

#### Semester: I Theory:

| Subject<br>Code | Subject Title                                      | C | L | T /<br>S Lr. | P/<br>R | Ty /<br>Lb /<br>ETL |
|-----------------|----------------------------------------------------|---|---|--------------|---------|---------------------|
| BMA17005        | Mathematics III for Mechanical and Civil Engineers | 4 | 3 | 1            | 0       | Ту                  |
| BCE17I05        | Fluid Mechanics and Machinery                      | 3 | 2 | 1            | 0       | Ту                  |
| BME17003        | Engineering Mechanics                              | 4 | 3 | 1            | 0       | Ту                  |
| BME17002        | Manufacturing Technology - I                       | 3 | 3 | 0            | 0       | Ту                  |
| BCE17IL4        | Fluid Mechanics and Machinery Lab.                 | 1 | 0 | 0            | 3       | Lb                  |

#### Semester: II Theory:

| Subject<br>Code | Subject Title                                        | C | L | T /<br>S Lr. | P/<br>R | Ty / Lb<br>/ ETL |
|-----------------|------------------------------------------------------|---|---|--------------|---------|------------------|
| BMA17010        | Numerical Methods for Mechanical and Civil Engineers | 4 | 3 | 1            | 0       | Ту               |
| BEE17I01        | Electrical and Electronics Engineering               | 3 | 3 | 0            | 0       | Ту               |
| BME17ET2        | Manufacturing Technology-II                          | 3 | 2 | 0/2          | 2/1     | ETL              |
| BME17006        | Strength of Materials                                | 4 | 3 | 1            | 0       | Ту               |
| BME17001        | Engineering Thermodynamics                           | 4 | 3 | 1            | 0       | Ту               |

### Credits Sub Total: 18

**Credits Sub Total: 15** 

Semester: III

| Subject<br>Code | Subject Title            | C | L | T /<br>S Lr. | P/<br>R | Ty /<br>Lb /<br>ETL |
|-----------------|--------------------------|---|---|--------------|---------|---------------------|
| BCS17 I03       | C++ and Data Structures  | 3 | 3 | 0            | 0       | Ту                  |
| BME17004        | Thermal Engineering      | 4 | 3 | 1            | 0       | Ту                  |
| BME17008        | Mechanics Of Machines -I | 4 | 3 | 1            | 0       | Ту                  |
| BME17ET3        | Engineering Metrology    | 3 | 3 | 0            | 0       | ETL                 |
| BME17L08        | Dynamics Lab.            | 1 | 0 | 0            | 3       | Lb                  |

#### Credits Sub Total: 15



#### Semester: IV

#### Theory:

| Subject<br>Code | Subject Title             | С | L | T /<br>S Lr. | P /<br>R | Ty /<br>Lb /<br>ETL |
|-----------------|---------------------------|---|---|--------------|----------|---------------------|
| BME17010        | Industrial Automation     | 3 | 3 | 0            | 0        | Ту                  |
| BME17011        | Mechanics Of Machines -II | 4 | 3 | 1            | 0        | Ту                  |
| BME17005        | Engineering Metallurgy    | 3 | 3 | 0            | 0        | Ту                  |
| BME17Exx        | Elective 1 (Industrial)   | 3 | 3 | 0            | 0        | Ту                  |
| BME17L09        | Heat Transfer Lab         | 1 | 0 | 0            | 3        | Lb                  |

#### Credits Sub Total: 14

## Semester: V

| Subject<br>Code | Subject Title                                           | С | L | T /<br>S Lr. | P/<br>R | Ty /<br>Lb /<br>ETL |
|-----------------|---------------------------------------------------------|---|---|--------------|---------|---------------------|
| BME17014        | Design of Machine Elements -I                           | 4 | 3 | 1            | 0       | Ту                  |
| BME17012        | Heat and Mass Transfer                                  | 4 | 3 | 1            | 0       | Ту                  |
| BMG17007        | Statistical Quality Control and Reliability Engineering | 3 | 2 | 1            | 0       | Ту                  |
| BME17Exx        | Elective 2 (Design)                                     | 3 | 3 | 0            | 0       | Ту                  |
| BME17L10        | Industrial Automation Lab                               | 1 | 0 | 0            | 3       | Ту                  |

Credits Sub Total: 15

Semester: VI

| Subject Code | Subject Title                  | С | L | T /<br>S Lr. | P/<br>R | Ty /<br>Lb /<br>ETL |
|--------------|--------------------------------|---|---|--------------|---------|---------------------|
| BME17014     | Design of Machine Elements -II | 4 | 3 | 1            | 0       | Ту                  |
| BMG17004     | Project Management             | 3 | 2 | 1            | 0       | Ту                  |
| BME17Exx     | Elective 3 (Manufacturing)     | 3 | 3 | 0            | 0       | Ту                  |
| BME17013     | CAD,CAM and CIM                | 3 | 3 | 0            | 0       | Ту                  |
| BME17L13     | Project Phase – I              | 2 | 0 | 0            | 6       | Lb                  |



#### **Credits Sub Total: 15**

| Subject<br>Code | Subject Title              | С  | L | T /<br>S Lr. | P/<br>R | Ty /<br>Lb /<br>ETL |
|-----------------|----------------------------|----|---|--------------|---------|---------------------|
| BME17Exx        | Elective 4 (Manufacturing) | 3  | 3 | 0            | 0       | Ту                  |
| BME17L14        | Project Phase – II         | 10 | 0 | 0            | 20      | Lb                  |

#### **Credits Sub Total: 13**

#### Note :

C : Credits L : Lecture T : Tutorial S.Lr : Supervised Learning P : Problem / Practical R : Research

Ty / Lb / ETL : Theory / Lab / Embedded Theory and Lab

\* Internal evaluation (Departmental level Refer Annexure for evaluation methodology)

4 Credit papers should compulsorily have either P/R component.

#### **Credit Summary:**

| Semester : I         | : | 15  |
|----------------------|---|-----|
| Semester : II        | : | 18  |
| Semester: III        | : | 15  |
| Semester : IV        | : | 14  |
| Semester : V         | : | 15  |
| Semester : VI        | : | 15  |
| Semester: VII        | : | 13  |
| <b>Total Credits</b> | : | 105 |



|              | LIST OF ELECTIVES                         |   |   |              |         |                     |
|--------------|-------------------------------------------|---|---|--------------|---------|---------------------|
| Subject Code | Subject Title                             | С | L | T /<br>S Lr. | P/<br>R | Ty /<br>Lb /<br>ETL |
|              | Elective: Thermal Engineering             |   |   |              |         |                     |
| BME17E01     | Advanced I.C Engines                      | 3 | 3 | 0            | 0       | Ту                  |
| BME17E02     | Renewable Energy                          | 3 | 3 | 0            | 0       | Ту                  |
| BME17E03     | Turbo machines                            | 3 | 3 | 0            | 0       | Ту                  |
| BME17E04     | Refrigeration and Air Conditioning        | 3 | 3 | 0            | 0       | Ту                  |
| BME17E05     | Computational Fluid Dynamics              | 3 | 3 | 0            | 0       | Ту                  |
|              | Elective: Design Engineering              |   |   |              |         |                     |
| BME17E06     | Mechanical Vibrations                     | 3 | 3 | 0            | 0       | Ту                  |
| BME17E07     | Finite element Analysis                   | 3 | 3 | 0            | 0       | Ту                  |
| BME17E08     | Design of Production Tools                | 3 | 3 | 0            | 0       | Ту                  |
| BME17E09     | Design of Material Handling Equipment     | 3 | 3 | 0            | 0       | Ту                  |
| BME17E10     | Tribology                                 | 3 | 3 | 0            | 0       | Ту                  |
| BME17E11     | Design for Manufacture and Assembly       | 3 | 3 | 0            | 0       | Ту                  |
| BME17E12     | Mechanics of Fracture                     | 3 | 3 | 0            | 0       | Ту                  |
|              | Elective: Manufacturing Engineering       |   |   |              |         |                     |
| BME17E13     | Industrial Robotics                       | 3 | 3 | 0            | 0       | Ту                  |
| BME17E14     | Non-Conventional Machining Techniques     | 3 | 3 | 0            | 0       | Ту                  |
| BME17E15     | Process Planning and Cost Estimation      | 3 | 3 | 0            | 0       | Ту                  |
| BME17E16     | Flexible Manufacturing Systems            | 3 | 3 | 0            | 0       | Ту                  |
| BME17E17     | Powder Metallurgy                         | 3 | 3 | 0            | 0       | Ту                  |
|              | Elective: Industrial Engineering Elective |   |   |              |         |                     |
| BME17E18     | Enterprise Resource Planning              | 3 | 3 | 0            | 0       | Ту                  |
| BME17E19     | Industrial Engineering                    | 3 | 3 | 0            | 0       | Ту                  |
| BME17E20     | Total Quality Management                  | 3 | 3 | 0            | 0       | Ту                  |
| BME17E21     | Resource Management Techniques            | 3 | 3 | 0            | 0       | Ту                  |
| BME17E22     | Supply Chain Management                   | 3 | 3 | 0            | 0       | Ту                  |



# **SEMESTER-I**



| Subject Code:     |                |                      | bject Nan<br>ECHANI(              |              |                   |                |                     |                                  | T / L/<br>ETL | L          | T / S.Lr   | P/ R    | С     |
|-------------------|----------------|----------------------|-----------------------------------|--------------|-------------------|----------------|---------------------|----------------------------------|---------------|------------|------------|---------|-------|
| BMA17005          | P              | Prerequisite         |                                   |              |                   |                |                     |                                  | Т             | 3          | 1          | 0       | 4     |
| L : Lecture T : 7 |                |                      |                                   |              |                   | ect R : R      | esearch (           | C: Credit                        | s             | 0          | -          | 0       |       |
| T/L/ETL : Theo    |                |                      | -                                 | -            | 5                 |                |                     |                                  |               |            |            |         |       |
| OBJECTIVES        | : The s        | tudent will          | learn                             |              |                   |                |                     |                                  |               |            |            |         |       |
|                   |                | natical tool         |                                   | hniques v    | which en          | phasize        | the deve            | lopment                          | of rigorou    | s logical  | thinking a | nd anal | ytica |
| skills.           |                |                      |                                   | 1            |                   | 1              |                     | 1                                | C             | U          | e          |         |       |
|                   |                | application          | ns of par                         | tial diffe   | rential e         | equation,      | its app             | lications                        | , Fourier     | series, ti | ansforms   | and La  | plac  |
| transfo           |                |                      |                                   |              |                   |                |                     |                                  |               |            |            |         |       |
| COURSE OUT        |                |                      |                                   |              |                   |                |                     |                                  |               |            |            |         |       |
| CO1               |                | To underst           |                                   |              | -                 |                |                     | equation                         | IS            |            |            |         |       |
| CO2               |                | To underst           |                                   |              | -                 |                |                     |                                  |               |            |            |         |       |
| CO3               |                | To underst           | tand the B                        | asic conc    | epts in C         | ne & Tw        | o dimens            | sional He                        | eat and Wa    | ve equati  | ons        |         |       |
| CO4               |                | To underst           | tand the B                        | asic conc    | epts in L         | aplace T       | ransform            | s                                |               |            |            |         |       |
| CO5               |                | To underst           | tand the B                        | asic conc    | epts in F         | ourier Tr      | ansforms            | 5                                |               |            |            |         |       |
| Mapping of Co     | ourse C        |                      |                                   |              | -                 |                |                     |                                  |               |            |            |         |       |
| COs/POs           | PO1            | PO2                  | PO3                               | PO4          | PO5               | PO6            | PO7                 | PO8                              | PO9           | PO10       | PO11       | PO      | 12    |
| CO1               | Н              | Н                    | М                                 | М            | L                 | L              | L                   | L                                | L             | L          | L          | L       |       |
| CO2               | Н              | Н                    | М                                 | М            | L                 | L              | L                   | L                                | L             | L          | L          | L       |       |
| CO3               | Н              | Н                    | М                                 | М            | L                 | L              | L                   | L                                | L             | L          | L          | L       |       |
| CO4               | Η              | Н                    | М                                 | М            | L                 | L              | L                   | L                                | L             | L          | L          | L       |       |
| CO5               | Η              | Н                    | М                                 | М            | L                 | L              | L                   | L                                | L             | L          | L          | L       |       |
| COs / PSOs        | ]              | PSO1                 | PS                                | 02           | P                 | SO3            | Р                   | SO4                              | PSO5          |            |            |         |       |
| CO1               | М              |                      | L                                 |              | L                 |                | Н                   |                                  | L             |            |            |         |       |
| CO2               | М              |                      | L                                 |              | L                 |                | Н                   |                                  | L             |            |            |         |       |
| CO3               | М              |                      | L                                 |              | L                 |                | Н                   |                                  | L             |            |            |         |       |
| CO4               | М              |                      | L                                 |              | L                 |                | Н                   |                                  | L             |            |            |         |       |
| CO5               | М              |                      | L                                 |              | L                 |                | Н                   |                                  | L             |            |            |         |       |
| H/M/L indicates   | s Stren        | gth of Corr          | elation I                         | H- High, I   | M- Medi           | um, L-Lo       | w                   |                                  |               |            |            |         |       |
| Category          | Basic Sciences | Engineering Sciences | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Practical / Project | Internships / Technical<br>Skill | Soft Skills   |            |            |         |       |
| Approval          | •              | meeting              |                                   |              |                   |                |                     | Int                              | Sol           |            |            |         |       |

#### **UNIT- I: PARTIAL DIFFERENTIAL EOUATIONS**

Formation of PDE by eliminating arbitrary constants and eliminating arbitrary functions – Solutions of standard types of first order equations – Lagrange's equation – Linear partial differential equations of second and higher order with constant coefficients.

#### **UNIT- II: FOURIER SERIES**

Dirichlet's conditions - General Fourier series - Half range Sine & Cosine series - Complex form of Fourier series -Parseval's identity - Harmonic Analysis.

#### **UNIT- III: APPLICATIONS OF PARTIAL DIFFERENTIAL EOUATIONS**

Classification of second order linear partial differential equations - Solutions of one dimensional wave equation, onedimensional heat equation - Steady state solution of two dimensional heat equations (Cartesian coordinates only) - Fourier series solutions.

#### **UNIT- IV: LAPLACE TRANSFORMS**

Transforms of simple functions - Properties of Transforms - Inverse Transforms - Transforms of Derivatives and Integrals - Periodic functions - Initial and final value theorems - Convolution theorem - Applications of Laplace transforms for solving linear ordinary differential equations up to second order with constant coefficients and Linear simultaneous differential equations of first order with constant coefficients.

#### **UNIT- V: FOURIER TRANSFORMS**

Statement of Fourier integral theorem - Fourier transform pairs - Fourier Sine and Cosine transforms - Properties -Transforms of simple functions – Convolution theorem – Parseval's theorem.

#### TEXT BOOKS

1) Veerarajan T. (2007), Engineering Mathematics (for first year), Tata McGrawHill Publishing Co.,

2) Veerarajan T. (2005), Engineering Mathematics (for semester III), Tata McGraw Hill Publishing Co.,

#### REFERENCES

1) Singaravelu (2009), Transforms and Partial Differential Equations, Meenakshi Agency.

2) Kreyszig E. (2011), Advanced Engineering Mathematics (9th ed.), John Wiley & Sons.

3) Grewal B.S. (2012), *Higher Engineering Mathematics*, Khanna Publishers.



7

#### Total No. of Hrs : 60

12 Hrs

12 Hrs

12 Hrs

12 Hrs

12 Hrs



| Subject Code:<br>BCE17I05 | S                   | ubject Na                     | me: FLU                           | ID MEC       | CHANIC            | S AND          | MACHI               | NERY                                              | T / L/<br>ETL | L    | T / S.Lr | P/ R | C  |
|---------------------------|---------------------|-------------------------------|-----------------------------------|--------------|-------------------|----------------|---------------------|---------------------------------------------------|---------------|------|----------|------|----|
|                           |                     | rerequisite                   |                                   |              |                   |                |                     |                                                   | Ту            | 2    | 1        | 0    | 3  |
| L : Lecture T : 7         | Futorial            | SLr:S                         | upervised                         | Learning     | P : Proje         | ect R : R      | Research            | C: Credi                                          | its           |      |          |      |    |
| T/L/ETL : Theo            | ry/Lab/             | /Embedded                     | l Theory a                        | nd Lab       |                   |                |                     |                                                   |               |      |          |      |    |
|                           | sic prop<br>ehaviou | perties of fl<br>ur in variou | luids.<br>1s sections             |              |                   | ons            |                     |                                                   |               |      |          |      |    |
| COURSE OUT                |                     |                               |                                   | 1            |                   |                |                     |                                                   |               |      |          |      |    |
| CO1                       |                     | CO1: The                      |                                   | erties of    | fluids.           |                |                     |                                                   |               |      |          |      |    |
| CO2                       |                     | CO2: Flow                     | v behaviou                        | ır in vario  | ous sectio        | ons with       | basic equ           | uations.                                          |               |      |          |      |    |
| CO3                       |                     | CO3: Wor                      |                                   |              |                   |                | 1                   |                                                   |               |      |          |      |    |
| Mapping of Co             | urse O              | utcomes v                     | vith Progr                        | am Outc      | omes (P           |                |                     |                                                   |               |      |          |      |    |
| COs/POs                   | PO1                 | PO2                           | PO3                               | PO4          | PO5               | PO6            | PO7                 | PO8                                               | PO9           | PO10 | PO11     | POI  | 12 |
| CO1                       | М                   |                               |                                   |              |                   |                |                     |                                                   |               |      |          |      |    |
| CO2                       |                     | Н                             | М                                 |              |                   |                |                     |                                                   |               |      |          |      |    |
| CO3                       |                     |                               | Н                                 | М            |                   |                |                     |                                                   |               |      |          |      |    |
| COs / PSOs                | I                   | PSO1                          | PS                                | 02           | PS                | 503            | Р                   | SO4                                               | PSO5          |      |          |      |    |
| CO1                       |                     | Н                             |                                   |              |                   |                |                     |                                                   |               |      |          |      |    |
| CO2                       |                     |                               | Ν                                 | 1            |                   |                |                     |                                                   |               |      |          |      |    |
| CO3                       |                     |                               |                                   |              |                   | L              |                     | М                                                 |               |      |          |      |    |
| H/M/L indicates           | s Streng            | gth of Corr                   | elation H                         | I- High, N   | M- Mediu          | ım, L-Lo       | w                   |                                                   | 1             |      |          |      |    |
| Category                  | Basic Sciences      | Engineering Sciences          | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Practical / Project | <ul> <li>Internships / Technical Skill</li> </ul> | Soft Skills   |      |          |      |    |
| Approval                  | 27 <sup>th</sup>    | meeting                       | of Acad                           | emic co      | ouncil, .         | June20         | 17                  |                                                   | 1             | -1   |          | I    |    |

#### **UNIT- I: PROPERTIES OF FLUIDS**

UNIT-s & Dimensions, Properties of fluids - density, specific Gravity, specific weight, viscosity. Surface tension and Capillarity, Compressibility & Bulk modulus, Vapour pressure, Measurement of pressure-Manometers, Mechanical gauges.

#### UNIT- II: FLUID FLOW CONCEPTS AND BASIC EQUATIONS

Flow Characteristics, Concepts of System and Control Volume, Continuity, Energy equation- Euler equation- Bernoulli equation, Impulse momentum equation-applications.

#### **UNIT- III: FLOW THROUGH CIRCULAR CONDUITS**

Laminar flow through circular tubes - Boundary layer thickness -Darcy equation on pipe roughness - Friction factor -Minor losses - Flow through pipes in series and in parallel, Equivalent pipes.

#### **UNIT- IV: HYDRAULIC TURBINES**

Impact of free jets-work done and efficiency calculation, Classification of hydraulic turbines, Elementary working principles of Pelton, Francis, Kaplan turbine, Work done, Governing of turbines, Draft tube, Specific Speed.

#### **UNIT- V: HYDRAULIC PUMPS**

Reciprocating pumps : Classification, Working, Single acting and Double acting, Slip, Indicator diagram, Air vessels. Centrifugal pumps :: Classification, Components, Working, Velocity triangles, Losses & Efficiency of a centrifugal pump, Pumps in series & parallel, Specific speed, Separation, Cavitations, Priming.

#### Total No. of Hrs : 45

#### TEXT BOOKS

- 1) Bansal S.K. (2012) "Fluid Mechanics and Hydraulic Machines", Laxmi Publications (P) Ltd., New Delhi.
- 2) R.K.Rajput. (1998) "Fluid Mechanics and Hydraulic Machines", S.Chand & Company Ltd., New Delhi.

#### REFERENCES

- 1) L.Kumar. (2002), "Engineering Fluid Mechanics", Eurasia Publishing House (P) Ltd., New Delhi.
- Roberson J.A. & Crowe C.T. (2001), "Engineering Fluid Mechanics", M/s Jaico Publishing Co., 9<sup>th</sup> edition
   Streeter V.L. and Wylie E.B. (1983), "Fluid Mechanics", McGraw Hill.
- 4) Ramamirtham S. (1988), "Fluid Mechanics, Hydraulics and Fluid Machines", Dhanpat Rai & Sons, Delhi.
- 5) Yunus.A.Cengel, Robert H.Turner., "Thermal-Fluid Sciences", Tata McGraw Hill.



# 8 Hrs

8 Hrs

7 Hrs

## 10 Hrs

#### **12** Hrs



| Subject Code    | : [              | Subject Na                | me: ENG                    | GINEER       | ING MI            | ECHAN          | ICS                 |                               | T / L/<br>ETL | L           | T / S.Lr   | P/ R   | C     |
|-----------------|------------------|---------------------------|----------------------------|--------------|-------------------|----------------|---------------------|-------------------------------|---------------|-------------|------------|--------|-------|
| BME17003        | (                | Prerequisite<br>PHYSIS)   |                            | 1            |                   |                |                     | odies                         |               |             |            |        |       |
|                 |                  | Basic know<br>calculus(M. |                            |              | calculus          | s and inte     | egral               |                               | Ту            | 3           | 1/0        | 0/0    | 4     |
| L : Lecture T : |                  |                           |                            |              | P : Proje         | ect R : R      | esearch             | C: Credits                    | 3             |             |            |        |       |
| T/L/ETL : The   | eory/Lat         | /Embedde                  | d Theory a                 | nd Lab       | ·                 |                |                     |                               |               |             |            |        |       |
| OBJECTIVE       | :                |                           |                            |              |                   |                |                     |                               |               |             |            |        |       |
|                 |                  | les of stres              | s, strain and              | d elastic    | constants         | 5.             |                     |                               |               |             |            |        |       |
|                 |                  | r force and               |                            | noment d     | iagram            |                |                     |                               |               |             |            |        |       |
|                 |                  | ction of bea              |                            |              |                   |                |                     |                               |               |             |            |        |       |
| COURSE OU       | JTCOM            |                           |                            |              |                   |                |                     |                               |               |             |            |        |       |
| CO1             |                  | The vector                |                            |              |                   |                |                     |                               |               |             |            |        |       |
| CO2             |                  |                           |                            |              |                   | d bodies       | both in t           | wo dimer                      | sions and     | in three d  | limensions |        |       |
| CO3             |                  | The princi                |                            |              |                   |                |                     |                               |               |             |            |        |       |
| CO4             |                  |                           |                            | on on e      | quilibriu         | ms ,the        | laws of             | motion,                       | the kinen     | natics of   | motion a   | nd the | inter |
| 205             |                  | relationshi               |                            | C.           | •. •              |                | <u>.</u>            |                               |               |             |            |        |       |
| CO5             | ~                | To calcula                |                            |              |                   |                | of inertia          | L                             |               |             |            |        |       |
| Mapping of C    |                  |                           |                            |              |                   |                | <b>D</b> 0 <b>7</b> | DOO                           | DOG           | <b>DO10</b> | DOI1       | DO     |       |
| Cos/Pos         | PO1              | PO2                       | PO3                        | PO4          | PO5               | PO6            | PO7                 | PO8                           | PO9           | PO10        | PO11       | PO     | 12    |
| CO1             | M                | H                         |                            | M            |                   |                |                     |                               |               |             |            | H      |       |
| CO2             | M                | H                         |                            |              |                   |                |                     |                               |               |             |            | H      |       |
| CO3             | M                | H                         |                            | M            | -                 |                |                     |                               |               | _           |            | H      |       |
| CO4             | M                | H                         |                            | М            |                   |                |                     |                               |               | -           |            | H      |       |
| CO5             | M                | H                         | DC                         | M            | D                 |                |                     | 504                           | DEOS          |             |            | H      |       |
| Cos / PSOs      |                  | PSO1                      | PS                         |              | PS                | 503            |                     | SO4                           | PSO5          |             |            |        |       |
| CO1             |                  | M                         | H                          |              |                   |                | M                   |                               |               |             |            |        |       |
| CO2<br>CO3      |                  | M                         | H<br>H                     |              |                   |                |                     |                               |               |             |            |        |       |
| C03<br>C04      |                  | M<br>M                    | F<br>F                     |              |                   |                |                     |                               |               |             |            |        |       |
| C04<br>C05      |                  | M                         | r<br>H                     |              | -                 |                |                     |                               |               |             |            |        |       |
| H/M/L indicat   | es Stren         |                           |                            |              | M- Medi           | um L-Lo        | w                   |                               |               |             |            |        |       |
|                 |                  |                           |                            |              |                   |                |                     | -                             |               |             |            |        |       |
| Category        | es               | Sciences                  | and Social                 | e            | ctives            | /es            | oject               | Internships / Technical Skill |               |             |            |        |       |
|                 | Basic Sciences   | Engineering Sciences      | Humanities and<br>Sciences | Program Core | Program Electives | Open Electives | Practical / Project | Internships                   | Soft Skills   |             |            |        |       |
| Approval        | 27 <sup>th</sup> | meeting                   | of Acad                    | emic co      | ouncil,           | June20         | )17                 |                               |               |             |            |        |       |

#### UNIT- I: STATICS

STATICS OF PARTICLE: Introduction – units and Dimensions – Laws of mechanics – concurrent forces in a planeresolution and Composition of forces – equilibrium of the particle-resultant force. Forces in space – Equilibrium of a particle in space

STATICS OF RIGID BODY : Free body diagram – Types of supports and their reactions – Moments and Couples – Moment of a force about a point and about an axis – Varignon's theorem – equilibrium of Rigid bodies in two dimensions – Equilibrium of Rigid bodies in three dimensions

#### **UNIT- II: PROPERTIES OF SURFACE AND SOLIDS**

Determination of Area and volume – Determination and derivation of First moment of area(Centroid), Second moment of area(Moment of Inertia) of Regular as well as irregular geometrical area – Centroid of line elements. Mass moment of inertia and polar moment of inertia. Principal moments of inertia of plane areas – Principal axes of inertia-Product of Inertia.

#### **UNIT-III: FRICTION**

Introduction – Laws of Dry Friction – Coefficient of friction – friction of a body lying on an inclined plane. Application of friction-Ladder friction-Wedge friction-Screw friction.

#### **UNIT- IV: DYNAMICS OF PARTICLES**

KINEMATICS: Displacement, Velocity-Constant and variable Acceleration, their relationship – linear and curvilinear motion- Projectile motion, relative motion.

KINETICS: Linear and Curvilinear motion-Work-Energy method, Impulse and Momentum, Impact-collision of Elastic bodies. Newton's law-D'Alemberts principle.

#### **UNIT- V: DYNAMICS OF RIGID BODIES**

KINEMATICS: Introduction-Rotation-Linear and Angular Velocity as well as acceleration. General plane motion-Absolute and Relative velocity in plane motion. Instantaneous centre of Rotation in plane motion-Location.

KINETICS: Relation between Translatory and Rotary motion of the body-Work energy equation of particles –D'Alemberts principle.

#### TEXT BOOKS

- 1) R.S.Khurmi. (2008), "A Textbook of Engineering Mechanics", S.Chand & co Ltd.
- 2) S.Rajasekaran et.al. (2009), "Fundamentals of Engineering Mechanics", Vikas Publishing House Pvt Ltd., 3<sup>rd</sup> Edition.

#### REFERENCES

- 1) Arthur.P.Boresi, Richard.J.Schmidt, "Engineering Mechanics : Statics & Dynamics", Thomson Brooks/Cole, Chennai.
- 2) Palanichamy M.S, Nagan.S, (2001), "Engineering Mechanics Statics and Dynamics" Tata Mc Graw Hill.
- 3) Beer & Johnson et.al, (2010) "Vector Mechanics for Engineers (Statics and Dynamics)", Tata Mc Graw Hill.



12 Hrs cation o

**12** Hrs

12 Hrs

12 Hrs

**12** Hrs

#### Total No. of Hrs : 60



| Subject Code<br>BME17002             | : S            | bubject Na           | me : MAN    | UFACT      | URING             | TECHN          | OLOGY               | Y - I                         | T / L/<br>ETL | L    | T/S.Lr | P/ R | C |
|--------------------------------------|----------------|----------------------|-------------|------------|-------------------|----------------|---------------------|-------------------------------|---------------|------|--------|------|---|
|                                      |                |                      |             |            |                   |                |                     |                               | Т             | 3    | 0      | 0    | 3 |
| L : Lecture T :                      | Tutoria        | 1 SLr : Su           | upervised I | earning    | P : Proje         | ct R : Re      | esearch (           | C: Credit                     | ts            |      |        |      |   |
| T/L/ETL : The                        | ory/Lab        | /Embeddeo            | d Theory a  | nd Lab     |                   |                |                     |                               |               |      |        |      |   |
| <b>OBJECTIVE</b> :<br>To impart know |                | n basics of          | manufactu   | iring proc | cesses for        | r metals a     | and poly            | mers                          |               |      |        |      |   |
| COURSE OU                            | тсом           | ES (COs)             | : (3-5)     |            |                   |                |                     |                               |               |      |        |      |   |
| CO1                                  |                | ETL                  |             |            |                   |                |                     |                               |               |      |        |      |   |
| CO2                                  |                | Basic mac            | hine tools  | - lathe an | d drilling        | g machine      | e.                  |                               |               |      |        |      |   |
| CO3                                  |                | Various m            | ethods of p | processing | g plastics        | 5.             |                     |                               |               |      |        |      |   |
| Mapping of C                         |                |                      |             |            |                   |                |                     |                               |               |      |        |      |   |
| Cos/Pos                              |                |                      |             |            |                   |                | PO7                 | PO8                           | PO9           | PO10 | PO11   | POI  | 2 |
| CO1                                  | ]              | M                    | Н           |            |                   | L              |                     |                               | L             |      |        | L    |   |
| CO2                                  | Μ              |                      | Н           |            |                   | L              |                     |                               | L             |      |        | L    |   |
| CO3                                  | Μ              |                      |             |            |                   | L              | Н                   |                               |               |      |        | L    |   |
| Cos / PSOs                           | ]              | PSO1                 | PS          | 52         | PS                | 503            | P                   | SO4                           | PSO5          |      |        |      |   |
| CO1                                  |                |                      |             |            |                   |                |                     |                               |               |      |        |      |   |
| CO2                                  |                |                      | H           | 1          |                   |                |                     |                               |               |      |        |      |   |
| CO3                                  |                |                      |             |            |                   |                |                     |                               |               |      |        |      |   |
| H/M/L indicate                       | es Stren       | gth of Corr          | elation H   | I- High, N | A- Mediu          | ım, L-Lo       | w                   |                               |               | -    |        |      |   |
| Category                             | Basic Sciences | Engineering Sciences | es and      |            | Program Electives | Open Electives | Practical / Project | Internships / Technical Skill | Soft Skills   |      |        |      |   |
|                                      | 27th           | monting              | of Acad     |            | uncil             | <br> uno20     | 17                  | 1                             |               |      | I      |      |   |
| Approval                             | 41-            | meeting              | of Acau     |            | ulltil, .         | June20         | 1/                  |                               |               |      |        |      |   |

#### **UNIT- I: METAL CASTING PROCESSES**

Introduction to Pattern making - Moulding sand - Melting furnaces - Special casting processes - Shell, Investment, Die casting, Full mould process - Defects in casting. Computers in casting processes.

#### **UNIT- II: METAL FORMING PROCESSES**

Cold and hot working - Forging, Rolling, Extrusion, Drawing. . Introduction to sheet metal forming processes. High energy rate forming - Explosive forming, Electro-hydraulic, Electro magnetic forming, Dynapac machine, petro forge machines. Super plastic forming

#### **UNIT- III: METAL JOINING PROCESSES**

Classification - Arc Welding - Sheet metal arc welding , Gas metal welding - Submerged Arc , TIG, MIG, - Resistance welding -Electrode types - Specification- Special Types - Laser, Electron beam, Plasma Arc, Ultrasonic, Electro slag, Explosive welding and Friction welding - Thermit welding –inspection of welding- Defects in weld- Brazing and soldering

#### **UNIT- IV: METAL CUTTING PROCESSES**

Lathe: Specification - Types - Mechanisms - Operations - Calculations - Capstan and turret lathe - Tooling with examples -Copy turning lathe. Drilling: Specification - Types - Feed Mechanism - Operations - Drill tool nomenclature - Mounting -Reamer and tap tools - Calculations.

#### **UNIT- V: PROCESSING OF PLASTIC MATERIALS**

Types of Plastics - Types of moulding - Compression moulding - Transfer molding - Injection molding - Blow Moulding -Rota moulding - Film and sheet forming - Thermo forming - Reinforced plastic - Laminated plastics.

> Total No. of Hrs :45

#### TEXT BOOKS

- 1) Sharma P.C. (2008), "A Text Book of Production Technology", S.Chand & Company Ltd., New Delhi.
- 2) Serope Kalpakjian (2013), "Manufacturing Engineering and Technology", Addison-wesley Pub.Co ,7th edition.

#### REFERENCES

- 1) Rao P.N. (2007), "Manufacturing Technology Foundry Forging & Welding", Tata McGraw Hill Publishing Co., New Delhi, 2<sup>nd</sup> edition.
- 2) R.K. Jain, (2001) "Production Technology", Khanna publisher.
- 3) O.P. Khanna, (1993), "Welding Technology", Dhanpat Rai & sons.
- 4) S. K. Hajra Choudry, S. K. Bose, (2010) "Elements of Workshop Technology -Volume I & II". Media promoters.



13

## 9 Hrs

9 Hrs

# **10** Hrs

#### 9 Hrs

#### 8 Hrs





| Subject Code:     | Su                 | bject Na             | me :<br>UID MEC        | 'HANIC     | SAND      | масни          | NEDVI      | AR                            | T / L/<br>ETL | L    | T/S.Lr | P/ R | С  |
|-------------------|--------------------|----------------------|------------------------|------------|-----------|----------------|------------|-------------------------------|---------------|------|--------|------|----|
| BCE 17IL4         | Pr                 |                      | : Thermod              |            | S AND     | МАСПІ          |            | AD                            | T             | 0    | 0      | 3/0  | 1  |
| L : Lecture T : ' |                    |                      |                        |            | P : Proj  | ect R : R      | esearch (  | C: Credit                     |               | 0    | 0      | 5/0  | 1  |
| T/L/ETL : Theo    |                    |                      | -                      | -          |           |                |            |                               |               |      |        |      |    |
| OBJECTIVES        | : The stu          | udent will           | learn                  |            |           |                |            |                               |               |      |        |      |    |
|                   |                    |                      | w measure              |            |           |                |            |                               |               |      |        |      |    |
|                   |                    |                      | ics of hydr            |            |           |                |            |                               |               |      |        |      |    |
| To stu-           | dy the ch          | naracterist          | tics of hydr           | aulic tur  | bines.    |                |            |                               |               |      |        |      |    |
|                   |                    |                      |                        |            |           |                |            |                               |               |      |        |      |    |
| COURSE OUT        |                    |                      |                        |            |           |                |            |                               |               |      |        |      |    |
| CO1               | S                  | Study the            | Different l            | Methods    | of flow   | measuren       | nents      |                               |               |      |        |      |    |
|                   |                    |                      |                        |            |           |                |            |                               |               |      |        |      |    |
| CO2               | S                  | Study the            | performance            | ce charac  | teristics | of hydrau      | ilic pump  | <b>DS</b> .                   |               |      |        |      |    |
|                   |                    |                      |                        |            |           |                |            |                               |               |      |        |      |    |
| CO3               |                    | Study the            | performance            | ce charac  | teristics | of hydrau      | ilic turbi | nes                           |               |      |        |      |    |
| 205               |                    | hady the             | Portorman              | e charac   | iensues   | or nyurat      |            |                               |               |      |        |      |    |
| Mapping of Co     | ourse Ou           | itcomes v            | with Progr             | am Out     | comes (I  | Pos)           |            |                               |               |      |        |      |    |
| Cos/Pos           | PO1                | PO2                  | PO3                    | PO4        | PO5       | PO6            | PO7        | PO8                           | PO9           | PO10 | PO11   | PO   | 12 |
| CO1               | Н                  | М                    | М                      |            |           | М              | L          |                               |               |      |        |      |    |
| CO2               | Н                  | L                    |                        | М          |           |                |            | М                             | L             |      |        |      |    |
| CO3               | М                  |                      | L                      | Н          |           |                | L          |                               |               |      |        |      |    |
| Cos / PSOs        |                    | SO1                  | PS                     | 02         |           | SO3            | P          | SO4                           | PSO5          |      |        |      |    |
| C01               |                    | H                    |                        |            | M         |                |            |                               |               |      |        |      |    |
| CO2               |                    | H                    |                        |            | M<br>H    |                |            |                               |               |      |        |      |    |
| CO3               |                    | M<br>th of Corr      | alation U              | Uich       |           | um I I d       |            |                               |               |      |        |      |    |
| H/M/L indicate    | s Strengt          | In or Corr           | elation H              | i- пign, I |           | uIII, L-LO     | JW         |                               |               |      |        |      |    |
|                   |                    |                      |                        |            |           |                |            | Internships / Technical Skill |               |      |        |      |    |
|                   |                    |                      |                        |            |           |                |            | ıl S                          |               |      |        |      |    |
| Category          |                    | S                    | cial                   |            |           |                |            | nica                          |               |      |        |      |    |
|                   |                    | suce                 | and Social             |            | S         |                | ÷          | schi                          |               |      |        |      |    |
| 1                 | ŝ                  | cie                  | pg                     |            | Electives | S              | Project    | Te                            |               |      |        |      |    |
|                   | nce                | a<br>Si              | s ai                   | Core       | llec      | tive           | Prc        | / sd                          |               |      |        |      |    |
|                   | cie                | erit                 | litie<br>SS            | n C        |           | llec           |            | ida                           | ills          |      |        |      |    |
|                   | ic S               | ine                  | nan                    | graı       | grai      | 'nE            | tic        | tern                          | t Sk          |      |        |      |    |
|                   | Basic Sciences     | Engineering Sciences | Humanities<br>Sciences | Program    | Program   | Dpen Electives | Practical  | Int                           | Soft Skill    |      |        |      |    |
|                   |                    |                      |                        |            |           |                | ✓          |                               |               |      |        |      |    |
|                   | 27 <sup>th</sup> r | neeting              | of Acad                | emic co    | ouncil,   | June20         | 17         |                               |               |      |        |      |    |
| Approval          |                    | 0                    |                        |            | ,         |                |            |                               |               |      |        |      |    |
|                   |                    |                      |                        |            |           |                |            |                               |               |      |        |      |    |



#### LIST OF EXPERIMENTS:

- 1. EXPERIMENTS ON FLOW MEASUREMENTS Venturimeter, Orifice Meter, Mouthpiece.
- 2. EXPERIMENT TO DETERMINE FRICTION FACTOR IN PIPES
- 3. EXPERIMENTS TO DRAW THE CHARACTERISTIC CURVES OF PUMPS Centrifugal pump, Reciprocating pump, Gear pump and Jet pump
- 4. EXPERIMENTS TO DRAW THE CHARACTERISTIC CURVES OF HYDRAULIC TURBINES Pelton Wheel, Francis Turbine.



# **SEMESTER - II**



| Subject Code:   |                  |                 | ect Name :<br>ECHANI       |              |                           |                |                   | DR                        | T / L/<br>ETL | L          | T/S.Lr | P/ R | C             |
|-----------------|------------------|-----------------|----------------------------|--------------|---------------------------|----------------|-------------------|---------------------------|---------------|------------|--------|------|---------------|
| BMA17010        |                  | (I yr. / II     | Sem Me                     |              | II yr. / II<br>t Time))   | I Sem          | Civil - E         | B.Tech                    |               |            |        |      |               |
|                 | -                | Prerequisit     | e Mathem                   |              | ,,                        |                |                   |                           | Т             | 3          | 1      | 0    | 4             |
| L : Lecture T : |                  |                 |                            |              |                           | ect R : F      | esearch           | C: Credi                  |               | 5          | 1      | 0    | _ <del></del> |
| T/L/ETL : The   |                  |                 | -                          | •            | J                         |                |                   |                           |               |            |        |      |               |
| OBJECTIVES      | •                |                 | •                          |              |                           |                |                   |                           |               |            |        |      |               |
|                 |                  | solution of     |                            | quations     |                           |                |                   |                           |               |            |        |      |               |
|                 |                  | oles of num     |                            |              | methods                   |                |                   |                           |               |            |        |      |               |
|                 |                  | hods for or     |                            | partial d    | ifferentia                | l equation     | ns.               |                           |               |            |        |      |               |
| COURSE OU       | ГСОМ             | IES (COs)       | : (3-5)                    |              |                           |                |                   |                           |               |            |        |      |               |
| CO1             |                  | To under        | stand the B                | asic cond    | epts in S                 | olution o      | of Algebr         | raic and 7                | Transcender   | ntal equat | tions  |      |               |
| CO2             |                  | To under        | stand the B                | asic cond    | epts in I                 | nterpolat      | ion               |                           |               |            |        |      |               |
| CO3             |                  | To under        | stand the B                | asic cond    | epts in N                 | lumerica       | l Differe         | ntiation a                | nd Integrat   | ion        |        |      |               |
| CO4             |                  | To under        | stand the B                | asic cond    | epts in N                 | lumerica       | l solutio         | ns of OD                  | Е             |            |        |      |               |
| CO5             |                  | To under        | stand the B                | asic cond    | epts in N                 | lumerica       | l solutio         | ns of PDI                 | Ξ             |            |        |      |               |
| Mapping of Co   | ourse            | Outcomes        | with Prog                  | ram Out      | comes (I                  | POs)           |                   |                           |               |            |        |      |               |
| COs/POs         | POI              |                 | PO3                        | PO4          | PO5                       | PO6            | PO7               | PO8                       | PO9           | PO10       | PO11   | PO   | 12            |
| CO1             | Η                | Н               | М                          | М            | L                         | L              | L                 | L                         | L             | L          | L      | L    |               |
| CO2             | Η                | Н               | М                          | М            | L                         | L              | L                 | L                         | L             | L          | L      | L    |               |
| CO3             | Η                | Н               | М                          | М            | L                         | L              | L                 | L                         | L             | L          | L      | L    |               |
| CO4             | H                | H               | M                          | M            | L                         | L              | L                 | L                         | L             | L          | L      | L    |               |
| CO5             | Η                | Н               | М                          | М            | L                         | L              | L                 | L                         | L             | L          | L      | L    |               |
| COs / PSOs      |                  | PSO1            |                            | 02           |                           | SO3            |                   | PSO4                      | PSO5          |            |        |      |               |
| <u>CO1</u>      | M                |                 | L                          |              | L                         |                | H                 |                           | L             |            |        |      |               |
| CO2             | M                |                 | L<br>L                     |              | L                         |                | H<br>H            |                           | L             |            |        |      |               |
| CO3<br>CO4      | M<br>M           |                 | L                          |              | L<br>L                    |                | H                 |                           | L<br>L        | -          |        |      |               |
| C04<br>C05      | M                |                 | L                          |              |                           |                | H                 |                           | L             |            |        |      |               |
| H/M/L indicate  |                  | ngth of Cor     |                            | H- High,     | ~                         | um, L-L        |                   |                           | Ľ             |            |        |      |               |
|                 |                  |                 | F                          |              |                           |                |                   | al                        |               |            |        |      |               |
|                 |                  | ences           | Social                     |              |                           |                | 1                 | echnical                  |               |            |        |      |               |
| Catago          |                  |                 |                            |              | ves                       |                | sct               | ech                       |               |            |        |      |               |
| Category        | ses              | Sci             | and                        | re           | ctiv                      | ves            | roje              | r/T<br>cill               |               |            |        |      |               |
|                 | ienc             | ing             | ies                        | Co           | Εlε                       | cti            | / <b>P</b> .      | sqir                      | ls            |            |        |      |               |
|                 | Sci              | leer            | unit.<br>ces               | am           | am                        | Ele            | cal               | nsł                       | skil          |            |        |      |               |
|                 | Basic Sciences   | Engineering Sci | Humanities and<br>Sciences | Program Core | Program Electiv           | Open Electives | Practical / Proje | Internships / Te<br>Skill | Soft Skills   |            |        |      |               |
|                 | Ba               | En              | Hı<br>Sc                   | Pr           | $\mathbf{P}_{\mathbf{r}}$ | OF             | $\mathbf{Pr}_{i}$ | I                         | So            | _          |        |      |               |
|                 | $  \mathbf{v}  $ |                 |                            |              |                           | June2(         |                   |                           |               |            |        |      |               |

#### B.Tech Mechanical Engineering - 2017 Regulation

#### **UNIT- I: SOLUTION OF EQUATIONS**

Solution of Algebraic and Transcendental equations - Method of false position - Iteration method - Newton-Raphson method - Solution of Linear system of equations - Gauss Elimination method - Gauss-Jordan method - Iterative methods -Gauss-Jacobi method - Gauss-Seidel method - Matrix Inversion by Gauss-Jordan method.

Dr.M.G.R.

UNIVERSITY (Decl. U/S 3 of UGC Act 1956) DEPARTMENT OF MECHANICAL ENGINEERING

EDUCATIONAL AND RESEARCH INSTITUTE

#### **UNIT- II: INTERPOLATION**

Newton forward and backward differences - Central differences - Stirling's and Bessel's formulae - Interpolation with Newton's divided differences – Lagrange's method.

#### **UNIT- III: NUMERICAL DIFFERENTIATION AND INTEGRATION**

Numerical Differentiation with interpolation polynomials – Numerical Integration by Trapezoidal and Simpson's (both 1/3 <sup>rd</sup> & 3/8<sup>th</sup>) rules – Two and three point Gaussian Quadrature formulae – Double integrals using Trapezoidal and Simpson's rules.

#### **UNIT- IV: NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS**

Taylor's series - Euler's & Modified Euler's method - Runge Kutta method of fourth order for first & second order differential equations - Milne's predictor-corrector method - Adam-Bashforth's predictor-corrector method.

#### **UNIT- V: NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EOUATIONS** 12 Hrs Finite difference solutions for one dimensional heat equation (both implicit & explicit) - Bender-Schmidt method - Crank-Nicolson method - One dimensional wave equation - Two dimensional Laplace and Poisson equations - Liebmann's method.

Total No. of Hrs: 60

#### TEXT BOOK

1) Veerarajan T. (2005), "Numerical Methods", Tata McGraw Hill Publishing Co.

#### REFERENCES

1) Sastry S.S. (2003), "Introductory Methods of Numerical Analysis", Prentice Hall of India.

- 2) Kandasamy P., Thilagavathy, Gunavathy K. (2008), "Numerical Methods" (Vol.IV), S.Chand & Co.,
- 3) Grewal B.S. (2012), "Higher Engineering Mathematics", Khanna Publishers.

12 Hrs

**12** Hrs

18



12 Hrs

12 Hrs



| Subject Code:    | S                | ubject Na<br>ELECTI  | me :<br>RICAL AN                  | ND ELEC      | CTRONI     | CS ENG     | GINEER       | ING                      | T / L/<br>ETL | L    | T / S.Lr | P/ R | C  |
|------------------|------------------|----------------------|-----------------------------------|--------------|------------|------------|--------------|--------------------------|---------------|------|----------|------|----|
| BEE17I01         |                  | rerequisite          |                                   |              |            |            |              |                          | Т             | 3    | 0        | 0    | 3  |
| L : Lecture T :  | Tutoria          | l SLr : Su           | pervised I                        | Learning     | P : Proje  | ct R : R   | esearch C    | C: Credit                | S             |      |          |      |    |
| T/L/ETL : The    | ory/Lab          | /Embedded            | d Theory a                        | nd Lab       |            |            |              |                          |               |      |          |      |    |
| OBJECTIVE        | S: The s         | tudent will          | learn                             |              |            |            |              |                          |               |      |          |      |    |
| > Work           | ina nrin         | ciple of Ele         | astriant Ma                       | abinas       |            |            |              |                          |               |      |          |      |    |
| V VV OIK         | ing prin         |                      |                                   | lennes       |            |            |              |                          |               |      |          |      |    |
| > Electr         | onic eng         | gineering p          | rinciples a                       | nd digita    | l electron | ics fund   | amentals.    |                          |               |      |          |      |    |
|                  |                  |                      | -                                 | -            |            |            |              |                          |               |      |          |      |    |
| COURSE OU        | TCOM             |                      | • (3 5)                           |              |            |            |              |                          |               |      |          |      |    |
| COURSE OU<br>CO1 |                  | Working p            |                                   | F Electric   | al Machir  | nes        |              |                          |               |      |          |      |    |
|                  |                  | i sinne i            | pre of                            |              |            |            |              |                          |               |      |          |      |    |
| CO2              |                  | Working I            | Principles of                     | of transfo   | rmers and  | d inducti  | on motor     | 'S                       |               |      |          |      |    |
| CO3              |                  | Principles           | and digital                       | electron     | ics funda  | mentals    |              |                          |               |      |          |      |    |
| Mapping of C     |                  | ÷                    |                                   |              |            |            |              |                          |               |      |          |      |    |
| Cos/Pos          | PO1              | PO2                  | PO3                               | PO4          | PO5        | PO6        | PO7          | PO8                      | PO9           | PO10 | PO11     | PO   | 12 |
| CO1              | Н                |                      |                                   |              |            |            |              |                          |               |      |          |      |    |
| CO2              |                  | Н                    |                                   |              |            |            |              |                          |               |      |          |      |    |
| CO3              |                  | Н                    | Н                                 | Н            | М          | Н          | L            |                          |               |      |          |      |    |
| Cos / PSOs       | ]                | PSO1                 | PS                                | 02           | PS         | 03         |              | SO4                      | PSO5          | _    |          |      |    |
| CO1              | -                |                      |                                   |              |            |            |              | H                        |               | _    |          | _    |    |
| CO2<br>CO3       |                  |                      |                                   |              |            |            |              | H<br>H                   |               |      |          |      |    |
| H/M/L indicate   | es Strene        | oth of Corr          | elation F                         | I- High N    | M- Medir   | ım L-Lo    |              | 11                       |               |      |          |      |    |
| 1, mi L marcat   |                  |                      |                                   |              |            |            |              | -                        |               |      |          |      |    |
|                  |                  |                      |                                   |              |            |            |              | nships / Technical Skill |               |      |          |      |    |
|                  |                  |                      | Г                                 |              |            |            |              | cal (                    |               |      |          |      |    |
| Category         |                  | ces                  | Humanities and Social<br>Sciences |              |            |            |              | mic                      |               |      |          |      |    |
|                  |                  | Engineering Sciences | l S                               |              | ves        |            | sct          | lect                     |               |      |          |      |    |
|                  | ces              | Sci                  | and                               | fe           | Electives  | ves        | al / Project | L/S                      |               |      |          |      |    |
|                  | Sciences         | ing                  | ies                               | Co           | Ele        | Electives  | / <b>P</b> . | ips                      | s             |      |          |      |    |
|                  | Sci              | leer                 | anit<br>ces                       | am           | я          | Elé        | cal          | rnsl                     | Skills        |      |          |      |    |
|                  | Basic 2          | lgin                 | um<br>ien                         | Program Core | Prograi    | Open I     | Practic      | Interi                   | Soft Sk       |      |          |      |    |
|                  | ĝ                | Ē                    | H <sub>i</sub><br>Sc              | Pr           | Pr         | Ō          | Pr           |                          | Š             | _    |          |      |    |
|                  |                  |                      |                                   |              |            |            | ✓            |                          |               |      |          |      |    |
|                  | 27 <sup>th</sup> | meeting              | of Acad                           | emic co      | uncil      | <br>June20 | 17           | 1                        | <u> </u>      |      | <b>I</b> | 1    |    |
| Approval         |                  |                      | <u>.</u>                          |              |            |            | _ •          |                          |               |      |          |      |    |
|                  |                  |                      |                                   |              |            |            |              |                          |               |      |          |      |    |

#### **NIT-I: DC MACHINES**

Construction details of DC machines – principle of operation of DC generator – EMF equation – Characteristics of DC generators – Principle of DC motor –Back EMF – Torque equation – Characteristics shunt, series and compound motors - Losses and efficiency – Starters – Speed control – applications.

#### **UNIT- II: TRANSFORMERS**

Principle of ideal transformer – constructional details – EMF equation – Equivalent circuit – Voltage regulation – losses and efficiency – OC and SC tests on transformer – Autotransformer – Power supplies - basic principle of SMPS and UPS.

#### UNIT- III: SYNCHRONOUS MACHINES AND INDUCTION MOTORS

Construction details – principle of alternator – EMF equation – Voltage regulation – Starting of synchronous motor – effect of field excitation – Induction motor – principle of operation – torque equation – torque-slip characteristics – Starting methods and speed control – principle of single -phase induction motor - applications. (Qualitative Treatment only)

#### **UNIT- IV: DIGITAL ELECTRONICS**

Number systems-Binary, Octal, hexadecimal, Binary arithmetic-complement arithmetic-Binary coded decimal-Boolean Algebra-De Morgan's Laws-Logic gates-AND, OR, NOT, NAND, NOR, XOR-half & full adders-Multiplexers-De-multiplexers-Encoder-Decoder.

#### **UNIT- V: FLIP FLOPS**

Flip Flops-RS-JK-D&T-Asynchronous & Synchronous counters-shift registers (brief explanation only)

TEXT BOOKS

- 1) S.K Bhattacharya, (2008) "Electrical Machines", Tata Mc Graw Hill Publications, 2<sup>nd</sup> Edition, 109098.
- 2) B.L.Theraja., (2012) "Electrical Techonology", S.Chandhan Publication, 23<sup>rd</sup> edition.
- 3) M.Morris mano., (2008) "Digital Design", Prentice-Hall of India,4<sup>th</sup> edition.

#### REFERENCES

- 1) I.J. Nagrath & D.P. Kothari, (2010) "Electrical Machines", TMH Publications, 4th edition.
- 2) I Mckenzie Smith , (2012) "Hughes Electrical Technology", Revised, Low price Edition, Pearson Education, eleventh edition.



9 Hrs

9 Hrs

9 Hrs

9 Hrs

9 Hrs

:45

**Total No. of Hrs** 



| Subject Code:<br>BME17ET2 | : S       | ubject Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | me : MAN   | NUFACT      | URING    | TECHN         | OLOGY     | Y - II                        | T / L/<br>ETL | L    | T / S.Lr | P/ R | C  |
|---------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|----------|---------------|-----------|-------------------------------|---------------|------|----------|------|----|
|                           | Р         | rerequisite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | : Manufac  | turing Te   | chnology | / - I         |           |                               | ETL           | 2    | 0        | 2/0  | 3  |
| L : Lecture T :           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |             |          |               | esearch ( | C: Credit                     | ts            |      |          | •    |    |
| T/L/ETL : The             | eory/Lab  | /Embeddeo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d Theory a | nd Lab      |          |               |           |                               |               |      |          |      |    |
| <b>OBJECTIVE</b>          | :         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |             |          |               |           |                               |               |      |          |      |    |
| To impart know            | wledge a  | und skill in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | metal cutt | ing proce   | ss and b | asics of p    | owder m   | etallurg                      | у             |      |          |      |    |
| COURSE OU                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |             |          |               |           |                               |               |      |          |      |    |
| CO1                       |           | Basic con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cepts of m | etal cutti  | ing      |               |           |                               |               |      |          |      |    |
| CO2                       |           | ETL     ETL     ETL     2     0     2/0       Prerequisite: Manufacturing Technology - I     ETL     2     0     2/0       ial     SLr: Supervised Learning P: Project R : Research C: Credits     ab/Embedded Theory and Lab     ab/Embedded Theory and Lab       e and skill in metal cutting process and basics of powder metallurgy $ETL$ 2     0     2/0       MES (COs) : (3-5)       Basic concepts of metal cutting       Basics of powder metallurgy techniques       Practical skill in various manufacturing processes in special purpose machines       Practical skill in various manufacturing processes in special purpose machines       Concepts of metal cutting       Poot PO3     PO4     PO5     PO6     PO7     PO8     PO9     PO10     PO11     PO1       M     H     I     I     I     I     I     I     I     I     I       M     H     I     I     I     I     I     I     I     I       M     H     I     I     I     I     I     I     I     I       I     PO2     PO3     PO4     PO5     PO8     PO4     I     I       M                                                                                                                                                                           |            |             |          |               |           |                               |               |      |          |      |    |
| CO3                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |             |          |               |           |                               |               |      |          |      |    |
| CO4                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |             |          |               |           |                               |               |      |          |      |    |
| CO5                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |             |          |               | 1         | i _ i                         |               |      |          |      |    |
| Mapping of C              | Course O  | utcomes v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | with Prog  | ram Outo    | comes (F | Os)           |           |                               |               |      |          |      |    |
| Cos/Pos                   | PO1       | PO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PO3        | PO4         | PO5      | PO6           | PO7       | PO8                           | PO9           | PO10 | PO11     | PO   | 12 |
| CO1                       | М         | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |             |          |               |           |                               |               |      |          | L    |    |
| CO2                       | Μ         | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Н          |             |          |               |           |                               |               |      |          | L    |    |
| CO3                       | L         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Н          |             |          |               |           |                               |               |      |          | L    |    |
| CO4                       | М         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | Н           |          |               |           |                               | Н             |      |          | Н    |    |
| CO5                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |             |          |               |           |                               |               |      |          |      |    |
| Cos / PSOs                | 1         | PSO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |             |          | 503           | P         | SO4                           | PSO5          |      |          |      |    |
| CO1                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |             |          |               |           |                               |               |      |          |      |    |
| CO2                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |             | Η        |               |           |                               |               |      |          |      |    |
| CO3                       |           | ETL       ETL       Other Constraints         Prerequisite: Manufacturing Technology - I       ETL       2       0       2/0         torial       SLr : Supervised Learning P : Project R : Research C: Credits       //Lab/Embedded Theory and Lab       //Lab/Embedded Theory and Lab         dge and skill in metal cutting process and basics of powder metallurgy       //Lab/Embedded Theory and Lab       //Lab/Embedded Theory and Lab         ZOMES (COs) : (3 - 5)         Basic concepts of metal cutting       //Lab/Embedded Theory and Lab       //Lab/Embedded Theory and Lab         Various types of machine tools for metal cutting         Basics of powder metallurgy techniques       Practical skill in various manufacturing processes in special purpose machines         PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO1         M       H       I       I       L       L       M       I       L       L         M       H       I       I       I       L       I       L       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I |            |             |          |               |           |                               |               |      |          |      |    |
| CO4                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N          | Л           | Н        |               | М         |                               |               |      |          |      |    |
| CO5                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |             |          |               |           |                               |               |      |          |      |    |
| H/M/L indicate            | es Streng | gth of Corr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | elation H  | I- High, N  | M- Medi  | um, L-Lo      | ow        | 1                             | T             | -1   |          |      |    |
| Category                  |           | ngineering Sciences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ies and    | rogram Core |          | pen Electives |           | Internships / Technical Skill |               |      |          |      |    |
| Approval                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | ✓           |          | Ŭ             |           |                               | Ň             |      |          |      |    |

#### UNIT- I: THEORY OF METAL CUTTING

Metal cutting types - Mechanism of metal cutting - Cutting forces - Chip formation - Merchant's circle diagram - Calculations – Tool geometry - Machinability - Tool wear - Tool life - Cutting tool materials - Cutting fluids.

### UNIT- II: SPECIAL PURPOSE MACHINES-I

Automats - Classification, cam controlled automats, single and multi spindle automats.

Shaper, Planer, slotter: Specification - Types - Mechanism - Calculations

Milling: Specification - Types - Cutter nomenclature - Types of cutter - Milling processes - Indexing - Cam and thread milling

#### Lab Components

SHAPING, AND SLOTTING PRACTICE: Cutting key ways and dove tail hexagonal machining using Shaper, Internal keyway using slotter

MILLING PRACTICE: Hexagonal milling, Contour milling

#### UNIT- III: SPECIAL PURPOSE MACHINES-II

Broaching: Specification - Types - Tool nomenclature - Broaching process. Boring: Specification - Types - Operations - Boring tool - Jig Boring machine. Grinding: Types of grinding machine - Designation and selection of grinding wheel - Bonds - Reconditioning of grinding wheel - Lapping, honing and super finishing.

#### Lab Components

**GRINDING PRACTICE:** Cylindrical grinding, Surface grinding.

#### **UNIT- IV: GEAR CUTTING MACHINES**

Kinematics of gear shaping and gear hobbing - Gear generation principles specifications - Cutters - Bevel gear generator - Gear finishing methods.

#### Lab Components

Machining of helical gear using hobbing machine, Spur gear milling

#### **UNIT- V: POWDER METALLURGY AND PRECISION ENGINEERING**

Powder metallurgy – production of metal powders, compaction, sintering, selective laser sintering, finishing of sintered parts. Precision machining and micro machining – diamond turning of parts to nanometer accuracy, stereo microlithography, machining of microzied components

#### TEXT BOOKS

- 1) S. K. Hajra Choudry, S. K. Bose, (2010) "Elements of Workshop Technology -Volume I & II". Media promoters.
- 2) P. C. Sharma, (2008) "A text book of Production Engineering", S. Chand and Co. Ltd., IV Edition.

#### REFERENCES

- 1) H.M.T, (1990) "Production Technology Handbook", TMH.
- 2) Richara R. Kibbe, John E. Neely, Roland O. Meyer and Warrent T. White, (2009) "Machine Tool Practices", VI Edition, Prentice Hall of India.
- 3) N. K. Mehta, (2012) "Machine Tool Design and NC", Tata McGraw Hill Publishing Co. Ltd.
- 4) Jaeger R.C, (1988) "Introduction to microelectronics fabrication", Addison Wesley pub. Co.,
- 5) C. Elanchezian, M. Vijayan, (2004) "Machine Tools" Anuradha Publications.



9 Hrs

10 Hrs

10 Hrs

8 Hrs

8 Hrs

:45

**Total No. of Hrs** 



| L : Lecture T :         |                       | -                    | : Engineer                        |              |                   | oct <b>P</b> · D | esearch (           | Cradia                        | Ту           |       |              |        |    |
|-------------------------|-----------------------|----------------------|-----------------------------------|--------------|-------------------|------------------|---------------------|-------------------------------|--------------|-------|--------------|--------|----|
|                         |                       |                      | -                                 | •            | P : Proje         | CT R : R         | esearch             | : Crean                       | ts           |       |              |        |    |
| T/L/ETL : The           | eory/Lab/             | Embeddee             | d Theory a                        | nd Lab       |                   |                  |                     |                               |              |       |              |        |    |
| To dr                   | principle<br>aw shear |                      | s, strain and<br>bending m<br>ms  |              |                   |                  |                     |                               |              |       |              |        |    |
| COURSE OU               |                       |                      |                                   |              |                   |                  |                     |                               |              |       |              |        |    |
| CO1                     |                       |                      | ciples of st                      |              |                   |                  |                     |                               |              |       |              |        |    |
| CO2                     |                       |                      | hear force                        |              | ng mom            | ent diagi        | ams                 |                               |              |       |              |        |    |
| CO3                     |                       |                      | flection of                       |              | 6                 |                  |                     | 1 .1.                         | 1.0          | 1.1.0 |              |        |    |
| CO4                     |                       |                      |                                   |              |                   |                  |                     |                               | nd force and |       | ation relati | onship |    |
| CO5<br>Manning of C     |                       |                      |                                   |              |                   |                  | cylindrica          | and sp                        | herical shel | 15    |              |        |    |
| Mapping of C<br>Cos/Pos | PO1                   | PO2                  | PO3                               | PO4          | PO5               | PO6              | PO7                 | PO8                           | PO9          | PO10  | PO11         | PO     | 10 |
| CO1                     | M                     | H                    | P05                               | M            | POS               | M                | P07                 | P08                           | P09          | POIO  | PUII         | PO     | 12 |
| CO2                     | M                     | Н                    |                                   | IVI          |                   | IVI              |                     |                               |              | -     |              | -      |    |
| CO2<br>CO3              | M                     | H                    |                                   | M            |                   | М                |                     |                               |              |       |              |        |    |
| CO4                     | M                     | H                    |                                   | IVI          |                   | IVI              |                     |                               |              |       |              |        |    |
| C04<br>C05              | M                     | H                    |                                   | М            |                   |                  |                     |                               |              |       |              |        |    |
| Cos / PSOs              |                       | SO1                  | PS                                |              | PS                | 503              | Р                   | SO4                           | PSO5         |       |              |        |    |
| CO1                     |                       | M                    | H                                 |              | 1.                | ,05              | -                   | 501                           | 1505         |       |              |        |    |
| CO2                     |                       | Н                    |                                   |              |                   |                  | М                   |                               |              |       |              |        |    |
| CO3                     |                       | М                    | H                                 | I            |                   |                  |                     |                               |              |       |              |        |    |
| CO4                     |                       | Н                    |                                   |              |                   |                  |                     |                               |              |       |              |        |    |
| CO5                     |                       | М                    | H                                 | [            |                   |                  |                     |                               |              |       |              |        |    |
| H/M/L indicat           | es Streng             | th of Corr           | elation H                         | I- High, N   | A- Mediu          | ım, L-Lo         | )w                  |                               | •            |       | •            | ľ      |    |
| Category                | Basic Sciences        | Engineering Sciences | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives   | Practical / Project | Internships / Technical Skill | Soft Skills  |       |              |        |    |
|                         | B                     | щ                    |                                   | · - ·        |                   |                  |                     |                               |              |       |              |        |    |

#### **UNIT- I: STRESS, STRAIN DEFORMATION OF SOLIDS**

Rigid and Deformable bodies – Strength, Stiffness and Stability – Stresses; Tensile, Compressive and Shear – Deformation of simple and compound bars under axial load – Thermal stress – Elastic constants and their relationship – strain energy due to axial load – stress due to suddenly applied load and impact load.

#### UNIT- II: BEAMS - LOADS AND STRESSES

Types of beams: Supports and Loads – Shear force and Bending Moment in beams – Cantilever, Simply supported beams and Overhanging beams Stresses in beams – Theory of simple bending – Stress variation along the length and in the beam section – Effect of shape of beam section on stress induced – Shear stress distribution in beams of different sections.

#### UNIT- III: TORSION OF SHAFTS AND SPRINGS

Theory of pure torsion- Torsion of circular and hollow shafts –Stepped shafts – Composite shaft – Stress due to combined bending and torsion. Type of springs - Stiffness- Springs in series-Springs in parallel - Stresses and deflections in helical springs and leaf springs – Design of helical springs- design of buffer Springs - leaf springs.

#### **UNIT- IV: DEFLECTION OF BEAMS**

Double integration method- Macaulay's Method- Area Moment Theorems for Computations of slope and deflection in Beams. Columns – End conditions – Equivalent length of a column – Euler equation – Slenderness ratio – Rankine formula for columns.

#### UNIT- V: ANALYSIS OF STRESSES IN TWO DIMENSIONS

Biaxial state of stresses – Thin cylindrical and spherical shells – Deformation in thin cylindrical and spherical shells – Biaxial stresses at a point-Stress as Tension. Stresses on inclined plane – Principal planes and Principal stresses – Mohr's circle for biaxial stresses – Maximum shear stress - Strain energy and Strain Energy Density.

#### Total No. of Hrs: 45

#### TEXT BOOKS

1. Rajput R.K. "Strength of Materials (Mechanics of Solids)", S.Chand & company Ltd., New Delhi, 2010.

2. S.Ramamruthum and R. Narayan, "Strength of Materials", Dhanpat Rai & Sons,

#### **REFERENCES:**

1. Beer F. P. and Johnston R, (2002) "Mechanics of Materials", McGraw-Hill Book Co, Third Edition

Egor P. Popov, "Engineering Mechanics of Solids", Prentice Hall of India, New Delhi.



9 Hrs

9 Hrs

9 Hrs

**9** Hrs

9 Hrs



| Subject Code:<br>BME17001                                                   | S                             | ubject Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | me: ENG                           | INEERI        | NG THI            | ERMOD          | YNAM                | ICS                              | T / L/<br>ETL | L           | T / S.Lr | <b>P/ R</b> | C |
|-----------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------|-------------------|----------------|---------------------|----------------------------------|---------------|-------------|----------|-------------|---|
|                                                                             | P                             | rerequisite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | : Engineeri                       | ng Phys       | ics & En          | gineering      | g Mather            | natics                           | Ту            | 3           | 1        | 0           | 4 |
| L : Lecture T : T                                                           | Futorial                      | S Lr : S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | upervised l                       | Learning      | P : Proje         | ect R : R      | lesearch            | C: Credi                         | ts            |             |          |             |   |
| T/L/ETL : Theo                                                              | ry/Lab/                       | Embedded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | l Theory ar                       | nd Lab        |                   |                |                     |                                  |               |             |          |             |   |
| <ul> <li>The fundam</li> <li>Properties of</li> <li>Different th</li> </ul> | nentals<br>of Stean<br>ermody | of thermoon<br>n and its ap<br>namic cyc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lynamics a<br>oplications<br>cles | nd therm      |                   | c relation     | 18                  |                                  |               |             |          |             |   |
| COURSE OUT                                                                  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | nts and l     | we of th          | armodun        | amics               |                                  |               |             |          |             |   |
| CO1<br>CO2                                                                  |                               | ETL       ETL         Prerequisite: Engineering Physics & Engineering Mathematics       Ty       3       1       0         orial       S Lr : Supervised Learning P : Project R : Research C: Credits         Lab/Embedded Theory and Lab         BJECTIVE: The students will learn         also of thermodynamics and thermodynamic relations         team and its applications.         odynamic cycles         MES (COs) : (3-5)         Fundamentals concepts and laws of thermodynamics         Various properties steam and its applications         various power cycles and their applications         OI         PO3         PO4         PO5         OI         PS01         PS02         PS03         PS04         PS05         Implementation         Implementations         PO4         PO5         PO6         PO7         PO8         PO10         PS01       PS02       PS03 <td></td> |                                   |               |                   |                |                     |                                  |               |             |          |             |   |
| CO2<br>CO3                                                                  |                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                 |               | 11                |                |                     |                                  |               |             |          |             |   |
|                                                                             |                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                 |               | **                |                |                     |                                  |               |             |          |             |   |
|                                                                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |               |                   |                | D07                 | DOO                              | DOO           | <b>DO10</b> | DO11     | DOI         | 2 |
| COs/POs                                                                     | PO1                           | PO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PO3                               | PO4           | PO5               | PO6            | PO7                 | PO8                              | PO9           | POIO        | POIT     | POI         | 2 |
| CO1<br>CO2                                                                  | н                             | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | м                                 | м             |                   |                |                     |                                  |               |             |          |             |   |
| C02                                                                         |                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |               |                   |                |                     |                                  |               |             |          |             |   |
| COs / PSOs                                                                  | F                             | 2SO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |               | PS                | 03             | P                   | SO4                              | PSO5          |             |          |             |   |
| CO1                                                                         | -                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                | -             | 1.0               | 00             |                     |                                  | 1500          |             |          |             |   |
| CO2                                                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |               |                   |                |                     |                                  |               |             |          |             |   |
| CO3                                                                         |                               | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |               |                   |                |                     |                                  |               |             |          |             |   |
| H/M/L indicates                                                             | s Streng                      | th of Corr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | elation H                         | - High, N     | /- Mediu          | ım, L-Lo       | W                   |                                  |               |             |          |             |   |
| Category                                                                    | Basic Sciences                | Engineering Sciences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | es and                            | ∠Program Core | Program Electives | Open Electives | Practical / Project | Internships / Technical<br>Skill | Soft Skills   |             |          |             |   |
| Approval                                                                    | 27 <sup>th</sup>              | meeting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of Acad                           | emic co       | uncil, J          | June20         | 17                  |                                  |               |             |          |             |   |

#### B.Tech Mechanical Engineering - 2017 Regulation

# **UNIT- II: SECOND LAW OF THERMODYNAMICS**

Statements, Reversibility, Causes of irreversibility, Carnot cycle, Reversed Carnot cycle, Heat engines, Refrigerators, Heat pumps. Clausius inequality, Concept of Entropy, Principles of increase of entropy, Carnot theorem, Available energy, Availability, Introduction to exergy.

### **UNIT- III: WORKING FLUIDS**

Thermodynamic properties of pure substance, Property diagrams. PVT surface of water and other substances, calculation of properties. Applications of First law and second law analysis using tables and charts.

Properties of ideal and real gases, Equation of state, Gas laws. Van der-waal's equation of state, Compressibility. Daltons law of partial pressures, Internal Energy, enthalpy, Specific heat and molecular weight of gas mixtures.

#### **UNIT- IV: POWER CYCLES**

Gas power cycles - Carnot, Otto, Diesel, Dual, Brayton Cycles. Vapour Power Cycles - Rankine, Modified Rankine, Reheat, Ideal Regenerative cycle.

#### **UNIT- V: THERMODYNAMIC RELATIONS**

Exact differentials, Maxwell relations, Tds relations, Difference and ratio of Heat Capacities, Energy Equation, Clausius -Clapeyron equations, Joule-Thomson coefficient.

Note: Standard and approved Steam Table, Mollier Chart are permitted in examination.

#### TEXT BOOKS

- 1) P.K.Nag, (2014) "Engineering Thermodynamics" (Fifth Edition), Tata McGraw Hill Education Publishing Company Ltd., New Delhi.
- 2) Yunus A.Cengel, (2014) "Thermodynamics-An Engineering. Approach", Tata McGraw Hill Education, 8th edition.

#### REFERENCES

- 1) Spalding & Cole, (1973) "Engineering Thermodynamics", ELBS, 6th edition.
- 2) J.P.Holman, (2011) "Thermodynamics", McGraw Hill 109095, 10th edition,
- 3) Van Wylen & Sonntag, (1998) "Fundamentals of Classical Thermodynamics", Wiley Eastern, 5th Edition.
- 4) Rogers & Mathew, (1992) "Engineering Thermodynamics", Adison Wesley 1090909, 4th edition.
- 5) Michael Saad, (1966) "Thermodynamics", Prentice Hall 109097.

Dr.M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE UNIVERSITY (Decl. U/S 3 of UGC Act 1956) DEPARTMENT OF MECHANICAL ENGINEERING

# UNIT- I: BASIC CONCEPTS AND FIRST LAW OF THERMODYNAMICS

12 Hrs Thermodynamics systems, Concepts of continuum, Thermodynamic properties, Equilibrium, Process, Cycle, Work, Heat, Temperature, and Zeroth law of thermo dynamics. First law of thermodynamics- Applications to closed and open systems, Internal energy, Specific heats, Enthalpy, Steady flow conditions.

#### 26

## 12 Hrs

#### 12 Hrs

:60

**Total No. of Hrs** 

## 12 Hrs

## 12 Hrs



# **SEMESTER-III**



| Subject<br>Code: |                | Sub      | ject Nan             | ne : C++ ar                | d Data S     | tructure             | S              |                     |                      | Ty / Lb/<br>ETL | L                       | T / S.Lr     | P/R     | С |
|------------------|----------------|----------|----------------------|----------------------------|--------------|----------------------|----------------|---------------------|----------------------|-----------------|-------------------------|--------------|---------|---|
| BCS17I03         |                | Prei     | requisite            | :                          |              |                      |                |                     |                      | Ту              | 3                       | 0/0          | 0/0     | 3 |
| L : Lecture      | T : Tut        | toria    | al SLr:              | Supervised                 | Learnin      | g P:Pro              | ject R:F       | Research            | C: Credi             | ts              |                         |              |         |   |
| Ty/Lb/ETL :      | Theo           | ry/L     | _ab/Emb              | edded The                  | ory and I    | ab                   |                |                     |                      |                 |                         |              |         |   |
| OBJECTIVE        | :              |          |                      |                            |              |                      |                |                     |                      |                 |                         |              |         |   |
| Master the       | imple          | eme      | ntation o            | of linked d                | ata struct   | ures suc             | h as linke     | ed lists a          | nd binar             | y trees         |                         |              |         |   |
| • wi             | th Be          | fan      | niliar wit           | h advance                  | d data st    | ructures             | such as A      | AVL trees           | s and ha             | sh tables.      |                         |              |         |   |
| • Be             | e famil        | liar     | with sev             | eral sub-qu                | uadratic s   | orting al            | gorithms       | s includir          | ng quicks            | ort, merges     | ort and l               | heapsort     |         |   |
| • Be             | e famil        | liar     | some gra             | aph algorit                | hms such     | as short             | est path       | and min             | nimum sp             | panning tree    | 2                       |              |         |   |
| • M              | aster          | the      | standard             | d data stru                | cture libr   | ary of a r           | major pro      | ogrammi             | ing langu            | iage(C++)       |                         |              |         |   |
| COURSE O         | JTCO           |          |                      |                            |              |                      |                |                     |                      |                 |                         |              |         |   |
| CO1              |                | St       | udent wi             | ll be able t               | o unders     | tand the             | object o       | riented             | program              | ming using      | C++ cond                | cepts.       |         |   |
| CO2              |                | St       | udent wi             | ll be able t               | o handle     | operatio             | ons like s     | earching            | , insertio           | on, deletion,   | traversi                | ng mechar    | nism on |   |
|                  |                | -        |                      | ta structur                |              |                      |                |                     |                      |                 |                         |              |         |   |
| CO3              |                | St       | udents w             | ill be able/               | to imple     | ment the             | elearned       | concept             | t of data            | structures u    | Ising C++               | +.           |         |   |
| CO4              |                | St       | udents w             | /ill be able               | to use lir   | near and             | non-line       | ar data s           | structure            | s like stacks   | , queues                | , linked lis | st etc  |   |
| Mapping o        | f Coui         | rse (    | Outcome              | es with Pro                | gram Ou      | tcomes               | (POs)          |                     |                      |                 |                         |              |         |   |
| COs/POs          | PO1            |          | PO2                  | PO3                        | PO4          | PO5                  | PO6            | PO7                 | PO8                  | PO9             | PO10                    | PO11         | PO1     | 2 |
| CO1              | Н              |          | Н                    | L                          | Н            | Μ                    | L              | L                   | L                    | L               | L                       | М            | М       |   |
| CO2              | Н              |          | Н                    | Н                          | L            | М                    | L              | М                   | М                    | Н               | L                       | М            | М       |   |
| CO3              | Н              |          | М                    | Н                          | Н            | Н                    | М              | L                   | М                    | Н               | L                       | М            | М       |   |
| CO4              | Н              |          | Н                    | Н                          | Н            | Μ                    | L              | М                   | М                    | Н               | L                       | М            | М       |   |
| COs /            |                | PS       | 01                   | PSC                        | )2           | PS                   | 03             | Р                   | SO4                  | PS              | 505                     |              | PSO6    |   |
| PSOs             |                |          |                      |                            |              |                      |                |                     |                      |                 | 1                       |              |         |   |
| CO1              | Н              |          |                      | Н                          |              | L                    |                | L                   |                      | Н               | М                       | М            | L       |   |
| CO2              | Н              |          |                      | Н                          |              | Μ                    |                | L                   |                      | Н               | М                       | М            | L       |   |
| CO3              | Н              |          |                      | Μ                          |              | L                    |                | L                   |                      | Н               | М                       | М            | L       |   |
| CO4              | Н              | <u> </u> |                      | Н                          |              |                      |                | L                   |                      | Н               | Н                       | L            | L       |   |
| H/M/L indi       | cates          | Stre     | ength of (           | Correlation                | n H-Hig      | n, M- Me             | edium, L-<br>T | LOW                 |                      |                 |                         |              |         |   |
| Categ            |                |          |                      |                            |              |                      |                |                     | kill                 |                 |                         |              |         |   |
| ory              |                |          |                      |                            |              |                      |                |                     | cal Skill            |                 | t I                     |              |         |   |
|                  |                |          | S                    | cial                       |              |                      |                |                     | nic                  |                 | ject                    |              |         |   |
|                  |                |          | Engineering Sciences | Social                     |              | S                    |                | Ħ                   | Internships / Techni |                 | Interdisciplinary subje |              |         |   |
|                  | S              |          | cie                  |                            | 0            | tive                 | S              | ojec                | / Т(                 |                 | γı                      |              |         |   |
|                  | JCe            |          | S gr                 | ss a                       | COLE         | lec                  | tive           | Pro                 | ips                  |                 | lin                     |              |         |   |
|                  | Basic Sciences |          | erir                 | Humanities and<br>Sciences | u<br>L       | Program Electives    | Open Electives | al /                | nsh                  | ills            | scip                    |              |         |   |
|                  | ic S           |          | ine                  | Humanit<br>Sciences        | gra          | gra                  | en E           | ctic                | ter                  | Soft Skills     | erdi                    |              |         |   |
|                  | Bas            |          | Eng                  | Hur<br>Scie                | Program Core | Pro                  | Opé            | Practical / Project | 4                    | Sofi            | lnt€                    |              |         |   |
|                  |                |          |                      |                            |              |                      |                |                     |                      |                 | √                       |              |         |   |
|                  |                |          |                      |                            | 27           | 7 <sup>th</sup> meet | ing of Ac      | ademic              | council,             | June2017        |                         |              |         |   |
| Approval         |                |          |                      |                            |              |                      |                |                     |                      |                 |                         |              |         |   |

#### UNIT- I: INTRODUCTION TO OOPS Object Oriented Concepts - Basics of C++ Environment. Definition - Data Members - Function Members - Control

# Statements-Overloading Operators - Functions - Friends - Class derivation - Virtual Functions - Abstract Base Classes.

**UNIT - II: CLASSES, INHERITANCE & TEMPLATES** Constructor - Default constructors - Copy Constructors - Destructors - Static members - Constant Members - Free Store Operators- Multiple Inheritances- Exception Handling - Streams - Class Templates - Function Templates

## **UNIT - III: LINEAR DATA STRUCTURES**

## Stacks, Queues & Lists Implementation and Application Singly linked list - Doubly linked lists

### **UNIT - IV: NON LINEAR DATA STRUCTURES**

Trees - Binary Trees - Binary Search Tree - Tree Traversals - AVL Trees

### UNIT V: SEARCHING AND SORTING

Searching - Linear search-Binary Search. Sorting- Insertion sort, Bucket sort, Heap sort, Merge sort, Ouick sort.

- **Text Books :**
- E.Horowitz, S.Sahani & S.Rajasekharan, "Fundamentals of data structure in C++", Computer science press. 1
- Balagurusamy, E, "Object oriented programming with C++", Tata McGraw-Hill publishing company limited, Addison 2. Wesley.
- Stanley B.Lippman, "The C++ Primer", Addison Wesley Publishers, 4th Edition, 2005. 3.

## **Reference Books:**

- Weiss Mark Allen. "Data Structures and Algorithms Analysis in C", Pearson Education, 2/e, 1997 1.
- E.Horowitz, S.Sahani & S.Rajasekharan, "Computer Algorithms", Galgotia 1999. 2
- Gary J. Bronson, "Object Oriented Program Development using C++", Thomson Learning, 4th Edition 2005. Brett D. 3. McLaughlin, Gary Pollice, David West" Head First Object-Oriented Analysis & Design" O'Reilly Media, 2007.
- Gilberg & Forugan, "Data Structures: A Pseudo Code Approach using C++ ", Thomson Learning 1st Edition, 2002. 4.
- Gary J. Bronson, "Object oriented program development using Java, Thomson Learning, 2nd Revised Edition 2005. 5.



9 Hrs

10 Hrs

9 Hrs

9 Hrs

8 Hrs

**Total Hours: 45** 



| Subject Code:      | S                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | <u>ENGINE</u> | ERING      |           |             |           | T / L/<br>ETL | L        | T / S.Lr    | P/ R      | C     |
|--------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|------------|-----------|-------------|-----------|---------------|----------|-------------|-----------|-------|
| BME17004           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |               |            |           |             |           | Т             | 3        | 1           | 0         | 4     |
| L : Lecture T :    | Tutoria                    | l SLr : Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pervised L   | earning       | P : Proje  | ct R : R  | esearch (   | C: Credi  | ts            |          |             |           |       |
| T/L/ETL : The      | ory/Lab                    | /Embedded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | l Theory ar  | nd Lab        |            |           |             |           |               |          |             |           |       |
| <b>OBJECTIVE</b> : | The stu                    | dent will l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | earn         |               |            |           |             |           |               |          |             |           |       |
|                    |                            | the concept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ts, laws an  | d metho       | dologies   | from the  | e first co  | ourse in  | thermodyn     | amics in | to the anal | ysis of o | cycli |
| proce              |                            | th among drym                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | nto into      |            | hammal a  | mulicatio   | na lilea  |               | Steem to | whinnen Coa | Turkin    |       |
| ► 10 ap            | ppiy the                   | mermouyn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | epis into     | various t  | nermai a  | ppncatio    | iis like, | ic engines    | Steam tu | ionnes, Gas | Turome    | 58.   |
|                    | TCOL                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |               |            |           |             |           |               |          |             |           |       |
|                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |               | C 1 '1     | 0 1       |             | 1 1       |               |          |             |           |       |
| CO1                |                            | THERMAL ENGINEERING       ETL       Image: constraint of the strength of the streng strength of the strength of the strength |              |               |            |           |             |           |               |          |             |           |       |
| CO2                |                            | Knowledg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e of air cor | npressors     | s and wo   | orking pr | inciples of | of gas tu | rbines        |          |             |           |       |
| CO3                |                            | Knowledg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e of workir  | ng of stea    | m turbin.  | es and it | compou      | nding     |               |          |             |           |       |
| CO4                |                            | Knowledg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e of Worki   | ng princ      | iples of I | .C engin  | es and te   | sting     |               |          |             |           |       |
| CO5                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |               |            |           | g           |           |               |          |             |           |       |
|                    | ourse O                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vith Progr   |               | omes (P    | os)       | _           |           |               |          |             |           |       |
| Cos/Pos            | PO1                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | PO4           | PO5        |           | PO7         | PO8       | PO9           | PO10     | PO11        | PO        | 12    |
| CO1                | Н                          | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | М            |               |            | Μ         | L           |           |               |          |             |           |       |
| CO2                | Н                          | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |               |            |           |             | М         | L             |          |             |           |       |
| CO3                | Μ                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L            | Н             |            |           | L           |           |               |          |             |           |       |
| CO4                | Н                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | М            |               |            | Μ         | L           |           |               |          |             |           |       |
| CO5                | Н                          | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | М             |            |           |             | Μ         | L             |          |             |           |       |
| Cos / PSOs         | ]                          | PSO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PSG          | 02            | PS         | 503       | Р           | SO4       | PSO5          |          |             |           |       |
| CO1                |                            | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |               | М          |           |             |           |               |          |             |           |       |
| CO2                |                            | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |               | М          |           |             |           |               |          |             |           |       |
| CO3                |                            | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |               | Η          |           |             |           |               |          |             |           |       |
| CO4                |                            | THERMAL ENGINEERING         ETL         Image: constraint of the student will earning P : Project R : Research C: Credits           y/Lab/Embedded Theory and Lab         Image: concepts, laws and methodologies from the first course in thermodynamics into the analysis of the student will learning rate the concepts, laws and methodologies from the first course in thermodynamics into the analysis of the thermodynamic concepts into various thermal applications like, IC engines Steam turbines, Gas Turbi           COMES (COs) : (3-5)         Knowledge of various types of boilers, Condensers and nozzles         Knowledge of air compressors and working principles of gas turbines           Knowledge of working of steam turbines and it compounding         Knowledge of Working of steam turbines and it compounding         Knowledge of Working of steam turbines and testing         Movel of the program Outcomes (Pos)           PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         P           H         L         M         L         Image: Condense transmitter                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |               |            |           |             |           |               |          |             |           |       |
| CO5                |                            | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |               | М          |           |             |           |               |          |             |           |       |
| H/M/L indicate     | es Streng                  | gth of Corr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | elation H    | - High, N     | A- Mediu   | ım, L-Lo  | w           |           | 1             |          |             |           |       |
|                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |               |            |           |             | dill      |               |          |             |           |       |
|                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |               |            |           |             | SI        |               |          |             |           |       |
| Category           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ial          |               |            |           |             | ical      |               |          |             |           |       |
| Calegory           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | oci          |               |            |           |             | hni       |               |          |             |           |       |
|                    |                            | ien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |               | ves        |           | ect         | Tec       |               |          |             |           |       |
|                    | ces                        | Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | anc          | re            | scti       | ves       | roj         | ./.       |               |          |             |           |       |
|                    | ene                        | ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | les          | C             | Εle        | cti       | /P          | nips      | s             |          |             |           |       |
|                    | Sci                        | eer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | niti<br>ces  | am            | m          | Ele       | cal         | nsł       | kil           |          |             |           |       |
|                    | sic                        | gin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ma           | )gr;          | )gr;       | en        | Ictic       | nter      | ft S          |          |             |           |       |
|                    | $\mathbf{Ba}_{\mathbf{a}}$ | En                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hu<br>Sci    | Prc           | Prc        | Op        | $\Pr{a}$    | Ir        | Sol           |          |             |           |       |
|                    | <b>6-</b> <sup>4</sup>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>     | · √           |            |           |             |           |               |          |             |           |       |
| Approval           | 27 <sup>th</sup>           | meeting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of Acad      | emic co       | ouncil, .  | June20    | 17          |           |               |          |             |           |       |

#### UNIT- I: STEAM GENERATORS, CONDENSERS AND NOZZLE

Types and Classifications, high pressure boilers – Benson, Lamont and Babcock-Wilcox Boiler- mountings and Accessories – Criteria for selection of a boiler. Steam Condensers-Classifications – Evaporative and surface condensers-

Steam nozzles-isentropic flow through nozzles-convergent, convergent divergent nozzles-critical pressure ratio- effect of friction.

#### UNIT- I: AIR COMPRESSORS AND GAS TURBINES

Reciprocating Compressor – Single Stage and Multi-stage operations, Effect of clearance, Volumetric efficiency. Rotary Compressor – Construction & Working of centrifugal compressor.

Gas turbines- classifications-Methods for improvement of Thermal efficiency –Inter-cooling, Reheating, Regeneration, Gas turbine fuels-Applications.

#### **UNIT- III: STEAM TURBINES**

Impulse and Reaction Principles – Compounding-velocity and pressure compounding- Velocity diagrams for single stage turbines, Speed regulations – Governing.

#### **UNIT- IV: INTERNAL COMBUSTION ENGINES**

Working principles of IC Engines- Cetane and Octane numbers of fuels, Knocking and Detonation, Scavenging and Supercharging, Valve and port timing diagrams, Fuel supply, Ignition, Cooling and Lubrication System.– Performance & Testing–Heat balance calculations.

#### **UNIT- V: REFRIGERATION AND AIR-CONDITIONING**

Working principles of Vapour Compression refrigeration cycle –P-H & T-S diagrams, Calculation of COP, effect of subcooling and superheating, Vapour absorption refrigeration cycles – Refrigerants – Properties.

Introduction to Psychrometry – Psychrometric charts – Psychrometric processes - Principles of air-conditioning – Types of a/c systems – Summer, Winter comfort and Year round air-conditioning.

#### Total No. of Hrs: 60

\*NOTE: Use of approved Steam Tables, Refrigeration Tables and Psychrometric Charts are permitted in Examination.

#### TEXT BOOKS

- 1) Rajput R. K., (2012) "Thermal Engineering", Laxmi Publications (P) Ltd.
- C. P. Kothandaraman and S. Domkundwar, (2004) "Thermodynamics and Thermal Engineering" Dhanpat Rai & Co. (P) Ltd.

#### REFERENCES

1) P. L. Ballaney, (1994) "Thermal Engineering", Khanna Publishers, New Delhi.

2) W.P.Stoecker and J. W. Jones, "Refrigeration and Air Conditioning", Tata McGraw Hill Co. Ltd.,

Ganesan V., (2012) "Internal Combustion Engines", Tata McGraw Hill New Delhi, 4th edition



**12** Hrs

12 Hrs

12 Hrs

12 Hrs

12 Hrs



|                   |                  |                      |                         |              |                   |                |                     |                               |               | -                   |               |             |       |
|-------------------|------------------|----------------------|-------------------------|--------------|-------------------|----------------|---------------------|-------------------------------|---------------|---------------------|---------------|-------------|-------|
| Subject Code:     | S                | ubject Nai           |                         | S OF M       |                   | 7 <b>6</b> T   |                     |                               | T / L/<br>ETI | L                   | T/S.Lr        | <b>P/ R</b> | C     |
| BME17008          | D                | rerequisite:         | CHANIC<br>Engineeri     |              |                   |                | Matarial            | e.                            | ETL<br>T      | -                   | 1/0           | 0/0         | 4     |
| DIVILLITOUO       | 1                | ierequisite.         | Lingineen               | ing Mieen    | ames, Su          | length of      | wiateria            | .5                            | 1             | 3                   | 1/0           | 0/0         | 4     |
| L : Lecture T : 7 | Cast a mi a 1    | CI C                 |                         |              | D . Dasia         | -4 D . D       | h C                 | . Cas dia                     | -             |                     |               |             |       |
| L: Lecture 1 : 1  | utorial          | SLI: Su              | pervised L              | earning      | P : Proje         | Ct R : K       | esearch C           |                               | 8             |                     |               |             |       |
| T/L/ETL : Theo    | ry/Lab/          | Embedded             | Theory an               | ld Lab       |                   |                |                     |                               |               |                     |               |             |       |
| OBJE              | CTIVE            | :                    |                         |              |                   |                |                     |                               |               |                     |               |             |       |
|                   |                  |                      | componer                | nts and la   | yout of li        | inkages i      | n the asso          | embly of                      | f a system /1 | machine             |               |             |       |
|                   |                  |                      | -                       |              | -                 | -              |                     | -                             | -             |                     |               |             |       |
| To und            | erstand          | the princip          | ples in ana             | lyzing th    | e assemt          | oly with       | respect to          | the dis                       | placement,    | velocity            | , and accele  | eration a   | t any |
| point ir          | ı a link         | of a mecha           | nism.                   |              |                   |                |                     |                               |               |                     |               |             |       |
|                   |                  |                      |                         |              |                   | ~ .            |                     |                               |               |                     |               | _           |       |
|                   |                  |                      |                         | -            | a speci           | fied se        | t of li             | nkages,                       | design few    | <sup>7</sup> linkag | e mechanis    | sms and     | cam   |
| mechar            | nisms fo         | or specified         | l output me             | otions.      |                   |                |                     |                               |               |                     |               |             |       |
| ≻ To und          | loratord         | the heric            | aonaanta                | of tootha    | d goorin          | a and lei      | nomotion            | of goor                       | trains and    | the offe            | oto of fricti | on in m     | otion |
|                   |                  | nd in mach           | -                       |              | u gearing         | g and kn       | liematics           | or gear                       | uanis and     | the ene             |               |             | otion |
| transm            | ission a         | nd in maci           | ine compo               | onents       |                   |                |                     |                               |               |                     |               |             |       |
|                   |                  |                      |                         |              |                   |                |                     |                               |               |                     |               |             |       |
| <b>COURSE OUT</b> | COM              | ES (COs) :           | (3-5)                   |              |                   |                |                     |                               |               |                     |               |             |       |
| CO1               |                  |                      |                         | s of mecl    | hanisms a         | and kine       | matic an            | alysis of                     | simple med    | chanism             | s.            |             |       |
| CO2               | 1                | Theory and           | l applicati             | on of fric   | ction in tr       | ansmissi       | ion drives          |                               |               |                     |               |             |       |
| CO3               |                  | Fundament            | 11                      |              |                   |                |                     |                               |               |                     |               |             |       |
| CO4               |                  | Knowledge            |                         |              |                   |                |                     |                               |               |                     |               |             |       |
| Mapping of Co     | urse O           | utcomes w            | ith Progra              | am Outc      | omes (P           | os)            |                     |                               |               |                     |               |             |       |
| Cos/Pos           | PO1              | PO2                  | PO3                     | PO4          | PO5               | PO6            | PO7                 | PO8                           | PO9           | PO10                | PO11          | PO          | 2     |
| CO1               | H                | L                    | H                       |              |                   |                |                     |                               |               |                     |               |             |       |
| CO2               | H                | L                    | H                       |              |                   |                |                     |                               |               |                     |               |             |       |
| CO3               | H                | L                    | H                       |              |                   |                |                     |                               |               |                     |               |             |       |
| CO4<br>Cos / PSOs | H                | L<br>PSO1            | H<br>PSC                | 22           | DC                | 02             | D                   | 5O4                           | DEOS          |                     |               |             |       |
| C01               | <u>г</u>         | 301                  | H                       |              | rs<br>I           | 03             | r.                  | 004                           | PSO5          |                     |               |             |       |
| CO2               |                  |                      | Н                       |              |                   |                |                     |                               |               |                     |               |             |       |
| CO3               |                  |                      | H                       |              |                   |                |                     |                               |               |                     |               |             |       |
| CO4               |                  |                      | H                       |              |                   |                |                     |                               |               |                     |               |             |       |
| H/M/L indicates   | Streng           | th of Corre          |                         |              | /- Mediu          | ım, L-Lo       | w                   |                               |               |                     |               |             |       |
|                   | <u> </u>         |                      |                         |              |                   |                |                     | П                             |               |                     |               |             |       |
|                   |                  |                      |                         |              |                   |                |                     | Ski                           |               |                     |               |             |       |
|                   |                  |                      | Ч                       |              |                   |                |                     | cal                           |               |                     |               |             |       |
| Category          |                  | ses                  | Social                  |              |                   |                |                     | nic                           |               |                     |               |             |       |
|                   |                  | enc                  | Š                       |              | /es               |                | ç                   | ecł                           |               |                     |               |             |       |
|                   | es               | Sci                  | and                     | မ            | ctiv              | /es            | oje                 | L /                           |               |                     |               |             |       |
|                   | enc              | ng<br>Ing            | es s                    | CO           | Ele               | ctiv           | / P1                | ips                           | S             |                     |               |             |       |
|                   | Basic Sciences   | Engineering Sciences | niti<br>>es             | Program Core | Program Electives | Open Electives | Practical / Project | Internships / Technical Skill | Soft Skills   |                     |               |             |       |
|                   | sic              | gin(                 | enc                     | )gr          | gr:               | en             | lotic               | nter                          | ft S          |                     |               |             |       |
|                   | Ba               | En                   | Humanities and Sciences | Ъ,           | Prc               | op             | $\Pr_{2}$           | It                            | So            |                     |               |             |       |
|                   |                  |                      |                         | $\checkmark$ |                   |                |                     |                               |               |                     |               |             |       |
| A                 | 27 <sup>th</sup> | meeting              | of Acade                | emic co      | uncil, J          | June20         | 17                  |                               |               |                     |               |             |       |
| Approval          |                  |                      |                         |              |                   |                |                     |                               |               |                     |               |             |       |
|                   |                  |                      |                         |              |                   |                |                     |                               |               |                     |               |             |       |

#### UNIT I BASICS OF MECHANISMS

Classification of mechanisms – Basic kinematic concepts and definitions – Degree of freedom, Mobility – Kutzbach criterion, Gruebler's criterion – Grashof's Law – Kinematic inversions of four bar chain and slider crank chains – Limit positions – Mechanical advantage – Transmission Angle.

#### UNIT II KINEMATIC ANALYSIS OF MECHANISMS

Displacement, velocity and acceleration analysis of simple mechanisms –Velocity and acceleration polygons – analytical method and Kliens construction . Coincident points – Coriolis component of Acceleration.

#### UNIT III KINEMATICS OF CAM MECHANISMS

Classification of cams and followers – Terminology and definitions – Displacement diagrams –Uniform velocity, uniform acceleration and retardation, simple harmonic motions – Derivatives of follower motions – Layout of plate cam profiles.

#### UNIT IV GEARS AND GEAR TRAINS

Law of toothed gearing – Involutes and cycloidal tooth profiles –Spur Gear terminology and definitions–Gear tooth action – contact ratio – Interference and undercutting. Helical, Bevel, Worm, Rack and Pinion gears [Basics only]. Gear trains – Speed ratio, train value – Parallel axis gear trains – Simple Epicyclic Gear Trains.

#### UNIT V FRICTION IN MACHINE ELEMENTS

Bearings and lubrication – Pivot and collar bearings, Friction clutches – Belt and rope drives – Friction in brakes- Shoe brakes, Band brakes and band and block brakes-braking torque.

#### TEXT BOOKS:

1. Uicker, J.J., Pennock G.R and Shigley, J.E., "Theory of Machines and Mechanisms", 3rd Edition, Oxford University Press, 2009.

2. Rattan, S.S, "Theory of Machines", 3rd Edition, Tata McGraw-Hill, 2009.

3.Khurmi R. S, (2012) "Theory of Machines", S.Chand Publications,.

#### REFERENCES

1) Thomas Bevan, (2005) "Theory of Machines", CBS Publishers and Distributors ,5th Edition.

- 2) Shigley J.E and Uicker J.J., (1995) "Theory of Machines and Mechanisms", McGraw Hill Inc.
- 3) Rattan S.S., (2009) "Theory of Machines", Tata McGraw Hill Publishing Company Ltd., New Delhi.
- 4) Dr.V.P.Singh. (2005) "Theory of Machines", Dhanpat Rai and Co Private Limited.



#### 12 Hrs

## 12Hrs

12Hrs

#### 12Hrs

# 12Hrs

#### Total No of Hrs: 60



| Subject Code    | : S              | ubject Na           | me : ENG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INEERI     | NG ME'          | FROLO         | GY                |                              | T / L/<br>ETL | L    | T / S.Lr | P/ R | C  |
|-----------------|------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|---------------|-------------------|------------------------------|---------------|------|----------|------|----|
| BME17ET3        |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                 |               |                   |                              | ETL           | 2    | 0        | 2/0  | 3  |
| L : Lecture T : | : Tutoria        | l SLr : Su          | upervised I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | earning    | P : Proje       | ct R : R      | esearch (         | C: Credi                     | ts            |      |          |      |    |
|                 | •                | /Embeddeo           | d Theory a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nd Lab     |                 |               |                   |                              |               |      |          |      |    |
| OBJECTIVE       |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                 |               |                   |                              |               |      |          |      |    |
| To gain knowl   | ledge and        | l skill in pi       | recision me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | easuring i | nstrume         | nts           |                   |                              |               |      |          |      |    |
| COURSE OU       | TCOM             | ES (COs)            | ETL       ETL       2       0       2/0       3         str : Supervised Learning P : Project R : Research C: Credits       ETL       2       0       2/0       3         Str : Supervised Learning P : Project R : Research C: Credits       ETL       2       0       2/0       3         Str : Supervised Learning P : Project R : Research C: Credits       ETL       2       0       2/0       3         Supervised Learning P : Project R : Research C: Credits       ETL       2       0       2/0       3         Supervised Learning P : Project R : Research C: Credits       ETL       2       0       2/0       3         Supervised Learning P : Project R : Research C: Credits       ETL       2       0       2/0       3         Swith Program duces in metrology       ecent advances in metrology       ecent advances (Pos)       ecent advances (Pos)       ecent advances (Pos)       Ett        |            |                 |               |                   |                              |               |      |          |      |    |
| CO1             |                  | To unders           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                 |               |                   |                              |               |      |          |      |    |
| CO2             |                  | Recent ad           | ETL       ETL       ETL       2       0       2/0         equisite: Engineering Sciences       ETL       2       0       2/0         SLr : Supervised Learning P : Project R : Research C: Credits       inhedded Theory and Lab       inhedded Theory and Lab       inhedded Theory and Lab         cill in precision measuring instruments         (COs) : (3-5)         understand and apply the various measuring and inspection methods in metrology.         cent advances in metrology         uctical skill in handling precision instruments         Comes with Program Outcomes (Pos)         PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12         L       M       H       Interview       Interview |            |                 |               |                   |                              |               |      |          |      |    |
| CO3             |                  | Practical s         | kill in hand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | iling prec | cision ins      | truments      |                   |                              |               |      |          |      |    |
| Mapping of C    |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                 |               |                   |                              |               |      |          |      |    |
| Cos/Pos         | PO1              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                 |               | PO7               | PO8                          | PO9           | PO10 | PO11     | PO   | 12 |
| CO1             | Μ                | L                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | М          |                 |               |                   |                              |               |      |          | L    |    |
| CO2             | Μ                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                 |               |                   |                              |               |      |          |      |    |
| CO3             | Μ                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                 |               |                   |                              |               |      |          | Н    |    |
| Cos / PSOs      | ]                | PSO1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                 | 503           | -                 | SO4                          | PSO5          |      |          |      |    |
| CO1             |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -          |                 |               |                   |                              |               |      |          |      |    |
| CO2             |                  |                     | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1          |                 |               |                   |                              |               |      |          |      |    |
| CO3             |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                 |               |                   |                              |               |      |          |      |    |
| H/M/L indicat   | es Stren         | gth of Corr         | elation H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I- High, N | M- Medi         | ım, L-Lo      | )W                | -                            | r             | -1   | - 1      |      |    |
| Category        | Basic Sciences   | igineering Sciences | umanities and Social<br>iences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ogram Core | ogram Electives | oen Electives | actical / Project | nternships / Technical Skill | ft Skills     |      |          |      |    |
|                 | $\mathbf{B}_{a}$ | Er                  | Hı<br>Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pr<br>▶    | Pr              | o             | Pr                | I                            | So            |      |          |      |    |
|                 | 27 <sup>th</sup> | meeting             | of Acad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | emic co    | uncil.          | June20        | 17                | 1                            | I             | 1    | 1        |      |    |
| Approval        |                  |                     | JIIIUUU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                 |               | _ '               |                              |               |      |          |      |    |



#### **UNIT- I: BASIC CONCEPTS OF MEASUREMENTS**

Need for measurement - Precision and Accuracy - Reliability - Errors in Measurements - Types - Causes.

#### UNIT- II: LINEAR AND ANGULAR MEASUREMENTS

Measurement of Engineering Components: Comparators (Mechanical, Optical, Electrical) - Slip Gauges - Limit Gauges - Auto Collimator - Angle Decker - Alignment Telescope - Sine Bar - Bevel Protractor.

#### Lab Components:

1. Angular Measurement using Sine Bar, Slip Gauge and Dial Gauge,

2. Measurement of Dimensions using Vernier Height Gauge

3.Measurement of Dimensions using Vernier Depth Micrometer

4. Angular Measurement using Vernier Height Gauge and Sine Bar

5. Angular measurement using Bevel Protractor

6.Calibration of Dial Gauge using Slip Gauge

7.Flatness of given work piece using Autocollimator

#### **UNIT- III: FORM MEASUREMENTS**

Measurement of: Screw Thread – Gears - Radius - Surface Finish – Straightness - Flatness – Roundness. <u>Lab Components:</u> 1.Measurement of Gear Nomenclature using Gear Tooth Vernier

2.Thread Measurement using Profile Projector

#### **UNIT- IV: LASER METROLOGY**

Precision instrument based on Laser: Use of Lasers - Principle - Laser Interferometer - Application in Linear and Angular measurements - Testing of machine tools using Laser Interferometer.

#### **UNIT- V: ADVANCES IN METROLOGY**

Co-ordinate Measuring Machine (CMM) - Constructional features - Types - Applications of CMM – CNC applications - Computer Aided Inspection (CAI) - Machine Vision - Applications in Metrology. Lab Components:

1. Measurement of Dimensions using Tool Makers Microscope

#### **TEXT BOOK**

1) R.K. Jain, (1994) "Engineering Metrology", Khanna publishers, 109094.

#### REFERENCES

1) I.C. Gupta, "A TEXT BOOK of Engineering Metrology", Dhanpat Rai & sons, 109096.

2) G.N. Galver and C.R. Shotbolt, "Metrology for Engineers", ELBS edition, 109090.

3) Thomas "Engineering Metrology", Butthinson & co, 10984.

**9** Hrs

7 Hrs

10 Hrs

#### 9 Hrs

10 Hrs

Total No. of Hrs: 45



| Subject Code             | : Si                    | ubject Na   |                         | DYNAN      | IICS LA    | В              |             |                               | T / L/<br>ETL | L    | T / S.Lr | <b>P/ R</b> | C  |
|--------------------------|-------------------------|-------------|-------------------------|------------|------------|----------------|-------------|-------------------------------|---------------|------|----------|-------------|----|
| BME17L08                 | P                       | rerequisite | : Theory                |            |            |                |             |                               | Т             | 0    | 0        | 3           | 1  |
| L : Lecture T :          |                         |             |                         |            |            | ect R : R      | esearch C   | C: Credit                     | S             |      |          |             |    |
| T/L/ETL : The            | ory/Lab/                | Embedded    | l Theory a              | nd Lab     |            |                |             |                               |               |      |          |             |    |
| OBJECTIVE                | The stu                 | dent will l | earn                    |            |            |                |             |                               |               |      |          |             |    |
| > Worl                   | ting of si              | imple meci  | hanisms                 |            |            |                |             |                               |               |      |          |             |    |
|                          | -                       | -           |                         |            |            |                |             |                               |               |      |          |             |    |
| > Dyr                    | namic ana               | alysis of m | achine ele              | ments      |            |                |             |                               |               |      |          |             |    |
| ≻ To fi                  | nd natura               | al frequenc | y of vibrat             | ing syste  | em at diff | erent mo       | dels        |                               |               |      |          |             |    |
| , 1011                   | na natari               | ar mequeine | <i>y</i> or <i>nora</i> | ing syste  | in at an   | erent mo       | acib        |                               |               |      |          |             |    |
|                          | TCOM                    |             | (2.5)                   |            |            |                |             |                               |               |      |          |             |    |
| C <b>OURSE OU</b><br>CO1 |                         |             | ( 3- 5)<br>of universa  | l govern   | ors and t  | heir annli     | cations     |                               |               |      |          |             |    |
| CO2                      |                         | -           | of gyrosco              | -          |            |                |             |                               |               |      |          |             |    |
|                          |                         | -           |                         | -          |            |                |             |                               |               |      |          |             |    |
| CO3                      |                         |             | rinciples o             |            |            |                |             |                               |               |      |          |             |    |
| Mapping of C             |                         |             |                         |            |            |                | DOZ         | DCO                           | DCC           | DO10 | DO11     | DO          |    |
| Cos/Pos<br>CO1           | PO1<br>H                | PO2<br>M    | PO3<br>M                | PO4        | PO5        | PO6<br>M       | PO7<br>L    | PO8                           | PO9           | PO10 | PO11     | PO          | 12 |
| CO2                      | H                       | L           | IVI                     | М          |            | M              | L           | М                             | L             |      |          |             |    |
| CO3                      | M                       |             | L                       | H          |            |                | L           | IVI                           | L             |      |          |             |    |
| Cos / PSOs               |                         | SO1         | PS                      |            | PS         | 503            |             | SO4                           | PSO5          |      |          |             |    |
| CO1                      | _                       | Н           |                         | -          | M          |                |             |                               |               |      |          |             |    |
| CO2                      |                         | Н           |                         |            | М          |                |             |                               |               |      |          |             |    |
| CO3                      |                         | М           |                         |            | Н          |                |             |                               |               |      |          |             |    |
| H/M/L indicate           | es Streng               | th of Corr  | elation H               | I- High, I | M- Medi    | um, L-Lo       | w           |                               | 1             |      |          |             |    |
|                          |                         |             |                         |            |            |                |             | dill                          |               |      |          |             |    |
|                          |                         |             |                         |            |            |                |             | Internships / Technical Skill |               |      |          |             |    |
| Category                 |                         | Ň           | ial                     |            |            |                |             | nica                          |               |      |          |             |    |
| 2000 801 9               |                         | Sciences    | and Social              |            | s          |                | 4           | chn                           |               |      |          |             |    |
|                          | s                       | cie         | pt                      |            | ectives    | S              | Project     | Te                            |               |      |          |             |    |
|                          | nce                     | ьp          |                         | ore        | _          | tive           | Pro         | / sd                          |               |      |          |             |    |
|                          | cie                     | erin        | itie                    | n C        | пE         | lect           | ~           | shij                          | ills          |      |          |             |    |
|                          | ic S                    | ine         | nan<br>nce              | grat       | grat       | n E            | tic         | ern                           | Sk            |      |          |             |    |
|                          | Basic Sciences          | Engineerin  | Humanities<br>Sciences  | Program (  | Program E  | Open Electives | Practical / | Int                           | Soft Skills   |      |          |             |    |
|                          |                         |             |                         |            |            |                | <u> </u>    |                               |               |      |          |             |    |
|                          | <b>AF</b> <sup>th</sup> |             |                         | •          |            |                | 1 =         |                               |               |      |          |             |    |
| Approval                 | <b>27</b> <sup>m</sup>  | meeting     | of Acad                 | emic co    | ouncil,    | June20         | 17          |                               |               |      |          |             |    |
| appiovai                 |                         |             |                         |            |            |                |             |                               |               |      |          |             |    |



#### KINEMATICS (Demonstration only)

- 1. Kinematics of four bar mechanisms Slider Crank, Crank Rocker Mechanism.
- 2. Kinematics of Gears Spur, Helical, Bevel, Worm.
- 3. Kinematics of Gear trains Simple, Compound, Epicyclic & differential gear trains.

#### 1. DYNAMICS

- a. Motorized Gyroscope Verification of Laws.
- b. Connecting Rod and Flywheel Determination of M.I. by oscillation.
- c. Governors Watts, Porter, Proell and Hartnell Study of characteristics and determination of Sensitivity, effort etc.
- d. Cam-profile of the cam-study of Jump phenomenon Determination of Critical Speeds.

#### 2. VIBRATING SYSTEMS

- a. Helical Spring Determination of natural frequency
- b. Compound Pendulum Determination of natural frequencies moment of inertia.
- c. Torsional vibration Determination of natural frequencies Single rotor system Two rotor system
- d. Flywheel Determination of torsional natural frequencies moment of inertia.
- e. Whirling of shaft Determination of critical speed of shaft.

### 3. BALANCING

Static and dynamic balancing of rotating masses

Total No. of Hrs : 45



# **SEMESTER-IV**



| Subject Code:   | : S            | ubject Na            | me: IND                           | USTRIA          | L AUTC            | )MATI(         | DN                  |                               | T / L/<br>ETL | L    | T / S.Lr | P/ R   | C  |
|-----------------|----------------|----------------------|-----------------------------------|-----------------|-------------------|----------------|---------------------|-------------------------------|---------------|------|----------|--------|----|
| BME17010        |                | rerequisite          |                                   |                 |                   |                |                     |                               | Т             | 3    | 0        | 0      | 3  |
| L : Lecture T : | Tutoria        | l SLr : Su           | pervised I                        | Learning        | P : Proje         | ct R : R       | esearch (           | C: Credi                      | ts            |      |          |        |    |
| T/L/ETL : The   | -              | /Embedded            | l Theory a                        | nd Lab          |                   |                |                     |                               |               |      |          |        |    |
| OBJECTIVE       |                |                      |                                   |                 |                   |                |                     |                               |               |      |          |        |    |
| To impart know  | wledge i       | n hydraulio          | c, pneumat                        | tic and me      | chatroni          | cs systen      | n in Auto           | omation.                      |               |      |          |        |    |
|                 | TCOL           |                      |                                   |                 |                   |                |                     |                               |               |      |          |        |    |
| COURSE OU       |                |                      |                                   | · · · · 11      | 1                 |                | 4 1.0               |                               |               |      |          |        |    |
| CO1             |                | Understan            |                                   | :               |                   |                |                     |                               |               |      |          |        |    |
| CO2             |                | Design of            |                                   |                 |                   |                |                     | ion.                          |               |      |          |        |    |
| CO3             |                | Understan            |                                   |                 |                   |                | n                   |                               |               |      |          |        |    |
| Mapping of C    |                |                      |                                   |                 |                   |                | DC7                 | DOG                           | DCC           | DO10 | D011     | DO     | 10 |
| Cos/Pos         | PO1            | PO2                  | PO3                               | PO4             | PO5               | PO6            | PO7                 | PO8                           | PO9           | PO10 | PO11     | PO     | 12 |
| CO1             | L              |                      | M                                 |                 | H                 |                |                     |                               |               |      |          | M      |    |
| CO2<br>CO3      | L<br>L         | H<br>H               | H<br>H                            |                 | H<br>H            |                |                     |                               |               |      |          | M<br>M |    |
| Cos / PSOs      |                | PSO1                 | PS                                | $\frac{1}{02}$  |                   | 03             | D                   | SO4                           | PSO5          |      |          | IVI    |    |
| CO1             | 1              | 501                  | I S                               |                 | 10                | 03             | Н                   | 304                           | 1505          |      |          |        |    |
| CO2             |                |                      | H                                 |                 |                   |                | H                   |                               |               |      |          |        |    |
| CO3             |                |                      | H                                 |                 |                   |                | H                   |                               |               |      |          |        |    |
| H/M/L indicate  | es Strens      | gth of Corr          |                                   | -<br>I- High, N | /- Mediu          | ım. L-Lo       |                     |                               |               |      |          | 1      |    |
|                 |                | 5                    |                                   |                 |                   |                | 1                   | 1                             |               |      |          |        |    |
| Category        | Basic Sciences | Engineering Sciences | Humanities and Social<br>Sciences | Program Core    | Program Electives | Open Electives | Practical / Project | Internships / Technical Skill | kills         |      |          |        |    |
|                 | Basic          | Engin                | Humanit                           | Progra          | Progra            | Open           | Practi              | Inter                         | Soft Skills   |      |          |        |    |
|                 | <b>Anth</b>    |                      |                                   | <u> </u>        | •1                |                | 18                  |                               |               |      |          |        |    |
| Approval        | 274            | meeting              | of Acad                           | emic co         | uncil, .          | June20         | 17                  |                               |               |      |          |        |    |

#### B.Tech Mechanical Engineering - 2017 Regulation

### UNIT- I BASIC PRINCIPLES OF HYDRAULICS AND PNEUMATICS

Hydraulic principles – Hydraulic pumps – pumping circuits - Hydraulic actuators – Characteristics – Hydraulic valves types and Applications – Hydraulic Fluids. Fundamentals of pneumatics – Control elements – logic circuits – position – pressure sensing – switching – Electro-pneumatic – Electro-hydraulic circuits. Symbols of hydraulic and pneumatic circuits.

#### UNIT- II DESIGN OF HYDRAULIC AND PNEUMATIC CIRCUITS

Hydraulic circuits – Reciprocating – Quick-return – sequencing – synchronizing – Accumulators circuits – Safety circuits – Industrial circuits. Pneumatic circuits – classic – cascade – step counter – combination methods.

Design of Hydraulic and pneumatic circuits - Selection of components – Installation and Maintenance of Hydraulic and Pneumatic power packs.

#### UNIT- III MECHATRONICS, SENSORS AND TRANSDUCERS

Introduction to Mechatronics Systems – Measurement Systems – Transducers – Performance Terminology – Sensors for Displacement, Position and Proximity; Velocity, Motion, Force, Fluid Pressure, Liquid Flow, Liquid Level, Temperature, Light Sensors – Selection of Sensors.

#### UNIT- IV ACTUATION SYSTEM AND SYSTEM MODELS

Hydraulic, Pneumatic and electrical actuation Systems – Mechanical Switches – Solid State Switches – Solenoids – D.C Motors – A.C Motors – Stepper Motors. Building blocks of Mechanical, Electrical, Fluid and Thermal Systems, Rotational – Translational Systems, Electromechanical Systems – Hydraulic – Mechanical Systems.

### UNIT- V CONTROLLERS AND DESIGN OF MECHATRONICS SYSTEMS

Continuous and discrete process Controllers –PID Controllers – Digital Controllers, Digital Logic Control – Micro Processors Control. Programmable Logic Controllers – Basic Structure – Input / Output Processing – Programming – Mnemonics – Timers, Internal relays and counters – Shift Registers – Master and Jump Controls. Stages in designing Mechatronics Systems - Case Studies of Mechatronics Systems, Pick and place robot – automatic Car Park Systems – Engine Management Systems.

#### TEXT BOOKS

1) S.Ilango and V.soundarrajan ,(2011) "Introduction to Hydraulics and Pneumatics", Prentice hall india, 2<sup>nd</sup> Edition.

2) K.Shanmugasundaram(2006) "Hydraulic and Pneumatic control"S.Chand &Co.

3) W. Bolton, "Mechatronics", Pearson Education, Second Edition, 1999.

#### REFERENCES

1) Michael B. Histand and David G. Alciatore, "Introduction to Mechatronics and Measurement Systems", McGraw-Hill International Editions, 2000.

2) Bradley D. A., Dawson D., Buru N.C. and. Loader A.J, "Mechatronics", Chapman and Hall, 1993.

3) Lawrence J. Kamm, "Understanding Electro – Mechanical Engineering", An Introduction to Mechatronics, Prentice – Hall of India Pvt., Ltd., 2000.

4) Nitaigour Premchand Mahadik, "Mechatronics", Tata McGraw-Hill publishing Company Ltd, 2003

5) Anthony Esposito, (2008) "Fluid power with applications", Pearson education Pvt. Ltd, 7th edition.

6) W.Bolton, (2012) "Pneumatic and Hydraulic Systems", Butterworth, 3rd edition.

#### Dr.M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE UNIVERSITY (Decl. U/S 3 of UGC Act 1956) DEPARTMENT OF MECHANICAL ENGINEERING





8 Hrs

11 Hrs

8 Hrs

#### Total No. of Hrs: 45

40

8 Hrs



| Fang to pact       |                  | ]                              | DEPARTN                           | AENT O                           | F MEC             | HANIC           | AL ENG              | INEER                   | ING         |      |      |            |          |
|--------------------|------------------|--------------------------------|-----------------------------------|----------------------------------|-------------------|-----------------|---------------------|-------------------------|-------------|------|------|------------|----------|
| Subject Code:      | 5                | Subject Na                     | me :                              |                                  |                   |                 |                     |                         | T / L/      | L    | Τ/   | <b>P</b> / | С        |
| -                  |                  | -                              | MECHA                             | NICS O                           | F MACI            | HINES -         | -II                 |                         | ETL         |      | S.Lr | R          |          |
| BME17011           |                  |                                |                                   |                                  |                   |                 |                     |                         |             |      |      |            |          |
|                    |                  | Prerequisite                   |                                   |                                  |                   |                 |                     |                         | 0           | 3    | 1    | 0          | 4        |
| L : Lecture T : 7  | Futoria          | ll SLr : Su                    | pervised L                        | earning                          | P : Proje         | ct R : R        | esearch (           | C: Credit               | S           |      |      |            |          |
| T/L/ETL : Theo     | ory/Lat          | /Embedded                      | l Theory ar                       | nd Lab                           |                   |                 |                     |                         |             |      |      |            |          |
| <b>OBJECTIVE</b> : |                  |                                |                                   |                                  |                   |                 |                     |                         |             |      |      |            |          |
| To understand      |                  |                                |                                   |                                  |                   |                 |                     | of mech                 | anisms      |      |      |            |          |
|                    |                  | lesirable eff                  |                                   |                                  |                   |                 |                     |                         |             |      |      |            |          |
|                    |                  | ne concept on<br>ne principle: |                                   |                                  |                   |                 | IS                  |                         |             |      |      |            |          |
|                    | tanu u           | le principie                   | s of govern                       | iors and g                       | gyroscop          | <del>e</del> s. |                     |                         |             |      |      |            |          |
| ·<br>COURSE OUT    | СОМ              | ES (COs)                       | : (3-5)                           |                                  |                   |                 |                     |                         |             |      |      |            |          |
| CO1                |                  | Static and                     | dynamic a                         | nalysis of                       | f force.          |                 |                     |                         |             |      |      |            |          |
| CO2                |                  | Balancing                      | of rotating                       | and Rec                          | iprocatin         | g masse         | s                   |                         |             |      |      |            |          |
| CO3                |                  | Fundamen                       | tal concept                       | s of diffe                       | erent vibr        | atory sy        | stems.              |                         |             |      |      |            |          |
| CO4                |                  | Working p                      |                                   |                                  |                   | g govern        | nors                |                         |             |      |      |            |          |
| CO5                |                  | Gyroscopi                      | <u> </u>                          |                                  |                   |                 |                     |                         |             |      |      |            |          |
| Mapping of Co      |                  |                                |                                   |                                  |                   |                 | -                   | 1                       |             | 1    | r    |            |          |
| COs/POs            | PO1              | PO2                            | PO3                               | PO4                              | PO5               | PO6             | PO7                 | PO8                     | PO9         | PO10 | P    | 011        | PO12     |
| CO1                | Η                | Н                              | М                                 |                                  |                   |                 |                     |                         |             |      |      |            | l        |
| CO2                | H                | Н                              | M                                 |                                  |                   |                 | _                   |                         |             |      |      |            | ļ        |
| CO3                | H                | H                              | M                                 |                                  |                   |                 | -                   |                         |             |      |      |            | ļ        |
| CO4                | H                | H                              | M                                 |                                  |                   |                 |                     |                         |             |      |      |            | i        |
| CO5                | Η                | H                              | M                                 |                                  | D                 |                 |                     |                         |             |      |      |            |          |
| Cos / PSOs         |                  | PSO1                           | PSO                               | 52                               | PS                | 03              | P:                  | SO4                     | PSO<br>5    |      |      |            |          |
| CO1                |                  |                                | H                                 | [                                |                   |                 |                     |                         |             |      |      |            |          |
| CO2                |                  |                                | H                                 | [                                |                   |                 |                     |                         |             |      |      |            |          |
| CO3                |                  |                                | H                                 |                                  |                   |                 |                     |                         |             |      |      |            |          |
| CO4                |                  |                                | H                                 |                                  |                   |                 |                     |                         |             |      |      |            | ĺ        |
| CO5                |                  |                                | H                                 |                                  |                   |                 |                     |                         |             |      |      |            | <u> </u> |
| H/M/L indicates    | s Stren          | gth of Corr                    | elation H                         | - High, N                        | M- Mediu          | ım, L-Lo        | ow                  | 1                       | r           | Т    |      |            |          |
| Category           |                  | iences                         | l Social                          |                                  | ves               |                 | ect                 | Fechnical Skill         |             |      |      |            |          |
|                    | Basic Sciences   | Engineering Sciences           | Humanities and Social<br>Sciences | <ul> <li>Program Core</li> </ul> | Program Electives | Open Electives  | Practical / Project | Internships / Technical | Soft Skills |      |      |            |          |
| Approval           | 27 <sup>th</sup> | meeting                        | of Acad                           | emic co                          | ouncil, .         | June20          | )17                 |                         |             | •    | 1    |            |          |

#### UNIT I FORCE ANALYSIS AND FLYWHEELS

# Static force analysis of mechanisms – D' Alemberts principle - Inertia force and Inertia torque – Dynamic force analysis - Dynamic Analysis in Reciprocating Engines – Gas Forces - Equivalent masses -Bearing loads - Crank shaft Torque– Engine shakingforces - Turning moment diagrams - Flywheels of engines and punch press.

#### UNIT II BALANCING

Static and dynamic balancing - Balancing of rotating masses in several planes - Partial Balancing of a single cylinder Engine – Primary and secondary unbalanced forces.

#### UNIT III FREE VIBRATION

Basic features of vibratory systems - Basic elements and lumping of parameters - Degrees of freedom -Single degree of freedom – Longitudinal and transverse Free vibration - Equations of motion - natural frequency -Types of Damping -Damped free vibration –Whirling of shafts and critical speed -Torsional systems; Natural frequency of two and three rotor systems – torsionally equivalent shaft system.

#### UNIT IV FORCED VIBRATION

Response to periodic forcing - Harmonic Forcing – Forced vibration caused by unbalance -Support motion Force transmissibility and amplitude transmissibility - Vibration isolation

#### UNIT V MECHANISMS FOR CONTROL

Governors - Types - Centrifugal governors - Gravity controlled and spring controlled centrifugal governors - Characteristics - Effect of friction - Controlling Force – Quality of governors – effect of friction.

Gyroscopic - Gyroscopic couple - Gyroscopic stabilization - Gyroscopic effects in aero plane, automobiles and ships.

#### Total No. of Hrs : 60

#### TEXT BOOKS:

1. Ambedkar A. G., Mechanism and Machine Theory, Prentice Hall of India, New Delhi, 2007.

#### REFERENCES

- 1. Thomas Bevan, "Theory of Machines", CBS Publishers and Distributors, 1984.
- 2. Ghosh A. and Mallick A.K., "Theory of Mechanisms and Machines", Affiliated East- Press Pvt.Ltd., New Delhi, 1988.
- 3. Shigley J.E. and Uicker J.J., "Theory of Machines and Mechanisms", McGraw-Hill, Inc., 1995.
- 4. Rao J.S. and Dukkipati R.V., "Mechanism and Machine Theory ", Wiley-Eastern Limited, New Delhi, 1992.
- 5. John Hannah and Stephens R.C., "Mechanics of Machines", Viva low-Priced Student Edition, 1999.
- 6. Sadhu Singh "Theory of Machines" Pearson Education, 2002.



12 Hrs

12 Hrs

#### 12 Hrs

12 Hrs

12 Hrs

# P



| Subject Code:      | Sı                 | ıbject Na            | me : ENG                          | NEERI        | NG MET            | FALLUI         | RGY                 |                               | T / L/<br>ETL | L    | T/S.Lr | P/ R | C  |
|--------------------|--------------------|----------------------|-----------------------------------|--------------|-------------------|----------------|---------------------|-------------------------------|---------------|------|--------|------|----|
| BME17005           | Pr                 | ereauisite           | : Material S                      | Science      |                   |                |                     |                               | T             | 3    | 0      | 0    | 3  |
| L : Lecture T : T  |                    |                      |                                   |              | P : Proje         | ct R : Re      | esearch C           | C: Credit                     | s             |      | -      | -    |    |
| T/L/ETL : Theo     | ory/Lab/           | Embedded             | l Theory ar                       | id Lab       |                   |                |                     |                               |               |      |        |      |    |
| <b>OBJECTIVE</b> : |                    |                      |                                   |              |                   |                |                     |                               |               |      |        |      |    |
| To understand d    | lifferent          | materials            | and their n                       | netallurg    | ical prop         | erties         |                     |                               |               |      |        |      |    |
| COURSE OUT         | COM                |                      | (2.5)                             |              |                   |                |                     |                               |               |      |        |      |    |
| COURSE OUT         |                    |                      | tal of meta                       | l structur   | es and st         | rengthen       | ing mech            | anisms                        |               |      |        |      |    |
| CO2                |                    |                      | and applica                       |              |                   | -              | -                   |                               | riale         |      |        |      |    |
| CO2                |                    | -                    | nent and te                       |              |                   | lonnetai       | s and ne            | wei mau                       |               |      |        |      |    |
| Mapping of Co      |                    |                      |                                   |              |                   | 05)            |                     |                               |               |      |        |      |    |
| Cos/Pos            | PO1                | PO2                  | PO3                               | PO4          | PO5               | PO6            | PO7                 | PO8                           | PO9           | PO10 | PO11   | PO   | 12 |
| CO1                | Н                  | L                    |                                   | Н            |                   | М              | M                   |                               |               |      |        | L    |    |
| CO2                | Μ                  | L                    |                                   | Н            |                   | М              | М                   |                               |               |      |        | L    |    |
| CO3                | М                  | Н                    |                                   | М            |                   | М              | М                   |                               |               |      |        | L    |    |
| Cos / PSOs         | Р                  | SO1                  | PSC                               | 02           | PS                | 03             |                     | SO4                           | PSO5          |      |        |      |    |
| CO1                |                    |                      |                                   |              | Н                 |                | Н                   |                               |               |      |        |      |    |
| CO2                |                    |                      |                                   |              | Н                 |                | Н                   |                               |               |      |        |      |    |
| CO3                |                    |                      | Μ                                 |              | Н                 |                | М                   |                               |               |      |        |      |    |
| H/M/L indicates    | s Streng           | th of Corr           | elation H                         | - High, N    | И- Mediu          | ım, L-Lo       | w                   | 1                             |               | -    |        |      |    |
| Category           | Basic Sciences     | Engineering Sciences | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Practical / Project | Internships / Technical Skill | Soft Skills   |      |        |      |    |
| Approval           | 27 <sup>th</sup> 1 | neeting              | of Acado                          | emic co      | uncil, J          | June20         | 17                  |                               | ·             |      |        |      |    |

#### B.Tech Mechanical Engineering - 2017 Regulation

#### **UNIT- I: CRYSTALLOGRAPHY AND STRENGTHENING MECHANISMS**

Crystalline and amorphous solids - UNIT- cell and primitive cell - Miller indices BCC, FCC and HCP crystal structures and their packing factors - Crystalisation- Crystal defects -Effect of crystal imperfections in mechanical properties-Dislocations- strengthening mechanisms for the improvement of mechanical properties.

#### **UNIT- II: FERROUS AND NON FERROUS METALS**

Significance of Phase diagram-(Eutectic and Eutectoid alloy system)-Equilibrium and Non- Equilibrium cooling-Allotrophy of Iron-iron carbon phase diagram.

Classification of Steels and Cast Iron-Microstructure of Iron and Steel- Cast Irons - Grey, White malleable, spheroidal – Effect of alloying elements on steel - stainless and tool steels. Copper and Copper alloys - Brass, Bronze and Cupronickel -Aluminum and Al-Cu alloy

#### **UNIT- III: HEAT TREATMENT AND TESTING**

Definition - Classification of heat treatment process - Purpose of heat treatment -Principles (fundamentals) of heat treatment - Annealing -Re-crystallization- Normalizing - Hardening-TTT-CCT Cooling curves- Tempering - Interrupted quenching -Testing of materials - Destructive testing - Tensile, Compression, Hardness, Impact, Torsion, Fatigue. Non-destructive testing - Visual inspection, Hammer test, Radiography, Ultrasonic inspection.

#### **UNIT- IV: FAILURE MODES AND ITS PREVENTIONS**

Plastic deformation-Fracture - Mechanism of brittle fracture (Griffith's theory) and ductile fracture -Difference between brittle and ductile fractures - Fatigue failure and its prevention - Creep - different stages in creep curve - Factors affecting creep resistant materials -Mechanism of creep fracture.

#### UNIT- V: NON METALLIC AND NEWER MATERIALS

Types, Properties and Application: Polymers, Ceramics and Metal matrix Composites -Super alloys, Nano-materialscarbon and metal based materials, Smart materials and their properties

#### TEXT BOOKS

1) Avner, (1997) "Introduction to Physical Metallurgy", McGraw Hill International Book., second edition.

2) Williams D Callister, (2007) "Material Science and Engineering", Wiley India Pvt Ltd, Revised Indian Edition.

#### REFERENCES

1) Raghavan, V., (2006) "Materials Science and Engineering", Prentice Hall of India Pvt., Ltd.," 5 th edition.

- 2) Muralidhara. M.K. (1998) "Material science and Process", Danpat Rai Publishing.
- 3) Nayak, S.P., (1985) "Engineering Metallurgy and Material Science", Character Publishing House, Anand, India.
- 4) Van Vlack, (1970) "Material Science for Engineers", Addison Wesley, 10985,
- 5) Arumugam, M., (1997) "Material Science", Anuradha Publishers.
- 6) O.P. Kanna (1999) "Material Science and Metallurgy", Prentice Hall of India Pvt., Ltd.



#### Total No. of Hrs: 45

9 Hrs

9 Hrs

9 Hrs

### 9 Hrs

9 Hrs

44



| Subject Code:     | S                  | ubject Na            | me: HEA                           | AT TRA       | NSFER             | LAB            |                     |                               | T / L/<br>ETL | L         | T/S.Lr       | P/ R | C  |
|-------------------|--------------------|----------------------|-----------------------------------|--------------|-------------------|----------------|---------------------|-------------------------------|---------------|-----------|--------------|------|----|
| BME17L09          |                    | rerequisite          |                                   |              |                   |                |                     |                               | Т             | 0         | 0            | 3/0  | 1  |
| L : Lecture T : 7 | Futoria            | l SLr : Su           | pervised I                        | earning      | P : Proje         | ct R : Re      | esearch C           | C: Credit                     | S             |           |              |      |    |
| T/L/ETL : Theo    | •                  |                      | •                                 | nd Lab       |                   |                |                     |                               |               |           |              |      |    |
| To dete           | luate th<br>ermine |                      | ance of air<br>ties of diffe      | erent liqu   | id fuels.         | ower and       | l refriger          | ation an                      | d air condit  | ioning s  | ystems.      |      |    |
| COURSE OUT        |                    |                      |                                   |              |                   |                |                     |                               |               |           |              |      |    |
| CO1               |                    |                      |                                   |              |                   |                | ower and            | refriger                      | ation and a   | ir condit | ioning syste | ems. |    |
| CO2               |                    | To study t           | he properti                       | es of diff   | erent liqu        | uid fuels.     |                     |                               |               |           |              |      |    |
| CO3               |                    | To study the         |                                   |              |                   |                |                     |                               |               |           |              |      |    |
| Mapping of Co     |                    |                      |                                   | am Outo      |                   |                |                     |                               |               | _         |              |      |    |
| Cos/Pos           | PO1                | PO2                  | PO3                               | PO4          | PO5               | PO6            | PO7                 | PO8                           | PO9           | PO10      | PO11         | PO1  | .2 |
| CO1               | Н                  | М                    | М                                 |              |                   | М              | L                   |                               |               |           |              |      |    |
| CO2               | H                  | L                    | x                                 | M            |                   |                | T                   | M                             | L             |           |              |      |    |
| CO3               | M                  | 2001                 | L                                 | Н            | DC                | 02             | L                   |                               | DCO7          |           |              |      |    |
| Cos / PSOs<br>CO1 |                    | PSO1<br>H            | PS                                | 52           | M PS              | 03             | PS                  | 504                           | PSO5          |           |              |      |    |
| CO1<br>CO2        |                    | <u>н</u><br>Н        |                                   |              | M                 |                |                     |                               |               |           |              |      |    |
| CO2<br>CO3        |                    | M                    |                                   |              | H                 |                |                     |                               |               |           |              |      |    |
| H/M/L indicates   | s Stren            | 1.1                  | elation H                         | - High I     |                   | m L-Lo         | w                   |                               | l             |           |              |      |    |
| Category          | Basic Sciences     | Engineering Sciences | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Practical / Project | Internships / Technical Skill | Soft Skills   |           |              |      |    |
| Approval          | 27 <sup>th</sup>   | meeting              | of Acad                           | emic co      | ouncil, .         | June20         | 17                  |                               |               |           |              | •    |    |



#### LIST OF EXPERIMENTS:

- 1. Performance test on reciprocating air compressor.
- 2. Performance test on a constant speed air blower.
- 3. Viscosity measurement using Redwood apparatus.
- 4. Viscosity measurement using Say bolt apparatus.
- 5. Determination of COP of a refrigeration system.
- 6. Determination of COP of air conditioning system.
- 7. Determination of flash point and fire point of the given lubricating oil sample.
- 8. Determination of thermal conductivity of an insulating material.
- 9. Determination of efficiency of a pin fin using natural and forced convection methods.
- 10. Determination of emissivity of a gray body using emissivity apparatus.
- 11. Determination of Stefan Boltzmann Constant.
- 12. Determination of effectiveness of a parallel flow and counter flow heat exchanger.
- 13. Determination of Heat Transfer in Drop and Film wise Condensation
- 14. Overall Heat Transfer Coefficient of Composite wall..

#### Total No. of Hrs : 45



### **SEMESTER-V**



| Subject Code:<br>BME17014 | S              | ubject Nai                 | me : DESI                     | GN OF I    | MACHI          | NE ELE       | MENTS               | - I                           | T / L/<br>ETL | L         | T/S.Lr       | P/ R | C |
|---------------------------|----------------|----------------------------|-------------------------------|------------|----------------|--------------|---------------------|-------------------------------|---------------|-----------|--------------|------|---|
| BME17014                  |                | rerequisite<br>Iechanics o |                               |            | anics, St      | rength of    | Materia             | ls,                           | Т             | 3         | 1            | 0    | 4 |
| L : Lecture T : T         | [utoria]       | SLr:S                      | upervised l                   | Learning   | P : Proje      | ect R : R    | esearch (           | C: Credi                      | ts            | •         | •            | •    |   |
| T/L/ETL : Theo            | ry/Lab         | /Embedded                  | l Theory a                    | nd Lab     |                |              |                     |                               |               |           |              |      |   |
| <b>OBJECTIVE</b> :        | The s          | student will               | learn                         |            |                |              |                     |                               |               |           |              |      |   |
| Design                    | princip        | ples of vari               | ous compo                     | onents in  | mechanio       | cal engin    | eering ap           | plication                     | ı.            |           |              |      |   |
| To fam                    | iliarize       | the variou                 | is steps inv                  | olved in   | the Desig      | gn Proces    | s to satis          | fy functi                     | onal and st   | rength re | equirement   | 5.   |   |
|                           |                | rd practice                |                               |            |                |              |                     |                               |               | U         | 1            |      |   |
| COURSE OUT                |                |                            |                               |            |                |              |                     |                               |               |           |              |      |   |
| CO1                       |                |                            |                               | various c  | omponen        | its in me    | chanical            | engineer                      | ing applica   | tion.     |              |      |   |
| CO2                       |                | To familia                 | rize the va                   | rious step | s involve      | ed in the    | design p            | rocess to                     | satisfy fun   | ctional a | and strength | 1    |   |
|                           |                | requiremen                 |                               | 1          |                |              | 2 1                 |                               | 2             |           | 0            |      |   |
| CO3                       |                | To use star                |                               | ices and   | standard       | data.        |                     |                               |               |           |              |      |   |
| Mapping of Co             |                |                            |                               |            |                |              |                     |                               |               |           |              |      |   |
| Cos/Pos                   | PO1            | PO2                        | PO3                           | PO4        | PO5            | PO6          | PO7                 | PO8                           | PO9           | PO10      | PO11         | PO   | 2 |
| CO1                       | L              | М                          | Н                             | М          |                |              |                     |                               |               | L         |              |      |   |
| CO2                       | L              |                            | М                             |            |                |              |                     |                               |               | L         |              |      |   |
| CO3                       | L              |                            |                               |            |                |              |                     |                               |               |           |              |      |   |
| Cos / PSOs                | I              | PSO1                       | PSO                           | 02         | PS             | 03           | PS                  | SO4                           | PSO5          |           |              |      |   |
| CO1                       |                | М                          | H                             |            |                |              |                     |                               |               |           |              |      |   |
| CO2                       |                |                            | N                             |            |                |              |                     |                               |               |           |              |      |   |
| CO3                       |                |                            | N                             | -          | М              |              |                     |                               |               |           |              |      |   |
| H/M/L indicates           | s Streng       | gth of Corr                | elation H                     | - High, N  | A- Mediu       | ım, L-Lo     | W                   |                               |               | -1        | 1            |      |   |
| Category                  | ciences        | gineering Sciences         | manities and Social<br>iences | gram Core  | gram Electives | en Electives | Practical / Project | Internships / Technical Skill | lls           |           |              |      |   |
|                           | Basic Sciences | Euginee<br>meeting         | Hu<br>Sci                     | Pro        | Pro            | Op           |                     | Intern                        | Soft Skills   |           |              |      |   |
| Approval                  |                | 8                          |                               |            |                |              |                     |                               |               |           |              |      |   |



| <b>UNIT- I: INTRODUCTION TO DESIGN OF MACHINE ELEMENTS</b><br>Mechanical Engineering Design – Design considerations – Material selection – Modes of failu<br>Stress concentration – Factor of safety. | <b>10 Hrs</b><br>ure – Theories of failure – |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| UNIT- II: SHAFTS AND COUPLINGS<br>Design of shafts and couplings – Design of cotter and knuckle joints                                                                                                | <b>14</b> Hrs                                |
| UNIT- III: DESIGN OF SPRINGS<br>Design of Helical and Leaf springs                                                                                                                                    | <b>10</b> Hrs                                |
| <b>UNIT- IV: FASTENERS AND KEYS</b><br>Design of welded joints – Fillet and butt welds – Design of riveted joints.                                                                                    | <b>14</b> Hrs                                |
| <b>UNIT- V: BEARINGS</b><br>Design of sliding contact bearings – Selection of rolling contact bearings                                                                                                | <b>12</b> Hrs                                |
| <b>*NOTE:</b> Use of PSG Design Data book is permitted in Examination                                                                                                                                 | Total No. of Hrs : 60                        |

#### TEXT BOOKS

1) Shigley J.E and Mischke C. R., (2008) "Mechanical Engineering Design", Sixth Edition, Tata McGraw Hill.

2) Bhandari V.B, (2010) "Design of Machine Elements", Second Edition, Tata McGraw-Hill Book Co.

#### **REFERENCE BOOK:**

- 1. Sundararajamoorthy, T.V. and Shanmugan, Machine Design, Anuradha Agencies, 2003.
- 2. Shigley, J.E., Charles, R.M. and Richard, G.B., Mechanical Engineering Design, 7th ed., McGraw-Hill, 2004.



| Subject Code:               | 5                  | Subject Na                 | me: HEA                           | AT AND                    | MASS 7            | FRANSI         | FER                 |                               | T / L/<br>ETL | L    | T /<br>S.Lr | <b>P/ R</b> | С        |
|-----------------------------|--------------------|----------------------------|-----------------------------------|---------------------------|-------------------|----------------|---------------------|-------------------------------|---------------|------|-------------|-------------|----------|
| BME17012                    | I                  | Prerequisite               | : Engineer                        | ring Phy                  | sics & M          | athemati       | cs                  |                               | Ty            | 3    | 1           | 0           | 4        |
| L : Lecture T : T           |                    |                            |                                   |                           |                   |                |                     | C: Cred                       |               | -    | _           |             | <u> </u> |
| T/L/ETL : Theo              | ry/Lat             | /Embedded                  | I Theory a                        | nd Lab                    |                   |                |                     |                               |               |      |             |             |          |
| <ul> <li>Concept</li> </ul> | ot and<br>ot of va | modes of he<br>arious heat | eat and ma<br>transfer co         | rrelations                |                   | r engine       | ering calc          | culations                     | s.            |      |             |             |          |
| COURSE OUT                  |                    | types of hear $(COs)$      |                                   | ers                       |                   |                |                     |                               |               |      |             |             |          |
| COURSE OUT                  |                    |                            |                                   | on and C                  | onvection         | n heat tra     | ansfer and          | d their c                     | orrelations.  |      |             |             |          |
| CO2                         |                    | Concept of                 |                                   |                           |                   |                |                     |                               |               |      |             |             |          |
|                             |                    | Concept of                 |                                   | -                         | -                 |                |                     |                               | uons          |      |             |             |          |
| CO3                         |                    | -                          |                                   | •                         |                   |                |                     |                               |               |      |             |             |          |
| CO4                         |                    | Concept of                 |                                   |                           |                   | -              | oplication          | IS.                           |               |      |             |             |          |
| Mapping of Co               |                    |                            |                                   |                           | omes (P           | Os)            |                     |                               |               | -    |             |             |          |
| COs/POs                     | PO1                | PO2                        | PO3                               | PO4                       | PO5               | PO6            | PO7                 | PO8                           | PO9           | PO10 | PO1         | 1           | PO12     |
| CO1                         | M                  | L                          | М                                 |                           |                   |                |                     |                               |               |      |             |             |          |
| CO2                         |                    | М                          | М                                 |                           |                   |                |                     |                               |               |      |             |             |          |
| CO3                         |                    | М                          | М                                 |                           |                   |                |                     |                               |               |      |             |             |          |
| CO4                         |                    | М                          | М                                 |                           |                   |                |                     |                               |               |      |             |             |          |
| COs / PSOs                  |                    | PSO1                       | PS                                |                           | PS                | 03             | P                   | SO4                           | PSO5          |      |             |             |          |
| CO1                         |                    | Н                          | Ν                                 |                           |                   |                |                     |                               |               |      |             |             |          |
| CO2                         |                    |                            | Ν                                 |                           |                   |                |                     |                               |               |      |             |             |          |
| CO3                         |                    |                            | Ν                                 |                           | 1                 | М              |                     |                               |               |      |             |             |          |
| CO4                         |                    |                            | N                                 |                           |                   |                |                     |                               |               |      |             |             |          |
| H/M/L indicates             | Stren              | gth of Corr                | elation H                         | I- High, N                | И- Mediu          | ım, L-Lo       | )W                  | 1                             | 1             | -    |             |             |          |
| Category                    | Basic Sciences     | Engineering Sciences       | Humanities and Social<br>Sciences | Program Core              | Program Electives | Open Electives | Practical / Project | Internships / Technical Skill | Soft Skills   |      |             |             |          |
| Approval                    | 27 <sup>th</sup>   | meeting                    | of Acad                           | I <sup>√</sup><br>emic co | ouncil, .         | June20         | 17                  |                               |               |      |             |             |          |

#### **UNIT-I: CONDUCTION**

Introduction of heat transfer – Mode of Heat Transfer- Fourier' Law of Conduction - General Differential equation of Heat Conduction- Heat conduction through Plane Wall, Cylinders and Spherical systems – Composite Systems - Critical thickness of insulation - Extended surfaces (Fins).

#### **UNIT-II: CONVECTION**

Basic Concepts – Boundary Layer Concept – Types of Convection – Forced Convection-External Flow- Flow over flat plates, Cylinders and Spheres- Internal Flow–Laminar and Turbulent Flow– Combined Laminar and Turbulent –Free Convection – Flow over Vertical Plate, Horizontal Plate and long horizontal cylinder.

#### **UNIT-III: RADIATION**

Basic Laws of Radiation, Radiation shape factor, shape factor algebra for radiant heat exchange between black and gray bodies and Radiation shield-, Introduction to Radiosity and Irradiation.

#### UNIT- IV: PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGER

Boiling heat transfer phenomenon – modes of boiling, pool boiling regime-flow boiling thro horizontal pipes.-boiling empirical correlations. Condensation-film and drop wise condensation-Nusselt theory of condensation over vertical surface - governing equations-empirical correlations. Heat exchangers- types-Description only.

#### **UNIT- V: MASS TRANSFER**

Basic Concepts – Diffusion Mass Transfer – Fick's Law of Diffusion – Steady state Molecular Diffusion – Convective Mass Transfer – Convective Mass Transfer Correlations.

Total No. of Hrs : 60

13 Hrs

13 Hrs

12 Hrs

12 Hrs

**10** Hrs

**\*NOTE:** Use of approved HMT data book is permitted in the University Examination.

#### **TEXT BOOKS**

- 1) C.P.Kothandaraman, (2005) "Fundamentals of Heat and Mass Transfer", New age International (p) Ltd-109098.
- 2) R.C.Sachdeva (2010). "Fundamentals of Heat and Mass Transfer", New age International (p) Ltd -109098, 4<sup>th</sup> edition.
- 3) R.K.Rajput (2007) "Heat and Mass transfer", Chand Publishers

#### REFERENCES

- 1) J.P.Holman (2001) "Heat transfer", McGraw Hill Book Company, 9th edition.
- 2) Ozisik.N.M. (1998) "Heat transfer", McGraw Hill Book Company.
- 3) Michael A. Boles and Yunus A. Cengel (2002), "Thermodynamics: An Engineering Approach", McGraw-Hill.





| Subject Code:      |                  | ct Nam<br>ΓROL &     |                       |                                    |                   |                | FY<br>EERING        | T/I<br>ETI                    |             | T / S.I   |          | / R  | C    |
|--------------------|------------------|----------------------|-----------------------|------------------------------------|-------------------|----------------|---------------------|-------------------------------|-------------|-----------|----------|------|------|
| BMG17007           | Prereq           | <u>uisite:</u> I     | Basic Kı<br>Techniq   |                                    |                   |                | eory                | Т                             | 3           | 0         | 0        |      | 3    |
| L : Lecture T : Tu | utorial S        |                      |                       |                                    |                   |                |                     | n C: Cr                       | edits       |           |          |      |      |
| T/L/ETL : Theory   | y/Lab./Er        | nbedded              | 1 Theory              | y and La                           | ab.               |                |                     |                               |             |           |          |      |      |
| OBJECTIVE: T       |                  |                      |                       | technic                            | jues and          | l implen       | nentation of        | Quality                       | Contro      | and Rel   | iability |      |      |
| COURSE OUT         | COMES            | (COs) :              |                       |                                    |                   |                |                     |                               |             |           |          |      |      |
| CO1                |                  | Conce                | pts Qu                | ality Co                           | ntrol an          | d Relia        | bility              |                               |             |           |          |      |      |
| CO2                |                  | Princi               | ples and              | d Techn                            | iques o           | f qualit       | y control           |                               |             |           |          |      |      |
| CO3                |                  | Reliab               | oility im             | provem                             | ent               |                |                     |                               |             |           |          |      |      |
| Mapping of Cou     | rse Outo         | comes (              | COs) wi               | ith Prog                           | gram O            | utcome         | es (POs) & P        | rograr                        | n Speci     | fic Outco | omes (PS | SOs) |      |
| COs/POs            |                  |                      |                       |                                    |                   |                |                     | Р                             |             |           |          |      |      |
|                    | PO1              | PO2                  | PO3                   | PO4                                | PO5               | PO6            | PO7                 | 0                             | PO9         | PO10      | PO11     |      | PO12 |
|                    |                  |                      |                       |                                    |                   |                |                     | 8                             |             |           |          |      |      |
| CO1                | М                | Н                    | М                     | М                                  | М                 | L              |                     |                               |             | М         |          |      | М    |
| CO2                | М                | Н                    | М                     | М                                  | М                 | L              |                     |                               |             | М         |          |      | М    |
| CO3                | М                |                      |                       |                                    | L                 | М              |                     | М                             | Н           | Н         | М        |      | М    |
| COs / PSOs         | PS               | 01                   | PS                    | 02                                 | PS                | 03             | PSO4                |                               |             |           |          |      |      |
| CO1                |                  |                      |                       |                                    | Ν                 | M              | L                   |                               |             |           |          |      |      |
| CO2                |                  |                      |                       |                                    | Ν                 | A              |                     |                               |             |           |          |      |      |
| CO3                |                  |                      |                       |                                    | Ν                 | М              |                     |                               |             |           |          |      |      |
| H/M/L indicates    | Strength         | of Corre             | elation               | H- Hig                             | gh, M- N          | Aedium         | , L-Low             |                               |             | 1         | I        | 1    |      |
| Category           | tiences          | Engineering Sciences | Humanities and Social | Core                               | Program Electives | ectives        | Practical / Project | Internships / Technical Skill | lls         |           |          |      |      |
|                    | Basic Sciences   | Enginee              | Humanit               | <ul> <li>▲ Program Core</li> </ul> | Program           | Open Electives | Practical           | Interns                       | Soft Skills |           |          |      |      |
|                    | 27 <sup>th</sup> | <br>meetir           | l<br>Ig of A          | cader                              | nic co            | uncil          | June2017            |                               |             |           |          |      |      |
| Approval           |                  |                      | 8                     |                                    |                   |                |                     |                               |             |           |          |      |      |

#### UNIT- I: STATISTICAL QUALITY CONTROL

Quality, quality control, factors affecting quality, methods of control, chance causes, assignable causes. Quality control and quality assurance, economics of quality, organization for quality, statistical tools for quality control, quality circles.

#### **UNIT- II: CONTROL CHARTS**

**UNIT- III: ACCEPTANCE SAMPLING** 

Control charts, control charts for variables X bar and R charts, standard deviation Charts, process and machine capabilities, control charts for attributes, fraction defective and number of defectives charts, control charts for non-conformities, special control charts, statistical process control.

Types of sampling, sampling inspection, inspection by Attributes and Variables, role of acceptance sampling, procedure for sampling, single, double, multiple sequential sampling plans, O.C.curves, quality indices for acceptance sampling plans, Dodge-Romig sampling for lot by lot, acceptance sampling by attributes, AQL, LTPD, AOQL- sampling plans, numerical problems on the above.

#### **UNIT- IV: RELIABILITY**

Definition, mean fracture rate, mean time to failure, mean time between failure, hazard rate ,hazard models. Weibull model, system reliability, series , parallel and mixed configuration , simple problems.

#### **UNIT- V: RELIABILITY IMPROVEMENT**

Reliability improvement, redundancy, element, UNIT- and stand by redundancy, reliability allocation for a series system, maintainability and availability. System down time, reliability and maintainability trade off, simple problems.

#### Note: Approved SQC table to be permitted for University examination.

#### TEXT BOOKS

- 1) Grantt, "Statistical Quality Control", Tata McGraw Hill.
- 2) L.S.Srinath, "Reliability Engineering", Affiliated East West Press, New Delhi, 10975.

#### REFERENCES

- 1) Jerry Banks, "Principles of Quality Control", John Willey, 109090
- 2) Dr. E. Balagurusamy, "Reliability Engineering"



Total No. of Hrs



9 Hrs

9 Hrs

9 Hrs

9 Hrs

:45

9 Hrs



| Subject Code:                              | Su                                | bject Na                          | me : INDU                               | JSTRIA          | L AUTO            | MATIO          | N LAB               |                               | T / L/<br>ETL  | L           | T / S.Lr   | P/ R     | C  |
|--------------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------------|-----------------|-------------------|----------------|---------------------|-------------------------------|----------------|-------------|------------|----------|----|
| BME17L10                                   |                                   | erequisite                        |                                         |                 |                   |                |                     |                               | L              | 0           | 0          | 3/0      | 1  |
| L : Lecture T : T                          | utorial                           | S.Lr : S                          | upervised                               | Learning        | P : Proj          | ect R : R      | esearch             | C: Cred                       | its            |             |            |          |    |
| T/L/ETL : Theor                            | •                                 |                                   | •                                       | nd Lab          |                   |                |                     |                               |                |             |            |          |    |
| <ul><li>To prac</li><li>To desig</li></ul> | practical<br>tice sim<br>gn and i | l knowled<br>ple progr<br>mplemen | lge through<br>ams on mi<br>at pneumati | croproce        | ssors and         | micro co       | ontrollers          | S.¬                           | related softwa |             | th– kits.  |          |    |
| COURSE OUT                                 |                                   |                                   |                                         | <u> </u>        |                   |                | •                   | . 11                          |                |             |            |          |    |
| <u>CO1</u>                                 |                                   |                                   | ple program                             |                 |                   |                |                     |                               |                | 1' 6        | 1          | •.1 1 •. |    |
| CO2                                        |                                   |                                   |                                         |                 |                   | hydraulic      | circuits            | with au                       | tomation stu   | idio softv  | vare and w | ith kits |    |
| CO3                                        |                                   | U                                 | e of indust                             |                 |                   | ~ ~)           |                     |                               |                |             |            |          |    |
| Mapping of Cou<br>Cos/Pos                  |                                   |                                   |                                         | PO4             |                   | os)<br>PO6     | PO7                 | PO8                           | DOO            | <b>DO10</b> | DO11       | DO       | 10 |
| COS/POS<br>CO1                             | PO1<br>L                          | PO2                               | PO3<br>H                                | P04             | PO5<br>H          | PU6            | P07                 | P08                           | PO9            | PO10        | PO11       | PO1<br>H | 12 |
| CO1<br>CO2                                 | L<br>L                            |                                   | H                                       |                 | H                 |                |                     |                               |                |             |            | H        |    |
| CO2<br>CO3                                 | L                                 |                                   | L                                       |                 | М                 |                |                     |                               |                | +           |            | H        |    |
| Cos / PSOs                                 |                                   | 501                               | PS                                      | $\frac{1}{2}$   |                   | 503            | P                   | SO4                           | PSO5           |             |            | 11       |    |
| CO1                                        | 1.                                | 501                               | H H                                     |                 | 1.                | 05             | H                   | 50+                           | 1505           |             |            |          |    |
| CO2                                        |                                   |                                   | H                                       |                 |                   |                | H                   |                               |                |             |            |          |    |
| CO3                                        |                                   |                                   | H                                       |                 | М                 |                | Н                   |                               |                |             |            |          |    |
| H/M/L indicates                            | Strengt                           | h of Corr                         |                                         | -<br>I- High, N |                   | ım. L-Lo       |                     |                               |                |             |            |          |    |
| Category                                   | Basic Sciences                    | Engineering Sciences              | Humanities and Social<br>Sciences       | Program Core    | Program Electives | Open Electives | Practical / Project | Internships / Technical Skill | Soft Skills    |             |            |          |    |
| Approval                                   | 27 <sup>th</sup> n                | neeting                           | of Acad                                 | emic co         | ouncil, .         | June20         | 17                  | 1                             | <u> </u>       |             | <u> </u>   | <b> </b> |    |



### LIST OF EXPERIMENTS:

- 1. Exercises in PLC Trainer Kit.
- 2. Exercises in Pneumatic / Hydraulic Trainer Kit.
- 3. Exercises in Industrial Robot.
- 4. Exercises in microprocessors and micro controllers.
- 5. Design of pneumatic and hydraulic circuits using Automation Studio software.

Total No. of Hrs: 45



# **SEMESTER -VI**



| -Fang to refit      |                    |                           | DEI AN                            |              |                   | ECHAN          | ICAL E              | IGINE                         | LNING         |          |           |      |   |
|---------------------|--------------------|---------------------------|-----------------------------------|--------------|-------------------|----------------|---------------------|-------------------------------|---------------|----------|-----------|------|---|
| Subject Code:       | Sub                | ject Name                 | : DESIG                           | N OF M       | ACHINI            | E ELEM         | ENTS -              | II                            | T / L/<br>ETL | L        | T/S.Lr    | P/ R | C |
| BME17014            |                    |                           | ngineering<br>Machines -          |              |                   |                |                     |                               | Т             | 3        | 1         | 0    | 4 |
| L : Lecture T : T   | utorial            | S Lr : Su                 | upervised I                       | Learning     | P : Proje         | ect R : R      | esearch             | C: Credi                      | ts            |          |           |      | - |
| T/L/ETL : Theor     | y/Lab/             | Embedded                  | Theory ar                         | nd Lab       |                   |                |                     |                               |               |          |           |      |   |
| <b>OBJECTIVES</b> : | The st             | tudent will               | learn                             |              |                   |                |                     |                               |               |          |           |      |   |
| Design              | princip            | les and de                | sign proced                       | dure of va   | arious me         | echanical      | l power t           | ransmiss                      | sion system   | s.       |           |      |   |
| ➤ Use of s          | standar            | d design d                | ata books a                       | and catalo   | ogues.            |                | -                   |                               | -             |          |           |      |   |
| OURSE OUTC          | OMES               | <b>S</b> ( <b>COs</b> ) : |                                   |              |                   |                |                     |                               |               |          |           |      |   |
| CO1                 | ]                  | Design pri                | nciples an                        | d design     | procedu           | ure of va      | rious m             | echanica                      | al power tr   | ansmissi | on system | s.   |   |
| CO2                 | ]                  | Design pri                | nciples and                       | l design p   | orocedure         | e of simp      | le mecha            | inism.                        |               |          |           |      |   |
| CO3                 | l                  | Use of stan               | dard desig                        | n data bo    | oks and           | catalogue      | es                  |                               |               |          |           |      |   |
| Mapping of Cou      |                    |                           |                                   |              |                   |                |                     |                               |               |          |           |      |   |
| Cos/Pos             | PO1                | PO2                       | PO3                               | PO4          | PO5               | PO6            | PO7                 | PO8                           | PO9           | PO10     | PO11      | PO1  | 2 |
| CO1                 | Μ                  |                           | Н                                 |              |                   |                |                     |                               |               | L        |           | L    |   |
| CO2                 | L                  |                           | М                                 |              |                   |                |                     |                               |               |          |           | L    |   |
| CO3                 |                    |                           | М                                 | L            |                   |                |                     |                               |               |          |           |      |   |
| Cos / PSOs          | Р                  | SO1                       | PSC                               |              |                   | 03             | PS                  | SO4                           | PSO5          |          |           |      |   |
| CO1                 |                    | M                         | Н                                 |              | L                 |                |                     |                               | _             |          |           |      |   |
| CO2                 |                    | L                         | Н                                 |              | M                 |                |                     |                               |               |          |           |      |   |
| CO3                 | ~                  | L                         | M                                 |              | L                 |                |                     |                               |               |          |           |      |   |
| H/M/L indicates     | Streng             | th of Corre               | elation H                         | - High, N    | /I- Mediu         | ım, L-Lo       | W                   | 1                             |               | 1        |           |      |   |
| Category            | Basic Sciences     | Engineering Sciences      | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Practical / Project | Internships / Technical Skill | Soft Skills   |          |           |      |   |
| Approval            | 27 <sup>th</sup> 1 | meeting                   | of Acade                          | emic co      | uncil, J          | une20          | 17                  |                               |               |          |           |      |   |



| <b>UNIT- I: DESIGN OF TRANSMISSION SYSTEMS FOR FLEXIBLE ELEMENTS</b><br>Selection of V belts and pulleys – selection of Flat belts and pulleys – Wire ropes and pulleys –Selection of Transmichains and Sprockets. | <b>14</b> Hrs ission |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| <b>UNIT- II: DESIGN OF SIMPLE GEARS</b><br>Design of gears – Spur gear, Helical gear and Herringbone gears.                                                                                                        | <b>12</b> Hrs        |
| <b>UNIT- III: DESIGN OF SPECIAL GEARS</b><br>Design of Bevel gears – Straight and Spiral Bevel types. Design of Worm gears .                                                                                       | <b>12</b> Hrs        |
| <b>UNIT- IV: DESIGN OF SPEED REDUCERS</b><br>Design of speed reducers –Geometric Progression – Standard Step ratio- Ray diagram – Kinematic arrangement o Number of teeth on gears.                                | 14 Hrs<br>f Gears -  |
| UNIT- V: DESIGN OF SIMPLE MECHANISMS<br>Design of Ratchet and pawl mechanism, Geneva mechanism.                                                                                                                    | <b>8</b> Hrs         |
| Total No. of Hr                                                                                                                                                                                                    | s : 60               |
| *NOTE: Use of P.S.G Design Data Book is permitted in the University examination                                                                                                                                    |                      |
| TEXT BOOKS                                                                                                                                                                                                         |                      |

1) Shigley J.E and Mischke C. R., (2003) "Mechanical Engineering Design", Sixth Edition, Tata McGraw Hill.

2) Sundararajamoorthy T. V and Shanmugam .N, (2003) "Machine Design", Anuradha Publications, Chennai.

#### REFERENCES

- 1) Maitra G.M. and Prasad L.V., "Hand book of Mechanical Design", II Edition, Tata McGraw Hill 10985.
- 2) Bhandari, V.B., "Design of Machine Elements", Tata McGraw Hill Publishing Company Ltd., 109094.
- 3) Prabhu. T.J., (2000) "Design of Transmission Elements", Mani Offset, Chennai.
- 4) Hamrock B.J., Jacobson B. and Schmid S.R., *"Fundamentals of Machine Elements"*, Tata McGraw-Hill Book Co., 1090909.
- 5) Ugural A,C, (2003) "Mechanical Design, An Integrated Approach", Tata McGraw-Hill.



| Subject Code:      | Subje            | ct Nam                                                                      | e: PROJ                           | ЕСТ          | MAN               | AGEM           | ENT                 |          |                               | ]           | Ĺ                                        | Т      | Р       | С          |  |
|--------------------|------------------|-----------------------------------------------------------------------------|-----------------------------------|--------------|-------------------|----------------|---------------------|----------|-------------------------------|-------------|------------------------------------------|--------|---------|------------|--|
| BMG17004           | D                | · · · · · ·                                                                 |                                   | 1.1          |                   |                |                     |          |                               |             | <u> </u>                                 | 0      |         |            |  |
| L : Lecture T : Tu |                  | -                                                                           | Basic Knov                        | -            | e as M            | anagem         | ent Co              | oncepts  |                               | ·           | 3                                        | 0      | 0       | 3          |  |
| OBJECTIVE: Th      |                  |                                                                             |                                   | nts          |                   |                |                     |          |                               |             |                                          |        |         |            |  |
|                    |                  |                                                                             | earn:<br>nent of stu              | ıden         | ts in d           | ecision        | maki                | ng,      |                               |             |                                          |        |         |            |  |
|                    | -                |                                                                             | utilization                       |              |                   |                |                     | 0,       |                               |             |                                          |        |         |            |  |
| ➢ To have          | e co-or          | dinatio                                                                     | on betwee                         | en va        | rious             | depart         | ment                | in the   | orga                          | nizati      | on fo                                    | r comj | pletion | of project |  |
| COURSE OUTC        | OMES             | (COs):                                                                      |                                   |              |                   |                |                     |          |                               |             |                                          |        |         |            |  |
| CO1                |                  | Unde                                                                        | rstand the                        | e bas        | ics of [          | Project        | mana                | gemen    | t                             |             |                                          |        |         |            |  |
| CO2                |                  |                                                                             | Explair                           | n the        | proces            | ss of pr       | oject               | plannin  | g wit                         | h stan      | dards                                    | 3      |         |            |  |
| CO3                |                  | Descr                                                                       | ibe Projec                        | t fina       | ancing            | and in         | vestn               | nent ins | titutio                       | ons         |                                          |        |         |            |  |
| CO4                |                  | Unde                                                                        | rstand the                        | e stag       | ges of I          | Project        | imple               | ementat  | ion ai                        | nd eva      | aluatio                                  | on     |         |            |  |
| CO5                |                  | Outline a Project feasibility study                                         |                                   |              |                   |                |                     |          |                               |             |                                          |        |         |            |  |
| Mapping of Cour    | rse Outo         | tcomes (COs) with Program Outcomes (POs) & Program Specific Outcomes (PSOs) |                                   |              |                   |                |                     |          |                               |             |                                          |        |         |            |  |
| COs/POs            | P                | PO1 PO2                                                                     |                                   | P            | PO3               |                | PO4                 |          | POS                           | 5           | PO                                       | D6     | PO7     |            |  |
| CO1                | Ν                | N                                                                           | Н                                 |              | -                 | М              |                     | М        |                               | М           |                                          | I      | Ĺ       |            |  |
| CO2                |                  |                                                                             | Н                                 |              |                   | М              |                     | М        |                               | М           |                                          | l      | Ĺ       |            |  |
| CO3                | Ν                | Ν                                                                           |                                   |              |                   |                |                     |          |                               | L           |                                          | Ν      | M       | М          |  |
| CO4                |                  |                                                                             |                                   |              | -                 | М              |                     |          |                               |             |                                          | Ν      | M       |            |  |
| CO5                |                  |                                                                             |                                   |              |                   | L              |                     | L        |                               | М           |                                          |        |         | М          |  |
| H/M/L indicates S  | trength          | of Corre                                                                    | elation H                         | - Hig        | h, M- 1           | Medium         | n, L-Lo             | )W       | I                             |             |                                          |        |         |            |  |
| Category           | Basic Sciences   | Engineering Sciences                                                        | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Practical / Project |          | Internships / Technical Skill | Soft Skills | <ul> <li>▲ Management Science</li> </ul> |        |         |            |  |
|                    | Ba               | En                                                                          | Hu<br>Sci                         | Pro          | Pr(               | 0 <sup>b</sup> | Prí                 |          | Iı                            | So          | ₩<br>✓                                   |        |         |            |  |
| Approval           | 27 <sup>th</sup> | meetir                                                                      | ng of Aca                         | den          | nic co            | uncil,         | June                | 2017     | <u>I</u>                      | 1           | I                                        | 1      |         |            |  |

#### UNIT I Project Management

Project management – Concept of a Project – Categories of Project - Project life cycle Definition of project management - The project as a conversion Process - project environment - complexity of projects - the relationship between project Management and line management - current issues in project management- system approach to project management - Roles and responsibilities of project manager.

#### **UNIT II Project planning**

Project planning - project planning as a value adding activity - process of project planning -managing the planning process - communicating project plans - dealing with increased complexity through net work diagrams - Analyzing the network-Critical Path Analysis - Activity on Nodes diagramming- Dealing with the uncertainty Programme Evaluation and Review Technique- Computerized Project Management - planning with standards.

#### UNIT III Project Financing

Project financing and development banks - Development banking and western world - debt Equity ratio-Equity and Preference Share Capital- Internal Generation of Funds- Leasing Financing - Public sector bonds-Debentures- Assistance from International financial- Short Ten Rupee Funds for Working capital- All India Development Corporation- Specialized Institution - Investment Institution - means of financing - project financing package -procuring funds.

#### UNIT IV Project Implementation

Project implementation - stages - Bottlenecks in project implementation -Guidelines for effective implementation -Management techniques for project management - project monitoring - essentials - roles - tools and techniques Project management performance indicators performance improvement - project management environment -management reporting - report designing - project evaluation - project review.

#### **UNIT V Project Feasibility**

Project feasibility study- Market Feasibility- Technical Feasibility-Financial Feasibility - Economic Feasibility-Critical Success factors- Demand forecasting techniques.

#### **TOTAL NO OF PERIODS: 45 Hrs**

#### **Text Books:**

- S. Choudhury, Project Management, Tata McGraw Hill publishing ISBN-10: 0074600680 ISBN-13: 978-0074600689
- B.B. Goel, Project Management Principles & Techniques, Deep & Deep publications Pvt Ltd. Reprint ISBN NO 8171007880, 9788171007882

#### **REFERENCE BOOKS:**

1. Harvey Maylor, Project Management, Macmillan India Ltd. 4th Edition.

2.Prasanna Chandra Project Planning, Analysis, Selection, implementation and Review- Tata McGraw Hill Publishing Company Ltd 8th edition

3. Harold Kerzner, Project Management A systems Approach to Planning Scheduling and Controlling



#### 9 Hrs

### 9 Hrs

9 Hrs

#### 9 Hrs

9 Hrs



| COURSE OUTCO<br>CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>Mapping of Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Te<br>orial<br>Lab/J<br>Lab/J<br>TVE:<br>de au<br>ure<br>stand<br>OME<br>I<br>I<br>I<br>I                                                                                                                                                                              | erequisite:<br>schnology<br>S Lr : Si<br>Embedded<br>n overvie<br>the need f<br>CS (COs) :<br>Understand<br>Learning (<br>Learning §<br>Learning th | upervised I<br>I Theory an<br>w of how<br>for integrat<br>( <b>3- 5</b> )<br>d the use o                          | f Machin<br>Learning<br>nd Lab<br>comput<br>ion of CA | e Elemer<br>P : Proje<br>ers are<br>AD,CAM | ect R : R<br>being u<br>and CIN | sed in o            | C: Credi      | ETL<br>T<br>ts<br>developmen | 3<br>nt of M | 0/0<br>anufacturin | 0/0<br>g plans | 3 and |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------|---------------------------------|---------------------|---------------|------------------------------|--------------|--------------------|----------------|-------|--|--|--|--|
| T/L/ETL : Theory/.         OBJECT         > To provid         manufactu         > To unders            COURSE OUTCO         CO1         CO2         CO3         CO4         CO5         Mapping of Course         Co2         CO3         Co4         CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                         | orial<br>Lab/I<br>TVE:<br>TVE:<br>de an<br>ure<br>stand<br>OMF<br>I<br>I<br>I<br>I<br>I<br>I<br>Se wi<br>PO1                                                                                                                                                           | S Lr : Si<br>Embedded<br>n overvie<br>the need f<br>CS (COs) :<br>Understand<br>Learning C<br>Learning s<br>Learning th                             | upervised I<br>I Theory an<br>w of how<br>for integrat<br>( <b>3- 5</b> )<br>d the use o<br>various CA<br>CAD/CAM | nd Lab<br>comput<br>ion of CA                         | ers are                                    | being u<br>and CIM              | sed in a            |               | ts                           | nt of M      |                    |                | anc   |  |  |  |  |
| T/L/ETL : Theory/.         OBJECT         > To provid         manufactu         > To unders            COURSE OUTCO         CO1         CO2         CO3         CO4         CO5         Mapping of Course         Co2         CO3         Co4         CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lab/I<br>TVE:<br>de au<br>ure<br>stand<br>OME<br>U<br>U<br>I<br>I<br>I<br>I<br>Se wi<br>PO1                                                                                                                                                                            | Embedded<br>n overvie<br>the need f<br>CS (COs) :<br>Understand<br>Learning C<br>Learning g<br>Learning th                                          | I Theory an<br>w of how<br>for integrat<br>(3-5)<br>d the use o<br>various CA<br>CAD/CAM                          | nd Lab<br>comput<br>ion of CA                         | ers are                                    | being u<br>and CIM              | sed in a            |               |                              | nt of M      | anufacturin        | g plans        | and   |  |  |  |  |
| OBJECT         > To provid         manufactu         > To unders            COURSE OUTCO         CO1         CO2         CO3         CO4         CO5         Mapping of Course         Co3/Pos       P         CO1       CO2         CO3       CO4         CO2       CO3         Co4       CO5         CO4       CO2         CO3       CO4         CO3       CO4         CO5       CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IVE:     de an     ure     stand     OME     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I | the need f<br>the need f<br><b>CS (COs) :</b><br>Understand<br>Learning (<br>Learning §<br>Learning th                                              | w of how<br>for integrat<br>( <b>3- 5</b> )<br>d the use o<br>various CA<br>CAD/CAN                               | comput<br>ion of CA                                   | AD,CAM                                     | and CIN                         |                     | design,       | developmer                   | nt of M      | anufacturin        | g plans        | and   |  |  |  |  |
| <ul> <li>➢ To provio<br/>manufactu</li> <li>➢ To unders</li> <li></li> <li>COURSE OUTCO</li> <li>CO1</li> <li>CO2</li> <li>CO3</li> <li>CO4</li> <li>CO5</li> <li>Mapping of Course</li> <li>Cos/Pos</li> <li>P</li> <li>CO1</li> <li>CO2</li> <li>CO3</li> <li>CO4</li> <li>CO2</li> <li>CO3</li> <li>CO4</li> <li>CO5</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | de an<br>ure<br>stand<br>OME<br>1<br>1<br>1<br>5<br>5<br>6<br>01                                                                                                                                                                                                       | n overviet<br>the need f<br>CS (COs):<br>Understand<br>Learning (<br>Learning §<br>Learning th                                                      | for integrat<br>( <b>3- 5</b> )<br>d the use o<br>various CA<br>CAD/CAM                                           | ion of CA                                             | AD,CAM                                     | and CIN                         |                     | design,       | developmer                   | nt of M      | anufacturin        | g plans        | and   |  |  |  |  |
| manufactu           To unders           COURSE OUTCO           CO1           CO2           CO3           CO4           CO5           Mapping of Cours           Cos/Pos           P           CO1           CO2           Co3           Cos/Pos           P           CO1           CO2           CO3           Co4           CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ure<br>Stand<br>OME<br>I<br>I<br>I<br>Se wi<br>PO1                                                                                                                                                                                                                     | the need f<br><b>CS (COs) :</b><br>Understand<br>Learning (<br>Learning §<br>Learning th                                                            | for integrat<br>( <b>3- 5</b> )<br>d the use o<br>various CA<br>CAD/CAM                                           | ion of CA                                             | AD,CAM                                     | and CIN                         |                     |               |                              |              |                    | g plans        | , and |  |  |  |  |
| <br>COURSE OUTCO<br>CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>Mapping of Cours<br>Cos/Pos P<br>CO1<br>CO2<br>CO2<br>CO3<br>CO4<br>CO2<br>CO3<br>CO4<br>CO2<br>CO3<br>CO4<br>CO2<br>CO3<br>CO2<br>CO3<br>CO4<br>CO2<br>CO3<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO5<br>CO4<br>CO5<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO4<br>CO5<br>CO5<br>CO5<br>CO4<br>CO5<br>CO5<br>CO5<br>CO5<br>CO5<br>CO5<br>CO5<br>CO5 | OME<br>1<br>1<br>1<br>1<br>1<br>5<br>8<br>9<br>01                                                                                                                                                                                                                      | <b>CS (COs) :</b><br>Understand<br>Learning (<br>Learning (<br>Learning (<br>Learning th                                                            | the use o<br>various CA                                                                                           | f various                                             |                                            |                                 | 1                   |               |                              |              |                    |                |       |  |  |  |  |
| CO1           CO2           CO3           CO4           CO5           Mapping of Course           Cos/Pos           P           CO1           CO2           CO3           CO4           Co5/Pos           P           CO1           CO2           CO3           CO4           CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U<br>I<br>I<br>I<br>Se wi<br>PO1                                                                                                                                                                                                                                       | Understand<br>Learning<br>Learning (<br>Learning g<br>Learning th                                                                                   | d the use o<br>various CA<br>CAD/CAN                                                                              |                                                       | CAD de                                     |                                 |                     |               |                              |              |                    |                |       |  |  |  |  |
| CO1           CO2           CO3           CO4           CO5           Mapping of Course           Cos/Pos           P           CO1           CO2           CO3           CO4           CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U<br>I<br>I<br>I<br>Se wi<br>PO1                                                                                                                                                                                                                                       | Understand<br>Learning<br>Learning (<br>Learning g<br>Learning th                                                                                   | d the use o<br>various CA<br>CAD/CAN                                                                              |                                                       | CAD de                                     |                                 |                     |               |                              |              |                    |                |       |  |  |  |  |
| CO2           CO3           CO4           CO5           Mapping of Course           Cos/Pos         P           CO1         CO2           CO3         CO4           CO5         CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I<br>I<br>I<br>se wi<br>PO1                                                                                                                                                                                                                                            | Learning C<br>Learning C<br>Learning g<br>Learning th                                                                                               | various CA<br>CAD/CAN                                                                                             |                                                       |                                            | vices.                          |                     |               |                              |              |                    |                |       |  |  |  |  |
| CO3           CO4           CO5           Mapping of Course           Cos/Pos         P           CO1         CO2           CO3         CO4           CO4         CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I<br>I<br>I<br>se wi<br>PO1                                                                                                                                                                                                                                            | earning (<br>earning g<br>earning th                                                                                                                | CAD/CAM                                                                                                           | ng various CAD modeling techniques                    |                                            |                                 |                     |               |                              |              |                    |                |       |  |  |  |  |
| CO5<br>Mapping of Course<br>Cos/Pos P<br>CO1<br>CO2<br>CO3<br>CO4<br>CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I<br>I<br>se wi<br>PO1                                                                                                                                                                                                                                                 | Learning g                                                                                                                                          |                                                                                                                   |                                                       |                                            |                                 | CNC Ma              | chines        |                              |              |                    |                |       |  |  |  |  |
| Mapping of CourseCos/PosPCO1CO2CO2CO3CO4CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | se wi<br>PO1                                                                                                                                                                                                                                                           | U                                                                                                                                                   |                                                                                                                   |                                                       |                                            |                                 | ng meth             | ods           |                              |              |                    |                |       |  |  |  |  |
| Cos/Pos         P           CO1         0           CO2         0           CO3         0           CO4         0           CO5         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>PO</b> 1                                                                                                                                                                                                                                                            | th Drame                                                                                                                                            | he FMS co                                                                                                         | 1                                                     |                                            | ns.                             |                     |               |                              |              |                    |                |       |  |  |  |  |
| CO1<br>CO2<br>CO3<br>CO4<br>CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                        |                                                                                                                                                     |                                                                                                                   |                                                       |                                            |                                 | 1                   |               |                              |              |                    |                |       |  |  |  |  |
| CO2<br>CO3<br>CO4<br>CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | н                                                                                                                                                                                                                                                                      | PO2                                                                                                                                                 | PO3                                                                                                               | PO4                                                   | PO5                                        | PO6                             | PO7                 | PO8           | PO9                          | PO10         | PO11               | PO1            | 2     |  |  |  |  |
| CO3<br>CO4<br>CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                        | H                                                                                                                                                   | M                                                                                                                 |                                                       | H                                          |                                 |                     |               |                              | _            |                    |                |       |  |  |  |  |
| CO4<br>CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H                                                                                                                                                                                                                                                                      | H                                                                                                                                                   | M                                                                                                                 |                                                       | H                                          |                                 |                     |               |                              |              |                    |                |       |  |  |  |  |
| CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H<br>H                                                                                                                                                                                                                                                                 | H<br>H                                                                                                                                              | M<br>M                                                                                                            |                                                       | H<br>H                                     |                                 |                     |               |                              |              |                    | _              |       |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | н<br>Н                                                                                                                                                                                                                                                                 | H                                                                                                                                                   | M                                                                                                                 |                                                       | н<br>Н                                     |                                 |                     |               |                              | _            |                    |                |       |  |  |  |  |
| 003/1003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                        | SO1                                                                                                                                                 | PS                                                                                                                | $\frac{1}{2}$                                         |                                            | 03                              | P                   | SO4           | PSO5                         |              |                    |                |       |  |  |  |  |
| CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                      | 501                                                                                                                                                 | H                                                                                                                 |                                                       | H                                          |                                 | M                   | 504           | 1505                         |              |                    |                |       |  |  |  |  |
| CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                        |                                                                                                                                                     | H                                                                                                                 |                                                       | Н                                          |                                 | M                   |               |                              |              |                    |                |       |  |  |  |  |
| CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                        |                                                                                                                                                     | Н                                                                                                                 |                                                       | Н                                          |                                 | M                   |               |                              |              |                    |                |       |  |  |  |  |
| CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                        |                                                                                                                                                     | Н                                                                                                                 |                                                       |                                            | Н                               | М                   |               |                              |              |                    |                |       |  |  |  |  |
| CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                        |                                                                                                                                                     | Н                                                                                                                 | H H M                                                 |                                            |                                 |                     |               |                              |              |                    |                |       |  |  |  |  |
| H/M/L indicates St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | treng                                                                                                                                                                                                                                                                  | th of Corre                                                                                                                                         | elation H                                                                                                         | - High, N                                             | 1- Mediu                                   | ım, L-Lo                        | W                   |               |                              |              |                    |                |       |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                        |                                                                                                                                                     |                                                                                                                   |                                                       |                                            |                                 |                     | kill          |                              |              |                    |                |       |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                        |                                                                                                                                                     |                                                                                                                   |                                                       |                                            |                                 |                     | chnical Skill |                              |              |                    |                |       |  |  |  |  |
| Category                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                        | S                                                                                                                                                   | cial                                                                                                              |                                                       |                                            |                                 |                     | nica          |                              |              |                    |                |       |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                        | nce                                                                                                                                                 | Social                                                                                                            |                                                       | s                                          |                                 | t                   | chr           |                              |              |                    |                |       |  |  |  |  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                      | cie                                                                                                                                                 |                                                                                                                   |                                                       | tive                                       | SS                              | jec                 | / Tec         |                              |              |                    |                |       |  |  |  |  |
| e de la companya de la                                                                                                                          |                                                                                                                                                                                                                                                                        | S<br>S<br>S                                                                                                                                         | s ai                                                                                                              | ore                                                   | llec                                       | tive                            | Prc                 | / sd          |                              |              |                    |                |       |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CIG<br>CIG                                                                                                                                                                                                                                                             | erit                                                                                                                                                | itie                                                                                                              | n C                                                   | nE                                         | llec                            | al /                | shi           | ills                         |              |                    |                |       |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                      | ine                                                                                                                                                 | nan<br>nce                                                                                                        | grat                                                  | grar                                       | пE                              | tica                | Internships   | Sk                           |              |                    |                |       |  |  |  |  |
| Basic Sciences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - CAD                                                                                                                                                                                                                                                                  | Engineering Sciences                                                                                                                                | Humanities and<br>Sciences                                                                                        | Program Core                                          | Program Elective                           | Open Electives                  | Practical / Project | Int           | Soft Skills                  |              |                    |                |       |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                      |                                                                                                                                                     |                                                                                                                   |                                                       |                                            | Ĭ                               |                     |               |                              |              |                    |                |       |  |  |  |  |
| 2'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 <sup>th</sup> 1                                                                                                                                                                                                                                                      | neeting                                                                                                                                             | of Acad                                                                                                           | emic co                                               | uncil, J                                   | June20                          | 17                  | •             |                              | •            |                    |                |       |  |  |  |  |
| Approval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                      |                                                                                                                                                     |                                                                                                                   |                                                       |                                            |                                 |                     |               |                              |              |                    |                |       |  |  |  |  |



#### **UNIT- I INTRODUCTION**

A typical product cycle, CAD tools for the design process of product cycle, CAD / CAM system evaluation criteria, Input / Output devices;

Graphics Displays: Refresh display, DVST, Raster display, pixel value and lookup table, estimation of graphical memory, LCD, LED fundamentals. Concept of Coordinate Systems: Working Coordinate System, Model Coordinate System, Screen Coordinate System. Graphics exchange standards.

#### UNIT- II GEOMETRIC TRANSFORMATIONS AND MODELING

Homogeneous representation; Translation, Scaling, Reflection, Rotation, Shearing in 2D and 3D;. Window to View-port transformation. Geometry and Topology, Comparison of wireframe, surface and solid models, Properties of solid model, properties of representation schemes, Concept of Half-spaces, Boolean operations. Schemes: B-rep, CSG, Sweep representation, ASM, Primitive instancing, Cell Decomposition and Octree encoding

#### UNIT- III COMPUTER AIDED MANUFACTURING

CAM Concepts, Objectives & scope, Nature & Type of manufacturing system, Evolution, Benefits of CAM, Role of management in CAM, Concepts of Computer Integrated Manufacturing, Impact of CIM on personnel, Role of manufacturing engineers, CIM Wheel to understand basic functions.

NC and CNC Technology: Types, Classification, Specification and components, Construction Details-Axis designation, NC/CNC tooling. Fundamentals of Part programming, Types of format, Part Programming for drilling, lathe and milling machine operations.

#### UNIT- IV GROUP TECHNOLOGY AND CAPP

Introduction, part families, part classification and coding systems: OPITZ, PFA, FFA, Cell design, rank order clustering, composite part concepts, Benefits of group technology. Approaches to Process Planning, Different CAPP system, application and benefits

#### UNIT- V FLEXIBLE MANUFACTURING SYSTEM

Introduction & Component of FMS, Needs of FMS, general FMS consideration, Objectives, Types of flexibility and FMS, FMS lay out and advantages. Automated material handling system: Types and Application, Automated Storage and Retrieval System, Automated Guided Vehicles, Cellular manufacturing, Tool Management, Tool supply system, Tool Monitoring System, Flexible Fixturing, Flexible Assembly Systems.

#### **TEXT BOOKS**

- 1) Chris McMohan and Jimmie Browne, "*CAD/CAM*", Addison Wesley Publications, 2<sup>nd</sup> Ed.
- 2) HMT, (2000) "Mechatronics", Tata McGraw –Hill Ed.
- 3) Mikkel. P.Groover, (2007) "Automation, Production and Computer Integrated Manufacturing", PHI., Pvt Ltd.

#### **REFERENCE BOOKS**

- 1. Mikell P Groover, "Automation, Production Systems and Computer Integrated Manufacturing", Pearson Education
- 2. Rao, Tewari, Kundra, "Computer Aided Manufacturing", McGraw Hill
- 3. P. Radhakrishnan , "Computer Numerical Control", New Central Book Agency

4. Ibrahim Zeid, "Introduction to CAD/CAM", Tata McGraw Hill

### 12 Hrs

12 Hrs

12 Hrs

### 12 Hrs

12 Hrs

#### Total No. of Hrs : 60

### 62



| Subject                 |            | Su                                                                                                                | bject Na             | me: P                      | roject Ph    | ase - I           |                |                     |                               | T / L/<br>ETL | L          | T / S.Lr     | P/ R     | C    |
|-------------------------|------------|-------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------|--------------|-------------------|----------------|---------------------|-------------------------------|---------------|------------|--------------|----------|------|
| BME17                   | L14        | Pre                                                                                                               | requisite            | : NIL                      |              |                   |                |                     |                               | Lb            | 0          | 0            | 3        | 2    |
| L : Lectu               | ıre T : Tı |                                                                                                                   |                      | pervised l                 | Learning     | P : Proje         | ct R : R       | esearch C           | C: Credi                      | ts            | •          | •            |          |      |
| T/L/ETL                 | : Theor    | y/Lab/E                                                                                                           | mbedded              | l Theory a                 | nd Lab       |                   |                |                     |                               |               |            |              |          |      |
| <b>OBJEC</b>            | TIVE :     | The o                                                                                                             | bjective o           | of the Mai                 | n Project    | is to culr        | ninate th      | e acader            | nic stud                      | y and provi   | ide an op  | portunity t  | o explor | e a  |
| problem                 | or issue   | , addre                                                                                                           | ss throug            | gh focused                 | and app      | lied resea        | arch und       | er the dir          | ection o                      | of a faculty  | mentor.    | The project  | ;        |      |
|                         |            |                                                                                                                   |                      |                            |              |                   |                | -                   |                               |               |            | d issues and | -        |      |
|                         |            | ns the s                                                                                                          | students             | to think cr                | itically ar  | nd creativ        | ely, find      | an optim            | al solut                      | ion, make e   | ethical de | ecisions and | to pres  | sent |
| effective               |            |                                                                                                                   | - (GO )              |                            |              |                   |                |                     |                               |               |            |              |          |      |
|                         |            |                                                                                                                   | <u>S (COs) :</u>     |                            |              |                   | <u> </u>       |                     |                               |               |            |              |          |      |
| CO1                     | Apply t    | the knowledge and skills acquired in the course of study addressing a specific problem or issue.                  |                      |                            |              |                   |                |                     |                               |               |            |              |          |      |
| CO2                     | To enc     | courage students to think critically and creatively about societal issues and develop user friendly and reachable |                      |                            |              |                   |                |                     |                               |               |            |              |          |      |
| 002                     |            |                                                                                                                   | students             |                            | nucally a    | nu treatr         |                | at societa          | ii issues                     |               | ph user II | nenuty and   | reactid  | ле   |
|                         | solutio    | 115                                                                                                               |                      |                            |              |                   |                |                     |                               |               |            |              |          |      |
| CO3                     | To refi    | ne research skills and demonstrate their proficiency in communication skills.                                     |                      |                            |              |                   |                |                     |                               |               |            |              |          |      |
| 200                     |            | the research skills and demonstrate their pronotency in communication skills.                                     |                      |                            |              |                   |                |                     |                               |               |            |              |          |      |
| CO4                     | To take    | ke on the challenges of teamwork, prepare a presentation and demonstrate the innate talents.                      |                      |                            |              |                   |                |                     |                               |               |            |              |          |      |
|                         |            |                                                                                                                   |                      | ,                          |              |                   |                |                     |                               |               |            |              |          |      |
|                         |            | rse Ou                                                                                                            | tcomes v             | vith Prog                  | ram Outo     | comes (P          | Os)            |                     |                               |               |            |              |          |      |
| COs/POs                 |            | PO1                                                                                                               | PO2                  | PO3                        | PO4          | PO5               | PO6            | PO7                 | PO8                           | PO9           | PO10       |              | PO       | 12   |
| CO1                     |            | Н                                                                                                                 | Н                    | Н                          | Н            | М                 | Н              | Н                   | L                             | М             | М          | Н            | Н        |      |
| CO2                     |            | H                                                                                                                 | H                    | Н                          | H            | H                 | H              | H                   | М                             | М             | M          | H            | Н        |      |
| CO3                     |            | H                                                                                                                 | H                    | H                          | H            | H                 | H              | H                   | M                             | M             | H          | H            | M        |      |
| $\frac{CO4}{CO_{1}/DS}$ |            | H                                                                                                                 | M                    | H                          | H            | H                 | H              | M                   | H                             | H             | Н          | H            | Η        |      |
| COs / PS<br>CO1         | SOS        | PS                                                                                                                | 501                  | PS                         | 02           | PSO3              |                | PSO4                |                               | PSO5          |            |              |          |      |
| CO1<br>CO2              |            |                                                                                                                   |                      |                            |              |                   |                |                     |                               |               |            |              |          |      |
|                         | ndicates   | Strengtl                                                                                                          | h of Corr            | elation H                  | I- High N    | I<br>M- Medii     | im L-Lo        | w                   |                               |               |            |              |          |      |
|                         |            | sucienzu                                                                                                          |                      |                            |              |                   |                |                     | П                             |               |            |              |          |      |
| Catego                  |            | S                                                                                                                 | sciences             | nd Social                  |              | tives             | SS             | ject                | Internships / Technical Skill |               |            |              |          |      |
|                         |            | Basic Sciences                                                                                                    | Engineering Sciences | Humanities and<br>Sciences | Program Core | Program Electives | Open Electives | Practical / Project | Internships /                 | Soft Skills   |            |              |          |      |
|                         |            |                                                                                                                   |                      |                            |              |                   |                | $\checkmark$        |                               |               |            |              |          |      |
|                         |            |                                                                                                                   |                      |                            |              |                   |                |                     |                               |               |            |              |          |      |

Students should identify the topic of the Project and should collect the literatures and datas, at the end of the semester the students should submit their Project Phase - I report to the Department and Viva -Voce examination will be conducted with external examiners and this carries 3 credits.



# **SEMESTER-VII**



| Subject (     | Code:         |                                                                                                                            | ıbject Name                |                            | t Phase - Il  |                   |                |                     |                                  | T / L/ ETL       | L           | T/S.Lr        | P/ R            | С     |
|---------------|---------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|---------------|-------------------|----------------|---------------------|----------------------------------|------------------|-------------|---------------|-----------------|-------|
|               |               | Pr                                                                                                                         | erequisite: N              | IL                         |               |                   |                |                     |                                  | Lb               | 0           | 0             | 20              | 10    |
| BME17L        |               | · 1 GI                                                                                                                     | <u> </u>                   | 17 . 1                     |               |                   |                |                     |                                  |                  |             |               |                 |       |
| L : Lectur    | re T : Tutor  | iai SLr                                                                                                                    | : Supervised               | 1 Learning                 | P: Project    | R : Researc       | ch C: Credi    | IS                  |                                  |                  |             |               |                 |       |
| T/L/ETL       | : Theory/La   | ab/Embe                                                                                                                    | dded Theory                | and Lab                    |               |                   |                |                     |                                  |                  |             |               |                 |       |
| OBJECT        | TIVE: T       | he object                                                                                                                  | tive of the M              | ain Project i              | s to culmin   | ate the acad      | lemic study    | and provi           | de an oppor                      | tunity to explo  | re a probl  | em or issue,  | address the     | rough |
|               |               |                                                                                                                            |                            |                            |               |                   |                |                     |                                  | pility to synthe |             |               |                 |       |
|               |               |                                                                                                                            | and problem                | s. This proje              | ect affirms t | he students       | s to think cr  | itically and        | d creatively,                    | find an optima   | al solutior | , make ethica | l decision      | s and |
|               | t effectively |                                                                                                                            |                            |                            |               |                   |                |                     |                                  |                  |             |               |                 |       |
| COURSI<br>CO1 |               |                                                                                                                            | Os): (3-5)<br>ledge and sk | illa a a guina d           | in the cour   | a of study        | addressing     | a specific          | muchlana ou                      |                  |             |               |                 |       |
| COI           | Арргу и       | le know                                                                                                                    | ledge and sk               | ins acquired               | in the cours  | se of study       | addressing     | a specific          | problem or                       | issue.           |             |               |                 |       |
| CO2           | Toomaa        | ourage students to think critically and creatively about societal issues and develop user friendly and reachable solutions |                            |                            |               |                   |                |                     |                                  |                  |             |               |                 |       |
| 02            | 10 enco       | Jurage students to units errorary and creativery about societal issues and develop user menuty and reachable solutions     |                            |                            |               |                   |                |                     |                                  |                  |             |               |                 |       |
|               |               |                                                                                                                            |                            |                            |               |                   |                |                     |                                  |                  |             |               |                 |       |
| CO3           | To refin      | a racaar                                                                                                                   | h skills and               | demonstrate                | their profi   | ionov in or       | mmunicati      | on skills           |                                  |                  |             |               |                 |       |
| 05            | 10 term       | ne research skills and demonstrate their proficiency in communication skills.                                              |                            |                            |               |                   |                |                     |                                  |                  |             |               |                 |       |
| CO4           | Totake        | e on the challenges of teamwork, prepare a presentation and demonstrate the innate talents.                                |                            |                            |               |                   |                |                     |                                  |                  |             |               |                 |       |
| 0.04          | 10 take       | e on the chancing of teamwork, prepare a presentation and demonstrate the initiate tatents.                                |                            |                            |               |                   |                |                     |                                  |                  |             |               |                 |       |
| Mannino       | of Course     | Outcon                                                                                                                     | nes with Pro               | oram Outco                 | omes (POs)    |                   |                |                     |                                  |                  |             |               |                 |       |
| COs/POs       |               | )                                                                                                                          | PO2                        | PO3                        | PO4           | PO5               | PO6            | PO7                 | PO8                              | PO9              | PO10        | PO11          | PO1             | 2     |
| C01           |               | Н                                                                                                                          | CO1                        | Н                          | C01           | Н                 | CO1            | Н                   | CO1                              | Н                | CO1         | Н             | CO              |       |
| CO2           |               | Н                                                                                                                          | CO2                        | Н                          | CO2           | Н                 | CO2            | Н                   | CO2                              | Н                | CO2         | Н             | CO2             | 2     |
| CO3           |               | Н                                                                                                                          | CO3                        | Н                          | CO3           | Н                 | CO3            | Н                   | CO3                              | Н                | CO3         | Н             | COS             | 3     |
| CO4           |               | Н                                                                                                                          | CO4                        | Н                          | CO4           | Н                 | CO4            | Н                   | CO4                              | Н                | CO4         | Н             | CO <sub>2</sub> | 1     |
| COs / PS      | Os            | I                                                                                                                          | PSO1                       | PSO2                       |               | PSO3              |                |                     | PSO4                             | PSO5             |             |               |                 |       |
| CO1           |               |                                                                                                                            |                            |                            |               | _                 |                | _                   |                                  |                  |             |               |                 |       |
| CO2           | 1'            | .1 .6.                                                                                                                     | C 1.ť                      | TT TT 1 N                  | C 3 C 1'      |                   |                |                     |                                  |                  |             |               |                 |       |
| H/M/L 1n      | dicates Stre  | ingth of                                                                                                                   | Correlation                | H- High, M                 | I- Medium,    | L-LOW             | -              |                     |                                  |                  |             |               |                 |       |
|               |               |                                                                                                                            |                            | le                         |               | 1                 |                |                     |                                  |                  |             |               |                 |       |
|               |               |                                                                                                                            | ces                        | Social                     | 1             |                   |                |                     |                                  |                  |             |               |                 |       |
| Categor       | у             |                                                                                                                            | ien                        | T S                        |               | ves               |                | ect                 |                                  |                  |             |               |                 |       |
|               |               | ces                                                                                                                        | Sc                         | anc                        | ore           | ecti              | ves            | roj                 | kill                             |                  |             |               |                 |       |
|               |               | ien                                                                                                                        | ring                       | ties                       | ŭ             | Ē                 | ecti           | 1/F                 | ips<br>al S                      | IIs              |             |               |                 |       |
|               |               | Sc                                                                                                                         | leei                       | anit                       | ram           | ram               | E              | ical                | nsh                              | Skil             |             |               |                 |       |
|               |               | Basic Sciences                                                                                                             | Engineering Sciences       | Humanities and<br>Sciences | Program Core  | Program Electives | Open Electives | Practical / Project | Internships /<br>Technical Skill | Soft Skills      |             |               |                 |       |
|               | F             | B                                                                                                                          | Ē                          | Ϋ́Η                        | E.            | - E               | 0              | - <u>F</u>          | ΞĹ                               | Ň                |             |               |                 |       |
|               |               |                                                                                                                            |                            |                            | 1             |                   |                |                     |                                  |                  |             |               |                 |       |
|               |               |                                                                                                                            |                            |                            | 1             |                   |                | •                   |                                  |                  |             |               |                 |       |
|               |               |                                                                                                                            |                            |                            |               | 1                 |                |                     |                                  |                  |             |               |                 |       |
|               |               |                                                                                                                            |                            | <u> </u>                   | _             |                   |                |                     |                                  |                  |             |               |                 |       |
| Approval      |               | 27 <sup>th</sup>                                                                                                           | meeting                    | of Acad                    | lemic c       | ouncil,           | June2          | )17                 |                                  |                  |             |               |                 |       |
|               |               |                                                                                                                            |                            |                            |               |                   |                |                     |                                  |                  |             |               |                 |       |
|               |               |                                                                                                                            |                            |                            |               |                   |                |                     |                                  |                  |             |               |                 |       |

Students are expected to do a Project work either in an Industry or at the University in the field of Mechanical Engineering in group, not exceeding 4 students in a group. Each group will be allotted a guide based on the area of Project work. Number of reviews will be conducted during the semester to monitor the development of project. Students have to submit the thesis at the end of the semester and appear for the Project Viva-Voce examination conducted by one internal examiner and one external examiner.50% weight age will be given for the internal assessment and 50% weight age for the Project viva a voce examination.



# **ELECTIVE SUBJECTS**



# **ELECTIVE: THERMAL ENGINEERING**



| Subject Code<br>BME17E01                                                                                                                   | : }              | Subje  | ect Na               | me: AD                            | VANCE        | CD IC EN          | IGINES         |                     |                               | T / L/<br>ETL |      | T /<br>S.Lr | <b>P/ R</b> | C  |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|----------------------|-----------------------------------|--------------|-------------------|----------------|---------------------|-------------------------------|---------------|------|-------------|-------------|----|
| L : Lecture T : T<br>T/L/ETL : Theor<br>OBJECTIVE:<br>> Recent a<br>> Various a<br>COURSE OUT<br>CO1<br>CO2<br>CO3<br>CO4<br>Mapping of Co | ]                | Preree | quisite              | e: Thermo                         | dynamio      | cs and T          | Thermal        | Enginee             | ering                         | Ту            | 3    | 0           | 0           | 3  |
| L : Lecture T :                                                                                                                            | Tuto             | rial   | S Lr :               | : Supervis                        | ed Lear      | ning P :          | Project        | R : Res             | search (                      | C: Credits    |      |             |             |    |
| T/L/ETL : The                                                                                                                              | eory/L           | .ab/E  | mbedo                | led Theor                         | y and La     | ab                |                |                     |                               |               |      |             |             |    |
|                                                                                                                                            |                  |        |                      |                                   |              |                   |                |                     |                               |               |      |             |             |    |
|                                                                                                                                            |                  |        |                      | f I.C Engin                       |              |                   |                |                     |                               |               |      |             |             |    |
| Variou                                                                                                                                     | s alter          | native | e fuels              | for I.C eng                       | ines.        |                   |                |                     |                               |               |      |             |             |    |
| COURSE OU                                                                                                                                  | TCO              | MES    | 5 (CO)               | (3-5)                             | )            |                   |                |                     |                               |               |      |             |             |    |
|                                                                                                                                            |                  |        |                      | engine con                        |              | and cor           | nbustion       | chambe              | ers                           |               |      |             |             |    |
| CO2                                                                                                                                        |                  | Poll   | utions               | formation                         | and cor      | ntrol met         | hods.          |                     |                               |               |      |             |             |    |
| CO3                                                                                                                                        |                  | Vari   | ous alt              | ernate fuel                       | s to adop    | t in IC ei        | ngines.        |                     |                               |               |      |             |             |    |
| CO4                                                                                                                                        |                  | Rece   | ent dev              | elopments                         | IC engin     | e techno          | logy           |                     |                               |               |      |             |             |    |
| Mapping of C                                                                                                                               | ours             | e Out  | tcome                | s with Pr                         | ogram (      | Outcom            | es (POs        | )                   |                               |               |      |             |             |    |
|                                                                                                                                            | PO               |        | PO2                  | PO3                               | PO4          | PO5               | PO6            | PO7                 | PO8                           | PO9           | PO10 | PO11        | PO          | 12 |
| CO1                                                                                                                                        | M                |        |                      |                                   |              |                   |                |                     |                               |               |      |             |             |    |
| CO2                                                                                                                                        |                  |        | М                    |                                   |              |                   |                | Н                   |                               |               |      |             |             |    |
|                                                                                                                                            |                  |        |                      | М                                 |              |                   |                | Н                   |                               |               |      |             |             |    |
| CO4                                                                                                                                        |                  |        |                      |                                   | Η            |                   |                | Н                   |                               |               |      |             |             |    |
|                                                                                                                                            |                  | PSO    | 1                    | PSC                               | )2           | PS                | 03             | PS                  | SO4                           | PSO5          |      |             |             |    |
|                                                                                                                                            |                  | Η      |                      |                                   |              |                   |                |                     |                               |               |      |             |             |    |
|                                                                                                                                            |                  |        |                      | М                                 |              |                   |                |                     |                               |               |      |             |             |    |
|                                                                                                                                            |                  |        |                      |                                   |              | М                 |                | М                   |                               |               |      |             |             |    |
|                                                                                                                                            |                  |        |                      |                                   |              |                   |                |                     |                               |               |      |             |             |    |
| H/M/L indicat                                                                                                                              | es Str           | ength  | n of Co              | orrelation                        | H- Hi        | gh, M- I          | Medium         | , L-Low             |                               |               | 1    |             |             |    |
| Category                                                                                                                                   | Basic Sciences   |        | Engineering Sciences | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Practical / Project | Internships / Technical Skill | Soft Skills   |      |             |             |    |
|                                                                                                                                            | 0.541-           |        |                      |                                   | •            | ۷                 |                |                     |                               |               |      | 1           |             |    |
| Approval                                                                                                                                   | 27 <sup>th</sup> | mee    | eting                | of Acade                          | emic co      | uncil, J          | une201         | 17                  |                               |               |      |             |             |    |

#### B.Tech Mechanical Engineering - 2017 Regulation

#### **TEXT BOOK**

1) V.Ganesan, (2008) "Internal combustion engines", Tata McGraw Hill.

### REFERENCES

- 1) Mathur and Sharma, (1990) "Internal combustion engines".
- 2) John Heywood, (1988) "Internal combustion engines fundamentals", Tata McGraw Hill Co.
- 3) Benson and White house (1983) "Internal combustion engines Vol I & Vol II", pergamon press.
- 4) Domkundwar, "Internal combustion engines" Dhanpat Rai & Co. (P) Ltd.

**UNIT- I: SPARK IGNITION ENGINES** 

Spark Ignition Engine Mixture Requirements - Fuel- Injection Systems-Monopoint and Multi point Injection -Stages of Combustion-Normal and Abnormal Combustion-factors Affecting Knock-Combustion Chambers.

Dr.M.G.R.

UNIVERSITY (Decl. U/S 3 of U/GC Act 1956) DEPARTMENT OF MECHANICAL ENGINEERING

EDUCATIONAL AND RESEARCH INSTITUTE

#### **UNIT- II: COMPRESSION IGNITION ENGINES**

States of Combustion in C.I.Engine - Direct and Indirect Injection Systems - Combustion Chambers - Fuel Spray Behavior and Structure-Spray Penetration and Evaporation-Air Motion - Turbo charging.

#### **UNIT- III: POLLUTANT FORMATION AND CONTROL**

Pollutant -Global warming- Sources and Types -Formation of NOx - Hydro-Carbon Emission Mechanism - Carbon Monoxide. Formation-Particulate Emissions-Methods of Controlling Emissions - Catalytic Converters and Particulate Traps-EGR technique.

#### **UNIT- IV: ALTERNATIVE FUELS**

Bio-fuel - Vegetable oil - Bio diesel - Alcohol, Hydrogen, Natural Gas and Liquefied Petroleum Gas-Properties, Suitability, Engine Modifications, Merits and Demerits as Fuels.

#### **UNIT- V: RECENT TRENDS**

Lean Burn Engines-Stratified Charge Engines-Gasoline Direct Injection Engine-Homogeneous Charge Compression Ignition –Plasma Ignition –Common rail direct injection engine.

> Total No. of Hrs : 45





9 Hrs

9 Hrs

9 Hrs

9 Hrs

#### 9 Hrs



| stands To Except         | 1. Carl          |                       | DEPAF                             | RTMEN        | I OF MI             | ECHAN          | ICAL E              | NGINE                         | ERING         |          |             |         |    |
|--------------------------|------------------|-----------------------|-----------------------------------|--------------|---------------------|----------------|---------------------|-------------------------------|---------------|----------|-------------|---------|----|
| Subject Code<br>BME17E02 | : S              | ubject Na             | ame : RF                          | NEWAI        | BLE EN              | ERGY           |                     |                               | T / L/<br>ETL | L        | T /<br>S.Lr | P/ R    | C  |
|                          |                  |                       | e: Therm                          |              |                     |                |                     |                               |               | 3        | 0           | 0       | 3  |
| L : Lecture T            | : Tutori         | al S Lr               | : Supervis                        | sed Lear     | ning P              | : Project      | R : Re              | search                        | C: Credits    |          |             |         |    |
| T/L/ETL : The            | eory/La          | b/Embed               | ded Theor                         | ry and L     | ab                  |                |                     |                               |               |          |             |         |    |
|                          | oncept, p        |                       | nd charact                        | eristics o   | f differei          | nt renewa      | able energ          | gy syste                      | ms.           |          |             |         |    |
| <b>COURSE OU</b>         | TCON             | AES (CO               | s) : ( 3- 5                       | )            |                     |                |                     |                               |               |          |             |         |    |
| CO1                      |                  | Concept a application |                                   | oles of di   | fferent r           | enewabl        | e energy            | y system                      | ıs like solar | and wir  | nd energy   | and its |    |
| CO2                      |                  | Biomass a             | nd bioener                        | gy conve     | rsions, O           | cean The       | ermal ene           | ergy, Ge                      | othermal en   | ergy     |             |         |    |
| CO3                      |                  | Direct ene            | rgy conve                         | rsions lil   | ke Therr            | no electr      | ic gener            | ator, M                       | HD and Fu     | el cells |             |         |    |
| Mapping of C             | Course           | Outcome               | s with Pr                         | ogram        | Outcom              | es (POs        | 5)                  |                               |               |          |             |         |    |
| COs/POs                  | PO1              | PO2                   | PO3                               | PO4          | PO5                 | PO6            | PO7                 | PO8                           | PO9           | PO10     | PO1         | 1 PO    | 12 |
| CO1                      | М                |                       |                                   |              |                     |                |                     |                               |               |          |             |         |    |
| CO2                      |                  | Н                     | Н                                 |              |                     |                |                     |                               |               |          |             |         |    |
| CO3                      |                  |                       | М                                 |              |                     |                |                     |                               |               |          |             |         |    |
| COs / PSOs               | Р                | SO1                   | PSO2                              |              | PS                  | 03             | PS                  | SO4                           | PSO5          |          |             |         |    |
| CO1                      |                  | Н                     |                                   |              |                     |                |                     |                               |               |          |             |         |    |
| CO2                      |                  |                       | Н                                 |              | М                   |                |                     |                               |               |          |             |         |    |
| CO3                      |                  | 1                     |                                   |              |                     |                | -                   | М                             |               |          |             |         |    |
| H/M/L indicat            | es Stre          | ngth of C             | orrelation                        | H- Hi        | gh, M- 1            | Medium         | , L-Low             |                               |               |          |             |         |    |
| Category                 | Basic Sciences   | Engineering Sciences  | Humanities and Social<br>Sciences | Program Core | ▲ Program Electives | Open Electives | Practical / Project | Internships / Technical Skill | Soft Skills   |          |             |         |    |
|                          | 27 <sup>th</sup> | meeting               | of Acad                           | mic co       | -                   | <br> 100020    | 17                  |                               | <u> </u>      | 1        |             |         |    |
| Approval                 | 21               | meeting               | UI ACAU                           |              | ullCll, .           | ulle20         | 1/                  |                               |               |          |             |         |    |

#### UNIT- I PRINCIPLES OF SOLAR RADIATION:

Role and Potential of new and renewable source, the solar energy option, Environmental impact of solar power, Solar constant, extra-terrestrial and terrestrial solar radiation, solar radiation on titled surface, Instruments for measuring solar radiation and sun shine, solar radiation data.

#### UNIT- II SOLAR ENERGY

SOLAR ENERGY COLLECTION: Flat plate and concentrating collectors, classification of concentrating collectors, orientation and thermal analysis, advanced collectors.

SOLAR ENERGY STORAGE: Different methods, sensible, latent heat and stratified storage, solar ponds. Solar applications - solar heating/cooling techniques, solar distillation and drying, photovoltaic energy conversion.

#### **UNIT- III WIND ENERGY AND BIOMASS**

WIND ENERGY: Sources and potentials, horizontal and vertical axis windmills, performance characteristics. BIOMASS: Principles of Bio-Conversion, Anaerobic/aerobic digestion, types of Bio-Gas digestors, gas yield, combustion characteristics of bio-gas, utilization for cooking, I.C.Engine operation, economic aspects.

#### UNIT- IV GEOTHERMAL, TIDAL AND WAVE ENERGY

GEOTHERMAL ENERGY: Resources, types of wells, methods of harnessing OTEC: Principles, utilization, setting of OTEC plants, thermodynamic cycles. TIDAL AND WAVE ENERGY: Potential and conversion techniques, mini hydel power plants, and their economics.

#### **UNIT- V:DIRECT ENERGY CONVERSION**

Need for DEC, Carnot cycle, limitations, principles of DEC. Thermo-electric generators, MHD Power generators, principles, working.

Fuel cells: principle, working -types - Selection of fuels and operating conditions.

#### **TEXT BOOKS**

- 1) G.D.Rai, (2004) "Non-Conventional Energy Sources" Khanna Publishers.
- 2) Ashok V Desai, (2003) "Non-Conventional Energy", Wiley Eastern.
- 3) K.M.Mittal, (2007) "Non-Conventional Energy Systems", Wheeler Publishing.
- 4) Ramesh & Kumar, (2007) "Renewable Energy Technologies", Narosa Publishing House.

#### REFERENCES

- 1) Twidell & Weir, (2006) "Energy Sources", Taylor & Francis
- 2) Sukhame, (2009) "Solar Energy".
- 3) B.S.Magal Frank Kreith, (2010) "Solar Power Engineering"



9 **Hrs** ar

9 Hrs

9 Hrs

**9** Hrs

9 Hrs

45

Total No. of Hrs :



| Subject Code<br>BME17E03 | :                | Subject Na           | me: TUR                           | BO MA        | CHINES            | 5              |                     |                               | T / L/<br>ETL | L         | T / S.Lr    | <b>P/ R</b> | С      |
|--------------------------|------------------|----------------------|-----------------------------------|--------------|-------------------|----------------|---------------------|-------------------------------|---------------|-----------|-------------|-------------|--------|
|                          |                  | Prerequisite         |                                   |              |                   |                |                     |                               |               | 3         | 0           | 0           | 3      |
| L : Lecture T :          | : Tutoria        | al SLr : Su          | upervised I                       | earning      | P : Proje         | ct R : R       | esearch (           | C: Credi                      | ts            |           |             |             |        |
| T/L/ETL : The            | eory/Lat         | o/Embeddeo           | d Theory a                        | nd Lab       |                   |                |                     |                               |               |           |             |             |        |
| OBJECTIVE                |                  |                      |                                   |              |                   |                |                     | irbo mao                      | chinery used  | d for ene | rgy transfo | rmation,    | , such |
| as pumps, fans           |                  |                      |                                   | raulic, ste  | eam and g         | gas-turbi      | nes.                |                               |               |           |             |             |        |
| COURSE OU                | JTCOM            |                      |                                   |              |                   |                |                     |                               |               |           |             |             |        |
| CO1                      |                  | -                    | U                                 |              |                   |                |                     |                               | o various ty  | pes of ma | achines     |             |        |
| CO2                      |                  |                      | n paramete                        |              |                   |                |                     |                               |               |           |             |             |        |
| CO3                      |                  |                      |                                   |              |                   |                |                     |                               | pressors, tui |           |             |             |        |
| CO4                      |                  | Recognize componen   |                                   |              | hoices m          | ade earl       | y in the t          | urbo ma                       | chinery des   | sign proc | ess and the | final       |        |
| Mapping of               | Course           | e Outcom             | es with Pi                        | rogram       | Outcom            | nes (POs       | s)                  |                               |               |           |             |             |        |
| COs/POs                  | POI              |                      | PO3                               | PO4          | PO5               | PO6            | PO7                 | PO8                           | PO9           | PO10      | PO11        | PO          | 12     |
| CO1                      | Μ                |                      |                                   |              |                   |                |                     |                               |               |           |             |             |        |
| CO2                      |                  | Н                    |                                   |              |                   |                |                     |                               |               |           |             |             |        |
| CO3                      |                  |                      | Н                                 |              |                   |                |                     |                               |               |           |             |             |        |
| CO4                      |                  |                      |                                   | М            |                   |                |                     |                               |               |           |             |             |        |
| COs / PSOs               |                  | PSO1                 | PSO2                              |              | PS                | 03             | P                   | SO4                           | PSO5          |           |             |             |        |
| CO1                      |                  | Н                    |                                   |              |                   |                |                     |                               |               |           |             |             |        |
| CO2                      |                  |                      |                                   |              |                   |                |                     |                               |               |           |             |             |        |
| CO3                      |                  | L                    |                                   |              |                   |                |                     |                               |               |           |             |             |        |
| CO4                      |                  |                      |                                   |              |                   |                |                     |                               |               |           |             |             |        |
| H/M/L indica             | ates Str         | ength of C           | orrelation                        | H-H          | gh, M-            | Medium         | L-Low               | V                             |               |           |             |             |        |
|                          |                  |                      |                                   |              | <u>8</u> ,        |                | 1                   |                               |               |           |             |             |        |
| Category                 | Basic Sciences   | Engineering Sciences | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Practical / Project | Internships / Technical Skill | Soft Skills   |           |             |             |        |
| Approval                 | 27 <sup>th</sup> | meeting              | of Acad                           | emic co      | ouncil, .         | June20         | 17                  | 1                             | 1             |           | 1           |             |        |

#### **UNIT-1 INTRODUCTION**

Definition of turbo machine, parts of turbo machines, Comparison with positive displacement machines, Classification, Application of first and second laws of thermodynamics to turbo machines.

#### UNIT- 2 ENERGY EXCHANGE IN TURBOMACHINES

Euler's turbine equation, Velocity triangles for different values of degree of reaction, Components of energy transfer, Degree of Reaction, utilization factor, Relation between degree of reaction and Utilization factor.

#### **UNIT- 3 CENTRIFUGAL COMPRESSORS**

Construction details, types, impeller flow losses, slip factor, diffuser analysis losses and performance curves.

#### **UNIT- 4 AXIAL AND RADIAL FLOW COMPRESSORS**

1. Gas Turbine, V.Ganesan, Tata McGraw Hill Co. Ltd., 3rd edition, 2010

Axial and radial flow compressors and pumps- general analysis, Effect of blade discharge angle on performance, Theoretical head – capacity relationship.

#### **UNIT- 5 AXIAL AND RADIAL FLOW TURBINES**

3. B.K.Venkanna, "Turbomachine", PHI, New Delhi 2009.

Velocity diagrams, losses and coefficients, blade design principles, testing and performance characteristics.

2. Turbines, Compressors & Fans, S. M. Yahya, Tata McGraw HillCo. Ltd., 2nd edition, 2002

D. G. Shepherd, "Principals of Turbo machines", the Macmillan Company (1964).
 , S. L.Dixon, "Fluid Mechanics & Thermodynamics of Turbo machines", Elsevier (2005).

4. M. S. Govindgouda and A. M.Nagaraj, "A Text Book of Turbomachines", M. M. Publications, 4Th Ed, 2008.
5. V. Kadambi and Manohar Prasad, "An Introduction to Energy Conversion, Volume III, Turbo machinery", New Age International Publishers, reprint 2008.



**TEXT BOOKS**:

**REFERENCE BOOKS:** 

### 9Hrs

9Hrs

9Hrs

9Hrs

#### 9Hrs

73

Total No. of Hrs : 45



| Subject Code:<br>BME17E04 |          | SJECT NA                                                                                                                                                                               |                                   |              |               |            |                     | ONING                    | T / L/<br>ETL | L    | T / S.Lr | P/ R | C  |  |  |
|---------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------|---------------|------------|---------------------|--------------------------|---------------|------|----------|------|----|--|--|
|                           |          | equisite: Th                                                                                                                                                                           |                                   |              |               |            |                     | ~ ~                      |               | 3    | 0        | 0    | 3  |  |  |
| L : Lecture T : T         | utoria   | l SLr : Su                                                                                                                                                                             | pervised L                        | earning      | P : Proje     | ct R : Re  | esearch C           | C: Credit                | S             |      |          |      |    |  |  |
| T/L/ETL : Theorem         | ry/Lab   | /Embedded                                                                                                                                                                              | Theory ar                         | nd Lab       |               |            |                     |                          |               |      |          |      |    |  |  |
|                           |          | ES: Student                                                                                                                                                                            |                                   |              |               |            |                     |                          |               |      |          |      |    |  |  |
|                           |          | principle of                                                                                                                                                                           |                                   |              | r conditi     | oning sys  | stems.              |                          |               |      |          |      |    |  |  |
|                           |          | es used in r                                                                                                                                                                           |                                   |              | ina           |            |                     |                          |               |      |          |      |    |  |  |
| COURSE OUT                |          |                                                                                                                                                                                        |                                   | bai warin    | ing .         |            |                     |                          |               |      |          |      |    |  |  |
| COURSE OUT                |          | The working                                                                                                                                                                            |                                   | e of refri   | gerators :    | and air co | onditione           | rs                       |               |      |          |      |    |  |  |
| CO2                       |          |                                                                                                                                                                                        |                                   |              | -             |            |                     |                          | em compon     | ents |          |      |    |  |  |
| CO3                       |          |                                                                                                                                                                                        |                                   | -            |               | -          | -                   | <u>6</u> 5950            | emeompon      | ents |          |      |    |  |  |
| CO4                       |          | Alternate refrigerants to reduce global warming         Applications of cryogenic engineering in various Mechanical engineering fields         se Outcomes with Program Outcomes (POs) |                                   |              |               |            |                     |                          |               |      |          |      |    |  |  |
|                           |          |                                                                                                                                                                                        |                                   |              |               |            |                     |                          | 8             |      |          |      |    |  |  |
| COs/POs                   | PO1      | PO2                                                                                                                                                                                    | PO3                               | PO4          | PO5           | PO6        | PO7                 | PO8                      | PO9           | PO10 | PO11     | PO   | 12 |  |  |
| CO1                       | Н        |                                                                                                                                                                                        |                                   |              |               |            |                     |                          |               |      |          |      |    |  |  |
| CO2                       |          | М                                                                                                                                                                                      | М                                 |              |               |            |                     |                          |               |      |          |      |    |  |  |
| CO3                       |          |                                                                                                                                                                                        | Н                                 |              |               | Н          | Н                   |                          |               |      |          |      |    |  |  |
| CO4                       |          | М                                                                                                                                                                                      | М                                 | Μ            |               | Н          | Н                   |                          |               |      |          |      |    |  |  |
| COs / PSOs                | I        | PSO1                                                                                                                                                                                   | PSC                               | 02           | PS            | O3         | PS                  | SO4                      | PSO5          |      |          |      |    |  |  |
| CO1                       |          | Н                                                                                                                                                                                      |                                   |              |               |            |                     |                          |               |      |          |      |    |  |  |
| CO2                       |          | Н                                                                                                                                                                                      | Н                                 | [            | N             | Л          |                     |                          |               |      |          |      |    |  |  |
| CO3                       |          | Н                                                                                                                                                                                      | M                                 | [            | Ν             | Л          |                     |                          |               |      |          |      |    |  |  |
| CO4                       |          |                                                                                                                                                                                        | Н                                 |              |               | H          |                     |                          |               |      |          |      |    |  |  |
| H/M/L indicate            | es Stre  | ength of Co                                                                                                                                                                            | orrelation                        | H- Hi        | gh, M- 1      | Medium     | , L-Low             |                          |               |      |          |      |    |  |  |
| Category                  | Sciences | neering Sciences                                                                                                                                                                       | Humanities and Social<br>Sciences | Program Core | ram Electives | Electives  | Practical / Project | nships / Technical Skill | Skills        |      |          |      |    |  |  |
|                           | Basic    | Engine                                                                                                                                                                                 |                                   |              | ▲ Prog        | Open       |                     | Interns                  | Soft Sl       |      |          |      |    |  |  |
| Approval                  | 41       | meeting                                                                                                                                                                                | UI ACAO                           |              | uncn, J       | une20      | 1/                  |                          |               |      |          |      |    |  |  |

### **UNIT- I: REFRIGERATION CYCLES AND REFRIGERANTS**

Vapour Compression Réfrigération Cycle-Simple Saturated Vapour Compression Réfrigération Cycle. Thermodynamic Analysis of the above. Refrigerant Classification, Designation, Alternate Refrigerants, Global Warming Potential & Ozone Depleting Potential Aspects.

### **UNIT- II: SYSTEM COMPONENTS**

Refrigerant Compressors – Reciprocating Open & Hermetic Type, Screw Compressors and Scroll Compressors – Construction and Operation Characteristics. Evaporators – DX Coil, Flooded Type Chillers Expansion Devices - Automatic Expansion Valves, Capillary Tube & Thermostatic Expansion Valves. Condensing UNIT-s and Cooling Towers.

### UNIT- III: CYCLING CONTROLS AND SYSTEM BALANCING

Pressure and Temperature Controls. Range and Differential Settings. Selection and Balancing of System Components-Graphical Method.

### UNIT- IV: PSYCHROMETRY & AIR CONDITIONING

Moist Air Behavior, Psychrometric Chart, Different Psychrometric Process Analysis. Summer and Winter Air-conditioning, Cooling Load Calculations, Air Distribution Patterns, Dynamic and Frictional Losses in Air Ducts, Equal Friction Method, Fan Characteristics in Duct Systems.

### UNIT- V: INTRODUCTION TO CRYOGENIC ENGINEERING

Introduction to cryogenic engineering-applications of cryogenics in various fields-low temperature properties of materialsmechanical, thermal, electrical and magnetic properties- properties of cryogenic fluids-cryogenic fluid storage and transfer systems- cryogenic insulation.

Total No. of Hrs : 45

### TEXT BOOKS

1) W.F.Stocker and J.W.Jones, (2009) "Refrigeration & Air Conditioning", McGraw Hill Book Company.

2) Randall F.Barron, (1985) "Cryogenic systems", Oxford University press.

### REFERENCES

1) R.J.Dossat, (2005) "Principles of Refrigeration", John Wiley and Sons Inc., 6th edition.

2) Manohar Prasad, (2009) "Refrigeration and Air Conditioning", Wiley Eastern Ltd.



9 Hrs

9 Hrs

9 Hrs

9 Hrs



| Finest to them           | 10                    |                          | DEPAI                                                                                                           | RTMEN        | I OF M              | ECHAN          | ICAL E              | NGINE                         | ERING         |      |             |      |    |  |
|--------------------------|-----------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------|--------------|---------------------|----------------|---------------------|-------------------------------|---------------|------|-------------|------|----|--|
| Subject Code<br>BME17E05 |                       | Subject Na<br>DYNAMIC    |                                                                                                                 | OMPUT        | ATION               | AL FLU         | ID                  |                               | T / L/<br>ETL | L    | T /<br>S.Lr | P/ R | C  |  |
|                          |                       | Prerequisit<br>and Fluid |                                                                                                                 |              | ics, Hea            | t and M        | lass tran           | sfer                          |               | 3    | 0           | 0    | 3  |  |
| L : Lecture T :          | : Tutor               | rial S Lr                | : Supervi                                                                                                       | sed Lear     | ming P              | : Project      | t R : Re            | search                        | C: Credits    |      |             |      |    |  |
| T/L/ETL : The            | eory/L                | ab/Embed                 | ded Theo                                                                                                        | ry and L     | ab                  |                |                     |                               |               |      |             |      |    |  |
| <b>OBJECTIVES:</b> Stu   |                       |                          |                                                                                                                 |              |                     |                |                     |                               |               |      |             |      |    |  |
| >                        |                       | erning equa              |                                                                                                                 | -            |                     |                |                     | _                             |               |      |             |      |    |  |
|                          | Met                   | hods of solv             | ving the ec                                                                                                     | quations l   | oy Finite           | element        | and Finit           | te Volun                      | ne methods    |      |             |      |    |  |
| COURSE OU                | TCO                   | MES (CO                  | $(3_{-})$                                                                                                       | 0            |                     |                |                     |                               |               |      |             |      |    |  |
| CO1                      |                       | Governin                 |                                                                                                                 |              | dvnami              | cs.            |                     |                               |               |      |             |      |    |  |
| CO2                      |                       | Methods o                | -                                                                                                               |              | nethod              |                |                     |                               |               |      |             |      |    |  |
| CO3                      |                       |                          |                                                                                                                 |              | -                   |                |                     |                               |               |      |             |      |    |  |
|                          | Course                |                          | Aethods of solving the fluid flow problems by Finite Volume method         Dutcomes with Program Outcomes (POs) |              |                     |                |                     |                               |               |      |             |      |    |  |
| COs/POs                  | PO1                   |                          | PO3                                                                                                             | PO4          | PO5                 | PO6            | PO7                 | PO8                           | PO9           | PO10 | PO1         | 1 PO | 12 |  |
| CO1                      | Μ                     |                          |                                                                                                                 |              |                     |                |                     |                               |               |      |             |      |    |  |
| CO2                      |                       | Н                        | М                                                                                                               |              | Н                   |                |                     |                               |               |      |             |      |    |  |
| CO3                      |                       |                          | М                                                                                                               | М            | Н                   |                |                     |                               |               |      |             |      |    |  |
| COs / PSOs               | ]                     | PSO1                     | PS                                                                                                              | 02           | PS                  | 503            | P                   | SO4                           | PSO5          |      |             |      |    |  |
| CO1                      |                       | Н                        |                                                                                                                 |              |                     |                |                     |                               |               |      |             |      |    |  |
| CO2                      |                       |                          |                                                                                                                 |              |                     |                |                     |                               |               |      |             |      |    |  |
| CO3                      |                       |                          |                                                                                                                 |              |                     |                |                     |                               |               |      |             |      |    |  |
| H/M/L indicat            | es Stre               | ength of C               | orrelation                                                                                                      | H-Hi         | igh, M-             | Medium         | n, L-Low            |                               | 1             |      |             |      |    |  |
|                          |                       | es                       | Social                                                                                                          |              |                     |                |                     | ical Skill                    |               |      |             |      |    |  |
| Category                 | <b>Basic Sciences</b> | Engineering Sciences     | Humanities and Soc<br>Sciences                                                                                  | Program Core | ▲ Program Electives | Open Electives | Practical / Project | Internships / Technical Skill | Soft Skills   |      |             |      |    |  |
| Approval                 | 27 <sup>th</sup>      | meeting                  | of Acad                                                                                                         | emic co      | -                   | June20         | 17                  | <u> </u>                      | 1             |      |             | I    |    |  |

#### B.Tech Mechanical Engineering - 2017 Regulation

Explicit and Implicit schemes – Example problems on elliptic and parabolic equations. **UNIT- III: FINITE VOLUME METHOD (FVM) FOR DIFFUSION** 

Finite volume formulation for steady state One, Two and Three -dimensional diffusion problems. One dimensional unsteady heat conduction through Explicit, Crank – Nicolson and fully implicit schemes.

solution methods for finite difference equations - Elliptic equations - Iterative solution Methods - Parabolic equations -

Turbulent-Kinetic Energy Equations - Mathematical behavior of PDEs on CFD - Elliptic, Parabolic and Hyperbolic

#### **UNIT- IV: FINITE VOLUME METHOD FOR CONVECTION DIFFUSION**

Steady one-dimensional convection and diffusion - Central, upwind differencing schemes-properties of discretization schemes - Conservativeness, Boundedness, Trasnportiveness, Hybrid, Power-law, QUICK Schemes.

#### **UNIT- V: CALCULATION FLOW FIELD BY FVM**

**UNIT- II: FINITE DIFFERENCE METHOD** 

Representation of the pressure gradient term and continuity equation - Staggered grid - Momentum equations - Pressure and Velocity corrections - Pressure Correction equation, SIMPLE algorithm and its variants. Turbulence models, mixing length model, Two equation  $(k-\varepsilon)$  models – High and low Reynolds number models

> **Total No. of Hrs** : 45

#### **TEXT BOOKS**

1) Ghoshdastidar, P.S., (1998) "Computer Simulation of flow and heat transfer", Tata McGraw Hill Publishing Company Ltd.

2) Versteeg, H.K., and Malalasekera, W., (1998) "An Introduction to Computational Fluid Dynamics: The finite volume Method", Longman.

#### REFERENCES

- 1) Patankar, S.V. (2004) "Numerical Heat Transfer and Fluid Flow", Hemisphere Publishing Corporation.
- 2) Muralidhar, K., and Sundararajan, T., (1995) "Computations Fluid Flow and Heat Transfer", Narosa Publishing House, NewDelhi.

Dr.M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE UNIVERSITY (Decl. U/S 3 of UGC Act 1956) DEPARTMENT OF MECHANICAL ENGINEERING

**UNIT- I: GOVERNING EQUATIONS AND BOUNDARY CONDITIONS** 



equations.

#### Basics of computational fluid dynamics – Governing equations of fluid dynamics – Continuity, Momentum and Energy equations - Chemical species transport - Physical boundary conditions - Time-averaged equations for Turbulent Flow -

8 Hrs

9 Hrs Derivation of finite difference equations – Simple Methods – General Methods for first and second order accuracy –

9 Hrs

9 Hrs

77



# ELECTIVE: DESIGN ENGINEERING



| Subject Code:<br>BME17E06 | Su                 | bject Nai                                                                              | me : MEC                          | HANIC        | AL VIBI           | RATION          | IS                  |                               | T / L/<br>ETL | L    | T/S.Lr | P/ R     | C  |  |  |
|---------------------------|--------------------|----------------------------------------------------------------------------------------|-----------------------------------|--------------|-------------------|-----------------|---------------------|-------------------------------|---------------|------|--------|----------|----|--|--|
|                           |                    |                                                                                        | : Strength of                     |              |                   |                 |                     |                               | Т             | 3    | 0      | 0        | 3  |  |  |
| L : Lecture T : 7         | Futorial           | SLr : Su                                                                               | pervised L                        | earning      | P : Proje         | ct R : Re       | esearch C           | C: Credit                     | ts            |      |        |          |    |  |  |
| T/L/ETL : Theo            | •                  |                                                                                        |                                   | nd Lab       |                   |                 |                     |                               |               |      |        |          |    |  |  |
| <b>OBJECTIVE</b> :        |                    |                                                                                        |                                   |              |                   |                 |                     |                               |               |      |        |          |    |  |  |
|                           | 0                  |                                                                                        | system in                         |              | modes.            |                 |                     |                               |               |      |        |          |    |  |  |
| <ul><li>Vibrati</li></ul> | on meas            | urement t                                                                              | echniques.                        |              |                   |                 |                     |                               |               |      |        |          |    |  |  |
| COURSE OUT                |                    |                                                                                        |                                   |              |                   |                 |                     |                               |               |      |        |          |    |  |  |
| CO1                       |                    | Basic knowledge in vibrations<br>Multi-degree of freedom system in different modes.    |                                   |              |                   |                 |                     |                               |               |      |        |          |    |  |  |
| CO2                       |                    | Multi-degree of freedom system in different modes.<br>/ibration measurement techniques |                                   |              |                   |                 |                     |                               |               |      |        |          |    |  |  |
| CO3                       |                    |                                                                                        |                                   |              |                   |                 |                     |                               |               |      |        |          |    |  |  |
| Mapping of Co             |                    |                                                                                        |                                   |              |                   |                 |                     |                               |               |      |        |          |    |  |  |
| Cos/Pos                   | PO1                | PO2                                                                                    | PO3                               | PO4          | PO5               | PO6             | PO7                 | PO8                           | PO9           | PO10 | PO11   | POI      | 12 |  |  |
| CO1                       | M                  |                                                                                        |                                   | M            |                   |                 | L                   |                               |               |      |        | L        |    |  |  |
| CO2                       | L                  | M                                                                                      | Н                                 | M            |                   |                 |                     |                               |               |      |        |          |    |  |  |
| CO3                       | M                  | M                                                                                      | DC                                | Н            | DC                | L               | D                   |                               | DCOT          |      |        | L        |    |  |  |
| Cos / PSOs                |                    | <u>501</u>                                                                             | PSO                               |              |                   | 03              |                     | SO4                           | PSO5          |      |        |          |    |  |  |
| CO1<br>CO2                |                    | L                                                                                      | L<br>H                            |              | L<br>M            |                 | L                   |                               |               |      |        |          |    |  |  |
| CO2<br>CO3                |                    | M<br>M                                                                                 | Н                                 |              | IVI               |                 | М                   |                               |               |      |        | <u> </u> |    |  |  |
| H/M/L indicates           |                    |                                                                                        |                                   |              | /- Mediu          | m I I o         |                     |                               |               |      |        |          |    |  |  |
| 11/W/L indicates          | Suengu             |                                                                                        |                                   | - High, N    |                   | $\square, L-L0$ |                     |                               |               |      |        |          |    |  |  |
| Category                  | Basic Sciences     | Engineering Sciences                                                                   | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives  | Practical / Project | Internships / Technical Skill | Soft Skills   |      |        |          |    |  |  |
| Approval                  | 27 <sup>th</sup> n | neeting                                                                                | of Acado                          | emic co      | uncil, J          | June20          | 17                  |                               |               | •    | •      |          |    |  |  |

#### **UNIT- I:INTRODUCTION**

#### Relevance of and need for vibration Analysis- Mathematical Modelling of Vibrating Systems - Discrete and Continuous Systems - Review of Single degree of Freedom Systems - Free and Forced Vibrations, Various Damping Models

#### **UNIT- II: TWO DEGREE-OF-FREEDOM SYSTEMS**

General Solution to Free vibration problem-Damped Free Vibration, Forced Vibration of un-damped System -Dynamic Vibration Absorbers-Technical Applications.

#### **UNIT- III:MULTI-DEGREE OF FREEDOM SYSTEMS**

Free and Forced Vibrations of multi-degree of freedom systems in longitudinal, torsional and lateral modes - Matrix methods of solution – normal modes – orthogonal principle- energy methods, Introduction to vibration of plates.

#### **UNIT- IV:CONTINOUS SYSTEMS**

Torsional vibrations - Longitudinal vibrations of rods - Transverse vibrations of beams- Governing equations of motion -Natural frequencies and normal modes - energy methods.

#### **UNIT- V:VIBRATION MEASUREMENT**

Vibration monitoring-Data Acquisition- Vibration parameter selection - vibration sensors-accelerometers-Performance characteristics-sensor location-signal pre-amplification – vibration meters-vibration signatures-standards-vibration testing equipment-in-site, Balancing of rotors.

#### Total No. of Hrs: 45

#### TEXT BOOK

1) J.S.Rao and K.Gupta, (1999) "Introductory Subject on Theory and Practice of Mechanical Vibrations", Wiley Eastern Ltd.

#### REFERENCES

- 1) P.Srinivasan, (1990) "Mechanical Vibration Analysis", Tata-McGraw Hill, New Delhi.
- 2) G.K.Grover, (2006) "Mechanical Vibrations", New Chand and Bros, Roorkey.



9 Hrs

9 Hrs

9 Hrs

9 Hrs

9 Hrs

80



| Subject Code:<br>BME17E07 | S                | Subject Na           | me : FINI                         | re elei      | MENT A            | NALYS          | SIS                 |                               | T / L/<br>ETL | L       | T / S.Lr  | <b>P/ R</b> | C     |
|---------------------------|------------------|----------------------|-----------------------------------|--------------|-------------------|----------------|---------------------|-------------------------------|---------------|---------|-----------|-------------|-------|
|                           |                  | Prerequisite         | : Strength o                      | of Materi    | als, Desi         | gn of Ma       | chine               |                               | Т             | 3       | 1         | 0           | 4     |
| L : Lecture T : 7         |                  | Elements-I           |                                   |              | D . Dasia         | -+ D - D       |                     | C. C. di                      | L             |         |           |             |       |
|                           |                  |                      |                                   |              | P : Proje         | Ct R : R       | esearch C           | : Credi                       | lS            |         |           |             |       |
| T/L/ETL : Theo            | ory/Lab          | /Embeddec            | l Theory ar                       | nd Lab       |                   |                |                     |                               |               |         |           |             |       |
| <b>OBJECTIVE</b> :        |                  |                      |                                   |              |                   |                |                     |                               |               |         |           |             |       |
|                           |                  | s of finite e        |                                   | •            |                   |                | 5.                  |                               |               |         |           |             |       |
|                           |                  | lving one,           |                                   | o-parame     | tric elem         | ents.          |                     |                               |               |         |           |             |       |
| COURSE OUT                |                  |                      |                                   |              |                   |                |                     |                               |               |         |           |             |       |
| CO1                       |                  | Fundamen             |                                   |              |                   |                |                     |                               |               |         |           |             |       |
| CO2                       |                  | -                    |                                   |              | element           | software       | e to solv           | e engin                       | eering prob   | lems in | Solid Mec | hanics,     | Fluid |
|                           |                  | Mechanics            | and Heat                          | Transfer     |                   |                |                     |                               |               |         |           |             |       |
| CO3                       |                  | Derive ele           |                                   |              |                   |                | thods               |                               |               |         |           |             | ·     |
| Mapping of Co             |                  |                      |                                   |              | omes (P           |                |                     |                               |               |         |           |             |       |
| Cos/Pos                   | PO1              | PO2                  | PO3                               | PO4          | PO5               | PO6            | PO7                 | PO8                           | PO9           | PO10    | PO11      | POI         | 12    |
| CO1                       | М                | М                    |                                   |              |                   |                |                     |                               |               | L       |           | L           |       |
| CO2                       |                  |                      | М                                 |              | Н                 |                |                     |                               |               | L       |           |             |       |
| CO3                       | L                |                      | М                                 |              |                   |                |                     |                               |               |         |           | L           |       |
| Cos / PSOs                | ]                | PSO1                 | PSG                               |              | PS                | 03             |                     | SO4                           | PSO5          |         |           |             |       |
| CO1                       |                  | М                    | M                                 |              |                   |                | L                   |                               |               |         |           |             |       |
| CO2                       |                  | М                    | M                                 |              | Ν                 | Л              | М                   |                               |               |         |           |             |       |
| CO3                       |                  | L                    | L                                 |              | ]                 |                |                     |                               |               |         |           |             |       |
| H/M/L indicates           | s Stren          | gth of Corr          | elation H                         | - High, N    | A- Mediu          | ım, L-Lo       | W                   | _                             | 1             |         |           |             |       |
| Category                  |                  | se                   | cial                              |              |                   |                |                     | nical Skill                   |               |         |           |             |       |
|                           | Basic Sciences   | Engineering Sciences | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Practical / Project | Internships / Technical Skill | Soft Skills   |         |           |             |       |
| Approval                  | 27 <sup>th</sup> | meeting              | of Acade                          | emic co      | ouncil, J         | fune20         | 17                  | 1                             | <u> </u>      |         | I         |             |       |

- Finite Element Analysis", 4th Edition, Wiley Student Edition, 2002.

#### **UNIT-I INTRODUCTION**

Historical Background - Mathematical Modeling of field problems in Engineering -Governing Equations - Discrete and continuous models - Boundary, Initial and Eigen Value problems- Weighted Residual Methods - Variational Formulation of Boundary Value Problems - Ritz Technique - Basic concepts of the Finite Element Method.

#### **UNIT- II ONE-DIMENSIONAL PROBLEMS**

One Dimensional Second Order Equations - Discretization - Element types- Linear and Higher order Elements - Derivation of Shape functions and Stiffness matrices and force vectors-Assembly of Matrices - Solution of problems from solid mechanics including thermal stresses-heat transfer. Natural frequencies of longitudinal vibration and mode shapes. Fourth Order Beam Equation - Transverse deflections and Transverse Natural frequencies of beams.

#### **UNIT- III TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS**

Second Order 2D Equations involving Scalar Variable Functions - Variational formulation - Finite Element formulation -Triangular elements and Quadrilateral elements- Shape functions and element matrices and vectors. Application to Field Problems - Thermal problems - Torsion of Non circular shafts.

#### UNIT- IV TWO DIMENSIONAL VECTOR VARIABLE PROBLEMS

Equations of elasticity - Plane stress, plane strain and axisymmetric problems - Constitutive matrices and Strain displacement matrices - Stiffness matrix - Stress calculations - Plate and shell elements.

#### **UNIT- V ISOPARAMETRIC FORMULATION AND ADVANCED TOPICS**

Natural co-ordinate systems - Isoparametric elements - Shape functions for isoparametric elements - One and two dimensions - Serendipity elements - Numerical integration - Matrix solution techniques - Solutions Techniques to Dynamic problems - Introduction to Analysis Software- Introduction to Non Linearity.

#### **TEXT BOOKS:**

- 1. J.N.Reddy, "An Introduction to the Finite Element Method", 3rd Edition, Tata McGrawHill,2005
- Seshu, P, "Text Book of Finite Element Analysis", Prentice-Hall of India Pvt. Ltd., NewDelhi, 2007. 2

### **REFERENCES:**

- Logan, D.L., "A first Subject in Finite Element Method", Thomson Asia Pvt. Ltd., 2002. 1.
- Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, "Concepts and Applications of 2.
- Rao, S.S., "The Finite Element Method in Engineering", 3rd Edition, Butter worth Heinemann, 3. 2004.
- Chandrupatla and Belagundu, "Introduction to Finite Elements in Engineering", 3rd Edition, 4.



# 9Hrs

9Hrs

9Hrs

### 9Hrs

#### 9Hrs

## **TOTAL No of Hrs:45**



| Subject Code<br>BME17E08 | : 5              | Subject Na                                 | DEPARTI<br>ime : DESI      |              |                   |                |                     |                               | T / L/<br>ETL | L    | T / S.Lr | P/ R | C  |
|--------------------------|------------------|--------------------------------------------|----------------------------|--------------|-------------------|----------------|---------------------|-------------------------------|---------------|------|----------|------|----|
|                          | 1                | Prerequisite<br>Engineering<br>Engineering | g mechanic                 | s, Manuf     | acturing '        | Technolo       | ogy,                |                               | T             | 3    | 0        | 0    | 3  |
| L : Lecture T            |                  |                                            |                            |              |                   |                |                     | C: Credi                      | ts            |      |          |      | _  |
| T/L/ETL : The            | eory/Lat         | b/Embedde                                  | d Theory a                 | nd Lab       |                   |                |                     |                               |               |      |          |      |    |
| OBJECTIVE                | E: OBJ           | ECTIVE:                                    | Students w                 | vill learn   |                   |                |                     |                               |               |      |          |      |    |
|                          |                  | f jigs and fi                              |                            |              |                   |                |                     |                               |               |      |          |      |    |
|                          |                  | es of press                                |                            |              |                   |                |                     |                               |               |      |          |      |    |
| To in                    | npart kn         | owledge in                                 | basics, des                | ign and o    | drawing o         | of produc      | ction tool          | S                             |               |      |          |      |    |
| COURSE OU                | TCOM             | IES (COs)                                  | : (3-5)                    |              |                   |                |                     |                               |               |      |          |      |    |
| CO1                      | 01001            |                                            | tals of jigs               | , fixtures   |                   |                |                     |                               |               |      |          |      |    |
| CO2                      |                  |                                            | ntals of she               |              |                   |                |                     |                               |               |      |          |      |    |
| CO3                      |                  |                                            | n and draw                 |              |                   | s and pro      | ess tools           |                               |               |      |          |      |    |
| CO4                      |                  |                                            |                            |              |                   |                |                     |                               |               |      |          |      |    |
| CO5                      |                  |                                            |                            |              |                   |                |                     |                               |               |      |          |      |    |
| Mapping of (             |                  |                                            |                            |              | comes (P          |                |                     |                               |               |      |          |      |    |
| Cos/Pos                  | PO1              |                                            | PO3                        | PO4          | PO5               | PO6            | PO7                 | PO8                           | PO9           | PO10 | PO11     | PO   | 12 |
| CO1                      | M                |                                            | Н                          |              |                   |                |                     |                               |               |      |          | L    |    |
| CO2                      | M                |                                            | Н                          |              |                   |                |                     |                               |               |      |          | L    |    |
| CO3                      | M                | Н                                          | Н                          | Н            | Н                 |                |                     |                               | Н             | Н    |          | Н    |    |
| CO4                      | _                |                                            |                            |              |                   |                |                     |                               |               |      |          |      |    |
| CO5                      |                  | Dial                                       | DC                         |              |                   |                |                     | 201                           |               |      |          |      |    |
| Cos / PSOs               |                  | PSO1                                       | PS                         |              |                   | 503            |                     | SO4                           | PSO5          |      |          |      |    |
| CO1                      | _                |                                            | H                          |              | H                 |                | H                   |                               |               |      |          |      |    |
| CO2                      |                  |                                            | H H                        |              | H<br>H            |                | H                   |                               |               |      |          |      |    |
| CO3<br>CO4               |                  |                                            | - F                        | 1            | Н                 |                | Н                   |                               |               |      |          |      |    |
| C04<br>C05               |                  |                                            |                            |              |                   |                |                     |                               |               |      |          |      |    |
| H/M/L indicat            | tos Stron        | orth of Corr                               | alation H                  | Uigh I       | M Modiu           | mIIc           |                     |                               |               |      |          |      |    |
|                          |                  |                                            |                            |              |                   |                | , vv                | 1                             |               |      |          |      |    |
| Category                 | iences           | Engineering Sciences                       | ties and Social<br>s       | 1 Core       | Program Electives | ectives        | Practical / Project | Internships / Technical Skill | lls           |      |          |      |    |
|                          | Basic Sciences   | Engineer                                   | Humanities and<br>Sciences | Program Core | Program           | Open Electives | Practical           | Interns                       | Soft Skills   |      |          |      |    |
| Approval                 | 27 <sup>th</sup> | meeting                                    | of Acad                    | emic co      | ouncil, .         | June20         | 17                  |                               | 1             | _1   | I        | 1    |    |

### UNIT- I: LOCATING AND CLAMPING PRINCIPLES

OBJECTIVES of tool design- Function and advantages of Jigs and fixtures, Basic elements-principles of location .Locating methods and devices, Principles of clamping Mechanical actuation, pneumatic and hydraulic actuation. Standard parts, Drill bushes and Jig buttons, Tolerances and materials used.

### UNIT- II: JIGS

Design and development of jigs and fixtures for given component- Types of Jigs -Post, Turnover, Channel, latch, box, pot, angular post jigs, Indexing jigs, automatic drill jigs- rack and pinion operated air operated jigs - Design and drawing of channel, box, indexing and angular post jigs

### UNIT- III: FIXTURES

General principles of milling, Lathe, boring, broaching and grinding fixtures and shaping fixtures .Assembly, Inspection and Welding fixtures , Modular fixtures . Design and drawing of turning, milling and grinding fixtures

### **UNIT- IV: PRESS WORKING**

Press Working Terminologies - operations ,Types of presses , press accessories , Computation of press capacity , Strip layout , Material Utilization , Shearing action ,Clearances ,Press Work Materials , Center of pressure, recent trends in tool design- computer Aids for sheet metal forming Analysis

### UNIT- V: ELEMENTS OF CUTTING, BENDING, FORMING AND DRAWING DIES

Design of various elements of dies, Die Block, Punch holder, Die set, Stops, Strippers, Pilots - Selection of Standard parts. Design and drawing of simple blanking, piercing, compound and progressive dies.

Total No. of Hrs: 45

### TEXT BOOKS

1) Joshi, P.H. (2004) "Jigs and Fixtures", Second Edition, Tata McGraw Hill Publishing Co., Ltd., New Delhi.

2) Donaldson, Lecain and Goold, (2000) "Tool Design", III rd Edition, Tata McGraw Hill.

### REFERENCES

1) K.Venkataraman, (2005) "Design of Jigs Fixtures & Press Tools", Tata McGraw Hill, New Delhi.

- 2) Kempster, (1974) "Jigs and Fixture Design", Hoddes and Stoughton "Third Edition.
- 3) Joshi, P.H. Press Tools (2006) "Design and Construction", Wheels publishing, 2 edition
- 4) Hoffman, "Jigs and Fixture Design", Thomson Delmar Learning, Singapore

5) "Design Data Hand Book", PSG College of Technology, Coimbatore.



**9** Hrs

9 Hrs

9 Hrs

9 Hrs



| Subject Code:<br>BME17E09 | S              | ubject Na<br>DES     | me :<br>JGN OF M                  | ATERIA       | L HAND            | LING EQ        | UIPME               | NTS                           | T / L/<br>ETL | L          | T / S.Lr | <b>P/ R</b> | C   |
|---------------------------|----------------|----------------------|-----------------------------------|--------------|-------------------|----------------|---------------------|-------------------------------|---------------|------------|----------|-------------|-----|
|                           | Р              | rerequisite          | e: Design o                       | f Machin     | e Elemer          | nts.           |                     |                               | Т             | 3          | 0/0      | 0/0         | 3   |
| L : Lecture T :           | Tutorial       | SLr : S              | upervised I                       | earning      | P : Proje         | ect R : R      | esearch (           | C: Credi                      | ts            |            |          |             |     |
| T/L/ETL : The             | ory/Lab        | /Embedde             | d Theory a                        | nd Lab       |                   |                |                     |                               |               |            |          |             |     |
| OBIE                      |                | <u>.</u>             |                                   |              |                   |                |                     |                               |               |            |          |             |     |
| > Design                  | n of diff      | erent type           |                                   | al handlir   | ig system         | ns used fo     | or engine           | eering ar                     | d process in  | ndustries. |          |             |     |
| COURSE OU                 |                |                      |                                   |              |                   |                |                     |                               |               |            |          |             |     |
| CO1                       |                |                      | ge of variou                      |              |                   |                | es used ir          | n industr                     | ies           |            |          |             |     |
| CO2                       |                |                      | ge of hoists                      |              |                   |                |                     |                               |               |            |          |             |     |
| CO3                       |                |                      | e of differe                      |              |                   |                |                     |                               | 11°           |            |          |             |     |
| CO4<br>Mapping of Co      |                |                      | e of conve                        |              |                   | ievators       | for mate            | nai nanc                      | uing.         |            |          |             |     |
| Cos/Pos                   | PO1            | PO2                  | PO3                               | PO4          | PO5               | PO6            | PO7                 | PO8                           | PO9           | PO10       | PO11     | PO          | 12  |
| CO1                       | H              | H                    | M                                 | 104          | 105               | M              | M                   | 100                           | 109           | 1010       | 1011     | 10          | - 2 |
| CO2                       | H              | H                    | M                                 |              |                   | M              | M                   |                               |               |            |          |             |     |
| CO3                       | H              | H                    | M                                 |              |                   | M              | M                   |                               |               |            |          |             |     |
| CO4                       | H              | H                    | M                                 |              |                   | M              | M                   |                               |               |            |          |             |     |
| Cos / PSOs                |                | PSO1                 | PS                                | 02           | PS                | 503            |                     | SO4                           | PSO5          |            |          |             |     |
| CO1                       |                |                      | H                                 | I            |                   | Н              |                     |                               |               |            |          |             |     |
| CO2                       |                |                      | H                                 | ł            | -                 | Н              |                     |                               |               |            |          |             |     |
| CO3                       |                |                      | H                                 | I            | -                 | Н              |                     |                               |               |            |          |             |     |
| CO4                       |                |                      | H                                 | _            |                   | Н              |                     |                               |               |            |          |             |     |
| H/M/L indicate            | es Streng      | gth of Corr          | elation H                         | I- High, N   | A- Mediu          | ım, L-Lo       | w                   | - 1                           | 1             |            |          |             |     |
| Category                  | Basic Sciences | Engineering Sciences | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Practical / Project | Internships / Technical Skill | Soft Skills   |            |          |             |     |
| Approval                  |                |                      | of Acad                           |              |                   |                |                     |                               |               |            |          |             |     |

#### **UNIT- I: INTRODUCTION TO MATERIALS HANDLING EQUIPMENT**

Overview - consideration in material handling system design, ten principles of material handling. Types of material handling equipments-trolleys, industrial trucks, AGV, monorails and other rail guided vehicles, conveyors, cranes, hoists and elevators.

#### **UNIT- II: DESIGN OF HOISTS**

Design of hoisting elements: Welded and roller chains - Hemp and wire ropes - Design of ropes, pulleys, pulley systems, sprockets and drums, Load handling attachments. Design of forged hooks and eve hooks - crane grabs - lifting magnets -Grabbing attachments - Design of arresting gear - Brakes: shoe, band and cone types.

#### UNIT- III: DRIVES OF HOISTING GEAR

Hand and power drives - Travelling gear - Rail travelling mechanism - cantilever and monorail cranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings.

#### **UNIT-IV: CONVEYORS**

Types - description - design and applications of Belt conveyors, apron conveyors and escalators Pneumatic conveyors, Screw conveyors and vibratory conveyors.

#### **UNIT- V: ELEVATORS**

Bucket elevators: design - loading and bucket arrangements - Cage elevators - shaft way, guides, counter weights, hoisting machine, safety devices - Design of fork lift trucks.

> Total No. of Hrs : 45

\*NOTE: Use of Approved Data Book is permitted in examination

#### **TEXT BOOKS:**

- 1. Rudenko, N. (1970) Materials handling equipment. ELnvee Publishers
- 2. Mikell Groover, P. (2006) Automation, Production system and computer integrated Manufacturing. Second Edition, Prentice Hall of India Pvt. Ltd

#### REFERENCES

- 1. Alexandrov, M. (1981) Materials Handling Equipments. MIR Publishers
- 2 Boltzharol, A. (1958) Materials Handling Handbook. The Ronald Press Company
- P.S.G. Tech, (2003) Design Data Book. Kalaikathir Achchagam 3.
- 4. Lingaiah. K. and Narayana Iyengar, (1983) Machine Design Data Hand Book. Vol.1 & 2, Suma Publishers
- 5. Spivakovsy, A.O. and Dyachkov, V.K. (1985) Conveying Machines. Volumes I and II, MIR Publishers





## 9 Hrs

9 Hrs

9 Hrs

9 Hrs



| Subject Code:<br>BME17E10 | 5                | Subject Na           | me: TRI                           | BOLOG        | Y                 |                |                     |                               | T / L/<br>ETL | L          | T / S.Lr    | P/ R     | C      |
|---------------------------|------------------|----------------------|-----------------------------------|--------------|-------------------|----------------|---------------------|-------------------------------|---------------|------------|-------------|----------|--------|
|                           | F                | Prerequisite         | e: Engineer                       | ing Mech     | anics, Fl         | uid Mecl       | nanics an           | ıd                            | Т             | 3          | 0           | 0        | 3      |
|                           |                  | Machinerie           |                                   |              |                   |                |                     |                               |               |            |             |          |        |
| L : Lecture T :           | Tutoria          | l SLr : Su           | upervised I                       | Learning     | P : Proje         | ect R : R      | esearch (           | C: Credi                      | ts            |            |             |          |        |
| T/L/ETL : The             | ory/Lab          | /Embedde             | d Theory a                        | nd Lab       |                   |                |                     |                               |               |            |             |          |        |
| <b>OBJECTIVE</b> :        | The              | student wil          | 1 learn                           |              |                   |                |                     |                               |               |            |             |          |        |
| > To impart               |                  |                      |                                   | ear and h    | ubrication        | n aspects      | of mach             | ine com                       | ponents.      |            |             |          |        |
| To underst                | and the          | material p           | roperties w                       | hich infl    | uence the         | e tribolog     | ical char           | acteristi                     | ics of surfa  | ces.       |             |          |        |
| ➢ To unders               | tand th          | e analytica          | al behavior                       | of diffe     | erent type        | es bearir      | igs and             | design (                      | of bearings   | based o    | n analytica | l /theor | retica |
| approach                  |                  |                      |                                   |              |                   |                |                     |                               |               |            |             |          |        |
| COURSE OU                 | тсом             |                      |                                   |              |                   |                |                     |                               |               | -          |             |          |        |
| CO1                       |                  |                      |                                   |              |                   |                |                     |                               | cts of mach   |            |             |          |        |
| CO2                       |                  |                      |                                   |              |                   |                |                     |                               | ogical char   |            |             |          | . 1    |
| CO3                       |                  |                      |                                   |              | ehavior           | of differe     | ent types           | bearing                       | s and desig   | n ot beari | ngs based o | on analy | tıcal  |
| Manning of C              |                  |                      | al approach                       |              |                   |                |                     |                               |               |            |             |          |        |
| Mapping of Cos/Pos        | PO1              | PO2                  | PO3                               | PO4          | PO5               | PO6            | PO7                 | PO8                           | PO9           | PO10       | PO11        | PO       | 12     |
| CO1                       | M                | 102<br>L             | M                                 | 104          | 105               | 100            | 107                 | 108                           | 109           | 1010       | ron         | ru.      | 12     |
| CO2                       | L                | M                    | L                                 |              |                   | L              |                     |                               |               |            |             |          |        |
| CO3                       | L                | L                    | H                                 | L            |                   |                |                     |                               |               |            |             |          |        |
| Cos / PSOs                |                  | PSO1                 | PS                                | 02           | PS                | 503            | Р                   | SO4                           | PSO5          |            |             |          |        |
| CO1                       |                  |                      | Ν                                 | 1            | L                 |                | М                   |                               |               |            |             |          |        |
| CO2                       |                  | L                    |                                   |              | L                 |                | L                   |                               |               |            |             |          |        |
| CO3                       |                  | L                    | N                                 | 1            | М                 |                |                     |                               |               |            |             |          |        |
| H/M/L indicate            | es Stren         | gth of Corr          | elation H                         | I- High, I   | M- Mediu          | um, L-Lo       | W                   | -                             |               |            |             |          |        |
|                           |                  |                      |                                   |              |                   |                |                     | II                            |               |            |             |          |        |
|                           |                  |                      |                                   |              |                   |                |                     | Sk                            |               |            |             |          |        |
| Catagomy                  |                  |                      | al                                |              |                   |                |                     | Internships / Technical Skill |               |            |             |          |        |
| Category                  |                  | Engineering Sciences | Humanities and Social<br>Sciences |              |                   |                |                     | hni                           |               |            |             |          |        |
|                           |                  | ien                  | S                                 |              | Program Electives |                | ect                 | Lec                           |               |            |             |          |        |
|                           | ses              | Sc                   | and                               | re           | scti              | Open Electives | Practical / Project | 2/3                           |               |            |             |          |        |
|                           | enc              | ing                  | es                                | CO           | Ele               | cti            | /P                  | iips                          | s             |            |             |          |        |
|                           | Sci              | eer                  | niti                              | m            | m                 | Ele            | cal                 | nsł                           | kill          |            |             |          |        |
|                           | Basic Sciences   | GID.                 | ma                                | Program Core | gra               | en             | cti                 | iter                          | Soft Skills   |            |             |          |        |
|                           | Ba               | En                   | Hu<br>Sci                         | Prc          | Prc               | Op             | Pra                 | Ir                            | Sol           |            |             |          |        |
|                           |                  |                      |                                   |              | ✓                 |                |                     |                               |               |            |             |          |        |
|                           | 27 <sup>th</sup> | meeting              | of Acad                           | emic co      | ouncil, .         | June20         | 17                  |                               |               |            |             |          |        |
| Approval                  |                  | C                    |                                   |              |                   |                |                     |                               |               |            |             |          |        |

#### B.Tech Mechanical Engineering - 2017 Regulation

# UNIT- IV THEORY OF HYDRODYNAMIC AND HYDROSTATIC LUBRICATION

Friction – Rolling Friction-Friction properties of metallic and non-metallic materials.

metals – Surface treatments – Surface modifications – surface coatings methods

Reynolds Equation, Assumptions and limitations-One and two dimensional Reynolds Equation-Reynolds and Somerfield boundary conditions- Pressure wave, flow, load capacity and friction calculations in Hydrodynamic and Hydrostatic bearings.

Dr.M.G.R.

UNIVERSITY (Decl. U/S 3 of UGC Act 1956) DEPARTMENT OF MECHANICAL ENGINEERING

Topography of Surfaces - Surface features-Properties and measurement - Surface interaction - Adhesive Theory of Sliding

Lubricants and their physical properties- Viscosity and other properties of oils -Additives-and selection of Lubricants-

EDUCATIONAL AND RESEARCH INSTITUTE

### **UNIT- V HIGH PRESSURE CONTACTS**

**UNIT-I-SURFACE INTERACTION AND FRICTION** 

UNIT- III LUBRICANTS AND LUBRICATION REGIMES

Lubricants standards ISO, SAE, AGMA, BIS standards - Lubrication

UNIT- II WEAR AND SURFACE TREATMENT

Rolling contacts of Elastic solids- contact stresses - Hertzian stress equation- Spherical and cylindrical contacts-Contact Fatigue life- Oil film effects- Elasto Hydrodynamic lubrication Theory-Soft and hard EHL-Reynolds equation for elasto hydrodynamic lubrication

#### **TEXT BOOKS:**

Regimes.

1. Rabinowicz, E, "Friction and Wear of materials", John Willey & Sons , UK, 1995

2. Cameron, A. "Basic Lubrication Theory", Ellis Herward Ltd., UK, 1981

#### REFERENCES

1. Halling, J. (Editor) - "Principles of Tribology", Macmillian - 1984.

2. Williams J.A. "Engineering Tribology", Oxford Univ. Press, 1994.

3. S.K.Basu, S.N.Sengupta & B.B.Ahuja ,"Fundamentals of Tribology", Prentice -Hall of India Pvt Ltd , New Delhi, 2005

4. G.W.Stachowiak & A.W. Batchelor, Engineering Tribology, Butterworth-Heinemann, UK, 2005

#### 9 Hrs Types of wear – Mechanism of various types of wear – Laws of wear – Theoretical wear models-Wear of Metals and Non-

9 Hrs

9 Hrs

9 Hrs

#### 9 Hrs

#### Total No of Hrs: 45



88



| Subject Code:<br>BME17E11       |                    | Subject I            | Name : DH                         | ESIGN F         | OR MAI<br>ASSEM   |                | TURE A              | ND                            | T / L/<br>ETL | L    | T / S.Lr | P/ R | C |
|---------------------------------|--------------------|----------------------|-----------------------------------|-----------------|-------------------|----------------|---------------------|-------------------------------|---------------|------|----------|------|---|
|                                 | Pre                | requisite            | : Manufact                        | uring Te        | chnology          | -I             |                     |                               | Т             | 3    | 0        | 0    | 3 |
| L : Lecture T : 7               |                    |                      |                                   |                 |                   |                | esearch C           | C: Credi                      | ts            | •    |          |      |   |
| T/L/ETL : Theo                  | ry/Lab/E           | mbedded              | l Theory ar                       | nd Lab          |                   |                |                     |                               |               |      |          |      |   |
| <b>OBJECTIVE</b> : <sup>7</sup> | -                  |                      | -                                 |                 |                   |                |                     |                               |               |      |          |      |   |
|                                 |                    |                      | of designin                       | g to ease       | manufac           | turing         |                     |                               |               |      |          |      |   |
|                                 |                    |                      | of designin                       |                 |                   |                |                     |                               |               |      |          |      |   |
|                                 |                    |                      | Assembly                          | 0               |                   |                |                     |                               |               |      |          |      |   |
| <b>COURSE OUT</b>               |                    |                      |                                   |                 |                   |                |                     |                               |               |      |          |      |   |
| CO1                             |                    |                      | requiremen                        | nts of des      | igning to         | ease ma        | nufactur            | ing                           |               |      |          |      |   |
| CO2                             | R                  | ules and             | requireme                         | nts of des      | igning to         | ease ass       | sembly              |                               |               |      |          |      |   |
| CO3                             |                    |                      | or design a                       |                 |                   |                |                     |                               |               |      |          |      |   |
| Mapping of Co                   |                    |                      |                                   |                 |                   |                | •                   | -                             |               | _    |          |      |   |
| Cos/Pos                         | PO1                | PO2                  | PO3                               | PO4             | PO5               | PO6            | PO7                 | PO8                           | PO9           | PO10 | PO11     | POI  | 2 |
| CO1                             | М                  |                      | М                                 |                 |                   |                |                     |                               |               | L    |          |      |   |
| CO2                             | Μ                  |                      | М                                 |                 |                   | L              |                     |                               |               |      |          | L    |   |
| CO3                             |                    | Μ                    | Н                                 | L               | L                 |                |                     |                               |               |      |          |      |   |
| Cos / PSOs                      | PS                 | 501                  | PSO                               | 02              |                   | 03             |                     | SO4                           | PSO5          |      |          |      |   |
| CO1                             |                    | -                    |                                   | -               | H                 |                | L                   |                               |               |      |          |      |   |
| CO2                             |                    | L                    | N                                 | 1               | M                 |                | L                   |                               |               |      |          |      |   |
| CO3                             |                    | L                    |                                   | · · · · · · · · | H                 | <b>x x</b>     | М                   |                               |               |      |          |      |   |
| H/M/L indicates                 | s Strengt          | h of Corre           | elation H                         | - High, N       | A- Mediu          | im, L-Lo       | w                   | 1                             |               |      |          |      |   |
| Category                        | Basic Sciences     | Engineering Sciences | Humanities and Social<br>Sciences | Program Core    | Program Electives | Open Electives | Practical / Project | Internships / Technical Skill | Soft Skills   |      |          |      |   |
| Approval                        | 27 <sup>th</sup> n | neeting              | of Acad                           | emic co         | ouncil, J         | une20          | 17                  | 1                             | 1             |      | -        | I    |   |

### **UNIT- I: INTRODUCTION**

General design principles for manufacturability - strength and mechanical factors, Process capability - Feature tolerances -Geometric tolerances - Assembly limits -Datum features - Tolerance stacks.

#### **UNIT- II: FORM DESIGN - CASTING**

Production methods on form design - Casting considerations - Requirements and rules - Redesign of components for castings and Case studies.

#### **UNIT- III: FORM DESIGN - FORGING**

Forging considerations - Requirements and rules - Redesign of components for forging and Case studies.

#### **UNIT- IV: FORM DESIGN - MACHINING**

Machining considerations - Requirements and rules -Redesign of components for Machining and Case studies.

#### **UNIT- V: DESIGN FOR ASSEMBLY METHODS**

Approaches to design for assembly - Qualitative evaluation procedures, knowledge based approach, Computer aided DFA methods. Assemblability measures. Boothroyd - Dewhurst DFA method - Redesign of a simple product - Case studies.

> **Total No. of Hrs** : 45

#### **TEXT BOOKS:**

- 1. Harry Peck, (1983) Design for Manufacture. Pittman Publication
- 2. Alan Redford and Chal, (1994) Design for Assembly - Principles and Procedures. McGraw Hill International

#### REFERENCES

- 1. Robert Matousek, (1963) Engineering Design A Systematic Approach. Blackie & Sons Ltd
- 2. James G. Bralla, (1986) Hand Book of Product Design for Manufacturing. McGraw Hill Co
- Swift, K.G. (1987) Knowledge Based Design for Manufacture. 3.



9Hrs

9Hrs

9Hrs

9Hrs





| <b>Subject Code:</b><br>BME17E12 |                  | ubject Na            |                                   |              |                   |                | RE                  |                               | T / L/<br>ETL | L          | T / S.Lr  | P/ R       | С     |
|----------------------------------|------------------|----------------------|-----------------------------------|--------------|-------------------|----------------|---------------------|-------------------------------|---------------|------------|-----------|------------|-------|
|                                  |                  | rerequisite          |                                   |              |                   |                |                     | ~~ ~ ~                        | Т             | 3          | 0         | 0          | 3     |
| L : Lecture T : T                | l'utoria         | I SLr : Su           | ipervised I                       | earning      | P : Proje         | ct R : R       | esearch (           | C: Credit                     | S             |            |           |            |       |
| T/L/ETL : Theo                   | •                |                      | •                                 | nd Lab       |                   |                |                     |                               |               |            |           |            |       |
|                                  | oart kno         |                      | solid mec                         | hanics of    | cracked           | compone        | ents of di          | ifferent 1                    | nodes by w    | hich thes  | e compone | nts fail 1 | under |
| COURSE OUT                       | COM              | ES (COs)             | : (3-5)                           |              |                   |                |                     |                               |               |            |           |            |       |
| CO1                              |                  | Knowledg             | e on crack                        | and crac     | k growth          | on com         | ponents a           | at static                     | and dynam     | nic loadin | g         |            |       |
| CO2                              |                  | Knowledg             | e on fatigu                       | e crack g    | rowth             |                |                     |                               |               |            |           |            |       |
| CO3                              |                  | Applicatio           | ns of fract                       | ure mech     | nanisms           |                |                     |                               |               |            |           |            |       |
| Mapping of Co                    | ourse O          | outcomes v           | vith Progr                        | am Outc      | comes (P          | 0S)            |                     |                               |               |            |           |            |       |
| Cos/Pos                          | PO1              | PO2                  | PO3                               | PO4          | PO5               | PO6            | PO7                 | PO8                           | PO9           | PO10       | PO11      | POI        | 2     |
| CO1                              | Μ                |                      | М                                 |              |                   |                |                     |                               |               | L          |           |            |       |
| CO2                              | Μ                |                      | М                                 |              |                   | L              |                     |                               |               |            |           | L          |       |
| CO3                              |                  | М                    | Н                                 | L            | L                 |                |                     |                               |               |            |           |            |       |
| Cos / PSOs                       | 1                | PSO1                 | PS                                | 02           |                   | 03             | P                   | SO4                           | PSO5          |            |           |            |       |
| CO1                              |                  |                      |                                   |              | Н                 |                | L                   |                               |               |            |           |            |       |
| CO2                              |                  | L                    | Ν                                 |              | М                 |                | L                   |                               |               |            |           |            |       |
| CO3                              |                  | L                    | I                                 |              | Н                 |                | М                   |                               |               |            |           |            |       |
| H/M/L indicates                  | s Streng         | gth of Corr          | elation H                         | I- High, N   | M- Mediu          | ım, L-Lo       | w                   | 1                             | 1             |            |           |            |       |
| Category                         | Basic Sciences   | Engineering Sciences | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Practical / Project | Internships / Technical Skill | Soft Skills   |            |           |            |       |
| Approval                         | 27 <sup>th</sup> | meeting              | of Acad                           | emic co      | ouncil, J         | June20         | 17                  | 1                             | 1             |            | I         |            |       |



#### UNIT- I ELEMENTS OF SOLID MECHANICS

The geometry of stress and strain, elastic deformation, plastic and elasto-plastic deformation - limit analysis - Airy's function - field equation for stress intensity factor.

#### STATIONARY CRACK UNDER STATIC LOADING UNIT- II

Two dimensional elastic fields – Analytical solutions yielding near a crack front – Irwin's approximation - plastic zone size - Dugdaale model - determination of J integral and its relation to crack opening displacement.

#### **UNIT- III ENERGY BALANCE AND CRACK GROWTH**

Griffith analysis – stable and unstable crack growth –Dynamic energy balance – crack arrest mechanism –K1c test methods - R curves - determination of collapse load.

#### **UNIT- IV FATIGUE CRACK GROWTH CURVE**

Empirical relation describing crack growth law – life calculations for a given load amplitude – effects of changing the load spectrum -- rain flow method- external factors affecting the K1c values.- leak before break analysis.

#### **UNIT- V APPLICATIONS OF FRACTURE MECHANICS**

Crack Initiation under large scale yielding - thickness as a design parameter - mixed mode fractures - crack instability in thermal and residual stress fields - numerical methods

Total No. of Hrs: 45

#### **TEXT BOOKS:**

- 1. David Broek, "Elementary Engineering Fracture Mechanics", Fifthoff and Noerdhoff International Publisher, 1978.
- 2. Kare Hellan, "Introduction of Fracture Mechanics", McGraw-Hill Book Company, 1985. 2.

#### **REFERENCES:**

- 1. Preshant Kumar, "Elements of Fracture Mechanics", Wheeler Publishing, 1999.
- 2. John M.Barson and Stanely T.Rolfe Fatigue and fracture control in structures Prentice hall Inc. Englewood, 1977.
- 3. Tribikram Kundu, "Fundamentals of Fracture Mechanics", Ane Books Pvt. Ltd. New Delhi/ CRC Press, 2012

## 9Hrs

9Hrs

# **9Hrs**

## 9Hrs



# **ELECTIVE: MANUFACTURING ENGINEERING**



| <b>Subject Code:</b><br>BME17E13 | Su             | bject Na             | me : INDU                         | JSTRIAI      | L ROBO            | TICS           |                     |                               | T / L/<br>ETL | L    | T/S.Lr | P/ R | C |
|----------------------------------|----------------|----------------------|-----------------------------------|--------------|-------------------|----------------|---------------------|-------------------------------|---------------|------|--------|------|---|
|                                  |                |                      | : Industrial                      |              |                   |                |                     |                               | Т             | 3    | 0      | 0    | 3 |
| L : Lecture T : 7                | Futorial       | SLr : St             | pervised L                        | earning      | P : Proje         | ct R : Re      | esearch (           | C: Credi                      | ts            |      |        |      |   |
| T/L/ETL : Theo                   | ry/Lab/I       | Embedded             | l Theory a                        | nd Lab       |                   |                |                     |                               |               |      |        |      |   |
| <b>OBJECTIVE</b> :               |                |                      |                                   |              |                   |                |                     |                               |               |      |        |      |   |
|                                  |                |                      | industrial r                      |              |                   |                | obots               |                               |               |      |        |      |   |
| Robot j                          | program        | ming met             | hods and F                        | Robot app    | olications        |                |                     |                               |               |      |        |      |   |
| COURSE OUT                       | COME           | S (COs)              | : (3-5)                           |              |                   |                |                     |                               |               |      |        |      |   |
| CO1                              |                |                      | the basic c                       | omponen      | ts of rob         | ots used       | in indust           | ry                            |               |      |        |      |   |
| CO2                              |                |                      | uses and a                        |              |                   |                |                     | <u> </u>                      |               |      |        |      |   |
| CO3                              | A              | Ability to           | write progi                       | amming       | used in r         | obots bas      | sed on th           | e applic                      | ations        |      |        |      |   |
| Mapping of Co                    | urse Ou        | itcomes v            | vith Progr                        | am Outc      | comes (P          |                |                     |                               |               |      |        |      |   |
| Cos/Pos                          | PO1            | PO2                  | PO3                               | PO4          | PO5               | PO6            | PO7                 | PO8                           | PO9           | PO10 | PO11   | POI  | 2 |
| CO1                              | Μ              | L                    | М                                 | М            | Н                 |                |                     |                               |               |      |        | Μ    |   |
| CO2                              | Μ              | М                    | Н                                 | Н            | Н                 | М              | L                   |                               | М             |      |        | М    |   |
| CO3                              | Μ              | М                    | Н                                 | Н            | Н                 | М              | L                   |                               | Н             |      |        | М    |   |
| Cos / PSOs                       | P              | SO1                  | PS                                |              | PS                | 03             |                     | SO4                           | PSO5          |      |        |      |   |
| CO1                              |                |                      | Ν                                 |              |                   |                | Н                   |                               |               |      |        |      |   |
| CO2                              |                |                      | Ν                                 |              | М                 |                | Н                   |                               |               |      |        |      |   |
| CO3                              | L              |                      | H                                 |              | H                 |                | Н                   |                               |               |      |        |      |   |
| H/M/L indicates                  | s Strengt      | th of Corr           | elation H                         | I- High, N   | M- Mediu          | ım, L-Lo       | W                   | 1                             | 1             |      |        |      |   |
| Category                         | Basic Sciences | Engineering Sciences | Humanities and Social<br>Sciences | Program Core | Program Electives | Open Electives | Practical / Project | Internships / Technical Skill | Soft Skills   |      |        |      |   |
|                                  | Ba             | En                   | Hu<br>Sci                         | Prc          | Pro               | Op             | Pra                 | I                             | Sof           |      |        |      |   |
|                                  | 27th .         | nooting              | of Acad                           | omic co      | uncil             | <br> uno20     | 17                  |                               | I             |      | I      |      |   |
| Approval                         | <i>41</i> ° I  | neeting              | UI ACAU                           |              | ullCll, .         | Julie20        | 1/                  |                               |               |      |        |      |   |

#### B.Tech Mechanical Engineering - 2017 Regulation

#### **UNIT- I:INTRODUCTION**

#### Definition of a Robot - Basic Concepts -- Robot components -- manipulator-configurations -- joints- degree of freedom. Types of Robot Drives - Basic Robot Motion types - Point to Point Control - Continuous Path Control.

### **UNIT- II: COMPONENTS AND OPERATIONS**

Basic Control System Concepts - open loop and closed loop control-Control System Analysis - Robot Actuation and Feed Back, Manipulators - Direct and Inverse Kinematics, Co-ordinate Transformation - Brief Robot Dynamics, Types of Robot and Effectors – Grippers – Tools as End Effectors – Robot / End Effort Interface.

#### **UNIT- III: SENSING AND MACHINE VISION**

Range Sensing - Proximity Sensing - Touch sensing - Force and Torque Sensing. Introduction to Machine Vision functions and applications.

#### **UNIT- IV:ROBOT PROGRAMMING**

Methods – Languages – programming for pick and place applications-palletizing. Capabilities and Limitation – Artificial Intelligence - Knowledge Representation - Search Techniques - AI and Robotics.

#### **UNIT- V:ROBOT CELL DESIGN AND APPLICATIONS**

Robot cell design-types and control. Applications of Robots -process applications in welding and painting - Assembly applications- Material Handling applications.

#### **TEXT BOOK**

1) K. S. Fu, R. C. Gonalez, C.S.G. Lee, "Robotics Control Sensing Vision and Intelligence", McGraw Hill International Edition, 10987.

#### REFERENCES

- 1) Mikell P. Groover, Mitchell Weiss, (2008) "Industrial Robotics, Technology, Programming and Application", Tata McGraw Hill International Editions, 10986.
- 2) Richard D. Klafter, Thomas A. Chonieleswski and Michael Negin, (1989) "Robotic Engineering An Integrated Approach", Prentice Hall Inc., Englewoods Cliffs, NJ, USA, 109809.

#### Dr.M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE UNIVERSITY (Decl. U/S 3 of UGC Act 1956) DEPARTMENT OF MECHANICAL ENGINEERING



Total No. of Hrs: 45

9 Hrs

9 Hrs

9 Hrs

9 Hrs



| Subject Code:<br>BME17E14 |                    | Subject N                                                                                                                                                                                  | Name : NO                                                                                                                                                                                        |              | VENTIO<br>NIQUES  |                | ACHIN               | ING                           | T / L/<br>ETL | L    | T / S.Lr | P/R | C |  |  |  |
|---------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|----------------|---------------------|-------------------------------|---------------|------|----------|-----|---|--|--|--|
|                           |                    |                                                                                                                                                                                            | : Manufact                                                                                                                                                                                       |              |                   |                |                     |                               | Т             | 3    | 0        | 0   | 3 |  |  |  |
| L : Lecture T : T         | Futorial           | SLr : Su                                                                                                                                                                                   | pervised L                                                                                                                                                                                       | earning      | P : Proje         | ct R : Re      | esearch C           | C: Credit                     | ts            |      |          |     |   |  |  |  |
| T/L/ETL : Theo            | ry/Lab/I           | Embedded                                                                                                                                                                                   | l Theory ar                                                                                                                                                                                      | id Lab       |                   |                |                     |                               |               |      |          |     |   |  |  |  |
| OBJECTIVE:                | 1. 1               | 1. 66                                                                                                                                                                                      |                                                                                                                                                                                                  | • 1          |                   |                |                     | 4                             | 1             |      |          |     |   |  |  |  |
| To impart know            | ledge m            | unterent                                                                                                                                                                                   | non- tradit                                                                                                                                                                                      | ionai ma     | nutacturi         | ng proce       | sses and            | their ap                      | prications.   |      |          |     |   |  |  |  |
| COURSE OUT                | COME               | S (COs) :                                                                                                                                                                                  | : (3-5)                                                                                                                                                                                          |              |                   |                |                     |                               |               |      |          |     |   |  |  |  |
| CO1                       |                    | leed for non-conventional machining processes<br>Inderstand the process parameters and their effects in non-conventional machining processes                                               |                                                                                                                                                                                                  |              |                   |                |                     |                               |               |      |          |     |   |  |  |  |
| CO2                       |                    |                                                                                                                                                                                            | ed for non-conventional machining processes<br>derstand the process parameters and their effects in non-conventional machining processes<br>plications of non-conventional machining techniques. |              |                   |                |                     |                               |               |      |          |     |   |  |  |  |
| CO3                       |                    | Inderstand the process parameters and their effects in non-conventional machining processes<br>pplications of non-conventional machining techniques.<br>tcomes with Program Outcomes (Pos) |                                                                                                                                                                                                  |              |                   |                |                     |                               |               |      |          |     |   |  |  |  |
|                           |                    |                                                                                                                                                                                            |                                                                                                                                                                                                  |              |                   |                |                     | -                             |               |      |          |     |   |  |  |  |
| Cos/Pos                   | PO1                | PO2                                                                                                                                                                                        | PO3                                                                                                                                                                                              | PO4          | PO5               | PO6            | PO7                 | PO8                           | PO9           | PO10 | PO11     | PO1 | 2 |  |  |  |
| CO1                       | М                  | М                                                                                                                                                                                          | Н                                                                                                                                                                                                |              | М                 | М              |                     |                               |               |      | М        |     |   |  |  |  |
| CO2                       | М                  | М                                                                                                                                                                                          | Н                                                                                                                                                                                                |              | М                 | М              |                     | L                             |               |      | М        |     |   |  |  |  |
| CO3                       | Μ                  | М                                                                                                                                                                                          | Н                                                                                                                                                                                                |              | М                 | М              | Н                   |                               | L             |      |          | Μ   |   |  |  |  |
| Cos / PSOs                | P                  | SO1                                                                                                                                                                                        | PSC                                                                                                                                                                                              |              |                   | 03             | PS                  | 504                           | PSO5          |      |          |     |   |  |  |  |
| CO1                       |                    |                                                                                                                                                                                            | H                                                                                                                                                                                                |              | H                 |                |                     |                               |               |      |          |     |   |  |  |  |
| CO2                       |                    | M                                                                                                                                                                                          | H                                                                                                                                                                                                |              | H                 |                | H                   |                               |               |      |          |     |   |  |  |  |
| CO3                       | C.                 | L                                                                                                                                                                                          |                                                                                                                                                                                                  |              | M                 |                | Н                   |                               |               |      |          |     |   |  |  |  |
| H/M/L indicates           | Strengt            | n of Corr                                                                                                                                                                                  | elation H                                                                                                                                                                                        | - Hign, N    | A- Mediu          | im, L-Lo       | W                   | 1                             |               |      |          |     |   |  |  |  |
| Category                  | Basic Sciences     | Engineering Sciences                                                                                                                                                                       | Humanities and Social<br>Sciences                                                                                                                                                                | Program Core | Program Electives | Open Electives | Practical / Project | Internships / Technical Skill | Soft Skills   |      |          |     |   |  |  |  |
| Approval                  | 27 <sup>th</sup> r | neeting                                                                                                                                                                                    | of Acado                                                                                                                                                                                         | emic co      | ouncil, J         | June20         | 17                  |                               |               |      |          |     |   |  |  |  |

#### B.Tech Mechanical Engineering - 2017 Regulation

#### **UNIT- I: INTRODUCTION, ELECTRICAL DISCHARGE MACHINING**

Need For Unconventional Processes - Classification - Electrical Discharge Machining Processes, Operating Principles -Dielectric - Electrode Material - Tool/Wear - Processes Parameters - Metal Removal Rate - Applications - Current Developments In EDM.

Dr.M.G.R.

UNIVERSITY (Decl. U/S 3 of UGC Act 1956) DEPARTMENT OF MECHANICAL ENGINEERING

EDUCATIONAL AND RESEARCH INSTITUTE

#### **UNIT- II: ELECTRO CHEMICAL MACHINING**

Electro Chemical Machining Process - Principles - Equipments - Metal Removal Analysis - Tool Material - Insulation -Process Parameters - ECH, ECG Etc., - Applications.

#### UNIT- III: ELECTRON BEAM, LASER BEAM AND PLASMA ARC MACHINING

EBM process - principle - Gun construction - vacuum and non-vacuum technique - applications. LBM process, principles, pumping processes, Types of Emission- Beam control – Applications.

#### **UNIT- IV: ULTRASONIC MACHINING**

Ultrasonic Machining Processes - Working Principles - Transducers - Concentrators - Nodal Point Clamping - Feed Mechanism - Metal Removal Rate - Process Parameters - Applications.

#### UNIT- V: ABRASIVE, WATER JET AND HYBRID MACHINING

AJM Processes - Principle - Equipment - Metal Removal Rate - Process Parameters - Applications. WJM Process -Principle – Equipment – Applications, Introduction to hybrid machining-Electro Chemical Discharge Machining, Abrasive electrical discharge grinding-Principle, advantages, limitations and applications.

#### **TEXT BOOKS**

- 1) P.K.Mishra (1997) "Non Conventional Machining". The Institution Of Engineers (India) text book Series
- 2) Vijay.K. Jain (2007) "Advanced Machining Processes" Allied Publishers Pvt. Ltd., New Delhi

#### REFERENCES

- 1) Benedict. G.F. (1987) "Nontraditional Manufacturing Processes" Marcel Dekker Inc., New York.
- 2) Pandey P.C. and Shan H.S. (2007) "Modern Machining Processes" Tata McGraw-Hill, New Delhi.
- 3) Mc Geough, (1998) "Advanced Methods of Machining" Chapman and Hall, London.
- 4) Paul De Garmo, J.T.Black, and Ronald.A.Kohser, (2001) "Material and Processes in Manufacturing", Prentice Hall of India Pvt. Ltd., New Delhi ,8th Edition.
- 5) P.C.Sharma, (1995) "TEXT BOOK of Production Engineering".

97



10 Hrs

8 Hrs

9 Hrs

### 8 Hrs

#### **10** Hrs

#### Total No. of Hrs : 45



| Subject Code:<br>BME17E15 |                    | Subject                                                         | Name : P                                                                                                                                    |              | S PLAN<br>IATION  |                | ND COS              | ST                            | T / L/<br>ETL | L    | T / S.Lr | P/ R | C   |  |  |  |
|---------------------------|--------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|----------------|---------------------|-------------------------------|---------------|------|----------|------|-----|--|--|--|
|                           |                    | Prerequisite                                                    |                                                                                                                                             |              |                   |                |                     |                               | Т             | 3    | 0        | 0    | 3   |  |  |  |
| L : Lecture T : T         |                    |                                                                 | -                                                                                                                                           | -            | P : Proje         | ct R : Re      | esearch C           | C: Credit                     | S             |      |          |      |     |  |  |  |
| T/L/ETL : Theorem         | ry/Lab             | /Embedded                                                       | l Theory an                                                                                                                                 | ld Lab       |                   |                |                     |                               |               |      |          |      |     |  |  |  |
| Various                   | s plann<br>s eleme | ents will lea<br>ing activition<br>ents of cost<br>computer aid | es<br>of a produ                                                                                                                            |              | 5.                |                |                     |                               |               |      |          |      |     |  |  |  |
| COURSE OUT                |                    |                                                                 |                                                                                                                                             |              |                   |                |                     |                               |               |      |          |      |     |  |  |  |
| CO1                       |                    |                                                                 | Inderstand the method of planning the various machining processes<br>Know the method of estimation of the cost of manufacturing a component |              |                   |                |                     |                               |               |      |          |      |     |  |  |  |
| CO2                       |                    |                                                                 |                                                                                                                                             |              |                   |                |                     |                               |               |      |          |      |     |  |  |  |
| CO3                       |                    |                                                                 |                                                                                                                                             |              |                   |                |                     |                               |               |      |          |      |     |  |  |  |
| Mapping of Cor<br>Cos/Pos | PO1                | PO2                                                             | PO3                                                                                                                                         | PO4          | PO5               | os)<br>PO6     | PO7                 | PO8                           | PO9           | PO10 | PO11     | PO   | 12  |  |  |  |
| CO1                       | M                  | <br>M                                                           | F05                                                                                                                                         | H H          | M                 | M              | FU/                 | F08                           | N             | FOID | FUII     | M    | . 2 |  |  |  |
| CO2                       | M                  | M                                                               |                                                                                                                                             | H            | M                 | M              |                     |                               | M             |      |          | M    |     |  |  |  |
| CO3                       | M                  | M                                                               |                                                                                                                                             | H            | H                 | M              |                     |                               | M             |      |          | M    |     |  |  |  |
| Cos / PSOs                |                    | PSO1                                                            | PSC                                                                                                                                         |              |                   | 03             | PS                  | 504                           | PSO5          |      |          |      |     |  |  |  |
| CO1                       |                    | М                                                               | Н                                                                                                                                           | -            | Н                 |                |                     |                               |               |      |          |      |     |  |  |  |
| CO2                       |                    | М                                                               | Н                                                                                                                                           |              | Н                 |                | Н                   |                               |               |      |          |      |     |  |  |  |
| CO3                       |                    | L                                                               | М                                                                                                                                           |              | М                 |                | Н                   |                               |               |      |          |      |     |  |  |  |
| H/M/L indicates           | Streng             | gth of Corre                                                    | elation H                                                                                                                                   | - High, N    | /I- Mediu         | ım, L-Lo       | W                   |                               | 1             | 1    |          |      |     |  |  |  |
| Category                  | Basic Sciences     | Engineering Sciences                                            | Humanities and Social<br>Sciences                                                                                                           | Program Core | Program Electives | Open Electives | Practical / Project | Internships / Technical Skill | Soft Skills   |      |          |      |     |  |  |  |
| Approval                  | 27 <sup>th</sup>   | meeting                                                         | of Acade                                                                                                                                    | emic co      |                   | June20         | 17                  |                               | <u> </u>      |      |          |      |     |  |  |  |

#### B.Tech Mechanical Engineering - 2017 Regulation

#### **UNIT- I: PROCESS PLANNING**

Definition - OBJECTIVES - Scope - approaches to process planning- Process planning activities - Finished part requirements- operating sequences- machine selection -material selection parameters- Set of documents for process planning- Developing manufacturing logic and knowledge- production time calculation - selection of cost optimal processes.

Dr.M.G.R.

UNIVERSITY (Decl. U/S 3 of UGC Act 1956) DEPARTMENT OF MECHANICAL ENGINEERING

EDUCATIONAL AND RESEARCH INSTITUTE

#### **UNIT- II: COMPUTER AIDED PROCESS PLANNING**

Variant process planning - Generative approach -Forward and Backward planning, Input format, Logical Design of a Process Planning - Implementation considerations. Application of computer softwares in process planning.

#### **UNIT- III: ELEMENTS OF COST**

Introduction - Importance and aims of Cost estimation - Estimation procedure. Material Cost - Determination of Material Cost Labour Cost - Determination of Direct Labour Cost - Expenses - Cost of Product (Ladder of cost) - Illustrative examples. Analysis of overhead expenses - Factory expenses - Depreciation - Causes of depreciation - Methods of depreciation - Administrative expenses - Selling and Distributing expenses - Allocation of overhead expenses.

#### **UNIT- IV: PRODUCT COST ESTIMATION**

Estimation in forging shop - Losses in forging - Forging cost - Illustrative examples. Estimation in welding shop - Gas cutting - Electric welding - illustrative examples. Estimation in foundry shop - Estimation of pattern cost and casting cost -Illustrative examples.

#### **UNIT- V: ESTIMATION OF MACHINING TIME AND COST**

Estimation of machining time and cost for Lathe operations - Estimation of machining time and cost for drilling, boring, shaping, planning, milling and grinding operations - Illustrative examples. Value engineering - cost reduction

#### Total No. of Hrs: 45

#### TEXT BOOKS

- 1) M.Adithan and B.S. Pabla, (1989) "Estimating and Costing", Konark Publishers Pvt. Ltd.
- 2) V.Jayakumar (2012) "Process Planning and Cost Estimation", Lakshmi Publication.

#### REFERENCES

- 1) Nanua Singh, (1996) "System approach to Computer Integrated Design and Manufacturing", John Wiley & Sons, Inc.
- 2) Joseph G. Monks, (1982) "Operations Management, Theory & Problems", McGraw Hill Book Company.
- 3) T.R. Banga and S.C. Sharma, (2011) "Estimating and Costing", Khanna Publishers, 16thEdition
- 4) Sadhu singh, (2002) "Computer aided Design and manufacturing", Khanna publisher ,new delhi, second edition.



9 Hrs

9 Hrs

9 Hrs

9 Hrs



| Subject Code:<br>BME17E16 | : Sı           | ıbject Na            | me : FLEX               | XIBLE M      | ANUFA             | CTURIN         | G SYST              | EMS                           | T / L/<br>ETL | L     | T/S.Lr | P/ R | C  |
|---------------------------|----------------|----------------------|-------------------------|--------------|-------------------|----------------|---------------------|-------------------------------|---------------|-------|--------|------|----|
|                           |                |                      | : Manufact<br>; CAD/CA  |              | chnology          | I & II; I      | ndustrial           |                               | Т             | 3     | 0      | 0    | 3  |
| L : Lecture T :           | Tutorial       | SLr : Su             | pervised L              | earning      | P : Proje         | ct R : R       | esearch C           | C: Credi                      | ts            |       |        | 1    |    |
| T/L/ETL : The             | ory/Lab/       | Embedded             | l Theory a              | nd Lab       |                   |                |                     |                               |               |       |        |      |    |
| <b>OBJECTIVE</b>          | S: Studer      | nts will lea         | urn                     |              |                   |                |                     |                               |               |       |        |      |    |
| >                         |                |                      | he Moderr               | manufa       | cturing sy        | stems          |                     |                               |               |       |        |      |    |
|                           | > To un        | derstand t           | he concept              | s and app    | plications        | of flexil      | ole manu            | facturin                      | g systems     |       |        |      |    |
|                           | TCOM           |                      | (2.5)                   |              |                   |                |                     |                               |               |       |        |      |    |
| COURSE OU<br>CO1          |                |                      | the Mode                |              | footuning         | aristanas      |                     |                               |               |       |        |      |    |
| CO1<br>CO2                |                |                      |                         |              |                   |                |                     | nufactur                      | ring system   | 9     |        |      |    |
| CO2<br>CO3                |                |                      |                         |              |                   |                |                     |                               | re of the fa  |       |        |      |    |
| Mapping of C              |                |                      |                         |              |                   |                |                     |                               |               | ctory |        |      |    |
| Cos/Pos                   | PO1            | PO2                  | PO3                     | PO4          | PO5               | PO6            | PO7                 | PO8                           | PO9           | PO10  | PO11   | PO   | 12 |
| CO1                       | M              | M                    |                         | M            | H                 | M              |                     |                               | M             |       |        | M    |    |
| CO2                       | М              | М                    | М                       | М            | Н                 | М              |                     |                               | М             | М     |        | М    |    |
| CO3                       | М              | М                    | М                       | М            | Н                 | М              |                     |                               | М             | М     |        | М    |    |
| Cos / PSOs                | Р              | SO1                  | PS                      | 52           | PS                | 03             | PS                  | SO4                           | PSO5          |       |        |      |    |
| CO1                       |                | М                    | H                       | [            | Н                 |                | Н                   |                               |               |       |        |      |    |
| CO2                       |                | М                    | H                       |              | Н                 |                | Н                   |                               |               |       |        |      |    |
| CO3                       |                |                      | H                       |              | Н                 |                | Н                   |                               |               |       |        |      |    |
| H/M/L indicate            | es Streng      | th of Corr           | elation H               | - High, N    | M- Mediu          | ım, L-Lo       | w                   | T                             | 1             |       |        |      |    |
|                           |                |                      |                         |              |                   |                |                     | Internships / Technical Skill |               |       |        |      |    |
| Category                  |                | s                    | ial                     |              |                   |                |                     | ical                          |               |       |        |      |    |
| Success                   |                | Engineering Sciences | Social                  |              | s                 |                | ц.                  | chn                           |               |       |        |      |    |
|                           | s              | cie                  | р                       |              | ive               | ş              | ject                | Te                            |               |       |        |      |    |
|                           | JCe            | so<br>N              | s ar                    | ore          | lect              | ive            | Pro                 | / SC                          |               |       |        |      |    |
|                           | cieı           | erin                 | itie                    | n C          | υE                | lect           | 11 / I              | shij                          | ills          |       |        |      |    |
|                           | C S            | nee                  | nce                     | ran          | ran               | υE             | tica                | ern                           | Ski           |       |        |      |    |
|                           | Basic Sciences | ngi                  | Humanities and Sciences | Program Core | Program Electives | Open Electives | Practical / Project | Int                           | Soft Skills   |       |        |      |    |
|                           | <u> </u>       | <u> </u>             | N II S                  |              | ✓                 |                |                     |                               | S             |       |        |      |    |
|                           | 27th           | meeting              | of Acad                 | emic co      |                   | <br> 1110_270  | 17                  | 1                             | 1             | 1     | 1      | I    |    |
| Approval                  |                | nceing               | UI ALAU                 |              | ullell, e         | June20         | 1/                  |                               |               |       |        |      |    |
| FF                        |                |                      |                         |              |                   |                |                     |                               |               |       |        |      |    |



#### UNIT- I PLANNING, SCHEDULING AND CONTROL OF FLEXIBLE MANUFACTURING SYSTEMS 9Hrs

Introduction to FMS - development of manufacturing systems - benefits - major elements of FMS - types of flexibility - FMS application and flexibility –single product, single batch, n - batch scheduling problem - knowledge based scheduling system.

#### UNIT- II COMPUTER CONTROL AND SOFTWARE FOR FLEXIBLE MANUFACTURING SYSTEMS 9Hrs

Introduction - composition of FMS - hierarchy of computer control - computer control of work center and assembly lines - FMS supervisory computer control - types of software specification and selection - trends.

#### UNIT- III FMS SIMULATION AND DATA BASE

Application of simulation - model of FMS - simulation software - limitation - manufacturing data systems - data flow - FMS database systems - planning for FMS database.

#### UNIT- IV GROUP TECHNOLOGY AND JUSTIFICATION OF FMS

Introduction - matrix formulation - mathematical programming formulation - graph formulation - knowledge based system for group technology - economic justification of FMS - application of possibility distributions in FMS systems justification.

#### UNIT- V APPLICATIONS OF FMS AND FACTORY OF THE FUTURE

FMS application in machining, sheet metal fabrication, prismatic component production - aerospace application - FMS development towards factories of the future - artificial intelligence and expert systems in FMS - design philosophy and characteristics for future.

#### Total No. of Hrs: 45

9Hrs

9Hrs

9Hrs

#### **TEXT BOOK:**

1. Jha.N.K., "Handbook of flexible manufacturing systems", Academic Press Inc., 1991.

#### **REFERENCES:**

1. Groover M.P., "Automation, production systems and computer integrated manufacturing", Prentice Hall of India Pvt., New Delhi, 2007.

2. Kalpakjian S., "Manufacturing Engineering and Technology", Addison-Wesley Publishsing Co., 2013.

3. Radhakrishnan P. and Subramanyan S., "CAD/CAM/CIM", Wiley Eastern Ltd., New Age International Ltd., 1994.

4. Raouf A. and Daya B.M., "Flexible manufacturing systems: recent development", Elsevier Science, 1995.

5. Ohno T., "Toyota production system: beyond large-scale production", Productivity Press (India) Pvt. Ltd., 1992.



| <b>Subject Code:</b><br>BME17E17 | Su                 | bject Na             | me :POW                    | DER MI          | ETALLU            | RGY            |                     |                               | T / L/<br>ETL | L    | T / S.Lr | <b>P/ R</b> | C  |
|----------------------------------|--------------------|----------------------|----------------------------|-----------------|-------------------|----------------|---------------------|-------------------------------|---------------|------|----------|-------------|----|
|                                  |                    |                      | : Materials                |                 |                   |                |                     |                               | Т             | 3    | 0        | 0           | 3  |
| L : Lecture T : 7                | utorial            | SLr : Su             | pervised I                 | earning         | P : Proje         | ct R : Re      | esearch (           | C: Credi                      | ts            |      |          |             |    |
| T/L/ETL : Theo                   | ry/Lab/E           | Embeddeo             | l Theory a                 | nd Lab          |                   |                |                     |                               |               |      |          |             |    |
| OBJECTIVES                       |                    |                      |                            |                 |                   |                |                     |                               |               |      |          |             |    |
|                                  |                    |                      | powder me                  |                 | _                 |                |                     |                               |               |      |          |             |    |
|                                  |                    |                      | er metallu                 |                 |                   | 1              |                     |                               |               |      |          |             |    |
|                                  |                    |                      | of powder                  | metallur        | gy in var         | ious field     | ls.                 |                               |               |      |          |             |    |
| COURSE OUT                       |                    |                      |                            | C               | 1 (1              | 1              |                     |                               |               |      |          |             |    |
| CO1                              |                    |                      | d the basic                |                 |                   |                |                     |                               |               |      |          |             |    |
| CO2                              |                    |                      | rious powe                 |                 |                   |                | · .                 | . 1 1                         |               |      |          |             |    |
| CO3                              |                    |                      | application                |                 |                   |                | arious f            | ielas                         |               |      |          |             |    |
| Mapping of Co<br>Cos/Pos         | urse Ou<br>PO1     | PO2                  | PO3                        | PO4             | PO5               | os)<br>PO6     | PO7                 | PO8                           | PO9           | PO10 | DO11     | PO          | 12 |
| COS/POS<br>CO1                   | M                  | M PO2                | M                          | P04             | H H               | PUb            | PO/<br>M            | PU8                           | PU9           | P010 | PO11     | M           | 12 |
| CO1<br>CO2                       | M                  | M                    | M                          |                 | Н                 |                | H                   |                               |               |      |          | M           |    |
| <u>CO2</u><br>CO3                | M                  | M                    | M                          |                 | Н                 |                | Н                   |                               |               |      |          | M           |    |
| Cos / PSOs                       |                    | SO1                  | PS                         |                 |                   | 03             |                     | SO4                           | PSO5          | -    |          | IVI         |    |
| CO1                              |                    | M                    | rs<br>N                    |                 | H H               | 05             | r                   | 304                           | 1303          | -    |          |             |    |
| CO2                              |                    | H                    | N                          |                 | H                 |                |                     |                               |               |      |          |             |    |
| CO3                              |                    | 11                   | H                          |                 | H                 |                | М                   |                               |               |      |          |             |    |
| H/M/L indicates                  | Strengt            | h of Corr            |                            | I<br>I- High, N |                   | m L-Lo         |                     |                               |               |      |          |             |    |
|                                  | buenge             |                      |                            |                 |                   |                |                     |                               |               |      |          |             |    |
| Category                         |                    | ences                | Social                     |                 | es                |                | t                   | echnical Skil                 |               |      |          |             |    |
|                                  | Basic Sciences     | Engineering Sciences | Humanities and<br>Sciences | Program Core    | Program Electives | Open Electives | Practical / Project | Internships / Technical Skill | Soft Skills   |      |          |             |    |
|                                  |                    |                      |                            |                 | ✓                 |                |                     |                               |               |      |          |             |    |
| Approval                         | 27 <sup>th</sup> n | neeting              | of Acad                    | emic co         | ouncil, .         | June20         | 17                  |                               |               |      |          |             |    |

#### B.Tech Mechanical Engineering - 2017 Regulation

#### Dr.M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE UNIVERSITY (Decl. U/S 3 of UGC Act 1956) DEPARTMENT OF MECHANICAL ENGINEERING

#### UNIT- I INTRODUCTION OF POWDER METALLURGY AND PRODUCTION OF METAL POWDERS 9Hrs

Historical and modern developments in Powder Metallurgy. Advantages, limitations, applications and basic steps involved in Powder Metallurgy. Manufacture of metal powders: Conventional methods and modern methods of metal powder manufacture. Purity of metal powders. Blending techniques.

#### **UNIT- II POWDER CHARACTERIZATION**

Powder characterization: problem of size determination. Method of size analysis and surface area assessment. Powder conditioning, fundamentals of powder compaction, density distribution

in green compacts, compressibility, green Strength, pyrophorocity and toxicity. Apparent density and flowability measurement.

#### **UNIT- III POWDER COMPACTION**

Powder compaction: Mechanical, thermal and thermomechanical compacting processes. Presses used for transmission. Die design and tooling for consolidation of powders. New methods of consolidation. E.g. Powder rolling, Powder forging, Isostatic pressing. Advantages and limitations of these methods.

#### **UNIT- IV SINTERING PROCESS**

Theories of sintering: Sintering mechanism, Roll of diffusion, Recrystallization, Por emigration, Pore-growth and coalescence. Liquid phase sintering and related processes. Effect of compacting pressure, sintering temperature and time on sintered properties. Type of sintering furnaces. Sintering atmospheres.

#### UNIT- V APPLICATIONS OF POWDER METALLURGY

Manufacturing and application of important P/M components: Porous bearing, Electrical contact materials, Metallic filters, Cemented carbides, magnets, Friction materials and Composites. **Total No. of Hrs: 45** 

#### **Text Books:**

1. A. K. Sinha, "Introduction to Powder Metallurgy", Dhanpatrai Publication

2. P. C. Angelo and R. Subramanian, "Powder Metallurgy: Science, Technology and Applications",

#### **Reference Books**

- 1. Powder Metallurgy-ASM Vol. II
- 2. Powder Metallurgy-Sands and Shakespeare
- 3. Powder Metallurgy-Dixtor R.H. and Clayton.

4. Cemented Tungsten carbide Production, properties and testing-Gopal S. Upadhayay



#### 9Hrs

9Hrs

9Hrs



# **ELECTIVE: INDUSTRIAL ENGINEERING**



| Subject Code:      | Su             | bject Na             | me: EN                     | FERPRI       | SE RES              | OURCE                 | PLANN               | ING                           | T / L/      | L   | Τ/   | P/ R | C    |
|--------------------|----------------|----------------------|----------------------------|--------------|---------------------|-----------------------|---------------------|-------------------------------|-------------|-----|------|------|------|
| BME17E18           |                |                      |                            |              |                     |                       |                     |                               | ETL         |     | S.Lr |      |      |
|                    | Pre            | erequisite           | : In depth I               | Knowledg     | ge of Ma            | nufacturi             | ng Syster           | ns                            | Т           | 3   | 0    | 0    | 3    |
|                    | and            | d Applie             | cation of C                | omputer      | Science a           | and Engi              | neering             |                               |             |     |      |      |      |
| L : Lecture T :    | Tutorial       | SLr : Su             | pervised L                 | earning      | P : Proje           | ct R : Re             | esearch C           | : Credit                      | S           |     |      |      |      |
| T/L/ETL : The      | ory/Lab./      | Embedde              | d Theory a                 | nd Lab.      |                     |                       |                     |                               |             |     |      |      |      |
| <b>OBJECTIVE</b> : |                |                      |                            |              |                     |                       |                     |                               |             |     |      |      |      |
| Buildi             | ing of bus     | iness mo             | del for reso               | urce plar    | ning                |                       |                     |                               |             |     |      |      |      |
| > Impac            | et of IT in    | ERP                  |                            |              |                     |                       |                     |                               |             |     |      |      |      |
| COURSE OU          | TCOME          | S (COs) :            | :                          |              |                     |                       |                     |                               |             |     |      |      |      |
| CO1                | 1              | Building o           | of business                | model f      | or resour           | ce planni             | ing                 |                               |             |     |      |      |      |
| CO2                | 1              | Impact of            | IT in ERP                  |              |                     |                       |                     |                               |             |     |      |      |      |
| CO3                | K              | Knowledge            | e about sup                | ply chain    | n manage            | ement                 |                     |                               |             |     |      |      |      |
|                    |                |                      |                            |              |                     |                       |                     |                               |             |     |      |      |      |
| Mapping of C       |                |                      |                            |              |                     |                       |                     |                               |             |     |      |      |      |
| COs/POs            | PO1            | PO2                  | PO3                        | PO4          | PO5                 | PO6                   | PO7                 | PO8                           | PO9         | PO1 | 0 PO | 11   | PO12 |
| CO1                | L              |                      | М                          | М            | Н                   | L                     |                     |                               |             | L   |      |      | Н    |
| CO2                |                |                      |                            | L            | М                   | М                     |                     |                               | М           | М   |      |      | L    |
| CO3                |                |                      |                            |              |                     | Н                     | Н                   | Н                             | Н           | Н   | N    | 1    | М    |
| COs / PSOs         | PS             | 501                  | PSC                        | 02           | PS                  | 03                    | PS                  | 604                           |             |     |      |      |      |
| CO1                |                |                      |                            |              |                     |                       | ]                   | L                             |             |     |      |      |      |
| CO2                |                |                      |                            |              |                     |                       | ]                   | L                             |             |     |      |      |      |
| CO3                |                |                      |                            |              | N                   | М                     |                     |                               |             |     |      |      |      |
| H/M/L indicate     | es Strengt     | h of Corre           | elation H                  | - High, N    | I- Mediu            | ım, L-Lo              | W                   |                               |             |     | I    | 1    |      |
|                    |                |                      |                            |              |                     |                       |                     | l Skill                       |             |     |      |      |      |
| Category           |                | Engineering Sciences | Social                     |              | Se                  |                       | , r                 | Internships / Technical Skill |             |     |      |      |      |
| Calegoly           | ses            | Scie                 | and                        | le           | ▲ Program Electives | ves                   | Practical / Project | :/Te                          |             |     |      |      |      |
|                    | cienc          | ring                 | ties                       | I Coi        | ı Ele               | ectiv                 | l / Pı              | ships                         | lls         |     |      |      |      |
|                    | Basic Sciences | inee                 | Humanities and<br>Sciences | Program Core | gran                | Open Electives        | ctica               | terns                         | Soft Skills |     |      |      |      |
|                    | Bas            | Eng                  | Hur<br>Scie                | Pro          | Pro                 | Ope                   | Prac                | In                            | Sofi        |     |      |      |      |
|                    |                |                      |                            |              | ✓                   |                       |                     |                               |             |     |      |      |      |
| Approval           | 27th           | nooting              | of Acade                   | micas        | uncil               | [1100.70 <sup>-</sup> | 17                  |                               |             |     |      |      |      |
| -PProven           |                | neering              | UI ACAU                    |              | unen, J             | une20.                | L /                 |                               |             |     |      |      |      |

#### B.Tech Mechanical Engineering - 2017 Regulation

#### **UNIT- I: INTRODUCTION TO ERP**

# Integrated Management Information, Seamless Integration - Supply Chain Management- Integrated Data Model- Benefits Of ERP - Business Engineering And ERP- Definition Of Business Engineering - Principle of business engineering - Business engineering with information technology.

Dr.M.G.R.

UNIVERSITY (Decl. U/S 3 of UGC Act 1956) DEPARTMENT OF MECHANICAL ENGINEERING

EDUCATIONAL AND RESEARCH INSTITUTE

#### UNIT- II: BUSINESS MODELING FOR ERP

Building The Business model - ERP implementation – An Overview – Role Of Consultant, Vendors and Users, Customization – Precautions - ERP Post implementation options ERP Implementation Technology – Guidelines for ERP Implementation.

#### UNIT- III: INTRODUCTION TO ORGANIZATIONAL TRANSFORMATION

Fundamental elements of organizational transformation - Principles-Methodology -Models (LMI CIP, DSMCQ & PMP) - Process improvements in models (Moen & Nolan strategy, NPRDC, LMI CIP) - Tools and Techniques.

#### UNIT- IV: GLOBAL INDUSTRIAL COMPETITION AND INFORMATION TECHNOLOGY

Coping with competition – the impact and value of IT Systems – impact and value of IT – Value chain of a firm and strategic use of IT – development trends of IT. Introduction to SAP and its applications in ERP.

#### **UNIT- V: SUPPLY CHAIN MANAGEMENT**

The concept of supply chain, logistics, customer and supply chain relation, role of IT in supply chain management – strategy and structure of supply chain – factors of supply chain – stages in supply chain progress.

Total No. of Hrs: 45

#### TEXT BOOKS

- 1) Leon, (2014) "Enterprise Resource Planning", McGraw Hill, New Delhi
- 2) P. N. Rastogi, "Re-Engineering And Re-inventing the Enterprise", Wheeler Publishing
- 3) Dr. J. A. Edosomwan, (1995) "Organizational transformation and Process Re-Engineering" 1 edition.

#### REFERENCES

1. Jose Antonio Fernandz, (2005) "The SAP R/3 Handbook", TMH, 3 edition

2. Vinod Kumar Garg and N.K. Venkita Krishnan, (2004) "Enterprise Resource Planning Concepts and Practice", PHI. Publishing Co.





106

9 Hrs

9 Hrs

9 Hrs

9 Hrs



| Subject Code:     | 5              | Subject N            | Name : IN                         | DUSTR        | IAL EN                   | GINEEI         | RING                |                               | T / L/      | L     | Т     | / S.Lr | <b>P/ R</b> | С   |
|-------------------|----------------|----------------------|-----------------------------------|--------------|--------------------------|----------------|---------------------|-------------------------------|-------------|-------|-------|--------|-------------|-----|
| BME17E19          |                |                      |                                   |              |                          |                |                     |                               | ETL         |       |       |        |             |     |
|                   | I              | Prerequisi           | ite: Basics                       | of Manu      | facturing                | System         |                     |                               | Т           | 3     | 0     |        | 0           | 3   |
| L : Lecture T : T | utorial        | SLr : Sup            | pervised Le                       | earning F    | P: Projec                | t R : Res      | search C:           | Credit                        | 5           |       |       |        |             |     |
| T/L/ETL : Theorem | ry/Lab./E      | mbedded              | Theory an                         | d Lab.       |                          |                |                     |                               |             |       |       |        |             |     |
| OBJECTIVE: S      |                |                      |                                   |              |                          |                |                     |                               |             |       |       |        |             |     |
| Various           | s techniqu     | ies of wo            | rk measure                        | ement        |                          |                |                     |                               |             |       |       |        |             |     |
| Details           | of plant       | layout an            | d material                        | handling     | devices                  |                |                     |                               |             |       |       |        |             |     |
| > Basic co        | oncepts o      | of ERP.              |                                   |              |                          |                |                     |                               |             |       |       |        |             |     |
| COURSE OUT        | COMES          | (COs) :              |                                   |              |                          |                |                     |                               |             |       |       |        |             |     |
| CO1               | V              | arious teo           | chniques of                       | f Work N     | leasurem                 | ent            |                     |                               |             |       |       |        |             |     |
| CO2               | D              | etails of            | Plant Layo                        | out and M    | laterial H               | landling       | devices             |                               |             |       |       |        |             |     |
| CO3               | В              | asic conc            | epts of ER                        | Р            |                          |                |                     |                               |             |       |       |        |             |     |
| Mapping of Co     | urse Out       | comes(C              | Os) with <b>H</b>                 | Program      | Outcom                   | es (Pos)       | & Progi             | am Spo                        | ecific Out  | comes | (PSOs | 5)     |             |     |
| COs/POs           | PO1            | PO2                  | PO3                               | PO4          | PO5                      | PO6            | PO7                 | PO8                           | POS         | P     | PO10  | PO11   | PO          | 012 |
| C01               | L              | М                    |                                   | М            |                          | L              |                     |                               | М           |       | L     |        |             | L   |
| CO2               | L              | L                    | L                                 |              |                          | М              | L                   |                               | L           |       | М     | L      |             | L   |
| CO3               | L              |                      |                                   |              | Н                        | М              |                     |                               | L           |       | М     | L      | 1           | М   |
| COs / PSOs        | PS             | 501                  | PSO                               | 02           | PS                       | 03             | PS                  | 504                           |             |       |       |        |             |     |
| CO1               |                |                      |                                   |              | ]                        |                |                     | L                             |             |       |       |        |             |     |
| CO2               |                |                      |                                   |              | N                        | М              |                     | L                             |             |       |       |        |             |     |
| CO3               |                |                      |                                   |              | N                        | М              |                     | L                             |             |       |       |        |             |     |
| H/M/L indicates   | Strength       | of Corre             | lation H-                         | High, M      | - Mediu                  | n, L-Lov       | V                   |                               | ·           |       |       |        |             |     |
| Category          | Basic Sciences | Engineering Sciences | Humanities and Social<br>Sciences | Program Core | Program Electives        | Open Electives | Practical / Project | Internships / Technical Skill | Soft Skills |       |       |        |             |     |
|                   | Basic S        | Engin                | Humaniti<br>Sciences              | Prog         | <ul> <li>Pro§</li> </ul> | Ope            | Prac                | Int                           | Sofi        |       |       |        |             |     |

#### UNIT- I:WORK STUDY & WORK MEASUREMENT

Work study – Techniques – Productivity, Improving productivity by reducing work content- Human factors in work study. Method study - Basic procedure - Recording techniques - Micro-motion study, Threbligs, SIMO chart, Principles of motion economy.

Work Measurement - Techniques - Time study - Allowances - Work sampling - PMTS - MTM.

#### **UNIT- II:SITE SELECTION, PLANT LAYOUT & MATERIAL HANDLING**

Site Selection: Importance of plant location – choice of site for location – State regulations on location – Industrial Estates. Plant layout: Types of factory buildings, OBJECTIVES of good plant layout, Principles, Techniques used, Types, Flow pattern, Line Balance, computerized plant layout. Material Handling: Functions, OBJECTIVES, principles, Devices used, Relation between plant layout and material handling.

#### **UNIT-III:ERGONOMICS**

Techniques - Analysis - Equipment Design - Fatigue - Motivation theory of Fatigue - Fatigue tests-Duties of a human factor Engineer – Human effectiveness improvement through ergonomics.

#### **UNIT- IV:WAGES & INCENTIVES**

Wages: Wage & salary policies, systems of wage payments, Principles of wage administration, National Wage Policy, Fair wage committee report, Need based minimum wage Incentives: Need, Incentive plans, Comparison of various Incentive plans, Administration of wage incentives.

#### **UNIT- V:ENTERPRISE RESOURCE PLANNING (ERP)**

Need for optimal use of Resources, MRP I & II, Supply chain Management, Evolution of ERP, BPR, Lean Manufacturing, Popular ERP Packages, Implementation of ERP, Benefits of ERP.

#### TEXT BOOKS

- 1) O.P. Khanna, (2005) "Industrial Engineering and Management", Khanna Publishers.
- K.KAhuja, "Industrial Management", Khanna Publishers. 2)
- 3) Martand Telsang, "Industrial Engineering and Production Management".

#### REFERENCES

- 1) M.Mahajan, "Industrial Engineering and Production Management", Dhanpat Rai &CO.,
- 2) B. Kumar, (2005) "Industrial Engineering", Khanna Publishers.
- 3) International Labour Organization (ILO), (2004) "Introduction to Work study", Universal Publishing Corporation.
- 4) H. B. Maynard, "Industrial Engineering, Handbook", McGraw Hill Book Company, International Edition.
- 5) Marvin E. Mandel, "Time & Motion study", Prentice Hall, Private Limited, International Edition.
- James M Apple, "Principles of Layout & Materials Handling", Ronalds Press, International Edition. 6)
- V. K. Garg & N.K. Venkatakrishnan, (2004) "Enterprise Resource Planning, Concepts & Practice", Prentice Hall of 7) India Private Limited.



# 9 Hrs

9 Hrs

9 Hrs

Total No. of Hrs: 45

#### 9 Hrs



| Subject Code:           | : S              | ubject Na            | me: TO'                    | TAL QU       | ALITY                                 | MANA           | GEMEN               | Т                       | T / L/      | L        | T/S.Lr | P/ R | С   |
|-------------------------|------------------|----------------------|----------------------------|--------------|---------------------------------------|----------------|---------------------|-------------------------|-------------|----------|--------|------|-----|
| BME 17E20               |                  |                      |                            |              |                                       |                |                     |                         | ETL         |          |        |      |     |
|                         | P                | rerequisite          | : Basic Kno                | owledge      | of Qualit                             | y and Ma       | anufactur           | ing                     | Т           | 3        | 0      | 0    | 3   |
|                         | S                | ystems               |                            |              |                                       |                |                     |                         |             |          |        |      |     |
| L : Lecture T :         | Tutorial         | SLr : Su             | pervised L                 | earning      | P : Proje                             | ct R : Re      | esearch C           | C: Credits              |             |          |        |      |     |
| T/L/ETL : The           | ory/Lab.         | /Embedde             | d Theory a                 | nd Lab.      |                                       |                |                     |                         |             |          |        |      |     |
| OBJECTIVE               |                  |                      |                            |              |                                       |                |                     |                         |             |          |        |      |     |
| <ul><li>Vario</li></ul> | us Princ         | iples and T          | Cools of TC                | QM           |                                       |                |                     |                         |             |          |        |      |     |
| > ISO S                 | standards        | 5                    |                            |              |                                       |                |                     |                         |             |          |        |      |     |
| COUNCE OF               | TCOM             |                      |                            |              |                                       |                |                     |                         |             |          |        |      |     |
| COURSE OU               |                  |                      |                            |              |                                       |                |                     |                         |             |          |        |      |     |
| CO1                     |                  |                      | QM Princi                  | -            |                                       |                |                     |                         |             |          |        |      |     |
| CO2                     |                  |                      | ools of TQ                 |              |                                       |                |                     |                         |             |          |        |      |     |
| CO3                     |                  | ISO Stand            | ards 2008 a                | and 1400     | 1                                     |                |                     |                         |             |          |        |      |     |
| Mapping of C            | ourse O          | utcomes (            | COs) with                  | Program      | n Outcor                              | mes (Pos       | ) & Prog            | gram Spe                | cific Outo  | comes (P | SOs)   |      |     |
| COs/POs                 | PO1              | PO2                  | PO3                        | PO4          | PO5                                   | PO6            | PO7                 | PO8                     | PO9         | PO10     | PO1    | l P  | 012 |
| CO1                     | М                |                      |                            |              | М                                     | L              |                     | М                       | Н           | М        | М      |      | L   |
| CO2                     | М                |                      |                            |              | М                                     | L              |                     | М                       | Н           | М        | М      |      | L   |
| CO3                     | М                |                      |                            |              | L                                     | L              |                     | М                       | Н           | L        | М      |      | L   |
| COs / PSOs              | F                | SO1                  | PSC                        | 02           | PS                                    | 03             | PS                  | 504                     |             |          |        |      |     |
| CO1                     |                  |                      | M                          | 1            | ]                                     | Ĺ              |                     | L                       |             |          |        |      |     |
| CO2                     |                  |                      | M                          | 1            | ]                                     | Ĺ              |                     | L                       |             |          |        |      |     |
| CO3                     |                  |                      |                            |              | 1                                     | Ĺ              |                     | L                       |             |          |        |      |     |
| H/M/L indicate          | es Streng        | th of Corr           | elation H                  | - High, N    | I<br>M- Mediu                         | ım, L-Lo       | W                   |                         |             |          |        |      |     |
|                         |                  |                      |                            | -            |                                       |                |                     | =                       |             |          |        |      |     |
|                         |                  |                      |                            |              |                                       |                |                     | Skill                   |             |          |        |      |     |
|                         |                  | S                    | tial                       |              |                                       |                |                     | nical                   |             |          |        |      |     |
| Category                |                  | ence                 | Social                     |              | es                                    |                | ರ                   | echr                    |             |          |        |      |     |
|                         | ces              | Sci                  | and                        | le           | ectiv                                 | ves            | roje                | s / T                   |             |          |        |      |     |
|                         | Basic Sciences   | Engineering Sciences | Humanities and<br>Sciences | Program Core | <ul> <li>Program Electives</li> </ul> | Open Electives | Practical / Project | Internships / Technical | ills        |          |        |      |     |
|                         | ic S             | yine.                | Humanit<br>Sciences        | gran         | gran                                  | en E           | ctica               | tern                    | Soft Skills |          |        |      |     |
|                         | Bas              | Eng                  | Hur<br>Scie                | Pro          | Pro                                   | Opé            | Pra                 | In                      | Sof         |          |        |      |     |
|                         |                  |                      |                            |              | •                                     |                |                     |                         |             |          |        |      |     |
| Approval                | 27 <sup>th</sup> | meeting              | of Acad                    | emic co      | uncil, J                              | June20         | 17                  |                         |             |          |        |      |     |

#### B.Tech Mechanical Engineering - 2017 Regulation

#### EDUCATIONAL AND RESEARCH INSTITUTE UNIVERSITY (Decl. U/S 3 of UGC Act 1956) DEPARTMENT OF MECHANICAL ENGINEERING

### **UNIT- I: INTRODUCTION**

Definition of Quality, Dimensions, Planning of quality, conformance to specification, Quality costs-. Basic concepts and evolution of Total Quality Management, Principles of TOM, Deming Philosophy Deming prize MBNOA. Barriers to TOM Implementation.

Dr.M.G.R.

### **UNIT- II: TOM PRINCIPLES**

Customer satisfaction-Customer Perception of Quality, Customer Complaints. Service Quality, Customer Retention. Employee Involvement- Motivation, Empowerment, Teams. Recognition and Reward, Performance Appraisal, Benefits, Continuous Process Improvement-Juran Triology, PDSA Cycle, 58, Kaizen. Supplier Partnership- Partnering, sourcing, Supplier Selection, Supplier Rating, Relationship Development, Performance Measures-Basic Concepts. Strategy, Performance Measure.

#### **UNIT- III: SIX SIGMA**

The Seven Tools Of Quality, Statistical Fundamentals, Control Charts For Variables And Attributes, Process Capability, Concept Of Six Sigma, Phases And Defective UNIT-s Of Six Sigma .Overview Of GB,BB,MBB Leadership Characteristics ,Leadership Concept, Role Of Senior Management, Lean Management Principle, Strategic Planning New Seven Management Tools.

### **UNIT- IV: TOM TOOLS**

Benchmarking-Reasons to Benchmark, Benchmarking Process. Quality Function Deployment (QFD), pareto, process flow diagram, check sheets and histogram Taguchi Quality Loss Function. Total Productive Maintenance (TPM)-Concept, Improvement Needs, FMEA-Stages of FMEA.

### **UNIT- V: OUALITY SYSTEMS**

Need For ISO 09000 and Other Quality Systems, ISO 09000 – 2000 Quality System -Elements. Implementation Of Quality System, Documentation, Quality Auditing, Quality Council, Quality statements, Quality Management System TS 1609409, ISO 14000 Concept, Requirements And Benefits. Introduction To Capability Material Management (CMM), People Capability Management (PCM).

#### **Total No. of Hrs** :45

### TEXT BOOK

1) Dale H Besterfied, "Total Quality Management", Prentice Hall Publishing House

### REFERENCES

- 1) S.Ramachandran, Dn.S.Jose, "Total Quality Management", Airwalk Publications, First Edition, December.
- 2) Kulneet Suri, (2004 – 05) "Total Quality Management: Priciples & Practice, Tools & Techniques", S.K. Kateria & sons, First Edition,
- James R.Evans & William M.Lidsay, "The Management and Control of Quality", (5th Edition), South 3) Western(Thomson Learning),2002(ISBN 0-324-06680-5).
- 4) Feigenbaum.A.V. "Total Quality Management", Tata Mcgraw-Hill, 109091.
- Oakland.J.S. "Total Quality Management", Butterworth-Heinemann Ltd., Oxford, 109809 5)
- 6) R.S.Nagarajan, A.A.Arivalagar, "Total Quality Management", New Age International(p) Ltd., Publishers, First Edition.



9 Hrs

9Hrs

9 Hrs

#### 9Hrs



| Subject Code:      | Su                 | bject Nai            | me : RESC                  | DURCE        | MANAG               | GEMEN'         | Г                   |                               | T / L/      | L         | T/S.Lr | P/R | С   |
|--------------------|--------------------|----------------------|----------------------------|--------------|---------------------|----------------|---------------------|-------------------------------|-------------|-----------|--------|-----|-----|
| BME17E21           |                    |                      | TE                         | CHNIQ        | UES                 |                |                     |                               | ETL         |           |        |     |     |
|                    | Pre                | erequisite           | <u>.</u>                   |              |                     |                |                     |                               | Т           | 3         | 1      | 0   | 4   |
|                    | Kn                 | owledge              | of Manage                  | ement Sc     | ience bes           | ides Qua       | intitative          |                               |             |           |        |     |     |
|                    | Те                 | chniques             | -                          |              |                     |                |                     |                               |             |           |        |     |     |
| L : Lecture T : '  | Tutorial           | SLr : Su             | pervised L                 | earning      | P : Proje           | ct R : Re      | esearch C           | C: Credi                      | ts          |           |        |     |     |
| T/L/ETL : Theo     |                    |                      | -                          | -            | 5                   |                |                     |                               |             |           |        |     |     |
| <b>OBJECTIVE</b> : |                    | ident will           |                            |              |                     |                |                     |                               |             |           |        |     |     |
|                    | ► M                | lathemati            | cal formul                 | ation of a   | a real tim          | e proble       | m                   |                               |             |           |        |     |     |
|                    | ≻ A                | lgorithms            | s for optim                | al use of    | resource            | 8              |                     |                               |             |           |        |     |     |
| COURSE OUT         | ГСОМЕ              | S (COs) :            | :                          |              |                     |                |                     |                               |             |           |        |     |     |
| CO1                | Ν                  | Mathemat             | ical formu                 | lation of    | a real tir          | ne proble      | em                  |                               |             |           |        |     |     |
| CO2                | I                  | Algorithm            | s for optin                | nal use o    | f resourc           | es             |                     |                               |             |           |        |     |     |
| CO3                | C                  | concept of           | f queuing a                | and repla    | cement n            | nodel          |                     |                               |             |           |        |     |     |
| Mapping of Co      | ourse Ou           | tcomes (             | COs) with                  | Program      | n Outco             | mes (PO        | s) & Pro            | gram S                        | pecific Out | tcomes (H | PSOs)  |     |     |
| COs/POs            | PO1                | PO2                  | PO3                        | PO4          | PO5                 | PO6            | PO7                 | PO8                           | PO9         | PO10      | PO1    | l P | 012 |
| CO1                | Н                  | Н                    |                            | Н            | Н                   |                |                     |                               |             | L         | L      |     | М   |
| CO2                | М                  | Н                    |                            | Н            | Н                   |                |                     |                               |             | L         |        |     | L   |
| CO3                | М                  |                      |                            | М            | М                   |                |                     |                               |             | М         | М      |     |     |
| COs / PSOs         | PS                 | 501                  | PSC                        | 02           | PS                  | 03             | PS                  | 504                           |             |           |        |     |     |
| CO1                |                    |                      |                            |              | N                   | M              |                     |                               |             |           |        |     |     |
| CO2                |                    |                      |                            |              | N                   | M              |                     |                               |             |           |        |     |     |
| CO3                |                    |                      |                            |              | N                   | M              |                     |                               |             |           |        |     |     |
| H/M/L indicate     | s Strengt          | h of Corre           | elation H                  | - High, N    | /I- Mediu           | ım, L-Lo       | W                   |                               |             |           |        |     |     |
| Category           | nces               | Engineering Sciences | s and Social               | ore          | lectives            | lives          | Project             | Internships / Technical Skill |             |           |        |     |     |
|                    | Basic Sciences     | Engineerin           | Humanities and<br>Sciences | Program Core | ▲ Program Electives | Open Electives | Practical / Project | Internshi                     | Soft Skills |           |        |     |     |
| Approval           | 27 <sup>th</sup> n | l                    | of Acado                   | mic co       | uncil               | <br> uno20     | 17                  |                               |             |           |        |     |     |



#### **UNIT- I: LINEAR PROGRAMMING**

Formulation of LPP - Standard form of LPP - Graphical method - Simplex method - Big M method - Two phase method.

#### **UNIT- II: TRANSPORTATION AND ASSIGNMENT**

Formulation of Transportation problem - North West corner method - Least cost method - Vogel's approximation method - Optimality test - MODI method - Degeneracy - Assignment problem: Hungarian method - Travelling salesman problem.

#### UNIT- III: CPM, PERT AND SEQUENCING MODELS

Network representation – Fulkerson's rule – Critical path method – Scheduling of activities – Earliest and Latest times – Float and Slack times - PERT - Probability for project duration - Sequencing Models: Introduction - Basic Terminologies - Processing n jobs on 2, 3, and machines - Johnson's method.

#### **UNIT- IV: QUEUING MODELS**

Elementary concepts - Pure Birth and Death process - Single server Markovian models with infinite and finite capacity -Multi server Markovian models with infinite and finite capacity.

#### **UNIT- V: SIMULATION AND REPLACEMENT MODELS**

Simulation: Introduction - Monte-Carlo Technique - Generation of Random numbers - Applications to Queuing models -Replacement Models: Introduction – Individual Replacement policy – Money value (not considered and considered) – Group Replacement policy - Comparison of Individual and Group Replacement policies.

#### **TEXT BOOKS**

1) Sundaresan V. et.al. (2009), "Resource Management Techniques", A.R. Publications.

#### REFERENCES

- 1) Panneerselvam R. (2011), "Operations Research" (2<sup>nd</sup> ed.), Prentice Hall of India.
- 2) Hamdy A. Taha (2010), "Operations Research: An Introduction" (09th ed.), Pearson.
- 3) Hillier, Lieberman (2005), "Introduction to Operations Research" (8th ed.) (IAE), Tata McGraw Hill Publishing Co.
- 4) Hira D.S., Gupta P.K., (2007) "Operations Research", S.Chand & Co.

# 12 Hrs

12 Hrs

12 Hrs

#### 12 Hrs

#### **12** Hrs

#### Total No. of Hrs : 60



| Subject Code:   | S              | ubject Na            | me : SUPP                          | LY CH        | AIN MA            | NAGEM          | IENT                |                               | T / L/         | L          | T/S.Lr   | <b>P/ R</b> | C    |
|-----------------|----------------|----------------------|------------------------------------|--------------|-------------------|----------------|---------------------|-------------------------------|----------------|------------|----------|-------------|------|
| BME17E22        |                |                      |                                    |              |                   |                |                     |                               | ETL            |            |          |             |      |
|                 | P              | rerequisite          | In depth H<br>Material<br>Procuren | requirem     | ent planr         |                |                     | ms,                           | Т              | 3          | 0        | 0           | 3    |
| L : Lecture T : | Tutorial       | SLr : Su             |                                    |              |                   | ct R : Re      | esearch C           | : Credit                      | S              | _II        |          |             |      |
| T/L/ETL : The   | ory/Lab.       | /Embedde             | d Theory a                         | nd Lab.      |                   |                |                     |                               |                |            |          |             |      |
| OBJECTIVE       | ≻ B            | asic conce           |                                    |              |                   |                |                     |                               | its internal s | structural | systems; | also foc    | used |
| COURSE OU       |                |                      | 11                                 |              |                   |                | 1                   |                               | 2              |            |          |             |      |
| CO1             |                | Knowledge            | e of Logis                         | tic Mana     | gement            |                |                     |                               |                |            |          |             |      |
| CO2             |                | Network d            | esign, sour                        | cing and     | pricing i         | n Supply       | chain               |                               |                |            |          |             |      |
| CO3             |                | Informatio           | n technolo                         | gy in Sup    | oply chain        | n              |                     |                               |                |            |          |             |      |
| Mapping of C    | ourse O        | utcomes (            | COs) with                          | Program      | n Outco           | mes (PO        | s) & Pro            | gram S                        | pecific Out    | comes (P   | SOs)     |             |      |
| COs/POs         | PO1            | PO2                  | PO3                                | PO4          | PO5               | PO6            | PO7                 | PO8                           | PO9            | PO10       | PO1      | P           | 012  |
| CO1             |                | М                    | L                                  | L            |                   | L              |                     |                               | М              | М          | Н        |             | М    |
| CO2             | L              | L                    | М                                  | М            | Н                 | L              |                     |                               | L              | М          | М        |             | L    |
| CO3             |                |                      |                                    | М            | М                 |                |                     |                               |                | М          | М        |             | Μ    |
| COs / PSOs      | P              | SO1                  | PSC                                | 02           | PS                | 03             | PS                  | 504                           |                |            |          |             |      |
| CO1             |                |                      |                                    |              | Ν                 | N              |                     |                               |                |            |          |             |      |
| CO2             |                |                      |                                    |              | Ν                 | M              |                     |                               |                |            |          |             |      |
| CO3             |                |                      |                                    |              | N                 | M              |                     |                               |                |            |          |             |      |
| H/M/L indicate  | es Streng      | th of Corre          | elation H                          | - High, N    | /I- Mediu         | ım, L-Lo       | W                   |                               |                |            |          |             |      |
| Category        | Basic Sciences | Engineering Sciences | Humanities and Social<br>Sciences  | Program Core | Program Electives | Open Electives | Practical / Project | Internships / Technical Skill | Soft Skills    |            |          |             |      |
| Approval        | <b>37</b> th   |                      | of A1                              |              | •                 | [              | 17                  |                               |                |            |          |             |      |
| Approval        | 27m            | meeting              | of Acade                           | emic co      | uncil, J          | une20          | 17                  |                               |                |            |          |             |      |



#### UNIT- I: **INTRODUCTION**

Definition of logistics and SCM: evolution, scope, importance& decision phases – drivers of SC performance and obstacles.

#### UNIT- II: LOGISTICS MANAGEMENT

Factors – Modes of Transportation - Design options for Transportation Networks-Routing and Scheduling – Inbound and outbound logistics- Reverse Logistics - 3PL- Integrated Logistics Concepts- Integrated Logistics Model - Activities -Measuring logistics cost and performance - Warehouse Management - Case Analysis

#### UNIT- III: SUPPLY CHAIN NETWORK DESIGN

Distribution in Supply Chain – Factors in Distribution network design –Design options-Network Design in Supply Chain – Framework for network Decisions - Managing cycle inventory and safety.

#### SOURCING AND PRICING IN SUPPLY CHAIN UNIT- IV:

Supplier selection and Contracts - Design collaboration - Procurement process. Revenue management in supply chain

#### UNIT- V: COORDINATION AND TECHNOLOGY IN SUPPLY CHAIN

Supply chain coordination - Bullwhip effect - Effect of lack of co-ordination and obstacles - IT and SCM - supply chain IT frame work. E Business & SCM. Metrics for SC performance - Case Analysis

#### Total no. of Hrs :45

#### REFERENCES

- Sunil Chopra and Peter Meindl, (2007) "Supply Chain Management, Strategy, Planning, and operation", (2<sup>nd</sup> ed.), 1 PHI
- David J.Bloomberg, Stephen Lemay and Joe B.Hanna, (2002), "Logistics", PHI 2.
- Martin Christopher, "Logistics and Supply Chain Management -Strategies for Reducing Cost and Improving 3 Service", (2<sup>nd</sup> ed.), Pearson Education Asia
- Jeremy F.Shapiro, Thomson Duxbury, (2002) "Modeling the supply chain" 4.
- James B.Ayers. (2000) "Handbook of Supply chain management". St.Lucle Press 5.

## 9 Hrs

9 Hrs

### 9 Hrs

9 Hrs