

ELECTRONICS AND INSTRUMENTATION ENGINEERING DEPARTMENT CURRICULUM AND SYLLABUS 2017 REGULATION

Semester: 3

Theory:

Course Code	Course Title	С	L	T/SLr	P/R	Ty / Lb/ ETL
BMA17006	Mathematics III for Electrical Engineers	4	3	1/0	0/0	Ty
BEI17001	Circuit Theory	4	3	1/0	0/0	Ty
BEI17002	Electrical Machines	4	3	1/0	0/0	Ту
BEI17003	Analytical Instruments	3	3	0/0	0/0	Ту
BME17I02	Thermodynamics and Fluid Mechanics	3	3	0/0	0/0	Ty

Practical:

BEI17ET1	Electron Devices & Circuits*	3	1	0/2	1/1	ETL
BEI17L01	Electrical Technology Laboratory	1	0	0/0	3/0	Lb
BEI17L02	Electric Circuits Laboratory	1	0	0/0	3/0	Lb
BME17IL1	Thermodynamics and Fluid Mechanics Laboratory	1	0	0/0	3/0	Lb

Credits Sub Total: 24

Semester: 4

Theory:

Course Code	Course Title	С	L	T/SLr	P/R	Ty / Lb/ ETL
BMA17011	Numerical Methods For Electrical Engineers	4	3	1/0	0/	Ту
BEI17004	Digital Electronics	4	3	1/0	0/	Ty
BEI17005	Computer Networks & Distributed Control System	4	3	1/0	0/	Ту
BEI17006	Transducer Engineering	3	3	0/0	0/	Ту
BCS17I06	Introduction to OOPS with C++ and JAVA	3	3	0/0	0/	Ту

 $C: Credits\ L: Lecture\ T: Tutorial\ S.Lr: Supervised\ Learning\ P: Problem\ /\ Practical\ R: Research\ Ty/Lb/ETL: Theory/Lab/Embedded\ Theory\ and\ Lab$

^{*} Internal evaluation (Departmental level Refer Annexure for evaluation methodology)

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Practical:

BSK17ET1	Soft Skill 1	2	1	0/1	1/0	ETL
BEI17ET2	Measurements and Instruments*	3	1	0/2	1/1	ETL
BEI17L03	Transducer Laboratory	1	0	0/0	3/0	Lb
BEI17L04	Measurements Laboratory	1	0	0/0	3/0	Lb
BCS17IL6	Oops Lab Using C++	1	0	0/0	3/0	Lb
BEI17TSX	Technical Skill 1 (Evaluation)	1	0	0	2/0	Lb

Credits Sub Total: 27

Semester: 5 Theory:

Course Code	Course Title	С	L	T/SLr	P/R	Ty / Lb/ ETL
BEI17007	Control Engineering	4	3	1/0	0/0	Ту
BEI17008	Digital Signal Processing	4	3	1/0	0/0	Ту
BEI17009	Industrial Instrumentation – I	3	3	0/0	0/0	Ту
BEI17010	Fundamentals of Communication Engineering	3	3	0/0	0/0	Ту
BEE17I02	Microprocessor, Microcontroller & Its Applications	3	3	0/0	0/0	Ту

Practical:

•						
BEI17ET3	Linear and Digital Integrated Circuits*	3	1	0/2	1/1	ETL
BEI17L05	Industrial Instrumentation Laboratory	1	0	0/0	3/0	Lb
BEI17L06	Digital Control Laboratory	1	0	0/0	3/0	Lb
BEE17IL3	Microprocessor, Microcontroller & Its Applications Laboratory	1	0	0/0	3/0	Lb
BEI17TS2	Technical Skill 2 (Evaluation)	1	0	0/0	2/0	Lb
BEI17L07	Inplant Training (Evaluation)	1	0	0/0	2/0	Lb

Credits Sub Total: 25

 $C: Credits \ L: \ Lecture \ T: \ Tutorial \ S.Lr: \ Supervised \ Learning \ P: Problem \ / \ Practical \ R: Research \ Ty/Lb/ETL: \ Theory/Lab/Embedded \ Theory \ and \ Lab$

* Internal evaluation (Departmental level Refer Annexure for evaluation methodology)

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Semester: 6 Theory:

Course Code	Course Title	С	L	T/SLr	P/R	Ty/
						Lb/ ETL
BEI17011	Industrial instrumentation - II	4	3	1/0	0/0	Ту
BEI17012	Process Control	3	3	0/0	0/0	Ту
BEI17EXX	Elective 1	3	3	0/0	0/0	Ту
BEE17I03	Power Electronics	3	3	0/0	0/0	Ту
BEI17EOX	Open elective (Interdisciplinary)	3	3	0/0	0/0	Ту

Practical:

BSK17ET2	Soft skill 2	2	1	0/1	1/0	ETL
BEI17L08	Process Control Lab	1	0	0/0	3/0	Lb
BEI17L09	Design Project Laboratory	1	0	0/0	3/0	Lb
BEI17L10	Embedded System Laboratory	1	0	0/0	3/0	Lb
BEI17L11	Mini Project (Evaluation)	1	0	0/0	0/2	Lb
BEI17TSX	Technical Skill 3 (Evaluation)	1	0	0/0	2/0	Lb

Credits Sub Total: 23

Semester: 7

Theory:

Course Code	Course Title	С	L	T/SLr	P/R	Ty / Lb/ ETL
BEI17013	Computer control process	4	3	1/0	0/0	Ту
BEI17014	Virtual Instrumentation	4	3	1/0	0/0	Ту
BEI17EXX	Elective 2	3	3	0/0	0/0	Ту
BEI17EXX	Elective 3	3	3	0/0	0/0	Ту
BMG17002	Management concepts and organization Behaviour	3	3	0/0	0/0	Ту

 $C: Credits\ L: Lecture\ T: Tutorial\ S.Lr: Supervised\ Learning\ P: Problem\ /\ Practical\ R: Research\ Ty/Lb/ETL: Theory/Lab/Embedded\ Theory\ and\ Lab$

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

Practical:

BEI17ESX	Elective (Special - Based On Current Technology) *	3	1	0/2	1/1	ETL
BEI17L12	Virtual Instrumentation Laboratory	1	0	0/0	3/0	Lb
BEI17L13	Industrial Automation Laboratory	1	0	0/0	3/0	Lb
BEI17L14	Project Phase – 1	2	0	0/1	0/1	Lb
BFL17001	Foreign Language (Evaluation)	2	1	1		

Credits Sub Total: 26

Semester: 8 Theory:

Course Code	Course Title	С	L	T/S Lr	P/R	Ty / Lb/
						ETL
BEI17EXX	Elective 4	3	3	0/0	0/0	Ту
BEI17EXX	Elective 5	3	3	0/0	0/0	Ту
BMG17005	Entrepreneurship Development	3	3	0/0	0/0	Ту

Practical:

BEI17L15 Project (Phase – II)	10	0	0	10	Lb

Credits Sub Total: 19

- $C: Credits\ L: Lecture\ T: Tutorial\ S.Lr: Supervised\ Learning\ P: Problem\ /\ Practical\ R: Research\ Ty/Lb/ETL: Theory/Lab/Embedded\ Theory\ and\ Lab$
- * Internal evaluation (Departmental level Refer Annexure for evaluation methodology)
- 4 Credit papers should compulsorily have either P/R component.

Credit Summary

Semester: 1 : 18 Semester: 2 : 23 Semester: 3 : 24 Semester: 4 : 27 Semester: 5 : 25 Semester: 6 : 23 Semester: 7 : 26 Semester: 8 : 19

Total Credits : 185

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Elective 1

Course	Course Title	C	L	T/S	P/R	Ty/
Code				Lr		Lb/ ETL
BEI17E01	Embedded System	3	3	0/0	0/0	Ту
BEI17E02	Systems Theory	3	3	0/0	0/0	Ту
BEI17E03	System Identification and Adaptive control	3	3	0/0	0/0	Ту
BEI17E04	Neural and Fuzzy Logic Control	3	3	0/0	0/0	Ту

Elective 2

Course	Course Title	C	L	T/S	P/R	Ty/
Code				Lr		Lb/
						ETL
BEI17E05	Power Plant Instrumentation	3	3	0/0	0/0	Ту
BEI17E06	PC Based Instrumentation	3	3	0/0	0/0	Ту
BEI17E07	Digital image processing	3	3	0/0	0/0	Ту
BEI17E08	Advanced process control	3	3	0/0	0/0	Ту

Elective 3

Course Code	Course Title	С	L	T/S Lr	P/R	Ty / Lb/ ETL
BEI17E09	Instrumentation in Petrol Chemical Industry	3	3	0/0	0/0	Ту
BEI17E10	Intelligent Controllers	3	3	0/0	0/0	Ту
BEI17E11	Nano Technology	3	3	0/0	0/0	Ту
BEI17E12	Artificial Intelligence and Expert Systems	3	3	0/0	0/0	Ту

Elective 4

Course	Course Title	C	L	T/S	P/R	Ty/
Code				Lr		Lb/
						ETL
BEI17E13	Biomedical instrumentation	3	3	0/0	0/0	Ту
BEI17E14	Digital Instrumentation	3	3	0/0	0/0	Ту
BEI17E15	Digital Control Systems	3	3	0/0	0/0	Ту
BEI17E16	Principles of Robotics	3	3	0/0	0/0	Ту

Elective 5

Course	Course Title	C	L	T/S	P/R	Ty/
Code				Lr		Lb/ ETL
BEI17E17	Modern Control Systems	3	3	0/0	0/0	Ту
BEI17E18	Mechatronics	3	3	0/0	0/0	Ту
BEI17E19	Fibre Optics and Laser Instruments	3	3	0/0	0/0	Ту
BEI17E20	Control System Design	3	3	0/0	0/0	Ту

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject		ubject Na				CS III I	FOR		T/L/	L	T/	P/	C
Code: BMA17006	_	LECTRI rerequisit		GINE	LKS				ETL T	3	S.Lr 1/0	R 0/0	4
L : Lecture T	· Tut	oriol SI	r · Supor	wisad I	oorning	D · Dr	oioot D	· Pasa			1/0	U/U	4
T/L/ETL: Th	eory/	Lab/Emb	edded Th	neory ar	id Lab	, 1 . 1 1	ojeci K	. Rese	aren e. ei	cuits			
	nderst	and the b			Transfo	ormer							
COURSE O	UTC												
CO1		To under											
CO2		To under							8				
CO3		To under	stand the	Basic	concept	s in Fo	urier sei	ries					
CO4		To under	stand the	Basic	concept	s in Fo	urier Tra	ansforn	ns				
CO5		To under	stand the	Basic	concept	s in Z 7	Transfor	ms					
Mapping of	Cour	se Outcor	mes with	Progra	am Out	tcomes	(POs)						
COs/POs	PO	l PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	L	Н	L	L	L	L	L	L	M	L	L	M	
CO2	L	Н	L	L	L	L	L	L	M	L	L	M	
CO3	L	Н	L	L	L	L	L	L	M	L	L	M	
CO4	L	Н	L	L	L	L	L	L	M	L	L	M	
CO5	L	Н	L	L	L	L	L	L	M	L	L	M	
COs / PSOs		PSO1	PSC	O2		O3		SO4	PSO5				
CO1	M		M		L		L		L				
CO2	M		M		L		L		L				
CO3	M		M		L		L		L				
CO4	M		M		L		L		L				
CO5	M		M		L		L		L				
H/M/L indica	ites S	trength of	Correlat	ion H	- High,	M- Me	dium, L			1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval					I	ı		1		I		1	

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

MATHEMATICS III FOR ELECTRICAL ENGINEERS

UNIT I LAPLACE TRANSFORMS

12 Hrs

Transforms of simple functions – Properties of Transforms – Inverse Transforms – Transforms of Derivatives and Integrals.

UNIT II APPLICATIONS OF LAPLACE TRANSFORMS

12 Hrs

Periodic functions – Initial and final value theorems – Convolution theorem – Applications of Laplace transforms for solving linear ordinary differential equations up to second order with constant coefficients and Linear simultaneous differential equations of first order with constant coefficients.

UNIT III FOURIER SERIES

12 Hrs

Dirichlet's conditions – General Fourier series – Half range Sine & Cosine series – Complex form of Fourier series – Parseval's identity – Harmonic Analysis.

UNIT IV FOURIER TRANSFORMS

12 Hrs

Statement of Fourier integral theorem – Fourier transform pairs – Fourier Sine and Cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's theorem.

UNIT V Z TRANSFORMS AND DIFFERENCE EQUATION

12 Hrs

Z-transforms – Elementary properties – Inverse Z transforms – Partial fraction – Residue method – Convolution theorem – Solution of difference equation using Z transform (simple problems).

Total Number of hrs: 60 Hrs

Text Books:

- 1. Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008)
- **2.** Veerarajan T., Engineering Mathematics (for semester III), Tata McGraw Hill Publishing Co., (2005)
- **3.** Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012)

- 1. Kreyszig E., Advanced Engineering Mathematics (9 th ed.), John Wiley & Sons, (2011)
- 2. Singaravelu, Transforms and Partial Differential Equations, Meenakshi Agency, (2017)

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code:	Subject Name: CIRCUIT THEORY	T / L/	L	T /	P/R	C
BEI17001		ETL		S.Lr		
	Prerequisite:	T	3	1/0	0/0	4
L: Lecture T: Ti	ntorial SLr: Supervised Learning P: Project R: Research C	: Credits				
T/L/ETL : Theory	y/Lab/Embedded Theory and Lab					
OBJECTIVE:	·					
> Enabl	ing the students to acquire knowledge about the basic of circui	t analysis, 1	networ]	k theorems	s, ac cire	cuits
and tr	ansient analysis.	•				
> The gr	raduate will learn the analysis of complex circuits using mesh	current an	d nodal	l voltage n	nethods.	
> Studen	nts to analyze complex circuits using network theorems.					
Under	standing the concept of complex frequency & free and forced	response of	RL, R	C & RLC	circuits	
> Enabl	ing to understand about different parameters of two networks.	-				
COURSE OUT	COMES (COs): (3-5)					
CO1	Understands basics of circuit analysis, network theorems, a	ac circuits a	nd tran	sient anal	ysis.	
CO2	The graduate will be able to analysis complex circuits	using mesl	h curre	ent and no	dal vol	tage
	methods	C				
CO3	Ability to analyze complex circuits using network theorem	S				
CO4	Understands the concept of complex frequency & free at		espons	se of RL,	RC & I	RLC
	circuits.		•	,		

		iicuits.										
CO5	A	cquire t	he knowl	ledge abo	out diffe	rent para	ameters	of two no	etworks.			
Mapping of C	Course (Outcom	es with P	rogram	Outcon	nes (PO	s)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	M	L	Н	L	M	Н	M	L	Н	Н	M	L
CO2	M	Н	Н	L	M	M	Н	Н	L	L	Н	M
CO3	M	Н	Н	L	M	M	Н	Н	L	M	Н	M
CO4	Н	Н	M	M	Н	Н	L	Н	Н	M	L	L
CO5	Н	Н	M	M	Н	Н	M	Н	L	M	Н	L
COs / PSOs	PS	SO1	PS	O2	PS	SO3	PS	SO4	PSO5			
CO1	Н		L		L		L		M			
CO2	Н		M		L		M		L			
CO3	Н		M		M		L	•	L			
CO4	Н		MM	MM			L	•	M			
CO5	Н		M		M		L		L			

H/M/L indicat	es Streng	gth of Co	orrelation	H- Hi	gh, M- N	Medium,	L-Low				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
				✓							
Approval											

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

CIRCUIT THEORY

UNIT I BASICS OF CIRCUIT ANALYSIS

12 Hrs

Kirchoff's Laws, DC and AC excitation, series and parallel circuits, sinusoidal steady state analysis, Mesh current and Node Voltage method of Analysis, Matrix method of Analysis.

UNIT II NETWORK THEOREMS AND RESONANCE CIRCUITS

12 Hrs

Thevenin's and Norton's theorems, Superposition theorem, Compensation theorem, Reciprocity theorem, Maximum power transfer theorem, series and parallel resonance, Quality factor and Bandwidth.

UNIT III ANALYSIS OF NETWORKS IN 'S' DOMAIN

12 Hrs

Network elements, Transient response of RL, RC and RLC Circuits to DC excitation, Natural and forced oscillations, Two-port Networks, Parameters and transfer function, Interconnection of two-ports.

UNIT IV ELEMENTS OF NETWORK SYNTHESIS

12 Hrs

Network realizability, Hurwitz polynomials, Positive real functions, Properties of RL, RC and LC Networks, Foster and Cauer forms of Realization, Transmission Zeroes, synthesis of transfer functions.

UNIT V FILTER DESIGN

12 Hrs

Butterworth and Chebyshev approximation, Normalized specifications, Lowpasss filter design, Frequency transformations, Frequency and Impedance denormalisation, Types of frequency selective filters, Linear phase filters, Active filter design concepts.

Total Number of Hours: 60 Hrs

Text Books:

- 1. A. Sudhakar, Shyammohan S. Palli, "Circuits and Networks Analysis and Synthesis", Second Edition, Tata McGraw-Hill, 2002. Unit (I IV)
- 2. Vasudev. K, "Network Theory and Filter Design", Wiley Eastern Ltd, Second Edition, 1993. (UnitV) .Aartre

- 1. William H. Hayt and Jack E. Kermmerly, "Engineering Circuit Analysis", McGraw-Hill International Edition, 1993.
- 2. Joseph Edminister and MahmoodNahri, "Electric Circuits", Third Edition, Tata McGraw-Hill, New Delhi, 1999.
- 3. UmeshSinha, "Network Analysis", SatayaPrakasan, New Delhi, 1986.
- 4. Franklin. F. Kuo, "Network Analysis and Synthesis", John Wiley, 1996.
- 5. VanvalKenburg, "Network Analysis", Prentice Hall of India Pvt. Ltd, New Delhi, 1994.

Department of <u>ELECTRONICS AND INSTRUMENTATION ENGINEERING</u>

Subject Code BEI17002	: ;	Subject Na	ame : EL	ECTRI	CAL M.	ACHIN	ES		T / L/ ETL	L	T / S.Lr	P/R	C
BEII7002		Prerequisit	e:						T	3	1/0	0/0	4
L : Lecture T :				ed Learr	ning P:	Project	R : Res	earch C	: Credits	1		1	1
T/L/ETL: The		ab/Embed	ded Theor	ry and L	ab								
OBJECTIVE													
		knowledge							250		D. G		
		he constru										ors.	
To learn aEnabling t		he construction		_			_	_	•			se indu	etion
motor.	iic sti	idents to un	ideistand	the prin	cipic oi	орстанс	ni, const	ruction	and charac	MISTIC	s of 5 pile	isc mauc	,tion
> To unders	tand t	he construc	ction and	characte	ristics of	f single	phase in	duction	motor and	l some s	special mo	otors	
COURSE OU							•				•		
CO1		Understar											
CO2		Designing	g the DC i	nachine	s and un	derstand	ds the wo	orking p	orinciple of	the DC	C machine	:	
CO3		Capable t	o draw the	e circle o	diagram	of Indu	ction ma	chine					
CO4				nds the	princip	le of o	peration	, consti	ruction and	d chara	cteristics	of 3 p	hase
CO5		induction			i.a 1	alc -	4 a mi = 4 *	-£ . '	_11.				
CO5		special m		onstruct	ion and	cnarac	teristics	of sing	gle phase	inductio	on moto	r and s	ome
Mapping of C	Course	_		ogram	Outcom	es (POs	s)						
COs/POs	PO	l PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2
CO1	Н	M	Н	M	L	L	M	L	Н	Н	M	L	
CO2	Н	M	Н	Н	M	M	L	L	M	Н	Н	L	
CO3	Н	H	M	M	M	L	L	Н	M	H	H	L	
CO4	Н	M	Н	Н	Н	L	L	Н	M	M	H	Н	
CO5	M	Н	L	Н	Н	M	L	Н	Н	M	L	Н	
COs / PSOs		PSO1	PSC)2	PS	O3	PS	SO4	PSO5				
CO1	Н	1501	Н	32	M	.03	L	704	M				
CO2	Н		Н		M		Н		M				
CO3	Н		Н		M		M		L				
CO4	Н		Н		M		L		M				
CO5	Н		Н		M		M		L				
H/M/L indicat	es Str	ength of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low			ı			
								Internships / Technical Skill					
		es	cia					ica					
Category		enc	Sc		es		ct						
	es	Sci	pun	e	ctiv	'es	oje	Тес					
	enc	ng	es s	Cor	Ele	ctiv	/ Pr	/ SC	S				
	Sci	eeri	niti es	m e	m j	Ele	cal,	Shif	kill				
	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	ern	Soft Skills				
	Ba	En	Hu	Prc	Prc	Ор	Pra	Int	Sof				
				✓									
Approval													
1 ippi o vai													
L													

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

ELECTRICAL MACHINES

UNIT I D.C. MACHINES

12 Hrs

Constructional details-EMF and Torque-Circuit model-Methods of Excitation- Characteristics of Generators- Characteristics of motors-Starting and speed control Methods-Testing and Efficiency-Losses in D.C machines-Applications.

UNIT II TRANSFORMER

12 Hrs

Constructional details-Principle of operation-EMF equation-Equivalent circuit-Losses and efficiency-Voltage regulation-Auto transformers-Three phase transformers-Constructional details-Types of connections.

UNIT III INDUCTION MOTORS

12 Hrs

Constructional details-types-Principle of operation-Torque equation-Equivalent circuit-Characteristics-Performance calculations-Starting methods-Speed control methods.

UNIT IV SYNCHRONOUS MACHINES

12 Hrs

Construction of synchronous machines-Classification-Induced EMF equation-Voltage regulation-EMF method-Parallel operation-Synchronous motor-Principle of operation-Methods of starting-Hunting-Effect of change of excitation of a synchronous motor.

UNIT V SINGLE PHASE INDUCTION MOTORS & MACHINES

12 Hrs

Single phase induction motors-Construction & Principle of working-Types-Universal motor-Reluctance motor-Stepper motor-Two phase servo motor-Tachogenerator-Linear induction motor (Qualitative Treatment

Total Number of Hours: 60 Hrs

Text Books:

- 1. Mulukutla.S.Sarma, "Electric Machines, Stead state theory and dynamic Performance", 2nd Edition Thomson Learning 1997
- 2. S.K Bhattacharya, "Electrical Machines", 3rd Edition Tata McGraw Hill Publications 2008.

- 1. I.J. Nagrath& D.P. Kothari, "Electrical Machines", Tata McGraw Hill Publications, Second Edition 1997.
- 2. Nasar S.A, "Electrical Machines & Power Systems", TMH Publications
- 3. I cKenzie Smith ,"Hughes Electrical Technology", Revised Low price Edition, Pearson Education, Seventh edition.
- 4. Irving I.Kosow, "Electric Machinery and Transformers", PHI, Second Edition, 2001.

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

Subject Code: BEI17003	Subject Name : ANALYTICAL INSTRUMENTS	T / L/ ETL	L	T / S.Lr	P/R	C
	Prerequisite:	T	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVE:

- The capability to acquire knowledge on various techniques which occur in the various regions of the spectrum.
- > The capability to acquire knowledge on various methods of analysis which occur in the various regions of the spectrum
- To understand Industrial Gas Analyzers And Pollution Monitoring Instruments
- > To study important methods of analysis of industrial gases.
- > Understanding the important radio chemical methods of analysis.

COURSE OU										.1		C .1	
CO1	S	pectrum					•		ich occur i				
CO2				knowled	ge on va	rious m	ethods o	of analys	sis which c	occur in th	e various	regions of	
G02		he spectr		. 1.0	A 1	A 1	D 11	37.	. • т				
CO3		Jnderstai	ids Indus	trial Gas	Analyz	ers And	Pollutio	n Moni	toring Inst	ruments			
CO4	S	Students	tudents are capable of analysing important methods industrial gases analysis										
CO5	τ	Jnderstar	nds the in	portant	radio ch	emical ı	nethods	of anal	ysis.				
Mapping of C	Course (Outcome	es with P	ogram	Outcom	es (PO	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	Н	H	M	L	Н	Н	Н	M	M	M	L	Н	
CO2	Н	Н	M	M	L	Н	Н	M	M	Н	Н	L	
CO3	Н	L	Н	Н	L	M	M	Н	Н	L	M	M	
CO4	Н	M	M	Н	M	Н	Н	L	L	H	Н	M	
CO5	Н	M	M	Н	Н	L	L	M	M	Н	Н	M	
COs / PSOs	P	SO1	PS	O2			PS	SO4	PSO5				
CO1	M		M		Н		L		Н				
CO2	Н		H M			M		L					
CO3	L		M	M		Н		Н					
CO4	L		Н		Н		M		M				
CO5	Н		Н		M		Н		L				
H/M/L indicat	es Strer	igth of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low	7					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
			1	1			1		l	1	1	1	

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

ANALYTICAL INSTRUMENTS

UNIT I COLORIMETRY AND SPECTROPHOTOMETRY

9 Hrs

Special methods of analysis – Beer-Lambert law – Colorimeters – UV-Vis spectrophotometers – Single and double beam instruments – Sources and detectors – IR spectrophotometers – Types – Attenuated total reflectance flame photometers – Atomic absorption spectrophotometers – Sources and detectors – FTIR spectrophotometers – Flame emission photometers.

UNIT II CHROMATOGRAPHY

9 Hrs

Different techniques – Gas chromatography – Detectors – Liquid chromatographs – Applications – High-pressure liquid chromatographs – Applications.

UNIT III INDUSTRIAL GAS ANALYZERS AND POLLUTION MONITORING INSTRUMENTS

9 Hrs

Types of gas analyzers – Oxygen, NO2 and H2S types, IR analyzers, thermal conductivity analyzers, analysis based on ionization of gases. Air pollution due to carbon monoxide, hydrocarbons, nitrogen oxides, sulphur dioxide estimation - Dust and smoke measurements.

UNIT IV PH METERS AND DISSOLVED COMPONENT ANALYZERS

9 Hrs

Principle of pH measurement, glass electrodes, hydrogen electrodes, reference electrodes, selective ion electrodes, ammonia electrodes, biosensors, dissolved oxygen analyzer – Sodium analyzer – Silicon analyzer.

UNIT V RADIO CHEMICAL AND MAGNETIC RESONANCE TECHNIQUES 9 Hrs

 $Nuclear\ radiations - Detectors - GM\ counter - Proportional\ counter - Solid\ state\ detectors - Gamma\ cameras - X-ray\ spectroscopy - Detectors - Diffractometers - Absorption\ meters - Detectors. NMR - Basic\ principles - NMR\ spectrometer - Applications. Mass\ spectrometers - Different\ types - Applications$

Total Number of Hours: 45 Hrs

Text Books:

- 1. R.S. Khandpur, 'Handbook of Analytical Instruments', Tata McGraw Hill publishing Co. Ltd., 2003.
- 2. H.H.Willard, L.L.Merritt, J.A.Dean, F.A.Settle, 'Instrumental methods of analysis', CBS publishing & distribution, 1995.

- 1. Robert D. Braun, 'Introduction to Instrumental Analysis', McGraw Hill, Singapore, 1987.
- 2. G.W.Ewing, 'Instrumental Methods of Analysis', McGraw Hill, 1992.
- 3. DA Skoog and D.M.West, 'Principles of Instrumental Analysis', Holt, Saunders Publishing, 1985.
- 4. C.K. Mann, T.J Vickers & W.H. Gullick, 'Instrumental Analysis', Harper and Row publishers, 1974

B.Tech Regulation 2017 Approved by the Acad	demic Council
---	---------------

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code BME17I02		Subject Na MECHAN		IERMO	DYNA	MICS A	ND FL	UID	T / L/ ETL	L	T / S.Lr	P/R	C
		Prerequisit							T	3	0/0	0/0	3
L : Lecture T :						Project	R: Res	search (C: Credits				
T/L/ETL: The		.ab/Embed	ded Theo	ry and L	ab								
OBJECTIVE													
									roperties of				
	ıdy th	eories thos	e explain	the beh	aviour a	nd perf	ormance	of flui	id when the	e fluid i	s flowing	through	1 the
		and the ut	ilization (of dime	nsional	analysis	s as a t	ool in	solving pr	oblems	in the fi	eld of	fluid
mecha		1 ,	1.1	C .1	1	•							
		als concept			•	mics.							
		ver cycles			ons.								
COURSE OU	ICO			,	C		1 '						
CO1									ous measuri			_	
CO2									ning diagra				
CO3		Refrigera	tor.						at Balance			ance tes	st on
CO4		The gradu	ıate will u	ınderstaı	nd Funda	amental	s concep	ots and	laws of the	rmodyn	amics.		
CO5							•	r cycles	and their a	pplicat	ions.		
Mapping of C							i -		1	1		1	
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO	12
CO1	Н	L	M	M	L	Н	Н	L	M	L	Н	Н	
CO2	M	M	L	Н	Н	M	M	L	Н	M	M	Н	
CO3	L	L	Н	M	M	Н	Н	Н	M	L	M	M	
CO4	Н	Н	M	M	M	Н	Н	Н	L	L	M	L	
CO5	Н	L	M	Н	Н	HL	M	Н	L	M	M	Н	
CO / DCO		DCO1	DC	22	DC	02	DC	704	DCCC				
COs / PSOs		PSO1	PSO	<u>J2</u>		O3		SO4	PSO5				
CO1	Н		Н		M		M		L				
CO2	M		Н		M		L		H				
CO3	H		H		M		L		M				
CO4	M		H		L		M		H				
CO5	H	.1	H	77 77	L	. # 1°	M		M				
H/M/L indicat	es Str	ength of C	orrelation	H- Hi	gh, M- 1	viedium	, L-Low		T	1			
Category		ciences	d Social		ives	S	ject	echnical Skil					
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval		1	<u> </u>	V	<u> </u>	<u> </u>							

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

THERMODYNAMICS AND FLUID MECHANICS

UNIT I FLUID MECHANICS

9 Hrs

Fluid properties; fluid statics, manometer, control-volume analysis of mass, momentum and energy; differential equations of continuity and momentum; Bernoulli's equation; viscous flow of incompressible fluids; boundary layer; elementary turbulent flow; flow through pipes, head losses in pipes, bends etc

UNIT II FLUID MACHINERY

9 Hrs

Introduction, types of pumps – reciprocating pump – centrifugal pump - construction details – working principles. Pelton-wheel, Francis and Kaplan turbines – construction and working principles.

UNIT III THERMODYNAMICS

9 Hrs

Zeroth, First and Second laws of thermodynamics; thermodynamic system and processes; Carnot cycle.Irreversibility and availability; behaviour of ideal and real gases, properties of pure substances, calculation of work and heat in ideal processes.

UNIT IV HEAT-TRANSFER

9 Hrs

Modes of heat transfer; one dimensional heat conduction plain wall and cylinder, resistance concept, electrical analogy. Free and forced convective heat transfer, various correlations for heat transfer in flow over flat plates and through pipes; thermal boundary layer; effect of turbulence. Radiative heat transfer, black and grey surfaces, shape factors.

UNIT V POWER ENGINEERING

9 Hrs

Steam Tables, Rankine, Brayton cycles with regeneration and reheat.I.C. Engines: air-standard Otto, Diesel cycles. Refrigeration and air-conditioning: Heat pumps, gas refrigeration, vapour compression cycle; Moist air: psychrometric chart, basic psychrometric properties.

Total Number of Hours: 45 Hrs

Text Books:

- 1. Rudramoorthy R and Mayilsamy K., 'Heat Transfer', Pearson Education.
- 2. Sachdeva R.C., 'Fundamentals of Engineering Heat and mass Transfer', New Age International Publishers

- 1. Rajput R.K., 'Fluid Mechanics and Hydraulic Machines', S.Chand and Co., India.
- 2. Bansal R.K., 'A Text Book of Fluid Mechanics and Hydraulic Machines', S. Chand and Co., India.
- 3. Nag P.K., Engineering Thermodynamics, Tata McGraw Hill Co. Ltd.,
- 4. Rajput R.K., 'Thermal Engineering. Lakshmi Publications Pvt. Ltd.
- 5. Sachdeva R.C., 'Fundamentals of Engineering Heat and mass Transfer', New Age International Publishers.

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code BEI17ET1		Subject N CIRCUIT		ELECTI	RON DI	EVICES	AND		T / L/ ETL	L	T / S.Lr	P/R	C
		Prerequisit	e:						ETL	1	0/2	1/1	3
L : Lecture T :	: Tuto	rial SLr	: Supervi	sed Lear	ning P	Project	R : Re	search (C: Credits				
T/L/ETL: The	eory/L	.ab/Embed	lded Theo	ory and L	ab								
OBJECTIVE	:												
		will devel											
		nt will deve											
		will ident					circuit	S.					
		the circuit				SPICE							
		on the resu			•								
COURSE OU	TCO				.1 1		771		•				
CO1		Capable											
CO2		Capable 1											
CO3		Capable			•								
CO4									like PSPIC	E			
CO5	٦	Understa						ogram.					
Mapping of C								DOG	DOO	DO10	DO11	DO 1	12
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	12
CO1 CO2	H	H	L H	M H	M	Н	L H	M	Н	Н	M	L	
	M	H			L	M		L	H	M	H	L	
CO3	Н	M	H	H L	L	M	Н	L	H	M	H	M	
CO4	Н	M	Н	L	Н	Н	H	L	Н	M	H L	M	
CO5	Н	M	Н	L	Н	M	Н	L	M	Н	L	M	
COs / PSOs		PSO1	DC	5O2	D	SO3	D	SO4	PSO5				
COS / F3OS	M	<u> </u>	M	002	H	303	L	304	M				
CO2	H		M		Н		L		H		+		
CO2 CO3	M		L		Н		L		M				
CO3 CO4	M		H		M		L		H		+		
CO5	H		M		H		L		L				
CO3 H/M/L indicat		ength of C		n Ц_Ц		Medium		X 7	L	1			
11/1VI/L Muical	.cs Su	l ciigui Oi C		11-11	1811, 171-	TVICUIUII	1, L-LU\						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	Bž	描	H ₁	Pr	Pr	O	Pr	In	S_{C}	ļ			
				✓						1			
Approval													

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

ELECTRON DEVICES AND CIRCUITS

UNIT I SEMICONDUCTOR DIODE

9 Hrs

Theory of p-n junction – p-n junction as diode – p-n diode currents – Volt-ampere characteristics – Diode resistance – Temperature effect of p-n junction – Transition and diffusion capacitance of p-n diode – Diode switching times- Zener Diode- VI Characteristics.

UNIT II BIPOLAR TRANSISTOR

9 Hrs

Junction transistor – Transistor construction – Detailed study of currents in transistor – Input and output characteristics of CE, CB and CC configurations – Transistor hybrid model for CE configuration – Analytical expressions for transistor characteristics – Transistor switching times – Voltage rating.

UNIT III FIELD EFFECT TRANSISTORS

9 Hrs

Junction field effect transistor – Pinch off voltage – JFET volt-ampere characteristics – JFET small signal model – MOSFETS and their characteristics – FET as a variable resistor – Unijunction transistor.

UNIT IV OPTO ELECTRONIC DEVICES

9 Hrs

Photo emissivity and photo Electric theory – Theory, construction and characteristics: light emitting diodes, liquid crystal cell, seven segment display, photo conductive cell, photodiode, solar cell, photo transistor.

UNIT V MISCELLANEOUS DEVICES

9 Hrs

Theory, characteristics and application: SCR, TRIAC, DIAC, tunnel diode, thermistors, piezo electric devices, charge coupled devices, varactor diode and LDR.

Total Number of Hours: 45 Hrs

Text Books:

- 1. Jacob Millman, Christos, C. Halkias, (2003) Electronic Devices and Circuits. New Delhi: Tata McGraw Hill Publishing Limited.
- 2. David, A. Bell,(2003) Electronic Devices and Circuits. New Delhi: Prentice Hall of India Private Limited.

- 1. Theodre, F. Boghert, (2003) Electronic Devices & Circuits.6th Ed. Pearson Education.
- 2. Ben G. Streetman, Sanjay Banerjee, (2002) Solid State Electronic Devices. Pearson Education.PHI.
- 3. Allen Mottershead, (2003) Electronic Devices and Circuits An Introduction. New Delhi: Prentice Hall of India Private Limited

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

T/L/

Subject Name : ELECTRICAL TECHNOLOGY

BEI17L01		LABORA'			0.12 11				ETL		S.Lr	2, 22	
		Prerequisit							L	0	0/0	3/0	1
L : Lecture T :				ed Lear	ning P:	Project	R : Res	earch C	: Credits				ı
T/L/ETL : The													
OBJECTIVE													
		air knowled											
		•			_				ns of DC ge				
									esting of si				
			to underst	and the	principle	e of ope	ration, co	onstruct	tion and ch	aracteri	stics of 3	phase	
induct			atmintion.	and ahau	.a.atamiati	aa af ain	ala nhaa	a indua	tion motor	and an	ma anaaia	l matam	
COURSE OU					acteristi	CS OI SIII	igie piias	se mauc	tion motor	and so	ilie specia	motors	<u>, </u>
CO1	100			,	n the wo	rking of	various	electric	al machine	28			
CO2									haracteristi		annlicati	ons of	DC
CO2		generator			the co	iisti uctiv	on, won	Killg, C	maracteristi	ics and	аррисан	Olis Ol	DC
CO3					the con	struction	ı, worki	ng, cha	racteristics	and te	esting of s	ingle p	hase
		transform	ers.										
CO4		Understa	nds the p	rinciple	of open	ration, o	construct	tion an	d characte	ristics	of 3 phas	e induc	ction
		motor.											
CO5		Understa	nds the co	nstructio	on and c	haracter	istics of	single p	phase induc	ction			
Mapping of C	Cours	e Outcome	es with Pr	ogram	Outcom	es (POs	<u>;)</u>		•				
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	12
CO1	M	Н	M	L	Н	Н	Н	M	M	L	Н	Н	
CO2	M	Н	M	Н	Н	L	Н	M	Н	M	L	Н	
CO3	Н	Н	M	L	Н	Н	L	M	Н	M	L	Н	
CO4	Н	M	L	Н	Н	M	L	Н	M	Н	L	Н	
CO5	Н	M	M	L	Н	Н	L	M	Н	L	M	M	
COs / PSOs	_	PSO1	PSO	O2		O3		SO4	PSO5				
CO1	H		M		H		L		L				
CO2	M		H		Н		M		M				
CO3	L		H		M		Н		H				
CO4	M		H		Н		M H		L L				
CO5 H/M/L indicate	M es Str	ength of C		н. п	H igh, M- l	Medium		,	L	<u> </u>			
11/1VI/L IIIGICAU	cs Su	Cingui Oi C		11-11	1511, 171- 1	VICUIUIII	, L-LOW						
								Ski					
		S	ial					cal					
Category		nce	300		S			mic					
		cie	ن 5		ive	· · ·	ect	ecł					
	səə	S	an	ore	ect	i.e.	roj	L /					
	ien	ing	ies	Ŭ	田田	ect	/ I	ips	lls				
	Sc]ee.	ani Ices	_am	am	田田	ica		Ski				
	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	B	日	H ₁	Pr	Pr	Ō	P _r	In	Sc				
						<u> </u>	✓						
Approval													
Approvat													

Subject Code:

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

ELECTRICAL TECHNOLOGY LABORATORY

LIST OF EXPERIMENTS:

- 1. Verification of network theorems.
- 1. Determination of coupling coefficient.
- 2. Series and parallel resonance.
- 3. Power measurement in single phase and three phase circuits.
- 4. Open circuit characteristics of DC generators.
- 5. Load characteristic of DC motors.
- 6. Speed control of DC motors
- 7. Brake test of DC motors.
- 8. Regulation of three-phase alternator.
- 9. Open circuit and short circuits of transformer.
- 10. Brake test of induction motors.
- 11. V-curve of synchronous motor.

Total Number of Hours: 45 Hrs

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code BEI17L02		Subject Na LABORA'		ECTRI	C CIRC	CUITS			T / L/ ETL	L	T / S.Lr	P/R	C
	_	Prerequisit							L	0	0/0	3/0	1
L : Lecture T :				ed Lear	ning P:	Project	R : Res	earch (C: Credits			I	
T/L/ETL: The						J							
OBJECTIVE				•									
Studen	nts wi	ll learn var	ious netw	ork the	orems								
Studen	nts wi	ll demonst	rate the al	oility to	Design a	and appl	y Hardw	are Im	plementation	on of w	hat they h	ave lear	nt
									alysis usin				
									plementation				
	-								alysis usin	_	_	•	
						tage Reg	gulator f	or AC	inputs in ha	ırdware	and Desig	gn a filte	er
		active and p		_	nts.								
COURSE OU	ITCO												
CO1		Students											
CO2									re Impleme				
			•	in the fi	eld of E	lectronic	es, Elect	ric circ	uits and ne	twork a	nalysis us	ing both	1
		analog ted							· ·		C 1 -		
CO3									e Impleme				
				in the fi	ieia of E	iectronic	cs, Elect	ric circ	uits and ne	twork a	naiysis us	ing both	1
COA		digital tec		hla ta D		d in1-	mant 41c -	. h ol	,omo of a	lto as D	anlota f	- AC:	
CO4		in hardwa		ble to D	esign an	ia impie	ment the	nardw	are of a vo	nage Ke	egulator fo	or AC in	ıput
CO5				1. 4. D.	aian a fi	14	rit for A	-4i					
	7							cuve a	nd passive	compon	ents.		
Mapping of C COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
COS/POS CO1	Н	M	H	L L	M	H	H	M	L	M	H	M	12
CO2	Н	M	Н	M	H	M	L	H	H	L	M	H	
CO2	M	H	Н	H	M	H	M	L	Н	H	M	L	
CO4	M	H	H	M	L	Н	M	L	H	Н	M	M	
CO5	H	H	M	M	M	L	M	M	H	Н	M	L	
<u>CO3</u>	11	11	IVI	1V1	IVI	L	1V1	IVI	11	11	IVI	L	
COs / PSOs		PSO1	PS	72	DS	SO3	DO	5O4	PSO5				
CO1	Н	1501	M	<i>32</i>	Н	103	Н	, , , , , , , , , , , , , , , , , , , 	L L				
CO2	Н		H		M		Н		H				
CO3	M		H		H		M		L				
CO4	L		H		M		Н		M				
CO5	H		L		H		M		H				
H/M/L indicat		ength of C		Н- Н	igh, M-	Medium		,	111	1			
14 14 L marcat	Du			11-11	1511, 171-	- Touruil	, <u></u>			Τ			
Category	ziences	Engineering Sciences	Humanities and Social Sciences	ı Core	Program Electives	ectives	Practical / Project	Internships / Technical Skill	lls				
	Basic Sciences	Enginee	Humanit: Sciences	Program Core	Program	Open Electives	Practica.	Internsh	Soft Skills				
Approval		B.Tech Re	egulation	2017 Aր	proved	by the A	Academi	c Coun	cil			•	

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

ELECTRIC CIRCUITS LABORATORY

LIST OF EXPERIMENTS

- 1. Experimental verification of Kirchhoff's voltage and current laws
- 2. Experimental verification of Current and Voltage Division and Source Transformation
- 3. Experimental verification of network theorems (Thevenin, Norton, Superposition and maximum power transfer Theorem).
- 4. Determination of average value, rms value, form factor, peak factor of sinusoidal wave, square wave using hard ware and digital simulation.
- 5. Verification of Nodal and Mesh Analysis
- 6. Study of CRO and measurement of sinusoidal voltage, frequency and power factor
- 7. Experimental determination of time constant of series R-C electric circuits
- 8. Experimental determination of frequency response of RLC circuits.
- 9. Design and Simulation of series resonance circuit.
- 10. Design and Simulation of parallel resonant circuits
- 11. Design and Simulation of Half wave and Full wave Rectifiers
- 12. Simulation of three phase balanced and unbalanced star, delta networks circuits
- 13. Experimental determination of power in three phase circuits by two-watt meter method
- 14. Calibration of single phase energy meter
- 15. Determination of two port network parameters
- 16. Design and Simulation of low pass and high pass passive filters
- 17. Design and Verification of Attenuators
- 18. Determination of self, mutual inductance and coefficient of coupling.

.

Total Number of Hours: 45 Hrs

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code: BME17IL1	Subject Name: THERMODYNAMICS AND FLUID MECHANICS LABORATORY	T / L/ ETL	L	T / S.Lr	P/R	C
	Prerequisite:	L	0	0/0	3/0	1

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVE:

- > To analyze performance of flow using various measuring instruments.
- > Providing fair knowledge on the working of various Pumps for testing their performance.
- To learn the Valve timing diagrams for IC Engines.
- > To learn the port timing diagrams for IC Engines.
- To analyze performance and Heat Balance Test and performance test on Refrigerator.

> 10 ans	aiyze p	errorman	ce and He	at Baian	ce Test	and peri	ormance	e test on	i Refrigera	tor.		
COURSE OU	TCO											
CO1		The gradu	iate under	stands p	erforma	ince of f	low usin	ng vario	us measuri	ng instru	ments.	
CO2		Acquires	knowledg	e on the	workin	g of vari	ous Pur	nps for t	testing the	ir perforn	nance.	
CO3		The gradu	ıate will u	nderstar	nd the V	alve tim	ing and	port tin	ning diagra	ıms for IC	Engines.	
CO4		The gradu	uate will u	nderstar	nd the po	ort timin	g diagra	ms for l	IC Engine	S		
CO5		The gradu Refrigera		e able to	o analyz	ze perfoi	mance a	and Hea	t Balance	Test and	performa	nce test on
Mapping of C	Course	Outcome	es with Pr	ogram	Outcom	nes (POs	s)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	M	Н	Н	Н	M	M	Н	M	L	Н	L
CO2	Н	M	M	L	Н	M	Н	Н	M	L	M	Н
CO3	M	Н	Н	M	L	Н	M	Н	M	M	Н	L
CO4	Н	M	Н	M	Н	M	Н	M	L	M	Н	L
CO5	Н	Н	Н	M	M	M	Н	L	M	Н	M	Н
COs / PSOs	I	PSO1	PSO	72	DS	SO3	DG	SO4	PSO5			1
CO1	Н	. 501	M	<i>J</i> 2	Н		L	304	H			
CO2	M		H		L		M		Н	1		
CO3	Н		Н		M		L		Н			
CO4	Н		M		L		Н		M			
CO5	M		Н		L		M		Н			
H/M/L indicat		ength of C		H- Hi	gh, M-	Medium		7	1	1	I	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core ✓	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
Approval												

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

THERMODYNAMICS AND FLUID MECHANICS LABORATORY

LIST OF EXPERIMENTS

FLUID MECHANICS

- 1. Measurement of flow using Orificemeter.
- 2. Measurement of flow using Venturimeter.
- 3. Measurement of flow using flow through pipes.
- 4. Measurement of flow using Flow meter.
- 5. Performance test on Reciprocating pump.
- 6. Performance test on Centrifugal pump.

THERMODYNAMICS

- 7. Valve timing and port timing diagrams for IC Engines.
- 8. Performance test on a Petrol Engine.
- 9. Performance test on a Diesel Engine.
- 10. Heat Balance test on an IC Engine.
- 11. Boiler performance and Heat Balance Test.
- 12. Performance test on a Refrigerator (Determination of COP)

Total Number of Hours: 45 Hrs

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code:		ubject Na LECTRI				METH	ODS F	OR	T / L/ ETL	L	T / S.Lr	P/ R	С
BMA17011		rerequisit							T	3	1	0	4
L : Lecture T						P: Pro	oject R	: Resea	ırch C: Cı	edits			
T/L/ETL: Th	neory/	Lab/Emb	edded Th	eory an	d Lab								
OBJECTIVI	E :												
To develop th	ne abi	lity in Nu	merical S	Skills									
COURSE O	UTC												
CO1		To under											
CO2		To under	stand the	Basic o	concept	s in Sys	tem of	Linear	Equations	3			
CO3		To under	stand the	Basic o	concept	s in No	n Linea	r Equat	ions				
CO4		To under	stand the	Basic o	concept	s in Inte	erpolatio	on					
CO5		To under	stand the	Basic o	concept	s in Nu	merical	Differe	entiation a	nd Integ	gration		
Mapping of	Cour	se Outcor	nes with	Progra	ım Out	comes	(POs)						
COs/POs	PO	l PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	L	Н	L	L	L	L	L	L	M	L	L	M	
CO2	L	Н	L	L	L	L	L	L	M	L	L	M	
CO3	L	Н	L	L	L	L	L	L	M	L	L	M	
CO4	L	Н	L	L	L	L	L	L	M	L	L	M	
CO5	L	Н	L	L	L	L	L	L	M	L	L	M	
COs / PSOs	PSC)1	PSO2		PSO3		PSO4		PSO5				
CO1	M		M		L		L		L				
CO2	M		M		L		L		L				
CO3	M		M		L		L		L				
CO4	M		M		L		L		L				
CO5	M		M		L		L		L				
H/M/L indica	ites S	trength of		ion H	- High,	M- Me	dium, L	-Low		1	1		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

NUMERICAL METHODS FOR ELECTRICAL ENGINEERS

UNIT I BASICS OF NUMERICAL METHODS

12 Hrs

Curve fitting-Method of group averages-Principle of least square-Method of moments-Finite differences-Operators (Forward, Backward & Shifting) -Relationship between the operators.

UNIT II SYSTEM OF LINEAR EQUATIONS

12 Hrs

Gauss Elimination method – Gauss-Jordan method – Iterative methods – Gauss-Jacobi method – Gauss-Seidel method – Matrix Inversion by Gauss-Jordan method- Eigen value problem-Power method.

UNIT III NON LINEAR EQUATIONS

12 Hrs

Solution of Algebraic and Transcendental equations – Method of false position -Fixed point iteration method (single and multi variables)- Newton-Raphson method (single and multi variables).

UNIT IV INTERPOLATION

12 Hrs

Newton forward and backward differences – Central differences – Stirling's and Bessel's formulae – Interpolation with Newton's divided differences – Lagrange's method.

UNIT V NUMERICAL DIFFERENTIATION AND INTEGRATION

12 Hrs

Numerical differentiation with interpolation polynomials – Numerical integration by Trapezoidal and Simpson's (both 1/3 rd & 3/8 th) rules – Two and three point Gaussian Quadrature formulae – Double integrals using Trapezoidal and Simpson's rules.

Total Number of Hours: 60 Hrs

Text Books:

- 1. Veerarajan T., Numerical Methods, Tata McGraw Hill Publishing Co., (2007)
- 2. Sastry S.S., Introductory Methods of Numerical Analysis, Prentice Hall of India, (2012)

- 1. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012)
- 2. Kandasamy P., Thilagavathy, Gunavathy K., Numerical Methods (Vol.IV), S.Chand & Co., (2008)

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

T/L/

ETL

T/

S.Lr

L

P/R

Subject Name : DIGITAL ELECTRONICS

		Prerequisit							T	3	1/0	0/0	4
L : Lecture T :			Supervis		_	Project	R: Res	search C	: Credits				
T/L/ETL : The		_ab/Embed	ded Theor	ry and L	ab								
OBJECTIVE													
		ling logic a	•	_									
		to commo			er repres	entation	ı in digi	tal elect	ronic circ	uits and	to be able	e to cor	nvert
		ferent repr										_	
		ing the log	gical oper	ation of	simple	arithme	etic and	other I	MSI circui	ts (Med	ium Scale	Integr	rated
Circui	-	.1		1	,	1.11	.1 .	1				C	
	_	the concep	ots of seq	uential o	circuits (enabling	g them t	o analy	ze sequen	tial syst	ems in tei	ms of	state
machin		MEC (CO		`									
COURSE OU	100				ctory on	d dayale	nmant	of digita	l electroni	26			
												• .	
CO2							use digi	tal test e	equipment	and its	operating o	characte	eristic
CO3		Examine											
CO4							familie	s like R	TL, DTL,	TTL, E	CL.		
CO5		Identify a	nd describ	oe flip-fl	op circu	iits.							
Mapping of C	cours	e Outcome	es with Pr	ogram	Outcom	es (POs	s)						
COs/POs	PO	l PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	L	M	Н	L	Н	L	M	M	Н	M	L	
CO2	M	Н	L	Н	Н	M	M	L	Н	M	Н	M	
CO3	M	Н	H H L M H M H M H M										
CO4	Н	Н											
CO5	M	Н	M	Н	Н	Н	M	Н	M	Н	H	L	
GO / PGO		DGC 1	Day	22	D.0	100	D.	704	Dao 5				
COs / PSOs		PSO1	PSO) 2		SO3		SO4	PSO5				
CO1	Н		M		M		L		H				
CO2	Н		M		M		M		H				
CO3	Н		M		Н		M		H				
CO4	Н		H		M		M		L				
CO5	M Str	enoth of C	L	П 11:	H ab M	Madin	M	,	M				
H/M/L indicate	es sir	engui oi C	orreration	п- П	gh, M- 1	viedium	i, L-LOW			1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

B.Tech Regulation 2017 Approved by the Academic Council

Subject Code: BEI17004

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

DIGITAL ELECTRONICS

UNIT I NUMBER SYSTEMS

12 Hrs

Review of binary, octal and hexadecimal number systems – Conversions; Binary Arithmetic – signed magnitude form – 1's, 2's Complement representation. Codes: - BCD, Excess-3, Grey codes, ASCII Codes, Error detecting codes (Hamming code)-Applications of Error Detecting Codes.

UNIT II BOOLEAN ALGEBRA

12 Hrs

Boolean algebra – De Morgan's law - Simplifications of Boolean expression – Sum of products and product of sums – KarnaughMap(upto 5 variables) – Quince McClusky method of simplification (Including Don't care conditions)

UNIT III COMBINATIONAL LOGIC

12 Hrs

Logic gates – AND, OR, NOT, NOR, NAND and EX-OR – combinational logic- Arithmetic circuits – Half adder – Full adder, Half Subtractor - Decimal Adder – Excess 3 adder – Code converters – Multiplexer – Demultiplexer- Encoder – decoder – Design of general combinational logic circuit. PAL, PLA and FPGA.

UNIT IV SEQUENTIAL LOGIC DESIGN

12 Hrs

Building blocks of sequential logic-RS, JK, Master-Slave, D and T flip-flop, Asynchronous and synchronous counters - Binary and BCD counters - Shift registers -Basic models of sequential machines - concept of state diagram - State table - State reduction - Design and implementation of synchronous sequential circuits

UNIT V LOGIC FAMILIES

12 Hrs

Characteristics of RTL, DTL, TTL, families – Schottky, clamped TTL, ECL, IIL – Mos Inverters – complementary Mosinverters.IC based Full adder ,IC based Magnitude Comparator.

Total Number of Hours: 60 Hrs

Text Books:

- 1. Charles H. Roth, "Fundamentals of Logic Design", Thompson Learning ,5th Edition.
- 2. John. M. Yarbrough, "Digital Logic: Application and design", Thomson Learning

- 1. FLOYD:" Digital Fundamentals",10th Edition Universal Book Stall, New Delhi.1993.
- 2. Morris Mano, "Digital Electronics and Design", Prentice Hall of India, 2000.
- 3. ALBERT PAUL, MALVINO AND DONALD P LEACH: "Digital Principles and Applications" Tata McGraw Hill publications.

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code: Subject Name: COMPUTER NETWORKS AND T/L/L T/

BEI17005		DISTRIB!					S AND		ETL		S.Lr	I/K	
		Prerequisit	e:						T	3	1/0	0/0	4
L : Lecture T :				ed Leari	ning P:	Project	R : Res	search C			1, 0	0,0	
T/L/ETL : The		Lab/Embed	ded Theo	ry and L	ab								
OBJECTIVE													
		n about the	concept,	termino	logies a	nd techr	ologies	associa	ted with in	strumen	itation bu	ses and	data
netwo		a basia aar	saant of a	mmuni	action b	11000							
		ne basic cor nn idea abor				uses.							
	_	e student to				ferent n	otocols	and net	work com	onents.			
		te can unde							work com	onenes.			
COURSE OU													
CO1			uate unde		termino	logies a	nd techr	nologies	s associate	d with i	nstrumen	tation b	ouses
CO2			ent knows	the basi	c concei	nt of cor	nmunica	ation bu	ses.				
CO3			ent will be										
CO4									ols and net	work co	mponents	S.	
CO5			uate under										
Mapping of C	Cours	_											
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	M	Н	M	Н	Н	L	Н	M	Н	M	L	
CO2	M	Н	Н	M	L	Н	M	L	M	Н	L	M	
CO3	L	M	Н	Н	L	M	Н	L	M	Н	Н	M	
CO4	M	Н	Н	M	Н	M	Н	L	L	Н	M	Н	
CO5	Н	M	Н	M	Н	Н	L	M	M	Н	L	M	
COs / PSOs		PSO1	PS	$\frac{1}{2}$	DÇ	SO3	DG	SO4	PSO5				
CO1	Н	1501	Н	<i>J2</i>	M		M	304	L				
CO2	M		Н		L		M		H				
CO3	Н		M		M		Н		Н				
CO4	M		Н		Н		M		L				
CO5	M		L		Н		M		M				
H/M/L indicat	es St	rength of C	orrelation	H- Hi	igh, M-	Medium	, L-Low	7					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

COMPUTER NETWORKS AND DISTRIBUTED CONTROL SYSTEM

UNIT I DATA NETWORK FUNDAMENTALS

12 Hrs

Network hierarchy and switching – open system interconnection model of ISO – Data link control protocol – BISYNC – SLDC – HLDC – media access protocol – Command – response – Token passing – CSMA/CD, TCIP/IP.

UNIT II INTER NETWORKING

12 Hrs

Bridges – Routers – Gateways – open system with bridge configuration – open system with gateway configuration – Standard ETHERNET and ARCNET configuration – Special requirement for networks used for control.

UNIT III DISTRIBUTED CONTROL SYSTEMS

12 Hrs

Evolution – Different architecture – local control unit – Operator interface – Displays – Engineering interface.

UNIT IV APPLICATIONS OF DCS

12 Hrs

DCS applications in Power plants, Iron and Steel plants, Chemical plants, Cement plants and Pulp and Paper plants.

UNIT V HART AND FIELD BUS

12 Hrs

Introduction – Evolution of signal standards – HART communication protocol – communication modes – HART networks – Control system interface – HART commands – HART field controller implementation – HART and OSI model – Field bus – Introduction – General field bus architecture – basic requirements of field bus standard – field bus topology – interoperability – interchangeability

Total Number of Hours: 60 Hrs

Text Books:

- 1. A.S.Tanenbaum, Computer Networks, Third Edition, Prentice Hall of India, 1996
- 2. Michal P.Lucas, Distributed control systems, Van nostrand Reinhold Co., 1986

- 1. Romily Bowden, HART application guide and the OSI communication foundation., 1999
- 2. G.K.McMillan, Process/Industrial instrument and handnook, McGraw-Hill, New york, 1999.
- 3. Popovic D. and Bhatkar V.P., Distributed Computer Control for industrial automation, Marcel Dekkar Inc., 1990 (for Unit 4)
- 4. Buchanan W., Computer Busses, Arnold Publishers, London, 2000.

	B.Tech Regulation 20	117 Approved by	the Academic Co	ouncil
--	----------------------	-----------------	-----------------	--------

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code: BEI17006	S	ubject Na	ame : TR	ANSDU	CER E	NGINE	ERING	t F	T / L/ ETL	L	T / S.Lr	P/R	C
	P	rerequisit	e:						T	3	0/0	0/0	3
L: Lecture T: T	'utorial	SLr : S	Supervised	d Learnin	ng P:P	roject F	R : Resea	arch C:	Credits				
T/L/ETL: Theor	ry/Lab/	/Embedde	ed Theory	and Lat)								
OBJECTIVE:													
									to electric	al or oth	er forms.		
		adequate											
		g the kno	_										
									of transdu	cers.			
		he advant		uisauvan	lages of	various	s types o	ı transo	ucers.				
COURSE OUT													
CO1		The stude											
CO2									a given app	olication	•		
CO3		The stude	ent can de	sign a tra	ansduce	r as per	the requi	irement					
CO4	,	Understa	nds the op	eration,	characte	eristics,	applicati	ions of	various ty	pes of tr	ansduc		
CO5									types of tra				
Mapping of Cou	urca ()	lutcomos	with Pro	arom O	utcomo	c (POc)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	M	Н	L	M	Н	M	Н	Н	M	L	H	12
CO2	M	Н	Н	M	M	Н	L	L	H	H	M	H	
CO3	Н	Н	Н	M	L	Н	M	L	H	Н	M	Н	
CO4	M	Н	Н	M	L	Н	M	L	H	M	H	L	
CO5	Н	H	Н	M	L	Н	M	Н	M	L	H	M	
							1			†			
COs / PSOs	P	PSO1	PS	O2	PS	O3	PS	SO4	PSO5				
CO1	M		Н		Н		M		L				
CO2	Н		M		Н		M		L				
CO3	L		Н		M		M		Н				
CO4	M		Н		Н		L		M				
CO5	Н		L		M		Н		M				
H/M/L indicates	Streng	gth of Cor	relation	H- Higl	n, M- M	edium,	L-Low	•		•			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

TRANSDUCER ENGINEERING

UNIT I SCIENCE OF MEASUREMENT

9 Hrs

Units and standards – calibration methods – static calibration – classification of errors – error analysis – statistical methods – odds and uncertainty.

UNIT II CHARACTERISTICS OF TRANSDUCERS

9 Hrs

Static characteristics – accuracy, precision, sensitivity, linearity etc. – mathematical model of transducers – zero, first-order and second-order transducers – response to impulse, step, ramp and sinusoidal inputs

UNIT III VARIABLE RESISTANCE TRANSDUCERS

9 Hrs

Principle of operation, construction details, characteristics and applications of resistance potentiometers, strain gauges, resistance thermometers, thermistors, hot-wire anemometer, piezoresistive sensors and humidity sensors.

UNIT IV VARIABLE INDUCTANCE AND VARIABLE CAPACITANCE TRANSDUCERS

9 Hrs

Induction potentiometer – variable reluctance transducers – EI pick up – LVDT – capacitive transducers – variable air gap type – variable area type – variable permittivity type – capacitor microphone.

UNIT V OTHER TRANSDUCERS

9 Hrs

Piezoelectric transducer – magnetostrictive transducer – IC sensor – digital transducers – smart sensor – fiber optic transducers.

Total Number of Hours: 45 Hrs

Text Books:

- 1. Neubert, H.K.P. Instrument Transducers, Clarenden Press, Oxford, 1988.
- 2. Patranabis, D, Sensors and Transducers, Wheeler Publishing Co., Ltd. New Delhi, 1997

- 1. Doebelin, E.O., Measurement Systems, McGraw-Hill Book Co., 1998.
- 2. Neubert, H.K.P. Instrument Transducers, Clarenden Press, Oxford, 1988.
- 3. Patranabis, D, Sensors and Transducers, Wheeler Publishing Co., Ltd. New Delhi, 1997.
- 4. Murthy, D.V.s., Transducers and Instrumentation, Prentice Hall of India Pyt. Ltd., New Delhi, 1995.
- 5. Renganathan, S., Transducer Engineering, Allied Publishers, Chennai, 1999.

	B.Tech Regulation 20	17 Approved by	the Academic Co	ouncil
--	----------------------	----------------	-----------------	--------

Department of <u>ELECTRONICS AND INSTRUMENTATION ENGINEERING</u>

Subject Code: BCS17I06		ubject Na C++ AND		TRODU	CTION	TO 00	OPS WI	TH	T / L/ ETL	L	T / S.Lr	P/R	С
		rerequisit							Т	3	0/0	0/0	3
L : Lecture T :	Tutor	ial SLr:	Supervis	ed Learı	ning P:	Project	R : Res	earch C	C: Credits				•
T/L/ETL: The		ab/Embed	ded Theor	ry and L	ab								
OBJECTIVE													
		distingui					l Oriente	ed and					
		OOPS fea					nt massa		g which re	1040 it to	manaahili		
		id the con-				аерепас	ent progr	ammm	g which re	tate it to	reusabili	ty.	
		asic netw				va							
7 10 00 1	crop c	asic netw	orking pr	ograms .	using su	vu.							
COURSE OU	TCON	MES (CO	s): (3-5)									
CO1					istinguis	h OOP	S feature	es with	procedura	l Orient	ed and a	nalyze t	hese
		features to							_				
CO2		Analyze	OOPS fea	atures to	a real w	orld obj	ect,						
CO3		Understar	nds the an	alysis o	of generi	c data t	ype for	the data	a type inde	ependent	program	ming w	hich
		relate it to	reusabili	ty.					• •	•			
CO4		Understar	nds the co	ncepts o	of Java p	rograms							
CO5		Develops	basic net	working	progran	ns using	Java						
Mapping of Co	ourse	Outcome	s with Pr	ogram	Outcom	nes (POs	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	M	Н	L	M	Н	Н	L	Н	Н	M	Н	
CO2	L	M	Н	M	Н	M	Н	L	L	M	Н	Н	
CO3	M	H	Н	M	L	Н	M	Н	L	Н	L	Н	
CO4	H	H	M	H	L	Н	M	Н	H	L	M	M	
CO5	L	H	Н	M	Н	M	Н	L	Н	M	H	M	
COs / PSOs	Б	PSO1	PSO	72	DC	O3	DC	604	PSO5				
COS / FSOS	H	301	M	<i>J</i> 2	Н	003	M	504	L				
CO2	L		H		M		M		H				
CO3	M		L		Н		M		Н				
CO4	Н		H		M		M		L				
CO5	Н		M		L		Н		M				
H/M/L indicate	s Stre	ngth of C	orrelation	H- Hi	igh, M-	Medium	, L-Low	7		•			
								kill					
			-					l SI					
_		ses	cia					ica					
Category		enc	Sc		es		ct	chn					
	es	Sci	pun	و	ctiv	es	oje	Te					
	Suc	gu	es se	Cor	E G	ctiv	, Pr	/ S0	×				
	Sci	eri	niti es	m (Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
		l ĕ	nc na	gra	gra	en]	ctic	i si i	f. S.				
	sic	.50	e ¤	2.0									
	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Pro	Op	Pra	Int	Sof				
	Basic	Engi	Humaniti Sciences	Pro	Pro	Op	Pra	Int	Sof				
Approval	Basic	Engi	Hum Scie		Pro	do	Pra	Into	Sol				

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

INTRODUCTION TO OOPS WITH C++ AND JAVA

UNIT I BASICS OF OOPS

9 Hrs

Programming methodologies -Object Oriented concepts-Definition-Data members-Function members-Access specifiers-Constructors-Default constructors-Copy constructors-Destructors-Static members-Control statements, Basics of C++environment.

UNIT II INHERITANCE AND POLYMORPHISM

9 Hrs

Overloading operators-Functions-Friends-Class derivation-Virtual functions-Abstract base classes-Multiple inheritance.

UNIT III TEMPLATES 9 Hrs

Class templates-Function templates-Exception handling-Streams.

UNIT IV JAVA PROGRAMMING

9 Hrs

Java environment-Classes-Definition-Fields-Methods-Object creation-Constructors-Overloading methods-Static members-This keyword-Nested classes-Extending classes.

UNIT V INHERITANCE AND EXCEPTION

9 Hrs

Inheritance-member accessibility-Overriding methods-Abstract classes-Interfaces. Exceptions And Threads: Exception and errors -Exception classes - Runtime Exception - Uncompact Exception - Finally block - User defined Exceptions. Creating Threads -Controlling Threads

Total Number of Hours: 45 Hrs

Text Books:

- 1. Stanley B.Lippman, "The C++ Primer" Addison Wesley, 5/e, 2012.
- 2. H.Schildt, Java 2: The Complete Reference, 6/e, Tata McGraw Hill-2008

Reference Books:

- 1. Deitel and Deitel, "C++ How to Program" Prentice Hall, 8/e, 2011
- 2. Programming in java –E.Balagurusamy-Tata McGraw Hill,4/e, 2009
- 3. Ken Arnold and James Gosling, "The Java Programming Language", Pearson Education, 3/e, Reprint 2009.
- 4. B.Stroustrup,"The C++ Programming Language", 3/e, Pearson Education, 2004.
- 5. E.Balagurusamy "Object Oriented Programming with C++"- 4/e. "Tata Mcgraw Hill", 2008.

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject BSK17			bject N				- I CA	REER	&	T / L/ ETL	L	T . S.L		?/	С
201117			erequisi				T	1	0		1	2			
L : Lect	ture T					Learning P: Project R: Research C: Credits									
T/L/ET								J							
OBJEC	CTIVE	C :													
									es help	ing them	impr	ove tł	neir ski	11 s	et
			eading t												
						arious te	echnique	es of car	ndidate	e recruitm	ent a	ınd he	elp thei	n	
	•	•	CV's an								IID 4	1	1 ! 4		
		_								aring for					
			nock se		e their	verbai r	eading,	narrauc	on and	presentat	ion s	KIIIS I	by peri	OIII	1S
COUR	SE OU	JTCO	MES (C	(Os): (3- 5)										
Student				, (,										
CO1	Be a	ware o	of variou	is top co	mpanie	es leadin	ng to im	provem	ent in	skills amo	ongst	them	1.		
CO2		aware of various top companies leading to improvement in skills amongst them. aware of various candidate recruitment techniques like group discussion, interviews and b												nd be	
<u> </u>	able	e to prepare CV's and resumes.													
CO3	Prep	pare for different types of interviews and be prepared for HR and technical interviews.													
CO4	Imp	prove their verbal, written and other skills by performing mock sessions.													
Mappi	ng of (Ourse	Outcor	nes wit	h Prog	ram Ou	itcomes	(POs)							
COs/PO		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PC	010	PO11	P	PO12
CO3/1 C	<i>7</i> .5	101	102	103	104	103	100	107	100	10)		10	1011	1	012
CO1		L	L	L	L	L	M	M	Н	M	Н		M	ŀ	Ŧ
CO2		L	L	L	L	L	M	M	Н	M	Н		M	I	Ŧ
CO3		L	L	L	L	L	M	M	Н	M	Н		M	ŀ	I
CO4		L	L	L	L	L	M	M	Н	M	Н		M	I	I
COs / PSOs PSO1		PSO2		PSO3											
CO1		L		L		Н									
CO2		L		L		Н									
CO3		L		L		Н									
CO4		L		L		Н									
H/M/L	indica	tes Stre	ength of	Correla	tion I	I- High,	, M- Me	edium, I	L-Low		1	-			
Category		nces	Engineering Sciences	s and Social Sciences	ore	lectives	tives	Project	Internships / Technical Skill						
	-	Basic Sciences	Engineerin	≺ Humanities and	Program Core	Program Electives	Open Electives	Practical / Project	Internships	✓Soft Skills					
Approv	-a1		<u> </u>	<u> </u>											
Approv	aı														

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

SOFT SKILLS - I CAREER & CONFIDENCE BUILDING

UNIT I 6 Hrs

Creation of awareness of top companies / improving skill set matrix / Development of positive frame of mind / Creation of self-awareness.

UNIT II 6 Hrs

Group discussions / Do's and don'ts – handling group discussions / what evaluators look for interpersonal relationships / Preparation of Curriculum Vitae / Resume.

UNIT III 6 Hrs

Interview – awareness of facing questions – Do's and don'ts of personal interview / group interview, enabling students to prepare for different proce3dures such as HR interviews and Technical Interviews / self-introductions.

UNIT IV 6 Hrs

Verbal aptitude, Reading comprehension / narration / presentation / Mock Interviews.

UNIT V 6 Hrs

Practical session on Group Discussion and written tests on vocabulary and reading comprehension

Total Number of Hours: 30 Hrs

Department of <u>ELECTRONICS AND INSTRUMENTATION ENGINEERING</u>

Subject Code BEI17ET2		Subject Na INSTRUM		ASURI	EMENT	S AND			T / L/ ETL	L	T / S.Lr	P/R	С
	<u> </u>	Prerequisit							ETL	1	0/2	1/1	3
L : Lecture T :			•		_	Project	R : Res	earch C	: Credits				•
T/L/ETL : The		ab/Embed	ded Theor	y and L	ab								
OBJECTIVE		1 . 1	1 1	C d		. 1	, .	•.	1.1.1	1.			
		adequate k to electric				ents, rele	vant cir	cuits an	d their wo	rking			
		to electric											
						ised to r	neasure	voltage	, current, p	ower etc			
			_	_				_	, current, p				
COURSE OU	•								/ / <u>/ 1</u>				
CO1					uate kno	wledge	of the in	strume	nts, releva	nt circuit	s and the	ir worki	ing
CO2		Capable o	of describi	ng vario	ous elect	rical ins	truments	S					
CO3		Capable o	of describi	ng vario	ous meas	uremen	ts techni	ques.					
CO4		Knowledg	ge on anal	og techi	niques u	sed to m	easure v	oltage,	current, po	ower etc.	gets enh	anced	
CO5		`			•			oltage,	current, po	wer etc.	gets enh	anced	
Mapping of C								,					
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	M	H	Н	L	H	M	M	Н	M	H	L	H	
CO2	Н	H	M	Н	M	Н	H	L	Н	M	Н	L	
CO3 CO4	M H	H M	L L	M M	H H	M M	L L	M H	H H	M H	H M	L M	
CO ₅	L	H	M	H	Н	M	L	Н	Н	Н	L	M	
		11	141	11	11	171		11		11		171	
COs / PSOs		PSO1	PSO	02	PS	O3	PS	SO4	PSO5				
CO1	M		Н		Н		M		L				
CO2	L		M		Н		M		Н				
CO3	Н		Н		M		L		L				
CO4	M				Н		M		L				
CO5	Н		M M L gth of Correlation H- High, M- Medium, L-Low					Н					
H/M/L indicat	es Str	ength of C		H- H1	gh, M- I	Medium	, L-Low	1	1				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval				✓									

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

MEASUREMENTS AND INSTRUMENTS

UNIT I INTRODUCTION

9 Hrs

Units, Dimensions and standards-measurement errors PMMC, moving iron instruments – Galvanometer – construction -Principle of operation- Types of Ammeter & voltmeter- Rectifier type voltmeter and ammeter.

UNIT II RESISTANCE, INDUCTANCE & CAPACITANCE MEASUREMENTS 9 Hrs

Resistance measurement – wheat stone bridge & Kelvin double bridge measurement of inductance and capacitance – Maxwell bridge & Hay's bridge measurement of capacitance – Schering bridge, student type potentiometer- precision potentiometer – AC potentiometer, polar and co-ordinate type – application.

UNIT III WATT METER AND ENERGY METER CALIBRATION

9 Hrs

Electro dynamic Instruments, wattmeter – theory and its error – methods of correction – LPF wattmeter – induction type wattmeter – theory and adjustment – calibration of wattmeter and energy meter, Instrument transformer – construction and theory of current Transformer & potential Transformer..

UNIT IV ANALOG & DIGITAL INSTRUMENTS

9 Hrs

CRO – operation – measurement of voltage, frequency and phase-Analog storage oscilloscope, sampling oscilloscope -DSO – operation, signal & function generation – Digital voltmeter and mutimeter. Q-meter.

UNIT V DIGITAL DISPLAY AND RECORDING DEVICES

9 Hrs

Bar graph display – seven segment and dot matrix display – signal recorders – XY recorders – magnetic tape recorders – digital recording and data loggers.

Total Number of Hours: 45 Hrs

Text Books:

- 1. Rangan C.S. "Instrumentation Devices and Systems", Tata McGraw Hill, 1998.
- 2. Cooper, "Electronic Instrumentation and Measurement Techniques", Prentice Hall of India, 1988.
- 3. A. K. Shawney "Electronics and Electrical Instrumentation" Tata McGraw Hill, 1975.

Reference Books:

- 1. Bouwels A.J., "Digital Instrumentation", McGraw Hill, 1986.
- 2. Barney .C., "Intelligent Instrumentation", Prentice Hall of India, 1985.
- 3. Oliver and Cage, "Electronic Measurements and Instruments and Instrumentation", McGraw Hill, 1975.
- 4. Deobelin, "Measurements Systems", McGraw Hill, 1990.

B.Tech Regulation 2017 Approved by the Academic Council

REVISION-3

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code BEI17L03	: !	Subject Na	ame : TR	ANSDU	ICER 1	LABOR	RATOR	Y	T / L/ ETL	L	T / S.Lr	P/R	C
BEIT/E03	1	Prerequisit	e:						L	0	0/0	3/0	1
L : Lecture T :				ed Learı	ning P:	Project	R : Res	earch C	: Credits	1 0	0, 0	0,0	
T/L/ETL : The						3							
OBJECTIVE	:												
> To lea	rn pr	actically at	out trans	ducers a	nd abou	t the typ	es of Tr	ansduce	ers				
To stu	dy va	rious trans	ducers use	ed for th	e measu	rement	of variou	ıs physi	cal Quanti	ties			
> To ide	ntify	suitable ins	struments	to meet	the requ	iirement	s of indu	ustrial a	pplications	S			
		e Resistive,			nductive	transdu	cers						
		e various tr											
COURSE OU	TCO												
CO1									and about		s of Tran	sducers	
CO2		various tr	ansducers	used fo	r the me	asureme	ent of va	rious pl	nysical Qu	antities			
CO3									quirement		ustrial app	olication	ıs
CO4							itive and	d Induct	ive transd	ucers			
CO5		Graduate											
Mapping of C								T =	1	T = - · ·	1	1	
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO1	12
CO1	Н	L	M	Н	Н	M	M	L	Н	M	Н	M	
CO2	Н	H	Н	Н	M	M	L	L	M	Н	M	L	
CO3	Н	M	M	M	M	L	M	M	Н	Н	M	L	
CO4	M	H	Н	M	H	M	H	Н	Н	M	L	M	
CO5	Н	Н	Н	M	L	M	L	M	Н	Н	M	L	
COs / PSOs		PSO1	PSO	D2	PS	O3	PS	SO4	PSO5				
CO1	M		M		Н		Н		L				
CO2	Н		Н		Н		M		M				
CO3	M		Н		Н		M		L				
CO4	Н		Н		M		Н		L				
CO5	M		M		Н		L		Н				
H/M/L indicate	es Str	ength of C	orrelation	H- Hi	igh, M- l	Medium	, L-Low	,		•			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

TRANSDUCER LABORATORY

LIST OF EXPERIMENTS

- 1. Displacement versus output voltage characteristics of a Potentiometric transducer.
- 2. Strain gauge characteristics.
- 3. Load cell characteristics.
- 4. Photoelectric tachometer.
- 5. Hall effect transducer.
- 6. Characteristics of LVDT.
- 7. Characteristic of LDR, Thermistor and thermocouple.
- 8. Ramp response characteristic of filled in system thermometer.
- 9. Step response characteristic of RTD and thermocouple.
- 10. Flapper nozzle system.
- 11. P/I and I/P converters.
- 12. Study of smart transducers

Total Number of Hours: 45 Hrs

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code BEI17L04	: 3	Subject N	ame :ME	ASURE	MENT	S LAB	ORATO	ORY	T / L/ ETL	L	T / S.Lr	P/R	C
DEII/LU4	-	Prerequisit	φ.						L	0	0/0	3/0	1
L : Lecture T :				ed Lear	ning P	Project	R · Res	search (U	0/0	3/0	
T/L/ETL : The						Troject	IX . IXC	scarcii C	. Cicuits				
OBJECTIVE		do Linoca	dea Theo	iy ana i									
		adequate l	knowledg	e of the	compens	sating ci	rcuits						
		to synchr			•	υ							
		to measu			s.								
To En	nphasi	s Knowled	dge on co	ntrol sys	tem								
To En	nphasi	s Knowled	dge on dig	gital tech	niques u	ised to n	neasure	voltage	, current, p	ower etc	:		
COURSE OU	TCO	MES (CO	os): (3-5	5)									
CO1							of the	compen	sating circ	uits			
CO2		Capable of	of describ	ing sync	hronous	motor							
CO3		Capable of	of describ	ing vario	ous meas	suremen	ts techn	iques.					
CO4		Knowled	ge on co	ntrol syst	tem								
CO5		Knowled	ge on dig	ital techr	niques us	sed to m	easure v	voltage,	current, po	ower etc.	gets enh	anced	
Mapping of C						, ,	-						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	M	M	Н	L	Н	Н	M	M	L	L	M	
CO2	M	Н	Н	M	L	M	Н	Н	Н	L	M	M	
CO3	M	H	H	Н	Н	L	M	L	M	L	Н	Н	
CO4	Н	Н	Н	M	M	M	Н	M	Н	L	Н	M	
CO5	M	Н	Н	L	L	M	Н	Н	Н	M	M	Н	
COs / PSOs		PSO1	PS	O2	PS	O3	PS	SO4	PSO5				
CO1	Н		M		L		Н		M				
CO2	Н		Н		M		L		Н				
CO3	Н		M		Н		L		L				
CO4	L		H		Н		L		M				
CO5	M		M		Н		L		Н				
H/M/L indicat	es Str	ength of C	orrelation	<u>H- Hi</u>	igh, M-	Medium	, L-Low		T	1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval	H H	Н	TH SO		<u> </u>		<u> </u>		N				

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

MEASUREMENTS LABORATORY

LIST OF EXPERIMENTS:

- 1. Compensating Networks
- 2. Study of synchronous Motor
- 3. DC stepper Motor
- 4. DC Position control system
- 5. AC position control system
- 6. Digital control (P & PI) of I order system
- 7. Digital control (state variable feedback) of II order liquid level system
- 8. Study of transducers
- 9. Use of Wheatstone bridge as a resistance to voltage converter and to determine its sensitivity for various ratios
- 10. Kelvin double bridge

Total Number of Hours: 45 Hrs

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Percequisite:	Subject Code BCS17IL6	: 5	Subject Na	ame : OO	PS LA	BORAT	TORY 1	USING	C++	T / L/ ETL	L	T / S.Lr	P/R	C
### OBJECTIVE: Theory/Lab/Embedded Theory and Lab OBJECTIVE: ** To be able to understand and apply various object oriented features like inheritance, data abstraction, encapsulation and polymorphism ** To solve various computing problems using C++ language. ** To be able to create a program that measures or simulates performance and use it ** To be analyze the behavior of the performance of the program ** The students will be able to an object-oriented program design into the class and template model of C++. **COURSE OUTCOMES (COs): (3-5) **CO1]	Prerequisit	e:						L	0	0/0	3/0	1
OBJECTIVE: To be able to understand and apply various object oriented features like inheritance, data abstraction, encapsulation and polymorphism To solve various computing problems using C++ language. To be able to create a program that measures or simulates performance and use it To be analyze the behavior of the performance of the program The students will be able to an object-oriented program design into the class and template model of C++. COURSE OUTCOMES (COS): (3-5) CO1 Able to understand and apply various object oriented features like inheritance, data abstraction, encapsulation and polymorphism to solve various computing problems using C++ language. CO2 To solve various computing problems using C++ language. CO3 Students will be able to create a program that measures or simulates performance and use it CO4 Analyze the behavior of the performance of the program CO5 The graduates can map an object-oriented program design into the class and template model of C++. CC++. Mapping of Course Outcomes with Program Outcomes (POs) CO5 CO5 The graduates can map an object-oriented program design into the class and template model of C++. CC++. Mapping of Course Outcomes with Program Outcomes (POs) CO5 CO5 M H H H H M M L H H H M M M L H H H M M M CO5 M H H H M M M L H H H M M M L H H H M M M CO5 H M M H H M M M L H H H M M M L H M M M L H M M M M	L : Lecture T :	: Tuto	rial SLr :	Supervis	ed Learı	ning P:	Project	R : Res	earch C	: Credits			•	
> To be able to understand and apply various object oriented features like inheritance, data abstraction, encapsulation and polymorphism > To solve various computing problems using C++ language. > To be able to create a program that measures or simulates performance and use it > To be analyze the behavior of the performance of the program design into the class and template model of C++. COURSE OUTCOMES (COs): (3-5) CO1	T/L/ETL: The	eory/L	ab/Embed	ded Theo	ry and L	ab								
encapsulation and polymorphism To solve various computing problems using C++ language. To be able to create a program that measures or simulates performance and use it To be analyze the behavior of the performance of the program The students will be able to an object-oriented program design into the class and template model of C++. COURSE OUTCOMES (COs): (3-5) CO1 Able to understand and apply various object oriented features like inheritance, data abstraction, encapsulation and polymorphism to solve various computing problems using C++ language. CO2 To solve various computing problems using C++ language CO3 Students will be able to create a program that measures or simulates performance and use it CO4 Analyze the behavior of the performance of the program CO5 The graduates can map an object-oriented program design into the class and template model of C++. Mapping of Course Outcomes with Program Outcomes (POs) CO5POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 PO1 PO1 PO1 PO1 PO2 CO1 M M M H H M M L H M M CO2 M H H M M CO3 H H H M M CO4 M M H H M M CO5 H M H H M M CO5 PSO1 PSO2 PSO3 PSO4 PSO5 PSO4 PSO5 PSO4 PSO5 PSO4 PSO5 CO4 CO5 CO5PSOS PSO1 PSO2 PSO3 PSO4 PSO5 PSO4 PSO5 CO5PSOS PSO1 PSO2 PSO3 PSO4 PSO5 CO5PSOS PSO1 PSO2 PSO3 PSO4 PSO5 CO5PSOS PSO1 PSO2 PSO3 PSO4 PSO5 CO5PSOS PSO4 PSO5 CO5PSOS PSO1 PSO5 CO5PSOS PSO4 PSO5 CO5PSOS PSO5 CO5PSOS PSO6 PSO7 PSO6 PSO6 PSO7	OBJECTIVE	:												
> To solve various computing problems using C++ language. > To be able to create a program that measures or simulates performance and use it > To be analyze the behavior of the performance of the program > The students will be able to an object-oriented program design into the class and template model of C++. COURSE OUTCOMES (COs): (3-5) CO1 Able to understand and apply various object oriented features like inheritance, data abstraction, encapsulation and polymorphism to solve various computing problems using C++ language. CO2 To solve various computing problems using C++ language CO3 Students will be able to create a program that measures or simulates performance and use it CO4 Analyze the behavior of the performance of the program CO5 The graduates can map an object-oriented program design into the class and template model of C++. Mapping of Course Outcomes with Program Outcomes (POs) CO5/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 M M H H M M CO2 M H H M M L H M M CO3 H H H M M L H M H H M CO4 M M H H M M H H M M L H M M CO5/PSOs PSO1 PSO2 PSO3 PSO4 PSO5 CO1 M M M H H M M M L H M M CO3 M H H H M M M L H M M CO4 H H H M M M L H M M H H H M M M L H M M CO3 H H H H M M M L H H M H H H H H H H H H H						various (object o	riented f	eatures	like inheri	tance, da	ıta abstra	ction,	
➤ To be able to create a program that measures or simulates performance and use it ➤ To be analyze the behavior of the performance of the program ➤ The students will be able to an object-oriented program design into the class and template model of C++. COURSE OUTCOMES (COs): (3-5) CO1 Able to understand and apply various object oriented features like inheritance, data abstraction, encapsulation and polymorphism to solve various computing problems using C++ language. CO2 To solve various computing problems using C++ language CO3 Students will be able to create a program that measures or simulates performance and use it CO4 Analyze the behavior of the performance of the program CO5 The graduates can map an object-oriented program design into the class and template model of C++. Mapping of Course Outcomes with Program Outcomes (POs) CO5/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 M M H H M M M L H H M M M L H M M M M		•												
➤ To be analyze the behavior of the performance of the program design into the class and template model of C++. COURSE OUTCOMES (COs): (3-5) CO1														
The students will be able to an object-oriented program design into the class and template model of C++. COURSE OUTCOMES (COS): (3-5) Able to understand and apply various object oriented features like inheritance, data abstraction, encapsulation and polymorphism to solve various computing problems using C++ language. CO2 To solve various computing problems using C++ language CO3 Students will be able to create a program that measures or simulates performance and use it CO4 Analyze the behavior of the performance of the program The graduates can map an object-oriented program design into the class and template model of C++. Mapping of Course Outcomes with Program Outcomes (POS) CO3-POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO9 PO1 PO1 PO1 PO1 PO1 PO1										nce and us	e it			
COURSE OUTCOMES (COs): (3-5) Able to understand and apply various object oriented features like inheritance, data abstraction, encapsulation and polymorphism to solve various computing problems using C++ language. CO2 To solve various computing problems using C++ language CO3 Students will be able to create a program that measures or simulates performance and use it CO4 Analyze the behavior of the performance of the program CO5 The graduates can map an object-oriented program design into the class and template model of C++. Mapping of Course Outcomes with Program Outcomes (POs) COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 M M H H M M M L H M M L H M M M CO2 M H H M M M L H M M L H M M M CO3 H H H M M M L H M M L H M M M L H M M M L H M M M L H M M M L H M M M L H M M M L H M M M L H M M M L H M M M L H M M M L H M M M L H M M M L H M M M L H M M M L H M M M L H M M M M													1 60	
Able to understand and apply various object oriented features like inheritance, data abstraction, encapsulation and polymorphism to solve various computing problems using C++ language. CO2 To solve various computing problems using C++ language CO3 Students will be able to create a program that measures or simulates performance and use it CO4 Analyze the behavior of the performance of the program CO5 The graduates can map an object-oriented program design into the class and template model of C++. Mapping of Course Outcomes with Program Outcomes (POs) COs/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 M M H H M M L H M M CO2 M H H H M M L H M M CO3 H H H M M H H M M L H M CO5 H M M H H M M CO5 H M M H H M M CO5 H M M H H M M CO5 H M M M H H M M CO5 CO5 CO5 CO5 CO5 CO5 CO						ct-orien	ted prog	ram des	ıgn ınto	the class a	and temp	late mod	el of C+	<u>-+.</u>
encapsulation and polymorphism to solve various computing problems using C++ language. CO2		TCO							. 1.0	. 111				
To solve various computing problems using C++ language	COI													tion,
Students will be able to create a program that measures or simulates performance and use it	G02					•				<u> </u>	is using	C++ lang	guage.	
Analyze the behavior of the performance of the program	CO2		To solve	various co	mputing	g proble	ms usıng	g C++ la	inguage					
The graduates can map an object-oriented program design into the class and template model of C++.	CO3		Students	will be ab	le to cre	ate a pro	gram th	at measi	ures or s	simulates p	erforma	nce and u	use it	
C++.	CO4		Analyze t	he behavi	or of the	e perform	nance of	f the pro	gram					
C++.	CO5		The grad	uates can	map an	object-	oriented	prograi	n desig	n into the	class an	d templa	ite mode	el of
COs/POs			_		r			F8						
COs/POs	Mapping of C	Course	e Outcome	es with Pr	ogram	Outcom	es (POs	;)						
CO1									PO8	PO9	PO10	PO11	PO1	2
CO3					1									
CO3	CO2	M	Н	Н	M	M	L	Н	M	Н	L	Н	M	
CO5	CO3	Н	Н	Н	M	M	L	M	Н	M	L	Н	M	
COs / PSOs PSO1 PSO2 PSO3 PSO4 PSO5 CO1 M M M H H L CO2 H H H M M M CO3 M H H M M M CO4 H H H M M M M CO5 L L L M L H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low Category Category Cos / PSOs PSO1 PSO2 PSO3 PSO4 PSO5 PSO4 PSO5 L RH H H L L CO2 H H H H M M M M CO4 H H H H M M M M CO5 L L L M L H H M CO5 L L L M L H H M CO5 L L L M L H H M CO5 L L L M L H H M CO5 L L L M L H H M M CO5 L L M L H H M M CO5 L M M L H H M M CO5 L M M M CO5 L M M M CO5 L M	CO4	M	M	Н	M	Н	M	Н	Н	M	L	Н	M	
CO1 M M M H H H L L CO2 H H H M M M M L CO3 M H H M M M M M CO4 H H H M M M M M CO5 L L L M M L H H H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low Category Cate	CO5	Н	M	Н	L	L	M	Н	M	L	Н	M	Н	
CO1 M M M H H H L L CO2 H H H M M M M L CO3 M H H M M M M M CO4 H H H M M M M M CO5 L L L M M L H H H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low Category Cate														
CO2 H H H M M M L CO3 M H H M M M M CO4 H H H M M M M CO5 L L L M L H/M/L indicates Strength of Correlation Category Cat			PSO1		O2		SO3		SO4					
Cotegory Cotego														
Cotegory Cotegory Cotegory Cotegory Category Catego														
Category Category Category L H/M/L indicates Strength of Correlation H-High, M-Medium, L-Low Category Categor														
H/M/L indicates Strength of Correlation Harmanities Strength of Correlation House House Sciences Basic Sciences House House House Sciences Brogram Core Arctical / Project Program Electives Soft Skills Soft Skills		Н		Н										
Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core Program Electives Practical / Project Internships / Technical Skill Soft Skills		L		L						Н				
	H/M/L indicat	es Str	ength of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low			1			
	Category	asic Sciences	ngineering Sciences	ng Sciences es and Social Core Trives Project Ss / Technical Skill										
Approval		В	面面	ΗŠ	_ ₹	P.	0	\mathbf{P}_{I}	Ir	Ñ				
	Approval			1	<u> </u>	<u> </u>					1			

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

OOPS LABORATORY USING C++

LIST OF EXPERIMENTS

- > To implement the following list of programs.
- 1. Write a C++ program for Simple Interest. And adding two numbers
- 2. Write a C++ program for Control Structure.
- 3. Write a C++ program for Inline Function.
- 4. Write a C++ program for Function Overloading.
- 5. Using Class concept write a C++ program for Constructor and Destructor.
- 6. Using Class concept write a C++ program for Overloading Unary Operator, Binary operator.
- 7. Using Class concept write a C++ program for Single Inheritance.
- 8. Using Class concept write a C++ program for Multiple Inheritance.
- 9. Using Class concept write a C++ program for Multilevel Inheritance.

USING JAVA

- 1. Write a JAVA program Find the length of array.
- 2. Write a JAVA program to Prime number checking and sum of digit
- 3. Write a program for example of try and catch block. In this check whether the given array size is negative or not.
- 4. Write the programs using the concept of Generic class, Inheritance, Interface and Package
- 5. Write a program to create a file and write data into it using the methods Output Stream class.
- 6. Write a program that uses the concept of Applet and Exception Handling
- 7. Write a program to give example for multiple inheritance in Java
- 8. Write an application to simulate traffic lights and calculator using GridbagLayout
- 9. Write the program which creates the Frame and implements MouseListener

Total Number of Hours: 45 Hrs

Department of <u>ELECTRONICS AND INSTRUMENTATION ENGINEERING</u>

Subject Code BEI17TSX	S	ubject N	ame:	TECHN	VICAL S	SKILL	I		T / L/ ETL	L	T / S.Lr	P/R	С
									L	0	0/0	2/0	1
L : Lecture T	: Tutori	al SLr	: Supervis	ed Lear	ning P:	Project	R : Res	search C	: Credits	1 1			
T/L/ETL: Th	eory/La	.b/Embec	lded Theo	ry and L	Lab								
OBJECTIVE	E: The	objective	e is to dev	elop the	technica	al skill o	f the stu	dents.					
COURSE OU	UTCON	MES (CC	Os): (3-5)									
CO1	Devel	op the te	chnical sk	ills requ	ired in t	he field	of study	,					
CO2	Bridg studer		between	the skill	require	nents of	the emp	oloyer o	r industry	and the c	ompeten	cy of th	e
CO3	Enhar	nce the en	nployabil	ty of the	e studen	ts.							
Mapping of (Course	Outcom	es with P	ogram	Outcon	nes (POs	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н	Н	Н	Н	Н	M	M	Н	M	Н	M	
CO2	Н	Н	M	Н	Н	Н	M	M	Н	Н	Н	Н	
CO3	Н	Н	Н	Н	Н	Н	M	M	Н	Н	Н	Н	
COs / PSOs	P	SO1	PS	O2	PS	SO3	PS	SO4	PSO5				
CO1	Н		Н		Н		Н		Н				
CO2	Н		Н		Н		Н		Н				
CO3	Н		Н		Н		Н		Н				
H/M/L indica	tes Stre	ngth of C	Correlation	H- H	igh, M-	Medium	, L-Low	7					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Name : CONTROL ENGINEERING

BEI17007	•	Subject Na	anic . Co	TTIKO	LENGI		110		ETL		S.Lr	1 / IX	
BEITTOOT		Prerequisit	e:						T	3	1/0	0/0	4
L : Lecture T :			Supervis	ed Lear	ning P:	Project	R : Res	earch C	: Credits				
T/L/ETL : The			•		_	3							
OBJECTIVE													
					cience ar	nd mathe	ematics 1	necessa	ry to formu	late, so	lve and an	alyse	
		instrument				_				_			
									probability	theory.	, etc		
		good know								.:	1 . 4 4 4		.4:
		necessary ineering.	oundatioi	n on con	nputatio	nai piau	orms an	a sonw	are applica	nons re	rated to th	e respec	cuve
	_	an opportu	nity to we	ork in in	ter-disci	nlinary (rouns						
COURSE OU					ter disci	pilitary	sroups.						
CO1	100				foundati	ion in b	asic scie	ence an	d mathema	atics ne	cessary to	formu	ılate.
		solve and	_	_							J		,
CO2									atrix theory	, proba	bility theo	ry, etc.	
						1	,	, ,	- J	, I	J	J /	
CO3		Gets good	l knowled	lge of in	strumen	tation sy	stems a	nd their	application	18			
		3000	. Allowiou	.50 OI III		aaion sy	Sterris a		аррисанов	.1.3.			
CO4		Gets nece	ssary fou	ndation	on comp	utationa	l platfor	ms and	software a	pplicati	ons relate	d to the	:
		respective	e field of e	engineer	ring								
CO5		Gets an o	pportunity	y to wor	k in inte	r-discipl	inary gr	oups.					
Mapping of C	'ours		•										
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	12
CO1	Н	H	M	M	H	M	Н	M	L	L	Н	M	1 2
CO2	M	M	Н	Н	Н	L	L	M	H	M	H	M	
CO3	M	Н	M	L	Н	M	L	L	Н	Н	M	Н	
CO4	Н	M	L	M	Н	M	L	Н	M	L	M	Н	
CO5	Н	L	L	M	Н	Н	M	Н	M	Н	L	Н	
COs / PSOs		PSO1	PSC	O2		O3	PS	SO4	PSO5				
CO1	M		Н		Н		M		L				
CO2	Н		M		M		Н		L				
CO3	L		H		M		M		Н				
CO4	Н		L		L		Н		M				
CO5	H	enath of C	M	LJ TT	H	Madin	L	,	Н				
H/M/L indicat	es su	engin of C	orrelation		igh, M- l	vieaium	, L-LOW						
								Ski					
		Š	ial					cal					
Category		nce	Social		Š		٠	- hnik					
	S	cie	pı		ive	Ş	jec	[ecl					
	Jce	ρΰ S	s ar	ore	lect	ive	Pro	;					
	ciei	rin	itie: s	n C	n E	lect	1/1	nips	ills				
	S S	nee	nani nce	ran	ran	ıΕ	tica	.nsł	$\mathbf{S}\mathbf{k}$				
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	В	田田	ΞŚ	<u>~</u>		0	Д	II	S				
Approval			1		1		1	1	1	<u> </u>			

Subject Code:

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

CONTROL ENGINEERING

UNIT I SYSTEMS AND THEIR REPRESENTATION

12 Hrs

Basic elements in control systems-open and closed loop systems – Mathematical modeling of Mechanical Translational system and Rotational system - Electrical analogy of physical systems – transfer function – AC and DC servomotors – block diagram reduction techniques – signal flow graph.

UNIT II TIME RESPONSE

12 Hrs

Time response – time domain specifications – types of test inputs – I and II order system response – error coefficients – generalised error series – steady state error – PID controller response with and without I order system.

UNIT III FREQUENCY RESPONSE

12 Hrs

Frequency response – definition – Bode plot – polar plot – constant M and N circles – Nichols chart – determinate of closed loop response from open loop response..

UNIT IV STABILITY OF CONTROL SYSTEM

12 Hrs

Characteristic equation – location of roots in s-plane for stability – Routh Hurwitz criterion – root locus techniques – construction – gain margin and phase margin – Nyquist stability criterion.

UNIT V CONTROL SYSTEM DESIGN

12 Hrs

Performance criteria – selection of controller modes – lag, lead, and lag-lead networks – compensator design for desired response. PI, PD and PID Controllers – Feedback compensation.

Total Number of Hours: 60 Hrs

Text Books:

- 1. Ogata K., Modern Control Engineering, Prentice Hall of India Ltd., New Delhi, 1995.
- 2. I.Gopal, and M.Nagrath, Control Systems, Wiley Eastern, Ltd., New Delhi, 1985
- 3. A. NagoorKani, control systems, R.B.A publications, Chennai

Reference Books:

- 1. Kuo B.C., Automatic Control Systems, Prentice Hall of India Ltd., New Delhi, 1995.
- 2. M.Gopal, Control Systems, Principles and Design, Tata McGraw-Hill Publishing Co., New Delhi, 1997.

Department of <u>ELECTRONICS AND INSTRUMENTATION ENGINEERING</u>

Subject Code:	:	Subject Na	ame : DIO	GITAL	SIGNA	L PRO	CESSIN	IG	T/L/	L	T/	P/R	C
BEI17008	-	Prerequisit							ETL T	3	S.Lr 1/0	0/0	4
L : Lecture T :				ed Lear	ning P ·	Project	R · Res	earch C		3	1/0	0/0	4
T/L/ETL : The						Troject	K . Kes	carcii	. Credits				
OBJECTIVE		2do/ Linoca	ded Theo	i y unu L									
> Introduction		periodic &	pulse sign	nals, var	ious sys	tems an	d time d	omain a	nalysis.				
Graduates										series.			
Overview													
Students to													
> Architectu					rocessir	ng chips.							
COURSE OU	TCO	·											
CO1		Students											
CO2		Understa	nd the pro	perties o	of Z-tran	sform a	nd they	able sol	ve the Fou	rier serie	S.		
CO3		Students	learn the o	verviev	v of Fou	rier tran	sform, F	IR and	IIR filters.				
CO4		Capable t											
		•	C										
CO5		Acquire k	nowledge	about A	Architec	ture and	features	s of vari	ous signal	processi	ng chips		
Mapping of C						, ,				•			
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	.2
CO1	H	L	Н	M	H	M	H	Н	M	M	L	M	
CO2	M	M	M	Н	Н	Н	Н	M	M	H	L	H	
CO3	Н	Н	M	L	Н	M	Н	Н	M	Н	M	Н	
CO4	Н	L	M	Н	M	Н	M	L	H	M	Н	H	
CO5	Н	Н	M	M	Н	M	Н	Н	Н	L	M	M	
COs / PSOs		PSO1	PSO	72	DC	SO3	D	SO4	PSO5				
COS/ PSOS	Н	<u> </u>	M	<i>J</i> 2	Н	003	M	504	L		+		
CO2	M		M		Н		L		H				
CO3	Н		M		M		L		M				
CO4	L		Н		M		M		M				
CO5	M		L		M		L		M				
H/M/L indicate	es Str	ength of C	orrelation	H- H	igh, M-	Medium	, L-Low	7	·	· I			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval	<u>щ</u>	Щ	T N	<u>~</u>	<u> </u>		<u> </u>	I	N.				

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

DIGITAL SIGNAL PROCESSING

UNIT I DISCRETE TIME SIGNALS AND SYSTEMS

12 Hrs

Periodic and pulse signals – examples of sequences – pulse step, impulse, ramp, sine and exponential – differential equations – linear time invariant – stability, causality – DT systems – time domain analysis

UNIT II Z-TRANSFORM

12 Hrs

Z-transform and its properties – convolution – inverse Z-transform – discrete Fourier series – properties – sampling the Z-transform – discrete Fourier transform – properties for frequency domain analysis – linear convolution using discrete Fourier transform – overlap add method, overlap save method.

UNIT III FAST FOURIER TRANSFORM (FFT)

12 Hrs

Introduction to Radix 2 FFT's – decimation in time FFT algorithm – decimation in frequency FFT algorithm – computing inverse DFT using FFT – mixed radix FFT algorithm – periodogram technique.

UNIT IV IIR AND FIR FILTER DESIGN

12 Hrs

Classification – reliability constrains – IIR design – bilinear transform method – impulse invariant method – step – invariance method – FIR design – Fourier series method – window function method.

UNIT V PROGRAMMABLE DSP CHIPS

12 Hrs

Architecture and features of TMS 320C50 and ADSP 2181 signal processing chips

Total Number of Hours: 60 Hrs

Text Books:

- 1. Openheim A.V., and Schafer R.W., Discrete Time Signal Processing, Prentice Hall of India, New Delhi, 1992
- 2. Proakis J.G. and Manolakis, D.G., Digital Signal Processing Principles, Algorithms and Applications, Prentice Hall of India, New Delhi, 1997.

Reference Books:

- 1. Antonian A., Digital Filters analysis and Design, Tata McGraw-Hill Publishing Co., New Delhi, 1988.
- 2. Stanley W.D., Digital Signal Processing, Restion Publishing House, 1989.
- 3.ADSP2181 DATASHEET

http://www.analog.com/UploadedFiles/Datasheets/505104853ADSP2181 d.pdf

4. TMS320C50 DATASHEET http://www.ti.com/sc/ds/smg320c50.pdf

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

T/L/

L

T/

P/R C

Subject Code: Subject Name: INDUSTRIAL

BEI17009		INSTRUN							ETL		S.Lr	1/1	
	<u> </u>	Prerequisit							T	3	0/0	0/0	3
L : Lecture T				ised Lea	rning P	: Proje	ct R:R	esearch	C: Credits			II.	
T/L/ETL : T	heory	/Lab/Embe	dded The	ory and	Lab								
OBJECTIV													
		e familiarit		arious i	ndustria	l instrui	nentatio	n types,	their para	meters	and differ	ent type	es of
		techniques.				_							
		tand the ba							nd speed a	ınd			
		bout techni						ty					
		nowledge a						411					
		tensive kn			nperatur	e meas	urement	techniqu	ies.				
COURSE O	UIC				v obout	voriou	indust	riol inctr	umentatio	n tymas	thair nor	omotors	and
COI			types of n					iai iiisu	umemano	n types,	then par	ameters	anu
CO2								chniques	of force,	torque a	nd sneed		
CO2		Students	unuerstai	iu tile ba	15105 111 1	neasure	mem te	innques	or rorce,	iorque a	na speca		
CO3		Acquires	knowledg	ge on tec	hniques	of acce	leration	, Vibrati	on and der	nsity			
CO4		Acquire 6	extensive	knowled	lge abou	t pressu	ire meas	urement	technique	S			
CO5		Acquire 6	extensive	knowled	lge abou	t tempe	rature m	easurem	ent techni	ques			
Mapping of	Cour	se Outcon	nes with I	Progran	Outco	mes (P	Os)						
COs/POs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	12
CO1	Н	M	Н	L	M	Н	M	L	M	Н	M	L	
CO2	Н	M	Н	M	Н	M	Н	M	L	Н	M	Н	
CO3	M	Н	L	M	Н	M	Н	L	Н	M	Н	L	
CO4	M	M	Н	M	Н	M	Н	L	L	M	M	Н	
CO5	L	L	Н	M	Н	M	Н	L	L	Н	M	Н	
COs / PSOs	-	PSO1	PS	O2		SO3		SO4	PSO5				
CO1	H		L		H		M		L				
CO2	M		L		Н		Н		M				
CO3	M		Н		M		Н		L				
CO4	M		Н		Н		M		L				
CO5	L	4	M Camalatia	II I	M Link M	Madin	L		Н				
H/M/L indic	aies S	uength of		nı H-1	11gn, M-	- ivieaiu	m, L-Lo						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	kills				
	Basic	Engine	Humaniti Sciences	Progra	Progra	Open]	Practic	Interns	Soft Skills				
Approval													

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

INDUSTRIAL INSTRUMENTATION – I

UNIT I MEASUREMENT OF FORCE, TOROUE AND VELOCITY

9 Hrs

Electric balance – Different types of load cells – Magnets – Elastic load cells - Strain gauge load cell – Different methods of torque measurement – Strain gauge, relative regular twist – Speed measurement – Revolution counter – Capacitive tacho-drag cup type tacho – D.C and A.C tacho generators – Stroboscope.

UNIT II MEASUREMENT OF ACCELERATION, VIBRATION, DENSITY AND VISCOSITY 9 Hrs

Accelerometers – LVDT, piezoelectric, strain gauge and variable reluctance type accelerometers – Mechanical type vibration instruments – Seismic instrument as an accelerometer and vibrometer – Calibration of vibration pick-ups – Units of density, specific gravity and viscosity used in industries – Baume scale, API scale – Pressure head type densitometer – Float type densitometer – Ultrasonic densitometer – Bridge type gas densitometer – Viscosity terms – Saybolt viscometer – Rotameter type.

UNIT III PRESSURE MEASUREMENT

9 Hrs

Units of pressure - Manometers - Different types - Elastic type pressure gauges - Bourdon type bellows - Diaphragms - Electrical methods - Elastic elements with LVDT and strain gauges - Capacitive type pressure gauge - Piezo resistive pressure sensor - Resonator pressure sensor - Measurement of vacuum - McLeod gauge - Thermal conductivity gauges - Ionization gauge, cold cathode and hot cathode types - Testing and calibration of pressure gauges - Dead weight tester.

UNIT IV TEMPERATURE MEASUREMENT

9 Hrs

Definitions and standards – Primary and secondary fixed points – Calibration of thermometer, different types of filled in system thermometer – Sources of errors in filled in systems and their compensation – Bimetallic thermometers – Electrical methods of temperature measurement – Signal conditioning of industrial RTDs and their characteristics – Three lead and four lead RTDs.

UNIT V THERMOCOUPLES AND PYROMETERS

9 Hrs

Thermocouples – Laws of thermocouple – Fabrication of industrial thermocouples – Signal conditioning of thermocouples output – Thermal block reference functions – Commercial circuits for cold junction compensation – Response of thermocouple – Special techniques for measuring high temperature using thermocouples – Radiation methods of temperature measurement – Radiation fundamentals – Total radiation & selective radiation pyrometers – Optical pyrometer – Two colour radiation pyrometers.

Total Number of Hours: 45 Hrs

Text Books:

- 1. E.O. Doebelin, 'Measurement Systems Application and Design', Tata McGraw Hill publishing company, 2003.
- 2. R.K. Jain, 'Mechanical and Industrial Measurements', Khanna Publishers, New Delhi, 1999.

Reference Books:

- 1. D. Patranabis, 'Principles of Industrial Instrumentation', Tata McGraw Hill Publishing Company Ltd, 1996.
- 2. A.K. Sawhney and P. Sawhney, 'A Course on Mechanical Measurements, Instrumentation and Control', DhanpathRai and Co, 2004.
- 3. B.Ĉ. Nakra&K.K.Chaudary, 'Instrumentation Measurement & Analysis', Tata McGraw Hill Publishing Ltd. 2004.
- 4. S.K. Singh, 'Industrial Instrumentation and Control', Tata McGraw Hill, 2003.
- 5. D.P. Eckman', Industrial Instrumentation', Wiley Eastern Ltd

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

T/

T / L/

Subject Name: FUNDAMENTALS OF

BEI17010	(COMMU	NICATI(ON ENG	INEER	ING			ETL		S.Lr		
		Prerequisit							T	3	0/0	0/0	3
L : Lecture T						Project	R:Re	search (C: Credits				
T/L/ETL: Th		Lab/Embed	ded Theo	ry and L	ab								
OBJECTIVE					_								
		the freque											
		o understa					es.						
		f data tran					- CEDA	A O TD	M	•			
		_							M transmis		nication		
COURSE OU					ous, pic	ture tub	es, and s	syncino	nization of	Commu	incation.		
COURSE OF	1100	•	, ,		ha conc	onts of	Analog	and Dia	ital comm	miontion	oironite		
CO2			wledge at							incatioi	Circuits		
CO3									n technique	20			
CO4									on media	<u> </u>			
CO5									Γ in differe	ent fields	1		
Mapping of (Course	•						, 01 10	- 111 0111010	11010	••		
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	M	M	M	Н	Н	L	Н	M	Н	M	Н	
CO2	M	Н	Н	M	L	L	M	Н	Н	M	M	L	
CO3	M	M	M	Н	Н	M	Н	L	Н	M	Н	M	
CO4	Н	Н	Н	M	M	L	L	M	Н	M	L	Н	
CO5	M	M	M	M	Н	Н	Н	L	L	Н	M	Н	
COs / PSOs		PSO1	PS	O2	PS	SO3	PS	SO4	PSO5				
CO1	Н		Н		M		M		L				
CO2	M		M		Н		Н		M				
CO3	L		L		Н		M		Н				
CO4	Н		M		L		Н		Н				
CO5	M		Н		M		L		M				
H/M/L indicate	tes Str	ength of C	Correlation	<u>1 H- H</u>	igh, M-	Mediun	ı, L-Lov		1				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	dils				
	Basic S	Engine	Humanit Sciences	Progra	Prograi	Open E	Practica	Interns	Soft Skills				
			1	1 ,	<u> </u>			1	1	1			
Approval													

Subject Code:

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

FUNDAMENTALS OF COMMUNICATION ENGINEERING

UNIT I RADIO COMMUNICATION SYSTEMS

9 Hrs

Frequency Spectrum – Principle of AM and FM – AM and FM transmitters and receivers – introduction to microwave communication systems – Principles of Satellite communication.

UNIT II PULSE COMMUNICATION SYSTEMS

9 Hrs

PAM, PPM, PDM, PCM – Delta Modulation – Differential PCM – Merit and demerits – comparison of pulse modulation schemes

UNIT III DATA TRANSMISSION

9 Hrs

Base Band Signal Receiver – error probability – optimum and matched filter techniques. Coherent Reception – Digital modulations systems – FSK, PSK – comparison of Data Transmission Systems.

UNIT IV TRANSMISSION MEDIUM

9 Hrs

Characteristics of cables – optical fibers – Effects of EM Radiation – Bandwidth and Noise Restrictions – Statistical measurements of Random Noise – Concept of Multiplexing FDM and TDM.

UNIT V TELEVISION 9 Hrs

Scanning methods - B/W and colour systems - camera and picture tubes - synchronization - Transmitters and Receivers.

Total Number of Hours: 45 Hrs

Text Books:

- 1. Kennedy, Electronic Communication systems 1987 McGraw Hill.
- 2. Simon Haykins, Communication Systems 1995 Wiley
- 3. Roddy and Coolen, Electronic Communication 1999, PHI

Reference Books:

1. Dr.J.S.Chitode, Principles Of communication, technical publications, 2009

Department of <u>ELECTRONICS AND INSTRUMENTATION ENGINEERING</u>

Subject Code:			me: MIC						T/L/	L	T /	P/R	С
BEE17I02			NTROL	LER, A	ND ITS	APPL	ICATIO	DNS	ETL	2	S.Lr	0.70	
I . I a atuma T .		equisite		d I aama	in a D. I	Duniant	D . Dass	analı Cı	Cardita	3	0/0	0/0	3
L: Lecture T: T/L/ETL: The						Project	R : Rese	earch C:	Credits				
OBJECTIVE		Linoca	ded Theor	y and L	au								
> To dev		in-deptl	n understa	nding of	f the one	eration o	of micror	processor	r and micr	ocontro	ller, macl	nine	
			g and inter				· I				,		
The gra	aduate v	vill leari	n some the	e interna	l organi	zation o	f some p	opular n	nicroproce	essor and	d microco	ontroller	:.
			software					_	_				
						essor an	d microc	controlle	r based sy	stem.			
			tion of m		roller.								
COURSE OU					•		1 .	. 1	1	• 1		•	
CO1					micropro	ocessor	and mici	rocontrol	ller, mach	ine lang	uage prog	grammıı	ng
CO2			ng techniq			:4	of		1				. 11
CO2									lar microp		r and mic	rocontr	oner
CO3	_								n and inte				
CO4								ntroller b	pased syst	em			
CO5	Unde	erstand 1	the application	ations of	f microc	ontrolle	r						
Mapping of C	ourse C	outcome			Outcom	`	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	
CO1	Н	Н	Н	Н	Н	Н	Н	L	Н	M	Н		M
CO2	Н	H	H	H	H	Н	M	M	Н	M	H		M
C03	Н	Н	Н	M	M	L	L	L	M	L	M		L
CO4 CO5	Н	H H	H H	H H	Н	M	M	M	H H	M	H		M
COs / PSOs	Н	<u>п</u>	PS(Н	M O3	M	M SO4	PSO5	M	п	r	M
CO1		M	130 H			H	_	M	M				
CO2		<u>vi</u> M	H			H		H	M				
CO3		<u> </u>	Н			H		M	L				
C04		L	N.			M		M	L				
CO5	N	M	Н	[I	Н]	M	M				
H/M/L indicate	s Streng	gth of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low	,					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

MICROPROCESSOR, MICROCONTROLLER, AND ITS APPLICATIONS

UNIT I ARCHITECTURE

9 Hrs

General 8-bit microprocessor and its architecture – 8085 functional block diagram – architecture functions of different sections – architecture of 8086 CPU.

UNIT II INSTRUCTION SETS

9 Hrs

Instruction format-addressing addressing modes – instruction set of 8085 CPU – instruction cycle – timing diagrams – different machine cycles – fetch and execute operations – estimation of execution time.

UNIT III ASSEMBLY LANGUAGE PROGRAMMING

9 Hrs

Assembly format of 8085 – assembly directions – multiple precision arithmetic operations – binary to BCD and BCD to binary code conversion – ALU programming using look up table – stack and subroutines

UNIT IV DATA TRANSFER AND INTERFACING

9 Hrs

Data transfer schemes – program I/O \hat{u} interrupt structure of 8085 – interrupt driven I/O – DMA serial I/O – input/output ports – latches and buffers – peripheral interface IC's – 8212, 8255, 8251, 8279, 8259 – interfacing of A/D and D/A converters – RAM and ROM – memory devices – display devices – applications.

UNIT V MICROCONTROLLERS

9 Hrs

Architecture of 8-bit micro controller (8051) – bus configuration – reset circuitry – power down considerations – instruction sets - programming exercises and micro controllers software design - development and troubleshooting tools – applications.

Total Number of Hours: 45 Hrs

Text Books:

- 1. Gaonkarr.s., Microprocessor architecture programming and application, wiley eastern ltd., new delhi, 1995
- 2. Kenneth hint, and danieltabak, microcontrollers, architecture, implementation and programming, mcgraw hill international, usa, 1992.

Reference Books:

- 1. Mathur A.P., Introduction of Microprocessors, Tata McGraw-Hill Publishing Co.Ltd., New Delhi, 1989.
- 2. John B.Peatman, Design with Microcontrollers, McGraw Hill International, USA, 1988.

Department of <u>ELECTRONICS AND INSTRUMENTATION ENGINEERING</u>

Subject Code:	Subject Name: LINEAR AND DIGITAL	T / L/	L	T /	P/R	C
BEI17ET3	INTEGRATED CIRCUITS*	ETL		S.Lr		
	Prerequisite:	ETL	1	0/2	1/1	3
L: Lecture T: Tu	torial SLr: Supervised Learning P: Project R: Research C	: Credits				
T/L/ETL: Theory	/Lab/Embedded Theory and Lab					
OBJECTIVE:						
➤ The p	purpose of this course is to enable the students to understand	the fundar	nentals	of integr	ated circ	cuits
and d	esigning electronic circuits using it.					
➤ Imple	ementing various circuits using Op-Amps.					
➤ The g	raduate can understand & Design waveforms Generating circu	uits and Mu	ltivibra	ators.		
Design	n simple filter circuits for specific engineering application					
Design	n combinational logic circuits using digital IC's.					
COURSE OUT	COMES (COs): (3-5)					
CO1	The students will be able to understand the fundamenta	ls of integ	rated c	circuits an	d desig	ning
	electronic circuits using it.	·				
CO2	A servine a legacial descent fundamentine a conique sinovite a cin	- O- A	~			

COI			ents will c circuits t		to unde	erstand	ine func	iamenta	is of integ	grated cir	cuits and	designing
CO2		Acquires	knowledg	ge on Im	plement	ing vari	ous circu	uits usin	g Op-Amp	os		
CO3		The grade	uate can u	nderstan	d & De	sign wav	eforms	Genera	ting circuit	s and Mu	ltivibrato	rs.
CO4		Students	can be abl	e to des	ign simp	le filter	circuits	for spec	cific engin	eering app	plication	
CO5		The grade	uate will b	e able to	Design	combin	national	logic ci	rcuits using	g digital I	C's.	
Mapping of (Course	Outcome	es with Pr	ogram	Outcom	es (POs	s)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	M	Н	Н	M	Н	Н	M	M	L	L	Н
CO2	M	Н	Н	Н	M	M	L	L	M	Н	Н	L
CO3	M	Н	Н	M	Н	M	Н	Н	M	Н	L	Н
CO4	Н	M	Н	L	Н	L	M	Н	L	M	Н	M
CO5	Н	M	L	L	Н	M	M	Н	L	Н	M	L
COs / PSOs		PSO1	PSO)2	PS	O3		SO4	PSO5			
CO1	Н		M		M		Н		L			
CO2	Н		M		M		Н		M			
CO3	M		Н		Н		M		L			
CO4	M		Н		M		L		Н			
CO5	L		M		Н		L		Н			
H/M/L indicate	tes Stre	ngth of C	orrelation	H- Hi	gh, M-	Medium	, L-Low	7				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
Approval		•	•		•	•	•	,		•	1	-

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

LINEAR AND DIGITAL INTEGRATED CIRCUITS*

UNIT I FABRICATION OF INTEGRATED CIRCUITS

9 Hrs

Silicon Wafer Preparation – Epitaxial growth –Photolithography – Etching – Diffusion: - Thermal Diffusion and Ion implantation – Metallization – Packaging – Realization of passive and active devices-Resistor, Capacitor, diode, BJT, FET and MOS transistors.

UNIT II LINEAR INTEGRATED CIRCUITS

9 Hrs

Introduction to Linear IC – Operational amplifiers – DC characteristics:- bias, offset and drift –AC characteristics:- bandwidth, slew rate and noise - Inverting and non inverting amplifiers - Zero crossing detector with hysteresis – Arithmetic Circuits.

UNIT III APPLICATIONS OF OP-AMP

9 Hrs

Precision rectifiers – Active filters – Butterworth low-pass filter and Butterworth highpass filter - Waveform generators: - Square, triangular and sine wave – V to I converter and I to V converter-Instrumentation Amplifier - Log and antilog amplifiers..

UNIT IV TIMER AND PHASE-LOCKED LOOP

9 Hrs

Basic functional block diagram - Characteristics and applications of ICs:- 555, 565,566, LM 723 voltage regulator and current regulator.

UNIT V -SPECIAL FUNCTIONS ICs

9 Hrs

Functional Block diagram of ADC and DAC – Sample and Hold circuit – Successive Approximation ADC - Integrating ADC – Sigma Delta ADC – Study of successive approximation ADC IC – Study of Integrating ADC IC – Study of Sigma Delta ADC IC – Study of 8 bit DAC IC – Temperature Sensor IC - Piezoelectric Pressure Sensor IC – Hall-Effect sensor IC and Level sensor IC.

Total Number of Hours: 45 Hrs

Text Books:

- 1. Gayakwad, R.A, "OP-Amps and Linear Integrated Circuits", Prentice Hall of India, New Delhi, 4th Edition, Pearson Education, 2003.
- 2. Choudhury, R. and Jain, S., "Linear Integrated Circuits", 3rd Edition, New Age Pub., 2007.

Reference Books:

- 1. Botkar, K.R., "Integrated circuits", Khanna Publishers, New Delhi, 2003.
- 2. Millman, J., and Halkias, C. C., "Integrated Electronics Analog and Digital circuits System", Tata McGraw-Hill, 2003.
- 3. Coughlin, R.F., Driscoll, F. F., "Operational Amplifiers and Linear Integrated Circuits", Pearson Education (P) Ltd, 6th Edition, 2006.
- 4. Franco, S., "Design with Operational and Analog Integrated Circuits", Tata McGraw-Hill Publishing Co., 3rd Edition, 2002.
- 5. Bell, D.A, "Op-amp & Linear ICs", Prentice Hall of India, 2nd Edition, 2007.

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

		ΓORY			7110112	ENTAT		T / L/ ETL	L	T / S.Lr	P/R	C
l Pre	erequisit							L	0	0/0	3/0	1
		Supervis	ed Learr	ning P:	Project	R : Res	earch C			070	370	
ry/Lat	o/Embed	ded Theo	ry and L	ab	3							
							plate.					
v abou	it the pra	ctical kno	wledge	about th	e spectro	ophotom	neter					
COM	IES (CO	s): (3-5)									
				rstand th	ne funda	mentals	of orifi	ce plate.				
								•				
J	Jnderstar	nds the Ov	erview	about th	e practio	al know	ledge a	bout the sp	ectropho	otometer		
					•							
PO1	PO2		PO4				PO8	PO9	PO10	PO11	PO1	2
Н	M	Н	M	L	Н	M	M	Н	L	Н	L	
L	Н	M	M	L	Н	L	M	Н	L	M	Н	
Н	Н	Н	M	M	M	L	L	L	Н	M	M	
PS	SO1	PSO)2	PS	O3	PS	SO4	PSO5				
Н		M		L		Н		M				
				1				Н				
Stren	gth of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low			1	1		
							Skil					
	Š	ial					cal					
	uce	Soc		S			Jinic					
•	cie	þ		ive	S	ject	ecl					
ce	∞	an s	ore	ect	ive	Pro ,	L /					
ier	rin	ties	C	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	ect	[7]	ips	lls				
S	nee	ani	ram	ram	田田	ica	ush	Ski				
asic	ngi	um zier	.0g	.0g	pen	act	ıterı	off.				
<u>m</u>	一豆	Η	P ₁	P ₁	0	E ~	l II	Š				
			<u> </u>	<u> </u>								
] h	le the uate c v about COM	le the students uate can under v about the prave of the gradu of the g	le the students to understuate can understand calify about the practical know (COMES (COS): (3-5) Enable the students The graduate can understands the Ownerse Outcomes with Property PO1 PO2 PO3 H	le the students to understand the uate can understand calibration at about the practical knowledge. COMES (COs): (3-5) Enable the students to understand. The graduate can understand. Understands the Overview. Understands the Overview. PO1 PO2 PO3 PO4 H M H M L H M M H H H M PSO1 PSO2 H M M H H H M Strength of Correlation H- Hi Solution Significant S	uate can understand calibration and measure about the practical knowledge about the vabout the practical knowledge about the vabout the practical knowledge about the value of the students to understand the can understand calibrate understands the Overview about the variety of the value of t	le the students to understand the fundamentals of uate can understand calibration and measurement about the practical knowledge about the spectron about the practical knowledge about the spectron about the practical knowledge about the spectron and the fundata are can understand to understand the fundata are can understand calibration and the graduate can understand calibration and understands the Overview about the practical urse Outcomes with Program Outcomes (POsterior PO1 PO2 PO3 PO4 PO5 PO6 H M H M H M L H H H H M M M M M M M M M	le the students to understand the fundamentals of orifice uate can understand calibration and measurement. It is about the practical knowledge about the spectrophotom of the practical knowledge about the fundamentals. The graduate can understand calibration and measurement. The graduate can understand calibration and measurement. The graduate can understand the fundamentals of the practical knowledge about the spectrophotom of the practical knowledge about the spectrophotom of th	le the students to understand the fundamentals of orifice plate. uate can understand calibration and measurement. v about the practical knowledge about the spectrophotometer COMES (COs): (3-5) Enable the students to understand the fundamentals of orifice plate. Understands the Overview about the practical knowledge and understands the Overview about the practical knowledge and understands the Overview about the practical knowledge and urse Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 H M H M L H M M M L H M M M L H L M H H H M M M M M L L H PSO1 PSO2 PSO3 PSO4 H M M H M M M M M Strength of Correlation H- High, M- Medium, L-Low Sould be sould be sould be spectrophotometer. Sould be sould be spectrophotometer. COMES (COs): (3-5) Enable the students to understand the fundamentals of orifice plate. The product of the spectrophotometer. PSO3 PSO4 PO5 PO6 PO7 PO8 H M M M M M M M M M M M M M M M M M M	le the students to understand the fundamentals of orifice plate. uate can understand calibration and measurement. v about the practical knowledge about the spectrophotometer COMES (COs): (3-5) Enable the students to understand the fundamentals of orifice plate. The graduate can understand calibration and measurement. Understands the Overview about the practical knowledge about the spurse Outcomes with Program Outcomes (POs) POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 H M H M M L H M M H L H M M M L L L L PSO1 PSO2 PSO3 PSO4 PSO5 H M H M H M M H M H M Strength of Correlation H- High, M- Medium, L-Low Superior of Correlation H- High, M- Medium, L-Low Superior of Correlation H- High, M- Medium, L-Low	le the students to understand the fundamentals of orifice plate. uate can understand calibration and measurement. v about the practical knowledge about the spectrophotometer COMES (COs): (3-5) Enable the students to understand the fundamentals of orifice plate. The graduate can understand calibration and measurement. Understands the Overview about the practical knowledge about the spectrophotometer urse Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 H M H M H M L H M M H L L H M M H L L H H M M H L H H H M M M L L L L L H PSO1 PSO2 PSO3 PSO4 PSO5 H M M L H M M H M Strength of Correlation H- High, M- Medium, L-Low Strength of Correlation H- High, M- Medium, L-Low	le the students to understand the fundamentals of orifice plate. uate can understand calibration and measurement. v about the practical knowledge about the spectrophotometer COMES (COs): (3-5) Enable the students to understand the fundamentals of orifice plate. The graduate can understand calibration and measurement. Understands the Overview about the practical knowledge about the spectrophotometer urse Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 H M H M M L H M M H L H L H M M H L H L M H H H M M M L L L L L H WH H H H M M M L L L L L H PSO1 PSO2 PSO3 PSO4 PSO5 H M L H M Strength of Correlation H- High, M- Medium, L-Low Supply Supp	le the students to understand the fundamentals of orifice plate. uate can understand calibration and measurement. v about the practical knowledge about the spectrophotometer COMES (COs): (3-5) Enable the students to understand the fundamentals of orifice plate. The graduate can understand calibration and measurement. Understands the Overview about the practical knowledge about the spectrophotometer urse Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1 H M H M L H M M H L H L L H M M H L H L M H L L H H M M M L H L M H L M M H H H H M M M M M L L L L L H M M M PSO1 PSO2 PSO3 PSO4 PSO5 H M M H M M M M H M M M M M M M M M M

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

INDUSTRIAL INSTRUMENTATION LABORATORY

LIST OF EXPERIMENTS:

- 1. Discharge coefficient of orifice plate
- 2. Measurement of Force using Proving Ring Calibration of pressure gauge
- 3. Calibration of Thermocouple
- 4. Measurement of Flow using Wheel Flow Meter
- 5. Measurement of Viscosity
- 6. Vacuum Pressure Measurement
- 7. Level measurement using d/p transmitter
- 8. UV Visible spectrophotometer
- 9. Calibration of Pressure Gauge using Dead Weight Tester
- 10. pH Meter standardisation and Measurement of pH values of solutions
- 11. Conductivity meter calibration and measurements of conductivity of test solutions.
- 12. Measurement of Temperature using Radiation Pyrometer.
- 13. Capacitance measurement using Capacitive Pickup.

Total Number of Hours: 45 Hrs

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code: BEI17L06		Subject Na LABORA		ITAL (CONTR	OL			T / L/ ETL	L	T / S.Lr	P/R	C
2217200	_	Prerequisit							L	0	0/0	3/0	1
L : Lecture T :	Tuto	rial SLr	Supervis	ed Learı	ning P:	Project	R : Res	earch C	: Credits	1			
T/L/ETL : The		ab/Embed	ded Theor	y and L	ab								
OBJECTIVE													
To study v													
To enable							the sys	tem .					
To Study aTo study the					iai circu	Its							
To Design					de plot								
COURSE OU					ac prot.								
CO1	100	Graduate			ious sig	nals.							
CO2		Students	can under	stand the	e various	s respon	ses of th	e syste	m				
CO3		The vario	us types c	f seque	ntial circ	uits can	be anal	yzed					
CO4		The gradu	ate becor	nes fam	iliar witl	n the PL	C & app	lication	of PLC.				
CO5									or using bo	de plot			
Mapping of C	ourse	Outcome	es with Pr	ogram	Outcom	es (POs	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	M	Н	M	L	L	Н	Н	M	Н	M	Н	
CO2	M	Н	Н	M	L	Н	M	Н	M	Н	L	L	
CO3	L	M	M	L	Н	M	Н	L	Н	M	L	Н	
CO4	Н	Н	M	L	Н	Н	M	L	Н	M	Н	L	
CO5	Н	M	Н	M	L	Н	M	L	L	Н	M	L	
COs / PSOs		PSO1	PSC	D2	PS	O3	PS	1 SO4	PSO5				
CO1	M		Н		M		L		Н				-
CO2	Н		Н		M		L		Н				
CO3	M		L		Н		M		Н				
CO4	L		L		Н		L		M				
CO5	M		Н		L		Н		M				
H/M/L indicate	es Str	ength of C	orrelation	H- Hi	gh, M- l	Medium	, L-Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

DIGITAL CONTROL LABORATORY

LIST OF EXPERIMENTS:

- 1. standard test signal
- 2. response for the first order system
- 3. response for the second order system
- 4. bode plot for a given system
- 5. root locus for the given system
- 6. polar plot for the given system
- 7. design of lead compensator using bode plot
- 8. design of lag compensator using bode plot
- 9. Study of programmable logic controller (PLC)
- 10. Verification of logic gates using PLC
- 11. Application of PLC

Total Number of Hours: 45 Hrs

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code: BEE17IL3	M	ibject Na ICROCC	NTROL				CATIO	NS	T / L/ ETL	L	T / S.Lr	P/R	C
		ABORAT							L	0	0/0	2/0	1
L : Lecture T :		erequisite		od Loor	ning D.	Project	D · Dos	ooroh C:		0	0/0	3/0	1
T/L/ETL: The						Froject	K . Kes	earch C.	Credits				
OBJECTIVE													
➤ The stu	udents	understa	nd to do b	asic prog	grammir	ng in mi	croproce	essors an	d Interfaci	ing.			
		ot to under											
		ulations to											
		understa						cessor.					
		nd the pro			ts of mic	crocontr	oller.						
COURSE OU		Capable of			mioron	*************	ra and In	torfooine	-				
		Familiar v				rocesso	rs and m	nerracing	3.				
CO2						4		. 1	• • •				
CO3		Capable of	_					•		etic			
CO4		Capable of				_			rocessor.				
CO5		Understa						ntroller.					
Mapping of C								DO0	DOO	DO 10	DO11		
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	
CO1	H	H H	H H	H	Н	H L	H L	L	H	M L	H		<u>М</u> L
CO2 CO3	Н	H	Н	M H	M H	H	M	M	M H	M	M H		<u>∟</u> М
CO3	Н	Н	Н	Н	Н	М	M	M	Н	M	Н		M
CO5	Н	Н	Н	Н	Н	M	M	M	H	M	Н		M
COs / PSOs		PSO1	PSO			O3		6O4	PSO5	111	11	1	<u></u>
CO1	L	201	M	<u> </u>	M		L		M				
CO2	M		M		M		M		Н				
CO3	M		M		M		M		Н				
CO4	M		M		M		L		Н				
CO5	L		M		M		M		M				
H/M/L indicate	es Stre	ength of C	orrelation	H- Hi	igh, M-	Medium	, L-Low			T		1	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

MICROPROCESSOR, MICROCONTROLLER AND ITS APPLICATIONS LABORATORY

LIST OF EXPERIMENTS:

- 1. Familiarisation of 8085 Microprocessor kit
- 2. Familiarisation of 8051 Microcontroller kit
- 3. 8085 and 8051 assembly language programming exercises
- 4. Interfacing of switches and display devices
- 5. Interfacing of D/A and A/D Converters
- 6. Interface of key board and display using programmable controllers
- 7. Interface of programmable Timer
- 8. Stepper motor control using microprocessor
- 9. Simple 8086 assembly language programming exercises
- 10. Study of MASM and DEBUG utilities

Total Number of Hours: 45 Hrs

Department of <u>ELECTRONICS AND INSTRUMENTATION ENGINEERING</u>

L : Lecture T :									ETL		S.Lr		C
I · Lecture T ·									L	0	0/0	2/0	1
L. Lecture 1.	Tutoria	l SLr	: Supervis	ed Learı	ning P:	Project	R : Res	earch C	: Credits	<u> </u>			
T/L/ETL : The	eory/Lab	/Embed	ded Theo	ry and L	ab								
OBJECTIVE	: The	objectiv	e is to dev	elop the	technic	al skill o	of the stu	idents.					
COURSE OU	TCOM	ES (CO	Os): (3-5)									
CO1	Develo	p the te	chnical sk	ills requ	ired in t	he field	of study						
CO2	Bridge	the gap	between t	he skill	requirer	nents of	the emp	oloyer o	r industry	and the c	ompeten	cy of th	e
	student				_								
CO3	Enhanc	ce the er	nployabili	ty of the	student	ts.							
Mapping of C	Course C	Outcome	es with Pr	ogram	Outcom	nes (POs	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н	Н	Н	Н	Н	M	M	Н	M	Н	M	
CO2	Н	Н	M	Н	Н	Н	M	M	Н	Н	Н	Н	
CO3	Н	Н	Н	Н	Н	Н	M	M	Н	Н	Н	Н	
COs / PSOs	PS	SO1	PSO)2)2	PS	SO3	PS	SO4	PSO5				
CO1	Н		Н		Н		Н		Н				
CO2	Н		Н		Н		Н		Н				
CO3	Н		Н		Н		Н		Н				
H/M/L indicate	es Stren	gth of C	Correlation	H- Hi	igh, M-	Medium	, L-Low	,					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code	: S	ubject Na	ame:	INPLAN	NT TRA	INING			T/L/	L	T /	P/R	C
BEI17L07									ETL		S.Lr		
									0	0	0	1	1
L: Lecture T:	Tutor	ial SLr	Supervis	ed Learr	ning P:	Project	R: Res	earch C	: Credits				
T/L/ETL : The													
OBJECTIVE			ective of t	the Inpla	nt traini	ng is to	provide	a short-	term work-	experie	ence in an	Industr	y/
Company/ Org													
COURSE OU													
CO1						_			rtaining to		nain of stu	ıdy.	
CO2									to the caree				
CO3								fession	al network	•			
Mapping of C													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO1	2
CO1	M	L	L	L	L	Н	Н	Н	H	Н	Н	Н	
CO2	Н	M	Н	Н	M	Н	Н	Н	Н	Н	Н	M	
CO3	Н	Н	Н	Н	M	Н	Н	Н	Н	Н	Н	M	
COs / PSOs	F	PSO1	PSO	O2	PS	SO3	PS	SO4	PSO5				
CO1													
CO2													
H/M/L indicate	es Stre	ength of C	orrelation	H- Hi	gh , M- 1	Medium	, L-Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval								✓					

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code BEI17011			ame : INI IENTAT		IAL				T / L/ ETL	L	T / S.Lr	P/R	С
		rerequisit							T	3	0/0	0/0	3
L: Lecture T:	Tutori	al SLr	Supervis	ed Learr	ning P:	Project	R : Res	earch C	: Credits				
T/L/ETL : The		ıb/Embed	ded Theor	y and L	ab								
OBJECTIVE					~								
			y variable					meters	,				
>		-	g air flow				eters						
>			o electrica	• •			. 4 4 1 :						
			nowledge						loisture co	ntont			
COURSE OU					S 01 V 1S	cosity, i	Tullilaity	y and w	ioisture co	пеш			
CO1					variable	head ty	pe flow	meters	, quantity	meters,			
CO2		Students	can analyz	ze about	air flow	meters	and mas	s flow 1	meters				
CO3		Students	can analyz	e electr	ical type	flow m	eters						
CO4		Students	acquire kr	owledge	e on var	ious leve	el measu	rement	technique	s			
CO5									idity and I		content.		
Mapping of C								<i>J</i> ,					-
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	M	M	M	Н	L	L	Н	Н	M	L	Н	
CO2	M	Н	M	Н	M	Н	Н	M	L	Н	M	L	
CO3	Н	M	M	M	Н	Н	M	L	Н	M	Н	Н	
CO4	M	Н	M	Н	Н	M	Н	M	Н	Н	L	Н	
CO5	M	Н	L	Н	Н	M	Н	M	Н	L	Н	M	
COs / PSOs	P	SO1	PSO))2	PS	O3	PS	<u> </u> 5O4	PSO5				
CO1	Н		M		L		Н		M				
CO2	M		Н		M		Н		M				
CO3	Н		Н		M		Н		L				
CO4	M		Н		Н		M		Н				
CO5	M		Н		M		Н		Н				
H/M/L indicate	es Stre	ngth of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval		l	1		ı	ı	1			1		_ I	

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

INDUSTRIAL INSTRUMENTATION-II

UNIT I MEASUREMENT OF HUMIDITY & MOISTURE

12 Hrs

Humidity terms – Dry and wet bulb psychrometers – Hot wire electrode type hygrometer – Dew cell Electrolysis type hygrometer – Commercial type dew point meter – Moisture terms – Different methods of moisture measurement – Moisture measurement in granular materials, solid penetrable materials like wood, web type material.

UNIT II MECHANICAL TYPE FLOW METERS

12 Hrs

Theory of fixed restriction valuable head type flow meters – Orifice plate – Venturi tube – Flow nozzle – Dall tube – installation of head flow meters – Piping arrangement for different fluids – Pitot tube.

UNIT III QUANTITY METERS, AREA FLOW METERS AND MASS FLOW METERS 12 Hrs

Positive displacement flow meters – Constructional details and theory of operation of mutating disc, reciprocating piston, oval gear and helix type flow meters – Inferential meter – Turbine flow meter – Rotameter – Theory and installation – Angular momentum mass flow meter – Coriolis mass flow meters – Thermal mass flow meters – Volume flow meter plus density measurement – Calibration of flow meters – Dynamic weighing method.

UNIT IV ELECTRICAL TYPE FLOW METER

12 Hrs

Principle and constructional details of electromagnetic flow meter – Different types of excitation schemes used – Different types of ultrasonic flow meters – Laser Doppler anemometer systems – Vortex shedding flow meter – Target flow meter – Solid flow rate measurement – Guidelines for selection of flow meter.

UNIT V LEVEL MEASUREMENT

12 Hrs

Gauge glass techniques coupled with photoelectric readout system – Float type level indication – Different schemes – Level switches, level measurement using displacer and torque tube – Bubble system. Boiler drum level measurement – Differential pressure method – Hydra step systems – Electrical types of level gauges using resistance, capacitance, nuclear radiation and ultrasonic sensors.

Total Number of Hours: 60 Hrs

Text Books:

- 1. D.Patranabis, Principles of Industrial Instrumentation Tata McGraw-Hill Publishing Co., New Delhi, 1999
- 2. R.K.Jain, Mechanical and Industrial Measurements, Khanna Publishers, New Delhi 1999.

Reference Books:

- 1. Ernest O.Doebelin, Measurement systems application and design international student Edition, Tata McGraw Hill Publishing Co., New Delhi, 1999.
- 2. Patranabis, Principles of Industrial Instrumentation Tata McGraw-Hill Publishing Co., New Delhi, 1999
- 3. R.K.Jain, Mechanical and Industrial Measurements, Khanna Publishers, Delhi 1999.
- 4. A.K.Sawhney, A course in Electrical and Electronic Measurement and Instrumentation Dhanpat Rai and Sons, New Delhi, 1999.
- 5. Eckman D.P.M Industrial Instrumentation Wiley Eastern Limited, 1990.
- 6. Liptak B.G. Instrument Engineers Handbook (Measurement), Chilton Book Co., 1994.

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code: BEI17012	S	Subject Na	ame: PRO	OCESS	CONT	ROL			T / L/ ETL	L	T / S.Lr	P/R	С
2217,012	F	Prerequisit	e:						T	3	0/0	0/0	3
L : Lecture T :				ed Learn	ning P:	Project	R : Res	earch (_			
T/L/ETL: Theo						3							
OBJECTIVE :	;												
		ction of ne											
							ronic co	ntroller	s with pract	tical for	m of PID		
		of various											
									of distillatio			iler syst	em.
					ons, con	itrol valv	e sizing	and co	ontrol valve	positio	nıng.		
COURSE OUT	rco.				<u> </u>		. 1 .1	.1	1	1 1'	C 1: CC		
CO1		and chara					itrol, the	mathe	ematical mo	odeling	of differe	ent proce	esses
CO2									of self- reg				
CO3									istillation c				
CO4									like ON-Ol				ιbout
		tuning me	ethods for	setting of	optimun	n value a	and vario	ous mu	lti-loop con	trolling	methods	•	
		~ .											
CO5		Students a	acquire th	e knowl	edge of	final co	ntrol elei	ments					
Mapping of Co	ourse	Outcome	s with Pi	ogram	Outcon	nes (POs	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1													
CO2													
COs / PSOs]	PSO1	PS	O2	PS	SO3	PS	SO4	PSO5				
CO1													
CO2													
H/M/L indicate	s Stre	ength of C	orrelation	H- Hi	gh, M-	Medium	, L-Low			T	1	Т	
								Internships / Technical Skill					
		S	ial					cal					
Category		nces	Social		Š		.	hni					
	S	cie			ive	SQ.	jec	[Sec]					
	ce	₽0 •2	ar	ore	ect	ive	Pro	L /					
	Sier	irin	ties	C	ıΕ	ect	17	ips	IIs				
	S	nee	ani	ran	ran	回	ica	nsh	Ski				
	Basic Sciences	Engineering Scie	Humanities and Sciences	Program Core	Program Elective	Open Electives	Practical / Project	iter	Soft Skills				
-	Ř	垣	H S		P	0	P.	In	Š				
				✓	<u> </u>								
Approval													

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

PROCESS CONTROL

UNIT I INTRODUCTION

9 Hrs

Need for process control – mathematical model of first – order level, pressure and thermal processes – higher order process – interacting and non-interacting systems – continuous and batch process – self-regulation – servo and regulator operation-Heat Exchanger-CSTR.

UNIT II CONTROL ACTIONS AND CONTROLLERS

9 Hrs

Basic control actions – characteristics of on-off, proportional, single-speed floating, integral and derivative control modes – P+I, P+D and P+I+D control modes – pneumatic and electronic controllers –Practical form of PID Controller.

UNIT III OPTIMUM CONTROLLER SETTINGS

9 Hrs

Evaluation criteria – IAE, ISE, ITAE and ¼ decay ratio – determination of optimum settings for mathematically described processes using time response and frequency response – tuning – process reaction curve method – Ziegler Nichols method – damped oscillation method..

UNIT IV MULTILOOP CONTROL

9 Hrs

Feed forward control – ratio control- cascade control – inferential control – split range control – introduction to multivariable control – Model Predictive control-Plant wide control-Adaptive control-examples from distillation column and boiler systems.

UNIT V FINAL CONTROL ELEMENT

9 Hrs

I/P converter – pneumatic and electric actuators – valve positioner – control values – characteristics of control valves – inherent and installed characteristics – valve body – commercial valve bodies – control valve sizing – cavitation and flashing – selection criteria.

Total Number of Hours: 45 Hrs

Text Books:

- 1. Stephanopoulis, G, Chemical Process Control, Prentice Hall of India, New Delhi, 1990.
- 2. Eckman. D.P., Automatic Process Control, Wiley Eastern Ltd., New Delhi, 1993.

Reference Books:

- 1. Pollard A.Process Control, Heinemann educational books, London, 1971.
- 2. Harriott. P., Process Control, Tata McGraw-Hill Publishing Co., New Delhi, 1991.
- 3. Curtis.D.Johnson, Process control Instrumentation Technology, PHI Learning, 2009

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code: BEE17I03	;	Subject Na	me: POV	VER E	LECTR	ONICS			T / L/ ETL	L	T / S.Lr	P/R	C
2221,100]	Prerequisite	e:						T	3	0/0	0/0	3
L : Lecture T :				ed Learı	ning P:	Project	R : Res	earch C	: Credits	1		ı	
T/L/ETL: The		.ab/Embed	ded Theor	ry and L	ab								
OBJECTIVE													
con	struc	rpose of the tion, V-I are overview a	nd switchi	ng chara	acteristic	and im	plement	ation in	various po				
		ose to desi w about the					emicond	luctor de	evices used	l in pov	ver convei	ters.	
		and the imp					ctor dev	ices in i	ndustrial d	lrives a	plication	s.	
		the design								•	•		
COURSE OU	TCO												
CO1		Acquires	knowledg	e about	fundame	ental cor	ncepts a	nd techn	iques used	l in pow	er electro	onics.	
CO2		Ability to their appli	-	various	single p	hase an	d three	phase p	ower conv	erter ci	rcuits and	unders	tand
CO3				oasic rec	wiremer	its for no	wer ele	ctronics	based des	ign ann	lication		
CO4		Develops			•	•				-8PF	1100010111		
CO5		Foster abi								al and ir	ndustrial a	pplicati	ons.
						•						PP	01101
Mapping of C								T	T =	T = =	T = - · ·	1	
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO1	.2
CO1	Н	H	Н	M	M	Н	L	Н	M	L	H	H	
CO2 CO3	M H	H	M H	H H	M M	L M	L M	H L	M L	H	M M	L H	
CO4	M	Н	L	Н	M	H	M	L	H	M	H	M	
CO5	H	M	M	Н	M	L	Н	M	H	M	H	M	
203	11	141	141	11	141	L	11	171	11	171	11	141	
COs / PSOs		PSO1	PSC	02	PS	O3	PS	SO4	PSO5				
CO1	Н		M		Н		M		L				
CO2	L		M		Н		M		Н				
CO3	Н		M		L		Н		M				
CO4	Н		L		M		Н		M				
CO5	Н		M		L		Н		Н				
H/M/L indicate	es Str	ength of Co	orrelation	H- Hi	gh, M- 1	Medium	, L-Low						
Category	Ices	3 Sciences	and Social	ore	ectives	ives	Project	Internships / Technical Skill					
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships	Soft Skills				
Approval													

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

POWER ELECTRONICS

UNIT I POWER SEMICONDUCTOR DEVICES

9 Hrs

Power diodes – power transistor – characteristics of SCR, Triac, power MOSFET – IGBT – MCT – LASCR – SCR turn on, turn off characteristics – thyristor specifications – thyristor protection circuits.

UNIT II COMMUNICATION CIRCUITS

9 Hrs

Thyristor trigger circuits – R, RL, RC triggering – Single pulse and train of pulses – triggering with microprocessor – forced commutation – different techniques – series and parallel operation of SCRs.

UNIT III CONVERTERS

9 Hrs

Natural commutation – single phase – three phase – half controlled and fully controlled rectifiers – effect of source and load inductance – dual converters – cyclo converter.

UNIT IV INVERTERS AND CHOPPERS

9 Hrs

Voltage source inverters – series, parallel and bridge inverters – current source inverters – PWM inverters – DC chopper – step up and step down chopper – AC chopper.

UNIT V TYPICAL APPLICATION

9 Hrs

Control of DC and AC drives – stepper and switched reluctance motor drive – AC voltage regulators – SMPS – uninterrupted power supply – induction heating.

Total Number of Hours: 45 Hrs

Text Books:

- 1. P.S.Bimbhra, 'Power Electronics', Khanna Publishers, New Delhi, 2002
- 2. G.K.Dubey, Doradia, S.R. Joshi and R.M.Sinha, Thyristorised Power Controllers, New Age International Publishers, New Delhi, 1996.

Reference Books:

- 1. M.H.Rashid, Power Electronics circuits, devices and applications, PHI, New Delhi, 1995.
- 2. Joseph Vithyathi, Power Electronics, McGraw-Hill, USA, 1995.
- 3. Mohan, Undeland and Robbins, Power Electronics, John Wiley and Sons, New York, 1995.
- 4. P.C.Sen, Modern Power Electronics, Wheeler Publishers, New Delhi, 1998.

Department of <u>ELECTRONICS AND INSTRUMENTATION ENGINEERING</u>

Subject Code	: Su	bject Na	ame: SO	OFT SK	ILLS –	II			T / L/ ETL	L	T / S.Lr	P/R	С
	Pro	erequisit	e: Soft Sk	ills - I					ETL	1	0/1	1/0	2
L : Lecture T :	: Tutoria	ıl SLr	: Supervis	ed Leari	ning P:	Project	R : Res	search C	: Credits				
T/L/ETL: The	eory/Lab	/Embed	ded Theo	ry and L	ab								
OBJECTIVE	: The	main ob	ojective is	to stren	gthen th	e logica	l and ari	thmetic	reasoning	skills of	the stude	ents.	
COURSE OU	JTCOM	ES (CO	os):(3-5	()									
CO1	Recog	nize and	apply ari	thmetic	knowled	lge in a	variety o	of contex	xts.				
CO2	Ability	to ident	tify and ci	ritically	evaluate	philoso	phical a	rgumen	ts and defe	nd them	from cri	ticism.	
CO3	Define	data and	d interpre	t inform	ation fro	m graph	ıs.						
Mapping of C	Course (Outcome	es with Pi	rogram	Outcon	nes (POs	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н	Н	Н	Н	Н	L	L	Н	M	Н	Н	
CO2	M	M	M	Н	L	Н	L	Н	Н	Н	Н	L	
CO3	Н	Н	Н	Н	Н	Н	M	M	Н	Н	Н	Н	
COs / PSOs	PS	SO1	PS	O2	PS	SO3	PS	SO4	PSO5				
CO1													
CO2													
H/M/L indicat	tes Stren	gth of C	orrelation	H- Hi	igh, M-	Medium	, L-Low	7				I	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

SOFT SKILLS II

UNIT I LOGICAL REASONING I

Logical Statements – Arguments – Assumptions – Courses of Action.

UNIT II LOGICAL REASONING II

Logical conclusions – Deriving conclusions from passages – Theme detection.

UNIT III ARITHMETICAL REASONING I

Number system – H.C.F & L.C.M – Problem on ages – Percentage – Profit & Loss – Ratio & Proportion – Partnership.

UNIT IV ARITHMETICAL REASONING II

Time & Work – Time & Distance – Clocks – Permutations & Combinations – Heights & Distances – Odd man out and Series.

UNIT V DATA INTERPRETATION

Tabulation – Bar graphs – Pie graphs – Line graphs.

Reference Book:

- 1. R.S.Agarwal, A modern approach to Logical Reasoning, S.Chand & Co., (2017).
- 2. R.S.Agarwal, A modern approach to Verbal and Non verbal Reasoning, S.Chand & Co., (2017).
- 3. R.S. Agarwal, Quantitative Aptitude for Competitive Examinations, S. Chand & Co., (2017).
- 4. A.K.Gupta, Logical and Analytical Reasoning, Ramesh Publishing House, (2014).
- 5. B.S.Sijwali, Indu sijwali, A new approach to Reasoning (Verbal and Non verbal), Arihant Publishers, (2014).

B.Tech Regulation 2017 Approved by the Academic Council	B.T	Tech	Regulation	2017 Approve	d bv the A	Academic 1	Council	
---	-----	------	------------	--------------	------------	------------	---------	--

Approval Control of processes using PID and ON-OFF controllers and process automation of process control, types of process automation. Control of processes using pID and ON-OFF controllers for controllers for controllers for controllers for controllers for controllers	Subje BEI17	ct Code		Subject Na LABORA		OCESS	CONTI	ROL			T / L/ ETL	L	T / S.Lr	P/R	С
L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits TTL/ETL: Theory/Lab/Embedded Theory and Lab OBJECTIVE: To enable the students to understand the fundamentals of process control, types of processes, characteristic different types of controllers for controlling a process and process automation. Control of processes using PID and ON-OFF controllers Automation of process Design and Tuning of controllers Course Outcomes (COS): (3-5) Coll Enable the students to understand the fundamentals of process control, types of process and process using personal computer. COURSE OUTCOMES (COS): (3-5) Coll Enable the students to understand the fundamentals of process control, types of procecharacteristics of different types of controllers for controlling a process and process automatic characteristics of different types of controllers for controlling a process and process automatic characteristics of different types of controllers can be performed CO2	DLII /	LUG	_									0		3/0	1
TALETL: Theory/Lab/Embedded Theory and Lab OBJECTIVE: To enable the students to understand the fundamentals of process control, types of processes, characteristic different types of controllers for controlling a process and process automation. Control of processes using PID and ON-OFF controllers Automation of process Design and Tuning of controllers Course Outroomes (COs): (3-5) Coll Enable the students to understand the fundamentals of process control, types of process control of a process using personal computer. COURSE OUTCOMES (COs): (3-5) Coll Enable the students to understand the fundamentals of process control, types of process characteristics of different types of controllers for controlling a process and process automatic characteristics of different types of controllers for controlling a process automatic characteristics of different types of controllers for controlling a process automatic characteristics of different types of controllers for controlling a process automatic characteristics of different types of controllers for controlling a process automatic characteristics of different types of controllers for controlling a process automatic characteristics of different types of controllers for controlling a process automatic characteristics of different types of controllers for controlling a process automatic characteristics of different types of controllers for controlling a process automatic characteristics of different types of controllers for controlling a process automatic characteristics of different types of controllers for controlling a process automatic characteristics of different types of controllers for controlling a process automatic characteristics of different types of controllers for controllers. Co2 Co3 Understands Automation of process using personal computer. Mapping of Course Outcomes with Program Outcomes (POs) Cos/Pos Pol	I · I e	cture T				ed Lear	ning P	Project	R · Res	earch C		U	0/0	3/0	
OBJECTIVE: To enable the students to understand the fundamentals of process control, types of processes, characteristic different types of controllers for controlling a process and process automation. Control of processes using PID and ON-OFF controllers Automation of process Design and Tuning of controllers Course OUTCOMES (COs): (3-5) Col Enable the students to understand the fundamentals of process control, types of procest characteristics of different types of controllers for controlling a process and process automatic Co2 Control of processes using PID and ON-OFF controllers can be performed Co3 Understands Automation of process CO4 The graduate will be able to Design and Tune controllers CO5 Understands the Control of a process using personal computer. Mapping of Course Outcomes with Program Outcomes (POs) CO5/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO CO1 H M H H H L M H M H M H M M H M M H M M H M M M M							_	Troject	K . KCs	carcii C	. Cicuits				
> To enable the students to understand the fundamentals of process control, types of processes, characteristic different types of controllers for controlling a process and process automation. > Control of processes using PID and ON-OFF controllers > Automation of process > Design and Tuning of controllers > Control of a process using personal computer. COURSE OUTCOMES (COs): (3-5) CO1				Jao/ Lilloca	ucu Theo.	i y and L	ao								
different types of controllers for controlling a process and process automation. > Control of processes > Design and Tuning of controllers > Control of a process using personal computer. COURSE OUTCOMES (COS): (3-5) CO1 Enable the students to understand the fundamentals of process control, types of procest characteristics of different types of controllers for controlling a process and process automation characteristics of different types of controllers for controlling a process and process automatic controller for controllers and the fundamentals of process control, types of process characteristics of different types of controllers for controlling a process and process automatic controller for controllers can be performed. CO2 Control of processes using PID and ON-OFF controllers can be performed. CO3 Understands Automation of process. CO4 The graduate will be able to Design and Tune controllers. CO5 Understands the Control of a process using personal computer. Mapping of Course Outcomes with Program Outcomes (POS) CO5 CO1 H M H H L M H CO3 H L H M H L H M H L H M H CO3 H L H M H L H H L H M H CO4 H M H L H M H L H H H CO5 PSO3 PSO4 PSO5 PSO1 PSO2 PSO3 PSO4 PSO5 CO1 H M H M H H H M L M H H H M CO3 M H M H M H H M H H M H H				ne students	to unders	tand the	fundam	entals o	f process	s contro	ol types of	process	es charac	teristics	of
> Control of processes using PID and ON-OFF controllers > Automation of process > Design and Tuning of controllers > Control of a process using personal computer. COURSE OUTCOMES (COS): (3-5) Coll Enable the students to understand the fundamentals of process control, types of procest characteristics of different types of controllers for controlling a process automatic CO2 Control of processes using PID and ON-OFF controllers can be performed CO3 Understands Automation of process CO4 The graduate will be able to Design and Tune controllers CO5 Understands the Control of a process using personal computer. Mapping of Course Outcomes with Program Outcomes (POs) CO5/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO CO1 H M H H H L M H H L H M H M H M H M M H M M H M M M M												process	es, charac	terrette	, 01
> Automation of process > Design and Tuning of controllers > Control of a process using personal computer. COURSE OUTCOMES (COs): (3-5) CO1 Enable the students to understand the fundamentals of process control, types of process characteristics of different types of controllers for controlling a process and process automatic characteristics of different types of controllers for controlling a process automatic characteristics of different types of controllers for controlling a process automatic characteristics of different types of controllers can be performed CO2 Control of processes using PID and ON-OFF controllers can be performed CO3 Understands Automation of process CO5 Understands the Control of a process using personal computer. Mapping of Course Outcomes with Program Outcomes (POs) COs/POS PO1 PO2 PO3 PO4 PO5 PO4 PO5 PO6 PO7 PO8 PO9 PO9 PO1 PO PO9 PO1 PO PO1 PO PO1 PO CO1 H M H H L H M H L H M H L H H L H H L M H CO3 H L H M H L H H H L H H H L H H H	A								i procesi	3 datom	idition.				
 ▶ Design and Tuning of controllers ▶ Control of a process using personal computer. COURSE OUTCOMES (COs): (3-5) CO1 Enable the students to understand the fundamentals of process control, types of proce characteristics of different types of controllers for controlling a process and process automatic CO2 Control of processes using PID and ON-OFF controllers can be performed CO3 Understands Automation of process CO4 The graduate will be able to Design and Tune controllers CO5 Understands the Control of a process using personal computer. Mapping of Course Outcomes with Program Outcomes (POs) CO5/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO CO2 M M H H					ing i ib u	na Orv	orr con	itioners							
COURSE OUTCOMES (COs): (3-5) COI Enable the students to understand the fundamentals of process control, types of process characteristics of different types of controllers for controlling a process and process automatic characteristics of different types of controllers for controlling a process and process automatic characteristics of different types of controllers for controlling a process and process automatic characteristics of different types of controllers for controlling a process and process automatic characteristics of different types of controllers for controlling a process and process automatic characteristics of different types of controllers can be performed CO2 Control of processes using PID and ON-OFF controllers can be performed CO3 Understands Automation of process CO5 Understands the Control of a process using personal computer. Mapping of Course Outcomes with Program Outcomes (POs) CO5 Vinderstands the Control of a process using personal computer. Mapping of Course Outcomes with Program Outcomes (POs) CO5 Vinderstands the Control of a process using personal computer. Mapping of Course Outcomes with Program Outcomes (POs) CO3 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO9 PO9 PO9 PO1 PO1 PO1 PO1					controllers										
EOURSE OUTCOMES (COs): (3-5) CO1 Enable the students to understand the fundamentals of process control, types of proces characteristics of different types of controllers for controlling a process and process automatic characteristics of different types of controllers for controlling a process and process automatic controllers. CO2 Control of processes using PID and ON-OFF controllers can be performed. CO3 Understands Automation of process. CO5 Understands the Control of a process using personal computer. Mapping of Course Outcomes with Program Outcomes (POs) CO5/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO CO1 H M H H L H M H H L M H M H CO3 H L H M H H L H H H L M H H CO5 PSOS PSO1 PSO2 PSO3 PSO4 PSO5 CO1 H M H M CO2 M H M M CO3 M H M H M CO3 M H M CO4 H M H M H CO5/PSOS PSO1 PSO2 PSO3 PSO4 PSO5 CO1 H M H M CO3 M H M H M CO4 H M H M H CO5 CO5 M H M H M CO5 M H M M M CO5 M H M M CO5 M H M M M M CO5 M M M M M M M M CO5 M M M M M M M M M M M M M							uter.								
Enable the students to understand the fundamentals of process control, types of proce characteristics of different types of controllers for controlling a process and process automatic CO2 Control of processes using PID and ON-OFF controllers can be performed Understands Automation of process CO4 The graduate will be able to Design and Tune controllers CO5 Understands the Control of a process using personal computer. Mapping of Course Outcomes with Program Outcomes (POs) CO6/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO CO1 H M H H L H M H L H M H CO2 M H M H H L H H H L H H H CO5 M H L M H H H CO5 PSO1 PSO2 PSO3 PSO4 PSO5 CO1 H M H H H H H CO5 CO5 CO5 CO5 CO6 CO6 CO7 CO6 CO7 CO6 CO7 CO6 CO7 CO6 CO7 CO7															
CO2		RDL OC	100				nderstan	d the f	iındamei	ntals o	f process	control	types o	f proce	sses
CO2	COI										•		• •	•	
Understands Automation of process				Character	istics of a	morem	ypes or	controll	cis for c	omuom	ing a proce	os ana p	rocess aa	comuno	
Understands Automation of process	002			0 1	<u> </u>	•	DID 3	ONLOT	70 .	11	1 0				
The graduate will be able to Design and Tune controllers					_				'F contro	ollers ca	an be perfo	rmed			
CO5															
Mapping of Course Outcomes with Program Outcomes (POs)	CO4			The grad	uate will b	e able to	Design	n and Ti	ine cont	rollers					_
COs/POs	CO5			Understa	nds the Co	ontrol of	a proce	ss using	persona	l compi	uter.				
COs/POs	Mann	ing of C	ไกมาร						_						
CO1										PO8	PO9	PO10	PO11	PO	12
CO2		Os													
CO3			_												
CO4			_			1									
CO5															
COs / PSOs PSO1 PSO2 PSO3 PSO4 PSO5 CO1 H M M H H M M CO2 M H M M H L CO3 M H M M L CO4 H H H M M L CO5 L H M M M L CO5 L H M M M L CO5 L H H M M M L CO5 L H H H M M M IL CO5 L H H H M M M IL CO5 L H M M M M IL CO6 Regervation Strength of Correlation H- High, M- Medium, L-Low Category Category Value of Correlation H- High, M- Medium, L-Low			_												
CO1 H M M H H M M H L L CO2 M H H M M H L L M CO3 M H H M M L L M M CO4 H H H M M L L H M M L L H M M L L H M M L L M M L L M M L L M M M L L M M M M L L M	CO3		171	11	L	1V1	11	11	L	11	IVI	11		171	
Co1 H M M H H M M H L L	COs /	DSO _c		DSO1	DC	$\frac{1}{02}$	DS	103	DS	SO4	PSO5				
Cotegory Cotegory		1308	_	1301		02		103		504					
Co3 M H M H M L M L H CO4 H H M M L H CO5 L H M M M M L H/M/L indicates Strength of Correlation Category Catego			-												
Cotegory Category Catego			_									1			
Category Category Category Category L H M M M L H-High, M-Medium, L-Low H-High, M-Medium, L-Low Category Cate															
H/M/L indicates Strength of Correlation Basic Sciences Basic Sciences Category Cat			_									1			
Basic Sciences Humanities and Social Sciences Program Core Program Electives Practical / Project Internships / Technical Skill Soft Skills		indicat		tonoth of C		11 11		Madium			L				
	17/1VI/I		les Sti	engin of C	orrelation	п- п	gii, ivi-	viedium	, L-LOW			1			
										Ski					
					al					al S					
	Coto	~~~		ces	oci					nic					
	Cate	gory		ien			/es		t c	chı					
			es	Sci	pur	بو	ctiv	es	oje	Te					
			- Suc	gu	Se se	Cor	Ele El	ctiv	Pr	/ S(S				
) Scie	eri	nitic es	ш (l m	3lec	al/	hip	dili di				
			[c 8	 ine	nar ince	grai	grai	ın E	tic	rms	S				
			asi	gu	Hun cie	rog	ro§	be		nte	oft				
			B	Щ	TI S		<u>Д</u>			1	\sim	+			
Approval							I					1			
Арргоча	Annes	wa1													
	Appro	oval													

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

PROCESS CONTROL LABORATORY

LIST OF EXPERIMENTS:

- 1. Operation of Interacting and Non-Interacting systems
- 2. Responses of different order processes with and without transportation lag
- 3. Response of ON-OFF controller
- 4. Response of P+I+D controller
- 5. Characteristics of Equal Percentage Control Viscosity Valve
- 6. Characteristics of Control Valve with Positioner.
- 7. Operation of ON-OFF controller Using Simple Thermal System.
- 8. Closed loop response of Flow Control Loop
- 9. Closed loop response of Level Control Loop
- 10. Closed loop response of Temperature Control Loop
- 11. Closed loop response of pressure control loop
- 12. Tuning of Controllers
- 13. Study of complex control system (ratio / cascade / feed forward)
- 14. Analysis of Non-Linear Systems(Conical Tanks)

Total Number of Hours: 45 Hrs

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code BEI17L09	:	Subject Na	ame: DES	SIGN P	ROJEC	T LAB	ORATO	ORY	T / L/ ETL	L	T / S.Lr	P/R	C
DEII/E0)		Prerequisit	e.						L	0	0/0	3/0	1
L : Lecture T :				ed Lear	ning P:	Project	R : Res	earch C		Ŭ	0, 0	5/ 0	
T/L/ETL : The			•		_	110,000	11.1100		. 010010				
OBJECTIVE				<i>J</i>									
To learn about	filter	S											
To study about	t conv	erters											
To design abou	ut val	ves, contro	ollers										
To gain knowl													
To study about													
COURSE OU	TCO	MES (CO	s): (3-5)									
CO1		Graduate	understar	nds the c	oncept of	of filters							
CO2		Understa	nds the co	nverters	 								
CO3		Capable of	of analyzi	ng valve	s, contro	ollrs							
CO4		Understa	nds P&I [Diagram									
CO5		Capable t											
Mapping of C								_					
COs/POs	PO1	l PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	12
CO1	Н	M	M	Н	M	Н	M	Н	M	L	L	M	
CO2	M	Н	M	M	Н	M	Н	M	L	L	Н	M	
CO3	Н	M	Н	M	Н	M	Н	Н	M	L	M	Н	
CO4	Н	Н	M	Н	Н	Н	M	M	M	L	L	M	
CO5	M	Н	M	Н	Н	M	L	M	Н	L	M	Н	
COs / PSOs		PSO1	PS	O2		SO3		SO4	PSO5				
CO1	Н		M		M		Н		L				
CO2	L		Н		L		Н		M				
CO3	M		H		L		M		H				
CO4	M		H		Н		L		M				
CO5	L		H		M		Н		M				
H/M/L indicate	es Str	ength of C	orrelation	H- H	igh, M-	Medium	, L-Low			•			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

DESIGN PROJECT LABORATORY

LIST OF EXPERIMENTS:

- 1. Design of Instrumentation Amplifier
- 2. Design of active filters
- 3. Design of regulated power supply
- 4. Design of v/I converter
- 5. Design of I/V converter
- 6. Design of compensation circuit for thermocouples
- 7. Design of signal conditioning circuit for strain gauge & RTD
- 8. Design of orifice plate & rotameter
- 9. Design of Control Valve
- 10. Design of PID Controller
- 11. Piping & Instrumentaton Diagram- Case Study
- 12. Preparation of document of instrumentation project
- 13. Preparation of project scheduling

Total Number of Hours: 45 Hrs

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

T/ P/R C

T/L/

Subject Name: EMBEDDED SYSTEM

Subject Code:

BEI17L10	I	LABORA'	ГORY						ETL		S.Lr		
		rerequisit							L	0	0/0	3/0	1
L : Lecture T :	: Tutor	ial SLr :	Supervis	ed Learı	ning P:	Project	R : Res	earch (C: Credits				
T/L/ETL: The	eory/L	ab/Embed	ded Theo	ry and L	ab								
OBJECTIVE													
		nd simulat				sequent	tial circu	iits					
> To desi	ign tog	gle, Bitwi	se, Arithr	netic, D	elay								
COURSE OU	TCO	MES (CO	s):(3-5)									
CO1					ign and	simulate	e combit	tional c	ircuits and	sequenti	al circuit	S	
CO2		Graduate								•			
CO3			•						•				
Mapping of C	Course	Outcome	s with Pi	ogram	Outcom	es (POs	s)						
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	M	M	L	L	Н	M	M	Н	M	L	Н	
CO2	M	Н	M	Н	L	Н	M	Н	M	Н	L	M	
Cos / PSOs	I	PSO1	PS	O2	PS	SO3	PS	SO4	PSO5				
CO1	Н		M		L		Н		M				
CO2	M		Н		M		Н		M				
H/M/L indicat	es Stre	ength of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low	7					
								lii					
			l - -					Internships / Technical Skill					
		es	Social					ica					
Category		Engineering Sciences	So		Se		 	hn					
	Ş	Scie	ρι	45	tiv(SS	jec	[ec					
	ce	50	s aı	ore	lec	ive	Pro						
	ie.	iri	ties	ıC	E	ect	1/	ips	IIs				
	Š	lee	ani	.au	.au	回	ica		Ski				
	Basic Sciences	ıgi	ier	Program Core	Program Electives	Open Electives	Practical / Project	teri	Soft Skills				
	Bį	Щ	Humanities and Sciences	Pr	Pr	Ō		In	Sc	1			
							✓			<u> </u>			
A 1													
Approval													

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

EMBEDDED SYSTEM LABORATORY

LIST OF EXPERIMENTS

Design and Simulate Using Keil Version

- 1. Design of Logic Gates
- 2. Design of Multiplexer and De-multiplexer
- 3. Design of Encoder and Decoders
- 4. Flip Flops
- 5. Counters
- 6. Toggle a port bit in Keil
- 7. Bitwise operators
- 8. Arithmetic Operators
- 9. Delay Operations
- 10. ADC Interfacing with ARM Processor

Total Number of Hours: 45 Hrs

Subject Code	: Su	ıbject Na	ame :	MINI P	ROJEC	T			T / L/	L	T /	P/R	С	
BEI17L11									ETL		S.Lr			
		erequisit		L	0	0/0	0/2	1						
L : Lecture T :						Project	R : Res	earch C	: Credits					
T/L/ETL: The														
OBJECTIVE										to a wor	king moo	lel /		
prototype invo					/ or kno	owledge	and wo	rking in	at team.					
COURSE OU														
CO1			ze a novel											
CO2			nulti-disci		hinking	and ena	ble tean	ıwork						
CO3			elop a pro											
Mapping of C														
COs/POs	PO1	H H M M H H H M L H M												
CO1	Н	Н		M		Н	M							
CO2	Н	Н	Н	M	Н	M	M	M	Н	Н	H	Н		
CO3	Н	Н	Н	Н										
COs / PSOs	P	H H												
CO1														
CO2														
H/M/L indicat	es Strei	ngth of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low	,						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
Approval							V							

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code:	Subject Name :	Technical Skill III	T / L/	L	T /	P/R	C

Department of <u>ELECTRONICS AND INSTRUMENTATION ENGINEERING</u>

BEI17TSX									ETL		S.Lr		
									L	0	0/0	2/0	1
L : Lecture T	: Tutoria	al SLr	: Supervis	ed Lear	ning P:	Project	R : Res	search C	: Credits	1			
T/L/ETL: The	eory/Lal	b/Embed	lded Theo	ry and L	ab								
OBJECTIVE	E: The	objectiv	e is to dev	velop the	e technic	al skill o	of the st	udents.					
COURSE OU	UTCOM	IES (CC	Os): (3-5	5)									
CO1	Develo	op the te	chnical sk	ills requ	ired in t	he field	of study	,					
CO2	Bridge studen		between	the skill	require	ments of	the emp	oloyer o	r industry	and the c	ompetenc	y of the	e
CO3	Enhan	ce the er	nployabil	ity of the	e studen	ts.							
Mapping of O	Course (Outcom	es with P	rogram	Outcon	nes (POs	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	.2
CO1	Н	Н	Н	Н	Н	Н	M	M	Н	M	Н	M	
CO2	Н	Н	M	Н	Н	Н	M	M	Н	Н	Н	Н	
CO3	Н	Н	Н	Н	Н	Н	M	M	Н	Н	Н	Н	
COs / PSOs	PS	SO1	PS	O2	PS	SO3	PS	SO4	PSO5				
CO1	Н		Н		Н		Н		Н				
CO2	Н		Н		Н		Н		Н				
CO3	Н		Н		Н		Н		Н				
H/M/L indica	tes Stren	gth of C	Correlation	H- H	igh, M-	Medium	, L-Low	7					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Department of <u>ELECTRONICS AND INSTRUMENTATION ENGINEERING</u>

L 0 0/0 2/0 1	Subject Code BEI17TSX	e: Su	ıbject N	ame:	Fechnic	al Skill	III			T / L/ ETL	L	T / S.Lr	P/R	С
Total Tota										L	0	0/0	2/0	1
COURSE OUTCOMES (COs): (3-5) CO1 Develop the technical skills required in the field of study CO2 Bridge the gap between the skill requirements of the employer or industry and the competency of the students. CO3 Enhance the employability of the students. Mapping of Course Outcomes with Program Outcomes (POs) COs/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PO3 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PO12 PO3 PO6 PO9 PO10 PO11 PO12 PO12 PO10 PO11 PO12 PO12 PO10 PO11 PO12 PO12 PO10 PO11 PO12 PO12 PO10 PO11 PO11 PO12 PO11 PO11 PO12 PO11 PO11	L : Lecture T	: Tutoria	al SLr	: Supervis	ed Learı	ning P:	Project	R : Res	search C	: Credits				
COURSE OUTCOMES (COs): (3-5) CO1 Develop the technical skills required in the field of study CO2 Bridge the gap between the skill requirements of the employer or industry and the competency of the students. CO3 Enhance the employability of the students. Mapping of Course Outcomes with Program Outcomes (POs) COs/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 H H H H H H H H M M H H H H H H H H H	T/L/ETL: The	eory/Lal	b/Embed	ded Theor	ry and L	ab								
CO1 Develop the technical skills required in the field of study CO2 Bridge the gap between the skill requirements of the employer or industry and the competency of the students. CO3 Enhance the employability of the students. Mapping of Course Outcomes with Program Outcomes (POs) CO5/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PO12 PO1 PO1 PO12 PO1 PO11 PO1	OBJECTIVE	: The	objectiv	e is to dev	elop the	technic	al skill o	of the stu	udents.					
Bridge the gap between the skill requirements of the employer or industry and the competency of the students. CO3 Enhance the employability of the students. Mapping of Course Outcomes with Program Outcomes (POs) CO5/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 H H H H H H H H H M M M H H H H H H H	COURSE OU	JTCOM	IES (CC	os): (3-5)									
Students. CO3 Enhance the employability of the students.	CO1	Develo	op the te	chnical sk	ills requ	ired in t	he field	of study	,					
Mapping of Course Outcomes with Program Outcomes (POs) COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 H </td <td>CO2</td> <td></td> <td></td> <td>between t</td> <td>the skill</td> <td>requirer</td> <td>nents of</td> <td>the emp</td> <td>oloyer o</td> <td>r industry</td> <td>and the c</td> <td>competen</td> <td>cy of th</td> <td>e</td>	CO2			between t	the skill	requirer	nents of	the emp	oloyer o	r industry	and the c	competen	cy of th	e
COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 H	CO3	Enhan	ce the er	nployabili	ty of the	e student	ts.							
CO1	Mapping of (Course (Outcome	es with Pr	ogram	Outcom	nes (POs	s)						
CO2 H H H M H H H H H H H H H H H H H H H	COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO3	CO1	Н	Н	Н	Н	Н	Н	M	M	Н	M	Н	M	
COS / PSOS PSO1 PSO2 PSO3 PSO4 PSO5 CO1 H H H H H H H H H H H H H H H H H H H	CO2	Н	Н	M	Н	Н	Н	M	M	Н	Н	Н	Н	
CO1 H H H H H H H H H H H H H H H H H H H	CO3	Н	Н	Н	Н	Н	Н	M	M	Н	Н	Н	Н	
CO2 H H H H H H H H H H H H H H H H H H H	COs / PSOs	PS	SO1	PSO)2)2	PS	SO3	PS	SO4	PSO5				
Category Catego	CO1	Н		Н		Н		Н		Н				
H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low Engineering Sciences Category Category Category Soft Skills Soft Skills	CO2	Н		Н		Н		Н		Н				
Basic Sciences Humanities and Social Sciences Program Core Program Electives Practical / Project Internships / Technical Skills Soft Skills	CO3	Н		Н		Н		Н		Н				
	H/M/L indicat	tes Strer	ngth of C	orrelation	H- Hi	igh, M-	Medium	, L-Low	7					
Approval	Category	Basic Sciences	Engineering Sciences	ies and	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	Approval													

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

T/

S.Lr

P/R

L

T/L/

ETL

Subject Name: COMPUTER CONTROL PROCESS

BEI1/013									EIL		S.Lr						
]	Prerequisit	e:						T	3	1/0	0/0	4				
L : Lecture T :	Tuto	rial SLr: Supervised Learning P: Project R: Research C: Credits Lab/Embedded Theory and Lab															
T/L/ETL: The	eory/L	ab/Embed	ded Theo	ry and L	ab	-											
OBJECTIVE	:																
		to analyze															
		esign of de							ntrollers								
		and the bas															
		of PLC's ar							ocks.								
		ations in P			dy of bo	ttle fillir	ig plant.										
COURSE OU	JTCO																
CO1		Capability	y to analy:	ze discre	ete data	systems,	samplii	ng proce	ess and z-ti	ransfori	n.						
CO2		Ability to	design de	ead beat,	dahlin,	pole pla	cement	and pre	dictive cor	ntrollers	}						
CO3		Understar	nds the ba	sic syste	ms to m	ake con	puter as	s a contr	oller.								
CO4										their fu	nctional b	locks.					
CO5		Understands the Overview of PLC's architectures, programs, logic & their functional blocks. Understands Communications in PLC's and case study of bottle filling plant. See Outcomes with Program Outcomes (POs)															
	Course	Understands Communications in PLC's and case study of bottle filling plant. e Outcomes with Program Outcomes (POs) 1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12															
COs/POs	PO1	PO2	Outcomes with Program Outcomes (POs)														
CO1	Н		PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 M M H M H L M H M H L														
CO2	M	Н	M M H M H L M H M H L H H M H M L L H M														
CO3	M	Н	M	Н	L	M	Н	M	Н	M	L	Н					
CO4	M	Н	M	L	Н	M	Н	L	Н	M	Н	L					
CO5	M	Н	L	Н	M	Н	M	Н	L	Н	M	Н					
						<u> </u>											
COs / PSOs	_	PSO1	PSO)2		O3		SO4	PSO5								
CO1	M		M		Н		L		H								
CO2	M		Н		L		M		H								
CO3	Н		M		Н		M		Н								
CO5	H		M H		H M		M H		M M								
H/M/L indicat		angth of C		п п:		Medium		,	IVI								
11/1VI/L IIIUICat	CS SII	ligui di C		11-111	g11, 1 V1- 1	VICUIUIII	, L-LUW										
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills								
Approval																	

B.Tech Regulation 2017 Approved by the Academic Council

Subject Code:

BEI17013

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

COMPUTER CONTROL PROCESS

UNIT I ANALYSIS OF DISCRETE DATA SYSTEM

12 Hrs

Z-Transform- Selection of sampling process – Selection of Sampling period – pulse transfer function – modified Z-transform – Stability of Discrete Data System.

UNIT II DESIGN OF DIGITAL CONTROLLER

12 Hrs

Digital PID – Dead beat – Dahlin algorithms – pole placement controller Design of feed forward controller – predictive controller.

UNIT III COMPUTER AS A CONTROLLER

12 Hrs

Basic building blocks of computer control system – SCADA – Direct Digital Control – AI and expert control systems – Case studies on computer control for Industrial process..

UNIT IV PLC 12 Hrs

Evolution of PLC's – Sequential and programmable controllers – Architecture- Relay logic – Ladder logic – Programming Timers & Counters

UNIT V PROGRAMMING & APPLICATIONS OF PLC'S

12 Hrs

Instructions in PLC-Program control instructions, math instructions, and sequencer instructions-use of PC as PLC-Application of PLC-Bottle filling system application.

Total Number of Hours: 60 Hrs

Text Books:

- 1. Despande and R.H.Ash, Computer process control, ISA Publication, USA 1995.
- 2. Shanthisasidharan, Computer control of Process

Reference Books:

- 1. Stephanopoulous, Chemical Process control, Prentice Hall of India, New Delhi.
- 2. Chidambaram, Computer control of Process

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code: Subject Name: VIRTUAL INSTRUMENTATION T/L/L T/P/R C

BEI17014	•	Subject Na	ame: VIK	IUAL	INSTR	UNIEN	IATION	N	ETL	L	S.Lr	P/ K	C			
BEIT/014		Prerequisit	e:						T	3	1/0	0/0	4			
L : Lecture T :				ed Learn	ning P:	Project	R : Res	earch C	: Credits			0, 0				
T/L/ETL : The			•		_	3										
OBJECTIVE	:															
•		te can unde							١.							
		and program														
		bout the in	terfacing (of extern	nal instru	uments t	o pc and	l detaile	ed informat	ion abou	ut the diff	erent				
protoc To stu		out the gra	nhical pro	varammi	na anvii	ronmant	in virtu	al inetm	ımantation							
	•	ols and sim	• •	_	_				imentation	•						
COURSE OU					ea III vii	rtati IIIs	<u>trannentt</u>									
CO1					d the fu	ndamen	tal of vir	tual ins	strumentati	on.						
CO2		Understa	nds progra	mming	and data	a flow in	virtual	instrum	entation.							
CO3		Understa	nds the C	Overviev	v about	the in	terfacing	of ex	ternal inst	ruments	to pc a	nd deta	ailed			
		informati														
CO4		The gradu	iate can p	rovide g	raphical	prograi	nming e	nvironr	nent in virt	ual insti	rumentati	on.				
G0.		The student will get capability to analyse tools and simple applications used in virtual instrumentation.														
CO5																
		ınstrumer														
			tcomes with Program Outcomes (POs)													
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	.2			
CO1	H	M	M	Н	M	Н	H	M	H	M	H	L				
CO2	M	H	M	Н	Н	Н	M	Н	M	Н	M	Н				
CO3 CO4	M H	H	M M	H H	M M	M H	H L	L H	M M	H	H M	M L				
CO5	Н	M	H	M	H	M	Н	L	H	M	H	M				
C03	11	171	11	141	11	171	11	L	11	171	11	171				
COs / PSOs		PSO1	PSO	D2	PS	SO3	PS	SO4	PSO5							
CO1	Н		M		Н		M		Н							
CO2	M		Н		M		Н		L							
CO3	L		Н		M		M		Н							
CO4	M		M		Н		M		Н							
CO5	L		Н		Н		M		L							
H/M/L indicate	es Sti	rength of C	orrelation	H- Hi	gh, M-]	Medium 	, L-Low									
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills							
Approval				<u> </u>												

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

VIRTUAL INSTRUMENTATION

UNIT I REVIEW OF DIGITAL INSTRUMENTATION

12 Hrs

Representation of analog signals in the digital domain – Review of quantization in amplitude and time axes, sample and hold, sampling theorem, ADC and DAC.

UNIT II FUNDAMENTALS OF VIRTUAL INSTRUMENTATION

12 Hrs

Concept of virtual instrumentation – PC based data acquisition – Typical on board DAQ card – Resolution and sampling frequency - Multiplexing of analog inputs – Single-ended and differential inputs – Different strategies for sampling of multi-channel analog inputs. Concept of universal DAQ card - Use of timer-counter and analog outputs on the universal DAQ card.

UNIT III CLUSTER OF INSTRUMENTS IN VI SYSTEM

12 Hrs

Interfacing of external instruments to a PC-RS232, RS 422, RS 485 and USB standards - IEEE 488 standard – ISO-OSI model for serial bus – Introduction to bus protocols of MOD bus and CAN bus..

UNIT IV GRAPHICAL PROGRAMMING ENVIRONMENT IN VI

12 Hrs

Concepts of graphical programming – Lab-view software – Concept of VIs and sub VI - Display types – Digital – Analog – Chart – Oscilloscopic types – Loops – Case and sequence structures - Types of data – Arrays – Formulae nodes –Local and global variables – String and file I/O.

UNIT V ANALYSIS TOOLS AND SIMPLE APPLICATIONS IN VI

12 Hrs

Fourier transform - Power spectrum - Correlation - Windowing and filtering tools - Simple temperature indicator - ON/OFF controller - P-I-D controller - CRO emulation - Simulation of a simple second order system - Generation of HTML page.

Total Number of Hours: 60 Hrs

Textbooks

- 1. S. Gupta and J.P Gupta, 'PC Interfacing for Data Acquisition and Process Control',
- 2. Instrument society of America, 1994.
- 3. Peter W. Gofton, 'Understanding Serial Communications', Sybex International.
- 4. Robert H. Bishop, 'Learning with Lab-view', Prentice Hall, 2003.

Reference Books:

- 1. Kevin James, 'PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and Control', Newness, 2000.
- 2. Gary W. Johnson, Richard Jennings, 'Lab-view Graphical Programming', McGraw Hill Professional Publishing, 2001.

Subject Code:				NAGEMI ON BEHA				/ L/	L		Т	P	С
BMG17002	Prerequ			owledge as				T	3	C	0/0	0/0	3
L : Lecture T : T	utorial						I	1		1	1		
OBJECTIVE:													
The student will	learn:												
This cou	rse is air	med at ac	ddressing	g the cont	emporai	y issues	, which	fall un	der th	e bro	oad title	e of mana	igement,
and its fo	unctions.												
There w	ill also b	e an atte	mpt to a	nalyze the	e behavi	or of ind	lividuals	withi	n an o	rgan	ization	and the i	ssues of
working	with oth	ner group	or team	ıs.									
COURSE OUT	COMES	S (COs)	:										
CO1		Effective	e leaders	ship skills									
CO2				with co		and at W	Vork en	vironm	ent				
CO3				ship skill									
CO4				ind implei		good po	licies fo	or the v	velfare	e of	manage	ement and	<u>1</u>
		workers		•	Č						C		
Mapping of Cor	ırse Out	tcomes (COs) w	ith Progr	am Out	comes (POs) &	Progr	am S	peci	fic Out	tcomes (PSOs)
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	POS	R P	09	PO1	PO11	PO12
	101	102	103	104	103	100	107	100	, -	0)	0	1 0 11	1 012
CO1	Н	102	M	104	M	100	L	100	M		0	L	1012
CO1 CO2		M		104		M		Н			M		Н
CO2	Н		M	Н				Н	M M	-	M	L L	
CO2 CO3	H M				M		L		M			L	
CO2	H M L M	M L	M H	Н	M M	M M	L M	Н	M M M		M	L L	Н
CO2 CO3 CO4	H M L M	M L L of Corr	M H	Н	M M	M M	L M	H	M M M		M	L L	Н

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

MANAGEMENT CONCEPTS AND ORGANISATION BEHAVIOUR

UNIT I INTRODUCTION 9 Hrs

Management – definition, evolution – nature of management – distinction between administration and management, MBO, Management functions – planning, organization, motivating, control and functions Areas -operations – marketing, finance, HR

UNIT II ORGANIZING 9 Hrs

Organizing definitions – process of organization – importance of organization – organization structure – organizational chart - and managing HR and communicating- types of communication – formal communication – features of formal communication , motivating and leading

UNIT III INDIVIDUAL AND GROUP BEHAVIOUR

9 Hrs

Behavior of an individual in an organization – attitude, value, job satisfaction, personality, perception, concepts of learning, motivation, theories and application. Group behavior – structure process, decision making, work team – different from group.

UNIT IV POWER AND POLITICS

9 Hrs

Power and politics, directing – characteristics of directing – importance of directing – principles of directing – techniques of directing, organizational culture, organizational work culture and work design

UNIT V HR POLICIES AND PRACTICES

9 Hrs

HR policies and practices, Definitions of supervision – qualities of a good supervisor- responsibilities or functions of a supervisor, appraisal of performance – span of supervision managing the future – new worker / new organization etc.

Total Number of Hours: 45 Hrs

Reference Books:

- 1. Stephen P Robbins, Organizational Behavior, PHI, 15th edition, 2012 ISBN 10: 0132834871/0-13-283487-1 ISBN 13: 9780132834872
- 2. Koontz O'Dannel, Principles of Management Mc Graw Hill Publishing Co.LTD, 5th edition, 2008
- 3. Peter Drunker, The practice of management Allied Publications. 2010, ISBN: 0062005448, 9780062005441
- 4. L M Prasad, Principles and Practice of Management, Sultan Chand & Sons., 7th edition, 2007, ISBN: 818054575X, 9788180545757
- 5. Steward Black & Lyman W Porter, Management Meeting new challenges, Prentice Hall, October 1st 2004, ISBN: 0131430084 (ISBN13: 9780131430082)

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

T/L/

ETL

T/

S.Lr

L

P/R

Subject Name: VIRTUAL INSTRUMENTATION

LABORATORY

BEII/LI2	1	JABOKA	IUKY						ETL		S.Lr		
	I	Prerequisit	e:						L	0	0/0	3/0	1
L : Lecture T :	Tutor	rial SLr	: Supervis	ed Lear	ning P:	Project	R : Res	earch C	: Credits				
T/L/ETL: The	eory/L	ab/Embed	lded Theo	ry and L	∟ab								
OBJECTIVE	:												
To get	pract	ical know	ledge in p	rogramn	ning tecl	nniques,	data acc	quisitio	n and interf	acing			
	-	of virtual						applica	ations.				
		with the V					g in VI.						
		various fu					_						
									ol applicati	ions.			
		ıs Instrum			d data a	equisitio	n metho	ds					
COURSE OU	TCO		/ \	,	1 1	•				•	• • •		
CO1									iques, data			ınterfa	ıcıng
		1	echnique	s of virti	ual instri	ımentatı	on and t	o use V	I for differ	ent app	lications.		
CO2									nming in V				
CO3									ailable in L				
CO4			•		tand $\overline{\text{var}}$	rious and	alysis to	ols and	l develop p	rogran	ns for Pro	cess co	ntrol
			pplication										
CO5		> (Capable of	Using v	various I	nstrume	nt Interf	acing a	nd data acq	uisitior	methods		
Mapping of C	Course	Outcom	es with Pı	ogram	Outcom	es (POs	s)						
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO	12
CO1	Н	M	L	L	Н	M	Н	M	H	M	L	M	
CO2	M	M	M	M	Н	Н	Н	M	L	L	Н	L	
CO3	Н	Н	Н	M	L	Н	M	L	M	Н	Н	M	
CO4	M	L	M	Н	M	M	Н	L	M	Н	M	L	
CO5	Н	M	Н	M	L	M	Н	Н	M	L	Н	M	
COs / PSOs	+	PSO1	PS	O2	-	O3	PS	SO4	PSO5				
CO1	M		M		Н		M		Н				
CO2	L		Н		M		Н		M				
CO3	M		M		L		Н		Н				
CO4	M		Н		M		Н		M				
CO5	L		M		Н		M		Н				
H/M/L indicate	es Stre	ength of C	Correlation	H- H	igh, M-	Medium	, L-Low			1			
								kill					
			 					11 S					
_		ses	Social					ica					
Category		enc	Sc		es		t	chr					
	Se	Sci	pu	(b)	itiv	es	oje.	Тес					
	nce	18.	ss a	jor]]ec	tiv	Pro	/ S					
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	c S	ine.	nce	rai	raı	n E	tic	rns	$\mathbf{S}\mathbf{k}$				
	asi	gu	Humanit	rog	rog)pe		nte	oft				
	H	Щ	TH S	Д.			<u>~</u>	\mathbf{I}_1	N				
Approval		1	1	1	1	1	1	1		1		<u> </u>	
1 pprovui													

Subject Code:

BEI17L12

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

VIRTUAL INSTRUMENTATION LABORATORY

LIST OF EXPERIMENTS:

- 1. Basic LabVIEW programming
- 2. Simulation of a level measurement process system.
- 3. Log File writing and reading on TDMS and LVM files.
- 4. Creating S-transfer functions and observes its Frequency response using control design toolkit.
- 5. Creating Discrete-time Z- Transfer Functions and state space models.
- 6. Series and feedback connections using control design toolkit.
- 7. Calculating Transfer Functions from state space models.
- 8. Discretizing Continuous time models.
- 9. A complete control system simulation and analysis using PID Controller.
- 10. Temperature alarm system using cDAQ 9172 module.
- 11. Designing Filters using NI ELVIS.
- 12. Manual Testing and Control of Two- Way Stoplight intersection with NI ELVIS.
- 13. RF wireless Communication using NI ELVIS.
- 14. Signal Processing with Speedy 33(speech recording and analysis).
- 15. Image processing techniques and applications using vision assistant.
- 16. Filtered response of images, corrupted with salt and pepper noise.
- 17. Temperature control using cFP-2020.
- 18. DFT/IDFT identification of a given DT signal.
- 19. Implementation of low pass FIR and IIR filters for a given sequence using speedy 33.
- 20. Implementation of high pass FIR and IIR filters for a given sequence using speedy 33.
- 21. Virtual instrument with a digital signal processing to identify parameters of signals.

Total Number of Hours: 45 Hrs

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code: BEI17L13		bject Na ABORA	ame: INI TORY	USTRI	AL AU	TOMA'	TION		T / L/ ETL	L	T / S.Lr	P/R	C			
		erequisit							L	0	0/0	3/0	1			
L : Lecture T : T			•		_	Project	R: Res	search C	C: Credits							
T/L/ETL : Theor	ry/Lat	o/Embed	ded Theo	ry and L	ab											
To Study operation	ers, Proy y the b n usin y the A	essure S basic pro lg PLC,	witch, RT grammin Annuncia	D and T g of PLC tor desig	hermoc C, Analo n using	ouple. og opera PLC	tion in P	LC, Ar		peration, T	Γimer, C	ounter	ed			
,		arious Fa	aults Usin	g SCAD	A											
To study					e, Distri	bution n	node usi	ng SCA	DA.							
COURSE OUT																
CO1	to	o P and I	pable to Calibrate the Pressure gauge using Dead weight Tester, manometers, Control valves, I P and P to I converters, Pressure Switch, RTD and Thermocouple. derstands the basic programming of PLC, Analog operation in PLC, Arithmetic operation, per Counter operation using PLC. Annunciator design using PLC.													
CO2			lerstands the basic programming of PLC, Analog operation in PLC, Arithmetic operation, er, Counter operation using PLC, Annunciator design using PLC lerstands the Application using PLC and PC based programming (Level control, Temperature													
CO3			derstands the Application using PLC and PC based programming (Level control, Temperature trol, Speed Control). Pable to Analyze various Faults Using SCADA													
CO4					Faults	Using S	CADA									
CO5	C	Capable t	o study a	nd analy	ze trans	mission	mode, I	Distribut	tion mode	using SC	ADA.					
Mapping of Co	urse (Outcome	es with P	rogram	Outcon	nes (PO	s)									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12			
	H	M	Н	M	Н	M	L	L	H	M	M	Н				
	M	M	M	Н	M	Н	L	Н	M	H	M	L				
	M	H	M	L	Н	M	Н	M	H	L	H	M				
	H	L	Н	M	L	Н	M	L	Н	M	L	H				
CO5]	H	H	M	M	Н	M	H	L	M	Н	M	L				
COs / PSOs	pç	SO1	PS	<u> </u> 	Þ	SO3	P	SO4	PSO5							
	M	,01	Н	02	M	, 0 3	Н	304	M							
	H		Н		Н		M		M							
	H		M		Н		Н		L							
	L		M		Н		M		L							
	M		Н		Н		M		H							
H/M/L indicates		gth of C		H- H		Medium		7				II.				
Category	asic Sciences	ngineering Sciences	umanities and Social ciences	ogram Core	ogram Electives	pen Electives	actical / Project	ternships / Technical Skill	oft Skills							

B.Tech Regulation 2017 Approved by the Academic Council

Approval

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

INDUSTRIAL AUTOMATION LABORATORY

LIST OF EXPERIMENTS:

- 1. Study of PLC
- 2. Batch Process Reactor Control using PLC
- 3. PF Control/Voltage Regulation
- 4. Lift Control using PLC
- 5. Speed Control of Motor Using Digital Signal Processor
- 6. Bottle filling plant using PLC
- 7. Trafiic light control using PLC
- 8. Study of SCADA
- 9. Automation of Level Process using SCADA
- 10. Automation of Pressure Process using SCADA
- 11. Automation of Temperature Process using SCADA
- 12. Study of DCS
- 13. Automation of Pressure process using DCS
- 14. Automation of Level process using DCS
- 15. Automation of Temperature process using DCS
- 16. Study of CCS

Total Number of Hours: 45 Hrs

Subject BEI17L		Su	bject Na	ame:	PROJE	CT PHA	ASE - 1			T / L/ ETL	L	T / S.Lr	P/R	C
		Pre	erequisit	e: NIL						L	0	0/1	0/1	2
L : Lecti	ure T : T			Supervis	ed Lear	ning P:	Project	R : Res	earch C	: Credits			•	
				ded Theo										
OBJEC										ic study an				
										the directi				
										and skills				
					tudents 1	to think	critically	y and cre	eatively	, find an op	otimal s	olution, m	ake eth	ıcal
decision					`									
				(s): (3-5)		ما اسلام		a.f. a.t. a.d.	ه ما ما مه ه		:£:	h1 :		
CO1	Apply	tne kn	owieage	and skill	s acquir	ea in the	course	or study	addres	sing a spec	me pro	blein or is	sue.	
CO2	To end	courage	e student	s to think	critical	ly and cr	eatively	about s	ocietal i	issues and	develop	user frier	ndly and	Ī
	reacha	ble sol	utions								_			
CO3	To ref	ine res	earch sk	ills and de	monetre	ate their	proficie	ncy in co	ammiin	ication skil	1e			
CO4										nonstrate tl		e talents		
							•					e tarents.		
			PO2	es with Pr	PO4	1	PO6	PO7	PO8	DO0	DO 10	DO11	DO1	
COs/PO CO1	S	PO1 H	H	PO3 H	H	PO5 M	H	H	L	PO9 M	PO10 M	PO11 H	PO1	12
CO2		H	Н	H	Н	H	Н	Н	M	M	M	Н	Н	
CO3		H	Н	H	Н	Н	Н	Н	M	M	H	H	M	
CO4		H	M	Н	Н	H	Н	M	H	H	Н	Н	H	
COs / PS			SO1	PSO			O3		SO4	PSO5	11	11	11	
CO1	305	H	701	Н	<u></u>	Н	,00	Н	, , ,	Н				
CO2		Н		Н		Н		Н		Н				
CO3		Н		Н		Н		Н		Н				
CO4		Н		Н		Н		Н		Н				
H/M/L i	ndicate	s Stren	gth of C	orrelation	H- H	igh, M-	Medium	, L-Low	,			.		
Catego	ry	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approva	ıl	<u> </u>		д У	h-i			✓	I	<i>0</i> 1				

Subject Code	e:		bject Na EVELOI	me ENTI MENT	REP	REN	UERSI	HIP			/ L/ TL	L	T	P	С
BMG17005			rerequisi oncepts	te: Basic K	now	ledge	as Mai	nageme	nt		T	3	0	0	3
L : Lecture 7				oject C: Cr	edits	S									
OBJECTIV															
				aint the stu								entures	and en	able ther	ı to
				and interna	lize	the pr	ocess o	of settin	g up a	bus	iness				
COURSE C															
CO1				sics of entre											
CO2				tes of starti		smal	l scale	industr	У						
CO3				new ventui											
CO4				of governm											
Mapping of (PSOs)	Cours	se O	utcomes	(COs) wit	h Pı	rograi	m Out	comes ((POs)	& P	rogra	ım Spe	cific O	utcomes	S
COs/POs					1	PO	P	P	P		P	P	P	PO	PO
	PO	1	PO2	PO3	,	4	0	О	0		O	О	О	11	12
						7	5	6	7		8	9	10		
CO1	M		M	Н				M	L		Н	L	Н	Н	Н
CO2			Н				L			_	M		M	Н	M
CO3	Н		Н	Н				M		l	M	M	Н	M	M
CO4			M		M		L		Н				M	L	M
H/M/L indica	tes Str	engtl	n of Cor	elation E	I- Hi	gh, M	I- Medi	ium, L-1	Low		-				
Category		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project		Internships / Technical Skill	Soft Skills	✓ Management Science			
Approval															

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

ENTREPRENUERSHIP DEVELOPMENT

UNIT I INTRODUCTION

9 Hrs

Nature and Development of Entrepreneurship; Entrepreneurial Decision Process; Role of entrepreneurship in economic development; Entrepreneurial process; managerial vs. entrepreneurial approach and emergence of entrepreneurship. Entrepreneurial background; Skills and characteristics of successful entrepreneurs; Motivation; Role Models and Support Systems

UNIT II BUSINESS IDEA

9 Hrs

Generating business idea – sources of new ideas, methods of generating ideas, creative problem solving, opportunity recognition; Environmental scanning, competitor and industry analysis; Feasibility study – market feasibility, technical/operational feasibility, financial feasibility; Drawing a business plan; Using and Implementing the Business plan.

UNIT III MARKETING PLAN

9 Hrs

Marketing plan – Marketing research for the new venture; Steps in preparing marketing plan; Contingency planning; Organizational plan – Forms of Business; Designing the organization; Building management team and Successful Organizational Culture; Role of Board of Directors; Board of Advisors; Financial plan – Operating and capital Budgets; Pro forma income statements; Pro forma cash flow; Pro forma balance sheet; Break even analysis; Pro forma Sources and Applications of Funds.

UNIT IV ASSESSMENT OF RISK

9 Hrs

Assessment of Risk; Sources of finance – Debt or Equity Financing, Internal or External Funds; Personal Funds, Family and Friends; Commercial Banks – types of loans, Cash flow financing, Bank lending decisions; Venture Capital – Nature, overview, process, locating and approaching Venture Capitalists.

UNIT V ENTREPRENEURIAL STRATEGY FOR GENERATING AND EXPLOITING NEW ENTRIES; STRATEGIES FOR GROWING THE VENTURE 9 Hrs

Entrepreneurial strategy for generating and exploiting new entries; Strategies for growing the venture; Growth implications on Economy, Firm and Entrepreneur. Other routes for growth – Franchising, Joint Ventures, Acquisitions and Mergers: Going Public – Advantages & Disadvantages, Alternatives to Going Public.

Total Number of Hours: 45 Hrs

Reference Books:

- 1. Hisrich, Robert D., Michael Peters and Dean Shephered, Entrepreneurship, Tata McGraw Hill, New Delhi., 9th Edition, 2012, ISBN-13: 978-0078029196, ISBN-10: 0078029198
- 2. Vasant Desai, The Dynamics of Entrepreneurial Development and Management, Himalaya Publishing House., 11th Edition, 2005, ISBN: 8178660598
- 3. Prasana Chandra, Projects planning, analysis selection, Implementation and reviews, Tata McGraw-Hill Publishing Company, 7th Edition, 2009, ISBN-10: 0070077932, ISBN-13, 9780070077935
- 4. Charantimath, Poornima, Entrepreneurship Development and Small Business Enterprises, Pearson Education, New Delhi, 5th Edition, 2009, ISBN: 978-81-7758-260-4
- 5. K.Ramachandran, Essentials of Business Communication, McGraw Hill Education (India) Private Limited, 9th Edition, 2013, ISBN-13: 978-1-111-82122-7, ISBN-10: 1-111-82122-4

Subject BEI17L		Sul	bject Na	me: 1	PROJE	CT PHA	ASE - 2			T / L/ ETL	L	T / S.Lr	P/R	C
DEITTE	10	Pre	requisite	e NII.						L	0	0/1	0/1	10
L: Lect	ure T :			Supervise	ed Learr	ning P:	Project	R : Res	earch C:		Ŭ	0/ 1	0/1	1.0
				ded Theo			110,000	1111100	• • • • • • • • • • • • • • • • • • • •	0100105				
OBJEC					-		culmin	ate the a	cademic	study an	d provid	le an oppo	ortunity	to
explore	a proble											faculty me		
project of	demons	trates th	ne studer	nt's ability	to syntl	hesize aı	nd apply	the kno	wledge	and skills	acquire	d to real-v	world is	sues
and pro	blems.	Γhis pro	ject affi	rms the st	udents t	o think	critically	and cre	eatively,	find an o	otimal s	olution, m	ake eth	ical
decision														
COURS				s): (3-5)										
CO1	Apply	the kn	owledge	and skill	s acquire	ed in the	course	of study	address	ing a spec	ific pro	blem or is	sue.	
CO2				s to think	criticall	y and cr	eatively	about so	ocietal is	sues and	develop	user frier	ndly and	l
	reacna	ible sol	utions											
CO3				ills and de										
CO4	To tak	e on th	e challer	nges of te	amwork	, prepare	e a prese	ntation	and dem	onstrate t	he innat	e talents.		
Mappir	ng of Co	ourse C	utcome	s with Pr	ogram	Outcom	es (POs	s)						
COs/PC		`PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1		Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	
CO2		Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	
CO3		Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	
CO4		Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	
COs / P	SOs	PS	O1	PSC) 2	PS	O3	PS	O4	PSO5				
CO1		Н		Н		Н		Н		Н				
CO2		Н		Н		Н		Н		Н				
CO3		Н		Н		Н		Н		Н				
CO4		Н		Н		Н		Н		Н				
H/M/L	indicate	s Streng	gth of Co	orrelation	H- Hi	gh, M- I	Medium	, L-Low						
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approva	al							✓						

Subject Code BEI17E01	:	Subject Na	ame : EM	BEDDI	ED SYS	TEM			T / L/ ETL	L	T / S.Lr	P/R	С
BEITTEGT		Prerequisit	e:						T	3	0/0	0/0	3
L : Lecture T :				ed Learı	ning P:	Project	R : Res	earch (C: Credits	_			
T/L/ETL : The						, and the second							
OBJECTIVE													
		iew of real			-								
_		tes can und			-		_		terface.				
Detail	ed ov	erview abo	out embed	ded syst	em desig	gn and d	levelopn	nent.					
> Analys	sis of	real time	system pe	rforman	ce, lang	uage an	d their f	eatures					
➤ The ca	ise st	udies of sat	fety, aeros	pace ,au	ıtomobil	e, medio	cal and i	ndustri	al applicati	on.			
>													
COURSE OU	TCC	,											
CO1		•	o get brie						m.				
CO2			nds embed			•							
CO3		The grade	uates unde	erstands	embedd	ed syste	m desig	n and d	evelopmen	nt.			
CO4		The grade	uates Ana	lysis of	real tim	ne syster	n perfor	mance,	language	and the	r features		
CO5		The grade	uate will b	e capab	le to per	form ca	se study	on safe	ety, aerospa	ace ,auto	omobile, n	nedical	and
		industrial	application	on.									
Mapping of C						<u> </u>		1	T =	T =	T = - · ·	T = -	
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO	12
CO1	M	Н	M	Н	M	L	Н	M	H	L	L	M	
CO2	M	M	Н	M	L	Н	M	L	Н	M	L	Н	
CO3	Н	H	Н	M	Н	M	H	L	H	M	H	M	
CO4 CO5	H M	H H	M	L L	H	M M	L L	H	M M	L L	H H	M M	
COS	IVI	П	IVI	L	П	IVI	L	П	IVI	L	П	IVI	
COs / PSOs		PSO1	PSO)2	PS	O3	PS	SO4	PSO5				
CO1	M		Н		M		L		Н				
CO2	Н		M		Н		M		L				
CO3	M		M		L		Н		M				
CO4	Н		L		M		Н		L				
CO5	L		M		M		Н		M				
H/M/L indicate	es Sti	rength of C	orrelation	H- Hi	igh, M- 1	Medium	, L-Low		1				
								kil					
			E					al S					
Cotos		ses	Social					nic.					
Category		enc			/es		ç	chr					
	ses	Sci	and	e	ctiv	/es	oje	Te					
	enc	ing	es	$C_{\rm O}$	Ele	ctiv	/Pı	/ sd	S				
	Sci	eeri	niti es	am	am.	Ele	cal	shij	Kill				
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	Ba	En	Hu Sci	Prc	Prc	Ор	Pra	Int	Sod				
					✓								
A nnmayo1													
Approval													

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

EMBEDDED SYSTEM

UNIT I INTRODUCTION TO EMBEDDED SYSTEMS

9 Hrs

Brief overview of real time systems and embedded systems - Classification of embedded systems - Embedded system definitions - Functional and non-functional requirements - Architectures and standards - Typical applications.

UNIT II EMBEDDED SYSTEM COMPONENTS AND INTERFACE

9 Hrs

Device choices - Selection criteria and characteristics of Processors and memory systems for embedded applications - Interface and Peripherals - Power sources and management.

UNIT III EMBEDDED SYSTEM DESIGN AND DEVELOPMENT

9 Hrs

Design methods and techniques - Classification of need - Need analysis -Requirement and specification - Conceptual design - Models and languages - State machine model - State machine tables - Verification - Validation - Simulation and emulation.

UNIT IV REAL TIME SYSTEMS AND MODELS

9 Hrs

Characteristics and classification of real time systems - Real time specifications and Design techniques - Event based - Process based and graph based models - Real time kernel - Hierarchy services and design strategy - Real time system performance and analysis - Typical real time systems - Their languages and features.

UNIT V CASE STUDIES

9 Hrs

Case studies of safety-critical and time-critical embedded systems with reference to Aerospace, automobile, Medical and Industrial applications.

Total Number of Hours: 45 Hrs

Text Books:

- 1. Noergaard, T., "Embedded Systems Architecture: A Comprehensive Guide for Engineers and Programmers", Elsevier Publications, 2005.
- 2. Berger, A.S., "Embedded System Design: An Introduction to Process, Tools and Techniques", CMP Books, 2002.

Reference Books:

- 1. David, S., "An Embedded Software Primer", Addison-Wesley, 1999.
- 2. Liv, J.W.S., "Real-Time Systems", Pearson Education, 2001.
- 3. Vahid and Givargis, T., "Embedded System Design: A Unified Hardware/ Software Introduction", John Wiley and Sons, 2002.
- 4. Peatman, J.B., "Design with Microcontrollers", McGraw-Hill International Ltd., Singapore, 1989.
- 5. Kang, C.M.K., and Shin, G., "Real Time Systems", McGraw Hill, 1997.

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code BEI17E02	:	Subject Na	ame : SYS	STEMS	THEO	RY			T / L/ ETL	L	T / S.Lr	P/R	C
2211,202		Prerequisit	e:						T	3	0/0	0/0	3
L : Lecture T :				ed Lear	ning P:	Project	R : Res	search C	: Credits				
T/L/ETL: The			•		_	J							
OBJECTIVE	:												
Analy	sis of	f various fr	equency d	lomain (descripti	ons.							
		of state mo		•	•	operties	•						
		n state spa											
		ew of vario											
		te will have			pact of s	tability	and app	lications	s related to	non line	ar proble	ms.	
COURSE OU	TCO												
CO1		Capable t				•							
CO2		Understa							erties				
CO3		The gradu	iates desig	gn state	space sy	stems a	nd contr	ol.					
CO4		The stude analysis v			rief view	v of vari	ous typ	es of no	on -linear s	systems a	and their	phase p	lane
CO5		The grad problems		have th	e comp	lete imp	pact of s	stability	and appli	ications 1	elated to	non li	near
Mapping of C	ours	_		ogram	Outcom	nes (POs	s)						
COs/POs	PO	l PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2
CO1	M	Н	M	Н	M	L	Н	M	Н	L	L	M	
CO2	M	M	Н	M	L	Н	M	L	Н	M	L	Н	
CO3	Н	Н	Н	M	Н	M	Н	L	Н	M	Н	M	
CO4	Н	Н	M	L	Н	M	L	Н	M	L	Н	M	
CO5	M	Н	M	L	Н	M	L	Н	M	L	Н	M	
COs / PSOs		PSO1	PSO	<u>D2</u>		SO3		SO4	PSO5				
CO1	M		Н		M		L		Н				
CO2	Н		M		Н		M		L				
CO3	M		M		L		Н		M				
CO4	Н		L		M		Н		L				
CO5	L	1 00	M		M		H		M				
H/M/L indicate	es Str	ength of C	orrelation	H- H	igh, M-	Medium	ı, L-Low			1	T		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval					 								

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

SYSTEMS THEORY

UNIT I FREQUENCY DOMAIN DESCRIPTIONS

9 Hrs

Properties of transfer functions – Impulse response matrices – Poles and zeros of transfer function matrices – Critical frequencies – Resonance – Steady state and dynamic response – Bandwidth.

UNIT II STATE SPACE DESCRIPTION

9 Hrs

Review of state model for systems – State transition matrix and its properties - Free and forced responses – Controllability and observability – Kalman decomposition – Minimal realisation – Balanced realisation

UNIT III DESIGN IN STATE SPACE SYSTEMS

9 Hrs

State feedback – Output feedback – Design methods – Pole assignment – Full order and reduced order observers – Deadbeat control – Deadbeat observers – Introduction to optimal control..

UNIT IV NON-LINEAR SYSTEMS

9 Hrs

Typesof non-linearity – Typical examples – Phase plane analysis – Limit cycles -Equivalent linearization – Describing functions – Chaotic behaviour. Need for model reduction – Aggregation techniques – Dominant pole concept – Model reduction via partial realisation – Time moment matching and pade approximation – Hankel norm model reduction – Comparative merits of various methods.

UNIT V STABILITY 9 Hrs

Stability concepts – Equilibrium points – BIBO and asymptotic stability – Direct method of Lyapunov – Application to non-linear problems – Frequency domain stability criteria – Popov's method and its extensions.

Total Number of Hours: 45 Hrs

Text Books:

- 1. M.Gopal, "Modern Control Engineering", Wiley, 1996.
- 2. Theodore E. Djaferis , Irvin c.schick, System Theory: Modeling, Analysis and Control, springer science, 2000.

Reference Books:

- 1. Ogatta, "Modern Control Engineering", PHI, 3rd Edition, 1997.
- 2. G.J. Thaler, "Automatic control systems", Jaico publishers, Chennai, 1993.

Subject Code BEI17E03		Subject Na ADAPTIV			DENTI	FICAT	ION &		T / L/ ETL	L	T / S.Lr	P/R	C
		Prerequisit							T	3	0/0	0/0	3
L : Lecture T :				ed Learı	ning P:	Project	R : Res	search C	: Credits				
T/L/ETL : The			•		_	3							
OBJECTIVE				•									
Provio	ding t	heoretical	and practi	cal knov	wledge o	n meth	ods to de	evelop n	nathematic	al mode	ls from e	xperime	ntal
		ve control											
		and implem											
		t/output ex							l dynamica	al model	s.		
		he students			nethods	of adapt	ive cont	rol.					
COURSE OU	TCO		, ,	<i>'</i>									
CO1		_					•		knowledge trol syster		nethods	to dev	elop
CO2		Capable of	of Designi	ng and i	mpleme	nt syste	m identi	fication	experime	nts.			
CO3		The stude	nts are ca	pable of	designi	ng meth	ods of a	daptive	control.				
CO4		Capable models	to use in	put/outp	out expe	erimenta	al data	for ide	ntification	of mat	hematica	l dynan	nical
CO5		Capable t	o design v	various 1	nethods	of adap	tive con	trol.					
Mapping of C	ours	e Outcome	s with Pr	ogram	Outcom	es (PO	s)						
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	12
CO1	M	Н	M	L	Н	M	L	Н	M	M	Н	L	
CO2	Н	L	M	Н	L	M	Н	M	L	M	M	Н	
CO3	L	M	Н	L	M	Н	M	L	Н	M	L	Н	
CO4	Н	Н	M	L	Н	M	L	Н	M	L	Н	M	
CO5	M	Н	M	L	Н	M	Н	L	M	L	Н	M	
COs / PSOs	-	PSO1	PSO	O2		SO3	_	SO4	PSO5				
CO1	M		H		L		M		M				
CO2	H		Н		M		L		M				
CO3	H		Н		M		L		H				
CO4	M		M		Н		M		L				
CO5	M	4 CO	H	77 77	H	N # 1'	L		M				
H/M/L indicate	es Str	ength of C	orrelation	H-H	igh, M- 1	vieaium	ı, L-LOW						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	cills				
Approval	Basic 5	Engine	Humaniti Sciences	Progra	Progra	Open I	Practic	Interns	Soft Skills				

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

SYSTEM IDENTIFICATION & ADAPTIVE CONTROL

UNIT I NON PARAMETRIC METHODS

9 Hrs

Non parametric methods: Transient analysis – frequency analysis – correlation analysis spectral analysis .

UNIT II PARAMETRIC METHODS

9 Hrs

Linear Regression: The least square estimate – best linear unbiased estimation under linear constraints – updating the parameter estimates for linear regression models – prediction error methods: description of prediction error methods – optimal prediction – relationships between prediction error methods and other identification methods – theoretical analysis.

Instrumental variable methods: Description of instrumental variable methods – theortical analysis – covariance matrix of IV estimates – comparison of optimal IV and prediction error estimates.

UNIT III RECURSIVE IDENTIFICATION METHODS

9 Hrs

The recursive least squares method – the recursive instrumental variable method – the recursive prediction error method – model validation and model structure determination. Identification of systems operating in closed loop: identifiability considerations – direct identification – indirect identification – joint input – output identification.

UNIT IV ADAPTIVE CONTROL SCHEMES

9 Hrs

Introduction – uses – definitions – auto tuning – types of adaptive control – gain scheduling controller – model reference adaptive control schemes –self-tuning controller.

UNIT V MRAC AND STC

9 Hrs

Approaches – the gradient approach –liapunov functions – passivity theory – pole placement method – minimum variance control – predictive control-Stability – convergence – robustness – application of adaptive control.

Total Number of Hours: 45 Hrs

Text Books:

- 1. Soderstorm, T. and PetreStoica, System Identification, Prentice Hall International (UK)Ltd., 1989.
- 2. Sastry S. and Bodson M., Adaptive control stability, convergence and Robustness, Prentice Hall inc., New Jersey, 1989.

Reference Books:

1. Ljung L, system identification: Theory for the user, Prentice Hall, Englewood Cliffs, 1987

	B.Tech Regulation 20	17 Approved by	the Academic Co	ouncil
--	----------------------	----------------	-----------------	--------

Subject Code BEI17E04		Subject Na CONTRO		URAL	AND FU	J ZZY L	OGIC		T / L/ ETL	L	T / S.Lr	P/R	C
		Prerequisit							T	3	0/0	0/0	3
L : Lecture T :				ed Learı	ning P:	Project	R : Res	earch C	: Credits	1 1		<u>.</u>	
T/L/ETL: The						J							
OBJECTIVE	:												
➤ The gr	raduat	tes can und	erstand w	hat is ne	eural net	work ,m	aps and	theorie	S.				
		w of contro		•									
		erview abo						d fuzzy	algorithm				
		and about th				ontroller	•						
		fuzzy algo			ıdy.								
COURSE OU	TCO	`						1.1					
CO1		The gradu											
CO2		Understa								C 1	C	1	
CO3				able to	give De	tailed of	verview	about 1	uzzy sets,	fuzzyrul	es, fuzzy	relation	and
		fuzzy algo	oriunin.										
CO4		The stude	nt unders	tands ab	out the	design o	f fuzzy 1	ogic co	ntroller.				
						J	•	•					
CO5		Capable t	o Analyse	of fuzz	v algorit	hm and	case stu	dv					
203		Capable t	o i maiyst	OI IUZZ	y aiguil	ann and	case stu	ay.					
7.7					<u> </u>								
Mapping of C						1		DOO	DO0	DO10	DO 1.1	DO:	1.2
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			12
CO1	Н	M	L	M	Н	L	Н	M	L	Н	M	Н	
CO2	M	H	L	Н	M	L	Н	M	M	H	L	M	
CO3	H L	H L	H M	M H	L L	H	M M	L	M M	L H	H M	M H	
CO4 CO5	M	H	M	L	H	M	L	H	M	Н	H	L	
CO3	IVI	П	IVI	L	П	IVI	L	П	IVI	П	П	L	
COs / PSOs		PSO1	PSO	72	DC	O3	DS	SO4	PSO5				
CO1	Н	1301	M	<i>JL</i>	L	103	Н	304	M	<u> </u>			
CO2	Н		L		M		Н		M				
CO3	M		L		Н		M		L				
CO4	Н		M		L		Н		H				
CO5	M		M		H		M		M				
H/M/L indicat		ength of C		H- Hi		Medium	, L-Low	,	1,1	1			
					7, 1,1	1001011							
								\mathbf{Sk}					
		S	Social					cal					
Category		nce	Soc		Š			hini.					
Ç ,	50	cie	p		ive	S	jecı	ecl					
	ıce	∞	an	ore	ect	ive	Pro.	L /					
	zier	l iii	ties	C	III u	ect	17	ips	IIs				
	Sc	nee	ani Ices	ran.	ran	ı E	ica	nsh	Ski				
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	Bį	핍	H _J	五	Ţ,	Ō	Pr	In	Š				
					✓			<u> </u>					
A mm 1													
Approval													

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

NEURAL AND FUZZY LOGIC CONTROL

UNIT I INTRODUCTION AND DIFFERENT ARCHITECTURES OF NEURAL NETWORKS 9 Hrs

 $\label{eq:action} Artificial \ neuron-MLP-Back \ propagation-Hope \ field \ networks-Kohonenself- \ organising \ maps-adaptive \ resonance \ theory.$

UNIT II NEURAL NETWORKS FOR CONTROL

9 Hrs

Schemes of neuro-control – identification and control of dynamical systems – adaptive neuro controller – case study.

UNIT III INTRODUCTION TO FUZZY LOGIC

9 Hrs

Fuzzy sets – fuzzy relations – fuzzy conditional statements – fuzzy rules – fuzzy algorithm. Fuzzy logic controller – fuzzification interface – knowledge base –

UNIT IV FUZZY LOGIC

9 Hrs

decision making logic – defuzzification interface – design of fuzzy logic controller – case study.

UNIT V NEURO-FUZZY LOGIC CONTROL

9 Hrs

Optimisation of membership function and rules base of fuzzy logic controller using neural networks – genetic algorithm – fuzzy neuron – adaptive fuzzy systems – case study.

Total Number of Hours: 45 Hrs

Text Books:

- 1. LauranceFausett, Fundamentals of Neural Networks, Prentice Hall, Englewood cliffs, N.J, 1992.
- 2. Zimmermann H.J., Fuzzy set theory and its applications, Allied Publication Ltd., 1996.

Reference Books:

- 1. Tsoukalas L.H, and Robert E.Uhrig, Fuzzy and Neural approach in Engineerin, John Wiley and Sons, 1997.
- 2. JacekM.Zurada, Introduction to artificial Neural Systems, Jaico Publishing House Mumbai, 1997.
- 3. KlirG.J.and Yuan B.B, Fuzzy sets and fuzzy logic, Prentice Hall of India, New Delhi, 1997.
- 4. Driankov D., Hellendron. H. Reinfrank M., An Introduction to Fuzzy control, Narosa publishing House, New Delhi, 1996.
- 5. Millon W.T., Sutton R.S. and Webrose P.J., Neural Networks for control, MIT Press, 1992.

Subject Code BEI17E05		Subject Na INSTRUM			LANT				T / L/ ETL	L	T / S.Lr	P/R	C
		Prerequisit	e:						T	3	0/0	0/0	3
L : Lecture T						Project	R: Res	search (C: Credits				
T/L/ETL: The		Lab/Embed	ded Theo	ry and L	ab								
OBJECTIVE													
Þ		o provide a											
۶									the measur	rement of	devices.		
>		icating on											
>		ning know	_			•		olant.					
	Siu	dying abou	it differen	t contro	i ioops u	sea in b	oners.						
COURSE OU	JTCO	MES (CO	(3-5))									
CO1		Understa			eration t	hrough	various	method	ls.				
CO2		Acquires	knowleds	e on the	various	types o	f power	plants	and the me	asureme	ent device	·S	
CO3		Understa	_				_	_					
									•				
CO4 CO5		Capable t							ver plant				
Mapping of (COLLEG							•					
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	2
CO ₃ /1 O ₃	H	M	H	M	H	M	Н	L	L	M	H	H	
CO2	L	M	L	H	M	L	Н	M	M	H	M	Н	
CO3	M	L	H	L	H	M	L	Н	M	L	M	H	
CO4	Н	H	Н	Н	L	M	M	L	M	H	H	M	
CO5	M	H	L	M	H	L	Н	M	L	Н	M	L	
				111	1			111			1,1		
COs / PSOs		PSO1	PS	02	PS	O3	PS	SO4	PSO5				
CO1	M		M		Н		Н		L				
CO2	L		M		Н		M		L				
CO3	Н		Н		M		L		Н				
CO4	M		M		Н		L		Н				
CO5	Н		M		M		L		Н				
H/M/L indicat	tes Str	ength of C	orrelation	H- H	igh, M-	Medium	, L-Low						
								Kill					
								1 S					
		ses	Social					ica					
Category		ienc	Š		/es		ç	chr					
	es	Sci		بو	ctiv	es.	oje	Te					
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	S				
	Sci	eeri	niti es	<u>ш</u>	[m	Ele	al,	 shiţ	kill				
	ic	- gine	mai enc	gra	gra	en]	ctic		t S				
	Bas	Eng	Humaniti Sciences	Pro	Pro	Ope	Pra	Inte	Soft Skills				
1					 			, ,					
Approval		•										•	

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

POWER PLANT INSTRUMENTATION

UNIT I OVERVIEW OF POWER GENERATION

9 Hrs

Brief survey of methods of power generation – hydro, thermal, nuclear, solar and wind power – importance of instrumentation in power generation – thermal power plants – building blocks – details of boiler processes UP&I diagram of boiler – cogeneration.

UNIT II MEASUREMENTS IN POWER PLANTS

9 Hrs

Electrical measurements – current, voltage, power, frequency, power – factor etc. – non electrical parameters – flow of feed water, fuel, air and steam with correction factor for temperature – steam pressure and steam temperature – drum level measurement – radiation detector – smoke density measurement – dust monitor

UNIT III ANALYZERS IN POWER PLANTS

9 Hrs

Flue gas oxygen analyser – analysis of impurities in feed water and steam – dissolved oxygen analyser – chromatography – PH meter – fuel analyser – pollution monitoring instruments..

UNIT IV CONTROL LOOPS IN BOILER

9 Hrs

Combustion control – air/fuel ratio control – furnace draft control – drum level control – main stem and reheat steam temperature control – superheater control – attemperator – deaerator control – distributed control system in power plants – interlocks in boiler operation.

UNIT V TURBINE - MONITORING AND CONTROL

9 Hrs

 $Speed, \ vibration, \ shell \ temperature \ monitoring \ and \ control-steam \ pressure \ control-lubricant \ oil \ temperature \ control-cooling \ system$

Total Number of Hours: 45 Hrs

Text Books:

- 1. Sam G. Dukelow, The control of Boilers, instrument Society of America, 1991.
- 2. Modern Power Station Practice, Vol.6, Instrumentation, Controls and Testing, Pergamon Press, Oxford, 1971.

Reference Books:

- 1. Elonka, S.M. and Kohal, A.L., Standard Boiler Operations, McGraw-Hill, New Delhi, 1994.
- 2. R.K.Jain, Mechanical and industrial Measurements, Khanna Publishers, Delhi ,1995.

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code BEI17E06	e:	Subject Na	ame :PC	BASEL	INSTR	UMEN	TATIO	N	T / L/ ETL	L	T / S.Lr	P/R	(
DEIT / Loo	-	Prerequisit	e:						T	3	0/0	0/0	3
L : Lecture T				ed Lear	ning P:	Project	R : Res	search C	: Credits				
T/L/ETL: Th	eory/I	Lab/Embed	ded Theo	ry and I	_ab	3							
OBJECTIVE													
		action to th								r power	and perfo	rmance	,
		re to the va								_			
		ping the kn					case sti	ıdies in	instrumen	tation			
		e the Capal						F : d.,	.i.a1				
		elop instrui		-	s on vari	ous proc	cesses of	mausu	1ai measui	ements.			
COURSE OU	JICC				t and and	luzina t	aahniau	os of di	gital comp	utor nove	or and no	rformor	
						•	•			•	er and pe	Horman	100
CO2									omponent				
CO3		Develops	the know	ledge o	f real-tin	ne syste	ms and o	case stu	dies in inst	rumenta	tion		
CO4		Capabilit	y to analy	ze PC b	ased data	a							
CO5		Capable t	o develop	instrun	nentation	system	s on var	ious pro	ocesses of	industria	l measure	ments	
Mapping of (Cours	e Outcome	es with P	rogram	Outcom	nes (PO	s)						
COs/POs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	M	Н	M	Н	M	Н	Н	M	L	M	Н	
CO2	Н	Н	L	Н	M	Н	Н	L	Н	Н	Н	L	
CO3	M	M	Н	M	Н	M	M	M	M	M	M	M	
CO4	Н	Н	M	L	M	L	L	Н	H	L	Н	Н	
CO5	M	M	M	Н	L	Н	M	M	M	Н	M	M	
~~ /~~							_						
COs / PSOs		PSO1	PS	<u>O2</u>		SO3		SO4	PSO5				
CO1	M		M		H		L		H				
CO2	M		Н		M		L		H				
CO3	M		Н		M		L		H				
CO4 CO5	M		H		L		M		H				
H/M/L indica	H tes Str	rength of C	L	Н- Н	igh M-	Medium	H I-Lov	7	M				
H/W/L muica		lengui oi C		<u> </u>	igii, ivi-	Mediun	i, L-Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	Ba	En	Hu	Prc	Pro	Op	Pr?	Int	Sos				
Approval													

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

PC BASED INSTRUMENTATION

UNIT I INTRODUCTION

9 Hrs

Review of microprocessors, microcomputers, micro processing systems - Input-output structures - Measurement of digital computer power and performance.

UNIT II INTERFACING

9 Hrs

Analogue signal conversion – Interface components and techniques - Signal processing - Interface systems and standards – Communications.

UNIT III SOFTWARE 9 Hrs

Real time languages – Programming real time systems - Discrete PID algorithms -Real time operating systems - Case studies in instrumentation..

UNIT IV MEASUREMENT AND CONTROL

9 Hrs

PC based data - Acquisition systems - Data Acquisition- Data Gathering

UNIT V APPLICATION EXAMPLES

9 Hrs

Industrial process measurements, like flow temperature, pressure, and level PC based instruments development system.

Total Number of Hours: 45 Hrs

Text Books:

1. Krishna Khan, "Computer based industrial control", Prentice Hall, 1997.

Reference Books:

- 1. Ahson, S.I., "Microprocessors with applications in process control", Tata McGraw-Hill Publishing Company Limited, New Delhi, 1984.
- 2. George Barney C., "Intelligent Instrumentation", Prentice Hall of India Pvt. Ltd., New Delhi, 1998.

Department of <u>ELECTRONICS AND INSTRUMENTATION ENGINEERING</u>

Subject Code: BEI17E07	:	Subject Na	ame : DIO	GITAL	IMAGE	PROC	ESSIN	G	T / L/ ETL	L	T / S.Lr	P/R	С
]	Prerequisit	e:						T	3	0/0	0/0	3
L: Lecture T:						Project	R : Res	earch C	: Credits				
T/L/ETL : The		ab/Embed	ded Theo	ry and L	ab								
OBJECTIVE													
>		roduction t										ssing	
>		osure to cu								cessing s	systems		
> >		develop an familiarize							ess image				
· ·		eloping cr							the art in i	mage nr	ocessing		
COURSE OU					out short	coming	or the s	state of	inc art in ii	mage pro	occasing		
CO1	100				rv and a	lgorithn	ns that a	re wide	ly used in	digital ir	nage pro	cessing	
CO2									pecific to i				
CO3		Develops							•	g. þ.		5,5001111	
CO4		Familiari	zed with N	MATLA	B Image	Proces	sing Too	olbox					
CO5		Develops	critical th	inking a	about she	ortcomi	ngs of th	e state o	of the art in	n image	processir	ıg	
Mapping of C	ours	e Outcome	s with Pr	noram	Outcom	es (POs	<u>(2</u>						
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	M	Н	M	Н	M	Н	L	L	M	Н	M	<u>:=</u>
CO2	Н	Н	M	Н	M	M	Н	Н	M	Н	Н	Н	
CO3	M	M	Н	Н	L	M	M	Н	Н	L	M	M	
CO4	L	L	L	M	M	M	L	M	Н	M	L	L	
CO5	M	M	M	L	Н	L	M	L	Н	Н	M	M	
COs / PSOs		PSO1	PSO)2)2	PS	O3	PS	SO4	PSO5				
CO1	Н		M		L		M		L				
CO2	Н		Н		Н		Н		Н				
CO3	Н		M		M		M		M				
CO4	M		Н		L		L		Н				
CO5	L		L		M		M		M				
H/M/L indicate	es Str	ength of C	orrelation	H- H	igh, M-	Medium	, L-Low			1		1	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval				ı	1	ı	I	1 1				I	

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

DIGITAL IMAGE PROCESSING

UNIT I FUNDAMENTALS OF IMAGE PROCESSING

9 Hrs

Introduction – Steps in image processing systems – Image acquisition – Sampling and Quantization – Pixel relationships – Color fundamentals and models, File formats, Image operations – Arithmetic, Geometric and Morphological.

UNIT II IMAGE ENHANCEMENT

9 Hrs

Spatial Domain: Gray level Transformations – Histogram processing – Spatial filtering smoothing and sharpening. Frequency Domain: Filtering in frequency domain – DFT, FFT, DCT – Smoothing and sharpening filters – Homomorphic Filtering.

UNIT III IMAGE SEGMENTATION AND FEATURE ANALYSIS

9 Hrs

Detection of Discontinuities – Edge operators – Edge linking and Boundary Detection – Thresholding – Region based segmentation – Morphological Watersheds – Motion Segmentation, Feature Analysis and Extraction.

UNIT IV MULTI RESOLUTION ANALYSIS AND COMPRESSIONS

9 Hrs

Multi Resolution Analysis: Image Pyramids – Multi resolution expansion – Wavelet Transforms, Image compression: Fundamentals – Models – Elements of Information Theory – Error free compression – Lossy Compression – Compression Standards.

UNIT V APPLICATION OF IMAGE PROCESSING

9 Hrs

Image classification – Image recognition – Image understanding – Video motion analysis – Image fusion – Steganography – Digital compositing Mosaics – Colour Image Processing.

Total Number of Hours: 45 Hrs

Text Books:

- 1. Anil K.Jain, "Fundamentals of Digital Image Processing". Pearson Education, 2003
- 2. Anil K.Jain, "Fundamentals of Digital Image Processing". Pearson Education, 2003.

- 1. Rafael C.Gonzalez and Richard E.Woods, "Digital Image Processing", 2ndEdition, Pearson Education, 2003.
- 2. Milan Sonka, ValclavHalavac and Roger Boyle, "Image Processing, Analysis and Machine Vision", 2nd Edition, Thomson Learning, 2001.

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Perequisite: T 3 0:0 0:0 3	Subject Code BEI17E08	: Si	ubject Na	ame : AD	VANCI	ED PRO	CESS	CONTR	OL	T / L/ ETL	L	T / S.Lr	P/R	C
### TALETL: Theory/Lab/Embedded Theory and Lab OBJECTIVE: Introducing some of the techniques of nonlinear control. Developing an in-depth understanding of generalized predictive control [GPC] as a vehicle for explaining the principles of modern predictive control [MPC]. To become familiar with the minimum variance methods as a basis for studying the techniques of self-tuning and adaptive control. Providing a basis for applying these techniques in an industrial context. To appreciate the functionality of commercially available packages for realizing model predictive control. COURSE OUTCOMES (COS): (3-5) COI Understands some of the techniques of nonlinear control CO2 Develops an in-depth understanding of generalized predictive control [GPC] for explaining the principles of modern predictive control[MPC]. CO3 Gets familiarized with the minimum variance methods as a basis for studying the techniques of self-tuning and adaptive control. CO4 Understands the basis for applying these techniques in an industrial context CO5 Develops the functionality of commercially available packages for realizing model predictive control. CO4 Understands the basis for applying these techniques in an industrial context CO5 Develops the functionality of commercially available packages for realizing model predictive control. Mapping of Course Outcomes with Program Outcomes (POs) CO5 Develops the functionality of commercially available packages for realizing model predictive control. Mapping of Course Outcomes with Program Outcomes (POs) CO5 Develops the functionality of commercially available packages for realizing model predictive control. Mapping of Course Outcomes with Program Outcomes (POs) CO5 POS PO1 PO2 PO3 PO5 PO5 PO5 PO7 PO8 PO9 PO10 PO11 PO12 PO12 PO12 PO12 PO12 PO13 PO14 PO15 PO16 PO17 PO18 PO19 PO11 PO12 PO19 PO19 PO19 PO19 PO19 PO19 PO19 PO19		Pı	rerequisit	e:							3		0/0	3
DBJECTIVE :	L : Lecture T :	Tutori	al SLr:	Supervis	ed Lear	ning P:	Project	R : Res	earch C	: Credits	•			
➤ Introducing some of the techniques of nonlinear control.			b/Embed	ded Theo	ry and L	ab								
 Developing an in-depth understanding of generalized predictive control [GPC] as a vehicle for explaining the principles of modern predictive control [MPC]. To become familiar with the minimum variance methods as a basis for studying the techniques of self-tuning and adaptive control. Providing a basis for applying these techniques in an industrial context. To appreciate the functionality of commercially available packages for realizing model predictive control. COURSE OUTCOMES (COs): (3-5) Develops an in-depth understanding of generalized predictive control [GPC] for explaining the principles of modern predictive control[MPC]. Gots familiarized with the minimum variance methods as a basis for studying the techniques of self-tuning and adaptive control. CO4 Understands the basis for applying these techniques in an industrial context CO5 Develops the functionality of commercially available packages for realizing model predictive control. Mapping of Course Outcomes with Program Outcomes (POs) CO8/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO9 PO10 PO11 PO12 PO3 PO4 PO5 PO6 PO7 PO8 PO9<!--</td--><td>OBJECTIVE</td><td>:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td>	OBJECTIVE	:												
principles of modern predictive control [MPC]. To become familiar with the minimum variance methods as a basis for studying the techniques of self-tuning and adaptive control. Providing a basis for applying these techniques in an industrial context. To appreciate the functionality of commercially available packages for realizing model predictive control. COURSE OUTCOMES (COS): (3-5) COI Understands some of the techniques of nonlinear control CO2 Develops an in-depth understanding of generalized predictive control [GPC] for explaining the principles of modern predictive control[MPC]. CO3 Gets familiarized with the minimum variance methods as a basis for studying the techniques of self-tuning and adaptive control. CO4 Understands the basis for applying these techniques in an industrial context CO5 Develops the functionality of commercially available packages for realizing model predictive control. Mapping of Course Outcomes with Program Outcomes (POs) COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 H M M H M H M H M H M H M H M H M H M														
> To become familiar with the minimum variance methods as a basis for studying the techniques of self-tuning and adaptive control. > Providing a basis for applying these techniques in an industrial context. > To appreciate the functionality of commercially available packages for realizing model predictive control. COURSE OUTCOMES (COs): (3-5) CO1								redictive	contro	l [GPC] as	a vehi	cle for exp	olaining	the
and adaptive control. > Providing a basis for applying these techniques in an industrial context. > To appreciate the functionality of commercially available packages for realizing model predictive control. COURSE OUTCOMES (COS): (3-5) CO1														
 ▶ Providing a basis for applying these techniques in an industrial context. ▶ To appreciate the functionality of commercially available packages for realizing model predictive control. COURSE OUTCOMES (COs): (3-5) CO1 Understands some of the techniques of nonlinear control CO2 Develops an in-depth understanding of generalized predictive control [GPC] for explaining the principles of modern predictive control[MPC]. CO3 Gets familiarized with the minimum variance methods as a basis for studying the techniques of self-tuning and adaptive control. CO4 Understands the basis for applying these techniques in an industrial context CO5 Develops the functionality of commercially available packages for realizing model predictive control. Mapping of Course Outcomes with Program Outcomes (POs) CO5/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PO12 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PO12 PO3 M H M M M M M M M M M M M M M M M M M M M M				ith the mi	inimum	variance	e method	ds as a b	asis for	studying t	he tech	niques of	self-tun	ing
> To appreciate the functionality of commercially available packages for realizing model predictive control. COURSE OUTCOMES (COS): (3-5) Develops an in-depth understanding of generalized predictive control [GPC] for explaining the principles of modern predictive control[MPC]. CO3 Gets familiarized with the minimum variance methods as a basis for studying the techniques of self-tuning and adaptive control. CO4 Understands the basis for applying these techniques in an industrial context CO5 Develops the functionality of commercially available packages for realizing model predictive control. Mapping of Course Outcomes with Program Outcomes (POS) COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 H M M H H M H M L M H M L H M H M L H M H M		•		1	1 .	1 .		1 1						
COURSE OUTCOMES (COs): (3-5) CO1 Understands some of the techniques of nonlinear control CO2 Develops an in-depth understanding of generalized predictive control [GPC] for explaining the principles of modern predictive control [MPC]. CO3 Gets familiarized with the minimum variance methods as a basis for studying the techniques of self-tuning and adaptive control. CO4 Understands the basis for applying these techniques in an industrial context CO5 Develops the functionality of commercially available packages for realizing model predictive control. Mapping of Course Outcomes with Program Outcomes (POs) CO5/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 H M M H H M H M H M H L M H L H M H M CO3 M H M M H M H M H L M H L H M M H M H M											1.1	1	. 1	
CO1						nercially	avanar	не раска	iges for	realizing	model p	redictive	control.	
Develops an in-depth understanding of generalized predictive control [GPC] for explaining the principles of modern predictive control [MPC]. CO3 Gets familiarized with the minimum variance methods as a basis for studying the techniques of self-tuning and adaptive control. CO4 Understands the basis for applying these techniques in an industrial context CO5 Develops the functionality of commercially available packages for realizing model predictive control. Mapping of Course Outcomes with Program Outcomes (POs)						ماديد المداد		1:	4					
Principles of modern predictive control[MPC]. CO3											1 [C]	OC1 6	1	- 41
Gets familiarized with the minimum variance methods as a basis for studying the techniques of self-tuning and adaptive control. CO4 Understands the basis for applying these techniques in an industrial context CO5 Develops the functionality of commercially available packages for realizing model predictive control. Mapping of Course Outcomes with Program Outcomes (PO5) CO5/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 H M H M H M H M H M L H M CO2 M H M CO3 M H M L H M L H M L H M CO4 M H L H M L H M L H M L CO5 PSO3 PSO4 PSO5 PSO5 CO1 M H M L H M L H M L H M L H M L CO5/PSO8 PSO1 PSO2 PSO3 PSO4 PSO5 CO1 M H M L H M L H M L H M CO2 H M L H M L H M CO3 H L H M L H M L H M CO4 H M L H M L H M CO5 CO5/PSO8 PSO1 PSO2 PSO3 PSO4 PSO5 CO5 CO5 CO5 M L H M L H M L H M CO5 H H M L H M CO5 H M L H M L H M CO5 H M L H M L H M CO5 H M L H M L H M CO5 H H H CO5 H H H CO5 CO5	CO2	l l							a prea	icuve com	roi [Gi	C) for ex	кріанні	g the
Self-tuning and adaptive control.	CO2								hada a	, o bosis f	on otrada	vina tha t	aahnian	20 of
CO4	COS						ını varla	nce met	nous as	s a basis I	or study	ying the t	ecimiqu	es of
Develops the functionality of commercially available packages for realizing model predictive control. Mapping of Course Outcomes with Program Outcomes (POs)	GO.4				•					1				
Control Control Control Cos/Pos Po1 Po2 Po3 Po4 Po5 Po6 Po7 Po8 Po9 Po10 Po11 Po12 Po3 Po4 Po5 Po6 Po7 Po8 Po9 Po10 Po11 Po12 Po3 Po4 Po5 Po6 Po7 Po8 Po9 Po10 Po11 Po12 Po3 Po4 Po5 Po6 Po7 Po8 Po9 Po10 Po11 Po12 Po30 Po30 Po30 Po4 Po5 Po6 Po7 Po8 Po9 Po10 Po11 Po12 Po30 Po30 Po30 Po4 Po5 Po6 Po7 Po8 Po9 Po10 Po11 Po12 Po30 Po	CO4		Understar	nds the ba	sis for a	pplying	these te	chniques	s in an i	ndustrial c	ontext			
Mapping of Course Outcomes with Program Outcomes (POs)	CO5]	Develops	the func	tionality	of con	nmercia	lly avai	lable pa	ackages fo	or reali	zing mod	el predi	ctive
COs/POs			control.		·			·	•	· ·			•	
COs/POs	N.T		0.4	*41 D		0 1	(DO	`						
CO1						1		-	DOG	DOO	DO 16) DO11	DO	10
CO2														12
CO3														
CO4														
CO5														
COs / PSOs PSO1 PSO2 PSO3 PSO4 PSO5 CO1 M H M H M L H M CO2 H M M L H M CO3 H L H M CO4 H M M L L H CO5 M L H L M H/M/L indicates Strength of Correlation Category Categ							1				-			
Cotegory Cotegory Category	COS	IVI	L	П	IVI	L	П	IVI	L	IVI	н	П	L	
Cotegory Cotegory Category	COa / DCOa	D	CO1	DCA	22	DC	102	DC	204	DCO5				
Cotegory Cotego			301		<i>J</i> 2	1	103		504					
Cotegory Category Catego														
Cotegory Category Catego														
Cotegory Category Catego														
H/M/L indicates Strength of Correlation Engineering Sciences Basic Sciences Humanities and Social Brogram Core Program Core Program Electives Open Electives Soft Skills Soft Skills								L T						
Basic Sciences Engineering Sciences Frogram Core Program Electives Open Electives Internships / Technical Skill Soft Skills			noth of C	1	и и		Madium	L	,	IVI				
	n/W/L marcar		ingui oi C		п- п.	igii, ivi- i	Viediuii	, L-LOW						
									Ski					
				ial					al S					
	Category		ces	0C.					nic					
	Category		ien	S		ves		ect	sch					
		ses	Sc	anc	Te	cti	ves	roj	/ T¢					
		ien	ing	ies	ပိ	Ele	čti	/ P	bs '	S				
		Sci	eer	nit	ım	ım	Ele	cal	shi	kil				
		sic	jij	ma	gra	gra	en	ctic	ma em	t S				
		Bas	En	Hu Sci	Prc	Prc	Ор	Pra	Int	Sof				
Approval										-				
Approval			•										•	
	Approval													

ADVANCED PROCESS CONTROL

UNIT I MULTIVARIABLE SYSTEMS

9 Hrs

Multivariable Systems – Transfer Matrix Representation – State Space Representation – Poles and Zeros of MIMO System - Multivariable frequency response analysis - Directions in multivariable systems - Singular value decomposition.

UNIT II MULTI-LOOP REGULATORY CONTROL

9 Hrs

Multi-loop Control - Introduction - Process Interaction - Pairing of Inputs and Outputs -The Relative Gain Array (RGA) - Properties and Application of RGA - Multi-loop PID Controller - Biggest Log Modulus Tuning Method - Decoupling Control - LQG Control - RGA for Non-square Plant

UNIT III MULTIVARIABLE REGULATORY CONTROL

9 Hrs

Introduction to Multivariable control –Multivariable PID Controller -Multivariable IMC– Multivariable Dynamic Matrix Controller -Multivariable Model Predictive Control –Generalized Predictive Controller – Multiple Model based Predictive Controller – Constrained Model Predictive Controller - Implementation Issues.

UNIT IV CONTROL OF TIME-VARYING AND NONLINEAR SYSTEMS

9 Hrs

Models for Time-varying and Nonlinear systems – Input signal design for Identification –Real-time parameter estimation - Types of Adaptive Control - Gain scheduling - Adaptive Control - Deterministic Self-tuning Controller and Model Reference Adaptive Controller – Nonlinear PID Controller - Control of Hammerstein and Wiener Systems

UNIT V CASE STUDIES

9 Hrs

Control Schemes for Distillation Column, CSTR, Bioreactor, Three-tank hybrid system, Four-tank system, pH, and polymerization reactor

Total Number of Hours: 45 Hrs

Text Books:

- 1. Bequette, B.W., "Process Control Modeling, Design and Simulation", Prentice Hall of India, 2004.
- 2. Stephanopoulos, G., "Chemical Process Control An Introduction to Theory and Practice", Prentice Hall of India, 2005.
- 3. Seborg, D.E., Edgar, T.F. and Mellichamp, D.A., "Process Dynamics and Control", Wiley John and Sons, 2nd Edition, 2003.
- 4. Coughanowr, D.R., "Process Systems Analysis and Control", McGraw -Hill International Edition, 2004.

Reference Books:

- 1. E. Ikonen and K. Najim, "Advanced Process Identification and Control", Marcel Dekker, Inc. Newyork, 2002
- 2. P. Albertos and S. Antonio, "Multivariable Control Systems An Engineering Approach", Springer Verlag, 2004
- 3. Sigurd Skogestad, Ian Postlethwaite, "Multivariable Feedback Control: Aalysis and Design", John Wiley and Sons, 2004

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code BEI17E09		Subject Na CHEMIC			ENTAT	TION II	PETR	O	T / L/ ETL	L	T / S.Lr	P/R	C
DEII/E09		Prerequisit		SIKI					T	3	0/0	0/0	3
L : Lecture T :				ad I aar	ning D.	Project	D · Das	earch C		3	0/0	0/0	3
T/L/ETL: The						Troject	K . Kes	carcii C	. Credits				
OBJECTIVE		Zao/ Linoca	ded Theo	iy and L	<i>.</i>								
		ction to the	e methods	s of crud	le oil ext	raction.	process	ing and	refining				
									al industry	,			
		anding the							,				
									n processes	S			
➤ Ga	aining	familiarit	y safety ir	n instrun	nentation	n system	ıs		•				
COURSE OU	TCO	MES (CO	(s): (3-5))									
CO1		The gradu	ate will b	e able t	o know t	he meth	ods of c	rude oil	extraction	, proces	sing and	refining	
CO2		Understa	nds the op	peration	s in petro	oleum re	efinery a	nd petro	ochemical	industry			
CO3		Understa	nds the pr	oduction	n routes	of impo	rtant pet	rochem	icals				
CO4		Capable t							cesses				
CO5		Familiari						S					
Mapping of C							-						
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	12
CO1	Н	M	M	Н	L	M	Н	M	L	Н	M	L	
CO2	M	Н	L	M	Н	L	Н	M	L	Н	M	L	
CO3	Н	Н	Н	M	L	M	L	Н	M	Н	L	M	
CO4	M	M	L	Н	M	L	M	Н	L	M	Н	L	
CO5	Н	M	L	Н	L	M	Н	M	L	M	Н	M	
COs / PSOs		PSO1	PSC	O2	PS	O3	PS	SO4	PSO5				
CO1	Н		M		Н		M		Н				
CO2	M		Н		M		Н		L				
CO3	Н		M		Н		M		M				
CO4	L		Н		M		Н		Н				
CO5	M		M		Н		M		M				
H/M/L indicat	es Str	ength of C	orrelation	H- H	igh, M-	Medium	, L-Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval			<u> </u>	1	_ v	1	1			1	<u> </u>		

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

INSTRUMENTATION IN PETRO CHEMICAL INDUSTRY

UNIT I PETROLEUM PROCESSING

9 Hrs

Petroleum exploration – recovery techniques – oil – gas separation processing wet gases – refining of crude oil.

UNIT II OPERATIONS IN PETROLEUM INDUSTRY

9 Hrs

Thermal cracking – catalytic cracking – catalytic reforming – polymerization – alkylation – isomerization – production of ethylene, acetylene and propylene from petroleum

UNIT III CHEMICALS FROM PETROLEUM PRODUCTS

9 Hrs

Chemical from petroleum – methane derivatives – acetylene derivatives – ethylene derivatives – propylene derivatives – other products.

UNIT IV MEASUREMENT IN PETROCHEMICAL INDUSTRY

9 Hrs

Parameters to be measured in refinery and petrochemical industry – selection and maintenance of measuring instruments – intrinsic safety of instruments

UNIT V CONTROL LOOPS IN PETROCHEMICAL INDUSTRY

9 Hrs

Process control in refinery and petrochemical industry-control of distillation column control of catalytic crackers and pyrolysis unit-automatic control of polyethylene production-control of vinyl chloride and PVC production

Total Number of Hours: 45 Hrs

Text Books:

- 1. Waddams A.L, Chemical from petroleum, Butter and Janner Ltd., 1968
- 2. Balchan.J.G. and Mumme K.I., Process Control Structures and Applications, Van Nostrand Reinhold Company, New York, 1988.

- 1. Austin G.T.Shreeves, Chemical Process Industries, McGraw-Hill International student edition, Singapore, 1985.
- 2. Liptak B.G. Instrumentation in Process Industries, Chilton Book Company, 1994.

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code BEI17E10	: !	Subject Na	ame : INT	TELLI(GENT C	ONTR	OLLER	RS	T / L/ ETL	L	T / S.Lr	P/R	С
	J	Prerequisit	e:						T	3	0/0	0/0	3
L : Lecture T :				ed Lear	ning P:	Project	R : Res	search (C: Credits				
T/L/ETL : The		_ab/Embed	ded Theor	ry and L	ab								
OBJECTIVE													
		o understai				vention	al and e	xpert sy	stem.				
	_	he ideas of	_		isition.								
		out expert			_								
		e students											
		e students			trol with	Neurai	Control	liers.					
COURSE OU	TCO				1: cc	1 .			1 1				
CO1								entiona	l and expe	rt system			
CO2		Understa	nas the 1de	eas of Ki	nowledge	e Acqui	sition.						
CO3		Understa	nds expert	system	tool								
CO4		Understa	nd about F	Tuzzy m	odeling								_
CO5		Understa	nds about	control	with Ne	ural Cor	ntrollers						
Mapping of C							1	1	1	1-010	T = 0.11	1	
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	.2
CO1	Н	M	Н	M	Н	M	L	M	H	Н	M	Н	
CO2	M	H	M	L	M	Н	L	M	Н	M	L	M	
CO3	M	Н	M	Н	M	L	Н	M	L	H	M	H	
CO4	L	M	H	M	L	Н	M	Н	L	M	H	L	
CO5	Н	L	Н	L	Н	L	M	Н	L	M	M	L	
COs / PSOs	₩	PSO1	PSO	02	DC	O3	D	SO4	PSO5				
COS/FSOS	M	<u> </u>	Н	02	L	103	M	304	H				
CO2	H		M		L		M		H				
CO3	Н		M		L		H		M				
CO4	M		L		H		M		H				
CO5	M		L		Н		M		H				
H/M/L indicate		ength of C		H- H	igh, M- 1	Medium		<i>J</i>	111	1		<u> </u>	
12/1/1/ 2 maiou	25 54			11 11		loaian							
								Sk					
		Š	ial					cal					
Category		nce	Soc		S			jiii					
- ···· Ø J		zier) p		i.e	×	ect	eck					
	ces	Š	an	ıre	ecti	ive	roj	/ T					
	ien	— jing	ies	ŭ	百	ecti	/ F	sdi	Ils				
	Sc	leeı	amit ces	am	am	Ĕ	cal	ıshi	Skil				
	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	Ba	En	Hr	Pr	Pr	OF	Pr	Int	So				
					✓								
Approval													
	<u> </u>												

INTELLIGENT CONTROLLERS

UNIT I INTRODUCTION

9 Hrs

Definition – architecture – difference between conventional and expert system.

UNIT II KNOWLEDGE ACQUISITION

9 Hrs

Knowledge representation and formal logic-knowledge engineer – knowledge acquisition techniques – concept formalisation – knowledge representation development – knowledge acquisition for core problem knowledge acquisition without knowledge engineers.

UNIT III EXPERT SYSTEM TOOLS

9 Hrs

Problem solving start engines – languages for expert system development – expert system shells – LISP machines – PC-based expert system tools.

UNIT IV FUZZY MODELLING AND CONTROL

9 Hrs

Fuzzy sets – Fuzzy set operators – Fuzzy Reasoning – Fuzzy propositions – Linguistic variable – Decomposition and Defuzzification – Fuzzy systems- Case studies

UNIT V NEURAL CONTROLLERS

9 Hrs

Introduction: Neural networks – supervised and unsupervised learning – neural network models – single and multilayers – back propagation – learning and training. Neural controllers case studies

Total Number of Hours: 45 Hrs

Text Books

- 1. Rolston, D.W., 'Principles of Artificial and Expert Systems Development', McGrawHill Book Company, International Edition, 1998.
- 2. Kosko, B. 'Neural Networks and Fuzzy Systems', Prentice Hall of India Pvt. Ltd., 1994.

Reference Books:

- 1. Klir, G.J. and Folger, T.A., 'Fuzzy Sets, and Information', Prentice Hall, 1994.
- 2. James A. Freeman, David M. Skapura, 'Neural Networks Algorithms', Applications and programming Techniques', Addison Wesley Publishing company 1992.

Department of <u>ELECTRONICS AND INSTRUMENTATION ENGINEERING</u>

Subject Code BEI17E11	:	Subject Na	ame : NA	NO TE	CHNOI	LOGY			T / L/ ETL	L	T / S.Lr	P/R	С
		Prerequisit	e:						T	3	0/0	0/0	3
L : Lecture T :			•		_	Project	R : Res	search C	C: Credits				•
T/L/ETL : The		_ab/Embed	ded Theor	ry and L	.ab								
OBJECTIVE													
		about wha						he field	of electroi	nics.			
		epts and de ate can get						o curin	r nono moto	oriole			
		ne can get ecognize se					d for file	zasum	g mano man	errais.			
		te will have					nology	in medi	cal industri	ies.			
COURSE OU					pact of i	anoteen	inology .		car maastr.				
CO1	100	Brief viev	v about na	anotechi	nology a	nd how	to use it	in the f	field of elec	ctronics.			
CO2									ructure and				
CO3		The gradu	iate can g	et the ki	nowledge	e about	the tools	s used fo	or measurii	ng nano	materials		
CO4		Ability to	recognize	e sensor	s and sel	lf-healin	g structi	ure					
CO5			•				•		ology in me	dical ind	dustries.		
Mapping of C	'oung												
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	M	L	Н	M	L	M	Н	M	H	M	L	12
CO2	M	H	M	L	Н	M	L	Н	M	L	Н	H	
CO3	Н	M	L	M	L	L	H	M	L	M	M	H	
CO4	L	M	Н	L	M	L	Н	M	L	Н	Н	L	
CO5	Н	L	M	L	Н	L	M	Н	M	L	Н	M	
COs / PSOs		PSO1	PSC	O2		SO3	PS	SO4	PSO5				
CO1	M		Н		L		M		Н				
CO2	Н		M		L		Н		L				
CO3	M		Н		L		M		M				
CO4	Н		M		Н		L		M				
CO5	H	on oth of C	M	11 11	L L	Madium	H		M				
H/M/L indicate	cs ou	ciigui oi C		п- п	igh, M-]	viedium	, L-LOW			1			
Category	seo	Sciences	and Social)re	ectives	ves	Project	Internships / Technical Skill					
	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships	Soft Skills				
Approval		·											

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

NANO TECHNOLOGY

UNIT I INTRODUCTION

9 Hrs

Preliminary definitions, need for Nanotechnology, benefits of Nanotechnology a note on measures, elements of electricity, optics and electronics.

UNIT II FUNDAMENTALS

9 Hrs

Electrons, atoms, ions, molecules, various metals, biosystems, molecular recognition, ohm's law, elements of quantum mechanics and magnetism.

UNIT III TOOLS 9 Hrs

Tools for measuring nanostructures, scanning probe instruments, spectroscopy, electrochemistry and electron microscopy, tools for making nano structures, smart materials, nano scale biostructures , Energy capture, transformation and storage.

UNIT IV SENSORS &SELF HEALING STRUCTURES

9 Hrs

Self healing structures, recognition, separation, catalysis, heterogeneous nano structures and composites encapsulation, consumer goods, natural sensors, electromagnetic sensors, biosensors.

UNIT V BIO MEDICAL APPLICATIONS

9 Hrs

Drugs, drug delivery, photodynamic therapy, molecular motors, neuro- electronics interfaces, protein engineering, nanobusiness, nanoethics.

Total Number of Hours: 45 Hrs

Text Books:

- 1. Mark Ratner and Daniel Ratner, Nanotechnology Pearson Educational.
- 2. M.H. Fulekar, Nanotechnology: Importance and Applications, I. K. International Pvt Ltd 2010.

Reference Books:

1. Marc J. Madou, Fundamentals of Microfabrication and Nanotechnology, Third Edition, Three-Volume Set: Manufacturing Techniques for Microfabrication and Nanotechnology of Microfabrication and Nanotechnology) Hardcover –15 Jul 2011

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code BEI17E12		Subject Na EXPERT			AL INT	ELLIG	ENCE (&	T / L/ ETL	L	T / S.Lr	P/R	C
]	Prerequisit	e:						T	3	0/0	0/0	3
L : Lecture T				ed Learı	ning P:	Project	R : Res	earch (C: Credits				
T/L/ETL: The		ab/Embed	ded Theo	ry and L	ab								
OBJECTIVE													
								que, kn	owledge, r	easoning	g and plai	nning.	
		ng the idea				search	method.						
		g about kn				laarnin	a method	dologia	c				
		entation of		•	_		_	_	S.				
COURSE OU					a for des	ngiiiig (Controlle	15					
CO1	100				nt the o	concept	of inte	lligent	agents, se	arch teo	chnique.	knowle	dge.
		reasoning				concept	01 11100	8****	ugenos, se		,q		
CO2		Capable			intellige	nt agent	s and sea	arch me	ethod.				
CO3		Understa											
CO4		Graduate	s can unde	erstand a	about pla	nning a	nd learn	ing met	thodologies	S.			
CO5		Understa	nds Imple	mentatio	on of pla	ns and i	nethod f	or desi	gning contr	ollers			
Mapping of C	Course												
COs/POs	POI		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	M	L	Н	Н	Н	M	L	H	M	Н	L	
CO2	M	Н	M	L	Н	M	L	Н	M	L	Н	M	
CO3	Н	Н	M	L	Н	L	M	Н	L	M	Н	L	
CO4	L	M	Н	L	Н	M	L	M	Н	L	M	Н	
CO5	Н	M	L	Н	L	M	Н	L	M	Н	L	Н	
COs / PSOs	_	PSO1	PSO	O2	1	O3	-	SO4	PSO5				
CO1	Н		M		L		H		H				
CO2	M		H		L		Н		M	1			
CO3 CO4	H		H M		H		M L		L M				
CO5	H		H		M		L		M	1			
H/M/L indicat		enoth of C		H- H		Medium	, L-Low	,	IVI	1			
11/W/L maleat		clight of C		11-11	1911, 141-1	Viculuii	L-Low						
Category	ences	Engineering Sciences	Humanities and Social Sciences	Core	Program Electives	ctives	/ Project	Internships / Technical Skill	Is				
	Basic Sciences	Engineer	Humaniti Sciences	Program Core	Program <	Open Electives	Practical / Project	Internshi	Soft Skills				
Approval		·											

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

ARTIFICIAL INTELLIGENCE & EXPERT SYSTEMS

UNIT I INTRODUCTION TO ARTIFICIAL INTELLIGENCE

9 Hrs

Overview of Al-general concepts-problem spaces and search –search techniques – BFS, DFS-Heuristic search techniques.

UNIT II KNOWLEDGE REPRESENTATION

9 Hrs

Knowledge –general concepts- predicate logic-representing simple fact- instance and ISA relationships – resolution –natural deduction.

UNIT III KNOWLEDGE ORGANISATION AND MANIPULATION

9 Hrs

Procedural Vs declaration knowledge – forward Vs backward reasoning – matching techniques – control knowledge/strategies – symbol reasoning under uncertainty – introduction to non – monotonic reasoning – logic for monotonic reasoning.

UNIT IV ERCEPTION – COMMUNICATION AND EXPERT SYSTEMS

9 Hrs

Natural language processing – pattern recognition – visual image understanding – expert system architecture

UNIT V KNOWLEDGE ACQUISITION

9 Hrs

Knowledge acquisition – general concepts – learning – learning by induction – explanation based learning

Total Number of Hours: 45 Hrs

Text Books:

- 1. Elaine Rich and Kelvin Knight, Artificial Intelligence, Tata McGraw-Hill, New Delhi, 1991.
- 2. Stuart Russell and Peter Norvig, Artificial Intelligence: A modern approach Prentice Hal, 1995

- 1. Nelson N.J. Principles of Artificial Intelligence, Springer Verlag, Berlin, 1980.
- 2. Patterson, Introduction to Artificial Intelligence and Expert systems, Prentice Hall of India, New delhi, 1990.

B.Tech Regulation 2017 Approved by	the Academic Council
------------------------------------	----------------------

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

L : Lecture T]			ION					ETL		S.Lr		
		Prerequisit	e:						T	3	0/0	0/0	3
	Tuto	rial SLr	: Supervis	ed Lear	ning P:	Project	R : Res	earch C	C: Credits				
		ab/Embec	ded Theo	ry and L	ab								
OBJECTIVE													
>		roduction											
>									with few	examples	3		
		lerstandin						S					
>		uiring bas		_		_							
		uiring bas			ife thera	peutic d	evices						
COURSE OL	TCO												
CO1			nds the Fu										
CO2		The grad few exan		be able	to study	about c	ommuni	cation	mechanics	in a bio	medical	system	wit
CO3			nds the ba	sic prin	ciples in	imaging	g techniq	ues					
				•	•			-					
CO4		Acquires	basic kno	wledge	in life th	erapeuti	c device	es					
CO5		۸ - ۰	1 1	1 1	: 1:C - d		1						
CO5		Acquires	basic kno	wledge	in life th	erapeut	ic device	es					
Mapping of C	course	e Outcom	es with Pi	ogram	Outcom	es (POs	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2
CO1	Н	Н	M	L	Н	M	L	Н	M	L	Н	L	
CO2	M	M	L	Н	M	Н	M	L	Н	M	L	Н	
CO3	Н	M	L	Н	M	L	Н	M	L	Н	M	L	
CO4	Н	M	L	M	L	Н	M	M	L	M	Н	M	
CO5	Н	M	L	Н	M	L	M	Н	M	L	M	L	
GO / PGO		DGC1	Da		DO	100	Do	10.4	DG O. 5				
COs / PSOs		PSO1	PS	<u>O2</u>		SO3		SO4	PSO5				
CO1	Н		M		L		H		M				
CO2	M		Н		L		M		H				
CO3	Н		M		H		M		H				
CO4	L		M		H		M		L				
CO5	Н	.1 . C.C	H	77 77	M	N # 1'	L		M				
H/M/L indicat	es Str	ength of C	orrelation	H- H	igh, M-	Vledium	, L-Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	B	百	H X	P _I	_ ✓	0	P1	<u>II</u>	Š				

BIOMEDICAL INSTRUMENTATION

UNIT I ANATOMY, PHYSIOLOGY AND TRANSDUCERS

9 Hrs

Brief review of human physiology and anatomy – cell and their structures – electrical mechanical and chemical activities – action and resting potential – different types of electrodes – sensors used in biomedicine – selection criteria for transducers and electrodes – necessity for low noise pre- amplifiers – difference amplifiers – chopper amplifiers – electrical safety – grounding and isolation.

UNIT II ELECTRO – PHYSIOLOGICAL MEASUREMENT

9 Hrs

ECG – EEG – EMG – ERG – lead system and recording methods – typical waveforms.

UNIT III NON – ELECTRICAL PARAMETER MEASUREMENTS

9 Hrs

Measurement of blood pressure – blood flow cardiac output – cardiac rate – heart sound – measurement of gas volume – flow rate of CO2 and O2 in exhaust air – pH of blood – ESR and GSR measurements.

UNIT IV MEDICAL IMAGING PARAMETER MEASUREMENTS

9 Hrs

X- RAY machine – computer tomography – magnetic resonance imaging system – ultra sonography – endoscopy – different types of telemetry system – laser in biomedicine

UNIT V ASSISTING AND THERAPETIC DEVICES

9 Hrs

Cardiac pacemakers – defibrillators ventilators – muscle stimulators – diathermy – introduction to artificial kidney artificial heart – heart lung machine – limb prosthetics – onthotics – elements of audio and visual aids

Total Number of Hours: 45 Hrs

Text Books:

- 1. Webster J.G., Medical Instrumentation: Application and Design, 3rd Edition, John Wiley and Son, 1999.
- 2. Khandpur R.S. Hand book of Biomedical Instrumentation and Measurements, Tata McGraw-Hill New Delhi 1987.

- 1. Geddes and Baker, Principles of Applied Biomedical Instrumentation, John Wiley and Sons, USA, 1975.
- 2. Well G, Biomedical Instrumentation and Measurements, Prentice Hall, New Jersey, 1980.
- 3. Koryla J., Medical and Biological Application of electro chemical devices John Wiley and Sons, Chichester, 1980.
- 4. Wise D. L., Applied Bio-sensors, Butterworth USA, 1989.

B.Tech Regulation 2017 Approved by	the Academic Council
------------------------------------	----------------------

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code: BEI17E14	: 8	Subject Na	ame :DIG	ITAL I	NSTRU	MENT	ATION		T / L/ ETL	L	T / S.Lr	P/R	С
BEITTETT	F	Prerequisit	e:						T	3	0/0	0/0	3
L : Lecture T :				ed Learı	ning P:	Project	R : Res	earch C	: Credits				
T/L/ETL : The			•		_	3							
OBJECTIVE	:												
		to the var											
									in the indu				
		ng the use	of variou	s electri	cal/elect	ronic in	strumen	ts, their	constructi	on, appl	ications,	principle	es of
operat			. 1										
		ight into th						£ -14	ania Davia				
					SIC SKIII	s in the c	iesign o	i electro	onic Equip	ment			
COURSE OU	100	Understar			of digita	1 instrur	nents						
				• •				1		1 ' .1	. 1	1	
CO2		Capable of	of understa	anding v	arious d	igital m	easurem	ent tecl	nniques use	ed in the	industria	I proces	sses
CO3		Understar	nds the us	se of va	rious ele	ectrical/e	electroni	c instru	iments, the	eir cons	truction.	applicat	ions.
		principles									,	TT	,
CO4	+	Understar	de the co	noonto	of the ata	ndordo o	nd unit	of mac	asurements				
CO4	-	Develops											
CO3		Develops	basic skii	is in the	design	oi eiecti	onic Eq	uipinen	ι				
Mapping of C	ourse	Outcome	s with Pr	ogram	Outcom	es (POs	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	M	L	Н	M	Н	M	L	Н	M	L	Н	
CO2	M	L	Н	M	L	Н	L	M	Н	L	Н	M	
CO3	Н	M	Н	L	Н	M	Н	L	Н	M	L	Н	
CO4	M	Н	M	L	Н	M	L	L	Н	M	L	Н	
CO5	L	Н	M	L	Н	L	M	Н	M	L	Н	M	
CO / PGO	L .	DCO1	DC	22	DO	02	DC	10.4	DCC				
COs / PSOs		PSO1	PSO	<i>J</i> 2		O3		SO4	PSO5				
CO1	H		L		M		L		M	1			
CO2 CO3	Н		M M		H L		M H		L				
CO3	M H		M		L		Н		M M	+			
CO5	Н		M		I		Н		M	+			
H/M/L indicate		ength of C		н. н	igh, M-	Medium		,	1V1	1			
11/1VI/L IIIdicat	cs Suc			11-11	1511, 1 VI - 1	VICGIUIII	, L-LOW			I			
								Internships / Technical Skill					
		Ş	ial					:al					
Category		nce	Social		S			ımi					
3. 7		cie	p		ive	S	ject	ect					
	ıce	Š	an	ore	ect	ive	Proj.						
	ier	l iñ.	ties	ر ا ک	田田	ect	1/1	ips	lls				
	Sc	Jee.	ani	ram	ram	田田	ica	ush	Ski				
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	ter	Soft Skills				
	Ř	<u> </u>	H S	Pr	ન	O	Pr	In	Sc				
Approval													
Арргочаг													

DIGITAL INSTRUMENTATION

UNIT I INTRODUCTION

9 Hrs

Digital codes – Memory devices – Basic building blocks – Gates, FF and counters – Discrete data handling – Sampling – Sampling – Sampling errors – Reconstruction – Extrapolation – Synchronous and asynchronous sampling.

UNIT II DIGITAL METHODS OF MEASUREMENTS

9 Hrs

Review of A/D, D/A techniques – F/V and V/F conversion techniques – Digital voltmeters and multimeters – Automation and accuracy of digital voltmeters and multimeters – Digital phase meters – Digital tachometers – Digital frequency, period and time measurements – Low frequency measurements – Automatic time and frequency scaling – Sources of error – Noise – Inherent error in digital meters, hidden errors in conventional ac measurements – RMS detector in digital multimeters – Mathematical aspects of RMS.

UNIT III DIGITAL DISPLAY & RECORDING DEVICES

9 Hrs

Digital storage oscilloscopes – Digital printers and plotters – CDROMS – Digital magnetic tapes, dot matrix and LCD display CROs, colour monitor, digital signal analyser and digital data acquisition..

UNIT IV SIGNAL ANALYSIS

9 Hrs

Amplifiers, filters, transmitter, receiver, wireless base and mobile station test sets, noise figures meters, RF network analyser and high frequency signal sources

UNIT V CURRENT TRENDS IN DIGITAL INSTRUMENTATION

9 Hrs

Introduction to special function add on cards – Resistance card – Input and output cards – Counter, test and time of card and digital equipment construction with modular designing; interfacing to microprocessor, micro controllers and computers - Computer aided software engineering tools (CASE) – Use of CASE tools in design and development of automated measuring systems – Interfacing IEEE cards – Intelligent and programmable instruments using computers.

Total Number of Hours: 45 Hrs

Text Books:

1. Doebelin, 'Measurement System, Application & Design', IV Ed, McGraw-Hill, 1990

- 1. Bouwens, A.J., "Digital Instrumentation", McGraw Hill, 1984.
- 2. John Lenk, D., "Handbook of Micro computer based Instrumentation and Control", PHI, 1984.

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code: BEI17E15		Subject Na	ame : DIO	GITAL	CONTR	OL SY	STEMS	3	T / L/ ETL	L	T / S.Lr	P/R	С
	I	Prerequisit	e:						T	3	0/0	0/0	3
L: Lecture T:						Project	R : Res	earch C	: Credits				•
T/L/ETL: The		ab/Embed	ded Theo	ry and L	ab								
OBJECTIVE		P 41 1		c									
		ling the ba e stability				arratam							
	•	the studen	•	_		•		reion					
		the studen			_								
		the basic k											
COURSE OU					•								
CO1		Understa	nds the ba	sics of z	-transfo	rm.							
CO2		Able to k	now the s	tability a	nalysis	of digita	l contro	l systen	1.				
CO3		The grade	ate is Eq	uipped v	vith the l	oasic kn	owledge	of A/D	conversion	on.			
CO4		The grade	ate is Eq	uipped v	vith the l	oasic kn	owledge	of D/A	conversion	on.			
CO5		Acquires	the basic	knowled	lge of di	gital pro	cess coi	ntrol des	sign				
Mapping of C													
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO	12
CO1	Н	L	M	Н	Н	Н	M	L	M	Н	M	L	
CO2	Н	H	M	L	H	L	M	Н	M	L	Н	M	
CO3	Н	M	M	L	Н	M	L	L	M	Н	M	L	
CO4	M	H	L	M	Н	L	Н	M	L	Н	H	Н	
CO5	L	Н	M	L	Н	M	Н	L	Н	L	Н	M	
COs / PSOs		PSO1	PS)2	PS	O3	PS	SO4	PSO5				
CO1	Н		L		M		Н		L				
CO2	M		Н		L		M		Н				
CO3	Н		Н		M		L		Н				
CO4	Н		M		L		Н		Н				
CO5	L		M		Н		L		M				
H/M/L indicate	es Str	ength of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low			T			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval		'		1		1	1			1		1	

DIGITAL CONTROL SYSTEMS

UNIT I INTRODUCTION

9 Hrs

Digitisation – Effect of sampling – Linear difference equation - Review of - Z transforms – solution of difference equation – convergence.

UNIT II DISCRETE SYSTEM ANALYSIS

9 Hrs

The transfer function – State Variable description – Relation of transfer function to pulse response – external stability state space form – solution of state equation – Numerical consideration – dynamic response – controllability and observability effect of sampling.

UNIT III SAMPLED DATA SYSTEMS

9 Hrs

Sample and hold – spectrum of a sampled signal – extrapolation – response between samples – Hold equivalents.

UNIT IV DESIGN OF DIGITAL CONTROLLER

9 Hrs

Pole placement – estimation design – regulation design – Integral control and disturbance estimation – design by emulation – root locus design – direct design method – frequency response methods.

UNIT V PLC 9 Hrs

Evolution of PLC's – Sequential and programmable controllers – Architecture- Programming of PLC – Relay logic – Ladder logic – Functional blocks.

Total Number of Hours: 45 Hrs

Text Books:

- 1. Franklin G.F, J.David Powell, Michael Worleman, "Digital Control of dynamic Systems"3rd Edition, Addison Wesley, 2000
- 2. Petrezeulla, Programmable Controllers, McGraw-Hill, 1989

- 1. M.Gopal, 'State variables and Digital control methods', Tata McGraw-Hill, 1997.
- 2. Ogatta.K. 'Modern Control Engineering', Prentice hall of India, II edition, 1997.
- 3. Kuo, "Digital control systems", Second Edition, Oxford University press, 1992.

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

Subject Code: BEI17E16	Subject Name : PRINCIPLES OF ROBOTICS	T / L/ ETL	L	T / S.Lr	P/R	С
	Prerequisite:	T	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVE:

- > To introduce the basic concepts and parts of robots.
- > Understanding the working of robots and various types of robots.
- Familiarising with the various drive systems of robots, sensors and their applications in robots and programming of robots.
- The various application of robots, justification and implementation of robots.
- > Studying about the manipulators, activators and grippers and their design considerations

Considerations	, zeacy			imputator	3, activa	iors and	Supper	, und the	desig	ii consider	ations		
CO2 Understanding the working of robots and various types of robots. CO3 Familiarized with the various drive systems of robots, sensors and their applications in robots and programming of robots. CO4 Capable of knowing the various applications of robots, justification and implementation of robots. CO5 Understands the concept of the manipulators, activators and grippers and their design considerations Mapping of Course Outcomes with Program Outcomes (POs) COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PO12 PO11 M H M L H L M H L M L H M L M L M L M L								C 1 .					
Pamiliarized with the various drive systems of robots, sensors and their applications in robots and programming of robots. CO4						_	_						
Programming of robots. CO4	CO2		Understa	nding the	working	of robo	ts and v	arious ty	pes of r	obots.			
CO5	CO3					us drive	system	s of rob	ots, sens	ors and th	eir applic	ations in 1	robots and
Considerations	CO4		Capable of knowing the various applications of robots, justification and implementation of robots.										
COs/POs	CO5		Understands the concept of the manipulators, activators and grippers and their design considerations										
CO1	Mapping of C												
CO2	COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO3	CO1	M	Н	M	L	Н	M	Н	M	L	Н	M	L
CO4	CO2	Н	M	L	Н	L	M	Н	L	M	Н	L	M
COS M	CO3	Н	Н	M	L	Н	M	L	M	L	Н	M	L
COs / PSOs PSO1 PSO2 PSO3 PSO4 PSO5	CO4	M	Н	M	M	Н	M	L	L	Н	M	L	M
Cotegory Cotego	CO5	M	Н	M	L	M	Н	L	M	Н	L	Н	M
Cotegory Cotego													
CO2 M L H M M H M CO3 L H M M H M M CO4 M H L L M M M CO5 M H L L M M M H/M/L indicates Strength of Correlation Category	COs / PSOs	F	PSO1	PS	O2	PS	SO3	PS	SO4	PSO5			
Cotegory Cotategory L H H M H H M H M H CO4 M H H L L M M M M M M M M M M M M M M M	CO1	Н		M		L		Н		M			
Cotegory Category Catego	CO2	M		L		Н		M		Н			
Category Catego	CO3	L		Н		M		Н		M			
H/M/L indicates Strength of Correlation Hassic Sciences Basic Sciences Humanities and Social Brogram Core And Application Brogram Electives Application Application Application Brogram Electives Application Application Brogram Electives Application Application Application Brogram Electives Application Application Application Application Brogram Electives Application Application Application Application Brogram Electives Application Applicatio	CO4	M		Н		L		M		Н			
Basic Sciences Engineering Sciences Humanities and Social Sciences Program Core Program Electives A Open Electives Soft Skills Soft Skills	CO5	M		Н		L		M		M			
	H/M/L indicat	tes Stre	ngth of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low	7	•		•	
Approval	Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
.	Approval												

PRINCIPLES OF ROBOTICS

UNIT I BASIC CONCEPTS

9 Hrs

Definition and origin of robotics – different types of robotics – various generations of robots – degrees of freedom – Asimov's laws of robotics – dynamic stabilization of robots.

UNIT II POWER SOURCES AND SENSORS

9 Hrs

Hydraulic, pneumatic and electric drives – determination of HP of motor and gearing ratio – variable speed arrangements – path determination – micro machines in robotics – machine vision – ranging – laser – acoustic – magnetic, fiber optic and tactile sensors.

UNIT III MANIPULATORS, ACTUATORS AND GRIPPERS

9 Hrs

Construction of manipulators – manipulator dynamics and force control – electronic and pneumatic manipulator control circuits – end effectors – U various types of grippers – design considerations..

UNIT IV KINEMATICS AND PATH PLANNING

9 Hrs

Solution of inverse kinematics problem – multiple solution jacobian work envelop – hill climbing techniques – robot programming languages.

UNIT V CASE STUDIES

9 Hrs

Mutiple robots – machine interface – robots in manufacturing and non- manufacturing applications – robot cell design – selection of robot.

Total Number of Hours: 45 Hrs

Text Books:

- 1. Mikell P. Weiss G.M., Nagel R.N., Odraj N.G., Industrial Robotics, McGraw-Hill Singapore, 1996.
- 2. Ghosh, Control in Robotics and Automation: Sensor Based Integration, Allied Publishers, Chennai, 1998.

- 1. Deb.S.R., Robotics technology and flexible Automation, John Wiley, USA 1992.
- 2. Asfahl C.R., Robots and manufacturing Automation, John Wiley, USA 1992.
- 3. Klafter R.D., Chimielewski T.A., Negin M., Robotic Engineering An integrated approach, Prentice Hall of India, New Delhi, 1994.
- 4. McKerrow P.J. Introduction to Robotics, Addison Wesley, USA, 1991.
- 5. Issac Asimov I Robot, Ballantine Books, New York, 1986.

	B.Tech Regulation 20	117 Approved by	the Academic Co	ouncil
--	----------------------	-----------------	-----------------	--------

Department of <u>ELECTRONICS AND INSTRUMENTATION ENGINEERING</u>

Subject Code BEI17E17	:	Subject N	ame : MO	DERN	CONT	ROL S	YSTEM	S	T / L/ ETL	L	T / S.Lr	P/R	C
		Prerequisit	e:						Т	3	0/0	0/0	3
L : Lecture T				ed Lear	ning P:	Project	R : Res	earch (C: Credits			ı	
T/L/ETL: The						3							
OBJECTIVE	C:												
>		arning the f						ıd					
>		learn the n			_	the syst	em.						
		ntifying sta	•	•									
		study the c							of the syste	em.			
		sics of stab	_		of the sy	stem. is	discuss	ed.					
COURSE OU	JTCC			•									
CO1		Understa	nds the fu	ndamen	tal conce	epts of c	ontrol s	ystem					
CO2		Mathema	tical mod	eling of	the syste	em can l	ne analy	zed					
CO2		Manicilla	arcai iiiou	ching of	are systi	om can	oc anary	LCu.					
CO3		Understa	nds the co	ncepts	of stabili	ty of the	system						
CO4	Understands the concepts of stability of the system The graduate understands the concept of time response and frequency response of the system.												
								mse and	ı mequency	y respons	se of the s	ystem.	
CO5		Capable	of analyzi	ng stabi	lity of th	e systen	n						
Manning of (of Course Outcomes with Program Outcomes (POs)												
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	2
CO1	Н	M	L	M	H	M	Н	M	L	M	Н	M	
CO2	M	L	Н	M	L	M	Н	M	L	L	M	Н	
CO3	Н	H	Н	M	L	M	Н	L	H	M	L	M	
CO4	Н	M	L	M	H	M	L	Н	L	M	H	H	
CO5	M	Н	L	M	Н	L	H	M	L	Н	L	Н	
				1112	1			1112		1			
COs / PSOs		PSO1	PS	O2	PS	SO3	PS	SO4	PSO5				
CO1	M		M		L		Н		M				
CO2	Н		Н		L		M		Н				
CO3	L		M		Н		M		L				
CO4	M		Н		L		M		Н				
CO5	M		Н		M		L		Н				
H/M/L indicate	tes St	rength of C	orrelation	H- H	igh, M-	Mediun	ı, L-Low	7	•	•	•		
		s	ial					Internships / Technical Skill					
Category		1ce	300		×			 mic					
04108017		iei.	7		I.S.		ect	ech					
	ces	S S	an	ıre	ecti	ive	Proj	/ T					
	ien	—ing	ies	ŭ	豆	ecti	1/E	ips	IIs				
	Sc	leel	anit ces	am	am	苗	cal		Skil				
	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	terr	Soft Skills				
	Ba	En	Hr. Sc.	Pr	Pr	OF	Pr	Int	So				
	1				✓								
Approval													

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

MODERN CONTROL SYSTEMS

UNIT I STATE VARIABLE ANALYSIS AND DESIGN

9 Hrs

State models – solution of state equations – controllability and observability- pole assignment by state feedback – full and reduced order observers.

UNIT II NONLINEAR SYSTEMS

9 Hrs

Common types of non-linear phenomena – Linearisation – singular points – phase plane method – construction of phase trajectories – system analysis by phase plane method – describing function method – describing function of non-linear elements

UNIT III STABILITY ANALYSIS OF NON LINEAR SYSTEM

9 Hrs

Stability analysis by describing function method – jump resonance – Liapunov's and Popv's stability criteria.

UNIT IV OPTIMAL CONTROL

9 Hrs

Problem formulation – necessary conditions of optimality – state regulator problem – Matrix Riccati equation – infinite time regulator problem – output regulator and tracking problems – Pontryagin's minimum principles – time - optimal control problem.

UNIT V ADAPTIVE CONTROL

9 Hrs

Classification – MRAC systems – Different configuration, classification, mathematical description – direct and indirect MRAC – self tuning regulator – different approach to self tuning, recursive parameter estimation, implicit and explicit STR.

Total Number of Hours: 45 Hrs

Text Books:

- 1. Nagrath I.J., and Gopal, M., Control system Engineering Wiley Eastern Reprint 1995.
- 2. Kirk D.E., "Optimal control theory-an introduction", Prentice Hall, N.J. 1970.

- 1. Chalam V.V., Adaptive control systems Marcel Dekker, INC New York and Bassel, 1987
- 2. Stanley M.Shinners, Modern Control System Theory and Design, John Wiley and Sons, 1998.

Department of <u>ELECTRONICS AND INSTRUMENTATION ENGINEERING</u>

Subject Code BEI17E18	:	Subject Na	ame : ME	CHTR	ONICS				T / L/ ETL	L	T / S.Lr	P/R	C
BEIT/ETO	1	Prerequisit	e:						T	3	0/0	0/0	3
L : Lecture T :				ed Lear	ning P:	Project	R : Res	search (1 5 1	0, 0	0, 0	
T/L/ETL: The						3							
OBJECTIVE	:												
									engineering				
							_	•	sing and da	ta displa	у.		
	•	application				• •	e actua	tors.					
		o observe o					ohila m	adical (and other fi	ialde			
COURSE OU					tionics i	ii autoiii	oone, m	icuicai a	ind other n	icius.			
CO1	100	Understands mechatronics and mechatronics approaches to modem engineering design											
CO2		Ability to understand various sensors and transducers for signal processing and data display.											
CO3													
		Acquires knowledge on applications of mechanical and electrical type actuators											
CO4		Graduates to observe control systems and applications.											
CO5		Understa	nds the O	bjective	s of rece	ent adva	nces of	mechat	ronics in a	utomobi	le, medic	al and o	ther
	fields.												
Mapping of C							1	•		•	•		
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	.2
CO1	Н	M	M	Н	M	Н	M	L	H	M	M	M	
CO2	Н	M	M	M	Н	L	Н	L	M	L	M	H	
CO3 CO4	H	M M	H L	M M	L H	H L	M M	L H	H L	M M	H	L M	
CO ₅	M	M	H	M	L	M	H	L	H	M	L	H	
CO3	IVI	IVI	11	1V1	L	IVI	11	L	11	IVI	L	11	
COs / PSOs		PSO1	PSO	$\overline{\Omega}$ 2	PS	SO3	PS	SO4	PSO5				
CO1	M	1001	Н	~ <u>~</u>	M		Н		M				
CO2	Н		L		M		Н		L				
CO3	Н		M		L		Н		M				
CO4	M		L		Н		M		L				
CO5	Н		M		L		M		Н				
H/M/L indicat	es Str	ength of C	orrelation	H- H	igh, M-	Medium	, L-Low		1				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

MECHTRONICS

UNIT I INTRODUCTION

9 Hrs

Mechatronics – definition and key issues – evolution – elements – mechatronics approach to modern engineering design.

UNIT II SENSORS AND TRANSDUCERS

9 Hrs

Types – displacement, position, proximity and velocity sensors – signal processing – data display.

UNIT III ACTUATION SYSTEMS

9 Hrs

Mechanical types – applications – electrical types – applications – pneumatic and hydraulic systems – applications – selection of actuators.

UNIT IV CONTROL SYSTEMS

9 Hrs

Types of controllers – programmable logic controllers – applications – ladder diagrams – microprocessor applications in mechatronics – programming interfacing – computer applications

UNIT V RECENT ADVANCES

9 Hrs

Manufacturing mechatronics – automobile mechatronics – medical mechatronics – office automation – case studies.

Total Number of Hours: 45 Hrs

Text Books:

- 1. Bulton, N., Mechatronics: Electronic Control system for Mechanical and Electrical Engineering, Longman, 1995.
- 2. Dradly, D.A. Dawson., D, Burd, N.C., and Loader, A.J., Mechatronics: Electronics in products and processes, Chapman & Hall, 1993.

- 1. HMT Mechatronics, Tata McGraw-Hill, New Delhi, 1968
- 2. GalipUlsoy, A., and Devires, W.R. microcomputer Applications in manufacturing John wiley, USA 1989.
- 3. James Harter, Electromechanics: Principles, concepts and devices Prentice Hall New Jersey 1995

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code BEI17E19		Subject Na INSTRUM		BER OF	TICS A	ND LA	SER		T / L/ ETL	L	T / S.Lr	P/R	C
		Prerequisit							T	3	0/0	0/0	3
L : Lecture T :	Tuto	rial SLr	Supervis	ed Lear	ning P:	Project	R : Res	search C	: Credits				
T/L/ETL: The		_ab/Embed	ded Theo	ry and L	ab								
OBJECTIVE													
>		oduction to											
>		viding ade				dustrial	applicat	ion of o	ptical fibe	rs.			
>		derstanding							. 1				
>		osure to th											
COLIBCE OF	Exposure to the Industrial application of Holography and Medical applications of lasers COURSE OUTCOMES (COs): (3-5)												
CO1	Understands the basic concepts of optical fibers and their industrial applications.												
CO2		Providing adequate knowledge about Industrial application of optical fibers.											
CO3		Understands basic concepts of lasers.											
CO4	Understands the basic knowledge about Industrial application of lasers												
CO5		Understa	nds the In	dustrial	applicati	ion of H	olograp	hy and l	Medical ap	plication	ns of lase	rs	
Mapping of Course Outcomes with Program Outcomes (POs)													
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2
CO1	Н	M	L	Н	M	L	Н	M	Н	M	Н	L	
CO2	M	Н	M	Н	M	L	Н	M	M	Н	M	Н	
CO3	Н	M	Н	Н	Н	M	L	M	L	M	L	Н	
CO4	Н	M	Н	M	Н	M	L	Н	M	Н	M	L	
CO5	M	L	M	L	Н	L	M	Н	L	M	Н	L	
COs / PSOs		PSO1	PS	O2	PS	SO3	PS	SO4	PSO5				
CO1	Н		M		L		Н		M				
CO2	Н		M		L		Н		M				
CO3	M		L		L		Н		M				
CO4	Н		M		Н		M		Н				
CO5	M		Н		M		Н		L				
H/M/L indicat	es Str	ength of C	orrelation	<u>H- H</u>	igh, M-	Medium	, L-Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval			ogulation		ı v		1						

FIBER OPTICS AND LASER INSTRUMENTS

UNIT I OPTICAL FIBERS AND THEIR PROPERTIES

9 Hrs

Principles of light propagation through a fiber – different types of fibers and their properties transmission characteristics of optical fiber – absorption losses – scattering losses – dispersion – optical fiber measurement – optical sources – optical detectors – LED – LD – PIN and APD

UNIT II INDUSTRIAL APPLICATION OF OPTICAL FIBERS

9 Hrs

Fiber optic sensors – fiber optic instrumentation system – different types of modulators – detectors – application in instrumentation – interferometric method of measurement of length – moiré fringes – measurement of pressure, temperature, current, voltage liquid level and strain – fiber optic gyroscope – polarization maintaining fibers.

UNIT III LASER FUNDAMENTALS

9 Hrs

Fundamental characteristics of lasers – three level and four level lasers – properties of laser – laser modes – resonator configuration – Q-switching and mode locking – cavity dumping – types of lasers: gas lasers, solid lasers, liquid lasers and semi conductor lasers

UNIT IV INDUSTRIAL APPLICATION OF LASERS

9 Hrs

Laser for measurement of distance, length velocity, acceleration, current, voltage and atmospheric effect – material processing – laser heating, welding melting and trimming of materials – removal and vaporization

UNIT V HOLOGRAM AND MEDICAL APPLICATION

9 Hr

Holography – basic principle; methods; holographic interferometry and applications, holography for non – destructive testing – holographic components – medical applications of lasers; laser and tissue interaction – laser instruments for surgery, removal of tumors of vocal cords, brain surgery, plastic surgery, gynecology and oncology

Total Number of Hours: 45 Hrs

Text Books:

- 1. John and Harry, Industrial lasers and their applications, McGraw-ill, 1974
- 2. Senior J.M., Optical Fiber Communication Principles and Practice, Prentice Hall, 1985

- 1. John F Read, Industrial applications of lasers, Academic Press, 1978
- 2. MonteRoss, Laser applications, McGraw-Hill, 1968
- 3. Keiser G., Optical Fiber Communication, McGraw-Hill, 1991
- 4. Jasprit Singh, Semi conductor optoelectronics, McGraw-Hill, 1995

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

Subject Code BEI17E20		Subject Na	ame : CC	ONTRO	L SYST	EM DI	ESIGN		T / L/ ETL	L	T / S.Lr	P/R	C
		Prerequisit	e:						Т	3	0/0	0/0	3
L : Lecture T				sed Lear	ning P:	Project	R : Re	search C	C: Credits				
T/L/ETL: Th						· ·							
OBJECTIVE	Ξ:												
>		parting kno											
>		quiring kno	_	_				•				ontrolle	rs.
>		signing diff						quency	domain tec	hniques			
		introduce of											
		dying abou			emperat	ure con	trol and	satellite	altitude co	ontrol.			
COURSE OU	JTCO												
CO1		Understa	nds the pe	erforman	ice speci	fication	ıs, limita	ation and	l structure	of contro	ollers		
CO2		Acquires knowledge on design of controllers and to study the characteristics of different											
- - -		controllers.											
CO3		Designs t	he differe	ent contr	ollers us	ing roo	t locus a	and frequ	ency doma	ain techr	niques.		
CO4		Capable t	o design	discrete	state spa	ce syste	ems						
		•			•			1 1	. 11'. 1.'.	1 .	1		
CO5		Understands the radar tracking, temperature control and satellite altitude control											
	Course Outcomes with Program Outcomes (POs)												
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	M	M	Н	M	Н	M	Н	M	Н	L	Н	
CO2	M	Н	L	Н	M	L	Н	L	M	Н	L	Н	
CO3	Н	M	Н	M	Н	L	Н	M	L	Н	M	L	
CO4	M	Н	L	M	Н	L	M	L	Н	Н	Н	L	
CO5	L	M	Н	L	M	Н	L	M	Н	Н	M	L	
COs / PSOs	_	PSO1		O2	+	O3	_	PSO4	PSO5				
CO1	Н		L		M		Н		L				
CO2	M		M		L		Н		M				
CO3	M		Н		L		M		Н				
CO4	M		Н		L		M		Н				
CO5	M		L		Н		L		M				
H/M/L indica	tes Str	ength of C	orrelation	<u> H- H</u>	igh, M-	Mediun	n, L-Lo		T				
								k:l					
			al					la S					
Catagomy		ces	oci.					nic					
Category		ien	S		ves		ç	chi					
	ses	Sc	and	e	cti	'es	oje.	Te					
	enc	ng	es s	ζŌ	Ele	ctiv	/ Pi	/ sc	S				
	Sci) Seri	niti es	H	Ш	Ele	la la	hij	Kill Kill				
	ic	Engineering Sciences	ma enc	gra	gra	Open Electives	ctic	 XUX	t S				
	Basic Sciences	Εnξ	Humanities and Social Sciences	Program Core	Program Electives)dO	Practical / Project	Internships / Technical Skill	Soft Skills				
					 								
		1	1	1	1	1	I		1	1			
Approval													
	1												

CONTROL SYSTEM DESIGN

UNIT I INTRODUCTION TO DESIGN

9 Hrs

Systems performance and specifications – Compensators – Methodologies and assessment

UNIT II CLASSICAL CONTROLLERS DESIGN

9 Hrs

Proportional (P) – Integral (I) – derivatives (D) – PI – PD – PID controllers – Characteristics – Design – Tuning - Manual and automatic.

UNIT III FREQUENCY DOMAIN DESIGN

9 Hrs

Design of lag, lead, lead-lag compensators – Design using bode plots – Polar plots – Nichols charts – MIMO design.

UNIT IV STATE VARIABLE DESIGN

9 Hrs

Design by state feedback – Output feedback – Pole assignment technique – Design of state and output regulators – Design of reduced and full order observers – Introduction to robust control – H ∞ control – Parameter optimisation.

UNIT V CASE STUDIES

9 Hrs

Radar tracking – Control of robot arm – Satellite altitude control – Temperature control

Total Number of Hours: 45 Hrs

Text Books:

- 1. S.Thompson, 'Control Systems Engineering and Design', Longman group, U.K.Ltd., 1989.
- 2. E.O.Doebelin, 'Control Systems Principles and Design', John Wiley 1990.

- 1. I.J.Nagrath and M.Gopal, 'Control Systems Engineering', Wiley eastern Ltd., 1982.
- 2. M.Gopal, 'Modern Control Systems Theory', Wiley Eastern Ltd, 1993.

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

TECHNICAL SKILLS

1.	BEI17TS1	LabVIEW
2.	BEI17TS2	MATLAB
3.	BEI17TS3	PLC
4.	BEI17TS4	SCADA
5.	BEI17TS5	DCS
6.	BEI17TS6	Embedded (Keil)
7.	BEI17TS7	VLSI
8.	BEI17TS8	IOT
9.	BEI17TS9	Microsoft Robotic Developer Studio(Robot Control & Simulator)

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

OPEN ELECTIVES LIST (SEMESTER 6)

- 1. AUTOMOTIVE ENGINEERING
- 2. ELECTRIC AND HYBRID VEHICLES
- 3. BOUNDARY LAYER THEORY
- 4. COMPUTATIONAL FLUID DYNAMICS
- 5. FINITE ELEMENT ANALYSIS
- 6. ARTIFICIAL INTELLIGENCE/EXPERT SYSTEMS IN DESIGN AND MANUFACTURING
- 7. CREATIVITY, INNOVATION AND NEW PRODUCT DEVELOPMENT
- 8. COMPOSITE MATERIALS AND STRUCTURES
- 9. MACHINE LEARNING IN BIOINFORMATICS
- 10. PRINCIPLES AND APPLICATIONS OF BIOINFORMATICS
- 11. BIOSIMULATIONS USING MATLAB
- 12. DATA MINING IN BIOINFORMATICS
- 13. BIOINFORMATICS FOR BIOENGINEERS
- 14. INTRODUCTION TO BIOMEDICAL DEVICES
- 15. FUNDAMENTALS OF BIOSIGNAL PROCESSING
- 16. BIOREFINERY
- 17. DIGITAL IMAGE PROCESSING
- 18. WATER POLLUTION AND ITS MANAGEMENT
- 19. LOBAL WARMING AND CLIMATE CHANGE
- 20. DISASTER MANAGEMENT AND MITIGATION
- 21. ENERGY ENGINEERING TECHNOLOGY AND MANAGEMENT
- 22. RENEWABLE ENERGY TECHNOLOGY
- 23. INDUSTRIAL POLLUTION PREVENTION AND CONTROL
- 24. PETROLEUM TECHNOLOGY
- 25. INTRODUCTION TO TRANSPORT PROCESSES
- 26. DATA STRUCTURES
- 27. DATABASE CONCEPTS
- 28. SOFT COMPUTING
- 29. WEB DESIGN
- 30. ELECTRONIC CIRCUITS AND SYSTEMS
- 31. TELECOMMUNICATION SYSTEMS
- 32. POWER PLANT INSTRUMENTATION
- 33. BIOMEDICAL INSTRUMENTATION
- 34. RENEWABLE ENERGY RESOURCES
- 35. MICROCONTROLLERS AND THEIR APPLICATIONS
- 36. ELECTRICAL MACHINES AND DRIVES
- 37. FUNDAMENTALS OF ELECTRIC POWER UTILIZATION
- 38. INDUSTRIAL ELECTRONICS
- 39. REAL-TIME EMBEDDED SYSTEMS
- 40. CONTROLLER BASED SYSTEM DESIGN
- 41. INSTRUMENTATION ENGINEERING
- 42. HUMAN NUTRITION AND HEALTH
- 43. TECHNOLOGY OF BAKERY AND CONFECTIONERY PRODUCTS
- 44. FOOD PROCESSING AND PRESERVATION TECHNOLOGY
- 45. DISASTER MANAGEMENT
- 46. CYBER SECURITY
- 47. DAY-TO-DAY BIOLOGY
- 48. INTRODUCTION TO AUTOMATION
- 49. VIRTUAL INSTRUMENTATION
- 50. FUNDAMENTALS OF MEMS
- 51. INFORMATION SECURITY
- 52. INTRODUCTION TO DATABASE MANAGEMENT SYSTEM
- 53. PROFICIENCY IN ENGLISH AND ACCENT TRAINING

Department of ELECTRONICS AND INSTRUMENTATION ENGINEERING

- 54. CREATIVE WRITING
- 55. INDIAN WRITING IN ENGLISH
- 56. SCIENCE FICTION
- 57. INTELLECTUAL PROPERTY RIGHTS, INNOVATION AND TECHNOLOGY
- 58. PRINCIPLES OF TECHNOLOGY AND INNOVATION MANAGEMENT
- 59. MARKETING MANAGEMENT
- 60. INDUSTRIAL MARKETING
- **61. STRESS MANAGEMENT**
- 62. BASICS OF BANKING AND CAPITAL MARKETS
- 63. FINANCE FOR NON FINANCE EXECUTIVES
- 64. FUNDAMENTALS OF ENTREPRENEURSHIP
- 65. OPERATIONS RESEARCH
- 66. ETHICAL VALUES FOR BUSINESS
- 67. INFORMATION SYSTEMS FOR ENGINEERS
- 68. DATA WAREHOUSING AND DATA
- 69. LEGAL ASPECTS OF BUSINESS
- 70. INDUSTRIAL ENGINEERING AND MANAGEMENT
- 71. BUSINESS ENVIRONMENT
- 72. CONCURRENT ENGINEERING
- 73. MEMS AND NANO MANUFACTURING
- 74. NON DESTRUCTIVE TESTING
- 75. NANO PROCESSING
- 76. LOW COST AUTOMATION
- 77. MANUFACTURING COST ESTIMATION
- 78. MICRO ELECTRO MECHANICAL SYSTEMS
- 79. INTRODUCTION TO HYDRAULICS AND PNEUMATICS
- 80. PLASTIC ENGINEERING
- 81. INTRODUCTION TO ROBOTICS
- 82. BASIC THERMODYNAMICS AND HEAT TRANSFER
- 83. RENEWABLE AND SUSTAINABLE ENERGY
- 84. ENERGY AUDITING
- 85. ENERGY CONSERVATION
- 86. SOLAR ENERGY UTILIZATION
- 87. HUMAN COMPUTER INTERFACE
- 88. ARTIFICIAL INTELLIGENCE AND NEURAL NETWORKS
- 89. APPLICATIONS OF NANOTECHNOLOGY
- 90. SOFTWARE DEVELOPMENT AND MANAGEMENT
- 91. TELECOM BILLING
- 92. Fire and Safety
- 93. NSS

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

S.No.	Course Work- Subject Area	_	of Total its (%)	Suggested Breakdown on Credits (for Total 176)	Dr.MGR E&R Inst University credits
1	Humanities and Social Sciences (HS), including Management;	5(9.25)	10(18.5)	14	13
	TECHNICAL ENGLISH - I				2
	TECHNICAL ENGLISH - II				2
	ENVIRONMENTAL SCIENCE				3
	MANAGEMENT PAPER 1				3
	MANAGEMENT PAPER 2				3

		Range of		Suggested	Dr.MGR
S.No.	Course Work- Subject Area	Credits	s (%)	Breakdown on	E&R Inst
5.110.	Course Work- Subject Area			Credits (for	University
		Min	Max	Total 176)	credits
2	Basic Sciences(BS) including Mathematics, Physics, Chemistry, Biology;	15(27.75)	20(37)	30	30
	MATHS - I				4
	ENGINEERING PHYSICS				3
	MATERIAL SCIENCE				3
	ENGINEERING CHEMISTRY - I				3
	ENGINEERING CHEMISTRY - II				3
	MATHS - II				4
	PHYSICS LAB				1
	CHEMISTRY LAB				1
	MATHS - III				4
	MATHS - IV		-		4

S.No.	Course Work- Subject Area	Range o Credit Min		Suggested Breakdown on Credits (for Total 176)	Dr.MGR E&R Inst University credits
3	Engineering Sciences (ES), including Materials, Workshop, Drawing, Basics of Electrical/Electronics/Mechanical/Computer Engineering, Instrumentation;	15(27.75)	20(37)	30	29
	BASIC ELECTRICAL & ELECTRONICS ENGINEERING				3
	BASIC MECHANICAL & CIVIL ENGINEERING				3
	BASIC ENGINEERING GRAPHICS				2
	WORKSHOP & PROJECT LAB				1
	PROGRAMMING LAB				2
	BASIC ENGINEERING SCIENCE				3
	INTER DISCIPLINARY THEORY (4 PAPERS)				12
	INTER DISCIPLINARY LAB (3 LABS)				3

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

S.No.	Course Work- Subject Area	_	of Total ts (%)	Suggested Breakdown on Credits (for Total	Dr.MGR E&R Inst University credits
	Description of California (DC) and according			176)	
4	Professional Subjects-Core (PC), relevant to the chosen specialization/branch; (May be split into Hard (no choice) and Soft (with choice), if required;)	30(55.5)	40(74)	50	68
	4 CREDIT DEPT CORE PAPER (9 papers)				36
	3 CREDIT DEPT CORE PAPER				21
	(7 papers)				21
	DEPARTMENT CORE LABS				11

S.No.	Course Work- Subject Area		of Total its (%)	Suggested Breakdown on Credits	Dr.MGR E&R Inst
		Min	Max	(for Total 176)	University credits
5	Professional Subjects – Electives (PE), relevant to the chosen specialization/branch;	10(18.5)	15(27.75)	20	15
	DEPT CORE ELECTIVES (5 PAPERS)				15

S.No.	Course Work- Subject Area	_	of Total its (%) Max	Suggested Breakdown on Credits (for Total 176)	Dr.MGR E&R Inst University credits
6	Open Subjects- Electives (OE), from other technical and/or emerging subject areas;	5(9.25)	10(18.5)	12	10
	OPEN ELECTIVE (Inter Disciplinary No Prerequisite)				3
	SPECIAL ELECTIVE (Emerging Technology Syllabus to be framed)				3
	SOFT SKILL 1				2
	SOFT SKILL 2				2

S.No.	Course Work- Subject Area	Range of Total Credits (%)		Suggested Breakdown on Credits	Dr.MGR E&R Inst
		Min	Max	(for Total 176)	University credits
7	Project Work, Seminar and/or Internship in Industry or elsewhere.	10(18.5)	15(27.75)	20	20
	TECHNICAL SKILLS (3)				3
	INPLANT TRAINING				1
	PROJECT PHASE – 1 & 2				12
	FOREIGN LANGUAGE				2
	MINI PROJECT				1

Department of **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

ENTREPRENEURAIL SKIL		1
DEVELOPMENT & PROJECT LAB		1

Credits Distribution

S. No	Description	No. of Papers	Credits
1	Department Core (3 credits) Inclusive of 3 ETL subjects	7	21
2	Department Core (4 credits)	9	36
3	Department Core Electives	5	15
4	Open Elective	1	3
5	Special Elective (ETL)	1	3
6	Management Papers	2	6
7	Core Department Lab	11	11
8	Interdisciplinary Theory	4	12
9	Interdisciplinary Lab	3	3
10	Mathematics	4	16
11	Basic Humanities & Sciences	6	16
12	Environmental Science	1	3
13	Basic Engineering Science	4	11
14	Basic Engineering & Science Labs	4	5
15	Technical Skills	3	3
16	Soft Skills	2	4
17	Foreign Language	1	2
18	Mini Project	1	1
19	Project (Phase 1 & 2)	2	12
20	In Plant Training	1	1
21	Entrepreneurial Skill Development & Project Lab	1	1
	Total	73	185

Note:

Revision-2 curriculum modified with the following changes

- ❖ In the 2nd semester curriculum, Entrepreneurial Skill Development and Project lab courses included with one credit weightage.
- ❖ Total number of Credits for the 1st year program has been increased to 41 credits and the overall credit has been increased to 185 credits.