, Attic Representation, Non-Stationary Process, Adaptive Segmentation, Model Based ECG Simulator, Spectral Estimation – Blackman Turkey Method, Periodogram and Model Based Estimation.

#### UNIT III:ADAPTIVE FILTERING AND WAVELET DETECTION

Filtering – LMS adaptive filter, adaptive noise canceling in ECG, improved adaptive filtering in FECG. Wavelet detection in ECG – Structural, features, matched filtering, adaptive wavelet detection, detection of overlapping wavelets.

#### UNIT IV:BIOSIGNAL CLASSIFICATION AND RECOGITION

Signal classification and recognition – statistical signal classification, linear discriminate function, direct feature selection and ordering, Back propagation neural network based classification.

#### UNIT V:SELECTED TOPICS IN BIO-SIGNAL PROCESSING

Application of wavelet transform on Bio-signal – TFR representation, ECG data compression, ECG characterization, Application of Chaos theory on Biomedical signals, Software implementation of signal processing algorithms on biomedical signals.

#### Practical component P : Include case studies / application scenarios

**Research component R : Future trends / research areas / Comparative Analysis** 

#### **Total Number of Hours: 45Hrs**

#### **Text books:**

- 1. VallaruRao and HayagivaRao, "C++ Neural Networks and Fuzzy Logic", BPS Publication, New Delhi, 1996
- 2. Special topics on" *The Applications of Chaos Theory on Bio-Signal*", Journal of IEEE Engg. In Medicine and Biology Magazine, October, 1996.

#### **References:**

- 1. Willies J Tompkins, "Bio-medical Digital Signal Processing" Prentice Hall, New Jersey, 1993.
- 2. Samuel D. Stearns Ruth A. David, "Signal Processing Algorithms using FORTRAN and C", Prentice Hall, New Jersey, 1993.

#### 10 Hrs

#### 8 Hrs

9Hrs



	Depa	rtmen	t of E	lectro	nics a	nd Co	ommu	nicati	on Eng	ineerin	g	
					Signals				Ту	3 0	0	3
L : Lecture T	: Tutor	ial Sl	Lr : Suj	pervise	d Learr	ning P	: Proje	ct R: H	Research	C: Credi	ts	
T/L/ETL : Th	eory/L	ab/Emł	bedded	Theory	y and L	ab						
OBJECTIV	E :											
• To s	tudy t	he im	age fu	ndame	ntals a	ind ma	athemat	tical tr	ansforms	necess	ary for	image
proce	essing.											
	udy the	-				ques						
	udy ima	•		•								
	udy the	•	-		<b>•</b>							
	udy the			ntation	and re	present	ation te	echniqu	les			
COURSE O												
The students CO1				tical tre	ansform	s of im	ana nr	ocassin	a			
001	50170		unema		11510111	15 01 111	lage pro	JCCSSIII	g.			
CO2				-	transfor		-					
CO3	Discu	iss the i	image e	enhance	ement t	echniq	ues.					
CO4	Mode	el and r	estore i	mage ı	using fi	lters.						
CO5	Proce	ess an ii	nage th	rough	various	s image	proces	sing te	chniques			
Mapping of	Course	Outco	omes w	ith Pro	ogram	Outcor	nes (P	Os)	•			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	Н	М	Н		Н	М	Н	М	Н	Н
CO2	Н	Н	М	М	Н	Н	М	М	Н	М	Н	
CO3	Н	М	Н	М	М	Н	М	М	М	Н	Н	Н
CO4	М	Н	Н	Н	Η	М	М		М		Μ	Н
CO5		М	Н	Н	Η	М	М		М	М	Н	Н
COs / PSOs	PS	01	PS	O2	PS	03						
CO1	Н		Н		М							
CO2	М		Н									
CO3	М		Н		Η							
CO4	М		Н		Η							
CO5	Η		Μ		Μ							
H/M/L indica	tes Stre	ength of	f Corre	lation	H- Hi	gh, M-	Mediu	m, L-L	ow	r	1	
			lı					ical				
<b>C</b> (		ces	Social					chn				
Category		cien	d S		ives		ect	II Te				
	Ices	g Sc	and	ore	ecti	ives	Proj	ps / J Skill				
	cier	ini,	ties	ιČ	ιEl	lect	1/1	idst	IIIs			
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
	3asi	igu	Hum	rog	rog	Dpe	rac	In	oft			
			ЧS	Щ	ЦЦ			L		L	I	I

			~				
Approval							

#### 3 0 0 3 **BEC17E15** DIGITAL IMAGE PROCESSING

#### UNIT I: CONTINUOUS AND DISCRETE IMAGES AND SYSTEMS

Light, Luminance, Brightness and Contrast, Eye, The Monochrome Vision Model, Processing Problems and Applications, Vision Camera, Digital Processing System, 2-D Sampling Theory, Aliasing, Image Quantization, Lloyd Max Quantizer, Dither, Color Images, Linear Systems And Shift Invariance, Fourier Transform, Z-Transform, Matrix theory Results, Block Matrices and Kronecker Products.

#### **UNIT II: IMAGE TRANSFORMS**

2-D Orthogonal and Unitary Transforms, 1-D and 2-D DFT, Cosine, Sine, Walsh, Hadamard, Haar, Slant, Karhunen-Loeve, Singular Value Decomposition Transforms.

#### **IMAGE ENHANCEMENT** UNIT III:

Point Operations- Contrast Stretching, Clipping and Thresholding Density Slicing, Histogram Equalization, Modification and Specification, Spatial Operations – Spatial Averaging, Low Pass, High Pass, Band Pass Filtering, DirectionSmoothing, Medium Filtering, Generalized Cepstrum and Homomorphic Filtering, Edge Enhancement using 2-D IIR and FIR filters, Color Image Enhancement

#### **UNIT IV: IMAGE RESTORATION**

Image Observation Models, Sources of Degradation, Inverse and Wiener Filtering, Geometric Mean Filter, Non-Linear Filters, Smoothing Splines and Interpolation, Constrained Least Squares Restoration.

#### UNIT V: IMAGEDATA COMPRESSION AND IMAGE RECONSTRUCTION FROM **PROJECTION**

Image Data Rates, Pixel Coding, Predictive Techniques, Transform Coding and Vector DPCM, Block Truncation Coding, Wavelet Transform Coding of Images, Color Image Coding, Random Transform -Introduction to Python Programming- Introduction to OpenCV-Python

#### **Practical component P : Include case studies / application scenarios**

#### Research component R : Future trends / research areas / Comparative Analysis

#### **Total Number of Hours: 45Hrs**

#### Text books:

- 1. Anil K. Jain, "Fundamentals of Digital Image Processing", PHI 1995.
- 2. Milan Sonka," Image Processing-Analysis and Machine vision", Thomson Learning. 2nd Edition.
- 3. AlasdarMcAndrew, "Introduction to Digital Image Processing", Thomson Learning 2004.

#### **References:**

1. M.A. Sid Ahmed, "Image Processing", McGraw Hill, Inc, 1995.

# 9Hrs

9 Hrs

9 Hrs

#### 9 Hrs

	T.M.G.R. Educational and Researc (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	h Ins	titu	te	AAC	
Subject Code:	Subject Name MACURANONEL WORRSAND95	Τ/	L	Τ/	<b>P</b> /	С
BEC17E16 D	eFastAPPHI of Electronics and Communication	n <mark>Æng</mark> i	neeri	ngLr	R	
	-	ETE		U		
	Prerequisite:None	Ту	3	0	0	3

- R. Gonzalaz and P. Wintz, "*Digital Image Processing*", Addition Wesley 2nd Ed, 1987.
   William. K. Pratt, "*Digital Image Processing*", Wiley Inter Science, 2nd Ed, 1991.
- 4. John V Guttag. "Introduction to Computation and Programming Using Python", Prentice Hall of India
- 5. https://opencv-python-tutroals.readthedocs.io/en/latest/



L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

#### **OBJECTIVE :**

• To study the various neural network algorithms and its application in pattern recognition.

# COURSE OUTCOMES (COs) :

The students	will be able to
CO1	Describe the basic concepts of art neural networks.
CO2	Explain about BPN and BAM
CO3	Implement the concept of simulated annealing and CPN
CO4	Interpret the concepts of SOM and ART.
CO5	Implement BPN algorithm.

#### Mapping of Course Outcomes with Program Outcomes (POs)

mapping or							-		1			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	М	М	М						Н	М	Н
CO2	Н	Н	М	М						Н		М
CO3	Н	Н	Η	Η	Н	М	М	М	Н	М	Н	М
CO4	Н	М	Н	Η	М					Н		М
CO5	Н	Н	Н	Η	М		М					
COs / PSOs	PS	501	PS	02	PS	03						
CO1			М		М							
CO2			М		Н							
CO3	М				Н							
CO4					Н							
CO5			М									
H/M/L indica	ates Str	ength of	Correl	ation	H- Hig	h, M- N	Aedium	, L-Lov	v			
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	<ul> <li>▲ Program Electives</li> </ul>	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
<u>A noncorrel</u>					✓							
Approval												



#### 3 003 **BEC17E16 NEURAL NETWORKS AND ITS APPLICATIONS**

#### **UNIT I: INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS**

Neuro – Physiology – General Processing Element – ADALINE – LMS Learning Rule – MADALINE – Perception Networks

#### UNIT II: BPN AND BAM

Back Propagation Network - Updating of Output and Hidden Layer Weights - Application of BPN -Associative Memory - Bi-Directional Associative Memory - Hopfield Memory - Traveling Sales Man Problem

#### UNIT III: SIMULATED ANNEALING AND CPN

Annealing, Boltzmann Machine - Learning - Application - Counter Propagation Network -Architecture – Training – Application.

#### **UNIT IV: SOM AND ART**

Self-Organizing Map – Learning Algorithm – Feature Map Classifier – Applications – Architecture of Adaptive Resonance Theory - Pattern Matching in ART Network.Neocognitron: Architecture of Neocognitron – Data Processing and Performance of Architecture of Spacio – Temporal Networks for Speech Recognition

#### UNIT V CASE STUDY

Implementation of BPN Algorithm in a Computer Language - Application of Neural Networks for Pattern Recognition - Data Comparison - Hopfield Networks for an n-bit A/D Converter

#### Practical component P : Include case studies / application scenarios

#### Research component R : Future trends / research areas / Comparative Analysis

#### **Total Number of Hours: 45Hrs**

#### Text books:

- 1. Hagan, "Neural Networks Design", Thomson Learning.
- 2. J.A. Freeman and B.M. Skapura, "Neural Networks, Algorithms Applications and Programming Techniques", Addison-Wesley, 1990.

#### **References:**

1. Laurence Fausett, "Fundamentals of Neural Networks: Architecture, Algorithms and Applications", Prentice Hall, 1994.

# 9 Hrs

# 9 Hrs

#### 9 Hrs

9 Hrs





2. Simon Haykin, "Neural Networks and Learning Machines" -3/E - Pearson/ Prentice Hall 2009



## **OBJECTIVE :**

- To introduce the concepts in internal programming model of Intel family of microprocessors.
- To introduce the programming techniques using MASM, DOS and BIOS function calls.
- To introduce the architecture programming and interfacing of 16 bit microcontrollers.
- To introduce the concepts and architecture of RISC processor

# **COURSE OUTCOMES (COs) :**

The student	s will be	able to	,									
CO1	Expla	Explain the generalized architecture of advanced microprocessor										
CO2	Devel	Develop algorithm/ program of advanced microprocessor or a particular task										
CO3	Appre	eciate the	e micro	process	or base	ed syste	m desig	gn				
CO4	Analy	Analyze the MOTOROLA MC 68000 family										
CO5	Descr	Describe about the various RISC processors										
Mapping of	f Cours	e Outco	mes wi	th Prog	gram C	Outcom	es (PO	s)				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	H H M M M H H										
000	TT	тт	TT	тт	3.4	3.4		3.4	тт	тт	TT	TT

CO2	Н	Н	Н	Н	М	М		М	Н	Н	Н	Н
CO3	Н	Н	М	М			М	М		Н	М	Н
CO4	Н	Н	Н	Η			Н		М	Μ	Н	М
CO5	Н	Н	Н	Η					Н	Н		
COs / PSOs	PS	501	PS	02	PS	03						
CO1	Н		М									
CO2	Н		Н									
CO3	Н		М		М							
CO4	Н				М							
CO5	Н				Н							
H/M/L indica	ates Str	ength of	Correl	ation	H- Hig	h, M- N	Medium	n, L-Lov	V			
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
					•							



**BEC17E17** ADVANCED MICROPROCESSORS

#### **UNIT I: THE INTEL X86 FAMILY**

Approval

The Intel X86 Family Architecture, 32 bit Processor Evolution Systems Connections and Timing, Instruction and Data Formats, Instruction set of X86 Processors, Addressing Modes.

#### UNIT II: INTEL X86 ASSEMBLY LANGUAGE PROGRAM

Implementation of Strings, Procedures, Macros, BIOS and DOS Services using X86 Assembly Language Programming, Memory and I/O Interfacing, Analog Interfacing and Industrial Control.

#### **UNIT III:** SYSTEM DEVELOPMENT

Microprocessors Based System Design, TMS 320 Series DSP Based Signal Processing, Microcontroller 8096 Architecture, Addressing mode and system design.

#### THE MOTOROLA MC 68000 FAMILY **UNIT IV:**

The MC 68000 Architecture, CPU Registers, Data Formats, Addressing Modes, Instruction Set and Assembler Directors, Memory Management Instruction and Data, Caches, Exception Processing.

#### UNIT V: **RISC PROCESSORS**

RISC vs CISC, RISC Properties and Evaluation, Advanced RISC Microprocessors, DEC ALPHA, The Power PC family. The SUN SPARC Family, the MIPS RX 100 Family, the Intel 860 Family. The Motorola M88000 Family, HP Precision Architecture.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

**Total Number of Hours: 45Hrs** 

### Text books:

- B.B. Bery, "The Intel Microprocessors 8086 / 8088, 80186 / 80188, 80286, 80386, 80486, PENTIUM, andPENTIUM Processors", Prentice Hall, 1997.
   K Udayakumar, B.S. Uma Shankar, "Advanced Microprocessors and IBM PC Assembly
- Language Programming", Tata McGraw Hill, 1996.

### **References:**





9 Hrs

9 Hrs

3003

9 Hrs

9 Hrs



	anartmont of Floctronics and Communication					
Subject Code:	Subject Name : DATABASE MANAGEMENT	T7"8	Ľ	19/	<b>P</b> /	С
<b>BEC17E18</b>	SYSTEMS	L/		S.Lr	R	
		ETL				
1 Daniel Tabels "A dygu and Misnenne ang ang" McCrowy Hill 1005						

- 1. Daniel Tabak, "Advanced Microprocessors", McGraw Hill, 1995.
- 2. Douglas V. Hall, "Microprocessors and Interfacing–Programming Hardware", McGraw Hill, 1992.
- 3. W.A. Tribel& A. Singh, "*The 68000 and 68020 Microprocessors–Architecture, Software and InterfacingTechniques*", Prentice hall of India, 1991
- 4. Rifiquzzaman, "Microprocessors-Theory and Applications: Intel and Motorola", Prentice Hall, 1992.
- Kenneth J. Ayala, "The 8051 Microcontroller, Architecture, Programming and Application", Penram International Publishing (India), 1996.
- 6. John Peatman, "Design with Microcontrollers", McGraw Hill International, 1988.



3

Prereq	Prerequisite: C++ and Data structures							
L : Lecture T : Tutorial	SLr : Supervised Learning P : Project R : F	Research	C: Cre	edits				

T/L/ETL : Theory/Lab/Embedded Theory and Lab

#### **OBJECTIVE :**

- To learn the fundamentals of data models and to conceptualize and depict a database system using ER diagram
- To make a study of SQL and relational database design
- To understand the internal storage structures using different file and indexing techniques
- To know the fundamental concepts of transaction processing- concurrency control techniques and recovery procedure

#### COURSE OUTCOMES (COs) :

The students	will be able to
CO1	Master the basic concepts of database systems.
CO2	Identify and construct queries using SQL
CO3	Be familiar with relational database theory
CO4	Write SQL program for queries
CO5	Work successfully on a team by design and developing database management systems

#### Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	Н	Н		М		М		Н	Н	Н
CO2	Η	Н	Η	М	Н	М			М	Н	М	Н
CO3	Н	М	М	Н				М		Н	М	М
CO4	Н	Н	М	М	Н				Н		Η	М
CO5	Н	Н	М	Н	Н	М	Н		Н	М	Н	М
COs / PSOs	PSO1		PSO2		PSO3							
CO1	Н		М		Н							
CO2	Н		М		Н							
CO3	Н		Н		М							
CO4	Н		Н		М							
CO5	Н Н			Н								
H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low												



Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

#### BEC17E17 DATABASE MANAGEMENT SYSTEMS

#### **UNIT-I :INTRODUCTION**

Definition -Need for a DBMS-Uses of DBMS- Advantages and Disadvantages of DBMS

Database and Database users- View of Data –Architecture-Data Models-Data Dictionary –Database Languages

3 0 0 3

9 Hrs

9 Hrs

9 Hrs

#### UNIT II:RELATIONAL APPROACH

Relational Model-Structure of a Relational Database-Relational Algebra- Tuple Relational Calculus-Domain Relational Calculus-SQL-Embedded SQL-Query Languages

#### UNIT III:RELATIONAL DATABASE DESIGN

Relational Database Design-Integrity Constraint-Pitfalls and Design –Functional Dependency-Normalization-Entity Relationship Model-Storage and File Structure-Indexing and Hashing-Basic Concepts-B+ tree Index File-B+ tree Index File-Static Hashing –Dynamic Hashing.

#### UNIT IV:OBJECT ORIENTED RELATIONAL DATABASE TECHNOLOGY 9 Hrs

Concepts for Object Oriented Data Model – Object Oriented Database Languages -Persistent Programming Language-Object Relational Databases. System Implementation techniques: Query Processing-Transaction Processing-Concurrency Control-Recovery System.

#### UNIT V :ENHANCED DATA MODELS FOR ADVANCED APPLICATIONS 9 Hrs

Database System Architecture- Client Server System-Centralized Systems-Parallel Systems-Distributed Databases

#### Practical component P : Include case studies / application scenarios

#### **Research component R : Future trends / research areas / Comparative Analysis**



#### **Total Number of Hours: 45Hrs**

#### Text books:

- 1. Abraham Silberschatz, Henry F.korth, S.Sudharshan, "Database system concepts" 4th Edition, Tata McGraw-Hill, 1997
- 2. RamezElmasri, ShamkantB.Navathe, "Fundamentals of database systems", 4th edition Pearson Education-2002

#### **References:**

- 1. C.J.Date, "An Introduction to Database systems", 7th Edition, Pearson Education, 1997.
- 2. Raghu Ramakrishnan, "Database Management Systems", WCB McGraw Hill, 1998.
- 3. BipinC.Desai, "An Introduction to Database Systems", Galgotia publications, 2001