

SEMESTER – I

Course	Course Title	С	L	T/SLr	P/R	Ty/Lb/ETL			
Code									
BEN17001	TECHNICAL ENGLISH –I	2	1	0/0	2/0	Ту			
BMA17001	MATHEMATICS – I/			1 10	0.10	_			
BMA17002	BIO MATHEMATICS (FOR BIOTECH)	4	3	1/0	0/0	Ту			
BPH17001	ENGINEERING PHYSICS	3	2	0/1	0/0	Ту			
BCH17001	ENGINEERING CHEMISTRY –I	3	2	0/1	0/0	Ту			
BES17001	BASIC ELECTRICAL & ELECTRONICS ENGINEERING	3	2	0/1	0/0	Ту			
BES17002	BASIC MECHANICAL & CIVIL ENGINEERING	3	2	0/1	0/0	Ту			
ANNUAL PATTERN (PRACTICALS)*									
BES17ET1	BASIC ENGINEERING GRAPHICS	2	1	0/0	2/0	ETL			
BPH17L01	ENGINEERING PHYSICS LAB	1	0	0/0	2/0	Lb			
BCH17L01	ENGINEERING CHEMISTRY LAB	1	0	0/0	2/0	Lb			
BES17L01	BASIC ENGINEERING WORSHOP	1	0	0/0	2/0	Lb			
BES17ET2	C PROGRAMMING AND LAB	2	1	0/0	2/0	ETL			
BES17ET3	ENTREPRENEURIAL SKILL DEVELOPMENT & PROJECT LAB	1	0	0/0	2/0	ETL			

Credits Sub Total:26

C: Credits L : Lecture T: Tutorial S.Lr: Supervised Learning P: Problem / Practical R: Research Ty/Lb/ETL : Theory /Lab/Embeddded Theory and Lab * Internal Evaluation

Course **Course Title** С Ty/Lb/ETL L T/SLr P/R Code BEN17002 TECHNICAL ENGLISH – II 2 0/0 2/0 Ty 1 BMA17003 MATHEMATICS – II / 4 3 1/00/0 Тy BMA17004 **BIO STATISTICS (FOR BIOTECH)** BPH17002 MATERIAL SCIENCE 3 2 0/10/0 Τy BCH17002 ENGINEERING CHEMISTRY - II 3 2 0/1 0/0 Тy BES17003 ENVIRONMENTAL SCIENCE 3 0 3 0/0 Тy

SEMESTER – II

Credits SubTotal:15

SEMESTER – III

Theory:

Course Code	Course Title	С	L	T/SLr	P/R	Ty / Lb/
						ETL
BMA17007	PROBABILITY AND RANDOM PROCESS	4	3	1/0	0/0	Ту
BEC17001	CIRCUIT THEORY	4	3	1/0	0/0	Ту
BEC17002	DIGITAL ELECTRONICS	4	3	1/0	0/0	Ту
BEC17003	SOLID STATE DEVICES	3	3	0/0	0/0	Ту
BCS17I01	C++ AND DATA STRUCTURES (INTER DISCIPLINARY THEORY 1)	3	3	0/0	0/0	Ту

BEC17ET1	ELECTRICAL MACHINES AND PCB	3	2	0/0	2/0	ETL
	DESIGN					
BEC17L01	CIRCUITS AND DEVICES LAB	1	0	0/0	3/0	Lb
BEC17L02	DIGITAL SYSTEM DESIGN LAB	1	0	0/0	3/0	Lb

BCS17IL1	C++ AND DATA STRUCTURES	1	0	0/0	3/0	Lb
	LAB(INTER DISCIPLINARY LAB 1)					

Credits Sub Total: 24

C: Credits L: Lecture T: Tutorial S.Lr : Supervised Learning P : Problem / Practical R : Research Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab

* Internal evaluation (Departmental level Refer Annexure for evaluation methodology)

SEMESTER – IV

Theory:

Course Code	Course Title	С	L	T/SLr	P/R	Ty / Lb/ ETL
BMA17012	MATHEMATICS IV FOR ELECTRONICS ENGINEERS	4	3	1/0	0/0	Ту
BEC17004	CONTROL SYSTEMS FOR ELECTRONICS ENGINEERS	4	3	1/0	0/0	Ту
BEC17005	SIGNALS AND SYSTEMS	4	3	1/0	0/0	Ту
BEC17006	ELECTRONIC CIRCUITS	3	3	0/0	0/0	Ту
BCS17I02	COMPUTER NETWORKS (INTER DISCIPLINARY THEORY 2)	3	3	0/0	0/0	Ту

BSK17ET1	SOFT SKILL 1 CAREER &	2	1	0/1	0/0	ETL
	CONFIDENCE BUILDING					
BEC17ET2	ANALYSIS OF ELECTRO MAGNETIC	3	1	0/1	2/0	ETL
	FIELD THEORY					
BEC17L03	ELECTRONIC CIRCUITS LAB	1	0	0/0	3/0	Lb
BEC17L04	DIGITAL SIMULATION LAB	1	0	0/0	3/0	Lb
BCS17IL2	COMPUTER NETWORKS LAB (INTER	1	0	0/0	3/0	Lb
	DISCIPLINARY LAB 2)					
BEC17TS1	TECHNICAL SKILL I (CERTIFICATE	1	0	0/0	3/0	Lb
	COURSE)					

Credits Sub Total: 27

C: Credits L: Lecture T: Tutorial S.Lr : Supervised Learning P : Problem / Practical R : Research Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab

* Internal evaluation (Departmental level Refer Annexure for evaluation methodology)

SEMESTER – V

Theory:

Course	Course Title	С	L	T/SLr	P/R	Ty/
Code						Lb/
						ETL
BEC17007	TRANSMISSION LINES AND WAVE	4	3	1/0	0/0	Ту
	GUIDES					
BEC17008	DIGITAL SIGNAL PROCESSING	4	3	1/0	0/0	Ту
BEC17009	MICROPROCESSOR AND	3	3	0/0	0/0	Ту
	MICROCONTROLLER					
BEC17010	COMMUNICATION SYSTEMS	3	3	0/0	0/0	Ту
BEI17I01	MEASUREMENT AND	3	3	0/0	0/0	Ту
	INSTRUMENTATION (INTER					
	DISCIPLINARY THEORY 3)					

BEC17ET3	DESIGN AND IMPLEMENTATION OF	3	1	0/0	2/0	ETL
	LINEAR INTEGRATED CIRCUITS					
BEC17L05	COMMUNICATION LAB - I	1	0	0/0	3/0	Lb
BEC17L06	MICRO PROCESSOR AND	1	0	0/0	3/0	Lb
	MICROCONTROLLER LAB					

	SIMULATION OF ELECTRICAL AND	1	0	0/0	3/0	Lb
BEE17IL1	ELECTRONICS CIRCUITS USING					
	PSPICE(INTER DISCIPLINARY LAB 3)					
BEC17TS2	TECHNICAL SKILL II (CERTIFICATE)	1	0	0/0	3/0	Lb
BEC17L07	INPLANT TRAINING	1	0	0/0	3/0	Lb

Credits Sub Total: 25

C: Credits L: Lecture T: Tutorial S.Lr : Supervised Learning P : Problem / Practical R : Research Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab

* Internal evaluation (Departmental level Refer Annexure for evaluation methodology)

SEMESTER – VI

Theory:

Course Code	Course Title	С	L	T/SLr	P/R	Ty/
						Lb/
						ETL
BEC17011	DIGITAL COMMUNICATION	4	3	1/0	0/0	Ту
BEC17012	ANTENNA AND WAVE PROPAGATION	3	3	0/0	0/0	Ту
BEC17EXX	ELECTIVE I	3	3	0/0	0/0	Ту
BME17I04	BASICS OF ROBOTICS (INTER DISCIPLINARY THEORY 4)	3	3	0/0	0/0	Ту
BEC17OE1	OPEN ELECTIVE	3	3	0/0	0/0	Ту

BSK17ET2	SOFT SKILL II QUALITATIVE AND QUANTITATIVE SKILLS	2	1	0/1	0/0	ETL
BEC17L08	COMMUNICATION LAB II	1	0	0/0	3/0	Lb
BEC17L09	ROBOTICS LAB	1	0	0/0	3/0	Lb
BEC17L10	OPEN CV - PYTHON FOR DIGITAL IMAGE PROCESSING LAB	1	0	0/0	3/0	Lb
BEC17L11	MINI PROJECT	1	0	0/0	3/0	Lb
BEC17TS3	TECHNICAL SKILL III	1	0	0/0	3/0	Lb

Credits Sub Total: 23

C: Credits L: Lecture T: Tutorial S.Lr : Supervised Learning P : Problem / Practical R : Research Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab

* Internal evaluation (Departmental level Refer Annexure for evaluation methodology)

SEMESTER – VII

Theory:

Course Code	Course Title	С	L	T/SLr	P/R	Ty/
						Lb/
						ETL
	INTRODUCTION TO VLSI AND	4	3	1/0	0/0	T
BEC17013	EMBEDDED SYSTEM DESIGN					Ту
BEC17014	OPTICAL COMMUNICATION AND	4	3	1/0	0/0	Tv
DECITOIT	NETWORKS					19
BEC17EXX	ELECTIVE II	3	3	0/0	0/0	Ту
BEC17EXX	ELECTIVE III	3	3	0/0	0/0	Ту
BMG17001	PRINCIPLES OF MANAGEMENT	3	3	0/0	0/0	Ту

Practical:

BEC17ET4	ELECTIVE (INTERNET OF THINGS)	3	1	0/0	2/2	ETL
BEC17L12	MICROWAVE AND OPTICAL COMMUNICATION LAB	1	0	0/0	3/0	Lb
BEC17L13	VLSI AND EMBEDDED SYSTEM DESIGN LAB	1	0	0/0	3/0	Lb
BEC17L14	PROJECT PHASE I	2	0	0/0	3/1	Lb
BFL17001	FOREIGN LANGUAGE (EVALUATION)	2	1	1		

Credits Sub Total: 26

C: Credits L: Lecture T: Tutorial S.Lr : Supervised Learning P : Problem / Practical R : Research Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab

* Internal evaluation (Departmental level Refer Annexure for evaluation methodology)

SEMESTER – VIII

Theory:

Course Code	Course Title	С	L	T/S	P/R	Ту /
				Lr		Lb/ ETL
BEC17EXX	ELECTIVE IV	3	3	0/0	0/0	Ту
BEC17EXX	ELECTIVE V	3	3	0/0	0/0	Ту
BMG17003	TOTAL QUALITY MANAGEMENT	3	3	0/0	0/0	Ту

C : Credits L : Lecture T : Tutorial S.Lr : Supervised Learning P : Problem / Practical R : Research

Ty/Lb/ETL : Theory/Lab/Embedded Theory and Lab

* Internal evaluation (Departmental level Refer Annexure for evaluation methodology)

4 Credit papers should compulsorily have either P/R component.

Credit Summary

Semester : 1 :18 Semester : 2 : 23 Semester : 3 : 24 Semester : 4 : 27 Semester : 5 : 25 Semester : 6 : 23 Semester : 7 : 26 Semester : 8 : 19

Total Credits : 185

Department of Electronics and Communication Engineering LIST OF ELECTIVES

	1	1			1	1
S.No	Sub. Code	Title of the Subject	L	Т	Р	С
1.	BEC17E01	Biomedical Instrumentation	3	0	0	3
2.	BEC17E02	Pattern Recognition	3	0	0	3
3.	BEC17E03	Device Modeling	3	0	0	3
4.	BEC17E04	Quantum computing	3	0	0	3
5.	BEC17E05	Microwave Engineering	3	0	0	3
6.	BEC17E06	Real Time Operating Systems	3	0	0	3
7.	BEC17E07	Power Electronics	3	0	0	3
8.	BEC17E08	Cryptography and -Network Security	3	0	0	3
9.	BEC17E10	Disaster Management	3	0	0	3
10.	BEC17E11	Television & Video Engineering	3	0	0	3
11.	BEC17E12	Operating Systems	3	0	0	3
12.	BEC17E13	Visual Programming 3		0	0	3
13.	BEC17E14	Bio-Signal Processing	3	0	0	3
14.	BEC17E15	Digital Image Processing	3	0	0	3
15.	BEC17E16	Neural networks and its Applications	3	0	0	3
16.	BEC17E17	Advanced Microprocessors	3	0	0	3
17.	BEC17E18	Database Management Systems	3	0	0	3
		LIST OF OPEN ELECTIVES			•	•
S.No	Sub.Code	Title of the subject	L	T	Р	C
1.	BEC17OE1	Cellular mobile communication	3	0	0	3
2.	BEC17OE2	Satellite Communication	3	0	0	3
3.	BEC17OE3	3 Radar & Navigational Aids 3 0		0	3	
4.	BEC17OE4	ADHOC and Sensor Network 3 0		0	0	3
5.	BEC17OE5	Multimedia compression techniques	3	0	0	3

SEMESTER - I

DEPARTMENT OF ENGLISH

Subject Code	:	Subject Name : TECHNICAL ENGLISH - I	C	L	T/SLr	P/R				
BEN17001		Prerequisite : None	2	1	0/0	2/0				
L : Lecture T	: Tutor	ial SLr : Supervised Learning P : Project R : Researc	h C: C	Credits		4				
T/L/ETL : Th	eory / I	Lab / Embedded Theory and Lab								
OBJECTIVE	S :									
1. Strength	en their	vocabulary in both technical and business situations								
2. Get prac	tice in t	functional grammar								
3. Learn th	e effect	ive way of corresponding with officials								
4. Learn to	give in	structions, suggestions, recommendations and compre	hend							
and infe	r the inf	formation from the given passages.								
5. Strain le	5. Strain learners in organized academic and professional writing in LSRW skills									
COURSE OU	JTCOM	IES (Cos) : (3 – 5)								
Students com	pleting	the course were able to								
CO1 Stre	engthen	their active and technical vocabulary								
CO2 Une	derstan	d functional grammar and gain proficiency in technica	l writi	ng						
CO3 Lea	irn the	appropriate technique of writing formal and business	letter	s and	prepare ones	self to				
rea	read the advertisement and prepare the resume relevantly									
CO4 Lea	Learn to give instructions, suggestions, recommendations and comprehend and infer the									
info	ormatio	n from the given passages								
CO5 Foc	cus on a	cademic and technical writing								
Mapping of C	Course (Dutcomes with Program Outcomes (POs)								

Dr.M.G.R.	Educational and Research Institute	A NAAC
	(Deemed to be University U/S 3 of the UGC Act 1956)	***
Standard () B 1 Stat ()	An ISO 9001:2008 Certified Institution	
THOSE TO CALL	Maduravoyal, Chennai - 95	

COs/POs	PO1	PO2	PO3	PO4	PO5	РО	PO7	PO8	PO	PO10	PO1	PO1
						6			9		1	2
C01				Н						Н		Н
CO2				Н						Н		Н
CO3				Н		М			Η	Н		Н
CO4				Н					Н	Н		Н
CO5				Η					Н	Н		Н
H/M/L ind	icates stre	ength of co	orrelation	H – H	ligh, M	– Med	ium,	L – Low				
Categor	Basic	Engg	Human	iti P	rogra	Progr	a (Open	Practic	a Inte	rnship	Soft
У	Science	Science	es &	m	core	m	1	Elective	1 /	s /		Skill
	s	S	Social			Electi	ive s	5	Project	t Tec	hnical	s
			Science	s		s				Ski	lls	
Approval			1			1			1	I		1

BEN17001

TECHNICAL ENGLISH I

1. Vocabulary, Grammar and Usage - I

Meanings of words and phrases, synonyms and antonyms – affixes: prefixes and suffixes and word formation – nominal compounds, expanding using numbers and approximation – Verb: tense, auxiliary and modal –Voice: active, passive and impersonal passive

2. Vocabulary, Grammar and Usage - II

Infinitives and Gerunds – preposition, prepositional phrases, preposition + relative pronoun-'If' clause, sentences expressing 'cause and effect', 'purpose', Instructions, suggestions and recommendations

3. Reading

Questions: Wh-pattern, Yes/no questions, tag questions

Comprehension: extracting relevant information from the text, by skimming and scanning and inferring, identifying lexical and contextual meaning for specific information, identifying the topic sentence and its role in each paragraph, comprehending the passage and answering questions - Précis writing

4. Writing

Adjectives: degrees of comparison

Concord: subject-verb agreement

Interpretation of tables and flowcharts: writing a paragraph based on information provided in a table using comparison and contrast, classifying the data and flowchart, describing logical steps involved in specific

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

2 1 0/0 2/0

(6)

(6)

(6)

(6)

functions, note - making from a given passage- letter writing, formal: seeking permission to undergo practical training, letter to an editor of a newspaper complaining about civic problems and suggesting suitable solutions

5. Functional English and Practical Components

(6)

Listening : Listening to stories, conversation, dialogue, speeches of famous people, and identifying the grammar

components

Speaking : Scripting and enacting role plays/ narrating incidents

Reading : Review of books, articles, fiction- Extensive reading/ user manuals, pamphlets, brochures

Writing : paragraph and essay writing using academic vocabulary

Total No of Periods : 30

Text Book

1. Pushkala. R, PadmasaniKannan.S, Anuradha. V, Chandrasena Rajeswaran. M: Quest:A Textbook of Communication Skills, Vijay Nicole

References

- 1. Pushkala R, P.A.Sarada, El Dorado: A Textbook of Communication Skills, Orient Blackswan,
- 2014
 - 2. PadmasaniKannan.S., Pushkala.R. : Functional English
 - 3. Hancock, Mark, English Pronunciation in Use; Cambridge Univ. Press, 2013
 - 4. McCarthy, Michael et.al,, English Vocabulary in Use, Advanced, Cambridge Univ. Press, 2011
 - 5. Wren and Martin: Grammar and Composition, Chand & Co, 2006

Web Resources

- 1. https://learnenglish.britishcouncil.org
- 2. www.englishpage.com
- 3. www.writingcentre.uottawa.ca/hypergrammar/preposit.html
- 4. www.better-english.com/grammar/preposition.html
- 5. <u>http://www.e-grammar.org/infinitive-gerund/</u>
- 6. <u>www.idiomsite.com/</u>

DEPARTMENT OF MATHEMATICS

Subject C	ode :	Subject Name : MATHEMATICS – I	С	L	T/SLr	P/R							
BMA170	01	Prerequisite : None	4	3	1/0	0/0							
L : Lectur	L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits												
T/L/ETL	T/L/ETL : Theory / Lab / Embedded Theory and Lab												
OBJECTI	IVES :												
1. Apply	y the Ba	sic concepts in Algebra											
2. Use t	the Basi	c concepts in Matrices											
3. Identi	fy and s	solve problems in Trigonometry											
4. Under	rstand t	he Basic concepts in Differentiation											
5. Appl	ly the B	asic concepts in Functions of Several variables											
COURSE	OUTC	OMES (Cos) : (3 – 5)											
Students of	tudents completing the course were able to												
CO1	1 Find the summation of the given series of binomial, exponential & logarithmic												
CO2	2 Transform a non – diagonal matrix into an equivalent diagonal matrix using orthogonal												
	transfo	transformation.											

CO3	Find expansion of trigonometric function into an infinite series and to separate a complex													
	function into real and imaginary parts.													
CO4	Apply knowledge and concepts in finding the derivative of given function and to find the													
	maxima / minima of the given function.													
CO5	Evalua	te the pai	tial / tot	al differ	entiation	and ma	xima	a / mi	nima	of a	a functi	on of se	veral	
	variabl	es.												
Mapping	of Cour	se Outco	mes with	n Progra	m Outcor	nes (PC)s)							
COs/P	PO1	PO2	PO3	PO4	PO5	PO6	P	07	PO8		PO9	Р	PO1	PO1
Os												01	1	2
												0		
CO1	Н	Η			М	М					Н	Н		Н
CO2	Н	Н			Н	L								Н
CO3	Н	Н			М						М	Н		L
CO4	Н	Н			L						М	Н		М
CO5	Н	Н				М					М	М		Н
H/M/L in	dicates s	strength o	of correl	ation H	I – High, I	M – Me	ediui	m, L	– Lov	W				
Categor	Basic	Engg	Hu	maniti	Program	Pro	gr	Op	en	P	ractic	Interns	ships /	So
У	Science	e Scien	ce es a	&	core	am		Ele	ctive	al	./	Techn	ical	ft
	S	S	Social Electi s Project Skills								Sk			
			Sci	ences		ves								ill
		S												
Approval														

BMA17002

MATHEMATICS – I 4 3 1/0 0/0

1. ALGEBRA

Binomial, Exponential, Logarithmic Series (without proof of theorems) – Problems on Summation, Approximation and Coefficients.

2. MATRICES

(12)

(12)

Characteristic equation – Eigen values and Eigen vectors of a real matrix – Properties of Eigen values – Cayley - Hamilton theorem(without proof) – Orthogonal reduction of a symmetric matrix to Diagonal form.

3.TRIGONOMETRY

Expansions of Sin n θ , Cos n θ in powers of Sin θ and Cos θ – Expansion of Tan n θ – Expansions of Sinⁿ θ and Cosⁿ θ in terms of Sines and Cosines of multiples of θ – Hyperbolic functions – Separation into real and imaginary parts.

4. DIFFERENTIATION

Basic concepts of Differentiation – Elementary differentiation methods – Parametric functions – Implicit function –Leibnitz theorem(without proof) – Maxima and Minima – Points of inflection.

5. FUNCTIONS OF SEVERAL VARIABLES

Partial derivatives – Total differential – Differentiation of implicit functions – Taylor's expansion – Maxima and Minima by Lagrange's Method of undetermined multipliers – Jacobians.

Total no. of periods : 60

Text Books

1. Kreyszig E., Advanced Engineering Mathematics (10th ed.), John Wiley & Sons, (2011).

2. Veerarajan T., *Engineering Mathematics (for first year)*, Tata McGraw Hill Publishing Co., (2008).

References

- 1. Grewal B.S., *Higher Engineering Mathematics*, Khanna Publishers, (2012).
- 2. John Bird, *Basic Engineering Mathematics* (5th ed.), Elsevier Ltd, (2010).
- 3. P.Kandasamy, K.Thilagavathy and K. Gunavathy, *Engineering Mathematics Vol. I (4th Revised ed.)*, S.Chand& Co., Publishers, New Delhi (2000).
- 4. John Bird, *Higher Engineering Mathematics (5th ed.)*, Elsevier Ltd, (2006).

(12)

(12)

DEPARTMENT OF MATHEMATICS

Subject Code :	Subject Name :BIO MATHEMATICS	С	L	T/SLr	P/R					
BMA17002										
	Prerequisite : None	4	3	1/0	0/0					
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits										
T/L/ETL : Theory /]	Lab / Embedded Theory and Lab									

OBJECTIVES : 1. Use the Basic concepts in Matrices 2. Understand the Basic concepts in Differentiation 3. Understand the Basic concepts in Integration 4. Apply the Basic concepts in Interpolation 5. Analyze the Basic concepts in Numerical Differentiation and Integration COURSE OUTCOMES (Cos) : (3-5)Students completing the course were able to CO1 Find the sum, difference, product and inverse of matrixes CO2 Find the derivative of the given function and to find the maxima / minima of the given function. CO3 Integrate the given function by using the methods of integration and to find area under the given curve and the volume of the solid by revolution. CO4 Evaluate the value of function at the given point and to find the polynomial expressions of the given function. CO5 Find the differentiation of a function at the given point and to find the integration of the given function at the given point Mapping of Course Outcomes with Program Outcomes (POs) COs/P PO1 **PO2** PO PO4 PO5 PO6 PO PO8 PO9 PO1 PO1 PO1 Os 3 7 0 1 2 CO1 Η Η Μ Μ Η Η Η CO₂ Η Η Η L Η CO3 Η Η Μ Μ Η L CO4 Η Η L Μ Η Η М CO5 Η Η Μ Μ Μ Η H/M/L indicates strength of correlation H – High, M – Medium, L – Low Catego Basic Engg Humaniti Progra Progra Open Practic Internships Soft / Technical Scienc Scienc es & m core m Elective al / Skills ry es es Social Electiv s Project Skills

		Sciences		es				
	\checkmark							
Approva	ıl	1	1	1	I	1	1	

BIO MATHEMATICS 4 3 1/0 0/0

1.MATRICES

BMA17002

Elementary operations on Matrices – Inverse of a Matrix – Solving simultaneous equations (atmost three equations with three unknowns) using Cramer's rule.

2. DIFFERENTIATION

Basic concepts of Differentiation – Elementary differentiation methods – Parametric functions – Implicit function – Maxima and Minima (simple problems).

3.INTEGRATION

Basic concepts of Integration – Methods of Integration – Integration by substitution – Integration by parts – Definite Integrals – Properties of Definite Integrals – Problems on finding Area using single integrals (simple problems).

4.INTERPOLATION

Interpolation: Newton's forward, Newton's backward formulae – Newton's divided differences – Lagrange's polynomial (simple problems).

5. NUMERICAL DIFFERENTIATION AND INTEGRATION

Numerical differentiation with interpolation polynomials (Newton's forward and backward only) – Numerical integration by Trapezoidal and Simpson's (both $1/3^{rd}$ $3/8^{th}$) rules (simple problems).

Total no. of periods: 60

(12)

(12)

(12)

(12)

(12)

- 1. Veerarajan T., *Engineering Mathematics (for first year)*, Tata McGraw Hill Publishing Co., (2008).
- 2. H.K.Das, Engineering Mathematics, S.Chand Publishers
- 3. Veerarajan T., Numerical Methods, Tata McGraw Hill Publishing Co., (2007).

References

- 1. Shanti Narayanan, Differential Calculus, S.Chand& Co., New Delhi, (2005).
- 2. Shanti Narayanan, Integral Calculus, S.Chand& Co., New Delhi, (2005).
- 3. John Bird, Basic Engineering Mathematics (5th ed.), Elsevier Ltd, (2010).

DEPARTMENT OF PHYSICS

Subject (Code :	S	ubject N	ame : E	NGINE	ERING	PHYSIC	CS	С	L	,]	ſ/SLr	P/R
DI III / 0	01												
		P	rerequisi	ite : Nor		3	2	;	0/1	0/0			
L : Lectu	re T : T	utorial	SLr : Su	pervised	d Learni	ng P : Pro	oject R :	Resear	rch C	: Cree	dits		
T/L/ETL : Theory / Lab / Embedded Theory and Lab													
OBJECT	IVES :												
1. Outl	ne the r	elation b	between	Science	e, Engine	eering &	Technolo	ogy.					
2. Dem	onstrate	compet	ency in	understa	anding b	asic con	epts.						
3. Appl	y funda	mental l	aws of F	Physics i	in Engin	eering &	Technol	ogy.					
4. To io	lentify &	& solve a	applied I	Physics	problem	IS.							
5. Prod	duce and present activities associated with the course through effective technical communication												
COURSI	URSE OUTCOMES (Cos) : (3 – 5)												
Students	comple	ting this	course	were ab	le to								
CO1	Demo	istrate c	ompeter	icv in ur	nderstan	ding basi	c concep	ots.					
			I			8							
CO2	Utilize	scient	ific me	thods	for for	mal inv	estigatior	1s &	demo	onstra	te con	npetency	with
	experi	mental n	nethods	and veri	ify the c	oncept to	content	knowle	edge.				
CO3	Identif	y and pr	ovide so	olutions	for engi	neering p	oroblems.						
	D 1	.1 . 1				1 110	1.		•				
CO4	Relate	the tech	inical co	ncepts t	o day to	day life	and to pr	actical	situat	ions.			
CO5	Think	analytic	ally to ir	nterpret	concept	s.							
Mapping of Course Outcomes with Program Outcomes (POs)													
COs/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8]	P [PO10	PO11	PO
Os										0			12
										9			
CO1	Н	Н			М	Μ		L	T		М		
CO2	Н	Н	М		М	М		L			М		L

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

Dr.M.G.R. Educational and Research Institute (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	A NAAC
Maduravoyal, Chennai - 95	

CO3	Н	Η	Н	М		М				М			L
CO4	Н	Η	М		М			М					М
CO5	Н	М	L	Н									
H/M/L in	H/M/L indicates strength of correlation H – High, M – Medium, L – Low												
Catego	Basic	Eng	g I	Iumanitie	e Prog	r Prog	ra O	pen	Practic	Intern	nshi	Soft	
ry	Science	e Scie	enc s	& Social	am	m	E	lectives	al /	ps /		Skil	ls
	S	es	S	ciences	core	Elec	tiv		Project	Techr	nica		
						es			-	1 Skil	ls		
Approva	1												

BPH17001

ENGINEERING PHYSICS 3 2 0/1 0/0.

1. PROPERTIES OF MATTER & ACOUSTICS

Elasticity – Twisting couple on a Wire (derivation) – Shafts – Comparison of Solid and Hollow Shaft – Bending moment – Depression of a Cantilever – Determination of Young's modulus by Depression of a Cantilever – Uniform and non uniform bending (Experiment) – I form of Girders.

Viscosity – Definitions – Lubrication – Properties & Types of Lubricant. Acoustics of Buildings – Reverberation – Reverberation time – Sabine`s formula for Reverberation Time – Absorption Coefficient and its Determination – Factors affecting Acoustics of Buildings and its Remedial Measures.

2. THERMAL PHYSICS

Thermal conduction – Thermal Expansion – Expansion joints – Bimetallic strips – Thermal conductivity (k) – Lee's Disc method (theory and experiment) – Radial flow of heat –Thermal conductivity of Glass – Thermal conductivity of Rubber Tube – Flow of heat through Compound Media – Thermal Insulation of buildings – Thermal radiation – Concept of Black body radiation – Fundamentals of Low Temperature Physics.

3. ULTRASONICS AND ITS APPLICATIONS

Properties & Production of Ultrosonics – Piezoelectric method – Magnetostriction method – Acoustic Grating – Industrial Applications – Ultrasonic flaw detection (Block Diagram) – Medical Application: Velocity Blood Flow Meter – PhonoCardiography – Ultrasound imaging – Hazards and safety of Ultrasound – NDT of Materials using Ultrasonics.

4. LASER & ITS APPLICATIONS

Nature of Light – Laser Principle & Characteristics–Ruby laser – Nd- YAG Laser – He-Ne Laser – Co₂ Laser – Semiconductor laser – Homo junction & Hetero Junction Laser – Engineering applications – Holography, Surveying – Industrial applications – Cutting, Welding – Medical applications – Surgery

(9)

(9)

(9)

(9)

5. FIBER OPTIC COMMUNICATION

(9)

Total Internal Reflection – Propagation of Light in Optical Fibres – Numerical aperture and Acceptance Angle – Types of Optical Fibres (material, refractive index, mode) – Fibre Optical Communication system (Block diagram) – Attenuation–Transmitter, Receiver, Dispersion, Modulation/Demodulation Advantages of Fibre Optical Communication System – IMT, PMT, Wavelength Modulated & Polarization Modulated Sensors – Endoscope Applications.

Total No. of Periods : 45

Text Books

- 1. M. Arumugam, "Engineering Physics", Anuradha Publication (2004)
- 2. Dr. Senthil Kumar "Engineering Physics I" VRB Publishers (2016)
- 3. N.S.Shubhashree&R.Murugesan., "Engineering Physics", Sreelakhsmi Publishers(2008)

References

- 4. K. Gaur & S.L. Gupta, "Engineering. Physics", Dhanpat Raj & Sons, VI Edition, (1988)
- 5. Palanisamy, P.K., "Engineering Physics", Scitech Publications (P) Ltd., (2006)

DEPARTMENT OF CHEMISTRY

Subject C	ode :	Subject Name : ENGINEERING	С	L	T/SLr	P/R								
BCH170()1	CHEMISTRY – I												
		Prerequisite : None	3	2	0/1	0/0								
L : Lectur	e T : Tutor	al SLr : Supervised Learning P : Project R : Res	earch C	: Credits										
T/L/ETL	T/L/ETL : Theory / Lab / Embedded Theory and Lab													
OBJECTI	DBJECTIVES :													
1. Provi	roviding an insight into basic concepts of chemical thermodynamics.													
2. To cre	reate awareness about the water quality parameters, water analysis and softening of water from													
indust	ustrial perspective.													
3. Impar	ting fundar	nentals of emf, storage and fuel cells.												
4. Creat	ting awaren	ess about corrosion and its control methods.												
5. Introd	lucing mod	ern materials such as composites along with basic	concept	s of poly	mer chemis	stry and								
plastic	cs.													
COURSE	OUTCOM	ES (Cos) : (3 – 5)												
CO1	Coin o ala	an understanding of the basiss of chamical them		ioo multiol	h in almala a									
COI	Gain a clea	ir understanding of the basics of chemical therm	odynam	ics which	n include c	oncepts								
	such as Ent	halpy, Entropy and Free energy.												
CO2	Obtain an	overall idea of Water quality parameters, Boi	ler requ	irements	, problems	, Water								
	softening and Domestic Water treatment.													
	B.Te	ch 2017 Regulations Approved by the Academic	Council	21.06.20	17									

CO3	Impro	ving the	basic kr	owled	ge in el	lectrical	cond	lucta	ance a	nd emf a	nd also u	nderstan	d the		
	chemi	cal princi	ples of st	orage o	devices.										
CO4	Obser	ve the int	formation	about	corrosi	on and	under	stan	id the i	nechanisr	ns of corre	osion ar	nd the		
	metho	ds of corr	rosion co	ntrol.											
a a															
CO5	Articulate the science of polymers and composites.														
Mapping of Course Outcomes with Program Outcomes (POs)															
COs/P	PO1 PO2 PO3 PO4 PO PO6 PO7 PO8 PO9 PO1 PO11 PO														
Os					5						0		12		
CO1	L	М											М		
CO2	М	L	М	L		L	H	ł					М		
CO3	L	М	L				Ι						L		
CO4	М		L	L									L		
CO5	М		L										М		
H/M/L i	ndicates	s strength	of correl	ation	H – Hig	h, M - N	Mediu	ım,	L – Lo)W			1		
Catego	Basic	Engg	Hun	naniti	Progra	Pro	gra	Op	en	Practic	Internshi	p Soft			
ry	Science	c Scien	ce es &	2	m core	m		Ele	ctive	al /	s /	Skil	ls		
	es	S	Soc	al		Elec	cti	S		Project	Technica	1			
			Scie	nces		ves					Skills				
Approva	1		I		I	I				<u> </u>		I			

BCH17001

ENGINEERING CHEMISTRY – I 3 2 0/1 0/0

1. CHEMICAL THERMODYNAMICS

Introduction, Terminology in thermodynamics –System, Surrounding, State and Path functions, Extensive and intensive properties. Laws of thermodynamics – I and II laws-Need for the II law. Enthalpy, Entropy, Gibbs free energy, Helmholtz free energy - Spontaneity and its criteria. Maxwell relations, Gibbs - Helmholtz equation (relating E & A) and (relating H & G), Van't Hoff equations.

2.TECHNOLOGYOF WATER

Water quality parameters – Definition and expression. Analysis of water – alkalinity, hardness and its determination (EDTA method only). Boiler feed water and Boiler troubles-Scales and sludges, Caustic embrittlement, Priming and Foaming and Boiler corrosion. Water softening processes – Internal and external conditioning – Lime soda, Zeolite, Demineralisation methods. Desalination processes-RO and Electrodialysis .Domestic water treatment.

3. ELECTROCHEMISTRY AND ENERGY STORAGE DEVICES

(10)

(8)

(9)

Conductance – Types of conductance and its Measurement. Electrochemical cells – Electrodes and electrode potential, Nernst equation – EMF measurement and its applications. Types of electrodes-Reference electrodes-Standard hydrogen electrode-Saturated calomel electrode-Quinhydrone electrode –

Determination of P^{H} using these electrodes.

Reversible and irreversible cells– Fuel cells- H_2 – O_2 fuel cell, Batteries-Lead storage battery, Nickel– Cadmium and Lithium-Battery.

4. CORROSION AND PROTECTIVE COATING

Introduction–Causes of Corrosion–Consequences- Factors affecting corrosion. Theories of corrosion-Chemical corrosion and Electrochemical corrosion. Methods of corrosion control – corrosion inhibitors, Sacrificial anode and Impressed current cathodic protection.

Protective coatings- Metallic coatings- Chemical conversion coatings-paints-Constituents and functions.

5.POLYMERS AND COMPOSITES

Monomers – Functionality – Degree of polymerization-Tacticity.Polymers – Classification, Conducting Polymers,Biodegradable polymers- Properties and applications.Plastics – Thermoplastics and thermosetting plastics,Compounding of plastics – Compression moulding, injection moulding and extrusion processes.

Polymer composites-introduction-Types of composites-particle reinforced-fiber reinforced-structural composites-examples. Matrix materials, reinforcement materials-Kevlar, Polyamides, fibers, glass, carbon fibers, ceramics and metals.

Total number of periods : 45

Textbooks

- 1. S.Nanjundan & C.SreekuttanUnnithan, "Applied Chemistry", Sreelakshmi Publications, (2007)
- 2. Dr.R.Sivakumar and Dr.N.Sivakumar" Engineering Chemistry" Tata McGraw Hill Publishing Company Ltd, Reprint 2013.

References

- 1. P.C. Jain & Monika Jain, "Engineering Chemistry", Dhanpat Rai publishing Co., (Ltd.) (2013).
- 2. J. C. Kuriacose & J. Rajaram, "Chemistry in Engineering & Technology", Tata Mc Graw Hill (1996).
- 3. B.R.Puri, L.R.Sharma & M.S.Pathania, "Principles of Physical Chemistry", Vishal publishing co., (2013).

(9)

(9)

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Subject Code :	Subject Name : BASIC ELECTRICAL &	C	L	T/SLr	P/R								
BES17001	ELECTRONICS ENGINEERING	NEERING											
	Prerequisite : None 3 2												
L : Lecture T : Tutor	: Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits												
T/L/ETL : Theory /	Γ/L/ETL : Theory / Lab / Embedded Theory and Lab												
OBJECTIVES :													
1. Understand the	concepts of circuit elements, circuit laws and coup	led circui	ts.										
2. Acquire knowle	dge on conventional &non conventional energy pro	oduction.											
3. Gain information	n on measurement of electrical parameters.												
4. Identify basic th	Identify basic theoretical principles behind the working of modern electronic gadgets.												
5. Demonstrate dig	5. Demonstrate digital electronic circuits and assemble simple devices.												

COURS	COURSE OUTCOMES (Cos) : (3 – 5)													
Students	comple	eting the c	ourse we	ere able	e to									
CO1	Stude	nts unders	tand Fur	ndamen	tal laws :	and theor	rems an	d their	practical	applicatior	ıs			
CO2	Predic	t the beha	vior of c	lifferen	t electric	and mag	gnetic C	Circuits	5.					
CO3	Identi	fy conve	entional	and No	on-conve	ntional I	Electric	al pow	ver Genera	tion, Tran	ismissic	on and		
	Distribution.													
CO4	Identify & Apply schematic symbols and understand the working principles of electronic													
	devices													
CO5	Analyze basics of digital electronics and solving problems and design combinational circuits													
Manning	Mapping of Course Outcomes with Program Outcomes (POs)													
Mapping	ing of Course Outcomes with Program Outcomes (POs)													
COs/P	PO1	PO2	PO3	PO4	PO	PO6	PO7	PO	8 PO9	PO1	PO1	PO1		
Os					5					0	1	2		
CO1	Н	Н	Н	Н							М	L		
CO2	Н	Н	Н	M	М		Μ				М			
CO3	Н	М	Н	М	Н		Μ		М			L		
CO4	Н	М		М			Μ				М	L		
CO5	Н	М	Н	M	Н				М		М	L		
H/M/L i	ndicates	s strength	of correl	ation	H – High	n, M – M	ledium,	L – L	OW	1				
Catego	Basic	Engg	Hur	naniti	Progra	Progr	a Op	en	Practic	Internshi	p Sof	ť		
ry	Science Science es &			Z	m core	m	Ele	ective	al /	s /	Ski	lls		
	es	S	Soc	ial		Electi	V S		Project	Technica	ıl			
			Scie	ences		es				Skills				
Approva	.1		·				·				•			

BES17001 BASIC ELECTRICAL & ELECTRONICS ENGINEERING 3 2 0/1 0/0

1. ELECTRIC CIRCUITS

Electrical Quantities – Ohms Law – Kirchhoff's Law – Series and Parallel Connections – Current Division and Voltage Division Rule - Source Transformation – Wye (Y) – Delta (Δ) , Delta (Δ) – Wye (Y) Transformation – Rectangular to Polar and Polar to Rectangular.

2. MACHINES & MEASURING INSTRUMENTS

Construction & Principle of Operation of DC motor & DC Generator – EMF equation of Generator – Torque Equation of Motor – Construction & Principle of operation of a Transformer – PMMC – Moving Iron types of meter – Single Phase Induction Type Energy Meter.

3. BASICS OF POWER SYSTEM

Generation of Electric Power (Thermal, Hydro, Wind and Solar) - Transmission & Distribution of Electric

Power - Types of Transmission & Distribution Schemes - Representation of Substation.

4. ELECTRON DEVICES

Passive Circuit Components-Classification of Semiconductor-PN Junction Diode-Zener diode-Construction and Working Principle – Applications--BJT-Types of configuration-JFET.

5. DIGITAL SYSTEM

Number System – Binary, Decimal, Octal, Hexadecimal – Binary Addition Subtraction, Multiplication & Division– Boolean Algebra – Reduction of Boolean Expressions – Logic Gates - De-Morgan's Theorem , Adder – Subractor.

Total no of Periods : 45

Text Books

- 1. D P Kothari, I J Nagrath, Basic Electrical Engineering, Second Edition, , Tata McGraw-Hill Publisher
- A Course In Electrical And Electronic Measurements And Instrumentation, A.K. Sawhney, publisher DHANPAT RAI&CO
- 3. Text Book of Electrical Technology: Volume 3: Transmission, Distribution and Utilization, B.L. Theraja, A.K. Theraja, publisher S.CHAND
- 4. Morris Mano, M. (2002) Digital Logic and Computer Design. Prentice Hall of India

(9)

(9)

(9)

(9)

5. Millman and Halkias1991, Electronic Devices and Circuits , Tata McGraw Hill,

References

1. R.Muthusubramanian, S.Salivahanan, K A Muraleedharan, Basic Electrical, Electronics And Computer Engineering, Second Edition, Tata McGraw-Hill publisher.

DEPARMENT OF MECHANICAL ENGINEERING

Subject Name : BASIC MECHANICAL &	С	L	T/SLr	P/R
CIVIL ENGINEERING				
	Subject Name : BASIC MECHANICAL & CIVIL ENGINEERING	Subject Name : BASIC MECHANICAL & C CIVIL ENGINEERING	Subject Name : BASIC MECHANICAL & C L CIVIL ENGINEERING	Subject Name : BASIC MECHANICAL & C L T/SLr CIVIL ENGINEERING

		Prei	requisite	: None					3	2		0/1	0/0
L : Lect	ure T : T	utorial S	Lr : Sup	ervised I	Learnin	g P : Pro	ject R :	Researc	ch C:	Credits			
T/L/ETI	: Theor	ry / Lab /	Embedd	ed Theor	ry and I	Lab							
OBJEC	FIVES :												
1. Lea	arn Basi	cs of Inte	ernal Co	mbustior	n Engin	nes, pow	er plants	s and boi	ilers				
2. De	monstrat	e How m	etals are	formed,	joined	, using n	nachinin	g operat	ions L	athe, N	lillin	g and D	rilling
ma	chines	0 1	1 1			N 1							
3. 10 4 L	identify	& solve p		in Engi	neering	g Mechai	nics						
4. Lea	. Know the basic process of concrete, types of masonry Construction of Roads . Railways, Bridges												
J. Kli	and Dams												
and Dams COURSE OUTCOMES (Cos) : $(3-5)$													
Students	COURSE OUTCOMES (Cos) : $(3 - 5)$												
Students	Students completing the course were able to												
COI	CO1 Demonstrate the working principles of power plants, IC Engines and boilers												
CO2	Utilize	the conce	ept of me	etals form	ning, jo	oining pr	ocess an	d apply	in suit	table m	achir	ning proo	cess
CO3	Identif	y and pro	vide solu	itions for	r proble	ems in ei	ngineerii	ng mech	anics				
CO4	Utilize	the conc	ept of E	Building	materia	uls and co	onstructi	on able	to per	form c	oncre	ete mix a	ind
	mason	ry types											
CO5	Demor	strate hov	w Roads	, Railwa	ys, dar	ns, Brid	ges have	been co	onstruc	cted			
Monnin	r of Cou	raa Qutaa	magnet	Drogra	m Outo	omas (D							
Mapping							08)	DOG	DO		01	DO11	DO
COs/P Os	POI	PO2	PO3	PO4	PO 5	PO6	PO/	PO8	PO	9 P 0	01	POIT	PO 12
CO1	Н					M		Н	F	ł	Н		Н
CO2	н				I	M		M		4	M		M
	11	TT				TAT		IVI N/	1	1	M		141
03	Н	н				L		IVI	N	<u>'</u> 1	IVI		IVI
CO4	Н				L	L			N	1	M		M
CO5	Н				L	L		М	N	1	M		М
H/M/L i	ndicates	strength	of correl	ation H	– Higl	h, $M - N$	ledium,	L – Lov	V				

Categor	Basic	Engg	Humaniti	Progra	Progra	Open	Practic	Internship	Soft
у	Scienc	Science	es &	m core	m	Elective	al /	s /	Skills
	es	S	Social		Electiv	S	Project	Technical	
			Sciences		es			Skills	
Approval									

BES17002 BASIC MECHANICAL & CIVIL ENGINEERING 3 2 0/1 0/0

UNIT-I: THERMAL ENGINEERING

Classification of internal combustion engine – two stroke, four stroke petrol and diesel engines. Classification of Boilers – Cochran boiler – Locomotive boilers – Power plant classification – Working of Thermal and Nuclear power plant.

UNIT- II : MANUFACTURING PROCESS

Metal forming processes – Rolling, forging, drawing, extrusion and sheet metal operations- fundamentals only. Metal Joining processes – Welding - arc and gas welding, Soldering and Brazing. Casting process – Patterns -Moulding tools - Types of moulding - Preparation of green sand mould -Operation of Cupola furnace.

Basics of metal cutting operations – Working of lathe- parts-Operations performed. Drilling machine – Classification – Radial drilling machine - Twist drill nomenclature.

UNIT- III : MECHANICS

Stresses and Strains – Definition – Relationship – Elastic modulus – Centre of gravity – Moment of Inertia – Problems. (Simple Problems Only).

UNIT- IV : BUILDING MATERIALS AND CONSTRUCTION

<u>Materials</u>: Brick - Types of Bricks - Test on bricks - Cement – Types, Properties and uses of cement – Steel - Properties and its uses – Ply wood and Plastics.

<u>Construction</u>: Mortar – Ingredients – Uses – Plastering - Types of mortar - Preparation – Uses – Concrete – Types – Grades – Uses – Curing – Introduction to Building Components (foundation to roof) – Masonry – Types of masonry (Bricks & Stones)

UNIT- V: ROADS, RAILWAYS, BRIDGES & DAMS

(7)

 $Roads-Classification\ of\ roads-Components\ in\ roads-Railways\ -Components\ of\ permanent\ way\ and\ their\ function-Bridges-Components\ of\ bridges-Dams-Purpose\ of\ dams-Types\ of\ dams.$

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

(9)

(13)

(9)

(7)

Total No. of Periods : 45

Text books

- 1. S. Bhaskar, S. Sellappan, H.N.Sreekanth, (2002), "Basic Engineering" –Hi-Tech Publications
- 2. K. Venugopal, V. Prabhu Raja, (2013-14), "Basic Mechanical Engineering", Anuradha Publications.
- 3. K.V. Natarajan (2000), Basic Civil Engineering, Dhanalakshmi Publishers
- 4. S.C. Sharma(2002), Basic Civil Engineering, Dhanpat Raj Publications

References

- 1. PR.SL. Somasundaram, (2002), "Basic Mechanical Engineering" -, Vikas Publications.
- 2. S.C. Rangawala(2002), Building Material and Construction, S. Chand Publisher

DEPARTMENT OF MECHANICAL ENGINEERING

Subject	t Code :	Subject Name : BASIC ENGINEERING	С	L	T/SLr	P/R									
BES17	ET1	GRAPHICS													
		Prerequisite : None	2	1	0/0	2/0									
L : Lec	ture T : Tuto	orial SLr : Supervised Learning P : Project R : Rese	earch C:	Credits											
T/L/ET	L: Theory	Lab / Embedded Theory and Lab													
OBJEC	CTIVES :														
1.	Learn to kr	now what kind of pencils to be used to sketch lines, a	numbers,	Letters	and Dimen	sioning									
	in drawing sheet.														
2.	. Draw Projection of points, line, planes and solids using Drafters														
3.	To identify the angle of projection and development of surfaces, isometric projection and														
	Orthograph	ic projection													
4.	Know the b	pasics of elevation and plan of building.													
5.	Learn the b	asics of Drafting using AutoCAD Software													
COUR	SE OUTCO	MES (Cos) : (3 – 5)													
Studen	ts completin	g the course were able to													
CO1	Utilize the	concept of Engineering Graphics Techniques to dra	ft letters,	Number	rs, Dimens	ioning									
	in Indian S	tandards													
CO2	Demonstra	te the drafting practice visualization and projection	skills use	eful for c	onveying i	deas in									
	engineerin	g applications.													
CO3	Identify ba	sic sketching techniques of engineering equipments													
CO4	Demonstra	te the projections of Points, Lines, Planes and Solid	s.												
CO5	Draw the s	ectional view of simple buildings and utilize Auto C	CAD Soft	ware.											

Mapping	Mapping of Course Outcomes with Program Outcomes (POs)																		
COs/POs	Р	PO	2	PO3		PO4		РО	PO6	P	07	PO8		PO9		PO1	PO	11	РО
	0							5								0			12
	1																		
CO1	Н	ŀ	ł	Η		М		М	М					Н		Н			Н
CO2	Н	ŀ	ł	Η		М		М	М					Η		Н			Н
CO3	Н	H	ł	Η		L			М					М		М			М
CO4	Н	ŀ	I	М		М			Н			М		Н		Н			Н
CO5	Н	ŀ	I	Η		М		Н	L			M		Н		Н			Н
H/M/L in	dicates	stren	igth o	of corr	ela	tion l	H -	- Higł	n, M – 1	Med	ium,	L – Lo	ow						
Categor	Basic		En	gg H	um	aniti	P	rogra	Pro	gra	Op	en	Pr	actic	Iı	nternshi	ip	Soft	
у	Scien	ces	Sci	e es	&		m	n core	m		Ele	Elective		/	s /			Skil	ls
			nce	es Se	ocia	al			Ele	ctiv	s		Pr	oject	Т	echnica	al		
			Scie		ciei	nces			es						S	kills			
Approval				•					•		•								

BES17ET1BASIC ENGINEERING GRAPHICS2 1 0/0 2/0

CONCEPTS AND CONVENTIONS (Not for examination)

(3)

Introduction to drawing, importance and areas of applications – BIS standards – IS: 10711 – 2001 : Technical products Documentation – Size and layout of drawing sheets – IS 9606 – 2001: Technical products Documentation – Lettering – IS 10714 & SP 46 – 2003: Dimensioning of Technical Drawings – IS : 15021 – 2001 : Technical drawings – Projections Methods – drawing Instruments, Lettering Practice – Line types and dimensioning – Border lines, lines title blocks Construction of polygons – conic sections – Ellipse, Parabola, Hyperbola and cyloids.

UNIT-I: PROJECTION OF POINTS, LINES AND PLANE SURFACES

Projection of points and straight lines located in the first quadrant – Determination of true lengths and true inclinations – projection of polygonal surface and circular lamina in simple position only.

UNIT- II : PROJECTION OF SOLIDS

Projection of simple solids like prism, pyramid, cylinder and cone in simple position Sectioning of above solids in simple vertical position by cutting plane inclined to one reference plane and perpendicular to the other.

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

(6)

(6)

UNIT- III : DEVELOPMMENT OF SURFACES AND ISOMETRIC PROJECTION (6)

Development of lateral surfaces of simple and truncated solids – prisms, pyramids, cylinders, and cones. Principles of isometric projection – isometric scale – isometric projections of simple solids, like prisms pyramids, cylinders and cones.

UNIT- IV : ORTHOGRAPHICS PROJECTIONS

Orthographic projection of simple machine parts – missing views

BUILDING DRAWING

Building components – front, Top and sectional view of a security shed.

UNIT- V : COMPUTER AIDED DRAFTING

Introduction to CAD – Advantages of CAD – Practice of basic commands – Creation of simple components drawing using CAD software.

Total No. of periods:30

(6)

(3)

Note:First angle projection to be followed.

Text Books

- 1. Bhatt, N.D. and Panchal, V.M. (2014) Engineering Drawing Charotar Publishing House
- 2. Gopalakrishnan, K.R. (2014) Engineering Drawing (Vol.I& II Combined) Subhas Stores, Bangalore.

References

- 1. Natarajan, K.V (2014) A Text Book of Engineering Graphics, DhanalakshmiPublisheres, Chennai
- 2. Venugopal, K and Prabhu Raja, V. (2010) Engineering Graphics, New Age International (P) Limited

Special Points applicable to University examinations on Engineering Graphics

- 1. There will be five questions, each of either or type covering all UNIT-s of the syllabus
- 2. All questions will carry equal marks of 20 each making a total of 100
- 3. The answer paper shall consists of drawing sheets of A2 size only. The students will be permitted to use appropriate scale to fit solution within A2 size.

DEPARTMENT OF PHYSICS

Subject BPH17	t Cod 7 L01	e :	Subject I	Name	: ENGI	NEERIN	NG PH	YSIC	S C	I	. T/	SLr	P/R	
			D	-: N	T				1			N/0	2/0	
			Prerequi	site : r	None				1			//U	2/0	
L : Lec	ture 7	Г : Tutori	al SLr:S	luperv	ised Le	arning P	: Projec	t R:	Research	C: Cre	dits			
T/L/ET	Ľ:T	heory / L	.ab / Embe	edded	Theory	and Lab								
OBJEC	CTIVI	ES :												
1.	Demo	onstrate	an ability	to ma	ike phy	sical me	asureme	ents &	unders	tand the	limits o	of preci	sion in	
	meas	urements												
2.	Displ	ay the ab	oility to m	easure	propert	ties of var	riety of	electr	ical, mec	chanical,	optical	systems		
	COURSE OUTCOMES (Cos) : (3 – 5)													
COUR	COURSE OUTCOMES (Cos) : (3 – 5)													
Student	Students completing the course were able to													
CO1	Rec	ognize th	e correctr	iess an	d precis	sion in th	e result	s of m	easurem	ents.				
CO2	Con	struct an	d compar	e the j	properti	es of var	iety of	electri	ical, med	chanical,	electron	nic and	optical	
	syst	ems.												
CO3	Prac	tice the l	handling o	of Elec	trical, F	Electronic	c, Optic	al & N	Iechanic	al Equip	ments			
<u> </u>	T 1			1 .1	. 1	1	. 1							
CO4	Iden	itify and	compare t	he the	oretical	and prac	tical us	age of	various	Instrum	ents			
Mappir	ng of	Course C	Outcomes	with P	rogram	Outcome	es (POs)						
COs/P	Os	PO1	PO2	PO	PO4	PO5	PO6	PO	PO8	PO9	PO1	PO1	PO1	
				3				7			0	1	2	
CO1		Η	Н	М	Н	М								
CO2		Η	М	М	Н						М			
CO3		Н	М	М	Н	М				М	M		М	
CO4		Н	Н	М	М	Н				М			L	
H/M/L	indic	ates strei	ngth of co	rrelatio	on H-	High, M	I – Med	ium, 1	L – Low					

Categor	Basic	Engg	Humaniti	Progra	Progra	Open	Practic	Internship	Soft
у	Scien	Scienc	es &	m core	m	Elective	al /	s /	Skills
	ces	es	Social		Electiv	S	Project	Technical	
			Sciences		es			Skills	
Approval									

BPH17L01ENGINEERING PHYSICS LAB1 0 0/0 2/0

LIST OF EXPERIMENTS (Any Seven)

- 1. Torsional Pendulum Without Masses-Determination of Rigidity Modulus and Moment of Inertia
- 2. Torsional Pendulum With Masses–Determination of Rigidity Modulus and Moment of Inertia
- 3. Non Uniform Bending Determination of Young's Modulus
- 4. Uniform Bending Determination of Young's Modulus
- 5. Poiseuille's Method Determination of Coefficient of Viscosity of a given liquid
- 6. Lee's Disc Determination of Thermal Conductivity of Bad Conductor
- 7. Spectrometer Determination of Refractive Index of a Prism
- 8. Laser Grating Determination of Wavelength of a given Source
- 9. Spectrometer Determination of Wavelength of Mercury Spectrum using Grating
- 10. Transistor Characteristics.

DEPARTMENT OF CHEMISTRY

Subject C	Code :	Subject Name : ENGINEERING CHEMISTRY	С	L	T/SLr	P/R
BCH17L	L01	LAB				
		Prerequisite : None	1	0	0/0	2/0
L : Lectu	re T : T	utorial SLr : Supervised Learning P : Project R : Res	search C:	Credits		
	T 1			cicaits		
T/L/ETL	: Theor	y / Lab / Embedded Theory and Lab				
OBJECT	IVES :					
1. To f	familiar	ize the students in the determination of water quality	parameter	S		
2. To ł	help lear	rners measure conductivity and EMF using electrical	equipmen	t.		
3. To c	create av	wareness about corrosion.				
4. To c	determi	ne the essential parameters of polymers				
COUDSI		$\mathbf{COMES}\left(\mathbf{Cos}\right) + \left(2 - 5\right)$				
COURSE		COMES(COS): (3-3)				
Students	comple	ting the course were able to				
CO1	Awaren	ness of water quality parameters and its determination	l.			
CO2	Familia	arizing the conductometric titration method.				
CO3	Ability	to measure EMF and perform potentiometric titration	ıs.			
CO4	Measu	ring the Molecular weight of macromolecules				
CO5	Gainin	g awareness about corrosion.				
Mapping	of Cou	rse Outcomes with Program Outcomes (POs)				

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

COs/P Os	PO 1	PO	2	PC)3	PO4	PC 5)	PO6	PC)7	PO8		PO9		PO1 0	PO1 1		PO 12
CO1	М]	H		H	М	M	[L
CO2	М]	H			L	М	<u></u>						L					
CO3	L	l	M			L								L					
CO4	М	l	M			L								L					
CO5	L	l	M		L	L													М
H/M/L i	ndicat	es sti	rength	of	correl	ation	H – H	igł	n, $M - M$	ledi	um,	L-L	ow						
Catego	Basi	с	Eng	g	Hun	nanit	Prog	ra	Prog	ra	Op	en	Pr	actic	Ir	nternshi	p	Sc	oft
ry	Scie	nce	Scie	nc	ies &	k	m co	re	m		Ele	ectiv	al	/		s /	^	Ski	ills
	s		es		Soci	al			Elect	iv	es		Pr	oject	Т	echnica	al		
	s es			Scie	nces			es					-		Skills				
Approval																			

BCH17L01 ENGINEERING CHEMISTRY LAB

1 0 0/0 2/0

LIST OF EXPERIMENTS (Any Seven)

- (1) Estimation of temporary, permanent and total hardness of water.
- (2) Determination of type and extent of alkalinity in water.
- (3) Estimation of dissolved oxygen in a water sample.
- (4) Conductometric titration of strong acid vs. strong base
- (5) Conductometric precipitation titration using barium chloride and sodium sulphate.
- (6) Determination of Equivalent conductance of strong electrolyte at infinite dilution.
- (7) Determination of single electrode potential.
- (8) Estimation of Fe^{2+i} on by potentiometry.
- (9) Determination of Molecular Weight and Degree of Polymerisation of Polymer by viscometry.
- (10) Determination of rate of corrosion by weight loss method.

DEPARTMENT OF ENGINEERING SCIENCES

Subject BES17	Code : L01	Subject Name : BASIC ENGINEERING WORKSHOP	С	L	T/SLr	P/R								
		Prerequisite : None	1	0	0/0	2/0								
L : Lect	ture T : T	utorial SLr : Supervised Learning P : Project R : Rese	arch C:	Credits										
T/L/ET	L : Theor	y / Lab / Embedded Theory and Lab												
OBJEC	TIVES :													
1.	Familiarize the plumbing tools, fittings, carpentry tools, etc. Identify basic electrical wiring and measurement of electrical quantities.													
2.	Familiarize the plumbing tools, fittings, carpentry tools, etc. Identify basic electrical wiring and measurement of electrical quantities. Identify Electronic components ,logic gates and soldering process													
3.	Identify basic electrical wiring and measurement of electrical quantities. Identify Electronic components ,logic gates and soldering process Display simple fabrication techniques													
4.	Identify Electronic components ,logic gates and soldering process Display simple fabrication techniques													
5.	Execute	a project independently and make a working model												
COURS	SE OUTC	COMES (Cos) : (3 – 5)												
Student	s complet	ing the course were able to												
CO1	Demons Cutting.	trate fitting tools and carpentry tools, & Perform the p	process o	of Filing,	Chipping,									
CO2	Perform the process of fabrication of tray, cones and funnels, Tee Halving Cross, Lap Joint Martise& Joints													
CO3	Demonstrate various types of wirings and other equipments.													
CO4	Measure	e fundamental parameters using the electronic instrume	ents											

Mapping	of Co	ırse	e Outco	mes wit	h Progra	am Outc	omes (P	Os)								
COs/POs	PO	F	PO2	PO3	PO4	PO	PO6	PC	07	PO8	POS)	PO1	PC)1	PO1
	1					5							0	1		2
CO1	Н		Н	Η	М	М				L	М	[L
CO2	Н			Η	L	М				L	L					
CO3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
CO4 H H M L									L	L					М	
CO5	CO5															
H/M/L ir	ndicate	s sti	rength o	of correl	ation 1	H – High	n, M – M	lediu	ım,	L – L	ow					
Catego	Basic		Engg	Hu	maniti	Progra	Progr	a	Op	en	Practic]	Internshi	ip	Soft	-
ry	Scien	ce	Scien	ic es d	&	m core	m		Ele	ctive	al /	5	s /		Skil	ls
	S		es	Soc	ial		Electi	iv	S		Project		Technica	al		
Sciences es Skills																
Approva	pproval															

BES17L01

BASIC ENGINEERING WORKSHOP

1 0 0/0 2/0.

MEP PRACTICE

1. FITTING :

Study of fitting tools and Equipments – Practicing, filing, chipping and cutting – making V-joints,

half round joint, square cutting and dovetail joints.

2. CARPENTRY:

Introduction – Types of wood – Tools – Carpentry processes – Joints – Planning practice – Tee Halving Joint – Cross Lap Joint – Maritse and Tenon Joint – Dovetail Joint

3. SHEET METAL:

Study of tools and equipments – Fabrication of tray, cones and funnels.

CIVIL ENGINEERING PRACTICE

- 1. Study of Surveying and its equipments
- 2. Preparation of plumbing line sketches for water supply and sewage lines

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

3. Basic pipe connection using valves, laps, couplings, unions, reduces and elbows in house hold fittings

ELECTRICAL ENGINEERING PRACTICE

- Study of Electronic components and equipments Resistor, colour coding measurement of AC signal parameter (peak-peak, rms period, frequency) using CR
- 2. Soldering practice Components Devices and Circuits Using general purpose PCB
- 3. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
- 4. Fluorescent lamp wiring.
- 5. Stair case wiring

ELECTRONIC ENGINEERING PRACTICE

- 1. Measurement of electrical quantities voltage, current, power & power factor in RLC circuit.
- 2. Measurement of energy using single phase energy meter.
- 3. Measurement of resistance to earth of an electrical equipment.

DEPARTMENT OF COMPUTER SCIENCE

Subject 0 BES17E	Code : E T2	Subject Name : C PROGRAMMING AND LAB	С	L	T/SLr	P/R								
		Prerequisite : None	2	1	0/0	2/0								
L : Lectu	ure T : Tu	ttorial SLr : Supervised Learning P : Project R : Rese	earch C:	Credits										
T/L/ETL	: Theory	/ Lab / Embedded Theory and Lab												
OBJECT	BJECTIVES :													
1. Outl	line the ba	asics of C Language.												
2. App	ly fundan	nentals in C programming.												
3. Prod	luce and p	present activities associated with the course.												
COURS	COURSE OUTCOMES (Cos) : (3 – 5)													
Students	Students completing the course were able to													
CO1	Acquire	knowledge how to write and execute c programs												

CO2	Unc	lersta	and the f	funda	mei	ntal exp	pres	ssion a	and stat	eme	ents o	f C Lar	iguage.				
CO3	Wo	rk wi	th array	s, fun	ctio	ons, po	inte	ers, str	uctures	s, St	rings	and Fil	es in C.				
CO4	Ider	ntify	and pro	vide s	olu	tions f	or e	engine	ering p	robl	lems i	in C pro	ogrammir	ıg			
Mapping	of C	Cours	se Outco	mes	witl	h Progi	ram	Outco	omes (POs)						
COs/POs	5	Р	PO2	PO3	3	PO4		PO	PO6	P	PO 7	PO8	PO9	PO1	P	011	PO
		0						5						0			12
CO1	H H M M H M H																
CO2		H M H M M H M															
CO3		Η				Н			М			М	Н				М
CO4		Η				М			М			Н	М				М
H/M/L in	ndica	ates s	trength	of co	rrel	ation	H -	- High	, M – I	Med	lium,	L – Lo	W		•		
Category	B	asic	Eng	g H	Hur	naniti	Pr	rogran	n Pro	gra	Ope	en	Practi	Internsh	ip	Soft	
	S	ciend	c Scie	n e	es 8	z	сс	ore	m	-	Ele	ctives	cal /	s /	-	Skill	ls
	e	8	ces	5	Soc	ial			Ele	cti			Projec	Technic	al		
	Solaroos yoo																
	Sciences ves t Skins																
Approva				•			•		•		•		•	•		•	

BES17ET2

C PROGRAMMING AND LAB 2 1 0/0 2/0

1. INTRODUCTION

Fundamentals, C Character set, Identifiers and Keywords, Data Types, Variables and Constants, Structure of a C Program, Executing a C Program.

2.EXPRESSION AND STATEMENT

Operators, Types-Complex and Imaginary, Looping Statement-For, While, Do, Break, continue, Decision Statement-If, If else, Nested if, Switching Statement, Conditional Operator.

3.ARRAYS AND FUNCTIONS

Defining an Array, Using Array elements as counters, Generate Fibonacci number, Generate Prime Numbers, Initializing Arrays, Multidimensional Arrays, Defining a Function, Function call -types of Function calls -Function pass by value -Function pass by reference, Write a Program in Recursive Function.

4. STRUCTURES AND POINTERS

Working with Structures -Introduction -Syntax of structures -Declaration and initialization -Declaration of structure variable -Accessing structure variables, Understanding Pointers -Introduction -Syntax of Pointer.

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

(6)

(6)

(6)

(6)

5. STRINGS AND FILE HANDLING

(6)

Strings -Syntax for declaring a string -Syntax for initializing a string -To read a string from keyboard, Files in C -File handling functions -Opening a File closing a file --example: fopen, fclose -Reading data from a File- Problem solving in C

Total No of Periods: 30

- 1. <u>www.spoken-tutorials.org</u>
- 2. <u>http://www.learn-c.org/</u>

Reference :

- 1. Stephen G. Kochen" Programming in C- A complete introduction to the C Programming Language. Third Edition, Sams Publishing -2004
- 2. Ajay Mital, "Programming in C: A Practical Approach", Pearson Publication-2010

List of Programs

- 1. Write a program to check 'a' is greater than 'b' or less than 'b' Hint: use if statement.
- 2. Write another program to check which value is greater 'a', 'b' or 'c'. Hint: use else-if statement. (Take values of a, b, c as user inputs)
- 3. Write a Program to find the sum of the series : $x + X^{3}/3! + X^{5}/5! + \dots X^{n}/n!$
- 4. Write a C Program to solve a Quadratic Equation by taking input from Keyboard
- 5. Write a C Program to arrange 20 numbers in ascending and descending Order. Input the Numbers from Keyboard
- 6. Write a C Program to Multiply a 3 x 3 Matrix with input of members from Keyboard
- 7. Write a program that takes marks of three students as input. Compare the marks to see which student has scored the highest. Check also if two or more students have scored equal marks.
- 8. Write a program to display records of an employee. Like name, address, designation, salary.
- 9. Write a C program, declare a variable and a pointer. Store the address of the variable in the pointer. Print the value of the pointer.
- 10. Write a C program to concatenate String 'best' and String 'bus'. Hint: strcat(char str1, char str2);
- 11. Explore the other functions in string library.
- 12. Write a program to create a file TEST. Write your name and address in the file TEST. Then display it on the console using C program.

Subject Code :	Subject Name : ENTREPRENEURIAL SKILL	C	L	T/SLr	P/R							
BES17ET3	DEVELOPMENT & PROJECT LAB											
	Prerequisite : None	1	0	0/0	2/0							
L : Lecture T : 7	: Tutorial SLr : Supervised Learning P : Project R : Research C: Credits											
T/L/ETL : Theory / Lab / Embedded Theory and Lab												

DEPARTMENT OF ENGINEERING SCIENCES

OBJECTIVES :

- 1. Understand how entrepreneurship Education transforms individuals into successful leaders.
- 2. Identify individual potential &Shape career dreams
- 3. Understand difference between ideas & opportunities
- 4. Understand the "flow" & create Entrepreneurial CV.
- 5. Identify components & create action plan.
- 6. Use brainstorming in a group to generate ideas.

COURSE OUTCOMES (Cos) : (3 – 5)

Students completing the course were able to

CO1	Develop a Business plan & improve ability to recognize business opportunity															
CO2	Do a s	elf analy	sis to t	uild a en	trepreneu	irial care	er.									
CO3	Articu	late an ef	fective	elevator	pitch.											
CO4	Analy	ze the loc	al mar	ket envir	onment &	& demon	strat	te th	e abili	ty to find a	an attractiv	e mark	et			
C05	Apply	an ethica	ıl unde	rstanding	g & persp	ective to	o cha	inge	oppor	tunities to	business s	situation	ıs			
Mapping	g of Cou	of Course Outcomes with Program Outcomes (POs)														
COs/P Os	PO1	O1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO1 PO1 01 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO1 2														
CO1		М	М	Н	М	М	N	M		М	М	М	L			
CO2	Н	М		Н	М	Н	N	M	Н	Н	Н	М	М			
CO3		М	М	М		Н			Н	Н	Н					
CO4		Н	Μ	М	М	М			Η	М	М	Н				
CO5		М	Μ	Н	М	М	H	H	Н	М	М	Н	L			
H/M/L ii	ndicates	strength	of cor	relation	H – Hig	h, M – M	lediu	um,	L – L	OW	·					
Catego	Basic	Engg	Н	umaniti	Progra	Progr	a	Ope	en	Practic	Internshi	p Sof	ť			
rv	Scienc	Scien	c es	&	m core	m		Ele	ctive	al /	s/	Ski	lls			
- 5	ec	es	S S	ncial		Flecti	v	s		Project	Technics					
	65	65	5	vionoos			v	3		rioject	Skille	u				
			50	JEHCES		68					SKIIIS					

Approva	1				

BES17ET3 ENTREPRENEURIAL SKILL DEVELOPMENT & PROJECT LAB 1 0 0/0 2/0

1. CHARACTERISTICS OF A SUCCESSFUL ENTREPRENEUR

Introduction to entrepreneurship education – Myths about entrepreneurship – How has entrepreneurship changed the country – Dream it. Do it - Idea planes - Some success stories – Global Legends – Identify your own heroes – entrepreneurial styles – Introduction, concept & Different types - Barrier to Communication – Body language speaks louder than words

2. DESIGN THINKING & RISK MANAGEMENT

Introduction to Design thinking – Myth busters – Design thinking Process - Customer profiling – Wowing your customer – Personal selling – concept & process – show & tell concept – Introduction to the concept of Elevator Pitch - Introduction to risk taking & Resilience – Managing risks (Learning from failures, Myth Buster) – Understanding risks through risk takers – Why do I do? – what do I do?

3.IDEA GENERATION & EVALUATION

Introduction – Finding your flow – Entrepreneurial CV – your draft action plan - D.I.S.R.U.P.T - A model for ideation – Let's ID8 – Mind mapping for ideas – build your own idea bank – Concept of Decision matrix & paired comparison analysis – 5Q framework.

4. ENTREPRENEURIAL OUTLOOK & CUSTOMER DISCOVERY

Effectuation – Start with your means – Segmentation & targeting – Niche marketing – Find your Niche – Drawing & mapping the consumption chain - outcome driven innovation – This is my customer

5. VALUE PROPOSITION& CAP STONE PROJECT PRESENTATION

Introduction – Value proposition design – customer segment – validation exercise – value propositions & assessing fit – Refine your value proposition – Blue ocean strategy - What is prototyping – Design your experiment – Design your MVP – Learning cards & Capstone Presentation.

SEMESTER - II

DEPARTMENT OF ENGLISH

Subject C BEN1700	Subject Code : Subject Name : TECHNICAL ENGLISH - II C L T/SLr P/ BEN17002 Prerequisite : None 2 1 0/0 2/													
	-	Prere	quisite : N	lone					2	1	0/	/0	2/	
L : Lectur T/L/ETL	e T : Tute : Theory	orial SLr ' Lab / Em	: Supervis bedded T	ed Lear heory a	ning P nd Lab	: Proje	ct R : R	esearch	n C: Cr	edit	s			
OBJECTI	IVES :													
1. stren	gthen the	academic	and inter	persona	l advar	nced vo	cabulary	/						
2. stren	gthen the	ir writing	skill such	as sum	marizir	ng, desc	ribing a	nd repo	ort writi	ng				
3. learn	to keep	he simple	conversat	tions in	day to	day life	e							
4. get to	o know c	ertain life	skills such	n as mar	keting,	advert	ising an	d do pr	esentati	on				
5 imp	5 improve the reading skill with comprehension COURSE OUTCOMES (Cos) : (3 – 5)													
COURSE	OUTCO	MES (Cos	(3-5))										
Students of	Students completing the course were able to													
CO1	O1 strengthen their active vocabulary and appropriate language usage through reading poems,													
	stories, t	exts, news	papers, m	agazine	s and r	esearch	articles							
CO2	use appr	opriate tec	hnical voc	cabulary	in inte	erpretin	g data							
CO3	engage e	ffectively	in role-pla	ay, dialo	ogue, c	onversa	ation and	l interv	iews					
CO4	equip the	m for effe	ective inter	raction	with pe	ople in	all situa	ations t	ooth aca	den	nic and	d profes	sional	
CO5	learn Eng	glish langu	iage as a '	life skil	l' and	prepar	e for pla	acemen	t interv	iews	S			
Mapping	of Course	Outcome	s with Pro	ogram C	outcom	es (POs	5)							
COs/POs	POI	PO2	PO3	PO4	PO5	PO	PO7	PO8	P	H	201	PO1	PO1	
						0			9)	1	Z	
CO1				Н							Н		Н	
CO2				Н							Н		Н	
CO3				Н		М			H	-	Н		Н	
CO4				Н					H	-	Η		Н	
CO5				Н					H		Н		Η	
H/M/L in	dicates st	ength of c	correlation	H – H	ligh, M	1 - Mec	lium, L	– Low						

Category	Basic Scien ces	Engg Science s	Humaniti es & Social Sciences	Progra m core	Progra m Elective s	Open Electives	Practic al / Project	Internship s / Technical Skills	Soft Skill s
Approval									

BEN17002

TECHNICAL ENGLISH II 2 1 0/0 2/0

Unit I Vocabulary, Grammar and Usage – I

Verbal analogy – picking out the odd one from a series –finding one word substitute – paragraph writing: using discourse markers, defining / describing an object / device / instrument / machine using topic sentence and its role, unity, coherence and use of cohesive expressionsEssay writing with due emphasis on features such as topical sentence, unity, coherence and cohesive devices

UnitII Vocabulary, Grammar and Usage - II

Cloze – completion of sentences suitably, phrases and idioms, homophones – collocation -Techniques of formatting and drafting reports: writing newspaper reports on accidents, thefts and festivals

Unit III Reading

Correcting errors in sentencesEditing a passage (correcting the mistakes in grammar, spelling and punctuation) -interpreting pie and bar charts

Unit IV Writing

Register: formal and informal – using ellipses in dialogues- framing dialogues-Email: Job Application, Resume

Unit V Functional English and Practical Components

Listening: Media Advertisement

Speaking: oral practice- activities related to professional skills (e.g. Marketing, advertising etc.), role play activities using different speech functions (persuasion, negotiation, giving directions and guidance), conversational etiquette (politeness, strategies, turn-taking, body language).

Reading: reading newspaper/ magazine articles for gathering information

Writing: Note-making from newspaper and magazine articles- follow BEC method

Writing and speaking dialogue writing followed by role play in different situations such as asking permission, requesting and instructing, introducing oneself – activities based on BEC

Total No of Periods :30

(6)

(6)

(6)

(6)

Text Book

- 1. Pushkala. R, PadmasaniKannan.S ,Anuradha. V,ChandrasenaRajeswaran.M Quest : A Textbook of ommunication
 - Skills, Vijay Nicole,

References

- 1. Pushkala R, P.A.Sarada, El Dorado: A Textbook of Communication Skills, Orient Blackswan, 2014
- 2. PadmasaniKannan.S., Pushkala.R. : Functional English
- 3. Hancock, Mark, English Pronunciation in Use; Cambridge Univ. Press, 2013
- 4. McCarthy, Michael et.al,, English Vocabulary in Use, Advanced, Cambridge Univ. Press, 2011
- 5. Wren and Martin: Grammar and Composition, Chand & Co, 2006

Web Sources

- 1. https://learnenglish.britishcouncil.org
- 2. <u>www.englishpage.com</u>
- 3. www.writingcentre.uottawa.ca/hypergrammar/preposit.html
- 4. www.better-english.com/grammar/preposition.html
- 5. <u>http://www.e-grammar.org/infinitive-gerund/</u>
- 6. www.idiomsite.com/

DEPARTMENT OF MATHEMATICS

Subject Code :		Subject Name : MATHEMATICS – II	С	L	T/SLr	P/R							
BMA170	003	Prerequisite : None	4	3	1/0	0/0							
L : Lectu T/L/ETL	re T : Tutori . : Theory / L	al SLr : Supervised Learning P : Project R : Researce ab / Embedded Theory and Lab	h C: C	Credits									
OBJECT	TIVES :												
1. Under	rstand the Ba	asic concepts in Integration											
2. Identi	2. Identify the Basic concepts in Multiple integrals												
3. Use the	he Basic con	cepts in Ordinary Differential equations											
4. Apply	4. Apply the Basic concepts of Analytical Geometry												
5. Analy	ze the Basic	concepts of Vector Calculus											
COURS	E OUTCOM	ES(Cos): (3-5)											
Students	completing	the course were able to											
CO1	Integrate g	iven function by using methods of integration and to	o find	the are	ea under curve	e and							
	the volume	of a solid by revaluation.											
CO2	Evaluate th	e multiple integrals / area /volume and to change the	order o	of integ	gration.								
CO3	Solve the ordinary differential equation and to solve Eulers differential equation.												
CO4	Find the ed	juation of planes, lines and sphere and to find the sh	ortest	distanc	e between to	skew							
	lines.												

CO5	Find the g	radient, m	aximum	dire	ctio	nal der	ivative	and	WO	rk done	by a for	rce and	l to v	verify	,
	Green/ Ste	okes/ Gaus	s diverge	ence	the	orem									
Mapping	Mapping of Course Outcomes with Program Outcomes (POs)														
COs/POs	PO1	PO2	PO3	PO	94	PO5	PO	PC)7	PO8	PO	PO1) P	01	PO1
							6				9		1		2
CO1	Н	Н				М	М				Μ	Μ			Н
CO2	Н	Н				М	Н				Η	Н			Μ
CO3	Н	Н				М	Н				Η	Н			Μ
CO4	Н	Н				L	М				Μ	Н			Μ
CO5	Н	Н				М	М				Μ	Н			Μ
H/M/L in	dicates stre	ength of co	rrelation	Η	– H	ligh, M	– Med	lium	, L	-Low					
Categor	Basic	Engg	Human	iti	Pr	ogra	Progr	a	Op	ben	Practic	a In	terns	ship	Soft
у	Science	Science	es &		m	core	m		Ele	ective	1 /	S	/		Skill
	S	S	Social				Electi	ive	S		Project	t T	echni	ical	S
			Science	ces			s					S	cills		
Approval															

BMA17003

MATHEMATICS – II 4 3 1/0 0/0

1. INTEGRATION

Basic concepts of Integration – Methods of Integration– Integration by substitution – Integration by parts – Definite integrals– Properties of definite integrals – Problems on finding Area and Volume using single integrals (simple problems).

2. MULTIPLE INTEGRALS

Double integral in Cartesian and Polar Co-ordinates – Change of order of integration – Triple integral in Cartesian Co-ordinates – Spherical Polar Co-ordinates – Change of variables (simple problems).

3.ORDINARY DIFFERENTIAL EQUATIONS

First order differential equations – Second and higher order linear differential equations with constant coefficients and with RHS of the form: e^{ax} , x^n , Sin ax, Cos ax, $e^{ax}f(x)$, x f(x) where f(x) is Sin bx or Cos bx – Differential equations with variable coefficients (Euler's form) (simple problems).

4.THREE DIMENSIONAL ANALYTICAL GEOMETRY

Direction Cosines and Ratios – Equation of a straight line – Angle between two lines – Equation of a plane – Co-planar lines – Shortest distance between skew lines – Sphere – Tangent plane.

(12)

(12)

(12)

(12)

5. VECTOR CALCULUS

(12)

Scalar and Vector functions – Differentiation – Gradient, Divergence and Curl – Directional derivatives – Irrotational and Solenoidal fields– Line, Surface and Volume integrals – Green's, Stoke's and Gauss divergence theorems (statement only) – Verification.

Total no. of periods: 60

Textbooks

- 1. Kreyszig E., Advanced Engineering Mathematics (10th ed.), John Wiley & Sons, (2011).
- 2. Veerarajan T., *Engineering Mathematics (for first year)*, Tata McGraw Hill Publishing Co., (2008).

References

- 1. Grewal B.S., *Higher Engineering Mathematics*, Khanna Publishers, (2012).
- 2. John Bird, *Basic Engineering Mathematics* (5th ed.), Elsevier Ltd, (2010).
- 3. P.Kandasamy, K.Thilagavathy and K. Gunavathy, Engineering Mathematics Vol. I (4th Revised
- ed.), S.Chand& Co.,

Publishers, New Delhi (2000).

4. John Bird, *Higher Engineering Mathematics* (5th ed.), Elsevier Ltd, (2006).

DEPARTMENT OF MATHEMATICS

Subject Code :	Subject Name : BIO STATISTICS	С	L	T/SLr	P/R						
BMA17004	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			- / /2							
Dimitroot	Prerequisite : None	4	3	1/0	0/0						
L : Lecture T : Tutori	al SLr : Supervised Learning P : Project R : Researc	h C: (Credits		·						
T/L/ETL : Theory / Lab / Embedded Theory and Lab											
OBJECTIVES :											
1. Understand the Ba	sic concepts in Statistics										
2. Use the Basic conc	cepts in Correlation										
3. Understand the Basic concepts in Probability theory											

4. Apply the Basic concepts in Testing of Hypothesis 5. Analyze the Basic concepts in Design of Experiments COURSE OUTCOMES (Cos): (3-5)Students completing the course were able to CO1 Find the measures of central tendency and to find the measures of dispersion. CO₂ Evaluate the moments measures of skewness and kurtorsls and to evaluate correlation and regression. CO3 Apply knowledge and concepts in finding the probability of a random variable and use addition and multiplication laws of Probability CO4 Have ability to test and to give conclusion in testing of hypothesis. CO5 Analyze and interpret results through one way and two way ANOVA Mapping of Course Outcomes with Program Outcomes (POs) COs/POs PO1 PO₂ PO3 PO4 PO5 PO PO7 PO8 PO PO10 PO1 PO1 9 2 6 1 CO1 Η Η Η Μ М Μ CO₂ Η Η Η L Η CO3 Η Η L L Μ L L Η CO4 Η Η L L М Μ Η CO5 Η Η Η Μ Η Μ H/M/L indicates strength of correlation H – High, M – Medium, L – Low Humaniti Progra Practica Internship Categor Basic Engg Progra Open Soft Science es & Elective Skill Science m core 1/ s / m y Technical Social Elective s Project s S S Sciences Skills s $\sqrt{}$ Approval

BMA17004	BIO STATISTICS	4 3	1/0	0/0
1. BASICS OF STATISTICS			(1	2)
Variables – Uni-variate Data – Frequency Distr	ibution – Measures of Central Tendency	– Mea	n –M	ledian
-Mode - Quartiles - Measures of Dispersion - 7	The Range – Quartile Deviation – Standar	rd Dev	iatior	ı.

2. CORRELATION

Measures of Skewness& Kurtosis - Bi-variate data - Correlation & Regression.

3. PROBABILITY AND RANDOM VARIABLE

Definition of Random Experiment - Sample Space – Events: Mutually exclusive events - Exhaustive events - Dependent events and Independent events - Mathematical and Statistical definition of probability - Theorems of addition and multiplication laws of Probability (Without proof) - Conditional probability (Simple problems).

4. SAMPLING

Tests of Significance – Large Sample Tests – Mean – Proportions – Small Sample Tests – t, F & Chisquare Tests – Independence of Attributes – Goodness of Fit.

5. DESIGN OF EXPERIMENTS

Analysis of Variance: One Way & Two-Way Classification – Design of Experiments – Randomized Block Design – Completely Randomized Block Design – Latin Square Design.

Total no. of Periods: 60

Text books

 Gupta S.C, Kapoor V.K, Fundamentals of Mathematical Statistics, S.Chand& Co, New Delhi (2003).

(12)

(12)

(12)

(12)

2. Veerarajan T., *Probability, Statistics and, Random Processes*, Tata McGraw Hill Publishing Co., (2008).

References

- 1. Gupta S.P, Statistical Methods, S.Chand& Co., New Delhi (2003).
- 2. Singaravelu, Probability and Random Processes, Meenakshi Agency, (2017).
- 3. Richard Johnson A., *Miller & Freund's Probability and statistics for Engineers (9thed)*, Prentice Hall of India, (2016).

DEPARTMENT OF PHYSICS

Subject Code :	Subject Name : MATERIAL SCIENCE	С	L	T/SLr	P/R

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

BPH170	02	Prerequ				3	2		0/1	0/0				
L : Lectu	re T : Tuto	rial SLr : S	Supervis	ed Leai	ming P	: Projec	ct R	: Re	search	C: Ci	redits	3		
T/L/ETL	: Theory /	Lab / Emb	edded T	heory a	nd Lab									
OBJECT	IVES :													
1. I	Design, con	duct exper	iment an	d analy	ze data									
2. I	Develop a S	cientific a	ttitude at	micro	and nar	io scale	of n	nater	rials					
3. U	Jnderstand	the concept	ots of Mo	odern P	hysics									
4. <i>A</i>	Apply the s	cience of n	naterials	to Engi	neering	, & Tec	hnol	ogy						
COURSI	E OUTCON	MES (Cos)	: (3 – 5)											
Students	completing	g the course	e were al	ole to										
CO1	Demonstr	ate skills	necessa	ry for	conduc	cting r	esea	rch	related	to c	onte	nt kı	nowledg	e and
	laboratory	v skills.												
	Apply knowledge and concepts in advanced materials and devices													
02	Apply knowledge and concepts in advanced materials and devices.													
CO3	Acquired Analytical, Mathematical skills for solving engineering problems.													
CO4	Ability to	design and	1 conduc	t exper	iments a	as well	as fu	incti	on in a	multi	disc	iplina	ry team	s.
	Carearata	ou oleuti o ol d				140 0	1	41					4 4	
005	Generate	analytical	tnought t	o interp	pret rest	iits & p	nace	ther	n with	in a br	bade	r con	text	
Mapping	of Course	Outcomes	with Pro	ogram C	Outcome	es (POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO	PO	7	PO8	PO	P	010	PO1	PO1
						6				9			1	2
CO1	Н	Н	М	М	М	L						Μ		L
CO2	Н	Н		М	М									L
CO3	Н	Н	Н	Н	М							М		
CO4	Н	Н	Н	Η	М					Н		Μ		L
CO5	Н	М	М	М	М	L				М		М		L
H/M/L ir	dicates stre	ength of co	orrelation	H - H	High, M	– Med	lium,	, L-	- Low					
Categor	Basic	Engg	Human	iti P	rogra	Progr	a	Op	en	Pract	ica	Inte	rnship	Soft
У	Science	Science	es &	n	m core m Elective		ctive	e 1/ Project		s /	hnical	Skill		
	6	5	Science	es		S		6		11030	νı	Skil	lls	5

BPH17002

MATERIAL SCIENCE

(9)

(9)

0/0

3 2 0/1

1. CRYSTAL PHYSICS

Space Lattice – Unit cell – Bravais lattice – Lattice planes – Miller indices – Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for SC, BCC, FCC and HCP structures – Ceramic Materials & Graphite Structures – Crystal GrowthTechniques (Slow Evaporation Method & Melt Growth)

2. CONDUCTING & SUPERCONDUCTING MATERIALS

Introduction - Classical Free electron theory of Metals – Derivation of Electrical conductivity – Thermal Conductivity – Deduction of Wiedemann Franz law – Fermi Energy & Fermi Function – Density of Energy States – Qualitative Analysis of Conductors, Semiconductors and Insulators – Some Examples of Important Electrical Materials

Superconducting Materials:Transition temperature – BCS Theory – Properties of Superconductors – Type I &Type II Superconductors – Superconducting materials - Low & High Temperatures Superconductors – AC& DC Josephson Effects – Applications of Superconductors – Basic Concepts of SQUID, Magnetic Levitation.

3. SEMICONDUCTING MATERIALS

Bonds in Semiconductors – Types – Importance of Germanium & Silicon – Other Commonly Used Semiconducting materials - Carrier concentration in Intrinsic Semiconductors (Electron and Hole Density) – Band Gap Determination – Carrier Transport in Semiconductors – Drift, Mobility and Diffusion – Hall effect – Determination of Hall Coefficient and its Applications – Dilute Magnetic Semiconductors (DMS) & their Applications – Schottky diodes.

4.MAGNETIC& DIELECTRIC MATERIALS

Magnetic Materials: Types – Comparison of Dia, Para and Ferro Magnetism – Heisenberg's interpretation –Domain theory – Hysteresis – Soft and Hard Magnetic Materials – Application of Magnetic Resonance Imaging – Important Magnetic, Insulating & Ferro electric materials.

Dielectric Materials: Electrical Susceptibility – Dielectric Constant – Concept of Polarization – Frequency and Temperature Dependence of Polarization – Dielectric loss – Dielectric breakdown – Commomly used Dielectric materials and their practical applications.

5.OPTICAL, OPTOELECTRONIC AND NEW MATERIALS

Properties & Classification of Optical Materials – Absorption in Metals, Insulators & Semiconductors – Composite Materials – Nano Materials – Bio Materials – MEMS – NEMS – LED's – Organic LED's – LCD's – Laser diodes – Photodetectors – Tunneling – Resonant Tunneling Diodes (RTD's) – Carbon Nanotubes – Various Ttypes of Optical Materials with Properties.

Total No. of Periods : 45

(9)

(9)

(9)

Text Books

- 1. V. Rajendran&Mariakani "Materials Science", Tata McGraw Hill (2004).
- 2. P.K.Palanisamy," Materials science", Scitech Publication(2002).

Reference Books

- 1. Dr. SenthilKumar, "Engineering Physics II" VRB Publishers (2016).
- 2. V. Arumugam, Materials Science", Anuradha Agencies, (2003 Edition).
- 3. Pillai S.O., "Solid State Physics", New Age International, (2005).

DEPARTMENT OF CHEMISTRY

Subject	Code :	Subject Name : ENGINEERING CHEMISTRY –	С	L	T/SLr	P/R								
BCH17	002	п												
		Prerequisite : None	3	2	0/1	0/0								
L : Lect	ure T : Tutor	ial SLr : Supervised Learning P : Project R : Research	C: C	redits										
T/L/ETI	L: Theory / I	Lab / Embedded Theory and Lab												
OBJEC	TIVES :													
1.	Imparting th	e basic concepts of phase rule and apply the same to one	and	two c	omponent sy	stems.								
2.	Introducing	the chemistry of engineering materials such as cement, l	ubrica	ants, a	abrasives,									
	refractories, alloys and nano materials.													
3.	. To impart a sound knowledge on the principles of chemistry involving different application													
	oriented topi	cs												
4.	Introducing	salient features of fuels and combustion.												
5.	To give an o	verview on modern analytical techniques												
COURS	E OUTCON	IES (Cos) : (3 – 5)												
Students	s completing	the course were able to												
<u>CO1</u>	1 U.	adarstand the science of phase equilibric and apply the p	hacat		different av	atoma								
	1. 01	derstand the science of phase equinoria and appry the p				stems.								
CO2	2. Ga	in an overview of Engineering Materials such as Lime,	Ceme	nt, L	ubricants,									
	At	prasives, Refractories, Alloys and Nanomaterials.												
CO3	3. Re	cognize the essential information about consumer produ	icts su	ich as	s Soaps and									
	De	etergents, also gaining the basic knowledge about Explore	sives	and P	ropellants.									
CO4	4. Di	scover the fuel Chemistry and Combustion process.												
CO5	5. Inferring few important Analytical Techniques and their applications.													

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

Mapping	of Course	Outcomes	with Pro	ogran	n Outcom	nes (PC)s)							
COs/POs	PO1	PO2	PO3	PO	4 PO	PO	PC)7	PO8	PO	PO1	0	PO11	PO1
					5	6				9				2
CO1	L													L
CO2	М		L			L	N	М						L
CO3	М					L								L
CO4	М	М	L	L			N	М						М
CO5	М				М									Н
H/M/L in	dicates str	ength of co	orrelation	n H	– High, N	A – Me	diur	n, I	L – Lov	v	1			
Categor	Basic	Engg	Human	iti	Progra	Prog	ra	Open		Practical /		Internshi		Soft
У	Science	Science	es &		m core	m		Elective		ve Project		ps /		Skill
	S	S	Social			Elect	ive	S				Τe	echnical	s
			Science	es		s						Sk	xills	
Approval						·		•		-		•		-

BCH17002

ENGINEERING CHEMISTRY – II 3 2 0/1 0/0

1. PHASE EQUILIBRIA

Introduction – Definition of terms involved in phase rule. Derivation of Gibbs phase rule – Applications to one component system – water system. Binary system – Eutectic system – Pb – Ag system, Bi – Cd system .Thermal analysis – Cooling curves.

2. MATERIAL CHEMISTRY

Cement – Manufacture, Chemistry of setting and hardening .Lubricants – Requirements of good lubricants, Mechanism, Properties of lubricants, Classification – Examples. Abrasives–Classification – Moh's scale-Hard and soft abrasives, Preparation of artificial abrasives (silicon carbide, boron carbide), Applications of abrasives. Refractories – Classification, Properties-Refractoriness, RUL, Porosity, Thermal spalling Alloys Classification of alloys – Purpose of making alloys - Ferrous and non-Ferrous alloys - Heat treatment Nano materials – properties, carbon nano tubes – properties, fabrication – carbon arc method, laser vapourization method.

3. APPLIED CHEMISTRY

Soaps and detergents : Soaps – Saponification of oils and fats, manufacture of soaps, classification of soap – soft soap, medicated soap, herbal soap, shaving soap and creams.

Detergents - Anionic detergents - manufacture and applications, Comparison of soaps and detergents.

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

(8)

(10)

(9)

Rocket propellants and explosives: Rocket propellants – characteristics, solid and liquid propellants – examples. Explosives- Introduction, characteristics, classification, Oxygen balance , preparation, properties and uses of detonators, low explosives and high explosives, Dynamites, Gun cotton, Cordite. Food adulterants- Common adulterants in different foods – milk and milk products, vegetable oils, and fats, spices and condiments, cereals, pulses, sweetening agents and beverages, Contamination with toxic chemicals – pesticides and insecticides.

4. FUELS & COMBUSTION

Introduction to Fuels – classification – Calorific value – GCV, LCV. Solid Fuels–Coal-Proximate Analysis, Metallurgical Coke–Manufacture of Metallurgical Coke – Liquid Fuel–Refining of Petrol, Synthetic Petrol–Manufacturing Process–Hydrogenation of Coal, Polymerization, Cracking–Knocking–Octane Number–Leaded Petrol (or) Anti–knocking – Cetane Number–Ignition Lag–Gaseous fuels–CNG–LPG–Water Gas, Producer gas–Biogas- Combustion– Flue Gas analysis–Orsat's method.

5. ANALYTICAL AND CHARACTERIZATION TECHNIQUES

Electron microscopes: Scanning electron microscope & Transmission electron microscope, instrumentation and applications Absorption and Emission Spectrum - Beer - Lambert's law. Visible and UV Spectroscopy – instrumentation – Block diagram - working. IR Spectroscopy – instrumentation - Block diagram – molecular vibrations – stretching and bending – H_2O , CO_2 . –Characterization of some important organic functional groups. Chromatographic techniques – column, thin layer and paper.

Total number of periods : 45

(9)

Textbooks

- 1. C. S.Unnithan, T. Jayachandran& P. Udhayakala, "Industrial Chemistry", Sreelakshmi Publications (2009).
- 2. Dr.R.Sivakumar and Dr.N.Sivakumar" Engineering Chemistry" Tata McGraw Hill Publishing Company Ltd, Reprint 2013.

References

- 1. P.C. Jain & Monika Jain, "Engineering Chemistry", DhanpatRai publishing Co., (Ltd.) (2013).
- 2. B. R. Puri ,L.R. Sharma &M.S.Pathania, "Principles of Physical Chemistry", Vishal publishing co., (2013).

DEPARTMENT OF ENGINEERING SCIENCES

Subject Code : BES17003	Subject Name : ENVIRONMENTAL SCIENCE C L T/SLr										
	Prerequisite : None	3	3	0/0	0/0						
L : Lecture T : Tutor	ial SLr : Supervised Learning P : Project R : Research	C: Cı	edits								
T/L/ETL : Theory / I	Lab / Embedded Theory and Lab										
OBJECTIVES :											
1. To acquire k	nowledge of the Environment and Ecosystem & Biodiv	ersity									
2. To acquire k	nowledge of the different types of Environmental pollut	ion									
3. To know mo	re about Natural Resources										
4. To gain unde	erstanding of social issues and the Environment										
5. To attain fan	niliarity of human population and Environment										
COURSE OUTCOM	IES (Cos) : (3 – 5)										
Students completing	the course were able to										

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

CO1	To known	about En	vironmei	nt and	d Ecosyst	em & 1	Biod	iver	sity				
CO2	To clearly	y compreh	nend air,	wate	er, Soil, I	Marine	, No	oise,	Thern	nal and	Nucl	ear Pollutio	ns and
	Solid Wa	ste manag	ement a	nd i	dentify th	e impo	ortar	nce	of natu	ral reso	ources	like forest,	water,
	and food resources												
CO3	To discover water conservation and watershed management												
CO4	To identify its problems and concerns climate change, global warming, acid rain, ozone layer												
	depletion etc.,												
CO5	To explain family welfare programmes and role of information technology in human health and												
	environment												
Mapping of Course Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO2	PO3	PO	4 PO5	PO	PC)7	PO8	PO	PO1	0 PO11	PO1
						6				9			2
CO1						М	H	Η	M				М
CO2						М	H	Η			M		М
CO3						М	H	Η	М				М
CO4						М	I	Η	М		M		М
CO5						М	ł	Η			M		М
H/M/L in	dicates str	ength of co	orrelation	n H	– High, N	/I – Me	diur	n, I	L – Lov	V			
Categor	Basic	Engg	Human	iti	Progra	Prog	a	Op	ben	Practio	cal /	Internshi	Soft
У	Science	Science	es &		m core	m Elect	Elective		Projec	t	ps / Technical	Skill	
	8	8	Science	es		s	ecuve s				Skills	5	
Approval	Approval										1		

BES17003

ENVIRONMENTAL SCIENCE

3 3 0 0/0

Unit I Environment and Ecosystem

Definition, Scope and Importance of environment – need for public awareness – concept, structure and function of an ecosystem - producers, consumers and decomposers – energy flow in the ecosystem. Biodiversity at national and local levels – India

Unit II Environment Pollution

Definition – causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Nuclear hazards (g) E-Wastes and causes, effects and control measures

Unit III Natural Resources

Forest resources: Use and over-exploitation, deforestation. Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems. Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems.

Unit - IV Social Issues and the Environment

From unsustainable to sustainable development – urban problems related to energy – water conservation, rain water harvesting, watershed management – resettlement and rehabilitation of people; its problems and concerns climate change, global warming, acid rain, ozone layer depletion, nuclear accidents ,central and state pollution control boards- Public awareness.

Unit – V Human Population and the Environment

Population growth, variation among nations – population explosion, environment and human health – human rights – value education – HIV/AIDS

- women and child welfare - role of information technology in environment and human health

Total Number of Periods : 45

Text Books

- 1. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education (2004).
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGrawHill,NewDelhi, (2006).

References

- Vairamani, S. and Dr. K. Sankaran. Elements of Environmental and Health Science. Karaikudi: KPSV Publications, 5th Edition, July, 2013.
- 2. If thik arudeen, Etal, **Environmental Studies**, Sooraj Publications, 2005.

(9)

(9)

(9)

(9)

3. R.Murugesan, **Environmental Studies**, Millennium Publishers and Distributors, 2nd Edition, July, 2009.

	Dr.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	Insti	itu	te (NV	AC	
Subject	Subject Name: PROBABILITYA ANDRANDOM 5	Τ/	L	Τ/	P /	С
Code:	PROCESS Department of Electronics and Communication	Engin	eeri	S.Lr ng	R	
BMA17007						
	Prerequisite: Mathematics – I, Mathematics - II	Ту	3	1/0	0/0	4

SEMESTER - III

L : Lecture T : Tutorial S Lr : Supervised Learning P : Project R : Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

OBJECTIVE :

• To understand the basic concepts in probability and random process and its application in signal processing.

COURSE OUTCOMES (Cos) : (3- 5)

The student will be able to

CO1 U		Understand the Basic concepts in Probability												
CO2	Understand the Basic concepts in Distribution													
CO3		Understand the Basic concepts in Random process												
CO4		Understand the Basic concepts in Correlation												
CO5 U		Under	Understand the Basic concepts in Spectral Density											
Mapping of Course Outcomes with Program Outcomes (POs)														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	Н	Н	М	Н								М		
CO2	Н	Η	М	Н								М		
CO3	Н	Η	М	Н								М		
CO4	Н	Η	М	Н								М		
CO5	Н	Η	М	Н								М		
COs / PSOs	PSO1		PSO2		PSO3									
CO1	М		Н		М									
CO2	М		Н		М									
CO3	М		Н		М									
CO4	М		Н		М									
CO5	M		Н		М									
H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low														

Category	 ▲ Basic Sciences 	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

BMA17007 PROBABILITY AND RANDOM PROCESS 3 1/0 0/0 4

UNIT-I: **RANDOM VARIABLES**

Baye's Theorem - Applications - Random Variables - Distribution functions - Moments Moment Generating functions -Chebychev's Inequality (statement and application only) - Function of Random Variables.

UNIT – II: STANDARD DISTRIBUTIONS

Marginal and Conditional Distributions – Applications of Discrete Distributions: Binomial – Poisson – Geometric – Applications of Continuous distributions: Uniform – Exponential– Normal distributions – Central Limit theorem (statement applications only).

UNIT-III: RANDOM PROCESS

Stationary Process - Ergodic Process - Poisson Process - Applications: Birth and Death Process -Markov Process - Markov Chains.

UNIT-IV: CORRELATION

Auto Correlation – Auto Covariance – Cross Correlation – Cross Covariance.

UNIT- V: LINEAR SYSTEMS-APPLICATIONS

Spectral Density - Cross Spectral Density - Applications to Linear Systems with Random Inputs and Outputs.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 60 Hrs

Reference Books:

1) Veerarajan T., "Probability, Statistics and, Random Processes", Tata McGraw Hill Publishing Co., (2008).

12 Hrs

12 Hrs

12 Hrs

12 Hrs

12 Hrs

THE POLY	Dr.M.G.R. Educational and Research Ins (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	titu	te NA	AC .	
Subject	Subject Name : CIRCUIT PAEORY	L	Τ/	P /	С
Code:	Department of Electronics and Communication Engi	neer	ingLr	R	

- 2) Singaravelu, "Probability and Random Processes", Meenakshi Agency, (2017).
- 3) Gupta S.C., Kapoor V.K., "Fundamentals of Mathematical Statistics", S.Chand & Co., (2007).
- 4) Richard Johnson A., "*Miller & Freund's Probability and statistics for Engineers*"(9th ed), Prentice Hall of India, (2016).

BEC17001	Prerec Conce	quisite:] epts	Mathem	natical k	Knowled	lge, Bas	ic Elect	trical	Ту	3	1/0	0/0	4		
L : Lecture T	: Tutor	ial SL	r : Supe	ervised	Learnin	g P:Pi	oject F	R : Rese	arch C: C	Credits			I		
T/L/ETL : Th	neory/L	ab/Emb	edded T	Theory a	und Lab										
OBJECTIV	E :														
•	 To understand the concept of circuit elements lumped circuits, waveforms, circuit laws and network reduction To solve the electrical network using mesh and nodal analysis by applying network theorems To learn methods of circuits analysis in time domain and frequency domain To understand the concept of resonance in Series and parallel circuits and to know the concepts of coupled circuits. Obtaining equations to solve circuits in steady state and transient state 														
COURSE O	UTCO	JTCOMES (COs) : (3- 5) ill be able to													
CO1	Understand the concept of circuits, network theorems and various circuit laws														
CO2	Analy	Analyze and solve a given electrical networks using mesh and nodal analysis													
CO3	Done	their int	ferences	s to anal	lyze cir	cuits an	alysis ii	n time d	omain ar	nd freque	ency do	main			
CO4	Demo circui	onstrate ts	their sk	cills in	underst	anding	the con	cept of	various	resonan	ce and	coup	led		
CO5	Apply transie	their u ents.	nderstar	nding to	derive	the anal	yze the	equatio	ons with r	respect to	o solvin	g cir	cuit		
Mapping of	Course	Outco	mes wit	h Prog	ram Oı	itcomes	(POs)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC)12		
CO1	Н	Η		Н	Н	Η	Н	Н	Н		Н				
CO2	Н	Н		Н	Н	Н	М	Н	Н		Н				
CO3	Н	Η	М	Н	Н	Η	М	Н	Н		Н	Η			
CO4	Η	М		Н	Н	Н		Н	Н	М	Н	Н			
CO5	H M H H H M H H														
COs / PSOs	Os PSO1 PSO2 PSO3														
CO1	H H M														
CO2	H H														
CO3	H H M														

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

CO4	Н		Η		L						
CO5					М						
H/M/L indica	ites Stre	ngth of	Correla	tion H	I- High	, M- Me	edium, I	L-Low			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
				~							
Approval											

BEC17001

CIRCUIT THEORY

UNIT- I: BASIC CIRCUIT CONCEPTS

V-I Relationships Of R, L And C - Independent Sources - Dependent Sources - Kirchhoff's Laws -Simple Resistive Circuits - Network Reduction - Voltage Division - Current Division - Source Transformation. Formation of Matrix Equations and Analysis Using Mesh-Current and Node-Voltage Methods.

UNIT-II: AC FUNDAMENTALS

AC Quantity, Phasor Representation – Analysis Of Simple Series And Parallel Circuits – Power And Power Factor - Analysis Mesh Current And Node Voltage Methods - Series Resonance And Parallel Resonance

UNIT-III: NETWORK THEOREM AND DUALITY

Useful Circuit Analysis techniques - Linearity and superposition, Thevenin and Norton Equivalent Circuits, Maximum Power Transfer, Super position theorem -principle of duality.

UNIT- IV: TRANSIENT ANALYSIS

Transient Concepts-Behavior Of Circuit Elements Under Switching Conditions and Their Representation-Forced and Free Response of RL, RC And RLC Circuits with D.C. And Sinusoidal Excitations Using Laplace Transform Method – Natural Frequency and Damping Factor

UNIT-V: COUPLED CIRCUITS

12 Hrs

3

1/0

0/0

12Hrs

12 Hrs

12 Hrs

Mutual Inductance – Coefficient Of Coupling – Ideal Transformer – Analysis Of Multi Winding Couple Circuits – Single & Double Tuned Circuits – Critical Coupling.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 60 Hrs

Textbooks :

- 1. A.Sudhakar & Shyanmugam S.Palli "Circuits & Network Analysis & Synthesis", 4th Edition, Tata McGraw Hill, 2010
- 2. Bruce Carlson, "Circuits: Engineering Concepts and Analysis of Linear Electric Circuits", Thomson Learning, 1st Edition, 2002
- 3. M.L Soni & J.C. Gupta, "Electric Circuit Analysis", Dhanpat Rai & Sons, New Delhi, 1999.

Reference Books:

- 1. Hyatt, W.H. Jr and Kimmerly, J.E., "*Engineering Circuits Analysis*", McGraw Hill International Editions, 1993.
- 2. Edminister, J.A., "*Theory and Problems of Electric Circuits*", Schaum's Outline Series McGraw Hill Book Company, 2nd Edition, 1983.
- 3. Paranjothi S.R., "*Electric Circuit Analysis*", New Age International Ltd., Delhi, 2nd Edition, 2000.
- 4. Artice.M. Davis, "Linear Circuits Analysis", Thomson Learning 2002
- 5. Roy Choudhury, "Networks and Systems", New Age International Ltd, 1992

	Dr.M.G.R. Education (Deemed to be Unive An ISO 9001:2	nal and Research Ins rsity U/S 3 of the UGC Act 1956) 008 Certified Institution	itu		AAC .	
Subject	Subject Name : MGdTALFD	EATRONICE ai - 957 / L/	L	Τ/	P /	С
Code :	Department of Electronics	and Communication Engi	neeri	ng ^{Lr}	R	

BEC17002	Prerec	Prerequisite: Basic electronics and computer conceptsTy31/00/04												
L : Lecture T	: Tuto	rial SI	.r : Sup	ervised	Learnir	ng P:P	roject]	R : Reseat	rch C: C	Credit	S			
T/L/ETL : T	heory/L	ab/Emb	edded 7	Theory :	and Lab)								
OBJECTIV	E :													
	 To give an conceptual understanding about Boolean algebra, demorgans theorem, simplification of Boolean expression, Karnaugh map and Quine Mcklusky methodology. To Design and implement logic gates, combinational logic circuits, PAL, PLA and FPGA. To Design and implement sequential logic circuits like Flip flops, counters and shift registers. To analyzer state diagram, state tables and its reduction and design and implement synchronous and asynchronous sequential circuits. To study different logic families and classify different types of memories. 													
COURSE O	will be able to													
The Student	Analyze and understand Boolean algebra and demorgans theorem concepts and apply													
CO1	Analyze and understand Boolean algebra and demorgans theorem concepts and apply Karnaugh map and Quine mcklusky methodogy to design combinational logic circuits.													
CO2	Demonstrate the ability to design and implement logic gates, PAL, PLA and FPGA in combinational logic circuits.													
CO3	Demo counte	nstrate ers and s	the abil shift reg	lity to o gisters.	design a	and imp	olement	sequentia	al logic	circu	uits 1	ike flip	flops,	
CO4	Analy synch	ze state ronous a	e diagi and asyn	am , nchrono	state ta ous sequ	ables a iential c	nd its ircuits	reduction	and o	desig	n ar	nd imp	lement	
CO5	Study	differen	nt logic	familie	s and w	ill able	to diffe	rentiate ar	nd categ	orize	men	nory de	vices.	
Mapping of	Course	Outco	mes wi	th Prog	ram O	utcome	s (POs)	1						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10	PO11	PO12	
CO1	Н	Н		Н	Н	Н	М	Н	Н			Н		
CO2	Н	Н		Н	Н	Н	М	Н	Н			Н		
CO3	Н	Н		Н	Н	Н	М	Н	Н			Н	Н	
CO4	H H H H H H H H													
CO5	Н	М		М	Н	Н			Н	M		Н	Н	
COs / PSOs	PSO1 PSO2 PSO3													
CO1	H H M													

CO2	Н		Н								
CO3	Н		Н		М						
CO4	Н		Н		-						
CO5	-		-		М						
H/M/L indic	ates Stre	ength of	f Correla	ation	H- Higł	n, M- M	edium,	L-Low	ł		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

BEC17002

DIGITAL ELECTRONICS 3 1/0 0/0 4

UNIT - I: BOOLEAN ALGEBRA

Boolean Algebra - De Morgan's Law - Simplifications of Boolean Expression - Sum of Products and Product of Sums - Karnaugh Map(up to 5 variables) - Quine McClusky Method of Simplification (Including Don't care conditions)

UNIT - II: COMBINATIONAL LOGIC

Logic gates - AND, OR, NOT, NOR, NAND and EX-OR - Combinational Logic- Arithmetic Circuits -Half adder - Full adder, Half Subtractor - Decimal Adder - Excess 3 Adder - Code Converters -Multiplexer - Demultiplexer- Encoder - Decoder - Design of General Combinational Logic Circuit. PAL, PLA and FPGA.

UNIT-III: SEQUENTIAL LOGIC DESIGN

Building Blocks Of Sequential Logic-Rs, JK, Master-Slave, D And T Flip-Flop, Design of Asynchronous and Synchronous Counters - Binary and BCD Counters - Shift Registers.

12 Hrs

12 Hrs

UNIT - IV: SEQUENTIAL MACHINES

Basic Models Of Sequential Machines – Concept Of State Diagram - State Table – State Reduction - Design and Implementation of Synchronous Sequential Circuits. Design and Implementation of Asynchronous Sequential Circuits.

UNIT- V: LOGIC FAMILIES AND MEMORY DEVICE

Characteristics of RTL, DTL, TTL, Families – Schottky, Clamped TTL, ECL, IIL –Classification of memories – ROM - ROM organization - PROM – EPROM – EPROM – EAPROM, RAM

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 60 Hrs

Textbooks:

- 1. Charles H. Roth, "Fundamentals of Logic Design", Thompson Learning, 5th Edition
- 2. FLOYD: "Digital Fundamentals", 10th Edition Universal Book Stall, New Delhi.1993
- 3. Morris Mano, "Digital Electronics and Design", Prentice Hall of India, 2000

Reference Books:

- 1. John F.Wakerly, "Digital Design", Fourth Edition, Pearson/PHI, 2008
- 2. John.M Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.
- 3. Charles H.Roth. "Fundamentals of Logic Design", 6th Edition, Thomson Learning, 2013.
- 4. Donald P.Leach and Albert Paul Malvino, "*Digital Principles and Applications*", 6th Edition, TMH, 2006.
- 5. Donald D.Givone, "Digital Principles and Design", TMH, 2003

12 Hrs

	Dr.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	ı Insti	tute	A NAA	and and	
Subject Code:	Subject Name M SQLID STATE OF AGES - 95	T / L/	L	T / S.	P /	С
BEC17003 D	epartment of Electronics and Communicatior	ETL. Engin	eerin	Lr g	R	
	Prerequisite: Basics of Electrical and Electronics.	Ту	3	0/0	0/0	3

L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

OBJECTIVE :

- To learn crystal structures of elements used for fabrication of semiconductor devices.
- To study energy band structure of semiconductor devices.
- To understand Fermi levels, movement of charge carriers, Diffusion current and Drift current.
- To study behavior of semiconductor junction under different biasing conditions and Power devices. Varactor diode, Zener diode, Schottky diode, etc.
- To study VI Characteristics of devices and limitations in factors like current, power frequency.

COURSE OUTCOMES (COs) : (3-5)

The students will be able to

CO1	Understand crystal structures of elements used for fabrication of semiconductor devices.
CO2	Familiar with energy band structure of semiconductor devices.
CO3	Understand Fermi levels, movement of charge carriers, Diffusion current and Drift current.
CO4	Know about Power devices. Varactor diode, Zener diode, Schottky diode, etc.
CO5	Understand VI Characteristics of devices and limitations in factors like current, power
	frequency

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н		М	L	М	M		Н	Н	М	М	М
CO2	Н			М		Η	М	М	М	М		
CO3	Н	Н				М	М	Н	М		Н	М
CO4	Н	М				Η	Η	Н	М	М	М	
CO5	Н	Н	М	М	М	М			М	М	М	М
COs / PSOs	PS	501	PS	02	PS	503	P	SO4	PSO5			
CO1	Н		М									
CO2	Н		М		М							
CO3	Н		Μ									
CO4	Н		М		М							
C05	Н		Η		М							
H/M/L indicat	tes Stre	ngth of	Correla	tion I	H- High	, M- Me	edium, 1	L-Low		1	1	1

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	▲ Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

BEC17003

SOLID STATE DEVICES 3 0/0 0/0 3

UNIT- I: SEMICONDUCTOR DIODES

Theory of PN Junction Diode – VI characteristics – Static and Dynamic Resistance – Effect of Temperature on Diodes – Space Charge and Diffusion Capacitance - Zener Diode – Avalanche and Zener Break Down Mechanisms – Zener Diode as a Voltage Regulator.

UNIT-II: BJT & BIASING

Principles of Transistor Action – Current Components – Cut Off, Active & Saturation Region – I/P & O/P characteristics CE, CB and CC. Small Signal Large Signal ' β ', Break Down & Switching Characteristics – Transistor Biasing – Bias Stabilization – Bias Compensation – Thermal Runaway – Design with Heat Sink.

UNIT- III: FET & MOSFET

Construction Feature & Working Principles of JFET, MOSFET Depletion and Enhancement Mode, Biasing of FET, and MOSFETS, Transmission Gate using CMOS.

UNIT-IV: POWER DEVICES

Charge Transfer Device, UJT, SCR, Diac, Triac, GTO, MCT and Introduction to Gallium Arsenide Devices, FinFET, LDR, Photo Voltaic cell, Varactor diode.

UNIT- V: SMALL SIGNAL MODEL

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Small Signal Model of Transistor- Analysis of Amplifiers using Small Signal Model. Common Emitter, Common Base, Common Collector, Common Source, Common Drain, Common Gate, Multistage Amplifiers.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45 Hrs

Textbooks:

- 1. Nandita Das Gupta, Amitava Das Gupta, "Semiconductor Devices", Prentice Hall of India, 2005
- 2. Sedra and Smith, "Microelectronic Circuits", Oxford University Press, 2004
- 3. Mohammed Gausi and Spencer, "Introduction to Electronics Circuit Design", Pearson Education, 2004

Reference Books:

- 1. Boylestad, Robert. L and Nashelsky Louis ," *Electronic Devices and Circuit theory*", Prentice Hall of India,6th Edition, 2001
- 2. William & Harris, "*Electronic Devices and Circuits*", Tata McGraw Hill International Editions, 2000
- 3. Millman Halkias, "Electron Devices", Tata McGraw Hill, 2000.
- 4. Donald Neamam, "Microelectronics", Tata McGraw Hill, 2007.
- 5. Sedra Smith, "Micro Electronic Circuits" Fifth edition, 2013.

	T.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	Inst	itu	te	AAC *)
Subject Code:	Subject NameMadu ANDWATAShruopureS	Τ/	L	Τ/	P /	С
BCS17I01 D	epartment of Electronics and Communication	Engii ETL	neer	ingLr	R	
		LIL				

		Pr	erequisi	ite: Pro	gramm	ing and	Multim	edia la	0	Ту	3	0/0	0/0	3
L : Lect	ure T :	Tutoria	al SLr	: Supe	rvised L	earning	g P:Pr	oject R	: Resea	rch C: 0	Cred	its		
T/L/ETI	: The	ory/Lal	b/Embe	dded Tl	heory a	nd Lab								
OBJEC	TIVE	:												
	To lear To und To effi To lear To effi Get to I	n diffe erstanc ciently n the s ciently know a	rent obj l the dif implen ystemat implen bout th	ect orie ferent 1 nent the ic way nent sol e trendi	ented pr methods differe of solvi utions f ing prog	ogramn s of orga nt data ing prob for spec grammin	ning cor anizing structur blems ific prol ng techr	ncepts large ar es olems nologies	nounts c	of data				
COURS The Stud	SE OU ents wil	FCOM l be abl	IES (CO e to	Os): (3	3- 5)									
CO1	Posse imple	ess an i emente	insight i d using	into wh C++	at is inv	volved i	n the de	velopm	ent of cl	asses a	nd h	ow it	can be	
CO2	Attai	n the b	asic abi	ility to a	analyze	, test an	d organ	ize hug	e data					
CO3	Mast	er a va	riety of	data st	ructures	and the	eir impl	ementa	tions.					
CO4	Mast	er diffe	erent alg	gorithm	design	technic	ques (br	ute-forc	e, divide	e and co	onqu	er, gr	eedy, et	c.)
CO5	Appl prob	y and lems.	imple	ment le	earned	algorith	nm des	ign tec	hniques	and d	lata	struc	tures to	o solve
Mappin	g of C	ourse (Outcom	nes with	ı Progr	am Ou	tcomes	(POs)						
COs/PO	S	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	010	PO11	PO12
CO1		Н	Η	Н	Н	Н			М	М	M	[Н	Н
CO2		Н	Η	Н	Н	Н				Н	Н		Н	Н
CO3		Н	Н	Н	Н	Н				Н	Н		Н	Н
CO4		Н	Н	Н	Н	Н				Н	Н		Н	Н
CO5		Н	Н	Н	Н	Н				Н	Н		Н	Н
COs / PS	SOs	PS	501	PS	502	PS	503							
CO1		Н												
CO2		М		Н		М								
CO3		М		М										
CO4				М										

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

CO5	М										
H/M/L indicate	es Stren	gth of (Correlat	ion H	- High,	M- Me	dium, L	L-Low			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
		✓									
Approval											

BCS17I01

C++ AND DATA STRUCTURES 3 0/0 0/0 3

UNIT-I: INTRODUCTION TO OOPS

Object Oriented Concepts – Basics of C++ Environment. Definition – Data Members – Function Members – Control Statements-Overloading Operators – Functions – Friends – Class derivation – Virtual Functions – Abstract Base Classes.

UNIT – II: CLASSES, INHERITANCE & TEMPLATES

Constructor – Default constructors – Copy Constructors – Destructors – Static members –Constant Members – Free Store Operators- Multiple Inheritances- Exception Handling – Streams - Class Templates – Function Templates

UNIT - III: LINEAR DATA STRUCTURES

Stacks, Queues & Lists Implementation and Application Singly linked list - Doubly linked lists

UNIT - IV: NON LINEAR DATA STRUCTURES

Trees – Binary Trees – Binary Search Tree – Tree Traversals – AVL Trees

9 Hrs

10 Hrs

9 Hrs

UNIT V: SEARCHING AND SORTING

Searching – Linear search-Binary Search. Sorting- Insertion sort, Bucket sort, Heap sort, Merge sort, Quick sort.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45 Hrs

Textbooks:

- 1. Balagurusamy.E, "*Object oriented programming with C++*", Tata McGraw-Hill publishing company limited, Addison Wesley
- 2. E.Horowitz, S.Sahani & S.Rajasekharan, "Fundamentals of data structure in C++", Computer science press.
- 3. Stanley B.Lippman, "The C++ Primer", Addison Wesley Publishers, 4th Edition, 2005.

Reference Books:

- 1. Weiss Mark Allen. "Data Structures and Algorithms Analysis in C", Pearson Education, 2/e, 1997
- 2. E.Horowitz, S.Sahani & S.Rajasekharan, "Computer Algorithms", Galgotia 1999.
- 3. Gary J. Bronson, "Object Oriented Program Development using C++", Thomson Learning, 4th Edition 2005.
- 4. Brett D. McLaughlin, Gary Pollice, David West Head "First Object-Oriented Analysis & Design", O'Reilly Media, 2007.
- 5. Gilberg & Forugan, "*Data Structures: A Pseudo Code Approach using C++* ", Thomson Learning 1st Edition, 2002.
- 6. Gary J. Bronson, "Object oriented program development using Java", Thomson Learning, 2nd Revised Edition 2005.

Subject Code:	Subj P Ø B	ect Nan p#\$10	ne: EL	Electro	ICAL ¹ onics a	and Co	INES A	nicatio	nEEngi	L T/ neer img	r P/	ĸ	C
BEC17ET1	Duran		Desial	[] = = (= 1 =	-1 1 T	71 4		-: 4 -	ETI	2 0/0	2/(<u>`</u>	2
	Prere	quisite:	Basic I	Electric	al and E	Electron	ic Circi	uts	EIL	2 0/0	2/0)	3
L : Lecture '	Γ : Tuto	orial S	Lr : Sup	pervised	Learni	ng P:l	Project	R : Res	earch C:	Credits			
T/L/ETL : T	heory/I	Lab/Emb	bedded '	Theory	and La	b							
OBJECTIV	′ Е :												
• To s	study th	e worki	ng princ	ciples of	f differe	ent type	s of AC	machin	es.				
• Τοι Τ	understa	and and	analyze	the wo	rking o	f variou	s specia	al machi	nes.				
• 10 g • To g	give an i	introduc understa	nding c	of differ	it types ent stag	of elect	ronic c CB desi	omponei	nts and in ess.	strument	s.		
• To	analyze	how co	mponer	nts are a	assembl	ed and	tested in	n PCB.					
COURSE O	OUTCO	OMES (COs):	(3-5)									
The Students	will be a	able to											
CO1	Analy	yze the v	working	g princip	ples of a	lifferen	t types	of AC m	achines.				
CO2	Analy	yze the	workin	g of var	ious sp	ecial ma	achines						
CO3	Ident	fy different types of electronic components and instruments.											
CO4	Analy	lyze and design PCB's											
CO5	Assei	mble and	d test di	fferent	compoi	nents in	PCB's						
Monning of	Cours	o Outor	mogwi	th Dro	mom (utcom)					
Mapping of	Cours	e Outer	mes wi	111110	gi ani O	utcom	cs (1 Us)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	012
CO1	Η	Η	Н	Н	Н	М	М	М	М	М	-	N	1
CO2	Η	Н	Н	Н	Н	М	М	М	М	-	М	M	1
CO3	Н	Η	Н	Н	Н	М	М	М	М	М	-	N	1
CO4	Н	Н	Η	Н	Н	М	М	М	М	-	М	N	1
CO5	Н	Н	Н	Н	Н	М	М	М	М	М	-	N	1
COs /	PS	SO1	PS	502	PS	503							
PSOs													
CO1	Η		Η		-								
CO2	Н		Н		М								
CO3	H H M												

CO4	Н		Н		-						
CO5	Н		Н		М						
H/M/L indic	ates Stre	ength o	f Correl	ation	H- Hig	h, M- M	ledium,	L-Low	,		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
				-							
Approval			,		,						

ELECTRICAL MACHINES AND PCB DESIGN **BEC17ET1** 2 0/02/03

UNIT-I: AC MACHINES

Transformers - Principle of Operation of single phase Transformer - EMF Equation- Auto Transformers -Three Phase Transformers – Constructional Details. Induction motors- Construction Details - Types – Principle of Operation - Torque Equation. Synchronous machines -Construction of Synchronous machines - Classification - Induced EMF Equation

UNIT-II: SPECIAL MACHINES

Principle of operation-Universal Motor - Switched Reluctance Motor - Permanent magnet Stepper Motor and Variable Reluctance stepper motor - DC and AC Servo Motor - Tachogenerator - Linear Induction Motor.

UNIT III: INTRODUCTION TO BASICS OF ELECTRONIC COMPONENTS AND **INSTRUMENTS**

Study of electronic components: passive: -R,L,C – Types of R,L,C-Analysis of Colour code in R,C :Active: -Diode, BJT, FET, MOSFET :Electronic Instruments: CRO : -Measurements of Voltage &

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

9 Hrs

9 Hrs

Frequency, Function generator:- Frequency Measurements in Various Range and Wave Form : Power Supply: -Fixed and Variable :Multi-meter:-Measurement of Voltage ,Current, Frequency, R,L,C : IC tester:-Linear ICs and Non Linear ICs: Solder practice.

UNIT IV: PCB DESIGN PROCESS

Conception Level Introduction: Specifying Parts, Packages and Pin Names, Libraries and Checking foot prints of the components, Partlist, Netlist, Making Netlist Files, Placing Parts, Routing Traces, Modifying Traces, Mounting Holes, Adding Text, PCB Layout, DRC, Pattern Transfer.

UNIT V: ASSEMBLING AND TESTING

Identifying the components and its location on the PCB, soldering of active and passive components, Testing the assembled circuit for correct functionality.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45 Hrs

Text books :

1. S. K. Bhattacharya, "Electrical Machines", TMH Publications N. Delhi.

2. Kothari.D.P and Nagrath.I.J., "*Electrical Machines*", Tata McGraw Hill Publishing Co.Ltd, New Delhi, 5th edition 2002.

References:

1. Orcad User manual.

2. Raghbir Singh Khandpur, "Printed Circuit Boards: Design, Fabrication, and Assembly", (McGraw-Hill Electronic Engineering-2006)

3. Dr. Murugesh Kumar.K. "*DC Machines & Transformers*", Vikas Publishing House Pvt Ltd.,2nd edition 2003.

4. Deshpande M. V., "Electrical Machines" PHI Learning Pvt. Ltd., New Delhi, 2011.

5. Department Laboratory Manual.

12 Hrs

	Dr.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956)	h Ins	tita	ute	AAC.	
Subject Code:	Subject Name : CIRCUITS AND DEVICES LAB Maduravoval, Chennal - 95	T / L/	L	T /	P/ R	С
BEC17L01	Department of Electronics and Communication	ETL on Engi	nee	S.Lr ring		
	Prerequisite: Circuit theory, Solid State Devices	Lb	0	0/0	3/0	1

L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

OBJECTIVE :

- To verify the different networks theorems of circuit theory
- To understand the working principle of semiconductor devices and its operations.
- To study the characteristics of power electronic devices, like SCR and UJT.
- To study the characteristics of MOSFET's and resonant circuits.
- To implement a miniproject based on above concepts.

COURSE OUTCOMES (COs) : (3-5)

The Students will be able to

The Students	Demonstrate the practical implementation of network theorems.												
CO1	Demo	onstrate	the prac	ctical in	nplemei	ntation	of netw	ork theore	ms.				
CO2	Apply	the co	ncepts o	of juncti	on dioc	les, BJT	, JFET	and biasir	ig metho	ods.			
CO3	Analy	ze the l	pehavio	r of var	ious An	nplifiers	s.						
CO4	Demo	onstrate	behavio	or of va	rious po	ower ele	ectronic	s devices.					
CO5	Imple	mentati	on a mi	ni proje	ect base	d on the	ese conc	cepts.					
Mapping of	Cours	e Outco	omes wi	ith Pro	gram ()	outcom	es (POs	5)					
COs/POs	PO1	PO2	PO3	PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 H H H M M M M M M									
CO1	Н	Η	Н	Н	Η	М	М	М	М	М	М	М	
CO2	Н	Н	Н	Н	Н	М	М	М	М	М	-	М	
CO3	Н	Н	Н	Н	Н	М	М	М	М	М	М	М	
CO4	Н	Н	Н	Н	Η	М	М	М	М	М	-	М	
CO5	Н	Н	Н	Н	Η	М	М	М	М	М	М	М	
COs / PSOs	PS	01	PS	02	PS	03		·					
CO1	Н		Η		-								
CO2	Н		Η		М								
CO3	Н		Н	М									
CO4	Н		H M										
CO5	Н		Н		-								

H/M/L indic	ates Str	ength o	f Correl	ation	H- Hig	h, M- N	ledium,	L-Low	1		
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
				✓							
Approval											

BEC17L01 CIRCUITS & DEVICES LAB 0 0/0 3/0 1

LIST OF EXPERIMENTS

- 1. VERIFICATION OF SUPERPOSITION THEOREM, MPT, THEVENIN, NORTON
- 2. VERIFICATION OF NODAL & MESH ANALYSIS
- 3. CHARACTERISTICS OF P-N JUNCTION & ZENER DIODE
- 4. I/P & O/P CHARACTERISTICS OF BJT
- 5. CHARACTERISTICS OF JFET; FINDING $\,\beta$ OF THE TRANSISTOR AND FIXED BIASING
- 6. BIASING OF TRANSISTOR IN CE MODE; BJT AMPLIFIER DESIGN CE MODE
- 7. BJT AMPLIFIER CB MODE AND CC MODE; JFET C.S. AMPLIFIER
- 8. UJT CHARACTERISTICS; SCR CHARACTERISTICS
- 9. MOSFET CHARACTERISTICS; STUDY OF RESONANT CIRCUITS
- 10. MINI PROJECT

	Dr.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	Inst	itu	te 🥊	AAC	
Subject Code:	Subject Name MDIGHTAL SYNTEM DESIGN 95	Τ/	L	Τ/	P /	С
BEC17L02	epartment of Electronics and Communication	Engin ETL	neer	ingr	R	

		Pre	erequisi	te: Eleo	ctronics					Lb	0	0/0	3/0	1
L : Lectu	ure T :	: Tutori	al SL	r : Supe	rvised I	Learnin	g P:Pr	oject R	: Resea	rch C: (Credi	its		
T/L/ETI	- : The	eory/La	ıb/Embe	edded T	heory a	nd Lab								
OBJEC	TIVE	:												
	•	To in	npleme	nt of va	rious la	ws of B	oolean	algebra	in SOP	and PO	S for	ms.		
	•	To in To in	npleme	nt vario nt stand	us coml ard IC'e	oination	nal logic Nementi	and sec	quential	logic ci ts	rcuit	s.		
COUDS				$\overline{\mathbf{O}_{\mathrm{G}}}$. ($\frac{10}{2}$ 5)	5 III IIIp		ing ungi						
The Stud	ents w	ill be ab	le to	08):(5- 5)									
CO1	Prac	tically	implem	ent of v	arious 1	aws of I	Boolear	algebra	a in SOF	and PO	OS fo	orms.		
CO2	Impl	ement	various	combin	ational	logic ci	ircuits a	nd code	convert	ers.				
CO3	Desi	gn and	implen	nent diff	erent ty	pes of 1	multiple	xer and	demulti	plexers	•			
CO4	Desi	gn and	implen	nent var	ious sec	luential	circuits	like fli	p-flops,	counter	s and	l registe	ers.	
CO5	Use	the star	ndard IC	C's in in	nplemer	nting co	mbinati	onal an	d sequer	tial log	ic cii	cuits.		
Mappin	g of C	Course	Outcor	nes wit	h Progr	am Ou	itcomes	(POs)						
COs/PO	S	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PC	D10 P	011	PO12
CO1		Н	Н	Н	Н	Н	M	М	M	M	M	-		M
CO2		Н	Н	Н	Н	Н	M	М	М	М	-	N	1	M
CO3		Н	Н	Н	Н	Н	M	М	М	М	M			M
CO4		н	н	н	н	н	M	M	M	M		N	ſ	M
CO4		11	11	11	11	11	M	M	M	M		1	1	<u></u>
005	~ ~	п	П	П	П	П		M	IVI	IVI	IVI	-		
COs / PS	SOs	PS	01	PS	02	PS	503							
CO1		М		М		-								
CO2		М		М		М								
CO3		М		М		М								
CO4		М		М		-								
CO5		М		М		М								
H/M/L i	ndicat	tes Stre	ngth of	Correla	tion H	l I- High	, M- Me	dium, I	L-Low					

	Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval	Approval											

BEC17L02DIGITAL SYSTEM DESIGN LAB00/03/01

LIST OF EXPERIMENTS:

- 1. Implementation of BOOLEAN FUNCTIONS using logic gates -POS & SOP form.
- 2. Implementation of MULTIBIT ADDERS & SUBTRACTORS (2 & 3 BITS).
- 3. Design and implementation of code converters using logic gates
- i) BCD to excess-3 code and vice versa
- ii) Binary to gray and vice-versa
- 4. Design and implementation of Magnitude Comparator (2-Bit).
- 5. Multiplexer & De multiplexer logic circuit design
- 6. Design and implementation of FLIP FLOPS
- 7 .Implementation of STUDY OF REGISTERS
- 8. Construction and verification of COUNTERS.
- 9. Implementation of combinational logic functions using standard ICs
- 10. Implementation of sequential logic functions using standard ICs

References:

- 1. Lab manual, Department of ECE, DR.MGR UNIVERSITY.
- 2. Maheswari.L.K and Anand.M.M.S, "Laboratory Manual for Introductory Electronic Experiments", New Age, 2010
- 3. Poornachandra Rao.S and Sasikala.B, "Handbook of Experiments in Electronics and Communication".

E	Dr.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	ı Inst	itu	te 🧳	AAAC	
Subject Code:	Subject Name :MaduaanDolya1;ASTERUCITURES	Τ/	L	Τ/	P /	С
BCS17IL1 I	LAB epartment of Electronics and Communication	Engiı	neer	ing r	R	
	-	Ŭ		-		

										ETL				
		Pre	erequisi	te: Prog	grammi	ng lab				Lb	0	0/0	3/0	1
L : Lect	ure T :	Tutori	ial SL	r : Supe	rvised I	Learnin	g P:Pı	oject F	R : Resea	urch C:	Credi	its		
T/L/ETI	: The	ory/La	ab/Embe	edded T	heory a	nd Lab								
OBJEC	TIVE	:												
	• • •	To ir To ir To ir To ir To ir	npleme npleme npleme npleme erform	nt differ nt stack nt differ nt differ sorting	rent oop s and qu rent type rent tree using va	os conce ueues pr es of lin e concep arious ty	epts prac rogrami hked list ots. ypes of	ctically. naticall s. algorith	y. ıms.					
COURS	SE OU	TCON	MES (C	Os): (3- 5)									
The Stud	dents v	vill be	able to											
CO1	Imple	ement	and der	nonstrat	te differ	ent obje	ect orier	nted pro	grammi	ng conc	epts.			
CO2	Imple	ement	stacks a	and que	ues prog	gramma	tically.							
CO3	Imple	ement	and demonstrate different types of linked lists.											
CO4	Perfo	orm pro	ogramm	atically	differe	nt opera	ations ir	nvolving	g trees.					
CO5	Perfo	orm soi	rting us	ing vari	ous type	es of alg	gorithm	s.						
Mappin	g of C	ourse	Outcor	nes wit	h Progi	ram Ou	itcomes	(POs)						
COs/PO	s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PC	010	PO11	PO12
000,10	5	101	102	100	101	100	100	107	100	107		,10	1011	1012
CO1		Η	Н	Н	Н	Н	Μ	Μ	М	Μ	Μ		-	М
CO2		Η	Н	Н	Н	Н	М	М	М	М	-		М	М
CO3		Н	Н	Н	Н	Н	М	М	М	М	M		-	М
CO4		Η	Н	Н	Н	Н	М	М	М	М	-		М	М
CO5		Η	Н	Н	Н	Н	M	М	М	М	Μ		-	М
COs / PS	SOs	PS	01	PS	02	PS	03							
CO1		Н		Н		-								
CO2		Η		Н		М								
CO3		Η		Н		М								

CO4	Н		Н		-						
CO5	Н		Н		М						
		_			-		-				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
							~				
Approval											

BCS17IL1

C++ and Data structures lab

0/0 3/0 1

0

LIST OF EXPERIMENTS

- 1. Implementation of control statements
- 2. Implementation of arrays (single and multi-dimensional)
- 3. Implementation of constructor and destructor
- 4. Implementation of overloading functions.
- 5. Concept of inheritance
- 6. Implementation of stack (using arrays and pointers)
- 7. Implementation of queue (using arrays and pointers)
- 8. Single linked list
- 9. Doubly linked list
- 10. Binary tree traversals
- 11. Binary search tree
- 12. Quick sort

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017 REVISION-3

	Dr.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956)	Insti	tu	te NA	AC .	
Subject	Subject Name: MATHEMATICS IV FOR	T / L/	L	Τ/	P /	С
Code:	ELECTRONICS ENGINEERS	ETL		S.Lr	R	
	Department of Electronics and Communication	Engin	eeri	ng		
BMA17012	Prerequisite: MATHS III	Тy	3	1/0	0/0	4

13. Heap sort

14. Merge sort

L : Lecture T : Tutorial S Lr : Supervised Learning P : Project R : Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

OBJECTIVE :

- To study the basic concepts in Analytic functions and its application in flow of current.
- To understand the basic concepts in Numerical methods and its applications.

COURSE OUTCOMES (COs) : (3- 5)

The student v	will be	able to												
CO1	U	Understand the Basic Concepts in solution of Algebraic and Transactional equations.												
CO2	U	nderstar	nd the B	the Basic Concepts in Interpolation										
CO3	U	Understand the Basic Concepts in Numerical Differentiation and integration.								ion.				
CO4	U	Understand the Basic Concepts in Analytical functions.												
CO5	U	Understand the Basic Concepts in Complex integration.												
Mapping of Course Outcomes with Program Outcomes (POs)														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	Н	Н	М									М		
CO2	Н	Н	М									М		
CO3	Н	Н	М		М						М	М		
CO4	Н	Н	М		М						М	М		
CO5	Η	Н	М		Μ						М	М		
Cos / PSOs	PSO1		PSO2		PSO3		PSO4		PSO5					
CO1	М		Н		М									
CO2	М		Н		М									
CO3	М		Н		Μ									
CO4	М	Н		М										
CO5	М	Н		Μ										
H/M/L indica	ates Str	ength of	Correla	ation 1	H- High	, M- Me	edium, l	L-Low						

Category	 ▲ Basic Sciences 	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

BMA17012 MATHEMATICS IV FOR ELECTRONICS ENGINEERS 3 1/0 0/0 4

SOLUTION OF EQUATIONS UNIT- I:

Solution of Algebraic and Transcendental Equations - Method of false position - Iteration method-Newton- Raphson method – Solution of linear system of equations – Gauss Elimination method – Gauss – Jordan method- Iterative methods - Gauss - Jacobi method - Gauss - Seidel method - matrix Inversion by Gauss – Jordan method.

UNIT – II : INTERPOLATION

Newton forward and backward differences – Central differences – Stirling's and Bessel's formulae – Interpolation with Newton's divided differences – Lagrange's method.

UNIT- III: NUMERICAL DIFFERENTIATION AND INTEGRATION 12 Hrs

Numerical differentiation with interpolation polynomials - Numerical integration by Trapezoidal and Simpson's (both 1/3rd & 3/8th) rules - Two and three point Gaussian Quadrature formulae - Double integrals using Trapezoidal and Simpson's rules.

UNIT- IV: ANALYTIC FUNCTIONS

Analytic functions – Cauchy Riemann equations in Cartesian and Polar form – Properties of analytic functions – Construction of analytic functions – Simple Transformations – Standard transformations : w = z^2 , $w = e^z$, $w = \sin z$, $w = \cosh z - Bilinear$ transformations.

UNIT- V: COMPLEX INTEGRATION

Cauchy's integral theorem (without proof) – Cauchy's integral formulae (without proof) – Taylor's and Laurent's series (without proof) – Singularities: Types – Residues – Cauchy's residue theorem (without

12 Hrs

12 Hrs

12 Hrs

proof) – Evaluation of real integrals by Contour Integration (excluding poles on real axis).

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total no. of hrs. 60

Reference Books:

- 1) Veerarajan T., Numerical Methods, Tata McGraw Hill Publishing Co., (2007).
- 2) Sastry S.S., Introductory Methods of Numerical Analysis, Prentice Hall of India, (2012).
- 3) Kreyszig E., Advanced Engineering Mathematics (10th ed.), John Wiley & Sons, (2011).
- 4) Kandasamy P., Thilagavathy, Gunavathy K., *Numerical Methods (Vol.IV)*, S.Chand & Co., (2008).
- 5) Veerarajan T., *Engineering Mathematics (for first year)*, Tata McGraw Hill Publishing Co., (2008).
- 6) Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).

Dr.M.G.R. Educational and Research Institute												
Subject Code:	Subject Name : CONTROPOS SYSTEMS INFOR	T / L/	L	Τ/	P /	C						
	ELECTRONICS ENGINEERS, Chennai - 95	ETL		S.Lr	R							
BEC1/004 T	Consetment of Floctronics and Communication	- Engin	oorir	ισ								
L	Prerequisite: Network System	Ty	3	9 /0	0/0	4						
		•										

L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

OBJECTIVE :

- To learn the basic elements of control system with mathematical model.
- To understand the time response of first and second order system feedback.
- To learn the frequency response of systems using bode plot and polar plot.
- To check the stability of Control system using various techniques.
- To study different compensators and advance control system concepts using state variables.

COURSE OUTCOMES (COs) : (3-5)

The student will be able to

Model physical systems using block diagram and signal grew. CO2 Analyze the system using time response. CO3 The open loop and closed loop analysis of systems in frequency domain. CO4 Check the stability of the given system using root locus and Nyquist Plot. CO5 Choose the component of the given system using root locus and Nyquist Plot. Mapping of Correct verture ver																
CO2 Analyze the system using time response. CO3 The open loop and closed loop analysis of systems in Frequency domain. CO4 Check the stability of the given system using root locus and Nyquist Plot. CO5 Choose the compensator for the given system and do the analysis using state variables. Mapping of Corse but compensator for the given system and do the analysis using state variables. CO5/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO5/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO5/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO5/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO PO10 PO11 PO12 CO5/POS PO1 PO2 PO3 PO4 PO PO PO </td <td>CO1</td> <td>]</td> <td>Model p</td> <td>hysical</td> <td>systems</td> <td>s using l</td> <td>block di</td> <td>agram a</td> <td>and sign</td> <td>al grew.</td> <td></td> <td></td> <td></td>	CO1]	Model p	hysical	systems	s using l	block di	agram a	and sign	al grew.						
CO3 The open loop and closed loop analysis of systems in frequency domain. CO4 Check the stability of the given system using root locus and Nyquist Plot. CO5 Choose the compensator for the given system and do the analysis using state variables. Mapping of Course Uurones with Program Outcomes (POS) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO5/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO3 H H H H M <td>CO2</td> <td></td> <td>Analyze</td> <td>the syst</td> <td>tem usii</td> <td>ng time</td> <td>respons</td> <td>se.</td> <td></td> <td></td> <td></td> <td></td> <td></td>	CO2		Analyze	the syst	tem usii	ng time	respons	se.								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	CO3	,	The oper	1 loop a	nd close	ed loop	analysi	s of sys	tems in	frequenc	y domai	n.				
Choose the convensator for the given system and do the analysis using state variables. Mapping of Current Substrate	CO4	(Check th	e stabil	ity of th	e given	system	using 1	root locu	is and N	yquist Pl	ot.				
Mapping of Course With Program Outcomes (POS) COS/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 H H H H H M <t< td=""><td>CO5</td><td>,</td><td>Choose variables</td><td colspan="13">ose the compensator for the given system and do the analysis using state ables.</td></t<>	CO5	,	Choose variables	ose the compensator for the given system and do the analysis using state ables.												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mapping of C	Course	e Outcor	Outcomes with Program Outcomes (POs)												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CO1	Н	Н	Н	Н	Н		М		М	М	М				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CO2	Н	Н	Н	Н	Н		М		М	М	М				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CO3	Н	Н	Н	Н	Н		М		М	М	М				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CO4	Н	Н	Н	Н	Н		Н		М	М	М				
COs / PSOsPSO1PSO2PSO3IIIICO1HHIIIIIICO2HHIIIIIICO3HHIIIIIICO4HHIIIIIICO5HHIIIIII	CO5	Н	Н	Н	Н	Н		Н		Н	М	М				
CO1 H H Image: Colored state sta	COs / PSOs	P	SO1	PS	O2	PS	O3		1							
CO2 H H Image: Colored state sta	CO1	Н		Н												
CO3 H H I	CO2	Н		Н												
CO4 H H I	CO3	Н		Н												
CO5 H H	CO4	Н		H												
	CO5	Н		H												
H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low	H/M/L indicat	es Str	ength of	Correla	tion I	H- High	, M- M	edium, 1	L-Low	ı	I					

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
				v							
Approval											

BEC17004 CONTROL SYSTEMS FOR ELECTRONICS ENGINEERS 3 1/0 0/0 4

UNIT- I: SYSTEM REPRESENTATION

Control Systems - Basic elements in control systems - Open and Closed loop systems - Mathematical models of physical systems - Transfer function - Block diagram reduction techniques - Signal flow graph.

UNIT- II: TIME RESPONSE

Standard Test Signals-Time Domain study of first order and second order feedback control systems -Time domain Specifications - I and II order System Response - Error Coefficients - Generalized Error Series - Steady State Error - P, PI, PID Controllers.

UNIT - III: FREQUENCY RESPONSE

Frequency Response - Bode plot - Polar plot - Constant M and N circles - Determination of Closed Loop Response from Open Loop Response - Correlation between Frequency Domain and Time Domain Specifications.

UNIT-IV: STABILITY OF CONTROL SYSTEM

Characteristics Equation - Location of Roots in S plane for stability - Routh Hurwitz Criterion - Root Locus Construction - Effect of Pole, Zero Addition - Gain Margin and Phase Margin - Nyquist Stability Criterion.

UNIT - V: COMPENSATORS AND STATE SPACE ANALYSIS

Lag, Lead and Lag-Lead Compensators- State Space Analysis - State Space Formulation -State Variables - Phase variables and Canonical Variables –Concept of Controllability & Observability.

12Hrs

12Hrs

12 Hrs

12 Hrs

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total Number of Hours: 60 Hrs

Textbooks:

- 1. K. Ogata, "Modern Control Engineering", 4th edition, Pearson Education, New Delhi, 2003 / PHI.
- 2. I.J. Nagrath & M. Gopal, "Control Systems Engineering", New Age International Publishers, 2003.
- 3. B.C. Kuo, "Automatic Control Systems", Prentice Hall of India Ltd., New Delhi, 7th Edition, 1995.

Reference Books:

- 1. M. Gopal, "Control Systems, Principles & Design", Tata McGraw Hill, New Delhi, 2002.
- 2. M.N. Bandyopadhyay, "Control Engineering Theory and Practice", Prentice Hall of India, 2003.
- 3. A.Nagoor kani, "Control System Engineering" RBA Publications.
- 4. Stefani, Shanian, Savant, Hostetter, "Design of Feedback Control Systems", 4th Edition, Oxford university press 2002.

	Dr.M.G.R. Educational and Research	ı Insti	tute	NAZ	C. Carlie	
Subject Code:	Subject Name: An ISC SIGNAL Stores in U.S. Subject Name:	T / L/	L	T/S.	P/	С
BEC17005	Maduravoyal, Chennai - 95	ETL		Lr	R	
D	epartmint:dfnElectrionMstandaCommunication	ı E Ag in	eeiin	g 1/0	0/0	4

L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

OBJECTIVE :

- To study the representation of discrete and continuous signals and systems.
- To study the analysis of continuous time systems using Laplace and Fourier transforms.
- To study the analysis of discrete time systems using DFT and Z transforms.

COURSE OUTCOMES (COs) : (3-5)

The student will be able to

CO1	Classify continuous and discrete time signals and systems.
CO2	Analyze continuous signals and its spectrum with transforms.
CO3	Determine the response of continuous time systems with transforms and state

CO3 Determine the response of continuous time systems with transforms and state variable approach.

CO4 Analyze discrete signals and its spectrum with transforms.

CO5 Determine the response of discrete time systems with transforms and state variable approach.

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	Н	Н	Н		M			М	М	М
CO2	Н	Н	Н	Н	Н		М			М	М	М
CO3	Н	Н	Н	Н	Н		М			М	М	М
CO4	Н	Н	Н	Н	Н		М			М	М	М
CO5	Н	Н	Н	Н	Н		М			М	М	М
COs / PSOs	PS	01	PS	02	PS	03						
CO1]	H	Ν	М								
CO2]	H	N	M								
CO3]	H	N	M								
CO4]	H	N	M								
CO5]	H	N	M								
H/M/L indicat	es Strei	ngth of	Correla	tion H	I- High	, M- Me	edium, l	L-Low			1	

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	 ▲ Program Core 	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval		I	I		I			I			

BEC17005 SIGNALS AND SYSTEMS

UNIT- I: CLASSIFICATION OF SIGNALS AND SYSTEMS

Continuous Time Signals (CT signals), Discrete Time Signals (DT Signals) – Step, Ramp, Pulse, Impulse, Exponential, Classification of CT and DT signals - Periodic and aperiodic, Random Signals, CT Systems and DT Systems, Classification of Systems - Linear Time Invariant Systems(LTI).

UNIT - II: ANALYSIS OF C.T SIGNALS

Fourier Series Analysis, Spectrum of C.T. Signals, Fourier Transform and Laplace Transform -Properties of Fourier Transform - Applications in Signal Analysis.

UNIT-III: LTI – CT SYSTEMS

Differential Equation, Block Diagram Representation, Impulse Response, Step Response, Convolution Integral, Frequency Response, Fourier and Laplace Transforms in Signal Analysis, State Equations and Matrix.

UNIT - IV: ANALYSIS OF D.T. SIGNALS

Spectrum of D.T. Signals, Discrete Time Fourier Transform (DTFT), Discrete Fourier Transform (DFT), Properties of DFT, Properties of Z – Transform in Signal Analysis, Inverse Z-Transform.

UNIT - V: LTI – DT SYSTEMS

Difference Equations, Block Diagram Representation, Impulse Response, Convolution, Frequency Response, Z – Transform Analysis, Realization of Digital Filters – Direct Form-I, Direct Form-II,

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

10 Hrs

4

3

1/0

0/0

12 Hrs

12 Hrs

13 Hrs

Transposed, Parallel, Cascade Structure, State Variable Equation and Matrix.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total Number of Hours: 60 Hrs

Textbooks:

- 1. Alan V Oppenheim, "Signals and Systems", Prentice Hall of India Pvt. Ltd, 2nd Edition, 1997.
- 2. Roger E. Zeimer et al, "Signals and Systems": Continuous and Discrete, McMillan, 2nd Edition, 1990
- 3. Hwei P. Hsu, Schaum's Outline Series, "Signals and Systems", Mc Graw Hill Companies, 2nd Edition.

Reference Books:

- 1. Douglas K Lindner, "Signals and Systems", McGraw Hill International, 1999.
- 2. Simon Haykin and Barry Van Veen," Signals and Systems", John Wiley and Sons, Inc., 1999.
- 3. Robert A. Gabel and Richard A. Roberts, "*Signals and Linear Systems*", John Wiley, 3rd Edition, 1987.

	Dr.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	h Insti	itu	te N	A A A	
Subject	Subject Name: Wiacute CIRCUITS	T / L/	L	Τ/	P /	С
Code:	Department of Electronics and Communicatio	nÆngin	eer	ingLr	R	
BEC17006	Prerequisite: Solid State Devices	Ту	3	0/0	0/0	3

									1				
L : Lecture	T : Tuto	orial S	Lr : Sup	ervised	Learni	ng P:I	Project	R : Res	earch C: (Credits			
T/L/ETL:	Theory/I	Lab/Emt	bedded '	Theory	and Lal	0							
OBJECTI	VE:												
•	On com The me	pletion	of this of f biasing	course t g transis	the stude	ent will d Desig	underst n of sim	and oble ami	olifier cire	cuits			
•	Method	l of calc	ulating	cutoff f	requence d heat s	vies and	to deter	rmine ba	andwidth				
~~~~~~													
COURSE	OUTCO	OMES (	COs) : (	( 3- 5)									
The Studen	ts will b	e able to	)										
CO1	]	Model v	arious t	ypes of	rectifie	ers.							
CO2	I	Use the	differen	ıt ampli	fier inde	epender	ntly						
CO3	(	Constru	ct the fe	edback	amplifi	ers and	oscillat	ors.					
CO4		Calculat	e the de	lay and	l switch	ing time	e multiv	ibrator.					
CO5	]	Detect t	he effici	ency of	f power	amplifi	er.						
Mapping o	f Cours	e Outco	omes wi	th Prog	gram O	utcome	es (POs	)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	) PO11	PO	012
CO1	Н	Н	Н	Н	М	M		М	Н	М	Н	Н	
CO2	Н	Н	Н	Н	Н	М		Н	М	М	Н	Н	
CO3	Н	Н	Η	Η	Н			М	Н	Н	Н	М	[
CO4	Н	Н	Н	Н	Н				Н	Н	М	М	[
CO5	Н	Н	М	Н	Н				Н	М		Н	
COs /	PS	501	PS	02	PS	SO3						_	
PSOs													
CO1	Н		М		М								
CO2	Н				Н								
CO3	Н				Н								
CO4	Н		М		Н								
CO5	Н		Н		Н							+	
H/M/L indi	cates Str	ength o	l f Correl	ation	H- Hig	h, M- N	ledium.	L-Low				1	



Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	▲ Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

#### BEC17006

### ELECTRONIC CIRCUITS30/0

#### UNIT I: RECTIFIER & POWER SUPPLY

Half & Full Wave Rectifies – Filters – Shunt, Inductor, LC Section & Ripple Factor,  $\pi$  filters, Calculation for C, L and LC Filters – Voltage Regulators – Zener – Series Voltage Regulator – Shunt Voltage Regulator – SMPS- IC Voltage Regulators.

#### UNIT II: AMPLIFIERS

Amplifiers – Frequency Response of RC Coupled Amplifiers – Frequency Response of Emitter follower, Gain Band Width Product – FET - Amplifier at Low and High Frequency Cascaded Amplifiers

#### UNIT III: FEED BACK AMPLIFIER & OSCILLATORS

Four Basic Type of Feedback – Effect of Feedback on Amplifier Performance-Examples of Different types of Feedback Amplifiers-Voltage Series & Shunt Feedback, Current Series & Shunt Feedback – Condition for Oscillation Barkhaushen Criteria – LC Oscillators – Hartley & Colpitts – RC Oscillators – Wein Bridge, RC Phase Shift, Crystal Oscillator.

### UNIT IV: MULTIVIBRATORS

Collector Coupled & Emitter Coupled Astable Multivibrator, – Mono Stable, Bistable Multivibrator – Triggering Methods – Storage Delay and Calculation of Switching Time - Schmitt Trigger Circuits, Speed up Capacitor in Switching – UJT based Relaxation Oscillator.

9 Hrs

0/0

3

# 9 Hrs

9 Hrs



#### **UNIT V: POWER AMPLIFIER**

Classification – Class A, B, C & AB, Class B-push pull – Class B Complementary Symmetry, Class S, and Power sections Classifications, Efficiency, Distortion in Amplifiers-Tuned Amplifiers.

#### Practical component P : Include case studies / application scenarios

**Research component R : Future trends / research areas / Comparative Analysis** 

#### **Total Number of Hours: 45 Hrs**

#### **Textbooks :**

- 1. Mohammed. H. Rashid, "Micro Electronic Circuits, Analysis and Design", Thomson Learning
- 2. David. A. Bell, "Solid state Pulse Circuits", Prentice Hall India, 4th Edition, 2000.
- 3. Angsuman sarkar, "Solid State Microelectroni and Optoelectronic Devices", University press, 2012.

#### **Reference Books:**

- 1. Millman Taub, "H Pulse Digital & Switching waveform ", Tata McGraw Hill International, 2001
- 2. Jacob Millman, Cristas C. Halkias," Integrated Electronics", Tata McGraw Hill., Edition 1991.

	Dr.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	h Insti	itute	A NAV	AC .	
Subject Code:	Subject Name MacQMPUTER NETWORKS 95	T / L/	L	Τ/	<b>P</b> /	С
BCS17I02 E	epartment of Electronics and Communication	ETL 1 Engin	eerin	S.Lr g	R	
	Prerequisite: Communication System	Ту	3	0/0	0/0	3



L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

#### **OBJECTIVE :**

- To understand different storage media and OSI layers
- To introduce the features of different I/O peripheral devices and protocols.
- To introduce the students the functions and standards of LAN.
- To introduce IEEE standard employed in computer networking.
- To make students to get familiarized with different protocols and network components.

## COURSE OUTCOMES (COs) : (3-5)

The Students will able to

CO1		Describe	the bas	sic conc	epts of	data con	mmunic	cation an	ld OSI la	yers.		
CO2		Analyze	data lin	k contro	ol proto	col.						
CO3		Explain	differen	t standa	ards and	l protoco	ols used	l in LAN	1			
CO4		Express	the duti	es of ne	etwork s	support	layer ar	nd WAN	protoco	ols		
CO5		Define tl	ne funct	ions of	upper (	OSI laye	r					
Mapping of C	Course	e Outcor	nes wit	h Prog	ram Oı	itcomes	s (POs)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Η							Н	Н	М		
CO2	Н	Н			М							
CO3	М	М	М		Η		М	М				Н
CO4	Н		М	М		М	М		М			Н
CO5	Н	М				Η			М	М	М	М
COs / PSOs	Р	SO1	PS	02	PS	603						
CO1	Н		Н									
CO2	Н		М		Н							
CO3			Н		М							
CO4												
CO5	М		М		Η							
H/M/L indicat	tes Str	ength of	Correla	tion I	H- High	, M- M	edium,	L-Low	1			1



Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills	▲Inter disciplinary	
Approval		<u>.</u>				<u>.</u>					

### BCS17I02 COMPUTER NETWORKS 3

#### UNIT- I DATA COMMUNICATION

Introduction, Basic concepts, OSI Reference Model, Transmission of Digital Data –Electrical Interface, Modems-Transmission rate-modem standards- Guided Media-Twisted –pair Cable-Coaxial cable-Performance- Error Detection and Correction (CRC) - Time and Frequency domains Signals

#### UNIT -II DATA LINK CONTROL AND PROTOCOLS

Flow Control and Error Control, Stop And Wait - Sliding Windows- Automatic Repeat (ARQ), Asynchronous Protocols - X Modem, Y Modem, Synchronous Protocols – Character Oriented and Bit Oriented Protocols (HDLC).

#### UNIT- III LOCAL AREA NETWORKS

IEEE 802 Standards, LLC, MAC Layer Protocols –CSMA/CD Ethernet, Token Bus, Token Ring, FDDI, Distributed Queue Dual Bus, Switched Multimegabit Data Service

#### UNIT- IV WIDE AREA NETWORKS

Switching, Duties of the Transport Layer, ATM Protocol –Architecture Header Structure, Function of AAL Layer, Internetworking Devices, Repeater, Bridge, Routers and Gateways, Routing Algorithms-Link State and Distance Vector routing.

#### UNIT- V UPPER OSI LAYERS

Session Layer - Presentation Layer – Translation, Brief Introduction to Encryption / Decryption, Authentication -Data Compression, Application Layer Protocols, MHS, File Transfer, Virtual Terminal, Common Management Information Protocol.

# 9 Hrs

9 Hrs

9 Hrs

0 0 3

#### 9 Hrs



**Practical component P : Include case studies / application scenarios** 

**Research component R : Future trends / research areas / Comparative Analysis** 

#### **Total Number of Hours: 45 Hrs**

#### **Textbooks :**

- 1. Behrouz A. Forouzan, "*Data Communication and Networking*", Tata McGraw Hill, 5th Edition, 2013.
- 2. William A, Shay, "Understanding Data Communications and Networks", Thomson Learning, 3rd Edition 2003.
- 3. Gallo, "*Computer Communications and Networking Technologies*", Thomson Learning, 1st edition 2001.

#### **Reference Books:**

- 1. William Stallings, "Data and Computer Communication", Prentice Hall of India, Fifth Edition 1997.
- 2. Andrew S. Tanenbaum, "Computer Networks", prentice hall of India, Third Edition 1996.
- 3. Fred Hallsall, "Data Communication Computer Networks and Open System", Addison Wesley, 1992

	Dr.M.G.R.	Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956)	Inst	itu	te 🥠	A	)
Subject Code: BSK17ET1 [	Subject Name CONFIDENC Department of	:SOFTSRIET ⁰⁶ GCAREER ¹⁸⁰ EBUILDINGYAL, Chennai - 95 Electronics and Communication	T / L/ <b>Eitg</b> in	L neer	T / S.Lr ing	P/ R	С



		Pre	erequisi	te: Non	e					ETL	1	0/1	0/0	2
L : Lectu	ure T :	: Tutori	al SL	r : Supe	rvised I	Learning	g P:Pr	oject R	R : Resea	rch C:	Cred	its	I	
T/L/ETI	. : The	eory/La	b/Embe	edded T	heory a	nd Lab								
OBJEC	TIVE	:												
	<ul> <li>To m</li> <li>To pr</li> <li>To in</li> <li>To va</li> </ul>	o create atrix, le o help s repare C o help s terview o help s arious n	awarer ading t tudents CV's and tudent l student s students nock se	ness in s o develo be awa d resum how to t improv ssions.	students op a pos re of va ie. face var /e their	, variou sitive fra trious te ious typ verbal r	is top co ame of r echnique pes of in reading,	ompanie mind. es of can nterview narratic	es helpin ndidate r 7, prepar 20n and p	g them recruitm ing for resentat	impr nent a HR, ion s	ove thand he techni	neir skil ≥lp then ical by perfo	l set 1 orms
COURS The Stud	E OU ents w	<b>TCON</b> ill be ab	<b>TES</b> (C) le to	$\overline{\mathbf{Os}}$ : (	<del>3-5</del> )									
CO1	Be a	ware of	f variou	s top co	mpanie	s leadin	ng to im	provem	ent in sk	tills amo	ongs	t them	1.	
CO2	Be a able	ware of to prep	f variou are CV	is candi 's and r	idate re esumes	cruitme	nt techr	iques li	ike grou	p discu	ssior	n, inte	rviews	and be
CO3	Prepare for different types of interviews and be prepared for HR and technical interviews.													
CO4	Impr	ove the	eir verba	al, writt	en and	other sk	tills by p	perform	ing moc	k sessic	ons.			
Mappin	g of C	Course	Outcon	nes wit	h Progi	ram Ou	itcomes	(POs)						
COs/PO	s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	D10	PO11	PO12
CO1						<u> </u>	M	M	H	H	M	[	M	Н
CO2							M	M	H	H	M	[	M	H
CO3							М	M	Н	Н	M	[	М	Н
CO4							М	М	Н	Н	M	[	М	Н
COs / PS	SOs	PS	01	PS	02	PS	503		<u> </u>					
CO1						Н								
CO2						Н								
CO3						Н								
CO4						Н								
H/M/L i	ndicat	es Stre	ngth of	Correla	tion H	I- High	, M- Me	dium, I	L-Low					



Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	≺ Soft Skills		
Approval											



UNIT- I

UNIT – II

UNIT – III

mind / Creation of self-awareness.

self-introductions. UNIT-IV

relationships / Preparation of Curriculum Vitae / Resume.

Verbal aptitude, Reading comprehension / narration / presentation / Mock Interviews.

# UNIT – V

Practical session on Group Discussion and written tests on vocabulary and reading comprehension

# Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

SOFT SKILL – I CAREER & CONFIDENCE BUILDING 1 BSK17ET1 0/10/0

Group discussions / Do's and don'ts - handling group discussions / what evaluators look for interpersonal

Interview – awareness of facing questions – Do's and don'ts of personal interview / group interview, enabling students to prepare for different proce3dures such as HR interviews and Technical Interviews /

# Dr.M.G.R. Educational and Research Institute (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution Maduravoyal, Chennai - 95



# 2

## Creation of awareness of top companies / improving skill set matrix / Development of positive frame of

6 Hrs

## 6 Hrs

6 Hrs

# 6 Hrs

# 6 Hrs

**Total Number of Hours: 30 Hrs** 



	Dr.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	Insti	tute	A NAA	a share	
Subject Code:	Subject Name : MANALYSIS OF CHECTRO 95	T / L/	L	Τ/	<b>P</b> /	С
BEC17ET2	MAGNETIC FIELD THEORY Department of Electronics and Communication	ETL Engine	ering	S.L r	R	



		Prer	equisite	: Engi	neering	g Phys	ics, Ve	ector Ca	lculus	E	ΓL	1	0/1	2/ 0	3
L : Lectu	re T :	Tutoria	l SLr	: Supe	rvised	Learn	ing P	Projec	t R : Re	search	C: Cre	edits			
T/L/ETL	: The	ory/Lab	/Embeo	lded T	heory a	and La	ıb								
OBJEC	TIVE	:													
· ·	To m To pr To	o study agneto s o unders oblems o learn t	the bas statics. stand th he beha	sic con ne con avior o	cepts i cepts of f time v	in vec of curr varying	tor cal rent de g fields	culus an ensity and s and flo	nd fund nd to le ow of ele	amenta arn ho ectrom	l ideas w to s agnetic	s in ele solve tl c power	ectros he ele r.	tatics ectrost	and atic
COURS	E OU	ТСОМ	ES (CO	<b>)</b> s):											
The stude	ents w	ill be al	ole to												
CO1	App	oly the v	ector ca	lculus	in the	field c	of elect	rostatic	s and ele	ectrody	mamic	s.			
CO2	Sho	w their a	ability t	o anal	yze the	behav	vior of	electric	field co	ntinuo	us acro	ss an ir	nterfa	.ce.	
CO3	Hon	e their i	nferenc	es to s	olve co	omplex	k electr	ostatic	problem	s.					
CO4	Den	nonstrat	e their s	skills in	n analy	zing tl	ne effe	cts of m	agnetic	fields.					·
CO5	App	ly their	underst	anding	g of wa	ve equ	ations	to desig	gn an an	tenna.					
Mapping	g of C	ourse C	Outcom	es wit	h Prog	ram (	Outcon	nes (PO	s)						
COs/POs		PO1	PO2	PO 3	PO 4	PO 5	PO 6	PO7	PO8	PO 9	PO1 0	PO	11 I	2012	
CO1		Н	М	М	М	М	Н				М	М			
CO2		Н	Н	Н	Н	М	Н				М	М			
CO3		Н	М	М	Н	Н	Н	М	Н	М	М	Н	I	Η	
CO4		Н	Н	Н	Н	Н	М	М	Н		М	-	I	H	
CO5		Н	М	-	М	М	М	Н		Н	М	Н	1	H	
COs / PS	Os	PS	01	PS	502	PS	503								
CO1		Н		Н		М									
CO2		Н		Н		-									
CO3		Н		Н		М									
CO4		Н		Н		-									
CO5		-		-		М									
H/M/L in	dicate	es Stren	gth of C	Correla	tion	I H- Hig	gh, M-	Mediur	n, L-Lov	N					



Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core ≮	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

#### **BEC17ET2** ANALYSIS OF ELECTRO MAGNETIC FIELDS THEORY 1 0/1 2/0 3

#### UNIT I: VECTOR ANALYSIS

Scalars and Vectors, Cartesian, Cylindrical and Spherical Coordinate System, Integrals containing vectors, Gradient, Divergence and Curl, Divergence theorem and Stoke's theorem

#### Lab Experiments

- Vector Representation and Coordinate Systems using Software Package: 'CAEME'
- Coordinate Systems and Conversion using 'CAEME' Software

#### **UNIT II: ELECTROSTATICS**

Fundamental Postulates of Electrostatics in free space, Coulomb's law, Determination of Electric field, Gauss's law and its applications, Electric potential, Electric Flux Density and Dielectric constant, Boundary Conditions for Electrostatic fields, Determination of Capacitance and Electrostatic Energy,

#### Lab Experiments

- Electrical Field and Potential inside the Parallel Plate Capacitor
- Capacitance and Inductance of Transmission Lines
- Simulation of Electric Field and Potential Inside Capacitors

#### UNIT III: ELECTROSTATIC SOLUTIONS AND STEADY ELECTRIC CURRENTS 9Hrs

Laplace's Equations and Poisson's Equations, Uniqueness theorem, Boundary Value Problems in Cartesian, Cylindrical and Spherical Coordinate System, Current Density, Electromotive Force, Continuity Equation, Boundary Conditions for Current Density.

9Hrs



#### Lab Experiments

• Simulation of Electric Field and Potential Inside Capacitors

#### UNIT IV: MAGNETOSTATICS

Fundamental Postulates of Magneto statics in free space, Vector Magnetic Potential, Biot-Savart's law and its applications, Scalar Magnetic Potential, Magnetic Field Intensity and Relative Permeability, Boundary Conditions for Magneto static fields, Determination of Inductance and Magneto static Energy, Determination of magnetic Force and Torque.

#### Lab Experiments

- Magnetic Field outside a Straight Conductor
- Magnetic Field of Coils
- Magnetic Force on a Current Carrying Conductor
- Inductance of Transmission Lines

#### UNIT V: TIME-VARYING FIELDS AND ELECTROMAGNETIC POWER 9 Hrs

Faraday's Law of Electromagnetic Induction, Maxwell's Equations (Integral and Differential Form), Wave Equations for a source-free region, Poynting vector and Poynting theorem.

#### Lab Experiments

- Electromagnetic Induction
- E.M Wave Radiation and Propagation

### **Total Number of Hours: 45 Hrs**

#### Textbooks

- 1. David K.Cheng, "Field and Wave Electromagnetics", McGraw Hill Inc., Third Edition, Malaysia, 1995
- 2. William H. Hayt & John A.Buck, "Engineering Electromagnetics", Tata Mc-Graw-Hill 7th Edition 2005.
- 3. Y.Mallikarjuna reddy, "Eletromagnetic fields", Universities press, Edition 2013.

#### **Reference Books:**

- 1. John D Kraus, "Electromagnetics", Tata McGraw Hill Book Co., New York, Third Edition, 1989.
- 2. Joseph A Edminister, "*Theory and Problems of Electro Magnetics*", Schaum's Outline Series Tata McGraw Hill, New York, 1986
- 3. Mathew N. O. Sadiku, "*Elements of Electromagnetics*", Oxford International Student Edition, Fourth Edition

Subject Code: Subject Name ELECTRONIC GIRCUITS LAB T / L T / P	r
BEC17L03 Department of Electronics and Communication Ergineering	C

- 4. David J.Griffiths, "Introduction to Electrodynamics", Pearson Education Limited 2014.
- 5. S.P.Seth, "Elements of Electromagnetic Fields", Dhanpat Rai & Co.



		Pr	erequisi	ite: Ele	ctronic	Circuits	5			Lb	0 0/	0 3/	0 1
L : Lec	ture T	: Tutor	ial SL	r : Supe	ervised	Learnin	g P:P	roject F	R : Resea	arch C:	Credits		
T/L/ET	L : Th	eory/La	ab/Emb	edded 7	Theory a	ind Lab							
OBJE	CTIVE	E :											
•	To be	able to	o design	, imple	ment dif	fferent t	ypes of	rectifie	r circuits	5.			
•	To be	able to	) design	differe	nt types	of volt	age reg	ulators.	renits				
•	To be	able to	design	n power	amplifi	er and s	tudy its	charact	eristics.				
•	To be	able to	design	tuned a	amplifie	r and a	nalyze i	ts behav	vior.				
COUR The Stu	<b>SE OU</b> dents w	J <b>TCO</b> I	MES (C ole to	COs) : (	3-5)								
CO1	Des	ion and	impler	nent dif	ferent ty	vnes of	rectifier	· circuit	\$				
001	200	ign and	mpron	inente un		, p <b>e</b> s er		eneur					
CO2	Perf	orm ha	nds on	design a	and anal	ysis of	differer	t types	of voltag	ge regul	ators.		
CO3	Perf	orm ha	nds on	design o	on diffe	rent am	plifier a	nd oscil	llatory c	ircuits.			
CO4	Perf	orm ha	nds on	designi	ng of po	wer am	plifier a	and stud	y its cha	racteris	tics.		
CO5	Perf	form ha	nds on	designi	ng tuneo	l amplif	fier and	analyze	its beha	avior.			
Mappi	ng of (	Course	Outco	mes wit	h Prog	ram Ou	itcomes	s (POs)					
		DOI	DOG	DOG		<b>D</b> 05	DOC	DOF	DOO	DOG	DOI	DOI1	D010
COs/PC	Js	POI	PO2	PO3	PO4	POS	PO6	PO/	PO8	P09	POI		P012
CO1		Η	Η	Н	Н	Н	М	М	М	М	М	М	-
CO2		Н	Н	Н	Н	Н	М	М	М	М	М	-	М
CO3		Н	Н	Н	Н	Н	М	М	М	М	-	М	-
CO4		Н	Н	Н	Н	Н	М	М	М	М	-	-	М
CO5		Н	Η	Н	Н	Н	М	М	М	-	М	М	-
COs / F	PSOs	PS	501	PS	502	PS	503						
CO1		Н		Н		М							
CO2		Η		Н		М							
CO3		Н		Н		М							
CO4		Н		Н		М							
CO5		Н		Н		М							
H/M/L	indica	tes Stre	ngth of	Correla	ation I	 H- High	, M- M	 edium, l	L-Low				1



Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											



## BEC17L03 ELECTRONIC CIRCUITS LAB 0 0/0 3/0 1

### LIST OF EXPERIMENTS

- 1. RECTIFIERS HALF WAVE, FULL WAVE WITHOUT FILTER
- 2. FWR WITH SHUNT, L AND Π FILTERS
- 3. VOLTAGE REGULATOR-SERIES & SHUNT
- 4. RC COUPLED AMPLIFIER (WITH FEEDBACK)
- 5. FEEDBACK CIRCUITS(VOLTAGE SERIES FEEDBACK; VOLTAGE SHUNT FEEDBACK)
- 6. SCHMITT TRIGGER
- 7. MULTI VIBRATORS, MONOSTABLE, ASTABLE, BISTABLE
- 8. LC OSCILLATORS
  - a) HARTLEY OSCILLATOR
  - b) COLPITTS OSCILLATOR
- 9. AUDIO OSCILLATORS
  - a) WEIN BRIDGE OSCILLATOR
  - b) RC PHASE SHIFT OSCILLATOR
- 10. CLASS A POWER AMPLIFIER
- 11. CLASS B POWER AMPLIFIER
- 12. TUNED AMPLIFIER

	Dr.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956)	Insi	itu	te 🧳	ANAAC	
Subject Code: BEC17L04	Subject Name : DIGITAL SIMULATION LAB Maduravoyal, Chennal - 95 Department of Electronics and Communication	T / L/ E <b>rg</b> in	L neer	T / S.Lr ing	P/ R	С



		Pre	erequisi	ite: sigi	nals and	System	ns, Cont	rol Syst	em	Lb	0 (	)/0	3/0	1
L : Lect	ure T	: Tutori	ial SL	r : Supe	ervised	Learnin	g P:Pi	oject F	R : Resea	arch C:	Credits	5		
T/L/ETI	L:The	eory/La	ab/Emb	edded T	Theory a	ind Lab								
OBJEC	TIVE	2:												
• • • • • • • • • • • • • • • • • • •	Progra Perfor Gener using <u>Progra</u> <b>SE OU</b> ents w	ammati rm sam rate tim MATL am and J <b>TCON</b> ill be ab	cally ge pling an ne serie AB. <u>analyze</u> <b>MES (C</b> ole to	enerate nd gene s perfor e behav COs) : (	differen rate way rm conv <u>ior of di</u> <b>3- 5</b> )	t types veforms volutior	of signa s. 1 check types o	ls using stabilit <u></u> f systen	g MATL y perfor	AB. m DFT <u>MATL</u>	and I	DFT c	ompu	Itation
CO1	Gen	erate di	fferent	types o	f signals	s.								
CO2	Perf	orm sai	mpling	and gen	ierate w	aveforn	ns.							
CO3	Gene	erate t putatio	imes so n.	eries, p	perform	convo	lution a	and che	eck stat	oility po	erform	DFT	and	IDFT
CO4	Prog	gram an	d analy	ze beha	vior of	differer	nt types	of syste	ems usin	g MAT	LAB.			
Mappin	ng of (	Course	Outcor	nes wit	h Prog	ram Oı	itcomes	(POs)						
COs/PO	s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	0 PC	011	PO12
CO1		Н	Н	Н	Н	Н	М	М	М	М	М	-		М
CO2		Н	Н	Η	Н	Η	М	М	М	М	-	М		-
CO3		Н	Н	Н	Н	Н	М	М	М	М	М	-		М
CO4		Н	Н	Н	Н	Н	М	М	М	М	-	M		М
COs / PS	SOs	PS	01	PS	502	PS	503							
CO1		Н		Н		М								
CO2		Н		Н		М								
CO3		Н		Н		М								
CO4		Н		Н		М								
H/M/L i	ndicat	tes Stre	ngth of	Correla	ation I	H- High	, M- Me	edium, l	L-Low	<u> </u>		<u> </u>		



Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
							✓				
Approval						·	<u>.</u>	·	<u>.</u>		<u>.</u>



## BEC17L04 DIGITAL SIMULATION LAB 0 0/0 3/0 1

#### **OBJECTIVES**

• To implement continuous and Discrete time signal and control system using MATLAB

#### SIGNALS AND SYSTEMS

- 1. GENERATION OF SIGNAL SEQUENCE
- 2. SAMPLING & WAVEFORM GENERATION
- 3. REPRESENTATION OF TIME-SERIES; COMPUTATION OF CONVOLUTION
- 4. STABILITY OF LTI SYSTEM.
- 5. DFT & IDFT COMPUTATION

### CONTROL SYSTEM

- 6. IMPULSE RESPONSE OF FIRST AND SECOND ORDER SYSTEMS
- 7. TIME DOMAIN SPECIFICATIONS FOR CLOSED LOOP TRANSFER FUNCTION.
- 8. BODE PLOT AND POLAR PLOT FOR OPEN LOOP SYSTEM
- 9. STABILITY CHECK USING ROUTH-HURWITZ CRITERION BODE PLOT AND ROOT

LOCUS.

10. DETERMINATION OF CONTROLABILITY, OBSERVABILTY AND TRANSFER B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017 REVISION-3

	Dr.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	Inst	itu	te 🥡	A AAC	
Subject Code:	Subject Name <b>COMPUTER NETWORKS LAB</b>	Τ/	L	Τ/	<b>P</b> /	С
BCS17IL2	Pepartment of Electronics and Communication	Engin ETL	neer	ifi£r	R	

FUNCTION FROM STATE MODEL



	Prerequisite: C++ and Data structures lab								Lb	0	0/0	3/0	1	
L : Lect	L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab													
T/L/ET	L : The	eory/La	ıb/Embe	edded T	heory a	nd Lab								
OBJEC	CTIVE	:												
•	<ul> <li>The students will be able to implement the different protocols</li> <li>The students will be able to implement and compare the various routing algorithms</li> </ul>													
•	The st The st	udents	will be will be	able to able to	indeper	ent and dently	compa use the	re the v NS2 sir	arıous ro nulator t	outing a cool.	Igorii	thms		
COUD				$\mathbf{O}$	2 5)	2								
The Stud	lents w	ill be ab	le to	<b>()</b> ()	3- 5)									
CO1	D1    Establish and observe the characteristics of point to point network with n nodes.													
~~~	Transmit messages between different network nodes.													
CO2	Transmit messages between different network nodes.													
CO3	Encr	ypt and	ł decryp	ot the m	essage	transmi	tted thro	ough a n	etwork.					
CO4	Implement and compare various routing algorithms.													
CO5	Use	the sim	ulation	tools li	ke NS2	, OPNE	T etc.,							
Mappir	ng of C	Course	Outcor	nes wit	h Prog	ram Ou	itcomes	(POs)						
COs/PC)s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PC	D10 P	011	PO12
CO1		Н	Н	Н	М	Н	Н	Н	Н	Н	Н	F	Ŧ	M
CO2		н	н	н	M	н	н	н	M	н	н	N	Л	M
		11	11	11	IVI	11	11	11	IVI	11	11		1	111
CO3		Н	Н	Н	Η	Η	Μ	Μ	-	Η	Η	Ν	1	Н
CO4		Н	Н	Н	Η	Η	-	М	-	Η	Η	Ν	1	Н
CO5		Н	Н	Н	Н	Н	Н	-	Н	М	M	H	I	Н
COs / P	SOs	PS	01	PS	02	PS	603							
CO1		Н		Н		Н								
CO2		Н		Н		Н								
CO3	Н			Н		Н								
CO4	M H				Н									
CO5	М Н Н													
H/M/L	indicat	es Stre	ngth of	Correla	tion H	H- High	, M- Me	edium, l	L-Low					

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	▲Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

BCS17IL2

COMPUTER NETWORKS LAB

0 0/0 3/0 1

LIST OF EXPERIMENTS

Using NS2/OPNET

- 1. Simulate three nodes point-to-point networks with a duplex link between them. Set the queue size and vary the bandwidth and find the number of packets dropped.
- 2. Apply TCP agent between n0 to n3 and UDP n1 to n3. Apply relevant applications over TCP and UDP agents changing the parameters and determine the number of packets sent by TCP/UDP.
- 3. Simulate the different type of internet traffic such as FTP and TELNET over a network and analyze the throughput.
- 4. Simulate a transmission of ping message over a network topology consisting of 6 nodes and find the number of packets dropped due to congestion.
- 5. Simulate an Ethernet LAN using n nodes change error rate and data rate and compare the throughput.
- 6. Simulate an Ethernet LAN using n nodes and set multiple traffic nodes and determine the collision across different nodes.
- Simulate an Ethernet LAN using n nodes and set multiple traffic nodes and plot congestion window for different source/destination

Using C/C++

- 8. Write a program for error detecting code using CRC-CCITT (16bit)
- 9. Write a program for distance vector algorithm to find suitable path for transmission
- 10. Write a program for simple RSA algorithm to encrypt and decrypt the data
- 11. Write a program for hamming code generation for error detection/correction

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

	D	r. M.G	.R. E	duca	tiona	l and	l Res	earch	n Insti	itute	Superinted W	C. C. C.	
Subject Cod	e: S	ubject N	lame :	AT esb	nicaloS	y U/S 3 of Allertifie	the UGC / d Institut	ion 05	T/L/	L		P/ D	C
BEC17TS1	De	nartme	N ent of F	ladur	avoya	nd Co	ennai	- 95 lication	EIL	Poring	5.Lr	K	1
										Colling	J.	1	1
L : Lecture T	: Tuto	orial SI	r : Supe	ervised	Learnin	g P:P	roject F	R : Resea	arch C: C	credits			
T/L/ETL : Th	neory/	Lab/Emb		heory a	and Lab								
OBJECTIV	Е: Т	ne objec	tive is to	develo	p the te	echnical	l skill of	the stud	lents.				
COURSE O	UTCO	OMES (COs):(3- 5)									
CO1	Deve	lop the t	echnica	l skills r	equired	in the f	field of s	study					
CO2	Bridg	e the g	ap betv	veen th	ne skill	require	ements	of the	employe	r or in	dustry	and	the
	comp	betency of	of the st	udents.					. ,		,		
CO3	Enha	nce the e	employa	bility of	t the stu	idents.							
Mapping of	Cours	e Outco	mes wit	h Prog	ram Ou	itcome	s (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	012
CO1	Н	Н	Н	Н	Н	Η	М	М	Н	М	Н	М	
CO2	Η	Н	М	Н	Н	Н	М	М	Н	Н	Н	Н	
CO3	Η	Н	Н	Η	Н	Η	М	М	Н	Н	Н	Η	
COs / PSOs	Р	SO1	PS	02	PS	O3	PS	504	PSO5				
CO1													
CO2													
H/M/L indica	tes St	rength of	f Correla	ation 1	H- High	, M- M	edium, I	L-Low	1	1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	 Internships / Technical Skill 	Soft Skills				
Approval													

Subject Code:	Subject Name :	TRANSMISSION LINES &	T / L/ ETL	L	Τ/	P /	С
	WAVE GUIDES				S.Lr	R	

BEC17007	Pı	rerequisi	te: Elec	tro Mag	gnetic F	ield		Ту		3	1/0	0/0 4
L : Lecture T	: Tuto	rial SI	r : Sup	ervised	Learnii	ng P:F	roject]	R : Rese	arch C:	Credits		
T/L/ETL : Th	neory/I	Lab/Emb	edded 7	Theory a	and Lat)						
OBJECTIV	E :											
 To become familiar with transmission lines and losses associated with it. To understand signal propagation in transmission lines at Radio frequencies and analyze them under loss-less conditions. To give a thorough understanding about impedance transformation and matching in high frequencies. To understand different characteristics of TE and TM waves. To analyze circular and rectangular wave guides and behavior of TE & TM guides in these waveguides. 												
COURSE O	UTCO	MES (C O s) : ((3-5)								
The student v	vill be	able to										
CO1	I	Familiar	with tra	ansmiss	ion line	s and va	arious lo	osses ass	ociated	with it.		
CO2	1	Analyze	and unc	lerstand	l signal	propaga	ation in	loss-less	conditi	ons at r	adio freq	uencies
CO3	l f	Understand different impedance transmission techniques and matching in high frequencies and able to solve case studies using Smith Chart.										
CO4	1	Apprecia	te the b	ehavior	of TE&	&TM w	aves in o	different	type of	medium	ns.	
CO5	2	Analyze waves a cylindric	and une nd will al wave	derstand gain -guides	d different the abi	ent type lity to	es of wa derive	veguides the field	s and th d equat	e behav ions in	ior of TE rectangu	E & TM lar and
Mapping of	Cours	e Outco	mes wi	th Prog	gram O	utcome	s (POs)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	М	Н	М			М	Н	М	М	М
CO2	Н	Н	М	Н	М			М	Н	М	М	М
CO3	Н	Н	Н	Н	М			М	Н	М	М	М
CO4	Н	Н	М	Н	М			М	Н	М	М	М
CO5	Н	Н	М	Н	М			М	Н	М	М	М
COs / PSOs	PS	501	PS	O2	PS	03						
CO1	Н		Н									

Dr.M.G.R.	Educational and Research Institute	A NAAC
Contraction of the Contraction o	An ISO 9001:2008 Certified Institution	A STATE
THEFE TO ESCEL	Maduravoyal, Chennai - 95	

CO2	Н		Н								
CO3	Н		Н								
CO4	Н		Н								
CO5	Н		Н								
H/M/L indica	ates Stro	ength of	f Correl	ation	H- Higł	n, M- M	edium, 1	L-Low		<u> </u>	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
				~							
Approval											

BEC17007

TRANSMISSION LINES & WAVE GUIDES 3 1/0 0/0 4

UNIT: I TRANSMISSION LINE THEORY

General Theory of Transmission Lines –The transmission line, A General Solution – The Infinite Line – Wavelength, Velocity of propagation – Waveform Distortion – The Distortion-less line – Loading and Different methods of loading – Line not terminated in Z_0 – Reflection Co-efficient – Calculation of Current, Voltage, Power delivered and Efficiency of transmission – Input and transfer Impedance – Open and short circuited lines – Reflection loss .

UNIT: II HIGH FREQUENCY TRANSMISSION LINES

Transmission lines equations at radio frequencies – Line of Zero dissipation – Voltage and Current on the dissipation-less line – Standing waves, Nodes, Standing wave ratio – Input impedance of the dissipation-less line – Power and impedance measurement on lines.

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

14 Hrs e Line –

UNIT: III IMPEDANCE MATCHING IN HIGH FRENCY LINES

Impedance matching: Quarter Wave Transformer – Impedance matching by Single and Double Stub – Smith chart, Problems and Solutions.

UNIT: IV GUIDED WAVES

Waves between parallel planes of perfect conductors – Transverse electric and transverse magnetic waves - Characteristics of TE and TM Waves - Transverse Electromagnetic waves - Velocities of propagation -Component uniform plane waves between parallel planes – Attenuation of TE and TM waves in parallel plane guides

UNIT: V **RECTANGULAR AND CIRCULAR WAVEGUIDES**

Transverse Magnetic Waves in Rectangular Wave guides - Transverse Electric Waves in Rectangular Waveguides-Impossibility of TEM waves in waveguides - Solution of field equations in cylindrical coordinates – TM and TE waves in circular guides

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 60 Hrs

Textbooks :

- 1. J.D. Ryder "Networks, Lines and Fields", PHI, New Delhi, 2003.
- E.C. Jordan and K.G. Balmain "Electro Magnetic Waves and Radiating System", PHI, 2 New Delhi, 2003.
- 3. Umesh Sinha" Transmission lines and networks", Sathya prakashan ,2010

Reference Books:

- 1. David K. Cheng,"Field and Waves in Electromagnetism", Pearson Education, 1989.
- 2. Ramo, Whineery and Van Duzer: "Fields and Waves in Communication Electronics", John Wiley, 2003.
- 3. David M. Pozar: "Microwave Engineering", 2nd Edition John Wiley.
- 4. G.S.N Raju: "Electromagnetic Field Theory and Transmission Lines", Pearson Education, First edition 2005.
- 5. John D Kraus and Daniel A Fleisch: "Electromagnetics with Applications", Mc Graw Hill Book Co, 2005

12 Hrs

12 Hrs

BEC17008	P	rerequisi	ite: Sigi	nals Sys	tem				Ту	3	1/0	0/0	4
L : Lecture T	: Tuto	rial SL	r : Sup	ervised	Learnin	ng P:P	roject I	R : Resea	arch C: C	Credits			<u> </u>
T/L/ETL : Th	eory/L	.ab/Emb	edded 7	Theory a	and Lab)							
OBJECTIVE	E :												
 To lea To un To lea To un To int 	arn the dersta arn the dersta troduce	concept nd the d concept nd the co e the arc	ts of Fo esign te ts and d oncepts hitectur	urier tra chnique esign te and app re of Di	unsform es of dig chnique plication gital Sig	and it's gital IIR es of dig ns of M gnal Pro	s Applic filters gital FIF ulti – ra ocessors	eations. R filters. te sampl	ing.				
COURSE OU	UTCO	MES (C	COs) : (3- 5)									
The students v	will be	able to											
CO1	4	Apply F	ourier t	ransforr	n conce	pts.							
CO2]	Have the	e ability	to desi	gn IIR f	filters.							
CO3]	Have the	e ability	to desi	gn FIR	filters.							
CO4	4	Apply M	lulti rat	e sampl	ings tec	hniques	s for sys	tem desi	ign.				
CO5]	Describe	e the mo	odules ii	n the are	chitectu	re of dig	gital sigr	nal proce	ssor.			
Mapping of (Course	e Outcor	mes wit	th Prog	ram Ou	utcome	s (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC)12
CO1	Н	Н	Н	Н	Н	М						М	
CO2	Η	Н	Н	Н	Н	М	М		М	М		Μ	
CO3	Η	Н	Н	Н	Н						М		
CO4	Н	Н	Н	Н	Н	Н			М				
CO5	Η	Н	М	М	М	М	М	М	М	М	М	Μ	
COs / PSOs	P	SO1	PS	502	PS	503		1					
CO1	Η		Н										
CO2	Н		Н										
CO3	Η		Н										
CO4	Η		Η										
CO5	М		М		Н								
H/M/L indicat	tes Str	ength of	Correla	ation 1	H- High	n, M- M	edium,	L-Low					

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Dpen Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
				~							
Approval			•	•	•	•		•			

BEC17008

DIGITAL SIGNAL PROCESSING 3 1/0 0/0 4

UNIT –I: DFT AND FFT

Discrete Fourier Transform (DFT) - Properties-Convolution of Sequences - Linear Convolution - Circular Convolution - Introduction to Radix-2 FFT- Properties - DIT (FFT)-DIF (FFT) - Algorithms of Radix-2FFT-Computing Inverse DFT by doing a direct DFT.

UNIT –II: DESIGN OF IIR FILTER

IIR Filters- Properties of IIR Filters -Analog Low pass Filter Design - Butterworth Filter - Chebyshev Filter - Design of IIR Filters from Analog filters - Approximation of Derivatives – Impulse Invariance - Bilinear Transformation – The Matched z- Transformation - Frequency Transformation.

UNIT- III: DESIGN OF FIR FILTER

FIR Filters - Characteristics of FIR Filters with Linear Phase-Properties of FIR Filters-Design of FIR Filters using Windows-Fourier Series Method-Frequency sampling Method – Limit cycle oscillations-Zero-Input Limit cycle oscillations- Overflow Limit cycle oscillations- Signal Scaling.

UNIT- IV: MULTIRATE SIGNAL PROCESSING

Multirate Signal Processing- Interpolation - Decimation - Single and Multistage Realization - Filter Bank Implementation - Applications-Sub Band Coding.

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

12 Hrs

12 Hrs

12 Hrs

UNIT -V: OVERVIEW OF DIGITAL SIGNAL PROCESSOR

12 Hrs

Overview of Digital Signal Processors – Application of Digital Signal Processor – Memory Architecture of DSP Processor – Von Neumann Architecture – Harvard Architecture - Architecture of TMS32C5X Processor – Addressing modes – Pipelining .

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 60 Hrs

Textbooks :

- 1. John . G. Proakis and Dimitris C.Manolakis, "Digital Signal Processing Principles, Algorithms and Applications", Pearson Education, Third edition 2006.
- 2. Sanjit k.Mitra "*Digital signal processing*", A Computer Based Approach, Tata McGraw Hill,New delhi,2001.
- 3. A.V.Oppenheim, R.W. Schafer and J.R. Buck, "*Discrete Time Signal Processing*", 8th Indian reprint, Pearson 2004.

Reference Books:

- 1. Ashok Ambardar,"Analog and Digital Signal Processing", 2nd Edition, Thomson Learning 2000.
- 2. Ashok Ambardar,"Analog and Digital Signal Processing A Modern Introduction", 1st edition Thomson Learning 2006
- 3. Johnny R.Johnson, "Introduction to Digital Signal Processing", Minth printing, September 2001.
- 4. M.D.Srinath, P.K.Rajasekaran, R.Vishwanathan "Introduction to Statistical Signal Processing With Application", Prentice-Hall of India Pvt.Ltd., New Delhi, 1999.
- 5. B.Venkataramani, M.Bhaskar, "Digital Signal Processors, Architecture, Programming and Application", Tata McGraw Hill, New Delhi, 2003.

	Dr.M.G.R. Educational and Researc (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	h Inst	itute	NA	AC .	
Subject Code:	Subject Name MaMICROPROCESSOR AND 95	T / L/	L	Τ/	P /	С
BEC17009	MICROCONTROLLER Department of Electronics and Communication	ETL n Engin	eerir	S.Lr g	R	
	Prerequisite: Digital Electronics	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

OBJECTIVE :

- To study the architecture, addressing modes, and assembly language program of 8085 and 8086 microprocessor. •
- To understand the concepts of different peripherals and their applications To learn the functions of 8051 microcontroller and ARM processor and their applications.

COURSE OUTCOMES (COs) :

The students will be able to

CO1	Write assembly language program in 8085 and 8086 to perform arithmetic and logical operations
CO2	Show their ability to interface peripherals with microprocessors
CO3	Hone their inferences to develop a hardware using 8051 microcontroller
CO4	Demonstrate their skills in writing an ALP in 8051 to do real time applications

CO5 Apply their understanding to do a project to develop an application using ARM processor.

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	М	М	М	М	Н		-		М	М	-
CO2	Η	Н	Н	Н	Н	Н		М		М	М	М
CO3	М	М	М	М	Н	Н	М	Н		М	Н	М
CO4	Н	Н	Н	Н	Н	-	М	Н		М	-	Н
CO5	Н	М	-	М	М	М	Η	-	Н	М	Н	Н
COs / PSOs	PS	501	PS	02	PS	03						
CO1	Н		Н		М							
CO2	Н		Н									
CO3	М		Н									
CO4	Н		М									
CO5					М							
H/M/L indicat	tes Stre	ngth of	Correla	ation 1	H- High	, M- M	edium,	L-Low	•			•

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core ≮	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

BEC17009 MICROPROCESSOR AND MICROCONTROLLER 3 0/0 0/0 3

UNIT-I: CPU 8085 & 8086

8085 Architecture -Instruction set –Addressing modes —Assembly language-Simple Programming – Counters –Time delays-Interrupts –Intel 8086 internal architecture–8086 Addressing modes –instruction set -8086 Assembly language-Interrupts

UNIT-II: PERIPHERALS INTERFACING

Interfacing serial I/O(8251)-Parallel I/O(8255) –Keyboard and display controller (8279)-ADC/DAC Interfacing-Timer (8253).Programmable Interrupt Controller (8259), DMA controller, Applications of 8085

UNIT-III: 8051 MICROCONTROLLER

8051 Microcontroller hardware I/O pins, Ports and circuits-External memory –Counters and Timers-Serial Data I/O –Interrupts.

UNIT - IV: 8051 PROGRAMMING AND APPLICATIONS

8051 Instruction set –Addressing Modes –Assembly Language Programming -8051 interfacing LCD, ADC, Sensors, Stepper motors, Motors, Keyboard and DAC

UNIT-V: INTRODUCTION TO ARM PROCESSOR

ARM Architecture –ARM programmer's model- ARM development tools-memory hierarchy-ARM assembly language programming-Simple Examples-Architectural support for operating system- ARM instruction Set-Embedded ARM Applications

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Practical component P : Include case studies / application scenarios Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45 Hrs

Text books:

1. Krishna Kant, "Microprocessors and Microcontrollers, Architecture, programming and system design using 8085, 8086, 8051 and 8096", PHI 2007.

- 2. Douglas V Hall, "Microprocessor and Interfacing, Programming and hardware", TMH, 2006.
- 3. R.S. Gaonkar, "*Microprocessor Architecture Programming and Application, with 8085*", Wiley Eastern Ltd., New Delhi, 2013.

References

1. Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D.MCKinlay "*The 8051 Microcontroller and Embedded Systems*", Second Edition, Pearson Education 2008.

2. Kenneth J. Ayala, "*The 8086 Microprocessor: Programming & Interfacing the PC*", Delmar Publishers, 2007.

- 3. A K Ray, K M Bhurchandi, Advanced Microprocessors and Peripherals, TMH, 2007.
- 4. Steve furber "*ARM Systems on chip Architecture*", Second Edition Addison Wesley trade computer publication,2000.
- 5. John .B.Peatman "Design with PIC Microcontrollers", Pearson Education, 3rd Edition, 2004

	Dr.M.G.R.	Educational and Researc	h Inst	itute	e NA	AC	
Subject Code:	Subject Name	: COMMUNICATIONInstitution	T / L/	L	T /	P /	С
BEC17010	SYSTEMS	Maduravoyal, Chennal - 95	ETL		S.Lr	R	
I	Prefequisite: P	blocks and Communicatio	n _T yngın	eerir	19 /0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

OBJECTIVE :

- To study various Amplitude modulation and demodulation systems. •
- To provide some depth analysis in noise performance of various receiver. To study some basic information theory with some channel coding theorem. • -

COURSE OUTCOMES (COs) : (3-5)

The Students will be able to

The Students	will be											
CO1	I	Explain	about d	ifferent	types o	of Noise						
CO2	Ι	nterpret	continu	lous wa	ave mod	lulation	system	S				
CO3	I	Express	the gen	eration	& demo	odulatio	on of FN	A system	ns.			
CO4	Ι	Define d	ifferent	types of	of pulse	modula	ation					
CO5	I	Describe	the bas	sics of i	nforma	tion coc	ling					
Mapping of C	Course	Outco	mes wit	h Prog	ram O	utcome	s (POs))				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н					М	Η	М	М	Н	-	М
CO2	Н	М	Н	М		М	М				Н	Н
CO3	Н	М	М	М	М	М	М				Н	Н
CO4	Н	-	М								М	Н
CO5	М	М	Н	М	М	М	М	М	М	М	М	Н
COs / PSOs	PS	SO1	PS	02	PS	503						
CO1	Н		M		М							
CO2	Н		Н		Н							
CO3	Н		Н		Н							
CO4	Н		М		Н							
CO5	Н		М		М							
H/M/L indicat	tes Stre	ength of	Correla	ation	H- High	n, M- M	edium,	L-Low		•	.	

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
				✓							
Approval											

BEC17010 COMMUNICATION SYSTEMS 3 0/0 0/0 3

UNIT - I: INTRODUCTION TO COMMUNICATION SYSTEMS AND NOISE 9 Hrs

Basic Communication Systems – Need for Modulation in Communication Systems - Noise - Sources of Noise – Types of Noise - External Noise – Thermal Agitation – Shot Noise – Noise Figure – Signal to Noise Ratio – Equivalent Noise Resistance, Amplitude Modulation and demodulation - Frequency Spectrum – power relations in Amplitude Modulation.

UNIT- II: CONTINUOUS MODULATION SYSTEMS

Balanced Modulator, DSB – SC, SSB and VSB – Modulation and Demodulation - AM Transmitter, Receiver - Types, AM receivers.

UNIT-III: ANGLE MODULATION

Frequency modulation – Mathematical representation of FM – Frequency Spectrum – Phase Modulation – Noise triangle – Pre-emphasis, de- emphasis- Comparison of Wide band and Narrow band FM, AFC - Stereophonic FM multiplex system – Generation of FM - FM receivers - Communication receivers.

UNIT- IV: ANALOG TO DIGITAL CONVERSION

Sampling Theorem - PAM - Quantization of signal - Quantization Error – PWM, PPM – Introduction to digital modulation systems – ASK, FSK, PSK – Transmitter and receiver.

UNIT -V: INFORMATION THEORY AND CODING

Introduction – Information - Entropy - Information rate, Classification of codes, Kraft McMillan inequality –Source coding theorem - Shannon , Fano coding - Huffman coding, Joint and conditional entropies – Channel capacity - Shannon limit - BSC - Discrete memory less channels - Mutual information.

9 Hrs Fransm

9 Hrs

9 Hrs

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45 Hrs

Textbooks :

- 1. Roy Blake, "*Electronic Communication Systems*", Thomson Learning 2nd Edition, 2002.
- 2. George Kennedy: "Electronic Communication Systems", Tata McGraw Hill publications, 1992.
- 3. R Bose, "Information theory, Coding and Cryptography", TMH 2007.

Reference Books:

- 1. Taub & Schilling," Principles of Communication", Tata McGraw Hill, 1986
- 2. Simon Haykins, "Principles of Communications", Prentice Hall of India. 2001

E	Dr.M.G.R. Educational and Researc (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	h Inst	itute	B NA	AC .	
Subject Code:	Subject Name MacMEASUREMENTAND - 95	T / L/	L	Τ/	P /	С
I	INSTRUMENTATION Pepartment of Electronics and Communication	n Engin	eerir	S.Lr	R	

BEI17I01	Pr	erequisi	te: Ele	etronic	Circuit				Ту	3	0/0	0/0	3
L : Lecture T	: Tutor	ial SL	r : Supe	rvised]	Learnin	g P:P	roject I	R : Resea	arch C: (Credits			
T/L/ETL : Th	eory/La	ab/Embe	edded T	heory a	nd Lab	-	-						
OBJECTIVE	E :												
 Ir aj m Ir Ir R P ec 	ntroduce oplication neasuren nportan nstrume elevance rovide s quipme	e studen ons, prin ment an ace of si ntation ce of dig students nt's usin	tts to the nciples d transd gnal ger standard gital inst with op ng PLC.	e use of of opera lucers c nerators d protoc trument oportun	various ation, st oncepts s and sig cols. s in me ities to	s electri tandards gnal ana asurem develop	cal/elec s and ur alyzers : ents. b basic s	etronic ir nits of m in measu skills in t	nstrumen easurem nrements the desig	nts, their ents .Ba gn of ele	constru asic ectronic	ction	,
COURSE OU	JTCON	MES (C	Os):(3- 5)									
The student w	vill be a	ble to											
CO1	Well-gr electric minimi	ounded al instru ze such	in their iments, errors.	[•] knowl their us	edge ab e, pecu	out var liar erro	ious typ ors asso	bes of tra	nsducers ith the ir	s, Identi nstrume	fy electints and h	onics now t	3/ :0
CO2	Unders analyze	tand the rs.	basic c	lesign to	echniqu	ies of el	ectroni	c equipn	nent sigr	nal gene	rators a	nd sig	gnal
CO3	Gain knowledge about Instrumentation standard protocols HART and Foundation Field bus H1.												
CO4	Use var analyze	ious lat various	oratory s patterr	instrur 1s.	nents li	ke catho	ode ray	oscilloso	cope, fur	nction g	enerator	s and	[
CO5	Develo	p basic	skills in	the des	sign of e	electron	ic equij	pment's	using PI	LC			
Mapping of (Course	Outcor	nes wit	h Prog	ram Ou	itcome	s (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC)12
CO1	Н	-	-	М	М	-	-	М	Н	Н	Н	Н	
CO2	Н	Н	Н	Н	Н	Н	Н	М	М	Н	M	M	
CO3	Н	-	-	М	Н	Н	М	-	Н	Н	Н	Н	
CO4	Н	Н	Н	М	М	М	Н	-	М	Н	Н	Н	
CO5	Н	Н	Н	М	М	М	Н	-	М	Н	Н	Н	
COs / PSOs	PS	501	PS	O2	PS	03		I					
CO1	Н		-		Н								
CO2	Н		Н		Н								

CO3	Н		М		Н						
CO4	Н		Н		М						
CO5	Н		Н		Н						
H/M/L indicat	es Stre	ngth of	Correla	tion I	H- High	, M- Me	edium, 1	L-Low			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

BEI17I01 MEASUREMENT AND INSTRUMENTATION 3 0/0 0/0 3

UNIT I: TRANSDUCERS

Transducer definition, classification, and performance characteristics. Potentiometer and its types, loading effect, sensitivity, piezo-resistive, equivalent circuits, charge and voltage sensitivity. Measurements, Instrumentation, Errors in Measurements, Calibration and Standard.

UNIT II: SIGNAL GENERATOR AND SIGNAL ANALYZERS

A.F. Generator, Pulse Generator, AM / FM Signal Generator, Function Generator, Sweep Frequency Generator, Wave Analyzers, Spectrum Analyzers, Logic Analyzer, Distortion Analyzers, Network Analyzer.

UNIT III: INSTRUMENTATION STANDARD PROTOCOLS

Definition of protocol, HART Protocol: Introduction, frame structure, programming, implementation examples, benefits, advantages and limitation. Foundation Field bus H1: Introduction, frame structure, programming, implementation examples, benefits, advantages and limitation. Comparison of HART, Foundation Fieldbus, Devicenet, Profibus, Controlnet, Industrial Ethernet.

9 Hrs

-

9 Hrs

UNIT IV: DATA DISPLAY AND RECORDING SYSTEM

CRO, Single Beam, Dual Trace, Double Beam CRO, Digital Storage and Analog Storage Oscilloscope, Sampling Oscilloscope, Power Scope, Curve Tracer, Analog, Digital Recorders and Printers – Case Study on Lissajous Pattern.

UNIT V: COMPUTER CONTROLLED TEST SYSTEM

Programmable logic controllers (PLC) Introduction, architecture, definition of discrete state process control, PLC Vs PC, PLC Vs DCS, relay diagram, ladder diagram, ladder diagram examples, relay sequencers, timers/counters, high speed counter, PLC design, study of at least one industrial PLC.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45 Hrs

9 Hrs

9 Hrs

Textbooks:

- 1. Rangan C.S. "Instrumentation Devices and Systems", Tata McGraw Hill, 1998.
- 2. Sandeep Redkar, "Foundation Fieldbus control system", Rockwell Automation, 2010,
- 3. A. K. Shawney "Electronics and Electrical Instrumentation", Tata McGraw Hill, 1975.

Reference Books:

- 1. Bouwels A.J., "Digital Instrumentation", McGraw Hill, 1986.
- 2. Barney .C, "Intelligent Instrumentation ", Prentice Hall of India, 1985.
- 3. Oliver and Cage, "*Electronic Measurements and Instruments and Instrumentation*", McGraw Hill, 1975.
- 4. Deobelin, "Measurements Systems", McGraw Hill, 1990.
- 5. Cooper, "Electronic Instrumentation and Measurement Techniques", Prentice Hall of India, 1988.

	Dr.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956)	Insti	tute	A NAZ	C .	
Subject Code:	Subject Name DESIGN AND Chennai - 95	T / L/	L	Τ/	P /	С
	IMPLEMENTATION OF LINEAR	ETL		S.Lr	R	
BECI/EI3 [enautement of Electronics and Communication	Engin	eerin	g		

	P	rerequisi	te: Elec	tronic C	Circuits				ETL	1	0/0	2/0	3
L : Lecture T	: Tuto	rial SL	r : Supe	ervised	Learnin	g P:P	roject F	R : Resea	rch C: C	redits	I		
T/L/ETL : Th	eory/L	.ab/Emb	edded T	Theory a	ind Lab								
OBJECTIVE	E :												
•	To I To I To I To I	introduce understat learn the design ac learn the	e the ba nd the a design ctive fil concep	sics of l pplicati of comp ters and ots of IC	inear in ons of o parators PLL. regulat	tegrated operations, signal tors and	d circuit nal amp genera Data co	ts. blifiers. tors and converters	timers.				
COURSE OU	JTCO	MES (C	:Os): (3- 5)									
The Students	will be	e able to											
CO1	-	Understa	ind the	basics o	of linear	IC's.							
CO2		Apply of	p-amp f	or vario	ous appl	ications							
CO3		Design c	ompara	tors and	d signal	generat	ors usir	ng op-am	ıp.				
CO4		Design a	ctive fi	lters and	d PLL.								
CO5		Understa	ind and	apply d	lata con	verters	for real	time app	lication.				
Mapping of (Course	e Outcor	nes wit	h Prog	ram Ou	itcomes	s (POs)						
COs/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO)12
CO1	Н	-	Н	М	М	М	М		М	М	М	Μ	
CO2	Н	Н	Н	Μ	М	Н	Н		М	М	М	-	
CO3	Н	Н	Н	Η	Н	М	М				М	Μ	
CO4	Н	Н	Н	Η	Н	Н	М	М			М	-	
CO5	Н	М	М	М	М	М				М	М	Μ	
COs / PSOs	Р	SO1	PS	02	PS	503							
CO1		Η]	H									
CO2		Н]	H									
CO3		Н]	H									
CO4		Н]	H									
CO5		Н]	H									
H/M/L indicat	tes Str	ength of	Correla	ation I	H- High	, M- M	edium, I	L-Low	-				

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	 ▲ Program Core 	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval		1	1		1	1		1		1	

BEC17ET3

1 0/0 2/0 3

DESIGN AND IMPLEMENTATION OF LINEAR INTEGRATED CIRCUITS

UNIT-I: INTRODUCTION TO INTEGRATED CIRCUITS

Integrated circuit and its classification, Introduction to Operational amplifier, Ideal Op-Amp, DC & AC Characteristics, Slew rate and methods of improving slew rate, CMRR, PSRR, Frequency Response and Compensation techniques.

Lab Experiments:

- Measure input bias current, input offset current, input offset voltage of the given op-amp
- Design voltage follower to measure slew rate.
- Measure CMRR for a given circuit and Compare measured value with calculated value

UNIT-II: APPLICATIONS OF OPAMP IC741

Inverter and Non-Inverter - Summer and Subtractor – Multiplier and Divider – Differentiator and Integrator – Instrumentation Amplifier – AC Amplifier – Op- Amp Circuits using Diodes, Precision Rectifier – Clipper and Clamper – Sample and Hold Circuit – Log and Antilog Amplifiers.

Lab Experiments:

- Design an Inverting and Non Inverting amplifier for required gain using IC741
- Design and realize adder and subtractor using IC741.
- Design Integrator and Differentiator using IC741.
- Design Clipper and Clamper Circuit using IC741.

9Hrs

UNIT-III: COMPARATORS AND SIGNAL GENERATORS

Applications of Comparators – Regenerative Comparators (Schmitt Trigger) – Square Wave Generator (Astable Multivibrator) – Monostable Multivibrator – Triangular Wave Generator – Saw Tooth Wave Generator – Sine Wave Generators.

Lab Experiments:

- Design Schmitt trigger using IC741 for given values of UTP & LTP
- Design Monostable multivibrator for required pulse width using IC741.
- Design Astable multivibrator for required frequency and duty cycle using IC741

UNIT-IV: ACTIVE FILTERS AND PLL

RC Active Filters: Low pass – High pass – Band pass – Band reject – Notch – First order, Second order Filters– Switched Capacitor Filters – Counter Timers.PLL Basic Principles – Phase Detector and Comparator: Analog and Digital Voltage Controlled Oscillator – Low pass Filter - PLL – Applications of PLL

Lab Experiments: (PSPICE)

- Design & Obtain frequency response of First order HPF & LPF filters
- Design & Obtain frequency response of Notch, BPF & BRF filters

UNIT V: IC REGULATORS AND DATA CONVERTERS:

IC voltage regulators: Introduction, Fixed voltage regulators, SMPS, current limiting and current foldback techniques using IC723.

DAC/ADC Techniques – Integrating DAC /ADC Specifications, High Speed A/D Converters

Lab Experiments: (PSPICE)

- Design a voltage regulator for a given voltage.
- Calculate line, load regulation for a voltage regulator using IC723
- Construct a 4-bit R-2R ladder type DAC
- Set up a 4-bit successive approximation type ADC and study its performance

9Hrs

9Hrs

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 45 Hrs

Text books:

- 1. James. M. Fiore, "Operational Amplifiers and Linear Integrated Circuits", First Edition, Thomson Learning.
- 2. Roy Choudhury and Shail Jain, "Linear Integrated Circuits", Wiley Eastern Ltd., 1991.
- Coughlin and Dirscol, "Operational Amplifiers and Linear Integrated Circuits", Prentice Hall of India Pvt., Ltd., 1992

Reference books:

- 1. Millman and Halkias, "Integrated Electronics", McGraw Hill, 1992.
- 2. Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", Third Edition, TMH, 2002.
- 3. Ramakant A. Gayakwad, "Op amp and Linear Integrated Circuits", Fourth edition, PHI.

L	Department of Electronics and Communication	i Engi	neer	ing		
Subject Code:	Subject Name : COMMUNICATION LAB - I	T/	L	ΤĬ	P /	С
		L/		S.Lr	R	
BECI/L05		ETL				

Lie Communication by stems Lie Communication by stems Die Communication by stems L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab OBJECTIVE : • To design and implement FIR & IIR filters, Multi rate signal processing, adaptive filters and fast Fourier transform using DSP processors. • To measure signal parameters in time domain and frequency domain. • To perform modulation and demodulation of various signals. COURSE OUTCOMES (COs) : (3-5) The Students will be able to CO1 Implement various kinds of digital filter perform Multi rate signal processing and perform Fast Fourier Transform using DSP processors. CO2 Measure various signal parameters in time domain and frequency domain. CO3 Perform modulation and demodulation of various signals. Mapping of Course Outcomes with Program Outcomes (POs) COs/POs P01 P02 P03 P04 P05 P06 P07 P08 P09 P01 P01 P012
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab OBJECTIVE : • To design and implement FIR & IIR filters, Multi rate signal processing, adaptive filters and fast Fourier transform using DSP processors. • To measure signal parameters in time domain and frequency domain. • To perform modulation and demodulation of various signals. COURSE OUTCOMES (COs) : (3-5) The Students will be able to CO1 Implement various kinds of digital filter perform Multi rate signal processing and perform Fast Fourier Transform using DSP processors. CO2 Measure various signal parameters in time domain and frequency domain. CO3 Perform modulation and demodulation of various signals. Mapping of Course Outcomes with Program Outcomes (POs) COs/POs P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012
T/L/ETL : Theory/Lab/Embedded Theory and Lab OBJECTIVE : • To design and implement FIR & IIR filters, Multi rate signal processing, adaptive filters and fast Fourier transform using DSP processors. • To measure signal parameters in time domain and frequency domain. • To perform modulation and demodulation of various signals. COURSE OUTCOMES (COs) : (3-5) The Students will be able to CO1 Implement various kinds of digital filter perform Multi rate signal processing and perform Fast Fourier Transform using DSP processors. CO2 Measure various signal parameters in time domain and frequency domain. CO3 Perform modulation and demodulation of various signals. Mapping of Course Outcomes with Program Outcomes (POs) COs/POs P01 P03 P04 P05 P06 P07 P08 P09 P01 P01 P01
OBJECTIVE : • To design and implement FIR & IIR filters, Multi rate signal processing, adaptive filters and fast Fourier transform using DSP processors. • To measure signal parameters in time domain and frequency domain. • To perform modulation and demodulation of various signals. COURSE OUTCOMES (COs) : (3-5) The Students will be able to CO1 Implement various kinds of digital filter perform Multi rate signal processing and perform Fast Fourier Transform using DSP processors. CO2 Measure various signal parameters in time domain and frequency domain. CO3 Perform modulation and demodulation of various signals. Mapping of Course Outcomes with Program Outcomes (POs) COs/POs P01 P02 P03 P04 P05 P06 P07 P08 P09 P01 P01 P01 P01
 To design and implement FIR & IIR filters, Multi rate signal processing, adaptive filters and fast Fourier transform using DSP processors. To measure signal parameters in time domain and frequency domain. To perform modulation and demodulation of various signals. COURSE OUTCOMES (COs) : (3-5) The Students will be able to CO1 Implement various kinds of digital filter perform Multi rate signal processing and perform Fast Fourier Transform using DSP processors. CO2 Measure various signal parameters in time domain and frequency domain. CO3 Perform modulation and demodulation of various signals. Mapping of Course Outcomes with Program Outcomes (POs) CO5/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12
Fourier transform using DSP processors.• To measure signal parameters in time domain and frequency domain.• To perform modulation and demodulation of various signals.COURSE OUTCOMES (COs) : (3-5) The Students will be able toCO1Implement various kinds of digital filter perform Multi rate signal processing and perform Fast Fourier Transform using DSP processors.CO2Measure various signal parameters in time domain and frequency domain.CO3Perform modulation and demodulation of various signals.Mapping of Course Outcomes with Program Outcomes (POs)CO5/PO5P01P02P03P04P05P06P07P08P09P010P011P012
 To measure signal parameters in time domain and frequency domain. To perform modulation and demodulation of various signals. COURSE OUTCOMES (COs) : (3-5) The Students will be able to CO1 Implement various kinds of digital filter perform Multi rate signal processing and perform Fast Fourier Transform using DSP processors. CO2 Measure various signal parameters in time domain and frequency domain. CO3 Perform modulation and demodulation of various signals. Mapping of Course Outcomes with Program Outcomes (POs) CO5/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12
To perform modulation of various signals. COURSE OUTCOMES (COs) : (3- 5) The Students will be able to CO1 Implement various kinds of digital filter perform Multi rate signal processing and perform Fast Fourier Transform using DSP processors. CO2 Measure various signal parameters in time domain and frequency domain. CO3 Perform modulation and demodulation of various signals. Mapping of Course Outcomes with Program Outcomes (POs) COs/POs P01 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12
COURSE OUTCOMES (COs) : (3-5) The Students will be able toCO1Implement various kinds of digital filter perform Multi rate signal processing and perform Fast Fourier Transform using DSP processors.CO2Measure various signal parameters in time domain and frequency domain.CO3Perform modulation and demodulation of various signals.Mapping of Course Outcomes with Program Outcomes (POs)COs/POsPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12
CO1Implement various kinds of digital filter perform Multi rate signal processing and perform Fast Fourier Transform using DSP processors.CO2Measure various signal parameters in time domain and frequency domain.CO3Perform modulation and demodulation of various signals.Mapping of Course Outcomes with Program Outcomes (POs)CO5/POsP01PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12
CO1 Implement various kinds of digital filter perform Multi rate signal processing and perform Fast Fourier Transform using DSP processors. CO2 Measure various signal parameters in time domain and frequency domain. CO3 Perform modulation and demodulation of various signals. Mapping of Course Outcomes with Program Outcomes (POs) CO5/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12
Fourier Transform using DSP processors.CO2Measure various signal parameters in time domain and frequency domain.CO3Perform modulation and demodulation of various signals.Mapping of Course Outcomes with Program Outcomes (POs)COs/POsPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12
CO2 Measure various signal parameters in time domain and frequency domain. CO3 Perform modulation and demodulation of various signals. Mapping of Course Outcomes with Program Outcomes (POs) COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12
CO3 Perform modulation and demodulation of various signals. Mapping of Course Outcomes with Program Outcomes (POs) COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12
Mapping of Course Outcomes with Program Outcomes (POs)COs/POsPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12
COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12
CO1 H H H H H H M M M M - M
CO2 H H H H H H M M M M M -
COs / PSOs PSO1 PSO2 PSO3
CO1 H H M M
CO2 H H M M
CO3 H H M
CO3 H H M M
CO3 H H M H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

BEC17L05

COMMUNICATION LAB - I

0 0/0 3/0 1

LIST OF EXPERIMENTS

DSP PROCESSOR IMPLEMENTATION

- 1. FIR & IIR FILTERS IMPLEMENTATION
- 2. MULTIRATE SIGNAL PROCESSING
- 3. ADAPTIVE FILTER
- 4. FAST FOURIER TRANSFORMS

MEASUREMENT ON SIGNAL PARAMETERS IN TIME DOMAIN & FREQUENCY

DOMAIN

- 5. DETERMINATION OF THE PHASE DIFFERENCE BETWEEN TWO SIGNALS (DERIVED FROM THE SAME SOURCE (SAY 1 KHZ SQUARE WAVE SIGNAL) USING TWO DIFFERENT PATHS, ONE OF WHICH CONTAINS A DELAY UNIT) USING CRO AND A PHASE DETECTOR CIRCUIT.
- 6. DETERMINATION OF THE FREQUENCY OF UNKNOWN SIGNALS: USING CRO AND LISSAJOUS PATTERNS.

ANALOG COMMUNICATION LAB

- 7. DESIGN AND TESTING OF AMPLITUDE MODULATION AND DEMODULATION.
- 8. DESIGN AND TESTING OF FREQUENCY MODULATION AND DEMODULATION.
- 9. DESIGN AND TESTING OF PRE-EMPHASIS.
- 10. DESIGN AND TESTING OF NARROW FREQUENCY MODULATION.

	Dr.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	Inst	itu	te	AAC .)
Subject Code:	Subject Name : MICROPROCESSOR AND - 33	Τ/	L	Τ/	P /	С
BEC17L06	Department of IRIentIFINITS ABID Communication	Engin ETL	neer	i ßg .r	R	
	Prerequisite: Digital Electronics, Digital System Design lab	Lb	0	0/0	3/0	1

L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

OBJECTIVE :

- To learn the assembly language programs in 8085,8086
- To study the various interfacing techniques with microprocessor.

COURSE OUTCOMES (COs) : (3- 5)

The Students will be able to

CO1	Apply different programming techniques.												
CO2	Demonstrate interfacing techniques to perform specific applications.												
CO3 Develop microcontroller program.													
Mapping of Course Outcomes with Program Outcomes (POs)													
COs/PO	S	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		Н	Н	Н	Н	Н	М	М	М	-	М	М	М
CO2		Н	Н	Н	Н	Н	М			М	М		
CO3		Н	Н	Н	Н	Н		М	М	М	М	М	-
COs / PS	SOs	PS	01	PSO2		PSO3			•				
CO1		Н		Н		-							
CO2		Н		Н		М							
CO3	СОЗ Н			Н		-							
H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low													
Catego	ry	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

				✓			
Approval							

BEC17L06 MICROPROCESSOR AND MICRO CONTROLLER LAB 0 0/0 3/0 1

8085 MICROPROCESSOR:

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

- 1. ASSEMBLY LANGUAGE PROGRAMMING FOR SINGLE BYTE, MULTIBYTE, ADDITION, SUBTRACTION, MULTIPLICATION, DIVISION,
- 2. AVERAGE OF N NUMBERS, BLOCK MOVEMENT OF DATA, MAXIMUM OF GIVEN SERIES, SQUARE OF A GIVEN NUMBER

INTERFACING:

- 3. WAVE FORM GENERATION USING 8255 PPI
- 4. TRAFFIC LIGHT CONTROLLER
- 5. STEPPER MOTOR CONTROLLER
- 6. KEYBOARD INTERFACING
- 7. MATRIX DISPLAY
- 8. A/D INTERFACE USING ADC 0809
- 9. DAC INTERFACE USING DAC 0808.

Dr.M.G.R.	Educational and Research Institute	A NAAC
	(Deemed to be University U/S 3 of the UGC Act 1956)	***
and the second second	An ISO 9001:2008 Certified Institution	
THOR TO CACEL	Maduravoval, Chennai - 95	

Subject	Code:	Dep	bitate ND ELI		Electro DNICS	ATLON CIRCU	h@FC&I	FATR	Kation	Ēngi L/	neer	ing S.L	P/ r R	C
BEE17I	L1	P	SPICE											
		Pro cir	Prerequisite: Circuit theory and electronic devices and Lb 0 0/0 3/0 1 circuits											1
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits														
T/L/ETI	: The	ory/La	ıb/Embe	edded T	heory a	nd Lab								
OBJEC	TIVE To im	: pleme	ent the	various	electri	cal and	lelectro	onics c	ircuits u	ising P	SPIC	CE.		
COURS The Stude	COURSE OUTCOMES (COs) : (3- 5) The Students will be able to													
CO1	Appl	y PSPI	ICE in v	various	circuits.									
CO2	Demo	Demonstrate their skills in designing multivibrator circuit.												
CO3	CO3 Apply their skills for the design of filters.													
Mappin	g of C	ourse	Outcor	nes wit	h Progi	am Ou	itcomes	(POs)						
COs/POs PO1 PO				PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	O10	PO11	PO12
CO1		Η	Н	Η	Н	Η	М	М	-	М			М	М
CO2		Η	Н	Н	Н	Н	М	-	М	М			М	-
СОЗ Н Н				Н	Н	Н	М	М	-	L	M	[-	М
COs / PSOs PSO1				PS	PSO2		PSO3							
СО1 Н			Н		М									
CO2 1		Н		H		-								
CO3 H		Н		Н		-								

H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval		<u>.</u>	<u>.</u>		<u>.</u>	<u>.</u>		<u>.</u>	<u>.</u>	<u>.</u>	

BEE17IL1

0 0/0 3/0 1

SIMULATION OF ELECTRICAL AND ELECTRONICS CIRCUITS USING P SPICE

LIST OF EXPERIMENTS

- 1. Characteristics of BJT.
- 2. Verification of superposition and MPT Theorems.
- 3. Frequency analysis of RC Coupled Amplifier
- 4. Frequency analysis of JFET Amplifier
- 5. Monostable Multivibrator circuits.
- 6. Astable Multivibrator circuits
- 7. Summer, Subtractor.
- 8. Differentiator, Integrator.
- 9. LPF, HPF filters
- 10. BPF, BRF FILTERS.

F	Dr.M.G.R.	Educational and (Deemed to be University U/S 3 of th An ISO 9001:2008 Certified	Researc	h Insti	itute	A NAV	AC +	
antion Contarta		TECHNICAE CIT	T TT.		T	m /	D/	Г

Subject Cod	e: Su	ıbject N	Name :N	1attg	HNIG/	1, EA	ehnll i	- 95	T / L/	L	Τ/	P /	С
BEC17TS2	Dej	partme	ent of I	Electro	nics a	nd Co	mmun	icatio	ETL n Engin	eerin	S.Lr	R	
									0	0	0	1	1
L : Lecture T	': Tuto	rial SI	Lr : Supe	ervised	Learnin	ng P:P	roject I	R : Rese	arch C: C	credits			1
T/L/ETL : Th	neory/L	.ab/Emt	bedded 7	Theory a	and Lab)							
OBJECTIV	E: Th	e objec	tive is to	o develo	op the te	chnical	skill of	the stud	dents.				
COURSE O	UTCO	MES (C O s):(3-5)									
CO1	Devel	op the t	echnical	skills r	required	in the f	field of	study					
CO2	Bridge	e the getency of	gap betwork betwork betwoe bet	veen th idents.	ne skill	requir	ements	of the	employe	er or i	ndustry	and	the
CO3	Enhar	ice the e	employa	bility of	f the stu	idents.							
Mapping of	Course	e Outco	mes wit	h Prog	ram O	utcome	s (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC)12
CO1	Н	Н	Н	Н	Н	Н	М	М	Н	М	Н	M	
CO2	Н	Н	М	Н	Н	Н	М	М	Н	Н	Н	H	
CO3	Н	Η	Н	Н	Η	Н	М	М	Н	Η	Н	Η	
COs / PSOs	PS	501	PS	02	PS	03	PS	504	PSO5				
CO1													
CO2													
H/M/L indica	ates Str	ength o	f Correla	ation	H- High	n, M- M	edium,	L-Low	1		1		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	 Internships / Technical Skill 	Soft Skills				
Approval													

Subject Cod	e: S	ubject N	ame : ^N	Лафф	eany	HRAH	nnei	- 95	T / L/	L	Τ/	P /	С
BEC17L07	De	epartme	ent of l	Electro	onics a	nd Co	mmur	nicatio	nÆfilgin	eerir	g.Lr	R	
									0	0	0	1	1
L : Lecture T	: Tut	orial SI	Lr : Sup	ervised	Learnir	ng P:P	roject]	R : Rese	earch C: C	Credits			
T/L/ETL : Th	neory/	Lab/Emb	edded]	Theory	and Lab)							
OBJECTIV an Industry/ O	E: T Comp	he main o any/ Org	objectiv anizatio	e of the n	Inplant	trainin	g is to p	rovide a	a short-tei	rm woi	rk experie	ence	in
COURSE O	UTCO	OMES (COs) : (3- 5)									
CO1		To get an study.	n insigh	t of an i	ndustry	/ organ	ization/	compan	y pertain	ing to	the doma	in of	
CO2		To acqui	re skills	and kn	owledg	e for a s	smooth	transitic	on into the	e caree	r.		
CO3		To gain t	field exp	perience	e and ge	t linked	l with th	e profe	ssional ne	twork			
Mapping of	Mapping of Course Outcomes with Program Outcomes (POs)												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	0 PO11	PC)12
CO1	M	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	
CO2	Н	М	Н	Н	М	Н	Н	Н	Н	Н	Н	M	
CO3	Н	Н	Н	Н	М	Н	Н	Н	Н	Н	Н	M	
COs / PSOs	P	SO1	PS	02	PS	O3	PS	504	PSO5				
CO1													
CO2													
H/M/L indica	ates St	rength of	f Correl	ation	H- Higł	n, M- M	ledium,	L-Low					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
								~					

Approval		

Subject Cod	e: Def	partme ibject N	e <mark>nt of l</mark> Name :	Electro DIG	o <mark>nics a</mark> ITAL (nd Co COMM	mmur UNICA	ication TION	i Engir T / L/	teerii L	<u>ነ</u> ግ /	P /	C
BEC17011									ETL		S.Lr	R	
	Pr Ra	erequisi andom I	ite: Con Process,	nmunica Mather	ation Sy matics-I	stem, P	robabili	ty and	Ту	3	1/0	0/0	4
L : Lecture T	: Tuto	rial SI	Lr : Sup	ervised	Learnir	ng P:P	roject I	R : Rese	arch C: (Credits	3		
T/L/ETL : Th	eory/L	ab/Emb	edded]	Theory	and Lab)							
OBJECTIV	E :												
 To st are fu To un day t 	udy de indame idersta o day li	tection, ental to t nd the c ife	estimat the digit oncepts	tion and tal trans of diffe	l discus mission erent dig	s the pr of anal gital mo	ocess of og sign dulation	f sampli als. n technic	ng, quar ques and	their	on and on applicat	coding ions ii	g that n our
digita	al data	streams	for thei	r reliab	le transi	nission	over no	isy chan	mels.	coung	s and d	ccoun	ig oi
COURSE O	UTCO	MES (COs): (3- 5)				-					
The students	will be	able to											
CO1	Apply outpu	the sar t of a co	npling p ommuni	process cation s	in real-t ystem	time sys	tems an	nd to det	ect and e	estima	te the li	kely	
CO2	Desig	n a syst	em with	nout dis	tortion a	and inte	rference	è					
CO3	Hone comm	their ir nunicatio	oference	es to de	velop v	arious 1	nodulat	ion tech	nologie	s for t	he state	of th	e art
CO4	Demo across	onstrate s a chan	their sk nel.	tills in g	generati	ng a un	ique co	de for t	he infor	mation	to be	ransm	nitted
CO5	Apply	their u	ndersta	nding to	improv	ve the sy	stem ef	fficiency	in a mu	ltipath	enviro	nment	
Mapping of	Course	Outco	mes wi	th Prog	ram O	utcome	s (POs)						
11 8	1		1		' 	T	、 <i>,</i>			1			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	1 P	012
CO1	Н	М	М	М	M	Н				М	М	-	
CO2	Н	Н	Н	Н	М	Н				Μ	М	-	
CO3	Н	М	М	Н	Н	Н	М	Н	М	М	Н	H	I
CO4	Н	Н	Н	Н	Н	М	М	Н	-	М	-	H	[
CO5	Н	М	-	М	М	М	Н	-	Н	М	Н	H	[
COs / PSOs	PS	501	PS	502	PS	503		<u> </u>					
~~ .			l				I		-	1			

CO2	Η		Н		-						
CO3	Н		Н		М						
CO4	Н		Н		-						
CO5	Н		Н		М						
H/M/L indica	ites Stre	ngth of	Correla	tion H	H- High	, M- Me	edium, l	L-Low	·		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core ≮	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

BEC17011

DIGITAL COMMUNICATION 3 1/0 0/0

UNIT- I: DETECTION, ESTIMATION AND SAMPLING PROCESS

12 hrs

4

Model of Digital Communication System, Gram Schmidt Orthogonalization Procedure, Matched Filters, Correlation Receivers, Error Probability, Maximum Likelihood Estimation, Linear Prediction and Prediction Filters, Sampling Theorem, Quadrature Sampling of Band-Pass Signals, Reconstruction of a message from its samples

UNIT - II: WAVEFORM CODING TECHNIQUES AND BASEBAND SHAPING 12 hrs

PCM and TDMA Principles, Channel Noise and Error Probability, Quantization Noise and SNR, Differential Pulse Code Modulation and Delta Modulation, Speech Coding at Low Bit Rates, Power Spectra of PAM Signals, Inter Symbol Interference, Nyquist Criterion for distortionless baseband transmission, Correlative Coding and Precoding, Eye Patterns and Equalization Techniques.

UNIT - III: DIGITAL MODULATION TECHNIQUES

12 hrs

Coherent Binary Modulation Techniques, Coherent Quadrature Modulation Techniques, NonCoherent B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

Binary Modulation Techniques, Power Spectra, Bandwidth Efficiency, Bit versus Symbol Error Probabilities

UNIT - IV: ERROR CONTROL CODING

Need for Coding, Types of Codes, Linear Block Codes, Cyclic Codes, Convolution Codes, Maximum

Likelihood Decoding of convolutional Codes, Distance Properties and Sequential Decoding of convolutional Codes, Trellis coding, Viterbi coding.

UNIT - V: SPREAD SPECTRUM SYSTEMS

Generation of Pseudo Noise Sequences, Correlation Properties, Direct Sequence Spread Spectrum Systems, Frequency Hop System, Signal Space Dimension and Processing Gain, Probability of Error, Antijam and Multipath Performance.

Practical component P: Include case studies / application scenarios

Research component R: Future trends / research areas / Comparative Analysis

Total Number of Hours: 60 Hrs

Textbooks:

- 1. Simon Haykin, "Digital communications", John Wiley & Sons, 1988.
- 2. John. G. Proakis, "Digital Communication", McGraw Hill Inc., Third Edition, Malaysia, 1995.
- 3. B.P. Lathi, "Modern Digital and Analog communication system", Oxford publications, Third edition.

Reference Books:

- 1. Roy Blake, "Electronic Communication systems", Thomson Learning, 2nd edition 2002.
- 2. M.K. Simen, "Digital Communication Techniques Signal Design & Detection", Prentice Hall of India, 1999.
- 3. Bernard Sklar, "Digital Communication: Fundamentals and Applications", Prentice Hall, 2011 Edition.
- 4. Upamanyu Madhow, "Fundamentals of Digital Communication", Cambridge University Press, 2008
- 5. Robert G. Gallager, "Principles of Digital Communication", Cambridge University Press 2008.

12 hrs

12 hrs

	Dr.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	ı Insti	tute	A NAV	AC +	
Subject Code:	Subject Name MacANEENNALASD MANE - 95	T / L/	L	Τ/	P /	С
BEC17012 I	PROPAGATION Department of Electronics and Communication	n ETL Engin	eerin	S.Lr	R	
	Prerequisite: EMF, TLWG	Ту	3	0/0	0/0	3

L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

OBJECTIVE :

- To study Antenna Parameters.
- To study Radiation Resistance, Antenna Efficiency Measurement.
- To study Antenna Arrays.
- To study different types Antennas
- To study Radio wave propagation.

COURSE OUTCOMES (COs) : (3-5)

The students will be able to

The students v		uoie to													
CO1	۱	Understa	and the l	cnowled	ige abo	ut anten	na basi	cs.							
CO2	1	Write ab	out the	radiatio	n from	a currer	nt eleme	ent.							
CO3	1	Analyze	the ante	enna arr	ays.										
CO4]	Explain	various	types o	f antenr	na.									
CO5]	Explain	the vario	ous type	es of rad	dio wav	e propa	gation.							
Mapping of C	Course	se Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO2	PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12HHHHMMMMM												
CO1	Н	H H H H H M M M M M										М			
CO2	Н	Н	Н	Н	Н	Н	М	М	М		М	М			
CO3	Н	Н	Н	Н	Н	М	М	М	М		М	М			
CO4	Н	Н	Н	Н	Η	М	М	М	М		М	М			
CO5	Н	Н	Н	Н	Н	М	М	М	М		М	М			
COs / PSOs	P	SO1	PS	O2	PS	03		•							
CO1	Н		Н		М										
CO2	Н		Н		М										
CO3	Н		Н		М										
CO4	Н		Н		М										
CO5	Н		Н		М										
H/M/L indicat	tes Str	ength of	Correla	tion I	H- High	, M- M	edium, I	L-Low		• 					

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
				✓							
Approval											

BEC17012 ANTENNA AND WAVE PROPAGATION 3 0/0 0/0 3

UNIT - I ANTENNA BASICS

Antenna Parameters – Gain, Directivity, Effective Aperture Polarization, Beam width, Balun, Ground System, Top loading, monopole and Half wave dipole antenna, Short linear antenna, Beam solid angle, Antenna Temperature.

UNIT - II RADIATION PRINCIPLE AND ANTENNA TERMINOLOGIES 12 Hrs

Principle of Radiation, pattern, Antenna Terminologies – Reciprocity Theorem, Friss Formula, Slot Antennas, SWR(Standing Wave Radiators)

UNIT - III ANTENNA ARRAYS

Arrays – Two Element Arrays – Uniform Linear Array – Broadside Array – End fire array – Principle of Pattern Multiplication – Binomial Arrays.

UNIT - IV SPECIAL ANTENNA

Dish Antenna – Helical Antenna, Biconical Antenna, Microstip Patch Antenna, Turnstile Antenna, Yagi – uda antenna, Loop Antenna, Antenna Low and Medium Frequencies.

UNIT - V WAVE PROPAGATION

Wave Propagation - Surface Wave Propagation, Structure of the Ionosphere, Space Wave Propagation-Determination of Critical Frequencies - Maximum Usable Frequency - Effect of Earth's Magnetic Field -Fading - Super Refraction - Scatter Propagation.

12 Hrs

12 Hrs

12 Hrs

12 Hrs

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 60Hrs

Textbooks:

- 1. Constantine A.Balanis, "Antenna theory analysis and design" JohnWiley, 2nd Edition 2007.
- 2. G.S.V. Raju, "Antenna wave propagation", pearson education, 2004.
- 3. R.E. Collins, "Antenna and Radio wave propagation".

Reference Books:

- 1. John D. Kraus, Ronald J Marhefka. "Antenna for all Appplications" Tata McGraw Hill 3nd Edition, 2007.
- 2. A.R.Harish, M. Sachidanada, "Antenna and wave propagation", Oxford university press, 2007.
- 3. W.L.Stutzman and G.A. Thiele, "Antenna analysis and design", John willey, 2000.

F	Dr.M.G.R. Educational and Researce (Decemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	h Inst	itu	te N	AAC .	
Subject	Subject Name : MBASICSVOF ROBOTICSai - 95	T / L/	L	Τ/	P /	С
Code:	Department of Electronics and Communication	n Engin	eer	ing ^{Lr}	R	

BMF17I04	Dre	requisit	e Micr	onroces	sor and	Micro	ontroll	or	Ty	3	0/0	0	/0	3
DW1217104	110	requisit	e. Mici	oproces			Jointon		1 y	5	0/0	0.	/0	5
L : Lecture 7	Γ : Tuto	orial S	Lr : Sup	pervised	l Learni	ng P:	Project	R : Res	search C: C	Credi	its			
T/L/ETL : T	heory/I	Lab/Eml	bedded	Theory	and La	b								
OBJECTIV	'E :													
• To in	ntroduc	e the ba	sic con	cepts, p	arts of	robots a	nd type	s of rob	ots.					
• To n	nake th	e studer	nt famili	ar with	the var	ious dri	ve syste	ems for	robot.					
• To d	levelop	a deep	knowle	dge sen	sors and	d their a	pplicati	ons in r	obot.					
• To d	liscuss	about th	e vario	us end e	effector	s and m	anipula	tors.						
• To d	levelop	a path j	olanning	g and pi	ogram	ning of	robots.							
COURSE O	OUTCC	MES (COs):	(3- 5)										
The students	s will be	e able to)											
CO1	1	Underst	and the	importa	ance of	robotics	s in toda	ay and f	uture good	ls pr	oductio	on.		
CO2		Have kn	owledg	e on rol	bot con	figuratio	on and s	subsyste	ems.					
CO3	1	Underst	and the	princip	les of ro	obot pro	gramm	ing.						
CO4]	Handle	with typ	oical rol	oot.									
CO5]	Impleme	ent spec	ialized	softwa	e and w	orking	of mob	ile robot.					
Mapping of	Cours	e Outco	omes wi	ith Pro	gram C	Outcom	es (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PC	010	PO11	PO	D12
CO1	Н	Н	Н	Н	Н	Н	Н	М	Н	M]	Н	Η	
CO2	Н	Н	Н	Η	Н	Н	Н	М	М	Η]	Н	Η	
CO3	Н	Н	Н	М	М	Н	М	М	Н	Η]	Н	Η	
CO4	Н	Н	Н	Н	Н	М	Н	Н	Н	M]	Н	Η	
CO5	Н	Н	Н	Н	Н	М	Н	Н	Н	M]	Н	Η	
COs /	PS	501	PS	02	PS	503	PS	04	PSO5	1				
PSOs														
CO1	Н		Н		М									
CO2	Н		Н		Н									
CO3	Н		Н		Н									
CO4	Н		Н		М									
CO5	Н		Н		Н									

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

H/M/L indic	ates Stro	ength of	f Correl	ation	H- Higl	h, M- N	Iedium,	L-Low			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
		•				v					
Approval											

BME17I04

BASICS OF ROBOTICS

UNIT I : INTRODUCTION

Specifications of Robots- Classifications of robots – Work envelope - Flexible automation versus Robotic technology – Applications of Robots- robot kinematics and dynamics -Positions, Orientations and frames, Mappings: Changing descriptions from frame to frame, Operators: Translations, Rotations and Transformations - Transformation Arithmetic - D-H Representation - Forward and inverse Kinematics of Six Degree of Freedom Robot Arm – Robot Arm dynamics

UNIT II : ROBOT DRIVES AND POWER TRANSMISSION SYSTEMS

Robot drive mechanisms, hydraulic – electric – servomotor- stepper motor - pneumatic drives, Mechanical transmission method - Gear transmission, Belt drives, cables, Roller chains, Link - Rod systems - Rotary-to-Rotary motion conversion, Rotary-to-Linear motion conversion, Rack and Pinion drives, Lead screws, Ball Bearing screws.

UNIT III : MANIPULATORS

Construction of Manipulators, Manipulator Dynamic and Force Control, Electronic and Pneumatic manipulators.

UNIT IV: ROBOT END EFFECTORS

9Hrs

3

0/0

0/0

3

9 Hrs

9Hrs

9Hrs

Classification of End effectors – Tools as end effectors. Drive system for grippers-Mechanical adhesivevacuum, magnetic-grippers. Hooks & Scoops. Gripper force analysis and gripper design. Active and passive grippers.

UNIT V : PATHPLANNING & PROGRAMMING

Trajectory planning and avoidance of obstacles, path planning, skew motion, joint integrated motion – straight line motion-Robot languages -.computer control and Robot software.

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total Number of Hours: 60Hrs

Text books:

1. Deb S. R. and Deb S., "Robotics Technology and Flexible Automation", Tata McGraw Hill Education Pvt. Ltd, 2010.

2. John J.Craig , "Introduction to Robotics", Pearson, 2009. 3. Mikell P. Groover et. al., "Industrial Robots - Technology, Programming and Applications", McGraw Hill, New York, 2008.

References:

1. Richard D Klafter, Thomas A Chmielewski, Michael Negin, "Robotics Engineering – An Integrated Approach", Eastern Economy Edition, Prentice Hall of India Pvt. Ltd., 2006. 2. Fu K S. Gonzalez R C. Lee C.S.G. "Robotics : Control. Sensing, Vision and Intelligence", McGraw

2. Fu K S, Gonzalez R C, Lee C.S.G, "Robotics : Control, Sensing, Vision and Intelligence", McGraw Hill, 1987

9Hrs

	Dr.M.G.R. Educational and Researc	h Insti	itute	A NAV	C.	
Subject Code:	Subject Name : SOFP SRTEPS Certified Institution Maduravoyal, Chennai - 95	T / L/ ETL	L	T/	P/ R	С
BSK17ET2	QUALITATIVE AND QUANTITATIVE SKILLS Department of Electronics and Communication	n Engin	eerin	g	N	
	Prerequisite: Soft Skills - I	Lb	1	0/1	0/0	1

L : Lecture T	: Tuto	rial SI	r : Supe	ervised	Learnin	g P : P	roject F	R : Resea	arch C: C	Credits					
T/L/ETL : Th	eory/Lab/Embedded Theory and Lab														
OBJECTIV	E: Th	: The main objective is to strengthen the logical and arithmetic reasoning skills of the													
students.															
COURSE O	JTCOMES (COs) : (3- 5)														
CO1	Recog	Recognize and apply arithmetic knowledge in a variety of contexts.													
CO2	Abilit	Ability to identify and critically evaluate philosophical arguments and defend them from													
	criticis	criticism.													
CO3	Define	Define data and interpret information from graphs.													
Mapping of	Course	ourse Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 H													
CO1	Н	H H H H H L L H M H H													
CO2	М	A M H L H L H H L L													
CO3	Н	Н	Η	Η	Н	Н	М	М	Н	Н	Н	Н			
COs / PSOs	PS	01	PS	02	PS	O3	PS	SO4	PSO5						
CO1															
CO2															
H/M/L indica	ates Stro	ength of	Correla	ation 1	H- High	, M- M	edium, l	L-Low	•	•					
Category	Basic Sciences	Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core Program Electives Internships / Technical Skill Soft Skills													
Approval															

BSK17ET2

SOFT SKILLS -- II

1 0/1 0/0 1

UNIT 1 Logical Reasoning I

Logical Statements - Arguments - Assumptions - Courses of Action.

UNIT 2 Logical Reasoning II

Logical conclusions – Deriving conclusions from passages – Theme detection.

UNIT 3 Arithmetical Reasoning I

Number system – H.C.F & L.C.M – Problem on ages – Percentage – Profit & Loss – Ratio & Proportion – Partnership.

UNIT 4 Arithmetical Reasoning II

Time & Work – Time & Distance – Clocks – Permutations & Combinations – Heights & Distances – Odd man out and Series.

UNIT 5 Data Interpretation

Tabulation – Bar graphs – Pie graphs – Line graphs.

Reference Book:

1. R.S.Agarwal, A modern approach to Logical Reasoning, S.Chand & Co., (2017).

- 2. R.S.Agarwal, A modern approach to Verbal and Non verbal Reasoning, S.Chand & Co., (2017).
- 3. R.S.Agarwal, Quantitative Aptitude for Competitive Examinations, S.Chand & Co., (2017).
- 4. A.K.Gupta, Logical and Analytical Reasoning, Ramesh Publishing House, (2014).

5. B.S.Sijwali, Indu sijwali, A new approach to Reasoning (Verbal and Non verbal), Arihant Publishers, (2014).

	Dr.M.G.R. Educational and Research Institute (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution Madurayoval, Chennai - 95	N.	AAC +	
ubiect Code:	Subject Name : COMMUNICATION LAB II T/ L T/		P/R	(

Subject Code:	Subject Name : COMMUNICATION LAB II Department of Electronics and Communicatio	T / nLF,ngi ETL	L nee	T / ris:gr	P/ R	С
	Prerequisite: Digital Communication, Communication Systems	Lb	0	0/0	3/0	1
L : Lecture T : T	'utorial SLr : Supervised Learning P : Project R : Rese	earch C:	Crea	lits		

T/L/ETL : Theory/Lab/Embedded Theory and Lab

OBJECTIVE :

- To learn the concepts of analog pulse modulation techniques.
- To study the working of digital modulation system.
- To study the different types of information coding.

COURSE OUTCOMES (COs) : (3- 5)

The Students will be able to

CO1	Understand and apply the concept of analog pulse modulation.
CO2	Generate codes for transmission of data.
CO3	Apply digital modulation techniques.

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Η	Η	Н	Н	М	М	М	-	М	М		М
CO2	Н	Н	Н	Н	-	М	М	М	М	М		М
CO3	Н	Н	Н	Н	М	М	М	М	М	М		М
COs /	PS	01	PS	02	PS	03						
PSOs												
CO1	Н		Н		Μ							
CO2	Н		Н		Μ							
CO3	Н		Н		Μ							
H/M/L indic	ates Str	ength of	f Correl	ation	H- Higl	n, M- M	ledium,	L-Low				

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

BEC17L08 COMMUNICATION LAB II 0 0/0 3/0 1

LIST OF EXPERIMENTS

- 1. DESIGN AND TESTING OF PULSE AMPLITUDE MODULATION & DEMODULATION.
- 2. DESIGN AND TESTING OF PULSE WIDTH MODULATION & DEMODULATION.
- 3. DESIGN AND TESTING OF PULSE POSITION MODULATION & DEMODULATION.
- 4. DESIGN AND TESTING OF ASK, FSK AND PSK
- 5. STUDY OF LINE CODING AND DECODING TECHNIQUES
- 6. STUDY OF SAMPLING
- 7. STUDY OF PULSE CODE MODULATION
- 8. DESIGN & TESTING OF EYE PATTERN
- 9. BLOCK/HAMMING CODES.
- 10. PN SEQUENCE GENERATOR.
- 11. DELTA MODULATION AND TIME DIVISION MULTIPLEXING.

	Dr.M.G.R. Educational and Resear (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	ch In	sti	tute (ANAAC	og AUE
Subject Code: BEC17L09 D	Subject Name MRQBQTI6944/Chennai - 95 Pepartment of Electronics and Communication	T/ L/ opp_Fing	L gine	T / S.Lr ering	P/ R	С
	Prerequisite: Microprocessor and Microcontroller lab	Lb	0	0/0	3/0	1
L : Lecture T : Tu T/L/ETL : Theory	Itorial SLr : Supervised Learning P : Project R : Re //Lab/Embedded Theory and Lab	search (C: Cr	edits		

OBJECTIVE :

• To understand the different robotic configurations and their subsystems.

COURSE OUTCOMES (COs) : (3-5)

The Students will be able to

CO2 Understanding the components of robots like arms, linkages, drive systems and end effectors.

CO3 Measure the performance of robots.

Mapping of Course Outcomes with Program Outcomes (POs)

11 0					,		,	·				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	Η	Н	Н	М	М	Н	М	М	Н	Н
CO2	Н	Н	Н	Н	Н	Н	М	Н	М	Н	Н	Н
CO3	Н	Н	М	М	Н	Н	М	М	Н	М	Н	Н
COs / PSOs	C	01	C	52	C	23						
CO1	I	Η	H	ł	N	Л						
CO2]	H	ŀ	ł	ł	H						
CO3]	H	H	ł	N	Л						
H/M/L indica	tes Stre	ngth of	Correl	ation	H- Hig	h, M- N	Aedium	, L-Low	1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	▲ Practical / Project	Internships / Technical Skill	Soft Skills			
Approval				-						·		

BEC17L09

ROBOTICS LAB

	Dr.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956)	Inst	itu	te	A NAAC)
Subject Code:	Subject Name : OPEN CV-PYTHON FOR	Τ/	L	Τ/	P /	С
BEC17L10 E	DIGITAL IMAGE PROCESSING LAB epartment of Electronics and Communication	L/ Eng in	neer	S.Lr ing	R	

LIST OF EXPERIMENTS

- 1. Simple Robot circuit
- 2. Build a Light-Tracking Robot
- 3. Simple Insect Robot
- 4. Line follower Robot
- 5. Two-Legged Walking Robot
- 6. Robot Control using 555 Timer
- 7. Study of AVR Studio and code Debugging
- 8. Interfacing Switch to turn on Bar graph LEDs. (Implementing a "Push to ON" indicator)
- 9. LCD Interfacing to display alphanumeric characters.
- 10. LCD Interfacing to displaying integer values on the LCD.
- 11. Generation of delay using timer and turning 'ON' the buzzer
- 12. Indication of the value of counter on LCD
- 13. DC Motor Interfacing
- 14. PWM control of the DC motor

		Pre	erequisi	te: Digi	ital Ima	ge Proc	essing			Lb	0	0/0	3/0	1
L : Lect	ure T	: Tutori	al SL	r : Supe	rvised I	Learning	g P:Pr	oject R	: Resea	rch C: 0	Cred	its		
T/L/ET	L : The	eory/La	ıb/Embe	edded T	heory a	nd Lab								
OBJEC	TIVE	:												
•	The fu	indame	ntals of	digital	image p	processi	ng							
•	Image Image	transfo enhand	orm use	d in dig technia	ital ima ues use	ge proc	essing	ge proce	essing					
~~~~				1				6- F	8					
The Stud	SE OU lents w	ill be ab	<b>AES (C</b> le to	<b>(Os) : (</b>	3-5)									
CO1	Describe different modalities and current techniques in image acquisition													
CO2	Use the mathematical principles of digital image enhancement (contrast, gradients, noise)													
CO3	Describe and apply the concepts of feature detection and contour finding algorithms.													
CO4	Apply the knowledge primarily obtained by studying examples and cases in the field of													
	biomedical imaging to other engineering disciplines													
CO5	Inde	pender	ntly wor	rk in Op	enCV so	oftware	using p	ython p	orogram	ming				
Mappir	ng of (	Course	Outcor	nes wit	h Prog	am Ou	tcomes	(POs)						
COs/PC	)s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	010	PO11	PO12
001														
COI		Н	Н	М	М	Н	М	М	М	М	Н		Μ	М
CO2		Н	Н	Η	Н	Н	M	Η	М	Н	H		Η	Н
CO3		Н	Н	Η	Н	Н	М	Η	М	Н	H		М	М
CO4		Н	Н	Н	Н	Н	М	Н	М	Н	H		Н	Н
CO5		М	-	Н	Н	Н	-	М	-	Н	H		Н	Н
COs / P	SOs	PS	501	PS	502	PS	503							
CO1		Н		Η		М								
CO2		H H		М										
CO3	M H				М									
CO4		М		Н		Н								
CO5		М		Н		Н								
H/M/L	indicat	es Stre	ngth of	Correla	tion H	 I- High	, M- Me	dium, I	L-Low					<u> </u>



Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											



# BEC17L10 Open CV-PYTHON FOR DIGITAL IMAGE PROCESSING 0 0/0 3/0 1

# LIST OF EXPERIMENTS

- 1. IMAGE PROCESSING IN OPEN CV
- 2. CHANGING COLOR-SPACE
- 3. IMAGE THRESHOLDING
- 4. GEOMETRIC TRANSFORMATIONS OF IMAGES
- 5. SMOOTHING IMAGES
- 6. MORPHOLOGICAL TRANSFORMATIONS
- 7. IMAGE GRADIENTS
- 8. CANNY EDGE DETECTION
- 9. IMAGE PYRAMIDS
- 10. CONTOURS IN OPENCV
- 11. HISTOGRAMS IN OPENCV
- 12. IMAGE TRANSFORMS IN OPENCV
- 13. FEATURE DETECTION AND DESCRIPTION

	Dr.M.G.R. Educational and Researc (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution Maduravoyal, Chennai - 95	h Insti	itute	A CONTROL OF	AC +	
Subject Code:	Subject Name Electronics and Communicatio	n E/L/in	e erin	gT/	<b>P</b> /	С
BEC17L11	· · · · · · · · · · · · · · · · · · ·	ETL		S.Lr	R	
	Prerequisite: NIL					1
L : Lecture T : T	utorial SLr : Supervised Learning P : Project R : Rese	earch C: C	redits		<u> </u>	
T/L/ETL : Theorem	ry/Lab/Embedded Theory and Lab					
<b>OBJECTIVE :</b>	To acquire hands-on experience in converting a novel ic	lea / techi	nique	into a wo	orking	

model / prototype involving multi-disciplinary skills and / or knowledge and working in at team.

# 14. CAMERA CALIBRATION AND 3D RECONSTRUCTION

	Dr.M.G.R. Educational and Research Institute (Deemed to be University U/S 3 of the UGC Act 1956)														
Subject Cod	e: Su	ıbject N	Name : N	ATEC Madu	HNIC/	lesifi al, Ch	Li ^{nstit} ti ennai	ion - 95	T / L/	L	T/	P/ P	C		
BEC17TS3	Dej	partmo	ent of l	Electro	icatio	<u>i Engin</u>	eerin	g.LT							
									0 -	0	0	1	1		
EOLECTITE OF THOMALS SEPS uper vised Learning P : Project R : Research C: Credits															
CO1 To conceptualize a novel idea / technique into a product															
CO2	To de	To develop a multi-disciplinary thinking and enable teamwork													
CO3	Ideate and develop a prototype														
Mapping of Course Outcomes with Program Outcomes (POs)															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	) PO11	PC	012		
CO1	Η	Н	Н	М	М	Н	Н	Н	М	L	Н	M			
CO2	Н	Н	Н	М	Н	М	М	М	Н	Н	Н	Η			
CO3	Н	Н	Н	Н	Н	Н	М	Н	Н	М	Н	Н			
COs / PSOs	PS	501	PS	02	PS	PSO3		504	PSO5						
CO1															
CO2															
H/M/L indica	ates Str	ength o	f Correl	ation	H- Higł	n, M- M	edium,	L-Low	-1	1	I	_I			
								Skill							

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											



T/L/ETL : Th	T/L/ETL : Theory/Lab/Embedded Theory and Lab												
OBJECTIV	E: Th	e objec	tive is to	develo	p the to	echnica	l skill of	the stu	dents.				
COURSE O	UTCO	MES (O	C <b>Os</b> ):(	3- 5)									
CO1	Devel	op the t	echnica	l skills r	equired	l in the	field of	study					
CO2	Bridge comp	e the g etency (	ap betv of the st	veen th udents.	ne skill	require	ements	of the	employe	er or ind	dustry a	nd the	
CO3	Enhan	ice the e	employa	bility o	f the stu	udents.							
Mapping of	Course	e Outco	mes wit	h Prog	ram Ou	utcome	s (POs)						
COs/POs	PO1 PO2 PO3 PO4				PO5	PO6	PO7 PO8 PO9			PO10	PO11	PO12	
CO1	Н	Н	Н	Н	Н	Н	М	М	Н	М	Н	М	
CO2	Н	Н	М	Η	Н	Н	М	М	Н	Н	Н	Н	
CO3	Н	Н	Н	Η	Н	Н	М	М	Н	Н	Н	Н	
COs / PSOs	PSO1		PSO2		PSO3		PSO4		PSO5				
CO1													
CO2													
H/M/L indica	H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low												
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

SubjectSubject Name :INTRODUCTION TO ALL SLANDT /LT /Code:EMBEDDED SYSTEM DESIGNAL, Chennai - 95L/S.LrBEC17013Department of Electronics and CommunicationEngineeringPrerequisite: Digital Electronics and Data StructuresTy31/0	<b>C</b> <b>R</b> 0/0 4													
Code:EMBEDDED SYSTEMIDESIGNAl, Chennai - 95L/S.LrBEC17013Department of Electronics and CommunicationEngineeringPrerequisite: Digital Electronics and Data StructuresTy31/0	<b>R</b> )/0 4													
BEC17013Department of Electronics and CommunicationETL EngineeringPrerequisite: Digital Electronics and Data StructuresTy3	)/0 4													
Prerequisite: Digital Electronics and Data Structures Ty 3 1/0	)/0 4													
	I													
L : Lecture T : Tutorial S Lr : Supervised Learning P : Project R : Research C: Credits	T/L/ETL.: Theory/Lab/Embedded Theory and Lab													
T/L/ETL : Theory/Lab/Embedded Theory and Lab	T/L/ETL : Theory/Lab/Embedded Theory and Lab													
OBJECTIVE :														
To learn the basics of MOS Transistors.														
<ul> <li>To learn the basics of MOS Transistors.</li> <li>To study the design of combinational logic circuit using CMOS.</li> </ul>														
To learn CMOS sequential logic circuits design.														
➢ To learn the concepts of modeling a digital system using HDL.														
To study the basics of PIC microcontroller.														
COURSE OUTCOMES (COs) : ( 3- 5)														
The students will be able to														
CO1 Understand the basics of MOS Transistor.	Understand the basics of MOS Transistor.													
CO2 Design combinational circuits using CMOS logic.														
CO3 Design sequential circuits using CMOS.														
CO4 Write program to model a digital system using VHDL & Verilog.														
CO5 Understand the basics of 16F877 PIC Microcontroller.														
Mapping of Course Outcomes with Program Outcomes (POs)														
COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO1	PO12													
CO1 H H M M M M M H M														
CO2 H H H H H M M M H														
CO3 H H H H H M M H														
CO4HMMMMMM														
CO5         H         -         M         M         H         M         M         M         M														
COs / PSOs PSO1 PSO2 PSO3														
CO1 H H M														
CO2 H H M M														
CO3 H H M M														
CO4 H H M M														



CO5	I	ł	I	ł	-							
H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low												
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	▲ Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
Approval												

## BEC17013 INTRODUCTION TO VLSI AND EMBEDDED SYSTEM DESIGN 3 1/0 0/0 4

## UNIT –I: MOS TRANSISTOR THEORY

Introduction – NMOS and PMOS transistor, Threshold voltage, Body effect, MOS device – Basic DC equations ,Second order effects, MOS models, Small signal AC characteristics, Complementary CMOS Inverter, Power dissipation and scaling of MOS transistors.

#### UNIT -II: DESIGNING COMBINATIONAL LOGIC CIRCUITS

Static CMOS design – Complementary CMOS, Propagation Delay and Power Consumption in static CMOS, Pseudo NMOS Logic, Pass Transistor Logic, Transmission gates, Dynamic CMOS Design – Basic principle, Speed and Power dissipation of Dynamic logic, Signal integrity issues in dynamic design, CMOS Domino logic, np CMOS logic.

#### **UNIT -III: DESIGNING SEQUENTIAL LOGIC CIRCUITS**

Introduction – Timing metrics for sequential circuits, Classification of memory elements, Static latches and registers – The bi-stability principle, Multiplexer based latch, Master slave edge triggered register, Static SR flip flop, Dynamic latches and registers – Dynamic transmission gate edge triggered registers, clocked CMOS register.

#### UNIT -IV: VHDL & VERILOG PROGRAMMING

VHDL background – VHDL requirement, Elements of VHDL, operators, Basic concepts in VHDL, Structural modeling, Behavioral modeling and Dataflow modeling in VHDL and Simple programs, Verilog HDL – Basic concepts – Gate Level modeling, Dataflow modeling and Behavioral modeling – Simple programs.

#### 12Hrs

12Hrs

# 12Hrs

#### 12Hrs



# UNIT -V: PIC MICROCONTROLLER

Introduction - PIC16F877 Micro controller overview, Special Function Registers, I/O Ports, Timers, Oscillators, Capture/ Compare and PWM module, Serial communication module, Analog module and Instruction set.

## Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

#### **Total Number of Hours: 60 Hrs**

12Hrs

#### **Textbooks :**

- 1. Neil H.E. Weste, Kamran Eshraghian, "Principles of CMOS VLSI Design A system perspective", second edition, Addison Wesley, 1997.
- 2. Jan M.Rabaey, Ananth Chandrakasan, Borivoje Nikolic, "*Digital Integrated Circuits : A Design perspective*", second edition, Prentice Hall of India, 2003.
- 3. Zainalabedin Navabi, "*VHDL Analysis and modeling of Digital Systems*", Second edition, Mcgraw Hill International Editions, 1998.

#### **Reference Books:**

- 1. A. Pucknell, Kamran Eshraghian, "*Basic VLSI Design*", Third Edition, Prentice Hall of India, 2007.
- 2. R.Jacob Baker, Harry W.Li, David E. Boyce, "*CMOS circuit design, Layout and Simulation*", Prentice Hall of india, 2005.
- 3. J.Baskar, "A VHDL Primer", Third edition, Pearson Education, 2004.
- 4. Samir Palnitkar, "Verilog HDL, A Guide to Digital Design and Synthesis", second edition, Pearson Education, 2003.
- 5. pic-microcontroller.com / free- ebook- pic-microcontrollers.


	P	rerequisi	ite: Dig	ital con	nmunica	ation			Ту	3	1/0	0/0	4
L : Lecture T	: Tutor	rial SL	r : Supe	ervised	Learnin	g P:P	roject I	R : Rese	arch C: (	Credits			
T/L/ETL : Th	eory/L	ab/Embe	edded T	Theory a	und Lab	-	-						
OBJECTIVE	C :												
• To le conne	arn th ctors.	e basic	elemer	nts of o	optical	fiber ti	ansmis	sion lin	k, types	of fibe	ers, Slic	ing a	nd
• To un	derstai	nd the di	fferent	kind of	loss an	d syster	n desigi	n consid	eration.	offician	W Loco	r diad	lac
and d	ifferen	t fiber a	nplifier	S.		iais, LL	D struc	luies, q	uantuni		Jy, Lase		105
• To lea	arn the	fiber op	tical re	ceivers	such as	PIN, A	PD dio	des, nois	se perfor	mance in	n photo	detect	or,
• To lea	er ope ern diff	ferent ty	nd confi	iguratio	n. 1etwork	s.							
COURSE OU	JTCO	MES (C	Os):(	3-5)									
The students v	will be	able to											
CO1	]	Design a	ny type	es of fib	ers.								
CO2	]	Design l	ossless	fibers.									
CO3	]	Include 1	newer to	echniqu	e for de	esigning	optical	sources	5.				
CO4	]	Design e	efficient	t optical	detecto	ors usin	g innov	ative ide	ea.				
CO5	]	Impleme	ent mod	ern tech	nnology	for des	igning	optical r	networks				
Mapping of (	Course	Outcor	nes wit	h Prog	ram Ou	utcome	s (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Η	Η	Н	Η	М		Н	М		Η	М	Η	
CO2	Η	Н	Н	М	М		М	Н		Η	Н	Η	
CO3	Н	Н	Н	Η	М		М			Η	М	М	
CO4	Η	Н	Н	Η	М		М			Η	М	М	
CO5	Н	Н	Н	Η	Η		М	Н	Н	Н	Н	Η	
COs / PSOs	P	SO1	PS	SO2	PS	503							
CO1	Н		Н		М								
CO2	Н		Н		Н								
CO3	Η		Н										
CO4	Η		Н										
CO5	Η		Н		М								



H/M/L indica	tes Stre	ngth of	Correla	tion I	H- High	, M- M	edium, I	L-Low			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	◆ Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

#### BEC17014 OPTICAL COMMUNICATION AND NETWORKS 3 1/0 0/0 4

#### UNIT I: INTRODUCTION TO OPTICAL FIBERS

The General System – Evolution of Fiber Optical System – Elements of an Optical Fiber Transmission Link – Cylindrical Fiber – Single Mode Fibers and Multimode Fibers - Fiber Splicing and Connectors

#### UNIT II: OPTICAL LOSSES AND DESIGN

Absorption Losses, Scattering Losses – Bending Losses – Core and Cladding Losses – Signal Distortion in SM Fibers - Point to Point Links – System Design Consideration — Line Power Budget – Rise Time Budget.

#### UNIT III: OPTICAL SOURCES

Direct and Indirect Band Gap Material – LED Structures - LED Power and Efficiency – Modulation – Laser Diodes Structures and Radiation Pattern – Single Mode Lasers – Modulation of Laser Diodes.

#### UNIT IV: OPTICAL DETECTORS

PIN and APD Diodes – Photo Detector Noise, SNR, Detector Response Time, Avalanche Multiplication Noise – Comparison of Photo Detectors – Fundamentals Receiver Operation – FET Pre-amplifiers

#### UNIT V: OPTICAL NETWORKS

Operational Principles of WDM – Introduction to Optical Networks - Principles of SONET/SDH, OFDM, OTDM – Multiplexing and De multiplexing techniques - Synchronization.

## 12Hrs

## 12Hrs plicatio

#### 12Hrs

## 12Hrs

12Hrs



Practical component P : Include case studies / application scenarios Research component R : Future trends / research areas / Comparative Analysis

**Total Number of Hours: 60 Hrs** 

#### **Textbooks :**

- 1. Gerd Keiser, "Optical Fiber Communication System", McGraw Hill, International, Singapore 3rd ed., 2000.
- 2. John M. Senior, "Optical Fiber Communication principles and practice", Prentice Hall of India private limited, 1996.
- 3. Rajiv Ramaswami and Kumar N. Sivarajan, "A Practical Perspective", Harcourt Asia Ptv Ltd., Second Edition, 2004.

#### **Reference Books:**

- 1. J. Gower, "Optical communication system", Prentice Hall of India, 2001.
- 2. Govind P. Agrawal "Fiber-Optic Communication Systems", Wiley India 3rd Edition
- 3. C. Siva Ram Moorthy and Mohan Gurusamy, "WDM Optical Networks: Concept, Design and Algorithms", Prentice Hall of India, Ist Edition, 2002. 54
- 4. P.E. Green, Jr., "Fiber Optic Networks", Prentice Hall, NJ, 1993.
- 5. Biswanath Mukherjee, "Optical WDM Networks", Springer Series, 2006.

	Dr.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	h Insti	tute	NAV	AC +	
Subject Code:	Subject Name Maphine Opennal - 95	T / L/	L	T / S.	<b>P</b> /	С
BMG17001 E	epartment of Electronics and Communication	n Efilgin	eerin	gLr	R	
	Prerequisite: None	Ту	3	0/0	0/0	3



L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

#### **OBJECTIVE :**

- To enable the students to study the evolution of Management and types of business organization organizational culture and environment and trends and issues in management.
- To enable the students understand the nature of planning and its processes and decision making steps and process.
- To enable the students understand the nature and purpose of organizing types of organization authority and its types and Human Resource Management and its concepts.
- To understand the foundation of individual and group behavior and various motivational theories, techniques, job satisfaction concepts and communication theories.
- To understand the concept of controlling its system and processes.

#### COURSE OUTCOMES (COs) : ( 3- 5)

The Students will able to

CO1	Understanding of evolution of management, types of business organization, organizational culture and environment and trends and issues in management.
CO2	Understand the planning and processes associates with tools and decision making steps.
CO3	Understand concept of organizing, HR and its concepts.
CO4	Analyze individual, group behavior and related concepts.
CO5	Understand system and process of controlling techniques.

#### Mapping of Course Outcomes with Program Outcomes (POs)

								1		1		
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1			Μ			Н	Н	Μ	Н	Η	Н	Μ
CO2			Μ			Н	Н	Μ	Н	Н	Н	Μ
002			16				TT	14	TT	TT		
CO3			М			н	Н	M	н	Н	Н	M
CO4			Μ			Н	Н	Μ	Н	Н	Н	Μ
				_	_							
CO5			Μ			Н	Н	Μ	Н	Н	Н	Μ
COs / PSOs	PS	01	PS	0.2	PS	03						
			- ~~		- ~							
CO1	Η		Η		Н							

CO2	Н		Н		-						
CO3	Н		Н		М						
CO4	Н		Н		-						
CO5					М						
H/M/L indicat	es Strei	ngth of	Correla	tion H	I- High,	, M- Me	edium, I	L-Low	1	1	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
			•								
Approval			<u>.</u>		<u>.</u>	<u>.</u>					

#### **BMG17001** PRINCIPLES OF MANAGEMENT 3 0/0 0/0 3

#### INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS UNIT I 9 Hrs

Definition of Management - Science or Art - Manager Vs Entrepreneur - types of managers -managerial roles and skills - Evolution of Management - Scientific, human relations, system and contingency approaches - Organization culture and Environment- Current trends and issues in Management.

#### UNIT II **PLANNING** 9 Hrs Nature and purpose of planning - planning process - types of planning - objectives - setting objectives - policies - Planning premises - Strategic Management - Planning Tools and Techniques - Decision making steps and process.

#### UNIT III ORGANISING

#### 9 Hrs

	Domestry and of Electronics and Communication	- Engring		~		
Subject Code:	Subject Name : INTERNET OF THINGS	T/E/	L	^g T/S.	<b>P</b> /	C
		ETL		Lr	R	

Nature and purpose – Formal and informal organization – organization chart –organization structure – types – Line and staff authority – departmentalization – delegation of authority – centralization and decentralization. – Job Design – HR Planning, Recruitment, selection, Training and Development, Performance Appraisal Management, Career planning and stages

#### UNIT IV DIRECTING

Group dynamics, formation of groups, managing groups – motivation – motivation theories – motivational techniques – job satisfaction – job enrichment – leadership –styles and theories of leadership – communication – process of communication – barrier in communication — communication in IT.

#### UNIT V CONTROLLING

System and process of controlling – budgetary and non-budgetary control techniques – use of computers and IT in Management control – Productivity problems and management – control and performance – direct and preventive control – reporting.

#### Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

#### **Total Number of Hours: 45Hrs**

#### **Textbooks:**

1. Stephen P. Robbins & Mary Coulter, "Management", 10th Edition, Prentice Hall (India) Pvt. Ltd., 2009.

2. Harold Koontz & Heinz Weihrich "Essentials of management" Tata Mc Graw Hill, 1998.

3. L.M. Prasad, Principles and Practice of Management, Sultan Chand & Sons 2015.

#### **References:**

1. Stephen A. Robbins & David A. Decenzo & Mary Coulter, "*Fundamentals of Management*" 7th Edition, Pearson Education, 2011.

2. Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008.

# 9Hrs

#### 9Hrs



BEC17ET4	Pı	rerequis	ite: Sen	isor, Lin	ux Basi	cs			ETL	1	0/0	2/0	3
L : Lecture T	: Tutor	rial SL	r : Sup	ervised	Learnin	g P:P	roject I	R : Resea	arch C: C	redits	I		L
T/L/ETL : Th	eory/L	ab/Emb	edded 7	Theory a	and Lab								
OBJECTIVE	E :												
• To stu	udy bas	sic of Io	T and M	M2M.									
• To stu	udy Io7	Γ with C	loud en	nvironm	ent.	1 1							
• To de	esign Ic	oT syste	ms with	n Pythor	i and stu	idy phy	sical de	vices.					
COURSE O	UTCO	MES (C	COs) : (	(3-5)									
The students	will be	able to											
CO1	I	Design I	oT bas	ed devic	es.								
CO2	1	mpleme	ent new	approa	ch based	d on IoT	and M	2M.					
CO3	I	Design I	oT syst	tems wit	th Cloud	1 enviro	nment.						
CO4	1	oT devi	ces car	be oper	rated us	ing Pvtl	10n soft	ware.					
C05	1	mnleme	nt new	annlica	tions ba	used on	Rasnhei	rry Pi an	d Intel G	alileo A	rduino	hoard	1
	'												
Mapping of G	Course	Outcol	mes wi	th Prog	ram Oi	itcome	s (POs)	T	1	1			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	)12
CO1	Η	Н	Н	Η	Н		М		М	М	Η	Η	
CO2	Η	М	М	Η	Н		М		М	М	Н	Η	
CO3	Н	М	Н	Η	Н		М			М	Н	H	
CO4	Н	М	М	Н	Н		М			М	Н	M	
CO5	Н	М	Н	Н	Н		М			М	Н	M	
COs / PSOs	P	SO1	P	SO2	PS	503	P	SO4	PSO5		+		
CO1	Н		Н		Н						+		
CO2	Н		Н		M							_	
CO3	Н		Н		M						-		
CO4	Н		Н								+	_	
CO5	M		Н								+		
H/M/L indica	tes Stre	ength of	Correl	ation	 H- High	M- M	edium 1	L-Low					
			201101			.,							



Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

#### **BEC17ET4 INTERNET OF THINGS** 0/0 1 2/23

#### **INTRODUCTION TO INTERNET OF THINGS** UNIT I:

Definition and Characteristics of IoT - Things in IoT - IoT Protocols - Logical Design of IoT - IoT enabling technologies - IoT Levels.

#### UNIT II: DOMAIN SPECIFIC IoT AND M2M

Home Automation - Cities - Environment - Energy - Retail - Logistics - Agriculture - Industry - Health and Life style – Introduction to M2M – Difference between IoT to M2M –SDN and NFV for IoT.

#### UNIT III: IoT SYSTEM MANAGEMENT AND CLOUD

Need for IoT System Management - SNMP - NETCONF - YANG - NETOPEER - IoT design methodology - Case study for IoT System - WAMP - AutoBahn for IoT - Xively - Django- Amazon Web for IoT – SkyNet IoT.

#### UNIT IV: IoT SYSTEMS - LOGICAL DESIGN USING PYTHON 9 Hrs

Introduction – Installing Python – Python Data types and data structures – Control flow – Functions – Modules - Packages - File Handling - Data / Time Operations - Classes - Python packages of Interest for IoT.

#### UNIT V: IoT PHYSICAL DEVICES

Raspberry Pi – Linux on Raspberry Pi - Raspberry Pi Interfaces – Programming Raspberry Pi with Python – Arduino boards – Other IoT devices – Data analytics for IoT – Intel Galileo Arduino board Specification (with simple programs).

## 9 Hrs

9 Hrs

9 Hrs

#### 9 Hrs



Practical component P : Include case studies / application scenarios

**Research component R : Future trends / research areas / Comparative Analysis** 

#### **Total Number of Hours: 45Hrs**

#### **Textbooks :**

- 1. Arshdeep Bahga.Vijay madisetti, "Internet of things A hands- on approach", Universities press, First Editon, 2015.
- 2. Adrian McEwen and Hakim Cassimally, "Designing the Internet of Things", Wiley, First edition 2014.
- 3. C Hillar Gastn, "Internet of Things with Python", Packt publishing, first edition ,2016.

#### **Reference Books:**

- 1. Dominique D. Guinard and Vlad M. Trifa "Building the Web of Things With examples in Node.js and Raspberry Pi", June 2016 ISBN 9781617292682
- 2. Charalampos Doukas, "Building Internet of Things with the Arduino" ISBN/EAN13:1470023431 / 9781470023430
- 3. Gastón C. Hillar, "Internet of Things with Python", May 2016, PACKT Publishing limited.
- 4. Marco Schwartz "Internet of Things with the Raspberry Pi: Build Internet of Things Projects Using the Raspberry Pi Platform", Kindle Edition.

	<b>Dr.M.G.R. Educational and Research</b> (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	Inst	itu	ite 🧳	A NAAC	
Subject Code:	Subject Name : MICROWAVE AND OPTICAL	Τ/	L	Τ/	<b>P</b> /	С
	epontment of Floot onios and Communication	Engi	heer	i <b>ng</b> _r	R	
BEC17L12		ETL				



		Prerequisite: Microwave Engineering, OpticalTy00/03/01communication												
L : Lectu	ure T :	Tutori	al SL1	r : Supe	rvised I	Learning	g P:Pr	oject R	: Resear	rch C: (	Credi	ts		
T/L/ETI	: The	eory/La	b/Embe	dded T	heory a	nd Lab								
OBJEC	TIVE	:												
• *	To hav To stu To lea	ve a det dy the o rn the f	ailed pr optical o ïber opt	ractical devices tical rec	study of and to u eivers a	f microv use in th and com	wave eq ne appro nectors.	uipmen opriate a	ts ipplicatio	on.				
COURS The Stud	SE OU ents wi	<b>TCON</b>	IES (C ^e le to	<b>Os</b> ):((	3- 5)									
COl	TO1 Demonstrate the ability to design and conduct experiments analyze and interpret data													
COI	CO1 Demonstrate the ability to design and conduct experiments, analyze and interpret data.													
CO2	Demonstrate the skills to use modern engineering tools, software and equipments to analyze problems.													
CO3	O3 Design a system and to learn about measurement of fiber parameters.													
Mappin	Mapping of Course Outcomes with Program Outcomes (POs)													
COs/PO	S	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PC	D10	PO11	PO12
CO1		Н	М	Н	М	Н	Н	Н	М	М	Н		Н	Н
CO2		Н	М	Н	Н	Н	Н	Н	М	М	M		Н	Н
CO3		Н	М	Н	М	Н	Η	Н	Н	М	М		Н	Н
COs / PS	SOs	PS	01	PS	02	PS	03		1					
CO1		Н		Н		Н								
CO2		Н		Н		Н								
CO3		Н		М		М								
H/M/L i	ndicat	es Strer	ngth of	Correla	tion H	I- High,	M- Me	dium, L	L-Low	<b>.</b>				



Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval										<u>.</u>	



#### BEC17L12 MICROWAVE AND OPTICAL COMMUNICATION LAB 0 0/0 3/0 1

#### LIST OF EXPERIMENTS

- 1. REFLEX KLYSTRON MODE CHARACTERISTICS.
- 2. MEASUREMENT OF GUIDE WAVELENGTH
- 3. MEASUREMENT OF VSWR AND IMPEDANCE OF UNKNOWN LOADS, INCLUDING MEASUREMENT OF HIGH VSWR.
- 4. MEASUREMENT OF THE COUPLING AND THE DIRECTIVITY OF WAVEGUIDE DIRECTIONAL COUPLERS.
- 5. MEASUREMENT OF INSERTION LOSS AND ISOLATION OF NON RECIPROCAL FERRITE DEVICES.
- 6. STUDY OF TEE JUNCTION (E-PLANE, H-PLANE AND E-H PLANE TEES.)
- 7. MEASUREMENT OF THE GAIN AND RADIATION PATTERN OF A WAVEGUIDE HORN ANTENNA
- 8. STUDY OF GUNN OSCILLATOR CHARACTERISTICS.
- 9. STUDY OF A FIBER-OPTIC COMMUNICATION LINK.
- 10. CHARACTERISTICS OF LED AND PIN DIODE
- 11. CHARACTERISTICS OF LASER DIODE
- 12. CHARACTERISTICS OF AVALANCHE PHOTODIODE
- 13. MEASUREMENTS OF FIBER PARAMETERS : NUMERICAL APERTURE, ATTENUATION

	Dr.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	n Insi	itu	ite 🤇	ANAAC	AR .
Subject Code:	Subject Name : MASH & EMBED DED SYSTEM	Τ/	L	Τ/	<b>P</b> /	С
BEC17L13	<b>DEFENSION AND Electronics and Communication</b>	h Engi	neer	i <b>A</b> £r	R	



										ETL					
		Pre	erequisi	te: Intro	oduction	n of VI	LSI & ei	nbedde	d	Lb	0	0/0	3/0	) 1	
		sys	stem de	sign											
L : Lect	ure T	: Tutor	ial SL	r : Supe	ervised	Learnin	g P:P	roject F	R : Resea	arch C:	Cred	its			
T/L/ETI	: Th	eory/La	ab/Emb	edded 7	Theory a	ind Lab									
OBJEC	TIVE	E :													
•	To de	sign an	d simul	ate com	nbinatio	nal logi	c circui	ts using	Xilinx.						
•	To de	sign an	d simul	ate sequ	uential l	ogic cir	cuits.								
•	To int	terface	ADC, I	DAC, D	C moto	r, stepp	er moto	r with P	PIC micr	ocontro	ller.				
COURS	SE OU	JTCON	MES (C	<b>COs</b> ):(	3- 5)										
The Stud	ents w	ts will be able to													
CO1	Writ	te progi	ams to	implen	nent con	nbinatic	onal circ	uits like	e adder,	multiple	exer,	de m	ultiplex	er etc.,	
CO2	Sim	ulate se	ate sequential circuits like FFs, counters, shift registers.												
CO3	Inter	erface I/O devices, ADC, DAC, motors with microcontroller.													
Mappin	ng of (	Course	Outcor	nes wit	h Prog	ram Ou	itcomes	s (POs)							
COs/PO	s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	D10	PO11	PO12	
CO1		ч	ч	ч	Ц	ч	M	M	M	M	M	r	М		
01		11	11	11	11	11	IVI	IVI	IVI	IVI	IVI	L	IVI	-	
CO2		Н	Н	Η	Н	Н	Μ	M	M	М	Μ	[	-	М	
CO3		Н	Н	Н	Н	Н	М	М	М	М	M	[	М	-	
COs / P	PSOs PSO1 PS			502	PS	503									
CO1		Н		Н		М									
CO2	CO2 H H					М									
CO3	CO3 H H														
H/M/L i	ndicat	tes Stre	ngth of	Correla	ation I	H- High	, M- M	edium, 1	L-Low	1	I			1	



Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
A											
Approval											



#### BEC17L13 VLSI & EMBEDDED SYSTEM DESIGN LAB 0 0/0 3/0 1

#### LIST OF EXPERIMENTS

#### SIMULATION OF DIGITAL CIRCUITS USING XILINX

- 1. DESIGN AND TESTING OF ADDER AND SUBTRACTOR
- 2. DESIGN AND TESTING OF MULTIPLEXER, DEMULTIPLEXER, ENCODER, DECODER.
- 3. DESIGN AND TESTING OF MAGNITUDE COMPARATOR WITH 4/8 BITS.
- 4. DESIGN AND TESTING OF JK, D, T AND SR FLIP FLOPS, AND REGISTERS
- 5. DESIGN AND TESTING OF SYNCHRONOUS & ASYNCHRONOUS COUNTERS.
- 6. DESIGN AND TESTING OF SHIFT REGISTERS (RIGHT / LEFT).

#### INTERFACING WITH PIC MICROCONTROLLER

- 7. ADC INTERFACE WITH LM35.
- 8. STEPPER MOTOR INTERFACE
- 9. TRAFFIC LIGHT CONTROLLER INTERFACE
- 10. DC MOTOR INTERFACE
- 11. LCD DISPLAY INTERFACE.
- 12. LED INTERFACE



	<b>⊙</b> ₹ ₹	Dr	. <b>M.G</b>	<b>.R. E</b>	duca	<b>tions</b> e Universi	<b>1 an</b>	the UGC	earch	ı Inst	itute	A NA	C. +	
Subjec	ct Cod	e: Su	ıbject N	lame : N	APRO Madui	JECTI avoya	PHASE 11, Ch	d Institut ennai	ion - 95	T / L/ ETL	L	T / S.Lr	P/ R	С
BEC1'	7L14	Đej	partmo erequisi	e <b>nt of l</b> ite: NIL	Electro	onics a	<del>nd Co</del>	mmun	ricatior	<b>Engin</b> Lb	eerin	<b>g</b>	3/1	2
L : Leo	cture T	: Tuto	rial Sl	Lr : Sup	ervised	Learnin	g P:P	roject I	R : Resea	arch C: C	Credits			<u> </u>
T/L/ETL : Theory/Lab/Embedded Theory and Lab														
world i solution COUR	Appl	und pro ethical UTCO y the k	blems. decision <b>MES (</b> nowled	This proj as and to COs): ( ge and s	present of <b>3-5</b> ) skills ac	ms the effective quired i	students ly. n the co	to thin	k critical	ly and ci	g a spe	ly, find a	n opti	or
CO2	To en frien	ncourag dly and	ge stude l reacha	ents to th ble solu	nink crit	ically a	nd creat	tively al	bout soci	ietal issu	es and	develop	user	
CO3	To re	efine re	esearch	skills an	d demo	nstrate	their pro	oficienc	y in com	imunicat	ion sk	ills.		
CO4	To ta	ike on t	the chal	lenges o	of teamy	vork, pr	epare a	present	ation and	d demon	strate	the innat	e tale	nts.
Mappi	ing of (	Course	e Outco	mes wi	th Prog	ram Oı	itcome	s (POs)						
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO11	PC	012
CO1		Н	Н	Н	Н	М	Н	Н	L	М	М	Н	Н	
CO2		Н	Н	Н	Н	Н	Н	Н	М	М	М	Н	Н	

CO3

CO4

COs / PSOs

Н

Η

Η

Μ

PSO1

Н

Η

Н

Н

PSO2

H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low

Η

Η

Η

Η

PSO3

Η

Μ

Μ

Η

PSO4

Η

Η

Μ

Η

PSO5

Н

Η

Μ

Н



Subject Cod	le:	Dei	aattan	athof ]	Electro	<b>Eic</b> na	nanco	<b>Mage</b> r	nicatio	n _T Engin	eerin	g	]/	P/	/	С
9			9							ETL		S	.Lr	R		
BFL17001				S												
		Pr	erequisi	te: SNIL					ill	Ту	1	1				2
Category				iei					Sk							
L : Lecture T	` : T	uto	rial Sl	rՃSup	ervised	Learnin	g P:P	roject I	R :=Rese	arch C: C	redits					
			ala /Erral			a d L a h			nic							
I/L/EIL:I	neor	ry/L	abent		neory a	ind Lab			chi							
OBJECTIV	E :	Т	recog	ize the	cultural	values.	practic	estand	héritage	e of the fo	reign	co	untry.			
communicate	- A	fecti	veb in	a foreig	n langu	and	interac	tin Garu	lturally	annronri	ate ma	nn	er wit	hh	ativ	
		loui	50		Ö					appropri	ate 1112	1111		1 110		C
speakers of t	nag	lang	uage.	tie	Ö	Ш	ect		lst	lls						
COUDCE O	- Xi	CO				am	Ē	cal	en	.ist				_		
COURSEO	ΠP	CO	vies (		3- <u>(</u> 2)	gu	en	cti	Int	t S						
CO1	- ñ	chi	avaltun	etiānal r	raticion	O Cin li	etaina	Beaki	ng raa	in and	vritin	a				
001		ųμ		fu <del>m</del> iai I		ю <del>у-</del> Ш П	sterung	- Spreaki	ng, ieat	m <del>e</del> , and	wiiting	g.		+		
	-		1				6.1		10 1				1	1		
CO2		Deve	lop an	insight :	nto the	nature (	of langu	age/itse	If, the p	process of	langu	iag	e and	cult	ture	2
Approval	a	cqui	isition.													
		1														



	Der	oartme	nt of I	Electro	nics a	nd Co	mmun	icatio	<u>ı Engin</u>	eerii	ıg		
Subject Cod	e: ] Ši	ıbject l	Name :	TOTA	L QUA	LITY			$\overline{T}/L/$	Ĺ	ግ /	<b>P</b> /	С
<b>BM</b> G17003	Deco	<b>ANAG</b> de, ana	EMENT lyze, and	1 interp	ret auth	entic tex	xts of di	fferent	enres.		S.Lr	R	
	Pr	erequis	ite: Non	e					Ty	3	0/0	0/0	3
Mapping of	Course	• Outco	mes wit	h Prog	ram Ou	itcomes	s (POs)		5				
L : Lecture T	Frator	ial SI	r:Supe	PO4	Learnin	<u>g P · P</u> PO6	roject I	Rese	<del>arch C: C</del>	Fredit:	0 PO1	1 PC	)12
T/L/ETL : Th	eorv/L	ab/Emb	edded T	heory a	ind Lab	100	107	100	10)	101	101		<i>)</i> 12
CO1	L	L	L	L	L	Н	L	Н	М	Н	H	L	
OBJECTIV	£:	Ŧ	T	T	T		T						
CO2	M ve a br	L ief intro	L	L to Dem	L ning's n	H hiloson	L hv. trail	H s of the	H	H	H plaints ar	nd L	
CO3 feedb	ark	L	M	M	I.	H	M	H	M	H	H	L	
	vo an i	 	ut differ	ent con	tinuoue	nroces	involv	ement to	hnique	cunr	lier nart	norchi	n
COs / PSOs	PS	OI ance m	PS	O2	PS	O3	PS	504	PSO5	supp	inci part	leisinj	P
	vo on i	ntroduc	tion to I	50 000	0 OFD	quality	y by des	ion diff	arant tast	e for a	tatistica	brel	
COP 10 gl	gonal d	lecian		30 900	0, QI D	, quant	by ues	agn uni	erent test	5 101 3	statistica		
H/M/L indica	ites Stre	ength of	Correla	ation	H- High	, M- M	edium,	L-Low		1			
		0	[			r	1			1			
								škil					
			al					al S					
		ces	oci					nic					
		ien	I S		ves		ect	sch					
Category	ces	Sc	anc	re	ecti	ves	roj	/ T(					
Category	ien	ing	ies	Co	Еľ	scti	/ P	sd	ls				
	Sci	eer	mit	am	am	Εle	cal	shi	kil				
	sic	gin	ima	gu	)gra	en	acti	ern	ft S				
	Ba	En	Hu Sci	Prc	Pro	Op	Pra	Int	Soi				
			$\checkmark$										
		<u> </u>			1	1	1	II		1	I	I	
A													
Approvai													



- To give an introduction to Taguchi and quality engineering concepts, loss function, orthogonal arrays signal/noise design etc.
- To give an understanding of ISO 14000 and 14001 tools.

#### **COURSE OUTCOMES (COs) :**

The Students will be able to

CO1	Introd	uction t	o Demi	ng's ph	ilosoph	y, trails	of the c	sustomer	compla	ints and	feedbac	k.		
CO2	An ide and pe	ea about erforma	t differe nce mea	nt conti Isures.	nuous p	process	involve	ment tec	hniques	supplier	[•] partner	ship		
CO3	Under orthog	standin gonal de	g of ISC sign.	) 9000,	QFD, q	luality b	y desig	n differe	ent tests	for statis	tical and	I		
CO4	Under arrays	signal/	g of 7 noise de	Taguchi esign eto	and qu c.	uality e	ngineer	ing cond	cepts, lo	oss funct	ion, ortl	hogonal		
CO5	Under	standin	g of ISC	0 14000	) and 14	001 too	ls.							
Mapping of	Course Outcomes with Program Outcomes (POs)         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1			М	Η	М	Н	Η	Н	М	Н				
CO2					М	Η	М	Н	Η	Н	М	Н		
CO3					М	Н	М	Н	Η	Н	М	Н		
CO4					М	Η	М	Н	Η	Н	М	М		
CO5					М	Н	М	Н	Н	Н	М	М		
COs / PSOs	PS	501	PS	O2	PS	503								
CO1					Η									
CO2					М									
CO3					М									
CO4	Н													
CO5					Н									
H/M/L indica	tes Stre	ngth of	Correla	tion I	H- High	, M- Me	edium, I	L-Low	1	1	1			

Dr.M.G.R.	Educational and Research Institute (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	A NAAC
ALL REPORT OF LEVEL	Maduravoyal, Chennai - 95	

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

#### **BMG17003** TOTAL QUALITY MANAGEMENT 3 0/0 0/0 3

#### **UNIT-I**

Introduction to Deming's Philosophy, Customer Satisfaction: Who is the Customer, Complaints, and Feedback, Employee Involvement.

#### **UNIT-II**

Continuous Process Improvement: IIT, Kan Ban, Cellular Manufacturing, Juran's Trilogy, PDSA, Kizan, Re – Engineering, Supplier Partnership, Performance Measures.

#### **UNIT-III**

Quality Systems – ISO 9000, Others. QFD, Quality by Design: Tools and Pitfalls Design of Expressions: Statistical Tests (F.T. Etc.) Orthogonal Design.

#### **UNIT-IV**

Taguchi and Quality Engineering: Loss Function, Orthogonal Arrays, Signal / Noise Parameter Design, Tolerance Design, Failure Mode Effect Analysis.

#### **UNIT-V**

ISO 14000 and 14001. Management tools: Forced Field Analysis, Nominal Group Techniques, Affinity Diagrams, Interrelationship Diagram, Tree Diagram, Matrix Diagram, Prioritization Matrix, Process Decision program charts, Activity Network Diagram.

#### Practical component P : Include case studies / application scenarios

#### Research component R : Future trends / research areas / Comparative Analysis

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

#### 9 Hrs

9 Hrs

#### 9 Hrs

## 9 Hrs

# 9 Hrs



**Total Number of Hours: 45Hrs** 

#### Text books:

- 1. James R. Williams and Lindsey M., "The Management and Control of Quality", Thomson Press, SW, 2002.
- 2. Feighbaunn A.V.," Total Quality Management", McGraw Hill

#### **References:**

- 1. Oakland, J.S." Total Quality Management ", Butterworth Heinemann Ltd.
- 2. Subbraj Ramaswamy, "Total Quality Management", Tata Mc. Graw Hill, 2005.

2	0		Dr.M.	G.R.	Edu (Deemed	catio	nal a	nd R	<b>CSC</b> GC Act 19	rch Ir	nstit	ute 🤇	ANAAC	oganite .
Subject	t Cod	e: Su	ıbject N	ame :	PRO	JECT	PHAS	iffed Inst Thonn	itution	T / L/	L	Τ/	<b>P</b> /	С
BEC17	L15	T	Jonart	mont o	f Elec	tronice	yai, C	Comm	unica	ETL <del>tion En</del>	gino	S.Lr	R	
		Pr	erequisi	te: NIL	I LICC	uome		Comm	unica		BIIIC	iiig		8
L : Lect	ture T	: Tuto	rial SI	r : Supe	rvised	Learnin	g P:P	roject I	R : Rese	earch C:	Credit	S	1	
T/L/ET	L:Th	neory/L	.ab/Emb	edded T	heory a	and Lab								
OBJEC opportu directio knowlee criticall	CTIVI inity to on of a dge ar ly and	E: T o explo faculty nd skill creativ	The obje ore a pro y mento s acquir vely, find	ctive of blem or r. The pr ed to rea d an opti	the Ma issue , oject d il-world mal sol	in Proje address emonsti d issues lution, r	ct is to through rates the and pro nake eth	culmina n focuse e studen oblems. nical de	ate the a ed and a tt's abili This pr cisions	cademic applied re ty to syn oject aff and to p	study esearc thesiz irms th resent	and pro h under t e and app ne studer effective	vide an he oly the ts to the oly.	n e hink
COUR	SE O	UTCO	MES (C	COs): (	3- 5)									
CO1	Appl issue	ly the k	mowled	ge and s	kills ac	quired i	n the co	ourse of	study a	ddressin	ig a sp	ecific pro	oblem	or
CO2	To en frien	ncoura dly and	ge stude 1 reacha	ents to th ble solut	ink crit tions	ically a	nd creat	ively al	bout so	cietal iss	ues an	d develo	p user	
CO3	To re	efine re	esearch s	skills and	d demo	nstrate t	heir pro	oficienc	y in coi	nmunica	tion sl	cills.		
CO4	To ta	ake on	the chal	lenges o	f teamv	vork, pr	epare a	present	ation a	nd demo	nstrate	the inna	te tale	nts.
Марріі	ng of (	Course	e Outco	mes wit	h Prog	ram Ou	itcomes	s (POs)						
COs/PC	Ds	`	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO1	PO	012
CO1		Н	CO1	Н	CO1	Н	CO1	Н	CO1	Н	CO1	Н	CC	<b>D</b> 1
CO2		Н	CO2	Н	CO2	Н	CO2	Н	CO2	Н	CO2	Н	CC	)2
CO3		Н	CO3	Н	CO3	Н	CO3	Н	CO3	Н	CO3	Н	CC	)3
CO4		Н	CO4	Н	CO4	Н	CO4	Н	CO4	Н	CO4	Н	CC	)4
COs / P	SOs	PS	SO1	PSO	02	PS	O3	PS	O4	PSO5				
CO1														
H/M/L	H/M/L indicates Strength of Correl				tion l	 H- High	, M- M	edium,	L-Low					
						Sa		t.						
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Elective	Open Electives	Practical / Projec	Internships / Technical Skill	Soft Skills				
								~						

			Dr.M.G.R.	Educational (Deemed to be University) An ISO 9001:2008 C Maduravoyal	and Research U/S 3 of the UGC Act 1956) Certified Institution , Chennai - 95	Insti	tute	State A	and a state	
	Subject C	Code:	DSubject Name	FEIBIOMEDICAL	d Communication	Engin	eerin	gT /	<b>P</b> /	С
	BEC17E	01	INSTRUMEN	NTATION		L/O		S.Lr	R	
A	pproval					EIL				
									E	T

# ELECTIVES



	Pr co	erequisit	te: Meas stems	suremen	t and Ir	ntation,		Ту	3	0	0	3	
L : Lecture T	: Tutor	rial SL	r : Supe	rvised L	earning	g P:Pr	oject R	: Resea	rch C: C	Credits			
T/L/ETL : Th	T/L/ETL : Theory/Lab/Embedded Theory and Lab												
OBJECTIVE :													
<ul> <li>To study the methods of recording various bio potentials</li> <li>To study how to measure biochemical and various physiological information</li> <li>To understand the working of units which will help to restore normal functioning</li> <li>To understand the use of radiation for diagnostic and therapy</li> <li>To understand the need and technique of electrical safety in Hospitals</li> </ul>													
COURSE OUTCOMES (COs) :													
The students will able to													
CO1	Enable the students to develop knowledge of how instruments work in the various department and laboratories of a hospital and thereby recognize their limitations.												
CO2	Interp	Interpret technical aspects of medicine.											
CO3	Familiarize students with various medical equipment's and their technical aspects. Understand medical diagnosis and therapy.												
CO4	Introduce students to the measurements involved in some medical equipment's.												
CO5	Understanding the problem and ability to identify the necessity of equipment's to a specific problem.												
Mapping of	Course	Outcon	nes witł	ı Progr	am Ou	tcomes	(POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	) PO11	PO1	12
CO1	М					Н	Н	Н	Н		Н	Н	
CO2				М		Н	Н	М	Н		М	М	
CO3		М		М		Н	Η	Н	Н	М	Н	Μ	
CO4					М	Н	Н	Н	Н	М	М	М	
CO5		М	М		М	Н	Н	Н	Н	М	М	М	
COs / PSOs	P	SO1	PS	02	PS	503							
CO1					Н								
CO2			М		Н								
CO3	М			Н									
CO4	Η		М		Н								



CO5	Н		М		Н							
H/M/L indica	H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low											
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
Approval								•				

#### BEC17E01 BIOMEDICAL INSTRUMENTATION 3 0 0 3

#### UNIT I: BASIC PHYSIOLOGY

Cells and their Structures – Transport of Ions Through Cell Membrane – Resting and Excited State – Transmembrane Potential – Action Potential – Bio-Electric Potential – Nervous System – Physiology of Muscles – Heart and Blood Circulation – Respiratory System – Urinary System.

#### UNIT II: BASIC TRANSDUCER PRINCIPLES AND ELECTRODES

The Transducer Principles – Active Transducers – Passive Transducers – Transducer for Bio-Medical Application – Electrode Theory- Bio-Potential Electrode – Bio-Chemical Transducer.

#### UNIT III: CARDIOVASCULAR SYSTEM

The Heart and Cardiovascular System – Blood Pressure – Characteristics of Blood Flow – Heart Sounds - Electro Cardiograph – Measurements of Blood Pressure – Measurement of Blood Flow and Cardiac O/P Plethysmography – Measurements of Heart Sounds

#### UNIT IV: X-RAY AND RADIOISOTOPE INSTRUMENTATION: 9 Hrs

X-ray Imaging Radiography – Fluoroscopy – Image Intensifiers – Angiography - Medical use of Radioisotopes – Beta Radiations – Detectors – Radiation Therapy.

#### **UNIT V: BIO-TELEMETRY**

Introduction to Bio-Telemetry – Physiological Parameters Adaptable to Bio-Telemetry – The Components of Bio-Telemetry Systems – Implantable Units – Applications of Telemetry in Patient Care – Application of Computer in Bio-Medical Instrumentation, Anatomy of Nervous System – Measurement from the

# 9 Hrs

#### 9 Hrs

9 Hrs

#### 9 Hrs

#### 1



Nervous System – EEG – EMG.

#### Practical component P: Include case studies / application scenarios

**Research component R: Future trends / research areas / Comparative Analysis** 

#### **Total Number of Hours: 45 Hrs**

#### Text books:

- 1. M. Arumugam, "Bio-medical Instrumentation" Anuradha Agencies Publishers, 1992.
- 2. Khandpur," Handbook on Biomedical Instrumentation" Tata McGraw Hill Co Ltd., 1989.

#### **References:**

- 1. Leusis Cromwell Fred, J. Werbell and Erich A.pfraffer, "Biomedical instrumentation and Measurements" Prentice Hall of India, 1990.
- 2. Joseph J. Carr and John M. Brown, "Introduction to Biomedical equipment Technology", John Wiley and Sons, New York, 1997

Dr.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	h Inst	itu	te N	AAC .	
Subject Code: Subject Name	T / L/	L	Τ/	<b>P</b> /	С
Department of Electronics and Communication	n Æfilgin	eer	in SgLr	R	



<b>BEC17E02</b>	P	rerequis	ite: Pro	bability	Rando	m Proce	ess		Ту	3	0		0	3
L : Lecture T	: Tutor	ial SI	r : Supe	ervised	Learnin	ng P:P	roject l	R : Rese	earch C:	Cred	its			
T/L/ETL : Th	neory/L	ab/Emb	edded 7	Theory a	and Lab	1								
OBJECTIV	E :													
• To le • To le • Study	arn the arn var y the di	differen ious rul fferent a	nt techn es avail approac	iques of able in hes of p	f patterr decision attern c	n recogn n makin lassifica	iition ar g. ation an	nd traini Id applie	ng. cation in	clini	cal di	agnos	sis	
COURSE O	UTCO	MES (O	COs) :											
The students	will be	able to												
CO1	Identi	dentify areas where pattern recognition can offer a solution												
CO2	Desci	Describe algorithms, validation methods and sampling techniques.												
CO3	Desci	Describe the advances in algorithms for classification and recognition.												
CO4	Interp	Interpret the basics of neural, feature and data engineering.												
CO5	Recal	Recall the applications of neural processing.												
Mapping of	Course	Outco	mes wit	th Prog	ram O	utcome	s (POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PC	D10	PO1	1 P	012
CO1	Н	Н	М	Н		М		М	Н	M			Н	
CO2	Н	Н	М						М	Н			Μ	[
CO3	Н	М	М						М	Н			Μ	[
CO4	Н	Н	Н	М		М			Н	Н		М	Η	
CO5	Н			М	М	L			Н	М			Η	
COs / PSOs	PS	501	PS	502	PS	503		1						
CO1														
CO2			М											
CO3			М											
CO4	М		М		М									
CO5														
H/M/L indica	ates Stre	ength of	Correla	ation	H- High	n, M- M	edium,	L-Low	1				I	



Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

BEC17E02	PATTERN RECOGNITION	3	0	0	3
UNIT-I	FUNDAMENTALS OF PATTERN RECOGNITION				9 Hrs
Basic Concept Recognition.	s of Pattern Recognition - Decision Theoretic Algorithms - S	tructur	al Patte	ern	
UNIT-II	INTRODUCTORY NEURAL NETWORKS				9Hrs
Artificial Neur Derivations.	al Network Structures - Supervised Training via Error back F	ropag	ation:		
UNIT-III	ADVANCED FUNDAMENTALS OF NEURAL NETWO	RKS			9 Hrs
Acceleration a Algorithms for	nd Stabilization of Supervised Gradient Training of MLPs - A r Classification and Recongnition - Recurrent Neural Network	Advano ks.	ces in N	Jetwor	'k
UNIT-IV	NEURAL, FEATURE AND DATA ENGINEERING				9 Hrs
Neural Engine	ering and Testing of FANNs - Feature and Data Engineering				

# Some Comparative Studies of forward Artificial Neural Networks-Pattern recognition Applications in

**TESTING AND APPLICATIONS** 

Texture Classifications & recognition- Speech recognition- Neural processing of Digital images- character recognition.

9 Hrs

UNIT- V



Practical component P: Include case studies / application scenarios

**Research component R: Future trends / research areas / Comparative Analysis** 

#### **Total Number of Hours: 45 Hrs**

#### **Text Books:**

- 1. Caral g. Looney," Pattern Recognition Using Neural Networks Theory and Algorithms for Engineering and Scientists" New York Oxford University Press 1997.
- 2. Earl Gose, Richard Johnsonbaugh, Steve Jost, "Pattern Recognition and Image Analysis", Prentice Hall of India Pvt. Ltd., New Delhi, 1999.

#### **REFERENCES:**

- 1. P. A. Devijver and J. Kittler, "Pattern Recognition", Prentice-Hall International, Englewood Cliffs, NJ, 1980.
- 2. William Gibson, Pattern Recognition, Science fiction, 2003

	Dr.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001/2008 Cartified Institution	n Insti	itu	te NA	AC	
Subject Code:	Subject Name M DEVICE MODELING ai - 95	T / L/	L	Τ/	<b>P</b> /	С
	Madalavoyal, Chemiai - 55	ETL.		S.Lr	R	
RECLIENS [	Pepartment of Electronics and Communication	i Engin	eer	ing		
	Prerequisite: Solid State Device	Ту	3	0	0	3



L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

#### **OBJECTIVE :**

- To understand passive devices and structures
- To understand the integrated BJT and MOS devices

#### COURSE OUTCOMES (COs) :

The Student will be able to

The Student will be able to													
CO1	Describe in brief about integrated passive devices.												
CO2	Present a review on monolithic technologies.												
CO3	Analyze different models of integrated bipolar transistor.												
CO4	Solve the basic equations of integrated MOS transistor.												
CO5	Recall the concepts of spice modeling.												
Mapping of Course Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	Н	Н	М	Н			М	М	Н	Н			
CO2	Н	М					Н	Н	Н	Н		М	
CO3	Н	Н	М	Η	М			М	Н	М	М	М	
CO4	Н	Н	Н	Н	М				Н		М	М	
CO5	Н	М					М		Н	Н		Н	
COs / PSOs	PS	501	PS	SO2	PS	503							
CO1	Н		М		М								
CO2	Н				Н								
CO3	Н		Η		Н								
CO4	Н		Н										
CO5	Н		М										
H/M/L indica	ites Stre	ength of	Correla	ation 1	H- High	, M- Me	edium, 1	L-Low			·		


Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
					~						
Approval											

# BEC17E03 DEVICE MODELING 3 0 0 3

#### UNIT I: INTEGRATED PASSIVE DEVICES:

Types and Structures of Resistors and Capacitors in Monolithic Technology – Dependence of Model Parameters on Structure.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

9 Hrs

#### **UNIT II: INTEGRATED DIODES:**

Junction and Schottky Diodes in Monolithic Technologies – Static and Dynamic Behavior – Small and Large Signal Models – SPICE Models.

#### UNIT III: INTEGRATED BIPOLAR TRANSISTOR:

Types and Structures in Monolithic Technologies – Basic Model (Eber Moll_-Cunmel – Poon Model – Dynamic Model, Parasitic Effects – SPICE Model –Parameter Extraction.

#### UNIT IV: INTEGRATED MOS TRANSISTOR:

n-MOS and p-MOS Transistor – Threshold Voltage -Threshold Voltage Equations – MOS Device Equations – Basic DC Equations Second Order Effects – MOS Models Small Signal AC Characteristics – MOSFET SPICE Model Level 1,2,3,4.

#### UNIT V: SPICE MODELLING

Advanced Concepts of Large Signal & Low Signal Modeling.



Practical component P: Include case studies / application scenarios

**Research component R: Future trends / research areas / Comparative Analysis** 

**Total Number of Hours: 45 Hrs** 

#### Text books:

- 1. Daniel Foty, "MOSFET Modeling with Spice" prentice hall, 1997.
- 2. Neil Weste and Kamran Eshranghian "Principles of CMOS VLSI Design, A System Perspective", "Addition Wesley, 1993.

#### **References:**

- 1. Jacob Millman& Arvin Millman, "Micro Electronics", McGraw Hill (Second Edi) 1987.
- 2. M. Satyagi, John Wiley" Introduction to Semi-conductor materials and devices", New Edition

	Dr.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956)	n Insti	tute	ANAA	C.	
Subject Code:	An ISO 9001:2008 Certified Institution Subject Name MILANTLIM COMPLITING:	T / L/	L	Τ/	<b>P</b> /	C
BEC17E04	Subject Name Wrachtrawoyay, Cherman - 95	ETL		S.Lr	R	
	Department of Electronics and Communication	Fngin	eerin	g		
_	Prerequisite: Engineering Physics	ТУ	- 3	<b>o</b> 0	0	3



L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

#### **OBJECTIVE :**

- To understand the building blocks of a quantum computer.
- To understand the principles, quantum information and limitation of quantum operations formalizing.
- To understand the various quantum algorithms.

### COURSE OUTCOMES (COs) : ( 3- 5)

The Students will be able to

CO1	Demonstrate the importance of quantum computing and superposition states.
CO2	Possess a deep insight on Quantum operator and its Applications.
CO3	Attain the knowledge about variety of quantum gates and build quantum circuits.
CO4	Apply the concept of different quantum algorithms and have the insight of QKD.
CO5	Recognize, test and correct various Quantum errors through Quantum error correcting codes.

#### Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н				Н				М		М	Н
CO2	Н	Н	М		М				М		М	Н
CO3	Н		Н		Н						Н	
CO4	М			Η	Η						М	М
CO5	Н	Н	Н	М	М	М	М	М				М
COs / PSOs	PS	501	PS	SO2	PS	03						
CO1	]	H	I	М	I	М						
CO2	]	Н	]	H								
CO3	]	H	I	М	]	H						
CO4			I	М								
CO5	]	H	]	H	]	H						
H/M/L indicat	tes Stre	ngth of	Correla	ation I	H- High	, M- M	edium,	L-Low	1		1	



Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

#### **BEC17E04**

#### QUANTUM COMPUTING

#### UNIT I: INTRODUCTION

Introduction to Quantum Computing- Power of Quantum Computing- Quantum Information- Quantum Computers. The Wave and the Corpuscular Nature of Light Photon Behavior, State Description, Measurement in Multiple Bases, Superposition States – The Superposition probability Rule.

#### UNIT II: QUANTUM MECHANICS

Quantum Postulates – State space, Evolution, Quantum Measurement, Distinguishing Quantum states, Projective measurements, POVM measurements -Quantum Mechanics-Hilbert Space-Linear Operators Tensor and Outer Products-Quantum Operators- Application Quantum mechanism: Super dense Coding - Double Silt Experiments.

#### UNIT III: QUBITS AND QUANTUM GATES

Qubits, Bloch Sphere Representation-Rotation Operation-The Measurement of a Single Qubits-A Pair of Qubits- Bell States- Qubits as Spin Half- Integer Particles- Qubits as Polarized Photon-Entanglement, Exchange of Information / Teleportation – Quantum Coping Circuit - The Non-Cloning Theorem-Quantum Gates – Universal Quantum Gate Gates – Matrix Representation – Quantum Circuits- Single and Multiple Qubit Controlled Operations.

#### UNIT IV: QUANTUM ALGORITHM

Turing Machine - Quantum Parallelism-Deutsch's Problem, Deutsch – Jozsa Algorithm -QFT(Quantum Fourier Transform)-Short's Factoring Algorithm-Simon's Algorithm-Quantum Search Algorithm-Quantum key distribution - Mathematical Models of Quantum Computers - Introduction Different implementations of quantum computer.

#### B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

#### 9 Hrs

9 Hrs

3 0 0 3

#### 9 Hrs



#### UNIT V: QUANTUM ERROR CORRECTION

Quantum error correction and simple examples – The Three Qubit flip code, Three Qubit Phase flip code, The Shor Code - Brief Introduction to Quantum Computing Software - Quantum error-correcting codes: Error models, Criteria for a good code: reversible operations.

#### Practical component P : Include case studies / application scenarios

#### Research component R : Future trends / research areas / Comparative Analysis

#### **Total Number of Hours: 45 Hrs**

#### **Textbooks :**

- 1. Dan C. Marinescu, Gabriela M. Marinescu, "Approaching Quantum Computing", Pearson Education 2008-09.
- 2. M.A. Neilson and I.L .Chuang "Quantum computing and Quantum information", Cambridge University Press, 2009.
- 3. Vishal Sahani "Introduction to Quantum Computing", TATA McGraw-Hill Publishing Company Limited.

#### **Reference Books:**

- 1. A.Yu.Kitaev, A.H.Shen, M.N.Vyalyi, "Classical and Quantum Computation", American Mathematical Society.
- 2. Mark.M.Wilde, "Quantum information theory" Cambridge university press.
- 3. J.A.Jones, "Quantum information, computation and communication" Cambridge University Press.
- 4. Scott Aaronson, "Quantum computing since Democritus", Cambridge University Press 2013.



10		Dr.	M.G	.R. E	duca	tiona	l and	l Res	earch	n Inst	itute	CONTRO W	anna C	
Subject	Code:	Su	bject N	ame :	An Mo	GROW	AVE fie	the UGC A	ion	T / L/	L	Т	<b>P</b> /	С
BEC17E	05		IGINE	ERIN	ladur	avoya	al, Ch	ennai	- 95	ETL	5	S.Lr	R	
		Dep	artma	nt ofat	lectr	niche	nd CW	avegua	įçatior	n <del>E</del> ngin	legring	D	0	3
		Ar	ntenna a	nd Wav	ve Propa	agation								
L : Lectu	re T :	Tutor	ial SL	r : Supe	ervised	Learnin	g P:P	roject F	R : Resea	arch C: C	Credits			
T/L/ETL	: The	eory/La	ab/Emb	edded T	heory a	ind Lab								
OBJECT	TIVE	:												
	•	To s	tudy Mi	crowav	e sourc	es and a	mplifie	rs.		4				
	•	To s	tudy pas tudy Mi	crowav	e semic	onducto	onents or devic	es & ap	plication	ameter a ns.	naiysis.			
COURS	E OU	TCON	MES (C	<b>COs):</b> (	3- 5)									
The stude	ents w	ill be	able to											
CO1	Und	lerstan	d the ch	aracter	istics of	microv	vave na	ssive de	evices an	d their s	cattering	o naram	eter	
001	anal	lysis.	u the er	lurueter		merov	vuve pu	55170 40			cutoring	5 purum		
CO2	Und	lerstan	d the co	oncept o	of micro	wave g	enerator	rs and a	mplifier	s.				
CO3	Und	lerstan	d the co	oncepts	of micr	owave s	solid sta	te devic	ces and t	heir cha	racteristi	ics.		
CO4	Und	lerstan	d the co	oncepts	of micr	owave t	ransisto	ors in Rl	F circuit	s.				
CO5	Mea	asure d	lifferent	parame	eters lik	e freque	ency, w	aveleng	th, powe	er, VSW	R in RF	circuits		
Mapping	g of C	ourse	Outcor	nes wit	h Prog	ram Ou	itcomes	s (POs)						
COs/POs		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	012
CO1		Н	Н	Н	Н	Н	M			M		М		
CO2		Н	Н	Н	Н	Н	M			М		M		
CO3		Н	н	Н	н	н	M			M		M	-	
		и	н	н	н	н	M			M		M		
C04		11 11	11	11	11	11	M			M		M		
C05	0	н	П	П	п	П	M			IVI		IVI		
COs / PS	Os	PS	01	PS	02	PS	03							
CO1		I	Η	Ν	Л									
CO2		I	Η	N	Л									
CO3		I	H	N	Л									
CO4		I	Η	N	Л			1		1				
CO5		H M												



H/M/L indica	H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low										
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval										 	

#### BEC17E05 MICROWAVE ENGINEERING 3 0 0

#### UNIT I: MICROWAVE PASSIVE DEVICES

Transmission Lines for use at Microwave Frequencies – Attenuators, Directional Couplers, Terminators, Phase Shifters, Faraday Rotation Isolators and Circulators, Field Displacement Isolators, Microwave Filters, Frequency Meters, Hybrid Junctions – Scattering Analysis.

#### UNIT II: MICROWAVE GENERATORS

Limitations of Conventional Tubes at Very High Frequencies – Velocity – Modulated Tubes, Two – Cavity Klystron Amplifiers, Reflex Klystron Oscillators – Periodic Slow Wave Structures and their Use in Travelling Wave Tube Amplifiers, Focusing Techniques, TWTA Performance Characteristics – Electron Motion in Crossed Electric and Magnetic Fields - Magnetron Oscillators, Hartree Equation Rieke Diagram and Performance Charts .

#### UNIT III: MICROWAVE SOLID-STATE DEVICES

Varactor Diodes, Manley – Rowe Relations, Low Noise Parametric Amplifiers – Transferred – Electron Devices and Their Operation, Cavity – Controlled Modes, LSA Mode-Avalanche – Transit Time Devices and Their Operation, TRAPATT Mode, BARITT mode, PIN Diodes and Their use as Attenuators and Switches.

#### **UNIT IV: MICROWAVE CIRCUITS**

Small – Signal Equivalent Circuits, High-Frequency Applications, Performance Criteria and Limitations of BJTs and FETs – HEMTs – Fabrication Techniques.

#### UNIT V: MICROWAVE MEASUREMENTS

Slotted - Line Techniques - Measurements of Wavelength - Measurement of Low and High VSWR -

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

## 9 Hrs

10Hrs

3

# 9 Hrs

8 Hrs



Measurement of Frequency and Frequency Meters – Measurement of Insertion Loss and Attenuation by Substitution Methods – Measurement of Low and High Powers at Microwave Frequencies – Modern Measurement Techniques using Automatic Network Analyzer and Spectrum Analyzer.

Practical component P: Include case studies / application scenarios Research component R: Future trends / research areas / Comparative Analysis

**Total Number of Hours: 45 Hrs** 

#### **Textbooks:**

- 1. Annapurna Das, Sisir. K. Das, "*Microwave Engineering*", Tata McGraw Hill Co., Ltd., 1999. Reprint 2001.
- 2. Samuel Y. Liao: "Microwave Devices and Circuits", Prentice Hall of India 3rd Edition (2003)
- 3. Subal Kar, "Microwave Engineering", Universities press(India) private limited 1st Edition (2016)

#### **Reference Books:**

- 1. D.M. Pozer, "Microwave Engineering", Addison Wesley, 1998.
- 2. R.E. Collins: "Foundations for Microwave Engineering", IEEE Press Second Edition (2002)
- 3. David K. Cheng," Field and Waves in Electromagnetism", Pearson Education, 1989.

	Dr.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution Madurawowal Chennai - 95	Insti	itui	te N/	A AAC **	
Subject Code:	Subject Name : REAL TIME OPERATING	<b>J</b> /.	L.	Τ/	<b>P</b> /	С
	Separtment of Electronics and Communication	Engin	eerı	ng S.Lr	R	
<b>BEC17E06</b>		ETL				



	Prerequisite: Operating Systems ConceptsTy3003												
L : Lecture T	: Tuto	rial SL	r : Supe	rvised I	Learning	g P:Pr	oject R	: Resea	urch C: C	Credits			_
T/L/ETL : T	heory/L	.ab/Emb	edded T	heory a	nd Lab								
OBJECTIV	E :												
• I	Review	of eleme	ents and	fundan	nentals of	of Syste	ms.						
• ]	Fo unde	erstand th	ne embe	dded to	ols. chadulir	20							
			le queue		chedum	ig							
COURSE O	<b>JUTCOMES (COs) :</b>												
The Student	will be able to												
CO1	Descr	ibe the c	lifferent	betwee	n the ge	eneral c	omputin	ig syste	n and th	e embeo	lded sys	tem.	
CO2	Identi	fy differ	ent soft	ware are	chitectu	re.							
CO3	Becon	ne awar	e of the	element	ts of RT	OS.							
CO4	Imple	ment the	e design	concep	ts of RT	OS.							
CO5	CO5 Use the embedded software development tools.												
Mapping of	Course	e Outcor	nes wit	h Progr	am Ou	tcomes	(POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P	012
CO1	Н	Н	М	Н		М			Н	Н	М	M	I
CO2	Н	Н	Н	Н	М	М			Н	Н	М		
CO3	М	М						М		Н	М	H	
CO4	Н	Н	Н	Н	Н	Н			Н	Н	Н		
CO5	Н	Н	Н	Н	Н	Н	Н	М	Н	Н	Н	H	
COs / PSOs	P	SO1	PS	502	PS	503							
CO1	М		М										
CO2	М		Н										
CO3	М				М								
CO4													
CO5	Н		Н		М								
H/M/L indica	/M/L indicates Strength of Correlation H- High, M- Medium, L-Low												



Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

#### BEC17E06 REAL TIME OPERATING SYSTEMS

#### UNIT- I EMBEDDED SYSTEM FUNDAMENTALS

Introduction, Characteristics of embedded systems and challenges in system design –Design issues in embedded real-time systems, critical performance issues in embedded real-time systems.

#### UNIT - II SURVEY OF SOFTWARE ARCHITECTURES

Round –robin, Round-robin with interrupts, queues. Function- scheduling architecture, Real time operating system architecture, Scheduling architecture.

#### UNIT- III ELEMENTS OF REAL TIME OPERATING SYSTEMS

Tasks & Task states, Tasks & data, Semaphores & shares data, Message Queues, Mailboxes and Pipes, Timer functions, Events, Memory management and Interrupt Routines in an RTOS environment.

#### UNIT –IV BASIC DESIGN USING REAL-TIME OPERATING SYSTEMS 9 Hrs

Principles, encapsulating semaphores & queues, hard real-time scheduling considerations, saving memory space, saving power.

#### UNIT- V EMBEDDED TOOLS

Embedded software development tools- host and target machines, linker/locators for embedded software, getting embedded software into the target system. Debugging techniques- testing on host system, instruction set simulators, the assert, macro using laboratory tools.

## 3003

9 Hrs

9 Hrs

9 Hrs



**Practical component P : Include case studies / application scenarios** 

**Research component R : Future trends / research areas / Comparative Analysis** 

#### **Total Number of Hours: 45Hrs**

#### Text books:

1. Wayne Wolf, "Computers as Components- Principles of Embedded Computing Systems Design", Academic press, 2001.

2. David E. Simon, "An Embedded Software Primer", Pearson education, 1999.

#### **References:**

- 1. Arnold S. Berger, "Embedded Systems Design- an Introduction to Processes, Tools & Techniques", CMP books, 2002.
- 2. Jean J. Labrosse, "Embedded Systems Building Blocks", CMP books, 2002.
- 3. Michael Barr, "Programming Embedded Systems in C and C++", O'Reilly, 1999.

	Dr.M.G.R.	Educational a (Deemed to be University U/ An ISO 9001:2008 Cer Maduravoyal,	and Research ^{IS 3 of the UGC Act 1956)} rtified Institution Chennai - 95	Inst	itute	e NA	AC +	
biggt Codes T	Subject Nome		OTDONICS	Ŧ₽/エッ	Ι.	Т/	<b>D</b> /	-

Subject Code: 🛽	Sphient Namof: EleRAWERS ELECTRANK GSication	Engin	ebrir	gT /	<b>P</b> /	С
	1	ETĽ		S.Lr	R	



<b>BEC17E07</b>	Pr	erequisi	ite: Elec	ctronic (	Circuits	, Electro	onic De	vices	Ту	3 (	)	0	3
L : Lecture T	: Tutor	ial SL	r : Supe	ervised	Learnin	g P:P	roject I	R : Resea	arch C: (	Credits			L
T/L/ETL : Th	eory/La	ab/Emb	edded 7	Theory a	and Lab								
OBJECTIVI	E :												
<ul> <li>To st</li> <li>To le</li> <li>SCR</li> <li>To le</li> <li>To st</li> <li>To le</li> </ul>	udy abo earn the s, Progr arn con udy of o arn abo	but powe switch cammab trolled f converte ut moto	er electring cha ing cha ile trigg rectification ers and or contro	ronic ciracteris ering m ation of inverter ol, charg	rcuits fo tics of ethods AC sup rs. ges, SM	or voltag transist of SCR. pplies. PS and	ge and c ors and UPS.	urrent co SCRs.	ontrol ar Series a	nd protec nd paral	ction. llel func	tions	of
COURSE O	UTCO	MES (C	COs)										
The Students	will be	able to											
CO1	Analy	ze pow	er electi	ronic ci	rcuits fo	or voltag	ge and o	current co	ontrol and	l protecti	on		
CO2	Analy	ze swit	ching c	haracter	ristics o	f transis	stors and	d SCRs.					
CO3	Apply	the fur	iction p	hase co	ntrolled	conver	ters.						
CO4	Demo	nstrate	the app	lication	s of inve	erters ar	nd chop	pers.					
CO5	Devel	op the a	pplicat	ions spe	cific to	power	electron	ics in in	dustries				
Mapping of	Course	Outco	mes wit	h Prog	ram Oı	itcome	s (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Η	Н	Н	Н	Н	М	М	М		М	М	Μ	
CO2	Н	Н	Н	Н	Н	М	М	М			М	М	
CO3	Н	Н	Н	Н	Н	М	М	М		М	М		
CO4	Н	Н	Н	Н	Н	М	М	М				Μ	
CO5	Н	Н	Н	Н	Н	М	М	М		М	М	Μ	
COs / PSOs	PS	501	PS	02	PS	503		1					
CO1	Н		Н										
CO2	Н		Н										
CO3	Н		Н										
CO4	Н		Н										
CO5	Н		Н		М								
H/M/L indica	ites Stre	ength of	Correla	ation 1	H- High	, M- M	edium, I	L-Low	1	1	1	1	



Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval		1			1						

#### **BEC17E07** POWER ELECTRONICS

#### **UNIT-I: POWER ELECTRONIC DEVICES**

Characteristics of Power Devices - Characteristics of SCR - Two Transistor Model of SCR, Characteristics of TRIAC, BJT, MOSFET, IGBT, GTO both Static and Switching Characteristics -Protection of Thyristors against Over Voltage - Over Current, dv/dt and di/dt.

#### **UNIT-II: TRIGGERING & COMMUTATION TECHNIOUES**

Turn on Circuits for SCR - Triggering with Single Pulse & Train of Pulses - Triggering with Microprocessor - Different Techniques of Commutation - Natural and Forced Commutation - Series & Parallel Operations.

#### **UNIT-III: PHASE CONTROLLED CONVERTERS**

Converters – Single Phase – Three Phase – Half Controlled and Fully Controlled Rectifiers with R, RL and RLE Loads – Waveforms of Load Voltage and Line Current – Harmonic Factor, Power Factor, Ripple Factor, Distortion Factor - Operation with Freewheeling Diode - Effect of Source Inductance - Dual Converter.

#### **UNIT-IV: INVERTERS & CHOPPERS**

Voltage and Current Source Inverters, Resonant, Series Inverter - Basic Series Inverter, Modified, Improved – PWM Techniques – Single Phase AC Choppers with R and RL Load – Half Wave and Full Wave - DC Choppers - Various Classes of Operation - Buck, Boost and Buck - Boost Type Choppers -Merits and Applications.

#### **UNIT-V: AC VOLTAGE CONTROLLERS & INDUSTRIAL APPLICATIONS** 9 Hrs

Single - Phase and Three - Phase AC Voltage Controllers - Sequence Control of AC Voltage Regulators. Cycloconverters - Single-Phase and Three - Phase Cycloconverters, SMPS & UPS - Static Compensators - HVDC Transmission System.

#### 9 Hrs

9 Hrs

9 Hrs

0

0 3

3



# Practical component P : Include case studies / application scenarios Research component R : Future trends / research areas / Comparative Analysis

#### **Total Number of Hours: 45Hrs**

#### Text books:

- 1. Rashid, M.H., "*Power Electronics Circuits Devices and Applications*", Prentice Hall of India, 3rd Edition, 2004.
- 2. Singh.M.D and Kanchandani, "Power Electronics", Tata McGraw Hill & Hill publication Company Ltd, New Delhi, 2002.

#### **References:**

- Dubey, G.K., Doradia, S.R., Joshi, A. and Sinha, R.M., "*Thyristorised Power Controllers*", Wiley Eastern Limited, 1986.
- 2. Lander, W., "Power Electronics", McGraw Hill and Company, Third Edition, 1993.
- 3. P.S. Bimbhra, "Power Electronics", Khanna Publishers, 3rd Edition, 1999.

	Dr.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	Insti	itute	NA	AC .	
Subject Code: BEC17E08 I	Subject Name :Madnyapuogan Aphenanip - 95 Department of Electronics and Communication	T/ Engin ETL	L eerin	T / g ^{S.Lr}	P/ R	C



	Pre	erequisit	e: Comp	outer Ne	etworks				Ту	3	0	0	3
L : Lecture T	: Tutor	ial SLr	: Super	vised L	earning	P:Pro	oject R	: Resear	ch C: C	credits			
T/L/ETL : Th	neory/La	ab/Embe	dded Th	neory an	nd Lab								
OBJECTIV	E :												
• To st • To st • To st	tudy the tudy Inte	various egrity, A	cryptog uthentic	raphic a ation.	algorithi	ns, firev	wall.						
COURSE O	UTCON	MES (C	(Os):	ork see		neepts.							
The students	will be	able to											
CO1	Identif	y differe	nt types	of attac	cks and	techniq	ues use	d for tra	nsmissi	on of i	nformatio	on.	
CO2	Encryp	ot and de	crypt m	essages	using d	ifferent	types o	of cipher	s.				
CO3	Verify	message	using v	well kno	ow signa	ature ge	neratior	n and ve	rificatio	n algoi	rithms.		
CO4	To hav	e a clear	knowle	edge on	networl	k securi	ty, web	security	and fir	ewalls.			
CO5	To test	and ide	ntify the	various	s securi	ty attacl	c issues	in wirel	ess syst	ems.			
Mapping of	Course	Course Outcomes with Program Outcomes (POs)											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	) PO11	PC	)12
CO1	Н	Н	Н	Η	-	М			Н	Н	М	Η	
CO2	Н	Н	Н	Η	Н	Н		М	М	Н	Н	Η	
CO3	Η	Н	Η	Η	М	Η		М	Η	Н	М	Η	
CO4	Η	М	Η	Η	Н	Η	М	М		Н	М	Η	
CO5	Н	Н	Н	Η	Н	Н		Н	Η	Н	Н	М	
COs / PSOs	PS	501	PS	SO2	PS	03							
CO1	Η		М		М								
CO2	Η		Η		М								
CO3	Η		Η		М								
CO4	Η												
CO5	Η		Н		Н								
H/M/L indica	ates Stre	ngth of (	Correlat	ion H	- High,	M- Me	dium, L	-Low			1		



Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

#### BEC17E08 CRYPTOGRAPHY AND NETWORK SECURITY 3 0 0 3

#### **UNIT -I: INTRODUCTION ON SECURITY**

Security Goals, Types of Attacks: Passive attack, active attack, attacks on confidentiality, attacks on Integrity and availability. Security services and mechanisms, Techniques: Cryptography, Steganography, Revision on Mathematics for Cryptography.

#### UNIT- II: SYMMETRIC & ASYMMETRIC KEY ALGORITHMS 9 Hrs

Substitution Ciphers, Transposition Ciphers, Stream and Block Ciphers, Data Encryption Standards (DES), Advanced Encryption Standard (AES), RC4, Principle of asymmetric key algorithms, RSA Key distribution.

#### UNIT –III: INTEGRITY, AUTHENTICATION AND KEY MANAGEMENT 9 Hrs

Message Integrity, Hash functions: SHA, Digital signatures: Digital signature standards. Authentication Entity Authentication: Biometrics, Key management Techniques, Introduction to Quantum Cryptography.

#### UNIT- IV: NETWORK SECURITY, FIREWALLS AND WEB SECURITY 9 Hrs

Introduction on Firewalls, Types of Firewalls, Firewall Configuration and Limitation of Firewall. IP Security Overview, IP security Architecture, authentication Header, Security payload, security associations, Key Management. Web security requirement, secure sockets layer, transport layer security, secure electronic transaction, dual signature

#### **UNIT- V: WIRELESS NETWORK SECURITY**

Security Attack issues specific to Wireless systems: Worm hole, Tunneling, DoS WEP for Wi-Fi network, Security for 4G networks: Secure Ad hoc Network, Secure Sensor Network

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

**REVISION-3** 

9 Hrs



Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

**Total Number of Hours: 45Hrs** 

#### **References:**

1. Behrouz A. Fourouzan, "Cryptography and Network security" Tata McGraw-Hill, 2008

2. William Stallings, "Cryptography and Network security: principles and practice", 2nd Edition, Prentice Hall of India, New Delhi, 2002

- 3. Atul Kahate, "Cryptography and Network security", 2nd Edition, Tata McGraw-Hill, 2008
- 4. R.K.Nichols and P.C. Lekkas ,""Wireless Security", Mc Graw-Hill Professional, New York, NY, USA, 2001

5. H. Yang et al., "Security in Mobile Ad Hoc Networks: Challenges and Solution", IEEE Wireless Communications, Feb. 2004.

6. Securing Ad Hoc Networks, IEEE Network Magazine, vol. 13, no. 6, pp. 24-30, December 1999.

	Dr.M.G.R. Educational and Researc (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	h Ins	titu	te	A	
Subject Code:	Subject Name : MALSASTER, MANAGEMENT95	Τ/	L	Τ/	<b>P</b> /	С
BEC17E10	Department of Electronics and Communicatio	L/ n <u>En</u> gi	neer	. S.Lr ing	R	



	Pr an	erequisi d health	ite: BPE n scienc	E 13001 es	, BPE 1	3002 E	nvironn	nent	Ту	3	0	0	3
L : Lecture T	: Tuto	rial S	Lr : Sup	ervised	Learni	ng P:H	Project	R : Rese	arch C:	Credit	3		<u> </u>
T/L/ETL : T	heory/L	.ab/Emł	bedded '	Theory	and Lal	b							
OBJECTIV	Е:												
• I נ	Disaster Indertal response	r manag ken to e and re	ement 1 address covery.	efers to a Natu	the polural or t	licies, p man-ma	rograms ide disa	s, admini ster thro	istrative ough pr	e action repared	s and op ness, mi	eratio tigati	ons Ion,
COURSE O	UTCO	MES (	C <b>O</b> s) :										
The Students	will be	e able to	)										
CO1	Descr	ibe the	basic ty	pes of h	azard a	nd disas	sters.						
CO2	Demo	nstrate	knowle	dge of r	isk mar	nagemer	nt.						
CO3	Imple	ment th	e risk re	eductior	techni	ques du	ring em	ergency.					
CO4	Aware	e of the	relation	ship be	tween d	lisaster	and dev	elopmen	ıt.				
CO5	Aware	e of the	various	risk ma	anagem	ent in Ir	ndia.						
Mapping of	Course	e Outco	omes wi	th Prog	gram O	utcome	es (POs)	)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	)12
CO1	М		М	М	М	М	Н	Н		Н		H	
CO2	М		Н	Н	Н	Н	Н	Н	Н	М	Н	H	
CO3	Н		Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	
CO4	М			М	Н	Н	Н	Н	М	М	М	M	
CO5	М			М	М	Н	Н	Н	М	М			
COs / PSOs	PS	501	PS	502	PS	503							
CO1					М								
CO2			М		М								
CO3					М								
CO4					Н								
CO5	H H												
H/M/L indica	ates Str	ength o	f Correl	lation	H- Hig	h, M- N	ledium,	L-Low	1	1	<u> </u>		



Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

#### **BEC17E10 DISASTER MANAGEMENT**

#### **UNIT-I INTRODUCTION TO DISASTERS:**

Concepts, and definitions-Disaster, Hazard, Vulnerability, Resilience, Risks Disasters: Classification, Causes, Impacts - including social, economic, political, environmental, health, psychosocial, etc.)

#### **UNIT-II RISK MANAGEMENT**

Goals and objectives of ISDR Programme- Risk identification - Risk sharing - Disaster and development: Development plans and disaster management -Alternative to dominant approach disaster-development linkages -Principle of risk partnership.

#### **UNIT-III RISK REDUCTION**

Trigger mechanism - constitution of trigger mechanism - risk reduction by education -disaster information network - risk reduction by public awareness Application of various technologies: Data bases - RDBMS - Management Information systems - Decision support system and other systems - Geographic information systems Remote sensing an insight - contribution of remote sensing and GIS - Case study.

#### UNIT-IV INTER-RELATIONSHIPS BETWEEN DISASTERS AND DEVELOPMENT: 9 Hrs

Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc., Climate Change Adaptation, Relevance of indigenous knowledge, appropriate technology and local resources financial arrangements – areas of improvement – disaster preparedness — emergency response.

#### **UNIT-V DISASTER RISK MANAGEMENT IN INDIA**

Hazard and Vulnerability profile of India Components of Disaster Relief: Water, Food, Sanitation, Shelter, and Health, Waste Management Institutional arrangements (Mitigation, Response and

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

#### 9 Hrs

#### 9 Hrs

#### 9 Hrs

9 Hrs

3

0

3



Preparedness, DM Act and Policy, Other related policies, plans, programmes and legislation)

Practical component P : Include case studies / application scenarios Research component R : Future trends / research areas / Comparative Analysis

**Total Number of Hours: 45Hrs** 

#### Text books:

- 1. Pardeep Sahni, Madhavi Malalgoda and Ariyabandu, "Disaster risk reduction in Southasia", PHI
- 2. Amita Sinvhal, "Understanding earthquake disasters" TMH, 2010.

#### **References:**

1. Pardeep Sahni, Alka Dhameja and Uma Medury, "Disaster mitigation: Experiences and reflections".

Dr.M.G.R. Educational and Research I (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution	nsti	itute	A NA	AC +	
Subject Code: Subject Name : TELEVISION & VIDEO T	/ L/	L	Τ/	<b>P</b> /	С
DEPAGEMEERONG Electronics and Communication E	ngin	eerir	§.Lr	R	



BEC17E11	Pro En	erequisi gineeri	ite: Con ng	nmunica	ation sy	stems, N	Microwa	ave	Ту	3	0	0	3
L : Lecture T	: Tutor	ial SL	r : Supe	ervised	Learnin	g P:P	roject I	R : Resea	arch C: (	Credits	I		
T/L/ETL : Th	eory/La	ab/Emb	edded T	Theory a	and Lab								
OBJECTIVI	E :												
To st Tubes	udy the s and Te	analys elevisio	is and n Came	synthes ra Tube	is of T es	V Pictu	res, Co	mposite	Video	Signal,	Receive	r Pict	ure
> To st	udy the	princip	les of M	Ionoch	rome Te	elevision	n Transı	nitter an	nd Recei	ver syst	ems.		
<ul> <li>To str</li> <li>To str</li> </ul>	udy the	various	Color'	Televisi	ion syst	ems wit	h a grea	ideo En	hasis on	PAL sy	vstem.		
10.50	utry the	auvane	eu topic	25 III 10		system	is and v	Ideo Eli	gineerin	g.			
COURSE O	UTCON	MES (C	<b>COs) :</b>										
The Students	will abl	e to											
CO1	Incorp	orate a	nd recal	l the fu	ndamen	tals of t	elevisio	on.					
CO2	Descri	ibe the	various	compo	nents of	monoc	hrome 7	ΓV recei	ver.				
CO3	Distin	guish b	etween	various	colour	TV syst	ems.						
CO4	Identi	fy the c	haracter	of colo	our TV	receiver							
CO5	Bewar	re of rec	ent trer	nds and	technol	ogies of	TV.						
Mapping of	Course	Outco	nes wit	h Prog	ram Oı	itcomes	s (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	М	Н	М		М		М		Н	М		
CO2	Н	М	Н	М		М			М	Н			
CO3	Н	М	М				М		М	М			
CO4	Н	Н		Н						М	М	Н	
CO5	Н									М		M	
COs / PSOs	PS	01	PS	02	PS	503							
CO1	Н		Η		М								
CO2	Н		Н										
CO3	М		М										
CO4	Н		М		М								
CO5					М								



H/M/L indica	tes Stre	ngth of	Correla	tion I	I- High	, M- Me	edium, I	L-Low			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
					✓						
Approval											

#### BEC17E11 TELEVISION AND VIDEO ENGINEERING

#### **UNIT-I: FUNDAMENTALS OF TELEVISION**

Characteristics of Eye and Television Pictures – Resolution and Brightness Gradation- Theory of Scanning, Camera Tubes – Videocon and Silicon Diode Array Videocon- Monochrome Picture Tube, Composite.

#### UNIT-II: MONOCHROME TELEVISION RECEIVER

Transmission and Propagation of TV signal- TV Antenna, Receiver VHF Tuners - Vision IF Subsystem, Inter Carrier Sound System, and Video Amplifiers - Synchronous Separation AFC and Deflection Oscillators - Frame and Line Deflection Circuits.

#### **UNIT-III: COLOUR TELEVISION SYSTEMS**

Color Characteristics – Color Cameras Color Picture Tubes, Color signal Generation and Encoding, NTSC, PAL and SECAM Systems.

#### **UNIT- IV: COLOUR TELEVISION RECEIVERS**

Block Diagram of PAL-D Receivers, Luminance Channel, Chrominance amplifier, Color Burst Separation and Burst phase Discriminators, R, G, B Matrix and Drives.

#### UNIT-V: SPECIAL TOPICS IN TELEVISION

Digital Tuning Techniques, Remote Control, Introduction to Cable and Satellite Television, Video Tape

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

# 00

9 Hrs

9 Hrs

0 3

3

#### 9 Hrs

#### . ...

9 Hrs



Recorders, Videodisc system, Fundamental of Digital TV and High Definition Television.

Practical component P : Include case studies / application scenarios

**Research component R : Future trends / research areas / Comparative Analysis** 

#### **Total Number of Hours: 45Hrs**

#### Text books:

- 1. Gulati. R.R "Modern Television Practice, Principle of Technology and Servicing", New Age International Pvt. Ltd., 2002.
- 2. R.R. Gulati "Monochrome and colour television", New age International Publisher, 2003

#### **References:**

- 1. Dhake A, M., "Television and Video Engineering", Tata McGraw Hill, 1995.
- 2. Grob. B. Herndon. C.E., "Basic Television and Video Systems", McGraw Hill 1999.

	Dr.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001/2008 Cartified Institution	n Insti	tu	te NA	AC	
Subject Code:	Subject Name MaOPERATING SYSTEMS - 95	T / L/	L	Τ/	<b>P</b> /	С
	Madalavoyal, Chemiai - 56	ETL.		S.Lr	R	
RECLIEIZ [	Pepartment of Electronics and Communication	i Engin	eeri	ng		
	Prerequisite: Data structures, OOPS	Ту	3	0	0	3



L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

#### **OBJECTIVE :**

- To have an overview of different types of operating systems
- To know the components of an operating system
- To have a thorough knowledge of process management
- To have a thorough knowledge of storage management
- To know the concepts of I/O and file system

#### **COURSE OUTCOMES (COs) :**

The Students will be able to

CO1	Review functions, structures and history of operating systems.											
CO2	Process management concepts including scheduling											
CO3	Be familiar with multithreading											
CO4	Present and document concepts of memory management schemes.											
CO5	Appreciate secondary storage management											
Mapping of Course Outcomes with Program Outcomes (POs)												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	М	М		М		М	М	Н		
CO2	Н	Н	Η	Η					М	Н	М	
CO3	Н	М	М						М	М		
CO4	Н	М	М							Н	М	М
CO5	Н	М					М			М	М	
COs / PSOs	PS	501	PS	02	PS	503		.1				
CO1												
CO2			М		Н							
CO3			М		М							
CO4					Н							
CO5					М							
H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low												



Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
					✓						
Approval											

#### **BEC17E12 OPERATING SYSTEMS**

#### UNIT-I: **INTRODUCTION**

Mainframe Systems - Desktop Systems - Multi Processor Systems - Distributed Systems - Cluster Systems - Real Time Systems-Hardware Protection-System Components-Handheld Systems-Operating System Services-System Calls-System Programs-System Structure-Visual Machines-System Design and Implementation.

#### **UNIT-II: PROCESS MANAGEMENT**

Process Concept-Process Scheduling-Operation on Process-Co-operating Processes- Inter Process Communication-Threads-Overview-Multithreading Models. CPU Scheduling-Basic Concepts-Scheduling Criteria-Scheduling Algorithms-Multiple-Processor Scheduling-Real Time Scheduling-Algorithm Evaluation

#### **UNIT -1II: SYNCHRONIZATION AND DEADLOCKS**

Process Synchronization-The Critical Section Problem-Synchronization Hardware-Semaphores-Classical Problems Of Synchronization-Deadlocks-System Model-Deadlock Characterization-Methods Of Handling Deadlocks-Deadlock Prevention-Deadlock Avoidance-Deadlock Detection-Recovery form Deadlock.

#### **UNIT-1V: MEMORY MANAGEMENT**

Background-Swapping-Contiguous Memory Allocations - Virtual Memory - Address Translation -Paging - Segmentation - Segmentation with Paging - Static Paging Algorithm - Dynamic Paging Algorithm

#### **UNIT -V: FILES AND SECONDARY STORAGE MANAGEMENT**

#### 9 Hrs

3

# 9 Hrs

9 Hrs

9 Hrs

0 0

3



File Systems – File Concepts – Access Methods – Directory Structure – File System Mounting – File Sharing – Protection – File System Structure – File System Implementation – Recovery – Disk Structure – Disk Scheduling – Disk Management

#### Practical component P : Include case studies / application scenarios

**Research component R : Future trends / research areas / Comparative Analysis** 

#### **Total Number of Hours: 45Hrs**

#### Text books:

- 1. Silberschatz, Galvin, GAGNE "Operating System Concepts" John Wiley & Sons INC, 6th Edition, 2002
- 2. William Stallings, "Operating Systems", Prentice Hall of India, 1997.

#### **References:**

- 1. D.M. Dhamdhere, "Operating Systems", Tata McGraw Hill, 2002
- 2. Charles Crowley, "Operating Systems: A Design Oriented Approach", Tata McGraw Hill 1999.
- 3. Andrew S. Tanenbaum, "Modern Operating Systems", Prentice Hall of India, 1995.
- 4. Harvey M. Deitel, "Operating Systems", Second Edition, Pearson Education Pvt. Ltd, 2002.

	Dr.M.G.R. Educational and Research	n Insti	tu		AC	
Subject Code: BEC17E13	Subject Name An ISO 9001:2008 Certified Institution Maduravoyal, Chennai - 95	T / L/ ETL	L	T / S.Lr	P/ R	С
Γ	Persenview of Electronics with Communication	n Engin	eểri	ng	0	3



L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

#### **OBJECTIVE :**

- To introduce the concepts of windows programming
- To introduce GUI programming using Microsoft Foundation Classes
- To enable the students to develop programs and simple applications using Visual C++
- To make the students to understand the simple application using visual C+++
- To develop a deep knowledge about advanced concept for windows applications.

#### **COURSE OUTCOMES (COs) :**

The students will be able to

CO1	Demonstrate fundamental skills in utilizing the tools of visual environment in terms of the set of command menus and tool bars.											
CO2	Implement specialized new GUI components.											
CO3	Apply visual programming to software development by designing projects.											
CO4	Use v	Use visual programming environment to create simple visual applications.										
CO5	Motiv	Motivate to understand concepts and tools for windows applications.										
Mapping of Course Outcomes with Program Outcomes (POs)												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	Н	М	Н	М	М	Н	Н	Н	Н	Н
CO2	Н	Н	Η	М	М	Η	Н	М	Н	Н	Н	Н
CO3	Н	Н	Η	Н	М	Η	Η	Η	Н	М	Н	Н
CO4	Н	Н	Н	Н	М	Η	Н	Н	Н	М	Н	Н
CO5	Н	М	Η	М	Н	Η	Н	Η	Н	Н	Н	Н
COs / PSOs	PS	501	PS	O2	PS	03						
CO1	H H		М									
CO2	Н		Η		Η							
CO3	Н		М		Η							
CO4	H M			Н								
CO5	Н Н				Н							
H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low												
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
----------	----------------	----------------------	-----------------------------------	--------------	--------------------	----------------	---------------------	----------------------------------	-------------	--	--	
Approval												

#### BEC17E13 VISUAL PROGRAMMING

#### UNIT I: FORMS AND CONTROL

Customizing a Form-Writing Simple Programs-Toolbox-Creating Controls-Name Property-Command Button-Access Keys-

Image Controls-Text Boxes-Labels-Message Boxes-Grid-Editing Tools-Variables-Data Types-String – Numbers.

#### UNIT II: FUNCTIONS AND EVENTS

Displaying Information-Determinate Loops-Indeterminate Loops-Conditionals-Built-In Functions-Functions and Procedures- Lists-Arrays-Sorting and Searching-Records-Control Arrays-Combo Boxes-Grid Control-Projects with Multiple forms-Do Events and Sub Main-Error Trapping.

#### UNIT III: MENUS AND MOUSE ACTIVITY

VB Objects-Dialogue Boxes-Common Controls-Menus-MDI Forms-Testing, Debugging and Optimization-Working with Graphics- Monitoring Mouse Activity-File Handling-File System Controls-File System Objects-COM/OLE-Automation-DLL Services-OLE Drag and Drop.

#### UNIT IV: VISUAL C++ PROGRAMMING

Visual C++ Components – Developing Simple Applications – Microsoft Foundation Classes – Controls – Message Handling

– Document View Architecture – Dialog Based Applications – Mouse and Keyboard Events –Reading and Writing Documents – SDI and MDI Environments – Splitter Windows and Multiple Views.

#### UNIT V: ADVANCED CONCEPTS

Concepts and Tools for Windows Application – Procedure Oriented Windows Applications –Windows Applications using the MFC – Application and Class Wizards – Getting Started with OLE – Getting Started with Active X Controls – COM and DHTML

## 9 Hrs

0 0 3

3

# 9 Hrs

9 Hrs

#### 9 Hrs



**Practical component P : Include case studies / application scenarios** 

**Research component R : Future trends / research areas / Comparative Analysis** 

**Total Number of Hours: 45Hrs** 

#### Text books:

- 1. Gary Cornell-"Visual Basic 6 from the Ground Up"-Tata McGraw Hill, New Delhi, 1999
- 2. David Kruglirski J, "Inside Visual C++", Microsoft Press 1993.
- 3. CHRIS H.PAPPAS & WILLIAM H.MURRAY –"*The Complete reference –Visual C++*", Tata McGraw Hill, edition 1999, Chapter 1, 2,3,4,16-27 (IV & V unit)

- 1. Deitel & Deitel, T.R.Nieto, "Visual Basic 6, How to program", Prentice Hall of India, 1999.
- 2. Lars Klander, "Core visual C++6", Pearson Education Asia, 2000.
- 3. Gray J.Bronson, "A first book of Visual C++", Vikas Publishing House Thomson Learning) 2000.
- 4. Steven Holzner -- "Visual Basic 6 Programming Black Book" by Dream tech Press, edition 2000
- 5. Noel Jerke-"Visual Basic 6(The Complete Reference)"-Tata McGraw Hill, New Delhi1999.

	Dr.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956)	1 Insti	tut	e NAA	a galant	
Subject Code:	Subject Name : An BPO SIGN AL PROCESSING	T / L/	L	Т/ 🛸	<b>P</b> /	С
	Maduravoyal, Chennai - 95	ETL		S.Lr	R	
BECI7E14 T	anartmont of Electronics and Communication	Engin		na		
1	Prerequisite: Signals and Systems	Ty	-gri	i e	0	3



L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

## **OBJECTIVE :**

- ۶ To introduce the concepts of spectrum in biosignal
- ۶ To introduce adaptive filtering and wavelet detection in biosignal.
- ۶ To understand the biosignal classification and recognition

## **COURSE OUTCOMES (COs) :**

. .... . .

The students	will be	able to										
CO1	Identi	fy vario	ous type	s of sig	nals.							
CO2	Solve	problei	ms in tii	ne serie	es analy	sis.						
CO3	Imple	ement va	arious a	daptive	filters.							
CO4	Class	Classify and recognize the bio signals										
CO5	Be av	vare of a	applicat	ions of	bio sign	al proce	essing					
Mapping of	Course	ourse Outcomes with Program Outcomes (POs)										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	Н	М		М				Н		Н
CO2	Η	Н	H H M						Н	Н	Н	Н
CO3	Η	Н	Н	Н	Н				Н	Н	М	М
CO4	Η	Н	Н	М	М				М	М	М	Н
CO5	Н	М	М			М		М				
COs / PSOs	PS	501	PS	502	PS	503		1				
CO1	Н				Н							
CO2	Н				Н							
CO3	Н		Н		Н							
CO4	Η	H H										
CO5					М							
H/M/L indica	tes Stre	ength of	Correla	tion I	H- High	, M- Me	edium, l	L-Low	1	-1	1	1



Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval								1		1	

#### **BEC17E14**

## **BIO-SIGNAL PROCESSING**

#### **UNIT I: SIGNAL, SYSTEM AND SPECTRUM**

Characteristics of Some Dynamic Signals – Bio-Electric Signals, Impedance, Acoustic Signals, Mechanical Signals, Bio-Magnetic Signals, Bio-Chemical Signals, Signal Conversion – Simple Signal Conversion Systems, Conversion Requirements for Bio-Medical Signals. Basics of Digital Filtering – FIR and IIR filters. Spectral Analysis – Power Spectral Densities Function, Cross Spectral Density and Co-Herence Function, Cepstral Analysis and Homomorphic Filtering, Estimation of Mean with Finite Time Signal

#### UNIT II: TIME SERIES ANALYSIS AND SPECTRAL ESTIMATION 9 Hrs

Time Series Analysis – Linear Prediction Models, Process Order Estimation, Attic Representation, Non-Stationary Process, Adaptive Segmentation, Model Based ECG Simulator, Spectral Estimation – Blackman Turkey Method, Periodogram and Model Based Estimation.

#### UNIT III: ADAPTIVE FILTERING AND WAVELET DETECTION

Filtering – LMS adaptive filter, adaptive noise canceling in ECG, improved adaptive filtering in FECG. Wavelet detection in ECG – Structural, features, matched filtering, adaptive wavelet detection, detection of overlapping wavelets.

#### UNIT IV: BIOSIGNAL CLASSIFICATION AND RECOGITION

Signal classification and recognition – statistical signal classification, linear discriminate function, direct feature selection and ordering, Back propagation neural network based classification.

#### UNIT V: SELECTED TOPICS IN BIO-SIGNAL PROCESSING

Application of wavelet transform on Bio-signal – TFR representation, ECG data compression, ECG characterization, Application of Chaos theory on Biomedical signals, Software implementation of signal processing algorithms on biomedical signals.

#### B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

#### 10 Hrs

3 0 0 3

9 Hrs

## 9Hrs



## Practical component P : Include case studies / application scenarios

**Research component R : Future trends / research areas / Comparative Analysis** 

## **Total Number of Hours: 45Hrs**

#### Text books:

- 1. Vallaru Rao and Hayagiva Rao, "C++ Neural Networks and Fuzzy Logic", BPS Publication, New Delhi, 1996
- 2. Special topics on" *The Applications of Chaos Theory on Bio-Signal*", Journal of IEEE Engg. In Medicine and Biology Magazine, October, 1996.

- 1. Willies J Tompkins, "Bio-medical Digital Signal Processing" Prentice Hall, New Jersey, 1993.
- 2. Samuel D. Stearns Ruth A. David, "Signal Processing Algorithms using FORTRAN and C", Prentice Hall, New Jersey, 1993.

CINAT TO ESCE	Dr.M.G.R.	<b>Educational and Research</b> (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution Maduravoyal, Chennai - 95	h Inst	itu	te	ANAAC	100 · ·	

Subject	SDlepar Namet of ElDIGISTAIs ENLACED munication	n Eńgin	ebri	nig/	<b>P</b> /	С
Code:	PROCESSING	ETĹ		S.Lr	R	



<b>BEC17E15</b>	Prerec	quisite: '	Transfo	rms, Si	gnals ar	nd Syste	ems		Ту	3	0	0	3
L : Lecture T	: Tutori	Tutorial SLr : Supervised Learning P : Project R : Research C: Credits											
T/L/ETL : Th	eory/La	ab/Emb	edded T	Theory a	and Lab								
OBJECTIVE	E :												
• To stu	udy the	image f	fundam	entals a	nd math	nematica	al transf	orms ne	ecessary f	for in	nage proc	essing	, <b>-</b>
To stu     To stu	udy the	image o	enhance pration	ement te	chnique res	es							
• To stu	udy the	image o	compres	ssion pr	ocedure	e							
To stu	udy the	image s	segment	tation a	nd repre	esentatio	on techr	iques					
COURSE OU	UTCON	MES (C	<b>COs) :</b>										
The students	will be a	able to											
CO1	Solve	the mat	hematio	cal trans	sforms (	of image	e proces	ssing.					
CO2	Derive	e the va	rious in	nage tra	nsform	techniq	ues.						
CO3	Discu	ss the ir	nage en	hancen	nent tec	hniques							
CO4	Mode	l and re	store in	nage usi	ng filte	rs.							
CO5	Proces	ss an im	age thr	ough va	rious ir	nage pr	ocessing	g techni	ques.				
Mapping of (	Course	Outcor	nes wit	h Prog	ram Oı	itcomes	s (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 PO	1 P	D12
CO1	Н	Н	Н	М	Н		Н	М	Н	М	Н	Н	
CO2	Н	Н	М	Μ	Η	Η	М	М	Н	М	Н		
CO3	Н	М	Н	М	М	Η	М	М	М	Н	Η	Н	
CO4	М	Н	Н	Н	Н	М	М		М		М	Н	
CO5		М	Н	Н	Η	М	М		М	М	Н	Н	
COs / PSOs	PS	01	PS	02	PS	03							
CO1	Н		Н		М								
CO2	М		Н										
CO3	М		Н		Η								
CO4	М		Н		Н								
CO5	Н		М		М								
H/M/L indica	tes Stre	ngth of	Correla	ation I	H- High	, M- M	edium, 1	L-Low	J	1	I	I	



Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
					✓						
Approval										•	•

#### **BEC17E15** DIGITAL IMAGE PROCESSING 3 3 0 A

#### **UNIT I:** CONTINUOUS AND DISCRETE IMAGES AND SYSTEMS 9 Hrs

Light, Luminance, Brightness and Contrast, Eye, The Monochrome Vision Model, Processing Problems and Applications, Vision Camera, Digital Processing System, 2-D Sampling Theory, Aliasing, Image Quantization, Lloyd Max Quantizer, Dither, Color Images, Linear Systems And Shift Invariance, Fourier Transform, Z-Transform, Matrix theory Results, Block Matrices and Kronecker Products.

#### **UNIT II: IMAGE TRANSFORMS**

2-D Orthogonal and Unitary Transforms, 1-D and 2-D DFT, Cosine, Sine, Walsh, Hadamard, Haar, Slant, Karhunen-Loeve, Singular Value Decomposition Transforms.

#### UNIT III: IMAGE ENHANCEMENT

Point Operations- Contrast Stretching, Clipping and Thresholding Density Slicing, Histogram Equalization, Modification and Specification, Spatial Operations – Spatial Averaging, Low Pass, High Pass, Band Pass Filtering, Direction Smoothing, Medium Filtering, Generalized Cepstrum and Homomorphic Filtering, Edge Enhancement using 2-D IIR and FIR filters, Color Image Enhancement

## **UNIT IV: IMAGE RESTORATION**

Image Observation Models, Sources of Degradation, Inverse and Wiener Filtering, Geometric Mean Filter, Non-Linear Filters. Smoothing Splines and Interpolation, Constrained Least Squares Restoration.

#### UNIT V: IMAGE DATA COMPRESSION AND IMAGE RECONSTRUCTION FROM PROJECTION 9 Hrs

Image Data Rates, Pixel Coding, Predictive Techniques, Transform Coding and Vector DPCM, Block Truncation Coding, Wavelet Transform Coding of Images, Color Image Coding, Random Transform -

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

# 9Hrs

9 Hrs



Introduction to Python Programming- Introduction to OpenCV-Python

## Practical component P : Include case studies / application scenarios

**Research component R : Future trends / research areas / Comparative Analysis** 

**Total Number of Hours: 45Hrs** 

## Text books:

- 1. Anil K. Jain, "Fundamentals of Digital Image Processing", PHI 1995.
- 2. Milan Sonka," Image Processing Analysis and Machine vision", Thomson Learning. 2nd Edition.
- 3. Alasdar McAndrew, "Introduction to Digital Image Processing", Thomson Learning 2004.

- 1. M.A. Sid Ahmed, "Image Processing", McGraw Hill, Inc, 1995.
- 2. R. Gonzalaz and P. Wintz, "Digital Image Processing", Addition Wesley 2nd Ed, 1987.
- 3. William. K. Pratt, "Digital Image Processing", Wiley Inter Science, 2nd Ed, 1991.
- 4. John V Guttag. "Introduction to Computation and Programming Using Python", Prentice Hall of India
- 5. https://opencv-python-tutroals.readthedocs.io/en/latest/



		T1	· · · · · · · · · · · · · · · · · · ·	$\mathbf{C}$		- <b>F</b> • -	• • •			
Subject Code:	Subject Name	Electron	JRAL NI	TWORKS	SAND	n Engin	eering	ЯΓ/	<b>P</b> /	С



BEC17E16	I	IS APPI	JCATI	ONS					L/ ETL		S.Lr	R	
	Pı	rerequisit	e: None	2					Ту	3	0	0	3
L : Lecture T	: Tuto	rial SL	r : Supe	rvised I	Learning	g P:Pr	oject R	: Resea	rch C: C	Credits			<u> </u>
T/L/ETL : Th	neory/L	.ab/Embe	edded T	heory a	nd Lab								
OBJECTIV	E:												
• 7	Го study	y the vario	ous neura	al netwo	rk algori	thms and	l its appl	ication ii	n pattern	recognit	ion.		
COURSE O	UTCO	MES (C	<b>Os</b> ) :										
The students	will be	able to											
CO1	Descr	ibe the b	asic cor	ncepts o	of art new	ural net	works.						
CO2	Expla	in about	BPN ar	nd BAM	1								
CO3	Imple	ment the	concep	ot of sim	nulated a	annealir	ng and C	CPN					
CO4	Interp	oret the c	oncepts	of SON	I and A	RT.							
CO5	Imple	Implement BPN algorithm.											
Mapping of	Course	e Outcon	nes witl	n Progr	am Ou	tcomes	(POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	)12
CO1	Н	М	М	M						Н	M	Н	
CO2	Н	Н	М	М						Н		M	
CO3	Н	Н	Н	Н	Н	М	М	М	Н	М	Н	M	
CO4	Н	М	Н	Н	М					Н		M	
CO5	Н	Н	Н	Н	М		Μ						
COs / PSOs	P	SO1	PS	502	PS	503						_	
CO1			М		М								
CO2			М		Н								
CO3	М				Н							_	
CO4					Н								
CO5			М										
H/M/L indica	ites Str	ength of	Correla	tion H	I- High,	M- Me	dium, L	L-Low		1	1		



Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

#### **NEURAL NETWORKS AND ITS APPLICATIONS BEC17E16** 3 0 0 3

#### **UNIT I: INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS**

Neuro – Physiology – General Processing Element – ADALINE – LMS Learning Rule – MADALINE – Perception Networks

#### UNIT II: BPN AND BAM

Back Propagation Network - Updating of Output and Hidden Layer Weights - Application of BPN -Associative Memory - Bi-Directional Associative Memory - Hopfield Memory - Traveling Sales Man Problem

## UNIT III: SIMULATED ANNEALING AND CPN

Annealing, Boltzmann Machine – Learning – Application – Counter Propagation Network – Architecture - Training - Application.

## **UNIT IV: SOM AND ART**

Self-Organizing Map - Learning Algorithm - Feature Map Classifier - Applications - Architecture of Adaptive Resonance Theory - Pattern Matching in ART Network. Neocognitron: Architecture of Neocognitron - Data Processing and Performance of Architecture of Spacio - Temporal Networks for Speech Recognition

#### UNIT V CASE STUDY

Implementation of BPN Algorithm in a Computer Language - Application of Neural Networks for Pattern Recognition - Data Comparison - Hopfield Networks for an n-bit A/D Converter

# 9 Hrs

9 Hrs

## 9 Hrs

9 Hrs



Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

**Total Number of Hours: 45Hrs** 

#### Text books:

- 1. Hagan, "Neural Networks Design", Thomson Learning.
- 2. J.A. Freeman and B.M. Skapura, "Neural Networks, Algorithms Applications and Programming Techniques", Addison-Wesley, 1990.

- 1. Laurence Fausett, "Fundamentals of Neural Networks: Architecture, Algorithms and Applications", Prentice Hall, 1994.
- 2. Simon Haykin, "Neural Networks and Learning Machines" -3/E Pearson/ Prentice Hall 2009

TIME ID EEEE	Dr.M.G.R.	Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956) An ISO 9001:2008 Certified Institution Maduravoyal, Chennai - 95	Insti	tute	NA	A C +	

Subject Code: I	Depaiten Natrof: Electro ABCS ANGED ommunication	En/gin	e <b>e</b> rin	gT /	<b>P</b> /	С
		L/		•		



<b>BEC17E17</b>	Μ	ICROP	ROCES	SSORS					ETL		S.Lr	R	
	Pr	erequisit	e: Micr	oproces	sor and	Microc	ontrolle	er	Ту	3	0	0	3
L : Lecture T	: Tutor	ial SL	r : Supe	rvised I	Learning	g P:Pr	oject R	: Resea	rch C: C	Credits			<u> </u>
T/L/ETL : Th	eory/L	ab/Embe	dded T	heory a	nd Lab								
OBJECTIVI	E :												
• T • T • T • T	'o intro 'o intro 'o intro 'o intro	duce the duce the duce the duce the	concep prograr archited concep	ts in int nming t cture pro ts and a	ernal pr echniqu ogramm rchitect	ogramm les using ling and ure of R	ning mo g MASI interfa ISC pro	del of Ir M, DOS cing of a ocessor	and BIC and BIC 16 bit m	ily of m OS func icrocon	icroproo tion cal trollers.	cessor ls.	rs.
COURSE O	UTCO	MES (C	<b>Os</b> ) :										
The students	will be	able to											
CO1	Expla	in the ge	neralize	ed archi	tecture of	of advar	nced mi	croproce	essor				
CO2	Devel	op algor	ithm/ pr	ogram	of advai	nced mi	croproc	essor or	a partic	ular tas	k		
CO3	Appre	eciate the microprocessor based system design											
CO4	Analy	yze the MOTOROLA MC 68000 family											
CO5	Descr	ibe abou	t the var	rious R	ISC proc	cessors							
Mapping of	Course	Outcon	nes with	ı Progr	am Ou	tcomes	(POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	)12
CO1	Н	Н	Н	М	М		М		Н	Н		Н	
CO2	Н	Н	Н	Н	М	Μ		М	Н	Н	Н	Η	
CO3	Н	Н	М	М			М	М		Н	М	Η	
CO4	Н	Н	Н	Н			Н		М	М	Н	M	
CO5	Н	Н	Н	Н					Н	Н			
COs / PSOs	P	SO1	PS	502	PS	03		1					
CO1	Н		М										
CO2	Н		Н										
CO3	Η		М		М								
CO4	Н				М								
CO5	Н	H											
H/M/L indica	tes Stre	ength of	Correla	tion H	I- High,	M- Me	dium, L	L-Low					

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017



Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

#### **BEC17E17** ADVANCED MICROPROCESSORS 3 3 0 0

#### **UNIT I: THE INTEL X86 FAMILY**

The Intel X86 Family Architecture, 32 bit Processor Evolution Systems Connections and Timing, Instruction and Data Formats, Instruction set of X86 Processors, Addressing Modes.

#### **UNIT II: INTEL X86 ASSEMBLY LANGUAGE PROGRAM**

Implementation of Strings, Procedures, Macros, BIOS and DOS Services using X86 Assembly Language Programming, Memory and I/O Interfacing, Analog Interfacing and Industrial Control.

#### **UNIT III:** SYSTEM DEVELOPMENT

Microprocessors Based System Design, TMS 320 Series DSP Based Signal Processing, Microcontroller 8096, Architecture, Addressing mode and system design.

#### **UNIT IV:** THE MOTOROLA MC 68000 FAMILY

The MC 68000 Architecture, CPU Registers, Data Formats, Addressing Modes, Instruction Set and Assembler Directors, Memory Management Instruction and Data, Caches, Exception Processing.

#### UNIT V: **RISC PROCESSORS**

RISC vs CISC, RISC Properties and Evaluation, Advanced RISC Microprocessors, DEC ALPHA, The Power PC family. The SUN SPARC Family, the MIPS RX 100 Family, the Intel 860 Family. The Motorola M88000 Family, HP Precision Architecture.

#### 9 Hrs

# 9 Hrs

#### 9 Hrs

9 Hrs



Practical component P : Include case studies / application scenarios

**Research component R : Future trends / research areas / Comparative Analysis** 

## **Total Number of Hours: 45Hrs**

## Text books:

- 1. B.B. Bery, "The Intel Microprocessors 8086 / 8088, 80186 / 80188, 80286, 80386, 80486, PENTIUM, and PENTIUM Processors", Prentice Hall, 1997.
- 2. K Udaya kumar, B.S. Uma Shankar, "Advanced Microprocessors and IBM PC Assembly Language Programming", Tata McGraw Hill. 1996.

- 1. Daniel Tabak, "Advanced Microprocessors", McGraw Hill, 1995.
- 2. Douglas V. Hall, "Microprocessors and Interfacing Programming Hardware", McGraw Hill, 1992.
- 3. W.A. Tribel & A. Singh, "The 68000 and 68020 Microprocessors Architecture, Software and Interfacing Techniques", Prentice hall of India, 1991
- 4. Rifiquzzaman, "*Microprocessors Theory and Applications: Intel and Motorola*", Prentice Hall, 1992.
- Kenneth J. Ayala, "The 8051 Microcontroller, Architecture, Programming and Application", Penram International Publishing (India), 1996.
- 6. John Peatman, "Design with Microcontrollers", McGraw Hill International, 1988.

	Dr.M.G.R. Educational and Research (Deemed to be University U/S 3 of the UGC Act 1956)	n Insti	itute	B NA	AC +	
Subject Code:	Subject Name : DATABASE	T / L/	L	Τ/	<b>P</b> /	С
	MANAGEMENT SYSTEMS	ETL		S.Lr	R	
BECI/EI8 L	Department of Electronics and Communication	n Engin	eerir	σ		
-	Prerequisite: C++ and Data structures	Ту	3	Я	0	3



L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

## **OBJECTIVE :**

- To learn the fundamentals of data models and to conceptualize and depict a database system using ER diagram
- To make a study of SQL and relational database design
- To understand the internal storage structures using different file and indexing techniques
- To know the fundamental concepts of transaction processing- concurrency control techniques and recovery procedure

## **COURSE OUTCOMES (COs) :**

The students will be able to

CO1 Moster the basic concerts of detabase systems														
CO1	Maste	r the ba	sic conc	cepts of	databas	se syster	ns.							
CO2	Identi	fy and c	onstruc	t querie	s using	SQL								
CO3	Be far	niliar w	ith relat	ional da	atabase	theory								
CO4	Write	SQL pr	ogram f	for quer	ies									
CO5	Work	success	fully or	a team	by desi	ign and	develop	oing data	ibase ma	inageme	nt syster	ns		
Mapping of (	Course	Outcor	nes wit	h Prog	ram Ou	itcomes	(POs)							
COs/POs	PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12           H         H         H         H         M         M         M         H         H         H													
CO1	Н	H H H H M M M H H H												
CO2	Н	H H H M H M H M H H												
CO3	Н	М	М	Н				М		Н	М	М		
CO4	Н	Н	М	М	Н				Н		Н	М		
CO5	Н	Н	М	Н	Н	М	Н		Н	М	Н	М		
COs / PSOs	PS	01	PS	02	PS	03								
CO1	Н		М		Н									
CO2	Н		М		Н									
CO3	Н	H H M												
CO4	Н		Н		М									
CO5	Н		Н		Н									
H/M/L indicat	tes Stre	ngth of	Correla	tion I	H- High	, M- Me	edium, 1	L-Low	•		<u>.</u>			



Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

#### **BEC17E18** DATABASE MANAGEMENT SYSTEMS 3 3 0 0

#### UNIT-I: **INTRODUCTION**

Definition -Need for a DBMS-Uses of DBMS- Advantages and Disadvantages of DBMS

Database and Database users- View of Data -Architecture-Data Models-Data Dictionary -Database Languages

#### **UNIT II: RELATIONAL APPROACH**

Relational Model-Structure of a Relational Database-Relational Algebra- Tuple Relational Calculus-Domain Relational Calculus-SQL-Embedded SQL-Query Languages

#### UNIT III: RELATIONAL DATABASE DESIGN

Relational Database Design-Integrity Constraint-Pitfalls and Design -Functional Dependency-Normalization-Entity Relationship Model-Storage and File Structure-Indexing and Hashing-Basic Concepts-B+ tree Index File-B+ tree Index File-Static Hashing –Dynamic Hashing.

#### UNIT IV: **OBJECT ORIENTED RELATIONAL DATABASE TECHNOLOGY** 9 Hrs

Concepts for Object Oriented Data Model - Object Oriented Database Languages -Persistent Programming Language-Object Relational Databases. System Implementation techniques: Query Processing-Transaction Processing-Concurrency Control-Recovery System.

#### UNIT V: ENHANCED DATA MODELS FOR ADVANCED APPLICATIONS 9 Hrs

Database System Architecture- Client Server System-Centralized Systems-Parallel Systems-Distributed System-Distributed Databases

## 9 Hrs

9 Hrs



Practical component P : Include case studies / application scenarios Research component R : Future trends / research areas / Comparative Analysis

**Total Number of Hours: 45Hrs** 

#### Text books:

- 1. Abraham Silberschatz, Henry F.korth, S.Sudharshan, "Database system concepts" 4th Edition, Tata McGraw-Hill, 1997
- 2. Ramez Elmasri, Shamkant B.Navathe, "Fundamentals of database systems", 4th edition Pearson Education-2002

- 1. C.J.Date, "An Introduction to Database systems", 7th Edition, Pearson Education, 1997.
- 2. Raghu Ramakrishnan, "Database Management Systems", WCB McGraw Hill, 1998.
- 3. Bipin C.Desai, "An Introduction to Database Systems", Galgotia publications, 2001



# **OPEN ELECTIVES**



Subject Code: I	Sparten Claimer: Electron Las Ara di Comunication	n Engin	e <b>∉</b> rin	gT / S.	<b>P</b> /	С



BEC17OE1		COMMU	NICA	FION					ETL		Lr	R	
	]	Prerequisi Networks	te: Con	nmunica	ation sys	stems, C	Comput	er	Ту	3	0	0	3
L : Lecture T	: Tut	orial SL	r : Supe	ervised	Learnin	g P:Pı	oject F	R : Resea	urch C: C	Credits			
T/L/ETL : The	eory/	Lab/Embe	edded T	heory a	nd Lab								
OBJECTIVE	:												
• It deal	ls wi	th the fund	damenta	al cellul	ar radio	concep	ts such	as frequ	ency reu	ise and l	nandoff.		
• It pres	sents	different	ways to	o radio j	propaga	tion mo	dels an	d predic	t the lar	ge scale	effects	of ra	dio
propa	gatio	n in many	operati	ing envi	ronmer	nt.							
• To un	derst	and signa	l proces	sing co	ncept in	n cellula	r techno	ology					
• To stu	ıdy b	asic wirel	ess netv	vorking	and ad	vanced	technol	ogy					
	iay o	$\frac{1}{0}$	$\frac{100}{100}$	$\frac{\text{wireless}}{3-5}$	s sensor	networ	К.						
The students v	will b	be able to	.03) • (	5-5)									
CO1		Understa	nd basi	c conce	pt behir	nd cellu	lar tech	nology					
CO2		Apply pr	opagati	on mod	els for o	designir	ıg mobi	le anten	na.				
CO3		Allocate	frequer	ncy spec	etrum fo	or mobil	e techn	ology.					
CO4		Design 5	G techr	nology ι	using L [*]	ΓE.							
CO5		Impleme	nt sense	or netwo	ork usin	ng Ad - I	noc.						
Mapping of C	Cour	se Outcor	nes wit	h Prog	ram Ou	itcomes	(POs)						
COs/POs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	)12
CO1	Н	Н	М	М						Н		Η	
CO2	Η	Н	Н									Η	
CO3	Η	М	Н	М	М			Н	Н	Н	М	М	
CO4	Η		Н	Н	Н	Η	Н	М	Н	Н	Н	М	
CO5	Н		H M H H						Н	Н	Н	Μ	
COs / PSOs		PSO1	PS	02	PS	603							
CO1	Н		Н		М								
CO2	Н		Н		М								
CO3	Η		Н		Μ								
CO4	Η		H M										



CO5	Η		Н		Н						
H/M/L indica	tes Stre	ngth of	Correla	tion H	I- High,	, M- Me	dium, I	L-Low			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
					•						
Approval											

#### **BEC170E1 CELLULAR MOBILE COMMUNICATION** 3 3 0 0

#### **CELLULAR CONCEPT AND SYSTEM DESIGN FUNDAMENTALS** UNIT I: 9 Hrs

Introduction to Wireless communication - Cellular Concept and Frequency Reuse, - Channel Assignment and Handoff, Interface and System Capacity, Trunking and Erlang Capacity Calculations.

#### **MOBILE RADIO PROPAGATION** UNIT II:

Radio Wave Propagation Issues in Personal Wireless Systems, Propagation Models, Multipath Fading and Based and Impulse Models, Parameters of Mobile Multipath Channels, Antenna System in Mobile Radio.

#### UNIT III: SIGNAL PROCESSING AND MULTIPLE ACCESS SCHEMES 9 Hrs

Spectral Efficiency, Error Rate, Equalization / Rake Receiver Concepts, Diversity and Space-Time Processing, Speech Coding and Channel Coding - Multiple Access Techniques - FDMA, TDMA and **CDMA** Systems

#### UNIT IV: WIRELESS NETWORKS AND ADVANCED TECHNOLOGY 9 Hrs

Wireless Networking- adhoc Network, Design Issues in Personal Wireless Systems - 4G Features and Challenges - Software-Defined Radio - WIMAX, LTE, Convergent devices - Interconnection with UMTS and GSM – LTE Advanced – Introduction to 5G.

#### UNIT V: OVERVIEW OF WIRELESS SENSOR NETWORKS

Challenges for Wireless Sensor Networks-Characteristics requirements-required mechanisms, Difference between mobile ad-hoc and sensor networks, Applications of sensor networks, Single Node Architecture-B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

9 Hrs



Hardware Components, Energy Consumption of Sensor Nodes

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

**Total Number of Hours: 45Hrs** 

#### **Textbooks :**

- 1. T.S. Rappaport, "Wireless Communication, Principle and Practice", Prentice Hall, NJ, 1996
- 2. Roy Blake, "Wireless Communication technology", Thomson Learning, 1st Edition 2001.
- 3. Maritn Sauter, "From GSM to LTE: An Introduction to Mobile Networks and Mobile Broadband", John Wiley and Sons, 2011.

#### **Reference Books:**

- 1. K. Feher, "Wireless Digital Communication", Prentice Hall of India, New Delhi, 1995.
- 2. W.C.Y. Lee, "Mobile Communication Engineering Theory and Application", McGraw Hill International, Second Edition, 1998.
- 3. Dharma P. Agarwal, "Introduction to wireless and Mobile systems", Thomson Learning, II Edition, 2006.
- 4. Leonhard Korowajczuk, "LTE, WiMAX and WLAN Network Design, Optimization and Performance Analysis", Wiley-Blackwell, 2011.
- 5. Kazem Sohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor Networks-Technology, Protocols, and Applications", John Wiley, 2015.





Subject Code	e: Su	bject N	lame N	/ladur	амаула	h Ch	ennai	- 95	T / L/	L	Τ/	<b>P</b> /	С
BEC17OE2	Dep	<b>MMF</b>	NIGAI	FIQN o	nics a	nd Co	mmun	icatior	EAgir	eering	§.Lr	R	
	Pr	erequisi	te: Con	nmunica	ation Sy	stems			Ту	3	0	0	3
L : Lecture T	: Tutor	ial SL	r : Supe	ervised	Learnin	g P:P	roject I	R : Resea	arch C: C	Credits			
T/L/ETL : Th	eory/La	ab/Emb	edded T	Theory a	ind Lab								
OBJECTIVE	E :												
•	Over	rview of	f satellit	te systei	ms in re	lation to	o other	terrestria	l system	IS			
•	Stud	y of sat	ellite or	bits and	l launch	ing.			•				
•	Stud	y of ear	th segn	nent and	l space s	segmen	t compo	onents					
•	Stud	y of sat	ellite ac	cess by	various	s users.							
•	Stud	y of DT	TH and o	compres	ssion sta	andards							
COURSE O	UTCO	MES (C	COs) :										
The students	will be	able to											
CO1	Be aw	are of v	various o	element	of orbi	tal macl	nine.						
CO2	Identi	fy and i	nterpret	various	s multip	ole acces	witching	g techniq	ues.				
CO3	Expla	in the co	n the concepts involved in satellite link design										
CO4	Expla	in the p	rinciple	s, conce	epts and	operati	on of sa	atellite co	ommuni	cation s	ystems		
CO5	Explo	re the v	arious p	process	of earth	station	design.						
Mapping of	Course	Outcon	nes wit	h Prog	ram Ou	itcomes	s (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н	М	Μ	М	М	М	М		М		M	
CO2	Н	Н	Н	М	Н			Н	Н	Н	Н	H	
CO3	Н	Н	Н	Η	М				М	Н	М	M	
CO4	Н	Н	Н	Η	М				М	Н		Μ	
CO5	Н	Н	Н	М	Н	М	М		Н	М		Η	
COs / PSOs	PS	501	PS	02	PS	503						1	
CO1	Н		М		М								
CO2	Н		Н		Н							$\uparrow$	
CO3	Н		Н		М							1	
CO4	Н		Н		М				1				



CO5	Η		М								
H/M/L indica	tes Stre	ngth of	Correla	tion I	I- High,	M- Me	edium, I	L-Low			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
					~						
Approval											

## BEC170E2SATELLITE COMMUNICATION3003

#### UNIT I: ELEMENTS OF ORBITAL MECHANICS

Equation, Orbital Elements, Orbital Perturbation, Tracking and Orbital Determination, Orbital Correction Control.

#### ELEMENTS OF COMMUNICATION SATELLITE DESIGN

Space Environment, Spacecraft Configuration, Spacecraft Subsystem, Payload, Reliability Consideration – Spacecraft Integration and Testing.

#### UNIT II: MULTIPLE ACCESS TECHNIQUES

FDM – FM – FDMA, TDMA, SSMA / CDMA, RANDOM MULTIPLE Access Techniques; Packet Switching and Packet Satellite Networks Satellite on Board Processing and Switching.

#### UNIT III: SATELLITE LINK DESIGN

Types of System: BSS, Performance Requirements and Standards for Telephony, TV and DATA, Performance Impairments, Noise, Interference, Inter modulation, Design of Typical Satellite Links.

#### UNIT IV: DOMESTIC SATELLITE SYSTEMS

The INSAT System, International System, INTELSAT, IMMARSAT, Satellite Based Personal Communication LEO, ICO, GEO Systems.

#### **UNIT V: EARTH STATION DESIGN**

Earth Station Configuration, Site Selection, Antenna and Tracking Systems, Receiver and Transmitter Subsystems, Terminal Equipment: Telephone / Video Interface, Rearward Links, Miscellaneous Facilities Like Echo Suppressor, FM Digitizers, Ground Station Measurements, Elements of Frequency Coordination and Control, VSAT Networks and Terminals – Satellite Broadcasting, Satellite TV Systems.

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017

**REVISION-3** 

9 Hrs

## 9 Hrs

9 Hrs

## 9 Hrs



Practical component P : Include case studies / application scenarios

**Research component R : Future trends / research areas / Comparative Analysis** 

## **Total Number of Hours: 45Hrs**

#### Text books

- 1. T. Pratt and C.W. Bostian, "Satellite Communication" John Wiley & Son, 1986.
- 2. A. Abdul Namith, "Satellite Communication"-Lakshmi Publications.

- 1. B.N. Agarwal, "Design of Geosynchronous Spacecraft" Prentice Hall, 1986.
- 2. D. Roddy, "Satellite Communication" Prentice Hall, 1989
- 3. M. Richharia, "Satellite Communication Systems Design Principles", Macmillan Press Ltd. Second Edition 2003.

	Dr.M.G.R.	Educational a	nd Research 3 of the UGC Act 1956)	Insti	itute	Constant A	AC +	
Subject Code:	Subject Name	RADAR & NA	VIGATIONAL	Τ/	L	Τ/	<b>P</b> /	C
DEGISORIA	AIDS	Maduravoyal, C	_nennai - 95	L/		S.Lr	R	
BEC17OE3 I	Department o	f Electronics and (	Communication	Fingin	eerin	g		
				-		-		



	Prerequisite: EMF, Antenna Theory, µw								Ту	3	0	0	3
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits													
T/L/ETL : Theory/Lab/Embedded Theory and Lab													
OBJECTIVE :													
<ul> <li>To derive and discuss the Range equation and the nature of detection.</li> <li>To apply Doppler principle to radars and hence detect moving targets, cluster, also to understand tracking radars</li> <li>To refresh principles of antennas and propagation as related to radars, also study of transmitters and receivers.</li> <li>To understand principles of navigation, in addition to approach and landing aids as related to navigation</li> <li>To understand navigation of ships from shore to shore</li> </ul>													
COURSE OUTCOMES (COs) :													
The students will be able to													
CO1	Describe the range equation and nature of detection												
CO2	Detect radar signals in noise												
CO3	Recall the principles of AWP related to radars												
CO4	Beware of the propagation of radar waves												
CO5	Document the recent navigational aids												
Mapping of Course Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	)12
CO1	Н	Н	Η	Η	Μ	Μ			М	М			
CO2	Н	Н	Η	М	Η	Η	Η	М	Н	М	М	L	
CO3	Н	М	М	М	Μ	Μ	М			Н		Η	
CO4	Н	М	Н	М									
CO5	Н	М	М	Н					М	Н	М	Η	
COs / PSOs	PSO1		PSO2		PSO3			•					
CO1	Н		М										
CO2	Н		Н										
CO3	Н												
CO4	Н				М								



CO5	Н				М						
H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low											
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
					•						
Approval											

#### **BEC170E3 RADAR AND NAVIGATIONAL AIDS** 3 0 3

### UNIT I: RANGE AND EQUATION AND TYPES FO RADAR

Range Parameters, Pulsed Radars, Signal to Noise Ratio, Integration of Pluses Beam Parameters, System Losses and Propagation Effects, CW and Pulse-Doppler Radar, Delay Lines Tracking Radar, Mono pulse, Sequential, Simultaneous, Conical Scan and Monopulse Trackers, Beacons,

#### **UNIT II: TRANSMITTER, RECEIVERS AND ANTENNAS**

Klystron, Magnetron, TWT Amplifiers and Oscillators, Crossed Fields Devices, Parabolic Casse grain, Coefficient Squares Antennas, Radomes, Feeds, Receivers, Performance Figures, Displays Scope and PPI Duplexers.

#### **UNIT III: DETECTION OF RADAR SIGNALS IN NOISE**

MF, Correlation Detection, Detector Characteristics, Automatic Detection, CFAR Receiver, Pulse Compression and Classification of Targets with Radar.

#### **UNIT IV: PROPAGATION OF RADAR WAVES AND CLUTTER**

Plane Earth and Spherical Earth Problem, Refraction and Diffraction, GTD Analyzers, Surface and Sea Clutter, Detection of Targets, Effects of Weather on Radar.

#### UNIT V: TRENDS IN RADAR AND NAVIGATIONAL AIDS

Synthetic Aperture, Over the Horizon Radar, ARSR, ASR, Bistatic and Monostatic Radars, LORAN, ILS, GCA, Direction Finder, VOR Concepts, Airborne Doppler Navigation.

# 9 Hrs

## 9 Hrs

9 Hrs

9 Hrs



Practical component P : Include case studies / application scenarios

**Research component R : Future trends / research areas / Comparative Analysis** 

**Total Number of Hours: 45Hrs** 

## Text books:

- 1. M.I. Skoinik "Introduction to Radar Systems:, McGraw Hill 1981.
- 2. N.S. Nagaraja, "Elements of Electronic Navigation Systems", 2nd Edition, TMH, 2000.

- 1. F.E. Terman, "Electronics and Radio Engineering" McGraw Hill
- 2. Peyton Z. Peebles:, "Radar Principles", John Wiley, 2004
- 3. J.C Toomay, " Principles of Radar", 2nd Edition PHI, 2004

	Dr.M.G.R. Educational and R (Deemed to be University U/S 3 of the U	<b>esearch</b> GC Act 1956)	Insti	tut	e NA	AC .	
Subject	Subject Name : ADHOC AND SENS	$\frac{10000}{R} = 95$	T / L/	L	Τ/	<b>P</b> /	С
Code:	NETWORKS	lai - 95	ETL		S.Lr	R	
	Department of Electronics and Comm	unication	Engine	eri	ng		
BEC17OE4	Prerequisite: Wireless Network, Data Commun	nication	Ту	3	8	0	3


L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

### **OBJECTIVE :**

- Learn the different types of MAC protocols.
- Be familiar with different types of Adhoc routing protocols.
- Understand the design issues in Transport layer and security.
- Learn the cross layer design and mobile IP network.

#### **COURSE OUTCOMES (COs) :**

The students will be able to

The students v	will be	able to										
CO1	Prov wire	Provide knowledge of different concept of Adhoc network, application, to characteristics of wireless channels.										
CO2	Prov	vide knov	wledge	of MAC	C layer j	protocol	s and de	esign iss	sues.			
CO3	Prov	Provide knowledge of Routing mechanisms and Routing algorithm.										
CO4	Prov	Provide knowledge of Transport layer and security issues.										
CO5	Prov	Provide knowledge of Cross layer design and mobile IP network.										
Mapping of (	Course Outcomes with Program Outcomes (POs)											
COs/POs	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	М	M M H H M M M M M M										
CO2	M M M H M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M											
CO3	Н	Н	Н	Н	М	М	М		М	М	М	
CO4	М	Н	Н	Н	-	М	Н		М	М		М
CO5	M	М	Н	Н				М	М	М		М
COs / PSOs	P	SO1	PS	302	PS	SO3						
CO1	М		М		Н							
CO2	Н		Н		M							
CO3	Н	H H M										
CO4	М	M M H										
CO5	М		М		Н							
H/M/L indicat	tesM S	Strength	of Corr	elation	H- Hi	igh, M-	Mediun	n, L-Lov	N N	1	1	<u>I</u>



Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
					~						
Approval											

#### ADHOC AND SENSOR NETWORKS **BEC170E4** 3 3 0 0

#### **UNIT I: INTRODUCTION**

Introduction to Adhoc networks - Definition, characteristics features, applications. Characteristics of Wireless channel, Adhoc Mobility Models- Indoor and Outdoor Models.

#### **UNIT II: MEDIUM ACCESS PROTOCOLS**

MAC Protocols: Design issues, Goals and classification. Contention based protocols With Reservation, Scheduling Algorithms, Protocols using Directional Antennas. IEEE Standards: 802.11a. HiperLAN.

#### **UNIT III: NETWORK PROTOCOLS**

Routing Protocols: Design Issues, Goals and Classification. Proactive Vs Reactive routing, Unicast routing algorithms, Multicast routing algorithms, Hybrid Routing Algorithm, Energy Aware Routing Algorithm, Hierarchical Routing, QoS aware routing.

#### **UNIT IV: END-END DELIVERY AND SECURITY**

Transport layer: Issues in Designing- Transport layer Classification, Adhoc Transport Protocols. Security Issues in Adhoc Networks: Issues and Challenges, Network Security attacks, Secure Routing Protocols.

# **UNIT V: CROSS LAYER DESIGN AND INTEGRATION OF ADHOC FOR 4G**

#### 9 Hrs

# 9 Hrs

9 Hrs

9 Hrs

9 Hrs



Cross Layer Design: Need for Cross Layer Design, Cross Layer Optimization, Parameter Optimization Techniques, Cross Layer Cautionary Prespective, Intergration of Adhoc with Mobile IP networks.

#### Practical component P : Include case studies / application scenarios

**Research component R : Future trends / research areas / Comparative Analysis** 

#### **Total Number of Hours: 45Hrs**

#### **Textbooks:**

1. C.Siva Ram Murthy and B.S.Manoj, "Ad hoc Wireless Networks Architectures and protocols", 2nd edition, Pearson Education. 2007

2. Charles E. Perkins, "Ad hoc Networking", Addison - Wesley, 2000

#### **References:**

1. Stefano Basagni, Marco Conti, Silvia Giordano and Ivan stojmenovic, "Mobile ad-hoc Networking", Wiley-IEEE press, 2004.

2. Mohammad Ilyas, "The handbook of adhoc wireless networks", CRC press, 2002.

3. T. Camp, J. Boleng, and V. Davies "A Survey of Mobility Models for Ad Hoc Network Research," Wireless Commun. and Mobile Comp., Special Issue on Mobile Ad Hoc Networking Research, Trends and Applications, vol. 2, no. 5, 2002, pp. 483–502.

4. Fekri M. Abduljalil and Shrikant K. Bodhe, "A survey of integrating IP mobility protocols and Mobile Ad hoc networks", IEEE communication Survey and tutorials, v 9.no.1 2007

	Dr.M.G.R. Educational and Research	n Insti	itute	e Contra	AC	
Subject Code:	Subject Name : An ISOMUL PIMEDIAInstitution	T / L/	L	T/	P/	С
BEC17OE5	COMPRESSION ADDIAN LOGICAL COMPRESSION ADDIAN LOGICAL COMPRESSION ADDIAN LOGICAL COMPRESSION ADDIANA COMPANIA COMPRESSION ADDIANA COMPANIA COMP	ETL T		S.Lr	ĸ	
	Pepartment of Flectronics and Communication Prefequisite: Digital Electronics	i <del>t</del> ygin	eern	lg J	0	3



L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits

T/L/ETL : Theory/Lab/Embedded Theory and Lab

#### **OBJECTIVE :**

- To provide in-depth knowledge about Data Compression.
- Text compression and audio compression
- To understand about image and video compression.
- Apply the necessary mathematical tools, fundamentals and advanced knowledge of multimedia compression technique.
- To develop a deep understanding of principles, theory and application of data compression.

#### COURSE OUTCOMES (COs) :

The students will be able to

CO1	Expla	Explain scalar quantization theory and rate distribution theory										
CO2	Under	stand d	ifferent	coding	techniq	lues						
CO3	Descr	ibe cont	tour bas	ed com	pressio	n and m	otion es	timatior	technic	lues		
CO4	Under	Understand the concepts of requirements for memory space reduction										
CO5	Motivate to develop efficient algorithms for compression											
Mapping of (	g of Course Outcomes with Program Outcomes (POs)											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	H H H H M M M M H H										
CO2	М	M H M M H M M H M H										
CO3	Н	Н	Η	Η	Η	М	М		М	Н	Η	М
CO4	М	М	-	М	Η	Н	М			Н	Η	Н
CO5	Н	Н	Η	Н	М	М	М	М	М	Н	М	Н
COs / PSOs	PS	01	PS	02	PS	503						
CO1	Н		Η		М							
CO2	Н		Н		М							
CO3	Н		Н		Н							
CO4	Н	H H M										
CO5	H M M											
H/M/L indica	tes Stre	ngth of	Correla	ation 1	H- High	, M- M	edium, 1	L-Low	-	1	1	1



Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval											

#### BEC170E5MULTIMEDIA COMPRESSION TECHNIQUES3003

#### UNIT – I: INTRODUCTION

Brief history of data compression applications, Overview of information theory, Redundancy, Overview of Human audio, visual systems, Taxonomy of compression techniques, Overview of source coding, source models, scalar quantization theory, rate distribution theory, vector quantization, structure quanitizers, Evaluation techniques-error analysis and methodologies.

#### **UNIT – II: TEXT COMPRESSION**

Compact techniques- Huffman coding – arithmetic coding – Shannon Fano Coding and dictionary techniques – LZW family algorithms. Entropy measures of performance – Quality measures.

#### UNIT – III: AUDIO COMPRESSION

Audio compression techniques-frequency domain and filtering-basic sub-band coding-application to speech coding- G.722-application to audio coding-MPEG audio,progressive encoding for audio—silence compression,speech compression techniques-Vocoders

#### **UNIT – IV: IMAGE COMPRESSION**

Predictive techniques PCM, DPCM, DM. Contour based compression- quadtrees, EPIC, SPIHT, Transform coding, JPEG, JPEG- 2000, JBIG

#### 9 Hrs

#### 9 Hrs

9Hrs

#### 9 Hrs

## 1



#### UNIT – V: VIDEO COMPRESSION

9 Hrs

Video signal representation, Video compression techniques-MPEG,Motion estimation technioques-H.261.Overview of Wavelet based compression and DVI technology,Motion video compression,PLV performance,DVI real time compression

#### Practical component P : Include case studies / application scenarios

**Research component R : Future trends / research areas / Comparative Analysis** 

**Total Number of Hours: 45Hrs** 

#### **References:**

- 1. Mark Nelson, "Data Compression Book", BPB Publishers, New Delhi, 1998.
- 2. Sayood Khaleed, "Introduction to Data Compression", Morgan Kauffman, London, 1995.
- 3. Warkinson, J. "Compression in Video and Audio", Facol press, London. 1995
- 4. Jan Vozer, "Video Compression for Multimedia", AP profes, Newyork, 1995



### OPEN ELECTIVES LIST (SEMESTER 6)

- 1. AUTOMOTIVE ENGINEERING
- 2. ELECTRIC AND HYBRID VEHICLES
- 3. BOUNDARY LAYER THEORY
- 4. COMPUTATIONAL FLUID DYNAMICS
- 5. FINITE ELEMENT ANALYSIS
- 6. ARTIFICIAL INTELLIGENCE/EXPERT SYSTEMS IN DESIGN AND MANUFACTURING
- 7. CREATIVITY, INNOVATION AND NEW PRODUCT DEVELOPMENT
- 8. COMPOSITE MATERIALS AND STRUCTURES
- 9. MACHINE LEARNING IN BIOINFORMATICS
- **10. PRINCIPLES AND APPLICATIONS OF BIOINFORMATICS**
- 11. BIOSIMULATIONS USING MATLAB
- 12. DATA MINING IN BIOINFORMATICS
- 13. BIOINFORMATICS FOR BIOENGINEERS
- 14. INTRODUCTION TO BIOMEDICAL DEVICES
- 15. FUNDAMENTALS OF BIOSIGNAL PROCESSING
- **16. BIOREFINERY**
- 17. DIGITAL IMAGE PROCESSING
- 18. WATER POLLUTION AND ITS MANAGEMENT
- 19. LOBAL WARMING AND CLIMATE CHANGE
- 20. DISASTER MANAGEMENT AND MITIGATION
- 21. ENERGY ENGINEERING TECHNOLOGY AND MANAGEMENT
- 22. RENEWABLE ENERGY TECHNOLOGY
- 23. INDUSTRIAL POLLUTION PREVENTION AND CONTROL
- 24. PETROLEUM TECHNOLOGY
- 25. INTRODUCTION TO TRANSPORT PROCESSES
- 26. DATA STRUCTURES
- 27. DATABASE CONCEPTS
- 28. SOFT COMPUTING
- 29. WEB DESIGN
- **30. ELECTRONIC CIRCUITS AND SYSTEMS**
- **31. TELECOMMUNICATION SYSTEMS**
- 32. POWER PLANT INSTRUMENTATION
- 33. BIOMEDICAL INSTRUMENTATION
- 34. RENEWABLE ENERGY RESOURCES
- 35. MICROCONTROLLERS AND THEIR APPLICATIONS
- 36. ELECTRICAL MACHINES AND DRIVES
- 37. FUNDAMENTALS OF ELECTRIC POWER UTILIZATION

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017



- 38. INDUSTRIAL ELECTRONICS
- 39. REAL-TIME EMBEDDED SYSTEMS
- 40. CONTROLLER BASED SYSTEM DESIGN
- 41. INSTRUMENTATION ENGINEERING
- 42. HUMAN NUTRITION AND HEALTH
- 43. TECHNOLOGY OF BAKERY AND CONFECTIONERY PRODUCTS
- 44. FOOD PROCESSING AND PRESERVATION TECHNOLOGY
- 45. DISASTER MANAGEMENT
- 46. CYBER SECURITY
- 47. DAY-TO-DAY BIOLOGY
- 48. INTRODUCTION TO AUTOMATION
- 49. VIRTUAL INSTRUMENTATION
- 50. FUNDAMENTALS OF MEMS
- 51. INFORMATION SECURITY
- 52. INTRODUCTION TO DATABASE MANAGEMENT SYSTEM
- 53. PROFICIENCY IN ENGLISH AND ACCENT TRAINING
- 54. CREATIVE WRITING
- 55. INDIAN WRITING IN ENGLISH
- 56. SCIENCE FICTION
- 57. INTELLECTUAL PROPERTY RIGHTS , INNOVATION AND TECHNOLOGY
- 58. PRINCIPLES OF TECHNOLOGY AND INNOVATION MANAGEMENT
- 59. MARKETING MANAGEMENT
- 60. INDUSTRIAL MARKETING
- 61. STRESS MANAGEMENT
- 62. BASICS OF BANKING AND CAPITAL MARKETS
- 63. FINANCE FOR NON FINANCE EXECUTIVES
- 64. FUNDAMENTALS OF ENTREPRENEURSHIP
- 65. OPERATIONS RESEARCH
- 66. ETHICAL VALUES FOR BUSINESS
- 67. INFORMATION SYSTEMS FOR ENGINEERS
- 68. DATA WAREHOUSING AND DATA
- 69. LEGAL ASPECTS OF BUSINESS
- 70. INDUSTRIAL ENGINEERING AND MANAGEMENT
- 71. BUSINESS ENVIRONMENT
- 72. CONCURRENT ENGINEERING
- 73. MEMS AND NANO MANUFACTURING
- 74. NON DESTRUCTIVE TESTING
- 75. NANO PROCESSING
- 76. LOW COST AUTOMATION
- 77. MANUFACTURING COST ESTIMATION
- 78. MICRO ELECTRO MECHANICAL SYSTEMS
- 79. INTRODUCTION TO HYDRAULICS AND PNEUMATICS
- 80. PLASTIC ENGINEERING
- 81. INTRODUCTION TO ROBOTICS
- 82. BASIC THERMODYNAMICS AND HEAT TRANSFER
- 83. RENEWABLE AND SUSTAINABLE ENERGY
- 84. ENERGY AUDITING
- **85. ENERGY CONSERVATION**



- 86. SOLAR ENERGY UTILIZATION
- 87. HUMAN COMPUTER INTERFACE
- 88. ARTIFICIAL INTELLIGENCE AND NEURAL NETWORKS
- 89. APPLICATIONS OF NANOTECHNOLOGY
- 90. SOFTWARE DEVELOPMENT AND MANAGEMENT
- 91. TELECOM BILLING
- 92. Fire and Safety
- 93. NSS



S.No.	Course Work- Subject Area	Range Cred	of Total its (%) Max	Suggested Breakdown on Credits (for Total 176)	Dr.MGR E&R Inst University credits
1	Humanities and Social Sciences (HS), including Management;	5(9.25)	10(18.5)	14	13
	TECHNICAL ENGLISH - I				2
	TECHNICAL ENGLISH - II				2
	ENVIRONMENTAL SCIENCE				3
	MANAGEMENT PAPER 1				3
	MANAGEMENT PAPER 2				3

S.No.	Course Work- Subject Area	Range o Credits Min	f Total s (%) Max	Suggested Breakdown on Credits (for Total 176)	Dr.MGR E&R Inst University credits
2	Basic Sciences(BS) including Mathematics, Physics, Chemistry, Biology;	15(27.75)	20(37)	30	30
	MATHS - I				4
	ENGINEERING PHYSICS				3
	MATERIAL SCIENCE				3
	ENGINEERING CHEMISTRY - I				3
	ENGINEERING CHEMISTRY - II				3
	MATHS - II				4
	PHYSICS LAB				1
	CHEMISTRY LAB				1
	MATHS - III				4
	MATHS - IV				4



S.No.	Course Work- Subject Area	Range o Credits Min	f Total s (%) Max	Suggested Breakdown on Credits (for Total 176)	Dr.MGR E&R Inst University credits
3	Engineering Sciences (ES), including Materials, Workshop, Drawing, Basics of Electrical/Electronics/Mechanical/Computer Engineering, Instrumentation;	15(27.75)	20(37)	30	29
	BASIC ELECTRICAL & ELECTRONICS ENGINEERING				3
	BASIC MECHANICAL & CIVIL ENGINEERING				3
	BASIC ENGINEERING GRAPHICS				2
	WORKSHOP & PROJECT LAB				1
	PROGRAMMING LAB				2
	BASIC ENGINEERING SCIENCE				3
	INTER DISCIPLINARY THEORY (4 PAPERS)				12
	INTER DISCIPLINARY LAB (3 LABS)				3

S.No.	Course Work- Subject Area	Range o Credi Min	of Total ts (%) Max	Suggested Breakdown on Credits (for Total 176)	Dr.MGR E&R Inst University credits
4	Professional Subjects-Core (PC), relevant to the chosen specialization/branch; (May be split into Hard (no choice) and Soft (with choice), if required;)	30(55.5)	40(74)	50	68
	4 CREDIT DEPT CORE PAPER (9 papers)				36

B.Tech 2017 Regulations Approved by the Academic Council 21.06.2017



3 CREDIT DEPT CORE PAPER (7 papers)		21
DEPARTMENT CORE LABS		11

S.No.	Course Work- Subject Area	Range Cred Min	of Total its (%) Max	Suggested Breakdown on Credits (for Total 176)	Dr.MGR E&R Inst University credits
5	Professional Subjects – Electives (PE), relevant to the chosen specialization/ branch;	10(18.5)	15(27.75)	20	15
	DEPT CORE ELECTIVES ( 5 PAPERS)				15

S.No.	Course Work- Subject Area	Range Cred Min	of Total its (%) Max	Suggested Breakdown on Credits (for Total 176)	Dr.MGR E&R Inst University credits
6	Open Subjects- Electives (OE), from other technical and/or emerging subject areas;	5(9.25)	10(18.5)	12	10
	OPEN ELECTIVE (Inter Disciplinary No Prerequisite)				3
	SPECIAL ELECTIVE (Emerging Technology Syllabus to be framed)				3
	SOFT SKILL 1				2
	SOFT SKILL 2				2

S.No.	Course Work- Subject Area	Range Credi	of Total ts (%) Max	Suggested Breakdown on Credits (for Total 176)	Dr.MGR E&R Inst University credits
-------	---------------------------	-------------	---------------------------	------------------------------------------------------------	---------------------------------------------



7	Project Work, Seminar and/or Internship in Industry or elsewhere.	10(18.5)	15(27.75)	20	20
	TECHNICAL SKILLS (3)				3
	INPLANT TRAINING				1
	PROJECT PHASE – 1 & 2				12
	FOREIGN LANGUAGE				2
	MINI PROJECT				1
	ENTREPRENEURAIL SKIL DEVELOPMENT & PROJECT LAB				1

#### **Credits Distribution**

S. No	Description	No. of Papers	Credits
1	Department Core ( 3 credits)	7	21
	Inclusive of 3 ETL subjects		
2	Department Core ( 4 credits)	9	36
3	Department Core Electives	5	15
4	Open Elective	1	3
5	Special Elective (ETL)	1	3
6	Management Papers	2	6
7	Core Department Lab	11	11
8	Interdisciplinary Theory	4	12
9	Interdisciplinary Lab	3	3
10	Mathematics	4	16
11	Basic Humanities & Sciences	6	16
12	Environmental Science	1	3
13	Basic Engineering Science	4	11
14	Basic Engineering & Science Labs	4	5
15	Technical Skills	3	3
16	Soft Skills	2	4
17	Foreign Language	1	2
18	Mini Project	1	1
19	Project (Phase 1 & 2)	2	12



20	In Plant Training	1	1
21	21 Entrepreneurial Skill Development & Project Lab		1
	Total	73	185

# Note:

Revision-2 curriculum modified with the following changes

- In the 2nd semester curriculum, Entrepreneurial Skill Development and Project lab courses included with one credit weightage.
- Total number of Credits for the 1st year program has been increased to 41 credits and the overall credit has been increased to 185 credits.