

DECLARATION

I, Dr. V. N. RAJAVARMAN, Head of Information Technology, hereby declare that this copy of the syllabus (B. Tech – Information Technology - Full Time 2017 Regulation) is the final version which is being taught in the class and uploaded in our University website. I assure that the Syllabi available in our University website is verified and found correct. The Curriculum and Syllabi have been ratified by our Academic Council / Vice Chancellor.

SEMESTER – I

Course Code	Course Title	C	L	T/SLr	P/R	Ty/Lb/ ETL
BEN17001	Technical English – I	2	1	0/0	2/0	Ту
BMA17001 BMA17002	Mathematics – I / Bio Mathematics (For Biotech)	4	3	1/0	0/0	Ту
BPH17001	Engineering Physics	3	2	0/1	0/0	Ту
BCH17001	Engineering Chemistry – I	3	2	0/1	0/0	Ту
BES17001	Basic Electrical & Electronics Engineering	3	2	0/1	0/0	Ту
BES17002	Basic Mechanical & Civil Engineering	3	2	0/1	0/0	Ту
	ANNUAL PATTERN (PI	RACTIO	CALS)*			1
BES17ET1	Basic Engineering Graphics	2	1	0/0	2/0	ETL
BPH17L01	Engineering Physics Lab	1	0	0/0	2/0	Lb
BCH17L01	Engineering Chemistry Lab	1	0	0/0	2/0	Lb
BES17L01	Basic Engineering Worshop	1	0	0/0	2/0	Lb
BES17ET2	C Programming And Lab	2	1	0/0	2/0	ETL
BES17ET3	Entrepreneurial Skill Development & Project Lab	1	0	0/0	2/0	ETL

Credits Sub Total:26

SEMESTER - II

Course Code	Course Title	С	L	T/SLr	P/R	Ty/Lb/ETL
BEN17002	Technical English – II	2	1	0/0	2/0	Ту
BMA17003 BMA17004	Mathematics – II / Bio Statistics (For Biotech)	4	3	1/0	0/0	Ту
BPH17002	Material Science	3	2	0/1	0/0	Ту
BCH17002	Engineering Chemistry – II	3	2	0/1	0/0	Ту
BES17003	Environmental Science	3	3	0/0	0/0	Ту

Credits SubTotal:15

C: Credits L: Lecture T: Tutorial S.Lr: Supervised Learning P: Problem/Practical

R: Research Ty/Lb/ETL: Theory /Lab/Embeddded Theory and Lab

^{*} Internal Evaluation

Semester: III

Theory:

Course Code	Prerequisite	Course Title	Category	C	L	T/S	P/R	Ty/ Lb/
	Course Code					Lr		ETL/ EVL
BMA17008	BMA17003	Discrete Mathematics	M-3	4	3	1/0	0/0	Ту
BIT17001	NIL	Data Structures and Algorithms	PC	4	3	0/1	0/0	Ty
BCS17002	BES17ET2	Object Oriented Programming with C++	PC	4	3	0/1	0/0	Ту
BEC17I01	NIL	Fundamentals of Communication Systems	BES	3	3	0/0	0/0	Ту
BEC17I02	BES17001	Digital Systems	IDT-1	3	3	0/0	0/0	Ty

Practical:

BCS17ET1	BES17ET2	Computer Graphics	PC	3	1	0/1	2/0	ETL
BIT17L01	BES17ET2	Data structures and Algorithms Lab	PCL	1	0	0/0	3/0	Lb
BCS17L02	BES17ET2	Object Oriented Programming Lab with	PCL	1	0	0/0	3/0	Lb
		C++						
BEC17IL1	BES17001	Digital Systems Lab	IDL-1	1	0	0/0	3/0	Lb

Credits Sub Total: 24

Semester: IV

Theory:

Course Code	Prerequisite	Course Title	Category	C	L	T/SLr	P/R	Ty/ Lb/
	Course Code							ETL/
								EVL
BMA17013	BMA17008	Numerical Methods for Computer Engineers	M-4	4	3	1/0	0/0	Ту
BIT17002	NIL	Software Engineering	PC	4	3	0/1	0/0	Ty
BCS17004	BIT17001	Database Management Systems	PC	4	3	0/1	0/0	Ty
BIT17003	NIL	System Software and Operating System	PC	3	3	0/0	0/0	Ту
BEC17I03	BES17I02	Micro Processors and Micro Controllers	IDT-2	3	3	0/0	0/0	Ту

Practical:

BSK17ET1	NIL	Soft Skills I	SS	2	1	0/1	1/0	ETL
BCS17ET2	BCS17002	Java Programming	PC	3	1	0/2	0/0	ETL
BCS17L03	BCS17L01	Database Management Systems Lab	PCL	1	0	0/0	3/0	Lb
BIT17L02	NIL	System Software and Operating System Lab	PCL	1	0	0/0	3/0	Lb
BEC17IL2	BEC17IL1	Micro Processors and Micro Controllers Lab	IDL-2	1	0	0/0	3/0	Lb
BIT17TS1	NIL	Technical Skill I (Evaluation)	TS	1	0	0/0	0	EVL

Credits Sub Total: 27

Semester: V

Theory:

Course Code	Prerequisite Course Code	Course Title	Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BMA17016	BMA17013	Statistics for Computer Engineers	M-5	4	3	1/0	0/0	Ty
BCS17I01	NIL	Computer Networks	IDT-3	3	3	0/0	0/0	Ty
BIT17004	BCS17002	Object Oriented System Analysis and Design	PC	3	3	0/0	0/0	Ту
BEC17I04	NIL	Information Theory and Coding	IDT-4	4	3	1/0	0/0	Ty
BCS17007	BEC17I02	Computer Organization and Architecture	PC	4	3	1/0	0/0	Ту

Practical:

BCS17ET3	BCS17L03	PHP / MySQL	PC	3	1	0/2	0/0	ETL
BIT17L03	BCS17L02	Object Oriented System Analysis and	PCL	1	0	0/0	3/0	Lb
		Design using UML			Ü	0/0	2, 0	20
BIT17L04	NIL	Mobile Application Development Lab	PCL	1	0	0/0	3/0	Lb
BCS17IL01	BCS17ET2	Network Programming Lab	IDL-3	1	0	0/0	3/0	Lb
BIT17TS2	BIT17TS1	Technical Skill II (Evaluation)*	TS	1	0	0/0	0/0	EVL
BIT17L05	NIL	Inplant Training (Evaluation)*+	IPT	1	0	0/0	0/0	EVL

Credits Sub Total: 26

Semester: VI Theory:

Course Code	Prerequisite Course Code		Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BCS17011	BCS17004	Data Warehousing and Data Mining	PC	4	3	0/0	0/2	Ty
BCS17010	BCS17ET3	Open Source Scripting Languages	PC	3	3	0/0	0/0	Ty
BIT17EXX	NIL	Elective I	PE	3	3	0/0	0/0	Ty
BIT17005	BEC17I01	Wireless Communication	PC	4	3	0/0	0/2	Ty
BIT170EX	NIL	Open Elective (Interdisciplinary) E II	OE	3	3	0/0	0/0	Ту

Practical:

BSK17ET2	BSK17ET1	Soft Skills II	SS	2	1	0/1	1/0	ETL
BCS17L11	BCS17ET3	Data Mining Lab	PCL	1	0	0/0	3/0	Lb
BCS17L09	BCS17ET3	Scripting Languages Lab	PCL	1	0	0/0	3/0	Lb
BIT17L06	BCS17IL01	Wireless Lab	PCL	1	0	0/0	3/0	Lb
BIT17L07	NIL	Mini Project (Evaluation)	MP	1	0	0/0	0/0	EVL
BIT17TS3	BIT17TS2	Technical Skill III (Evaluation)	TS	1	0	0/0	3/0	EVL

Credits Sub Total: 24

⁺ To be undertaken after IVth Semester

* Internal evaluation (Departmental level Refer Annexure for evaluation methodology)

Semester: VII Theory:

Course Code	_	Course Title	Category	C	L	T/SL	P/R	Ty/ Lb/
	Course Code					r		ETL/ EVL
BIT17006	BCS17I01	Cloud Technology	PC	3	3	0/0	0/0	Ty
BIT17007	BCS17I01	Web Technology and Web Services	PC	3	3	0/0	0/0	Ty
BIT17EXX	NIL	Elective III	PE	3	3	0/0	0/0	Ty
BIT17EXX	NIL	Elective IV	PE	3	3	0/0	0/0	Ty
BMG17002	BES17ET3	Management Concepts and	MGMT-1	3	2	0/0	0/0	Ту
		Organizational Behavior			3	0/0	U/U	

Practical:

BIT17SEX	NIL	Elective (Special - Based On Current Technology) * E V	SE	3	1	0/2	0/0	ETL
BIT17L08	BCS17IL01	Web Technology and Web Services Lab	PCL	1	0	0/0	3/0	Lb
BIT17L09	BCS17ET2	Cloud Application Development Lab	PCL	1	0	0/0	3/0	Lb
BIT17L10	NIL	Project Phase – I	PP1	2	0	0/0	6/0	Lb
BFL17001	NIL	Foreign Language (Evaluation)	FL	2	1	0/1	0/0	EVL

Credits Sub Total: 24

Semester: VIII

Theory:

Course Code	Prerequisite	Course Title	Category	C	L	T/SL	P/R	Ty/ Lb/
	Course Code					r		ETL/
								EVL
BIT17SEX	NIL	IT Specific Elective VI	PE	3	3	0/0	0/0	Ty
BIT17SEX	NIL	IT Specific Elective VII	PE	3	3	0/0	0/0	Ty
BMG17003	BMG17002	Total Quality Management	MGMT-2	3	3	0/0	0/0	Ту

Practical:

BIT17L11	BIT17L10 Project (Pha	se – II)	PP2	10	0	0/0	20/0	Lb

Credits Sub Total: 19

- * Internal evaluation (Departmental level Refer Annexure for evaluation methodology)
- 4 Credit papers should compulsorily have either P/R component.

Credit Summary

Semester 1 : 18 Semester 2 : 23 Semester 3 : 24 Semester 4 : 27 Semester 5 : 26 Semester 6 : 24 Semester 7 : 24 Semester 8 : 19

Total Credits: 185

		Open Electives E- I OE (6th Sem)						
Course Code	Prerequisite Course Code	Course Title	Categ ory	С	L	T/S Lr	P/R	Ty / Lb/ ETL
BCS17OE1	NIL	Web Design	OE	3	3	0/0	0/0	Ту
BCS17OE2	NIL	Cyber Security Essentials	OE	3	3	0/0	0/0	Ty
BCS17OE3	NIL	Electronic Waste Management	OE	3	3	0/0	0/0	Ty
BCS170E4	NIL	Software Testing	OE	3	3	0/0	0/0	Ту
BCS17OE5	NIL	Information Security Management	OE	3	3	0/0	0/0	Ту

		6 th sem Electives E- II (Common to CSI	E&IT)					
Course Code	Prerequisite Course Code	Course Title	Categ	С	L	T/S Lr	P/R	Ty / Lb/ ETL
BCS17006	BCS17001	Design and Analysis of Algorithms (Only for IT)	PE	3	3	0/0	0/0	Ту
BCS17E01	BCS17ET1	Image Processing	PE	3	3	0/0	0/0	Ту
BCS17E02	NIL	Goegraphical Information Systems	PE	3	3	0/0	0/0	Ту
BCS17E03	BCS17004	Database Tuning	PE	3	3	0/0	0/0	Ту
BCS17E04	BCS17ET2 BCS17012	Component Based Technology	PE	3	3	0/0	0/0	Ту
BCS17E05	BCS17I02	E-Commerce	PE	3	3	0/0	0/0	Ту
BCS17E06	NIL	Artificial Intelligence	PE	3	3	0/0	0/0	Ту
BCS17E07	NIL	Human Computer Interaction	PE	3	3	0/0	0/0	Ту
BCS17E08 /BIS15005	BCS17I01	Wireless and Mobile Networking	PE	3	3	0/0	0/0	Ту

	7th Se	em Electives – E- III and E-IV (Common	ı to CSE	&IT)				
Course Code	Prerequisite Course Code	Course Title	Categ	С	L	T/S Lr	P/R	Ty / Lb/ ETL
BCS17E09	BCS17011	Web Mining	PE	3	3	0/0	0/0	Ту
BCS17E10	BIT17I02	Web Data Design and Management	PE	3	3	0/0	0/0	Ту
BCS17E11	NIL	Risk Management	PE	3	3	0/0	0/0	Ту
BCS17E12	BIT17I02	M-Commerce	PE	3	3	0/0	0/0	Ту
BCS17E13	BCS17I01	Cryptography and Network Security	PE	3	3	0/0	0/0	Ту
BCS17E14	BCS17I01	Mobile Adhoc Networks	PE	3	3	0/0	0/0	Ту
BCS17E15	BCS17I01	TCP/IP Design and Implementation	PE	3	3	0/0	0/0	Ту
BCS17E16	BCS17OE5	Cyber Forensics and Internet Security	PE	3	3	0/0	0/0	Ty
BCS17E17	BCS17004	Database Security	PE	3	3	0/0	0/0	Ту
BCS17E18	BCS17006	Real Time Systems	PE	3	3	0/0	0/0	Ту
BCS17E19	BCS17I01 BCS17006	Distributed Computing	PE	3	3	0/0	0/0	Ту
BCS17E20	NIL	Optimization Techniques	PE	3	3	0/0	0/0	Ту
BCS17E21	BCS17004	Management Information Systems	PE	3	3	0/0	0/0	Ту

7 th S	Semester – Spe	cial Elective – Technology Based (ES - EV	(Com	mon	to C	SE&l	(T)	
Course Code	Prerequisite Course Code	Course Title	Categ ory	С	L	T/S Lr	P/R	Ty / Lb/ ETL
BCS17E22	BCS17ET2	Mobile Application Development	SE	3	3	0/0	0/0	Ту
BCS17E23	BCS17004	Data Science and Big Data Analytics	SE	3	3	0/0	0/0	Ту
BIT17007	NIL	Cloud Technology (only for CSE)	SE	3	3	0/0	0/0	Ту
BCS17E24	BIT17I01	Network Forensics	SE	3	3	0/0	0/0	Ту
BCS17E25	NIL	Internet of Things	SE	3	3	0/0	0/0	Ту
BCS17E26	NIL	Social Computing	SE	3	3	0/0	0/0	Ty
BCS17E27	NIL	Enterprise Architecture	SE	3	3	0/0	0/0	Ty
BCS17EXX	NIL	Any other that is important time to time based on Industry Demand	SE	3	3	0/0	0/0	Ту

	8th Sem Electives E-VI and E-VII (CSE & IT)												
Course Code	Prerequisite Course Code	Course Title	Categ	C	L	T/S Lr	P/R	Ty / Lb/ ETL					
BCS17E28	BCS17004	Information Storage Management	PE	3	3	0/0	0/0	Ту					
BCS17E29	BCS17I01	Network Infrastructure Management	PE	3	3	0/0	0/0	Ту					
BCS17E30	BCS17007	Foundations of Parallel Programming	PE	3	3	0/0	0/0	Ty					
BCS17E31	BIT17007	Virtualization	PE	3	3	0/0	0/0	Ту					
BCS17E32	BCS17006	Hadoop Distributed File System	PE	3	3	0/0	0/0	Ту					
BCS17E33	BCS17004	Mobile Databases	PE	3	3	0/0	0/0	Ту					
BCS17E34	BIT17I02	Web Engineering	PE	3	3	0/0	0/0	Ту					
BCS17E35	BCS17I01	4G Networks	PE	3	3	0/0	0/0	Ty					
BCS17E36	NIL	Enterprise Resource Planning	PE	3	3	0/0	0/0	Ty					
BCS17E37	NIL	Supply Chain Management	PE	3	3	0/0	0/0	Ту					
BCS17E38	BCS17004	Mainframe Computing	PE	С	3	0/0	0/0	Ту					
BCS17E39	BCS17E06	Neuro Fuzzy Computing	PE	3	3	0/0	0/0	Ту					
BCS17E40	BCS17E09	Web Content Management	PE	3	3	0/0	0/0	Ту					
BCS17E41	BCS17E06	Machine Learning	PE	3	3	0/0	0/0	Ту					

 $C: Credits \ L: Lecture \ T: Tutorial \ S.Lr: Supervised \ Learning \ P: Problem \ / \ Practical \ R: Research \ Ty/Lb/ETL/EVL: Theory/Lab/Embedded \ Theory \ and \ Lab/Evaluation$

I SEMESTER

Subject Code:

DEPARTMENT OF ENGLISH

C

T/SLr

P/R

Subject Name: TECHNICAL ENGLISH - I

BEN170	01	Prerequ	iisite : N	lone					2	1		0/0	2/0
L : Lectu	ıre T : Tut	orial SLr	: Super	vised	Learnir	ng P : P	roje	ct R : Res	earch	C:	Credits	3	
T/L/ETL	: Theory	/ Lab / E	mbedde	d The	ory and	Lab							
OBJECT	TIVES:												
1. Stre	engthen tl	neir voca	bulary	in bo	th tech	nical a	nd b	usiness si	tuati	ons			
	practice		_										
	rn the eff		•	_	_								
	rn to give			-				ations and	d com	pr	ehend		
	infer the				_					- ~			
	in learne				mic an	d prof	essic	onal writi	ng in	LS	RW sk	ills	
	E OUTCO												
	completin					1.	1.						
CO1	Strength							•	41.	•	. 1		
CO2								iciency in					
CO3					_	_		mal and b the resum				and pro	epare
CO4	Learn to	give ins	truction	s, sug	gestion	ıs, reco	mn	endation	s and	co	mpreh	end and	l infer
	the infor	mation f	rom the	give	n passa	iges							
CO5	Focus on	academ	ic and t	echni	cal wri	ting							
Mapping	of Cours	e Outcon	nes with	Progr	am Out	tcomes	(PC	os)					
COs/POs	s PO1	PO2	PO3	PO	PO	PO6	PC	7 PO8	PC	9	PO1	PO1	PO1
				4	5						0	1	2
CO1				H							H		Н
CO2				H							H		H
CO3				H		M			H	[Н		Н
CO4				Н					H	[Н		Н
CO5				H					Н	[H		Н
H/M/L ii	ndicates st	rength of	correla	tion F	I – Higl	n, M – 1	Med	ium, L – 1	Low				
Catego	Basic	Engg	Humar	nit I	Progra	Progr	a	Open	Prac	ctic	a Inte	ernship	Soft
ry	Scienc	Scienc	ies &	r	n core	m		Elective	1/		s/		Skill
	es	es	Social			Electi	ive	S	Proj	ject		hnical	S
			Scienc	es		S					Ski	lls	
			$\sqrt{}$										
Approva	1												

Department of Information Technology TECHNICAL ENGLISH I

2 1 0/0 2/0

BEN17001

1. Vocabulary, Grammar and Usage - I

(6)

Meanings of words and phrases, synonyms and antonyms – affixes: prefixes and suffixes and word formation – nominal compounds, expanding using numbers and approximation – Verb: tense, auxiliary and modal –Voice: active, passive and impersonal passive

2. Vocabulary, Grammar and Usage – II

(6)

Infinitives and Gerunds – preposition, prepositional phrases, preposition + relative pronoun-'If' clause, sentences expressing 'cause and effect', 'purpose',

Instructions, suggestions and recommendations

3. Reading (6)

Questions: Wh-pattern, Yes/no questions, tag questions

Comprehension: extracting relevant information from the text, by skimming and scanning and inferring, identifying lexical and contextual meaning for specific information, identifying the topic sentence and its role in each paragraph, comprehending the passage and answering questions - Précis writing

4. Writing (6)

Adjectives: degrees of comparison

Concord: subject-verb agreement

Interpretation of tables and flowcharts: writing a paragraph based on information provided in a table using comparison and contrast, classifying the data and flowchart, describing logical steps involved in specific functions, note - making from a given passage- letter writing, formal: seeking permission to undergo practical training, letter to an editor of a newspaper complaining about civic problems and suggesting suitable solutions

5. Functional English and Practical Components

(6)

Listening : Listening to stories, conversation, dialogue, speeches of famous people, and identifying the grammar components

Speaking: Scripting and enacting role plays/ narrating incidents

Reading: Review of books, articles, fiction- Extensive reading/ user manuals, pamphlets, brochures

Writing: paragraph and essay writing using academic vocabulary

Total No of Periods: 30

Text Book

1. Pushkala. R, PadmasaniKannan.S, Anuradha. V, Chandrasena Rajeswaran. M: **Quest:**A Textbook of Communication Skills, Vijay Nicole

References

- 1. Pushkala R, P.A.Sarada, El Dorado: A Textbook of Communication Skills, Orient Blackswan, 2014
- 2. PadmasaniKannan.S., Pushkala.R.: Functional English
- 3. Hancock, Mark, English Pronunciation in Use; Cambridge Univ. Press, 2013
- 4. McCarthy, Michael et.al,, English Vocabulary in Use, Advanced, Cambridge Univ. Press, 2011
- 5. Wren and Martin: Grammar and Composition, Chand & Co, 2006

Web Resources

- 1. https://learnenglish.britishcouncil.org
- 2. www.englishpage.com
- 3. www.writingcentre.uottawa.ca/hypergrammar/preposit.html
- 4. www.better-english.com/grammar/preposition.html
- 5. http://www.e-grammar.org/infinitive-gerund/
- 6. www.idiomsite.com/

DEPARTMENT OF MATHEMATICS

Subject Co	de:	Subjec	t Name	: MA1	THEMA'	TICS -	Ι		С	L	T/	SLr	P/R
BMA1700	1	Prerequ	uisite :]	None					4	3	1	1/0	0/0
L : Lecture							ojec	tR:	Rese	arch C:	Credit	S	•
T/L/ETL : '	Theory	/ Lab / F	Embedd	led The	ory and I	Lab							
OBJECTIV													
		ic conce	_	_	a								
		concept olve pro			gonometi	rv							
		_		_) Differenti	•							
5. Apply	the Bas	ic conce	epts in]	Functio	ons of Se	veral v	ari	able	S				
COURSE		,	, ,										
Students co													
CO1					given se								
CO2		storm a gonal tr			al matrix	anto a	n e	quiv	alent	diagon	al mat	rix usir	ıg
CO3					netric fu	nction	int	o an	infini	ite serie	s and	to sepa	rate a
		_		_	and ima							•	
CO4			_		epts in f	0			ivativ	e of giv	en fun	ction a	nd to
					of the giv								
CO5		ate the j al varial		/ total	differen	tiation	ano	d ma	ıxima	/ minin	na of a	functi	on of
Mapping of	f Cours	e Outcor	nes wit	h Progi	ram Outc	omes (l	POs	s)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P	O7	PO	PO9	PO	PO1	PO12
									8		10	1	
CO1	H	H			M	M				H	H		H
CO2	H	H			H	L							H
CO3	H	H			M					M	H		L
CO4 CO5	H	H			L	3.5				M	H		M
H/M/L indi	H	H	f aamal	otion I	I Iliah	M	ad:	11100	T T	M	M		H
Category	Basic	Engg		manit	Progra	Progra		Op		Pract	Intorr	nships	Soft
Category	Science		·		m core	m	a	-	ctiv	ical /		hnical	Skills
	es	es		cial		Electi	v	es		Proje	Skills		
	,		Sci	ences		es				ct			
	√												
Approval													

Department of Information Technology MATHEMATICS – I

4 3 1/0 0/0

BMA17002

 $1. ALGEBRA \tag{12}$

Binomial, Exponential, Logarithmic Series (without proof of theorems) – Problems on Summation, Approximation and Coefficients.

2. MATRICES (12)

Characteristic equation – Eigen values and Eigen vectors of a real matrix – Properties of Eigen values – Cayley - Hamilton theorem(without proof) – Orthogonal reduction of a symmetric matrix to Diagonal form.

3. TRIGONOMETRY (12)

Expansions of Sin $n\theta$, Cos $n\theta$ in powers of Sin θ and Cos θ – Expansion of Tan $n\theta$ – Expansions of Sin $^n\theta$ and Cos $^n\theta$ in terms of Sines and Cosines of multiples of θ – Hyperbolic functions – Separation into real and imaginary parts.

4. DIFFERENTIATION (12)

Basic concepts of Differentiation – Elementary differentiation methods – Parametric functions – Implicit function –Leibnitz theorem(without proof) – Maxima and Minima – Points of inflection.

5. FUNCTIONS OF SEVERAL VARIABLES

(12)

Partial derivatives – Total differential – Differentiation of implicit functions – Taylor's expansion – Maxima and Minima by Lagrange's Method of undetermined multipliers – Jacobians.

Total no. of Periods: 60

Text Books

- 1. Kreyszig E., Advanced Engineering Mathematics (10th ed.), John Wiley & Sons, (2011).
- 2. Veerarajan T., *Engineering Mathematics (for first year)*, Tata McGraw Hill Publishing Co., (2008).

References

- 1. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).
- 2. John Bird, Basic Engineering Mathematics (5th ed.), Elsevier Ltd, (2010).
- 3. P.Kandasamy, K.Thilagavathy and K. Gunavathy, *Engineering Mathematics Vol. I* (4th *Revised ed.*), S.Chand& Co., Publishers, New Delhi (2000).
- 4. John Bird, *Higher Engineering Mathematics* (5th ed.), Elsevier Ltd, (2006).

Department of Information Technology DEPARTMENT OF MATHEMATICS

Subject C BMA170		Subjec	t Name	:BI	О МАТ	THEM	IAT	ICS	С	L	T/SLr		P/R
		Prereq	uisite :	None	e				4	3	1/0		0/0
L : Lectur T/L/ETL						_		oject R:	Resea	arch (C: Credits		
OBJECT 1. Use th 2. Under 3. Under 4. Apply 5. Analy	e Basic c estand th estand th the Basi	e Basic (e Basic (ic conce)	concept concept pts in I	s in s in aterp	Differe Integra polation	ation 1		iation ar	nd Int	tegra	tion		
COURSE Students													
CO1		_				and i	nver	se of ma	trixe	<u> </u>			
CO2		e deriva									ma / mini	ma of t	he
CO3	Integra	te the gi			•	_		ethods o e solid b		_	on and to	find a	rea
CO4		te the va				the giv	ven j	point and	d to fi	ind t	he polyno	mial	
CO5		e differe iven fun					the	given po	oint a	nd to	find the	integra	tion
Mapping	of Cours	e Outcor	nes with	n Pro	gram C	Outcon	nes (POs)					
COs/PO s	PO1	PO2	PO 3	PO 4	PO5	5 P	O6	PO7	PO 8	РО	9 PO1 0	PO1 1	PO1 2
CO1	Н	Н			M]	M			Н	Н		H
CO2	Н	H			H		L						H
CO3	H	H			M					M			L
CO4	H	H			L		<u>M</u> _			M			H
CO5	H	H	G 1	- 4 :	11 11		M	<u> </u> 	т т	M	M		H
H/M/L in Categor y	Basic Scien ces	Engg Scien ces	Human ties & Social Science	ni l	Progr am core	Progr m Elect	ra	Open Electiv es	Prac al / Proj	tic	Internshi ps / Technic al Skills	Soft	Skills
	$\sqrt{}$		S										

Approval

Department of Information Technology BIO MATHEMATICS

4 3 1/0 0/0

BMA17002

1. MATRICES (12)

Elementary operations on Matrices – Inverse of a Matrix – Solving simultaneous equations (atmost three equations with three unknowns) using Cramer's rule.

2. DIFFERENTIATION

(12)

Basic concepts of Differentiation – Elementary differentiation methods – Parametric functions – Implicit function – Maxima and Minima (simple problems).

3. INTEGRATION (12)

Basic concepts of Integration – Methods of Integration – Integration by substitution – Integration by parts – Definite Integrals – Properties of Definite Integrals – Problems on finding Area using single integrals (simple problems).

4. INTERPOLATION (12)

Interpolation: Newton's forward, Newton's backward formulae – Newton's divided differences – Lagrange's polynomial (simple problems).

5. NUMERICAL DIFFERENTIATION AND INTEGRATION

(12)

Numerical differentiation with interpolation polynomials (Newton's forward and backward only) – Numerical integration by Trapezoidal and Simpson's (both $1/3^{rd}$ & $3/8^{th}$) rules (simple problems).

Total no. of Periods : 60

Text Books

- 1. Veerarajan T., *Engineering Mathematics (for first year)*, Tata McGraw Hill Publishing Co., (2008).
- 2. H.K.Das, Engineering Mathematics, S.Chand Publishers
- 3. Veerarajan T., *Numerical Methods*, Tata McGraw Hill Publishing Co., (2007).

References

- 1. Shanti Narayanan, Differential Calculus, S.Chand& Co., New Delhi, (2005).
- 2. Shanti Narayanan, Integral Calculus, S.Chand& Co., New Delhi, (2005).
- 3. John Bird, Basic Engineering Mathematics (5th ed.), Elsevier Ltd, (2010).

Department of Information Technology DEPARTMENT OF PHYSICS

Subject Code:	Subject Name:	C	L	T/SLr	P/R
BPH17001	ENGINEERING PHYSICS				
	Prerequisite : None	3	2	0/1	0/0

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

 $\ensuremath{\text{T/L/ETL}}$: Theory / Lab / Embedded Theory and Lab

OBJECTIVES:

- 1. Outline the relation between Science, Engineering & Technology.
- 2. Demonstrate competency in understanding basic concepts.
- 3. Apply fundamental laws of Physics in Engineering & Technology.
- 4. To identify & solve applied Physics problems.
- 5. Produce and present activities associated with the course through effective technical communication

COURSE OUTCOMES (Cos): (3-5)

Students completing this course were able to

CO1	Demo	nstrat	te con	petency	in und	derstan	ding	g ba	sic co	ncepts.				
CO2				nethods Il metho				_				_		ncy
CO3	Identi	fy and	d pro	vide solu	tions f	or engi	neer	ing	prob	lems.				
CO4	Relate	the t	echni	cal conc	epts to	day to	day	life	and t	o practi	cal situ	ation	ıs.	
CO5	Think	anal	ytical	y to inte	rpret o	concept	s.							
Mapping	of Cour	se Out	tcome	s with Pı	ogram	Outcon	nes (POs	s)					
COs/PO s	PO1	PO 2	PO3	PO4	PO5	PO6	PC)7	PO8	PO9	PO1 0	PO	1	PO12
CO1	Н	Н			M	M			L		M			
CO2	Н	Н	M		M	M			L		M			L
CO3	Н	Н	Н	M		M					M			L
CO4	Н	Н	M		M				M					M
CO5	Н	M	L	Н										
H/M/L in	dicates s	streng	th of c	orrelatio	n H – I	High, M	I-N	1edi	um, L	- Low	I			
Categor y	Basic Scien ces	Eng Scie es	enc	Humani ies & Social Science	Progr am core	Prog m Elec es		_	ectiv	Practic al / Project	ps/		So	ft Skills
	V	1	,	,										
Approval					<u> </u>			1					<u> </u>	

Department of Information Technology ENGINEERING PHYSICS

3 2 0/1 0/0.

1. PROPERTIES OF MATTER & ACOUSTICS

(9)

Elasticity – Twisting couple on a Wire (derivation) – Shafts – Comparison of Solid and Hollow Shaft – Bending moment – Depression of a Cantilever – Determination of Young's modulus by Depression of a Cantilever – Uniform and non uniform bending (Experiment) – I form of Girders. Viscosity – Definitions – Lubrication – Properties & Types of Lubricant. Acoustics of Buildings – Reverberation – Reverberation time –Sabine's formula for Reverberation Time – Absorption Coefficient and its Determination – Factors affecting Acoustics of Buildings and its Remedial Measures.

2. THERMAL PHYSICS

BPH17001

(9)

Thermal conduction – Thermal Expansion – Expansion joints – Bimetallic strips – Thermal conductivity (k) – Lee's Disc method (theory and experiment) – Radial flow of heat –Thermal conductivity of Glass – Thermal conductivity of Rubber Tube – Flow of heat through Compound Media – Thermal Insulation of buildings – Thermal radiation – Concept of Black body radiation – Fundamentals of Low Temperature Physics.

3. ULTRASONICS AND ITS APPLICATIONS

(9)

Properties & Production of Ultrosonics – Piezoelectric method – Magnetostriction method – Acoustic Grating – Industrial Applications – Ultrasonic flaw detection (Block Diagram) – Medical Application: Velocity Blood Flow Meter – PhonoCardiography – Ultrasound imaging – Hazards and safety of Ultrasound – NDT of Materials using Ultrasonics.

4. LASER & ITS APPLICATIONS

(9)

.Nature of Light – Laser Principle & Characteristics–Ruby laser – Nd- YAG Laser – He-Ne Laser – Co_2 Laser – Semiconductor laser – Homo junction & Hetero Junction Laser – Engineering applications – Holography, Surveying – Industrial applications – Cutting, Welding – Medical applications – Surgery

5. FIBER OPTIC COMMUNICATION

(9)

Total Internal Reflection – Propagation of Light in Optical Fibres – Numerical aperture and Acceptance Angle – Types of Optical Fibres (material, refractive index, mode) – Fibre Optical Communication system (Block diagram) – Attenuation–Transmitter, Receiver, Dispersion, Modulation/Demodulation Advantages of Fibre Optical Communication System – IMT, PMT, Wavelength Modulated & Polarization Modulated Sensors – Endoscope Applications.

Total No. of Periods: 45

Text Books:

- 1. M. Arumugam, "Engineering Physics", Anuradha Publication (2004)
- 2. Dr. Senthil Kumar "Engineering Physics I" VRB Publishers (2016)
- 3. N.S.Shubhashree&R.Murugesan., "Engineering Physics", Sreelakhsmi Publishers(2008)

References

- 1. K. Gaur & S.L. Gupta, "Engineering. Physics", Dhanpat Raj & Sons, VI Edition, (1988)
- 2. Palanisamy, P.K., "Engineering Physics", Scitech Publications (P) Ltd., (2006)

Department of Information Technology DEPARTMENT OF CHEMISTRY

Subject Code:	Subject Name :	С	L	T/SLr	P/R
BCH17001	ENGINEERING CHEMISTRY – I				
	Prerequisite : None	3	2	0/1	0/0

L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits

T/L/ETL: Theory / Lab / Embedded Theory and Lab

OBJECTIVES:

- 1. Providing an insight into basic concepts of chemical thermodynamics.
- 2. To create awareness about the water quality parameters, water analysis and softening of water from industrial perspective.
- 3. Imparting fundamentals of emf, storage and fuel cells.
- 4. Creating awareness about corrosion and its control methods.
- 5. Introducing modern materials such as composites along with basic concepts of polymer chemistry and plastics.

chemistr	0					ODI		· · · ·		~	опсерия	o- Po-	<i>J</i>	
COURSE	<u> </u>			(3-5)	5)									
	Γ													
CO1					0						lynamic	s whi	ch	
	includ	le conce	epts su	ch as I	Enthalp	y, Entr	opy a	ind F	ree	energy.	•			
CO2	Obtai	n an ov	erall id	lea of	Water o	nuality	nara	metei	rs. F	oiler r	equirem	ents.		
		problems, Water softening and Domestic Water treatment.												
	_													
CO3	Improving the basic knowledge in electrical conductance and emf and also understand the chemical principles of storage devices.													
understand the chemical principles of storage devices.														
CO4	CO4 Observe the information about corrosion and understand the mechanisms of													
	CO4 Observe the information about corrosion and understand the mechanisms of corrosion and the methods of corrosion control.													
GO.		- · · · · ·						• .						
CO5	Articu	ılate th	e scien	ce of p	olymer	s and c	ompo	sites	•					
Mapping						Outcom	es (Po	Os)						
COs/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO	7 PO	9C	PO9	PO1	PO1	PO12	
S	T	3.4									0	1	3.6	
CO1	L	M	3.4	_		_	77						M	
CO2	M	L	M L	L		L	H						M	
CO3	L M	M	L	L			L						L L	
CO4	M		L	L						1			M	
H/M/L in		strength		relatio	<u> </u>	igh M	_ _ Ме	dium	T _	- Low			171	
Categor	Basic	Engg		mani	Progr	Progra		pen		ractic	Internsl	ni So	oft Skills	
y	Scien	Scien			am	m		lectiv		1/	ps /		JIL DIIIII	
	ces	ces	Soc		core	Electi				roject	Technic	:		
			Sci	ence		es				-	al Skill	s		
			S											
Approval	-													

Department of Information Technology ENGINEERING CHEMISTRY – I

3 2 0/1 0/0

BCH17001

1. CHEMICAL THERMODYNAMICS

(8)

Introduction, Terminology in thermodynamics –System, Surrounding, State and Path functions, Extensive and intensive properties. Laws of thermodynamics – I and II laws-Need for the II law. Enthalpy, Entropy, Gibbs free energy, Helmholtz free energy - Spontaneity and its criteria. Maxwell relations, Gibbs -Helmholtz equation (relating E & A) and (relating H & G), Van't Hoff equations.

2. TECHNOLOGYOF WATER

(9)

Water quality parameters – Definition and expression. Analysis of water – alkalinity, hardness and its determination (EDTA method only). Boiler feed water and Boiler troubles-Scales and sludges, Caustic embrittlement, Priming and Foaming and Boiler corrosion. Water softening processes – Internal and external conditioning – Lime soda, Zeolite, Demineralisation methods. Desalination processes-RO and Electrodialysis .Domestic water treatment.

3. ELECTROCHEMISTRY AND ENERGY STORAGE DEVICES

(10)

 $\label{lem:conductance-problem} Conductance - Types of conductance and its Measurement. Electrochemical cells - Electrodes and electrode potential, Nernst equation - EMF measurement and its applications. Types of electrodes-Reference electrodes-Standard hydrogen electrode- Saturated calomel electrode-Quinhydrone electrode - Determination of <math display="inline">P^{\hbox{\scriptsize H}}$ using these electrodes.

Reversible and irreversible cells– Fuel cells- H₂–O₂ fuel cell, Batteries-Lead storage battery, Nickel–Cadmium and Lithium-Battery.

4. CORROSION AND PROTECTIVE COATING

(9)

Introduction—Causes of Corrosion—Consequences—Factors affecting corrosion. Theories of corrosion-Chemical corrosion and Electrochemical corrosion. Methods of corrosion control—corrosion inhibitors, Sacrificial anode and Impressed current cathodic protection.

Protective coatings- Metallic coatings- Chemical conversion coatings-paints-Constituents and functions.

5. POLYMERS AND COMPOSITES

(9)

Monomers – Functionality – Degree of polymerization-Tacticity.Polymers – Classification, Conducting Polymers,Biodegradable polymers- Properties and applications.Plastics – Thermoplastics and thermosetting plastics,Compounding of plastics – Compression moulding, injection moulding and extrusion processes.

Polymer composites-introduction-Types of composites-particle reinforced-fiber reinforced-structural composites-examples. Matrix materials, reinforcement materials-Kevlar, Polyamides, fibers, glass, carbon fibers, ceramics and metals.

Total number of periods: 45

Textbooks

- 1.S.Nanjundan & C.SreekuttanUnnithan, "Applied Chemistry", Sreelakshmi Publications, (2007)
- 2. Dr.R.Sivakumar and Dr.N.Sivakumar' Engineering Chemistry' Tata McGraw Hill Publishing Company Ltd, Reprint 2013.

References

- 1. P.C. Jain & Monika Jain, "Engineering Chemistry", Dhanpat Rai publishing Co., (Ltd.) (2013).
- 2. J. C. Kuriacose & J. Rajaram, "Chemistry in Engineering & Technology", Tata Mc Graw Hill (1996).
- 3. B.R.Puri, L.R.Sharma & M.S.Pathania, "Principles of Physical Chemistry", Vishal publishing co., (2013).

Department of Information Technology DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Subject C	ode:	Sub	ject Na	me:					С	L	T/S	Lr	P/R
BES1700	1					RICAL							
						IGINEE	RING	ŗ					
			equisit						3	2	0/		0/0
L: Lectur				-		_	Projec	et R:	Researc	ch C:	Credits	}	
T/L/ETL	: Theory	y / Lab	/ Embe	edded 7	Theory a	and Lab							
OBJECT													
			-			ients, cii				-		S.	
_		_				on conv				rodu	ction.		
						lectrical	-						4
						ind the					ctronic	gadge	ets.
						and asse	emble :	simp	ie devic	es.			
COURSE													
Students													
CO1			erstan	d Fun	dament	al laws	and th	eore	ms and	their	practi	cal	
G 0 4	applica												
CO2	Predic	t the bo	ehavio	r of di	fferent	electric	and m	agne	etic Circ	cuits.			
CO3	Identif	iy c	onvent	ional	and N	lon-con	ventio	nal	Electri	cal	power	Gen	eration
	Transı												
CO4				hemat	tic syml	ools and	under	rstan	d the w	orkii	ıg prin	ciples	of
	electro												
CO5	Analyz combii				electron	ics and s	solving	g pro	blems a	ınd d	esign		
Mapping	of Cour	se Outc	omes v	with Pi	ogram (Outcome	es (POs	s)					
COs/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	98 PC	9	PO1	PO1	PO12
Os											0	1	
CO1	Н	H	H	Н						+		M	L
CO2													L
	H	H	Н	M	M		M					M	
CO3	H	M	H	M	H		M		N.	[L
CO4	Н	\mathbf{M}		M			\mathbf{M}					\mathbf{M}	L
CO5	Н	M	Н	M	Н				N	[M	L
H/M/L in	dicates	strength	of cor	relatio	n H – H	ligh, M -	- Medi	ium, l	L – Lov	7			<u>I</u>
Categor	Basic	Engg		mani	Progr	Progra			Practio		ternshi	Soft	Skills
y	Scien	Scien			am	m	_	ectiv	al /	ps		501	. ~IIIII
,	ces	ces	Soc		core	Electiv			Projec	_	echnic		
				ence	-	es			.,,,,		Skills		
			s										
		V											
Approval		1	I	l		I							

BES17001 BASIC ELECTRICAL & ELECTRONICS ENGINEERING 3 2 0/1 0/0

1. ELECTRIC CIRCUITS

(9)

Electrical Quantities – Ohms Law – Kirchhoff's Law – Series and Parallel Connections – Current Division and Voltage Division Rule - Source Transformation – Wye (Y) – Delta (Δ) , Delta (Δ) – Wye (Y) Transformation – Rectangular to Polar and Polar to Rectangular.

2. MACHINES & MEASURING INSTRUMENTS

(9)

Construction & Principle of Operation of DC motor & DC Generator – EMF equation of Generator – Torque Equation of Motor – Construction & Principle of operation of a Transformer – PMMC – Moving Iron types of meter – Single Phase Induction Type Energy Meter.

3. BASICS OF POWER SYSTEM

(9)

Generation of Electric Power (Thermal, Hydro, Wind and Solar) – Transmission & Distribution of Electric Power – Types of Transmission & Distribution Schemes – Representation of Substation.

4. ELECTRON DEVICES

(9)

Passive Circuit Components-Classification of Semiconductor-PN Junction Diode-Zener diode-Construction and Working Principle –Applications--BJT-Types of configuration-JFET.

5. DIGITAL SYSTEM

(9)

Number System – Binary, Decimal, Octal, Hexadecimal – Binary Addition Subtraction, Multiplication & Division– Boolean Algebra – Reduction of Boolean Expressions – Logic Gates - De-Morgan's Theorem , Adder – Subractor.

Total no of Periods: 45

Text Books

- 1. D P Kothari, I J Nagrath, Basic Electrical Engineering, Second Edition, , Tata McGraw-Hill Publisher
- 2. A Course In Electrical And Electronic Measurements And Instrumentation, A.K. Sawhney, publisher DHANPAT RAI&CO
- 3. Text Book of Electrical Technology: Volume 3: Transmission, Distribution and Utilization, B.L. Theraja, A.K. Theraja, publisher S.CHAND
- 4. Morris Mano, M. (2002) Digital Logic and Computer Design. Prentice Hall of India
- 5. Millman and Halkias 1991, Electronic Devices and Circuits, Tata McGraw Hill,

References

1. R.Muthusubramanian, S.Salivahanan, K A Muraleedharan, Basic Electrical, Electronics And Computer Engineering, Second Edition, ,Tata McGraw-Hill publisher.

Department of Information Technology DEPARMENT OF MECHANICAL ENGINEERING

Subject Code : BES17002	Subject Name : BASIC MECHANICAL & CIVIL ENGINEERING	С	L	T/SLr	P/R
	Prerequisite : None	3	2	0/1	0/0

L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits

T/L/ETL: Theory / Lab / Embedded Theory and Lab

OBJECTIVES:

- 1. Learn Basics of Internal Combustion Engines, power plants and boilers
- 2. Demonstrate How metals are formed, joined, using machining operations Lathe, Milling and Drilling machines
- 3. To identify & solve problems in Engineering Mechanics
- 4. Learn basics of Building materials and construction
- 5. Know the basic process of concrete, types of masonry Construction of Roads , Railways, **Bridges and Dams**

COURSE OUTCOMES (Cos): (3 – 5)

Student	s comp	leting tl	ne c	ours	e were	able to									
CO1	Demo	nstrate	the	e wo	rking _l	princip	les of po	W	er pl	lants,	I	Engin	es and b	oilers.	
CO2		the co			f meta	ls form	ing, joii	nin	g pr	ocess	aı	nd appl	y in suit	able	
CO3	Identi	fy and	pro	vide	soluti	ons for	proble	ms	in e	ngin	eer	ing me	chanics		
CO4		e the co				ling ma	terials :	ano	d coi	nstru	cti	on able	to perf	orm co	ncrete
CO5	Demo	nstrate	ho	w R	oads, F	Railway	s, dams	, B	ridg	ges ha	ave	been c	onstruct	ted	
Mappin	g of Co	urse O	itco	mes	with P	rogram	Outcon	nes	(PO	s)					
COs/ POs	PO1	PO2	P	О3	PO4	PO5	PO6	P	O7	PO8	PO12				
CO1	Н						M			Н		H	Н		Н
CO2	Н					L	M			M		M	M		M
CO3	Н	Н				L	L			M		M	M		M
CO4	Н					L	L					M	M		M
CO5	Н					L	L			M		M	M		M
H/M/L	indicate	es stren	gth	of co	orrelatio	on H – l	High, M	_	Med	ium,	L-	- Low	<u>'</u>	l	-
Categ	Basic	Eng	g	Hu	mani	Progra	Progra	a	Op	en	P	ractic	Internsl	ni So	t Skills
ory	Science	c Scie	nc	ties	&	m	m		Ele	ctiv	a	l /	ps/		
	es	es		Soc	cial	core	Electi	V	es		P	roject	Technic	ca	
					ence		es						l Skills		
		1		S											
		V													

Approval

Department of Information Technology BASIC MECHANICAL & CIVIL ENGINEERING

3 2 0/1 0/0

UNIT-I: THERMAL ENGINEERING

BES17002

(9)

Classification of internal combustion engine – two stroke, four stroke petrol and diesel engines. Classification of Boilers – Cochran boiler – Locomotive boilers – Power plant classification – Working of Thermal and Nuclear power plant.

UNIT- II: MANUFACTURING PROCESS

(13)

Metal forming processes – Rolling, forging, drawing, extrusion and sheet metal operations-fundamentals only. Metal Joining processes – Welding - arc and gas welding, Soldering and Brazing. Casting process – Patterns -Moulding tools - Types of moulding - Preparation of green sand mould -Operation of Cupola furnace.

Basics of metal cutting operations – Working of lathe- parts-Operations performed. Drilling machine – Classification – Radial drilling machine - Twist drill nomenclature.

UNIT-III: MECHANICS

(9)

Stresses and Strains – Definition – Relationship – Elastic modulus – Centre of gravity – Moment of Inertia – Problems. (Simple Problems Only).

UNIT-IV: BUILDING MATERIALS AND CONSTRUCTION

(7)

<u>Materials:</u>Brick - Types of Bricks - Test on bricks - Cement - Types, Properties and uses of cement - Steel - Properties and its uses - Ply wood and Plastics.

<u>Construction:</u> Mortar – Ingredients – Uses – Plastering - Types of mortar - Preparation – Uses – Concrete – Types – Grades – Uses – Curing – Introduction to Building Components (foundation to roof) – Masonry – Types of masonry (Bricks & Stones)

UNIT- V: ROADS, RAILWAYS, BRIDGES & DAMS

(7)

Roads – Classification of roads – Components in roads – Railways -Components of permanent way and their function – Bridges – Components of bridges – Dams – Purpose of dams – Types of dams.

Total No. of Periods: 45

Text books

- 1. S. Bhaskar, S. Sellappan, H.N. Sreekanth, (2002), "Basic Engineering" –Hi-Tech Publications
- **2.** K. Venugopal, V. Prabhu Raja, (2013-14), "Basic Mechanical Engineering", Anuradha Publications.
- 3. K.V. Natarajan (2000), Basic Civil Engineering, Dhanalakshmi Publishers
- **4.** S.C. Sharma(2002), *Basic Civil Engineering*, Dhanpat Raj Publications

References

- 1. PR.SL. Somasundaram, (2002), "Basic Mechanical Engineering" –, Vikas Publications.
- 2. S.C. Rangawala(2002), Building Material and Construction, S. Chand Publisher

Department of Information Technology DEPARTMENT OF MECHANICAL ENGINEERING

Subject BES17I			ct Nam		EERIN	G GRA	PH	ICS	5	(C	L	T/SI	ır	P/R
		Prerec	quisite	: None							2	1	0/0	1	2/0
L : Lect T/L/ETI	ure T : T L : Theor			-		_		ojec	tR:	Re	search	C: Cı	redits		
OBJEC'	TIVES :														
	Learn to	know v	what k	ind of	pencils	to be u	sed	to s	ketc	h li	ines, n	ımbe	ers, Le	etters	and
	Dimensi	_		_											
	Draw Pr	•	_						_	•					
	Γο ident					nd deve	elop	me	nt of	su	rfaces,	isom	ietric j	proje	ction
	and Ort					an of he	.:14:								
	Know th				_			_							
		earn the basics of Drafting using AutoCAD Software COUTCOMES (Cos): (3 – 5)													
	s completing the course were able to														
CO1	Utilize the concept of Engineering Graphics Techniques to draft letters, Numbers,														
	Dimens		_	_	_	•			•						
CO2	Demon							n a	nd p	roj	ection	skill	s usefi	ul for	
CO3	Identify	_		_				rin	g equ	ıip	ments				
CO4	Demon	strate tl	ne proj	ection	s of Poi	nts, Lir	ies,	Pla	nes a	nd	Solids	S.			
CO5	Draw t					•							oftwa	re.	
Mappin															
COs/PO		PO2	PO3	PO4	PO5	PO6	PC		PO	3	PO9	PO	1 P	O1	PO12
S												0	1	0.1	
CO1	Н	Н	Н	M	M	M					Н	E	I		Н
CO2	Н	Н	Н	M	M	M					Н	F	I		Н
CO3	Н	Н	Н	L		M					M	N	1		M
CO4	Н	Н	M	M		Н			M		Н	I	I		Н
CO5	Н	Н	Н	M	Н	L			M		Н	I	I		Н
H/M/L i							– M	edi							
Categ	Basic	Engg		mani	Progr	Progra		Оре			ractic	Inte	rnshi	Soft	Skills
ory	Science			s &	am	m		_	ctiv		/	ps /			
	S	ces		cial	core	Electi		es			roject	-	hnica		
			Sci	ence		es						1 Sk	ills		
			S												
											$\sqrt{}$				

Approval

BES17ET1 BASIC ENGINEERING GRAPHICS 2 1 0/0 2/0

CONCEPTS AND CONVENTIONS (Not for examination)

(3)

Introduction to drawing, importance and areas of applications – BIS standards – IS: 10711 – 2001: Technical products Documentation – Size and layout of drawing sheets – IS 9606 – 2001: Technical products Documentation – Lettering – IS 10714 & SP 46 – 2003: Dimensioning of Technical Drawings – IS: 15021 – 2001: Technical drawings – Projections Methods – drawing Instruments, Lettering Practice – Line types and dimensioning – Border lines, lines title blocks Construction of polygons – conic sections – Ellipse, Parabola, Hyperbola and cyloids.

UNIT- I: PROJECTION OF POINTS, LINES AND PLANE SURFACES (6)

Projection of points and straight lines located in the first quadrant – Determination of true lengths and true inclinations – projection of polygonal surface and circular lamina in simple position only.

UNIT-II: PROJECTION OF SOLIDS

(6)

Projection of simple solids like prism, pyramid, cylinder and cone in simple position Sectioning of above solids in simple vertical position by cutting plane inclined to one reference plane and perpendicular to the other.

UNIT-III: DEVELOPMMENT OF SURFACES AND ISOMETRIC PROJECTION (6)

Development of lateral surfaces of simple and truncated solids – prisms, pyramids, cylinders, and cones.

Principles of isometric projection – isometric scale – isometric projections of simple solids, like prisms pyramids, cylinders and cones.

UNIT-IV: ORTHOGRAPHICS PROJECTIONS

(6)

Orthographic projection of simple machine parts – missing views

BUILDING DRAWING

Building components – front, Top and sectional view of a security shed.

UNIT- V: COMPUTER AIDED DRAFTING

(3)

Introduction to CAD – Advantages of CAD – Practice of basic commands – Creation of simple components drawing using CAD software.

Total No. of periods:30

Note: First angle projection to be followed.

Text Books

- 1. Bhatt, N.D. and Panchal, V.M. (2014) Engineering Drawing Charotar Publishing House
- 2. Gopalakrishnan, K.R. (2014) Engineering Drawing (Vol.I& II Combined) Subhas Stores, Bangalore.

References

- 1. Natarajan, K.V (2014) A Text Book of Engineering Graphics, DhanalakshmiPublisheres, Chennai
- 2. Venugopal, K and Prabhu Raja, V. (2010) Engineering Graphics, New Age International (P) Limited

Special Points applicable to University examinations on Engineering Graphics

1. There will be five questions, each of either or type covering all UNIT-s of the syllabus

- 2. All questions will carry equal marks of 20 each making a total of 100
- 3. The answer paper shall consists of drawing sheets of A2 size only. The students will be permitted to use appropriate scale to fit solution within A2 size.

Department of Information Technology DEPARTMENT OF PHYSICS

Subject BPH17			t Name		C PH	YSICS L	ΛR		С		L T/S	SLr		P/R
DI III / I	LUI				GIII	131031	AD		1		0 0	/ 0		2/0
I . I aat	ure T : Tu	Prerequent SI			d I oor	mina D . I	Droinat	₽ D •						2/0
	L: Theory						Project	ıĸ:	ĸe	search	C: Crec	IIIS		
OBJEC'	TIVES :													
	emonstra				e phys	ical mea	surem	ent	s &	under	rstand t	he li	mits	of
	recision i							a C	.1			1	o == 4	ical
	isplay the ystems.	е авшцу	to mea	isure j	propei	rues of va	ariety	01 6	eiec	ırıcaı,	mecnar	ucai	, opi	icai
	E OUTC	OMES (Cos) : (3 - 5										
	s completi				ole to									
CO1	Recogniz	ze the co	rrectn	ess an	d prec	eision in 1	the res	sults	s of	meası	ırement	S.		
CO2	Construction and option		_	the p	roper	ties of va	riety	of e	lect	rical,	mechan	ical,	elec	tronic
CO3	Practice			f Elec	trical,	Electron	ic, Op	otica	al &	Mecl	hanical	Equ	ipmo	ents
CO4	Identify	and con	ipare t	he the	oretic	al and pı	ractica	al us	sage	e of va	rious in	stru	men	ts
CO5														
Mappin	g of Cours	se Outco	mes wi	th Pro	gram (Outcomes	s (POs))						
COs/P	PO1	PO2	PO	PO	PO5	PO6	PO	PO		PO9	PO10	P	O1	PO12
Os			3	4			7	8	;				1	
CO1	H	H	M	H	M									
CO2	Н	M	M	Н							M			
CO3	Н	M	M	Н	M					M	M			M
CO4	Н	Н	M	M	H					M				${f L}$
H/M/L i	indicates s	trength (of corre	lation	H – H	igh, M –	Mediu	ım,	L –	Low		1		
Categ	Basic	Engg	Huma	ni P	rogr	Progra	Oper	1	Pr	actic	Interns	hi	Soft	Skills
ory	Scienc	Scien	ties &		m	m	Elect	tiv	al		ps/			
	es	ces	Social		ore	Electiv	es		Pr	oject	Techni	ca		
			Science	e		es					l Skills			
			S							V				
Approva	al		<u> </u>				<u> </u>	ļ						
11														

BPH17L01

Department of Information Technology ENGINEERING PHYSICS LAB

1 0 0/0 2/0

LIST OF EXPERIMENTS (Any Seven)

- 1. Torsional Pendulum Without Masses–Determination of Rigidity Modulus and Moment of Inertia
- Torsional Pendulum With Masses–Determination of Rigidity Modulus and Moment of Inertia
- 3. Non Uniform Bending Determination of Young's Modulus
- 4. Uniform Bending Determination of Young's Modulus
- 5. Poiseuille's Method Determination of Coefficient of Viscosity of a given liquid
- 6. Lee's Disc Determination of Thermal Conductivity of Bad Conductor
- 7. Spectrometer Determination of Refractive Index of a Prism
- 8. Laser Grating Determination of Wavelength of a given Source
- 9. Spectrometer –Determination of Wavelength of Mercury Spectrum using Grating
- 10. Transistor Characteristics.

Department of Information Technology DEPARTMENT OF CHEMISTRY

Subject C BCH17L			ct Nam GINE		G СНЕ	MISTR	RY LA	В	(C	L	T/S	Lr	P/R
		Prere	quisite	: None	;					1	0	0/0)	2/0
L : Lectur				-		_	Projec	et R:	Res	search	C: Cre	edits		
T/L/ETL		/ Lab /	Embe	dded T	heory a	ınd Lab								
OBJECTI						•					40 .			
1. 2.						e deter ictivity				_				
3.		eate av					anu E.	IVII' (19111	g eleci	ıı ıcaı e	equip	men	l•
4.						meters	of poly	mer	S					
COURSE														
Students of	completi	ing the	course	were a	ble to									
CO1	Awar	eness of	water	quali	ty para	meters	and its	s det	erm	inatio	n.			
CO2	Famil	iarizing	the co	onduct	ometri	c titrati	on me	thod	•					
CO3	Abilit	y to me	asure]	EMF a	nd per	form po	otentio	meti	ric t	itratio	ns.			
CO4	Measu	ıring th	e Mol	ecular	weight	of mac	romol	ecule	S					
CO5	Gaini	ng awa	reness	about	corrosi	ion.								
Mapping	of Cour	se Outc	omes v	vith Pro	ogram (Outcome	es (POs	s)						
COs/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	8	PO9	PO	1 I	PO1	PO12
S											0]	[
CO1	M	Н	Н	M	M									L
CO2	M	Н		L	M					L				
CO3	L	M		L						L				
CO4	M	M		L						L				
CO5	L	M	L	L										M
H/M/L inc	dicates s	strength	of cor	relation	1 H – H	igh, M	- Medi	um, l	L — :	Low		ı		l
Categor	Basic	Engg	Hu	mani	Progr	Progra	a Op	en	Pr	actic	Inter	nshi	Sof	t Skills
y	Scien	Scien			am	m	Ele	ectiv	al		ps			
	ces	ces	Soc		core	Electi	v es		Pr	oject	Tech			
				ence		es					al Sl	KIIIS		
			S							√				
Approval														

Department of Information Technology ENGINEERING CHEMISTRY LAB

1 0 0/0 2/0

LIST OF EXPERIMENTS (Any Seven)

BCH17L01

- (1) Estimation of temporary, permanent and total hardness of water.
- (2) Determination of type and extent of alkalinity in water.
- (3) Estimation of dissolved oxygen in a water sample.
- (4) Conductometric titration of strong acid vs. strong base
- (5) Conductometric precipitation titration using barium chloride and sodium sulphate.
- (6) Determination of Equivalent conductance of strong electrolyte at infinite dilution.
- (7) Determination of single electrode potential.
- (8) Estimation of Fe²⁺ion by potentiometry.
- (9) Determination of Molecular Weight and Degree of Polymerisation of Polymer by viscometry.
- (10) Determination of rate of corrosion by weight loss method.

DEPARTMENT OF ENGINEERING SCIENCES

Subject BES17]			t Name		EDING	S WOR	KCH	ſΩΡ	C	,	L T	/SLr	P/R
DESI	LUI		uisite:			WOK	12011		1		0	0.40	2.10
		1							1		0 0	0/0	2/0
L: Lect	ure T :	Tutorial	SLr : S	upervi	sed Lea	rning P	: Pro	ject R	Res	earch	C: Credi	ts	
T/L/ET	L : Theo	ory / Lab	/ Emb	edded '	Theory	and Lab)						
OBJEC	TIVEC												
			nlumł	ning to	als fitti	ings, cai	rnen	try too	ls e	te			
			-	0	,	0 /	-	•			ıantities		
	•				_	gic gates				_		•	
		simple							0.				
5.]	Execute	a proje	ect inde	epende	ntly an	d make	a w	orking	mod	lel			
COURS			` /	,	,								
Student	s compl	eting the	e course	e were	able to								
CO1			_	tools ar	nd carp	entry to	ools,	& Per	form	the \overline{p}	rocess o	f Filing	,
G0.		ing, Cut		0.0.3	• .•							. ~	
CO2					rication	of tray	, cor	nes and	fun	nels, 'l	Tee Halv	ing Cro	oss,
CO3	•	oint Ma			of wini	ngs and	oth	on oani	nmo	nta			
				• •									
CO4						using t			ic in	strum	ents		
Mappin	g of Co	urse Out	comes	with P	rogram	Outcom	es (F	POs)					
COs/PC	PO	PO2	PO3	PO4	PO5	PO6	PO	7 PO	8	PO9	PO10	PO11	PO12
S	1												
CO1	Н	Н	Н	M	M			L	,	M			L
CO2	H		Н	L	M			I		L			
CO3	H		M	L	111			I		L			
CO4	H	Н	M	L				I		L			M
CO5	111	11	IVI	L					4	L			171
	indicata	g etroped	h of oo	rrolotic	n U I	High, M	M	odium	T 1	Low			
	•										T . 1		. (1. 11
Categ	Basic Science	Engg	·	mani	Progr	Progra		Open Electiv		actic	Internsh	n Sor	t Skills
ory	es	Scien ces		cial	am core	m Electi		es	al /	oject	ps / Technic	29	
	CG			ence	2010	es		<i>,</i> ,,	110	Jeet	1 Skills		
			S										
										V			
Approv	al					l			I		<u> </u>		

BES17L01

Department of Information Technology BASIC ENGINEERING WORKSHOP

1 0 0/0 2/0.

MEP PRACTICE

1. FITTING:

Study of fitting tools and Equipments – Practicing, filing, chipping and cutting – making V-joints,

half round joint, square cutting and dovetail joints.

2. CARPENTRY:

Introduction – Types of wood – Tools – Carpentry processes – Joints – Planning practice – Tee Halving Joint – Cross Lap Joint – Maritse and Tenon Joint – Dovetail Joint

3. SHEET METAL:

Study of tools and equipments – Fabrication of tray, cones and funnels.

CIVIL ENGINEERING PRACTICE

- 1. Study of Surveying and its equipments
- 2. Preparation of plumbing line sketches for water supply and sewage lines
- 3. Basic pipe connection using valves, laps, couplings, unions, reduces and elbows in house hold fittings

ELECTRICAL ENGINEERING PRACTICE

- 1. Study of Electronic components and equipments Resistor, colour coding measurement of AC signal parameter (peak-peak, rms period, frequency) using CR
- 2. Soldering practice Components Devices and Circuits Using general purpose PCB
- 3. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
- 4. Fluorescent lamp wiring.
- 5. Stair case wiring

ELECTRONIC ENGINEERING PRACTICE

- 1. Measurement of electrical quantities voltage, current, power & power factor in RLC circuit.
- 2. Measurement of energy using single phase energy meter.
- 3. Measurement of resistance to earth of an electrical equipment.

Department of Information Technology DEPARTMENT OF COMPUTER SCIENCE

Subject BES17F		3	ct Nam C PRO		MMING	AND 1	LA	В		(C	L	T/SL	r	P/R
		Prerec	quisite :	None						2	2	1	0/0		2/0
L : Lectu T/L/ETI				-		_		roje	ct R	: Re	search	C: Cred	lits	•	
> App	ine the ly fund	basics amenta	als in C	progr	ge. ammin associat		th	e co	urse.						
COURS Students	E OUT	COME	S (Cos)	: (3 –	5)										
CO1	Acquir	e knov	vledge	how to	write a	nd exe	cut	e c p	rogr	am	S				
CO2	Unders	stand t	he fund	damen	tal expr	ession a	and	sta	teme	ents	of C I	Languaş	ge.		
CO3	Work	with ar	rays, f	unctio	ns, poin	ters, st	ruc	ture	es, St	rin	gs and	Files in	C.		
CO4	Identif	y and p	provide	e soluti	ons for	engine	erii	ng p	roble	ems	in C _l	progran	ımi	ng	
Mapping	g of Cou	ırse Ou	tcomes	with F	rogram	Outcon	nes	(PO	s)						
COs/PO	PO 1	PO2	PO3	PO4	PO5	PO6	P	Э7	PO	8	PO9	PO10	P	O11	PO12
CO1	Н	Н			M	M			Н	[M				Н
CO2	Н	M			Н	M			M	[Н				M
CO3	Н			Н		M			M	[Н				M
CO4	Н			M		M			Н	[M				M
H/M/L i	ndicates	streng	th of co	orrelati	on H – I	ligh, M	[–]	Med	ium,	L-	Low	•			
Categ ory	Basic Scienc es	Engg Scientes	ties Soc		Progra m core	Program Electi es			pen Flectiv a		ractic / roject	Interns ps / Technol 1 Skills	ica	Soft	Skills
											V				
Approva	ıl		I	<u> </u>			[1		ı			

Department of Information Technology C PROGRAMMING AND LAB

2 1 0/0 2/0

BES17ET2

1. INTRODUCTION (6)

Fundamentals, C Character set, Identifiers and Keywords, Data Types, Variables and Constants, Structure of a C Program, Executing a C Program.

2.EXPRESSION AND STATEMENT

(6)

Operators, Types-Complex and Imaginary, Looping Statement-For, While, Do, Break, continue, Decision Statement-If, If else, Nested if, Switching Statement, Conditional Operator.

3.ARRAYS AND FUNCTIONS

(6)

Defining an Array, Using Array elements as counters, Generate Fibonacci number, Generate Prime Numbers, Initializing Arrays, Multidimensional Arrays, Defining a Function, Function call -types of Function calls -Function pass by value -Function pass by reference, Write a Program in Recursive Function.

4. STRUCTURES AND POINTERS

(6)

Working with Structures -Introduction -Syntax of structures -Declaration and initialization - Declaration of structure variable -Accessing structure variables, Understanding Pointers - Introduction -Syntax of Pointer.

5. STRINGS AND FILE HANDLING

(6

Strings -Syntax for declaring a string -Syntax for initializing a string -To read a string from keyboard,

Files in C -File handling functions -Opening a File closing a file --example: fopen, fclose -Reading data from a File- Problem solving in C

Total No of Periods: 30

- 1. www.spoken-tutorials.org
- 2. http://www.learn-c.org/

Reference:

- 1. Stephen G. Kochen" Programming in C- A complete introduction to the C Programming Language. Third Edition, Sams Publishing -2004
- 2. Ajay Mital, "Programming in C: A Practical Approach", Pearson Publication-2010

List of Programs

- 1. Write a program to check 'a' is greater than 'b' or less than 'b' Hint: use if statement.
- 2. Write another program to check which value is greater 'a', 'b' or 'c'. Hint: use else-if statement. (Take values of a, b, c as user inputs)
- 3. Write a Program to find the sum of the series : $x + X^3/3! + X^5/5! + \dots X^n/n!$
- 4. Write a C Program to solve a Quadratic Equation by taking input from Keyboard
- 5. Write a C Program to arrange 20 numbers in ascending and descending Order. Input the Numbers from Keyboard
- 6. Write a C Program to Multiply a 3 x 3 Matrix with input of members from Keyboard
- 7. Write a program that takes marks of three students as input. Compare the marks to see which student has scored the highest. Check also if two or more students have scored equal marks.
- 8. Write a program to display records of an employee. Like name, address, designation, salary.
- 9. Write a C program, declare a variable and a pointer. Store the address of the variable in the pointer. Print the value of the pointer.
- 10. Write a C program to concatenate String 'best' and String 'bus'. Hint: strcat(char str1, char str2);
- 11. Explore the other functions in string library.
- 12. Write a program to create a file TEST. Write your name and address in the file TEST. Then display it on the console using C program.

DEPARTMENT OF ENGINEERING SCIENCES

Subject C		Subjec	t Name	e :					С		L	T/S	SLr	P/R		
BES17ET	73				NEURI											
					% PR(DJECT	LAB									
		Prereq	uisite :	None					1		0	0.	/0	2/0		
L : Lectur	e T : Tu	itorial S	Lr : Su	pervis	ed Lear	ning P:	Projec	tR:	Rese	arch	C: Cr	edits	<u>L</u>			
T/L/ETL:	Theory	/ Lab /	Embe	dded T	Theory a	nd Lab										
OBJECTI	VES :															
1. Under		now ent	reprer	neursh	ip Edu	cation t	ransfo	rms	indiv	idual	ls inte	o suc	cessfu	ıl		
leader						_										
					hape car											
					deas &											
					Entrep		ai CV.									
					tion pla generat											
						ic iucas	•									
COURSE Students of					*											
CO1			p a Business plan & improve ability to recognize business opportunity													
CO2	Doas	relf analysis to build a entrepreneurial career.														
		o a self analysis to build a entrepreneurial career. rticulate an effective elevator pitch.														
CO3	Artici	ılate an	effect	ive ele	evator p	itch.										
CO4	•	ze the l tive ma		arket	enviror	nment &	k dem	onstr	ate t	he ab	oility	to fi	nd an			
C05	Apply situat		ical un	dersta	anding o	& persp	ective	to cl	nange	e opp	ortu	nitie	s to bu	ısiness		
Mapping of	of Cour	se Outco	omes w	vith Pr	ogram C	Outcome	s (POs	s)								
COs/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	8 I	209	PO	1	PO1	PO12		
S											0		1			
CO1		M	M	H	M	M	M			M	N	1	M	L		
CO2	H	M		H	M	H	M	H	[H	I	-	M	M		
CO3		M	M	M		H		H		H	I.					
CO4		Н	M	M	M	M		H		M	N		H			
CO5		M	M	H	M	M	H	H		M	N	1	H	L		
H/M/L ind																
Categor	Basic	Engg		mani	Progr	Progra	_		Pra	ctic		rnshi	Sof	t Skills		
У	Scien	Scien			am	m		ectiv	al /		ps/					
	ces	ces	Soc		core	Electi	v es		Pro	ject	Tecl					
				ence		es					al Sl	kills				
			S							.1						
										V						
Approval																

Department of Information Technology BES17ET3 ENTREPRENEURIAL SKILL DEVELOPMENT & PROJECT LAB

1 0 0/0 2/0

1. CHARACTERISTICS OF A SUCCESSFUL ENTREPRENEUR

Introduction to entrepreneurship education – Myths about entrepreneurship – How has entrepreneurship changed the country – Dream it. Do it - Idea planes - Some success stories – Global Legends – Identify your own heroes – entrepreneurial styles – Introduction, concept & Different types - Barrier to Communication – Body language speaks louder than words

2. DESIGN THINKING & RISK MANAGEMENT

Introduction to Design thinking – Myth busters – Design thinking Process - Customer profiling – Wowing your customer – Personal selling – concept & process – show & tell concept – Introduction to the concept of Elevator Pitch - Introduction to risk taking & Resilience – Managing risks (Learning from failures, Myth Buster) – Understanding risks through risk takers – Why do I do? – what do I do?

3. IDEA GENERATION & EVALUATION

Introduction – Finding your flow – Entrepreneurial CV – your draft action plan - D.I.S.R.U.P.T - A model for ideation – Let's ID8 – Mind mapping for ideas – build your own idea bank – Concept of Decision matrix & paired comparison analysis – 5Q framework.

4. ENTREPRENEURIAL OUTLOOK & CUSTOMER DISCOVERY

Effectuation – Start with your means – Segmentation & targeting – Niche marketing – Find your Niche – Drawing & mapping the consumption chain - outcome driven innovation – This is my customer

5. VALUE PROPOSITION& CAP STONE PROJECT PRESENTATION

Introduction – Value proposition design – customer segment – validation exercise – value propositions & assessing fit – Refine your value proposition – Blue ocean strategy - What is prototyping – Design your experiment – Design your MVP – Learning cards & Capstone Presentation.

Department of Information Technology II SEMESTER

			DI	EPAI	RTMEN	NT OF	EN	GL	ISH					
Subject		Subject	t Name :	TEC	CHNICA	AL EN	GLI	SH	- II	С	L	T/S	Lr	P/R
BEN170	002	Prerequ	uisite : N	lone						2	1	0/0		2/0
	ure T : Tu					_	Proj	ect :	R : Re	searc	ch C	: Credi	ts	
	د: Theory	/ Lab / E	lmbedde	d Th	eory and	d Lab								
OBJEC 1				• .										
	engthen t engthen t											onart s	vritina	
	rn to keep									ng an	IU I	eport v	viiung	
	to know					•		•		and	do	presen	tation	
_	prove the								Ü			•		
COURS	E OUTC	OMES (C	los) : (3	- 5)										
	completi				le to									
CO1	etronath	en their	antiva v	oosh	ulory o	nd on	aror	rio	to lone	11100	0 110	ogo th	ough ro	adina
COI	_	stories, te			•		_		•	_		_	ough re	aumg
CO2	use appi	ropriate 1	technica	al voc	cabular	y in in	terp	reti	ing da	ta				
CO3	engage e	effectively	y in role	e-play	y, dialog	gue, co	nve	rsa	tion a	nd in	ter	views		
CO4		em for e	ffective	inter	action v	with p	eopl	le in	all si	tuati	ons	both a	cademic	and
G0.5	professi				1.6 1.11				•	_			•	
CO5		ıglish lan							e for p	lace	men	it inter	views	
Mapping	g of Cours	se Outcon	nes with	Prog	gram Ou	itcome	s (Po	Os)						
COs/PO	PO1	PO2	PO3	РО	PO	PO	PC)7	PO8	PO)	PO10	PO1	PO1
S				4	5	6				9			1	2
CO1				Н								H		H
CO2				H								H		H
CO3				Н		M				F	I	H		H
CO4				H						I	I	H		Н
CO5				Н						I	I	Н		Н
H/M/L i	ndicates s	trength o	f correla	tion	H – Hig	h, M -	Me	diuı	m, L –	Low	7			
Catego	Basic	Engg	Humar	nit []	Progra	Progr	ra	Or	en	Pra	ctic	a Inte	rnships	Soft
ry	Scienc	Scienc	ies &	1	m core	m			ectiv	1/			chnical	Skill
	es	es	Social			Elect	iv	es		Pro	ject	Skil	ls	S
			Scienc	es		es								

Approval

Department of Information Technology TECHNICAL ENGLISH II

2 1 0/0 2/0

BEN17002

Unit I Vocabulary, Grammar and Usage – I

(6)

Verbal analogy – picking out the odd one from a series –finding one word substitute – paragraph writing: using discourse markers, defining / describing an object / device / instrument / machine using topic sentence and its role, unity, coherence and use of cohesive expressionsEssay writing with due emphasis on features such as topical sentence, unity, coherence and cohesive devices

UnitII Vocabulary, Grammar and Usage – II

(6)

Cloze – completion of sentences suitably, phrases and idioms, homophones – collocation - Techniques of formatting and drafting reports: writing newspaper reports on accidents, thefts and festivals

Unit III Reading (6)

Correcting errors in sentencesEditing a passage (correcting the mistakes in grammar, spelling and punctuation) -interpreting pie and bar charts

Unit IV Writing (6)

Register: formal and informal – using ellipses in dialogues- framing dialogues-Email: Job Application, Resume

Unit V Functional English and Practical Components

(6)

Listening: Media Advertisement

Speaking: oral practice- activities related to professional skills (e.g. Marketing, advertising etc.), role play activities using different speech functions (persuasion, negotiation, giving directions and guidance), conversational etiquette (politeness, strategies, turn-taking, body language).

Reading: reading newspaper/ magazine articles for gathering information

Writing: Note-making from newspaper and magazine articles- follow BEC method

Writing and speaking dialogue writing followed by role play in different situations such as asking permission, requesting and instructing, introducing oneself – activities based on BEC

Total No of Periods :30

Text Book

1. Pushkala. R, PadmasaniKannan.S ,Anuradha. V,ChandrasenaRajeswaran.M Quest : A Textbook of ommunication Skills, Vijay Nicole,

References

- 1. Pushkala R, P.A.Sarada, El Dorado: A Textbook of Communication Skills, Orient Blackswan, 2014
- 2. PadmasaniKannan.S., Pushkala.R.: Functional English
- 3. Hancock, Mark, English Pronunciation in Use; Cambridge Univ. Press, 2013
- 4. McCarthy, Michael et.al,, English Vocabulary in Use, Advanced, Cambridge Univ. Press, 2011
- 5. Wren and Martin: Grammar and Composition, Chand & Co, 2006

Web Sources

- 1. https://learnenglish.britishcouncil.org
- 2. www.englishpage.com
- 3. www.writingcentre.uottawa.ca/hypergrammar/preposit.html
- 4. www.better-english.com/grammar/preposition.html
- 5. http://www.e-grammar.org/infinitive-gerund/

Department of Information Technology 6. <u>www.idiomsite.com/</u>

DEPARTMENT OF MATHEMATICS

Subject C		Subject	Name:			00 H				C L	, '	T/SI	Lr	P/R
BMA170	003	D			EMATIO	<u> </u>				4 2		1 /0		0.0
			isite : N							4 3		1/0		0/0
	re T: Tut		-			-	roje	ect K	R : Rese	earch C	: Cre	dits		
	: Theory	/ Lab / E	mbedde	u The	ory and	Lab								
OBJECT		ъ.												
	rstand th		_		_									
	ify the Ba he Basic o						~~~	4i an						
	the Basic						qua	uon	IS					
	ze the Ba	_		•										
	E OUTCO													
	completing				e to									
CO1	Integrate					thods (of in	teg	ration	and to	find	the	9re9 11	nder
	curve an	_		•	_			_	lauon	and to	IIII	tiit	arca u	nuci
CO2	Evaluate	the mul	tiple int	egral	s / area	/volur	ne a	and	to cha	nge the	ord	er o	f	
	integrati	on.	-	Ü						C				
CO3	Solve the	e ordinar	y differ	entia	l equati	ion and	l to	solv	ve Eule	ers diff	erent	tial e	equatio	n.
CO4	Find the between	-	-	ies, li	nes and	l spher	e ar	nd t	o find	the sho	rtest	dis	tance	
CO5	Find the			aum /	directio	nol do	rivo	tixe	and v	vork de	no h	W 0 1	force o	nd to
003	verify G	_	*						anu v	VOIR UC	nic b	yaı	iorce a	iiu to
Mapping	of Course	e Outcon	nes with	Progr	ram Out	comes	(PC	Os)						
COs/POs	PO1	PO2	PO3	PO	PO	PO6	PC)7	PO8	PO9	PO	1	PO1	PO1
				4	5						0		1	2
CO1	H	H			M	M				M	M	I		H
CO2	H	H			M	H				H	H	[M
CO3	H	H			M	H				H	H			M
CO4	H	H			L	M				M	H			M
CO5	H	H			M	M				M	H			M
H/M/L ir	ndicates st					n, M – 1	Med	lium	1, L-I					
Catego	Basic	Engg	Humar		Progra	Progr	a		pen	Practi			rnship	Soft
ry	Scienc	Scienc	ies &	1	n core	m			ective	1/		s /		Skill
	es	es	Social			Electi	ive	S		Projec			nnical	S
	-1		Scienc	es		S						Skill	IS	
A	√ 1													
Approva	l													

Department of Information Technology MATHEMATICS – II

4 3 1/0 0/0

1. INTEGRATION

BMA17003

(12)

Basic concepts of Integration – Methods of Integration – Integration by substitution – Integration by parts – Definite integrals – Properties of definite integrals – Problems on finding Area and Volume using single integrals (simple problems).

2. MULTIPLE INTEGRALS

(12)

Double integral in Cartesian and Polar Co-ordinates – Change of order of integration – Triple integral in Cartesian Co-ordinates – Spherical Polar Co-ordinates – Change of variables (simple problems).

3.ORDINARY DIFFERENTIAL EQUATIONS

(12)

First order differential equations – Second and higher order linear differential equations with constant coefficients and with RHS of the form: e^{ax} , x^n , Sin ax, Cos ax, $e^{ax}f(x)$, x f(x) where f(x) is Sin bx or Cos bx – Differential equations with variable coefficients (Euler's form) (simple problems).

4.THREE DIMENSIONAL ANALYTICAL GEOMETRY

(12)

Direction Cosines and Ratios – Equation of a straight line – Angle between two lines – Equation of a plane – Co-planar lines – Shortest distance between skew lines – Sphere – Tangent plane.

5. VECTOR CALCULUS

(12)

Scalar and Vector functions – Differentiation – Gradient, Divergence and Curl – Directional derivatives – Irrotational and Solenoidal fields– Line, Surface and Volume integrals – Green's, Stoke's and Gauss divergence theorems (statement only) – Verification.

Total no. of periods: 60

Textbooks

- 1. Kreyszig E., Advanced Engineering Mathematics (10th ed.), John Wiley & Sons, (2011).
- 2. Veerarajan T., *Engineering Mathematics (for first year)*, Tata McGraw Hill Publishing Co., (2008).

References

- 1. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).
- 2. John Bird, Basic Engineering Mathematics (5th ed.), Elsevier Ltd, (2010).
- 3. P.Kandasamy, K.Thilagavathy and K. Gunavathy, *Engineering Mathematics Vol. I* (4th *Revised ed.*), S.Chand& Co., Publishers, New Delhi (2000).
- 4. John Bird, Higher Engineering Mathematics (5th ed.), Elsevier Ltd, (2006).

Department of Information Technology DEPARTMENT OF MATHEMATICS

Subject (Subject	t Name		STATIS	TICS				CL	, [T/SLr	P/R
DNIAI	0 04	Preregi	uisite : N		IAIIS	1105				4 3	-	1/0	0/0
	re T : Tut	orial SLr	: Super	vised			roje	ect R					070
OBJECT	TVES:												
	rstand the	Basic c	oncepts	in St	tatistics								
	ne Basic c		_										
	rstand the		_			•	•						
	the Basic												
	ze the Ba				n of Ex	perime	nts						
	E OUTCO		, ,										
	completin												
CO1	Find the	measure	es of cer	ıtral	tendeno	y and	to fi	ind t	the me	asures	of di	spersion.	
CO2	Evaluate correlati				res of s	kewnes	s ar	nd k	urtors	ls and	to ev	aluate	
CO3	Apply kr use addit									of a ra	ndor	n variable	and
CO4	Have abi	lity to te	st and t	o giv	e concl	ısion iı	1 tes	sting	g of hy	pothes	is.		
CO5	Analyze	and inte	rpret re	esults	throug	h one v	vay	and	l two v	vay AN	OVA	1	
Mapping	of Course	e Outcon	nes with	Prog	ram Ou	tcomes	(PC	Os)					
COs/POs	s PO1	PO2	PO3	PO	PO	PO6	PC)7	PO8	PO9	PO	1 PO1	PO1
				4	5						0	1	2
CO1	H	H				H				M		M	M
CO2	H	H				H				L			H
CO3	Н	Н	L		L	M				L		L	H
CO4	Н	Н	L		L	M				M			H
CO5	Н	Н	Н	M						M			Н
H/M/L i	ndicates st	rength of	correla	tion l	H – Higl	n, M – I	Med	lium	, L – L	Low	•		
Catego	Basic	Engg	Humai	nit	Progra	Progr	a	Op	en	Practi	ca I	Internship	Soft
ry	Scienc	Scienc	ies &		m core	m		_	ective	1/		s /	Skill
	es	es	Social Science			Electi	ive	S		Projec		Technical Skills	S
	$\sqrt{}$												
Approva	1										•		

Department of Information Technology BIO STATISTICS

4 3 1/0 0/0

1. BASICS OF STATISTICS

BMA17004

(12)

Variables – Uni-variate Data – Frequency Distribution – Measures of Central Tendency – Mean – Median – Mode – Quartiles – Measures of Dispersion – The Range – Quartile Deviation – Standard Deviation.

2. CORRELATION (12)

Measures of Skewness& Kurtosis – Bi-variate data – Correlation & Regression.

3. PROBABILITY AND RANDOM VARIABLE

(12)

Definition of Random Experiment - Sample Space – Events: Mutually exclusive events - Exhaustive events - Dependent events and Independent events - Mathematical and Statistical definition of probability - Theorems of addition and multiplication laws of Probability (Without proof) - Conditional probability (Simple problems).

4. SAMPLING (12)

Tests of Significance – Large Sample Tests – Mean – Proportions – Small Sample Tests – t, F & Chi-square Tests – Independence of Attributes – Goodness of Fit.

5. DESIGN OF EXPERIMENTS

(12)

Analysis of Variance: One Way & Two-Way Classification – Design of Experiments – Randomized Block Design – Completely Randomized Block Design – Latin Square Design.

Total no. of Periods: 60

Text books

- 1. Gupta S.C, Kapoor V.K, *Fundamentals of Mathematical Statistics*, S.Chand& Co, New Delhi (2003).
- 2. Veerarajan T., *Probability, Statistics and, Random Processes*, Tata McGraw Hill Publishing Co., (2008).

References

- 1. Gupta S.P, Statistical Methods, S.Chand& Co., New Delhi (2003).
- 2. Singaravelu, *Probability and Random Processes*, Meenakshi Agency, (2017).
- 3. Richard Johnson A., *Miller & Freund's Probability and statistics for Engineers* (9thed), Prentice Hall of India, (2016).

Department of Information Technology DEPARTMENT OF PHYSICS

Subject BPH170		Subject	Name :		AL SC	CIENC	E			С	L	r	Γ/SLr	P/R
		Prerequ	iisite : N	Vone						3	2		0/1	0/0
L : Lecti	ıre T : Tut	orial SLr	: Super	vised	Learnir	ng P : P	roje	ct R	: Rese	earch	C: (Credits	S	
T/L/ETI	L: Theory	/ Lab / E	mbedde	d The	ory and	Lab								
OBJECT														
	Design, co		_		•				0					
	Develop a Understan						10 S	cale	of ma	terial	S			
	Inderstan		-			•	. & '	Tecl	hnolog	W				
	E OUTCO				, Lingii	10011112	, α		illolog)				
	completing	•	, ,		to									
CO1	Demonst					ducting	e res	sear	ch rela	ated 1	0 C	ontent	knowl	edge
	and labo						9							
CO2	Apply ki	nowledge	and co	ncept	s in ad	vanced	ma	ıteri	als an	d dev	ices	S.		
~~~														
CO3	Acquire	d Analyti	ical, Ma	them	atical s	kills fo	r so	olvin	ig engi	neeri	ng	proble	ems.	
CO4	Ability to	o design	and cor	nduct	experiı	nents a	as w	ell a	as func	tion	n a	multi	discipl	inary
	teams.													
CO5	Generate context	e analyti	cal thou	ight to	interp	oret res	sults	<b>s &amp;</b> ]	place t	hem	wit	hin a l	broader	•
Mapping	g of Cours	e Outcon	nes with	Progr	am Out	tcomes	(PC	Os)						
COs/PO	s PO1	PO2	PO3	PO	PO	PO6	PC	)7	PO8	PO	9	PO1	PO1	PO1
				4	5							0	1	2
CO1	H	H	M	M	M	L						M		L
CO2	H	H		M	M									L
CO3	Н	Н	Н	Н	M							M		
CO4	Н	Н	Н	Н	M					Н		M		L
CO5	Н	M	M	M	M	L				M		M		L
H/M/L i	ndicates st	rength of	correla	tion H	– High	n, M – 1	Med	lium	, L – I	LOW	l			
Catego	Basic	Engg	Humai		rogra	Progr		Op		Prac	tica	Inte	ernship	Soft
ry	Scienc	Scienc	ies &		n core	m		_	ective	1/	•	$\frac{1}{s}$	Р	Skill
,	es	es	Social			Electi	ive	s		Proj	ect		hnical	S
	,		Scienc	es		S						Ski	lls	
	$\sqrt{}$													
Approva	ıl			•										

# Department of Information Technology MATERIAL SCIENCE

3 2 0/1 0/0

## 1. CRYSTAL PHYSICS

**BPH17002** 

(9)

Space Lattice – Unit cell – Bravais lattice – Lattice planes – Miller indices – Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for SC, BCC, FCC and HCP structures – Ceramic Materials & Graphite Structures – Crystal GrowthTechniques (Slow Evaporation Method & Melt Growth)

## 2. CONDUCTING & SUPERCONDUCTING MATERIALS

(9)

Introduction - Classical Free electron theory of Metals – Derivation of Electrical conductivity – Thermal Conductivity – Deduction of Wiedemann Franz law – Fermi Energy & Fermi Function – Density of Energy States – Qualitative Analysis of Conductors, Semiconductors and Insulators – Some Examples of Important Electrical Materials

Superconducting Materials:Transition temperature – BCS Theory – Properties of Superconductors – Type I &Type II Superconductors – Superconducting materials - Low & High Temperatures Superconductors – AC& DC Josephson Effects – Applications of Superconductors – Basic Concepts of SQUID, Magnetic Levitation.

## 3. SEMICONDUCTING MATERIALS

(9)

Bonds in Semiconductors – Types – Importance of Germanium & Silicon – Other Commonly Used Semiconducting materials - Carrier concentration in Intrinsic Semiconductors (Electron and Hole Density) – Band Gap Determination – Carrier Transport in Semiconductors – Drift, Mobility and Diffusion – Hall effect – Determination of Hall Coefficient and its Applications – Dilute Magnetic Semiconductors (DMS) & their Applications – Schottky diodes.

## 4.MAGNETIC& DIELECTRIC MATERIALS

(9)

Magnetic Materials: Types – Comparison of Dia, Para and Ferro Magnetism – Heisenberg's interpretation –Domain theory – Hysteresis – Soft and Hard Magnetic Materials – Application of Magnetic Resonance Imaging – Important Magnetic, Insulating & Ferro electric materials. Dielectric Materials: Electrical Susceptibility – Dielectric Constant – Concept of Polarization – Frequency and Temperature Dependence of Polarization – Dielectric loss – Dielectric breakdown – Commomly used Dielectric materials and their practical applications.

## 5.OPTICAL, OPTOELECTRONIC AND NEW MATERIALS

(9)

Properties & Classification of Optical Materials – Absorption in Metals, Insulators & Semiconductors – Composite Materials – Nano Materials – Bio Materials – MEMS – NEMS – LED's – Organic LED's – LCD's – Laser diodes – Photodetectors – Tunneling – Resonant Tunneling Diodes (RTD's) – Carbon Nanotubes – Various Ttypes of Optical Materials with Properties.

**Total No. of Periods: 45** 

## **Text Books**

- 1. V. Rajendran&Mariakani "Materials Science", Tata McGraw Hill (2004).
- 2. P.K.Palanisamy," Materials science", Scitech Publication(2002).

## **Reference Books**

- 1. Dr. SenthilKumar, "Engineering Physics II" VRB Publishers (2016).
- 2. V. Arumugam, Materials Science", Anuradha Agencies, (2003 Edition).
- 3. Pillai S.O., "Solid State Physics", New Age International, (2005).

## Department of Information Technology DEPARTMENT OF CHEMISTRY

			DEP	ART	MENT	OF C	HEN	ΛIS	TRY	<i>O</i> •			
Subject BCH17			t Name : E <b>NGINI</b>		NG CH	EMIS	TRY	Y —	II	С	L	T/SLr	P/R
		Prerequ	iisite : N	lone						3	2	0/1	0/0
	ure T : Tur L : Theory						roje	ct F	R : Rese	earch C:	Cred	lits	
OBJECT	ΓIVES :												
1.	Imparting	g the bas	ic conce	pts of	f phase	rule a	nd a	ppl	ly the s	ame to	one a	and two	
	compone	•											
	Introduci	_	•		_	_			such a	s cemei	ıt, lu	bricants,	
	abrasives	•		•						•		1.66	
	To impar			_	on the p	orincip	ies c	of C	nemist	ry invo	lving	different	
	applicatio Introduci		_		fuols or	nd oom	huc	tion	•				
	To give a	_											
	E OUTCO				<u> </u>	icui to		qu					
	completi	`	, \	,	e to								
CO1		Jnderstar				SO 0011	ilihr	rio i	and an	nly the	nhoc	o milo to	
COI		ifferent s			or pira	ise equ	ши	ı ıa	anu ap	pry tne	рпаз	se ruie to	
CO2		Sain an o Lubricant			_	_							
		abi icaii	, 11014	51 ( 65,	Terruc	torres,		Оуб	unu 11	unomu	ici iui		
CO3		_								_		such as S	_
				lso ga	aining t	he bas	ic kı	iow	vledge :	about <b>E</b>	Explo	sives and	
CO4		ropellan Discover t		Chen	nistry a	nd Co	mbu	stic	on proc	cess.			
CO5	5. In	nferring	few imp	ortai	nt Analy	ytical [	Гесh	nic	ıues an	d their	appl	ications.	
Mappins	g of Cours	e Outcom	nes with	Progr	ram Out	comes	(PO	s)					
COs/PO		PO2	PO3	PO	РО	PO6	PO		PO8	PO9	PO	l PO1	PO1
				4	5						0	1	2
CO1	L												L
CO2	M		L			L	N	1					L
CO3	M					L							L
CO4	M	M	L	L			N	1					M
CO5	M				M								Н
H/M/L i	ndicates s	trength of	correla	tion I	I – High	n, M –	Med	iun	n, L – I	ow	•	•	•
Catego	Basic	Engg	Humai	nit I	Progra	Progr	a	Op	en	Practio	cal /	Interns	Soft
ry	Scienc	Scienc	ies &	1	m core	m		El	ective	Projec	t	hips /	Skill
	es	es	Social			Elect	ive	S				Techni	S
			Science	es		S						cal	
												Skills	

Approval

## **Department of Information Technology** ENGINEERING CHEMISTRY – II

BCH17002 ENGINEERING CHEMISTRY – II 1. PHASE EQUILIBRIA **3 2 0/1 0/0** (8)

Introduction – Definition of terms involved in phase rule. Derivation of Gibbs phase rule – Applications to one component system – water system. Binary system – Eutectic system – Pb – Ag system, Bi – Cd system .Thermal analysis – Cooling curves.

## 2. MATERIAL CHEMISTRY

(10)

Cement – Manufacture, Chemistry of setting and hardening .Lubricants – Requirements of good lubricants, Mechanism, Properties of lubricants, Classification – Examples. Abrasives–Classification –Moh's scale-Hard and soft abrasives, Preparation of artificial abrasives (silicon carbide, boron carbide), Applications of abrasives. Refractories – Classification, Properties-Refractoriness, RUL, Porosity, Thermal spalling Alloys Classification of alloys – Purpose of making alloys – Ferrous and non-Ferrous alloys – Heat treatment Nano materials – properties, carbon nano tubes – properties, fabrication – carbon arc method, laser vapourization method.

## 3. APPLIED CHEMISTRY

(9)

Soaps and detergents: Soaps – Saponification of oils and fats, manufacture of soaps, classification of soap – soft soap, medicated soap, herbal soap, shaving soap and creams.

Detergents – Anionic detergents – manufacture and applications, Comparison of soaps and detergents.

Rocket propellants and explosives: Rocket propellants – characteristics, solid and liquid propellants – examples. Explosives- Introduction, characteristics, classification, Oxygen balance, preparation, properties and uses of detonators, low explosives and high explosives, Dynamites, Gun cotton, Cordite.

Food adulterants- Common adulterants in different foods – milk and milk products, vegetable oils, and fats, spices and condiments, cereals, pulses, sweetening agents and beverages, Contamination with toxic chemicals – pesticides and insecticides.

## 4. FUELS & COMBUSTION

(9

Introduction to Fuels – classification – Calorific value – GCV, LCV. Solid Fuels–Coal-Proximate Analysis, Metallurgical Coke–Manufacture of Metallurgical Coke – Liquid Fuel–Refining of Petrol, Synthetic Petrol–Manufacturing Process–Hydrogenation of Coal, Polymerization, Cracking–Knocking–Octane Number–Leaded Petrol (or) Anti–knocking – Cetane Number–Ignition Lag–Gaseous fuels–CNG–LPG–Water Gas, Producer gas–Biogas- Combustion– Flue Gas analysis– Orsat's method.

## 5. ANALYTICAL AND CHARACTERIZATION TECHNIQUES

(9)

Electron microscopes: Scanning electron microscope & Transmission electron microscope, instrumentation and applications Absorption and Emission Spectrum - Beer - Lambert's law. Visible and UV Spectroscopy – instrumentation – Block diagram - working. IR Spectroscopy – instrumentation - Block diagram – molecular vibrations – stretching and bending –  $H_2O$ ,  $CO_2$ . – Characterization of some important organic functional groups. Chromatographic techniques – column, thin layer and paper.

**Total number of periods: 45** 

## **Textbooks**

- 1. C. S.Unnithan, T. Jayachandran& P. Udhayakala, "Industrial Chemistry", Sreelakshmi Publications (2009).
- 2. Dr.R.Sivakumar and Dr.N.Sivakumar" Engineering Chemistry" Tata McGraw Hill Publishing Company Ltd, Reprint 2013.

## References

- 1. P.C. Jain & Monika Jain, "Engineering Chemistry", DhanpatRai publishing Co., (Ltd.) (2013).
- 2. B. R. Puri ,L.R. Sharma &M.S.Pathania, "Principles of Physical Chemistry", Vishal publishing co., (2013).



## DEPARTMENT OF ENGINEERING SCIENCES

Subject C BES1700		Subject	t Name :		MENT A	AL SC	IEN	CE		С	L	T/SLr	P/R
		Preregi	iisite : N	Jone						3	3	0/0	0/0
L : Lectu	re T : Tut				Learnir	19 P : P	roie	ct R : 1	Rese				0,0
	: Theory						J -						
OBJECT													
1. T	o acquire	knowle	dge of t	he E	nvironn	ient an	d E	cosyst	em (	& Biod	ivers	ity	
	o acquire		_					-				-	
	o know n												
	o gain un		_										
	'o attain f				populat	tion an	d Ei	nviron	mei	nt			
	E OUTCO		, ,		,								
Students	completing	ig the co	urse wei	re abi	e to								
CO1	To know	n about	Enviro	nmer	t and E	cosyste	em &	& Biod	live	rsity			
CO2	To clear	lv com	orehend	l air	, water	, Soil,	Ma	arine,	No	ise, Th	erma	al and N	uclear
												ance of n	
	resource	s like for	est, wa	ter, a	nd food	resou	rces						
CO3	To disco	ver wate	r conse	rvati	on and	waters	hed	manaş	gem	ent			
CO4	To identi	ify its pr	oblems	and	concern	s clima	ite c	hange	, glo	bal wa	rmin	g, acid ra	in,
	ozone lay	-						C	, 0			O,	
CO5	To expla	in family	y welfar	e pro	ogramm	es and	role	e of in	forn	nation 1	techn	ology in	
	human h	ealth an	d envir	onme	ent								
Mapping	of Course	e Outcon	nes with	Prog	ram Out	tcomes	(PO	s)					
COs/POs	PO1	PO2	PO3	PO	PO	PO6	PO	7 P	08	PO9	PO	PO1	PO1
				4	5						0	1	2
CO1						M	H		M				M
CO2						M	H				M		M
CO3						M	Н		M		N		M
CO4						M	H		M		M		M
CO5	dicates st	rength of	f correla	tion 1	 H _ High	M			_ T	OW	M		M
Catego	Basic Basic	Engg	Humai		Progra	Progr		Open		Practic	-a1 /	Interns	Soft
ry	Scienc	Scienc	ies &		m core	m	a	Electi		Projec		hips /	Skill
	es	es	Social		0010	Electi	ive	S	., .	110,00	-	Techni	S
			Science			S		-				cal	
												Skills	
			· ·										

# Department of Information Technology ENVIRONMENTAL SCIENCE

3 3 0 0/0

## **Unit I Environment and Ecosystem**

BES17003

**(9)** 

Definition, Scope and Importance of environment – need for public awareness – concept, structure and function of an ecosystem - producers, consumers and decomposers – energy flow in the ecosystem. Biodiversity at national and local levels – India

## **Unit II Environment Pollution**

**(9)** 

Definition – causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Nuclear hazards (g) E-Wastes and causes, effects and control measures

## **Unit III Natural Resources**

**(9)** 

Forest resources: Use and over-exploitation, deforestation. Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems. Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems.

## **Unit – IV Social Issues and the Environment**

**(9)** 

From unsustainable to sustainable development – urban problems related to energy – water conservation, rain water harvesting, watershed management – resettlement and rehabilitation of people; its problems and concerns climate change, global warming, acid rain, ozone layer depletion, nuclear accidents, central and state pollution control boards- Public awareness.

## **Unit – V Human Population and the Environment**

**(9)** 

Population growth, variation among nations – population explosion, environment and human health – human rights – value education – HIV/AIDS – women and child welfare – role of information technology in environment and human health

**Total Number of Periods: 45** 

#### **Text Books**

- 1. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education (2004).
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGrawHill,NewDelhi, (2006).

#### References

- 1. Vairamani, S. and Dr. K. Sankaran. **Elements of Environmental and Health Science.** Karaikudi: KPSV Publications, 5th Edition, July, 2013.
- 2. Ifthikarudeen, Etal, **Environmental Studies**, Sooraj Publications, 2005.
- 3. R.Murugesan, **Environmental Studies**, Millennium Publishers and Distributors, 2nd Edition, July, 2009.

Subject Code	e: Su	ıbject N	lame :						Ty /	L	<b>T</b> /	<b>P</b> /	C
BMA17008		DISCI	RETE M	IATH	ЕМАТ	CICS			Lb/ ETL		S.Lr	R	
			te: BES1						Ty	3	0/1	0/0	4
L : Lecture T					Learnin	g P : Pr	oject R	: Resea			0/ 1	0/0	<u> </u>
Ty/Lb/ETL:							3						
OBJECTIVI	E:												
•			and the E		-		_		cate cal	culus			
•			and the		-								
•			and the E		-		-	eory					
•			and the E		-								
•	To u	ndersta	and the E	Basic c	oncepts	s in Gra	aph the	ory					
COURSE O	UTCO	MES (	COs): (	3- 5)									
CO1													
CO2													
CO3													
CO4 CO5													
Mapping of	Cours	e Outco	mes wit	h Prog	ram Oı	ıtcome	s (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	)12
CO1	Н	Н			M	M			Н	Н		Н	
CO2	Н	Н			Н	L						Н	
CO3	Н	Н			M				M	Н		L	
CO4	Н	Н			L				M	Н		M	
CO5	Н	M				M			M	M		Н	
COs /	PS	SO1	PSO	02	PS	O3	PS	SO4		1		I	
PSOs													
CO1	M				L								
CO2	M		L		L								
CO3	M												
CO4	M												
CO5	M		L		L								
H/M/L indica	ites Str	ength o	f Correla	tion I	H- High	, M- M	edium,	L-Low					
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	kills				
	Basic	Engin	Humanit Sciences	Progr	Progr	Open	Practi	Intern Skill	Soft Skills				
				/									
		1	1	27 th r	neeting	of Aca	demic	counci	l, June2	017		1	
Approval					-				-				

#### **SEMESTER III**

Course Code	Prerequisite Course Code		Category	С	L	T/S Lr	P/R	Ty/ Lb/ ETL/ EVL
BMA17008	BMA17003	DISCRETE MATHEMATICS	M-3	4	3	1/0	0/0	Ty

(Common to II yr. / III Sem. B.Tech (Full Time), I yr. / I Sem. B.Tech (Part Time) - CSE,IT)

## **Course Outcomes:**

To understand the Basic concepts in Logic and Predicate calculus

To understand the Basic concepts in Combinatorics

To understand the Basic concepts in Group theory

To understand the Basic concepts in Lattices

To understand the Basic concepts in Graph theory

UNIT I LOGIC (12 hrs)

Statements - Truth Table - Connectives - Normal Forms - Predicate Calculus - Inference Theory.

## UNIT II COMBINATORICS

(12 hrs)

Mathematical Induction – Pigeon Hole Principle – Principle of Inclusion and Exclusion – Recurrence Relations – Generating Functions.

UNIT III GROUPS (12 hrs)

 $Basic\ Concepts-Groups-Subgroups-Homomorphism-Kernel-Cosets-Lagrange's\ theorem\ (simple\ theorems\ and\ problems).$ 

### UNIT IV LATTICES

(12 hrs

Partial ordering – Posets – Hasse Diagram – Lattices – Properties of lattices – Sub lattices – Special lattices – Boolean Algebra (Definition & simple problems).

## UNIT V GRAPHS

12 hrs

Introduction to Graphs – Terminology – Matrix representation of Graphs: Incidence matrix, Adjacency matrix – Graph Isomorphism – Connectivity – Euler and Hamiltonian Paths (simple theorems and problems).

Total no. of hrs: 60

## **Text Books:**

- 1) Veerarajan T., *Discrete Mathematics*, Tata McGraw Hill Publishing Co., (2008).
- 2) Tremblay J.P., Manohar R., *Discrete Mathematical structures with applications to Computer science*, Tata McGraw Hill Publishing Co., (2008).

## **Reference Books:**

- 1. Kolman, Busby, Ross, *Discrete Mathematical Structures*, Pearson, (2014).
- **2.** Kenneth Rosen, *Discrete Mathematics and its applications (SIE)*, Tata McGraw Hill Publishing Co., (2007).

Subject Co	de:	_	ect Name					Ту /	L	T/S.Lr	P/R	С
BIT17001			DATA S				D	Lb/ ETL				
		D			RITHM	<u>S</u>			2	0/1	0/0	4
L : Lecture	T · Tut		equisite: N SLr : Sup		I L corni	na D · E	Project I	Ty P : Passa	3	0/1	0/0	4
Ty/Lb/ETL			•				roject r	X . Kesea	ucii C. C	reuns		
		1 y/ Lao/	Linocaac	u The	ny ana i							
OBJECTIV • Mas		mpleme	entation of	linked	data struc	ctures su	ıch as lir	nked lists	and bina	ry trees		
		-	vanced da							y deep		
										ergesort and	heapsor	t
			me graph	-			_		num span	ning tree		
COURSE			rious algo		esign met	noas an	a its app	oncation				
					riate data	a structu	re as ant	olied to si	pecified n	roblem defin	ition	
										rsing mecha		various
	structur		to nanare	орегии	ons me	, cur cimii,	5, 1115011.	ion, deret	ion, uuve	ising incent		various
CO3 Stud	lents wil	l be abl	e to apply	concep	ts learned	l in vari	ous dom	ains like	DBMS, c	ompiler cons	struction	etc.
CO4 Stud	lents wil	l be abl	e to use lii	near and	l non-line	ear data	structure	es like sta	cks. queu	es , linked li	st etc	
			are of vari									
Mapping o										- B		
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12
CO1	Н	Н	L	Н	M	L	L	L	L	L	M	M
CO2	Н	Н	Н	L	M	L	M	M	Н	L	M	M
CO3	Н	M	Н	Н	Н	M	L	M	Н	L	M	M
CO4	Н	Н	Н	Н	M	L	M	M	Н	L	M	M
CO5	Н	M	Н	Н	Н	M	L	M	Н	L	M	M
COs /	PSO		PSO2	P	SO3	P	SO4					
PSOs CO1	1 H		Н		T		T					
CO1	Н		<u>н</u> Н		L M		L	_				
CO3	H		M		L		L	_				
CO4	Н		H		L		L	_				
CO5	Н		M		L		L					
H/M/L indi	cates St	rength	of Correl	lation	H- High	h, M- N	ledium,	, L-Low				
					res		ct	11				
	S	2	and	<u>e</u>	ctiv	/es	oje	ps/ Ski				
Catagogg	enc	ing	ies zien	Co	Ele	cti	/ P	ıshi	SI			
Category	S	leer	anit 1 Sc	am.	.am	Elé	ical	Internships / Technical Skil	Skil			
	Basic Sciences	Engineering	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	In	Soft Skills			
	<u> </u>		ΗĞ	✓ Pr	<u> </u>	0	-FI		Š			
A					h •	A	1	- C:	. <u></u>	2017		
Approval				27	meeun	ig oi A	cademi	c Counc	il, June	<b>4</b> 01 /		

Course Code	Prerequisite Course Code	Course Title	Category	С	L	T/S Lr	P/R	Ty/ Lb/ ETL/ EVL
BIT17001	NIL	DATA STRUCTURES AND ALGORITHMS	PC	4	3	0/1	0/0	Ту

#### **OBJECTIVES:**

- Master the implementation of linked data structures such as linked lists and binary trees
- Be familiar with advanced data structures such as AVL trees and hash tables.
- Be familiar with several sub-quadratic sorting algorithms including quicksort, mergesort and heapsort
- Be familiar with some graph algorithms such as shortest path and minimum spanning tree
- Be familiar with various algorithm design methods and its application

## **UNIT I: LINEAR DATA STRUCTURES**

**12 Hrs** 

Algorithm Basics and Analysis-List-Stacks- Queues - Implementation and Applications - Singly linked list-Doubly linked Lists-Applications

## UNIT II: NON LINEAR DATA STRUCTURES

12 Hrs

Trees – Binary Trees – Binary Search Tree Implementation – Tree Traversals – AVL trees- 2-3 tree, 2-3-4 tree.

## UNIT III: SEARCHING AND SORTING TECHNIQUES

12 Hrs

Types of searching - Linear and Binary Searching Analysis – types of sorting-Quick Sort - Heap Sort - Merge Sort - Selection Sort - Bubble Sort - Insertion Sort – Sorting Comparison.

### **UNIT IV: GRAPH ALGORITHMS**

12 Hrs

Graph Operations – DFS – BFS - Applications of Graphs - Minimum Cost Spanning Tree - Kruskal's Algorithm - Prim's Algorithm

## **UNIT V: ALGORITHM DESIGN METHODS**

12 Hrs

Greedy method – Traveling Sales Person Problem - Divide and Conquer – Strassen's Matrix Multiplication - Dynamic Programming - Knapsack problem- Back Tracking – N Queens Problem

Total Hours: 60

## **Text Books**

1. Horowitz, E. Sahani, S. & Mehta.(2007) Fundamentals of Data Structures in C++, Galgotia.

#### **Reference Books**

- 1. Weiss Mark Allen (2007) Data Structures and Algorithm Analysis in C, (3rd ed.), Pearson
- 2. Horowitz, E. Sahni&SanguthevarRajasekaran.(2007) Fundamentals of Computer Algorithms, Galgotia Publications

Subject Code: BCS17002	Subject Name : Object Oriented Programming with C++	Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
	Prerequisite: BES17ET2	Ту	3	0/1	0/0	4

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab

## **OBJECTIVE:**

- The students will be able to distinguish OOP features with procedural Oriented and analyze these features to a real world object,
- To analyze generic data type for the data type independent programming which relate it to reusability.

• To u	ındersta	and the con	ncepts of	Java pro	• •	-			king prog		•	, -
COURSE C												
CO1		Object Or					ze chara	cteristic	s of OOP			
CO2		To imple		in vario	ous appli	ications						
CO3		Files & I/										
CO4		Exception										
CO5		To develo					(DO )					
Mapping of									DOO	DO10	DO11	DO 10
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	Н	M	Н	M	Н	Н	M	Н	Н	Н
CO2	Н		M	L	Н	H	Н	Н	M	M	Н	Н
CO3	Н	Н	M		Н	Н	M	M	Н	Н	Н	Н
CO4	Н	Н	M	L		Н	Н	M	H	Н	M	M
CO5	Н	M	L	M	Н	Н	Н	Н	M	L	Н	Н
COs /	P	SO1	PSO	)2	PS	O3	PS	SO4				
PSOs												
CO1	Н		Н		M		Н					
CO2	Н		M		Н		Н					
CO3	M		Н		M		L					
CO4	Н		Н		M		Н					
CO5	Н		M		M		Н		_			
H/M/L indic		trength o		tion F	I- High	M- M		ILow				
H/W/L IIIGIC	lates 5	li eligili o	Correia	tion r	1- mgn	, 101- 101	earum,					
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	✓ Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skil	Soft Skills			
Approval				27 th n	neeting	of Aca	demic	council	, June20	17		

Course Code	Prerequisite Course Code		Category	С	L	T/S Lr	P/R	Ty/ Lb/ ETL/ EVL
BCS17002	BES17ET2	OBJECT ORIENTED PROGRAMMING WITH C++	PC	4	3	0/1	0/0	Ту

## Objectives:

- The students will be able to distinguish OOP features with procedural oriented and analyze these features to a real world object,
- To analyze generic data type for the data type independent programming which relate it to reusability.

UNIT-I

**Basics, Tokens, Expressions:** Software Evolution, Procedure Oriented Programming, Object Oriented Programming Paradigm, Basic Concepts of OOP, Benefits of OOP, Object Oriented Languages, Features of OOP. How OOP Differ from POP. Applications of OOP, A Simple C++ Program, Structure of C++ Program. Tokens, Keywords, Identifiers and Constants, Basic Data Types, User Defined Data Types, Derived Data Types, Dynamic Initialization of Variables, Reference Variables, Operators in C++, Scope Resolution Operator, Member Dereferencing Operators, Memory Management Operators.

UNIT-II 12 Hrs

**Functions, Classes and Objects:** Introduction of Classes, Specifying a Class, Defining a Member Functions, A C++ Program with Class Access Specifiers, Inline functions, Nesting of Member Functions, Memory Allocation for Objects, Static Data Members, Static Member Functions, Arrays of Objects, Objects as Function Arguments, Default Arguments, Const Arguments, Function Overloading, Friend Functions.

UNIT-III 12 Hrs

**Constructors and Destructors:** Introduction, Constructors, Default constructors, Copy Constructors, Dynamic Constructors, Parameterized Constructors, Multiple Constructors in a Class, Constructors with Default Arguments, Dynamic initialization of Objects, Destructors.

UNIT-IV 12 Hrs

**Inheritance:** Introduction to inheritance, Defining Derived Classes, Single Inheritance, Multiple Inheritance, Multi Level Inheritance, Hierarchical Inheritance, Hybrid Inheritance, Abstract Classes, Constructors in Derived Classes, Containership, Operator overloading, Rules for Operator overloading, overloading of binary and unary operators.

UNIT-V 12 Hrs

**Pointers, Virtual Functions and Polymorphism:** Introduction to Memory Management, new Operator and delete Operator, Pointer to Objects, this Pointer, Pointers to Derived Classes, Polymorphism, Compile time polymorphism, Run time polymorphism, Virtual Functions, Pure Virtual Functions, Virtual Base Classes, Virtual Destructors.

Total Hours: 60

## **Text Book:**

1. E.Balagurusamy, "Object Oriented Programming in C++", 6th ed., Tata McGraw-Hill, 2013

## **Reference Books:**

- 1. K.R. Venugopal, "Mastering C++", published by Tata McGraw-Hill. -2013, Second Edition.
- 2. Rohit Khurana,"Object Oriented Programming With C++",Vikas Publishing House- 2014, Second Edition.
- 3. Robert Lafore, "Object-Oriented Programming in C++", Sams Publishing-2002, Fourth Edition

Subject Cod	e: S	Subject N	Name :						Ту			T /	<b>P</b> /	C
BEC17I01		Funda	mental	s of C	ommur	nicatio	n Syste	ems	Lb/ ET			S.Lr	R	
	F	Prerequis	ite: NIL						Ту		3	0/0	0/0	3
L : Lecture T	: Tut	orial S	Lr : Supe	rvised I	Learning	g P : Pr	oject R	: Res	earch	C: Cr	edits			
Ty/Lb/ETL:		ry/Lab/E	mbedded	Theory	and La	ab								
OBJECTIV														
			elevance		course t	o the ex	xisting	techno	ology 1	throug	gh Lecti	ures,		
			case stud											
• To i	ntrod	uce the c	oncepts o	f variou	ıs modu	ılations	<b>5.</b>							
<ul> <li>Το ι</li> </ul>	ınders	stand noi	se impact	on mo	dulation	ıs								
• To i	ntrod	uce some	of the es	sential	basebai	nd & B	and pas	ss sign	als.					
COURSE O	UTC													
CO1			the funct						system	ıs.				
CO2			and the va				_							
CO3		Evaluate fundamental communication system parameters, such as bandwidth, power,												
	signal to noise ratio.													
CO4		Understand differences between analog and digital signals and transmission of												
information  Mapping of Course Outcomes with Program Outcomes (POs)														
									0   70	2.0	D040	D044	- D	24.0
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	POS		)9	PO10			)12
CO1 CO2	Н	H	L	L	L	M	M	M	L		H	L	L	
	Н	M	L	Н	M	M	L	L	L		L	L	L	
CO3	M	L	M	Н	M	Н	L	L	Н		H	L	L	
	Н	L	M	L	L	L	M	L	L		M	L	L	
COs /PSOs	H	PSO1	H PSO	<u>J2</u>	L	03	M	SO4						
CO2	Н		M		L		L							
CO3	M		H		L		M							
CO4	M		Н		L		L							
H/M/L indica		trength o		ion L	L I- High,	M. M.		I -I or	. <b>X</b> 7					
Category				.1011 1.	r- riigii,	, 171- 171		L-LU\	vv					
Category														
		ces	Humanities and Social Sciences						cal					
		ien	l Sc		ves		5	3	os / Technical					
	ses	Sc	ano	re	cti	ves	.5		)s/					
	ien	ing	ies	ပိ	ĒĒ	cti	d	1 /	shif	ls				
	Sc	leer	mit res	am	am	Eğ.	3	[2a]	Internships Te	kil				
	Basic Sciences	Engineering Sciences	Humanit	Program Core	Program Electives	Open Electives	Described / Decises	act.	Int	Soft Skills				
	Ba	띱	H S	Pr	Pro	Ŏ	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓			So				
Approval		7		27 th 1	 meeting	r of A a	odomi:	0.0033-	oil T-	mc20	17			
Approvai				4/ ]	meeting	z oi AC	auemi	c coun	ıcıı, Jl	mezu	11/			

Course Code	Prerequisit e Course Code	Cour se Title	Categor y	С	L	T/ S Lr	P/ R	Ty/ Lb/ ETL/ EVL
BEC17I0 1	NIL	FUNDAMENTALS OF COMMUNICATION SYSTEMS	BES	3	3	0/0	0/	T y

## **OBJECTIVES:**

- To introduce different types of noises.
- To introduce the concepts of various modulations.
- To understand pulse modulation.
- To introduce some of the essential Digital Modulation Techniques.

## UNIT I SIGNALS & NOISE

9 Hrs

Periodic signals and Aperiodic signals – Band pass signals – Random signals – Noise – Thermal Noise – Shot Noise – Signal to Noise ratio

## UNIT II INTRODUCTION TO COMMUNICATION 9 Hrs

Need for Modulation – AM Modulation – Double Side Band with Carrier - Double Side Band Suppressed Carrier - Single Side Band Modulation – AM transmitter

## UNIT III ANGLE MODULATION & RECEIVERS

9 Hrs

Frequency Modulation – Phase Modulation – Envelope Detector - Super Heterodyne Receiver – FM Demodulation – FM Receiver

## UNIT IV PULSE MODULATION

9 Hrs

Pulse Modulation – PAM – PWM – PPM – Sample and Hold – Quantization - PCM – Delta Modulation - Pre-emphasis – De-emphasis

#### UNIT V DIGITAL MODULATION

9 Hrs

 $Introduction\ to\ Digital\ Modulation\ -\ Shift\ Keying\ ASK-FSK-PSK\ -\ Bit\ Rate-Baud\ Rate-Multiplexing\ TDM-FDM-Channel\ coding-Introduction\ to\ Spread\ Spectrum\ Modulation-Auto\ correlation\ function\ of\ PN\ Sequence$ 

## **Total Hours: 45**

#### **Text Books:**

- **1.** Samuel & Matthew (2017), *Principles of Modern Communication Systems*, Cambridge University Press.
- 2 Simon Haykin (2008) Communication Systems (3rd ed.) Wiley India

#### **Reference Books:**

- 1. Taub, Schilling and Saha (2008) *Principles of communication* (3rd ed.) Tata McGraw Hill Publishing Company Limited
- 2. B.P Lathi (2010), "Modern Digital and Analog Communication Systems", Oxford University Press.

<b>Subject Code:</b>	Subject Name :	Ty /	L	T /	<b>P</b> /	C
BEC17I02	Digital Systems	Lb/ ETL		S.Lr	R	
	Prerequisite: BES17001	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab

## **OBJECTIVE:**

• To introduce number systems and codes and its conversions

• To i	ntroduc ntroduc oring ou	e Boole e the de t the an	alysis for	ra and i arious o	ts applicombina	cations ational	in digit digital d	al syste				
		,			1		1 . 4		•			
CO1	A	cquirea	knowledg	ge about	number	systems	and its	convers	ions			
CO2	Α	Acquired knowledge about boolean algebra										
CO3	A	Ability to identify, analyze & design combinational circuits										
CO4	A	Ability to identify & analyze synchronous & asynchronous circuits										
Mapping of	Mapping of Course Outcomes with Program Outcomes (POs)											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	L	M	L	L	L	L	L	L	M	L	L
CO2	Н	M	L	L	L	L	L	L	L	L	L	L
CO3	M	M	Н	L	L	M	L	L	M	M	L	L
CO4	M	M	Н	L	L	M	L	L	M	M	L	L
COs / PSOs	PS	PSO1 PSO2 PSO3 PSO4										
CO1	L		Н		L		L					
CO2	L		Н		L		L					
CO3	Н		M		L		L					
CO4	Н		M		L		L					
H/M/L indic	ates Str	ength o	f Correla	tion I	I- High	, M- M	edium,	L-Low	- II.			
								-				
Categor y	Basic Sciences	Fugineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
Approval				27 th n	 neeting	of Aca	demic	counci	l, June20	17		
-FF-5.		27 th meeting of Academic council, June2017										

Course Code	Prerequisite Course Code	Course Title	Category	С	L	T/S Lr	P/R	Ty/ Lb/ ETL/ EVL
BEC17I02	BES17001	DIGITAL SYSTEMS	IDT-1	3	3	0/0	0/0	Ту

## **OBJECTIVES**

- To introduce number systems and codes and its conversions
- To introduce Boolean algebra and its applications in digital systems
- To introduce the design of various combinational digital circuits using logic gates
- To bring out the analysis for synchronous and asynchronous Sequential circuits

#### **UNIT I: NUMBER SYSTEMS**

9 Hrs

Review of Decimal, Binary, Octal And Hexadecimal Number Systems –Number Conversions – Signed Magnitude form – 1's and 2's Complement - Binary weighted codes- Binary arithmetic – codes – BCD code, Gray code, Excess-3 Code.

## **UNIT II: BOOLEAN ALGEBRA**

9 Hrs

Binary logic Functions- Boolean laws – De Morgan's Theorems, Sum Of Products –Product Of Sums –karnaugh map- Quine McCluskey Method.

## **UNIT III: COMBINATIONAL LOGIC**

9 Hrs

Logic gates – AND, OR, NOT, NOR, NAND and EX-OR Gates – Half adder – Full adder – Half subtractor – Full subtractor – Demultiplexer – Demultiplexer – Decoder – Code converters - PAL-PLA.

## UNIT IV: SYNCHRONOUS SEQUENTIAL LOG IC

9 Hrs

Latches-R-S- Flip Flop, S-R Flip Flop, D Flip Flop, JK Flip Flop, T Flip-Flop - Master slave Flip-Flop - Counters – Up Down counters- Binary counters- Ring counters- Shift Registers.

## UNIT-V: ASYNCHRONOUS SEQUENTIAL LOGIC

9 Hrs

Asynchronous counters – Decade counters - State diagram - State Table – State Reduction – State Assignment- Excitation Table-Analysis of Asynchronous sequential circuits - Design of ASynchronous Sequential Circuits.

Total Hours: 45

## **Text Books**:

- 1. Charles H. Roth & Larry L.Kinney, "Fundamentals of Logic Design", Cengage Learning, 7th Edition.
- 2. M. Morris Mano & Michael D.Ciletti (2008) *Digital Design*. Pearson Education
- 3. Thomas.L.Floyd (2013) "Digital Fundamentals", 10th Edition Pearson Education

### **Reference Books:**

- 1. Ronald J. Neal S. Gregory L (2009), "Digital Systems", 10th Edition, Pearson Prentice Hall
- 2. R P Jain, (2010), "Modern Digital Electronics", 4th Edition, Tata Mcgraw Hill Ed. Pvt. Ltd.

Subject Code:	Subject Name :  Computer Graphics	T y/ Lb/ ETL	L	T / S.Lr	P/ R	C
BCS17ET1						
	Prerequisite: BES17ET2	ETL	1	0/1	2/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab

## **OBJECTIVE:**

## The student should be made to:

- Understand the output primitives, two dimensional graphics and their transformations.
- Understand the three dimensional graphics and their transformations.
- Understand illumination and color models
- Learn to create animations

COURSE OUTCOMES (	COs):	(3-5)
-------------------	-------	-------

CO1	Transform geometrical structures, perform clipping on geometrical objects
CO2	Analyze a 3D structure
CO3	Create and evaluate graphic projects

## **Mapping of Course Outcomes with Program Outcomes (POs)**

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	M	Н	M	M	M	L	M	M	L	L	L
CO2	Н	M	Н	L	Н	M	L	M	M	L	L	L
CO3	Н	M	Н	M	Н	M	L	M	M	L	L	L

COs / PSOs	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	L	L
CO2	Н	Н	L	L
CO3	Н	Н	L	M

## H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low

Categor y	sic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	en Electives	Practical / Project	Internships / Technical Skill	t Skills		
	Basic	Engir	Huma	Progr	Progr	Open	Practi	Interr	Soft S		
	, ,		, , , ,	/			,				

Approval 27th meeting of Academic council, June2017

Course Code	Prerequisite Course Code		Category	С	L	T/S Lr	P/R	Ty/ Lb/ ETL/ EVL
BCS17ET1	BES17ET2	COMPUTER GRAPHICS	PC	3	1	0/1	2/0	ETL

#### **OBJECTIVES:**

The student should be made to:

- Understand the output primitives, two dimensional graphics and their transformations.
- Understand the three dimensional graphics and their transformations.
- Understand illumination and color models
- Learn to create animations

## **UNIT I: OUTPUT PRIMITIVES**

9 Hrs

Output primitives-Line drawing algorithms-Loading the frame buffer-Line function-Circle generation algorithms –Ellipse generation algorithms- Attributes of output primitives-Numerical problem solving and programs on line, circle and ellipse drawing algorithms

## UNIT II: TWO DIMENSIONAL TRANSFORMATION & VIEWING 9 Hrs

Two dimensional transformations- Matrix representations and homogeneous coordinates - Composite transformations - two dimensional viewing -Window to view port transformation - Clipping operations - Point clipping - Line clipping (Cohen - Sutherland line Clipping) - Polygon clipping(Sutherland - Hodgeman algorithm) -Numerical problem solving and programming on two dimensional transformation ,viewing and clipping

## **UNIT III: THREE DIMENSIONAL GRAPHICS**

9 Hrs

Three dimensional concepts - Three dimensional object representation -Three Dimensional Transformations - Visible surface detection methods (Back Face Detection - Depth Buffer Method - Scan Line Method) - Numerical problem solving and programming on three dimensional transformations

## UNIT IV: POLYGON RENDERING METHODS AND COLOUR MODELS 9 Hrs

 ${\it Constant-Intensity Shading-Gouraud Shading-Phong Shading-chromaticity\ diagram-RGB\ colour\ model-YIQ\ colour\ model-CMY\ colour\ model-Colour\ selection}$ 

## **UNIT V ANIMATIONS**

9 Hrs

**ANIMATION GRAPHICS:** Design of Animation sequences – animation function – raster animation – key frame systems – motion specification –morphing - create Interactive animation for gamming

Total Hours: 45

## **Text Books**

- 1. Donald, D. Hearn. Pauline, Baker, M. Warren, Carithers. (2010) *Computer graphics with Open GL*, (4th ed.)
- 2 Computer Graphics (Special Indian Edition) (Schaum's Outline Series) 2nd Edition, 2006 (English, Paperback, Xiang, Plastock, Avadhani), McGraw Hill Education (India) Private Limited

## **Reference Books:**

- 1. John F. Hughes, Andries Van Dam, Morgan Mc Guire ,David F. Sklar , James D. Foley, Steven K. Feiner and Kurt Akeley ,"Computer Graphics: Principles and Practice", 3rd Edition, Addison-Wesley Professional,2013.
- 2. Peter Shirley, Michael Ashikhmin, Michael Gleicher, Stephen R Marschner, Erik Reinhard, Kelvin Sung, and AK Peters, Fundamental of Computer Graphics, CRC Press, 2010.



Subject Coo BIT17L01	de: S	Subject N DATA	lame :		S AND AB	ALGO	RITH	MS	T / L/ ETL	L	T / S.Lr	P/ R	С
	I	Prerequisi	te: BES1	7ET2					Lb	0	0/0	3/0	1
		L : Lec	ture T : T	utorial	SLr:	Superv	ised Le	earning	P : Proje	ct R : I	Research	C: Cre	dits
Ty/Lb/ETL	: Theo	ory/Lab/E	mbedded	Theor	y and L	ab							
OBJECTIV 1. To strengt 2. To introd	hen th						the char	racteris	tics of an	object	t-oriente	dappro	ach.
COURSE (	OUTC	OMES (	COs):(	3- 5)									
CO1		Explain potential							1 0	•	-	entify	
CO2		Apply ar	object-o	oriented	approa	ch to d	evelopi	ng appl	ications	of vary	ing com	plexitie	ès
CO3		Describe	the basi	c opera	tions on	arrays	, lists, s	tacks a	nd queue	data s	tructures	;	
Mapping of	f Cour	se Outco	mes wit	h Progi	ram Ou	tcome	s (POs)	ı					
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1			012
CO1	Н	Н	L	M	L	M	L	L	M	M	M	M	
CO2	H	H	L	M	L	M	Н	L	M	L	H	M	
CO3	Н	M	L	M	L	M	L	L	M	M	M	M	
COs / PSOs	1	PSO1	PSO	<b>J</b> 2	PS	O3	PS	SO4					
CO1	Н		Н		L		L						
CO2	Н		L		M		L						
CO3	M		M		L		Н						
H/M/L indic	cates S	trength o	f Correla	tion I	I- High	, M- M	edium,			1	1		
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
				~									
Approval				27 th n	neeting	of Aca	demic	counci	l, June20	017			

Course Code	Prerequisite Course Code	Course Title	Category	C	L	T/S Lr	P/R	Ty/ Lb/ ETL/ EVL
BIT17L01	BES17ET2	DATA STRUCTURES AND ALGORITHMS LAB	PCL	1	0	0/0	3/0	Lb

## **OBJECTIVES:**

- 1. To strengthen their problem solving ability by applying the characteristics of an object-oriented approach.
- 2. To introduce object oriented concepts in C++ and Java.

## **EXERCISES:**

- 1) Operation on arrays insertion and deletion
- 2) Linked lists-creation, insertion, deletion of single, double and circular lists.
- 3) Stack- operations using arrays and linked lists.
- 4) Infix to postfix conversion
- 5) Evaluation to postfix expression.
- 6) Queue- operations using arrays and linked lists.
- 7) Dequeue, circular-operations
- 8) Binary tree traversals- In order, pre order, post order using recursion
- 9) Binary tree traversals- In order, pre order, post order using non recursion
- 10) Linear and binary search
- 11) Sorting Selection Sort, Quick sort, Heap Sort and Merge Sort.
- 12) Addition, multiplication of sparse matrices
- 13) Polynomial addition and multiplication
- 14) Depth first search of a graph

Subject Cod	le:	Subject N	lame :						Ty /	L	T /	P/	C
BCS17L02		Object	Oriente	d Prog	rammiı	ng Lab	with C	!++	Lb/ ETL		S.Lr	R	
	]	Prerequisi	te: BES1	7ET2					Lb	0	0/0	3/0	1
L : Lecture T	` : Tu	torial S	Lr : Supe	rvised ]	Learnin	g P : Pı	oject R	: Rese	earch C: C	redits			1
Ty/Lb/ETL:	The	ory/Lab/E	mbedded	Theor	y and L	ab							
OBJECTIV	<b>E</b> :												
2. To	Stren	op skills to gthen the a knowledg	bility to i	dentify a	and appl	y the sui	itable da	ta struc			eal worl	d proble	m
COURSE O	UTC	COMES (	COs):(	3- 5)									
CO1		Be able to	design a	nd analy	ze the ti	me and	space ef	ficienc	y of the da	ta struct	ure		
CO2		Be capabl	le to ident	ity the a	ppropria	ite data	structure	for giv	en probler	n			
CO3		Have prac	ctical knov	wledge o	on the ap	plicatio	n of data	a structi	ures				
Mapping of	Cou	rse Outco	mes wit	h Prog	ram Oı	ıtcome	s (POs)	1					
COs/POs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PO	12
CO1	Н	Н	M	Н	Н	M	Н	Н	Н	Н	Н	Н	
CO2	Н	M	Н	Н		Н	M	Н	Н	Н	M	Н	
CO3	M	Н	Н	Н	Н	L	M	Н	Н	Н	Н	Н	
COs / PSOs		PSO1	PSO	)2	PS	O3	PS	SO4					
CO1	Н		Н		Н		Н						
CO2	Н		M		Н		M						
CO3	Н		Н		M		Н						
H/M/L indica		Strength o		tion I		, M- M	edium,	L-Low	7				
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval				27 th n	neeting	of Aca	demic	counci	il, June20	     17			

Course Code	Prerequisite Course Code	Course Title	Category	C	L	T/S Lr	P/R	Ty/ Lb/ ETL/ EVL
BCS17L02	BES17ET2	OBJECT ORIENTED PROGRAMMING LAB WITH C++	PCL	1	0	0/0	3/0	Lb

## **OBJECTIVES:**

- To develop skills to design and analyze simple linear and non linear data structures
- To Strengthen the ability to identify and apply the suitable data structure for the given real world problem
- To Gain knowledge in practical applications of data structures
- 1. Simple C++ Programs to Implement Various Control Structures.
  - a. If statement
  - b. Switch case statement and do while loop
  - c. For loop
  - d. While loop
- 2. Programs to Understand Structure & Unions.
  - a. Structure
  - b. union
- 3. Programs to Understand Pointer Arithmetic.
- 4. Functions & Recursion.
  - a. Function
  - b. Recursion
- 5. Inline Functions.
- 6. Programs to Understand Different Function Call Mechanism.
  - a. Call by reference & Call by Value
- 7. Programs to Understand Storage Specifiers.
  - 8. Constructors & Destructors.
  - 9. Use of "this" Pointer. Using class
  - 10. Programs to Implement Inheritance and Function Overriding.
    - a. Multiple inheritances –Access Specifiers
    - b. Hierarchical inheritance Function Overriding /Virtual Function
  - 11. Programs to Overload Unary & Binary Operators as Member Function & Non Member Function.
    - a. Unary operator as member function
    - b. Binary operator as non member function
  - 12. Programs to Understand Friend Function & Friend Class.
    - a. Friend Function
    - b. Friend class
  - 13. Programs on Class Template

Subject Code:	Subject Name :	<b>Ty</b> /	L	T /	<b>P</b> /	С
BEC17IL1	DIGITAL SYSTEMS LAB	Lb/ ETL		S.Lr	R	
	Prerequisite: BES17001	Lb	0	0/0	3/0	1
L: Lecture T: T	Tutorial SLr: Supervised Learning P: Project R: Rese	earch C: C	redits			

Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab

## **OBJECTIVE:**

- To introduce number systems and codes and its conversions To introduce Boolean algebra and its applications in digital systems

• To i	ntrod	uce Boole uce the de out the an	sign of v	arious	combin	ational	digital o	circuits	using log			
COURSE OU	UTCO	MES (CC	Os): (3-5	5)								
CO1		Acquired	knowledg	ge about	number	system	s and its	convers	ions			
CO2		Acquired	knowledg	ge about	boolean	algebra	1					
CO3		Ability to	identify,	analyze	& desig	n combi	national	circuits				
CO4		Ability to	identify of	& analyz	ze synch	ronous	& asyncl	nronous	circuits			
Mapping of	Cou	rse Outco	mes wit	h Prog	ram Oı	ıtcome	s (POs)					
COs/POs	PO1	l PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	L	M	L	L	L	L	L	L	M	L	L
CO2	Н	M	L	L	L	L	L	L	L	L	L	L
CO3	M	M	Н	L	L	M	L	L	M	M	L	L
CO4	M	M	Н	L	L	M	L	L	M	M	L	L
COs / PSOs		PSO1	PSC	)2	PS	SO3	PS	SO4		•		
CO1	L		Н		L		L					
CO2	L		Н		L		L					
CO3	Н		M		L		L					
CO4	Н		M		L		L					
H/M/L indic	ates S	Strength o	f Correla	tion I	H- High	, M- M	edium,	L-Low				
Categor y	Basic Sciences	✓ Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
Approval				27 th r	neeting	of Aca	demic	counci	l, June20	17	1	

Course Code	Prerequisite Course Code	Course Title	Category	C	L	T/S Lr	P/R	Ty/ Lb/ ETL/ EVL
BEC17IL1	BES17001	DIGITAL SYSTEMS LAB	IDL-1	1	0	0/0	3/0	Lb

## **OBJECTIVES:**

- To introduce Boolean algebra and its applications in digital systems
- To introduce the design of various combinational digital circuits using logic gates
- To bring out the analysis for synchronous and asynchronous Sequential circuits
- 1. Verification of Truth tables of Logic Gates
- 2. Implementation of Boolean function
- 3. Implementation of Half and full Adders
- 4. Implementation of Half and full Subtractors
- 5. Implementation of Multiplexers
- 6. Implementation of Demultiplexers
- 7. Implementation of Encoder
- 8. Implementation of Decoders
- 9. Verification of Flip Flops
- 10. Implementation of Shift Registers
- 11. Implementation of Counters
- 12. Study of A to D Converters

Subject Cod	de: Su	ıbject N	Name :						<b>Ty</b> /	L	T /	<b>P</b> /	C
BMA17013	3 1	NUME	RICAL I		ODS FO		MPUT	ER	Lb/ ETL		S.Lr	R	
	Pr	ereguis	ite: BES		NEEK	•			Lb	0	0/0	3/0	1
L : Lecture					Learnin	g P : P1	roject R	: Rese	_	Credits	0, 0	2,0	
Ty/Lb/ETL	: Theor	v/Lab/E	mbedded	l Theor	v and L	ab							
OBJECTIVE		), <b>24</b> 0, 2		7 111001	<i>,</i>								
• To unc	derstan	d the B	asic con	cepts i	n Num	erical l	Method	ds					
• To unc	derstan	d the B	asic con	cepts i	n Solut	tion of	Algebi	raic an	d Transo	cendent	al equa	ions	
• To unc	derstan	d the B	asic con	cepts i	n Inter	polatio	n						
• To und	derstan	d the B	asic con	cepts i	n Num	erical l	Differe	ntiatio	on and In	tegratio	on		
				-					cal Meth	_		tial	
Equati				1	11								
COURSE O	UTCOM	IES (CC	<b>Os</b> ): (3-5	5)									
CO1													
CO2 CO3													
CO4													
CO5													
Mapping of	Course	e Outco	omes wit	h Prog	ram Oı	itcome	s (POs)	)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	12
CO1	Н	M	M										L
CO2	Н	M	M										L
CO3	Н	M	M										L
CO4 CO5	Н	M M	M										L
COs / PSOs	Н	SO1	M PS0	$\frac{1}{2}$	pç	SO3	D	SO4					L
CO1		L	I		10	103	1 k	JO4					
CO2		<u> </u>	I										
CO3		L	L										
CO4	]	L	L	,									
CO5		L	L										
H/M/L indic	ates Str	ength o	f Correla	tion I	H- High	, M- M	edium,	L-Lov	V				
Categor y	ses	Sciences	and Social	re	ctives	ves	roject	Internships / Technical Skill					
	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships	Soft Skills				
Approval				27 th 1	neeting	g of Aca	ademic	counc	il, June2	017			

Course Code	Prerequisite Course Code	Course Title	Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BMA17013	BMA17008	NUMERICAL METHODS FOR COMPUTER ENGINEERS	M-4	4	3	1/0	0/0	Ту

(Common to II yr. / IV Sem. B.Tech (Full Time) – IT)

## **Course Outcomes:**

To understand the Basic concepts in Numerical Methods

To understand the Basic concepts in Solution of Algebraic and Transcendental equations

To understand the Basic concepts in Interpolation

To understand the Basic concepts in Numerical Differentiation and Integration

To understand the Basic concepts in Applications of Numerical Methods in Differential Equations

## UNIT I BASICS OF NUMERICAL METHODS

(12 hrs)

Curve fitting-Method of group averages-Principle of least square-Method of moments-Finite differences-Operators (Forward, Backward & Shifting) -Relationship between the operators.

## UNIT II SOLUTION OF EQUATIONS

(12 hrs)

Solution of Algebraic and Transcendental equations – Method of false position – Iteration method – Newton-Raphson method – Solution of Linear system of equations – Gauss Elimination method – Gauss-Jordan method – Iterative methods – Gauss-Jacobi method – Gauss-Seidel method – Matrix Inversion by Gauss-Jordan method.

## UNIT III INTERPOLATION

(12 hrs)

Newton forward and backward differences – Central differences – Stirling's and Bessel's formulae – Interpolation with Newton's divided differences – Lagrange's method.

## UNIT IV NUMERICAL DIFFERENTIATION AND INTEGRATION

(12 hrs)

Numerical differentiation with interpolation polynomials – Numerical integration by Trapezoidal and Simpson's (both 1/3 rd & 3/8 th) rules – Two and three point Gaussian Quadrature formulae – Double integrals using Trapezoidal and Simpson's rules.

# UNIT V APPLICATIONS OF NUMERICAL METHODS TO DIFFERENTIAL EQUATIONS (12 hrs)

Taylor's series – Euler's & Modified Euler's method – Runge Kutta method of fourth order for first & second order differential equations – Milne's predictor-corrector method – Adam-Bashforth's predictor-corrector method.

Total no. of hrs: 60

#### **Text Books:**

- 1) Veerarajan T., *Numerical Methods*, Tata McGraw Hill Publishing Co., (2005).
- 2) Sastry S.S., *Introductory Methods of Numerical Analysis*, Prentice Hall of India, (2003).

## **Reference Books:**

- 1. Kandasamy P., Thilagavathy, Gunavathy K., *Numerical Methods (Vol.IV)*, S.Chand & Co., (2008).
- 2. Grewal B.S., *Higher Engineering Mathematics*, Khanna Publishers, (2012).

Subject Cod BIT17002	le: S	ubject N		treana 1	Enginee	wing			T / L/ ETL	L	T / S.Lr	P/ R	C	
D111/002	P	rerequisi		tware i	unginee	amg			Ty	3	0/1	0/0	4	
L : Lecture 7				rvised l	Learnin	g P : Pr	oject R	: Resea			0/1	0/0		
T/L/ETL : T	heory/	Lab/Emb	edded T	heory a	nd Lab									
OBJECTIV	<b>E</b> :												-	
• Und	erstan	•	ses in a s			•								
				•	_		_	_	nd Analys	sis Mod	eling.			
			erent app				nted De	sign						
COURSE O			ng and m		ince me	asures								
CO1					s in mar	naging a	a softwa	re Dev	elopment	 t.				
CO2			differen											
CO3				_			ınd Ana	lysis N	Iodeling.					
CO4		_						•		nt.				
CO5		Apply systematic procedure for software design and deployment.  Compare and contrast the various testing and maintenance												
		se Outcomes with Program Outcomes (POs)												
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			O12	
CO1	Н	H	M	Н	M	L	L	Н	H	Н	M		H	
CO2	Н	Н	H	Н	Н	M	M	Н	Н	M	L		M	
CO3	Н	Н	Н	M	M	M	M	M	Н	M	L		M	
CO4 CO5	H H	H	H H	<u>Н</u> Н	H H	M M	M M	H H	H	H	M		H	
COs /		SO1	PS(			O3		О4	П	п	M		Н	
PSOs	r	301	130	<i>J</i> 2	13	03	10	004						
CO1		Н	Н	[	I	<del>I</del>	]	Н						
CO2		Н	M	[	N	Л	l	M						
CO3		Н	Н	[	I	H	]	Н						
CO4		Н	Н	[	I	H	]	Н						
CO5		Н	Н			Л		Н						
H/M/L indic	ates S	trength of	f Correla	tion I	I- High	, M- M	edium, l			Т				
Categor y		ces	ocial					nical Skill						
	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
	$\mathbf{B}_{\hat{\epsilon}}$	En	H ₁	<b>P</b> r	Pr	O	Pr	In:	Sc					
Approval				27 th m	peting	of Aces	lemic (	Joursi	l, June 20	<u> </u> )17				
Approvai				<i>41</i> III	iceung	oi Acac	ienne (	Julici	i, June 20	) <b>1</b> /				

Course Code	Prerequisite Course Code	Course Title	Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BIT17002	NIL	SOFTWARE ENGINEERING	PC	4	3	0/1	0/0	Ту

## **OBJECTIVES:**

- Understand the phases in a software project
- Understand fundamental concepts of requirements engineering and Analysis Modelling.
- Understand the major considerations for enterprise integration and deployment.
- Learn various testing and maintenance measures

#### UNIT I: IMPORTANCE OF SOFTWARE ENGINEERING

12 Hrs

Introduction - Software processes- Software process models: The waterfall model, Incremental development, Reuse-oriented software engineering - Process activities: Software specification - Software design and implementation - Software validation - Software evolution- Process iteration: Prototyping, Incremental delivery, Boehm's spiral model - Agile methodology

## **UNIT II: SOFTWARE REQUIREMENTS**

12 Hrs

Requirements engineering: Functional and non-functional requirements — The software requirements document — Requirements specification - Requirements engineering Processes — Requirements elicitation and analysis — Requirements validation — Requirements management — System Modeling: Context models — Interaction models - Structural models - Behavioral models

## UNIT III: SOFTWARE DESIGN & TESTING

12 Hrs

Architectural design: Architectural design decisions - Architectural views - Architectural patterns - Application architectures - Design and implementation: Object-oriented design using the UML - Design patterns - Implementation issues - Software testing: Development testing - Test-driven development - Release testing - User testing

## **UNIT IV: SOFTWARE QUALITY & MANAGEMENT**

12 Hrs

Project management: Risk management- Managing people – Teamwork - Project planning: Software pricing - Plan-driven development - Project scheduling - Agile planning - Estimation techniques Quality management: Software quality - Software standards - Reviews and inspections - Software measurement and metrics - Configuration management: Change management - Version management - System building - Release management

## **UNIT V: APPLICATIONS**

**12 Hrs** 

1. SRS in IEEE format for any case study 2. Use project management tool to schedule project plan 3. RMMM plan for case study. 4. Develop test cases for white box testing 5. Change specifications and make different versions using any SCM tool.

**Total Hours: 60** 

## **Text Books**

1. Ian Sommerville (2008) Software Engineering (9th ed.) Pearson Education Asia

## **Reference Books**

- 1. Roger S. Pressman (2010) *Software Engineering: A Practitioner Approach* (8th ed.) McGraw hill Publications
- 2. Fairley (2001) Software Engineering Concepts, McGraw-Hill

<b>Subject Code:</b>	Subject Name :	Ty /	L	T /	<b>P</b> /	C
BCS17004	DATABASE MANAGEMENT SYSTEMS	Lb/ ETL		S.Lr	R	
	Prerequisite: BIT17001	Ту	3	0/1	0/0	4

L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab

# **OBJECTIVE:**

- To understand the different issues involved in the design and implementation of a database system.

network	models								ng, relatio			
	-	ndersta	nding of	essentia	al DBM	IS conc	epts suc	ch as: d	atabase s	ecurity, ii	ntegrity,	and
concurre		NATES (	CO-) - (	2 5)								
COURSE C					. 1	1 DD1	4C		1.4			
CO1	•							-	technique			
CO2	•						, maintai	ining, ar	nd queryin	g database	es.	
CO3	•		gn Databa				(DO )					
Mapping of									DO0	DO10	DO11	DO 10
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	M	M	L	M	Н	M	M	M	M	M	Н
CO2	M	Н	M	M	Н	M	M	M	Н	L	L	M
CO3	Н	M	Н	Н	M	M	L	L	M	L	M	Н
COs /	PS	O1	PSO	<b>J</b> 2	PS	O3	PS	SO4				
PSOs		T	Ψ,	<u>-</u>	1	т		\ <b>/</b>				
CO1		H	H			H		M				
CO2		M	M			H		L	_			
CO3		M	F. C. 1			M		M				
H/M/L indic	cates Str	ength of	f Correla	tion I	1- High	, M- M	edium,	L-Low				
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
				~	_							
				27 th n	neeting	of Aca	demic	counci	l, June20	17		
Approval												

Course Code	Prerequisite	Course Title	Category	C	L	T/SL	P/R	Ty/ Lb/
	Course Code					r		ETL/
								EVL
BCS17004	BIT17001	DATABASE MANAGEMENT SYSTEMS	PC	4	3	0/1	0/0	Ту

#### **OBJECTIVES:**

- To understand the different issues involved in the design and implementation of a database system.
- To study the physical and logical database designs, database modeling, relational, hierarchical, and network models.
- To develop an understanding of essential DBMS concepts such as: database security, integrity, and concurrency.

# **UNIT I: FUNDAMENTALS OF DATABASE**

12 Hrs

 $Introduction - Purpose \ of \ database \ systems - Data \ Abstraction - Data \ models - Instances \ and \ schemas - Data \ Independence - DDL - DML - Database \ user - ER \ model - Entity \ sets- \ keys - ER \ diagram - relational \ model - structure - relational \ algebra- \ relational \ calculus- \ views$ 

UNIT II : SQL 12Hrs

 $SQL-QBE-level-Basic\ Structure-various\ operations-relational\ database\ design-problems\ in$  the relational data base design-normalization-normalization using functional-Multivalued join dependence

# UNIT III: FILE STRUCTURE, INDEXING & HASHING

12 Hrs

File and system structure – overall system structure – file transaction – data dictionary – indexing and hashing basic concepts and B+ tree Indices - static and dynamic hash functions

#### **UNIT IV: QUERY PROCESSING AND TRANSACTIONS**

**12 Hrs** 

 $Overview - Measures \ of \ Query \ Cost - Selection \ Operation - Sorting - Join \ Operation - Transaction \ Concept - A \ Simple \ Transaction \ Model - Storage \ Structure - Serializability$ 

### UNIT V: CONCURRENCY CONTROL AND RECOVERY SYSTEM

12 Hrs

Lock-Based Protocols - Deadlock Handling - Timestamp-Based Protocols - Validation-Based Protocols - Failures Classification - Storage - Recovery and Atomicity - Recovery Algorithm - Buffer Management

**Total Hours: 60** 

#### **Text Books**

1. Abraham, Silberschatz. Henry, F. K.. Sudharshan, S. (2013) *Database System Concepts* (6th ed.) Tata McGraw Hill, New Delhi

# **Reference Books**

- 1. Ramez, E. Shamkant, B. Navathe (2008) *Fundamentals of database systems* (5th ed.), Pearson Education
- 2. Date, C. J, (2012) An Introduction to Database Systems (8th ed.), Pearson Education

Subject Cod	le: S	Subject N	lame :						T / L/	L	T /	<b>P</b> /	C
BIT17003		System	m Softw	are ar	ıd Ope	erating	System	m	ETL		S.Lr	R	
		Prerequisi							Ту	3	0/0	0/0	3
L: Lecture 7	T: Tu	torial Sl	Lr : Supe	rvised l	Learnin	g P : Pr	oject R	: Rese	arch C: C	redits			
T/L/ETL: T	heory	/Lab/Emb	edded T	heory a	nd Lab								
OBJECTIV	<b>E</b> :												
		w some o		•		-		tware	of a com	puter s	ystem s	such as	
		blers, Co	-							<b>a</b>	11	<b>.</b>	
		dy and ap		-	_	-	_	•	is, such a	is Syst	em call	s, Inter	•
		s Commu		_		_	•		*000000*	and Di	alz		
		dy and ap lling,Stor								and Di	SK		
COURSE O					iii aiiu	аррис	ations	on on	17.				
CO1					iccupc	accocia	tad wi	th cyc	tem soft	ware a	nd one	rating	
		systems	_	acsigii	issucs	associo	accu WI	icii 3y3	cerri surt	wait a	na ope	iuuiig	
CO2			w var	י פווסו	าเบเลเล	s mar	nagem	ent c	oncepts	inclu	ding (	schedu	ling
		synchro		-	010003	, illul	.abciiii		oncepts	meru	wing .	Jerreau	6,
C03					broodi	na Ma		<b></b>	om ont o	nd Dos	d locks		
C03									ement a				ale.
C04							•	n inter	face and	impie	mentat	ion, ais	SK
		Manage											
Mapping of									DOO	DO16	DO 1	1 PO	10
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			012
CO1	H	M H	M H	M M	L M	L M	H	L L	L L	L M	L M	L M	
C02	Н	M	M	M	L	L	M	M	L	L	L	M	
C04	M	M	L	L	Н	M	M	L	L	L	M	M	
COs/		PSO1	PSC	l		O3		SO4		-	171	1111	
PSOs					- ~								
CO1	Н		Н		M		M						
CO2	M		M		L		L						
C03	L		L		M		M						
C04	Н		M		M		M						
H/M/L indic	ates S	strength of	f Correla	tion I	H- High	, M- M	edium,	L-Low	,	1			
			al					Internships / Technical Skill					
Categor		Engineering Sciences	Humanities and Social Sciences		S								
у	S	ciel	S pu		ive	တ္သ	ject	Тес					
	Basic Sciences	Sgl	s ar	Program Core	Program Electives	Open Electives	Practical / Project	/ SC					
	cie	erin	nitie es	m C	m E	lec	al/	shiţ	ills				
	ic S	ine	man ence	graı	graı	n E	ctic	ern	Soft Skills				
	Bas	Eng	Humaniti Sciences	Pro,	Pro,	Ope	Pra(	Int	Sof				
				~									
Approval			I	27 th m	eeting	of Aca	demic (	Counci	il, June 2	017	<u> </u>		

Course Code	Prerequisite	Course Title	Category	C	L	T/SL	P/R	Ty/ Lb/
	Course Code					r		ETL/
								EVL
BIT17003	NIL	SYSTEM SOFTWARE AND	PC	3	3	0/0	0/0	Ty
		OPERATING SYSTEM		5				

- To view some of the major tasks of the system software of a computer system such as Assemblers, Compilers, Loaders and Linkers.
- To study and apply concepts relating to operating systems, such as System calls, Interprocess Communication and process management.
- To study and apply Deadlocks, Memory management, Processor and Disk scheduling, Storage management and Applications on Unix.

# UNIT I : ASSEMBLERS COMPILERS LOADERS AND LINKERS 9 Hrs

Assemblers: Functions – Features – Machine dependent – Machine independent - Design options – One Pass – Multipass – Compilers: Function - Phases of a Compiler – Loader: Functions – Features – Relocation – Program Linking – Linking Loader Implementation Dynamic linking – Bootstrap loaders.

# UNIT II: OS CONCEPTS AND PROCESS MANAGEMENT

9 Hrs

OS CONCEPTS Introduction- Operating System Structure- Operating System Operations-Operating System Services- System Calls-Process concept-Process Scheduling-Operation on Process-Cooperating Processes- Inter Process Communication-Threads-Overview-Multithreading Models.-CPU Scheduling-Scheduling Criteria-Scheduling Algorithms.

# UNIT III: SYNCHRONIZATION AND DEADLOCKS

9 Hrs

Process Synchronization-The Critical Section Problem-Synchronization Hardware-Semaphores-Classical Problems of Synchronization-Deadlocks-System Model-Deadlock Characterization-Methods of Handling Deadlocks- Deadlock Prevention-Deadlock Avoidance-Deadlock Detection-Recovery from Deadlock

# UNIT IV: MEMORY MANAGEMENT I/O MANAGEMENT

9 Hrs

Background-Swapping-Contiguous Memory Allocation - Address Translation - Paging - Segmentation - Segmentation with Paging - Paging Algorithms- Thrashing-Virtual Memory management- File Access methods- File system structure -Disk Scheduling

# **UNIT V: APPLICATION**

9 Hrs

Case study on UNIX Operating System – Design principles – Process management – Scheduling – Memory Management - Inter process Communication.

**Total Hours: 45** 

#### **Text Books**

- 1. Beck L. (2008) System Software, An Introduction to System Programming (3rd ed.), Pearson
- 2. Silberschatz, Galvin, Gagne (2012) Operating System Concepts, (9th ed.), John Wiley & Sons (Asia) Pt. Ltd, Singapore,.

#### **Reference Books**

- 1. Andrew S. Tanenbaum, Albert S, Wood Hull(2015) Modern *Operating System, Pearson publication*
- 2. D.M.Dhamdhere (2012) *Operating SystemsConcepts*, (3rd ed.), Tata McGraw-Hill Publishing Company Ltd.
- 3. William Stallings (2015) Operating Systems (8th ed.) Prentice Hall of India

# Department of CSE&IT

Subject Cod BEC17I03	le: Su	ıbject N Micı	lame :	essors	and M	icro C	ontrol	lers	Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
	Pr	erequisi	te: BES1	7102					Ту	3	0/0	0/0	3
L : Lecture 7	: Tuto	rial S	Lr : Supe	ervised	Learnin	g P : Pr	oject R	: Rese	arch C: C	Credits			
Ty/Lb/ETL:	Theor	y/Lab/E	mbedded	l Theor	y and L	ab							
OBJECTIV													
					_			of the	processo	rs and c	ontrolle	rs.	
			nbly lang										
	_		lerstand t		_		-						
					cepts of	the per	ipheral	device	s with pro	ocessors	S		
COURSE O	UTCO	MES (	COs): (	3-5)									
CO1	A	Ability t	o unders	and the	archite	ecture o	f 8086	microp	rocessor				
CO2		hility t	o underst	and the	archite	ecture o	f 8051 -	microce	ontroller				
CO2		Tomity t	o unacis	and tile	arciiite		1 0031		onu onei				
CO3		-	o underst ocessors	and the	interfa	cing of	differe	nt perip	oheral dev	vices wi	th the		
CO4	Į	Indersta	and the a	pplicati	ons of r	nicropr	ocessor	s & mi	crocontro	ollers			
Mapping of	Cours	e Outco	mes wit	h Prog	ram Oı	itcome	s (POs)	)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PC	12
CO1	Н	M	L	L	L	M	L	L	M	L	L	M	
CO2	Н	M	L	L	L	M	L	L	M	L	L	M	
CO3	Н	M	L	L	M	L	L	L	L	L	L	M	
CO4	Н	M	L	L	M	L	L	L	L	L	L	M	
COs / SOs		SO1	PS	O2		O3		SO4					
CO1	Н		L L		L L		M		_				
CO ₂	H H		L		L		M M		$\dashv$				
CO4	Н		M		M		L		$\dashv$				
H/M/L indic		ength o		tion I	'VI H- High	, M- M		L-Low	,				
		8			81								
Categor			al					nical Sk					
у	Sasic Sciences	Ingineering Sciences	Humanities and Social ciences	Program Core	Program Electives	)pen Electives	Practical / Project	nternships / Techr	oft Skills				
у	Basic Sciences	₹ Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skil	Soft Skills				

Course Code	Prerequisite Course Code	Course Title	Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BEC17I03	BES17I02	MICRO PROCESSORS AND MICRO CONTROLLERS	IDT-2	3	3	0/0	0/0	Ту

#### **OBJECTIVES:**

- To study the basic architectures and operational features of the processors and controllers.
- To learn the assembly language programming of 8086.
- To design and understand the multiprocessor configurations.
- To understand the interfacing concepts of the peripheral devices.

#### UNIT I 16 BIT MICROPROCESSOR

9 Hrs

Evolution of processors – 8086 Architecture – Functional Diagram – Register organization – Memory Addresses – Minimum mode – Maximum mode – Interrupts of 8086

# UNIT II INSTRUCTION SET AND ALP

9 Hrs

Instruction Formats – Addressing modes – Instruction set – Simple programs involving logical, branch and call instructions – sorting – string manipulations

# UNIT III INTERFACING

9 Hrs

Memory Interfacing – I/O Interfacing – Programmable Peripheral Interface 8255 – USART – DMA controller – Programmable Interval Timer 8253

# UNIT IV MICROCONTROLLER

9 Hrs

Introduction – 8051 Architecture – I/O Ports – Memory Organization – Addressing modes – Interrupts

#### UNIT V APPLICATIONS

9 Hrs

 $Instruction\ set\ of\ 8051-Applications-Simple\ programs-Interfacing\ with\ ADC\ -\ Interfacing\ with\ DAC\ -\ Stepper\ Motor-Traffic\ Light\ Controller$ 

**Total Hours: 45** 

#### **Text Books:**

- 1. Ray A.K. & Bhurchandi K.M. (2013) *Advanced Microprocessors and Peripherals*, Tata McGraw Hill Education pvt Ltd
- 2. Douglas v Hall. (2006) *Microprocessors and Interfacing* (2nd ed.), Tata McGraw Hill Publishing company Limited

#### **Reference Books:**

- 1. Badri Ram. (2006) *Advanced Microprocessors and Interfacing*, Tata McGraaw Hill Publishing company limited
- 2. Kenneth J. Ayala (2008) "The 8051 Micro Controller", 3rd Edition, Thomas Delmar Learning.

Subject BSK17E		Su	bject N		SOFT	SKILI	LS I			T / L/ ETL	L	T/ S.Lr	· P/R	С
		Pre	erequisi	te: NIL						ETL	1	0/1	1/0	2
L : Lectu T/L/ETL OBJEC	Theo TIVE: To a mate CV To b To b	create rix, le help s 's and help s	e awaren eading to students d resume student h	ness in sice developments devel	tudents, op a pos re of var ace vari	various tectors type	s top co ame of n chnique	mpanies nind. s of cand	Research helping didate re preparire and pre	them in cruitme	mpro nt ar	ove the	o them p	repare
COURS Students				Os):(3	B- 5)									
CO1				s top co	mpanie	s leading	g to imp	roveme	nt in ski	lls amoı	ngst	them.		
CO2 CO3 CO4	to prepar	e for	CV's and differen	d resument types	es. of inter	views aı	nd be pi	epared f	group of for HR a	nd tech	nical			be able
Mappin									<u> </u>					
COs/POs	s I	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	O10	PO11	PO12
CO1	I	Ĺ	L	L	L	L	M	M	Н	M	Н	[	M	Н
CO2		Ĺ	L	L	L	L	M	M	Н	M	Н		M	Н
CO3		Ĺ	L	L	L	L	M	M	Н	M	Н		M	Н
CO4		Ĺ	L	L	L	L	M	M	Н	M	Н		M	Н
COs / PS	SOs	PS	SO1	PS	O2	PS	SO3							
CO1	I	L		L		Н								
CO2	I			L		Н								
CO3	I			L		Н								
CO4 H/M/L ii	I		noth of	Correlat	ion U	H	M Ma	 dium, L-	Low					
11/101/12/11	idicates	Suc	ingui oi v	Conciai	1011 11	- mgn,	101- 1010	urum, L	-LOW				1	
Categor		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approva	1			<b>✓</b>						<b>√</b>				

Course Code	Prerequisite Course Code	Course Title	Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BSK17ET1	NIL	SOFT SKILLS I	SS	2	1	0/1	1/0	ETL

#### **OBJECTIVES**

- 1) To bring behavioural patterns of students.
- 2) To train them for corporate culture.
- 3) To create self awareness.
- 4) To build confidence.
- 5) To train the students for facing the interviews and develop interpersonal relationship.

### UNIT 1

Creation of awareness of top companies / improving skill set matrix / Development of positive frame of mind / Creation of self awareness.

### UNIT 2

Group discussions / Do's and don'ts – handling group discussions / What evaluators look for interpersonal relationships / Preparation of Curriculum Vitae / Resume.

#### UNIT 3

Interview – awareness of facing questions – Do's and don'ts of personal interview / group interview, enabling students to prepare for different proce3dures such as HR interviews and Technical Interviews / self introductions.

### **UNIT 4**

Verbal aptitude, Reading comprehension / narration / presentation / Mock Interviews.

# UNIT 5

Practical session on Group Discussion and written tests on vocabulary and reading comprehension.

Subject Coo BCS17ET2	de: S	ubject N		va Pro	gramn	ning			Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
	P	rerequisi	ite: BCS1	7002					ETL	1	0/2	0/0	3
L : Lecture	Γ : Tut	orial S	Lr : Supe	rvised	Learnin	g P : Pr	oject R	: Rese	arch C: C	Credits		1	
Ty/Lb/ETL	: Theo	ry/Lab/E	mbedded	Theor	y and L	ab							
prog	gramm	ing parac	ligm.		concep	ts and to	echniqu	es whi	ch form tl	he objec	t orient	ed	
COURSE O		,	, ,		1 1 1		1.	··	1 1				
CO1									and apple		.1	. :1	
CO2		o wni classes,o polymor	bjects,	metho		ng objenstance		ables,	orogramm compos	_	inherit		and
CO3		Handling	g Model.						II) compo	nents a	nd Java'	s Eve	nt
Mapping of			,						DOO	DO10	DO1	1 P	012
COs/POs CO1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		I P	012
CO2	H	H	H H	H H	L L	L L	H H	M M	H H	H	H		H H
CO2	Н	Н	Н	Н	H	H	Н	M	Н	Н	L		Н
COs /		SO1	PSO			O3		604	11	11	L		
PSOs	1	301	150	32	15	103	1.0	504					
CO1		Н	I.	[	]	L		Н					
CO2		Н	I.	[		L		Н	1				
CO3		Н	I.	[	]	L		Н					
H/M/L indic	ates S	trength o	f Correla	tion I	H- High	, M- M	edium,	L-Low	,				
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
				~									
		ı		27 th r	neeting	of Aca	demic	counci	l, June20	)17			
Approval													

Course Code	Prerequisite Course Code		Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BCS17ET2	BCS17002	JAVA PROGRAMMING	PC	3	1	0/2	0/0	ETL

- To learn the basics of Java Language
- To understand the concepts of object oriented programming paradigm
- To get Knowledge on Standalone Programs and Web application

# **UNIT-I** Overview of Java Language

9 Hrs

Introduction to Java, Features of Java, Comparison with C and C++, Java and World Wide Web, Java Environment, Java Development kit (JDK), Java Runtime Environment (JRE), Application Programming Interface (API), Java Virtual Machine (JVM), Primitive Datatypes, Declarations, Ranges, Variable Names Conventions, Numeric Literals, Character Literals, String Literals, Arrays (One dimensional, two-dimensional), Enumerated Data Types

# **UNIT-II** Classes, Objects And Methods:

9 Hrs

Classes and Objects, Defining a class; Defining instance variables and methods, Creating objects out of a class, Method calls via object references, Abstraction, Packages, Interfaces and Abstract classes, Abstract and non-abstract methods, Inheritance, extends and implements keywords in Java, Super class and Sub class, this keyword, super keyword in Java for inheritance, Concrete classes in Java, Polymorphism, Compile time polymorphism -- Overloading of methods, Run time polymorphism -- Overriding of methods, Method Overriding rules and method overloading rules, Encapsulation.

### **UNIT-III** Exception and Multithreaded Programming:

9 Hrs

Exception handling, Need for exceptions, API heirarchy for Exceptions, Types of Exceptions, Keywords in Exception API: try, catch, finally, throw, throws, -Introduction to Threads – Creating Threads, Extending the Thread Class, Implementing the runnable interface, life cycle of a thread, priority of a thread, Multithreading ,Synchronization, Dead Lock.

#### **UNIT-IV** Streams and Object Serialization

9 Hrs

Overview of Streams, Bytes vs. Characters, Overview of the entire Java IO API, Reading a file; writing to a file usinf various APIs, Reading User input from console, PrintWriter Class, Object Serialization, Serializable Interface, Serialization API, ObjectInputStream and ObjectOutput, Transient Fields, readObject and writeObject.

# **UNIT-V** Graphics Programming:

9 Hrs

Introduction, Abstract Window Toolkit (AWT), Applets-Life Cycle- Basics of event handling – event handlers – adapter classes – actions – mouse events –AWT event hierarchy – introduction to Swing – buttons–Layout Management–Swing Components.

**Total Hours: 45** 

#### **Text Books:**

- 1. Herbert Schildt, "The Complete Reference JAVA 2", Tata McGraw Hill publications, 7th Ed., 2007.
- 2. Balagurusamy, "Programming with JAVA A primer 3rd Edition", Tata McGraw-Hill, 2007 **Reference Books:**
- 1. Y.Daniel Liang, "An Introduction to JAVA Programming", Pearson, 2015
- 2. Kathy Sierra, Bert Bates," Head First Java", Oreilly Publication, 2nd Edition, 2005

Subject Code BCS17L03		ıbject Na ab	ame :	Datab	ase Ma	nageme	nt Syste	ems	Ty / Lb/ ETL	L	T / S.Lr	P/R	С
			D CC 15	. 01								2 /0	-
	Pi	erequisit	e: BCS17	L01					Lb	0	0/0	3/0	1
L : Lecture T :			Supervise			Project I	R : Rese	arch C:	Credits	11		1	
Ty/Lb/ETL: 7		Lab/Emb	edded The	eory and	Lab								
OBJECTIVE				201		C							
To create a d		-	•	_	_		_		-	•		. •	
Understand to					straints,	referen	itial inte	egrity c	constraints	, trigge	rs, asser	tions.	
COURSE OF					and ann	1.,	mon SO	T atata	manta in a	Judina	DDI D	MLand	1
COI	•			•		•	_	-	ements inc	riuding	DDL, D	ML and	1
CO2			statemen						and to ap	nly om	haddad (	nd nost	tod.
CO2		queri		iii view	s or tau	nes ioi	umeren	ii useis	and to ap	pry em	bedded a	ma nes	leu
CO3				nlemer	t a data	basa fo	r a give	n nroh	lem accor	ding to	wall kn	oven dag	rian
	'	•	•				_		with data	_		own des	ngn
Mapping of C	Course		1				1	Hance	willi data (	COHSISI	JICy.		
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
COS/POS	POI	POZ	PO3	PO4	PO3	PO6	PO7	PO8	109	POIU	POII	PO	12
CO1	Н	M	Н	M	M	M	M	L	Н	M	Н	]	M
CO2	M	M	M	Н	M	Н	M	Н	M	M	M	]	Н
CO3	M	L	Н	M	M	L	M	M	M	Н	L	]	М
COs / PSOs	P	SO1	PSO	02	PS	O3	PS	SO4					
CO1		M	N	[	I	Н	1	M					
CO2		M	Н	[	N	M	1	M					
CO3		Н	N.	[	I	Н	1	M					
H/M/L indicat	es Stre	ngth of C	orrelation	H- Hi	gh, M- I	Medium	, L-Low	,					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
				-									
				27 th	meetin	g of Aca	demic o	council	, June2017	7			
Approval													

Course Code	Prerequisite Course Code	Course Title	Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BCS17L03	BCS17L01	DATABASE MANAGEMENT T SYSTEMS LAB	PCL	1	0	0/0	3/0	Lb

- To create a database and query it using SQL, design forms and generate reports.
- Understand the significance of integrity constraints, referential integrity constraints, triggers, assertions.

# I. Program to learn DDL and DML commands

- 1. Execution of data descrption language commands
- 2. Execution of data manupulation language commands
- 3. Execution of data control language commands
- 4. Execution of transation control language commands
- 5. Insert command
- 6. Select, from and where clause
- 7. Set operation [union, intersection, except]
- 8. String operations
- 9. Nested queries
- 10. Join operation
- 11. Modification of the database

# II. PL / SQL programs

- 1. Control statements (for loop)
- 2. Control statements (while loop)
- 3. Control statements (for reverse loop)
- 4. Control statements (loop end loop)
- 5. Sum of even numbers
- 6. Sum of odd numbers
- 7. Series generation
- 8. Implementation of sub-program
- 9. Implementation of cursor using pl/sql
- 10. Control statement (if-else end if)

Subject Code: BIT17L02	9	ject Nan System S	Softwai	re and	Opei	rating	Syste	em La	ab	T / L/ ETL	L	T/ S.Lr	P/ R	C
L : Lecture 7		requisite:		orviced	1 I 00#	nina D	· Dec	oot D	· Doggo	Lb	0 Credits	0/0	3/0	1
			•			Ü	. F10j	ect K	. Kesea	icii C. (	reuns	•		
T/L/ETL : T			bedded	Theory	and I	<b>2</b> 40								
		IVE : nix Com	mands.											
Prog	grams	s on proc	cess cre	ation a										
	_	cess com			ıcludi	ing sha	ared n	nemo	ry, pip	es and	messa	ges		
COURSE OU	JTCO	OMES (CO	Os): (3-	5)										
CO1		Underst	anding	of Syr	nbol 1	table,	Asser	nbler,	, Loade	er and l	Linker	•		
CO2		Demons Process								ew proc	ess, w	vaiting fo	r a	
C03		Demons			_									
C04		Demons	trate un	derstand	ding o	of how	to syn	chron	ize pro	cesses				
C05		Demons Replace				g of In	ter-pı	ocess	comn	nunicat	ion an	d page		
Mapping of	Cou					Outco	mes (	POs)						
COs/POs	PO1	PO2	PO3	PO4	PO:	5 PO	6 P	O7	PO8	PO9	PO10	PO11	PO	)12
CO1	Н	M	M	M	L	M	N		Н	M	L	L	L	
CO2	M	M	M	Н	L	L	L		M	M	M	M	M	
C03	Н	Н	M	M	L	L	N		M	M	M	M	M	
C04 C05	M H	M M	M	H L	H L	L	L N		L M	L L	M	L M	L	
COs / PSOs		PSO1		O2		PSO3	IV	PSC		L	Н	IVI	M	
COS/F3OS	Н	1301	Н	002	M	1303	L		<i>)</i> 4					
CO2	M		M		Н		L							
C03	Н		Н		M		N							
C04	M		M		Н		Н							
C05	Н		M		M		L							
H/M/L indic	ates S	Strength c	of Corre	lation	H- H	igh, M	- Med	lium, I	L-Low					
Category														
		Basic Sciences Finoineering Sciences		Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills				
		S SC		S	22	<u></u>								
	0	sasic Sc		fumar cienc	rogra	rogr	)pen	ract	Int	oft				
		Basic Sciences Fingineering Sc		Humanit Sciences	Progra	Progr	Open	Pract	Int	Soft				
Approval		Basic Sc Fnoineer		,	<b>/</b>		of A			oncil, Ju	ine			

Course Code	Prerequisite Course Code		Category	C	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BIT17L02	NIL	SYSTEM SOFTWARE AND OPERATING SYSTEM LAB	PCL	1	0	0/0	3/0	Lb

To implement the following list of Programs.

- Basic Unix Commands.
- Programs on process creation and Synchronization, and Scheduling.
- Inter process communication including shared memory, pipes and messages

# **SYSTEM SOFTWARE**

- 1) Implementation of a Symbol Table
- 2) Implement Pass 1 of Two pass Assembler
- 3) Implement Pass 2 of Two pass Assembler
- 4) Implementation of Absolute Loader
- 5) Implementation of Relocation Loader

#### **OPERATING SYSTEMS**

- 1) Basic Unix commands
- 2) Shell Programming
- 3) System Calls using Fork, Exec
- 4) Inter Process Communication (IPC).
- 5) Implementation of Scheduling Algorithms
- 6) Dining Philosophers Problem
- 7) Bankers Algorithm
- 8) Implementation of File Allocation Strategies
- 9) Simulate Page Replacement Algorithms

Subject Cod	le: S	ubject N	lame :						Ty /	L	T /	P/	C
BEC17IL2		Micro	Processo	ors and	Micro	Contro	ollers I	Lab	Lb/ ETL		S.Lr	R	
	P	rerequisi	te: BEC	17IL1					Lb	0	0/0	3/0	1
L : Lecture 7	Γ: Tut	orial S	Lr : Supe	rvised	Learnin	g P : Pı	oject R	: Rese	earch C: C	credits		_	
Ty/Lb/ETL:	Theo	ry/Lab/E	mbedded	l Theor	y and L	ab							
OBJECTIV													
		ne asseml		0 1	_	_							
		ne asseml	-		_	-							
To u	ındersi	tand the i	nterfacin	g conce	epts of t	the peri	pheral c	levices	with pro	cessors			
COURSE OU	J <b>TCO</b>	MES (CC	Os): (3-5	5)									
CO1		Ability t	o underst	and the	Progra	mming	of 808	6 micro	oprocesso	r			
CO2		Ability t	o underst	and the	Progra	mming	of 805	1 micro	ocontrolle	er			
CO3		Understa	and the ap	pplicati	ons of r	nicropr	ocessor	s & mi	crocontro	ollers			
Mapping of	Cour	se Outco	mes wit	h Prog	ram Oı	ıtcome	s (POs)	1					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PC	)12
CO1	Н	M	L	L	M	L	L	L	L	L	L	M	
CO2	Н	M	L	L	M	L	L	L	L	L	L	M	
CO3	Н	M	L	L	M	L	L	L	L	L	L	M	
COs /	P	SO1	PSO	O2	PS	O3	PS	SO4					
PSOs													
CO1	Н		M		L		L						
CO2	Н		M		L		L						
CO3	Н		M		L		L						
H/M/L indic	ates S	trength o	f Correla	tion I	H- High	, M- M	edium,	L-Low	1	1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
		/											
Approval		<u>l</u>	ı	27 th	meeting	g of Ac	ademic	counc	cil, June2	017		ı	

Course Code	Prerequisite Course Code	Course Title  Department of IT	Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BEC17IL2	BEC17IL1	MICRO PROCESSORS AND MICRO CONTROLLERS LAB	IDL-2	1	0	0/0	3/0	Lb

- To learn the assembly language programming of 8086.
- To learn the assembly language programming of 8051.
- To understand the interfacing concepts of the peripheral devices.

# 8086 Microprocessor:

- 1. Arithmetic operations
- 2. Block Movement of Data
- 3. Square and square root
- 4. Searching and sorting

# **8051 Microcontroller:**

- 1. Arithmetic operations
- 2. Block Movement of Data
- 3. Square and square root
- 4. Searching and sorting

# **Interfacing:**

- 1. Traffic light Controller
- 2. Stepper Motor Controller
- 3. Waveform Generation
- 4. Matrix Display

Course Code	Prerequisite Course Code		Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BIT17TS1	NIL	TECHNICAL SKILL I (EVALUATION)	TS	1	0	0/0	0/0	EVL

- ➤ To make the students expert in domain specific knowledge.
- ➤ To develop professionals with idealistic, practical and moral values.
- ➤ To facilitate the students with emerging technology.

From the list of skill development courses declared by the department, the students are expected to acquire the skill and get certified. This will be evaluated at the end of the semester by the faculty.

Subject Cod	le: Su	ıbject N	lame :						Ty /	L	T /	P/	С
BMA17016		STATI	STICS F	OR CO	OMPU'	TER E	NGINE	EERS	Lb/ ETL		S.Lr	R	
	Pr	erequisi	te:						Lb	0	0/0	3/0	1
L : Lecture T	: Tuto	rial S	Lr : Supe	rvised l	Learnin	g P : Pr	oject R	: Rese	arch C: C	redits			
Ty/Lb/ETL:	Theor	y/Lab/E	mbedded	Theor	y and L	ab							
OBJECTIV	E:												
•			nd the E		-								
•			and the E		-			•					
•			and the E		_				ممد نامید				
•			and the E						ributions				
COURSE OU					лесры	5 III 5 ai	inpinig	theor.	<b>y</b>				
CO1													
CO2													
CO3													
CO4													
CO5													
Mapping of	Cours	e Outco	mes wit	h Progi	ram Ou	tcome	s (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	l PC	)12
CO1	Н	Н	M										
CO2	Н	Н	M										
CO3	Н	Н	M										
CO4	Н	Н	M										
CO5	Н	Н	M	22	Da	02	DC	10.4					
COs /PSOs CO1	L	SO1	PS0	<b>J</b> 2	L	O3	PS	SO4					
CO2	L		L		L				-				
CO3	L		L		L								
CO4	L		L		L				=				
CO5	L		L		L				7				
H/M/L indica	ates Stı	ength o	f Correla	tion I	H- High	, M- M	edium,	L-Low	7				
								1					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skil	Soft Skills				
Approval				27 th 1	neeting	g of Ac	ademic	counc	ril, June2	017			

#### **SEMESTER V**

Course Code	Prerequisite Course Code		Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BMA17016	BMA17013	STATISTICS FOR COMPUTER ENGINEERS	M-5	4	3	1/0	0/0	Ту

(Common to III yr. / V Sem. B.Tech (Full Time), I yr. / II Sem. B.Tech (Part Time) – IT)

# **Course Outcomes:**

To understand the Basic concepts in Statistics

To understand the Basic concepts in Probability

To understand the Basic concepts in Correlation

To understand the Basic concepts in Probability distributions

To understand the Basic concepts in Sampling theory

# UNIT I BASICS OF STATISTICS

(12 hrs)

Variables – Uni-variate Data – Frequency Distribution – Measures of Central Tendency – Mean – Median – Mode – Quartiles – Measures of Dispersion – The Range – Quartile Deviation – Standard Deviation – Relative Measures of Dispersion – Coefficient of Variation – Quartile Coefficient of Variation.

### UNIT II PROBABILITY AND RANDOM VARIABLE

(12 hrs)

Axioms of Probability – Conditional probability – Total probability – Baye's Theorem – Random variable – Probability mass function – Probability density function – Properties – Moments (Definition and simple problems).

# UNIT III CORRELATION & REGRESSION

(12 hrs)

Measures of Skewness & Kurtosis – Bi-variate data – Applications of Correlation: Karl Pearson's Coefficient of Correlation – Rank Correlation: Spearman's Rank Correlation – Linear Regression.

# UNIT IV STANDARD DISTRIBUTIONS

(12 hrs)

Binomial – Poisson – Geometric – Uniform – Exponential – Normal distributions.

# UNIT V TESTING OF HYPOTHESIS

(12 hrs)

Tests of Significance – Large Sample Tests – Mean – Proportions – Small Sample Tests – t, F, Chisquare Tests: Independence of Attributes, Goodness of Fit.

Total no. of hrs: 60

#### **Text Books:**

- 1) Veerarajan T., *Probability, Statistics and, Random Processes*, Tata McGraw Hill Publishing Co., (2008).
- **2)** Gupta S.C., Kapoor V.K., *Fundamentals of Mathematical Statistics*, S.Chand & Co., (2007).

### **Reference Books:**

- 1. Singaravelu, *Probability and Random Processes*, Meenakshi Agency, (2017).
- 2. Richard Johnson A., *Miller & Freund's Probability and statistics for Engineers* (9th ed), Prentice Hall of India, (2016).

Subject Cod BCS17I01	le: Su	ıbject N	lame : COMP	UTER	NET	WORK	XS .		Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
	Pr	erequisi	te: NIL						Ty	3	0/0	0/0	3
L : Lecture T	: Tuto	rial S	Lr : Supe	rvised	Learnin	g P : Pr	oject R	: Rese	arch C: C	credits			1
Ty/Lb/ETL:	Theory	y/Lab/E	mbedded	l Theor	y and L	ab							
<ul><li>To t</li><li>To l</li></ul>	studen inderst earn ab tudy ab UTCO	and horeout the bout the out the out the	e protoco e variou COs) : (	nunicated solution of the solu	ion tak data co ork alg	es plac ommun orithm	e in va ication s for sr	rious i in the nooth	etions mediums e network data com	layers nmunic	ation		
			nication		netion	, 01 140	twork .	Devie	25 <b>&amp;</b> 351	Layen	3 101		
CO2	k	Cnowle	dge on I	P addr	esses a	nd pro	tocols.						
CO3	a	lgorith	ms						ongestio	n on ne	twork u	sing	
Mapping of	Course	e Outco	mes wit	h Prog	ram Oı	itcome	s (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	Н	M	M	L	Н	M	L	L	H	M	Н		H
CO2 CO3	H H	H	H H	M H	H H	H M	M M	L L	H	M M	H		H H
COs / PSOs		O1	PSO			O3		O4	11	1V1	11		11
CO1		H	H			L		H					
CO2	]	Н	H	I	]	L		Н					
CO3		Н	H			L		Н					
H/M/L indic	ates Str	ength o	f Correla	tion I	H- High	, M- M	edium,	L-Low	7	T	1	ı	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval				27 th	meetin	g of Ac	ademio	c coun	cil, June2	2017			

Course Code	Prerequisite Course Code		Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BCS17I01	NIL	COMPUTER NETWORKS	IDT-3	3	3	0/0	0/0	Ту

#### **OBJECTIVES:**

The students will be able to:

- 1. Build an understanding of the fundamental concepts of computer networking.
- 2. Familiarize the student with the basic taxonomy and terminology of the computer networking area.

#### UNIT I: INTRODUCTION

9 Hrs

Introduction to computer networks and uses - Network: devices, topology, types - Reference model - The physical layer - The theoretical basis for data communication - Transmission media: Guided and unguided- Public Switched Telephone Network.

# UNIT II: DATA LINK LAYER

9 Hrs

Data link layer design issues - Error detection and correction - Sliding window protocols- HDLC - Channel access on links: SDMA - TDMA - FDMA - CDMA - - ETHERNET - 802.11, 802.16 - Bridges and Switches-Bluetooth

#### UNIT III: NETWORK LAYER

9 Hrs

Network layer design issues - Circuit switching - Packet switching - Virtual circuit switching-Routing algorithms - Congestion control algorithms - Internetworking- Network layer in Internet - IPV6

# UNIT IV: TRANSPORT LAYER

0 Hrc

Transport layer design issues - Transport protocols - Simple transport protocol - Internet transport protocols UDP, TCP - Flow Control - Congestion control - Congestion avoidance

# UNIT V: APPLICATION LAYER

9 Hrs

 $Domain\ name\ system\ -\ Electronic\ mail\ -\ Introduction\ to\ World\ Wide\ Web:\ HTTP,\ SNMP,\ Telnet\ ,\ FTP,RTP.$ 

**Total Hours: 45** 

#### **Text Books:**

- 1. Peterson Davie (2012) Computer Networks A System Approach (2nd ed.), Morgan Kauffman Harcourt Publishers.
- 2. James F. Kurose, Keith W. Ross Computer Networking: A Top-Down Approach / Edition 6, Pearson publication, 2012.

### **Reference Books:**

- 1. Andrew S. Tanenbaum. David J. Wetherall, "Computer Networks "5th Edition PHI, 2011
- 2. William Stallings," Data and computer communications", PHI, 2001
- 3. Douglas E. comer," Internetworking with TCP/IP-Volume-I", PHI, 5th edition 2006
- 4. Godbole, "Data communication and networking", TMH, 2004.
- 5. Forouzan B. A., "Data Communications and networking", TMH, 2003.



Subject Code:	Si	ubject N		. J C	4	A 1	·	D:-	T/				P/ R	C
BIT17004	D	Object rerequisi				Anaiys	is and .	Desigi	_	L 3			<b>K</b> 0/0	3
L : Lecture T						ning D ·	Droject	D · Da	Ty			)/()	0/0	3
			•			Ü	riojeci	K . KC	Scarcii	C. CIG	ans			
T/L/ETL : The Control of the Control		Lab/Em	bedded '	Γheor	y and L	_ab								
OBJECTIVE Students wi														
		nd tha b	ngiag of	00	onolyci	c and d	osian							
		nd the ba UML d			•	s and u	esign							
		v to map	_	_										
•	•		_			anas								
		d the va				ques								
COURSE O		,		` ′						100				
CO1		To deve					which 1	proces	ses an	id OOA	AD tec	hniques	sho	uld
		be appli												
CO2	[	To build	l use cas	se dia	agrams	by idea	ntifying	use ca	ases, a	actors a	and the	eir relati	onsh	iips
	1	for a giv	en appl	icatio	on, diff	erentia	te Sequ	ence &	coll	aborati	on dia	agrams		
CO3	-	То ста	moto inti	-mo -4:	000 000		1:			,,4 4la a :		ima as:	oter '	
COS		To gene				rview c	ııagram	is work	ang o	ut the e	exact t	ime cor	istrai	ints
N#		for beha				0.4	(DO	```						
Mapping of					ogram PO4				DO	DO0	DO1	0 DO1	1 D	012
COs/POs	PO1	PO2	2   PC	)3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO1	I P	O12
CO1	Н	Н	Н		M	M	M	M	M	M	L	L	L	,
CO2	Н	M	Н		M	Н	M	M	M	M	L	L	L	
CO3	Н	Н	Н		M	Н	M	M	M	M	L	L	L	
COs / PSOs	P	SO1		PSC	)2	PSO	<b>D</b> 3	P	SO4				1	
CO1	Н		L			M		M						
CO2	Н		L			M		M						
CO3	Н		L			M		M						
H/M/L indica	ates S	trength o	f Correl	ation	H- H	igh, M-	Mediun	n, L-Lo	W	I				
								kill						
								Internships / Technical Sl						
		ses	cia					iica						
Category		len(	So		es/		t c	chr						
	ses	Sci	and	<u>9</u>	ctiv	ves	roje	Te						
	enc	ing	es	CO	Ele	cti	/ Pj	/ sd	<u>s</u>					
	Sci	eer	niti ces	am	l H	Ele	cal	shi	k:i					
	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	ern	Soft Skills					
	Ba	En	Hu Sci	Pro	Pro	OF	Pra	Int	So					
				~										
Approval		1		1	27 th me	eeting o	f Acade	mic C	ouncil	. June		<u> </u>	1	
-FF-3.W						U	201			,				



Course Code	Prerequisite Course Code		Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BIT17004	BCS17002	OBJECT ORIENTED SYSTEM ANALYSIS AND DESIGN	PC	3	3	0/0	0/0	Ту

- ➤ The students can develop the skills to determine which processes and OOAD techniques should be applied to a given project
- ➤ To build use case diagrams by identifying use cases, actors and their relationships for a given application, differentiate Sequence & Collaboration diagrams
- ➤ To generate interaction overview diagrams working out the exact time constraints for behavior of the system.

# UNIT I: OBJECT ORIENTED CONCEPTS AND METHODOLOGIES 9 Hrs

Over view of Object Oriented System Development-OOSD Life Cycle: Process – Analysis – Design –Prototyping – implementation – Testing –Reusability -OMT – Booch Methodology – Jacobson methodology – patterns – unified approach

#### **UNIT II: MODELING and UML**

9 Hrs

UML: Static and Dynamic Models-Introduction to UML -Use case Diagram - Class diagrams - Dynamic modeling-Packages and Model Organization-UML Extensibility-Developing effective documentation-Case Study: Analyzing the ViaNet Bank ATM

# UNIT III: OBJECT ORIENTED ANALYSIS

9 Hrs

Use case model – Creation of Classes: Noun Phrase Approach – Common Class patterns Approach – Use-Case Driven Approach –CRC Approach -Identifying Object Relationships, Attributes and Methods

# **UNIT IV: OBJECT ORIENTED DESIGN**

9 Hrs

OO Design Axioms – Corollaries-Design Patterns- Designing Classes: Class Visibility – refining Attributes – Designing Methods – Access layer: Object Store and Persistence- OODBMS – Table Class mapping –Designing Access layer classes - View layer: Designing Interface Objects

# **UNIT V: TESTING AND APPLICATION**

9 Hrs

Testing: Software Quality Assurance - System Usability and Measuring User Satisfaction-Application: System Architecture: Satellite - Based Navigation - Control System: Traffic Management - Artificial Intelligence - Cryptanalysis - Web Application: Vacation Tracking System.

**Total Hours: 45** 

# **Text Books**

- 1. Ali Bahrami (2008) Object Oriented System Development McGraw Hill international
- 2. Grady Booch, "Object Oriented Analysis and Design with Applications", 3rd Edition, Pearson, 2010.

### **Reference Books**

- 1. Grady Booch (2009) Object oriented Analysis & design , Pearson Education India
- 2. Rambaugh J. Blaha M. P. W., Eddy F. Loresen W.(1997) *Object Oriented Modeling & design*, PHI
- 3. Joey F. G. Dinesh B. J. Valacich S. Jeffrey A. H. (2006) OOSAD (2nd ed.), Pearson



# **Department of IT**

Subject Coo	de: S	ubject N			FODY	AND	CODIN		T/L/	L	T/	P/	C
BEC17I04			RMATIO	JN TH	EORY	AND (	CODIN	G	ETL	3	S.Lr	R	1
L : Lecture		rerequisi		myicad 1	Coomin	~ D . D	oigat D	. Daga	Ty	1	1/0	0/0	4
						g P : Pi	ojeci K	: Kese	arch C. C	redits			
T/L/ETL : T	heory/	Lab/Emb	edded T	heory a	nd Lab								
OBJECTIV													
		ations fo											
		irce codii						on & C	onvolutio	n Codo	0		
COURSE C					OCK COC	ies, Cyc	iic cou	es & C	onvoiunc	ni Code	3.		
CO1					of inforr	nation the	eory, sou	rce codir	ng, channel	coding a	nd channe	el capacit	
		and relatio	n among th	iem			-		-8,			г	<i>J</i> ,
CO2		Understa											
CO3		Implement	the encode	er and de	coder of	block cod	de or con	volution	al code				
Mapping of	Cour	se Outco	mes wit	h Progi	ram Ot	itcomes	s (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PC	12
CO1	Н	M	M	L	M	L	L	L	M	L	L	L	
CO2	Н	Н	Н	L	L	M	L	L	M	M	L	M	
CO3	Н	M	Н	L	M	L	L	L	Н	M	L	M	
COs /	P	SO1	PSO	)2			PSO3				PSO4		
PSOs													
CO1	Н		M		L				Н				
CO2	Н		Н		L				M				
CO3	Н		Н		L				L				
H/M/L indic	ates S	trength of	f Correla	tion H	I- High	, M- M	edium,	L-Low	•				
Categor	es	neering Sciences	anities and Social	e.	ctives	es	oject	/ Technical					
у	Basic Sciences	Engineering	Humanities a Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills				
				<b>/</b>						01=			
Approval				27 th m	eeting	of Aca	demic (	<b>Jounci</b>	l, June 2	017			

Course Code	Prerequisite Course Code	Course Title  Department of IT	Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BEC17I04	NIL	INFORMATION THEORY AND CODING	PC	4	3	1/0	0/0	Ту

- > Derive equations for entropy & mutual information
- > Derive source coding & channel coding for shannon's.
- Explain various codes like linear block codes, Cyclic codes & Convolution Codes.

### UNIT I: INTRODUCTION TO INFORMATION THEORY

12 Hrs

Definition of information -Information Measure and Entropy -properties of Entropy- Differential Entropy- Mutual Information-Information source- Markov source.

#### UNIT II: SOURCE CODING

12 Hrs

Introduction to Lossless coding-kraft McMillan Equality-shannon's source coding theorm - shannon fano coding- Huffman coding- Arithmetic coding - Lempel ziv coding.

# UNIT III: CHANNEL CAPACITY AND CODING

12 Hrs

Introduction to channel capacity- channel capacity of a Binary Symmetric Channel- channel capacity of a Binary Erasure Channel- shannon's channel coding theorem – bandwidth - signal to noise trade off- channel capacity theorem.

#### UNIT IV: LINEAR BLOCK AND CYCLIC CODES

12 Hrs

Binary block code- Linear block code- Systematic LBC- Encoder for LBC-Syndrome Decoding of LBC – Hamming Codes - cyclic codes- Systematic cyclic codes - generator polynomial of cyclic code- parity check polynomial of cyclic codes- encoder for cyclic codes- decoder for cyclic code.

#### UNIT V: CONVOLUTION CODES

12 Hrs

Time domain and frequency domain- code tree, trellis and state diagram- decoding of convolution codes- viterbi decoding algorithm- trellis coded modulation- encoder for TCM- decoder for TCM

**Total Hours: 60** 

#### **Text Books**

- 1. J.S.Chitode (2009) "Information Theory and Coding", Technical publications
- 2. R. Avudaiammal (2010) "Information Coding Techniques", Tata McGraw Hill Education pvt Ltd

#### Reference Books

- 1. Ranjan Bose (2008) "*Information theory, coding and cryptography*", Tata McGraw Hill Publishing Company Limited
- 2. Roberto Togneri and Christopher J.S. desilva (2003) "Fundamentals of Information Theory and Coding Design", Chapman and Hall/CRC



Subject Cod	e: Su	bject N	ame:						Ty/Lb/	L	<b>T</b> /	<b>P</b> /	C
BCS17007		CO	MPUTE		GANIZ. TECTU		I AND		ETL		S.Lr	R	
	Pr	ereauisi	te: BEC		LCTO	KL2			Ty	3	1/0	0/0	4
L : Lecture T					Learnin	g P : Pr	oiect R	: Rese			1,0	0, 0	ļ -
Ty/Lb/ETL:			•			•	3						
	ECTIV		mocdacc	i i iicoi	y and L	ao							
	_		maior o	romnoi	nents o	f a con	nuter	includi	ng CPU,	memo	ry I/O	and	
			d the us	_			-	merua	ing Ci O,	, meme	лу, г	ana	
	_							es both	internal	and ex	ternal.		
				•		•	_		g with th			ardwai	e
COURSE O					<u>U</u>				<u> </u>				
CO1	<u> </u>	tudante	xvill un	daretai	nd how	comp	ıtar ha	rdware	hac ayo	lyad to	moat t	ha naa	de
CO1			process			comp	uci iid	iuwait	has evo	iveu io	meet ti	ne nee	us
CO2			-			hasic et	ructur	and c	peration	of dia	ital com	nuter	
CO3		students xternal		iderstai	nd a wi	de vari	ety of	memo	ry techno	ologies	both in	ternal	and
CO4	S	tudents	s will un	dersta	nd the	differe	nt ways	s of co	mmunica	ating w	ith I/O	device	es
			dard I/C				J			C			
Mapping of	Course	e Outco	mes wit	h Prog	ram Ot	itcomes	s (POs)	1					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PC	)12
CO1	Н	L	Н	L	M	L	M	L	M	M	M	L	
CO2	Н	M	Н	Н	M	L	L	L	M	M	Н	L	
CO3	Н	Н	Н	M	M	M	M	M	Н	M	Н	M	
CO4	Н	Н	Н	Н	Н	M	L	L	Н	M	Н	Н	
COs / SOs		01	PSO			03		SO4					
CO1		H	H			<u>M</u>		H					
CO2 CO3		H	H			L M		H					
		M	H			<u>M</u> L		<u>М</u> М					
	1	М					1	.VI					
CO4		M ength o				M- M	edium						
CO4 H/M/L indica					H- High	, M- M	edium,	L-Low					
CO4 H/M/L indicates						, M- M	edium,	L-Low					
CO4 H/M/L indica		ength o	f Correla			, M- M	edium,	L-Low					
CO4 H/M/L indicates		ength o	f Correla		H- High	, M- M		L-Low					
CO4 H/M/L indicates	ates Str	ength o	f Correla	tion I	H- High			L-Low					
CO4 H/M/L indicates	ates Str	ength o	es and Social	tion I	H- High			L-Low					
CO4 H/M/L indicates	ates Str	ength o	es and Social	tion I	H- High			L-Low					
CO4 H/M/L indicates	ates Str	ength o	es and Social	tion I	H- High			L-Low					
CO4 H/M/L indicates				Program Core uoit		Open Electives W	Practical / Project mnip		Soft Skills				
CO4 H/M/L indicates	ates Str	ength o	es and Social	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill					

Course Code	Prerequisite Course Code		Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BCS17007	BEC17I02	COMPUTER ORGANIZATION AND ARCHITECTURE	PC	4	3	1/0	0/0	Ту

#### **OBJECTIVES:**

The students will be able

- To understand the major components of a computer including CPU, memory, I/O and storage, understand the uses for cache memory,
- To understand a wide variety of memory technologies both internal and external,
- To understand the role of the operating system in interfacing with the computer hardware

### UNIT I: BASIC STRUCTURE OF COMPUTERS

12 Hrs

Basic structure of Computer Hardware-Von-Neumann Architecture-Functional units – Bus Structures - Software performance - Memory locations and addresses - Memory operations - Instruction and instruction sequencing

UNIT II: ARITHMETIC AND LOGIC UNIT

12 Hrs

 $\label{eq:fixed-point} Fixed\ point\ arithmetic\ operation-addition-subtraction-multiplication-division\ Floating\ point\ arithmetic\ operation-Design\ of\ ALU$ 

**UNIT III: PROCESSOR UNIT** 

12 Hrs

Data path implementation-Control unit-hardwired control - micro programmed control, nano programming -Concepts of pipelining - Pipeline hazards

**UNIT IV: MEMORY SYSTEM** 

12 Hrs

Memory hierarchy-Internal organization of RAM - ROM - Interleaved memory-Cache and associative memories -Virtual memory - Memory organization and cache coherence issues

UNIT V: INPUT/OUTPUT AND PERIPHERALS

12 Hrs

Accessing I/O devices – Programmed Input/ Output -Interrupts – Direct Memory Access – IO Processor - Buses – Interface circuits – Standard I/O Interfaces (PCI, SCSI, USB) - I/O devices

**Total Hours: 60** 

#### **Text Books**

- 1. John Hayes (2012), (2007)digitized Computer Architecture and Organization, Tata McGraw Hill
- 2. Carl Hamacher, Zvonko Vranesic, Safwat Zaky and Naraig Manjikian, "Computer Organization and Embedded Systems", Sixth Edition, Tata McGraw Hill, 2012.

#### Reference Books

- 1. Morris Mano (2009) Computer System Architecture, (3rd ed.), Pearson Education
- 2. John L. Hennessey and David A. Patterson, "Computer Architecture A Quantitative Approach", Morgan Kaufmann / Elsevier Publishers, Fifth Edition, 2012.

Subject Code: BCS17ET3	Subject Name : PHP / MYSQL	Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
	Prerequisite: BCS17L03	ETL	1	0/2	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab

#### **OBJECTIVE:**

- ➤ The students will learn the technology about scripting languages basics.
- > To learn install PHP and work on that.
- ➤ To learn the basic and advance concepts of PHP language.
- To understand install the MySQL and work with MySQL database in admin level and client to store and retrieve the data in application with PHP.
- > To learn design basic and advance applications using PHP and MySQL.

, 101	arn design busic and devance approach is using 1111 and 1115QL.										
COURSE O	TCOMES (COs) : (3-5)										
CO1	Learn the fundamentals	s of HTML, O	CSS and PHP								
CO2	Learn the fundamentals	s database co	ncept and My	SQL							
CO3	Able to develop the Appl	ication using l	PHP and MySQ	<u>L</u>							
Mapping of	Mapping of Course Outcomes with Program Outcomes (POs)										
COs/POs	PO1 PO2 PO3 PO4	PO5 PO6	PO7 PO8	PO9	PO10	PO11	PO12				

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	M	Н	L	Н	M	L	L	Н	Н	Н	Н
CO2	Н	Н	Н	M	Н	Н	M	L	Н	M	Н	Н
CO3	Н	Н	Н	Н	Н	M	M	L	Н	M	Н	Н
GO /	700	0.4	D.0.		700	0.0	70.0					

COs / PSOs	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	L	Н
CO2	Н	Н	L	Н
CO3	Н	Н	L	Н

 $H/M/L\ indicates\ Strength\ of\ Correlation \\ \quad H-\ High,\ M-\ Medium,\ L-Low$ 

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
				~							
Approval		1		27 th 1	meeting	g of Aca	ademic	counc	cil, June20	17	



<b>Course Code</b>	-		Category	C	L	T/SL	P/R	
	Course Code	Department of IT				r		ETL/ EVL
BCS17ET3	BCS17L03	PHP / MySQL	PC	3	1	0/2	0/0	ETL

- > The students will learn the technology about scripting languages basics.
- > To understand installation of PHP and MySQL and work with MySQL database in admin level and client to store and retrieve the data in application with PHP.
- ➤ To learn design basic and advance applications using PHP and MySQL.

UNIT I: Introduction 9 Hrs

Introduction to Web server and Web browser - Introduction to PHP - Lexical structure - Language basics - Function and String - Default parameters - Variable function, Anonymous function Printing functions - Manipulating and searching strings - Regular expressions.

UNIT II: Arrays 9 Hrs

Identifying elements of an array - Indexed Vs Associative arrays - Storing data in arrays - Multidimensional arrays - Extracting multiple values - Converting between arrays and variables - Traversing arrays - Sorting - Action on entire arrays - Using arrays.

# **UNIT III: Objects and Web Techniques**

9 Hrs

OOP – Class – Objects – Introspection – Serialization – Inheritance - Interfaces - Encapsulation HTTP Basics – Variables – Server information – Processing Form, Setting Response headers – maintain state – SSL.

# **UNIT IV: Databases and Graphics**

9 Hrs

Using PHP to access Database – Relational Databases and SQL – MySQLi Object interface – SQLite- Direct file level manipulation – mongoDB. Embedding an image in a page – Basic Graphic concepts – Creating and drawing images.

#### **UNIT V: Files and Directories**

9 Hrs

Filter input – cross-site scripting – Escape output – Session fixation – file uploads – file access – PHP code – Shell commands – Core libraries – Templating systems – Handling output – Error Handling – Performance Tuning.

**Total Hours: 45** 

#### **Text Books:**

- 13. www.spoken-tutorials.org
- 14. Kevin Tatroe, Peter MacIntyre, etal "Programming PHP" O REILLY 3rd Edition 2013
- 15. Luke Welling, Laura Thomson "PHP and MySQL Web Development" Person Education 5th Edition 2016.

#### **Reference Books:**

- 1. Robin Nixon "Learning PHP, MySQL & JavaScript" O REILLY 5th Edition 2015.
- 2. Elizabeth Naramore, Jason Gerner, etal "Beginning PHP5, Apache, MySQL web development" Wrox Publishing 2005.

				Depar										
Subject	t Code:		bject N BJEC	ame : T ORII	ENTEI	D SYS	TEM A	NAL	YSIS	Ty / Lb/	L	T / S.Lr	P/ R	C
BIT17I	L03		Aľ	ND DES	SIGN U	USING	UML	LAB		ETL				
		Pre	erequisi	te: BCS1	7L02					Lb	0	0/0	3/0	1
L: Lect	ure T :	Γutoι	rial SI	Lr : Supe	rvised l	Learnin	g P : Pr	oject R	: Resea	rch C: C	redits			
Ty/Lb/I	ETL : Th	eory	//Lab/Ei	mbedded	Theor	y and L	ab							
OBJEC	CTIVE:													
•	Identify	Use	e Cases	and deve	lop the	Use Ca	ise mod	el.						
•	Identify	the	busines	s activiti	es and	develop	an UM	IL Acti	vity diag	gram.				
•	-		_	ual class		_						-		
•	_			scenario	os find t	the inte	raction	betweei	n object	s and rep	present	them us	ing UM	ΊL
			diagram											
•				rt diagra										
•				terface, l							v the pa	rtial lay	ered,	
	-			diagram		_	-	-						
•	•			nnical ser		•	* Impl	ement t	he Dom	ain obje	cts laye	er.		
•				Interfac	•	•								
				COs): (										
CO1			_	nce of sy							•			
CO2			w the o nd desi	bject-or gn.	iented	approa	ch diff	ers froi	m the tr	aditiona	al appr	oach to	syster	ns
CO3				s UML :	models	s (inclu	ding us	se case	diagrai	ns. clas	s diagi	ams. in	teracti	on
				hart diag										
	_		te notat		5,		,8-	, , , , , ,	Т					,
CO4				fference	betwe	en vari	ous oh	iect rel	ationsh	ins: inh	eritano	e. asso	ciation	1.
				depende				jeetiei	acronsi	ips. iiii	CIIIIII	<b></b> , <b>u</b> 550	ciumon	٠,
CO5		_		d functi				del in d	develor	ing ohi	ect-ori	ented so	oftwar	
				mes witl						ing obj	<u> </u>	circa s	ort war	<u>.                                    </u>
COs/PC		O1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	) PO1	1 P	O12
CO1		Н	Н	Н	Н	Н	L	L	Н	Н	Н	M		Н
CO2		H	Н	Н	Н	Н	L	L	Н	Н	M	L		Н
CO3		Н	Н	Н	Н	Н	L	L	Н	Н	M	L		Н
CO4		Н	Н	Н	Н	Н	L	L	Н	Н	Н	M		Н
CO5		Н	Н	Н	Н	Н	L	L	Н	Н	Н	M		Н
COs /		PS	O1	PSO	)2	PS	O3	PS	O4		1	l .		
PSOs														
CO1		I	Н	Н		I	Η	]	Н					
CO2		I	Н	Н		I	Η	]	Н					
CO3			Н	Н			Η		Н					
CO4			Н	Н			H		Н					
CO5			H	Н			Л		Н					
		s Str	ength of	Correla	tion I	H- High	, M- M	edium,	L-Low		1	•		
Catego	or					es		ct						
У	od	3		nnd es	e	am Electives	es	cal / Project	ternships / hnical Skill					
	Sciences		eering ces	nities and   Sciences	am Core	Elec	Electives	Pr	ternships hnical Sk	kills				
	۷. ۱	4	eeri	·= .2	. –		ı	_	ו בו		i	1		

27th meeting of Academic council, June2017

Approval

Course Code	Prerequisite Course Code		Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BIT17L03	BCS17L02	OBJECT ORIENTED SYSTEM ANALYSIS AND DESIGN USING UML LAB	PCL	1	0	0/0	3/0	Lb

#### **OBJECTIVES:**

- Identify Use Cases and develop the Use Case model.
- Identify the business activities and develop an UML Activity diagram.
- Identity the conceptual classes and develop a domain model with UML Class diagram.
- Using the identified scenarios find the interaction between objects and represent them using UML Interaction diagrams.
- Draw the State Chart diagram.
- Identify the User Interface, Domain objects, and Technical services. Draw the partial layered, logical architecture diagram with UML package diagram notation.
- Implement the Technical services layer.
- Implement the Domain objects layer.
- Implement the User Interface layer.

### **EXERCISES**

- 1. Study of case tools such as rational rose or equivalent tools
- 2. Railway reservation system
- 3. Student Mark Analysis system
- 4. Payroll processing application
- 5. Inventory system
- 6. Automating the Banking process
- 7. Library management system

### SOFTWARE REQUIRED:

Languages: C/C++/JDK 1.3, JSDK, WEB BROWSER & UML Any Front End (Like PHP, JAVA, VB, VC++, Developer 2000)

Any Back End (Like Oracle, MS-Access, SQL, DB2)

Modelling and Design: Rational Rose



# **Department of IT**

Subject Cod	le: S	ubject N							T / L/ ETL	L	T / S.Lr	P/ R	С
BIT17L04		Mob	ile Appl	le Application Development LAB							S <b>.L</b> I		
	P	rerequisi	te: NIL						Lb	0	0/0	3/0	1
L : Lecture 7	: Tut	orial S	Lr : Supe	rvised	Learnin	g P : Pr	oject R	: Rese	arch C: C	Credits			
T/L/ETL : T	heory/	Lab/Eml	oedded T	heory a	ınd Lab								
OBJECTIV	<b>E</b> :To	design a	nd devel	op mob	ile appl	lication	s for Ar	ndroid a	and Appl	e iOS			
COURSE O	UTC	OMES (	COs): (	3- 5)									
CO1		Able to o	design an	d devel	op vari	ous Mo	bile Ap	plication	ons for A	ndroid a	and App	ole	
CO2									rld probl				
CO3									obile App	olication			
Mapping of	Cour	se Outco	mes wit	h Prog	ram Oı	ıtcome	s (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PC	)12
CO1	M	L	M	M	M	L	M	Н	Н	Н	L	M	
CO2	M	Н	Н	M	Н	L	L	M	M	M	M	Н	
CO3	M	Н	Н	M	Н	L	L	M	Н	M	Н	Н	
COs /	P	SO1	PSO	O2	PS	O3	PS	SO4					
PSOs													
CO1	M		M		Н		L						
CO2	M		Н		L		M						
CO3	Н		Н		L		Н						
H/M/L indic	ates S	trength o	f Correla	tion I	H- High	ı, M- M	edium,		•				
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skil	Soft Skills				
				•									
Approval		·		27 th m	neeting	of Aca	demic (	Counci	l, June 2	017	•	<b>'</b>	

Course Code	Prerequisite Course Code	Course Title  Department of IT	Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BIT17L04	NIL	MOBILE APPLICATION DEVELOPMENT LAB	PCL	1	0	0	3/0	Lb

Able to develop mobile applications for Mobile Operating Systems such as Android and iOS.

#### **PROGRAMS:**

- 1. Write a program:
  - a. To create simple Hello World Application using Android.
  - b. To create simple Hello World Application using iOS.
- 2. Create an Android Application to handle Touch Events
- 3. Write a program:
  - a. To store and access data from SQLite Database using Android
  - b. To store and access data from SQLite Database using iOS
- 4. Create an iOS Application to create Media Player
- 5. Develop a mobile application to implement map based services
- 6. Develop a mobile application to implement GPS
- 7. Develop a mobile application to send SMS
- 8. Develop a mobile application to send Email
- 9. Develop a mobile application to implement Broadcast Receivers
- 10. Develop a Mobile Application for Calculator

Subject Code: BCS17IL01	Subject Name : NETWORK PROGRAMMING LAB	Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
	Prerequisite: BCS17ET2	Lb	0	0/0	3/0	1
L : Lecture T : T	Cutorial SLr : Supervised Learning P : Project R : Rese	earch C: C	redits			

Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab

# **OBJECTIVE:**

- Hands on Experience to design an application using TCP and UDP sockets.
- Hands on Experience to design an interface to transfer a file between two ends using FTP
- Hands on Experience to develop a RMI application for specific operation
- To have a knowledge to work with Network Simulators

COURSE OUT	COURSE OUTCOMES (COs): (3-5)								
CO1	Ability to design a Socket Programing using TCP and UDP								
CO2	To design Client /Server Application Program								
CO3	Ability to create a Server based application using RMI and RPC concepts.								

# **Mapping of Course Outcomes with Program Outcomes (POs)**

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	Н	Н	Н	M	L	L	Н	M	Н	Н
CO2	Н	Н	Н	M	Н	Н	L	L	Н	M	Н	Н
CO3	Н	Н	Н	Н	M	M	M	L	Н	M	Н	Н
COs /	PSO1		PSO	O2	PS	O3	PS	SO4				
PSOs												

PSOs				
CO1	Н	Н	L	Н
CO2	Н	Н	L	Н
CO3	Н	Н	L	Н
TT /3 / / / 11		C	T TT' 1 3 C 3 C	1. T T

H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low

Basic Sciences  Engineering Sciences  Humanities and Social Sciences  Program Core  Program Electives  Open Electives  Practical / Project  Internships / Technical Skills  Soft Skills
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Approval	27 th meeting of Academic council, June2017

Course Code	Prerequisite Course Code		Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BCS17IL01	BCS17ET2	NETWORK PROGRAMMING LAB	IDL-3	1	0	0/0	3/0	Lb

#### **OBJECTIVES:**

- Hands on Experience to design an application using TCP and UDP sockets.
- Hands on Experience to design an interface to transfer a file between two ends using FTP
- Hands on Experience to develop a RMI application for specific operation
- To have a knowledge to work with Network Simulators
- 1. Networking Commands with options. (Case Study).
- 2. Socket program to extent communication between two deferent ends using TCP.
- 3. Socket program to extent communication between two deferent ends using UDP
- 4. Create a Socket (TCP) between two computers and enable file transfer between them.
- 5. Implementation of RPC in server-client model
- 6. Implementation of ARP/RARP.
- 7. HTTP Socket program to download a web page.
- 8. File transfer in Client-Server architecture using following methods
  - a) Using RS232C b) Using TCP/IP
- 9. To implement RMI (Remote Method Invocation)
- 10. Write a network program to broadcast/ multicast a message to a group in the same network.
- 11. Demonstration of Network Simulators.

# Department of IT

Course Code	Prerequisite Course Code		Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BIT17TS2	BIT17TS1	TECHNICAL SKILL II (EVALUATION)*	TS	1	0	0/0	0/0	EVL

# **OBJECTIVES**

- ➤ To make the students expert in domain specific knowledge.
- To develop professionals with idealistic, practical and moral values.
- ➤ To facilitate the students with emerging technology.

From the list of skill development courses declared by the department, the students are expected to acquire the skill and get certified. This will be evaluated at the end of the semester by the faculty.

# **Department of IT**

Subject Code	:	Subject Na	ame:	In-Plant	Traini	ng			T / L/ ETL	L	T / S.Lr	P/R	С
BIT17L05		Prerequisit	e : NIL						0	0	0/0	0/0	1
L : Lecture T :	: Tuto	rial SLr :	Supervis	ed Learı	ning P:	Project 1	R : Rese	arch C:	Credits				
T/L/ETL : The			•		•	3							
OBJECTIVE				•		ng is to	provide	a short	term wor	k experi	ence in a	n Indust	ry/
Company/ Org	-												
COURSE OU	JTCO				. ,		. ,						
CO1		To get an					-				main of s	stuay.	
CO2		To acquir	e skills an	d knowl	edge fo	r a smoc	th trans	sition in	to the car	eer.			
CO3		To gain fi	eld experi	ence an	d get lin	ked wit	h the pr	ofessior	nal netwo	rk.			
Mapping of C	Cours	e Outcome	es with Pr	ogram	Outcon	nes (POs	s)						
COs/POs	PO	l PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	M	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	
CO2	Н	M	Н	Н	M	Н	Н	Н	Н	Н	Н	M	
CO3	Н	Н	Н	Н	M	Н	Н	Н	Н	Н	Н	M	
COs / PSOs		PSO1	PSO	O2	PS	SO3	PS	SO4					
CO1	M		M		M		M						
CO2	M		M		M		M						
CO3	M		M		M		M						
H/M/L indicat	es Str	ength of C	orrelation	H- Hi	gh, M-	Medium	, L-Low	V	•				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Ammovel	Щ		II W	щ	щ			<b>→</b>	S				
Approval													

# **Department of IT**

Course Code	Prerequisite Course Code		Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BIT17L05	NIL	INPLANT TRAINING (EVALUATION)*+	IPT	1	0	0/0	0/0	EVL

# **OBJECTIVE:**

> The main objective of the In-plant training is to provide a short-term work experience in an Industry/ Company/ Organization



# **SEMESTER VI**

Subject	Code:	Su	bject N	ame :						Ty /	L	<b>T</b> /	<b>P</b> /	C
BCS170	)11		Date	a Warel	haugin	a and l	Data N	Tinina		Lb /		S.Lr	R	
DCSIA	/11					g anu i	Data IV	ııııııg		ETL				
				te: BCS1						Ту	3	0/0	0/2	4
							_	oject R	: Resea	rch C: Cı	redits			
		•		mbedded	•		ab							
				ve of the				1	. 1 .					
				w of the							ماما مام			
		_		e cnanen ng soluti	_				_	chniques	and dat	a warenc	ousing	
	11 7					ig com	illoli ua	la IIIIIIII	ig tools					
COURS	SE OU'.	rco.	MES (C	COs):(	3- 5)									
CO1	Under	stanc	d the dif	ference 1	betweer	Data V	Wareho	using ar	nd gene	ral databa	ases			
CO2	Under	stanc	d the dif	ferent st	eps foll	owed in	n Data n	nining a	and pre-	processii	ng techr	niques us	ing to	ols
CO3	Able t	o app	oly Asso	ociation 1	Rule mi	ning an	nd Clust	ering a	pproach	es				
CO4	Famil	iarize	with m	nulti-dim	ensiona	ıl data c	ubes ar	nd relate	ed analy	sis				
Mappin	g of Co	ourse	Outco	mes witl	h Progr	am Ou	itcomes	(POs)						
COs/P	Os F	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	012
CO1		Н	Н	L	L	L	M	M	L	L	L	Н		L
CO2	,	Н	Н	M	Н	Н	M	M	M	M	M	Н		L
CO3		Н	Н	Н	Н	Н	M	M	L	M	M	Н		L
CO4		Н	Н	Н	Н	Н	M	M	M	Н	Н	Н	]	Н
COs /PS	SOs	PS	O1	PSC	)2	PS	O3	PS	O4					
CO1		I		Н		I			<u>L</u>					
CO2		I		Н					H					
CO3			I	Н					H	-				
CO4		I		Н			<u> </u>		√I					
H/M/L i	ndicate	s Str	ength of	Correla	tion F	1- High	, M- M	edium,	L-Low	1		1		
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
					~									
Approve	a1				2	7 th moo	ting of	Acado	mio con	ncil Jur	2017			

Approval	27 th meeting of Academic council, June2017

Course Code	Prerequisite Course Code	Course Title	Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BCS17011	BCS17004	DATA WAREHOUSING AND DATA MINING	PC	4	3	0/0	0/2	Ту

#### **OBJECTIVE:**

The objective of the course is

- Provide an overview of the methodologies and approaches to data mining
- Gain insight into the challenges and limitations of data mining techniques and data warehousing
- Applying data mining solutions using common data mining tools

### **UNIT I: DATA WAREHOUSING**

12 Hrs

Introduction to Data Warehousing- Advantages- What makes Data Warehousing a reality- Data warehousing Components-Building a Data Warehouse-mapping Data Warehouse to a Multiprocessor-Architecture-DBMS Schemas for Design Support

#### UNIT II: ETL AND BUSINESS TOOLS

12 Hrs

Data Extraction-Cleaning and Transformation tools- Meta data. Reporting and Query tools and Application-OLAP Patterns and Models- Statistics

### **UNIT III: DATA MINING**

12 Hrs

Introduction – Data – Types of Data – Data Mining Functionalities – Interestingness of Patterns – Classification of Data Mining Systems – Data Mining Task Primitives – Integration of a Data Mining System with a Data Warehouse – Issues –Data Preprocessing.- Data Cleaning –Missing Values-Noisy Data-Inconsistent Data-Data Integration and Transformation-Data Reduction - Dimensionality Reduction – Evaluation criteria of Various Mining Techniques

### UNIT IV: ASSOCIATION RULE MINING AND CLASSIFICATION

12 Hrs

Mining Frequent Patterns, Associations and Correlations – Mining Methods – Mining Various Kinds of Association Rules – Constraint Based Association Mining – Classification and Prediction - Decision Tree Induction - Entropy and Classification Algorithms -Bayesian Classification – Rule Based Classification

## UNIT V: CLUSTERING TECHNIQUES

12 Hrs

Cluster Analysis - Types of Data - Categorization of Major Clustering Methods - Kmeans - Partitioning Methods - Hierarchical Methods - Density-Based Methods - Grid Based Methods - Model-Based Clustering Methods - Clustering High Dimensional Data - Constraint - Based Cluster Analysis - Outlier Analysis - Genetic Algorithm For Mining - Data Mining Applications.

Total Hours: 60

### **Text Books**

- 1. Alex Berson and Stephen J.Smith, "Data Warehousing, Data Mining and OLAP", Tata McGraw Hill Edition, Thirteenth Reprint 2008.
- 2. Jiawei Han and Micheline Kamber, "Data Mining Concepts and Techniques", Third Edition, Elsevier, 2012.

## **Reference Books**

- 1. Arun K Pujari (2017) Data Mining Techniques 4th edition, Universities Press (India) Ltd.
- 2. Sam Anahory, Dennis Murry (2004) Data Warehousing in the real world, Pearson Education
- 3. Margaret H. Dunham (2006) Data Mining: Introductory and Advanced Topics, Pearson

Subject Cod	le: Su	ıbject N	Name :						Ту /	L	T /	<b>P</b> /	С
BCS17010		Ope	n Sour	ce Sci	ripting	g Lan	guage	es	Lb/ ETL		S.Lr	R	
			ite: BCS						Ty	3	0/0	0/0	3
L : Lecture 7	Γ : Tuto	rial S	Lr : Supe	ervised	Learnin	ıg P : Pı	roject R	: Rese	earch C: C	Credits			
Ty/Lb/ETL		y/Lab/E	mbedded	1 Theor	y and L	ab							
OBJECTIV		:11 1-	1	11	-14	41	:	1					
<ul><li>The st</li><li>To lea</li></ul>													
To lea				_		•		_					
> To stu										zel prog	ram and	d adva	nce
	•		king, we		-			***************************************	ousie ie i	or prog	, and and	a da i d	1100
> To stu			_		_		_	to writ	e prograi	ms.			
COURSE O	UTCO	MES (	COs):(	3- 5)									
									hnology				
CO2 Stu	dents h	ave kn	owledge	to dev	elop a	n intera	active v	web si	te using s	scriptin	g langu	ages	_
CO3 Hav	e the k	nowle	dge have	e to des	sign sec	cured v	veb pas	ges					
Mapping of													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	M	Н	L	Н	M	L	L	Н	M	Н		H
CO2	Н	Н	Н	M	M	Н	M	L	Н	M	Н	]	Н
CO3	Н	M	Н	M	Н	M	M	L	Н	M	Н	]	Н
COs /PSOs	PS		PSC			O3		SO4					
CO1		<u> </u>	Н			<u>L</u>		<u>H</u>					
CO2		<del>I</del>	Н			<u>L</u>	1	H					
CO3			H Comple			L		H					
H/M/L indica	ates Str	engtn o	Correia	tion F	1- Hign	, M- M	eaium,	L-Low	,				
								Skill					
			Te										
		ıces	Humanities and Social Sciences					Internships / Technical					
		cien	d S		ives	S	ect	ech					
Categor	səəı	S S	an	ore	ecti	ives	Proj	/ T					
y	cien	ring	ties	ıÇ	ıΕΙ	lecti	1/I	ips	IIs				
•	c S(	nee	nani nce:	ran	ran	n El	tica	usu.	Ski				
	Basic Sciences	Engineering Sciences	Humanit Sciences	Program Core	Program Electives	Open Electives	Practical / Project	nter	Soft Skills				
	E	Щ	S	14	14		174	I	$\mathcal{S}_2$				
				/									
				27 th 2	neeting	of Acc	demic	Counci	l, June20	17			
				<i>41</i> II	nceung	oi Aca	acilic	Counci	1, June20	11/			
Approval													

Course Code	Prerequisite Course Code	Course Title	Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BCS17010	BCS17ET3	Open source Scripting Languages	PC	3	3	0/0	0/0	Ту

### **OBJECTIVES:**

- The students will have knowledge about the scripting languages
- To study about the PERL & Python language and understand to write basic level program and advance program on networking, web scripting on web pages.
- ➤ To study about RUBY language and have knowledge to write programs.

# **Unit - I Introduction to Scripting languages**

8 Hrs

Introduction to Scripting: Scripts and Programs, Origin of Scripting, Scripting Today, Characteristics of Scripting Languages, Uses for Scripting Languages, Web Scripting, and the universe of Scripting Languages.

# Unit – II JavaScript

9 Hrs

JavaScript introduction – control structures – functions – arrays – document objects model – Event handling – object oriented in JavaScript - simple web applications

Unit – III PERL 9 Hrs

PERL- Names and Values, Variables, Scalar Expressions, Control Structures, arrays, list, hashes, strings, pattern and regular expressions, subroutines. Finer points of looping, pack and unpack, file system, eval, data structures, packages, modules, objects, interfacing to the operating system, Creating Internet ware applications, Dirty Hands Internet Programming, security Issues.

Unit – IV PYTHON 10 Hrs

Python: Installing Python, Introduction to Python language, Basic syntax, interactive shell, editing, saving, and running a script. The concept of data types; variables, assignments; immutable variables-operators and expressions - Conditions and Control statements – String handling, files and directories - functions and its types. Simple Graphics and Image Processing, Python with OOP - Exception handling

Unit – V RUBY 9 Hrs

Introduction to RUBY: Basics, Comments, Variables Strings, Operators, Conditional Statements, Arrays and Hashes, Methods Files, classes, Exception Handling Introduction to Ruby on Rail.

Total Hours: 45

### **Text Books:**

- 1. David Barron, "The World of Scripting Languages", Wiley Publications, 2002
- 2. Kenneth A. Lambert, Martin Osborne, "Fundamentals of Python: First Programs", Contributing Author published by Course Technology, Cengage Learning Publications. 2010.
- 3. Michael Fitzgerald, "Learning Ruby", O'Reilly Publications, 2007.

## **Reference Books:**

- 1. Richard Clark, Oli Studholme, Christopher Murphy and Divya Manian,"Beginning HTML5 and CSS 3" @ Apress.
- 2. Jennifer Campbell, Paul Gries, Jason Montojo, Greg Wilson, "Practical Programming An Introduction to Computer Science Using Python", The Pragmatic Bookshelf Raleigh, North Carolina Dallas, Texas, 2009
- 3. Tom Christiansen, brian d foy & Larry Wall, with Jon Orwant, "Programming Perl, Fourth Edition", O'Reilly, 2012.

Subject Cod BIT17005	le:	Subject		ess Co	mmun	ication	1		T / L/ ETL	L	T / S.Lr	P/ R	C
	]	Prerequi	site: BEC	17I01					Ty	3	0/0	0/2	4
L : Lecture 7	Γ : Tu	torial S	SLr : Supe	rvised l	Learnin	g P : Pr	oject R	: Rese	arch C: C	redits			
T/L/ETL: T	heory	//Lab/En	bedded T	heory a	nd Lab								
OBJECTIV			n Wireles		nission,	to acqu	iire kno	wledge	about me	obile n	etwork l	ayer aı	nd to
perform wire	eless 1	telephon	y applicat	ions.									
COURSE O	UTC	COMES	(COs): (	3- 5)									
CO1		Unders	and the a	pplication	on of m	obile co	ommun	ication					
CO2		Recogn	ize the Te	lecomn	nunicati	on and	satellit	e syster	ms				
CO3		Design	the Wirel	ess LAl	N and M	Iobile r	network	layer					
Mapping of													
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		1 P	O12
CO1 CO2	Н		M	Н	Н	M	M	M	H	M	H		H
CO2	H		M M	H	M H	M M	M H	H M	H	H M	M H		H M
COs / PSOs		PSO1	PS			O3		SO4		141	11	<u> </u>	111
CO1		Н	F	I	N	M		Н	_				
CO2		M	N			Н		M					
CO3		Н	F			H		Н					
H/M/L indic	ates S	Strength	of Correla	tion I	H- High	, M- M	edium,		•				
Category		Basic Sciences Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval				27	l 7 th meet	ting of	Acader 2017	nic Co	uncil, Jui	ne			

Course Code	Prerequisite Course Code		Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BIT17005	BEC17I01	WIRELESS COMMUNICATION	IDT-4	4	3	0/0	0/2	Ту

#### **OBJECTIVE:**

- > To learn Wireless transmission
- To acquire knowledge about mobile network layer
- ➤ To test and exploit support of mobility
- > To perform wireless telephony applications

### UNIT I: INTRODUCTION & WIRELESS TRANSMISSION

12 Hrs

Introduction – Applications – vehicles – emergencies – replacement of wired networks – history of wireless communications – market for mobile communication – simplified reference model – wireless transmission – frequencies for radio transmission – signals – antennas – signal propagation – multiplexing – modulation – spread spectrum – cellular system.

### UNIT II: MAC AND TELECOMMUNICATION SYSTEM

12 Hrs

Motivation of specialized MAC – SDMA – FDMA – TDMA – Classical Aloha – PRMA packet reservation multiple access – polling – CDMA – comparison – Telecommunication – GSM – Mobile services – protocols - DECT – TETRA – UMTS and IMT2000 – UMTS system architecture – UMTS radio interface – UTRAN – core network – handover.

## UNIT III: SATELLITE SYSTEM AND BROADCAST SYSTEMS

12 Hrs

Satellite system history – application – basics – GEO – LEO – MEO – Routing - localization - handover – broadcast systems – cyclical repetition of data – digital audio broadcasting – digital video broadcasting – convergence of broadcasting and mobile communications.

### UNIT IV: WIRELESS LAN AND MOBILE NETWORK LAYER

12 Hrs

Intra red Vs radio transmission – Infrastructure and ad-hoc network – IEEE 802.11 – HIPERLAN – Bluetooth – radio layer – Ling manager protocol - L2CAP – security – SDP – profiles - IEEE 802.15 – mobile IP – IP packet delivery – Agent discovery – registration – tunnelling and encapsulation – optimization – IPv6 – DHCP – mobile ad-hoc networks – ad-hoc routing protocols.

# UNIT V: MOBILE TRANSPORT LAYER AND SUPPORT FOR MOBILITY 12 Hrs Traditional TCP congestion control classical TCP improvements. TCP ever 2.5/2G wireless.

Traditional TCP – congestion control – classical TCP improvements – TCP over 2.5/3G wireless networks – performance enhancing proxies – Support for mobility – file systems – world wide web – wireless application protocols – WML Script – Hnode – SyncML – architecture of future networks.

**Total Hours: 60** 

#### **Text Books**

- 1. Jochen Schiller Mobile communcications" 2nd Edition Pearson 2011
- 2. Rappaport "Wireless communications principle and practice" 2nd Edition 2010

#### **Reference Books**

- 1. Rajkamal "Mobile computing" Oxford 2011
- 2. Prasant kumar pattnaik "Fundamentals of Mobile computing" 2nd Edition PHI 2015

Course Code	Prerequisite Course Code		Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BIT170EX	NIL	OPEN ELECTIVE (OE) - E-II (INTERDISCIPLINARY)	OE	3	3	0/0	0/0	Ту

Subject Cod		ıbject N	lame : So	oft Skil	ls – II				T / L/ ETL	L	T / S.Lr	P/ R	С
BSK17ET		aragnici	te: BSK1	7FT1					ETL	1	0/1	1/0	2
											0/1	1/0	
L : Lecture 7			Lr : Supe			_	oject R	: Rese	arch C: C	credits			
T/L/ETL : T													
<b>OBJECTIV</b> students.	<b>E</b> : The	e main c	bjective	is to str	engther	the lo	gical an	nd arith	metic rea	soning	skills of	the	
COURSE O	UTCO	MES (	COs):(	3- 5)									
CO1	Recog	nize an	d apply a	rithmet	ic knov	vledge i	in a var	iety of	contexts.				
CO2	Abilit critici	•	ntify and	critical	ly evalı	iate phi	losophi	ical arg	uments a	nd defe	nd them	from	
CO3	Define	data an	d interpre	et infori	mation	from gr	aphs.						
Mapping of	Cours	e Outco	mes witl	h Progi	ram Ou	tcome	s (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PC	<b>D</b> 12
CO1	Н	Н	Н	Н	Н	Н	L	L	Н	M	Н	Н	
CO2	M	M	M	Н	L	Н	L	Н	Н	Н	Н	L	
CO3	Н	Н	Н	Н	Н	Н	M	M	Н	Н	Н	Н	
COs / PSOs	PS	SO1	PSO	D2	PS	O3	PS	SO4				l	
CO1													
CO2													
CO3													
H/M/L indic	ates Str	ength o	f Correla	tion I	l I- High	, M- M	edium,	L-Low					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													
• •													

Course Code	Prerequisite Course Code		Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BSK17ET2	BSK17ET1	SOFT SKILLS II	SS	2	1	0/1	1/0	ETL

#### **OBJECTIVES**

- 1) To bring behavioural patterns of students.
- 2) To train them for corporate culture.
- 3) To create self awareness.
- 4) To build confidence.
- 5) To train the students for facing the interviews and develop interpersonal relationship.

### UNIT 1

Reasoning – logical, diagrammatic, abstract.

### UNIT 2

Spatial ability / Logical ability / Probability.

### **UNIT 3**

Verbal Critical Reasoning / Verbal Comprehension.

## **UNIT 4**

Practice tests.

# UNIT 5

Top Ten Websites for online Aptitude Training.

- 1) https://www.elitmus.com/
- 2) https://www.IPAT.com/
- 3) https://www.nactech.nasscom.com/
- 4) https://www.myamcat.com/
- 5) https://indiabix.com/
- 6) https://www.cocubes.com/
- 7) <a href="https://www.aptitude-test.com/">https://www.aptitude-test.com/</a>
- 8) https://www.practiceaptitudetests.com/
- 9) https://www.wiziq.com/
- 10) <a href="https://www.pskills.com/">https://www.pskills.com/</a>

Subject Code:	Sub	ject N		T. A. D. 67	NID IO				Ty / Lb/	L	T / S.Lr	P/ R	C
BCS17L11			DA	ľA MI	NING :	LAB			ETL				
	Prer	equisit	e: BCS1	7ЕТ3					Lb	0	0/0	3/0	1
L : Lecture T	: Tuto	orial	SLr : Su	pervised	l Learni	ng P : F	Project I	R : Res	earch C: C	Credits			
Ty/Lb/ETL:	Theor	y/Lab/	Embedde	ed Theo	ory and	Lab							
OBJECTIVE	E :												
• Identi	fy an	d categ	gories the	variou	s risks f	ace by a	an orgai	nization	ı <b>;</b>				
• Expla	in the	e vario	us risk co	ontrol m	easures	availat	ole						
			nagement		m for a	busines	ss organ	ization					
COURSE OU	1100	JMES	(COs):	(3-5)									
CO1 demo	nstra	te kno	wledge o	of the ra	ange of	financi	al and f	inancia	al related	risks fa	cing org	anizat	ions
			pproach t (or mitig		manag	ement	through	risk id	entification	on, risk	measure	ement	and
CO3 under	stanc	d opera	ational ris	sk and	how to	manag	e it.						
Mapping of O	Cours	se Out	comes w	ith Pro	gram C	Outcom	es (POs	s)					
COs/PO PO	01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	12
s CO1 H		L	M	M	Н	M	Ť	M	M	M	TT	TT	
CO1 H CO2 L		H	M M	Н	Н	M M	L M	M L	L	M M	H M	H M	
CO3 H		M	L	Н	M	L	Н	M	L	L	M	M	
COs / PSOs	PSC	<b>)</b> 1	PSO	)2	PS	O3	PS	SO4		1		1	
CO1 H			M		M		M						
CO2 M			M		M		L						
CO3 H H/M/L indica	tes St	renoth	of Corre	lation	L H- Hio	h M-N	M Medium	L-Lov	v				
Category	les si			lation	n- nig	;II, IVI- IV			v				
Cutegory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills				
				~									
Approval		<u> </u>		I	27 th	meetir	ng of A	cademi	c council	, June2	017	ı	

Course Code	Prerequisite Course Code		Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BCS17L11	BCS17ET3	DATA MINING LAB	PCL	1	0	0/0	3/0	Lb

## **OBJECTIVES:**

- 1. Able to write simple programs using Rattle an open source Tool(R)
- 2. Able to write simple programs using Weka machine learning toolkit
- 3. To learn how process Clustering and association can be done using Weka.

## LIST OF EXPERIMENTS

- 1. Introduction to the Weka machine learning toolkit
- 2. Classification Introduction to exploratory data analysis using Rattle an open source Tool(R)
- 3. Introduction to regression using Rattle an open source Tool. (R)
- 4. using the Weka toolkit Part 1
- 5. Classification using the Weka toolkit Part 2
- 6. Performing data preprocessing for data mining in Weka
- 7. Performing clustering in Weka
- 8. Association rule analysis in Weka
- 9. Data mining case study using the CRISP-DM standard
- 10. Data mining case study using the CRISP-DM standard

Subject Cod BCS17L09	le: Su	ıbject N		ting La	anguag	ges Lal	)		Ty / Lb/ ETL	L	T / S.Lr	P/ R	
	Pr	erequisi	ite: BCS	17ET3					Lb	0	0/0	3/0	1
L : Lecture	Γ : Tuto	rial S	Lr : Supe	ervised	Learnin	g P : P1	oject R	: Rese	arch C: C	redits			
Ty/Lb/ETL	Theor	y/Lab/E	mbedded	l Theor	y and L	ab							
OBJECTIV	E:												
		e basic o	of JavaSc	ript , Pe	erl & Py	thon							
			plication										
		_					r page i	nforma	tion using	g Perl			
			exception e get syst				Python						
			op web a					AvSOL	1				
COURSE O			_			<u> </u>		J C					
CO1		`	, ,		ication	using Ja	avaScrij	ot , Per	l & Pytho	n			
CO2		_		ites usii	ng datal	oase and	d scripti	ng lan	guages ba	sed upo	n recen	t	
		echnolo	<u> </u>										
CO3	J	Jsing Py	ython Sci	ripting l	anguag	es they	will ge	t systei	n details				
Mapping of	Course	e Outco	omes wit	h Prog	ram Oı	itcome	s (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PC	)12
CO1	Н	M	Н	L	Н	M	L	L	Н	M	Н		Н
CO2	Н	Н	Н	M	M	Н	M	L	Н	M	Н		Н
CO3	Н	M	Н	M	Н	M	M	L	Н	M	Н		Н
COs /	PS	SO1	PS	O2	PS	O3	PS	SO4					
PSOs													
CO1		H	I I			<u>L</u>		H	_				
CO2		H	ŀ			<u>L</u>		H					
CO3		H	F C 1			L		H					
H/M/L indic	ates Str	ength o	i Correla	ition I	H- High	, M- M	edium,	L-Low	7				
		s	al					Internships / Technical Skill					
		Engineering Sciences	Humanities and Social Sciences		S		ىــ						
	S	cie	S pu		ive	Š	ject	[ec]					
Categor	nce	S S	s ar	ore	lect	tive	Pro	[ / s					
у	Basic Sciences	erir.	itie	Program Core	Program Electives	Open Electives	Practical / Project	hip:	ills				
	ic S	 ;ine	man ence	graı	graı	n E	ctic	rns	Soft Skills				
	Bas	Eng	Humaniti Sciences	Pro	Pro	Оре	Pra	Inte	Sof				
			1						-				
		i											
				/									
Approval									il, June2(				

<b>Course Code</b>	Prerequisite	Course Title	Category	C	L	T/SL	P/R	Ty/ Lb/
	Course Code	Department of CSE&IT				r		ETL/ EVL
BCS17L09	BCS17ET3	SCRIPTING LANGUAGES LAB	PCL	1	0	0/0	3/0	Lb

#### **OBJECTIVES:**

- To learn the basic of JavaScript, Perl & Python
- ➤ To develop web application using JavaScript &Perl
- > To learn and get the server information and visitor page information using Perl
- > To learn error and exception handling in Python
- ➤ To have knowledge get system information using Python
- To learn and develop web application using Python and MySQL

# JavaScript

- 1. JavaScript program to Perform all Arithmetic Operation
- 2. JavaScript to search an element in an array of size "n".
- 3. JavaScript to compute the GCD of 2 numbers using function.
- 4. JavaScript to illustrate different in-built String Functions.

### Perl

- 1. a) Write a Perl program to display various Server Information like Server Name, Server Software, Server protocol, and CGI Revision etc.
  - b) Write a Perl program to accept UNIX command from a HTML form and to display the output of the command executed.
- 2 a) Write a Perl program to accept the User Name and display a greeting message randomly chosen from a list of 4 greeting messages.
  - b) Write a Perl program to keep track of the number of visitors visiting the web page and to display this count of visitors, with proper headings.
- 3. Write a Perl program to display a digital clock which displays the current time of the server.
- 4. Write a Perl program to insert name and age information entered by the user into a table created using MySQL and to display the current contents of this table.

## Python

- 1. Write Simple python program with function and it types
- 2. Write a python program to read and write operation with a file.
- 3. Exception handling in python
- 4. Write a Python script with MySQL to create a customer account balance database in a banking process.
- 5. Write a program that displays the following system information from /proc files. a). CPU information, b). Memory Usage Information, c). Interrupt information.
- 6. Write a simple image viewer application using python.

Subject Cod	le: S	ubject N	lame :						<b>Ty</b> /	L	<b>T</b> /	<b>P</b> /	C
BIT17L06			V	VIREL	ESS L	ΔB			Lb/		S.Lr	R	
									ETL				
	P	rerequisi	te: BCS1	7IL01					Lb	0	0/0	3/0	1
L : Lecture T					Learnin	g P : Pr	oject R	: Rese	arch C: C	redits		1	
T/L/ETL : T	heory/	Lab/Emł	oedded T	heory a	nd Lab								
OBJECTIV	<b>E</b> :												
	_		s networ	k techn	ologies								
•		of TCP/I											
Desi	gn and	l implem	ent vario	us mob	ile app	lication	s and m	nobile r	etwork p	rotocol	S.		
COURSE O	UTC	OMES (	COs):(	3- 5)									
CO1				_			n issues	and ar	alyze the	ir impa	ect on		
G0.2			ication s										
CO2		Understa uncertair		the vari	ous sig	nal proc	essing	and co	ding techi	niques	combat o	channe	l
CO3				chnian	es of ra	dio spe	etrum a	llocatio	on in mult	i-user	systems	and the	ir
			n networ	•		aro spec	on uni a	110cail	,,, ,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 4501	systems (		.11
Mapping of			Outcomes with Program Outcomes (POs)										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO1	1 PC	)12
CO1	Н	M	L	L	M	L	L	L	L	L	L	M	
CO2	Н	M	L	L	M	L	L	L	L	L	L	M	
CO3	Н	M	L	L	M	L	L	L	L	L	L	M	
COs /	P	SO1	PSO	O2	PS	O3	PS	SO4					
PSOs	**		3.4		· ·		T						
CO1	Н		M		L		L						
CO2 CO3	H H		M M		L L		L L						
				diam T		MM		I I arr					
H/M/L indic	ates St		Correia	ասո հ	ı- mıgn	, M- M	caiuiii,	L-LOW	,				
Category			_					cal					
		ses	ocia					Internships / Technical Skill					
		ien	1 Sc		ves		ect	Tec					
	Ses	Sc	anc	re	ectiv	ves	roje	ps / ] Skill					
	  ien	ing	ies	ပိ	Ē	ecti	/ P	hip S	1 S				
	Sc	Jeer	anit	am.	am.	EK	ical	erns	Skil				
	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Inte	Soft Skills				
	B	) EŽ	H X	-E	-FI	0	<u>4</u>		<u> </u>				
Approval				27	th meet	ting of	L Acader	nic Co	uncil, Ju	ne			
FF 5.						9	2017		,	-			
											_		

Course Code	Prerequisite Course Code		Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/
								EVL
BIT17L06	BCS17IL01	WIRELESS LAB	PCL	1	0	0/0	3/0	Lb

### **OBJECTIVES:**

After this lab session the students will have hands on knowledge on

- 1. Working of wireless network technologies
- 2. Operation of TCP/IP; and
- 3. Design and implement various mobile applications and mobile network protocols.

#### **Sessions:**

- 1. Understanding the characteristics and operation of contemporary wireless network technologies such as the IEEE 802.11 wireless local area network
- 2. Bluetooth wireless personal area network;
- 3. Operation of the TCP/IP protocol suite in a mobile environment, including the operation of Mobile IP and a mobile ad hoc routing protocol
- 4. Describe security issues and current solutions for wireless networks and mobile systems;
- 5. Design, implement, and test a prototype mobile application
- 6. Design, implement, and test a wireless access service
- 7. Mobile routing protocol, and mobile application
- 8. Monitor the operation of mobile network protocols and applications using standard tools.

<b>Course Code</b>	Prerequisite	Course Title	Category	C	L	T/SL	P/R	Ty/ Lb/
	<b>Course Code</b>	Department of IT				r		ETL/
		1						EVL
BIT17L07	NIL	MINI PROJECT (EVALUATION)	MP	1	0	0/0	0/0	EVL
						0, 0	0, 0	

### **OBJECTIVE:**

> The students are expected to take up an application project for any real life scenario.

Having acquired the core competency in the Computer science domain over the last 6 semesters, the students are expected to take up an application project for any real life scenario and provide a solution for the same. The implementation is expected to be based on a 3 tier architecture design.

For the award of the 1 credit the students are expected to demonstrate the project. The evaluation for this credit will be carried out in the  $7^{th}$  Semester.

Course Code	Prerequisite Course Code	Course Title  Department of IT	Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BIT17TS3	NIL	TECHNICAL SKILL III (EVALUATION)	TS	1	0	0/0	3/0	EVL

## **OBJECTIVES**

- > To make the students expert in domain specific knowledge.
- ➤ To develop professionals with idealistic, practical and moral values.
- ➤ To facilitate the students with emerging technology.

From the list of skill development courses declared by the department, the students are expected to acquire the skill and get certified. This will be evaluated at the end of the semester by the faculty.

# **SEMESTER VII**

Subject Code BIT17006	s	ubject N		oud To	echnol	ogy			Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
	P	rerequisi	te: BCS1	7I01					Ty	3	0/0	0/0	3
L : Lecture T	: Tut	orial SI	Lr : Supe	rvised l	Learnin	g P : Pr	oject R	: Rese	arch C: C	redits		•	
T/L/ETL: Th	eory/	Lab/Emb	edded T	heory a	nd Lab								
OBJECTIVE	Ε:												
									knowled			l storag	e. to
					y and to	o test w	eb appl	ication	in cloud	platfor	m.		
COURSE OU	TCC				1: 4:	ion of o	1						
CO1 CO2			Understar Recogniz						ıg				
CO3			Design th						18				
Mapping of (	Cour								10				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11 P	O12
CO1	Н	Н	Н	M	Н	M	M	M	Н	M	Н		Н
CO2	Н	M	Н	M	Н	M	M	Н	M	Н	M		M
CO3	Н	Н	M	M	Н	M	M	M	Н	M	Н		M
COs /	P	SO1	PSO	02	PS	O3	PS	O4					
PSOs													
CO1 CO2		H H	H M		N	<u>1</u> H		<u>Н</u> М					
CO2		H	M			<del>1</del> 		M					
H/M/L indica	tes St				I- High				7				
						,	,						
Category	Sciences	Engineering Sciences	Humanities and Social Sciences	am Core	am Electives	Electives	Practical / Project	Internships / Technical Skil	kills				
	Basic	Engin	Huma Scienc	Progra	Progra	Open	Praction	Intern	Soft Skills				
Approval		27 th =	neeting (	of Acad	lomic C	'ouncil	Inno 1	 201 <i>7</i>					
1 ipprovai		<i>21</i> 10	nceung (	л Асач	Cinic C	Junen	, Julie 2	201/					

Course Code	Prerequisite Course Code	Domonton and of IT	Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BIT17006	BCS17I01	CLOUD TECHNOLOGY	PC	3	3	0/0	0/0	Ту

#### **OBJECTIVE:**

- To learn Cloud computing infrastructure and services.
- To acquire knowledge about cloud storage.
- To understand cloud computing security.
- To test web application in cloud platform.

#### UNIT I: CLOUD COMPUTING INTRODUCTION

9Hrs

Characteristics – cloud models – cloud services – cloud based services and applications – virtualization – Load balancing – deployment – replication – monitoring – MapReduce – Identity and Access management.

#### UNIT II: CLOUD SERVICES AND PLATFORMS

9Hrs

Compute services – storage services – database services – application services – content delivery services – analysis services – Deployment & management services – identity and Access management services – open source private cloud software – Hadoop MapReduce job execution – Hadoop schedulers – Hadoop cluster setup

### UNIT III: CLOUD APPLICATION DESIGN & PYTHON

9Hrs

Design consideration for cloud applications – reference architecture for cloud applications – cloud application design methodologies - data storage approaches – Python data types & data structures – control flow – functions – modules – packages – file handling – classes.

## UNIT IV: CLOUD APPLICATION DEVELOPMENT

9Hrs

Python for Amazon web services – Google cloud platform – windows Azure – packages of Internet – JSON – XML – HTTPLib and URLLib – Web application framework – Django – design approaches – image processing App – document storage app – MapReduce app.

### **UNIT V: ADVANCED APPICATIONS**

9Hr

Clustering Big Data – Classification of Big Data – multimedia cloud – Streaming protocols – cloud application benchmarking and tuning – workload characteristics – application performance matrix – design consideration – benchmarking tools- deployment prototyping – CSA cloud security architecture – authentication – authorization – data security – auditing.

Total Hours: 45

#### **Text Books:**

- 1. Arshdeep Bahga et al, "Cloud computing a hands-on approach" Universities press 2014
- 2. Anthony T. Velte et al, "Cloud Computing A Practical Approach" Tata McGraw-Hill 2013
- 3. Zaigham Mahmood et al, "Cloud Computing Concept Technology Architecture" Pearson, 2014.

#### **Reference Books:**

- 1. Barrie Sosinsky, "Cloud Computing Bible" Wiley India Publication 2011
- 2. Rishabh Sharma "Cloud Computing Fundamentals, Industry Approach and Trends" Wiley 2015.
- 3. David Crookes "Cloud Computing in easy steps" McGraw Hill 2012

# **Department of IT**

<b>Subject Code:</b>	Subject Name :	<b>Ty</b> /	L	<b>T</b> /	<b>P</b> /	C
BIT17007	Web Technology and Web Services	Lb/ ETL		S.Lr	R	
	Prerequisite: BCS17I01	Ty	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL : Theory/Lab/Embedded Theory and Lab

## **OBJECTIVE:**

- The students will have knowledge about the HTML5 and CSS3
- ➤ To learn the concepts of XML and SOAP.
- ➤ To study about the JSP and understand to develop basic level application and advance application on web pages.
- > To study about the concept of Web services.

	1						
COURSE OUTCOMES (COs): (3-5)							
CO1	Able to design the web page using HTML5 and CSS3						
CO2	Learn the fundamentals of XML, JSP and implement in the web service						
CO3	Understand the concept of Web service including SOAP, UDDI and WSDL						

## **Mapping of Course Outcomes with Program Outcomes (POs)**

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	M	Н	L	Н	M	L	L	Н	M	Н	Н
CO2	Н	Н	Н	M	Н	Н	M	L	Н	M	Н	Н
CO3	Н	Н	Н	Н	Н	M	M	L	Н	M	Н	Н
~~ '	_~~	~ .	-	~ ~	_ ~							

								_
COs / PSOs	PS	O1	PSC	)2	PS	О3	PS	O4
PSOs								
CO1	ŀ	H	Н	[	I	_	l l	Н
CO2	ŀ	H	Н	[	I	_	]	Н
CO3	ŀ	H	Н	[	I	_	l l	Н

H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low

Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
Approval				27 th n	4 •	- C A	J		il Juno20	17	

Approval 27th meeting of Academic council, June2017

<b>Course Code</b>	Prerequisite	Course Title	Category	C	L	T/SL	P/R	Ty/ Lb/
	Course Code					r		ETL/
		Department of IT						EVL
BIT17007	BCS17I01	WEB TECHNOLOGY AND WEB SERVICES	PC	3	3	0/0	0/0	Ту

### **OBJECTIVES:**

- ➤ The students will have knowledge about the HTML5 and CSS3
- ➤ To learn the concepts of XML and SOAP.
- ➤ To study about the JSP and understand to develop basic level application and advance application on web pages.
- ➤ To study about the concept of Web services.

## UNIT – I HTML 5 & CSS 3

9 Hrs

HTML – forms – frames – tables – web page design – Dynamic HTML – introduction – cascading style sheets – object model and collections –event model – filters and transition – data binding – data control – ActiveX control – handling of multimedia data

Unit – II XML 9 Hrs

Role of XML - XML and The Web - XML Language Basics - Revolutions of XML - Service Oriented Architecture (SOA). XML - Name Spaces - Structuring With Schemas and DTD - Presentation Techniques - Transformation - XML Infrastructure.

Unit – III SOAP 9 Hrs

Overview of SOAP - HTTP - XML-RPC - SOAP: Protocol - Message Structure - Intermediaries - Actors - Design Patterns and Faults - SOAP With Attachments. Introduction to SGML - COM - DCOM - CORBA.

### UNIT – IV SERVERSIDE PROGRAMMING

9 Hrs

Introduction to Servlets and Java Server Page (JSP), Servlets lifecycle, Servlet Classes and Sessions. JSP Application Design, JSP objects, sharing data between JSP pages, Sharing Session and Application Data, Database Programming using JDBC, development of java beans in JSP.

# Unit – V WEB SERVICES

9 Hrs

Overview - Architecture - Technologies - UDDI - WSDL - ebXML - SOAP and Web Services in E-Com, Rest full in Web service.

**Total Hours: 45** 

### **Text Books:**

- 1. Richard Clark, Oli Studholme, Christopher Murphy and Divya Manian,"Beginning HTML5 and CSS 3" @ Apress , 2012.
- 2. Frank. P. Coyle, "XML, Web Services and The Data Revolution", Pearson Education, 2002.
- 3. Phil Hanna, "JSP: The Complete Reference", McGraw-Hill, 2001

#### **Reference Books:**

- 1. Laura Lemay, Rafe Coburn, Jennifer Kyrnin, "Mastering HTML, CSS & JavaScript Web Publishing", Pearson Education.2015
- 2. Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services", Pearson Education, 2004.

Subject Cod	le: S	ubject N	lame :						<b>Ty</b> /	L	T /	<b>P</b> /	C			
BMG17002		Manage	ment Co	-	and O	rganiza	ational		Lb/ ETL		S.Lr	R				
	P	rerequisi	te: BES1	7ET3					Ту	3	0/0	0/0	3			
L : Lecture T	: Tut	orial S	Lr : Supe	rvised l	Learnin	g P : Pr	oject R	: Rese	arch C: C	redits		ı				
Ty/Lb/ETL:	Theo	ry/Lab/E	mbedded	Theor	y and L	ab										
OBJECTIV	E:*'	To know	the princ	ciples o	f manag	gement	and pec	culiariti	es of thei	r imple	mentatio	on				
	•		_	_	_	-	_		olve the p	_			n			
•	•	To study	the Indi	vidual t	ehavio	r & Gro	oup beh	avior								
COURSE O	UTC	OMES (	COs):(	3- 5)												
CO1		Understa	nd the na	ature of	manag	ement,	the fun	ctions o	of manage	ement						
CO2		Understa	nd the le	vels of	manage	ement u	ndersta	nd the	skills req	uired at	each le	vels of				
		managen		• •												
CO3		Understand the concept of social responsibilities of Individual behavior & Group behavior.														
CO4		Understand the principles and purpose of Management concepts.														
Mapping of	Cour	urse Outcomes with Program Outcomes (POs)														
COs/POs	PO1	PO2														
CO1	L	M	L	Н	M	L	L	M	L	M	Н	L				
CO2	L	M	L	M	Н	L	L	M	L	M	Н	L				
CO3	L	M	L	L	Н	L	L	M	L	M	Н	L				
CO4	L	M	L	L	Н	L	L	M	L	M	Н	L				
COs / SOs		SO1	PSO	)2		O3		SO4								
CO1	Н		L		M		M									
CO2 CO3	M L		L L		H H		M M		_							
CO3	L		L		Н		M		_							
H/M/L indicate		trength o		tion I		M_ M		I -I ow	,							
11/1/1/ L' IIIUIC					111511	, 171- 171	Caruiii,									
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical strin	Soft Skills							
	•	,							-							
Approval					27 th me	eeting (	of Acad	lemic c	ouncil, J	une201	.7					

Course Code	Prerequisite Course Code		Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BMG17002	BES17ET3	MANAGEMENT CONCEPTS AND ORGANIZATIONAL BEHAVIOR	MGMT-1	3	3	0/0	0/0	Ту

#### **OBJECTIVES:**

- To understand the roles and skills of manager
- To understand the concept of Planning and Organizing the management
- To understand the qualities of Leadership control
- To understand the difference between Individual and Group behavior in running a management

### UNIT I INTRODUCTION TO MANAGEMENT

9 Hrs

Definition of Management – Science or Art or Profession – Manager v_s Entrepreneur vs Leader – Types of Managers – Managerial roles and skills – Evolution of Management – Scientific, Human relations and system approaches

### UNIT II PLANNING AND ORGANIZING

9 Hrs

Nature and purpose of planning – planning process – types of planning – planning premises – Nature and purpose of organizing – Formal and Informal organization – organization chart – organization structure – types - Line and staff authority

# UNIT III DIRECTING AND CONTROLLING

9 Hrs

Leadership – Types and theories of leadership – communication – process of communication – barriers in communication – System and process of controlling – Budgetary and non budgetary control techniques – Direct and preventive control – reporting

### UNIT IV INDIVIDUAL BEHAVIOR

9 Hrs

Diversity - Attitudes and Job satisfaction - Emotions and Moods - personality and values - perception - Decision making - Motivation concepts - Motivation Applications

### UNIT V GROUP BEHAVIOR

0 Hrs

Foundations of Group Behavior – Understanding Teams – power and politics – Conflict and Negotiation – Stress Management

**Total Hours: 45** 

#### **Text Books:**

- 1. Harold Koontz and Heinz Weihrich "Essentials of Management" Tata McGraw Hill Education 2015
- 2. Stephen. P. Robbins, Timothy A. Judge and Seema Sanghi "Essentials of *Organizational Behavior*" Pearson 10th Edition 2010

### **Reference Books:**

- 1. Tripathi PC & Reddy PN "Priciples of Management" Tata McGraw Hill 2012
- 2. Stephen P. Robbins, David A.De.Cenzo, Mary Coulter "Fundamentals of Management" Pearson Education 2016

<b>Course Code</b>	Prerequisite		Category	$\mathbf{C}$	L	T/SL	P/R	Ty/ Lb/
	Course Code					r		ETL/ EVL
BIT17SEX	NIL	ELECTIVE (SPECIAL - BASED ON CURRENT TECHNOLOGY) * EV	SE	3	1	0/2	0/0	ETL

Subject Cod	le:			Subjec	t Name	e			Ty /	L	T /	P/	С
BIT17L08		Web '	Technol	logy ar	ıd Wel	b Servi	ices La	ıb	Lb/ ETL		S.Lr	R	
	P	rerequisi	te BCS1	7IL01					Lb	0	0/0	3/0	1
L : Lecture T	: Tut	orial S	Lr : Supe	rvised l	Learnin	g P : Pr	oject R	: Rese	arch C: C	redits		I	
Ty/Lb/ETL:	Theo	ry/Lab/E	mbedded	Theor	y and L	ab							
OBJECTIV	<b>E</b> :												
		learn a		-				CCC					
1		have k	_		_		_		sing XM	Land	TIZX		
		o learn a	_		_	•			_	L and	MOLI.		
COURSE O	UTC	OMES (	COs):(	3- 5)									
CO1		Ability 1											
CO2		To desig						forms	S				
CO3		To deve											
Mapping of													
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			012
CO1	Н	M	Н	L	Н	M	L	L	H	M	H		H
CO2 CO3	H H	H M	H H	M M	H H	H M	M M	L L	H	M M	H		H H
COs /		PSO1	PSO	l		O3		5O4	п	IVI	П		п
PSOs	•	501	150	<i>5</i> 2	15	.03		, , ,					
CO1		Н	Н	[	I	L		Н					
CO2		Н	Н		l	L		Н					
CO3		H	Н			<u>L</u>		H					
H/M/L indica	ates S	trength o	f Correla	tion I	1- High	, M- M	edıum,	L-Low	7				
								Skill					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills				
				~									
Approval		27 th meeting of Academic council, June2017											

Course Code	Prerequisite Course Code		Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BIT17L08	BCS17IL01	WEB TECHNOLOGY AND WEB SERVICES LAB	PCL	1	0	0/0	3/0	Lb

#### **OBJECTIVES:**

- > To learn about to develop an own web site.
- ➤ To have knowledge to design webpage using CSS.
- To have knowledge to design a dynamic web site using XML and XSLT.
- > To learn and develop to design mail communication.
- 1. Create a web page with the following using HTML
  - i) To embed an image map in a web page
  - ii) To fix the hot spots
  - iii) Show all the related information when the hot spots are clicked.
- 2. Create a web page with all types of Cascading style sheets.
- 3. Client Side Scripts for Validating Web Form Controls using DHTML
- 4. Write a program in Java to create applets incorporating the following features:
  - i. Create a color palette with matrix of buttons Set background and foreground of the control text area by selecting a color from color palette.
  - ii. In order to select Foreground or background use check box control as radio buttons
  - iii. To set background images
- 5. Programs using XML Schema XSLT/XSL
- 6. Create a Web form for an online library. This form must be able to accept the Membership Id of the person borrowing a book, the name and ID of the book, and the name of the book's author. On submitting the form, the user (the person borrowing the book) must be thanked and informed of the date when the book is to be returned. You can enhance the look of the page by using various ASP.NET controls.
- 7. Create a JSP application. Send a simple E-Mail to your friends
- 8. Consider a case where we have a web Service- an airline service and a travel agent and the travel agent is searching for an airline. Implement this scenario using Web Services and Data base.



# **Department of IT**

Subject Cod BIT17L09	le: S	ubject N Cloud	Name :	catior	n Deve	elopm	ent L	ab	Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
	P	rereanisi	ite: BCS1	7ET2					Lb	0	0/0	3/0	1
L : Lecture T					Learnin	g P : Pr	oiect R	: Rese		Ŭ	0/ 0	370	
T/L/ETL : T			•			•	. <b>J</b>						
OBJECTI	VE:	To lea	rn and in	nplemei	nt vario	us clou	d Techr	nology					
COURSE O	UTC				· · · · · · · · · · · · · · · · · · ·	<u>us                                    </u>		10108)					
CO1			Create the		ation o	f cloud	Techno	ology					
CO2		]	Impleme	nt secur	ity in c	loud ap	plicatio	ns					
CO3			Deploy a										
Mapping of													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO10			O12
CO1	M	Н	Н	M	Н	M	M	M	Н	M	Н		Н
CO2	Н	M	Н	Н	Н	M	Н	Н	M	Н	M		Н
CO3	Н	Н	M	M	Н	M	M	M	Н	M	Н		M
COs / PSOs	P	SO1	PSO		PS	O3		SO4					
CO1		Н	Н			Л		H					
CO2		M	N			H		M					
CO3		Н	N			Ή		M					
H/M/L indic	ates S	rength o	f Correla	tion I	I- High	, M- M	edium,		7	1	1		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval			27 th meeting of Academic Council, June 2017										

Course Code	Prerequisite Course Code		Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BIT17L09	BCS17ET2	CLOUD APPLICATION DEVELOPMENT LAB	PCL	1	0	0/0	3/0	Lb

### **OBJECTIVE:**

• To learn and implement various cloud Technology

### LIST OF EXPERIMENTS:

- 1) Creating an application using Hadoop Map/Reduce (Ex: Word Count)
- 2) Creating an application on Amazon EC2
- 3) Creating an application on Windows Azure
- 4) Creating an application on Hadoop
- 5) Creating an application on Google App Engine
- 6) Creating an application on Google Apps Business solutions
- 7) Creating an application on control panel software manager and hypervisor
- 8) Creating a Warehouse Application in SalesForce.com
- 9) Case Study: PAAS(Facebook, Google App Engine)
- 10) Case Study: Amazon Web Services.

T / L/

L

**T**/

P/R C

**Subject Name:** 

**Subject Code:** 

BIT17L	10		Ü	т	Duningt	Dhaga	1			ETL		S.Lr		
DIII/L	210	Pre	erequisite		тојест	Phase -	<u> </u>			Lb	0	0/0	6/0	2
			•								Ů	0/0	6/0	
				Supervise		•	roject R	: Resear	ch C: Cr	edits				
T/L/ETI	L : Theo	ry/Lab	/Embedd	led Theory	and La	ıb								
OBJEC			-	e of the M	-					•	•		-	to
	•		-	dress thro	•		• •					•		
				student's a	-	-				_		-		
	-			ct affirms		dents to	think cr	itically a	nd creat	ively, find	d an opti	mai solut	ion, mak	ке
etnicai c	aecisions	and to	o presen	t effective	ıy.									
COURS	SE OUT	COM	ES (COs	s): (3-5)										
CO1	Apply	the kno	owledge	and skills	acquire	d in the	course o	f study a	ddressir	ng a spec	ific prob	lem or iss	ue.	
CO2	To enc	ourage	student	ts to think	criticall	y and cre	eatively	about sc	cietal is	sues and	develop	user frier	ndly and	
	reacha	ble sol	lutions											
CO3	To refi	ne rese	earch ski	lls and dei	monstra	te their	proficie	ncy in co	mmunic	ation skil	ls.			
CO4	To take	e on th	e challer	nges of tea	amwork	, prepare	e a prese	entation	and den	nonstrate	the inn	ate talent	S.	
Mappin	g of Co	urse O	utcomes	s with Pro	gram C	Outcome	s (POs)							
COs/PO		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			12
CO1		H	Н	Н	Н	M	Н	Н	L	M	M	Н	Н	
CO2		Н	Н	Н	Н	Н	Н	Н	M	M	M	Н	Н	
CO3		Н	Н	Н	Н	Н	Н	Н	M	M	Н	Н	M	
CO4		Н	M	Н	Н	Н	Н	M	Н	Н	Н	Н	Н	
COs / P	SOs	PS	O1	PSC	)2	PS	O3	PS	O4				l l	
CO1		M		M		M		M						
CO2		M		M		M		M						
CO3		M		M		M		M						
CO4		M		M		M		M						
H/M/L i	indicates	Streng	gth of Co	rrelation	H- Hig	gh, M- M	ledium,		Т	1			1	
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
								/						
Approva	al		1	ı	1	1		•	1	1	ı	1	1	

Course Code	Prerequisite Course Code	Course Title	Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BIT17L10	NIL	PROJECT PHASE – 1	PP1	2	0	0	6/0	Lb

## **OBJECTIVES:**

➤ Able to do main projects in their respective domain

B.Tech CSE Project carries 12 credits of which , Phase I carries 2 credit. In Phase I ,Students are expected to

- (i) Identify a Problem.
- (ii) Have the feasibility explored.
- (iii) Freeze the Requirement specification (both user and system).
- (iv) Construct the architectural model (as many as required).
- (v) Design the solution.
- (vi) If possible publish the Feasibilty study as a survey paper

<b>Subject Code</b>	: Su	bject Na	ame :						T / L/	L	T /	P/R	C
BFL17001	Foreign Language							ETL		S.Lr			
	Pro	erequisit	e: NIL						EVL	1	0/1	0/0	2
L : Lecture T :	Tutoria	l SLr:	Supervis	ed Learı	ning P :	Project 1	R : Rese	arch C:	Credits				1
T/L/ETL: The	eory/Lat	o/Embed	ded Theo	ry and L	ab								
OBJECTIVE		•				-		•	•	• •			
effectively in a	foreign	ı languag	ge and int	eract in	a cultura	ally appi	ropriate	manne	r with nat	ive speal	kers of tha	at langu	age.
COURSE OU	TCOM	ES (CO	s):(3-5	)									
CO1	Achie	ve funct	ional prof	iciency i	n listeni	ng, spea	ıking, re	ading, a	nd writin	g.			
CO2	Devel	op an in	sight into	the nati	ure of la	nguage	itself, th	e proce	ss of lang	uage and	d culture a	cquisit	ion.
CO3	Dosa	Develop an insight into the nature of language itself, the process of language and culture acquisition  Decode, analyze, and interpret authentic texts of different genres.											
		•		•				ent gen	163.				
Mapping of C	Course (	Outcome	es with Pi	ogram	Outcom	ies (POs	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	L	L	L	L	L	Н	L	Н	M	Н	Н	L	
CO2	M	L	L	L	L	Н	L	Н	Н	Н	Н	L	
CO3	L	L	M	M	L	Н	M	Н	M	Н	Н	L	
COs / PSOs	PS	SO1	PS	02									
CO1	L		L										
CO2	L		L		1								
CO3	L		L										
H/M/L indicat	es Stren	gth of C	 orrelation	H- Hi	gh, M- 1	Medium	, L-Low	7					
		<u> </u>			<u> </u>								
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval	<u></u>	<u> </u>	<b>✓</b>	<del></del> 4	<u> </u>			I	<u> </u>				

Course Code	Prerequisite Course Code		Category	C	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BFL17001	NIL	FOREIGN LANGUAGE (EVALUATION)	FL	2	1	0/1	0/0	EVL

# **SEMESTER VIII**

Subject Code: BMG17003	Subject Name : TOTAL QUALITY MANAGEMENT	Ty / Lb/	L	T / S.Lr	P/ R	С
		ETL				
	Prerequisite: BMG17002	Ty	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab

# **OBJECTIVE:**

- To know business excellence models and ISO standards.

  To study the principles & theories of total quality managements.

	•	the princip the variou				•	_		problems	s of an or	ganizatio	on.	
101	.110 **	the variou	.s manage		nemous	101 411	rerent n	ands of	proorein	or un or	Sumzum	<i>7</i> 11.	
COURSE O	UTC												
CO1		Understand TQM concepts and achieving excellence through TQM.											
CO2		Understand the Quality Control tools.											
CO3		Understand the contributions made by Management Gurus.											
CO4		Understand the Six sigma, ISO 9000, ISO 14000, QS 9000 and Quality audit.											
Mapping of							s (POs)		_				
COs/POs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	M	M	L	Н	M	L	L	L	M	L	L	L	
CO2	M	M	M	Н	M	L	L	L	M	L	L	L	
CO3	M	L	L	Н	M	L	L	L	M	L	L	L	
CO4	M	L	M	Н	Н	L	L	L	M	L	M	L	
COs /		PSO1	PSO	)2	PS	O3	PS	SO4					
PSOs													
CO1	L		H		L		M						
CO2	Н		Н		L		M		4				
CO3	Н		L		L		M						
CO4	L		L		L		Н						
H/M/L indic	ates S	Strength of	f Correla	tion F	I- High	, M- M	edium,	L-Low		T	T	1	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
		-th			~	<b>/</b>	2015						
Approval	27	th meeting	g of Aca	demic (	Counci	l, June	2017						

BMG17003	BMG17002	TOTAL QUALITY MANAGEMENT	Category	С	L	T/SLr		Ty /Lb /ETL/ EVL
			MGMT-2	3	3	0/0	0/0	Ty

### **OBJECTIVES:**

- To know business excellence models and ISO standards
- To study the principles & theories of total quality management.
- To know the various management methods for different kinds of problems of an organization.

UNIT I: Introduction 9 Hrs

Need for quality – Definitions of quality - Dimensions of quality, Basic concepts of TQM - Definitions of TQM – TQM Framework - Contributions of Deming, Juran and Crosby – Barriers to TQM

### **UNIT II: TQM Principles**

9 Hrs

Leadership – Strategic quality planning - Employee Involvement – Motivation, Empowerment, Teamwork, Performance appraisal, Recognition and Reward - Continuous process improvement – PDCA cycle, 5S, Kaizen.

### **UNIT III: Quality Tools**

9 Hrs

7 QC tools, 7 new management tools – Six Sigma – Quality circle – Cost of Quality - Quality Function Deployment (QFD) - Failure Mode and Effect Analysis (FMEA) – Bench Marking

### **UNIT IV: Customer and Quality Standards**

9 Hrs

Customer focus – Customer Orientation – Customer satisfaction – Customer complaints – Customer retention - ISO : 9000, ISO : 14000, QS : 9000 – Quality Auditing

### **UNIT V: TQM Strategies**

9 Hrs

Strategic planning – Strategic Formation– Strategic Management – The TQM element approach – The guru approach – The Organization model approach – The Japanese total quality approach.

**Total Hours: 45** 

#### **Text Books:**

- 1. D.R.Kiran (2016) Total Quality Management, BSP.
- 2. Dale H. Besterfield (2011) Total Quality Management, Pearson Education r3e

### **Reference Books:**

- 1. Suganthi.L and Anand A Samuel (2011) Total Quality Management, Prentice Hall of India
- 2. Janakiraman. B and Gopal. R.K. (2006) Total Quality Management, Text & Cases, Prentice Hall of India.

Subject	Code	: Su	bject Na	ame :						T / L/	L	T /	P/R	C
BIT17I	L11			F	Project	Phase -	II			ETL		S.Lr		
		Pre	erequisite	e: BIT171	L10					Lb	0	0/0	20/0	10
L : Lect	ure T :	Tutoria	ıl SLr:	Supervis	sed Lear	ning P : 1	Project 1	R : Rese	arch C: 0	Credits			1	
T/L/ET	L : The	eory/Lat	o/Embedo	ded Theo	ry and L	ab								
OBJEC	TIVE	: The	obiectiv	ve of the l	Main Pro	piect is to	o culmir	ate the	academi	c study a	nd prov	ide an op	oortunit	v to
			•			•				•	•	f a faculty		•
The pro	ject de	emonstr	ates the	student's	ability t	to synthe	esize an	d apply t	he know	ledge an	ıd skills a	acquired t	o real-v	vorld
issues a	nd pro	blems.	This proj	ect affirm	ns the st	udents t	o think (	critically	and crea	atively, fi	nd an op	otimal sol	ution, m	ıake
ethical o	decisio	ns and t	to preser	nt effectiv	ely.									
COURS	SE OU	JTCOM	IES (CO	s):(3-5	5)									
CO1	Appl	y the kn	owledge	and skills	s acquire	ed in the	course	of study	address	ing a spe	cific pro	blem or i	ssue.	
CO2	To er	าดดนาลต	e studen	ts to thin	k critica	lly and c	reatively	/ about s	societal i	ssues an	d develo	p user fri	endly ar	 nd
		hable so			2.70.00	,	2	,					, wi	-
CO3	To re	efine res	earch ski	ills and de	emonstr	ate their	proficie	ency in c	ommuni	cation sk	ills.			
CO4							•					nate tale	nts.	
Mappir	ng of C	Course (	Outcome	s with P	rogram	Outcom	es (POs	s)						
COs/PO	)s	`PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1		Н	M	M	Н	Н	M	M	M	Н	Н	Н	Н	
CO2		Н	Н	M	Н	Н	M	M	M	Н	Н	Н	Н	
CO3		Н	Н	M	Н	Н	M	M	M	Н	Н	Н	Н	
CO4		Н	Н	M	Н	Н	M	M	M	Н	Н	Н	Н	
COs / P	SOs	PS	SO1	PS	<b>O2</b>	PS	SO3	PS	SO4				I	
CO1		Н		Н		Н		Н		-				
CO2		Н		H		H		Н		_				
CO3		Н		Н		Н		Н						
CO4	. 1	H		H	77 77	H	N # 1'	H						
H/M/L 1	indicat	es Stren	igth of Co	orrelation	H-H	igh, M- l	viedium	, L-Low	•	_				
				r s		Program Electives		ect						
		seou	مع	s and	ore	ecti	ives	Proj	Internships / Fechnical Skill					
		ciei	erin	ities	n C	n E	lect	[ / <b>I</b> I	nips	ills				
~		ic S	Engineering Sciences	nan ial S	Program Core	grar	'n E	ctica	Internships Technical S	Sk				
Catego	ory	Basic Sciences	Engineeri Sciences	Humanities and Social Sciences	Pro	Pro	Open Electives	Practical / Project	Inte	Soft Skills				
								<b>✓</b>						
Approva	al													

Course Code	Prerequisite Course Code	Course Title	Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BIT17L11	BIT17L10	PROJECT (PHASE – II)	PP2	10	0	0	20/0	Lb

### **OBJCETIVES:**

➤ Able to do main projects in their respective domain

Students are expected to carry out the following:

- (i) Implement the Design using suitable technologies.
- (ii) Generate the test cases.
- (iii) Demonstrate the solution with suitable user interface.
- (iv) Prepare a project report consolidating the phase-I and II activities.

# OPEN ELECTIVES E-I OE (6TH SEM)

Cubinat Con	In C	ubicat N	Jomes .					1	T /	T	Tr /	D/	
Subject Cod	ie:   S	ubject N	iame :	Web	Design	1			Ty / Lb/		T / S.Lr	P/ R	C
BCS17OE	1			VV CD	Design	•			ETL		0,21		
	P	rerequisi							Ty		0/0	0/0	3
L: Lecture 7	Γ : Tuto	orial S	Lr : Supe	rvised l	Learnin	g P : Pr	oject R	: Resea	arch C: C	redits			
Ty / Lb/ ETI	L: The	ory/Lab/l	Embedde	ed Theo	ory and	Lab							
OBJECTIV	<b>E</b> :												
			learn the										
			IL progr					_					
		•	ge to des	_									
			esign an							_			
					web si	tes usii	ng scrij	pung 1	anguages	<u> </u>			
COURSE O													
			dents ha					14 41	1	:4-			
CO2 CO3									he web s	ite			
			to design										
Mapping of									DOO	DO10	DO11	DC	10
COs/POs CO1	PO1 H	PO2 M	PO3 H	PO4 L	PO5 H	PO6 M	PO7 L	PO8 L	PO9 M	PO10 M	PO11 H	PC	H
CO2	Н	M	Н	M	H	Н	M	L	Н	M	Н		H
CO2	Н	H	Н	Н	Н	M	M	L	H	M	H		H
COs /		SO1	PSO	<u> </u>		03		O4		SO5		PSO6	11
PSOs	1	501	150	02		.03	1.	704	1.	,03	'	1000	
CO1		Н	I	I	]	L		Н		H		Н	
CO2		Н	I	I		L	]	Н		H		Н	
CO3		Н	I.	I		L	]	Н		H		Н	
H/M/L indic	ates St	rength o	f Correla	tion I	H- High	, M- M	edium,	L-Low			· ·		
								mical Skil					
		ıces	ocial					nica					
Categor		ien	S 1		ves		ct	chr					
У	ses	Engineering Scier	Humanities and Sociences	re	Program Electives	ves	Practical / Project	Internships / Tech					
	ien(	—ing	ies	Co	Ele	ecti	/ P.	/ sd	ls				
	Basic Sciences	leer	Humaniti Sciences	Program Core	am	Open Electives	ical	ıshi	Soft Skills				
	asic	 ngir	um;	ogr	ogr	oeu	acti	terr	oft §				
	Bį	Ē	Hı Sc	Pr	Pr	O _j	$\mathbf{P}_{\mathbf{I}}$	In	Sc				

27th meeting of Academic Council, June 2017

Approval

BCS170E1	NIL	WEB DESIGN	C	L	T/SLr	P/R	Ty /Lb /ETL/EVL
			3	3	0/0	0/0	Ty

### **OBJECTIVES:**

- The students will learn the Network and Internet works.
- To learn the HTML program structure, elements and Tags.
- To have knowledge to design basic website for their own.
- To learn how to design an effective website using CSS.
- To learn and develop a dynamic web sites using scripting languages.

### **UNIT I: Introduction to Network**

9 Hrs

Introduction to computer networks and uses - Network: devices, topology and types – Communication media. Introduction to OSI layers, Port and Protocols, Network applications. Client / Serverarchitecture. Internet server provider, DNS and Hosting.

### **UNIT II: Web Design Principles**

9 Hrs

Brief History of Internet - What is World Wide Web - Why create a web site - Web Standards - Audience requirement. Basic principles involved in developing a web site - Planning process - Five Golden rules of web designing - Designing navigation bar - Page design - Home Page Layout - Design Concept.

UNIT III: HTML 9 Hrs

Introduction to HTML- HTML version- Basic structure of an HTML document – Creating HTML document – HTML Elements - HTML Tags - Working with Text - Working with Lists, Tables and Frames - Working with Hyperlinks, Images and Multimedia - Working with Forms and controls .

### **UNIT IV: Cascading Style Sheet**

9 Hrs

Concept of CSS - Creating Style Sheet - CSS Properties - CSSStyling (Background, Text Format, Controlling Fonts) - Working with block elements and objects - Working with Lists and Tables - CSS Id and Class - Box Model(Introduction, Border properties, Padding Properties, Margin properties) - CSS Advanced(Grouping, Dimension, Display, Positioning, Floating, Align, Pseudo class, Navigation Bar, Image Sprites, Attribute sector) - CSS Color - Creating page Layout and Site Designs.

### **UNIT IV: Scripting Languages**

9 Hrs

JavaScript introduction – control structures – functions – arrays – objects – simple web applications. Web hosting and maintenance.

**Total Hours: 45** 

### **Text Books:**

- 1. Computer Networks by A Tanenbaum 5th edition, Pearson Education
- 2. Mastering HTML, CSS & JavaScript Web Publishing by Laura Lemay, Rafe Coburn, Jennifer Kyrnin, Pearson Education.
- 3. HTML & CSS: The Complete Reference, Fifth Edition by Thomas A. Powell, McGraw-Hill publication.

Subject Co		bject N							T / L/	L	T /	<b>P</b> /	C
BCS17OE			BER SE	ECURI	ITY ES	SSENT	TALS		ETL		S.Lr	R	<u> </u>
			te: NIL						Ту	3	0/0	0/0	3
L : Lecture	T : Tuto	rial S	Lr : Supe	rvised l	Learnin	g P : Pr	oject R	: Resea	arch C: C	redits			
Ty/Lb/ETL	: Theory	y/Lab/E	mbedded	Theor	y and L	ab							
OBJECTIV	/ES:												
<ul> <li>Learn the</li> </ul>	e Securit	y stand	ards										
.• Lear the t	echniqu	es of cy	ber secu	rity att	acks								
•			L	earn th	ne conc	ept of b	asic co	mputer	network	S			
COURSE (	OUTCO	MES (	COs): (	3- 5)									
			process		to prot	ect con	nputers	netwo	orks				
			•		•		•		nd attack	s delive	red via Ir	nterne	t bv
	cyber cr					0000, 10				0.00			,
				co of c	thor so	nuritu c	anlica+:						
			mportan				•						
Mapping of COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7		PO9	PO10	PO11	DC	012
COS/POS CO1	H	H	H	H H	H	L	M	PO8	M	H	M	L	)12
CO2	M	Н	Н	Н	Н	M	M	L	M	M	H	L	
CO3	Н	Н	Н	Н	Н	M	M	M	H	M	Н	M	
COs / PSOs		O1	PSO			O3		SO4		SO5		PSO6	
CO1		H	Н			M		H		L		Н	
CO2		H	Н			M		H		M		H	
CO3		H	Н			M		M		M		H	
H/M/L indic					H- High					.,,			
						, = = = = = =							
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills				
			1			/							
			of Acade										

BCS17OE2	NIL	CYBER SECURITY ESSENTIALS	C	L	T/SLr	P/R	Ty /Lb /ETL/EVL
2001/022	1 (12		3	3	0/0	0/0	Ty

### **OBJECTIVES:**

The student should be able to:

- Learn the Security standards
- Lear the techniques of cyber security attacks
- Learn the concept of basic computer networks

### **UNIT I: Cyber Security Fundamentals**

9 Hrs

Network And Security Concepts: Information Assurance Fundamentals-Basic Cryptography-Public Key Encryption- The Domain Name System(DNS)- Firewalls

### **UNIT II: Attackers Technique And Motivations**

9 Hrs

Trackers Cover Their Tracks (Antiforensis), How And Why Attackers Use Proxies-Tunnelling Technique- Fraud Technique: Phising, Smishing, Vishing And Mobile Malicious Code- Rogue Antivirus- Threat Infrastructure: Botnets-Fast Flux.

### **UNIT III: Exploitation**

9 Hrs

Techniques To Gain A Foothold: Shellcode- Integer Overflow Vulnerabilities- Stack Based Buffer Overflows- SQL Injections – Malicious PDF Files.

### **UNIT IV: Malicious Code**

9 Hrs

Self-Replicating Malicious Code Worms-Viruses Persistent S/W Techniques: Basic I/P-O/P System- Legacy Text Files- Autostart Registary Entirier Root Kits- Spyware- Attacks Against Privileged User Accounts- Virtual Machine Detection.

### **UNIT V: Defence And Analysis Technique**

9 Hrs

Memory Forensics- Honeypots- Malicious Code Naming- Automated Malicious Code Analysis System-Intrution Defection System. Case study: Defence Special File Investigation Tools.

**Total Hours: 45** 

#### **Text Book:**

1. James Graham, Ryan Olson, 2016 -Rick Howard, Cyber Security Essentials.

Subject Code: BCS17OE3	Subject Name : Electronic Waste Management	Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
	Prerequisite: NIL	Ty	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab

### **OBJECTIVE:**

- The e-waste Rules is to regulate generation, collection, storage, transport, import, export, recycling, treatment and disposal of e-wastes.
- Defining necessary steps to protect health and environment against hazardous substances contained in such wastes.

CO	ntained	in suc	h wastes	<b>.</b>											
• Ensi	ure that	t each a	nd ever	y one i	nvolve	d in the	e gener	ation o	of e-wast	e contril	outes to	the			
ob	jective	of envi	ronmen	tally so	ound re	cycling	g treatn	nent ar	nd dispos	sal of e-v	vaste.				
COURSE O	UTCO	MES (	COs): (3)	3- 5)											
CO1	Γ	o achie	eve grea	t know	ledge a	bout E	-Waste	e Mana	agement						
CO2	(	Concern	over th	e envir	onmen	tal har	m in na	ature e	conomie	s creates	an econ	omic			
	d	isincen	tive.												
CO3	Γ	o learn	about E	E-Wast	e Rules	s and R	egulati	ions ac	lapted in	many C	ountries				
CO4	E	Efficien	t way of	Recyc	ling an	d Reco	overy								
CO5								nment	ally frier	ndly and	socially				
	c	onscio	ıs altern	ative to	down	cyclin	g proce	esses.	•	•	•				
	Course	conscious alternative to down cycling processes.  Course Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	Н	L	L	L	L	Н	Н	M	M	M	M	Н			
CO2	M	Н	M	L	L	Н	Н	Н	M	Н	M	M			
CO3	L	M	L	L	L	Н	Н	Н	Н	Н	M	M			
CO4	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	M	Н			
CO5	M	Н	Н	Н	M	Н	Н	Н	Н	Н	M	Н			
COs /	PS	O1	PSC	)2	PS	O3	PS	O4	PS	O5	PS	SO6			
PSOs						M M						* *			
CO1		<u>M</u>	M							M		H			
CO2		<u>M</u>	M			<del>I</del>		M		M		M			
CO3 CO4		M H	M H			<del>I</del> -I		H H		M		H H			
		<u>н</u> Н	Н			<u>1</u> 		<u>н</u> Н		M		<u>н</u> Н			
CO5 H/M/L indic					I - High				ľ	M		П			
11/WI/L IIIGIC	ales sir	engui 0.	Contela	uon F	ı- mıgn	, 101- 1010	zuiuiii, .			Ī					
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	✓ Open Electives	Practical / Project	Internships / Technical Skil	Soft Skills						
Approval	27 th m	eeting	of Acade	emic Co	ouncil,	June 20	)17			1					

BCS17OE3	NIL	ELECTRONIC WASTE MANAGEMENT	С	L	T/SLr	P/R	Ty /Lb /ETL/EVL
			3	3	0/0	0/0	Ty

### **OBJECTIVES:**

- The e-waste Rules is to regulate generation, collection, storage, transport, import, export, recycling, treatment and disposal of e-wastes.
- Defining necessary steps to protect health and environment against hazardous substances contained in such wastes.
- Ensure that each and every one involved in the generation of e-waste contributes to the objective of environmentally sound recycling treatment and disposal of e-waste.

Unit I: Introduction 9 Hrs

E-Waste: Definition and major sources - why is e-waste harmful? - Classification of e-waste - components of e-waste - composition of e-waste - future perspective on electronic scarp.

### **Unit II: Environmental and Health Impacts**

9 Hrs

WEEE (Waste Electrical and Electronic Equipment)--toxicity and health perspective - Hazardous substances in waste electrical and electronic equipment--toxicity and release - Occupational and environmental health perspectives of e-waste.

### **Unit III: E-waste Regulation**

9 Hrs

Regulating e-waste - International and national legal framework on e-waste - Extended producer responsibility - a key tool for international rules and regulations on e-waste - Optimal planning for computer waste - Guidelines for environmentally sound management of e-waste.

### **Unit IV: Recycling & Recovery**

9 Hrs

Recycling of e-scrap in a global environment - opportunities and challenges - European Recycling platform (ERP) - Technologies for recovery - Rapid assessment of Electronics Enclosure Plastics - Reuse - A bridge from unsustainable E-Waste to sustainable E- Resources.

Unit V: Case Studies 9 Hrs

**1.** Overview of the International WEEE Directive 2. E- Waste Estimation in a particular country 3. Possible structure to establish a road-map for the implementation of an e-waste management strategy 4. Innovative idea in recycling the E-Waste.

**Total Hours: 45** 

### **Text / Reference Books:**

- 1. Ramzy Kahhat, Klaus Hieronymi, Eric Williams, 2013, E-waste Management: From Waste to Resource, Routledge.
- 2. Ronald E. Hester, Roy M. Harrison, 2009, Electronic Waste Management Design, Analysis and Application, REC Publishing.
- 3. Rakesh Johri, 2008, E-waste: implications, regulations, and management in India and current global best practices, TERI Press.



Subject		Subject N	lame :						Ty /	L	<b>T</b> /	P/	C
Code:		Ü	SOF	ΓWAR	E TES	STING	r		Lb/		S.Lr	R	
DCC17OEA	.	Duana avriai	to. NII	r					ETL	3	0/0	0/0	3
BCS170E4		Prerequisi			r	~ D . D.	aniant D	. Dasa	Ty		0/0	0/0	3
L: Lecture T Ty/Lb/ETL:							rojeci K	: Kese	aren C: C	reans			
		IVE:	mocdace	i i iicoi	y and L	au							
		ne criteria	for test c	ases.									
		design of			familia	r with	test mar	nageme	nt and tes	st autor	nation te	chniqu	es.
		ed to test:			sureme	nts							
COURSE O	UTC												
CO1									re testing			ware te	sting
						ms soft	ware te	sting te	chniques	ın con	nmercial		
		environn	nents dev	elopme	ent.								
CO2							rements	s using	various to	est prod	cesses fo	r	
G0.0		continuo						•	. ~				
CO3				the ade	quacy o	of test s	uites us	ing con	trol flow	, data f	low, and	l progra	m
Mapping of	Com	mutation		h Drog	rom O	ıtcomo	c (DOc)	1					
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	) PO1	1 PC	112
CO3/1 O3	H	H	M	M	M	L	L	M	M	M	M	M	12
CO2	Н	Н	M	M	L	L	L	M	M	M	M	M	
CO3	Н	Н	M	M	L	L	L	L	L	L	L	M	
COs /	PS0	)1	PSO2		PSO3	<u> </u>	PSO4		PSO5	<u> </u>	PSO	6	
PSOs													
CO1	Н		Н		M		M		L		L		
CO2	Н		Н		L		L		M		M		
CO3	Н	N1	H		M	37.34	L	· ·	L		L		
H/M/L indica	ates S	strength o	or Correla	tion I	1- High	, M- M	edium,	L-Low					
<u> </u>										1			
								Skil					
			al					Internships / Technical Skill					
Categor		ces	ocial					mic					
y		ien	d S		ves		ect	ech					
	ces	Sc	ano	ıre	ecti	ves	roj	T /					
	ien	ring	ties	Ŭ	E	ecti	[ / F	ips	IIs				
	Sc	]ee	anit	ram:	ram:	田田	ical	nsh	Ski				
	Basic Sciences	Engineering Sciences	Humanities and So Sciences	Program Core	.og1	Open Electives	Practical / Project	Ter.	Soft Skills				
	Ä	<u> </u>	H S	Pı	✓ Program Electives	0	$\overline{P_1}$	Ir	Š	1			
					•	1				1			
Approval				27 th 1	neeting	g of Aca	ademic	Counc	il, June 2	2017			

BCS17OE4	NIL		C	L	T/SLr	P/R	Ty /Lb /ETL/EVL
DCS1/OE4	NIL	SOFTWARE TESTING	3	3	0/0	0/0	Ту

### **OBJECTIVES:**

- The student should be made to:
- Expose the criteria for test cases.
- Learn the design of test cases.
- familiar with test management and test automation techniques.
- Be exposed to test metrics and measurements

Unit I: Introduction 9 Hrs

Software testing – Role of software testing – A structural approach to testing – Test strategy – methods for developing test strategy Testing methodologies.

### **Unit II: Life Cycle Testing Approach**

9 Hrs

Test plan – Requirements testing – Walk through test tool – Risk matrix test tool – Testing for requirements phase and design phase – Design renew test tool – Test data and volume test tools.

Unit III: Installation 9 Hrs

Installation phase testing – Tools for acceptance test – Software acceptance process – Software maintenance – Methodologies for testing – Training and change installation.

### **Unit IV: Testing Methods**

9 Hrs

Tools and techniques – Cost estimate – For testing – Testing phase of life cycle – Point accumulation tracking system – Performance analysis of testing – Inspection plan and test plan documents.

### **Unit V: Testing Strategy**

9 Hrs

Rapid prototyping – Spiral testing – Tool selection processes – Structural system testing – Documentation of test results – Test effectiveness evaluation – Test measurement process – Test metrics.

**Total Hours: 45** 

### **Text Books:**

- 1. William Perry, 2007, "Effective Methods for Software Testing", John Wiley & Sons,
- 2. Ron Patton, 2006, "Software Testing", Techmedia

Subject	Code	: Su	bject N	ame:						Ty/L	L	<b>T</b> /	<b>P</b> /	C
BCS170	OE5		Inf	ormatio	n Secu	ırity M	Ianage	ement		b/ ETL		S.Lr	R	
		Pre	erequisi	te: NIL						Ty	3	0/0	0/0	3
				Lr : Supe			_	oject R	: Resea	rch C: C	redits			<u> </u>
• To post busin • Intro	rovide ness duce tl	an un	derstanonny	ve of the ding of the used fra tability a	ne princ	ciples of	nethods	S	·	-	nent cor	nmonly	used in	l
				COs):(										
CO1		_		standing								ity mana	gemei	nt
CO2	Appl	y the j	principl	es in des	igning	solution	is to ma	ınage se	ecurity r	isks effe	ctively			
CO3	Appl	y the j	e principles of information security management in a variety of contexts											
CO4		erstanc nizatio	and the various elements of information security management and its role in protecting ations											
Mappir	g of C	Course	Outco	mes wit	h Progi	ram Ou	itcomes	s (POs)						
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	D12
CO1		Н	M	L	L	L	M	L	L	L	L	Н	]	M
CO2	;	Н	Н	Н	Н	M	Н	Н	Н	Н	Н	Н		Н
CO3	;	Н	Н	Н	M	M	Н	M	Н	M	Н	Н		Н
CO4		M	M	M	Н	M	Н	Н	Н	Н	M	M		Н
COs /PS	SOs	PS	O1	PSO	02	PS	О3	PS	SO4	PS	O5		PS06	
CO1		I	H	Н	[	1			L	N	M		L	
CO2			H	Н			Л		M		Н		M	
CO3			H	Н			Л		M		H		M	
CO4			H	Н			Л		М	]	H		M	
H/M/L i	ndicat	es Str	ength of	f Correla	tion I	I- High	, M- M	edium,	L-Low	T	•	_		
Catego y	or	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
		•												

Approval	27 th meeting of Academic council, June2017

Course Code	Prerequisite Course Code		Category	С	L	T/SL r	P/R	Ty/ Lb/ ETL/ EVL
BCS17OE5	NIL	INFORMATION SECURITY MANAGEMENT	OE	3	3	0/0	0/0	Ту

### **OBJECTIVES:**

The objective of the course is

- To provide an understanding of the principles of information security management commonly used in business
- Introduce the commonly used frameworks and methods
- Explore critically the suitability and appropriateness of security needs.

### UNIT I: INTRODUCTION TO INFORMATION SECURITY AND MANAGEMENT 9 Hrs

Information sensitivity classification-governance-computing environment- security of various components – Management Concepts: traditional management skills and security literacy, managerial skills, redefining Mintzberg's Managerial roles, IS Security management activities-information security management life cycles- security management vs functional management

### UNIT II: INFORMATION SECURITY LIFECYCLE

9 Hrs

Introduction-Security planning in SLC-Security analysis-security design- security implementation – design- continual security

### UNIT III: SECURITY PLAN AND POLICY

9 Hrs

Security plan: Development guidelines-security plan methodologies- Policy: security policy, standards and guidelines- security policy methodologies

### UNIT IV: SECURITY RISK MANAGEMENT

9 Hrs

Introduction- risk management life cycle- preparation efforts- security culture-factors affecting security risk- ALE risk methodology- operational, functional and strategic risks- ABLE methodology

### UNIT V: SECURITY DESIGN AND IMPLENTATION

9 Hrs

ISO/IEC 27002- Using ISO/IEC 27002 to enhance security- measurement and implementation-general ISMS Framework- ISMS Model and design- integration of ISMS Subsystems-self assessment for compliance- Security solutions: security management, access control, security analysis

Total Hours: 45 Hrs

#### Text Book

1. "Information Security Management: Concepts and Practice "Bell G. Raggard, CRC Press 2010

### Reference Books:

- 1. "Information Security Management Principles" David Alexander, Amanda Finch, BCS Learning and Development Ltd, 2013
- 2. "Security Analysis and Portfolio Management" Ronald E Fischer, S.Kevin PHI Learning Pvt Ltd, 2015.

# U6TH SEM ELECTIVES E-II

Subject		e:	•	ect Name	AND .			)F	Ty /	L	T / S.Lr	P/R	С
BCS17	005		D			ATHM	S		ETL	2	0/0	0/0	2
I · Lect	ure T	' · Tute		quisite:Bo SLr : Supe			σ D · Dr	oject R	· Resea	3	0/0	0/0	3
				_			_	ojeci K	. IXCSCa	icii C. Ci	cuits		
			y/Lab/I	Embedde	1 I neor	y and L	ab						
	To L To u To U To U	earn n nders Inders Inders	tand the stand It stand It stand the other controls of the control of the contro	orithm and the different elements are limitated (COs):	nt algorith tions of 3-5)	rithm d ms f Algor	lesign t	ower.	ues.				
CO1	Des	ign al	gorithi	ns for va	rious c	computi	ing pro	blems					
CO2	Ana	lyze t	he tim	e and spa	ace con	nplexit	y of alg	orithm	S.				
CO3				ze the dif algorith					nniques	for a	given pro	oblem.	
				omes wit							1	1	ı
COs/PO	S	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		Н	Н	M	M	L	L	L	M	L	L	M	L
CO2		H	Н	Н	L	M	L	M	M	Н	M	M	M
COs /		H PSO	M	M PSO2	M	SO3	M	L SO4	M	PSO5	L	PSO ₀	M
PSOs		1	'	P3O2	P	303	P	304		P303		P300	3
CO1		Н		Н		M		L	Н	Н	. M		L
CO2		M		Н		M		L	Н	M	I M		L
CO3		M		M		L		L	Н	M	I M		L
H/M/L	indica	ates St	rength	of Correla	tion ]	H- High	, M- M	edium, l			1	T	1
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skil	Soft Skills			
Approv	al	27	th mee	ting of A	cademi	ic Coun	cil, Jur	e 2017					

BCS17005	BCS17001	DESIGN AND ANALYSIS OF	C	L	T/SLr	P/R	Ty /Lb /ETL/EVL
		ALGORITHMS	3	3	0/0	0/0	Ty

### **OBJECTIVES:**

- The students will be able to understand the design of advanced algorithms
- Create problems by applying Greedy methods and understand the dynamic programming
- Apply the graph coloring techniques to solve the real time problems.

UNIT I: Introduction 9 Hrs

Fundamental characteristics of an algorithm. Basic algorithm analysis –Asymptotic analysis of complexity bounds – best, average and worst-case behaviour, standard notations for expressing algorithmic complexity. Empirical measurements of performance, time and space trade-offs in algorithms. Using recurrence relations to analyze recursive algorithms – illustrations using recursive algorithms.

### **UNIT II: Fundamental Algorithmic Strategies**

9 Hrs

Fundamental Algorithmic Strategies: Brute-Force, Greedy, Branch-and-Bound, Backtracking and Dynamic Programming methodologies as techniques for design of algorithms – Illustrations of these techniques for Problem Solving. Euristico- characteristics and their domains of applicability. Design of algorithms for String / Text matching problems, Huffman Code and Data compression problems, Subset-sum and Knapsack problems.

### **UNIT III: Graph and Tree Algorithms**

9 Hrs

Graph and Tree Algorithms: Depth- and Breadth- First traversals. Shortest path algorithms, Transitive closure, Minimum Spanning Tree, Topological sort, Network Flow problems.

### **UNIT IV: Tractable and Intractable Problems**

9 Hrs

Tractable and Intractable Problems: Computability. The Halting problem. Computability classes –P, NP, NP - complete and NP-hard. Cook's theorem. Standard NP complete problems Reduction techniques.

### **UNIT V: Advanced Algorithms**

9 Hrs

Approximation algorithms, Randomized algorithms, Class of problems beyond NP – SPACE.

**Total Hours: 45** 

### **Text Books:**

- 1. T.H. Corman et. al , (2009) Introduction to Algorithms Mit Press
- 2. Jon Kleinberg and Eva Tardos (2006) Algorithm Design, Pearson Education India.

#### **Reference Books:**

- 1. E. Horowitz et al (2008) Fundamentals of Algorithms –., Prentice Hall of India
- 2. Anany Levitin,(2003) "Introduction to the Design and Analysis of Algorithm", Pearson Education Asia.

Subject Code:	Subject Name :	Ty/	L	<b>T</b> /	<b>P</b> /	C
BCS17E01	IMAGE PROCESSING	Lb/		S.Lr	R	
		ETL				
	Prerequisite: BCS17ET1	Ty	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

 $Ty/Lb/ETL: Theory/Lab/Embedded\ Theory\ and\ Lab$ 

### **OBJECTIVES:**

- To Lean the image fundamentals and mathematical transforms necessary for image processing.
- To Learn the image enhancement techniques

• To L	earn im	age rest	oration pr	ocedure	S.							
• To L	earn the	e imag <b>e</b>	compres	sion pro	cedures							
			Segmenta		d represe	entation	techniqu	ues.				
COURSE O												
CO1	Discu	uss dig	ital imag	ge fund	amenta	als						
CO2			e enhan									
CO3			compres			nentatio	on tech	niques				
CO4	Repr	esent f	eatures o	of imag	es							
Mapping of	Course	e Outco	mes witl	h Progr	ram Ou	tcomes	s (POs)	1				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	L	M	M	M	L	M	L	M	M	M	L
CO2	Н	Н	Н	Н	Н	L	M	L	M	M	Н	M
CO3	Н	Н	Н	Н	Н	M	M	L	Н	M	Н	M
CO4	M	M	M	L	M	M	M	M	L	M	M	M
COs / PSOs	PS	O1	PSO	02	PS	O3	PS	SO4	PS	SO5	P	SO6
CO1	I	H	M		M		ı	M	1	M		M
CO2		H	Н		L			H		H		H
CO3		M.	Н		M			<u></u> Н		H		H
CO4	N	M	Н		l		1	M	I	M		M
H/M/L indic	ates Str	ength of	f Correla	tion F	I- High	, M- M	edium,	L-Low			I.	
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
Approval	27 th n	neeting	of Acad	emic C	ouncil,	June 2	2017					

D.CC1#E01	BCS17ET1	TALL OF PROCEEDING	С	L	T/SLr	P/R	Ty /Lb /ETL/EVL
BCS17E01		IMAGE PROCESSING	3	3	0/0	0/0	Ту

### **OBJECTIVES:**

- To Lean the image fundamentals and mathematical transforms necessary for image processing
- To Learn the image enhancement techniques
- To Learn image restoration procedures.
- To Learn the image compression procedures.
- To Learn the image segmentation and representation techniques.

UNIT I: Introduction 9 Hrs

Digital image representation-Fundamental steps in image processing -Elements of digital image processing systems, Digital Image Fundamentals - :Elements of visual perception-A simple image model -Sampling and quantalization -Some basic relationship between pixels-Imaging geometry - Photographic film.

### **UNIT II: Image Transforms**

9 Hrs

Introduction to the Fourier transform -The Discrete Fourier transform -Some properties of the two dimenstional Fourier transform -The fast Fourier transform-Other seperable image transforms-The hotelling transform.

### **UNIT III: Image Enhancement**:

9 Hrs

Background -Enhancement by point Processing -Spatial filtering-Enhancement in the frequency domains -Generations of the spatial masks from frequency Domain specifications- Color image processing -Image Restoration: Degradation Model -diagonalization of Circulant and Block circulant Matrices -Algebraic approach to restoration-Inverse filtering -Least mean square filter -constrained least square restoration-Restoration in spatial domain-Geometric transformation.

### **UNIT IV: Image Compression**

9 Hrs

Fundamentals -image Compression models -Elements of information Theory - Error-free Compression - Lossy Compression - Image Compression standards, Images Segmentation : Edge linking and boundary detection - Thresholding - Region - Oriented segmentation — The use of motion in segmentation.

### **UNIT V: Representation and Description**

9 Hrs

Representation Schemes - Boundary descriptors - Morphology - Relational descriptors, Recognition and Interpretation: Elements of image Analylsis - Pattern and pattern classes - Decision theoretic methods - Structural Methods - Interpretation.

**Total Hours: 45** 

### **Text Books:**

- 1. RAFAEL C.GONZALEZ and RICHARD E.WOODS. Digital Image Processing 2009, Prentice Hall.
- 2. Jayaraman, S. Esakkirajan and T. Veerakumar, Digital Image Processing Tata McGraw Hill, 2009

### **Reference Books:**

- 1. M.A.SID AHMAED, Image Processing Theory, Algorithm and Architecture McGraw Hill, 1995
- 2. DON PEARSON, Image Processing, McGraw Hill, 1991.

Subject Cod BCS17E02		ubject N	ame : OGRAP	HICA	I. INFO	ORM A	TION		Ty / Lb/	L	T / S.Lr	P/ R	C
DCS17E02		GEC	JORAN .		CEMS			'	ETL		5,21	1	
	P	rerequisi	te: NIL	210.					Ty	3	0/0	0/0	3
L : Lecture 7				rvised l	Learnin	g P : Pr	oject R	: Resea		redits			
Ty/Lb/ETL :	Theor	ry/Lab/E	mbedded	l Theor	y and L	ab							
	students		able to des						S models	al time o	case study	•	
COURSE O													
CO1			n, explor				yze GIS	S mode	ls				
CO2			new geo			_							
CO3		Apply th	e learnt (	GIS mo	deling f	or a rea	ıl time o	case stu	dy				
Mapping of	Cours	se Outco	mes wit	h Progi	ram Ou	itcomes	s (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	) PO1	1 PC	)12
CO1	Н	Н	Н	Н	M	Н	M	M	M	Н	Н		Н
CO2	Н	Н	Н	M	M	Н	M	M	L	M	M	M L	
CO3	Н	Н	M	M	M	Н	Н	Н	Н	Н	M		M
Mapping of													
COs/	F	PSO1	PSC	02	PS	03	PS	<b>604</b>	PS	<b>SO5</b>		PSO6	
PSOs		**	•			-				• •			
CO1		H	Н			<u> </u>		M		H		H	
CO2		H	Н			<u>L</u>		M		H		Н	
CO3		H	M			M M		M		H		M	
H/M/L indic	ates St	rength of	Correla	tion I	1- High	, M- M	edium,			1			
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skil	Soft Skills				
Approval		1	1	27 th m	neeting	of Aca	demic (	Counci	l, June 2	017	l	I	

BCS17E02	NIL	GEOGRAPHICAL INFORMATION	C	L	T/SLr	P/R	Ty /Lb /ETL/EVL
		SYTEMS	3	3	0/0	0/0	Ty

### **OBJECTIVES:**

- The students will be able to design, explore, interpolate and analyze GIS models
- To create a new geo coding technique and apply the learnt GIS modeling for a real time case study.

### **UNIT I: Basic Concepts**

9 Hrs

Introduction - Coordinate Systems - Vector Data Model - Raster Data Model.

### **UNIT II: Data Acquistion & Manipulation**

9 Hrs

GIS Data Acquisition - Geometric Transformation - Spatial Data Editing - Attribute Data Input and Management - Data Display and Cartography.

### **UNIT III: Data Analysis**

9 Hrs

Data Exploration - Vector Data Analysis - Raster Data Analysis - Terrain Mapping and Analysis - Viewsheds and Watersheds.

### **UNIT IV: Interpolation & Applications**

9 Hrs

Spatial Interpolation - Geocoding and Dynamic Segmentation - Path Analysis and Network Applications.

**UNIT V: Modelling** 

9 Hrs

GIS Model and Modelling.

**Total Hours: 45** 

### **Text Book:**

1. Kang-tsung Chang (2015), *Introduction to Geographic Information Systems*, (8th ed.), Mcgrawhill ISBN 0078095131, 9780078095139

### **Reference Books:**

- 1. Prithvish Nag And Smita Sengupta, *Introduction To Geographical Information Systems, Concept Publishing Company*, 2007, ISBN 8180694399, 9788180694394
- 2. Paul Longley, *Geographical information systems*, 2/e, Wiley, 1999, Digitised 2007, ISBN 0471321826, 9780471321828

Subject Code	e: S	ubject N	Vame :						<b>Ty</b> /	L	<b>T</b> /	<b>P</b> /	C			
			DAT	A BAS	SE TU	NING			Lb/		S.Lr	R				
BCS17E03									ETL							
		•	te: BCS						Ty	3	0/0	0/0	3			
L : Lecture T	: Tute	orial S	Lr : Supe	rvised	Learnin	g P : P1	roject R	: Rese	arch C: C	redits						
Ty/Lb/ETL:	Theo	ry/Lab/E	mbedded	l Theor	y and L	ab										
OBJECTIVI	E :															
1. The	stude	nts will	be able	to tune	the da	tabases	s for di	fferen	t data bas	se appli	cations					
		-					e to tro	oublest	noot the o	data bas	ses					
			al perfor		tuning	steps										
COURSE O																
CO1		Able to	Tune the	e datab	ases fo	or diffe	rent Da	ata bas	e Applic	ations						
CO2		Able to	Develop	Case	Studies	s in dat	ta bases	S.								
CO3		Able to	Trouble	shoot t	he data	a bases										
Mapping of	Cour	se Outcomes with Program Outcomes (POs)														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	12			
CO1	Н	Н	M	Н	M	Н	Н	M	Н	Н	Н	M				
CO2	Н	Н	Н	Н	L	Н	M	Н	M	Н	Н	M				
CO3	M	Н	Н	M	Н	M	Н	Н	M	Н	Н	Н				
COs /	P	SO1	PS	O2	PS	O3	PS	SO4	P.S	SO5		PSO6				
PSOs																
CO1	Н		M		Н		Н		M		Н					
CO2	Н		Н		Н		M		Н		M					
CO3	Н		Н		M		Н		M		Н					
H/M/L indica	ites St	rength o	f Correla	tion l	H- High	, M- M	edium,	L-Low	7							
								nternships / Technical Skill								
		S	ial					ical								
Categor		) Juc	Soc		SS		, <del>,</del>	hni								
y	S	Scie	; pu	0)	tive	Se	) jec	Tec								
	nce	) gr	s a	Òre		tive	Prc	s / s								
	cie	erii.	itie	n C	m E	lec.	al/	 hip	ills							
	Sasic Sciences	ingineering Sciences	Iumanities and Social ciences	rogram Core	rogram Electives	)pen Electives	ractical / Project	rns	oft Skills							
	sas.	gug	Hur cie	10.	roş	)pe	rac	nte	ofi							

 $27^{th}$  meeting of Academic Council, June 2017

Approval

BCS17E03	BCS17004	DATABASE TUNING	C	L	T/SLr	P/R	Ty /Lb /ETL/EVL
			3	3	0/0	0/0	Ty

#### **OBJECTIVES:**

- The students will be able to tune the databases for different data base applications.
- To develop case studies in data bases
- Able to troubleshoot the data bases.

### **UNIT I: Fundamentals of Tuning**

9 Hrs

Review of Relational Databases – Relational Algebra - Locking and Concurrency Control – Correctness Consideration – Lock Tuning – Logging and the Recovery Subsystem – Principles of Recovery – Tuning the Recovery Subsystem – Operating Systems Considerations – Hardware Tuning

### **UNIT II: Indexing and Hashing**

9 Hrs

Types of Queries – Data Structures – B tree – B+ Tree - Hash Structures – Bit Map Indexes – Clustering Indexes – Non Clustering Indexes – Composite Indexes – Hot Tables – Comparison of Indexing and Hashing Techniques

### **UNIT III: Query Optimization**

9 Hrs

Techniques - Tuning Relational Systems - Normalization - Tuning De-normalization - Clustering Two Tables - Aggregate Maintenance - Record Layout - Query Tuning - Triggers - Client Server Mechanisms - Objects, Application Tools and Performance - Tuning the Application Interface - Bulk Loading Data - Accessing Multiple Databases

### **UNIT IV: Troubleshooting**

9 Hrs

Query Plan Explainers – Performance Monitors – Event Monitors – Finding —Suspicious|| Queries – Analyzing a Query's Access Plan – Profiling a Query Execution – DBMS Subsystems

UNIT V: Case Studies 9 Hrs

Transaction Chopping – Time Series Databases – Understanding Access Plans – Configuration Parameters: Oracle; SQL Server; DB2UDB – Distributed Database – Implementation.

**Total Hours: 45** 

### **Text Books:**

- 1. Dennis Shasha and Philippe Bonnet (2005) Database Tuning, Principles, Experiments, and Troubleshooting Techniques, Elsevier
- 2. Thomas Connoly and Carlolyn Begg (2009) Database Systems, A Practical Approach to Design, Implementation and Management, (4th ed.) Pearson Education

Subject Code: BCS17E04	Subject Name : COMPONENT BASED TECHNOLOGY	Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
	Prerequisite: BCS17ET2&BCS17012	Ty	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

 $Ty/Lb/ETL: Theory/Lab/Embedded\ Theory\ and\ Lab$ 

### **OBJECTIVE:**

- Show clear understanding of theoretical concepts of component based development and be able to apply the appropriate techniques of implementation using EJB 3 technology.
- To show the ability to critically discuss the key concepts in component based development and influence of this topic to modern trends in business computing and software engineering.

• Show	<ul> <li>Show detailed knowledge of aspects of EJB 3 technology that allow development of applications based on components and service oriented architecture.</li> </ul>											
COURSE O					rientea	architec	ture.					
CO1					for buil	ding so	ftware	systems	from co	mponents	S.	
CO2					nologie	s and st	andards	s for cor	nponent	models a	nd servi	ce-
G02			computii		1.				1 11 7		TOP O	1 .
CO3			ity with t I Java RN						cluding January	ava Bean	is, JSP, S	servlets,
CO4									s (CCM)			
Mapping of												
COs/POs	PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12											
CO1	Н	Н	Н	Н	Н	M	M	L	Н	L	Н	M
CO2	Н	Н	M	M	Н	L	L	L	Н	L	Н	Н
CO3	Н	Н	Н	Н	Н	Н	M	L	Н	L	Н	Н
CO4	Н	M	M	M	M	M	M	L	M	L	M	L
COs / PSOs		SO1	PSC	)2		O3		O4		O5	PSO6	
CO1	Н		Н		L		Н			<u>H</u>	M	
CO2	Н		M		M H				M		H	
CO3	Н	3.4	Н		M					M		H
CO4		M	M	. т	M H H- High, M- Medium, L-Lo				<u> </u>	M		M
H/M/L indica	ates St	rength of	Correla	ion F	i- Hign	, M- M6	edium, i					
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▼ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
Approval	27 th meeting of Academic Council, June 2017											

BCS17E0	BCS17ET2	COMPONENT BASED TECHNOLOGY	C	L	T/SLr	P/R	Ty /Lb /ETL/EVL	1
	&BCS17012		3	3	0/0	0/0	Ту	ì

### **OBJECTIVES:**

- Show clear understanding of theoretical concepts of component based development and be able to apply the appropriate techniques of implementation using EJB 3 technology.
- To show the ability to critically discuss the key concepts in component based development and influence of this topic to modern trends in business computing and software engineering.
- Show detailed knowledge of aspects of EJB 3 technology that allow development of applications based on components and service oriented architecture.

### **UNIT I: Distributed Object Technology**

9 Hrs

Introduction-Evolution of distributed systems-Evolution of distributed objects- Methods of distribution-Multi-Tier Architecture. **Component Technology:** Component Concepts-Modules-Interfaces-Callbacks – Directory services-Component Architecture-Component Based Software development.

### **UNIT II: Enterprise Foundations**

9 Hrs

Enterprise Architecture Overview-Object Oriented Software Development for the Enterprise-Component based Software development for the Enterprise- Java Enterprise System Architecture with J2EE.**JAVA Based Component Model:** JAVA Beans-Remote Method Invocation(RMI)-RMI-IIOP. **Enterprise Java Beans:** Introduction-EJP Architecture-Types of Enterprise Beans-Life Cycle of Beans-Steps in developing an EJP.

### **UNIT III: Architecture of Corba**

9 Hrs

The History of CORBA- CORBA Architecture-ORB-Portable Object Adapter-Internet inter-ORB Protocol(IIOP)- Dynamic CORBA-OMG IDL-CORBA Services-CORBA Object Location Service-CORBA Activation Framework-CORBA Messaging Services-CORBA Event Service- CORBA Security Service-CORBA Object Transaction Service. CORBA Component Model-Model Driven Architecture.

### **UNIT IV: Microsoft Component Technologies**

9 Hrs

Evolution of Microsoft Component Technologies-OLE-Active X Controls-DLL Surrogates and Executables-Components with ATL-DCOM Architecture-Interface-COM IDL. **Service Oriented Architecture:** Introduction to Web Services-Introduction to Service oriented architecture-Business Value of SOA- Architectural Elements of SOA- Web Services and Service Oriented Architecture.

### **UNIT V: Application**

9 Hrs

Client Server using –RMI-RMI/IIOP- CORBA-Enterprise Beans. Componentized Application Development using EJP.

**Total Hours: 45** 

### **Text Books:**

1. G. Sudha Sadasivam(2008)- Component Based Technology, Wiley India Pvt. Ltd.

### **Reference Books:**

- 1. Robert Orfali, Dan Harkey and Jeri Edwards (2002)-The Essential Client / Server Survival Guide, Galgotia Publications Pvt. Ltd.
- 2. Tom Valesky (2002) Enterprise Java Beans, Pearson Education.
- 3. Jason Pritchard (2000) COM and CORBA Side by Side, Addison Wesley.
- 4. Joel Murach, Anne Boehm (2012)- C#, Murach.

Subject Code: BCS17E05	Subject Name : E-COMMERCE	Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
	Prerequisite: BCS17I01	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL : Theory/Lab/Embedded Theory and Lab

### **OBJECTIVE:**

- Understand the nature of e-Commerce
- Recognize the business impact and potential of e-Commerce
- Explain the technologies required to make e-Commerce viable
- Discuss the current drivers and inhibitors facing the business world in adopting and using eCommerce;

eCor	nmerce	2;								-   -   -	0			
<ul> <li>Explain the economic consequences of e-Commerce;</li> <li>Discuss the trends in e-Commerce and the use of the Internet.</li> </ul>														
					and the	use of	the Inte	ernet.						
COURSE O														
CO1								s mode	els and sti	rategy				
CO2	D	escribe	the infra	structu	re for E	-comme	erce							
CO3	А	ssess e	electronic	payme	nt syste	ems								
Mapping of														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	M	M	Н	Н	Н	Н	Н	Н	Н	M	M	M		
CO2	Н	H	Н	Н	Н	Н	Н	Н	Н	M	M	M		
CO3	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	M	M		
COs /	PS	O1	PSC	)2	PS	O3	PS	SO4	PS	SO5	P	SO6		
PSOs														
CO1		H H H M H												
CO2		H	Н			H		H		M		H		
CO3		H	Н			H		H		М		Н		
H/M/L indic	ates Str	ength o	f Correla	tion I	1- High	, M- M	edium,		,	1	I			
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
				th	~									
				27 th m	neeting	of Aca	demic	Counci	il, June 2	017				
Approval														



BCS17E05 BCS17I01	E-COMMERCE	С	L	T/SLr	P/R	Ty /Lb /ETL/EVL
<b>DOST/101</b>	E COMMENCE	3	3	0/0	0/0	Ty

### **OBJECTIVES:**

- Understand the nature of e-Commerce
- Recognize the business impact and potential of e-Commerce
- Explain the technologies required to make e-Commerce viable
- Discuss the current drivers and inhibitors facing the business world in adopting and using e-Commerce;
- Explain the economic consequences of e-Commerce.
- Discuss the trends in e-Commerce and the use of the Internet.

UNIT I: Introduction 9 Hrs

History of E-Commerce -E-Commerce Vs E-Business-Emergence of the Internet- Advantages-Disadvantages-Business model- E -Business Models based on the relationship of Transaction Parties- E -Business Models based on the relationship of Transaction Types- Technologies of World Wide Web- Internet Client Server Applications-Networks and Internets-Software Agents-Internet Standards and Specification-Internet Service Provider-Markup Language and the web-JavaScript-XML-Intranets and Extranets.

### **UNIT II: E-Marketing**

9 Hrs

Identifying Web Presence Goals- The Browsing Behaviour Model-Online Marketing-E-Advertising-Internet Marketing Trends-Targets Markets-E-Branding-Marketing Strategies E-Security: Security on the Internet-E-Business Risk Management Issues-E-Payment Systems: Digital Token based e-payment System-Classification of New Payment System- Electronic Cash-Risk and E-Payment System-Designing E-paymentSystem- Digital Signature.

### **UNIT III: E-Customer Relationship Management**

9 Hrs

CRM-ECRM Solutions- ECRM Toolkit-Typical Business Touch point. E-Supply Chain Management-Supply Chain Management for Various Industries- E-Strategy and Knowledge management.

### **UNIT IV: Mobile Commerce**

9 Hrs

Information System for Mobile Commerce-Mobile Payments-Cellular Networks-Different Generations in wireless Communication- Technologies for mobile Commerce-WAP Programming Model. Portals for E-Business: Portals-Requirements of Intelligent Websites.

#### **UNIT V: Applications**

9 Hrs

Plan your Business and create a web Site with wordpress.

**Total Hours: 45** 

### **Text Book:**

1. P.T. Joseph, S.J. (2015), E-Commerce Indian Perspective Fifth Edition, PHI Learning

### **Reference Books:**

- 1. Zheng Qin(2009), Introduction to E-Commerce, Springer.
- 2. Mamta Bhusry, E-Commerce, Laxmi Publications PVT Ltd.

B.Tech. (IT) Regulation 2017

Subject Cod BCS17E06		Subject Name :  ARTIFICIAL INTELLIGENCE						Ty / Lb/ ETL	L	T / S.Lr	P/ R	С	
	D.		ta. NIII							2	0/0	0/0	2
	Pr	erequisi	ite: NIL						Ту	3	0/0	0/0	3
L : Lecture T	Γ: Tuto	orial S	Lr : Supe	rvised	Learnin	gP:P	roject R	: Rese	arch C: C	redits			
Ty/Lb/ETL:	Theor	y/Lab/E	mbedded	l Theor	y and L	ab							
OBJECTIV													
			e able to			_	AI tech	nıques					
			mes usin				compi	tationa	l manner				
COURSE O					HOIMat	1011 111 6	Compu	itationa	1 mame				
CO1			and differ		es of A	Lagents	2						
CO2				• •				od info	ormed, he	urictio	constra	int	
CO2			ion, gene				1111101111	eu, iiii	nnied, ne	uristic.	, consua	IIIt	
CO3	J	Jndersta	and the fu	ındame	ntals of	knowl			ation (log	ic-base	ed, frame	e-based	,
COA			nets), in							a.C.!	1	- / اه مد	
CO4			trate wor n informa		owiedg	e or rea	isoning	in the	presence	oi inco	inpiete a	ına/or	
CO5	A	Ability to		nowled	lge repr	esentat	ion, rea	soning,	, and mac	hine le	arning to	echniqu	es to
Mapping of					ram Oı	ıtcome	e (POe)	<u> </u>					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PC	112
CO1	Н	H	Н	Н	M	Н	M	M	Н	Н	H		H
CO2	Н	Н	Н	Н	M	Н	M	M	Н	Н	Н		Н
CO3	Н	Н	Н	Н	L	Н	M	M	Н	M	Н		Н
CO4	Н	Н	Н	Н	M	Н	M	M	Н	Н	Н		Н
CO5	Н	Н	Н	Н	M	Н	M	M	Н	M	Н		Н
COs / PSOs	P.	SO1	PSO	O2	PS	SO3	PS	SO4	PS	SO5		PSO6	
CO1		H	Н	[	1	M	-	M		Н		Н	
CO2		Н	Н	[		Н		Н		Н		Н	
CO3		H	Н	[	]	H		Н		H		Н	
CO4		H	Н		1	M	1	Н		H		Н	
CO5		Н	N			Н		H		H		Н	
H/M/L indic	ates Sti	rength o	f Correla	tion I	H- High	, M- M	ledium,	L-Low	·	1			
Categor		iences	Social		ves		sct	chnical Skil]					
у	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	✓ Program Electives	Open Electives	Practical / Project	Internships / Technical Skil	Soft Skills				
					<b>'</b>								
Approval				27 th n	neeting	of Aca	demic	Counc	il, June 2	017			

BCS17E06	NIL	ARTIFICIAL INTELLIGENCE	С	L	T/SLr	P/R	Ty /Lb /ETL/EVL
			3	3	0/0	0/0	Ty

### **OBJECTIVES:**

- The students will be able to solve problems using AI techniques
- To develop new games using AI techniques
- To guide the process of deducing information in a computational manner

### **UNIT I: Introduction and Problem Solving**

9 Hrs

Introduction—Intelligent agent — Types of agents — Agent Structure — Problem solving agents — Problem Formulation - Uninformed search strategies — Breadth first search — Uniform cost search — Depth first search — Depth limited search — Bidirectional search — Searching with partial Information

### **UNIT II: Informed Search Methods and Game Playing**

9 Hrs

Informed search Strategies – A* Heuristic function – Hill Climbing search – Constraint Satisfaction problem - Optimal decisions in games – Pruning –Alpha-Beta pruning - State-of-the-Art Game Programs

### **UNIT III: Knowledge and Reasoning**

9 Hrs

Knowledge based agent – The Wumpus world environment – First-order logic –Building a Knowledge base – Properties of Good and Bad Knowledge bases – The Grocery Shopping World - Inferences in FOL – Forward and backward chaining algorithm

### **UNIT IV: Acting Logically**

9 Hrs

Planning-Simple planning agent-Planning with state space search-Partial order planning-Practical planning – Practical planning – Planning and Acting – Conditional Planning – Fully Integrated planning and execution

### **UNIT V: Uncertain Knowledge Reasoning and Robotics**

9 Hrs

Acting under Uncertainty - Knowledge Engineering for Uncertain Reasoning - Case study: The Pathfinder system - Robotics Introduction - Goods of Robots - Parts of Robots - Navigation and Motion planning.

Total Hours: 45

### **Text Books:**

- 1. Stuart R. Peter N. (2010) Artificial Intelligence A modern Approach, Prentice Hall
- 2. Elaine R. Kevin K. (2008) Artificial Intelligence Tata McGraw Hill

### **Reference Books:**

- 1. Tim Jones M. (2008) Artificial Intelligence, A System Approach(Computer Science)
- 2. Ben Coppin (2004) Artificial intelligence illuminated, Jones and Bartlett Learning

Subject Coo BCS17E07		ŭ	ubject Name : Human Computer Interaction						Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
	F	Prerequisi	te: NIL						Ty	3	0/0	0/0	3
L : Lecture				rvised	Learnin	g P : Pt	oiect R	: Rese		redits			
Ty/Lb/ETL			•			•	-5						
COURSE C	should Learn Be fam Manag	the found hiliar with the HCI OMES (Government) To learn Understa	ations of a the desirement (COs): ( the basic and the defined how the desirement (COs): (COs)	gn tech  3-5)  c termin  esign te	nologies chnologies	of HC	dividua I individ	uals and	persons v			es	
Mapping of				PO0	DO1/	DO1	1 DC	110					
COs/POs CO1	PO1 H	PO2 H	PO3 M	PO4 H	PO5 M	PO6 H	PO7 H	PO8 M	PO9 H	PO10	) PO1 H		)12 H
CO2	H	H	Н	Н	H	Н	M	M	H	Н	H		M
CO3	Н	Н	Н	Н	M	M	Н	Н	Н	M	Н		L
COs /	F	PSO1	PSO	O2		O3		SO4	PS	SO5		PSO6	
PSOs													
CO1		Н	H			M		M		Н		Н	
CO2		H	I.			H		H		H		H	
CO3		Н	F. C. 1			H		H		M		M	
H/M/L indic	cates S	trength o	t Correla	tion I	H- High	, M- M	edium,		7	1		1	
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	ect chnical Skill						
					•								
Approval				27 th n	neeting	of Aca	demic	Counc	il, June 2	2017			

BCS17E07	NIL	HUMAN COMPUTER INTERACTION	С	L	T/SLr	P/R	Ty /Lb /ETL/EVL
Besitzet	112	HOMEN COME OTEN INTERMEDITOR	3	3	0/0	0/0	Ту

#### **OBJECTIVES:**

The student should be made to:

- Learn the foundations of Human Computer Interaction
- Be familiar with the design technologies for individuals and persons with disabilities
- Manage HCI

### **UNIT I: Humans In HCI**

9 Hrs

Introduction-implications for HCI-overview of HCI-Mentor models in HCI-emotions in HCI-cognitive architecture –task loading and stress in HCI-theoretical framework and mitigation strategies-motivating ,influencing and persuading users – human error identification in HCI

### **UNIT II: Computers In HCI**

9 Hrs

Input technologies and techniques – sensor and recognition based input for interaction-visual displays-haptic interfaces-nonspeech auditory output-network based interaction-wearable computers-design of computer workstation

### **UNIT III : Application/Domain Specific Design**

9 Hrs

HCI in health care-designing emotions for games, entertainment interfaces and interactive products-motor vehicle driver interfaces-HCI in aerospace-user centred design in games

### **UNIT IV: Designing For Diversity**

9 Hrs

The digital divide-the role of gender in HCI-IT and older adults-HCI for kids-IT for cognitive support-physical disabilities and computing technologies – an analysis of impairments-computing technologies for deaf and hard of hearing users

### **UNIT V: Managing HCI and Emerging Issues**

9 Hrs

Technology transfer-augmenting cognition in HCI-human values, ethics and design, cost justification-future trends in HCI

**Total Hours: 45** 

### **Text Book:**

1. The Human Computer Interaction Handbook –Fundamentals evolving Technologies and emerging Applications – Andrew Sears, Julie A Jacko, CRC Press ,3rd edition, 2012.

### **Reference Book:**

1. Alan Dix, Janet Finlay, Gregory D.Abowd, Russell Beale, "Human Computer Interaction", Third Edition, Pearson Education.

Subject Cod		Subject N	TNIC	Ty /	L	T / S.Lr	P/ R	C						
BCS17E08 BIS15005	/   <b>'</b>	WIREL	ESS AN	D MO	BILE	NEIV	VUKK	ING	Lb/ ETL		S.Lr	K		
D1513003	P	Prerequisi	te: BCS1	7I01					Ty	3	0/0	0/0	3	
L: Lecture					Learnin	g P : Pr	oject R	: Resea			0,0	0,0		
Ty/Lb/ETL :			•		,		3							
OBJECTIV														
							ncepts	in wire	less and n	nobile	commun	ication		
		and mobi			oncepts.									
COURSE O		-				<u> </u>	(:	1 (1-	1 1 _	1	11-10	1	- C	
CO1		Various forms of wireless communication and the standards and architecture of wireless LAN												
CO2		Concept	ts of mo	bile co	mmuni	cation	s, their	archit	ecture ar	nd pro	cedures			
CO3		Mobile	network	ing an	d appli	cation	layer i	ncludi	ng WAP					
Mapping of														
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			12	
CO1	Н	Н	Н	Н	Н	M	M	L	Н	L	Н	M		
CO2	Н	Н	M	M	Н	L	L	L	Н	L	Н	Н		
CO3	Н	Н	Н	Н	Н	Н	M	L	Н	L	Н			
COs / PSOs	P	PSO1	PSO	)2	PS	O3	PS	SO4	PS	PSO6				
CO1	Н		Н		L		Н			Н		M		
CO2	Н		M		M		Н		_	M		Н		
CO3	Н		Н		M		H			M		Н		
M	M		Н			M		M						
H/M/L indic	ates S	trength o	f Correla	tion I	I- High	, M- M	edium,	L-Low		1		<b></b>		
Categor y	Basic Sciences	Engineering Sci Humanities and Sciences Program Core Program Electives Open Electives						Internships / Technical Skill	Soft Skills					
					<b>'</b>									
Approval	27 th	meeting	of Acad	emic C	ouncil,	June 2	017							

BCS17E08/ BCS17I01	WIRELESS AND MOBILE	С	L	T/SLr	P/R	Ty /Lb /ETL/EVL	
BIS15005 BCS17101	NETWORKING	3	3	0/0	0/0	Ty	l

### **OBJECTIVES:**

The lectures on wireless and mobile networking will help a student to understand

- Various forms of wireless communication and the standards and architecture of wireless LAN
- Concepts of mobile communications, their architecture and procedures; and
- Mobile networking and application layer including WAP protocols

#### **UNIT I: Wireless Communication**

9 Hrs

Cellular systems- Frequency Management and Channel Assignment- dropped call rates & their evaluation - MAC - SDMA - FDMA - TDMA - CDMA - Cellular Wireless Networks.

UNIT II: Wireless LAN 9 Hrs

IEEE 802.11 Standards – Architecture – Services – Mobile Ad hoc Networks- WiFi and WiMAX - Wireless Local Loop.

### **UNIT III: Mobile Communications**

9 Hrs

GSM-architecture-Location tracking and call setup- Mobility management- GSM SMS —-Mobile Number portability -VoIP service for Mobile Networks – GPRS –Architecture and procedures.

### **UNIT IV: Mobile Networking**

9 Hrs

Mobile IP – Dynamic Host Configuration Protocol-Mobile Ad Hoc Routing Protocols – Multicast routing-TCP over Wireless Networks – Indirect TCP – Snooping TCP – Mobile TCP – Fast Retransmit / Fast Recovery - Wireless Networks.

### **UNIT V: Application Layer**

9 Hrs

WAP Model- Mobile Location based services -WAP Gateway -WAP protocols - WAP user agent profile- caching model-wireless bearers for WAP - WML - WMLScripts - WTA - iMode-SyncML.

**Total Hours: 45** 

### **Text Book:**

1. Goldsmith, Andrea (2005). *Wireless Communications*. Cambridge University Press. ISBN 0-521-83716-2.

#### References:

- 1. Lenzini, L.; Luise, M.; Reggiannini, R. (June 2001). "CRDA: A Collision Resolution and Dynamic Allocation MAC Protocol to Integrate Date and Voice in Wireless Networks". *IEEE Journal on Selected Areas in Communications* (IEEE Communications Society) **19** (6): 1153-1163. ISSN 0733-8716
- 2. Pahlavan, Kaveh; Krishnamurthy, Prashant (2002). *Principles of Wireless Networks a Unified Approach*. Prentice Hall. ISBN 0-13-093003-2.
- 3. Rappaport, Theodore (2002). *Wireless Communications: Principles and Practice*. Prentice Hall. ISBN 0-13-042232-0.

# Department of Information Technology 7TH SEM ELECTIVES – E-III AND E-IV (Common to CSE&IT)

Subject Cod	le: Subject Name :								Ty / Lb/	L	T /	<b>P</b> /	C
BCS17E09	,	WEB MINING									S.Lr	R	
	Prerequisite: BCS17011									3	0/0	0/0	3
L : Lecture 7													
Ty/Lb/ETL:  OBJECTIV	Theory/Lab/Embedded Theory and Lab  F.												
	tand the characteristics of the Internet and data mining												
2. To know a	about th	bout the web crawling algorithm implementation											
		he web data collection and analysis of web data for new patterns											
COURSE O		• Develop semantic web related applications.											
CO2	Develop semantic web related applications.     Represent knowledge using ontology.												
CO3	Predict human behaviour in social web and related communities												
CO4	• Visualize social networks												
	of Course Outcomes with Program Outcomes (POs)						DO0	DO10	DO11	DO	10		
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	
CO1	M	M	M	Н	M	M	M	L	Н	Н	M		M
CO2	Н	L	L	M	Н	Н	M	Н	Н	L	Н		L
CO3	M	Н	Н	Н	M	Н	M	M	M	L	L	]	M
CO4	M	Н	M	M	M	M	M	Н	M	M	Н	]	M
COs /	PS	SO1	PSO	O2	PSO3 PSO4			SO4	PS	SO5	PSO6		
PSOs								*					
CO1		M	N			H	Н		L			M	
CO2		Н		1	ľ	M	-	H		Н	Н		
CO3	M		Н	Н		Н		L		Н		M	
CO4	M		L		M		M		M		M		
H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low													
								kill					
			17					al SI					
		ıces	ociê		~			ınica					
Categor	S	cier	S pi		ive	S	ject	ech					
y	nce	S Sı	s an	ore	lect	tive	Pro	L / S					
	Scie	erir	nitie es	m C	m E	Hec	al/	hip	cills				
	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	gra	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	Ba	En	Hu Sci	Prc	✓ Program Electives	Op	Pra	Int	Sof				
					~								
		<u> </u>								1			
Approval	27 th meeting of Academic Council, June 2017												

BCS17E09 BCS17011	WEB MINING	C	L	T/SLr	P/R	Ty /Lb /ETL/EVL
		3	3	0/0	0/0	Ty

### **OBJECTIVES:**

- To understand the characteristics of the Internet and data mining
- To know about the web crawling algorithm implementation
- To study the web data collection and analysis of web data for new patterns

### **UNIT I: Data Mining Foundations**

9 Hrs

Association Rules and Sequential Patterns - Basic Concepts of Association Rules - Apriori Algorithm- Data Formats for Association Rule Mining - Mining with Multiple Minimum Supports - Mining Class Association Rules - Basic Concepts of Sequential Patterns - Generating Rules from Sequential Patterns.

### **UNIT II: Information Retrieval and Web Search**

9 Hrs

Basic Concepts of Information Retrieval - Information Retrieval Models - Relevance Feedback - Evaluation Measures - Text and Web Page Pre-Processing - Inverted Index and Its Compression - Latent Semantic Indexing - Web Search - Meta-Search - Web Spamming.

### **UNIT III: Social Network Analysis**

9 Hrs

Social Network Analysis - Co-Citation and Bibliographic Coupling - Page Rank - HITS-Community Discovery

### **UNIT IV: Web Crawling**

9 Hrs

A Basic Crawler Algorithm - Implementation Issues - Universal Crawlers - Focused Crawlers - Crawler Ethics and Conflicts.

### **UNIT V: Opinion Mining and Sentiment Analysis**

9 Hrs

The Problem of Opinion Mining - Document Sentiment Classification - Sentence Subjectivity and Sentiment Classification- Opinion Lexicon Expansion - Aspect-Based Opinion Mining - Mining Comparative Opinions - Opinion Search and Retrieval.

**Total Hours: 45** 

#### **Text Book**

1. Bing Liu, 2011, Web Data Mining Exploring Hyperlinks, Contents and Usage Data, , Second Edition, Springer.

### Reference Book

1. Soumen Chakrabarti, 2002, "Mining the Web", Morgan-Kaufmann Publishers, Elseiver.

			-										
Subject Code	e: S	Subject N		SEGIO:	NT 0 N		TEL (E)	IT	Ty /	L	T/	P/R	С
BCS17E10		WEB	DATA L	DESIG.	N & M	& MANAGEMENT			Lb/ ETL		S.Lr		
	Prerequisite: BCS17I01								Ty	3	0/0	0/0	3
L : Lecture T			•			_	oject R	: Resea	arch C: C	redits			
Ty/Lb/ETL:		ry/Lab/E	mbedded	Theor	y and L	ab							
OBJECTIVE		will be	hla ta a	n a 1 v a i a	and ar	, aluata	to mmo.	2000		aita h	aad um		ont.
trend		will be a		•				-			-		ent
• To learn languag		evelop a e Java so					ion usii	ng serv	er and c	lient si	de scrip	ting	
• To learn	to d	evelop a	dynami	c web	site usi	ng scri	pting la	anguag	es and the	he tech	nologie	s like	
XML, A	JAX	.•											
• The stud	lent v	will learn	how to	plan, o	design,	testing	g and p	roducti	on and p	ost- pi	roductio	n proc	ess
in a web	site	designin	g.										
	dent will have the ability to design a static and dynamic web site based upon the end												
user nee													
COURSE O		`	, ,										
CO1	Able to evaluate a web site												
CO2	Ability to make a well interactive online applications.												
CO3	Have knowledge to analysis and evaluate on web site and design a quality web site.												
Mapping of	Cours		nes with l	Progran	n Outco	mes (P	Os)						
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	) PO11	PO	12
CO1	Н	M	Н	L	Н	M	L	L	M	M	Н		Н
CO2	Н	M	Н	M	Н	Н	M	L	Н	M	Н		Н
CO3	Н	Н	Н	Н	Н	M	M	L	Н	M	Н		Н
COs /PSOs	F	PSO1	PSO	)2	PS	O3	PS	SO4	PS	SO5	O5 PSO6		
CO1		Н	Н	[	]	Ĺ		Н		Н		Н	
CO2		Н	Н	[	]	L		Н		Н		Н	
CO3	Н		Н	[	]	Ĺ		H		Н		Н	
H/M/L indic	ates S	trength o	f Correla	tion I	H- High	, M- M	edium,	L-Low					
		S	al					sal					
		nce	oci		S			) mic					
	S	cie	S pi		ive	Š	ject	ect					
	nce	် လ	s ar	ore	lect	iive	Pro	. 7					
Categor	cie		itie	n C	n E	Jec.	/ Ie	hips	ills				
У	ic S	ine	nan	gran	grai	n E	tic	rnsl	Sk				
	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills				
	I		<u> </u>	I					<u> </u>				
					<b>/</b>								
Approval	27 ^{tl}	neeting	g of Acad	lemic (	Council	, June 2	2017						

BCS17E10	BCS17I01	WEB DATA DESIGN & MANAGEMENT	С	L	T/SLr	P/R	Ty /Lb /ETL/EVL
			3	3	0/0	0/0	Ty

### **OBJECTIVES:**

- The students will be able to analysis and evaluate to propose a new web site based upon recent trend
- To learn to develop a client-server based application using server and client side scripting languages like Java script, JSP, ASP and PHP.
- To learn to develop a dynamic web site using scripting languages and the technologies like XML, AJAX.
- The student will learn how to plan, design, testing and production and post- production process in a web site designing.
- The student will have the ability to design a static and dynamic web site based upon the end user need.

### **UNIT I: Site Organization and Navigation**

9 Hrs

User centered design – Web medium – Web design process – Evaluating process – Site types and architectures – Navigation theory – Basic navigation practices – Search – Site maps

### **UNIT II: Elements of Page Design**

9 Hrs

Browser compatible design issues - Pages and Layout - Templates - Text - Color - Images - Graphics and Multimedia - GUI Widgets and Forms - Web Design patterns.

### **UNIT III: Scripting Languages**

9 Hrs

Client side scripting: XHTML – DHTML– JavaScript– XML Server side scripting: Perl – PHP – ASP/JSP Designing a Simple web application.

### **UNIT IV: Pre-Production Management**

9 Hrs

Principles of Project Management – Web Project Method – Project Road Map – Project Clarification – Solution Definition – Project Specification – Content – Writing and Managing content.

### **UNIT V: Production, Maintenance and Evaluation**

9 Hrs

Design and Construction – Testing, Launch and Handover – Maintenance – Review and Evaluation – Case Study

**Total Hours: 45** 

### **Text Books:**

- 1. 1.Themas A. Powell (2003)*The Complete Reference Web Design* (3rd ed.), Tata McGraw Hill
- 2. Ashley Friedlein (2001) Web Project Management, Morgan Kaufmann Publishers
- 3. H. M. Deitel, P. J. Deitel, A. B. Goldberg (2004)*Internet and World Wide Web How to Program*(3rd ed.) Pearson Education

- 1. Joel Sklar (2001) Principles of Web Design, Thomson Learning
- 2. Van Duyne, Landay, and Hong (2006)*The Design of Sites: Patterns for creating winning websites* (2nd edition.) Prentice Hall
- 3. Lynch, Horton and Rosenfeld (2002) Web Style Guide: Basic Design Principles for Creating Web Sites (2nd edition.) Yale University Press.

Subject Code:	et		Sub	ject N		K M A	NAGI	EMEN	г			Ty Lb/		L	T / S.Lr	P/R	C
BCS1	<b>7E</b> 11				IXI.	IX IVIT	mmoi		1			ET			J.LI		
			Prer	equisi	e: BI7	17002						Ty		3	0/0	0/0	3
L : Led	cture '	$\Gamma: \mathbb{T}$	Tutor	ial S	Lr : Sı	ipervis	ed Lear	ning P	: Pro	ject F	R : Re	searc	ch C: (	Credits	1		
Ty/Lb/	ETL	: Th	eory	/Lab/E	mbed	ded The	eory an	d Lab									
OBJE																	
	•		•				•	an org	aniz	ation;	;						
							s availa										
								ess orga	aniza	ition.							
COUF	RSE (	)UI	COI	MES (	COs)	: (3-5)	)										
CO1	den	nons	strate	know	ledge	of the	range	of finan	cial	and f	inanc	ial re	elated	l risks	facing o	rganizat	ions
CO2				•		h to ris igation		agemer	nt thr	ough	risk i	dent	tificati	on, ris	k meası	urement	and
CO3	und	erst	and	operat	ional	isk an	d how t	o mana	age i	it.							
Mapp	ing of	f Co	urse	Outco	mes v	vith Pr	ogram	Outco	mes	(POs	)						
COs/P	Os	P	O1	PO2	PO	3 PO	4 PC	)5 P(	<b>)</b> 6	PO	7 PO	8 P	PO9	PO10	) PO1	11 PC	12
CO1		Н	[	L	M	M	Н	M		L	M	N	M	M	Н	Н	
CO2		L		L	M	Н	Н	M	:	M	Н	F		Н	L	Н	
CO3		Н		M	L	Н	M	L		Н	M	L		L	M	M	
COs /F	PSOs PSOS		PS	01		PSO ₂		PSO3			PSO4			SO5		PSO6	
CO1		Н	[		M		M			M		H		Н	M	M	
CO2		M			M		M			L		N		Н	M	Н	
CO3		Н			L		L			M			Л	M	Н	M	
H/M/L	ındı	cates	s Stre	ngth o	Corr	elation	H- H	igh, M-	· Me	dıum,	_	W					
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social	Sciences	Program Core	Program Electives	Open Electives	Practical / Project	٠, ١	Internships / Technical Skil	Soft Skills					
Annes	vol					27 ^{tl}	1 mosti	ng of A	00.4	mia	Corre	oil 1	[11ma ^	2017			
Appro	vai					21	meeti	ng of A	cado	emic	Coun	cii, J	une 2	ZU1 /			

BCS17E11	BIT17002	RISK MANAGEMENT	C	L	T/SLr	P/R	Ty /Lb /ETL/EVL
			3	3	0/0	0/0	Ty

### **OBJECTIVES:**

- Identify and categories the various risks face by an organization
- Explain the various risk control measures available
- Design a risk management program for a business organization.
- Suggest ways to finance risk.
- Apply the insurance mechanism in risk management.
- Describe the management of international risk.

### **UNIT I: The Risk Management Process**

9 Hrs

Introduction to software risk management, why do we need to manage risk in software development, Use, Objectives, Risk Management Paradigm, Risk management and litigation. Models for Risk Management.

### **UNIT II: Discovering Risk In Software Development**

9 Hrs

Risk attributes and Identification, Identifying software risk, Common software project risks, Risk Taxonomy, Risk Mapping, statements, reviews., Risk ownership and stakeholder management.

### **UNIT III: Risk Assessment**

9 Hrs

Objectives and goals. Approach to assessment, Risk assessment tools and techniques, presenting the risk findings.

### **UNIT IV: Planning Risk Mitigation Strategies**

9 Hrs

Risk Planning, Best practices in the risk planning, Risk management tools, Risk mitigation strategies, Formulating and Implementing risk management plans.

### **UNIT V: Monitoring Risk In Software Projects**

9 Hrs

Developing a process for monitoring risk, formulating a project risk database, Managing and tracking risk, Risk support tools. Software Risk Metrics, organization, estimation, development methodology.

Total Hours: 45

#### **Text Book:**

- 1. Yacov Y. Haimes, (2011) Risk Modeling, Assessment, and Management, Wiley
- 2. John Mcmanus,(2004) Risk Management in software development projects, Elsevier Butterworth-Heinemann

- 1. Martin Loosemore, John Raftery, (2006) Risk management in projects, Taylor & Francis Ltd
- 2. Ravindranath P. C, (2007) Applied Software Risk Management, Auerbach,
- 3. Dale Walter Karolak,,(1995) Software engineering risk management, Wiley-Ieee Computer Society

Subject Code BCS17E12	S	Subject Na	ame :	МОВ	ILE CON	имекс	E		T / L/ ETL	L	T / S.Lr	P/R	С
		Prerequisit							Ty	3	0/0	0/0	3
L : Lecture T :	Tutor	ial SLr :	Supervis	ed Lear	ning P :	Project 1	R : Rese	arch C:	Credits				
Ty/Lb/ETL: T	heory	/Lab/Emb	edded Th	eory and	l Lab								
To unders To unders To know t	tand tl tand tl tand N he ava	he M-com /I – comm ilability of	merce se erce infra latest ted	rvices structur chnolog	e and ap y and ap	plicatio plicatio	ns. ns of M-	comme	rce in vari	ious don	nains.		
COURSE OU	TCO	MES (CO	os): (3-5	)									
CO1			forms of	wireles	s comm	nunicati	on and	the star	ndards aı	nd archi	tecture o	f wire	less
CO2		Concepts	s of mobi	le com	municat	tions, tł	neir arcl	nitectur	e and pro	ocedure	s; and		
CO3		Mobile n	etworkir	ng and a	applicat	ion lay	er inclu	ding W	AP prote	ocols			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	the the E – commerce strategies and value chains and the M-commerce services and M – commerce infrastructure and applications.  availability of latest technology and applications of M- commerce in various domains. le commerce in business-to-business application:  COMES (COs): (3-5)  Various forms of wireless communication and the standards and architecture of wireless LAN  Concepts of mobile communications, their architecture and procedures; and  Mobile networking and application layer including WAP protocols are Outcomes with Program Outcomes (POs)  OI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PO12 PO14 PO15 PO14 PO15 PO16 PO17 PO18 PO19 PO10 PO11 PO12 PO19 PO19 PO19 PO19 PO19 PO19 PO19 PO19											
CO2	Н	Н	E – commerce strategies and value chains M-commerce services - commerce infrastructure and applications. bility of latest technology and applications of M- commerce in various domains. nmerce in business-to-business application:  ES (COs): (3-5)  arious forms of wireless communication and the standards and architecture of wireless AN oncepts of mobile communications, their architecture and procedures; and lobile networking and application layer including WAP protocols futcomes with Program Outcomes (POs)  PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 H H H H H H H H H M M H M M M M M M M M										
CO3	Н	Н									M	M	
COs / PSOs		PSO1		O2		O3		SO4		SO5		PSO6	
CO1	Н												
CO2	Н												
CO3	H	moth of C		11 11		Madiana			H		Н		
H/M/L indicat	Basic Sciences sa	Š	ies and Social		Program Electives			cal Skill	Soft Skills				
Approval				27 th	meeting	g of Aca	demic (	Council,	, June 201	17			

BCS17E12	BCS17I01	M- COMMERCE	C	L	T/SLr	P/R	Ty /Lb /ETL/EVL
			3	3	0/0	0/0	Ty

### **OBJECTIVES:**

- To understand the E commerce strategies and value chains
- To understand the M-commerce services
- To understand M commerce infrastructure and applications.
- To know the availability of latest technology and applications of M- commerce in various domains.
- To apply mobile commerce in business-to-business application.

#### **UNIT I: Electronic Commerce**

9 Hrs

Traditional commerce and E-commerce – Internet and WWW – Role of WWW – Value Chains – Strategic Business And Industry Value Chains – Role of E-commerce. Packet Switched Networks – TCP/IP Protocol Script – Internet Utility Programmes – SGML, HTML and XML – Web Client And Servers – Web Client/Server Architecture.

### **UNIT II: Mobile Commerce**

9 Hrs

Introduction – Infrastructure of M–Commerce – Types Of Mobile Commerce Services – Technologies Of Wireless Business – Benefits And Limitations, Support, Mobile Marketing & Advertisement, Non– Internet Applications In M–Commerce – Wireless/Wired Commerce Comparisons.

### **UNIT III: Mobile Technology**

9Hrs

A Framework For The Study Of Mobile Commerce – NTT Docomo's I-Mode – Wireless Devices For Mobile Commerce – Towards A Classification Framework For Mobile Location Based Services – Wireless Personal And Local Area Networks.

### **UNIT IV: Theory and Applications**

9Hrs

The Ecology Of Mobile Commerce – The Wireless Application Protocol – Mobile Business Services – Mobile Portal – Factors Influencing The Adoption of Mobile Gaming Services – Mobile Data Technologies And Small Business Adoption And Diffusion – E–commerce in The Automotive Industry – Location– Based Services.

### **UNIT V: Business- To- Business Mobile E- Commerce**

9Hrs

Enterprise Enablement – Email and Messaging – Field Force Automation (Insurance, Real Estate, Maintenance, Healthcare) – Field Sales Support (Content Access, Inventory) – Asset Tracking and Maintenance/Management – Remote IT Support – Customer Retention (B2C Services, Financial, Special Deals) – Warehouse Automation – Security.

Total Hours: 45

### **Text Books:**

- 1. E.BrianMennecke, J.TroyStrader, (2005) Mobile Commerce: Technology, Theory and Applications, Idea Group
- 2. Ravi Kalakota, B.AndrewWhinston,(2007) Frontiers of Electronic Commerce, Pearson Education

- 1. P. J. Louis (2009) M-Commerce Crash Course, McGraw-Hill Companies
- 2. Paul May (2006) Mobile Commerce: Opportunities, Applications, and Technologies Of Wireless Business, Cambridge University Press.

Subject Code:	Su	bject I	Name :						T / L/ ETL		T / S.Lr	P/ R	C
Couc.		Crv	ptograp	hv and	l Netw	ork Se	curity	,	LIL		D.LI	1	
BCS17E13	Pre		te: BCS1		1110011	OIK SC	curity		Ty	3	0/0	0/0	3
L : Lecture T		1			Learnin	g P : P1	roiect R	R : Rese			0, 0	0, 0	
Ty/Lb/ETL:													
OBJECTIV	E :												
The stude	nt wil	l be ab	le:										
• Und	erstan	d OSI s	security	archite	cture a	nd clas	sical e	ncrypti	on techn	iques.			
• gain	basic	knowle	edge on	the nur	mber th	eory.							
• Und	erstan	d vario	us block	cipher	r mode	S.							
<ul> <li>und</li> </ul>	lerstan	ds the	e princ	iples	of pu	blic k	ey cr	yptosy	stems,	and di	ifferent	mess	sage
auth	entica	tion an	d integri	ty tech	niques								
<b>COURSE O</b>					_								
CO1	T	o ident	tify the r	najor t	ypes of	threat	s to Ne	twork	security	and the	associa	ted	
	a	ttacks											
CO2	Т	o deve	lop strat	egies to	o prote	ct orga	nizatio	n infor	mation a	assets fi	rom con	nmon	
									ds and pi				d
									•				
CO3	T	o desig	gn, analy	se and	imple	ment di	ifferent	t netwo	ork secur	ity prot	ocols		
Mapping of									1	I	1		
COs/POs	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н	Н	M	M	M	M	M	M	L	L	L	
CO2	Н	M	Н	M	Н	M	M	M	M	L	L	L	
CO3	Н	Н	Н	M	Н	M	M	M	M	L	L	L	
COs / PSOs		SO1	PSO	)2		O3		SO4		SO5		PSO6	
CO1	Н		L		M		M		L		H		
CO2	H		L L		M		M		L		Н		
CO3 H/M/L indica		on oth o		tion 1	M H High	. M M	M	L-Low	L		Н		
11/WI/L IIIGIC	aics Su					i, ivi- ivi	Carain,						
Categor		Engineering Sciences	Humanities and Social Sciences		S			Internships / Technical Skill					
y		cie	d S		ive	S	ject	ect					
	Basic Sciences	S S	s an	ore	Program Electives	Open Electives	Practical / Project	L /					
	zier	rin	ties	ı C	ıΕΙ	lect	1/1	üps	IIIs				
	c Sc	nee	lani nce	ran	ran	ı El	ica	nsh	Ski				
	asi	ngi	Humanit Sciences	Program Core	10g	per	ract	ıter	Soft Skills				
	В	山	ΗŠ	P.	₽ P	0	P ₁	Ir	Š				
					•		]						
Approval	27 th 1	meeting	g of Acad	lemic (	Council	June 2	2017						

		CRYPTOGRAPHY AND NETWORK	C	L	T/SLr	P/R	Ty /Lb /ETL/EVL
BCS17E13	BCS17I01	SECURITY	3	3	0/0	0/0	Ту

### **OBJECTIVES:**

The student will be able:

- Understand OSI security architecture and classical encryption techniques.
- gain basic knowledge on the number theory.
- Understand various block cipher modes.
- understands the principles of public key cryptosystems, and different message authentication and integrity techniques

### **UNIT I: Introduction & Number Theory**

9 Hrs

OSI security architecture - Security attacks ,Services and Mechanisms - -Network security model-Classical Encryption techniques (Symmetric cipher model, substitution techniques, transposition techniques, stenography)- **NUMBER THEORY**: Modular arithmetic-Euclid's algorithm- Fermat's and Euler's theorem- The Chinese remainder theorem- Discrete logarithms.

### **UNIT II: Block Ciphers & Public Key Cryptography**

9 Hrs

Data Encryption Standard-Block cipher principles-block cipher modes of operation-Advanced Encryption Standard (AES)-Triple DES -RC5 algorithm. **Public key cryptography:** Principles of public key cryptosystems-The RSA algorithm-Key management - Diffie Hellman Key exchange-Elliptic curve cryptography.

### **UNIT III: Cryptographic Data Integrity Algorithms**

9 Hrs

Authentication requirement – Authentication function – MAC – Hash function – Security of hash function and MAC –MD5 - SHA - HMAC – CMAC - Digital signature and authentication protocols-DSS.

### **UNIT IV: Network Security Practice**

9 Hrs

 $Authentication\ Applications - Kerberos - X.509\ Authentication\ Service - Electronic\ mail\ Security - Pretty\ Good\ Privacy - S/MIME - IP\ Security - Web\ Security.$ 

### **UNIT V: System Security**

9 Hrs

Intruders – Intrusion Detection – Password Management – Malicious Software – Viruses and Related Threats -Viruses Countermeasures – Distributed Denial of Service Attacks - Firewalls – Firewall Design Principles – Trusted Systems.

**Total Hours: 45** 

### **Text Book:**

1. William Stallings (2011) *Cryptography And Network Security – Principles and Practices*, (5th ed.) Pearson Education.

- 1. Atul Kahate (2008) Cryptography and Network Security Tata McGraw Hill
- 2. Bruce Schneier (2007) Applied Cryptography, John Wiley & Sons Inc.
- 3. Charles B. Pfleeger, Shari Lawrence Pfleeger (2007) *Security in Computing* (4th ed.), Pearson Education

Subject Cod	le: S	Subject N	lame :						Ty/	L	T/	<b>P</b> /	C
BCS17E14			Mobi	le Adh	oc Net	works	}		Lb		S.Lr	R	
									ETL	_			
· · · · · ·		Prerequisi			, ,	D D			Ty	3	0/0	0/0	3
L: Lecture 7	l`:Tut	torial SI	∟r : Supe	rvised I	Learnin	g P : Pr	oject R	: Resea	arch C: Ci	redits			
Ty/Lb/ETL:		ory/Lab/E	mbedded	Theory	y and L	ab							
knov Kno This	owledg wledge wledg inclu	ge of mob e of routinge of the 8 des their of	ng mecha 302.11 W designs,	nnisms ireless operatio	Lan (W	iFi) and	d Blueto	ooth sta	ndards.		vailable	solutio	ons.
COURSE O	UTC												
CO1		Have gai industry					irrent to	pics in	MANET	s and V	VSNs, bo	th froi	n an
CO2		Have an distingui							hoc netwo	orks (M	IANETs)	and v	hat
CO3			nd how j	proactiv	e routii	ng proto	ocols fu	nction a	and their	implica	itions on	data	
Mapping of	Cour			•									
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	M	M	L	M	L	L	L	L	M	L	L	
CO2	Н	Н	M	L	M	L	L	L	L	M	L	L	
CO3	Н	M	M	L	M	L	L	L	L	M	L	L	
COs / PSOs	F	PSO1	PSO	02	PS	O3	PS	SO4	PS	O5		PSO6	
CO1	Н		M		L		L		Н		L		
CO2	Н		L		L		M		M		L		
CO3	Н		M		L		M		L		L		
H/M/L indic	ates S	trength of	f Correla	tion I	H- High	, M- M	edium,	L-Low	•		1		
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval	27 th	meeting	of Acad	emic C	ouncil,	June 2	2017						

BCS17E14	BCS17I01	MOBILE ADHOC NETWORKS	C	L	T/SLr	P/R	Ty /Lb /ETL/EVL
			3	3	0/0	0/0	Ту

#### **OBJECTIVES:**

- Knowledge of mobile ad hoc networks, design and implementation issues, and available solutions.
- knowledge of routing mechanisms
- Knowledge of the 802.11 Wireless Lan (WiFi) and Bluetooth standards.
- Thisincludes their designs, operations, plus approaches to interoperability.

UNIT I: Introduction 9 Hrs

Introduction to adhoc networks – definition, characteristics features, applications - Characteristics of Wireless channel, Adhoc Mobility Models:- Indoor and outdoor models.

### **UNIT II: Medium Access Protocols**

9 Hrs

MAC Protocols: design issues, goals and classification. Contention based protocols- with reservation, scheduling algorithms, protocols using directional antennas. IEEE standards: 802.11a, 802.11b, 802.11g, 802.15. HIPERLAN.

### **UNIT III: Network Protocols**

9 Hrs

Routing Protocols: Design issues, goals and classification. Proactive Vs reactive routing, Unicast routing algorithms, Multicast routing algorithms, hybrid routing algorithm, Energy aware routing algorithm, Hierarchical Routing, QoS aware routing.

### **UNIT IV: End-End Delivery and Security**

9 Hrs

Transport layer: Issues in designing- Transport layer classification, adhoc transport protocols. Security issues in adhoc networks: issues and challenges, network security attacks, secure routing protocols.

### UNIT V: Cross Layer Design And Integration of Adhoc For 4g

9 Hrs

Cross layer Design: Need for cross layer design, cross layer optimization, parameter optimization techniques, Cross layer cautionary prespective. Intergration of adhoc with Mobile IP networks.

**Total Hours: 45** 

### **Text Books:**

- 1. C.Siva Ram Murthy and B.S.Manoj (2007) Ad hoc Wireless Networks Architectures and Protocols, (2nd ed.), Pearson Education
- 2. Charles E. Perkins (2000) Ad hoc Networking, Addison Wesley

- 1. Mohammad Ilyas (2002) The handbook of adhoc wireless networks, CRC press,
- 2. T. Camp, J. Boleng, and V. Davies ,A Survey of Mobility Models for Ad Hoc Network Research, WirelessCommun. and Mobile Comp., Special Issue on Mobile
- 3. V.T.Raisinhani and S.Iyer (2004) ÉCLAIR; "An Efficient Cross-Layer Architecture for wireless protocol stacks, World Wireless cong., San francisco, CA,

Subject Code:		Su	bject N TCI	ame : P/IP Des	sign ar	nd Imp	lemen	tation		Ty / Lb / ETL	L	T / S.Lr	P/ R	С
BCS17			_	te: BCS1						Ty	3	0/0	0/0	3
L : Lectu				Lr : Supe		•	_	oject R	: Resear	rch C: C	redits			
Ty/Lb/E	TL: 7	Theory	//Lab/Ei	mbedded	Theory	y and La	ab							
OBJEC			v				A1	-4						
				les of TO sport lay			Archite	cture						
			g and ro	-	or prote	<b>70</b> 015								
COURS	E OU	TCO	MES (	COs):(	3- 5)									
CO1	Unc	lerstar	nd IP Ac	ddressing	schem	es and	TCP/IP	Archite	ecture					
CO2	Lea	rn the	funda	mentals	of netv	work de	esign a	nd imp	lement	ation				
CO3	Unc	lerstar	nd netwo	ork mana	gemen	tissues								
CO4	Lea	rn an	d imple	ement ne	etwork	applica	ations							
Mappin	g of C	Course	Outco	mes witl	h Progi	am Ou	itcomes	s (POs)						
COs/PO	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	012
CO1		Н	M	M	L	L	M	M	L	Н	M	Н	]	M
CO2		Н	M	M	L	M	M	M	L	Н	M	Н	]	M
CO3		Н	Н	Н	M	M	M	M	L	Н	M	Н	]	M
CO4		Н	Н	Н	M	M	M	M	M	Н	M	Н	]	M
COs / PSOs		PS	O1	PSO	02	PS	O3	PS	O4	PS	SO5		PS06	
CO1		I	Н	Н	[	Ι	Ĺ	l	M	]	Н		M	
CO2		I	Н	Н	[	N	Л	]	Н	]	Н		Н	
CO3			Н	Н		N	Л		Н		Н		Н	
CO4			H	Н			L		H	]	H		Н	
H/M/L i	ndicat	es Str	ength of	f Correla	tion I	I- High	, M- M	edium,	L-Low					
Catego y	r	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	1	ar th	1.	6.4	•	<b>✓</b>	<u> </u>	017						
Approva	.1   2	27  n	neeting	of Acad	emic C	ouncil,	June 2	W17						

BCS17E15	BCS17I01	TCP/IP DESIGN AND	C	L	T/SLr	P/R	Ty /Lb /ETL/EVL
		IMPLEMENTATION	3	3	0/0	0/0	Ту

### **OBJECTIVES:**

- Understand the IP addressing schemes.
- Understand the fundamentals of network design and implementation
- Understand the design and implementation of TCP/IP networks
- Understand on network management issues
- Learn to design and implement network applications.

UNIT I: Introduction 9 Hrs

Protocols and standards-standards organizations-internet standards-internet administration – Protocol layers-OSI model-TCP/IP Protocol suite-addressing.

### **UNIT II: Underlying Technologies**

9 Hrs

Wired LANs: IEEE Standards, frame format, addressing, Ethernet evolution, standard Ethernet, fast Ethernet Gigabyte Ethernet, Ten-Gigabyte Ethernet-Wireless LAN- Point-to-Point WANS-Switched WANs-Connecting Devices- Case study – developing simple LAN setup using ns-2 simulator

### **UNIT III: IP Addresses and Routing**

9 Hrs

Switching-network layer services- issues- IPv4 Addresses: Classful addressing, classless addressing, special addresses-delivery-forwarding- IPv4: datagrams, fragmentation, options, checksums, IP package-ARP- RARP- ICMP-IGMP- Case study — Analyzing the trace file using awk and plot graph using xgraph.

### **UNIT IV: Unicast and Multicast Routing Protocols**

**9 Hrs** Unicast

routing – intra and inter domain routing – distance vector routing :Routing Information Protocol(RIP) – link state routing: Open Shortest Path First (OSPF) – path vector routing: Border Gateway Protocol (BGP) – Multicasting and Multicast routing protocols - - Case study – Developing a topology using more than two router and analyze the routing.

UNIT V: TCP & UDP 9 Hrs

Introduction to Transport Layer – Services – Protocols. UDP – user datagram – UDP services – UDP package – UDP applications. TCP – segment - flow control – error control – congestion control – state transition diagram – TCP package. SCTP – services – features – Case study – Develop a network, attach various type TCP variant and analyze the trace file.

**Total Hours: 45** 

### **Text Book:**

1. Behrouz A. Forouzam (2010), "TCP/IP Protocol Suite", 4th Edition, Tata McGraw Hill..

- 1. Douglas E. Comer, David L. Stevens (2009), "Internetworking with TCP/IP Volume II, III" 3rd Edition, PHI Learning Private Limited.
- 2. Richard Stevens W., (2011) "TCP/IP Illustrated, The Protocol-Volume I, II, II", 2nd Edition Addison- Wesley Pub Co.
- 3. Dougles E. Comer,(2000) "Internetworking with TCP/IP–Principles, Protocols & Architecture", 4th Edition,Pearson education.

Subject Coo BCS17E16		ŭ		ısics aı	nd Inte	ernet S	ecurit	y	Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
	Cyber Forensics and Internet Security  Prerequisite: BCS170E5  Ty 3 0/0 0/0 3  T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits  T: Theory/Lab/Embedded Theory and Lab  VE: Dearn the computer forensic fundamentals  Understand various types of cyber crime activities involved in the digital world  Study various network security technologies to prevent the data from hacker or intruder  OUTCOMES (COs): (3-5)  Students understood how to protect the data or how to secure their personal and official data in their computer.  The students have the awareness on digital forensics frauds  The students have the knowledge on keep the data in secure manner in the network using network security technologies.  Of Course Outcomes with Program Outcomes (POs)  PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12  H H H H H H H H H H H H H H H H H H H												
			_			_	oject R	: Rese	arch C: C	Credits			
Ty/Lb/ETL	: Theo	ry/Lab/E	mbedded	Theor	y and L	ab							
	learn t	-					ctivities	s invol	ved in th	ne digita	al world	i	
					ty tech	nologie	es to pr	event 1	the data	from h	acker o	r intru	der
CO1							the dat	a or ho	w to sec	cure the	ir perso	onal ar	ıd
CO2							dicital	fores	iog fran	da			
CO2											nar in t	ha	
CO3									a III SECI	iie iiiali	nei III l	110	
Mapping of													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PC	)12
CO1													
CO2													
CO3											Н		
COs / PSOs	P	SOI	PSC	<b>J</b> 2	PS	03	PS	SO4	P	805		PSO6	
CO1		Н	I.	ſ	N	Л	,	Н		Н		Н	
CO2													
CO3													
H/M/L indic	ates St	rength o	f Correla	tion I	H- High	, M- M	edium,	L-Low	-				
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	✓ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval	27 th	meeting	of Acad	emic C	ouncil.	June 2	2017	<u>ı                                      </u>		1			

В	CS17E16	BCS17OE5		C	L	T/SLr	P/R	Ty /Lb /ETL/EVL
			SECURITY	3	3	0/0	0/0	Ty

#### **OBJECTIVES:**

- To learn the computer forensic fundamentals
- To understand various types of cyber crime activities involved in the digital world
- To study various network security technologies to prevent the data from hacker or intruder.

### **UNIT I: Cyber Forensics Fundamentals**

9 Hrs

Introduction to Cyber forensics: Information Security Investigations, Corporate Cyber Forensics, Scientific method in forensic analysis, investigating large scale Data breach cases. Analyzing Malicious software.

### **UNIT II: Computer Forensics Technology**

9 Hrs

Types of Computer Forensics Technology, Types of Military Computer Forensic Technology, Types of Law Enforcement: Computer Forensic Technology, Types of Business Computer Forensic Technology, Specialized Forensics Techniques, Hidden Data and How to Find It, Spyware and Adware, Encryption Methods and Vulnerabilities, Protecting Data from Being Compromised Internet Tracing Methods, Security and Wireless Technologies, Avoiding Pitfalls with Firewalls Biometric Security Systems

### **UNIT III: Computer Forensics Systems**

9 Hrs

Internet Security Systems, Intrusion Detection Systems, Firewall Security Systems, Storage Area Network Security Systems, Network Disaster Recovery Systems, Public Key Infrastructure Systems, Wireless Network Security Systems, Satellite Encryption Security Systems, Instant Messaging (IM) Security Systems, Net Privacy Systems, Identity Management Security Systems, Identity Theft, Biometric Security Systems

## **UNIT IV: Network Security Techniques**

9 Hrs

Network Security Applications, Authentication Mechanisms: Passwords, Cryptographic authentication protocol, Smart Card, Biometrics, Digital Signatures and seals, Kerberos, X.509 LDAP, Directory. Web Security: SSL Encryption, TLS, SET

### **UNIT V: Case Study**

9 Hrs

E-mail Security, Pretty Good Privacy (PGPs) / MIME, IP Security, Access and System Security, Intruders, Intrusion Detection and Prevention, Firewall, Hardware Firewall, Software Firewall, Application Firewall, Packet Filtering., Packet Analysis, Proxy Servers, Firewall setting in Proxy, ACL in Proxy.

Total Hours: 45

### **Text Books:**

- 1. John R. Vacca, (2005) Computer Forensics: Computer Crime Scene Investigation, 2nd Edition, Charles River Media.
- 2. Man Young Rhee, (2003) "Internet Security Cryptographic Principles, Algorithms and Protocols", WILEY.

- 1. William Stallings, "Cryptography and Network Security: Principles and Standards", Prentice Hall India, 3rd Edition, 2003
- 2. Computer Forensics: Investigating Network Intrusions and Cyber Crime (Ec-Council Press Series: Computer Forensics), 2010
- 3. Christof Paar, Jan Pelzl, Understanding Cryptography: A Textbook for Students and Practitioners, 2nd Edition, Springers, 2010.

Subject Code:		Su	bject N		ntabase	e Secui	rity			Ty / Lb / ETL	L	T / S.Lr	P/ R	C
BCS17				te: BCS1						Ту	3	0/0	0/0	3
				Lr : Supe mbedded			_	oject R	: Resear	rch C: C	redits			
•	To pro Under	ovide a	a founda the vari	ve of the ation in cous data atabases.	latabase base vu	e securit	-							
COURS	SE OU	UTCO	MES (	COs):(	3- 5)									
CO1	To u	ınderst	and the	fundame	entals o	f securit	ty and a	rchitec	ture.					
CO2	To io	dentify	risks a	nd vulne	rabilitie	es in ope	erating	systems	s from a	database	e perspe	ctive		
CO3	To le	earn se	curity p	olicies a	nd tech	niques.								
CO4	To u	ınderst	and the	various	databas	e securi	ty mod	els and	their ad	vantages	i.			
Mappir	ng of (	Course	Outco	mes witl	h Progi	ram Ou	tcomes	s (POs)						
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	012
CO1		Н	M	L	L	L	Н	Н	M	Н	M	Н		L
CO2	)	Н	Н	M	Н	Н	Н	M	M	Н	M	Н	l	M
CO3	}	Н	Н	Н	Н	M	M	M	M	Н	M	Н	l	M
CO4	ļ	Н	Н	M	L	M	M	M	M	Н	M	Н		M
COs / PSOs			O1	PSO			O3	PS	SO4	PS	SO5	]	PS06	
CO1			Н	Н					M		H		Н	
CO2			Η	Н			-I		M		H		Н	
CO3			H	Н			Л	ľ	M		H		Н	
CO4			H	Н			Л		L	]	H		M	
H/M/L	indica	tes Str	ength of	f Correla	tion I	I- High	, M- M	edium,	L-Low		T			
Catego y	or	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
						<b>✓</b>								
Approv		27 th n	neeting	of Acad	emic C	ouncil,	June 2	017				•	1	

BCS17E17	BCS17004	DATABASE SECURITY	C	L	T/SLr	P/R	Ty /Lb /ETL/EVL
			3	3	0/0	0/0	Ty

#### **OBJECTIVE:**

• The objective of the course is to provide a foundation in database security, understand various database vulnerabilities and learn to mitigate database.

### **UNIT I: Security Architecture & Operating System Security Fundamentals 9 Hrs**

Security Architecture: Introduction-Information Systems- Database Management Systems-Information Security Architecture- Database Security-Asset Types and value-Security Methods Operating System Security Fundamentals: Introduction-Operating System Overview-Security Environment – Components- Authentication Methods-User Administration-Password Policies-Vulnerabilities-E-mail Security.

# UNIT II: Administration of Users, Profiles, Password Policies, Privileges and Roles 9 Hrs

Administration of Users: Introduction-Authentication-Creating Users, SQL Server User-Removing, Modifying Users-Default, Remote Users-Database Links-Linked Servers-Remote Servers-Practices for Administrators and Managers-Best Practices Profiles, Password Policies, Privileges and Roles: Introduction-Defining and Using Profiles-Designing and Implementing Password Policies-Granting and Revoking User Privileges-Creating, Assigning and Revoking User Roles-Best Practices.

### **UNIT III: Database Application Security Models**

9 Hrs

Introduction-Types of Users-Security Models: Access Matrix model, Access mode model-Application Types: Client/Server Applications, Web Applications, Data ware house applications-Application Security Models-Data Encryption.

### **UNIT IV: Virtual Private Databases**

9 Hrs

Virtual Private Databases: Introduction-Overview of VPD-Implementation of VPD using Views, Application Context in Oracle-Implementing Oracle VPD-Viewing VPD Policies and Application contexts using Data Dictionary, Policy Manager Implementing Row and Column level Security with SQL Server.

### **UNIT V: Security and Auditing Project Cases**

9 Hrs

Case Studies: Developing an online database, payroll management, tracking database changes, developing a secured authorization repository.

**Total Hours: 45** 

### **Text Book:**

1. Hassan A. Afyouni, 2009 "Database Security and Auditing", Third Edition, Cengage Learning.

- 1. Charu C. Aggarwal, Philip S Yu, 2008, "Privacy Preserving Data Mining": Models and Algorithms, Kluwer Academic Publishers.
- 2. Ron Ben Natan, 2005, "Implementing Database Security and Auditing", Elsevier Digital Press.

Subject BCS17				L TIM	E SYS	TEMS			Ty / Lb/ ETL	L	T / S.Lr	P/R	C
			equisite:B						Ty	3	0/0	0/0	3
							Project	R : Res	earch C:	Credits			
Ty/LbE			b/Embedo	ded The	ory and	Lab							
1	OBJEC Deal time			ما ممام ما	-1 -1-:1:4	1	la.						
			duling and					nte and	propertie	C.			
			s for real-			unning	constrai	nts and	propertie	3			
			ES (COs)										
CO1						epts in t	heory of	f compu	iter scienc	e			
CO2		•				•			computer				
CO3		-				_			o formula		nolvzo pro	hlome	in
COS			solve the		i auvano	zea con	iputer so	ence u	) iorinuia	te the ar	iaryze pro	obienis	111
Mannii			utcomes		ogram	Outcor	nes (PO	)s)					
COs/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
Os													
CO1	Н	M	M	M	Н	M	L	M	M	M	Н	Н	
CO2	L	M	M	Н	Н	M	M	Н	Н	Н	L	Н	
CO3	Н	M	L	Н	M	L	Н	M	L	L	M	M	
COs /	PS	O1	PSC	02	PS	O3	PS	SO4	PS	SO5	]	PSO6	
PSOs	_		-	-	_	-							
CO1	H		M		N			M	Н	M	M		M
CO2	M		M			<u>/</u>		L	M	Н	M		M
CO3	H		L		_			M	M	Н	M	1	M
H/M/L	indicates	Streng	th of Cor	relation	H- H1	ign, M-	Mediun		W	1			
Cat ego ry	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	✓ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Appro val	27 th m	eeting (	of Acade	mic Co		une <b>20</b> 1	17						

BCS17E18	BCS17006	REAL TIME SYSTEMS	C	L	T/SLr	P/R	Ty /Lb /ETL/EVL
			3	3	0/0	0/0	Ty

### **OBJECTIVES:**

Student Learning Objectives/Outcomes:

- Real-time scheduling and schedulability analysis
- Formal specification and verification of timing constraints and properties
- Design methods for real-time systems
- Development and implementation of new techniques to advance the state-of-the-art realtime systems research

UNIT I: Introduction 9 Hrs

Architecture of real time systems/embedded systems-operating systems issues-performance measures-estimating program run times.

### **UNIT II: Task Assignment and Scheduling**

9 Hrs

Uniprocessor scheduling-IRIS tasks-task assignment algorithms- mode changes –fault tolerance scheduling.

## **UNIT III: Programming Languages and Tools**

9 Hrs

Desired characteristics based on ADA-data typing-control structures-packages-exception handling-overloading-multitasking-timing specification-task scheduling-just in time compilation-run time support.

### **UNIT IV: Real Time Databases**

9 Hrs

Basic definitions-main memory databases -transaction processing-concurrency control-disk scheduling algorithms-serialization and consistency-real time communication

### UNIT V: Fault Tolerance, Reliability and Synchornization

9 Hrs

Fault types-fault detection and containment-redundancy-data diversity-reversal checks-obtaining parameter values-reliability models for hardware redundancy-software error models-clocks-fault tolerance synchronization-synchronization and software.

**Total Hours: 45** 

### Text book:

1. C.M.Krishna, Kang.G.Shin, 2010, Realtime Systems, McGraw Hill.

- 1. Rajib Mall, 2007 "Real-time systems: theory and practice", Pearson Education.
- 2. Phillip A.Laplante 2011 Real Time System Design and Analysis,4 th edition, Wiley.
- 3. Alan burns and andy wellings,2009 "Real time systems and prog. Languages", 4th edition,pearson.

Subject Cod	le: S	ubject N	lame :						Ty / Lb/	L	T / S.Lr	P/ R	C
BCS17E19		D	ISTRII	RUTEI	D CON	/PUTI	NG		ETL		S.LI	N	
BCSITE17			te: BCS1				110		Ty	3	0/0	0/0	3
L : Lecture T							oject R	: Rese			0,0	0,0	1
Ty/Lb/ETL:			•			•	3						
> To a	studen unders apply t	tand con the memo		ion con gement	cepts of	f distrib	uted sy	stems	systems s to desig	gn a nev	v memor	ý	
COURSE O				-									
CO1			and the de				_						
CO2		Understa	and the co	ommun	ication	concept	ts of dis	stribute	d systems	S			
CO3		systems				C			gement d	lesign o	f distribu	ted	
CO4			and the di			-							
Mapping of									DOO	DO10	DO1:	D.	112
COs/POs CO1	<b>PO1</b> H	PO2 M	PO3 H	PO4	PO5 M	PO6	<b>PO7</b> H	PO8	PO9	PO10			)12
CO2	Н	H	Н	M H	M	H	Н	M H	H	M H	H		H H
CO2	Н	M	Н	M	M	Н	M	M	H	M	H		M
CO4	Н	M	Н	M	M	Н	Н	Н	Н	Н	Н		H
Mapping of										- 11	11		
COs/		SO1	PS			03		SO4		SO5		PSO6	
PSOs													
CO1		Н	]	Н	N	M		Н		M		M	
CO2		Н	Н	I	I	Н		Н		Н		M	
CO3		Н	Н	I	N	M	]	M	-	M		M	
CO4		Н	Н			Н		M		Н		Н	
H/M/L indica	ates St	rength o	f Correla	tion I	H- High	, M- M	edium,	L-Low	•		ı	1	
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	✓ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval		1	1	27 th n	neeting	of Aca	demic	Counc	il, June 2	2017	1	•	

BCS17E19	BCS17I01&	DISTRIBUTED COMPUTING	C	L	T/SLr	P/R	Ty /Lb /ETL/EVL
	BCS17006		3	3	0/0	0/0	Ty

### **OBJECTIVES:**

- The students will be able to understand the design of distributed systems
- To understand communication concepts of distributed systems
- To apply the memory management design of distributed systems to design a new memory

### UNIT I: Fundamentals 9 Hrs

Introduction to distributed computing system, Evolution, Different models, Gaining popularity, Definition, Issues in design, DCE, Message passing-Introduction, Desirable features of a good message passing system, Issues in IPC, Synchronization, Buffering, Multidatagram, Process addressing, Failure handling, Group communication.

### **UNIT II: Remote Procedure Call**

9 Hrs

Introduction, RPC model, transparency of RPC, Implementing RPC mechanism, Stub generation, RPC messages, Marshalling arguments and results, Sever management, parameter-passing semantics, Call semantics, Communication protocols for RPCs, Complicated RPC, Client-server binding, exceptional handling, security, Lightweight RPC.

### **UNIT III: Distributed Shared Memory and Synchronization**

9 Hrs

Introduction, General architecture of DSM systems, Design and implementation issues of DSM, Granularity, Structure of shared memory space, Consistency model, Replacement strategy, Thrashing, Different approaches to DSM, Advantages of DSM, Clock synchronization, Event ordering, Mutual exclusion, Deadlock, Election algorithm.

### **UNIT IV: Resource and Process Management**

9 Hrs

Introduction, Desirable features of a good global scheduling algorithm, Task assignment approach, Load balancing approach, Load sharing approach, Process migration, Threads.

## **UNIT V: DFS/DCE Security**

9 Hrs

Desirable features of good DFS, File models, File accessing, models, File sharing semantics, File cachingschemes, File replication, Fault tolerance, Atomic Transaction, Design principles, Authentication, Access control, Digital signatures, DCE security service.

**Total Hours: 45** 

#### Text book:

- 1. Pradeep K. Sinha (2012 Reprint), *Distributed Operating System Concepts and Design* PHI **Reference Books:** 
  - 1. Andrew S. Tenenbaum (2012), *Modern Operating System* (3rd ed.) PHI
  - 2. Ajay D. Kshemkalyani , Mukesh Singhal (2008), *Distributed computing : principles, algorithms and systems* Cambridge University Press
  - 3. Andrew S. Tenenbaum & Maatren Vansteen (2012) *Distributed systems: Principles & Paradigms* (2nd ed.),PHI
  - 4. Hagit Attiya And Jennifer Welch (2004) *Distributed computing fundamentals, simulations and Advanced Topics* (Digitized in 2007) (2nd ed.), Wiley
  - 5. Jean Dollimore, Tim Kindberg, And George Coulouris (2005) *Distributed Systems: Concepts and Design* (4th ed.) Pearson Education

Subject Cod	le: S	ubject N	ame : TIMIZ	ATIO	N TEC	HNIC	DUES		Ty / Lb/	L	T / S.Lr	P/ R	С
BCS17E20		OI.		1110	I I I I	<b>7111 11 (</b>	ZCL _D		ETL		5,721		
	P	rerequisi	te: NIL						Ту	3	0/0	0/0	3
L : Lecture T	`: Tut	orial SI	Lr : Supe	rvised l	Learnin	g P : Pr	oject R	: Rese	arch C: C	redits			
Ty/Lb/ETL:	Theo	ry/Lab/E	mbedded	Theory	y and L	ab							
OBJECTIV													
									managem	ent and	d apply b	oasic	
		f mathem							arious op	ntimiza	tion prob	leme	
					i perior	mance	measur	CS TOT V	arious of	umza	tion prot	nems	
COURSE O						4 - C-	1.4.	1	1				
CO1									lve engin		_		<u></u>
CO2		Understa specific p		Herent	method	is of op	tımızatı	on and	be able to	o sugge	est a tech	ınıque	ior a
CO3				optimiz	ation ca	ın be us	ed to so	olve inc	lustrial pr	oblems	s of relev	ance t	o the
, , ,		chemical							P.				
Mapping of	Cour	se Outco	mes witl	h Progi	ram Ou	itcome	s (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PC	)12
CO1	Н	Н	M	L	L	L	L	M	M	L	M	L	
CO2	Н	Н	M	L	L	L	L	M	M	L	M	L	
CO3	Н	M	M	L	L	L	L	M	M	L	M	L	
COs /PSOs	P	SO1	PSC	02	PS	O3	PS	SO4	PS	SO5		PSO6	
CO1	Н		Н		L		M		L		L		
CO2	Н		Н		L		M		L		L		
CO3	Н		Н		L		M		L		L		
H/M/L indica	ates S	trength of	f Correla	tion I	H- High	, M- M	edium,	L-Low		1	1		
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	✓ Program Electives	Open Electives	Practical / Project	Internships / Technical Skil	Soft Skills				
Approval	27 th	meeting	of Acad	emic C		June 2	2017						

BCS17E20	NIL	OPTIMIZATION TECHNIQUES	C	L	T/SLr	P/R	Ty /Lb /ETL/EVL
			3	3	0/0	0/0	Ty

#### **OBJECTIVE:**

• To understand importance of optimization of industrial process management and apply basic concepts of mathematics to formulate an optimization problem. To analyse and appreciate variety of performance measures for various optimization problems

### **UNIT I: Introduction to Operation Research**

9 Hrs

Operation Research approach, scientific methods, introduction to models and modeling techniques, general methods for Operation Research models, methodology and advantages of Operation Research, history of Operation Research.

### **UNIT II: Linear Programming (LP)**

9 Hrs

Introduction to LP and formulation of Linear Programming problems, Graphical solution method, alternative or multiple optimal solutions, Unbounded solutions, Infeasible solutions, Maximization – Simplex Algorithm, Minimization – Simplex Algorithm using Big-M method, Two phase method, Duality in linear programming, Integer linear programming.

## **UNIT III: Transportation & Assignment Problems**

9 Hrs

Introduction to Transportation problems, various methods of Transportation problem, Variations in Transportation problem, introduction to Assignment problems, variations in Assignment problems. **Network Analysis:** Network definition and Network diagram, probability in PERT analysis, project time cost trade off, introduction to resource smoothing and allocation.

### **UNIT V: Sequencing**

9 Hrs

Introduction, processing N jobs through two machines, processing N jobs through three machines, processing N jobs through m machines. **Inventory Model:** Introduction to inventory control, deterministic inventory model, EOQ model with quantity discount. **Queuing Models:** Concepts relating to queuing systems, basic elements of queuing model, role of Poison & exponential distribution, concepts of birth and death process.

Total Hours: 45

- 1. J K Sharma, Operations Research Theory and Applications, MacMillan India Ltd.
- 2. N D Vohra, Quantitative Techniques in management, Tata McGraw Hill.
- 3. Handy A Taha, Operations Research An Introduction, Prentice Hall of India, New Delhi.
- 4. Wagner H M, Principles of Operations Research: With Applications to Management Decisions, Prentice-Hall of India, New Delhi.

Subject Cod	e: Su	bject N							Ty /	L	<b>T</b> /	<b>P</b> /	C
		MA	NAGE	MENT	INFO	<b>PRMA</b>	TION		Lb/		S.Lr	R	
BCS17E21					<b>TEMS</b>				ETL				
	Pr		te: BCS						Ty	3	0/0	0/0	3
L : Lecture T							oject R	: Rese	arch C: C	redits			
Ty/Lb/ETL:		y/Lab/E	mbedded	Theor	y and L	ab							
OBJECTIV													
				or type	s of info	ormatio	n systei	ms in a	business	enviro	nment ar	nd their	
		to each	-										
				ernet a	nd Inter	net tecl	nnology	on bu	siness elec	ctronic	comme	rce and	
		usiness;											
							ding an	d using	informat	ion sys	tems and	d learn	how
to fin	ıd appr	opriate	solutions	to thos	e challe	enges							
COURSE O													
CO1									mation sy				
CO2									nd relate				
CO3				king kn	owledg	e of cor	ncepts a	ınd terr	ninology	related	to infor	mation	
		echnolo											
Mapping of													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			)12
CO1	Н	M	M	L	L	L	L	M	L	M	L	L	
CO2	Н	H	L	Н	M	L	L	M	L	M	L	L	
CO3	Н	M	M	L	L	L	L	M	L	M	L	L	
COs /	PS	O1	PSO	)2	PS	O3	PS	SO4	PS	O5		PSO6	
PSOs					_				_		_		
CO1	Н		M		L		M		L		L		
CO2	Н		L		L		L		L		L		
CO3	Н		M		L		M		L		L		
H/M/L indica	ates Str	ength o	f Correla	tion I	H- High	, M- M	edium,	L-Low	,	1		Т	
		es	ial					Technical Skill					
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	✓ Program Electives	Open Electives	Practical / Project	Internships / Techni	Soft Skills				
	<u> </u>	Щ	T S	Ь	✓ b	O	Ъ	Iı	S				
Approval	27 th n	neeting	of Acad	emic C	ouncil,	June 2	2017						

BCS17E21	BCS17004	MANAGEMENT INFORMATION	C	L	T/SLr	P/R	Ty /Lb /ETL/EVL
		SYSTEMS	3	3	0/0	0/0	Ty

### **OBJECTIVES:**

- why information systems are so important today for business and management;
- Evaluate the role of the major types of information systems in a business environment and their relationship to each other;
- Assess the impact of the Internet and Internet technology on business electronic commerce and electronic business;
- Identify the major management challenges to building and using information systems and learn how to find appropriate solutions to those challenges

### UNIT I: Organizations, Management and The Networked Enterprise 9 Hrs

Information Systems in Global Business-Global E-Business-Information Systems-Strategy Systems- Ethical and Social issues in Information System - Analyzing Business Resource for an Enterprise System.

### **UNIT II: IT Infrastructure**

9 Hrs

IT infrastructure- Emerging Technology - Business Intelligence: Databases and Information Management - Telecommunication - Internet and Wireless Technology - Information Security Systems

## **UNIT III: Key System Application For The Digital Age**

9 Hrs

Enterprise application- Ecommerce-Digital Markets- Digital Goods- Managing knowledge-Decision Making – Enterprise portal design

### **UNIT IV: Building and Managing Systems**

9 Hrs

Building Systems - Project Management- Establishing Business values - Managing Change - Managing Global System - Redesigning Business Processes- Case studies

### **UNIT V: Advanced Concepts In Information System**

9 Hrs

Enterprise Resource Planning - modules : Human Resources, Finance - Accounting - Production & Logistics - Supply Chain Management - CRM - Procurement - Management System Object Oriented modeling- case studies

**Total Hours: 45** 

#### Text books:

- 1. James A, O' Brian, (2007) Management information systems, (7th ed.), TMH Publisher
- 2. Kenneth C. Laudon, Jane P.(2008) Management Information Systems: Managing the Digital Firms Pearson Education, TMH, 2008.

- 1. James A. O'Brien, Northern Arizona University, George M. Marakas, University of Kansas, (2007) Introduction to Information Systems
- 2. Ross and Clagget (2004) Information System for Modern Management, Prentice-Hall of India Pvt. Ltd.
- 3. Alexis Leon, (2007) Enterprise Resource Planning, TMH



T/L/L/L

# $7^{TH}$ SEMESTER - SPECIAL ELECTIVE – TECHNOLOGY BASED (ES-EV) (Common to CSE&IT)

**Subject Code: Subject Name:** 

D/\C17\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		_				_			*****		~ <del>-</del>	_	
BCS17E22			Iobile A		tion De	evelopi	ment		ETL		S.Lr	R	
			ite: BCS1						Ty		0/0	0/0	3
L : Lecture	Γ : Tu	torial S	Lr : Supe	rvised	Learnin	g P : P1	oject R	: Rese	arch C: C	redits			
Ty/Lb/ETL	: The	ory/Lab/I	Embedded	Theor	y and L	ab							
<b>OBJECTIV</b>													
				the di	fferent t	ypes of	applica	ation m	odels/arc	hitectur	es used t	o deve	elop
mobile softv				onents	and stru	icture o	f a mob	oile dev	elopment	framev	vorks		
COURSE O	OUTC		, ,										
CO1									analyze it				
CO2		Able to	design ar	nd deve	lop vari	ous Mo	bile Ap	plicati	ons for A	ndroid a	and Appl	e	
CO3	_	Able to	develop	own mo	bile ap	plicatio	n						
Mapping of	Cou	rse Outc	omes wit	h Prog	ram Ot	itcome	s (POs)	)					
COs/POs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	12
CO1	Н	L	L	M	M	L	M	L	L	Н	L	L	
CO2	M	Н	Н	M	Н	L	L	M	M	M	M	Н	
CO3	M	Н	Н	M	Н	L	L	M	Н	M	Н	Н	
COs /		PSO1	PSC	)2	PS	O3	PS	SO4	PS	SO5		PSO6	
PSOs													
CO1		L	I		1	H		L	1	Н		M	
		L	1	•	1	1		L	1	11		IVI	
CO2		M	H					M		M		Н	
				[	]		]		I				
CO2	cates S	M H	H	[	]	L L	]	M H	<u> </u>	M		Н	
CO2 CO3	cates S	M H	H	[	]	L L	]	M H	<u> </u>	M		Н	
CO2 CO3		M H Strength o	f Correla	I I tion I	H- High	, M- M	edium,	M H H H H H H H H H H H H H H H H H H H	I	M M		Н	
CO2 CO3 H/M/L indic	Basic Sciences	M H Strength o	H H of Correla	[	H- High	L L	]	M H L-Low	<u> </u>	M		Н	
CO2 CO3 H/M/L indic		M H Strength of Sciences	f Correla	Program Core	Program Electives	Open Electives W	Practical / Project	M H H H H H H H H H H H H H H H H H H H	I	M M		Н	
CO2 CO3 H/M/L indic	Basic Sciences	M H Strength of Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives W	Practical / Project	M H H H H H H H H H H H H H H H H H H H	I	M M		Н	

BCS17E22	BCS17ET2	MOBILE APPLICATION	C	L	T/SLr	P/R	Ty /Lb /ETL/EVL
		DEVELOPMENT	3	3	0/0	0/0	Ty

#### **OBJECTIVES:**

- Describe the limitations and challenges of working in a mobile and wireless environment
- Describe and apply the different types of application models/architectures used to develop mobile software applications
- Describe the components and structure of a mobile development frameworks

UNIT I: Introduction 9 Hrs

Introduction to Mobile Platforms – Exploring Android Platform – Android Studio, Java, XML – Exploring Apple IPhone Platform – XCode, Objective C, Swift – Options for development

### **UNIT II: User Interface (UI) Development For Mobile Apps**

9 Hrs

UI Elements – User Interface Frameworks – Layouts – Gesture based interfaces – Applying Styles & Themes – Adding Settings

### **UNIT III: Google Andriod Platform**

9 Hrs

Google Application Architecture – Basic Building Blocks - The Android Emulator – Event based programming – SQLite Database Access – ADB – Location based Services

### **UNIT IV: Apple Iphone Platform**

9 Hrs

UI Kit for Interfaces - Event Handling and Graphics Services - SQLite Database Access - Application Debugging - Location Handling

### **UNIT V: Implementing Software as a Service**

9 Hrs

Service Oriented Computing Examples – Google Maps – Enabling Map based services in Application – Amazon Web Services – Exploring AWS S3 & AWS IoT APIs

Total No. of Hrs: 45

### **Text Books:**

- 1. Ed Burnette (2015) Hello, Android: Introducing Google's Mobile Development Platform, 4th edition, Pragmatic Bookshelf.
- 2. Marko Gargenta (2011) Learning Android, O'Reilly Media.

- 1. Richard Rodger (2012) Beginning Mobile application development in the cloud, Wrox Publication.
- 2. Jonathan A. Zdziarski (2008), iPhone Open Application Development, 2nd edition, O'Reilly Media Publication.

Subject	Subject Name :	<b>Ty</b> /	L	T/	<b>P</b> /	C
Code:	DATA SCIENCE AND BIG DATA	Lb/		S.Lr	R	
BCS17E23	ANALYTICS	ETL				
	Prerequisite: BCS17004	T	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab

### **OBJECTIVE:**

- 1. Deploying the Data Analytics Lifecycle to address big data analytics projects
- 2. Reframing a business challenge as an analytics challenge
- 3. Applying appropriate analytic techniques and tools to analyze big data, create statistical models, and identify insights that can lead to actionable result
- 4. Using tools such as: R and RStudio, MapReduce/Hadoop, in-database analytics, Window and MADlib functions.

COURSE O	COURSE OUTCOMES (Cos): (3-5)														
CO1			bying the Data Analytics Lifecycle to address big data analytics projects												
CO2		- •									1 3				
			ng a bus												
CO3	I	Applyin	ing appropriate analytic techniques and tools to analyze big data, create												
	S	statistica	stical models, and identify insights that can lead to actionable results												
C04			explore the next generation of big data tools and applications, and other												
	8	advance	nced topics if time permits.												
Mapping of	Cours	e Outco	tcomes with Program Outcomes (Pos)												
Cos/Pos	PO1	PO2	PO3   PO4   PO5   PO6   PO7   PO8   PO9   PO10   PO11   PO1												
CO1	Н	Н	Н	M	Н	Н	Н	M	Н	M	Н	Н			
CO2	Н	Н	M	Н	Н	Н	Н	L	Н	M	Н	M			
CO3	Н	Н	Н	Н	M	M	Н	M	Н	L	Н	Н			
CO4	Н	Н	Н	Н	M	Н	L	Н	Н	Н	Н	Н			
Cos / PSOs	PS	SO1	PSC	)2	PS	O3	PS	SO4	PS	SO5	PS	SO6			
CO1	Н		Н		H		M		L		Н				
CO2	Н		Н		H		M		Н		Н				
CO3	Н		Н		M		Н		Н		M				
CO4	Н		Н		H		M		Н		Н				
H/M/L indicate	ates St	rength o	f Correla	tion I	H- High	, M- M	edium,	L-Low							
Categor					ves		ect			4)					
У	ses		and	re	ctiv	ves	roje	Internships Technical		tive					
	ienc		ies zien	Co	Ele	ecti	cur / P. / P.   Is   Is								
	Sc	ieer	unit 1 Sc	am	am	Ele	cal	Internship Technical	iii iii	al e					
	Basic Sciences	ngi													
	Bź	En	H _C	Pr	Pr	O	Pr		Sc						
										<b>/</b>					

Approval 27 th meeting of Academic Council, June 2017

BCS17E23	BCS17004	DATA SCIENCE AND BIG DATA	C	L	T/SLr	P/R	Ty /Lb /ETL/EVL
		ANALYTICS	3	3	0/0	0/0	Ty

### **OBJECTIVES:**

- Deploying the Data Analytics Lifecycle to address big data analytics projects
- Reframing a business challenge as an analytics challenge
- Applying appropriate analytic techniques and tools to analyze big data, create statistical models, and identify insights that can lead to actionable result
- Selecting appropriate data visualizations to clearly communicate analytic insights to business sponsors and analytic audiences
- Using tools such as: R and RStudio, MapReduce/Hadoop, in-database analytics, Window and MADlib functions.

UNIT I: Introduction 9 Hrs

Big data overview - State of the practice in analytics, BI vs data science, current analytical architecture, drivers of big data - Big data ecosystem - **Data analytics lifecycle -** overview - Discovery Phase - Data preparation Phase - Model Planning Phase - Model building Phase - Communicate results Phase - Operationalisation Phase.

### **UNIT II: Basic Data Analytic Methods Using R**

9 Hrs

Introduction to R , R Graphical User interfaces, Data import and export, Attribute and data types, descriptive statistics - Exploratory data analysis, visualization data analysis, dirty data, visualizing a single variable, examining multiple variables, data exploration vs presentation, - Statistical methods for evaluation, Hypothesis testing, Difference of Means, Wilcoxon Rank-sum test, Type I and II errors, power and sample size, ANOVA

# UNIT III: Advanced Analytical Theory & Methods (Clustering, Association Rules And Regression) 9 Hrs

Clustering- k-means, use cases, determining the number of clusters, diagnostics, Reasons to choose and cautions, additional algorithms - Association rules- Apriori algorithm, Evaluation of candidate rules, Application of association rules, an example- transactions in a grocery store, the groceries dataset, frequent itemset generation, rule generation and visualization, validation and testing, diagnostics - Regression- linear and logistic regression, usecases, model description, diagnostics - Additional Regression Models

# UNIT IV: Advanced Analytical Theory & Methods (Classification, Time Series Analysis And Text Analysis) 9 Hrs

Classification - Decision Trees, general algorithm, evaluating a decision tree, Decision trees in R - Naive Bayes - Bayes theorem, Naive Bayes classifier, Smoothing, diagnostics, Additional Classification Methods - Time Series Analysis- Box-Jenkins Methodology, ARIMA Model, Auto correlation Function(ACF), Auto regressive models, moving average models, ARMA and ARIMA Models, building and evaluating a ARIMA Model - Text Analysis- collecting raw text, representing text, term frequency-Inverse document frequency(TFIDF), Categorizing documents by topics, determining sentiments, gaining insights

**UNIT V: Advanced Analytics-Technology and Tools: Mapreduce and Hadoop 9Hrs**Analytics for unstructured data, usecases, Mapreduce, Apache Hadoop - **The Hadoop Ecosystem -**Pig, Hive, HBase, Mahout, NoSQL - **In-database analytics** - SQL Essentials, Joins, Set operations,
Grouping extensions, In-Database text analytics, Advanced SQL, Window functions, User-defined functions and aggregates, Ordered Aggregates, MADlib.

#### **Text Book:**

1. <u>EMC Education Services</u> (Editor), 2015 Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data, Wiley Publications, ISBN: 978-1-118-87613-8

**Total Hours: 45** 

Subject Cod	le: S	ubject N	lame :						T / L/	L	T /	<b>P</b> /	C
BIT17007			Cl	oud T	echnol	ogy			ETL		S.Lr	R	
	Pı	rerequisi	te: NIL						Ту	3	0/0	0/0	3
L : Lecture 7	Γ : Tuto	orial S	Lr : Supe	rvised l	Learnin	g P : Pr	oject R	: Rese	arch C: C	redits			
Ty/Lb/ETL :	Theor	y/Lab/E	mbedded	Theor	y and L	ab							
> (	OBJE	CTIVE	: To lear	n Cloud	compu	ting inf	rastruc	ture and	d services	s, to ac	quire kn	owled	.ge
	about c platfor		rage. to u	ındersta	and clou	ıd comp	outing s	ecurity	and to te	st web	applicat	tion ir	cloud
COURSE O			COs): (	3- 5)									
CO1		1	Understa	nd the a	nnlicat	ion of c	loud co	mputin	ıg				
CO2			Recogniz						-6				
CO3			Design th		•				ıs				
Mapping of	Cours	se Outco	mes witl	h Progi	ram Ou	itcomes	s (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12
CO1	Н	Н	Н	M	Н	M	M	M	Н	M	Н		Н
CO2	Н	M	Н	M	Н	M	M	Н	M	Н	M		M
CO3	Н	Н	M	M	Н	M	M	M	Н	M	Н		M
COs / PSOs	P	SO1	PSO	02	PS	O3	PS	SO4	PS	SO5		PSO	6
CO1		Н	Н		N	Л	]	Н		M		M	
CO2		Н	N.			Н		M		H		Н	
CO3		H	M.			H		M		H		M	
H/M/L indic	ates St	rength o	f Correla	tion I	H- High	, M- M	edium,			1			
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skil	Soft Skills				
Approval	27 th 1	meeting	of Acade	emic Co	ouncil, J	une 20	17						

BIT17007	NIL	CLOUD TECHNOLOGY	С	L	T/SLr	P/R	Ty /Lb /ETL/EVL
			3	3	0/0	0/0	Ty

## **OBJECTIVES:**

- To learn Cloud application Development
- To acquire knowledge about public and private cloud
- To understand critical success factor
- To examine cloud audit

### **UNIT I: Cloud Computing and Public Cloud**

### 9 Hrs

Introduction – voice in the cloud – commerce in the cloud – distributed hosting in the cloud – Enterprise – Public cloud – virtualization – remote hosting – hosting services – cloud service model – deployment model – cloud software – divisive issues of multi tendency - public vs private cloud – hybrid solutions – Eucalyptus

### **UNIT II: Vision of Computer Utility**

#### 9 Hrs

Not remote hosting – desktop virtualization – PaaS – SaaS Applications – Moving into and around the cloud – portable software – openness – closed architecture – legacy applications and migration to the cloud – preventing vendor lock in – cloud software – Zend – Abiquo - 3Tera – Elastra – RightScale – VMWare's focus – OMTF – Cloud broker – Inter clouding – DTMF & OVFS.

### UNIT III: Cloud Economics and Demystifying The Cloud 9 Hrs

Capacity planning – Queuing theory – capacity management – evidence based decision making – measuring resource conception - bottlenecks – strategies for capacity planning – critical success factors – key volume indicators – AWS - Amazon S3 functionality – Gladinet desktop face on S3 – move static content to S3 – move web servers and back end – accessing public data – Eucalyptus – Nimbula.

### UNIT IV: Virtualization and Securing The Cloud 9 Hrs

Hypervisor – KVM – Xen – QEMU – Azure – Hyper-V – VPLEX and VMWare – Vmforce – spring for AppEngine – OpenStack – FUDD factor – leakage – virtualization is inherently more secure – cloud security provider employ – DoS attack – OASIS and SPLM – standards and vendor selection – Cloud security alliance – Cloud Audit.

### **UNIT V: Scale and Reuse**

### 9 Hrs

Hardware reuse – Service oriented architecture – Windos Azure – prologue – deployment scenarios - Azure pricing – Google in the cloud – App Engine cost structure – Google web toolkit – Google gears R.I.P – Enterprise cloud vendors – Cloud service providers.

**Total Hours: 45** 

### **TEXT BOOK:**

- 1. David E.Y Sarna 2011 "Implementing and Developing cloud computing Applications" CRC Press.
- 2. Kevin Roebuck 2011" Cloud Application development Tools" Emereo pty Ltd.

### **REFERENCE BOOKS:**

- 1. Scott Adkins 2016 "OpenStack cloud Application Development" Wrox
- 2. Christopher M Moyer 2011"Building Applications in the cloud -Concept Patterns and Projects" Pearson .

Subject Code:		Su	bject N							Ty / L b/ ETL	L	T / S.Lr	P/ R	C
BCS17	F24			Ne	twork	Foren	sics							
DC317	L' <b>47</b>	Pre	erequisi	te: BCS1	7I01					Ty	3	0/0	0/0	3
L : Lect				Lr : Supe				oject R	: Resea	arch C: C	redits			
•	Provid	le a co	mprehe		derstan	ding of				ysis prino		rity techr	ologie	es.
COURS	E OU	TCO	MES (	COs):(	3- 5)									
CO1	Leari	n to id	entify r	etwork s	security	incider	nts and	potentia	al source	es of digi	tal evid	lence.		
CO2	based	d appli	ications	and util	ities				_	on and an			nputer	,
CO3	Ident	ify po	tential a	application	ons for	the inte	gration	of netw	vork for	ensic tecl	hnologi	es		
CO4		•	ols for network forensic investigation											
Mappin	g of C	Course	e Outcomes with Program Outcomes (POs)											
COs/Po	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	O12
CO1		Н	Н	L	Н	L	Н	Н	M	Н	M	Н		M
CO2		Н	Н	Н	Н	Н	M	M	M	Н	M	Н		M
CO3		Н	Н	Н	Н	Н	M	M	M	Н	M	Н		L
CO4		Н	Н	Н	Н	Н	M	M	Н	M	M	Н		Н
COs / PSOs		PS	O1	PSO	O2	PS	O3	PS	SO4	PS	SO5		PS06	
CO1		I	ł	Н	I	]	L	1	M	]	Н		Н	
CO2		I	H	Н	[	N	Л	I	M		Н		Н	
CO3			H	Н			Ĺ		М		Н		Н	
CO4		I		Н			Л		H		H		Н	
H/M/L i	ndicat	es Str	ength of	f Correla	tion I	I- High	, M- M	edium,	L-Low		ı		1	
Catego y	r	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
						<b>✓</b>								

27 th meeting of Academic Council, June 2017

Approval

BCS17E24	BCS17I01	NETWORK FORENSICS	C	L	T/SLr	P/R	Ty /Lb /ETL/EVL
DOSI/EZI	<b>D</b> CS17101	TIET WORLT GREENSTES	3	3	0/0	0/0	Ty

### **OBJECTIVE:**

• This course provides a comprehensive understanding of network forensic analysis principles, understand the relationship between network forensic analysis and network security technologies.

### **UNIT I: Technical Fundamentals**

9 Hrs

Concepts in digital evidence- challenges- investigative methodology- sources of network based evidence- principles of internetworking-Internet Protocol suite- Evidence acquisition

### **UNIT II: Packet and Statistical Flow Analysis**

9 Hrs

Packet analysis - protocol analysis - flow analysis- higher layer traffic analysis - Statistical Flow analysis:- sensors-flow record export protocols- collection and aggregation- analysis tools and techniques - Case study and Tools Analysis: Wire Shark

### **UNIT III: Network Intrusion Detection and Analysis**

9 Hrs

NIDS/NIPS functionality- modes of detection-types-NIDS/NIPS evidence acquisition -NIPS/NIDS interfaces –packet logging – Case study and Tools Analysis : Snort

### **UNIT IV: Network Devices and Servers**

9 Hrs

Sources of Logs-Network log architecture- collecting and analyzing evidence- Switches- routers – firewalls-interfaces-logging - Case study and Tools Analysis: Angry IP Scanner

### **UNIT V: Network Tunnelling and Case Studies**

9 Hrs

Tunneling for functionality, confidentiality- covert tunneling- trends in malware evolution-network behavior of malware – future of malware and network forensics - Case study and Tools Analysis : Cuckoo Sandbox

**Total Hours: 45** 

### **Text Book:**

1. Network Forensics: Tracking Hackers Through CyberSpace Sherri Davidoff, Jonathan Ham Pearson Education 2012

- 1. Introduction to Security and Network Forensics William J. Buchanan Auerbach Publications 2012
- 2. Handbook of Digital Forensics and Investigations, 1st Edition Eoghan Casey ed., Elsevier Academic Press, ISBN 13: 978-0-12-374267-4,.

<b>Subject Code:</b>	Subject Name :	T y/	L	<b>T</b> /	<b>P</b> /	C
	INTERNET OF THINGS	Lb/		S.Lr	R	
BCS17E25		ETL				
	Prerequisite: BCS17I01	Ty	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

 $Ty/Lb/ETL: Theory/Lab/Embedded\ Theory\ and\ Lab$ 

### **OBJECTIVES:**

- Vision and introduction to IoT
- Data knowledge management and use of devices in IoT Technology
- Understand the state of Art lot Architecture

		nd the sta										
	worl	d lot Desi	gn constr	aints, ii	ndustria	al autor	nation a	and com	nmercial	building	automat	ion in
loT	TIM	COMEC	<b>CO</b> ) (:	2 5								
COURSE O	OIC				: 1 - T f	1-	ما ما					
CO2		Understa						text.				
		Determin		•	•				T.			
CO3		Use of D										
CO4		Understa					dustrial	and Co	mmercia	ıl Buildin	g Automa	ation
		and Real										
Mapping of										ı	ı	I
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	M	M	M	M	M	M	L	L	H	M	Н	Н
CO2	M	M	Н	Н	Н	L	Н	L	Н	M	Н	Н
CO3	Н	Н	Н	Н	Н	Н	Н	M	Н	M	H	M
CO4	Н	Н	Н	Н	Н	Н	Н	M	Н	Н	Н	Н
COs /		PSO1	1 PSO2 PSO3 PSO4 PSO5 PSO6									
PSOs		**		-		•		<u> </u>		· ·		<u> </u>
CO1		H	M.			<u> </u>		M		H		L
CO2		H	Н			M		H H		M		H
CO3 CO4		M H	H			H L		H H		<u>М</u> Н		H H
H/M/L indic	otos 9						edium,					П
n/W/L maic	ates	Suengui o	T Correia	uon r	1- migii	, IVI- IVI 	Eurum,			1	1	1
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skil	Soft Skills	Special Elective		
Approval	27 ^t	h meeting	of Acad	emic C	ouncil,	June 2	2017	·				

BCS17E25	BCS17I01	INTERNET OF THINGS	С	L	T/SLr	P/R	Ty /Lb /ETL/EVL
			3	3	0/0	0/0	Ty

### **OBJECTIVES:**

The student should be able to:

- Vision and introduction to IoT
- Data knowledge management and use of devices in IoT Technology
- Understand the state of Art Iot Architecture
- Real world Iot Design constraints, industrial automation and commercial building automation in IoT

### **UNIT I: Introduction To IoT**

9 Hrs

Definition – characteristics of IoT-Physical Design of IoT – Logical Design of IoT- IoT enabling technologies – IoT Levels and Deployment Templates

## **UNIT II: IoT and M2M**

9 Hrs

**M2M to IoT** – **A Basic Perspective**– Introduction, Some Definitions, M2M Value Chains, IoT Value Chains, An emerging industrial structure for IoT, The international driven global value chain and global information monopolies.

**M2M to IoT-An Architectural Overview**— Building an architecture, Main design principles and needed capabilities, An IoT architecture outline, standards considerations.

# **UNIT III: IoT Platforms Design Methodology**

9 Hrs

Introduction – IoT Design Methodoloy – Case study on IoT system for Weather Monitoring – Motivation of using Python

# **UNIT IV: IoT Physical Devices and Endpoints**

9 Hrs

IoT Device – Basic building blocks of an IoT Device – Exemplary Device: Raspberry Pi – Linux on Raspberry Pi – Raspberry Pi Interfaces – Raspberry Pi with Python – Simple Programs

# **UNIT V: IoT Applications For Value Creations**

9 Hrs

Introduction, IoT applications for industry: Future Factory Concepts, Brownfield IoT, Smart Objects, Smart Applications, Four Aspects in your Business to Master IoT, Value Creation from Big Data and Serialization, IoT for Retailing Industry, IoT For Oil and Gas Industry, Opinions on IoT Application and Value for Industry, Home Management, eHealth. Case Studies Illustrating to IoT Design.

**Total Hours: 45** 

## **Text Book:**

1. Vijay Madisetti and Arshdeep Bahga, , 2015"Internet of Things (A Hands-on-Approach)", Universities Press

- 1. Francis daCosta, 2013 "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", 1st Edition, A press Publications
- 2. Cuno Pfister, Getting Started with the Internet of Things, O" Reilly Media, 2011, ISBN: 978-1-4493-9357-1

Subject Code BCS17E26	e:	Subject N		IAL C	OMPU	TING	r		Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
		Prerequis	ite: NIL						Ty	3	0/0	0/0	3
L : Lecture T				rvised	Learnin	g P : Pı	oject R	: Rese		Credits			
Ty/Lb/ETL:	The	ory/Lab/E	mbedded	l Theor	y and L	ab							
OBJI	ECTI	IVE:											
		d importa											
		d prototype ata left beh				stems.							
•		d the resea											
COURSE OU													
CO1			and emerg					sed com	puting – 1	focusing	on curren	t	
CO2		Use spec	ialist App					s (APIs)	for analy	sing soci	al media		
CO3			a feeds nd the use	of gran	h theory	in repre	senting	relation	ships in so	ocial net	works and	l	
		Dis	stributed s	ystems		-			-				
CO4			nd and ma			list tech	nologies	s used to	harvest,	analyse a	and		
CO5			rate the us		cialist pr	ogramn	ning env	ironme	nts and to	ols for m	anaging		
Mapping of C	ours	e Outcom	es with P	rogram	Outcon	nes (PO	s)						
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO	12
CO1	Н	H	M	L	M	M	M	M	L	L	M	M	
CO2	Н	Н	M	M	L	L	M L	M	L M	M	M	M	
CO3 CO4	H	H	M L	M M	M	L M	M	L L	L	L L	M	M	
CO ₅	Н	Н	M	M	M	L	L	L	M	M	M	M	
COs / PSOs		PSO1	PSO			O3		SO4		SO5		PSO6	
CO1	Н	1001	Н		M		M	,,,,	L		M	1500	
CO2	Н		Н		M		L		L		M		
CO3	Н		Н		M		M		M		L		
CO4	Н		Н		L		L		M		M		
CO5	Н		Н		M		M		M		L		
H/M/L indica	ites S	Strength o	f Correla	tion I	H- High	, M- M	edium,	L-Low	·	1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills	Special Elective			
<u> </u>	Bas	Eng	Hu. Sci	Pro	Pro	Op	Pra	rī.	Sof	Spe			
										<b>'</b>			
Approval				27 th 1	meeting	g of Aca	ademic	Counc	cil, June	2017			



BCS17E26	NIL	SOCIAL COMPUTING	С	L	T/SLr	P/R	Ty /Lb /ETL/EVL
			3	3	0/0	0/0	Ty

## **OBJECTIVES:**

- Understand important features of social computing.
- Design and prototype new social computing systems.
- Analyze data left behind in social media.
- Understand the research issues in this field.

# **UNIT I: Basic Concepts**

9 Hrs

Web 2.0 Introduction – Advantages & Disadvantages of Web2.0 – Business Aspects of Web2.0 – Web2.0 Principles – Characteristics – design aspects – Introduction to Web services.

### **UNIT II: Web2.0 Services**

9 Hrs

Web2.0 Services – Applications –Communication - Blogs – Topic, Event, Marketing, Learning , Scholarly - Wiki – Wikia, Wetpaint, Pbwiki, Wikispaces -Podcasting , Vodcasting -  $21^{st}$  century skills - Social Networking- Social Bookmarking – RSS & Syndication –Newer Web2.0 services and Applications

### **UNIT III: Technology**

9 Hrs

 $Ajax-Alternatives\ to\ Ajax-Open\ APIs\ -SOAP\ -REST\ -\ Microformats\ -\ Client\ side\ technologies\ -\ Web\ gateway\ -\ Security\ Challenges\ with\ Web2.0\ -\ Content\ Management\ System(CMS)$ 

### **UNIT IV: Application Creation**

9 Hrs

DOJO toolkit - Creation of Application with DOJO, JSON ,Adobe Flex, Cloud computing, Hadoop – Building Offline Applications using Adobe AIR.

### **UNIT V: Case Studies**

9 Hrs

Teaching & Learning Issues – Research – Academic Publishing – Library – Repositories – Archiving – Future of Web2.0 – Web2.0 & Semantic Web – Emergence of Web Science.

Total Hours: 45

- 1. shelly / Frydenberg, 2011, "Web2.0- concepts & Applications", Cengage Learning.
- 2. Gwen Solomon, Lynne Schrum, 2007, "Web 2.0 new tools, new schools", ISTE Publication.
- 3. www.jisc.ac.uk JISC Technology and Standards Watch, Feb. 2007 Web 2.0(PDF)
- 4. Web2.0 Tutorials(from web)
- 5. Mastering Web2.0 Technologies(from web)
- 6. www.dojotoolkit.org

		D	)epartı	nent (	of In	forma	tion [	Гесhn	ology				
Subject Cod	le: Si	ubject N	ame :						Ту /	L	<b>T</b> /	<b>P</b> /	С
susject cou		•	TERPR	RISE A	RCHI	TECT	URE		Lb/		S.Lr	R	
<b>BCS17E27</b>		,					0 - 1 - 1		ETL				
	Pı	rerequisi	te: NIL					,	Ту	3	0/0	0/0	3
L : Lecture T	`: Tuto	orial SI	Lr : Supe	rvised I	Learnin	g P : Pr	oject R	: Resea	rch C: C	redits			
Ty/Lb/ETL:	Theor	y/Lab/E	mbedded	Theory	y and L	ab							
OBJECTIV	<b>E</b> :												
• To de	efine an	ıd explair	gaps										
<ul> <li>Help</li> </ul>	to achi	eve the b	usiness str	rategy, v	ision an	d Targe	t Operat	ing Mode	el				
			to includ										
			n making,		g the ne	ed for lo	ng studi	es					
			IN Model										
COURSE O	UTCO	OMES (	COs): (	3- 5)									
CO1	(	Constru	ct mode	ls for e	nterpri	se arch	itectur	e defini	tion wh	ich cor	nform to	indus	stry
	5	standard	ls and fr	amewo	orks								
CO2	1	Analyze	alternat	ive mo	dels fo	or enter	prise a	rchitect	ure con	nponen	ts and p	rocess	ses
			rent org				•				1		
CO3						rs for c	ommoi	n enterr	rise arc	hitect :	approach	nes	
Mapping of									71150 410	11110011	арргоцег	105	
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	M	M	M	Н	M	Н	Н	L	Н	L	M	Н	
CO2	Н	M	Н	Н	M	M	Н	L	Н	M	Н	Н	
CO3	Н	Н	M	Н	M	Н	Н	M	Н	M	L	M	
COs /	PS	SO1	PSC	)2	PS	03	PS	O4	PSO5 PSO6				
PSOs													
CO1		Н	Н	[	M H				N	M		M	
CO2		Н		[				H					

H/M/L indic	ates Strength of	f Correlation F	H- High, M- N	ledium, L-Low

cial nical	H/M/L in	dicates Str	ength o	f Correla	tion I	H- High	, M- M	edium,	L-Low	7		
A C D Basic Sciences  Basic Sciences  Humanities and So Sciences  Program Core  Program Electives  Open Electives  Internships / Techn Skills  Soft Skills  Soft Skills	Categor y	asic	Engineering Sciences	and Soci	$\mathcal{O}$				nships / Technic	Soft Skills		

 $27\ ^{\rm th}$  meeting of Academic Council, June 2017 Approval

BCS17E27	NIL	ENTERPRISE ARCHITECTURE	С	L	T/SLr	P/R	Ty /Lb /ETL/EVL
			3	3	0/0	0/0	Ty

### **OBJECTIVE:**

- To define and explain gaps
- Help to achieve the business strategy, vision and Target Operating Model
- Provide the flexibility to include new ideas in the future
- Enable faster decision making, avoiding the need for long studies
- Learn UML and BPMN Modeling.

UNIT I: Introduction 9 Hrs

TOGAF- General Presentation-Keypoints-ADM Method: ADM Cycle-The Phases of the ADM-Iterations-ADM Techniques and Guidelines. **Components of TOGAF Architecture:** Architecture components-The Metamodel-Artifacts-Building Blocks-Deliverables. Repository and Governance: Architecture Repository-Architecture Governance.

## **UNIT II: Key Modeling Techniques**

9 Hrs

Models: Benefits Uses and Characteristics-The concepts of viewpoints-Special role played by diagrams-consistency and traceability-Architecture Repository-Risks and main difficulties-Repository governance-Tools and Languages. **TOGAF Models:** TOGAF Artifacts-UML and BPMN for TOGAF Modeling-Model Vision: Stakeholder Matrix-Artifacts linked to Goals, Requirement, and Business Process-Solution Concept Diagram-Value Chain Diagram.

### **UNIT III: Model Business Architecture**

9 Hrs

Business Dictionary Artifacts-Artifacts linked to Enterprise Organization, function and Services, Business Processes, Data. Information System Architecture: Application Communication Diagram-Migration Diagram-User Location Diagram-System use Case Diagram-Process System Realization Diagram-Enterprise Manageability diagram-Data Architecture-Service Data Diagram-

## **UNIT IV: Technology Architecture**

9 Hrs

Environment and Location Diagram-Processing Diagram-Network Computing Hardware Diagram-Benefits Diagram. SOA Processes and Information:SOA-Business Processes-Information-TOGAF Within AMUE, EDF. Archimate.

UNIT V: 9 Hrs

Draw Business Process Diagram Using UML and BPMN.

**Total Hours: 45** 

# **Text Book:**

1. Philippe Desfray, Gilbert Raymond (2014) – Modelling Enterprise Architecture with TOGAF A Practical Guide Using UML and BPMN. Elsevier Pub.

- 1. Peter Rittgen, (2007)-Enterprise Modeling and Computing with UML, Idea Group Publishing.
- 2. Marc Lankhorst et al (2013), The Enterprise Engineering Series, Springer

BCS17EXX	NIL	Any other that is important time to time based	С	L	T/SLr	P/R	Ty /Lb /ETL/EVL
		on Industry Demand	3	3	0/0	0/0	Ty

## 8TH SEM ELECTIVES E-VI AND E-VII (Common to CSE&IT)

Subject Code: BCS17E28	Subject Name : Information Storage Management	Ty / Lb/	L	T / S.Lr	P/ R	С
		ETL				
	Prerequisite: BCS17004	Ty	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

Ty / Lb/ ETL : Theory/Lab/Embedded Theory and Lab

### **OBJECTIVE:**

- Provides a comprehensive understanding of the various storage infrastructure components in data center environments.
- It enables participants to make informed decisions on storage-related technologies in an increasingly complex IT environment
- The adoption of software-defined infrastructure management and third platform technologies.
- It provides a strong understanding of storage technologies and prepares participants for advanced concepts, technologies, and processes.
- To learn the architectures, features, and benefits of intelligent storage systems
- Includes block-based, file-based, object-based, and unified storage; software-defined storage; storage networking technologies such as FC SAN, IP SAN, and FCoE SAN; business continuity solutions such as backup and replication; the highly-critical area of information security; and storage infrastructure management.

sto	orage i	nfrastruc	cture mar	nageme	nt.							
COURSE O	UTCO	OMES (	COs):(	3- 5)								
CO1	]	Evaluate	storage	architec	tures, ii	ncludin	g storag	e subsy	stems, l	DAS, SA	N, NAS,	CAS
CO2	]	Define b	ackup, re	covery	, disaste	r recov	ery, bus	iness co	ontinuit	y, and rep	olication	
CO3	1	Understa	erstand logical and physical components of a storage infrastructure									
CO4	]	dentify	compone	ents of r	nanagin	g and r	nonitori	ng the c	lata cen	ter		
CO5	]	Define in	nformatio	n secu	rity and	identif	y differe	nt stora	ge virti	ıalization	technolo	gies
Mapping of	Mapping of Course Outcomes with Program Outcomes (POs)											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
CO2	Н	Н	M	Н	Н	Н	M	Н	Н	Н	Н	Н
CO3	Н	Н	Н	Н	Н	Н	M	M	Н	M	Н	M
CO4	Н	Н	Н	Н	Н	M	M	M	Н	Н	Н	Н
CO5	Н	Н	Н	Н	Н	Н	M	M	Н	M	Н	M
COs /PSOs	P	SO1	PSO	)2	PS	O3	PS	O4	P	SO5	PS	SO6
CO1		Н	Н	[	F	I	F	I		Н		Н
CO2		H	Н		N	1	ŀ			Н		Н
CO3		Н	N	1	N	1	F	H		Н		M
CO4		Н	N	1	N	1	F	I		Н		Н
CO5		Н	Н	I	F	H	F	I		Н		M
H/M/L indic	ates St	rength of	f Correla	tion I	I- High,	, M- M	edium, I	L-Low				
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internshi	ps/ Technical Skill	Soft Skills		
					~							

Approval	27 th meeting of Academic Council, June 2017
----------	---------------------------------------------------------

BCS17E28	BCS17004	INFORMATION STORAGE MANAGEMENT	C	L	T/SLr	P/R	Ty /Lb /ETL/EVL
		WANAGEMENT	3	3	0/0	0/0	Ty

### **OBJECTIVES:**

- To have a comprehensive understanding of the various storage infrastructure components in data center environments.
- To make informed decisions on storage-related technologies in an increasingly complex IT environment
- To have strong understanding of storage technologies and prepares participants for advanced concepts, technologies, and processes.
- To learn the architectures, features, and benefits of intelligent storage systems
- To learn about storage concepts and networking technologies such as FC SAN, IP SAN, and FCoE SAN

# **UNIT I: Storage Systems**

9Hrs

Information Storage - Evolution of Storage Technology and Architecture - Data Centre - Infrastructure - ILM - Components of Storage System Environment - Logical Components of Host RAID: Implementation, levels & comparison - ISS components, Intelligent Storage Array.

# **UNIT II: Storage Technologies**

9Hrs

Networking Technologies & Virtualization DAS – SCSI – SAN – NAS –IPSAN – CAS –Forms of Virtualization.

### **UNIT III: Business Continuity**

9Hrs

 $Information\ availability-BC\ Planning\ Life\ Cycle\ failure\ analysis-Backup\ \&\ Recovery-Local\ Replication-Remote\ Replication.$ 

# **UNIT IV: Storage Security**

9Hrs

Storage Security Framework – Risk Triad – Storage Security Domains – Security Implementation in Storage Networking.

## **UNIT V: Managing Storage Infrastructure**

9Hrs

Infrastructure – Storage Management Activities and Challenges – Developing an Ideal solution.

**Total Hours: 45** 

#### **Text Book:**

1. EMC Corporation, Information Storage and Management, Wiley India, 2nd edition 2012

- 1. Robert Spalding, "Storage Networks: The Complete Reference", Tata McGraw Hill, Osborne, 2003.
- 2. Marc Farley, "Building Storage Networks", Tata McGraw Hill, Osborne, 2001.

Subject Cod BCS17E29		ubject N Netv	lame : vork In	frastru	ıcture	Manaş	gement	t	Ty / Lb/ ETL	L	T / S.Lr	P/ R	С	
	P	rerequisi	te: BCS	17I01					Ту	3	0/0	0/0	3	
L : Lecture T	: Tuto	orial SI	Lr : Supe	rvised	Learnin	g P : Pr	oject R	: Rese	arch C: C	redits		•		
Ty/Lb/ETL:	Theor	y/Lab/E	mbedded	l Theor	y and L	ab								
OBJECTIV test. Network	k secur	rity and w	vireless s	security		ionality	, to acq	uire kn	owledge	about aı	nd VLA	Ns, an	d to	
COURSE O	UTCO	OMES (	COs): (	3- 5)										
CO1		Underst	and the	use of	networ	k infra	structu	re						
CO2	]	Recogni	ecognize the importance and relevance of VLANs and EIGRP											
CO3	,	Trouble	roubleshoot the network infrastructure											
Mapping of	Cours	rse Outcomes with Program Outcomes (POs)												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	11 P	O12	
CO1	Н	M	Н	Н	Н	M	M	M	M	M	Н		Н	
CO2	Н	Н	M	Н	M	Н	M	Н	Н	Н	M		Н	
CO3	Н	Н	M	Н	Н	M	Н	M	Н	M	Н		M	
COs / PSOs	P	SO1	PSO			O3		SO4		SO5		PSO6	j	
CO1		H	I.			M		H	_	M		M		
CO2		M	I			H		Н Н				Н		
CO3		H	I I			H		H		M		M		
H/M/L indicate	ates St	rength of	t Correla	tion I	H- High	, M- M	edium,	L-Low	<i>'</i>	1				
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
	a=th			• ==	<b>/</b>		0.1.							
Approval	27 th r	neeting	of Acado	emic C	ouncil,	June 2	017							

							Ty/Lb
BCS17E29	BCS17I01	NETWORK INFRASTRUCTURE	C	L	T/SLr	P/R	/ETL/EV
BCS1/E29	BCS1/101	MANAGEMENT					$\mathbf{L}$
			3	3	0/0	0/0	Ty

#### **OBJECTIVES:**

- To learn Network Layers functionality
- To acquire knowledge about and VLANs
- To understand IP routing, EIGRP and OSPF
- To test Network security and wireless security

# **UNIT I: Internetworking & Ip Addressing**

9Hrs

Internetworking Models – Layered Approach – OSI Reference Models – Ethernet Networking – Cabling – Data Encapsulation – Three Layer Hierarchical model – core layer – distribution layer – Access layer – TCP/IP and DoD Model – IP Addressing – Hierarchical IP Addressing scheme - Broadcast Address.

### **UNIT II: Subnetting, VLSM And Ios**

9Hrs

Subnetting basics – CIDR – VLSM Design – Summarization – Troubleshooting IP Addressing – IOS user interface – CLI – Router and switch Administrative Configuration – Router Interfaces – viewing, saving, and erasing configuration

## **UNIT III: Managing Internetwork And Ip Routing**

9Hrs

 $Internal\ component\ of\ a\ Router-routing\ boot\ sequence-configuration\ register-backing\ up\ and\ restoring\ configuration-CDP-resolving\ hostnames-Checking\ network\ connectivity-IP\ routing\ basics-Static\ routing-default\ routing-dynamic\ routing-RIP-IGRP$ 

### **UNIT IV: Eigrp, OSPF, STP and VLANS**

9Hrs

EIGRP features – RTP – DUAL – EIGRP to support large Networks –Configuring EIGRP - Load balancing – OSPF terminology – Configuring and verifying OSPF – DR and BDR elections – Loopback interfaces – troubleshooting – STP spanning tree terms and operations – VLANs Basics – memberships – VTP – Configuring VLAN – Inter VLAN routing.

# **UNIT V: ACLS, NAT and Wireless Technologies**

9Hrs

Access Lists, VTY access, advanced Access List, Named ACLs, monitoring Access List, configuring access list – NAT names – PAT configuration – NAT using SDM – Wireless technologies – Unified wireless solutions – split MAC architecture – MESH and LWAPP - wireless security

#### **Total Hours: 45**

#### **Text Books:**

- 1. Todd Lammle, 2011 "CCNA Cisco Certified Network Associate study guide Wiley India.
- 2. Brian Hill, 2013 "The complete Reference Cisco" Tata McGraw-Hill.

- 1. Richard Deal, 2013 "CCNA Cisco Certified Network Associate study guide" Tata McGraw-Hill.
- 2. Steven Latre et al 2015 "Intelligent Mechanism for Network Component and Security" Springer.

Subject Coo BCS17E30		Subject N Four	Name : ndations	s of Pa	rallel I	Progra	mminş	g	Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
		Prerequisi							T	3	0/0	0/0	3
L : Lecture	Γ : Tu	torial S	Lr : Supe	ervised l	Learnin	g P : P1	oject R	: Rese	arch C: C	redits			
Ty / Lb/ ET	<b>L</b> : Th	eory/Lab	/Embedd	led The	ory and	Lab							
OBJECTIV													
			-	Multi	threade	ed, Par	allel an	d Dist	ributed (	Compu	ting par	radigm	ıs of
		rograms		1 .	•	11 1							
•		ic metho		-		-	-						
		ies typica			rogram	ımıng 1	ın Java	•					
COURSE (	OUTC												
CO1			Understa										
CO2			Understa										
CO3					ge Pass	ing me	thods ar	nd Proc	ess Intera	ection fo	or Paral	lel	
- CO 4			Programi			1 11	1		•	1	14 14	• , •	
CO4			Understa	nd the p	oractica	l paralle	el progr	ammın	g scenario	os and p	ossibili	ities	
CO5		<b>0</b> .	•				(DO.)						
Mapping of									DO0	DO 10	DO1	1 DC	112
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			)12
CO1	H	H H	M M	L L	L L	L	L L	M M	M M	L L	M M	L L	
CO3	Н	M	M	L	L	L	L	M	M	L	M	L	
CO4	Н	M	M	L	L	L	L	L	M	M	L	L	
CO5	11	171	101						141	171			
COs /	1	PSO1	PS	$\frac{1}{\Omega^2}$	PS	O3	pç	SO4	PS	SO5		PSO6	
PSOs	'	1501	15	02		03	1.0	,04		,03		1500	
CO1	Н		Н		L		M		L		L		
CO2	Н		Н		L		M		L		L		
CO3	Н		M		L		M		L		L		
CO4	Н		Н		L		M		L		L		
CO5													
H/M/L indic	ates S	Strength o	f Correla	tion I	H- High	, M- M	edium,	L-Low	,				
								kill					
Categor		ciences	d Social		ives	8	ject	echnical S					
у	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skil	Soft Skills				
			<u> </u>	1	7		1	I	<b>U</b>	1			
Approval	27 th	meeting	of Acad	emic Co	ouncil.	June 2	017			1			

BCS17E30	BCS17007	FOUNDATIONS OF PARALLEL	C	L	T/SLr	P/R	Ty /Lb /ETL/EV
DCS1/E30	BCS1/00/	PROGRAMMING					${f L}$
			3	3	0/0	0/0	Ty

### **OBJECTIVES**

The students will be able to understand and to apply

- fundamental concepts of Multi threaded, Parallel and Distributed Computing paradigms of parallel programs,
- systematic methods for developing parallel programs,
- Techniques typical for parallel programming in Java;

# **UNIT I: Concurrent Programming Concepts**

9Hrs

Concurrent programming concepts, Techniques for parallelizing programs, Shared Variable Programming: Process and Synchronisation - Synchronization, atomic actions, and await statements, Semantics of concurrent programs; ways to avoid interference, Safety and liveness properties; Critical sections: spin locks , efficient spin locks; fair solutions , Parallel programming concepts; bag of tasks paradigm; Pthreads library , Barriers: counter, coordinator, combining tree , Symmetric barriers; data parallel algorithms , Parallel scientific computing

### **UNIT II: Semaphores And Monitors**

9Hrs

**Semaphores:** mutual exclusion, signaling, split binary, resource counting, dining philosophers, readers/writers , passing the baton, resource allocation and scheduling, Implementations of Semaphores in kernels, multiprocessors;

**Monitors:** basic concepts, signaling disciplines, synchronization techniques, larger examples; use in Java, Pthreads, Implementation of Monitors in Kernel

# **UNIT III: Message Passing And RMI**

9Hrs

**Message passing**: basic concepts and examples, clients and servers, file servers, interacting peers, Synchronous, Message passing in MPI, and Java; **Remote operations**; RPC; Java RMI, **Rendezvous, distributed readers and writers** 

# **UNIT IV: Process Interaction And Distributed Programming**

9Hrs

**Process interaction Paradigms**: Managers/Workers, heartbeat algorithms; pipeline algorithms, Probe/Echo Algorithm, Broadcast Algorithm, Token Passing Algorithms - **Distributed programming**: replicated files, dining philosophers, distributed file systems

# **UNIT V: Parallel Programming**

9Hrs

Speed and Efficiency, Overhead and Challenges – **Scientific Computing**: Grid Computations, Particle Computations, Matrix Computations – **Case Study of Parallel Programming Libraries** in Pthread, MPI and OpenMP – **Parallelizing Compilers** – Other Parallel Programming Models – **Parallel Programming Tools** 

**Total Hours: 45** 

## **Text Book:**

1. Greg Andrews ,2000, Foundations of Multithreaded, Parallel, and Distributed Programming. Addison-Wesley, Digitized in 16 Nov 2007, ISBN 0201357526, 9780201357523

## **Reference Book:**

1. Zbigniew J. Czech, 2016, Introduction to Parallel Computing, Cambridge University Press, ISBN 1316802787, 9781316802786

Subject Cod		Subject N		RTUAI	LIZAT	ION			Ty / Lb/	L	T / S.Lr	P/ R	C	
BCS17E3	<b>-</b> ⊢		Pre	requisit	e BIT1	7007			ETL Ty	3	0/0	0/0	3	
L : Lecture 7	ր : Tu	torial S					oject R	: Resea		_	0/0	0/0	1 2	
Ty/Lb/ETL:							3							
OBJECTIV		didates sl	nould kno	ow and			general		pts, theor	y and to	erminolo	gy of		
	COURSE OUTCOMES (COs): (3-5)  Server virtualization and deskton virtualization													
CO2 Server virtualization and desktop virtualization  CO2 Virtual machines installation, configuration and administration														
CO2 Virtual machines installation, configuration and administration														
CO3	_	Introduction to networking fundamentals and layering structure  Marriag of Course Outcomes with Progress Outcomes (POs)												
	Mapping of Course Outcomes with Program Outcomes (POs)													
COs/POs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	) PO11	. P(	O12	
CO1	Н		M	L	M	L	L	L	L	L	L	]	M	
CO2	Н		M	L	M	L	L	L	L	L	L		M	
CO3	Н		M	L	M	L	L	L	L	L	L		M	
COs / PSOs		PSO1	PS	O2	PS	O3	PS	SO4	PS	O5		PSO6		
CO1		Н	N		I		l	M	N	M		L		
CO2		Н	N		I			M		M		L		
CO3		Н	N		I			M		М		L		
		H/M/L in	dicates S	Strength	of Con	relation	H- H	ligh, M	- Medium	n, L-Lo	w			
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
					<b>/</b>									
Approval	27 th	meeting	of Acad	emic Co	ouncil,	June 20	017							

BCS17E31	BIT17007	VIRTUALIZATION	C	L	T/SLr	P/R	Ty /Lb /ETL/EV L	
			3	3	0/0	0/0	Ty	

#### **OBJECTIVES:**

- •Candidates should know and understand the general concepts, theory and terminology of Virtualization.
- •Work in Network virtualization

### **UNIT I: Overview of Virtualization**

9Hrs

Basics of Virtualization - Virtualization Types - Desktop Virtualization - Network Virtualization - Server and Machine Virtualization - Storage Virtualization - System-level or Operating Virtualization - Application Virtualization-Virtualization Advantages - Virtual Machine Basics - Taxonomy of Virtual machines - Process Virtual Machines - System Virtual Machines - Hypervisor - Key Concepts

### **UNIT II: Server Consolidation**

9 Hrs

Hardware Virtualization – Virtual Hardware Overview - Sever Virtualization – Physical and Logical Partitioning - Types of Server Virtualization – Business cases for Sever Virtualization – Uses of Virtual server Consolidation – Planning for Development – Selecting server Virtualization Platform

### **UNIT III: Network Virtualization**

9Hrs

Design of Scalable Enterprise Networks - Virtualizing the Campus WAN Design - WAN Architecture - WAN Virtualization - Virtual Enterprise Transport Virtualization—VLANs and Scalability - Theory Network Device Virtualization Layer 2 - VLANs Layer 3 VRF Instances Layer 2 - VFIs Virtual Firewall Contexts Network Device Virtualization - Data-Path Virtualization Layer 2: 802.1q - Trunking Generic Routing Encapsulation - IPsec L2TPv3 Label Switched Paths - Control-Plane Virtualization—Routing Protocols- VRF - Aware Routing Multi-Topology Routing.

## **UNIT IV: Virtualizing Storage**

9Hrs

SCSI- Speaking SCSI- Using SCSI buses – Fiber Channel – Fiber Channel Cables – Fiber Channel Hardware Devices – iSCSI Architecture – Securing iSCSI – SAN backup and recovery techniques – RAID – SNIA Shared Storage Model – Classical Storage Model – SNIA Shared Storage Model – Host based Architecture – Storage based architecture – Network based Architecture – Fault tolerance to SAN – Performing Backups – Virtual tape libraries.

### **UNIT V: Virtual Machines Products**

9Hrs

Xen Virtual machine monitors- Xen API – VMware – VMware products - Vmware Features – Microsoft Virtual Server – Features of Microsoft Virtual Server

**Total Hours: 45** 

#### **Text Books:**

- 1. William von Hagen (2008) Professional Xen Virtualization, Wrox Publications
- 2. Chris Wolf, Erick M. Halter (2005) Virtualization: From the Desktop to the Enterprise, APress

- 1. Reddy, Victor Moreno (2006) Network virtualization, Cisco Press
- 2. James E. Smith, Ravi Nair (2005) Virtual Machines: Versatile Platforms for Systems and Processes, Elsevier/Morgan Kaufmann
- 3. David Marshall, Wade A. Reynolds (2006) Advanced Server Virtualization: VMware and Microsoft Platform in the Virtual Data Center, Auerbach Publications

<b>Subject Code:</b>	ubject Name : $\begin{array}{c cccc} T & y' & Lb' & L & T' & P' & R & C \end{array}$										
BCS17E32	Hadoop Distributed File System	ETL		S.Lr							
	•					İ					
	Prerequisite: BCS17006	Ty	3	0/0	0/0	3					
L : Lecture T : Tut	orial SLr: Supervised Learning P: Project R: Research C:	al SLr : Supervised Learning P : Project R : Research C: Credits									
Ty/Lb/ETL: Theo	ory/Lab/Embedded Theory and Lab										
> OBJE	<b>ECTIVE</b> : To understand the concepts of Distributed file systematical experiments of the concepts of the concepts of Distributed file systematical experiments.	em, to acqu	ire kno	wledge al	out						
Hbase	, YARN, PIG and OOZIE and to examine MapReduce types	and formats	s.								
COURSE OUTC	OMES (COs): (3-5)										
CO1	Understand the application of distributed file system.										
CO2	Recognize the importance and relevance of HDFS.										
CO3	Create efficient application using Pig and Oozie.										
Mapping of Cour	Tapping of Course Outcomes with Program Outcomes (POs)										

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	M	Н	Н	Н	Н	M	M	M	Н	M	Н	Н
CO2	Н	M	Н	M	Н	M	M	Н	M	Н	M	M
CO3	Н	Н	M	Н	Н	M	M	M	Н	M	Н	Н
COs / PSOs	PS	O1	PS(	)2	PS	O3	PS	O4	PS	SO5	PS	O6
CO1	I	H	Н	•	N	Л	]	Н	I	M	I	M
CO2	N	M	M	[	I	H	N	M		Н		H
CO3		Н	Н			H		M	I	M	I	M
H/M/L indicat	es Stren	gth of Co	orrelation	H- Hi	gh, M- 1	Medium	, L-Low					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
					~							
Approval	27 th m	eeting o	f Acaden	nic Cour	ncil, Jur	ne 2017						

BCS17E32	BCS17006	HADOOP DISTRIBUTED FILE	С	L	T/SLr	P/R	Ty /Lb /ETL/EV
2001,202	2001/000	SYSTEM					L
			3	3	0/0	0/0	Ty

#### **OBJECTIVES:**

- To understand the concepts of Distributed file system
- To acquire knowledge about Hbase, YARN, PIG and OOZIE
- To understand MapReduce types and formats
- To examine Hadoop Usage
- To understand the concepts of NoSQL, Flume and Sqoop

## **UNIT I: Hadoop Introduction**

9Hrs

Distributed and parallel computing - HDFS and MapReduce - Hadoop function - cloud deployment and delivery model - In memory computing technology - Hadoop ecosystem - Hadoop distributed file system - HDFS architecture - HDFS files - HDFS high availability - Hadoop YARN - Hbase and HDFS - Hive - Pig - Sqoop - ZooKeeper - Flume - Oozie.

# **UNIT II: MapReduce, HBase And Big Data Technology**

9Hrs

MapReduce framework – optimaize MapReduce job – roles of HBase in Big Data Processing. Big Data stack – Virtualization and Big Data – Virtualization Approaches – CAP Theorem – non-relational database – polyglot persistence – Big Data analytics and Data warehouse – simple MapReduce application – designing MapReduce.

### **UNIT III: YARN And Hive**

9hrs

Background of YARN – Advantages – Architecture –schedulers – configurations – commands – YARN containers – Registry – Hive Services – data types – built in functions – Hive DDL – data manipulation in Hive – Data retrieval Queries – using JOINS in Hive.

### **UNIT IV: Pig And Oozie**

9Hrs

Pig architecture – running Pig – Pig Latin – working with operators in Pig – Debugging Pig – functions in pig – Error Handling in Pig – Oozie – benefits – configuration – Oozie workflow – Oozie coordinator – Oozie bundle – Oozie parameterization – Oozie job execution model – Oozie SLA.

## UNIT V: NosQL, Flume And Sqoop

9Hrs

Characteristics of NoSQL – Types of NoSQL data Models – Schema less databases – materialized view – distribution models – sharding – Flume – Flume Architecture – Sqoop – importing data – Mahout – machine learning – collaborative filtering – clustering – classification – Mahout algorithms – Environment for Mahout

**Total Hours: 45** 



### **Text Books:**

- 1. DT Editorial Services, 2016 "Big Data Black Book" dreamteck press.
- 2. Alex Holmes, 2015 "Hadoop in Practice" dreamteck press.

- Tom White, 2015 "Hadoop The Definitive Guide 4th edition Oreilly.
   Shiva Achari 2015 "Hadoop Essentials" Packt Publishing.
- 3. Henry H Liu, 2014 "Hadoop 2 Essential" Creative Independent Publishing.
- 4. Jeffrey Aren, 2017 "Sams Teach Yourself Hadoop in 24 hours" Pearson.

Subject	S	ubject N	lame :						Ty/	L	T /	<b>P</b> /	C	
Code:			MOB	ILE I	<b>ATAI</b>	BASES	5		Lb/		S.Lr	R		
BCS17E33									ETL					
		•	te: BCS1						Ty	3	0/0	0/0	3	
L : Lecture 7							oject R	: Rese	arch C: C	redits				
Ty/Lb/ETL:		ry/Lab/E	mbedded	Theor	y and L	ab								
OBJECTIV														
1.To learn at														
<ul><li>2. To unders</li><li>3. To learn a</li></ul>			_		•		Control	mechai	nieme					
4. To study										adcast s	chemes			
					1									
COURSE O						1 ,	1.1	1	•		. 1 . 1			
CO1				iement	a com	piete p	roblem	soluti	on using	curren	t databa	ise		
CO2		technolo Propose		nant on	d main	tain de	nta <b>h</b> aga	CACII	ty mecha	nieme				
CO2											mology	7		
									ile databa	ase teci	morogy	<b>'•</b>		
COs/POs	PO1		PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
COS/POS CO1	H	H H	H	H	H	H	M	H	H	H	H	H	12	
CO2	M	Н	M	Н	Н	М	IVI	M	M	М	L	L		
CO2	Н	M	H	M	М	Н	Н	H	IVI	L	M	M		
COs /		SO1	PSO			O3		O4	DC	O5		PSO6		
PSOs	Г	301	rse	<i>J</i> 2	13	03	r.	004	rs	103		<b>F30</b> 0		
CO1	M				Н		Н		Н		Н			
CO2	Н		Н		M		L		Н		L			
CO2	Н		M		Н		Н		H		H			
H/M/L indic		trongth o		tion I		мм	edium,	Llow			11			
H/WI/L IIIdic	ales Si	nengin o	Correia	uon r	ı- mığıı	i, IVI- IVI	earuin,	L-LOW						
								1						
								kill						
								cal Skill						
Categor		ses	cial					nica						
y		enc	Soc		'es		ct	ech						
	ses	Sci	and	e .	ctiv	/es	roje	/ T						
	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Techni	$\mathbf{s}$					
	Sci	eer	Humaniti Sciences	am	am	Ele	cal	qsu.	Soft Skills					
	ısic		ıma ien	ogra	ogra	en	acti	nter	ft S					
	Ba	En	Hu Sci	Pr	Pro	OF	Pr:	Iı	So					
	- 4h				<b>'</b>	<u></u>								
Approval	27 th 1	meeting	of Acade	emic Co	ouncil,	June 2	017							

BCS17E33	BCS17004	MOBILE DATABASES	С	L	T/SLr	P/R	Ty /Lb /ETL/EV L
			3	3	0/0	0/0	Ty

### **OBJECTIVES**:

- To learn about the fundamentals of distributed databases
- To understand Data Processing and mobility models
- To learn about the Data Consistency and Concurrency Control mechanisms
- To study mobile Database Recovery techniques and Wireless Information Broadcast schemes

UNIT I: Introduction 9Hrs

Fully connected information space – Types of Mobility – Wireless Network Communication. Radio Frequency: Spectrum and Band – Cellular Communication - Continuous Connectivity – Structure of a Channel – Absence of Free Channel – Signal Fading – Frequency Reuse – PCS and GSM – PCS Personal Communication Service – Interface – Call Processing – GSM Global System for Mobile Communication – Location and Handoff Management – Location Management – Handoff Management – Roaming.

# **UNIT II: Fundamentals of Distributed Databases**

9Hrs

Conventional Database Architecture – Database Partition and Distribution – Database Processing – Transaction Structure – Serialization of Transactions – Serializability – Based Correctness Criteria – Serializability Theory – Degree of Isolation – Advanced Transaction Model – Nested Transaction Model – SAGA – Cooperative Transaction – ConTract – Flex Transaction – Introduction to Concurrency Control Mechanisms – Ways of Locking Data Items – The Phantom Problem – Multigranularity Locking – Heuristic Approach in Locking Schemes – Non-Locking Based Schemes

# **UNIT III: Data Processing and Mobility**

9Hrs

Effect of Mobility on the Management of Data – Transaction Management in Mobile Database Systems – Mobile Database System – Transaction Execution in MDS – Mobile Transaction Model – Execution Model based on ACID Transaction 230 CS-Engg&Tech-SRM-2013 Framework – Pre-write Transaction Execution Model – Mobile Transaction Models – HiCoMo – Moflex - Kangaroo – MDSTPM Transaction Execution Model – Mobilaction – Atomicity for Mobilaction – Isolation for Mobilaction – Consistency and Durability for Mobilaction

## **UNIT IV: Data Consistency and Concurrency**

9Hrs

Data Consistency in intermittent |Connectivity - The Consistency Model – Weak Connectivity Operation – A Consistency Restoration Schema – Concurrency Control Mechanism – Transaction Commit – Commitment of Mobile Transactions – Transaction Commitment in Mobile Database Systems.

# **UNIT V: Mobile Database Recovery**

9Hrs

Log Management in Mobile Database Systems – Mobile Database Recovery Schemes – Wireless information Broadcast – introduction – Broadcast Disk – Broadcast Infrastructure – Exponential Index – Location-Based Indexing – OnDemand Data Scheduling – Data Dissemination System.

**Total Hours: 45** 

#### **Text Book:**

1. Vijay Kumar, 2006 "Mobile Database Systems", Wiley Inderscience Publication, 2006

- 1. Leong (Hong VA), 1999 Lee (Wang Chen), "Mobile Data Access", Springer.
- 2. Rifaat A. Dayem, 1997 "Mobile Data & Wireless LAN Technologies", Prentice Hall Inc.
- 3. TAN(Kian Lee), Franklin(Michael J), "Mobile Data Management", Springer.

Subject Code:	Subject Name :	Ty/	L	<b>T</b> /	P/	C
BCS17E34	WEB ENGINEERING	Lb/		S.Lr	R	
		ETL				
	Prerequisite: BCS17I01	Ty	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab

# OBJECTIVE:

- To be able to analyze and design comprehensive systems for the creation, dissemination, storage, retrieval, and use of electronic records and documents

									guages u		nanipula	te				
									avascript		4	4				
			es and e reb appli			rics ioi	ensur	ing the	proper	регавии	ıty, mam	tenance				
COURSE O					•											
CO1					ring m	ethodo	logies	for We	eb applic	ation de	velopme	ent				
CO2									UML d							
			olution.													
CO3		Identify and discuss the security risk of a Web application.  Course Outcomes with Program Outcomes (POs)														
COs/POs		PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
	POI	PO2					PO/	PU8			POIT	PO12				
CO1	M															
CO2	M															
CO3	Н															
COs /	PS	PSO1 PSO2 PSO3 PSO4 PSO5 PSO6														
PSOs		PSO1 PSO2 PSO3 PSO4 PSO5 PSO6														
CO1	N	M M H H														
CO2	N	M	M	I	I	_	N	M	N	M		M				
CO3	]	L	L	,	N	Л	ľ	M		L		L				
H/M/L indic	ates Str	ength of	f Correla	tion I	I- High	, M- M	edium,	L-Low								
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills							
	B	団	H	Pr		0	Pr	In	Š							
4 7	a=th	<u> </u>			<b>V</b>	<u> </u>	\									
Approval	27" m	eeting	of Acade	emic Co	ouncil,	June 20	)17									

BCS17E34	BCS17I01	WEB ENGINEERING	С	L	T/SLr	P/R	Ty /Lb /ETL/EV L
			3	3	0/0	0/0	Ty

## **OBJECTIVES:**

- To be able to analyze and design comprehensive systems for the creation, dissemination, storage, retrieval, and use of electronic records and documents
- To learn and use some of the client-side and server-side languages used to manipulate information on the World Wide Web i.e. ASP.NET, and Javascript.
- To learn techniques and evaluation metrics for ensuring the proper operability, maintenance and security of a web application.

## **UNIT I: Web-Based Systems**

9 Hrs

The Web-Web Applications-Web Engineering-The Components of Web Engineering

### **UNIT II: A Web Engineering Process**

9 Hrs

Defining the Framework-Incremental Process Flow- Generic Actions and Tasks for the Web Framework-Umbrella Activities

### **UNIT III: Communication**

9 Hrs

The Communication Activity – Formulation – Elicitation- Identifying Web App Increments-Negotiation

**UNIT IV: Planning** 

9 Hrs

Refining Framework Activities-Building a Web Team - Managing Risk - Developing a Schedule

## **UNIT V: The Modelling Activity:**

0 Hrc

 $Modelling\ as\ a\ Concept\ -\ Modelling\ Frameworks\ -\ Modelling\ Languages\ -\ Existing\ Modelling\ Approaches$ 

**Total Hours: 45** 

#### **Text Book:**

1. Web Engineering: A Practitioner's Approach by Roger Pressman and David Lowe, McGraw-Hill, 2009.

- 1. Denise M. Woods and William J. Dorin 2012 HTML and CSS: Comprehensive 7th edition,. Publisher: Cengage Learning; ISBN-10: 1133526144
- 2. Paul J. Deitel, Harvey M. Deitel, Abbey Deitel, 2012 Internet & World Wide Web How to Program, 5/e Pearson Education.

Subject Cod BCS17E35		Subject N		4G Ne	twork	s			Ty / Lb/	L	T / S.Lr	P/ R	С	
									ETL					
		Prerequisi							Ty	3	0/0	0/0	3	
L : Lecture 7	Γ : Tu	torial SI	Lr : Supe	rvised l	Learnin	g P : Pr	oject R	: Rese	arch C: C	redits				
Ty / Lb/ ETI		eory/Lab/	Embedd	ed Theo	ory and	Lab								
OBJECTIV														
To understar			chnology	in mol	oile con	nmunic	ation ar	nd the I	high spee	d data	commur	icatio	1	
through wire			70 ) (	2 5										
COURSE O	OIC				la .a a l a a									
CO1 CO2	1	Able to d												
CO2		Capable									la tacha	logu.		
	Com	Able to design new air interface for effective communication in mobile technology rse Outcomes with Program Outcomes (POs)												
COs/POs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	) PO1	ı Pı	012	
CO3/1 O3	Н		H	L	H	M	M	Н	Н	Н	H		M	
CO2	Н		M	M	Н	Н	M	M	Н	Н	Н		M	
CO3	Н		Н	M	L	Н	M	M	Н	M	Н		M	
COs /		PSO1	PSC			O3		O4		SO5		PSO6		
PSOs														
CO1		Н	M	[	N	Л	]	Н		Н		Н		
CO2		Н	Н	[	N	Л	1	M		Н		M		
CO3		Н	M	[	N	Л	l	M		Н		M		
H/M/L indic	ates S	Strength of	f Correla	tion I	H- High	, M- M	edium,	L-Low			L			
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
Approval	27 th	meeting	of Acade	emic Co	ouncil,	June 2	017	1			1	ı		

BCS17E35	BCS17I01	4G NETWORKS	С	L	T/SLr	P/R	Ty /Lb /ETL/EV L
			3	3	0/0	0/0	Ty

### **OBJECTIVES:**

- To understand the latest technology in mobile communication.
- To know recent development in wireless communication.
- To understand the high speed data communication through wireless network
- To learn the technology behind VoLTE, VoIP technology

### **UNIT I: LTE Network Architecture and Protocols**

9 Hrs

Evolution of 3GPP Standards-Radio Interface Techniques in 3GPP Systems-Radio Access Mode Operations-Spectrum Allocation in UMTS and LTE-EPS Interfaces-EPS Protocols and Planes-EPS Procedures.

#### **UNIT II: LTE Air Interface and Procedures**

9 Hrs

9Hrs

LTE Protocol Stack - SDU and PDU - LTE Radio Resource Control (RRC) - LTE Packet Data Convergence Protocol Layer (PDCP)- LTE Radio Link Control (RLC)- LTE Medium Access Control (MAC) - LTE Physical Layer (PHY)- Channel Mapping of Protocol Layers- LTE Air Interface

## **UNIT III: Analysis and Optimization of LTE System Performance**

Deployment Optimization Processes - LTE Performance Analysis Based on Field Measurements - LTE Case Studies and Troubleshooting- LTE Inter-RAT Cell Reselection- Inter-RAT Cell Reselection Optimization Considerations- LTE to LTE Inter-frequency Cell Reselection- LTE Connected Mode Discontinuous Reception - Circuit Switch Fallback (CSFB) for LTE Voice Calls-Multiple-Input, Multiple-Output (MIMO) Techniques.

## **UNIT IV: Coverage And Capacity Planning Of 4G Networks**

9 Hrs

LTE System Foundation- PCI and TA Planning- PRACH Planning- Coverage Planning- LTE Throughput and Capacity Analysis.

#### **UNIT V: Voice Evolution in 4G Networks**

9 Hrs

Voice over IP Basics- Voice Options for LTE- IMS Single Radio Voice Call Continuity- VoLTE Features- Deployment Considerations for VoLTE. Carrier Aggregation- Enhanced MIMO.

**Total Hours: 45** 

#### **Text Book:**

1. Design, Deployment and Performance of 4G-LTE Networks- A Practical Approach- Ayman Elnashar Emirates Integrated Telecomms Co., UAE- Mohamed A. El-saidny QUALCOMM Technologies, Inc., USA- Mahmoud R. Sherif Emirates Integrated Telecomms Co., UAE. Wiley Publication.

### **Reference Books:**

1. Clint Smith, P.E., Daniel Collins, Wireless Networks: Design and Integration for TE,EVDO,HSPA and WiMax Third Generation.

Subject	S	ubject N							Ty /	L	T /	<b>P</b> /	C			
Code:		ENTE	RPRIS	E RES	OURC	E PL	ANNIN	NG	Lb/ ETL		S.Lr	R				
BCS17E36	P	rerequisi	te: NIL						Ty	3	0/0	0/0	3			
L : Lecture T				rvised	Learnin	g P : P1	roject R	: Rese		redits						
Ty/Lb/ETL:		ry/Lab/E	mbedded	l Theor	y and L	ab										
OBJECTIV																
		c busines									1.1	. ,	. 1			
									ousiness d g busines							
		and curr		пра СС	mpany	prospe	or by bi	oviding	g busines	s illalla	gers wit	II acci	ıı aic,			
				Resou	irce Pla	anning	softwar	e is us	sed to op	timize	business	proce	esses			
									further c			Proc				
COURSE O							•									
CO1		Able to	integrate	e Busir	ness En	terpris	es, wit	h web	through	Service	Orient	ed				
		Archited	_			1	•		C							
CO2		Underst	and how	techn	ology ł	nas evo	olved a	nd the	reason w	hy exi	sting sy	stems	are			
		the way	e way they are.													
CO3		Can exp	n explore the synergy between information and communication systems and													
Manning of		how this synergy can be best exploited for EAI and B2B integration urse Outcomes with Program Outcomes (POs)														
									DOO	DO 10	DO11	DO	10			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			012			
CO1	H	M	Н	Н	Н	Н	Н	L	Н	M	Н	Н				
CO2	Н	Н	Н	M	Н	Н	Н	M	Н	Н	Н	Н				
CO3	Н	M	Н	Н	Н	M	Н	L	Н	M	Н	Н				
COs /	P	SO1	PSO	O2	PS	O3	PS	SO4	PS	SO5		PSO6				
PSOs CO1	Н		Н		Н		Н		M		Н					
			Н													
CO2	Н				M		Н		M		M					
CO3	Н		H		H	37.34	M	· ·	Н		Н					
H/M/L indicate	ates S	trength o	t Correla	tion I	H- High	, M- M	edium,	L-Low		T		1				
			Se													
			Suce					Skil								
Categor			Scie					al S								
у		S	ial s					ımi								
		nce	30C		S			ect								
	Š	cie	3 pt		tive	SS	jec	L / S								
	nce	S gu	s aı	ore	;]ec	Open Electives	Prc	Internships / Technical Skill								
	cie	erir	iitie	m C	m E	lec	al/	rnsl	ills							
	ic S	ine	nan	graı	graı	'nE	xtica	nte	Sk							
	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Ope	Practical / Project	$\mid \Gamma \mid$	Soft Skills							
					7				<u> </u>							
Approval	27 th 1	meeting	of Acad	emic C	ouncil,	June 2	017			•	ı					



BCS17E36	NIL	ENTERPRISE RESOURCE PLANNING	С	L	T/SLr	P/R	Ty /Lb /ETL/EV L
			3	3	0/0	0/0	Ty

#### **OBJECTIVES:**

- Know basic business functional areas and explains how they are related.
- Illustrate how unintegrated information systems fail to support business decision and how integrated information systems can help a company prosper by providing business managers with accurate, consistent, and current data.
- Understand how Enterprise Resource Planning software is used to optimize business processes Acquire experience in using ERP software that can be applied in further coursework

UNIT I: Introduction 9 Hrs

Overview of enterprise systems – Evolution - Risks and benefits - Fundamental technology - Issues to be consider in planning design and implementation of cross functional integrated ERP systems - Case studies.

#### **UNIT II: ERP Solutions And Functional Modules**

9 Hrs

Overview of ERP software solutions- Small medium and large enterprise vendor solutions, BPR, Business Engineering and best Business practices - Business process Management. Overview of ERP modules -sales and Marketing, Accounting and Finance, Materials and Production management etc. -Case studies.

### **UNIT III: ERP Implementation**

9 Hrs

Planning Evaluation and selection of ERP systems-Implementation life cycle - ERP implementation, Methodology and Frame work- Training – Data Migration. People Organization in implementation-Consultants, Vendors and Employees-Case studies.

## **UNIT IV: Post Implementation**

9 Hrs

Maintenance of ERP- Organizational and Industrial impact; Success and Failure factors of and ERP Implementation -case studies.

#### **UNIT V: Emerging Trends on ERP**

9 Hrs

Extended ERP systems and ERP bolt —on -CRM, SCM, Business analytics etc- Future trends in ERP systems-web enabled, Wireless technologies so on-Case studies.

**Total Hours: 45** 

### **Text Book:**

1. Alexis Leon, 2006 ERP demystified, second Edition Tata McGraw-Hill.

- 1. Jagan Nathan Vaman, 2008 ERP in Practice, Tata McGraw-Hill.
- 2. Alexis Leon, 2008 Enterprise Resource Planning, second edition, Tata McGraw-Hill.
- 3. Mahadeo Jaiswal and Ganesh Vanapalli, 2006 ERP Macmillan India.
- 4. Vinod Kumar Grag and N.K. Venkitakrishnan,2006, ERP- Concepts and Practice, Prentice Hall of India.
- 5. Summer, 2008 ERP, Pearson Education.

<b>Subject Code:</b>	Subject Name :	T / L/	L	T /	<b>P</b> /	C
BCS17E37	SUPPLY CHAIN MANAGEMENT	ETL		S.Lr	R	
	Prerequisite: NIL	Ty	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab

## **OBJECTIVE:**

- 1. For students to analytically solve problems related to inventory management, facility location, and supply chain optimization
- 2. To utilize computer resources to research and analyze supply chain operations.
- 3. To understand the global environment and strategic alliances in modern business and their impact on supply chain management

impact o	n sup	ply chai	n manag	ement		<u>6</u>										
COURSE O	UTCO	OMES (	COs) : ( ;	3- 5)												
CO1					ds in g	reen le	gislatio	on with	respect	to suppl	y chains	3.				
CO2									chains ar		•					
		green su	pply cha	ains		•										
CO3		Integrate	e green p	practic	es, base	ed on g	reen le	gislati	on, into s	supply c	hain act	ivities				
	1	for sustainable development														
Mapping of	Cours	Course Outcomes with Program Outcomes (POs)														
COs/POs	PO1															
CO1	Н	Н														
CO2	Н	Н	M	Н	Н	Н	Н	M	Н	M	Н	Н				
CO3	Н		H H H M M H L H M H													
COs /	P	SO1														
PSOs																
CO1	Н		Н		Н		Н		L		M					
CO2	Н		Н		M		Н		Н		M					
CO3	Н		Н		M		Н		Н		Н					
H/M/L indic	ates St	rength of	f Correla	tion I	H- High	, M- M	edium,			T	T	1				
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	✓ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills							
Approval	27 th -	neeting	of Acade	mic C	•	Juna 2	 									
Approvat	<i>41</i> I	neeung	oi Acaut		ouncil,	Julie 2	01/									

BCS17E37	NIL	SUPPLY CHAIN MANAGEMENT	С	L	T/SLr	P/R	Ty /Lb /ETL/EV L
			3	3	0/0	0/0	Ty

### **OBJECTIVES:**

- This will provide the foundation for design and analysis of supply chains.
- For students to analytically solve problems related to inventory management, facility
- location, and supply chain optimization.
- To utilize computer resources to research and analyze supply chain operations.
- To understand the global environment and strategic alliances in modern business and their impact on supply chain management.

UNIT I: Introduction 9 Hrs

Defining Supply Chain management and logistics management. Evolution. Supply Chain – Fundamentals, , and Importance. Supply chain strategy, Enablers/ Drivers of Supply Chain Performance. Supply Chain relationships.

# **UNIT II: Logistics Management**

9 Hrs

Logistics – functions, objectives, solution. Customer Service. Warehousing and Material Storage, Material Handling, Transportation and Packaging – 3PL and 4PL.

### **UNIT III: Network Design**

9 Hrs

Distribution Network Design – Role, Factors Influencing, Options, Value Additions. Models for Facility Location and Capacity allocation. Impact of uncertainty on Network Design decisions using Decision trees.

### **UNIT IV: Sourcing And Inventory Management**

9 Hrs

Sourcing – Make vs buy decision, Creating World Class Supply base, World Wide Sourcing Inventory Management – managing cycle inventory, safety inventory. Value of information, Bullwhip effect, Coordination in supply chain, Analysing impact of supply chain redesign on the inventory.

### **UNIT V: Current Trends**

9 Hrs

E-Business – Framework and Role of Supply Chain in e- business and b2b practices. Supply Chain IT Framework.E-Supply Chains, E – Logistics- eSRM, eLRM, eSCM, Agile Supply Chains. Reverse Logistics, Global Logistics.

**Total Hours: 45** 

#### **Text Books:**

- 1. Bowersox Donald J, 2000 Logistical Management The Integrated Supply Chain Process" Tata McGraw Hill.
- 2. Sunil Chopra and Peter Meindl, 2007 Supply Chain Management-Strategy Planning and Operation, Prentice Hall.

- 1. Donald J. Bowersox, David J. Closs and M. Bixby Cooper, 2008 "Supply Chain Logistics Management", Tata McGraw Hill.
- 2. Altekar Rahul V, 2005 Supply Chain Management-Concept and Cases, Prentice Hall India.

Subject Coo BCS17E38		Subject N N	Jame :  MAIN F	RAMI	E COM	IPUTI	NG		Ty / Lb ETL	L	T / S.Lr	P/ R	С
	F	Prerequisi	te: BCS1	7004					Ту	3	0/0	0/0	3
L : Lecture 7	: Tut	orial Sl	Lr : Supe	rvised l	Learnin	g P : Pr	oject R	: Rese	arch C: C	Credits		I	
Ty/Lb/ETL :	Theo	ry/Lab/E	mbedded	Theor	y and L	ab							
OBJECTIV	<b>E</b> :												
COURSE O	UTC	OMES (	COs):(	3- 5)									
CO1		Understa	and the co	oncepts	of MV	S, JCL,	VSAM	I and II	DCAMS				
CO2		Write mo	derately	complex	k COBC	L prog	rams to	proces	s files.				
CO3		Understa	and CICS	and su	pply tra	nsactio	ons						
Mapping of	Cour	se Outco	mes wit	h Progi	ram Ou	tcomes	s (POs)						
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PC	012
CO1	Н	H	H	Н	M	Н	M	M	Н	M	H		Н
CO2	Н	H	H	Н	M	Н	M	M	Н	Н	Н		Н
CO3	Н	Н	Н	M	M	M	M	M	Н	Н	Н		M
COs / PSOs	ŀ	PSO1	PSO	<b>3</b> 2	PS	O3	PS	SO4	P	SO5		PSO6	
CO1		Н	Н	ſ	Ŧ	ł	1	H		Н		Н	
CO2		H	H			<u>1</u>		H		M		M	
CO3		Н	Н			<u></u>		H		Н		Н	
H/M/L indic	ates S	trength o	f Correla	tion I	H- High	, M- M	edium,	L-Low	7		l l		
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
					~								
Approval	27 th	27 th meeting of Academic Council, June 2017											



BCS17E38	BCS17004	MAINFRAME COMPUTING	C	L	T/SLr	P/R	Ty /Lb /ETL/EV L
			3	3	0/0	0/0	Ty

### **OBJECTIVES:**

- To understand the concepts of MVS, JCL, VSAM and IDCAMS
- To study the details of COBOL and DB2
- To understand CICS and supply transactions

# **UNIT I: MVS Concepts**

9 Hrs

Main frame in Todays Business -Introduction to Z series H/W , Z/OS .- MVS overview-system initialization-storage management-job management ISPF Editor ISPF Data Utility Functions - managing work-data management-I/O processing-termination and recovery.TSO commands-general syntax of JCL statements

### **UNIT II: JCL and VSAM**

9 Hrs

Explanation of job statements-explanation of EXEC statements-explanation of DD statements-additional parameters on JOB, EXEC, DD statements-classification-instream and catalog procedures-utilities-abend codes. VSAM data set organization structure-IDCAMS commands-JCL for VSAM-buffering-alternative index-repro-backup and recovery-export and import.

## **UNIT III: COBOL/370**

9Hrs

Structured programming constructs-fundamentals of COBOL-data definition-conditional statements-perform statements-compiler option-table definition-COBOL call and parameter passing-file handling.

UNIT IV: DB2 9Hrs

RDBMS concepts-structural query language-normalisation-DB2 architecture-DB2 objects-locks-program preparation-cursors-null indicators-optimisation - utilities.

UNIT V: CICS 9 Hrs CICS

introduction-terminal control-application housekeeping-EXEC,interface locks-supply transactions –CESM,CESF,CEMT,CEDF-NMDS-BMS-abend codes-file control-program control-TSQ-TDQ-pseudo conversation-recovery and roll back.

**Total Hours: 45** 

# **Text Books**:

- 1. Mike Ebbers, John Kettner, Wayne O'Brien, Bill Ogden, (2011) Introduction to the New Mainframe: z/OSBasics, IBM Redbooks (SG24-6366-01)
- 2. Alexis Leon, IBM Mainframe Handbook, vikas Publishing, 2014

- 1. M.K. Roy and D.GoshDastidar ,(2006) COBOL PROGRAMMING, John Wiley And Sons
- 2. Stern & Stern (2007) STRUCTURED COBOL PROGRAMMING,(8th ed.),JOHN Wiley India
- 3. Grant Allen(2008) Beginning DB2: from Novice to Professional, Apress
- 4. Mary Lovelace, Jose Dovidauskas, Alvaro Salo, Valerio Sokai, (2012) VSAM Demystified (SG246105)IBM Red Books.
- 5. Doug Lowe ,(1994) MVS JCL,(2nd ed.),MIKE MURACH ASSOCIATE Saba Zamir, ChandanRanade , (2007) MVS JCLPrimer,McGrawhil

Subject Cod	le:	Subject N	lame :						<b>Ty</b> /	L	<b>T</b> /	<b>P</b> /	C				
			Neuro	Fuzz	y Com	puting	5		Lb/		S.Lr	R					
BCS17E39									ETL								
		Prerequisi							Ту	3	0/0	0/0	3				
L : Lecture T	Ր : Tu	torial S	Lr : Supe	rvised l	Learnin	g P : Pı	oject R	: Rese	arch C: C	redits							
Ty/Lb/ETL:		ory/Lab/E	mbedded	Theor	y and L	ab											
OBJECTIV											_						
		ents will be		-	and dev	elop ne	euro fuz	zy mod	deling and	l will ha	ive the a	ability t	O				
		d Neural															
COURSE O	UTC																
CO1		To kno	w abou	t the I	oasics	of sof	t com	puting	g techni	ques a	ind als	o thei	r				
		use in s	some re	eal life	situat	ions											
CO2		To solv	o solve the problems using neural networks techniques.														
CO3		To find	find the solution using different fuzzy logic techniques														
Mapping of	Cou	rse Outco	Outcomes with Program Outcomes (POs)														
COs/POs	PO																
CO1	Н	Н	M	Н	Н	M	Н	Н	M	L	Н	Н					
CO2	Н	Н	M	Н	Н	M	Н	Н	M	M	Н	Н					
CO3	Н	Н	M	Н	M	M	M	Н	M	L	Н	Н					
COs /	]	PSO1	PSC	)2	PS	O3	PS	SO4	PS	O5		PSO6					
PSOs																	
CO1		Н	Н			M		H		H		Н					
CO2		Н	N.			H		H	_	M		Н					
CO3		Н	N.			H		H		H		Н					
H/M/L indic	ates S	Strength o	f Correla	tion I	H- High	, M- M	edium,		,	1	1	-					
Categor		iences	l Social		ves		ct	chnical Skil									
у	Basic Sciences	Engineering Scien	Engineering Sciences Humanities and Social Sciences Program Core Open Electives Internships / Technical Skill Soft Skills														
				<b>/</b>													
Approval	27 th	meeting	of Acade	emic Co	ouncil,	June 2	017										

BCS17E39	BCS17E06	NEURO FUZZY COMPUTING	C	L	T/SLr	P/R	Ty /Lb /ETL/EV L
			3	3	0/0	0/0	Ty

#### **OBJECTIVES:**

• The students will be able to design and develop neuro fuzzy modeling and will have the ability to understand Neural Network.

# **UNIT I: Neuro – Fuzzy and Soft Computing Fuzzy Systems**

9 Hrs

Introduction to Fuzzy Sets – Fuzzy Rules and - - Fuzzy Reasoning and - Inference-Fuzzy Inference Systems - Compositional Rules of Inference in Fuzzy System – Defuzzification Strategies , Fuzzy Models – System Identification – Several Least Square Methods – Optimization Techniques - Derivative-based Optimization, Derivative and Free Optimization.

# **UNIT II: Regression and Optimization**

9 Hrs

System Identification – Several Least Square Methods – Optimization Techniques- Derivative-based and Derivative Free Optimization.

#### **UNIT III: Neural Network**

9 Hrs

Neural Network Architecture -Network Inputs and Outputs – Feed back Inter Connections and Network Stability – Feed Forward Networks –Back Propagation Networks- Learning Methods-Adaptive Networks – Supervised Learning Neural Networks –RBFN – Unsupervised Learning Networks - Self Organizing maps, Adaptive Resonance Architectures, Radial Basis Networks-LVQM, Principle Component Anlaysis.

## **UNIT IV: Neuro Fuzzy Modelling**

9 Hrs

Neural Component of a Fuzzy System – Fuzzy neural Network Controllers – Adaptive Neuro Fuzzy Inference System(ANFIS) – CANFIS – Neural Networks based Fuzzy Inference System - Classification and Regression Tests – Data Clustering Techniques and Algorithms – Rule base Structure Identification

### **UNIT V: Artificial Neural Networks Hardware**

9 Hrs

Implementation Issues – Evaluation of Neural network Architectures – Hardware Realization – VLSI approach – Optical techniques.

**Total Hours: 45** 

#### **Text Book:**

1. Jyh-shing roger Jang, Chnesy-tasi sur, Eiji Miziltazui," *Neuro and Soft Computing: A Computational Approach to Learning and machine Intelligence*", Pearson Education 2004, Digitized in 2007 ISBN 0132610663, 9780132610667

- 1. Timothy J.rass (2011), "Fuzzy Logic with Engineering Application", (3rd ed.)Wiley India,
- 2. S.Rajasekaran , G.A.Vijayalakshmi Pai , *Neural N/Ws, Fuzzy Logic and Genetic Algorithm Sysnthesis and Applications*, PHI (2004)

Subject Cod	ubject N	lame :	TENT	' NA NI	ACEN	/ENT		Ty / Lb/		T / S.Lr	P/ R	C	
BCS17E40		WE	B CON	IENI	MAIN	AGEN	IEN I		ETL		S.LI	K	
	P										0/0	0/0	3
L : Lecture 7	Γ : Tut	orial SI	Lr : Supe	rvised l	Learnin	g P : Pr	oject R	: Rese	arch C: C	redits			•
Ty / Lb/ ETI	Ty / Lb/ ETL : Theory/Lab/Embedded Theory and Lab												
OBJECTIV	<b>E</b> :												
To Lean the basics of Content Management System													
To Learn the Tools and techniques													
To Learn the use of web browser,navigate to a web page													
		the CMS			cup and	d custo	mizatio	on					
COURSE O													
	CO1 Exploring CMS terminology, including open source, PHP, etc.,												
CO2							plate fo	r conte	nt publis	hing.			
CO3 Implementing API code for text editor.													
	Mapping of Course Outcomes with Program Outcomes (POs)											010	
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			O12
CO1	Н	M	Н	L	Н	M	M	H	Н	Н	Н		M
CO2 CO3	H	M H	M H	M M	H L	H H	M M	M M	H	H M	H		<u>M</u> M
		SO1	PS(			О3		O4				PSO6	IVI
COs / PSOs	Р	301	PSC	<i>J</i> 2	PS	103	PS	004	PS	SO5	1	P300	
CO1		Н	N	ſ	N	M	,	H	1	Н		Н	
CO2		H	H			M		M		H	M		
CO3		H	M			M		M		H		M	
H/M/L indic	ates St						edium,						
						Ì	,						
Categor		Sciences	and Social		ctives		oject	Technical Skil					
У	ences	_		Core	Electi	ctives		_	S				
	Basic Scienc	Engineering	Humanities Sciences	Program Cor	Program Ele	Open Electiv	Practical / P	Internships	Soft Skills				
					V				<del></del> 1				
A 1	25th		<u> </u>	• ~	• • • • • • • • • • • • • • • • • • • •	T 2:	015						
Approval	27"	meeting	of Acade	emic Co	ouncil,	June 2	V17						

BCS17E40	BCS17E09	WEB CONTENT MANAGEMENT	С	L	T/SLr	P/R	Ty /Lb /ETL/EV L
			3	3	0/0	0/0	Ty

#### **OBJECTIVES:**

The student should be able:

- To Lean the basics of Content Management System
- To Learn the Tools and techniques
- To Learn the use of web browser, navigate to a web page
- To Learn the CMS tools for backup and customization

# **UNIT I: Introduction to Content Management**

9 Hrs

CMS – Types of CMS –Create Content –System Versus implementation – Platform versus product – Open source versus commercial – management versus delivery – Content model manageability

### **UNIT II: Editorial Tools and Workflow**

9 Hrs

Shape of Content – Aggregation Models: Implicit and Explicit – URL Addressability of Aggregations – Content Lifecycle – workflow and approvals – Content File Management - Permissions

# **UNIT III: Output and Publication Management**

9 Hrs

Templating - Publishing Content - Multiple Language handling - Language Rules - Personalization, Analytics and Marketing Automation - Form Building - URL Management - Reporting Tools and Dashboards

# **UNIT IV: Implementation**

9 Hrs

APIs and Extensibility: Code API-Event Models-Customizing Rich Text Editors – CMS implementation – Types of implementation – Implementation process

# **UNIT V: Working With External Integrators**

9 Hrs

 $\label{eq:costs} Engagement\ models-Sales\ and\ scoping-costs-Written\ agreements-Production-Training\ and\ support$ 

**Total Hours: 45** 

#### **Text Book:**

1. Deane Barker,2016, Web content Management systems, Features and Best Practices, O'Reilly Publications

•

Subject Cod	le: S									L	T /	<b>P</b> /	C
			Ma	Ty		S.Lr	R						
BCS17E41		Prerequisite: BCS17E06								3	0/0	0/0	3
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits													
Ty/Lb/ETL : Theory/Lab/Embedded Theory and Lab													
➤ <b>OBJECTIVE:</b> To learn machine learning techniques, to acquire knowledge about clustering and nonparametric methods and to design and analyze machine learning experiments.													
COURSE OUTCOMES (COs): (3-5)													
CO1													
CO2		Recogniz	ze the im	portanc	e and re	elevanc	e of Ma	achine l	Learning	Model	S		
CO3			he efficie										
Mapping of													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11 F	PO12
CO1	Н	Н	M	Н	Н	M	M	M	Н	M	Н		Н
CO2	M	Н	M	Н	Н	M	M	Н	M	Н	M		Н
CO3	Н	Н	M	Н	Н	M	Н	M	Н	M	Н		M
COs / PSOs	P	SO1	PSO2		PSO3		PSO4		PSO5			PSO6	
CO1		Н	N.	M		M		Н		M		M	
CO2		M	M		Н		M		Н			Н	
CO3		Н	Н		H M				M		M		
H/M/L indic	ates St	trength o	f Correla	tion I	I- High	, M- M	edium,		7				
Categor y	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	↑ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval	27 th 1	 meeting	of Acade	emic Co	ouncil	June 20	017	1					
1 pprovui	<i>4</i> , ,	neening	or Acade	mic Ct	Juneil,	June 2	U I /						

BCS17E41	BCS17E06	MACHINE LEARNING	С	L	T/SLr	P/R	Ty /Lb /ETL/EV L
			3	3	0/0	0/0	Ty

### **OBJECTIVE:**

- To learn machine learning techniques
- To acquire knowledge about clustering and nonparametric methods
- To understand multilayer perceptrons and dimensionality reduction
- To design and analyze machine learning experiments.

# **UNIT I: Introduction to Machine Learning**

9Hrs

Machine Learning – Machine learning applications – learning association – supervised learning – learning a class from examples – learning multiple classes – regression – model selection and generation – Bayestan decision theory – losses and risk – discriminant functions – association rules.

### **UNIT II: Parametric and Multivariate Methods**

9Hrs

Parametric methods — maximum likelihood estimation — Baye's estimator — parametric classification —regression — tuning model — multivariate methods — multivariate data — multivariate normal distribution — multivariate regression — dimensionality reduction — subset selection — factor analysis — multidimensional scaling — Isomap

## **UNIT III: Clustering and Nonparametric Methods**

9Hrs

Clustering - Mixtures densities - k mean clustering - special and hierarchal clustering - Nonparametric density estimation - generalization to multivariate data - nonparametric classification - outlier data - decision trees - univariate trees - pruning - rule extraction from trees - multivariate trees.

## **UNIT IV: Linear Discrimination and Multilayer Perceptrons**

9Hrs

Linear discrimination – generalizing the linear model – pair wise separation – logistic discrimination – discrimination by regression – multilayer preceptrons – MLP – back propagation algorithms – training procedures – tuning – dimensionality reduction – deep learning – local models – competitive learning – radial basis – normalized basis – learning vector quantization - mixture of experts.

## **UNIT V: Kernel Machines and Graphical Models**

9Hrs

Total Hours: 45

 $\label{eq:continuous} Kernel\ machine-optimal\ separating\ hyper\ plane-v\ SVM-multiple\ kernel\ learning-large margin\ nearest\ neighbour\ classifier-graphical\ models-generative\ models-d\ Separation-belief\ propagation-Hidden\ morkov\ models-Bayesten\ estimation-combining\ multiple\ learners-reinforcement\ learning.$ 

## **Text Books:**

- 1. Ethem Alpaydin, 2014 "Introduction to Machine Learning" 3^{r.d} Edition PHI
- 2. Snila Gollapudi, 2016 "Practical Machine Learning" PACKT.

- 1. Tom M Mitchell, 2013 "Machine Learning" McGraw-Hill.
- 2. David Barber, 2015 "Bayesian Reasoning and Machine Learning" Cambridge University Press.