

DEPARTMENT OF BIOMEDICAL INSTRUMENTATION CURRICULUM AND SYLLABUS **2017 REGULATION**

Semester: 3

Theory:

Course Code	Course Title	С	L	T/SLr	P/R	Ty / Lb/ ETL
BMA17006	Mathematics III for Electrical Engineers	4	3	1/0	0/0	Ту
BEI17001	Circuit Theory	4	3	1/0	0/0	Ту
BBI17001	Electric Field and Machines	4	3	1/0	0/0	Ту
BBI17002	Human Anatomy	3	3	0/0	0/0	Ту
BEC17I06	Analog and Digital IC's	3	3	0/0	0/0	Ту

Practical:

BBI17ET1	Advancement In Electronics *	3	1	0/2	1/1	ETL
BBI17L01	Human Anatomy Laboratory	1	0	0/0	3/0	Lb
BBI17L02	Electric Circuits Laboratory	1	0	0/0	3/0	Lb
BEC17IL4	Analog and Digital IC's Laboratory	1	0	0/0	3/0	Lb

Credits Sub Total: 24

Semester: 4

Theory:

Course Code	Course Title	С	L	T/SLr	P/R	Ty / Lb/ ETL
BMA17011	Numerical Methods For Electrical Engineers	4	3	1/0	0/0	Ту
BEI17007	Transducer Engineering	4	3	1/0	0/0	Ту
BBI17003	Human Physiology	4	3	1/0	0/0	Ту
BBI17004	Medical Physics	3	3	0/0	0/0	Ту
BBT17I02	Bio-Chemistry	3	3	0/0	0/0	Ту

 $C: Credits \ L: Lecture \ T: Tutorial \ S.Lr: Supervised \ Learning \ P: Problem \ / \ Practical \ R: Research$ Ty/Lb/ETL : Theory/Lab/Embedded Theory and Lab * Internal evaluation (Departmental level Refer Annexure for evaluation methodology)

Department of **BIOMEDICAL INSTRUMENTATION ENGINEERING**

Practical:

BSK17ET1	Soft Skill 1	2	1	0/1	1/0	ETL
BBI17ET2	Bio-Mechanics*	3	1	0/2	1/1	ETL
BBI17L03	Human physiology Laboratory	1	0	0/0	3/0	Lb
BEI17L03	Transducer Laboratory	1	0	0/0	3/0	Lb
BBT17IL2	Bio- Chemistry Laboratory	1	0	0/0	3/0	Lb
BBI17TSX	Technical Skill 1 (Evaluation)	1	0	0/0	2/0	Lb

Credits Sub Total: 27

Semester: 5 Theory:

Course Code	Course Title	С	L	T/SLr	P/R	Ty / Lb/ ETL
BBI17005	Bio-Control Systems	4	3	1/0	0/0	Ту
BBI17006	Bio-Medical Signal processing	4	3	1/0	0/0	Ту
BBI17007	Bio-Medical Instrumentation	3	3	0/0	0/0	Ту
BBI17008	Bio-Materials and Artificial Organs	3	3	0/0	0/0	Ту
BEE17I02	Microprocessor, Microcontroller and its Applications	3	3	0/0	0/0	Ту

Practical:

BBI17ET3	Measurement and Instrumentation*	3	1	0/2	1/1	ETL
BBI17L04	Electrical and Electronics Measurements Laboratory	1	0	0/0	3/0	Lb
BBI17L05	Bio- Signal Acquisition Laboratory	1	0	0/0	3/0	Lb
BEE17IL3	Microprocessor, Microcontroller and its Applications Laboratory	1	0	0/0	3/0	Lb
BBI17TSX	Technical Skill 2 (Evaluation)	1	0	0/0	3/0	Lb
BBI17L06	Inplant Training (Evaluation)	1	0	0/0	2/0	Lb

Credits Sub Total: 25

C: Credits L: Lecture T: Tutorial S.Lr : Supervised Learning P : Problem / Practical R : Research Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab

* Internal evaluation (Departmental level Refer Annexure for evaluation methodology)

Semester: 6 Theory:

Course Code	Course Title	С	L	T/SLr	P/R	Ty / Lb/ ETL
BBI17009	Pathology and Microbiology	4	3	1/0	0/0	Ту
BBI17010	Medical Image Processing	3	3	0/0	0/0	Ту
BBI17EXX	Elective 1	3	3	0/0	0/0	Ту
BEC17I07	Communication System and IOT	3	3	0/0	0/0	Ту
BBI17OEX	Open Elective (Interdisciplinary)	3	3	0/0	0/0	Ту

Practical:

BSK17ET2	Soft Skill 2	2	1	0/1	1/0	ETL
BBI17L07	Bio-Medical Signal and Image Processing Laboratory	1	0	0/0	3/0	Lb
BBI17L08	Bio-Medical Instrumentation Laboratory - I	1	0	0/0	3/0	Lb
BBI17L09	Pathology and Microbiology Laboratory	1	0	0/0	3/0	Lb
BBI17L10	Mini Project (Evaluation)	1	0	0/0	0/2	Lb
BBI17TSX	Technical Skill 3 (Evaluation)	1	0	0/0	2/0	Lb

Credits Sub Total: 23

Semester: 7 Theory:

Course Code	Course Title	С	L	T/SLr	P/R	Ty / Lb/ ETL
BBI17011	Bio-Medical Equipments	4	3	1/0	0/0	Ту
BBI17012	Virtual Instrumentation for Medical Application	4	3	1/0	0/0	Ту
BBI17EXX	Elective 2	3	3	3	0/0	0
BBI17EXX	Elective 3	3	3	3	0/0	0
BMG17003	Total Quality Management	3	3	3	0/0	0

 $Credits\ L: Lecture\ T: Tutorial\ S.Lr: Supervised\ Learning\ P: Problem\ /\ Practical\ R: Research\ Ty/Lb/ETL: Theory/Lab/Embedded\ Theory\ and\ Lab$

Department of **BIOMEDICAL INSTRUMENTATION ENGINEERING**

Practical:

BBI17ESX	Elective (Special - Based on Current Technology) *	3	1	0/2	1/1	ETL
BBI17L11	Bio-Medical Instrumentation Laboratory - II	1	0	0/0	3/0	Lb
	Virtual Instrumentation Laboratory for Medical Application	1	0	0/0	3/0	Lb
BBI17L13	Project Phase – 1	2	0	0/0	0/2	Lb
BFL17001	Foreign Language (Evaluation)	2	1	1	0/0	

Credits Sub Total: 26

Semester: 8 Theory:

Course Code	Course Title	С	L	T/SLr	P/R	Ty/
						Lb/
						ETL
BBI17EXX	Elective 4	3	3	0/0	0/0	Ту
BBI17EXX	Elective 5	3	3	0/0	0/0	Ту
BMG17005	Entrepreneurship Development	3	3	0/0	0/0	Ту

Practical:

BBI17L14 Project (Phase – II)	10	0/0	0/0	10	Lb	
-------------------------------	----	-----	-----	----	----	--

Credits Sub Total: 19

 $C: Credits\ L: Lecture\ T: Tutorial\ S.Lr: Supervised\ Learning\ P: Problem\ /\ Practical\ R: Research\ Ty/Lb/ETL: Theory/Lab/Embedded\ Theory\ and\ Lab$

* Internal evaluation (Departmental level Refer Annexure for evaluation methodology) 4 Credit papers should compulsorily have either P/R component.

Credit Summary

Semester : 1	: 18
Semester: 2	: 23
Semester : 3	: 24
Semester: 4	: 27
Semester : 5	: 25
Semester : 6	: 23
Semester: 7	: 26
Semester: 8	: 19

Total Credits : 185

Department of **BIOMEDICAL INSTRUMENTATION ENGINEERING**

Elective 1

Course Code	Course Title	С	L	T/S Lr	P/R	Ty / Lb/ ETL
I KKII/FUI	Troubleshooting of Bio-Medical Equipments	3	3	0/0	0/0	Ту
BBI17E02	Rehabilitation Engineering	3	3	0/0	0/0	Ту
BBI17E03	Human Assist Devices	3	3	0/0	0/0	Ту

Elective 2

Course Code	Course Title	С	L	T/S	P/R	Ту /
				Lr		Lb/ ETL
	Laser and Ultrasonic Application in Medicine	3	3	0/0	0/0	Ту
BBI17E05	Computer based Medical Instrumentation	3	3	0/0	0/0	Ту
BBI17E06	Biomedical MEMS and Nano Technology	3	3	0/0	0/0	Ту

Elective 3

Course Code	Course Title	С	L	T/S	P/R	Ty/
				Lr		Lb/ ETL
BBI17E07	Radiological Equipments	3	3	0/0	0/0	Ту
BBI17E08	Biological Effects of Radiation	3	3	0/0	0/0	Ту
BBI17E09	Computer in Medicine	3	3	0/0	0/0	Ту

Elective 4

Course Code	Course Title	С	L	T/S	P/R	Ту /
				Lr		Lb/ ETL
BBI17E10	Medical Informatics	3	3	0/0	0/0	Ту
BBI17E11	Fibre Optic and Laser Instruments	3	3	0/0	0/0	Ту
BBI17E12	Diagnostic and Therapeutic Equipments I	3	3	0/0	0/0	Ту

Elective 5

Course Code	Course Title	С	L	T/S	P/R	Ту/
				Lr		Lb/ ETL
BBI17E13	Recent Advances Applied to Hospital Engineering	3	3	0/0	0/0	Ту
BBI17E14	Diagnostic and Therapeutic Equipments II	3	3	0/0	0/0	Ту
BBI17E15	System Theory Applied to Biomedical Engineering	3	3	0/0	0/0	Ту

Subject Code:		ມbject Na LECTRI				CS III F	OR		T / L/ ETL	L	T / S.Lr	P/ R	C
BMA17006	Pr	rerequisite	e:						Т	3	1/0	0/0	4
L : Lecture T T/L/ETL : Th						P : Pro	oject R	: Resea	arch C: Cr	redits			
OBJECTIVI ≻ To ur		and the b	asic conc	epts in '	Transfo	rmer							
COURSE O	UTCO	OMES (C	$(\mathbf{Os}): (3)$	- 5)									
CO1		To under	stand the	Basic o	concept	s in Lap	place Tr	ansforr	ns				
CO2		To under	stand the	Applic	ations of	of Lapla	ace Trar	nsforms	5				
CO3		To under	stand the	Basic o	concept	s in Fot	arier sei	ries					
CO4		To under	stand the	Basic o	concept	s in Fot	urier Tra	ansforn	ıs				
CO5		To under	stand the	Basic o	concept	s in Z T	ransfor	ms					
Mapping of	Cours	se Outcoi	nes with	Progra	- m Out	comes	(POs)						
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	012
CO1	L	Н	L	L	L	L	L	L	М	L	L		Μ
CO2	L	Н	L	L	L	L	L	L	М	L	L		М
CO3	L	Н	L	L	L	L	L	L	М	L	L		М
CO4	L	Н	L	L	L	L	L	L	М	L	L		М
CO5	L	Н	L	L	L	L	L	L	М	L	L		Μ
COs / PSOs	P	PSO1	PSC	02	PS	03	PS	504	PSO5				
CO1		М	N	I	I	L		L	L				
CO2		М	M	I	1	Ĺ		L	L				
CO3		М	M	I	1	Ĺ		L	L				
CO4		М	N	[Ĺ		L	L				
CO5		М	N			Ĺ		L	L				
H/M/L indica	tes St	rength of	Correlat	ion H	- High,	M- Me	dium, L	-Low		1			
Category	▲ Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Department of BIOMEDICAL INSTRUMENTATION ENGINEERING

MATHEMATICS III FOR ELECTRICAL ENGINEERS

UNIT I LAPLACE TRANSFORMS

Transforms of simple functions – Properties of Transforms – Inverse Transforms – Transforms of Derivatives and Integrals

UNIT II APPLICATIONS OF LAPLACE TRANSFORMS

Periodic functions – Initial and final value theorems – Convolution theorem – Applications of Laplace transforms for solving linear ordinary differential equations up to second order with constant coefficients and Linear simultaneous differential equations of first order with constant coefficients

UNIT III FOURIER SERIES

Dirichlet's conditions – General Fourier series – Half range Sine and Cosine series – Complex form of Fourier series – Parseval's identity – Harmonic Analysis

UNIT IV FOURIER TRANSFORMS

Statement of Fourier integral theorem – Fourier transform pairs – Fourier Sine and Cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's theorem.

UNIT V Z TRANSFORMS AND DIFFERENCE EQUATION

Z-transforms – Elementary properties – Inverse Z transforms – Partial fraction – Residue method – Convolution theorem – Solution of difference equation using Z transform (simple problems).

Total Number of Hours: 60 Hrs

Text Books:

- 1. Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008)
- 2. Veerarajan T., Engineering Mathematics (for semester III), Tata McGraw Hill Publishing Co., (2005)
- 3. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012)

Reference Books:

- 1. Kreyszig E., Advanced Engineering Mathematics (9 th ed.), John Wiley & Sons, (2011)
- 2. Singaravelu, Transforms and Partial Differential Equations, Meenakshi Agency, (2017)

12 Hrs

12 Hrs

12 Hrs

12 Hrs

Subject Code BEI17001	: 5	Subject Na	ame : (CIRCU	IT THE	ORY			T / L/ ETL	L	T / S.Lr	P/ R	C
DEII,001	Ŧ	Prerequisit	e:						T	3	1/0	0/0	4
L : Lecture T :				ed Leari	ning P:	Project	R : Res	search C		U	1, 0	0, 0	
T/L/ETL : The					•								
OBJECTIVE				2									
≻Enabli	ing the	e students	to acquir	e knowl	edge ab	out the	basic of	circuit	analysis, i	network	theorems	, ac cir	cuits
and trans	sient a	malysis.											
								mesh cu	rrent and r	nodal vo	ltage met	nods.	
		analyze co				ork theo	orems.						
•		sight into							_				
		-	-	-	requenc	y and fr	ee and f	orced re	esponse of	RL, RC	and RLC	circuits	5.
COURSE OU	TCO		, ,										
CO1									ac circuits				-
CO2		•	uate will	be able	to ana	lysis co	mplex of	circuits	using mes	sh curre	nt and no	odal vo	ltage
<u> </u>		methods.	1	1	• •	•		1					
CO3		Ability to				using n	etwork t	neorem	S				
CO4		Capable t				.		d face	ad face 1		of DI T		
CO5		Understan	ius the co	ncept of	comple	ex rrequ	ency and	u free a	nd forced 1	response	e of KL, F	c and	KLU
Monning of C	101110		with D-	0.070	Outaar								
Mapping of C COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
COS/POS CO1	H	N	H H	M	L	H	M	H H	M	L	M		H
CO1 CO2	M	H	M	L	H	M	H	M	H	M	H		H
CO2	L	H	H	H	M	L	H	M	H	L	M		H
CO4	M	H	L	M	H	M	L	M	H	M			M
CO5	L	M	H	M	H	M	L	M	H	M	M		L
005		IVI	11	IVI	11	IVI	L	101	11	IVI	101		L
COs / PSOs	1	PSO1	PSO	$\overline{)}$	PS	503	P	SO4	PSO5				
CO1		H	H			M		M	L				
CO2		M	H		1	M		L	M				
CO3		H	N			H		L	L				
CO4		M	N			H		L	H				
CO5		M	N			L		L	H				
H/M/L indicat	es Stre						, L-Low			1	1	1	
Category	Basic Sciences	Engineering Sciences	ies and Social	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval	Basic	Engi	Humanit Sciences	Prog	Prog	Oper	Pract	Inter	Soft				

CIRCUIT THEORY

UNIT I BASICS OF CIRCUIT ANALYSIS

Kirchhoff's Laws, DC and AC excitation, series and parallel circuits, sinusoidal steady state analysis, Mesh current and Node Voltage method of Analysis, Matrix method of Analysis.

UNIT II NETWORK THEOREMS AND RESONANCE CIRCUITS

Thevenin's and Norton's theorems, Superposition theorem, Compensation theorem, Reciprocity theorem, Maximum power transfer theorem, series and parallel resonance, Quality factor and Bandwidth

UNIT III ANALYSIS OF NETWORKS IN 'S' DOMAIN

Network elements, Transient response of RL, RC and RLC Circuits to DC excitation, Natural and forced oscillations, Two-port Networks, Parameters and transfer function, Interconnection of two-ports

UNIT IV ELEMENTS OF NETWORK SYNTHESIS

Network reliability, Hurwitz polynomials, Positive real functions, Properties of RL, RC and LC Networks, Foster and Causer forms of Realization, Transmission Zeroes, synthesis of transfer functions

UNIT V FILTER DESIGN

Butterworth and Chebyshev approximation, Normalized specifications, Low pass filter design, Frequency transformations, Frequency and Impedance denormalisation, Types of frequency selective filters, Linear phase filters, Active filter design concepts.

Total Number of Hours: 60 Hrs

Text Books:

1. A. Sudhakar, Shyammohan S. Palli, "Circuits and Networks Analysis and Synthesis", Second Edition, Tata McGraw-Hill, 2002

2. Vasudev. K, "Network Theory and Filter Design", Wiley - Eastern Ltd, Second Edition, 1993

Reference Books:

- 1. William H. Hayt and Jack E. Kermmerly, "Engineering Circuit Analysis", McGraw-Hill International Edition, 1993.
- 2. Joseph Edminister and Mahmood Nahri, "Electric Circuits", Third Edition, Tata McGraw-Hill, New Delhi, 1999.
- 3. Umesh Sinha, "Network Analysis", Satya Prakasan, New Delhi, 1986.
- 4. Franklin. F. Kuo, "Network Analysis and Synthesis", John Wiley, 1996.
- 5. Vanval Kenburg, "Network Analysis", Prentice Hall of India Pvt. Ltd, New Delhi, 1994.

12 Hrs

12 Hrs

12 Hrs

12 Hrs

Subject Code BBI17001		bject Na ACHIN		LECTI	RIC FIE	LD AN	D		T / L/ ETL	L	T / S.Lr	P/ R	C
DDII7001		erequisit							T	3	1/0	0/0	4
L : Lecture T :				ed Learr	ing P:	Project	R : Res	earch C		5	1/0	0,0	<u> </u>
T/L/ETL : The						J							
OBJECTIVE	:			•									
			n vector co										
			lectric fie										
			magnetic f										
			time vary		tric and	magnet	ic fields						
			al machin										
COURSE OU													
CO1 CO2			o analyze nds static e										
CO2 CO3			he knowle			u moone	tic field						
CO3			analyze t						2				
CO4			o analyze t		<u> </u>		magnet		>				
Mapping of C													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2
CO1	H	M	L	H	M	H	H	H	L	L	M		H
CO2	М	М	М	М	Н	Н	Н	Н	М	L	L		M
CO3	Н	Н	Н	М	L	L	М	Н	L	M	Н]	L
CO4	Μ	Н	L	М	М	Н	L	Μ	М	L	Н]	L
CO5	Н	М	Н	Μ	L	Н	L	Μ	Н	L	M]	L
COs / PSOs	P	SO1	PSC	02	PS	O3	PS	504	PSO5				
CO1		Н	Μ			<u>_</u>		М	Н				
CO2		М	Μ					L	Н				
CO3		М	H			Η		М	L				
CO4		H	Н			M		M	L				
CO5		M	M			H		М	Н				
H/M/L indicat	es Strer	igth of C	orrelation	H- Hi	gh, M- 1	Vledium	, L-Low			1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval				✓									

Department of **BIOMEDICAL INSTRUMENTATION ENGINEERING**

ELECTRIC FIELD AND MACHINES

UNIT I INTRODUCTION

Brief introduction to Vector Analysis, Coordinate systems (rectangular, cylindrical, spherical) and field theory

UNIT II STATIC ELECTRIC FIELD

Coulomb's law - electric field intensity, Gauss's law – potential and its applications, Dielectrics, Permittivity, Polarization, Boundary relation, capacitance, Dielectric strength, Energy and energy density. Electric current, current density ohm's law continuity relations for current, problems - Poisson's and Laplace equations

UNIT III STEADY MAGNETIC FIELD

The Biot Savart's law for magnetic fields and magnetic field intensity, ampere's law, magnetic materials, Ferro magnetism, hysteresis, magnetic dipoles, loops and solenoids, Magnetization, inductance, energy in an inductor and energy density, boundary relations, reluctance and permeance, problems

UNIT IV TIME VARYING ELECTRIC AND MAGNETIC FIELDS

Faraday's law, Transformer and motional induction, Maxwell's equation from Faraday's law Self and Mutual Inductance, Displacement, Current, Maxwell's Equation from Ampere's law and it's in consistency, Boundary relation, Brief introduction to waves and Pointing Vector, Comparison of field and circuit theory, Circuit application of Pointing Vector.

UNIT V ELECTRICAL MACHINES

Principles of operation and characteristics of Transformers (Single-phase and Three-phase), DC machines, Synchronous Machines, 3 phase and Single phase Induction motors

Total Number of Hours: 60 Hrs

Text Books:

1. John D.Krauss, "Electro Magnetism", McGraw Hill, 1999

Reference Books:

1. Hayt W.H, "Engineering Electromagnetics", McGraw Hill, 1995.

12 Hrs

12 Hrs

12 Hrs

12 Hrs

Subject Code BBI17002	: 5	Subject Na	ame :	HU	MAN A	NATON	ΛY		T / L/ ETL	L	T / S.Lr	P/ R	C
	F	Prerequisit	e:						Т	3	0/0	0/0	3
L : Lecture T :				ed Learr	ning P:	Project	R : Res	earch C	: Credits				
T/L/ETL : The	eory/L	ab/Embed	ded Theor	ry and L	ab	-							
OBJECTIVE	:												
To lea													
		out the pos											
	•	out the pos	U		0		.		ns				
		out the pos											
		out the pos	-		tioning of	of the m	usculosk	celetal s	ystem				
COURSE OU	TCO.				1	1 11	111	1					
<u>CO1</u>		Understar							1'	1			
CO2		Capable t											
CO3		Acquires								atory sys	tems		
CO4		Understar											
CO5		Acquires	i	<u> </u>		0		sculoske	eletal syste	em			
Mapping of C COs/POs			s with Pr PO3					DO9	DOO	DO10	DO11	DOI	<u>.</u>
	PO1			PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	
CO1	M	M										M	
CO2	H	H											M
CO3	M	M	H	L	M	H	M	L	H	M	L		M
CO4 CO5	H H	H	M L	H H	M M	H H	M	H H	H	M M	H H		M
05	п	M	L	н	IVI	н	L	н	M	IVI	Н	ľ	M
COs / PSOs	1	PSO1	PSC	$\overline{)}$	DS	03	D	504	PSO5		_		
CO1 CO1		M	H			<u>05</u> И		H	M				
CO1 CO2		H	H			M		H	M				
CO2 CO3		L	M			vi L		H	H				
CO4		M	H			M		H	L				
CO5		H	N N			<u>vi</u> L		M	H				
H/M/L indicat	es Stre				gh, M- 1				11				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

HUMAN ANATOMY

UNIT I INTRODUCTION

Cell structure and Organelles Description- Circulatory System- Heart, Pericardium, Chambers, Major Blood Vessels, Blood supply

UNIT II DIGESTIVE SYSTEM

Digestive System- GI Tract, parts, stomach, Intestine, Liver and Pancreas, Respiratory System- Trachea and Lungs.

UNIT III EXCRETORY AND UROGENITA SYSTEM

Parts, Reproductive System – Male and Female Reproductive Organs - Nervous System – Functions of Neurons, Synapse, Reflexes and Receptors, Brain, Brainstem, Ventricles and Spinal cord. Peripheral Automatic Nervous System

UNIT IV MUSCULAR SYSTEM

Musculo - Skeletal System – Muscle Tissue, Structure of Skeletal Muscle, Types of Muscle, Types of Joints, Major Muscles of Limbs and their actions

UNIT V ENT

Eye, Ear, Endocrine Glands

Total Number of Hours: 45 Hrs

Text Books:

1. Ranganathan, T.S. "Text Book of Human Anatomy", S.Chand and Co. Ltd., Delhi, 1996

Reference Books:

- 1. Tobin, C.E., "Basic Human Anatomy", McGraw Hill Publishing Co. Ltd., Delhi, 1997
- 2. J.Gibson, "Modern Physiology and Anatomy for Nurses", Blackwell SC Publishing 1981

9 Hrs

9 Hrs

9 Hrs

9 Hrs Types

Subject Code	: 5	Subject Na	ame : AN	ALOG	AND D	IGITA	L IC'S		T / L/	L	T/	P/ R	С
BEC17I06	Т	Prerequisit							ETL T	3	<u>S.Lr</u> 0/0	0/0	3
L : Lecture T :				ad Loor	ning D.	Project	D · Doo	oarch C		3	0/0	0/0	5
T/L/ETL : The						Flojeci	K . Kes	earch	. Cieuns				
OBJECTIVE				y und E	uo								
To lea													
		out phase l			oplicatio	ns D/A	A/D cor	verters					
		wledge on											
		out MSI co			its								
	•	out sequen											
COURSE OU CO1		The grad	, , ,		oporat	ional ar	polifiore	and an	alications				
CO1 CO2		0			<u> </u>				plications I		aantanta	***	
CO2								and app	incations I	J/A A/D	converte	18	
CO3		Understa		•			•	ouita					
C04 C05		The grad						cuits					
Mapping of C	ource	-				2							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	2
CO1	M	H	M	Н	M	L	L	L	M	H	M		H
CO2	M	H							L		M		
CO3	Н	М	Н	L	М	Н	М	Н	L	L	М		M
CO4	Μ	Н	М	L	L	Н	М	L	М	Н	М]	L
CO5	Н	М	L	L	L	М	Н	L	М	Н	М]	L
COs / PSOs]	PSO1	PSC			03	_	504	PSO5				
CO1		М	Н			H	_	M	L				
CO2		H	M			M	_	H	M				
CO3		H	M			[M H	H				
CO4 CO5		M H	M H			H M		н M	L L				
H/M/L indicat	es Stre				gh, M-1				L				
	5 500			11-111	<u>, 171-</u> 1		, L-L0w	kill					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Ski	Soft Skills				
Approval	. ,			~									

B.Tech Regulation 2017 Approved by the Academic Council

Dr.M.G.R Educational and Research Institute University

Department of BIOMEDICAL INSTRUMENTATION ENGINEERING

ANALOG AND DIGITAL IC'S

UNIT I OPERATIONAL AMPLIFIERS AND APPLICATIONS

Characteristics of ideal op amp, virtual short, differential amplifier, offset current and voltages, slew rate, 741IC specifications inverting and non inverting amplifiers adder/subtractor, instrumentation amplifier, voltage to current and current to voltage converter, DC voltage follower, differential DC amplifier, bridge amplifier, integrator, differentiator, active low pass, high pass and band pass active filters, precision diode and clamp, half wave rectifier, average detector, peak detectors, log-antilog amplifiers, stable, mono stable and triangular wave generators, Schmitt trigger, analog multiplier

UNIT II PHASELOCKEDLOOP AND APPLICATIONS D/A A/D CONVERTERS 9 Hrs

Basic principles, phase comparator, voltage controlled oscillators, lock range, capture range PLL IC 565, functional block schematic of PLL, PLL applications - frequency multiplications, frequency translation, AM, FM detection, D/A converters successive approximation, parallel ADC, V to F ADC, counter ramp ADC.

UNIT III NUMBER SYSTEMS

Number systems - Binary, octal, hexa decimal, BCD, Grey and excess3 representations r's and (r-1)'s complements, subtraction using 1's and 2's complement binary to grey, grey to binary conversions alpha numeric codes, Boolean theorems min terms and max terms representation, SOP and POS forms Karnaugh maps tabulation methods logic gates -truth table realization of Boolean functions using gates, universal gates

UNIT IV MSI COMBINATIONAL CIRCUITS

Half and full adders parallel binary adder BCD adder, half and full sub tractors magnitude comparator decoder, encoder, multiplier, ROM, PLA, Boolean expression implementation using these IC's

UNIT V SEQUENCIAL CIRCUITS

Flip flops-SR, JK, T, D characteristic equations, excitation tables design of counters using excitation tables, synchronous and asynchronous counters, 7490, 74161 counters IC specifications, ring and Johnson counters shift registers, 74194 shift IC specifications.

Total Number of Hours: 45 Hrs

Text Books:

1. Millman.J. Halkias., "Integrated Electronics", McGraw hill 1972

Reference Books:

1. Ramakant. A. Gayakwad, "Op-amp and Linear IC's", Prentice Hall 1994

2. Moris Mano.M "Digital Logic and Computer Design", Prentice Hall 2001

9 Hrs

9 Hrs

9 Hrs

Subject Code: BBI17ET1	Su	ıbject Naı	me: ADV	ANCE	MENT	IN ELF	CCTRO	NICS*	T / L/ ETL	L	T / S.Lr	P/ R	C	
	Pr	erequisite	:						ETL	1	0/2	1/1	3	
L : Lecture T : '	Tutor	ial SLr :	Supervise	ed Learr	ning P:	Project	R : Res	earch C:	Credits					
T/L/ETL : Theo	ory/La	ab/Embed	ded Theor	y and L	ab	-								
OBJECTIVE :	:													
		ty on the b												
		knowledg	ge about	the fu	ındamen	ital dev	vices of	diffe	rent circ	uits, its	characte	eristics	and	
	igura			_	. ~									
		ty on the b					C							
		t knowledg						chnolog	У					
		p students			ge on N	anomat	erials							
COURSE OUT										_				
CO1		Gain Kno												
CO2		Develop k	U		1					11				
CO3		Capable to	o design (Oscillato	ors and A	Amplifie	rs deper	nding upo	on the app	olications	8.			
CO4		Students of	capable to	gain kn	owledge	e on the	latest te	chnology	1					
CO5		Students of	capable to	gain kn	owledge	e in fabr	icating I	Electroni	c devices	and othe	er materia	ls		
Mapping of Co	ourse	Outcome	s with Pr	ogram	Outcom	es (POs	5)							
COs/POs	PO1	PO2	2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	Η	М	М	L	Н	М	Н	М	L	Н	М]	Н	
CO2	Μ	М	М	М	Н	Н	Н	Н	L	М	L	l	М	
CO3	Η	М	Н	Μ	М	М	L	L	L	L	М]	Η	
CO4	Н	М	М	Н	Н	Н	М	Н	М	М	Н	l	Μ	
CO5	Н	Н	Н	Μ	Μ	Μ	Μ	L	L	L	М]	H	
COs / PSOs	F	PSO1	PSC	02	PS	03	PS	SO4	PSO5					
CO1		Н	Μ	[]	L		М	L					
CO2		Н	Μ	[Ν	M		L	Н					
CO3		L	Н	[N	M		М	L					
CO4		М	Μ			Ĺ		Н	М					
CO5		М	Н			M		L	Μ					
H/M/L indicate	s Stre	ength of Co	orrelation	H- Hi	gh, M- 1	Medium	, L-Low		-	1	-			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
Approval				· ·	I	I	<u> </u>	J		<u> </u>				

ADVANCEMENT IN ELECTRONICS*

UNIT I SEMICONDUCTOR DIODE

Theory of p-n junction – p-n junction as diode – p-n diode currents – Volt-ampere characteristics – Diode resistance – Temperature effect of p-n junction – Zener Diode- VI Characteristic- Zener diode Voltage Regulator- Characteristics of SCR, TRIAC, DIAC and LDR

UNIT II TRANSISTORS

Transistor construction – Input and output characteristics of CE, CB and CC configurations – Junction field effect transistor – Pinch off voltage – JFET volt-ampere characteristics – JFET small signal model – MOSFETS and their characteristics—Uni-junction transistor

UNIT III FEEDBACK CIRCUITS

Introduction-Principle of Feedback Amplifiers-Negative Feedback Circuits –Types of Negative feedback Circuits-Positive Feedback Circuits: Condition for Oscillations, Barkhausen criterion-Types of Oscillators: RC phase shift, Wein Bridge, Crystal, Collpitts, Hartley

UNIT IV FUNDAMENTALS and OVERVIEW OF NANO SCIENCE

Fundamental concepts- Basic Structure of Nanoparticles -Nanomaterials- scaling -. Approaches-Tools and Techniques

UNIT V NANO MATERIALS

Nanomaterials-properties- Nanostructures: Kinetics in Nanostructured Materials- Zero dimensional, size and shape of nanoparticles; one-dimensional and two dimensional nanostructures- clusters of metals and semiconductors, bio nano-particles-Carbon Nanotubes, Fullerenes, Nanowires, Quantum Dots-Applications of nanostructures.

Total Number of Hours: 45 Hrs

Text Books:

- 1. Jacob Millman, Christos, C. Halkias, (2010) Electronic Devices and Circuits, 3rd Edn, Tata McGraw Hill Publishing Limited
- 2. David, A. Bell (2003) Electronic Devices and Circuit, Prentice Hall of India Private Limited
- 3. Chattopadhyay, P.K, , Banerjee, A.N.(2009) Introduction to Nanoscience and Nanotechnology, Prentice Hall India Learning Private Limited

Reference Books:

- 1. Theodre, F. Boghert, (2003) Electronic Devices and Circuits.6th Ed. Pearson Education.
- 2. Ben G. Streetman, Sanjay Banerjee, (2002) Solid State Electronic Devices. Pearson Education.PHI.
- 3. Allen Mottershead(2003) Electronic Devices and Circuits An Introduction. New Delhi: Prentice Hall of India Private Limited
- 4. Manasi Karkare(2008)Nanotechnology: Fundamentals and Applications
- 5. Fuleka, M H(2010)Nanotechnology: Importance and Applications, I K International Publishing House Pvt. Ltd

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code	: Su	bject Na	ame : HU			MY			T / L/	L	Τ/	P/ R	C		
BBI17L01				BORAT	ORY				ETL	_	S.Lr				
		erequisit							L	0	0/0	3/0	1		
L : Lecture T :						Project	R : Res	earch C	: Credits						
T/L/ETL : The		/Embed	ded Theor	y and L	ab										
OBJECTIVE															
									struments.						
					resent in	the bio	logical	system	using the a	nalytica	l techniqu	ies			
COURSE OU															
CO1									anatomy in						
CO2		.	•	the diffe	erent bio	molecu	les pres	ent in tl	ne biologic	al syster	n using tl	ne analy	vtical		
		echnique													
		se Outcomes with Program Outcomes (POs)D1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12													
COs/POs	PO1														
CO1	Н	M H M L H M L M H L L													
CO2	Μ	M II M L II M L II II L H M H L ,M L L M H H													
COs / PSOs	PS	SO1	PSC	02	PS	O3	PS	SO4	PSO5						
CO1]	H	M	[Н	М						
CO2		M	M		1	Η]	М	Н						
H/M/L indicate	es Stren	gth of C	orrelation	H- Hi	gh, M- l	Medium	, L-Low	,							
								kill							
			П					I SI							
		es	Social					ica							
Category		enc	So		S		t.	hn							
	S	cie	рс		tiv	S	jec	lec							
	JCe	00	s ai	ore	lec	ive	Prc	L / 1							
	ciei	rin	tie. s	JC	Э	ect	1/1	ips	lls						
	Š	Jee	ani	an	an	Ē	ica	ush	Ski						
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills						
	Bį	Ē	Hı Sc	Pr	Pr	Ō		In	Sc						
							\checkmark								
Approval															

Department of **BIOMEDICAL INSTRUMENTATION ENGINEERING**

HUMAN ANATOMY LABORATORY

LIST OF EXPERIMENTS

- 1. To study the human respiratory system
- 2. To study the human skeleton system
- 3. To study the human muscular system
- 4. To study the human reproductive system
- 5. To study the human urinary system
- 6. To study the human nervous system
- 7. To study the human joint system
- 8. To study the human sense organ system

Total Number of Hours: 45 Hrs

Subject Code: BBI17L02	Subjec	et Name	ELECT	TRIC CI	RCUIT	S LAB	ORATO	ORY	T / L/ ETL	L	T / S.Lr	P/ R	C
	Prereq	uisite:							L	0	0/0	3/0	1
L : Lecture T : 7	Tutorial	SLr : S	Supervised	l Learnii	ng P:P	roject F	R : Resea	arch C:	Credits				
T/L/ETL : Theo	ry/Lab/E	Embedde	ed Theory	and Lat)								
OBJECTIVE :													
Students													
									ementation				t
									lysis using				
									ementation				t
									lysis using				
						ge Regu	lator for	r AC inj	puts in harc	iware a	nd Design	a filter	
			ssive con	ponents									
COURSE OUT						.1. (1							
CO1			nderstand					. 1	···· 1 - ··· 4 ·		1	. 1 1 .	
CO2									Implementa				
		hniques.			lectronic	cs, Elect	ric circu	ints and	network ar	iarysis t	ising both	analog	
CO3				ability	to docia	n and ar	nly Uar	duara	Implementa	otion of	what that	hovo la	ornt
005									network ar				ann
		hniques.	-			ls, Lieu		ints and	network a	larysis t	ising both	uigitai	
CO4				le to De	cion and	1 implan	nont tha	hardwa	re of a volu	ana Pa	gulator fo	r AC in	nute
04		ardware			sign and	1 mpien	lient the	liaiuwa		lage Re	guiator to	I AC III	puis
CO5				le to De	cian o fi	ltor oiro	uit for A	Activo o	nd passive	compor	onte		
Mapping of Co					0			ACTIVE a	nu passive	compoi	ients.		
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	H	L L	M	H H	M	L	M	M	M	L	L		M
CO1 CO2	Н	H	H	М	M	L	L	L	M	H	M L		H
CO2	M	M	L	H	M	L	M	H	M	L	H		M
CO4	L	H	M	H	L	H	L	L	M	H			H
CO5	L	M	L	H	L	H	M	L	H	M			H
005	L	111	L	11	Ľ	11	111	L	11	111			
COs / PSOs	PS	01	PS	$\overline{)2}$	PS	03	P	504	PSO5				
CO1	I D		I	52		H		H	M				
CO2		A	H	, [L		M	H				
CO3		H	H			M		L	H				
CO4		A	N			L		H	H				
CO5	H		N			L		L	M				
H/M/L indicates								L	101				
	, buonge							II					
								Sk					
		ŝ	Social					cal					
Category		nce	Soc		s			ini					
		ciel	р р		ive	s	ject	ecł					
	Basic Sciences	Engineering Sciences	Humanities and Sciences	ore	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill					
	ien	ling	ies	Program Core	Ē	ecti	/]	ips	lls				
	Sc	leel	amit ces	am	am	El	ical	idsi	Ski				
	Isic	ıgir	Humaniti Sciences	ogr	ogr	en	acti	terr	Soft Skills				
	\mathbf{Ba}	En	Hu Sc	P_{Γ}	P_{T}	0 ^t	P_{r_i}	Int	So				
							✓						
Approval													

B.Tech Regulation 2017 Approved by the Academic Council

Department of **BIOMEDICAL INSTRUMENTATION ENGINEERING**

ELECTRIC CIRCUITS LABORATORY

LIST OF EXPERIMENTS

- 1. Experimental verification of Kirchhoff's voltage and current laws
- 2. Experimental verification of Current and Voltage Division and Source Transformation
- 3. Experimental verification of network theorems (Thevenin, Norton, Superposition and maximum power transfer Theorem).
- 4. Determination of average value, RMS value, form factor, peak factor of sinusoidal wave, square wave using hard ware and digital simulation.
- 5. Verification of Nodal and Mesh Analysis
- 6. Study of CRO and measurement of sinusoidal voltage, frequency and power factor
- 7. Experimental determination of time constant of series R-C electric circuits
- 8. Experimental determination of frequency response of RLC circuits.
- 9. Design and Simulation of series resonance circuit.
- 10. Design and Simulation of parallel resonant circuits
- 11. Design and Simulation of Half wave and Full wave Rectifiers
- 12. Simulation of three phase balanced and unbalanced star, delta networks circuits
- 13. Experimental determination of power in three phase circuits by two-watt meter method
- 14. Calibration of single phase energy meter
- 15. Determination of two port network parameters
- 16. Design and Simulation of low pass and high pass passive filters
- 17. Design and Verification of Attenuators

.

18. Determination of self, mutual inductance and coefficient of coupling.

Total Number of Hours: 45 Hrs

Subject Code BEC17IL4		bject N BORA'	Name : TORY	ANALO	DG AN	D DIO	GITAL	IC'S	T / L/ ETL	L	T / S.Lr	P/ R	C
DLCI/IL4		erequisit							L	0	0/0	3/0	1
L : Lecture T				ed Learr	ning P:	Project	R : Res	earch C		Ŭ	0,0	5/0	-
T/L/ETL : Th													
OBJECTIVE				5									
To un	derstand	l various	Digital ar	nd Linea	r Integra	ated Cir	cuits use	ed in Sir	nple Syste	m Config	guration.		
			nd the var										
			erational a										
					wavefo	rm gene	rator cir	cuits an	d filter cir	cuits			
COURSE OU													
	Braduate Configur		nderstand	d variou	ıs Digit	al and	Linear	Integra	ted Circu	its used	in Sim	ple Sys	tem
CO2 T	The stude	ents wil	l be able	to unde	rstand t	he vari	ous type	es of co	ombinatio	nal circu	its.		
			Operatio										
									tor circuit	ts and fil	ter circu	iits	
Mapping of (0					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	2
CO1	М	Н	М	L	Н	Н	М	L	L	М	Н	I	Η
CO2	L	Н	М	L	М	Н	М	L	Н	М	Н	N	M
CO3	Н	Н	М	L	L	Н	М	L	М	Н	М]	Ĺ
CO4	М	L	Н	L	Н	М	L	Н	М	L	М	I	H
COs / PSOs	PS	501	PSC	D2	PS	03	PS	504	PSO5				
CO1		М	Н			N		L	М				
CO2]	Н	M	[]	L]	М	Н				
CO3]	М	Н	[N	N		L	М				
CO4		L	Н			N		L	L				
H/M/L indicat	tes Stren	gth of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low	r					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Department of **BIOMEDICAL INSTRUMENTATION ENGINEERING**

ANALOG AND DIGITAL IC'S LAB

LIST OF EXPERIMENTS

- 1. Integrator and Differentiator
- 2. Multivibrators using IC 555 Timer
- 3. Schmitt Trigger
- 4. Instrumentation Amplifier
- 5. Phase Shift Oscillator and Wien Bridge Oscillator
- 6. Half Adder and Full Adder
- 7. Encoder and Decoder
- 8. Multiplexer
- 9. Shift Register
- 10. Decade Counter

Total Number of Hours: 45 Hrs

Subject Code BMA17011			Name :] RICAL E			. METI	HODS	FOR	T / L/ ETL	L	T / S.Lr	P/ R	C		
	I	Prerequis	ite:						Т	3	1/0	0/0	4		
L : Lecture T						P:Pro	oject R	: Resea	arch C: Cr	edits					
T/L/ETL : Th	neory/	Lab/Emb	edded Th	eory an	ld Lab										
OBJECTIV	Е:														
> To de	evelop	the abili	ty in Nur	nerical	Skills										
COURSE O															
CO1			rstand the												
CO2		To under	rstand the	Basic o	concept	s in Sys	stem of	Linear	Equations	5					
CO3		To under	rstand the	Basic o	concept	s in No	n Linea	r Equat	ions						
CO4		To understand the Basic concepts in Interpolation To understand the Basic concepts in Numerical Differentiation and Integration													
CO5		To understand the Basic concepts in Numerical Differentiation and Integration													
Mapping of	Cours	urse Outcomes with Program Outcomes (POs)01PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12													
COs/POs	PO1														
CO1	L	H L L L L L M L M													
CO2	L	Н	H L L L L L M L M												
CO3	L	Н	L	L	L	L	L	L	М	L	L	l	М		
CO4	L	Н	L	L	L	L	L	L	М	L	L		М		
CO5	L	Н	L	L	L	L	L	L	М	L	L	l	М		
COs / PSOs	PSO		PSO2		PSO3		PSO4		PSO5						
CO1		М	N			Ĺ		L	L						
CO2		Μ	N			[L	L						
CO3		Μ	N			Ĺ		L	L						
CO4		M	N			Ĺ		L	L						
CO5		M	N N					L	L						
H/M/L indica	ates St	rength of	Correlat	ion H	- High,	M- Me	dium, L	Low							
Category	Basic Sciences	Engineering Sciences	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills								
Approval	Ba	En	Humanities and Sciences	Program Core	Prc	Op	Pra	Into	Sol						

NUMERICAL METHODS FOR ELECTRICAL ENGINEERS

UNIT I BASICS OF NUMERICAL METHODS

Curve fitting-Method of group averages-Principle of least square-Method of moments-Finite differences-Operators (Forward, Backward and Shifting) -Relationship between the operators.

UNIT II SYSTEM OF LINEAR EQUATIONS

Gauss Elimination method – Gauss-Jordan method – Iterative methods – Gauss-Jacobi method – Gauss-Seidel method – Matrix Inversion by Gauss-Jordan method- Eigen value problem-Power method

UNIT III NON LINEAR EQUATIONS

Solution of Algebraic and Transcendental equations – Method of false position -Fixed point iteration method (single and multi variables) - Newton-Raphson method (single and multi variables)

UNIT IV INTERPOLATION

Newton forward and backward differences – Central differences – Sterling's and Bessel's formulae – Interpolation with Newton's divided differences – Lagrange's method.

UNIT V NUMERICAL DIFFERENTIATION AND INTEGRATION

Numerical differentiation with interpolation polynomials – Numerical integration by Trapezoidal and Simpson's (both $1/3^{rd}$ and $3/8^{th}$) rules – Two and three point Gaussian Quadrature formulae – Double integrals using Trapezoidal and Simpson's rules.

Total Number of Hours: 60 Hrs

Text Books:

- 1. Veerarajan T., Numerical Methods, Tata McGraw Hill Publishing Co., (2007)
- 2. Sastry S.S., Introductory Methods of Numerical Analysis, Prentice Hall of India, (2012)

Reference Books:

- 1. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012)
- 2. Kandasamy P., Thilagavathy, Gunavathy K., Numerical Methods (Vol.IV), S.Chand & Co., (2008)

12 Hrs

12 Hrs

12 Hrs

12 Hrs

Subject Code BEI17007	: !	Subject N	ame: T	RANSE	UCER	ENGI	NEERIN	NG	T / L/ ETL	L	T / S.Lr	P/ R	C
]	Prerequisit	e:						Т	3	0/0	0/0	3
L : Lecture T : T/L/ETL : The			.		•	: Projec	ct R : R	esearch	C: Credit	s			I
OBJECTIVE													
		dent will u							1				
		dent will l dent will l											
		ping the k											
		ng the oper								antages o	of various	s types	of
	ansdu												
COURSE OU	JTCC	OMES (CO	Ds):(3-	5)									
CO1		The grad											
CO2		The grad		<u> </u>					-	~ ~	on		
CO3		The grad			Ų				A				
CO4 CO5		Develops						tance tra	ansducers				
Mapping of C	¹ 011rs	Capable t											
						-		1	T	1	1		
COs/POs	POI	I PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	М	М	L	L	Н	М	М	L	Н	М]	Н
CO2	M	М	Н	М	L	М	Н	М	М	L	М]	H
CO3	Н	Н	М	Н	Μ	L	Μ	Н	М	Н	L	1	М
CO4	L	М	L	Н	М	Н	L	Μ	Н	L	М		Н
CO5	M	Н	М	Н	М	L	L	Н	М	L	Н	1	М
COs / PSOs		PSO1	PSO	02	PS	03	PS	504	PSO5				
CO1		Н	N	1		Ĺ		Н	М				
CO2		М	Н	[ľ	M		Н	М				
CO3		L	L	,		M		Н	М				
CO4		Н	N			Ĺ		Н	М				
CO5		М	N			H		М	Н				
H/M/L indicat	es Sti	rength of C	Correlation	n H-F	ligh, M·	- Mediu	m, L-Lo)W					
Category		nces	Social		S			echnical					
Calogory	Basic Sciences	Engineering Sciences	Humanities and S Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval				_ ✓					~ 4				

TRANSDUCER ENGINEERING

UNIT I SCIENCE OF MEASUREMENT

Units and standards – calibration methods – static calibration – classification of errors – error analysis – statistical methods – odds and uncertainty

UNIT II CHARACTERISTICS OF TRANSDUCERS

Static characteristics - accuracy, precision, sensitivity, and linearity - mathematical model of transducers - zero, first-order and second-order transducers - response to impulse, step, ramp and sinusoidal inputs

UNIT III VARIABLE RESISTANCE TRANSDUCERS

Principle of operation, construction details, characteristics and applications of resistance potentiometers, strain gauges, resistance thermometers, thermistors, hot-wire anemometer, piezo resistive sensors and humidity sensors.

UNIT IV VARIABLE INDUCTANCE AND VARIABLE CAPACITANCE TRANSDUCERS

12 Hrs Induction potentiometer – variable reluctance transducers – EI pick up – LVDT – capacitive transducers – variable air gap type – variable area type – variable permittivity type – capacitor microphone

UNIT V OTHER TRANSDUCERS

Piezoelectric transducer – magnetostrictive transducer – IC sensor – digital transducers – smart sensor – fiber optic transducers

Total Number of Hours: 60 Hrs

Text Books:

- 1. Neubert, H.K.P. Instrument Transducers, Clarenden Press, Oxford, 1988.
- 2. Patranabis, D, Sensors and Transducers, Wheeler Publishing Co., Ltd. New Delhi, 1997

Reference Books:

- 1. Doebelin, E.O., Measurement Systems, McGraw-Hill Book Co., 1998.
- 2. Neubert, H.K.P. Instrument Transducers, Clarenden Press, Oxford, 1988.
- 3. Patranabis, D, Sensors and Transducers, Wheeler Publishing Co., Ltd. New Delhi, 1997.
- 4. Murthy, D.V.s., Transducers and Instrumentation, Prentice Hall of India Pvt. Ltd., New Delhi, 1995.
- 5. Renganathan, S., Transducer Engineering, Allied Publishers, Chennai, 1999.

12 Hrs

12 Hrs

12 Hrs

Subject Code BBI17003	: 5	Subject Na	ame : HU	MAN I	PHYSIC	DLOGY			T / L/ ETL	L	T / S.Lr	P/ R	C
	I	Prerequisit	e:						 T	3	0/0	0/0	3
L : Lecture T :				ed Learr	ning P:	Project	R : Res	earch C	C: Credits	1 1			<u>I</u>
T/L/ETL : The					0	5							
OBJECTIVE	:			-									
		out the pos											
		out the pos											
		out the pos											
		out the pos											
		out the pos	-		tioning of	of the rej	producti	ve orga	ns				
COURSE OU	TCO												
CO1		Understar					<u> </u>	<u> </u>	<u> </u>				
CO2									cretory sys	tem			
CO3		Understar											
CO4									locrine gla				
CO5								reprodu	ctive orga	ins			
Mapping of C								DOG	D 00	DOIO	D 011		
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	
CO1	H	M	H	M	L	L	M	H	M	L	M		H
CO2	M	H	M	L	M	H	L	M	H	M	L		M
CO3	M	M	H	M	L	M	L	M	H	M	H		M
CO4	H	M	L	M	L	H	M	L	L	M	H		M
CO5	M	Н	М	L	М	L	M	L	М	Н	Μ		L
	1		DC		DC	02			DCOS				
COs / PSOs CO1		PSO1 M	PSC H			<u>ОЗ</u> И		<u>504</u> Н	PSO5 M				
C01 C02		M	Н			M		п Н	M				
CO2 CO3		L	L			M		н Н	M				
CO4		H H	L			H		L	M				
CO5		M	N N			L		L M	H				
H/M/L indicat	es Stre				gh, M- 1				11				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval	E		T S	<u>щ</u> ✓				T					

HUMAN PHYSIOLOGY

UNIT I CELL

Structure of Cell – Function of each components of the cell – Membrane Potential – Action Potential – Generation and Conduction – Electrical Stimulation - Blood Cell – Composition – Origin of RBC – Blood groups – Estimation of RBC, WBC and platelet.

UNIT II CARDIAC AND NERVOUS SYSTEM

Cardiac Cycle – ECGT – Blood Pressure – Feedback Control for Blood Pressure – Nervous control of Heart - Cardiac output – Coronary and Peripheral Circulation – Structure and function of Nervous tissue – Reflex action – Velocity of Conduction of Nerve Impulses - Electro Encephalograph – Autonomic Nervous System

UNIT III RESPIRATORY SYSTEM

Physiological aspects of respiration - Exchange of gases - Regulation of Respiration - Disturbance of respirating function. Pulmonary function test

UNIT IV DIGESTIVE AND EXCRETORY SYSTEM

Organization of GI system, Digestion and absorption – Movement of GI tract – Structure of Nephron – mechanism of Urine formation – Urine Reflex – Skin and Sweat Gland – Temperature regulation.

UNIT V SPECIAL SENSES

Optics of Eye – Retina – Photochemistry of Vision – Accommodation Neurophysiology of vision – EOG. Physiology of Internal Ear – Mechanism of Hearing – Auditory pathway, Hearing Tests

Total Number of Hours: 60 Hrs

Text Books:

1. Sarada Subramanyam, K. Madhavan Kutty and H.D. Singh – Text book of 'Human Physiology' – S.Chand and Company, 1996

2. Sujit K. Chaudhuri - Concise Medical Physilogy - New Central Book agency, 1997

Reference Books:

1. Arthur.C.Guyton - Textbook of Medical Physiology - Prism Book (p) Ltd. 1996

2. Cyril A. Keele Eric Neil Norman Joels Samson Wrights' Applied Physiology – Oxford University Press – 1983

12 Hrs

12 Hrs

12 Hrs

12 Hrs

Subject Code: BBI17004		ubject Na		MEDIC	AL PH	YSICS			T / L/ ETL	L	T / S.Lr	P/ R	C
		rerequisit							Т	3	0/0	0/0	3
L : Lecture T :						Project	R : Res	earch C	C: Credits				
T/L/ETL : The		ıb/Embed	ded Theor	ry and L	ab								
OBJECTIVE													
> Introd													
			cept of In			0							
			edge about		ects of F	Radiation	1						
COURSE OU													
CO1			nds the co										
CO2			o understa						0				
CO3		<u> </u>	lates attai		Ū			of Radi	ation				
Mapping of C	ourse	Outcome	es with Pr		Outcom	es (POs	5)			_			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Μ	Н	М	Н	L	Н	Μ	L	М	Н	Μ		L
CO2	Н	Μ	L	Μ	Η	Μ	L	Μ	Н	L	Μ		Н
CO3	L	Μ	Н	L	Μ	Н	L	Μ	Н	L	Μ]	Н
COs / PSOs	P	SO1	PSO	D2	PS	03	PS	SO4	PSO5				
CO1		L	Ν	1]	Н]	Μ	Н				
CO2		М	H	I	ľ	Ν		L	Н				
CO3		М	H	-	-	Ν		Μ	L				
H/M/L indicate	es Stre	ngth of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low	7					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Department of BIOMEDICAL INSTRUMENTATION ENGINEERING

MEDICAL PHYSICS

UNIT I ATOMIC PHYSICS

Traditional definition of atom, periodic system of elements, mechanical properties of atom, emission of light and its frequencies - Electromagnetic spectra - Principles of Nuclear Physics - Natural radioactivity, Decay series, type of radiation and their applications, artificially produced isotopes and its application, accelerator principles; Radio nuclides used in Medicine and technology.

UNIT II INTERACTION WITH LIVING CELLS

Target theory, single hit and multi target theory, cellular effects of radiation, DNA damage, depression of Macro molecular synthesis, Chromosomal damage.

UNIT III SOMATIC EFFECT OF RADIATION

Radio sensitivity protocol of different tissues in human, LD 50/30 effect of radiation on skin, blood forming organs, lenses of eye, embryo and Endocrinal glands.

UNIT IV GENETIC EFFECT OF RADIATION

Threshold of linear dose effect, relationship, factors affecting frequency of radiation induced mutation, Gene controlled hereditary diseases, biological effect of microwave and RF wave. Variation in dielectric constant and specific conductivity of tissues - Penetration and propagation of signals effects in various vital organs, Protection standards

UNIT V PHOTO MEDICINE

Synthesis of Vitamin D in early and late cutaneous effects, Phototherapy, Photo chemotherapy, exposure level, hazards and maximum permissible exposures - Laser physics - Characteristics of Laser radiation, Laser speckle, biological effects, laser safety management

Total Number of Hours: 45 Hrs

Text Books:

1. Moselly, "Non ionizing Radiation", Adam Hilgar Brustol 1988

Reference Books:

1. Branski.S and Cherski.P 'Biological effects of Microwave' Hutchinson and ROSS Inc. Strondsburg 1980.

2. Glasser.O.Medical Physics Vol.1, 2, 3 years Book Publisher Inc Chicago, 1980

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code BBT17I02	: St	ıbject Na	ame: B	IO CHE	EMISTI	RY			T / L/ ETL	L	T / S.Lr	P/ R	C
	Pr	rerequisit	e:						Т	3	0/0	0/0	3
L : Lecture T	: Tutoria	al SLr :	Supervis	ed Learr	ning P:	Project	R : Res	earch C	: Credits				
T/L/ETL : The		b/Embed	ded Theor	ry and L	ab								
OBJECTIVE													
			l function										
	•		function	· ·	-								
			l function										
			l function					ainform	nation on s	nooific n	otobolio	diagona	
			bio molec		cules by	y provid	ing basi	c mom	lation on s	pecific fi	letabolic	uisease	5
COURSE OU			nds struct		function	nal nron	erties of	carboh	vdrate				
CO1 CO2			o analyze						•				
CO3			nds struct						10101115				
CO4			o structura						ride				
CO5									s by provi	ding has	ic inform	ation	n
005			netabolic of							ung ous		ation of	.1
Mapping of C								10 111010					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12
CO1	M	H	M	L	L	L	H	M	L	M	H		M
CO2	Н	Н	М	L	Н	М	Н	L	М	Н	М		L
CO3	М	Н	М	L	М	Н	L	М	Н	L	М		H
CO4	М	Н	М	Н	L	М	М	Н	М	L	Н	l	Μ
CO5	Н	М	L	L	М	Н	L	М	Н	L	М]	Н
COs / PSOs	P	SO1	PSO	02	PS	03	PS	504	PSO5				
CO1		М	H	[Ν	Ν		L	М				
CO2		Н	N	1	Ν	Ν		Н	L				
CO3		Н	Ν	1]	L]	М	Н				
CO4		М	L	,]	H]	М	Н				
CO5		L	N			H		М	L				
H/M/L indicat	es Strer	ngth of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval			<u> </u>			1	I	<u> </u>		1			

BIO CHEMISTRY

UNIT I BIOCHEMISTRY OF LIVING CELL

Biochemistry of living cell, sub cellular fractionation using the differential centrifugation method -Function of each organelle Redox Potential, Oxidative Phosphorylation, Transport of substances a cross biological membrane - NUCLEAR ACID: Composition and Function, Genes, Outline of DNA structure, Re-Combinant DNA and its applications.

UNIT II ENZYMES

Chemical Nature, General Properties, Spectrophotometric measurement of enzymes, Isolation techniques, Diagnostic enzymes - Enzyme biotechnology - Hormones: Chemical Nature, Properties of hormones, Hormonal Assay and their significance.

UNIT III CARBOHYDRATE and LIPIDS

Carbohydrate – Classification, Metabolism of carbohydrate, and its dysfunction, uses of Carbohydrates. Lipids: Classification, Metabolism of lipids, Cholesterol, bile acids, Transport of lipids, Lipids metabolism dysfunction. Protein: Classification, Amino acids, Chromatography, electrophoresis and architecture of protein molecules

UNIT IV BIO CHEMISTRY OF BLOOD AND BODY FLUIDS

Liver Function tests, Renal Function Tests, Blood gas Analysis, Measurement of Electrolytes - their abnormal and Normal values and conditions - Biochemistry of Urine and Stools testing

UNIT V DIAGNOSTIC TOOL

Principles and Application of Photometry, Spectrophotometry, Flurometry, Photometry, Densitometry, calorimetry, Automation in clinical Laboratory - Use of Isotopes in Biochemistry

Total Number of Hours: 45 Hrs

Text Books:

1. Dr. Amniga Shanmugam, "Fundamentals of Bio hemistry for Medical Students", Karthic Printers, Madras 1997

Reference Books:

- 1. Jain J, Jain L, Nitin Sunjay Jain, "Fundamentals of Biochemistry," Chand. S, Group, ISBN: 8121924537.
- 2. Satyanarayana U, and Chakrapani U, "Biochemistry", Books and Allied (p) Ltd., ISBN: 8187134801.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject BSK17E			bject N DNFID			KILLS ING	– I CA	REER	and	T / L/ ETL	L	T / S.Lr	· P/ R	
			erequisi							Ту	1	0/1	1/() 2
L : Lectu							g P : P	roject R	: Resea	arch C: C	Credits			
T/L/ETL		•	ab/Emb	edded T	heory a	and Lab								
	To cre leadin To hel CV's a To hel To hel	ate aw g to de lp stud and res p stud lp stu	evelop a lents be sume. ent how	positive aware to face mprove	e frame of vario	of mind ous tech s types o	d. iniques of interv	of cand	idate re	tern impr ecruitmen for HR, t presenta	nt and techni	help cal ir	them ntervie	prepare ws.
COURS	E OU	TCO	MES (C	<u>:();</u>	3- 5)									
Students)									
CO1	Be a	ware o	f variou	is top co	ompanie	es leadir	ng to im	provem	ent in sl	kills amo	ngst t	hem.		
CO2			of vario bare CV				ent tech	niques	like gro	up discu	ssion,	inte	rviews	and be
CO3							and be p	repared	for HR	and tech	nical	interv	views.	
CO4										k session				
Mappin	g of C	ourse	Outcor	nes wit	h Prog	ram Ou	itcomes	(POs)						
COs/PO	s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10	PO11	PO12
CO1		L	L	L	L	L	М	М	Н	М	Н		Μ	Н
CO2		L	L	L	L	L	М	М	Н	М	Η	-	М	Н
CO3		L	L	L	L	L	М	М	Н	Μ	Н		Μ	Н
CO4		L	L	L	L	L	Μ	М	Н	Μ	Н	-	Μ	Н
COs / PS	SOs	PS	01	PS	O2	PS	03	PS	504	PSO5				
CO1]	L]	L	I	H		L	L				
CO2]	L]	L	I	H		L	L				
CO3			L]	<u>L</u>		H		L	L				
CO4	1. (-			H		L	L				
H/M/L ii	ndıcat	es Stre	ength of		ition I	H- High	, M- M	edium, I	L-Low					
Catego	ry	Basic Sciences	Engineering Sciences	✓Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	 Soft Skills 				
	Ļ	Ba	Εų	ηΗν	Prc	Prc	Op	Prê	Int	So				
				✓						✓				
Approva	.1													

B.Tech Regulation 2017 Approved by the Academic Council

SOFT SKILLS – I CAREER AND CONFIDENCE BUILDING

UNIT I

Creation of awareness of top companies / improving skill set matrix / Development of positive frame of mind / Creation of self-awareness

UNIT II

 $Group\ discussions\ /\ Do's\ and\ don'ts\ -\ handling\ group\ discussions\ /\ what\ evaluators\ look\ for\ interpersonal\ relationships\ /\ Preparation\ of\ Curriculum\ Vitae\ /\ Resume$

UNIT III

Interview – awareness of facing questions – Do's and don'ts of personal interview / group interview, enabling students to prepare for different proce3dures such as HR interviews and Technical Interviews / self-introductions

UNIT IV

Verbal aptitude, Reading comprehension / narration / presentation / Mock Interviews

UNIT V

Practical session on Group Discussion and written tests on vocabulary and reading comprehension

Total Number of Hours: 30 Hrs

6 Hrs

6 Hrs

6 Hrs

6 Hrs

Subject Code BBI17ET2	: S	ubject Na	ame: B	IO ME	CHANI	CS*			T / L/ ETL	L	T / S.Lr	P/ R	C
	P	rerequisit	e:						ETL	1	0/2	1/1	3
L : Lecture T :	: Tutori	al SLr :	Supervise	ed Learr	ning P:	Project	R : Res	search C	Credits				
T/L/ETL : The	eory/La	b/Embed	ded Theor	y and L	ab								
OBJECTIVE													
To stu													
			e mechani										
			ze Respir		echanics	5							
			sue mecha		1 .								
			at Orthopa		chanics								
COURSE OU					1	_							
CO1			nds the Bi										
CO2			o analyze										
CO3 CO4			o analyze ds the So										
CO5			an analyze										
Mapping of C COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	5) PO7	PO8	PO9	PO10	PO11	POI	2
COS/POS CO1	M	N	H H	<u>г04</u> М	H	M	L	L	M	H	M		L
CO1 CO2	M	H	M	L	M	L	H	M	L	H	M		L L
CO2 CO3	H	M	L	H	M	L	M	H	L	M	H		L M
CO4	L	L	M	H	L	M	H	L	M	H	L		H
CO5	H	M	L	H	M	H	M	L	H	M			M
05	11	IVI	L	11	IVI	11	IVI		11	IVI		r	/1
COs / PSOs	р	SO1	PSC	12	PS	03	P	504	PSO5				
CO1	1	M	H			M M	-	L	H				
CO2		M	M			M		L	M				
CO3		H	M			L		H	M				
CO4		M	H			L		M	H				
CO5		Н	M			L		H	Н				
H/M/L indicat	es Stre	ngth of C	orrelation	H- Hi	gh, M- I	Medium	, L-Low	1					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval				v	I					<u> </u>			

BIO MECHANICS

UNIT I BIOFLUID MECHANICS

Newton's laws, stress, strain elasticity, Hooke's-law, viscosity, Newtonian fluid, Non-Newtonian fluid, Viscoelastic fluids, vascular tree. Relationship between diameter, velocity and pressure of blood flow, resistance against flow

UNIT II CARDIAC MECHANICS

Cardio vascular system, Mechanical properties of blood vessels – arteries, arterioles, capillaries, veins, blood flow: laminar and turbulent, physics of cardio vascular diseases, prosthetic heart valves and replacement.

UNIT III RESPIRATORY MECHANICS

Alveoli mechanics, interaction of blood and lung, P-V curve of lung, breathing mechanism, airway resistance, physics of lung diseases

UNIT IV SOFT TISSUE MECHANICS

Pseudo elasticity, nonlinear stress-strain relationship, viscoelasticity, structure, function and mechanical properties of skin, ligaments and tendons

UNIT V ORTHOPAEDIC MECHANICS

Mechanical properties of cartilage, diffusion properties of articular cartilage, mechanical properties of bone, kinetics and kinematics of joints, lubrication of joints analysis of force in orthopaedic implants

Total Number of Hours: 45 Hrs

Text Books:

1. Y.C.Fung, "Biomechanics: Mechanical properties of living tissues", Springer, New York, 1981.

Reference Books:

1. D.Dawson and Right, "Introduction to bio-mechanics of joints and joint replacement", Mechanical Engineering Publication Ltd, 1989.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code: BBI17L03		Subject JABORA	Name TORY	: 1	HUMAN	N PH	IYSIOL	OGY	T / L/ ETL	L	T / S.Lr	P/ R	C
DDII/L03		rerequisit							L	0	0/0	3/0	1
L : Lecture T :				ed Lear	ning P ·	Project	R · Res	earch C		v	0/0	5/0	
T/L/ETL : The						roject	10.1005	euren e	· creans				
OBJECTIVE)									
To unc	lerstar	nd the basi	cs of the p	ohysiolo	ogy								
To stue	dy abo	out the of i	onic chan	ges									
		the electric				physiol	ogy						
		nd the pres											
		out the per	<u>^</u>		ystem								
COURSE OU	TCO												
CO1		Understar			A F	ology							
CO2		Capable t											
CO3		Capable t						scles ph	ysiology				
CO4		Understar											
CO5		Capable t						n					
Mapping of C								1		1		<u> </u>	
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	
CO1	M	Н	М	Н	Μ	L	Н	M	Н	М	L		H
CO2	Н	М	М	L	Μ	Н	L	M	Н	М	L		H
CO3	Н	М	L	Н	Μ	L	Н	Н	М	L	M		H
CO4	M	L	Н	L	Μ	Н	М	L	L	М	Н		L
CO5	L	М	Н	M	L	Н	M	L	Н	М	L	H	H
									2005				
COs / PSOs	l	PSO1	PSC			03		504	PSO5				
CO1		M	H			A		L	M			_	
CO2		H	Н			M		L	Н				
CO3		M	H		I			M	L				
CO4		M	H			Ĺ		M	H				
CO5	~	H	M					H	Μ				
H/M/L indicate	es Stre	ength of C	orrelation	H- Hi	igh, M- I	Medium	, L-Low			1	1		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Department of **BIOMEDICAL INSTRUMENTATION ENGINEERING**

HUMAN PHYSIOLOGY LABORATORY

LIST OF EXPERIMENTS

- 1. Recording of Muscle to Induced Electrical Stimulation
- 2. Study of rate of Conduction of Nerve Impulses.
- 3. Isolated Frog Heart Perfusion and Effect of ionic changes.
- 4. Testing of Hearing using Tuning Fork.
- 5. Testing of various parameters of Vision and Errors of Refraction.
- 6. Testing for Detection of Glucose, Fructose and Starch.
- 7. General Test for Proteins.
- 8. Testing of Urine for presence of Sugar, Protein
- 9. Estimation using Spectrophotometer.

Total Number of Hours:45 Hrs

Subject Code: BEI17L03	: 5	Subject Na	ame : TR	ANSDU	CER L	ABOR	ATORY	Z	T / L/ ETL	L	T / S.Lr	P/ R	C
	F	Prerequisit	e:						L	0	0/0	3/0	1
L : Lecture T :				ed Learr	ning P:	Project	R : Res	earch C	C: Credits	11			<u> </u>
T/L/ETL : The	ory/L	ab/Embed	ded Theor	y and L	ab	5							
OBJECTIVE	:												
To lea	ırn pi	ractically	about tra	nsducer	rs and a	bout th	e types	of Tra	nsducers				
									physical		es		
									strial appli	cations			
≻ To m	easur	e Resistiv	e, Capac	itive an	d Induc	tive tra	nsducer	rs					
➢ To ca	librat	te various	transduc	ers									
COURSE OU	TCO												
CO1		Enables Transduc		ents to	practi	cally k	now al	bout ti	ransducers	s and a	bout th	e types	s of
CO2		Various	ransduce	rs used	for the	measur	rement	of vari	ous physic	cal Quar	tities		
CO3									neet the			f indus	trial
		application	ons		-					-			
CO4		The grad	uate can	measur	e Resist	tive, Ca	pacitive	e and I	nductive t	ransduc	ers		
CO5		Graduate											
Mapping of C	ourse	Outcome	s with Pr	ogram	Outcom	es (POs	5)						
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	2
CO1	Η	L	М	Н	Н	М	Μ	L	Н	М	Н	ľ	N
CO2	Н	Н	Н	Н	Μ	М	L	L	М	Н	Μ]	L
CO3	Н	М	М	Μ	Μ	L	Μ	Μ	Н	Н	Μ]	L
CO4	M	Н	Н	Μ	Н	Μ	Н	Н	Н	М	L		N
CO5	H	Н	Н	Μ	L	M	L	M	Н	Н	Μ]	L
COs / PSOs]	PSO1	PSC			03		504	PSO5				
CO1		M	M			H		H	L				
CO2		H	H			H		M	M		_		
CO3 CO4		M H	H H			H M		M H	L L				
C04 C05		M	П			H		п L	H H				
H/M/L indicate	as Stra						, L-Low	_	п				
Category			Social					Internships / Technical Skill					
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships /	Soft Skills				
Approval			1		1	1	1			1	1	I	

Department of **BIOMEDICAL INSTRUMENTATION ENGINEERING**

TRANSDUCER LABORATORY

LIST OF EXPERIMENTS

- 1. Displacement versus output voltage characteristics of a Potentiometric transducer.
- 2. Strain gauge characteristics.
- 3. Load cell characteristics.
- 4. Photoelectric tachometer.
- 5. Hall Effect transducer.
- 6. Characteristics of LVDT.
- 7. Characteristic of LDR, Thermistor and thermocouple.
- 8. Ramp response characteristic of filled in system thermometer.
- 9. Step response characteristic of RTD and thermocouple.
- 10. Flapper nozzle system.
- 11. P/I and I/P converters.
- 12. Study of smart transducers

Total Number of Hours: 45 Hrs

Subject Code: BBT17IL2		0	ame: BIO	-CHEM	IISTRY	LABC	ORATO	RY	T / L/ ETL	L	T / S.Lr	P/ R	С
		erequisite							L	0	0/0	3/0	1
L : Lecture T :			.		0	Project	R : Res	earch C	: Credits				
T/L/ETL : The		/Embed	ded Theor	y and L	ab								
OBJECTIVE													
			eactions fo										
^			<u> </u>		nd secor	ndary me	etabolite	s presei	nt in plants				
COURSE OU													
CO1									cation of b				
CO2								seconda	ry metabo	lites pres	ent in pl	ants	
Mapping of C								•					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	
CO1	Н	Μ	L	Μ	Н	Μ	L	L	Н	M	L		N
CO2	М	Н	М	L	Н	Μ	L	Н	М	L	M]	Η
COs / PSOs		01	PSC			03	PS	SO4	PSO5				
CO1		Ν	Н			Л		L	Н				
CO2		Η	М			Л		L	Н				
H/M/L indicate	es Stren	gth of $\overline{\mathbf{C}}$	orrelation	H- Hi	gh, M- 1	Medium	, L-Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Department of **BIOMEDICAL INSTRUMENTATION ENGINEERING**

BIO-CHEMISTRY LABORATORY

LIST OF EXPERIMENTS

- 1. Laboratory Safety and Hygiene: Standard Operating Procedures, Units and Measurements, basic statistical concepts for biochemical analysis.
- 2. Use of Instruments, pH and Buffers
- 3. Qualitative analysis of Carbohydrates
- 4. Qualitative analysis of Proteins and Amino acids
- 5. Qualitative analysis of carbohydrates, lipids and steroids
- 6. Determination of pK and pI value of amino acid
- 7. Estimation of amino acids by ninhydrin method.
- 8. Measurement of enzyme activity: alpha-amylase, catalase
- 9. Biological Preparations: Isolation of caesin, lecithin and starch

Total Number of Hours: 45 Hrs

Subject Code BEI17TSX	e: S	ubject Na	ame :	TECHN	VICAL S	SKILL	Ι		T / L/ ETL	L	T / S.Lr	P/R	C
									0	0	0	1	1
L : Lecture T	: Tutori	al SLr	: Supervis	ed Lear	ning P :	Project	R : Res	search C	C: Credits			1	1
T/L/ETL : Th	eory/La	ıb/Embed	lded Theo	ry and L	ab								
OBJECTIVE	E: The	e objectiv	e is to dev	elop the	e technic	al skill o	of the st	udents.					
COURSE OU	UTCON	MES (CC	(3-5):)									
CO1	Devel	op the te	chnical sk	ills requ	ired in t	he field	of study	7					
CO2	Bridg	e the gap	between	the skill	require	nents of	the emp	oloyer o	r industry	and the	competer	cy of th	ne
	stude	nts.											
CO3	Enhai	nce the er	nployabili	ity of the	e studen	ts.							
Mapping of (Course	Outcom	es with P	rogram	Outcon	nes (POs	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н	Н	Н	Н	Н	М	M	Н	М	Н]	M
CO2	Н	Н	M	Н	Н	Н	М	M	Н	Н	Н		H
CO3	Н	Н	Н	Н	Н	Н	М	M	Н	Н	Н		Н
COs / PSOs	P	SO1	PS	02	PS	503	P	SO4	PSO5				
CO1		Н	H	I		H		H	Н				
CO2		Н	H	I		H		H	Н				
CO3		Н	H	I		H		Н	Н				
H/M/L indica	tes Stre	ngth of C	Correlation	H-H	igh, M-	Medium	n, L-Low	/					
		-											
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval								~					

Subject Code BBI17005	: S	ubject Na	ame :	BI	O CON	TROL	SYSTE	MS	T / L/ ETL	L	T / S.Lr	P/ R	C
DD117005	P	rerequisit	a •						T	3	<u> </u>	0/0	4
L : Lecture T :				ed Learr	ing D.	Project	R · Res	earch C		5	1/0	0/0	4
T/L/ETL : The			.		•	Tojeci	K.Kes		. Cicuits				
OBJECTIVE				y and L	ao								
> To pro		strong fou	undation i	n basic	science	and m	athemat	ics nece	essary to f	formulat	e, solve	and ana	ılvze
		nstrument							2		,		5
		trol and ir			oblems								
To ana	alyze c	ontrol and	l instrume	ntation	problem	s							
To une	lerstan	d and app	ly differe	ntial equ	iation, ii	ntegrals,	matrix	theory, j	probability	theory	etc		
To pro	ovide g	ood know	ledge of i	nstrume	ntation s	systems	and thei	ir applic	ations				
COURSE OU			, , ,										
CO1			•					mather	natics nece	essary to	formulat	e, solve	and
		analyze co											
CO2		Capable t											
CO3		Capable t											
CO4									atrix theory			ory etc	
CO5			<u> </u>		0			ion syste	ems and th	eir appli	cations		
Mapping of C									1	1			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	
CO1	M	Н	M	Н	M	L	L	M	Н	L	Н		M
CO2	M	Н	L	M	Н	L	Μ	Н	L	М	Н		M
CO3	Н	М	L	Н	Μ	L	Н	Μ	L	Н	M		Ĺ
CO4	M	Н	М	L	Μ	Н	L	Μ	Н	L	M		H
CO5	M	Н	L	Μ	Н	L	Μ	Н	L	М	Н]	Ĺ
COs / PSOs	P	PSO1	PSO	72	PS	O3	PS	504	PSO5				
CO1	-	M	H			<u> </u>		M	Н				
CO2		Н	N					H	M				
CO3		M	H			A		H	L				
CO4		Н	M					М	М				
CO5		Н	N			Ľ		М	Н				
H/M/L indicat	es Stre										U		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core ≺	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

BIO CONTROL SYSTEMS

UNIT I CONTROL SYSTEM MODELING

System concept, Differential Equations, Transfer functions, modeling of electrical systems, Translational and rotational mechanical systems, Electro-mechanical systems, physiological systems, block diagram modeling, signal flow graphs.

UNIT II TIME RESPONSE ANALYSIS

Time domain specifications, step and Impulse response analysis of first order and second order systems, steady state errors, stability, Routh-Hurwitz criteria, Root locus techniques, construction of root locus, stability, dominant poles, applications of Root locus diagram

UNIT III FREOUENCY RESPONSE ANALYSIS

Frequency response, Bode plot-Nyquist plots, Nyquist stability criterion, Relative stability, Gain margin, phase margin, bandwidth magnitude plots, constant circles, Nichol's chart

UNIT IV PHYSIOLOGICAL CONTROL SYSTEMS

Introduction to physiological control systems, modeling of human movements, parameter estimation, linearizing

UNIT V STUDY OF BIOLOGICAL SYSTEMS

Human Thermal system, Neuro muscular system, Respiratory system, occulomotor system

Total Number of Hours: 60 Hrs

Text Books:

1. M.Gopal, "Control Systems", Principles and Design, Tata McGraw-Hill, 1997.

2. Benjamin. C.Kuo, "Automatic Control Systems", Prentice Hall of India, 1995

Reference Books:

1. Manfreclyner and John H.Milsum, Bio Medical engineering system, McGraw-Hill and Co., New York, 1970.

12 Hrs

12 Hrs

12 Hrs

12 Hrs

Subject Code BBI17006		ubject Na ROCESS	ame : BIO SING	OMEDI	CAL S	IGNAL	4		T / L/ ETL	L	T / S.Lr	P/ R	C
	P	rerequisit	e:						Т	3	1/0	0/0	4
L : Lecture T	: Tutori	ial SLr :	Supervise	ed Learr	ning P:	Project	R : Res	earch C	: Credits				
T/L/ETL : The	eory/La	ub/Embed	ded Theor	y and L	ab								
OBJECTIVE													
			o periodic			ls, vario	us syste	ms					
\rightarrow			ime doma										
			the prope			orm							
			ve the Fou				feed Eres	•••••					
			view of F		problem	s in the	Tast Fou	rier trar	isforms.				
COURSE OU			, , ,		1			4					
CO1 CO2			nds period					stems					
CO2 CO3			of analysis				cation.						
C03 C04			nds the pro osolve the			IISTOFIII							
C04 C05						nrohlan	ne in the	fact For	urier transf	form			
Mapping of C						.		1451 1.00		ionn.			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	M	H	M	L	M	H	M	H	M	L	H		M
CO2	H	M	L	M	H	M	L	H	M	L	M		H
CO3	H	M	L	H	M	H	M	L	M	H	M		L
CO4	Н	M	M	H	M	L	Н	M	Н	M	L		H
CO5	L	М	Н	М	L	М	Н	L	М	Н	Н	l	Μ
COs / PSOs	Р	SO1	PSC	02	PS	03	PS	SO4	PSO5				
CO1		L	M	[]	Н]	М	L				
CO2		Н	M	[]	Ĺ]	М	Н				
CO3		М	M	[]	Ĺ		Н	Н				
CO4		Н	M			Ĺ]	М	Н				
CO5		М	H			Ν		М	Н				
H/M/L indicat	es Stre	ngth of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low			-			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval			1	1	I	I	1	ı I		1		1	

BIOMEDICAL SIGNAL PROCESSING

UNIT I DISCRETE - TIME SIGNALS AND SYSTEMS

Characterization, classification and time domain representation of discrete-time signals - Typical sequences and their representation - Classification of sequences - Basic operations on sequences - Discrete-time systems

UNIT II TRANSFORM

Discrete Time Fourier transform (DTFT): Discrete Fourier Transform (DFT) computation of DFT, Z-transform: Mathematical derivation of the unilateral-transform properties of the Z-transform - The Inverse Z-Transform

UNIT III NEUROLOGICAL SIGNAL PROCESSING

Brain and its potentials.EEG analysis - Linear prediction theory - Autoregressive method adaptive segmentation - Transient detection - Overall performance - Data acquisition and classification of sleep stages

UNIT IV CARDIOLOGICAL SIGNAL PROCESSING

ECG data acquistion - ECG lead system ECG parameters and their estimaton - Multiscale analysis for parameters estimation of ECG waveforms - Arrhythmia analysis monitoring - Continuous ECG recording -

UNIT V ECG DATA REDUCTION TECHNIQUES

Discrete data compression techniques - Direct ECG data compression techniques - Transformation compression techniques - Other data compression techniques - Compression clinical application of prony's method

Total Number of Hours: 60 Hrs

Text Books:

1. DC Reddy, Biomedical signal processing TMH 2005

Reference Books:

- 1. Akav M.Biomedial signal processing Academic press 1994.
- 2. Kok FL, Biomedical signal processing, PHI 1999.
- 3. Mitra SK, Digital signal processing, TMH 2001.

12 Hrs

12 Hrs

12 Hrs

12 Hrs

Subject Code		Subject Na			DICAL	4			T/L/	L	T /	P/ R	С
BBI17007		INSTRUM		ION					ETL T	3	S.Lr 0/0	0/0	
I. I. a atuma T.		Prerequisit		ad Lagree	ina D.	Droigot	D.D.a	aarah (3	0/0	0/0	3
L : Lecture T : T/L/ETL : The						Project	K : Kes	search C	: Credits				
OBJECTIVE		au/EIIIDeu	ueu Theor	y and L	aU								
		t will stuc	ly about a	ommu	niantiar	maaha	nios in	a hiom	adical av	tom wi	th form of	zomnlo	C
		ts tries to								stelli wi	ui iew e.	Cample	5
		t will acq								ovicos			
COURSE OU					euge m	me ass	asung a		apeutic u	evices			
COURSE OU					ala ta d	atudu o	bout a	ommur	vioation n	aaahani	as in a	hiomo	dical
COI		system w				study a	idout c	ommun	nication n	necham	cs m a	biome	lical
CO2			inds the b			in ima	ging tec	hnique	s				
CO3									eutic devi	ces			
Mapping of C	Course	_		_			-	p					
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Μ	Н	L	М	Н	Μ	L	M	Н	М	L		Μ
CO2	Μ	Н	М	L	М	М	Н	L	М	Н	М		L
CO3	L	М	Н	L	М	Н	L	М	Н	М	L		М
COs / PSOs		PSO1	PSO	<u>ר</u>	DS	03	D	SO4	PSO5				
CO1		M	L			<u>05</u> И		<u>н</u>	M				
CO2		H	N N			H		M	H				
CO3		L	N N			H		M	L				
H/M/L indicat	es Str				gh, M- 1				L				
Category	Sciences	Engineering Sciences	es and Social	Core	Electives	ctives	/ Project	Internships / Technical Skill	s				
	Basic Sci	Engineeri	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internshij	Soft Skills				
Approval													

BIOMEDICAL INSTRUMENTATION

UNIT I BIO-POTENTIAL ELECTRODES

Electrode electrolyte interface, half-cell potential, polarization and non-polarizable electrode, calomel electrode, needle and wire electrode, microelectrode-metal micropipette

UNIT II RECORDING SYSTEM

Low-Noise preamplifier, main amplifier and driver amplifier, inkjet recorder, thermal array recorder, photographic recorder, magnetic tape recorder, X-Y recorder, medical oscilloscope

UNIT III BIO-CHEMICAL MEASUREMENT

pH, pO2, pCO2, pHCO3, Electrophoresis, colorimeter, spectro photometer, flame photometer, auto analyzer

UNIT IV NON-ELECTRICAL PARAMETER MEASUREMENTS

Respiration, heart rate, temperature, pulse blood pressure, cardiac output, O2, CO2 measurements

UNIT V BLOOD FLOW AND BLOOD CELL COUNTING

Electromagnetic and ultrasonic blood flowmeter, indicator dilution method, thermo dilution method, manual and automatic counting of RBC, WBC and platelets

Total Number of Hours: 45 Hrs

Text Books:

1. John G. Webster, "Medical Instrumentation Application and Design", John Wiley and sons, New York, 1998.

2. Leslie Cromwell, "Biomedical Instrumentation and measurement", Prentice hall of India, New Delhi. 1997

Reference Books:

1. Khandpur R.S, "Handbook of Biomedical Instrumentation", Tata McGraw-Hill, New Delhi, 1997

2. Joseph J.carr and John M. Brown, "introduction to Biomedical equipment technology", John wiley and sons, New York, 1997

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code BBI17008		ibject Na RTIFIC	ame : IAL ORG		TERIA	LS and	l		T / L/ ETL	L	T / S.Lr	P/ R	C
		rerequisit							Т	3	0/0	0/0	3
L : Lecture T :						Project	R : Res	search C	C: Credits				
T/L/ETL : The		b/Embed	ded Theor	ry and L	ab								
OBJECTIVE				_									
			ferent clas										
v		•	out the ap	•									
									naterial test			1	
F 10 Kr		out the	technolog	ies of	biomate	riai pro	cessing,	clinic	al trials, e	ethical is	ssues and	a regul	atory
		ladge in	como of t	ha avisti	ng dosic	me of or	tificial	raans					
COURSE OU			some of the solution $(3, 5)$		ng uesig	3115 OI al		ngans.					
COURSE OU			, , ,		bout the	difforo	nt alassa	s of m	terials use	d in mod	icino		
CO1 CO2		-	with the a						lienais use	u III IIIeu	ICHIE		
CO2 CO3									the metho	de of bie	motorial	tosting	
CO4									al processi				
04			l regulator			moiogi	es of blo	Jinateri	ai processi	ng, chino	cal triais,	etnical	
CO5						ovistin	a docian	s of ort	ificial orga	ne			
Mapping of C			Ŧ					5 01 alt.	inciai orga	115.			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO3/FOS	M	M	H	L L	M	H	L	M	H	M	L		M
CO1 CO2	H	M	H	M	L	M	H	L	H	M	H		M
CO3	H	L	M	M	L	H	M	L	H	M			M
CO4	H	M	L	H	M	L	H	M	L	M	H		L
C05	11	IVI		11	101	L	11	IVI		IVI	11		L
005													
COs / PSOs	P	SO1	PSO	$\overline{)2}$	PS	03	P	504	PSO5				
CO1		<u>M</u>	H			M		L	M				
CO2		H	N			L		M	H				
CO3		H	N N			M		H	M				
CO4	-	M	L			H		M	L				
CO5		M	H			L		M	H				
H/M/L indicat													
							1						
								Internships / Technical Skill					
		S	Social					cal					
Category		Engineering Sciences	Soc		S		t	hni					
	s	cie	р		ive	S	jec	ec					
	lce	S S	s ar	ore	leci	ive	Pro	L/					
	cier	rin	ties	Ŭ	ΠE	ect	1/]	ips	lls				
	S	nee	ani	ran	ran	E	ica	hsh	Ski				
	Basic Sciences	iigi	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	teri	Soft Skills				
	Bí	Ē	Hı Sc	Pr	Pr	Ō	Pr	In	Sc				
				\checkmark									
Approval													

REVISION-3

Dr.M.G.R Educational and Research Institute University

Department of BIOMEDICAL INSTRUMENTATION ENGINEERING

BIOMATERIALS AND ARTIFICIAL ORGANS

UNIT I STRUCTURE OF BIO-MATERIALS AND BIO-COMPATIBILITY

Definition and classification of bio-materials, mechanical properties, visco elasticity, wound-healing process, body response to implants, blood compatibility

UNIT II IMPLANT MATERIALS

Metallic implant materials, stainless steels, co-based alloys, Ti-based alloys, ceramic implant materials, aluminum oxides, hydroxyapatite glass ceramics carbons, medical applications.

UNIT III POLYMERIC IMPLANT MATERIALS

Polymerization, polyolefin, polyamicles, Acryrilic, polymers, rubbers, high strength thermoplastics, medical applications

UNIT IV TISSUE REPLACEMENT IMPLANTS

Soft-tissue replacements, sutures, surgical tapes, adhesive, percutaneous and skin implants, maxillofacial augmentation, blood interfacing implants, hard tissue replacement implants, internal fracture fixation devices, joint replacements.

UNIT V ARTIFICIAL ORGANS

Artificial Heart, Prosthetic Cardiac Valves, Limb prosthesis, Externally Powered limb Prosthesis, Dental Implants

Total Number of Hours: 45 Hrs

Text Books:

1. PARK J.B., "Biomaterials Science and Engineering", Plenum Press, 1984.

Reference Books:

1. Chua, Chena.J.Y, Wanga.L.P, N.Huang, "Plasma-surface modification of biomaterials", Materials Science and Engineering: R: Reports, Volume 36, Number 5, 29 March 2002, pp. 143-206 (64)

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Department of **BIOMEDICAL INSTRUMENTATION ENGINEERING**

Subject Code: BEE17I02	Sub MI	ject Nai CROCO	me: MIO NTROL	CROPR LER AI	OCESS	OR, APPLI	CATIO	NS	T / L/ ETL	L	T / S.Lr	P/ R	C
	Prer	equisite	:						Т	3	0/0	0/0	3
L : Lecture T :						Project	R : Rese	earch C:	Credits				
T/L/ETL : The	ory/Lab	/Embed	ded Theor	ry and L	ab	-							
OBJECTIVE													
To dev	elop an	in-depth	n understa	inding of	f the ope	eration o	f micro	processo	r and mici	cocontro	oller, mae	chine	
langua	ge prog	ramming	g and inter	rfacing t	echniqu	es.							
The gra	aduate v	will learr	n some the	e interna	ıl organi	zation o	f some p	oopular n	nicroproce	essor an	d microo	controlle	r.
To lear	n hardv	vare and	software	interact	ion and	integrati	on.						
> The gra	aduate v	will learr	n the desig	gn of mi	croproce	essor and	d microo	controlle	r based sy	stem.			
			tion of m						•				
		11											
COURSE OU	гсом	ES (CO	s) : (3- 5)									
CO1	Fami	liarize w	vith opera	ation of	micropr	ocessor	and mic	rocontro	ller, mach	ine lang	guage pro	ogrammi	ng
	and i	nterfacir	ng techniq	lues									
602	A	· · · · · · · · · · · · · · · · · · ·							1		1		11
CO2	-					-			lar microp	L		crocont	rolle
CO3 CO4	_			-					on and inte	-			
					-			ntroller t	based syst	em			
CO5			the applic										
Mapping of C		1			1	1			1	1			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	H	H	H	H	H	H	H	L	H	M	H		M
CO2	H	H	H	H	H	H	M	M	H	M	H		M
C03	H	H	H	M	M	L	L	L	M	L	M		L
CO4 CO5	H H	H H	H H	H H	H H	M M	M M	M M	H H	M M	H H		M M
COs / PSOs		<u>п</u> 01	PS			03		504	PSO5	IVI	п		IVI
COS/ F3OS CO1		M	H H			H		M	M				
CO2		M M	H			H		H	M				
CO2		L	H			H		M	L				
C04		[]	N.			M	1	M	L				
CO5	N	M	H			H		M	M				
H/M/L indicate					gh, M-								
		Ĩ					Í						
			_					S					
		es	Social					ical					
Category		suc	So		SS		;;	ind					
	S	cie	pu		tive	Se	jec	Tec					
	nce	a a	s ai	Ore	llec	ti ve	Pro	. / .					
	cie	erir	itie	n C	nE	llec	al /	hip	ills				
	c S	ine	nan nce	grat	grar	nΕ	tic	msl	Sk				
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
F	Щ	ГШ	T S						S				
		l	I	<u> </u>	1	<u> </u>	<u> </u>	I	l	1	l	<u> </u>	
Approval													

B.Tech Regulation 2017 Approved by the Academic Council

Department of BIOMEDICAL INSTRUMENTATION ENGINEERING

MICROPROCESSOR, MICROCONTROLLER AND ITS APPLICATIONS

UNIT I ARCHITECTURE

General 8-bit microprocessor and its architecture – 8085 functional block diagram – architecture functions of different sections – architecture of 8086 CPU.

UNIT II INSTRUCTION SETS

Instruction format-addressing addressing modes – instruction set of 8085 CPU – instruction cycle – timing diagrams – different machine cycles – fetch and execute operations – estimation of execution time.

UNIT III ASSEMBLY LANGUAGE PROGRAMMING

Assembly format of 8085 – assembly directions – multiple precision arithmetic operations – binary to BCD and BCD to binary code conversion – ALU programming using look up table – stack and subroutines

UNIT IV DATA TRANSFER AND INTERFACING

Data transfer schemes – program I/O û interrupt structure of 8085 – interrupt driven I/O – DMA serial I/O – input/output ports – latches and buffers – peripheral interface IC's – 8212, 8255, 8251, 8279, 8259 – interfacing of A/D and D/A converters – RAM and ROM – memory devices – display devices – applications.

UNIT V MICROCONTROLLERS

Architecture of 8-bit micro controller (8051) – bus configuration – reset circuitry – power down considerations – instruction sets - programming exercises and micro controllers software design - development and troubleshooting tools – applications.

Total Number of Hours: 45 Hrs

Text Books:

- 1. Gaonkarr.s., Microprocessor Architecture Programming and Application, Wiley Eastern Ltd., New Delhi, 1995.
- 2. Kenneth hint, Danieltabak, Microcontrollers, Architecture, Implementation and Programming, Mcgraw hill international, USA, 1992.

Reference Books:

- 1. Mathur A.P., Introduction of Microprocessors, Tata McGraw-Hill Publishing Co.Ltd., New Delhi, 1989.
- 2. John B.Peatman, Design with Microcontrollers, McGraw Hill International, USA, 1988.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code BBI17ET3			ame : M IENTS *	EASU	REMEN	TS AN	D		T / L/ ETL	L	T/	P/ R	С
DDII/EIS		erequisit							ETL ETL	3	S.Lr 0/2	1/1	3
L : Lecture T :				ad Loarr	ing D.	Project	D · Das	earch (5	0/2	1/1	5
T/L/ETL : The						Flojeci	K. Kes	Carcin	. Creans				
OBJECTIVE				y and L	ao								
		arn Deve	loning add	equate k	nowledg	e of the	instrum	nents re	levant circ	uits and	their wor	king	
									rements te			KIIIS	
									age, curre				
COURSE OU					loomiqu	ies useu	to mous			in, po i ei			
CO1					ledge of	the inst	ruments	. releva	nt circuits	and their	working		
CO2			ion to elec								e	1	
CO3									used to me	easure vo	ltage cu	rrent p	ower
205		etc.	abib ixilow	10450 01	ii uiiui0g	, and dig		inques			11450, 04	nom, p	,
Mapping of C			es with Pr	ogram	Outcom	es (POs	;)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	2
CO1	H	M	L	M	H	L	H	M	L	M	H		M
CO2	M	Н	L	M	H	L	M	Н	M	L	M		H
CO3	L	M	H	M	L	M	Н	L	M	H	L		M
												-	
COs / PSOs	Р	SO1	PSC	02	PS	03	PS	504	PSO5				
CO1		М	Н			Ĺ		М	М				
CO2		Н	N	[I	Н		М	Н				
CO3		М	L	,	I	Н		М	L				
H/M/L indicat	es Strei	ngth of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low	7					
		Ĭ											
								Internships / Technical Skill			1		
		S	Social					cal					
Category		Engineering Sciences	Soc		S		L.	ini					
0.1		cie	q		ive	s	jeci	ecl					
	Ces	Ň	an	ore	ect	Ive	ro	L/					
	ien	ing	ies	Ŭ	EI	ecti	H / I	sd	\mathbf{ls}				
	Sc	leel	ces	am	am	Еľ	cal	ida	ikil				
	Basic Sciences	gin	ma	Program Core	Program Electives	Open Electives	Practical / Project	ern	Soft Skills				
	Ba	En	Humanities and Sciences	Prc	Prc	Op	Prɛ	Int	So				
				✓									
Approval													

Department of BIOMEDICAL INSTRUMENTATION ENGINEERING

MEASUREMENTS AND INSTRUMENTS

UNIT I INTRODUCTION

Units, Dimensions and standards-measurement errors PMMC, moving iron instruments – Galvanometer – construction -Principle of operation- Types of Ammeter and voltmeter- Rectifier type voltmeter and ammeter.

UNIT II RESISTANCE, INDUCTANCE and CAPACITANCE MEASUREMENTS 9 Hrs

Resistance measurement – wheat stone bridge and Kelvin double bridge measurement of inductance and capacitance– Maxwell bridge and Hay's bridge measurement of capacitance – Schering bridge, student type potentiometer- precision potentiometer – AC potentiometer, polar and co-ordinate type – application

UNIT III WATT METER AND ENERGY METER CALIBRATION

Electro dynamic Instruments, wattmeter – theory and its error – methods of correction – LPF wattmeter – induction type wattmeter – theory and adjustment – calibration of wattmeter and energy meter, Instrument transformer – construction and theory of current Transformer and potential Transformer.

UNIT IV ANALOG and DIGITAL INSTRUMENTS

CRO – operation – measurement of voltage, frequency and phase-Analog storage oscilloscope, sampling oscilloscope -DSO – operation, signal and function generation – Digital voltmeter and multimeter - Q-meter

UNIT V DIGITAL DISPLAY AND RECORDING DEVICES

Bar graph display – seven segment and dot matrix display – signal recorders – XY recorders – magnetic tape recorders – digital recording and data loggers.

Total Number of Hours: 45 Hrs

Text Books:

1. Cooper, "Electronic Instrumentation and Measurement Techniques", Prentice Hall of India, 1988.

2. A. K. Shawney "Electronics and Electrical Instrumentation" Tata McGraw Hill, 1975.

3. David A. Bell, Electronic Instrumentation and Measurements, Prentice Hall of India New Delhi 2005

Reference Books:

1.Bouwels A.J., "Digital Instrumentation", McGraw Hill, 1986.

2.Barney .C, "Intelligent Instrumentation ", Prentice Hall of India, 1985.

3.Oliver and Cage, "Electronic Measurements and Instruments and Instrumentation", McGraw Hill, 1975.

4. Deobelin, "Measurements Systems", McGraw Hill, 1990.

9 Hrs

9 Hrs

9 Hrs

Subject Code:		ubject Na					ECTRO	NIC	T / L/	L	T/	P/ R	C
BBI17L04		AEASUR		LAB	JKAIU	KY			ETL L	0	S.Lr 0/0	2/0	1
L : Lecture T :		Prerequisite		ad Loom	ing D.	Drojaat	D · Dog	oorah C		0	0/0	3/0	1
T/L/ETL : The			.		•	riojeci	K . Kes	earch C	Cieuns				
OBJECTIVE		uo/ Linoed		y and D	uo								
> Develo		adequate k	nowledge	e of the o	compens	ating ci	rcuits						
		to synchr			1	υ							
		to measur			s.								
≻ To Em	phasis	s Knowled	lge on cor	trol syst	em								
	-	s Knowled			niques u	sed to n	neasure	voltage,	current, p	ower etc			
COURSE OU		,	, , ,										
CO1		The grad						he com	pensating	circuits			
CO2		Capable	of descri	bing sy	nchrono	ous mot	or						
CO3		Capable	of descri	bing va	rious m	easurer	nents te	chnique	es.				
CO4		Knowled	ge on co	ntrol sy	stem								
CO5		Knowled	ge on d	ligital t	echniqu	ies use	d to n	neasure	voltage,	current	, powei	etc.	gets
		enhanced	1	-	•						-		
Mapping of C	ourse	Outcome	s with Pr	ogram	Outcom	es (POs	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2
CO1	Η	М	М	Н	L	Н	Н	Μ	М	L	L	Ν	M
CO2	Μ	Н	Н	Μ	L	Μ	Н	Н	Н	L	М		M
CO3	Μ	Н	Н	Н	Н	L	Μ	L	М	L	Н		H
CO4	Н	Н	Н	Μ	Μ	Μ	Н	M	Н	L	Н		M
CO5	Μ	Н	Н	L	L	М	Н	Н	Н	M	М	I	H
	T	2001	DC		DC		D		DCOT				
COs / PSOs	1	PSO1	PSC			03		<u>504</u>	PSO5		-		
CO1 CO2		H	M			<u> </u>		H	M H				
CO2 CO3		H H	H M			A H		L L	H L				
CO3		L	H			H		L L	M				
CO4 CO5		M	M			H		L L	H				
H/M/L indicate	es Stre								- 11				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

ELECTRICAL AND ELECTRONIC MEASUREMENTS LABORATORY

LIST OF EXPERIMENTS

- 1. Use of Wheat Stone Bridge as resistance to voltage converter and to determine its sensitivity for various ratios
- 2. Kelvin double bridge
- 3. Determination of critical damping resistance of a D'Arsonval Galvanometer
- 4. Tests on a single-phase energy meter
- 5. Calibration of wattmeter at different power factors
- 6. Testing of current transformers
- 7. Calibration of ammeter, voltmeter and wattmeter using student type potentiometer
- 8. Design, construction and calibration of series and shunt type ohmmeters
- 9. Operational amplifier applications
- 10. Regulated power supply using fixed voltage IC regulators and LM 723
- 11. Frequency response characteristics of CE and CB amplifiers
- 12. Study of feedback in amplifiers
- 13. RC phase shift and Wien bridge oscillator.

Total Number of Hours: 45 Hrs

Subject Code BBI17L05		bject Na ABORA'	ame : BIC TORY)-SIGN	AL AC	QUISIT	ION		T / L/ ETL	L	T / S.Lr	P/ R	C
		erequisit							L	0	0/0	3/0	1
L : Lecture T :	Tutoria	l SLr:	Supervise	ed Learr	ning P:	Project	R : Res	earch C	C: Credits	-			
T/L/ETL : The						5							
OBJECTIVE	:			•									
To rep	resent t	he basic	discrete ti	me sign	als and a	analyze	it						
To des	sign the	IIR and	FIR filter										
To acc	quire va	rious typ	pes of bio	signals a	and stud	y its cha	racteris	tics					
COURSE OU													
CO1	Т	he gradι	late is cap	able of 1	represen	ting the	basic di	screte t	ime signals	s and ana	alyze it		
CO2			o design t										
CO3	C	Capable t	o acquire	various	types of	f bio sig	nals and	l study i	ts characte	ristics			
Mapping of C	Course (Jutcome	es with Pr	ogram	Outcom	es (POs	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	2
CO1	Η	Μ	L	Η	Μ	L	М	Н	L	Μ	Н	1	Ν
CO2	Н	М	L	Μ	Н	L	М	Н	L	М	Н]	L
CO3	Μ	L	Н	Μ	L	М	L	Н	М	L	М]	H
COs / PSOs	PS	501	PSG	02	PS	03	PS	504	PSO5				
CO1		H	M	[]	Ĺ]	М	Н				
CO2		L	M	[]	Ĺ]	М	Н				
CO3]	М	L	r.]	Н		H	М				
H/M/L indicate	es Stren	gth of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low	,					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval										•	-		

Department of **BIOMEDICAL INSTRUMENTATION ENGINEERING**

BIO-SIGNAL ACQUISITION LABORATORY

LIST OF EXPERIMENTS

- 1. Representation of basic discrete time signals
- 2. Computation of convolution –linear convolution
- 3. Response of a difference equation to initial conditions; stability
- 4. DFT and FFT computation
- 5. FIR filter design using windowing techniques
- 6. IIR filters design-digital Butterworth filter and Chebyshev filter
- 7. Simulation of signals.
- 8. Simulation of ECG signals.
- 9. Simulation of EEG signals
- 10. Simulation of EMG signals

Total Number of Hours: 45 Hrs

Department of **BIOMEDICAL INSTRUMENTATION ENGINEERING**

Subject Code:		bject Na					CATIO	NG	T/L/	L	T/	P/ R	C
BEE17IL3		ICROCO ABORAT		LER A	ETL		S.Lr						
		erequisite				L	0	0/0	3/0	1			
L : Lecture T :		•		ad Laam	ing D.	Droiset	D . Dog	aarah Ci		U	0/0	5/0	1
L : Lecture T : $T/L/ETL$: The			•		0	Project	K : Kes	earch C.	Credits				
	•				au								
Basic cLogicaGradua	idents concep l calcu ates to lerstan	ot to under alations to understar ad the prog	stand coc carry out d the pro gramming	le conve t basic as gramming concep	rsion. rithmetiong conce	c. epts of n	nicropro		d Interfac	ing.			
CO1		Capable o	of program	nmino ir	micron	rocesso	rs and In	terfacin	σ				
CO2		Familiar v				10005550		literration	5.				
CO3		Capable o	of perform	ning Log	gical cal	culation	s to carr	y out ba	sic arithm	etic			
CO4		Capable of	of underst	and the	orogram	ming co	oncepts o	f microp	processor.				
CO5		Understar	nd the pro	grammi	ng conce	epts of n	nicrocon	troller.					
Mapping of C	ourse	Outcome	s with Pi	ogram	Outcom	nes (POs	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н	Н	Н	Н	Н	Н	L	Н	М	Н	l	M
CO2	Н	Н	Н	М	М	L	L	L	М	L	М]	L
CO3	Н	Н	Н	Н	Н	Н	М	Μ	Н	М	Н	l	М
CO4	Η	Η	Н	Н	Н	Μ	Μ	Μ	Н	Μ	Н	1	М
CO5	Η	Н	Н	Н	Н	Μ	М	Μ	Н	Μ	Н	1	М
COs / PSOs	Р	SO1	PS	02	PS	503	PS	504	PSO5				
CO1		L	Ν	1	1	М		L	М				
CO2		М	N			М		М	Н				
CO3		М	N			M		М	Н				
CO4		Μ	N			M		L	Н				
CO5	<u> </u>	L	N			M		М	М				
H/M/L indicate	es Stre	ngth of C	orrelation	H-Hi	gh, M-	Medium	i, L-Low		1	T	T		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval				✓									

B.Tech Regulation 2017 Approved by the Academic Council

Department of **BIOMEDICAL INSTRUMENTATION ENGINEERING**

MICROPROCESSOR, MICROCONTROLLER AND ITS APPLICATIONS LABORATORY

LIST OF EXPERIMENTS

- 1. Familiarisation of 8085 Microprocessor kit
- 2. Familiarisation of 8051 Microcontroller kit
- 3. 8085 and 8051 assembly language programming exercises
- 4. Interfacing of switches and display devices
- 5. Interfacing of D/A and A/D Converters
- 6. Interface of key board and display using programmable controllers
- 7. Interface of programmable Timer
- 8. Stepper motor control using microprocessor
- 9. Simple 8086 assembly language programming exercises
- 10. Study of MASM and DEBUG utilities

Total Number of Hours: 45 Hrs

Subject Code BEI17TSX	e: Su	bject Na	ame : '	TECHN	ICAL S	SKILL	II		T / L/ ETL	L	T / S.Lr	P/ R	C
									0	0	0	1	1
L : Lecture T	: Tutoria	al SLr :	Supervis	ed Lear	ning P:	Project	R : Res	earch C	: Credits				
T/L/ETL : The	eory/Lal	o/Embed	ded Theo	ry and L	ab								
OBJECTIVE	C: The	objective	e is to dev	elop the	technic	al skill o	of the stu	idents.					
COURSE OU	TCON	IES (CO	(3.5))									
				-	·	L. C. 1.1	- f - (1-						
CO1	Develo	op the ted	chnical sk	ills requ	ired in t	ne mera	of study						
CO2	Bridge	the gap	between	the skill	requirer	nents of	the emp	oloyer o	r industry	and the	compete	ncy of th	ie
	studen	ts.											
CO3	Enhan	ce the en	nployabili	ty of the	student	s.							
				-			-)						
Mapping of (Course (Jutcome	es with Pi	rogram	Outcom	ies (POs	5)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PO	12
CO1	Н	Н	Н	Н	Н	Н	М	М	Н	М	Н		М
CO2	Н	Н	М	Н	Н	Н	М	М	Н	Н	Н		Η
CO3	Н	Н	Н	Н	Н	Н	Μ	М	Н	Н	Н		Η
COs / PSOs	PS	501	PS	02	PS	03	PS	504	PSO5				
CO1		Н	H	ł]	H		Н	Н				
CO2		Н	H	I]	H		Н	Н				
CO3		Н	H	I]	Η		Н	Н				
H/M/L indicat	tes Stren	gth of C	orrelation	H- Hi	gh, M- I	Medium	, L-Low	7		ł			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval		<u> </u>		<u> </u>			<u> </u>						

Subject Code BBI17L06	: Su	bject Na	ame:]	INPLAN	NT TRA	INING			T / L/ ETL	L	T / S.Lr	P/ R	C	
									L	0	0/0	2/0	1	
L : Lecture T :	Tutoria	al SLr:	Supervis	ed Leari	ning P:	Project	R : Res	earch C	C: Credits					
T/L/ETL : The														
OBJECTIVE			ective of t	he Inpla	nt traini	ng is to	provide	a short-	-term work	experie	nce in an	Industr	y/	
Company/ Org														
COURSE OU			· · ·											
CO1									rtaining to		ain of stu	ıdy.		
CO2									to the caree					
CO3								ofession	al network					
Mapping of C	1					,								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11			
CO1	Μ	L	L	L	L	Н	Н	Н	Н	Н	Н		Н	
CO2	Η	Μ	Н	Н	Μ	Н	Н	Н	Н	Н	Н		М	
CO3	Η	Н	Н	Н	Μ	Н	Н	Н	Н	Н	Н]	Μ	
COs / PSOs	PS	PSO1 PSO2 PSO3 PSO4 PSO5												
CO1														
CO2														
H/M/L indicate	es Stren	gth of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low	,						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
Approval		1	1	1	1	1	1	v		I		1		

Subject Code BBI17009		Subject Na BIOLOGY		ATHO	LOGY	AND M	ICRO		T / L/ ETL	L	T / S.Lr	P/ R	C
	F	Prerequisit	e:						Т	3	1/0	0/0	4
L : Lecture T	: Tutor	ial SLr :	Supervis	ed Learr	ning P:	Project	R : Res	earch C	: Credits			•	
T/L/ETL : The	eory/L	ab/Embed	ded Theor	y and L	ab	-							
OBJECTIVE													
To lea													
		wledge on			dynamic	derange	ement						
		out Geneti											
		nowledge			0								
		o do Identi			e produc	ing orga	Inism						
COURSE OU	JTCO.		<u> </u>										
<u>CO1</u>		Understan					• •						
CO2		Gets know				odynam	ic deran	igement					
CO3		Famailiar				. 1	· ·						
CO4		Acquires	0				0						
CO5		Performs			A		<u> </u>	ISM					
Mapping of C						<u>```</u>		DO0	DOO	DO10	DO11	DO	10
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	
CO1	H	M	H	L	M	H	L	M	H	L	M		H
CO2	M	L	H	M	L	L	M	H	L	M	H		L
CO3	M	H	L	M	H	L	M	H	L	M	H		L
CO4	H	<u>M</u>	M	L	M H	H	L	M	H	L	<u>M</u>		H
CO5	L	L	L	M	Н	L	M	Н	L	M	Н		L
	1	PSO1	DC	22	DC	03	D	504	DSO5				
COs / PSOs CO1		H	PS0 N			H		M	PSO5 L				
CO1 CO2		<u>п</u> М				n M		H	M				
CO2 CO3		L	L M			H		п М					
CO3		H H	N. N.			L		M	H				
C04 C05		M	L			L H		M	L				
H/M/L indicat	oc Stra				gh, M- 1				L				
			Social	11-111	<u>SII, 171- 1</u>		, L-L0w	Skill					
Category	Basic Sciences	Engineering Sciences	Humanities and Soc Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills				
Approval				~			<u> </u>						

Department of **BIOMEDICAL INSTRUMENTATION ENGINEERING**

PATHOLOGY AND MICRO BIOLOGY

UNIT I NORMAL CELL STRUCTURE

Cell Degeneration and regeneration – Inflammations, apoptosis. Classification, Difference between benign and malignant tumors – Etiology of tumors – Spread of Tumors.

UNIT II FLUID AND HEAMODYNAMIC DERANGEMENT

Edema, Shock, Hemorrhage – Thrombus – Embolism 0- Disseminated intra vascular Coagulation – Hematological disorders. Bleeding Disorders – Leukemia – lymphoma.

UNIT III GENETIC DISORDERS

Genetic disorders, infection and immunity, Autosomal and sex linked disorders – Storage disorders – types of hypersensitivity reactions – Immune deficiency syndrome – Primary – HIV – Viral disease, Chlamydial – Bacterial – mycoplasma – Rickettsial disease – Fungal protozolal. – helminthic disease.

UNIT IV GENERAL STRUCTURAL ORGANIZATION

General structural organization of Bacterial, Viral Cell – Growth and Identification of Bacteria, Observation pf culture. Microscopy: Light Microscopy – Dark field Microscopy – Phase Contrast microscopy – electron microscopy.

UNIT V IDENTIFICATION PF DISEASE PRODUCING ORGANISM

Identification pf disease producing organism, simple stain, Gram stain, AFB Stain, Fluorescent techniques, Antigen – Antibody Techniques.

Total Number of Hours: 60 Hrs

Text Books:

1. Robbins S.L. and Ramzi S. C. "Pathologic Basis of Diseases", W.B. Saunders Co. 1999

Reference Books:

1. Anatha Narayanan .R. and Jayaram C.R., 'Text Book of Microbiology, Orient Laongman' 1998.

12 Hrs

12 Hrs

12 Hrs

12 Hrs

Tutoria ory/Lab : rn the di rn the p	/Embed	e: Supervise ded Theor		. D								
ory/Lab : rn the di rn the pi	/Embed			D.				Т	3	0/0	0/0	3
: rn the di rn the pi		ded Theor	1 T	iing P:	Project	R : Res	earch C	: Credits				
rn the di rn the pi	ifferent 1		y and L	ab	-							
rn the p	ifferent 1		-									
		methods a	nd moda	alities us	ed for n	nedical i	maging					
lerstand	referred	medical in	naging 1	nethods	for rout	ine clini	ical appl	ications				
	the eng	ineering n	nodels u	sed to de	escribe a	and anal	yze med	ical image	s			
		s):(3-5)										
Т	he gradu	uate under	stands tl	ne differ	ent metl	nods and	l modali	ties used f	or medica	al imagir	ıg	
Т	'he grad	uate is ca	pable o	f under	standing	g the pr	eferred	medical i	maging r	nethods	for rou	ıtine
					-	-						
C	Graduate	is capable	to expla	ain the e	ngineer	ing mod	els and	analyze me	edical im	ages		
ourse (Outcome	es with Pr	ogram (Outcom	es (POs	5)						
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	2
Μ	М	Н	L	М	Η	М	L	М	Н	Μ]	Н
Н	М	L	М	Н	L	М	Н	L	М	Н	l	Ν
L	М	Н	L	М	Η	L	Μ	Н	L	Μ]	Н
PS	501	PSC)2	PS	03	PS	SO 4	PSO5				
I	М	Н		N	M		H	М				
	L	M	[I	Η]	М	L				
]	Н	Μ	[I]	М	Н				
es Stren	gth of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low			•			
	Ĭ			Ĩ			ill					
Sciences	neering Sciences	anities and Social ices	tam Core	ram Electives	l Electives	ical / Project	nships / Technical Sk	Skills				
Basic	Engi	Hum Scier	Prog	Prog	Open	Pract	Inter	Soft				
	T c Ourse (PO1 M H L PS	The grad clinical a Graduate PO1 PO2 M M H M L M PSO1 PSO1 M L H es Strength of C	The graduate is calculate is capable Graduate is capable ourse Outcomes with Pr PO1 PO2 PO3 M H M L M H M es Strength of Correlation	The graduate is capable of clinical applications Graduate is capable to explain on the second seco	The graduate is capable of under clinical applications Graduate is capable to explain the explain the explanation Ourse Outcomes with Program Outcom PO1 PO2 PO3 PO4 PO5 M M H L M H M L M H L M H L M PSO1 PSO2 PS M H N H PSO1 PSO2 PS M H M H PSO1 PSO2 PS M H M H L M H N es Strength of Correlation H- High, M- N N Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Source Sour	The graduate is capable of understanding clinical applications Graduate is capable to explain the engineer ourse Outcomes with Program Outcomes (POs PO1 PO2 PO3 PO4 PO5 PO6 M M H L M H L M H PO1 PO2 PO3 PO4 PO5 PO6 M M L M H L L M H L M H PSO1 PSO2 PSO3 M H M PSO1 PSO2 PSO3 M H M L M H M L M H Es Strength of Correlation H- High, M- Medium Source of Sour	The graduate is capable of understanding the prolinical applications Graduate is capable to explain the engineering mod ourse Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 M M H L M H M PO1 PO2 PO3 PO4 PO5 PO6 PO7 M M H L M H M H M L M H L M PSO1 PSO2 PSO3 PS PSO3 PS M H M L M H D L M H M D D K M H M D D K M H M L M L M H D D D K M H D D D D S S S S S S <th< td=""><td>The graduate is capable of understanding the preferred clinical applications Graduate is capable to explain the engineering models and a conset outcomes with Program Outcomes (POS) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 M M H L M H M L H M L M H L M H L M H PSO1 PSO2 PSO2 PSO3 PSO4 M H L M H PSO1 PSO2 PSO3 PSO4 M H M H M H M E M H M H M H M H M H M H M H M</td><td>The graduate is capable of understanding the preferred medical is clinical applicationsGraduate is capable to explain the engineering models and analyze modure ourse Outcomes with Program Outcomes (POs)PO1PO2PO3PO4PO5PO6PO7PO8PO9MMHLMHMLMHMLMHLMHLLMHLMHLMHEMHLMHLMHDisplayPSO2PSO3PSO4PSO5MHMLMHMLMHMLMHesStrength of CorrelationH-High, M- Medium, L-LowImage: Sign and Sign and</td><td>The graduate is capable of understanding the preferred medical imaging r clinical applicationsGraduate is capable to explain the engineering models and analyze medical imaging r ourse Outcomes with Program Outcomes (POs)PO1PO2PO3PO4PO5PO6PO7PO8PO9PO10MMHLMHMLMHHMLMHLMHLMHLMHLMHLPSO1PSO2PSO3PSO4PSO5MHMHMLHMLMHMLMHMLStrength of CorrelationH-High, M- Medium, L-LowImage: Strength of CorrelationH-High, M-Medium, L-LowSourceImage: Strength of St</td><td>$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td><td>Graduate is capable to explain the engineering models and analyze medical imagesourse Outcomes with Program Outcomes (POs)PO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO1MMHLMHMLMHMHMIHMLMHLMHLMHNIHMLMHLMHLMHNPSO1PSO2PSO3PSO4PSO5IIPSO1PSO2PSO3PSO4PSO5IIMHMLMHIIEMHMLIIIMHMIIIIMHMIIIMHMIIIMHMIIIMHMIIIMHMIIIMHMIIIMHMIIIMHMIIMHMIIMIMIMIIIMIIIMIIIMII</td></th<>	The graduate is capable of understanding the preferred clinical applications Graduate is capable to explain the engineering models and a conset outcomes with Program Outcomes (POS) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 M M H L M H M L H M L M H L M H L M H PSO1 PSO2 PSO2 PSO3 PSO4 M H L M H PSO1 PSO2 PSO3 PSO4 M H M H M H M E M H M H M H M H M H M H M H M	The graduate is capable of understanding the preferred medical is clinical applicationsGraduate is capable to explain the engineering models and analyze modure ourse Outcomes with Program Outcomes (POs)PO1PO2PO3PO4PO5PO6PO7PO8PO9MMHLMHMLMHMLMHLMHLLMHLMHLMHEMHLMHLMHDisplayPSO2PSO3PSO4PSO5MHMLMHMLMHMLMHesStrength of CorrelationH-High, M- Medium, L-LowImage: Sign and	The graduate is capable of understanding the preferred medical imaging r clinical applicationsGraduate is capable to explain the engineering models and analyze medical imaging r ourse Outcomes with Program Outcomes (POs)PO1PO2PO3PO4PO5PO6PO7PO8PO9PO10MMHLMHMLMHHMLMHLMHLMHLMHLMHLPSO1PSO2PSO3PSO4PSO5MHMHMLHMLMHMLMHMLStrength of CorrelationH-High, M- Medium, L-LowImage: Strength of CorrelationH-High, M-Medium, L-LowSourceImage: Strength of St	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Graduate is capable to explain the engineering models and analyze medical imagesourse Outcomes with Program Outcomes (POs)PO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO1MMHLMHMLMHMHMIHMLMHLMHLMHNIHMLMHLMHLMHNPSO1PSO2PSO3PSO4PSO5IIPSO1PSO2PSO3PSO4PSO5IIMHMLMHIIEMHMLIIIMHMIIIIMHMIIIMHMIIIMHMIIIMHMIIIMHMIIIMHMIIIMHMIIIMHMIIMHMIIMIMIMIIIMIIIMIIIMII

MEDICAL IMAGE PROCESSING

UNIT I IMAGE FUNDAMENTALS

Image perception, MTF of the visual system, image fidelity criteria, image model, image sampling and quantization – two dimensional sampling theory, image quantization, optimum mean square quantizer, image transforms –2D-DFT and other transforms.

UNIT II IMAGE PREPROCESSING

Image enhancement–point operation, histogram modeling, spatial operations, transforms operations. Image restoration-image degradation model, inverse and Wiener filtering.

UNIT III IMAGE ANALYSIS AND CLASSIFICATION

Image analysis – spatial feature extraction, edge detection, image segmentation classification techniques – statistical methods, neural network approaches.

UNIT IV RECONSTRUCTION OF CT AND MRI IMAGES

Image reconstruction from projections – Radon transforms, filter back projection algorithm, algebraic methods, 3D tomography, imaging methods in CT images, imaging methods in magnetic resonance imagers, Fourier reconstruction of magnetic resonance images.

UNIT V TRANSMISSION OF MEDICAL

Medical image data compression and transmission – transform coding pixel coding, predictive coding, interframe coding - Application of image processing techniques in thermography, SPECT, PET, DSA, AI techniques in medical imaging - Biomagnetic diagnosis in connection with medical imaging of CT or MRI - Software implementation of image processing algorithms on medical images, Design consideration for RF cage

Total Number of Hours: 45 Hrs

Text Books:

Albert Macouskl, Medical Imaging Systems, Prentice Hall New Jersery, 1983.
 Gonzalez .R and Wintz .P, Digital Image Processing Addision Wesley Publishing Co. USA, 1987.

Reference Books:

1. Eric Krestel Imaging Systems for Medical diagnosis, Siemens Aktlengesellschaft, FRG, 199.

2. Alfred Horowitz MRI Physics for Radiologists – A Visual Approach, Springer Verlag, New York, II Edition, 1991.

3. Anil K. Jain, Fundamental of Digital Image Processing, Prentice Hall of India Pvt Ltd., New Delhi, 1995.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code: BEC17I07		Subject N	ame: C		NICAT OT	TON SY	YSTEM	S and	T / L/ ETL	L	T / S.Lr	P/ R	C
	Pr	erequisite							L	3	0/0	0/0	3
L : Lecture T : '			Supervise			Project	R : Res	earch C:	Credits	· ·			
T/L/ETL : Theo	-	ab/Embed	ded Theor	y and L	ab								
OBJECTIVE					1.0								
		stand the						• •	•	1 1			
		about the about diff					gital com	imunicati	ion using	code the	eory.		
		uce variou					n						
		the concep						cenario					
COURSE OU					<u>8</u> 5	the rour	worra s	conuno					
CO1		Capable of			he conc	epts of A	Analog a	and Digit	al commu	inication	n circuits		
CO2		Gain know	wledge ab	out the (Commu	nication	convers	ion meth	ods				
CO3		Gain know	wledge ab	out the o	lifferent	concep	ts of mo	dulation	technique	es			
CO4		Develop k	-						-				
CO5		Ability to	-			-				nt field	,		
									III ulliele				
Mapping of Co COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	2
CO1	H	M	M	M	L	L	L	H	H	H	H		M
CO2	L	L	M	L	L	H	H	H	M	L	M		M
CO3	M	M	M	L	H	L	H	M	L	M	H	M	
CO4	Н	Н	М	М	М	L	Н	М	L	М	Н		M
CO5	Н	М	L	М	Н	L	Н	М	L	М	Н]	L
COs / PSOs	т	PSO1	PSO	202	DC	03	D	504	PSO5				
COS/PSOS	1	H	– rsc M			<u>U3</u> L		H	H				
CO1 CO2		M	N. N.			H		L	L				
CO3		H	M. N.			M		L H	M				
CO4		M	L			L		M	H				
CO5		L	N			 L		H	M				
H/M/L indicate	s Stre	ength of Co	orrelation	H- Hi	gh, M- l	Medium	, L-Low	7					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval		1		1									

COMMUNICATION SYSTEMS AND IOT

UNIT I SIGNALS and NOISE

Periodic and Aperiodic Signals – Noise - External Noise – Thermal Agitation – Shot Noise – Noise Figure – Signal to Noise ratio – Equivalent Noise resistance.

UNIT II INTRODUCTION TO COMMUNICATION

Basic Communication systems – Need for Modulation in communication systems – Amplitude Modulation – Double Side Band amplitude Modulation – Single sideband and VSB modulation – modulators. AM Transmitter and Receiver, FM transmitter and Receiver.

UNIT III MODULATION TECHNIQUES AND PULSE MODULATION

Phase modulation – Noise triangle – Pre-emphasis and de-emphasis – Stereophonic FM multiplex system – comparison of wideband and narrow band FM – AFC – Sampling theorem –Quantization, Quantization Error, PAM, PWM, PPM, PCM.

UNIT IV DIGITAL MODULATION and INFORMATION THEORY

ASK, FSK, PSK, Transmitter and Receiver. Introduction-Information and Entropy, Source Coding Theory, Discrete Memory less Channel, Mutual Information Channel Capacity, Channel Coding Theory

UNIT V INTERNET OF THINGS

Introduction – Block diagram of IoT- IoT Architecture – Communication Technologies in IoT – Cloud Storage in IoT-Data Storage in IoT – Applications of IoT – Smart Home, Smart City, Smart Agriculture, Health Monitoring System.

Total Number of Hours: 45 Hrs

Text Books:

1. Roy Blake, (2002) Electronic Communication systems. 2nd Ed. Thomson Learning.

2. George Kennedy, (1992) Electronic communication systems. Tata McGraw Hill publications.

3. Simon Haykins, (2001) Principles of Communications. Prentice Hall of India.

Reference Books:

1. Michael Miller, (2015) The Internet of Things. Que Publishing

2. Bruce Carlson, A. Taub and Schilling, (1986) Principles of Communication Systems. Tata McGraw Hill.

3. Arshdeep Bahga, Vijay Madisetti, "Internet of Things – A hands-on approach", Universities Press, 2015

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code	e: Su	bject Na	ame : SO	OFT SK	ILLS –	II			T / L/ ETL	L	T / S.Lr	P/ R	C
	Pr	erequisit	e: Soft Sk	ills - I									1
L : Lecture T	: Tutoria	al SLr	: Supervis	ed Leari	ning P:	Project	R : Res	earch C	C: Credits				1
T/L/ETL : Th	eory/Lal	o/Embed	ded Theo	ry and L	ab								
OBJECTIVE	E: The	main of	ojective is	to stren	gthen th	e logica	l and ari	thmetic	reasoning	skills of	the stude	ents.	
COURSE O	UTCOM	IES (CO	os) : (3- 5)									
CO1	Recog	nize and	apply ari	thmetic	knowled	lge in a v	variety c	of conte	xts.				
CO2	Ability	to iden	tify and cr	ritically	evaluate	philoso	phical a	rgumen	ts and defe	end them	from crit	ticism.	
CO3	Define	data and	d interpret	t inform	ation fro	om graph	18.						
Mapping of (Course (Outcome	es with Pi	rogram	Outcom	nes (POs	5)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н	Н	Н	Н	Н	L	L	Н	М	Н]	H
CO2	М	М	М	Н	L	Н	L	Н	Н	Н	Н]	L
CO3	Н	Н	Н	Н	Н	Н	М	М	Н	Н	Н]	H
COs / PSOs	PS	501	PS	02	PS	603	PS	SO4	PSO5				
CO1													
CO2													
H/M/L indica	tes Stren	gth of C	orrelation	H- Hi	igh, M-	Medium	i, L-Low	7					
								Skill					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Sh	Soft Skills				
Approval									~				

Department of **BIOMEDICAL INSTRUMENTATION ENGINEERING**

SOFT SKILL 2

UNIT I LOGICAL REASONING I

Logical Statements - Arguments - Assumptions - Courses of Action

UNIT II LOGICAL REASONING II

Logical conclusions - Deriving conclusions from passages - Theme detection

UNIT III ARITHMETICAL REASONING I

Number system – H.C.F and L.C.M – Problem on ages – Percentage – Profit and Loss – Ratio and Proportion – Partnership

UNIT IV ARITHMETICAL REASONING II

Time and Work – Time and Distance – Clocks – Permutations and Combinations – Heights and Distances – Odd man out and Series

UNIT V DATA INTERPRETATION

Tabulation – Bar graphs – Pie graphs – Line graphs

Reference Books:

- 1. R.S.Agarwal, A modern approach to Logical Reasoning, S.Chand and Co., (2017).
- 2. R.S.Agarwal, A modern approach to Verbal and Non verbal Reasoning, S.Chand and Co., (2017).
- 3. R.S.Agarwal, Quantitative Aptitude for Competitive Examinations, S.Chand and Co., (2017).
- 4. A.K.Gupta, Logical and Analytical Reasoning, Ramesh Publishing House, (2014).
- 5. B.S.Sijwali, Indu sijwali, A new approach to Reasoning (Verbal and Non verbal), Arihant Publishers, (2014).

Subject Code			ame: B						T / L/	L	Τ/	P/ R	C
BBI17L07			ROCESS	ING L	ABORA	TORY			ETL		S.Lr		<u> </u>
		erequisit							L	0	0/0	3/0	1
L : Lecture T :						Project	R : Res	earch C	C: Credits				
T/L/ETL : The		/Embed	ded Theor	y and L	ab								
OBJECTIVE													
To ana	alyze va	rious typ	bes of bio	signals a	and stud	y its cha	racterist	ics					
COURSE OU													
CO1								study i	ts characte	ristics			
Mapping of C						es (POs		_		_			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12
CO1	Н	Μ	L	Μ	Н	Μ	L	Н	М	Μ	L]	H
COs / PSOs	PS	501	PSC	02	PS	03	PS	504	PSO5				
CO1	1	М	H	[]	Ĺ]	М	Н				
H/M/L indicat	es Stren	gth of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low	,					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

BIO-MEDICAL SIGNAL AND IMAGE PROCESSING LABORATORY

LIST OF EXPERIMENTS

- 1. Analysis of Bio-signals.
- 2. Analysis of ECG signals.
- 3. Analysis of EEG signals
- 4. Analysis of EMG signals
- 5. To obtain the response of I order low pass filter
- 6. To obtain the response of II order band pass filter
- 7. To analysis the \hat{ECG} waveform using \hat{MATLAB}
- 8. To analyze IIR digital filter for ECG using MATLAB
- 9. To perform Frequency domain analysis of the ECG using MATLAB
- 10. To perform EEG signal averaging using MATLAB

Total Number of Hours:45 Hrs

Subject Code:			ame: B						T / L/	L	T/	P/ R	C
BBI17L08			IENTAT	ION LA	ABORA	TORY	-1		ETL	0	S.Lr	2/0	1
		erequisit		1 7	· D	D	D D	1.0	L	0	0/0	3/0	1
L : Lecture T : T/L (ETL : The						Project	R : Res	search C	: Credits				
T/L/ETL : The OBJECTIVE		Embed	ded Theor	y and L	ad								
		rai a a 1 Dr	eamplifie	*0									
			ECG sign		Analycic								
			Audiogra		111a1 y 515	•							
		ording of		111.									
COURSE OU)									
CO1			nds Biolog		amplifie	ers							
CO2			of Recordi				nalvsis						
CO3			of Recordi				inary 515.						
CO4			of Record	<u> </u>	<u> </u>								
Mapping of C		<u> </u>		<u> </u>		es (POs	;)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	М	М	Н	М	L	М	М	L	Н	М]	Ĺ
CO2	Н	М	L	М	Н	L	М	Н	L	М	Н		Ĺ
CO3	М	М	М	L	Н	М	L	Н	М	L	М]	H
CO4	L	М	Н	М	L	М	Н	L	М	Н	Н	l	Ν
COs / PSOs	PS	01	PSO	02	PS	03	PS	SO4	PSO5				
CO1	I	Ν	Н	[]	Ĺ		М	Н				
CO2	1	Ν	H	[]	L		Μ	Н				
CO3	1	Ν	H	[]	L		М	Н				
CO4		Ν	L		1	Μ		Η	L				
H/M/L indicate	es Stren	gth of C	orrelation	H- Hi	gh , M-	Medium	, L-Low			-			
Category	iences	ring Sciences	ies and Social	Core	Electives	ectives	Practical / Project	ips / Technical Skill	ls				
Approval	Basic Scien	Engineering	Humanities Sciences	Program Core	Program El	Open Electi	Practical	Internships	Soft Skills				

BIO-MEDICAL INSTRUMENTATION LABORATORY -I

LIST OF EXPERIMENTS

- 1. Study of Biological Preamplifiers.
- 2. Recording of ECG signal and Analysis.
- 3. Recording of Audiogram.
- 4. Recording of EMG.
- 5. Recording of EEG.
- 6. Re cording of various physiological parameters using patient monitoring system and telemetry units.
- 7. Measurement of pH, pO2 and conductivity.
- 8. Study and analysis of functioning and safety aspects of surgical diathermy.

Total Number of Hours:45 Hrs

Subject Code: BBI17L09			ame : P. IOLOGY						T / L/ ETL	L	T / S.Lr	P/ R	C
		rerequisit							L	0	0/0	3/0	1
L: Lecture T:	Tutori	al SLr :	Supervise	ed Learr	ing P:	Project	R : Res	earch C	C: Credits				
T/L/ETL : The	eory/La	b/Embed	ded Theor	y and L	ab								
OBJECTIVE													
									oscopic org				
					uses, the	ough not	strictly	classed	as living o	organisn	ns, are als	o studie	d
COURSE OU													
CO1			o understa pic organi		tudy of	microor	ganisms	, which	are unicel	lular or	cell-clust	er	
CO2					ungi and	d, protis	ts and p	rokaryo	tes. Viruse	s, thoug	h not strie	ctly clas	sed
		0	organisms	•	U	· •	r	5		. 0			
Mapping of C		Ŭ	<u> </u>				5)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Μ	М	Н	L	М	Н	L	M	Н	L	М		H
CO2	Н	М	L	М	Н	L	М	Н	L	M	Н]	L
COs / PSOs	Р	SO1	PSC	02	PS	03	PS	504	PSO5				
CO1		М	Н]	L]	М	Н				
CO2		М	Н			L]	М	Н				
H/M/L indicate	es Stre	ngth of C	orrelation	H- Hi	gh, M- I	Medium	, L-Low	7		•	•		
		Ĭ						1					
			al					Internships / Technical Skill					
Category		ces	oci					nic					
Category		ien	T S		ves		sct	sch					
	ses	Sc	anc	ſe	cti	ves	i0je	Te					
	enc	ng	es	Col	Ele	ctiv	P	/ sc	S				
	Sci	čri	niti es	m	m	Ele	al	hij	kill				
	ic	ine	nar	gra	gra	n H	ctic	rns	S				
	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	nte	Soft Skills				
	Щ												
			1			1	1 -	1	l	1	1	1	
Approval													

PATHOLOGY AND MICROBIOLOGY LABORATORY

LIST OF EXPERIMENTS

- 1. To measure Gram positive and Gram negative, based on the differences of the chemical and physical properties of the cell wall.
- 2. To measure Rapid qualitative isolation method for obtaining discrete colonies from a mixed population.
- 3. To introduce and demonstrate the principle and experimental set up for determining the motility of microbes
- 4. To introduce and demonstrate the principle and experimental set up for determining the microbe's ability to detoxify hydrogen peroxide and /or to cause blood coagulation.
- 5. To introduce the preparation and use of different selective and differential media
- 6. To introduce and demonstrate the principle and experimental set up for determining the ability of microorganism to produce "Lecithinase" enzyme.
- 7. To study the different phases of growth of a bacterium by plotting a curve with time of growth on the X-axis and optical density on the Y-axis.
- 8. To study the different carbohydrate utilization of bacteria using phenol red carbohydrate fermentation broth.
- 9. To study the staining of bacteria with special stains that help to reveal their morphology thereby enhancing the contrast using a bright field microscope.
- 10. To determine the susceptibility of a microbial species against different antibiotic agents.
- 11. To Check the quality of the given milk sample

Total Number of Hours: 45 Hrs

Subject Code BBI17L10	: Su	bject Na	ame: N	MINI P	ROJEC	Т			T / L/ ETL	L	T / S.Lr	P/ R	C
	Pr	erequisit	e: NIL						L	1	0/0	2/0	1
L : Lecture T :			-		0	Project	R : Res	earch C	: Credits				
T/L/ETL : The													
OBJECTIVE									ea / techni	que into	a work	ing mo	del /
prototype invo					/ or kno	wledge	and wor	king in	at team.				
COURSE OU													
CO1			ze a novel										
CO2			ulti-discij		hinking	and ena	ble team	work					
CO3			elop a prot										
Mapping of C													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12
CO1	Н	Н	Н	Μ	Μ	Н	Н	Η	М	L	Н		М
CO2	Н	Н	Н	Μ	Н	Μ	М	Μ	Н	Н	Н		Н
CO3	Н	Η	Н	Η	Н	Н	Μ	Η	Н	Μ	Н]	Н
COs / PSOs	PSO1		PSO2		PSO3		PSO4		PSO5				
CO1													
CO2													
H/M/L indicat	es Stren	gth of C		H- Hi	gh, M- l	Medium	, L-Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval							v						

Subject Code BEI17TSX	: Su	bject Na	ame: [FECHN	ICAL S	KILL	III		T / L/ ETL	L	T / S.Lr	P/ R	C
									L	0	0/0	2/0	1
L : Lecture T :	: Tutoria	al SLr:	Supervis	ed Learr	ning P:	Project	R : Res	earch C	: Credits				
T/L/ETL : The	eory/Lał	o/Embed	ded Theor	ry and L	ab								
OBJECTIVE	: The	objective	e is to dev	elop the	technic	al skill o	of the stu	idents.					
COURSE OU	JTCOM	IES (CO	os) : (3- 5)									
CO1	Develo	op the tee	chnical sk	ills requ	ired in tl	ne field	of study						
CO2	Bridge	the gap	between t	he skill	requiren	nents of	the emp	oloyer o	r industry a	and the c	ompeten	cy of th	e
	studen	ts.											
CO3	Enhan	ce the en	nployabili	ty of the	student	s.							
Mapping of C	⁷ ourse (Dutcome	s with Pr	noram	Outcom	es (POs	<u>.</u>						
	-		-	<u> </u>									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12
CO1	Н	Н	Н	Н	Н	Н	М	М	Н	М	Н	I	М
CO2	Н	Н	М	Н	Н	Н	Μ	M	Н	Н	Н		H
CO3	Н	Η	Н	Н	Н	Н	Μ	Μ	Н	Н	Н]	Н
COs / PSOs	PS	501	PSO	02	PS	O3	PS	504	PSO5				
CO1		Н	Н	[I	Η		Н	Н				
CO2		Н	H	[]	Η		Н	Н				
CO3		Н	Н	[]	Η		Н	Н				
H/M/L indicat	es Stren	gth of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval		<u> </u>								1			

Subject Code BBI17011	: 5	Subject Na	ame: B	IO-ME	DICAL	EQUIP	MENT	S	T / L/ ETL	L	T / S.Lr	P/ R	C
	F	Prerequisit	e:						Т	3	1/0	0/0	4
L : Lecture T :						Project	R : Res	search C	Credits				
T/L/ETL : The	2	ab/Embed	ded Theor	y and L	ab								
OBJECTIVE													
> To stu													
		out Neurol											
		wledge on		ly and st	imulator	-							
		out Bio-tele	•	anda an	1 alaatri	al cofot	• /						
COURSE OU		wledge on			1 electric	cal salet	у						
COURSE OU		Acquires			Cardia	0070 11	ita						
CO1 CO2		Capable t	Ŭ										
CO2 CO3		Capable c			<u> </u>								
CO4		Acquires		-			ator						
C04 C05		Graduate					trical so	fetv					
Mapping of C	OURSO							lety					
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	2
CO1	M	H	M	L	M	H	L	M	H	L	M		H
CO2	H	H	H	M	L	M	H	L	M	H	L		M
CO3	L	M	H	L	M	H	L	M	H	L	M		H
CO4	M	H	M	L	M	H	L	M	H	L	M		H
CO5	L	M	Н	L	M	L	M	H	L	M	H		Ĺ
COs / PSOs]	PSO1	PSC	02	PS	03	PS	SO4	PSO5				
CO1		М	Н	[]			М	Н				
CO2		L	Μ	I]	Ĺ		М	Н				
CO3		Н	Μ	[]	Ĺ		М	Н				
CO4		М	L	,	N	M		H	L				
CO5		М	Н	[]			М	Н				
H/M/L indicat	es Stre	ength of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval		1	1	1	1					1		I	

Department of BIOMEDICAL INSTRUMENTATION ENGINEERING

BIO-MEDICAL EQUIPMENTS

UNIT I CARDIAC CARE UNITS

Pace makers – different types, batteries for pace makers, AC defibrillators, asynchronous and synchronous DC defibrillators, patient monitoring system

UNIT II NEUROLOGICAL EQUIPMENTS

Stereo toxic unit, depth recording system, dot scanners, transcutaneous nerve stimulator, anesthesia Monitor, EEG controlled Anesthesia, Bio Feedback Equipments, Spinal Reflex Measurements, Front end devices for all Biomedical Equipments

UNIT III DIATHERMY AND STIMULATOR

Depth of penetration and physiological effects of H.F. radiation, short wave, Ultrasonics, and Micro Wave Diathermy, Surgical Diathermy, Physiological effects of stimulation, Galvanic, Farradical Surged types, Interfrantial Therapy

UNIT IV BIO-TELEMETRY

Principal, frequency selection for Telemetry, radio pills, multiplexing and tracking techniques, Telestimulation

UNIT V RECENT TRENDS AND ELECTRICAL SAFETY

Principles of Thermography, detecting circuits, its application in medicine, principles of Cryogenic Techniques, its application in medicine, Principles of Fiber optic cable, Endoscopy, Laproscopy, Opthaimic Equipments. Micro and macro shock, sources of shock, monitoring and interrupting circuit from leakage current, Earthing scheme

Total Number of Hours: 60 Hrs

Text Books:

1. Albert M. Cook and Webster J.G., Therapeutic Medical Devices, Prentice Hall Inc., New Jersery, 1982.

2. Feinberg B.N. Applied Clinical Engineering, Prentice Hall Inc., Engiewood Cliffs, New Jersery, 1986

Reference Books:

1. Khandpur R.S. Handbook of Biomedical Instrumentation. Tata McGraw Hill Publishing company, New Delhi 1999.

2. Jacobson B. and Webster. J.G. Medicine and Clinical engineering, Prentice Hall of India, New Delhi, 1999

3. Leslie Cromwell, etal., Biomedical Instrumentation and measurements, Prentice Hall India, New Delhi, 2000

12 Hrs

12 Hrs anesthes

12 Hrs

12Hrs

Subject Code BBI17012		Subject Na DESIGN I						ON	T / L/ ETL	L	T / S.Lr	P/ R	C
	F	Prerequisit	e:						Т	3	1/0	0/0	4
L : Lecture T :	: Tutor	ial SLr	Supervis	ed Leari	ning P:	Project	R : Res	search C	C: Credits				
T/L/ETL : The		ab/Embed	ded Theor	ry and L	ab								
OBJECTIVE													
> To edu													
		m underst											
		in insight					terface.						
		em to imp				ems							
	•	e		2	IS LOOIS								
COURSE OU	TCO												
CO1			nds the Ba										
CO2			nds the pro										
<u>CO3</u>			o analyze					nterface					
CO4			o implem			II systen	ns						
CO5	1		nds variou										
Mapping of C COs/POs	PO1	1	PO3	PO4	PO5	PO6	s) PO7	PO8	DOO	DO10	DO11	PO	12
COS/POS CO1							-		PO9	PO10		-	
CO1 CO2	H M	M M	L M	M L	M M	L H	M L	H M	L H	M L	H M		M H
CO2 CO3	M	H	L	M	L	п М	L	M	L	H	M		п L
CO4	H	M		M	H	M	L	M	H	L	M		L H
C04 C05	L	M	H	M	L	M	H	L	M	H	M		L
005		141		101		111	11		111		101		
COs / PSOs	1	PSO1	PSO	$\overline{)2}$	PS	03	PS	504	PSO5				
CO1		M	H			L		M	H				
CO2		M	L			H		M	L				
CO3		Н	Н			N		L	Н				
CO4		М	Н			Ĺ		М	Н				
CO5		М	Н	[]	Ĺ		М	Н				
H/M/L indicat	es Stre	ength of C	orrelation	H- Hi	gh, M- l	Medium	, L-Low	7			•		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval				✓			<u> </u>	<u> </u>					

VIRTUAL INSTRUMENTATION DESIGN FOR MEDICAL APPLICATIONS

UNIT I INTRODUCTION

Virtual instrumentation (VI): Evolution, Definition, Architecture- Conventional-, and Distributed- VI, Comparison of VI with traditional Instruments, Need of VI, advantages, block diagram, data flow techniques, graphical programming, Comparison between graphical programming and conventional programming, VI in engineering process.

UNIT II PROGRAMMING MODES

front panel, Block diagram, LABVIEW Environment: Startup-, Shortcut-, and Pull down menu, Palletes, Control structures: FOR loop, WHILE loop, Shift Registers, feedback nodes, Selection Structures: Case and sequence structures, Formulae nodes, Arrays, Clusters, Waveform Chart and graph, XY Graph, Strings, Tables, File I/O functions

UNIT III HARDWARE ASPECTS

Pull-up and pull down resistors, TTL to solid state Relays, Voltage dividers, data acquisition in LABVIEW, hardware installation and configuration, Data acquisition (DAQ): Components, Accessories, Hardware, and Software.

UNIT IV COMMON INSTRUMENT INTERFACE

4-20mA, 60mA, RS232, RS422, RS485, General purpose interface bus(GIPB), Virtual Instrument Software Architecture (VISA), Universal serial port bus(USB), Peripheral computer interface (PCI), VME extensions for instrumentation (VXI), PCI extensions for Instrumentation (PXI), Personal Computer Memory Card International Association (PCMCIA), Signal conditioning extension for instrumentation (SCXI).

UNIT V ANALYSIS TOOLS AND APPLICATIONS OF VI

Fourier transform, Power spectrum, Correlation, Windowing, filtering, Oscilloscope, Waveform generator, Multi-channel data acquisition using LABVIEW, ECG acquisition for long term monitoring of heart rate using VI

Total Number of Hours: 60 Hrs

Text Books:

1. Gary Jonson, "Labview Graphical Programming", Second Edition, McGraw Hill, New York, Fourth edition 2006

2. Lisa K wells and Jeffrey Travis, "Labview for everyone", Prentice Hall Inc, New Jersey, First edition 1997.

Reference Books:

1. Gupta S J, Gu.pta P, "PC interfacing for Data Acquisition and Process Control", Instrument Society of America, Second Edition, 1994.

2. Technical Manuals for DAS Modules of Advantech and National Instruments

12 Hrs

12 Hrs

12 Hrs

12 Hrs

Subject Code:		ct Name AGEME		AL	QUA	LITY			T E	/ L/ []L	L	Т	P/R	C
	Prereq		Basic	Kı	nowle	edge	as qu	ality	Т		3	0/0	0/0	3
BMG17003	-	ques and				0	···· 1.				_			-
L : Lecture T : T	utorial	P : Proj	ect C: C	Cred	its						•			
OBJECTIVE:		C C												
 To acqua assurance To give a To apply quality, a To under 	e. understa y in des celiabilit	and Interr ign man ay and ma	national ufacturin uintainal	Qua ng, pility	lity (quali y for	Certifica ty contr total pro	tion System col and a oduct ass	stems servic	– IS xes, ce.	SO 900 and to	00 and c	other star y interli	ndards.	to service gement of
COURSE OUT		-		1	2				1	2				
CO1			ntain qu	alit	y in a	all aspec	ets							
CO2							or qualit	v con	trol					
CO3			ng out ze				·							
Mapping of Cou	ırse Ou		0					(POs	s) ar	nd Pro	ogram S	pecific	Outcome	es (PSOs)
COs/POs	PO1	PO2	PO3		04	PO5	PO6	PO		PO8	PO9	PO1(PO1	PO12
CO1	Н	М	Н	N	Л	М	L	L		Η	Η	Η	М	Н
CO2	Μ	М	Μ			М	L			Н			Н	М
CO3	Н	Н	М	N	Л	Н	М	Μ		Η	Η	Μ	Μ	Н
H/M/L indicates	Strengtl	h of Corr	elation	H-	Higl	h, M- M	ledium, l	L-Lov	N					
Category	Basic Sciences	Science	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project		Internships / Technical		 ▲ Management Science 			
Approval														

Department of **BIOMEDICAL INSTRUMENTATION ENGINEERING**

TOTAL QUALITY MANAGEMENT

UNIT I INTRODUCTION

Evolution of quality as a strategy- Definitions of quality, Quality Philosophies of Deming, Crossby and Miller, Service Vs product Quality, Customer focus, Quality and Business performance leadership for quality management, Quality planning, Designing for Quality and Manufacturing for Quality, Vision, Mission statements and Quality policy.

UNIT II Models of TQM

Total Quality management- TQM models, human and system Components, Continuous Improvement Strategies, Deming wheel, Internal External Customer concept, Customer satisfaction Index, Customer retention, Team work and team building, Empowerment, TQM culture, Quality Circle, 5S principle, Top Management commitment

UNIT III Tools and Techniques

Quality management tools- principles and applications of quality Function deployment, Failure Mode and Effect Analysis, Taguichi Techniques, Basic tools- Statistical techniques and graphical tools and diagrams-

UNIT IV Quality Control techniques

Modern QC techniques - Japanese Production Related Techniques: Just in time (JIT) – Quality circles – Total productive maintenance (TPM) – Kaizen – Kanban – 5 S concepts – Toyota production systems – JIDOKA – ANDON etc. concepts. Concepts on quality management systems (QMS – ISO 9000 – 2000) – Environmental Management Systems (EMS – ISO – 14000)

UNIT V Concept in Manufacturing Management

Modern Trend and Concept in Manufacturing Management: Business processes reengineering (BPR) – Lean / flexible – manufacturing systems – Six sigma concepts.

Total Number of Hours: 45 Hrs

Reference Books:

- 1. Jill A. Swift, Joel E.Ross and Vincent K.Omachonu, *Peinciples of Total Quality*, St.Lucie Press, US, 1998.
- 2. Samuel K.Ho, TQM, An integrated approach, kogan page India Pvt Ltd, 2002
- 3. Dale H.N Besterfield et al, Total Quality management, Pearson Education Asia, 2001
- 4. RoseJ.E. Total Quality Management Kogan page India Pvt Ltd, 1993.
- 5. Mullar Max, ' Essentials of MAterail Management, Amacom, 2006

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code			ame: B						T / L/	L	Τ/	P/ R	С
BBI17L11			IENTAT	ION LA	ABORA	TORY	-II		ETL		S.Lr		
		erequisit							L	0	0/0	3/0	1
L : Lecture T :						Project	R : Res	earch C	: Credits				
T/L/ETL : The		/Embed	ded Theor	y and L	ab								
OBJECTIVE													
			e various										
			orm patteri		ed biom	edical in	strumen	its					
COURSE OU													
CO1									dical instru				
CO2								n obtair	ned biomed	lical inst	ruments		
Mapping of C								1		1			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	
CO1	Н	М	L	L	L	Μ	Н	Μ	Н	L	Μ		Ĺ
CO2	M	Н	L	Μ	Н	L	Μ	Н	L	M	Н]	L
COs / PSOs	PS	501	PSG	02	PS	03	PS	504	PSO5				
CO1		Μ	Н			Ν		Н	М				
CO2		H	L			Н		L	Н				
H/M/L indicat	es Stren	gth of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low	,					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

BIO-MEDICAL INSTRUMENTATION LABORATORY -II

LIST OF EXPERIMENTS

- 1. Analysis of abnormal ECG wave pattern using arrhythmia Simulator
- 2. Real time patient monitoring system
- 3. Pulse oximetry
- 4. Acquisition of Heart sounds using PCG
- 5. Biotelemetry system
- 6. BP measuring techniques
- 7. Glucose sensor
- 8. Differentiating Arteries and veins using Doppler ultrasonography
- 9. Heart Lung machine model study
- 10. Pacemaker, Defibrillator Models Study
- 11. Respiratory system testing using Spirometer
- 12. Short wave Diathermy- study
- 13. Ultrasound Diathermy- study
- 14. Surgical Diathermy study
- 15. Hemodialysis model -study

Total Number of Hours: 45 Hrs

Subject Code		Subject Na							T / L/	L	T /	P/ R	C
BBI17L12		LABORA'		OR ME	DICAL	APPL	ICATIC	DN	ETL	0	S.Lr	2/0	1
		Prerequisit		1 7	· D	D : (1.0	L	0	0/0	3/0	1
L : Lecture T :						Project	R : Res	earch C	: Credits				
T/L/ETL : The OBJECTIVE	ž	ad/Enided	ded Theor	Ty and L	aD								
		about the E	Rasic conc	ents of '	VI								
		m underst				cepts of	VI						
		an insight (
		em to imp											
		nowledge											
COURSE OU	A												
CO1		Understar			cepts of	VI							
CO2		Understar					VI.						
CO3		Capable t	^	<u> </u>	<u> </u>			terface					
CO4		Capable t											
CO5		Understar				2							
Mapping of C	Course					es (POs	5)						
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	2
CO1	М	L	М	Н	L	М	Н	L	L	Н	М]	L
CO2	Н	М	Н	М	L	М	Н	L	М	Н	Н	l	H
CO3	М	L	Н	М	L	М	Н	L	М	Н	L	N	Μ
CO4	Н	Н	Н	Н	L	М	Н	L	М	Н	L	N	Μ
CO5	Μ	Н	М	L	Н	М	Н	М	L	М	Н	N	М
COs / PSOs	T	PSO1	PSO	22	DC	03	D	504	PSO5				
CO3 / PSOS	1	M	H H			L		M	H				
CO2		M	Н			L	-	M	Н				
CO3		Н	N			H		M	L				
CO4		Н	N			L		H	M				
CO5		L	L			M		L	Н				
H/M/L indicat	es Stre	ength of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low	7					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

VIRTUAL INSTRUMENTATION LABORATORY FOR MEDICAL APPLICATION

LIST OF EXPERIMENTS

- 1. Basic arithmetic operations
- 2. Boolean operations
- 3. Factorial of a give number using for loop
- 4. Factorial of a give number using while loop
- 5. Sorting even numbers using while loop in an array
- 6. Array maximum and minimum
- 7. Bundle and unbundle cluster
- 8. Flat and stacked sequence
- 9. Application using formula node
- 10. Discrete cosine transform
- 1. 11 Convolution of two signals
- 11. Windowing technique
- 12. Acquiring an ECG signal
- 13. To measure BP, heart rate
- 14. To measure temperature, ECG
- 15. Acquire, analyze and present EEG instrumentation

Total Number of Hours: 45 Hrs

Subject	Code	: Su	bject Na	ame: I	PROJE	CT PHA	ASE - 1			T / L/ ETL	L	T / S.Lr	P/ R	C
		Dere		. NII							0		0/2	2
LiLaat			erequisit		dlaam	ina D.	Droigot	D . Dec	aarah C	L L Cradita	0	0/0	0/2	Z
T/L/ETI	L : The	eory/Lab	/Embed	Supervise ded Theor	y and L	ab	U							
										ic study an				
										er the direc				
										and skills				
decision					tudents	to think	criticall	y and cr	eatively	, find an o	optimal s	solution, i	nake et	nicai
				$\frac{1}{s}$ (3-5))									
COUK:						ed in the	course	of study	address	sing a spec	ific prol	blem or is	sue	
		-	-		-						-			
CO2		ncourage nable sol		s to think	criticall	y and cr	eatively	about s	ocietal i	issues and	develop	user frier	ndly and	l
CO3	To re	efine res	earch ski	ills and de	monstra	te their	proficie	ncv in c	ommun	ication skil	lls.			
CO4										nonstrate tl		e talents.		
				es with Pr			•							
COs/PO		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1		Н	Н	Н	Н	M	Н	Н	L	M	M	Н		H
CO2		Н	Н	Н	Н	Н	Н	Н	Μ	М	М	Н]	H
CO3		Н	Н	Н	Н	Н	Н	Н	М	М	Н	Н	1	М
CO4		Н	Μ	Н	Η	Н	Н	Μ	Н	Н	Н	Н]	Н
COs / P	SOs		01	PSC			03		504	PSO5				
CO1			H	H			H		H	Н				
CO2			H	Н			H		H	H				
CO3			H	H			H		H	H				
CO4	1.	-	H	H			H		H	Н				
H/M/L 1	Indicat	es Stren	gth of C	orrelation	H- H1	gh, M- 1	Vledium	, L-Low T			1			
Catego	эry	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
								\checkmark						
Approva	al		1	1	1	1	1	I	1		1	1		

Subject Code BFL17001	: Su	bject Na	ame :]	FOREI	GN LAI	NGUAC	θE		T / L/ ETL	L	T / S.Lr	P/ R	C
DILITOOI	Pr	erequisit	e: NIL							1	1	0/0	1
L : Lecture T	: Tutoria	al SLr :	Supervis	ed Lear	ning P:	Project	R : Res	search C	C: Credits				
T/L/ETL : The	eory/Lał	o/Embed	ded Theo	ry and L	ab								
OBJECTIVE effectively in a		•			-			-	•	•			ge.
COURSE OU	JTCOM	IES (CO	os) : (3- 5)									
CO1	Achie	eve funct	tional prof	ficiency	in listen	ing, spe	aking, re	eading,	and writing	g.			
CO2	Deve	lop an in	sight into	the natu	re of la	nguage i	tself, the	e proces	ss of langua	age and c	ulture ac	quisitio	n.
CO3	Deco	de, analy	ze, and in	terpret a	authentio	c texts o	f differe	ent genre	es.				
Mapping of C	Course (Outcome	es with Pr	rogram	Outcom	nes (PO	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	L	L	L	L	L	Н	L	Н	M	Н	Н]	L
CO2	М	L	L	L	L	Н	L	Н	Н	Н	Н]	L
CO3	L	L	М	М	L	Н	М	Н	М	Н	Н]	L
COs / PSOs	PS	501	PS	02	PS	503	P	SO4	PSO5				
CO1		L	I	,		L		L	L				
CO2		L	I	,		L		L	L				
CO3		L	Ι			L		L	L				
H/M/L indicat	tes Stren	gth of C	orrelation	H-H	igh, M-	Medium	n, L-Low	7		-			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval			I										

Subject Code	2:		bject Na EVELOP		E	NTREP	PRENU	JERSH	IP			L	Т	P	C
BMG17005			rerequisit oncepts	e: Basic K	lnow	ledge a	s Mana	gement				3	0	0	3
L : Lecture	Г : Tuto	orial	P: Pro	ject C: Cı	edits	5									
OBJECTIV	E: The	e stu	dent will	learn:											
> The	course	the understand and internalize the process of setting up a business													
	<u> </u>	ate, understand and internalize the process of setting up a business													
COURSE C															
CO1				ics of entr											
CO2		xplain the requisites of starting a small scale industry													
CO3		ppose a plan for new venture													
CO4		nprehend role of government in entrepreneurship													
Mapping of (PSOs)	Cours	se O	utcomes	(COs) wit	th Pr	ogram	Outco	omes (P	Os) and	l Pr	ogra	m Spe	cific Ou	itcomes	
COs/POs	PO1	1 PO2 PO3 PO4 PO 5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	М		М	Н				М	L	H	H	L	Н	Н	Н
CO2			Н				L			N	Λ		М	Н	М
CO3	Н		Н	Н				Μ		N	Λ	М	Н	М	М
CO4			М			М	L		Η				М	L	М
H/M/L indica	tes Stre	engtl	h of Corr	elation H	I- Hi	gh, M-	Mediu	m, L-Lo	W						
Category		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	ives	Open Electives	Practical / Project		Internships / Technical Skill	Soft Skills	 ▲Management Science 			
Approval															

Department of BIOMEDICAL INSTRUMENTATION ENGINEERING

ENTREPRENUERSHIP DEVELOPMENT

UNIT I INTRODUCTION

Nature and Development of Entrepreneurship; Entrepreneurial Decision Process; Role of entrepreneurship in economic development; Entrepreneurial process; managerial vs. entrepreneurial approach and emergence of entrepreneurship - Entrepreneurial background; Skills and characteristics of successful entrepreneurs; Motivation; Role Models and Support Systems

UNIT II BUSINESS IDEA

Generating business idea – sources of new ideas, methods of generating ideas, creative problem solving, opportunity recognition; Environmental scanning, competitor and industry analysis; Feasibility study market feasibility, technical/operational feasibility, financial feasibility; Drawing a business plan; Using and Implementing the Business plan.

UNIT III MARKETING PLAN

Marketing plan – Marketing research for the new venture; Steps in preparing marketing plan; Contingency planning; Organizational plan - Forms of Business; Designing the organization; Building management team and Successful Organizational Culture; Role of Board of Directors; Board of Advisors; Financial plan - Operating and capital Budgets; Pro forma income statements; Pro forma cash flow; Pro forma balance sheet; Break even analysis; Pro forma Sources and Applications of Funds.

UNIT IV ASSESSMENT OF RISK

Assessment of Risk; Sources of finance – Debt or Equity Financing, Internal or External Funds; Personal Funds, Family and Friends; Commercial Banks - types of loans, Cash flow financing, Bank lending decisions; Venture Capital - Nature, overview, process, locating and approaching Venture Capitalists.

UNIT V ENTREPRENEURIAL STRATEGY FOR GENERATING AND EXPLOITING NEW **ENTRIES; STRATEGIES FOR GROWING THE VENTURE** 9 Hrs

Entrepreneurial strategy for generating and exploiting new entries; Strategies for growing the venture; Growth implications on Economy, Firm and Entrepreneur. Other routes for growth - Franchising, Joint Ventures, Acquisitions and Mergers: Going Public – Advantages and Disadvantages, Alternatives to Going Public.

Total Number of Hours: 45 Hrs

Reference Books:

REVISION-3

- 1. Hisrich, Robert D., Michael Peters and Dean Shephered, Entrepreneurship, Tata McGraw Hill, New Delhi., 9th Edition, 2012, ISBN-13: 978-0078029196, ISBN-10: 0078029198
- 2. Vasant Desai, The Dynamics of Entrepreneurial Development and Management, Himalaya Publishing House., 11th Edition, 2005, ISBN: 8178660598
- 3. Prasana Chandra, Projects planning, analysis selection, Implementation and reviews, Tata McGraw-Hill Publishing Company, 7th Edition, 2009, ISBN-10: 0070077932, ISBN-13, 9780070077935
- 4. Charantimath, Poornima, Entrepreneurship Development and Small Business Enterprises, Pearson Education, New Delhi, 5th Edition, 2009, ISBN: 978-81-7758-260-4
- 5. K.Ramachandran, Essentials of Business Communication, McGraw Hill Education (India) Private Limited, 9th Edition, 2013, ISBN-13: 978-1-111-82122-7, ISBN-10: 1-111-82122-4

9 Hrs

9 Hrs

9 Hrs

Subject	Code:	Su	bject Na	ame: 1	PROJE	CT PHA	SE - 2			T / L/ ETL	L	T / S.Lr	P/ R	C
		Pre	erequisite	•∙ NII						L	0	<u> </u>	10	10
L : Lect	ure T ·			Supervis	ed Learr	ning P ·	Project	R · Res	earch C·		U	0/0	10	10
				ded Theor			roject	10.1005	euren er	cicalits				
OBJEC				e of the M			culmin	ate the a	cademic	study and	d provid	e an oppo	ortunity	to
				iress throu										
				nt's ability										
				rms the st	udents t	o think of	critically	and cre	eatively,	find an op	ptimal s	olution, n	hake eth	ical
decision					<u>`</u>									
COURS CO1				s) : (3- 5) and skill		ad in the	2011700	of and	oddrogg	ngaanaa	ific prol	hlom or ic		
COI	Appr	y the kn	owiedge	and skins	sacquire	ed in the	course	of study	address	ing a spec	inc pro	blem or is	sue.	
CO2				s to think	criticall	y and cr	eatively	about s	ocietal is	sues and	develop	user frier	ndly and	1
	reach	able sol	utions											
CO3	To re	fine res	earch ski	ills and de	emonstra	te their	proficie	ncy in co	ommunic	cation skil	lls.			
CO4				nges of te								e talents.		
Mannin	g of C	ourse (Dutcome	es with Pr	ogram	Outcom	es (POs	.)						
COs/PO	0	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1		Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н		Н
CO2		Η	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н]	H
CO3		Η	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н]	Н
CO4		Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н]	H
COs / P.	SOs		501	PSG			03		504	PSO5				
CO1			H	H			H		H	Н				
CO2			H	H			H		H	Н	-			
CO3			H	H			H		H	H				
CO4	1' (H the for	H			H		H	Н				
H/M/L 1	ndicate	es Stren	gth of C	orrelation	H- H1	gh, M- 1	Vledium	, L-Low	, 					
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Fechnical Skill	Soft Skills				
		Ba	En _i Sci	Hu Soc	Prc	Prc	Op	Pra	Inte	Sof				
								\checkmark						
Approva	ıl													

Subject Code BBI17E01			ame : T			OTING	OF BIO)-	T / L/ ETL	L	T / S.Lr	P/ R	C
	Pre	erequisit	e:						Т	3	0/0	0/0	3
L: Lecture T:	Tutoria	1 SLr :	Supervise	ed Learr	ing P:	Project	R : Res	earch C	: Credits				
T/L/ETL : The		/Embed	ded Theor	y and L	ab								
OBJECTIVE													
								es of m	edical instr	ruments			
			ult detecti		correctiv	ve measu	ires.						
COURSE OU													
CO1									dical instru	iments			
CO2			n finding					easures.					
Mapping of C	1	1						[1	1	1	1	
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	
CO1	Н	M	L	M	Н	L	M	Н	M	L	M		H
CO2	М	Н	М	L	М	Н	M	L	М	M	Н	1	M
COs / PSOs		01	PSC			03		504	PSO5				
CO1		M	L			H		М	H				
CO2		H	M		_	L		М	Н				
H/M/L indicate	es Stren	gth of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low			1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives ≺	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval		1											

TROUBLESHOOTING OF BIO-MEDICAL EQUIPMENTS

UNIT I BASIC OF TROUBLESHOOTING PROCEDURES

Troubleshooting Process and Fault finding Aids, Troubleshooting Techniques, Grounding Systems in Electronic Equipment, Temperature Sensitive Intermittent Problems, and Correction Action to repair the Equipment.

UNIT II TESTING OF DEVICES

testing procedure OF resistors, capacitors and inductors, causes of failure for electronic components, testing procedure of special diodes, bipolar transistors, field effect transistor (FET), and thyristor.

UNIT III FAULT DIAGNOSIS IN CIRCUITS

Fault Diagnosis in Op-Amp Circuits, Digital Troubleshooting Methods, Digital IC Troubleshooters, Circuit board Troubleshooting.

UNIT IV BIOMEDICAL EQUIPMENT I TROUBLESHOOTING

Trouble shooting of ECG Machine, EEG Machine, Defibrillator Electrosurgical unit, Anaesthesia machine, Autoclaves and sterilizers, Endoscope

UNIT V BIOMEDICAL EOUIPMENT II TROUBLESHOOTING

Troubleshooting of Incubators, Nebulizer, Oxygen Concentrators, Oxygen cylinders and flow meters, Pulse Oximeter, Sphygmomanometers, Suction Machine, X-Ray Machine Troubleshooting.

Total Number of Hours: 45 Hrs

Text Books:

1. Khandpur R S, "Troubleshooting Electronic Equipment- Includes Repair and Maintenance", Tata McGraw-Hill. Second Edition 2009.

2. Dan Tomal and Neal Widmer, "Electronic Troubleshooting", McGraw Hill, 3rd Edition 2004.

Reference Books:

1. Nicholas Cram and Selby Holder, "Basic Electronic Troubleshooting for Biomedical Technicians", TSTC Publishing, 2nd Edition 2010

2. World Health Organisation, "Maintenance and Repair of Laboratory, Diagnostic imaging and Hospital Equipment", Geneva, 1994.

3. Ian R, McClelland, "X-ray Equipment maintenance and repairs workbook for Radiographers and Radiological Technologists", World Health Organisation, Geneva, 2004.

4. Ministry of Health and Family Welfare, "Medical Equipment Maintenance Manual- A first line maintenance guide for end users", New Delhi, October 2010.

5. Joseph.J, Panichello, "X-Ray Repair: A Comprehensive Guide to the Installation and Servicing of Radiographic Equipment", Charles C Thomas Publisher Ltd, 2nd Edition 2005.

REVISION-3

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code BBI17E02		Subject Na ENGINEE		EHAB	ILITAT	ION			T / L/ ETL	L	T / S.Lr	P/ R	C
	I	Prerequisit	e:						Т	3	0/0	0/0	3
L : Lecture T :	: Tutor	rial SLr :	Supervise	ed Learı	ning P:	Project	R : Res	earch C	: Credits				
T/L/ETL : The		ab/Embed	ded Theor	y and L	ab								
OBJECTIVE													
> To stu					eering								
		design of				.1 .01	11 0 1						
		wledge of							ion engine	eering.			
		nd various			U .	ision an	id hearir	ng					
		rious ortho			devices								
COURSE OU					oh ohilit	otion Er							
CO1 CO2		Understar Capable t				ation Ei	igmeern	ig					
CO2 CO3		A	<u> </u>			to in the	field of	rohobil	itation eng	ainoarin	7		
CO3 CO4		Acquires								smeering	5		
C04 C05		Analysis							5				
Mapping of C	Ourse				<u> </u>								
COs/POs	PO1		PO3	PO4	PO5	PO6	,, PO7	PO8	PO9	PO10	PO11	PO	12
CO1	M	L	M	H	L	M	H	L	M	H	H		H
CO2	H	M	H	M	L	M	H	L	M	H	L		M
CO3	H	M	Н	M	L	M	H	H	M	Н	L		M
CO4	L	Н	M	L	Н	M	Н	L	L	Н	M		H
CO5	М	Н	L	Н	М	L	Н	L	М	Н	L		Μ
COs / PSOs]	PSO1	PSC	02	PS	03	PS	504	PSO5				
CO1		М	H	[]			М	Н				
CO2		М	L	·	I	H		М	Н				
CO3		Н	L	r	Ν	Л		Н	L				
CO4		L	M	[Ν	Л		L	М				
CO5		Н	M		I			Н	М				
H/M/L indicat	es Stre	ength of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval					✓								

REHABILITATION ENGINEERING

UNIT I REHABILITATION TECHNOLOGY

Selection, design or manufacturing of augmentive or assistive devices appropriate for individual with disability

UNIT II REHABILITATION SCIENCE

Knowledge about the basic and clinical research about the variation in the physiological functioning and anatomical structure

UNIT III REHABILITATION ADVOCACY

Legal aspect helps the handicapped people in choosing the devices, the provisions available to them in this regard.

UNIT IV REHABILITATION MEDICINE

Physiological aspects of functional recovery, neurological and physhological aspects, rehabilitation therapies training to restore vision auditory and speech

UNIT V REHABILITATION ENGINEERING

Introduction to Rehabilitation Engineering - PHAATE model - Clinical practice of rehabilitation Engineering - Low technology tools - Service delivery – Universal design - Design based on human ability - Standards for assistive technology - Test for best design

Total Number of Hours: 45 Hrs

Text Books:

1. Reswick J.What is Rehabilitation Engineering?, Annual Review of rehabilitation – volume 2 springer - verlag, New York, 1982.

Reference Books:

1. Robinsion.C.J. Rehabilitation Engineering Handbook of electrical engineering, CRC Press, Bocaraton, 1993.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code BBI17E03	: 5	Subject Na	ame: H	IUMAN	ASSIS	T DEV	ICES		T / L/ ETL	L	T / S.Lr	P/ R	C
	F	Prerequisit	e:						Т	3	0/0	0/0	3
L : Lecture T :			.		0	Project	R : Res	earch C	: Credits				
T/L/ETL : The		ab/Embed	ded Theor	ry and L	ab								
OBJECTIVE													
> To Stu						al Heart							
		wledge of			evices								
		out Artifici wledge of	•		rthodia I	Davions							
		e Respirato											
COURSE OU	•	-	•		ing Alu	5							
CO1		Understar			g Machi	nes and	Artificia	al Heart					
CO2		Capable t					1 in tillion	ai Hourt					
CO3		Understar					ev						
CO4		Understar						c Devic	es				
CO5		Acquires											
Mapping of C	Course		Ŭ		<u> </u>			0 4					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	2
CO1	Μ	Н	L	М	Н	М	L	Н	М	L	М]	Η
CO2	Μ	Н	L	Μ	Н	L	М	Н	L	М	Н]	L
CO3	Μ	Н	L	М	Н	L	М	Н	L	М	Н]	H
CO4	Н	L	М	Н	М	Н	L	М	Н	Н	L	l	Ν
CO5	L	М	Н	L	L	Μ	Н	Μ	L	Н	Μ]	Η
COs / PSOs	I	PSO1	PSC			03		504	PSO5				
CO1		Н	N			Ĺ		М	Н				
CO2		М	L			Ν		Н	L				
CO3		L	L			H		М	Н				
CO4		Μ	H			Ĺ		M	H				
CO5		M	H					М	Η				
H/M/L indicat	es Stre	ength of C	orrelation	H- Hi	gh, M- 1	Vledium	, L-Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives ✓	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval				<u> </u>		<u> </u>				<u> </u>			

B.Tech Regulation 2017 Approved by the Academic Council

Department of **BIOMEDICAL INSTRUMENTATION ENGINEERING**

HUMAN ASSIST DEVICES

UNIT I HEART LUNG MACHINES AND ARTIFICIAL HEART

Condition to be satisfied by the H/L System - Different types of Oxygenerators, Pumps, Pulsatile and Continuous Types, Monitoring Process, Shunting, The Indication for cardiac Transplant, Driving Mechanism, Blood Handling System, Functioning and different types of Artificial Heart, Mock test setup for assessing its Functions

UNIT II CARDIAC ASSIST DEVICES

Synchronous Counter pulsation, Assisted through Respiration Right Ventricular Bypass Pump, Left Ventricular Bypass Pump, Open Chest and closed Chest type, Intra Aortica Veno Pumping, Prosthetic Vardio Valves, Principles and problem, Biomaterials for implantable purposes, its characteristics and testing

UNIT III ARTIFICIAL KIDNEY

Indication and Principles of heamodynalisis, Membrane, Dialasate, Different Types of hearmodialisers, Monitoring systems, Wearable Artificial Kidney, Implanting Type

UNIT IV PROSTHETIC AND ORTHODIC DEVICES

Hand and Arm Replacement – Different Types of Models Externally Powered Limb Prosthesis Feedback in Orthodic system, Functional Electrical Stimulation, Sensory Assist Devices, Materials for Prosthetic and orthodic devices

UNIT V RESPIRATORY AIDS AND HEARING AIDS

Intermittent positive pressure, Breathing Apparatus Operating Sequence, Electronic IPPB unit with monitoring for all respiratory parameters- Audiograms, Types of Deafness Conductive and Nervous, Hearing Aids, Construction and Functional Characteristics.

Total Number of Hours: 45 Hrs

Text Books:

1. Leving S.N.(Ed.), Advances in Bio Medical Engineering and Medical physics. Volumes I, II and IV, Inter University Publications, New York, 1968.

2. Kolff W.J., Artificial Organs, John Wiley and Sons, New York 1979.

Reference Books:

1. Andreas, F.Von racum, Hand book of bio material evaluation, Mc-Millan publishers, 1980.

2. Albert M. Cook and Webster J.G., Therapeutic Medical Devices, Prentice Hall Inc., New Jersery, 1982.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code: BBI17E04		Subject Na APPLICA				TRASC	ONIC		T / L/ ETL	L	T / S.Lr	P/ R	C
DDII/L01		Prerequisit							T	3	0/0	0/0	3
L : Lecture T :				ed Learr	ning P:	Project	R : Res	search C		-	.,	0, 0	
T/L/ETL : The						5							
OBJECTIVE	:												
		owledge C											
		oout Ultras											
		out Ultras											
	•	out High	0.			n In Ma	daina						
▶ 10 Ga	in Kne	owledge C	n Hologra	ipnic Ap	plicatio	n în Me	acine						
COURSE OU	TCO	MES (CO	(3-5))									
CO1		Acquires			iser								
CO2		Graduate		/		ltrasoni	cs						
CO3		Capable t			č								
CO4		Understar											
CO5		Acquires					cation I	n Medc	ine				
Mapping of C	ourse	Outcome	es with Pr	ogram	Outcom	es (POs	5)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	2
CO1	M	Н	М	L	Μ	Н	Μ	L	Н	М	L	1	Ν
CO2	Н	М	L	Μ	Н	L	Μ	L	Н	М	L		Ν
CO3	L	М	Н	L	M	Н	L	М	Н	L	М		H
CO4	H	M	L	M	H	L	Μ	Н	L	М	H		H
CO5	M	L	Н	Н	M	L	Н	М	L	М	Н	1	Μ
	-		DC		DC				DCO5		-		
COs / PSOs CO1		PSO1	PSO			03		SO4	PSO5				
CO1 CO2		M M	H L			L H		M M	H L				
CO2		H	N N			L		M	H				
CO4		M	H			L		M	H				
CO5		L	N			H		M	L				
H/M/L indicate	es Stre				gh, M- 1								
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Department of **BIOMEDICAL INSTRUMENTATION ENGINEERING**

LASER AND ULTRASONIC APPLICATION IN MEDICINE

UNIT I LASER

Principles of Laser action, different types and of lasers and its operation, Applications of Laser in Biology, Dentistry, Ophthalmology, Dermatology, Medicine, Surgery, Interferometer Applications, Flurorescence studies in cancer Diagnosis, Laser in Genetic Engineering, Low power applications in Medicine.

UNIT II ULTRASONICS

Different Modes of Display, A, B, C, scanning Techniques, Absorption in biological Tissues, Measurement of Ultrasonic Energy, Construction of Ultrasonic probe, Ultrasonic Imaging in Abdomen, Breast, Heart, Chest, Eye, Kidney, Skull, Pulsatile Motion, Pregnant and non-Pregnant uterus.

UNIT III ULTRASONIC SCANNERS Real Time Echo, 2-D Scanners, Colour Doppler	9 Hrs
UNIT IV HIGH ENERGY ULTRASONICS	9 Hrs

Effects due to High energy ultrasonics applications in Surgery, Cell destruction, Cleaners

UNIT V HOLOGRAPHIC APPLICATION IN MEDCINE

Wave front Recording and Reconstruction, Recording Media, Image forming application, Motion Induced Constrast, correlation filtering, Holograms using Ultrasonic signals and Hologram using Lasers.

Total Number of Hours: 45 Hrs

Text Books:

1. Leon Goldman, M.D., and R. Jamies Rockwell, Jr. Lasers in medicine Gordon and breach, science publishers Inc., New York, 1971

2. Brown Y.H.V. and Dickson J.F. (Eds), Advances in Bio – Medical Engineering Volume II and V, Academic press, London, 1972

3. Georg W. Stroke, Kock W.E., Ultrasonic Imaging and Holography, plenum press, New York, 1974

Reference Books:

1. Mertellucci S. Sand Chester A.N. Laser Photo biology and photo medicine, plenum press, New York, 1989.

2. Wolbarsht M.L., Laser Application in Medicine and Biology, Plenum press, New York, 1989

9 Hrs

9 Hrs

Subject Code: BBI17E05		ubject Na NSTRUM			FER BA	SED M	IEDICA	L	T / L/ ETL	L	T / S.Lr	P/ R	C
	Р	rerequisit	e:						Т	3	0/0	0/0	3
L : Lecture T :	Tutor	ial SLr :	Supervise	ed Learr	ning P:	Project	R : Res	earch C	: Credits				
T/L/ETL : The		ab/Embed	ded Theor	y and L	ab								
OBJECTIVE													
					Compu	iter Base	ed Medi	cal Insti	rumentatio	n			
		out The M											
		out The S				r •, •							
		owledge O out Medic				lonitorir	ıg						
COURSE OU					stem								
COURSE OU					troducti	on Of (omputo	r Basad	Medical I	netrumo	ntation		
CO1 CO2		Capable to	-	-			-		Wieuical I	iisuume	Itation		
CO2		Capable to				nerocor	nuoners						
CO4		Capable to			Ŭ	Comput	ers In Pe	atient M	onitoring				
CO4 CO5		Acquires			<u> </u>				omoring				
Mapping of C		<u> </u>				<u> </u>		/111					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	2
CO1	M	H	M	L	M	H	L	M	H	L	M		H
CO2	Н	M	L	M	Н	L	M	Н	L	M	Н		M
CO3	Н	М	L	М	Н	L	М	Н	L	М	Н		L
CO4	L	М	L	М	L	Н	М	L	М	Н	L	l	Ν
CO5	L	М	Н	L	М	М	L	М	L	Н	L	I	Ν
COs / PSOs	F	PSO1	PSC	02	PS	03	PS	504	PSO5				
CO1		М	Н	[I]	М	Н				
CO2		Н	Μ	[Ι]	М	Н				
CO3		L	Μ	[H	H		L	М				
CO4		М	Н	[Ι]	М	Н				
CO5		М	L		I			L	М				
H/M/L indicate	es Stre	ength of \overline{C}	orrelation	H- Hi	gh, M- I	Medium	, L-Low				_		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval												•	

COMPUTER BASED MEDICAL INSTRUMENTATION

UNIT I INTRODUCTION

8086 Architecture – system connections and timing – Instruction set and assembly language programming. Macro assemblers – BIOS and DOS Services – memory and I/O interfacing – Advanced Intel 32 bit processors.

UNIT II MICROCONTROLLERS

Introduction – 8051 architecture and programming, micro controller based medical systems – TMS 320 series – architecture and programming – applications in bio-signal processing – IDE51 - C Cross Assemblers.

UNIT III SYSTEM DESIGN

Multichannel computerized ECG, EMG and EEG data acquisition –storage, analysis and retrieval techniques – Medical image acquisitions through video –card – storage and retrieval techniques – Moderns and computer networking in the hospital.

UNIT IV COMPUTERS IN PATIENT MONITORING

Physiological monitoring – automated intensive care units – computerized arrhythmia monitoring – information flow in a clinical lab – computerized concepts – interfacing to HIS.

UNIT V MEDICAL EQUIPMENTS SYSTEM

Microprocessor based medical system – pulmonary instrumentation – anesthesia machine –EEG system – microprocessor based blood pressure monitor – prosthetic systems – bio- chemical measuring systems and micro processor based medical devices – Radiological Information system.

Total Number of Hours: 45 Hrs

Text Books:

1. Kenneth J. Ayala, the 8051 Micro Controller – Architecture Programming And Applications, Second Edition, Penram International, 1996.

Reference Books:

1. Douglas V. Hall, Microprocessors and Interfacing: Programming and hardware, Mcgrase Hill, Singapore, 1999.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code	: S	Subject Na	ame: B	IOMED	ICAL N	MEMS	AND		T / L/	L	Τ/	P/ R	C
BBI17E06		NANOTE		OGY					ETL		S.Lr		L
		Prerequisit							Т	3	0/0	0/0	3
L : Lecture T :						Project	R : Res	earch C	: Credits				
T/L/ETL : The		ab/Embed	ded Theor	y and L	ab								
OBJECTIVE						13.6							
		nd the wor					rosysten	ns					
		nd the wor						1 1. 1					
		nd the cone nsight to th					ation in	healthca	ire				
Ų		U					nnlicati	on in ro	search dor	nain			
COURSE OU	-				motogy		ipplicati			nam			
COURSE OU		understan			incinle (f MEM	S and M	licrosve	teme				
CO2		understan						nerosys					
CO3								ication	in healthca	are			
CO4		Acquires							in nearthe				
CO5									d its appli	cation in	research	domair	
Mapping of C	ourse								uppi	-unon m	rescuren	aomun	
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2
CO1	M	H	L	L	M	Н	L	M	H	L	M		H
CO2	Н	Н	H	L	L	M	H	M	Н	L	M		H
CO3	M	Н	L	М	Н	L	М	Н	L	М	Н		L
CO4	Н	М	L	М	Н	L	М	Н	L	М	Н]	L
CO5	L	М	Н	L	М	Н	L	М	Н	L	М	I	Н
COs / PSOs	I	PSO1	PSC)2	PS	O3	PS	SO4	PSO5				
CO1		М	L		I	Η		L	М				
CO2		М	Н]]	М	Н				
CO3		Η	Н	-	I	Η]	Μ	L				
CO4		М	H	-	J]	М	Н				
CO5		L	Μ			Л		L	М				
H/M/L indicate	es Stre	ength of C	orrelation	H- Hi	gh, M- I	Medium	, L-Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives ✓	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval					•	•	•	·		·		•	

BIOMEDICAL MEMS AND NANOTECHNOLOGY

UNIT I MEMS

Introduction - Typical MEMS Products - Application of Micro-system in Healthcare Industry – Working Principles of Microsystems Micro-sensors – Micro-actuation - MEMS with actuation– Micro-accelerators and Micro-fluidics - Materials for MEMS and Microsystems

UNIT II MEMS and Microfluidics

Fundamental principle - Light Modulators, Beam splitter – Micro-lens, Micro-mirrors - Digital Micromirror Device, Light detectors - Important Consideration on Micro-scale fluid, Properties of fluid - Fluid Actuation Methods – Micro-pumps - Typical Micro-fluidic Channel, Micro-fluid Dispenser.

UNIT III BIOMEMS

Introduction -Principle of Biosensor, Ampero-metric Biosensor - Micro-dialysis - BioMEMS for Clinical Monitoring - Monitoring of Glucose and Lactate with a micro-dialysis probe – Ammonia Monitoring - Electronic Nose, DNA Sensors,

UNIT IV BIOMEMS AND DNA

Unique features of Nucleic Acids, Lab on the Chip, Electrophoresis, Polymerase Chain Reaction (PCR), Biochemical reaction chains for integration: Biosensors and the "lab biochip", Typical Microarray experiment, Manufacturing of Microarrays, Synthesis on the chip, Spotting Techniques, PCR on the chip, Microchamber Chips, Micro-fluidics Chips, Emerging BioMEMS Technology.

UNIT V BIOMEDICAL NANOTECHNOLOGY

Nanoparticles- Nanomaterial characterization – XRD, SAXS, TEM, SEM, Scanning Tunneling microscopy, AFM, SPM technique, Biomolecular sensing for cancer diagnostics using carbon nanotubes, Carbon nanotube biosensors, Magnetic nanoparticles for MR Imaging, Nano-devices in biomedical applications.

Total Number of Hours: 45 Hrs

Text Books:

1. Steven S, Saliterman, "Fundamentals of BioMEMS and Medical Microdevices", International Society for Optical Engineering, First Edition 2006.

2. Nitaigour Premchand Mahalik, "MEMS", Tata McGraw Hill, 2nd Reprint 2008

3. Wanjun Wang and Steven A.Soper, "BioMEMS- Technologies and applications", CRC Press, First edition 2007.

Reference Books:

REVISION-3

1. Tai-Ran Hsu, "MEMS and Microsystems- Design, Manufacture and Nanoscale Engineering", John Wiley and Sons, 2nd Edition 2008.

2. Gerald A Urban, "BioMEMS", Springer, First Edition 2006.

3. Abraham P. Lee and James L. Lee, "BioMEMS and Biomedical Nanotechnology", Volume I, Springer, First Edition 2006.

4. Paul C.H. Li, "Introduction to Microfluids and BioMEMS: A Design and Problem-Solving Textbook", CRC Press, First Edition 2009.

5. Hari Singh Nalwa, "Nanostructured Materials and Nanotechnology", Academic Press, First Edition 2002.

Hre

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code BBI17E07	: 5	Subject Na	ame: R	ADIOL	OGICA	L EQU	IPMEN	NTS	T / L/ ETL	L	T / S.Lr	P/ R	C
	F	Prerequisit	e:						Т	3	0/0	0/0	3
L : Lecture T :					0	Project	R : Res	earch C	: Credits				
T/L/ETL : The		ab/Embed	ded Theor	y and L	ab								
OBJECTIVE													
To Ga													
		out Radio											
		out Specia											
		oout Vario oout Radia			Radiois	otopes							
COURSE OU													
COURSE OU		Acquires	, , ,		Dove								
CO1 CO2		Capable t		/		ic							
CO2		Understar					nto						
CO4		Acquires			0	<u> </u>		dinisoto	nes				
CO4		Analysis 1	0		nous Ap	Pricatio		u1013010	PCS				
Mapping of C	lourse	<i>.</i>		2	Outcom	es (POs	3)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	M	H	L	M	L	L	M	H	L	M	H		H
CO2	H	H	M	L	H	M	L	M	H	H	H		L
CO3	M	Н	L	M	Н	L	M	L	L	M	Н		M
CO4	Н	М	L	М	Н	L	М	Н	L	М	Н		L
CO5	L	М	Н	М	Н	L	М	Н	М	L	М]	H
COs / PSOs]	PSO1	PSC	02	PS	O3	PS	SO4	PSO5				
CO1		М	Н	[I	Ĺ		М	Н				
CO2		М	Н	[I	Ĺ		М	Н				
CO3		Н	L	r	N	Л		Η	L				
CO4		L	Μ			Η		L	М				
CO5		М	Н		Ν			L	Н				
H/M/L indicate	es Stre	ength of C	orrelation	H- Hi	gh, M- I	Medium	, L-Low			•			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives ✓	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval		I				•	•			•		•	

RADIOLOGICAL EOUIPMENTS

UNIT I X-RAYS

9 Hrs Principles and production of soft and hard X-rays, selection of anodes, Heel Pattern. Scattered radiation, Porter Bucky system, Cooling system.

UNIT II RADIO DIAGNOSIS

Radiography, Angiography, Fluoroscopy, Image Intensifier, Multi section radiography.

UNIT III SPECIAL RADIOLOGICAL EOUIPMENTS

Principle, Plane of Movement, Multi section Radiography, CAT. Principle of NMR, MRI

UNIT IV APPLICATION OF RADIOISOTOPES

Alpha, Beta and Gamma emission, Principle of radiation detectors, dot scanners, nuclear angiogram, Principles of Radiation therapy.

UNIT V RADIATION SAFETY

Hazardous effect of Radiation, Radiation protection Techniques, Safety Limits, Radiation Monitoring.

Total Number of Hours: 45 Hrs

Text Books:

1. R.S.Khandpur, "Handbook of Biomedical Instrumentation", Tata McGraw-Hill Publishing Company Ltd., New Delhi, 1997.

2. Steve Webb, "The Physics of Medical Imaging", Adam Hilger Philadelphia 1988.

Reference Books:

1. William R.Hendee, E.Russel Ritenour, "Medical Imaging Physics", Third Edition, Mosby Year Book, St. Louis, 1992.

9 Hrs

9 Hrs

9 Hrs

Subject Code	: !	Subject Na	ame: B	IOLOG	ICAL E	FFEC	FS OF		T / L/	L	Τ/	P / R	С
BBI17E08]	RADIATI	ON						ETL		S.Lr		
		Prerequisit							Т	3	0/0	0/0	3
L : Lecture T :			·		•	Project	R : Res	earch C	: Credits				
T/L/ETL : The		.ab/Embed	ded Theor	ry and L	ab								
OBJECTIVE					.	0.11							
> To Stu													
		bout Soma											
		owledge C bout Effec					ottora						
		owledge C			ΑΠά ΚΓ	vv Iuli Ivla	atters						
COURSE OU		<u> </u>											
COURSE OU	100		nds Action		liation C	n Livin	o Cells						
CO2			o analyze				Ŭ.	ion					
CO3			Knowledg										
CO4			nds Effect	/									
CO5			Knowledg										
Mapping of C	ourse	A					5)						
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Μ	Н	М	L	Н	М	L	М	Н	L	М	Н	
CO2	Μ	Н	L	Μ	Н	L	М	Н	L	М	Н	L	
CO3	Н	М	L	Н	М	Н	М	Н	L	М	Н	L	
CO4	L	М	Н	L	М	Н	L	М	Н	L	М	Н	
CO5	Η	М	L	Μ	Н	L	М	Н	L	М	Н	L	
COs / PSOs		PSO1	PSC	02	PS	O3	-	SO4	PSO5				
CO1	Μ		Н		L		Μ		Н				
CO2	Н		М		Н		L		Н				
CO3	L		М		Н		L		M				
CO4	H		L		M		H		M				
CO5	M	1.60	L		H	<i>x</i> 1	L		М				
H/M/L indicate	es Str	ength of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

BIOLOGICAL EFFECTS OF RADIATION

UNIT I ACTION OF RADIATION ON LIVING CELLS

Various theories related to radiation at cellular level, DNA and chromosomal damages, experiments on computation of various parameters related to this radiation exposure

UNIT II SOMATIC APPLICATION OF RADIATION

Radiosensitivity protocols of different issues of human, LA\D 50/30 effective radiation on skin, bone marrow, eye, endocrine glands, basis of radiotherapy.

UNIT III GENETIC EFFECTS OF RADIATION

Thresholds and linear dose, gene control hereditary diseases, effect of dose and I Infleneceson genetic equilibrium.

UNIT IV EFFECT OF MICROWAVE AND RF WITH MATTERS

Effects on various human organs and systems, wavelength in tissues, nonthermal interaction, low frequency radiation, measurement devices used to compute the thermal effects, standards of protection, national and international standards and precautions.

UNIT V UV RADIATION

Classification of sources, measurement, photo medicine, UV radiation safety Visibleand infrared radiation, combined effect of UV and IR, dose measuring instruments sed safety standards for this radiation

Total Number of Hours: 45 Hrs

Text Books:

 Glasser.O. Medical Physics, vol I, II, III, The year book Publishers Iinc., Chicago, 1980.
 Baranski.S and Cherski.P, Biological effects of microwave, Hutchison and Ross Inc., Stroudsburg, 1980.

Reference Books:

1. Moselly.H non-ionizing Radiation, Adam-Hilgar, Bristol, 1988

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code:	: S	Subject Na	ame: C	COMPU	TERS I	N MED	DICINE		T / L/	L	T/	P/ R	С
BBI17E09	г	·····							ETL T	3	S.Lr	0/0	3
L. Lesture T.		Prerequisit		ad Lagree	ina D.	Droigot	D.D.o.	aarah C		3	0/0	0/0	3
L : Lecture T : T/L/ETL : The			.		•	Project	R : Kes	earch C	: Credits				
OBJECTIVE		au/ Linueu		y and L	aU								
➢ To lear		out Overvie	ew Of Cor	mputer I	Hardwar	e							
		wledge on											
	•	out Compu											
		mputers In											
		wledge on	-		edical Re	esearch							
COURSE OU	TCO				<u></u>								
CO1		Understar				-	ardware						
CO2		Gains kno	<u> </u>										
CO3		Acquires	Ŭ					Ŭ					
CO4		Understar											
CO5		Acquires	U		1			earch					
Mapping of C COs/POs	PO1		PO3	ogram PO4	PO5	PO6	s) PO7	PO8	PO9	PO10	PO11	PO	12
COS/POS		H	L L	Р04 М	H	L PO6		H	M	L			H
CO1 CO2	M H	<u>п</u> М	L L	M	Н	L	M M	п L	H	M	M L		n M
CO2 CO3	п L	M	H L	L	п М	H	L	M	Н	L	M L		H H
CO4	H H	M	L	M	H	L	M	H	L	M	H		n L
C04	M	H	L	M	Н	L	M	Н		M	H		L L
05	IVI	11	L	IVI	11	L	IVI	11		IVI	11		
COs / PSOs	I	PSO1	PSC)2	PS	03	PS	504	PSO5				
CO1		М	L	,	I	Н		М	L				
CO2		Н	Μ	[I	Н		L	М				
CO3		М	L			Н		L	М				
CO4		Н	L			Ν		Н	L				
CO5		L	Μ			Н		L	М				
H/M/L indicate	es Stre	ength of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

COMPUTERS IN MEDICINE

UNIT I OVERVIEW OF COMPUTER HARDWARE PC-AT

8086 architecture, system connections, Instruction set and programming, Microcontrollers, Motherboard and its logic, RS232-C and IEEE bus standards, CRT controllers, FDC, HDC and Post sequence, PC based video card, modems and networking.

UNIT II SYSTEM DESIGN

Multichannel computerised ECG, EMG and EEG data acquisition, storage and retrieval, transmission of signal and images.

UNIT III COMPUTERS IN PATIENT MONITORING

Physiological monitoring, automated ICU, computerised arrhythmia monitoring, information flow in a clinical lab, computerised concepts, interfacing to HIS

UNIT IV COMPUTERS IN MEDICAL SYSTEMS MODELING

Radiotherapy, drug design, drug delivery system, physiological system modeling and simulation

UNIT V COMPUTERS IN MEDICAL RESEARCH

Role of expert systems, pattern recognition techniques in medical image classification, ANN concepts

Total Number of Hours: 45 Hrs

Text Books:

1. R.D.Lele, "Computers in Medicine", Tata McGraw-Hill, New Delhi, 1999.

Reference Books:

1. Douglas V.Hall, "Microprocessors and Interfacing : Programming and hardware", McGraw Hill, Singapore, 1999.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code BBI17E10	: 8	Subject Na	ame : M	EDICA	L INFO	RMAT	ICS		T / L/ ETL	L	T / S.Lr	P/ R	C
	F	Prerequisit	e:						Т	3	0/0	0/0	3
L : Lecture T :	: Tutor	ial SLr :	Supervise	ed Learr	ning P:	Project	R : Res	earch C	C: Credits				
T/L/ETL : The	eory/L	ab/Embed	ded Theor	y and L	ab	-							
OBJECTIVE	:												
🕨 To Ga							ology						
		out Overv				are							
		out Hospi											
								Informa	tion Syster	ns			
		out Integr			rmation	System	S						
COURSE OU	J TCO												
CO1		Acquires		,									
CO2		Acquires		,					e				
CO3		Acquires		,									
CO4									nedia Infor	mation S	ystems		
CO5		Acquires						nation S	ystems				
Mapping of C													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	
CO1	H	M	L	L	L	Н	M	L	M	H	L		M
CO2	M	H	L	M	H	L	M	H	L	M	H		<u>L</u>
CO3	L	M	H	L	M	Н	L	M	Н	L	M		H
CO4	M	H	L	M	H	L	M	H	L	M	H		L
CO5	L	M	L	Н	L	М	Н	L	M	Н	L	1	M
COs / PSOs	1	PSO1	PSC	2	DS	03	D	SO4	PSO5				
CO1	1	M	- 130 H			<u>U</u>		M	H				
CO2		H	M			L		M	H				
CO3		L	M			H	-	L	M				
CO4		M	L			M		H	L				
CO5		H	M			L.		M	H				
H/M/L indicat	es Stre				gh, M- 1								
Category		Engineering Sciences	Social					Internships / Technical Skill	x				
	Basic Sciences	Engineeri	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internship	Soft Skills				
Approval													

Department of **BIOMEDICAL INSTRUMENTATION ENGINEERING**

MEDICAL INFORMATICS

UNIT I BIOMEDICAL INFORMATION TECHNOLOGY

Historical highlights of Healthcare Information systems – Biomedical Information systems – problems and pitfalls – History and evolution of Electric resources – Internet and Interactive Multimedia components.

UNIT II OVERVIEW OF COMPUTER HARDWARE

Motherboard and its logic – memory and I/O interfacing, memory and I/O map I/O peripherals and add-on cards, RS 232-C and various IEEE standards.

UNIT III HOSPITALS INFORMATION SYSTEMS

Concept of HIS and its Position on the hospital – introduction of a computerized HIS-application of HIS in project management – Automation of Medical record – hospital Inventory data protection aspects – costs and benefits of HIS – transfer of information within the hospital – Modems and computer networking in Hospitals.

UNIT IV VISUAL PROGRAMMING AND MULTIMEDIA INFORMATION SYSTEMS 9 Hrs

Visuals Basic principles and programming – Design, Production and testing of multimedia based medical information systems.

UNIT V INTEGRATED MEDICAL INFORMATION SYSTEMS

Integration of Intra and Inter hospital information systems – Role of expert systems and fuzzy logic in medical information systems – Physiological system modeling and simulation – Concepts of Virtual reality, web based multimedia information systems – video conferencing.

Total Number of Hours: 45 Hrs

Text Books:

- 1. S.K. Chauhan, . "PC Organisation", S.K. Kataria and sons, Delhi.
- 2. Haroid sackman, "Biomedical Inforamtion Technology, Academic Press, New York, 1997.

Reference Books:

- 1. Mary Beth Fecko, "Electronic Resources: Access and Issues, Bowker-saur, London, 1997.
- 2. R.D. Lele, "Computers in medicine", Tata McGraw Hill, New Delhi, 1999.
- 3. Tay Vaughan, "Multimedia making it work", Tata McGRaw Hill, New Yotk, 1999.
- 4. Mark Spenik, "Visual Basic 6, Iterative Course", Techmedia, New Delhi, 1999.

9 Hrs

9 Hrs

9 Hrs

Subject Code BBI17E11		Subject Na NSTRUM		TIBRE (OPTICS	AND I	LASER		T / L/ ETL	L	T / S.Lr	P/ R	C
	I	Prerequisit	e:						Т	3	0/0	0/0	3
L : Lecture T :						Project	R : Res	search C	C: Credits				
T/L/ETL : The		ab/Embed	ded Theor	ry and L	ab								
OBJECTIVE													
									ial applica				
						dustrial	applicat	tion of o	ptical fibe	rs.			
		lerstanding											
							al applic	cation of	f lasers and	the Indu	istrial ap	plication	n of
		ography ar			ations of	lasers							
COURSE OU	TCO				<u> </u>	1 ("1	1.1	• • 1	1 1.				
<u>CO1</u>									strial appli				
CO2							applica	tion of o	optical fibe	ers			
CO3		Understar					(1	- f 1	1 1			
CO4					•			olication	of lasers	and the	ndustrial	applica	ation
		of Hologr	apity and	wieuica	i applica	MOUS OF	lasers						
Mapping of C			1	U		<u>```</u>	1	1		1			
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	
CO1	Μ	Н	L	Μ	L	Μ	H	L	M	Н	L		M
CO2	Н	М	L	Μ	Н	L	Μ	Н	L	M	Н		L
CO3	L	M	H	L	M	Н	L	Μ	H	L	M		H
CO4	Н	М	L	Μ	Н	L	М	Н	L	M	Н		L
<u> </u>	- ,												
COs / PSOs		PSO1	PSO			03		<u>SO4</u>	PSO5				
CO1		M	H			<u>L</u>		M	Н				
CO2		M	L			H		M	L				
CO3		M	H			<u>[</u>		M	H				
CO4		M	H					М	Н				
H/M/L indicat	es Str	ength of C	orrelation	H- H	igh, M- l	Medium	, L-Low				-		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	skills				
	Basic	Engin	Humanit Sciences	Progra	Progra	Open	Practi	Intern	Soft Skills				
Approval													

FIBRE OPTICS AND LASER INSTRUMENTS

UNIT I OPTICAL FIBERS AND THEIR PROPERTIES

Principles of light propagation through a fiber – different types of fibers and their properties transmission characteristics of optical fiber - absorption losses - scattering losses - dispersion - optical fiber measurement - optical sources - optical detectors - LED - LD - PIN and APD

UNIT II INDUSTRIAL APPLICATION OF OPTICAL FIBERS

9 Hrs Fiber optic sensors - fiber optic instrumentation system - different types of modulators - detectors application in instrumentation - interferometric method of measurement of length - moiré fringes measurement of pressure, temperature, current, voltage liquid level and strain – fiber optic gyroscope – polarization maintaining fibers.

UNIT III LASER FUNDAMENTALS

Fundamental characteristics of lasers – three level and four level lasers – properties of laser – laser modes – resonator configuration – Q-switching and mode locking – cavity dumping – types of lasers: gas lasers, solid lasers, liquid lasers and semi conductor lasers

UNIT IV INDUSTRIAL APPLICATION OF LASERS

Laser for measurement of distance, length velocity, acceleration, current, voltage and atmospheric effect – material processing – laser heating, welding melting and trimming of materials – removal and vaporization

UNIT V HOLOGRAM AND MEDICAL APPLICATION

Holography – basic principle; methods; holographic interferometry and applications, holography for non – destructive testing - holographic components - medical applications of lasers; laser and tissue interaction laser instruments for surgery, removal of tumors of vocal cords, brain surgery, plastic surgery, gynecology and oncology

Total Number of Hours: 45 Hrs

Text Books:

1. John and Harry, Industrial lasers and their applications, McGraw-Hill, 1974

2. Senior J.M., Optical Fiber Communication Principles and Practice, Prentice Hall, 1985

Reference Books:

- 1. John F Read, Industrial applications of lasers, Academic Press, 1978
- 2. MonteRoss, Laser applications, McGraw-Hill, 1968
- 3. Keiser G., Optical Fiber Communication, McGraw-Hill, 1991
- 4. Jasprit Singh, Semi conductor optoelectronics, McGraw-Hill, 1995

9 Hrs

9 Hrs

9 Hrs

Subject Code		Subject Na		AGNOS	STIC an	d THE	RAPEU	TIC	T / L/	L	T/	P/ R	C
BBI17E12		EQUIPMI							ETL T	3	<u>S.Lr</u> 0/0	0/0	3
L : Lecture T		Prerequisit		ed Lear	ning P.	Project	R · Res	earch (3	0/0	0/0	5
T/L/ETL : The						Toject	K.KC		. creans				
OBJECTIVE				<u> </u>									
		ut cardiac	system										
		out neurol											
		wledge on			r system								
		ut heart-lu	U										
To stu	idy abo	out respira	tory meas	uremen	t and ver	ntilator							
COURSE OU	JTCO	MES (CO	s): (3-5)									
CO1		Acquires			t cardiac	system							
CO2		Graduates	s gains kn	owledge	e on neu	rologica	l system	ı					
CO3		Understau											
CO4		Acquires				<u> </u>							
CO5			<u> </u>	Ŭ	<u> </u>			nent and	d ventilator	r			
Mapping of C								DOG	DOG	DO10	DO11	DO	
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	
CO1 CO2	M	H L	L H	M M	L L	H M	L H	M L	H M	L H	M L		H
CO2 CO3	M M	H	L	M	H H	L	М	H		М	H		M L
CO4	L	M	H	L	M	H	L	M	H	L	M		L H
CO5	H	M	L	M	H	L	M	H	L	M	H		L
000													
COs / PSOs	I	PSO1	PS	52	PS	03	P	SO4	PSO5				
CO1		М	H	[]	Ĺ		М	Н				
CO2		Н	N			H		L	М				
CO3		L	Ν			Ĺ		Н	М				
CO4		М	H			Ĺ		M	M				
CO5		M	H		-			М	Н				
H/M/L indicat	tes Stre	ength of C	orrelation	H-H	igh, M- 1	vledium	i, L-Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives ✓	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval			1	1	•	1	L	1		1	1	1	

DIAGNOSTIC AND THERAPEUTIC EQUIPMENTS I

UNIT I CARDIAC SYSTEM

ECG, sources of ECG, normal and abnormal waveform, diagnosis interpretation, cardiac pacemakerexternal pacemaker, implantable pacemaker, different types of pacemakers, fibrillation, defibrillator, AC defibrillator, DC defibrillator, electrodes, synchronised and unsynchronised types

UNIT II NEUROLOGICAL SYSTEM

EEG, genesis, lead system, wave characteristics, frequency bands, spontaneous and evoked response, diagnostic interpretation, epileptic discharges

UNIT III SKELETAL MUSCULAR SYSTEM

Structure of muscles, sliding theory of contraction, stimulation of muscles, muscle potential generation, recording and analysis of EMG waveforms, muscle and nerve stimulation, fatigue characteristics

UNIT IV HEART-LUNG MACHINE

Need for the unit, functioning of bubble, disc type and membrane type oxygenerators, fingerpump, roller pump, electronic monitoring of functional parameter

UNIT V RESPIRATORY MEASUREMENT AND VENTILATOR

Spirometer, Respiratory volume measurement, pnemograph, artificial respirator - IPR type, functioning

Total Number of Hours: 45 Hrs

Text Books:

1. John G. Webster, "Medical Instrumentation Application and Design", John Wiley and sons, New York, 1998.

Reference Books:

1. Khandpur R.S, "Handbook of Biomedical Instrumentation", Tata McGraw-Hill, New Delhi, 1997.

2. Joseph J.carr and John M. Brown, "Introduction to Biomedical equipment technology", John wiley and sons, New York, 1997.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code		Subject Na				NCES	APPLI	ED	T / L/	L	Τ/	P / R	С
BBI17E13		TO HOSP		GINE	ERING				ETL		S.Lr	0.10	
X X X T		Prerequisit		1.7	·	D	D D	1.0	T	3	0/0	0/0	3
L : Lecture T :						Project	R : Res	search C	: Credits				
T/L/ETL : The OBJECTIVE		ab/Embed	ded Theor	y and L	ab								
		ut Standa	disation ()f Hosp	ital Equi	nmente							
		wledge on				pineins							
		out Netwo		Jingineer	iiig								
				tic Sense	ors For M	Measuri	ng Phys	iologica	l Paramete	ers			
		ut Emi Ar						10108100					
COURSE OU						1.							
CO1		Acquires	· · · ·		ndardisa	ation Of	Hospita	al Equip	ments				
CO2		Gains kno	Ŭ				I	<u> </u>					
CO3		Graduate	Ū		Ŭ	0							
CO4						ensors F	or Meas	uring Pl	nysiologic	al Param	eters		
CO5			Ū					<u> </u>	Equipmen				
Mapping of C	Course		-										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	2
CO1	Н	М	L	М	L	М	Н	L	М	Н	L	N	Ν
CO2	Μ	L	Н	М	L	М	Н	L	М	Н	L	N	M
CO3	L	М	Н	L	М	Н	L	М	Н	L	М]	Н
CO4	Н	М	L	Μ	Н	L	М	Н	L	М	Н]	L
CO5	Μ	Н	L	Μ	Н	L	М	Н	L	М	Н]	Ĺ
COs / PSOs	I	PSO1	PSC	02	PS	O3	PS	SO4	PSO5				
CO1		Н	Μ	[]		-	М	Н				
CO2		М	H	[l		-	М	Н				
CO3		L	Μ	I	I	Η		L	М				
CO4		М	Н	[]	Ĺ		Μ	Н				
CO5		Н	Μ			М		Η	L				
H/M/L indicat	es Stre	ength of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval					✓			<u> </u>					

RECENT ADVANCES APPLIED TO HOSPITAL ENGINEERING

UNIT I STANDARDISATION OF HOSPITAL EQUIPMENTS

Need for standardization, classification of equipments, international standards, Experimental methods of testing standards, maintenance of standards and recalibration.

UNIT II CLINICAL ENGINEERING

Hospital design, electrical, air – conditioning, sanitation, ventilation, safety regulation to be incorporated in the hospital center, management and legal aspects, latest rug delivery systems for sustained delivery of medicines.

UNIT III NETWORKING

Importance of networking, LAN features, network topologies, LAN components, network operating system, basic data communication concept, application, LAN and multi-user system, planning and installing LAN in hospital set up.

UNIT IV FIBRE OPTIC SENSORS FOR MEASURING PHYSIOLOGICAL PARAMETERS

9 Hrs Different optical sources, optical detectors, principle of fiber optic cables, single mode multi mode, step index and graded index type, sensors based on polarisation, interferometer principle, magnetic sensors, application of the sensors in measuring pressure, temperature, flow, rotation and chemical activites, principles of smart sensors.

UNIT V EMI AND EMC APPLIED TO HOSPITAL EQUIPMENTS

Principles of EMI, computation of EMI, measuring techniques to quantify the level of interference, method of suppressing and isolating this unit from interference

Total Number of Hours: 45

Hrs

Text Books:

1. Donald R.J. White, A Handbook of electromagnetic Interference and Compatibility, Vol 4, 5, Published by Donwhite Constant – Maryland, 1972.

2. Webster J.G. and Albert M. Cook, Clinical Engineering Principles and Practices Printice Hall Inc, Englewood Cliffs, New Jersery, 1979.

3. Bernhard Keiser, Principles of Eletromagnetic Compatibility, Artech House- 3rd Edition, 1986.

Reference Books:

1. Eric Udd, Fiber Optic Sensors and introduction for engineers and scientists, Wiley Interscience Publication, New Delhi, 1991.

2. Bajbai, P.K. Ceramic – a novel device for sustained long term delivery of drugsBio Ceramic Vol III,

3. Rose Heliman Institute of Technology, Terrahaute, Indian, 1992.

4. S.K. Basandia, Local Area Network, Golgotia Publishing Pvt Ltd., New Delhi, 1995.

9 Hrs

9 Hrs

9 Hrs

Subject Code BBI17E14		Subject Na FHERAPI							T / L/ ETL	L	T / S.Lr	P/ R	C
BBII/E14		Prerequisit		QUIPM	IEN 15 -	- 11			T	3	<u>0/0</u>	0/0	3
L : Lecture T :				ed Lear	ning P ·	Project	R · Res	search C	-	5	0/0	0/0	5
T/L/ETL : The						Hojeet	IX . IXC.		. creans				
OBJECTIVE				- <u> </u>									
To lea	rn abo	out Ultraso	nic Techr	iques F	or Diagn	osis							
		wledge on		Ionitorii	ng And H	Biotelen	netry						
	•	out Diathe	•										
		out Special			niques								
➢ To gai	n kno	wledge on	Patient S	afety									
COURSE OU	TCO	MFS (CO	(3-5))									
CO1		Acquires			trasonic	Technic	uues For	Diagno	sis				
CO2		Graduate	<u> </u>				A	Ŭ					
CO3		Understar							<u> </u>				
CO4		Graduate			on Spec	ial Diag	nostic T	echniqu	ies				
CO5		Understar											
Mapping of C										-			
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			12
CO1	М	Н	L	Μ	Н	L	М	L	Н	Μ	L	Н	
CO2	Η	M	L	H	M	L	Н	L	M	Η	L	Μ	
CO3	H	M	L	M	H	L	M	H	L	M	H	L	
CO4	M	L	M	H	L	M	H	L	M	H	L	M	
CO5	L	M	L	М	Η	L	M	Н	L	Μ	Н	L	
COs / PSOs		PSO1	PSO	$\frac{1}{2}$	PS	03	P	SO4	PSO5				
CO1	Μ	1501	M	52	L	05	H	504	M				
CO2	H		M		L		M		H				
CO3	Μ		Н		L		Н		М				
CO4	М		Н		L		М		Н				
CO5	L		М		Η		L		М				
H/M/L indicat	es Str	ength of C	orrelation	H- H	igh, M- I	Medium	n, L-Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives ≺	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

DIAGNOSTIC AND THERAPEUTIC EQUIPMENTS - II

UNIT I ULTRASONIC TECHNIQUES FOR DIAGNOSIS

Basic principles of Echo technique, display techniques A, B, M modes, Echo cardiograms, Echo encephalogram, Ultrasonic applied as diagnostic tool in ophthalmology, obstetrics and gynecology.

UNIT II PATIENT MONITORING AND BIOTELEMETRY

Patient monitoring system – ICU, post operative, ICCU, single channel telemetry, Multichannel telemetry, frequency allotment, radiopill - Transmission of Biosignals over telephone lines

UNIT III DIATHERMY

Clinical applications of electrotherapy, short wave diathermy, ultrasonic diathermy, microwave diathermy, surgical diathermy unit, IR lamps, UV lamps

UNIT IV SPECIAL DIAGNOSTIC TECHNIQUES

Principles of Cryogenic technique and application, Endoscopy, Laparoscopy, Thermography

UNIT V PATIENT SAFETY

Sources of leakage current, Micro and Macro shock, monitoring circuits, earthing schemes

Total Number of Hours: 45 Hrs

Text Books:

1. Khandpur R.S, "Handbook of Biomedical Instrumentation", Tata McGraw-Hill, New Delhi, 1997.

Reference Books:

1. John G.Webster, "Medical Instrumentation Application and Design", John Wiley and sons, New York, 1998.

2. Joseph J.Carr and John M.Brown, "Introduction to Biomedical Equipment technology", John Wiley and sons, New York, 1997.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Subject Code		ubject Na			1 THEC	ORY AF	PLIED	ТО	T / L/	L	Τ/	P/ R	C
BBI17E15		BIO-MEII		IGINEI	ERING				ETL		S.Lr		L
		Prerequisit							Т	3	0/0	0/0	3
L : Lecture T :						Project	R : Res	search C	: Credits				
T/L/ETL : The	2	ab/Embed	ded Theor	y and L	ab								
OBJECTIVE		C (C										
To LeaTo Ga		out Syster owledge C			ation								
		out Imped			iction								
		out Imped			back								
		owledge C				al Syste	ms						
COURSE OU		<u> </u>			biologic	ui byste	1115						
CO1		Understar	, , ,		nt								
CO2		Acquires				Functio	n						
CO3		Graduate					<u>, , , , , , , , , , , , , , , , , , , </u>						
CO4			nds Period										
CO5			n Of Biol	0		<i>iouo</i> n							
Mapping of C	ourse					es (POs	5)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12
CO1	M	М	М	L	Н	L	М	Н	L	М	Н		L
CO2	M	Н	L	М	Н	L	М	Н	L	М	Н		Ĺ
CO3	M	Н	L	М	Н	L	М	Н	L	М	Н		Ĺ
CO4	Μ	Н	L	М	L	М	Н	L	М	Н	L	N	Ν
CO5	M	Н	L	Μ	Н	L	Μ	Н	L	М	Н]	Ĺ
COs / PSOs	I	PSO1	PSC	02	PS	O3	PS	SO4	PSO5				
CO1		М	Н	[I			М	Н				
CO2		М	Н	[]	Ĺ		М	Н				
CO3		Н	Μ	[Ĺ		Н	L				
CO4		L	Μ			Н		L	М				
CO5		Н	Μ					М	Н				
H/M/L indicat	es Stre	ength of C	orrelation	H- Hi	gh, M- 1	Medium	, L-Low						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval								· · · · ·					

SYSTEM THEORY APPLIED TO BIO-MEIDCAL ENGINEERING

UNIT I INTRODUCTION

System Concept, System Properties, Piece –Wiser Linear Approximation, Electrical Analog for Compliance, Thermal Storage, Mechanical Systems, Step response of a Resistance/Compliant Systems, Pulse Response of First Order System.

UNIT II TRANSFER FUNCTION

System as an Operator use of Transfer Function, bioengineering of a Coupled System, Example of Transformed Signals.

UNIT III IMPEDANCE CONCEPT

Circuits for the Transfer Function with Impedance Concept Prediction of Performance.

UNIT IV PERIODIC SIGNALS, FEEDBACK

Sinusoidal Functions, Sinusoidal Analysis of Instrumentation System, Evaluation of Transfer Function s from Frequency Response, Relationship between Phase Lag and Time Delay Transient Response of an Undamped Second Order system, General Description of Natural Frequency Damping, Physical Significance of Under Damped Responses. Characterization of Physiological Feedback, System, Uses and Testing of System Stability.

UNIT V SIMULATION OF BIOLOGICAL SYSTEMS

Simulation of Skeletal music servomechanism, thermo Regulation, Cardiovascular control System, Respiration controls, Occulo Motor System, Endocrine control system and Modeling of receptors.

Total Number of Hours: 45 Hrs

Text Books:

1. William B. Blesser, A System Approacg to Biomedicine, McGraw Hill Book Co., New York, 1969.

2. Manfreo Clynes and John H. Milsum, Biomedical Engineering System, McGraw Hill and Co, New York, 1970.

Reference Books:

1. Douglas S. Rigg, Control Theory and Physiological Feedback Mechancism, The William and Wilkins Co., Baltimore, 1970.

2. Riechard Skalak and Shu Chien, Handbook of Biomedical Engineering, McGraw Hill and Co., New York, 1987.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Department of **BIOMEDICAL INSTRUMENTATION ENGINEERING**

TECHNICAL SKILLS

- 1.BBI17TS1LabVIEW2.BBI17TS 2MATLAB
- 3. BBI17TS3 Embedded (Keil)
- 4. BBI17TS4 VLSI
- 5. BBI17TS5 C++, JAVA
- 6. BBI17TS6 IOT
- 7. BBI17TS7 Microsoft Robotic Developer Studio(Robot Control and Simulator)

OPEN ELECTIVES LIST (SEMESTER 6)

- 1. AUTOMOTIVE ENGINEERING
- 2. ELECTRIC AND HYBRID VEHICLES
- 3. BOUNDARY LAYER THEORY
- 4. COMPUTATIONAL FLUID DYNAMICS
- 5. FINITE ELEMENT ANALYSIS
- 6. ARTIFICIAL INTELLIGENCE/EXPERT SYSTEMS IN DESIGN AND MANUFACTURING
- 7. CREATIVITY, INNOVATION AND NEW PRODUCT DEVELOPMENT
- 8. COMPOSITE MATERIALS AND STRUCTURES
- 9. MACHINE LEARNING IN BIOINFORMATICS
- **10. PRINCIPLES AND APPLICATIONS OF BIOINFORMATICS**
- 11. BIOSIMULATIONS USING MATLAB
- 12. DATA MINING IN BIOINFORMATICS
- 13. BIOINFORMATICS FOR BIOENGINEERS
- 14. INTRODUCTION TO BIOMEDICAL DEVICES
- 15. FUNDAMENTALS OF BIOSIGNAL PROCESSING
- 16. BIOREFINERY
- 17. DIGITAL IMAGE PROCESSING
- 18. WATER POLLUTION AND ITS MANAGEMENT
- 19. LOBAL WARMING AND CLIMATE CHANGE
- 20. DISASTER MANAGEMENT AND MITIGATION
- 21. ENERGY ENGINEERING TECHNOLOGY AND MANAGEMENT
- 22. RENEWABLE ENERGY TECHNOLOGY
- 23. INDUSTRIAL POLLUTION PREVENTION AND CONTROL
- 24. PETROLEUM TECHNOLOGY
- 25. INTRODUCTION TO TRANSPORT PROCESSES
- 26. DATA STRUCTURES
- 27. DATABASE CONCEPTS
- 28. SOFT COMPUTING
- 29. WEB DESIGN
- 30. ELECTRONIC CIRCUITS AND SYSTEMS
- 31. TELECOMMUNICATION SYSTEMS
- 32. POWER PLANT INSTRUMENTATION
- 33. BIOMEDICAL INSTRUMENTATION
- 34. RENEWABLE ENERGY RESOURCES
- 35. MICROCONTROLLERS AND THEIR APPLICATIONS
- 36. ELECTRICAL MACHINES AND DRIVES
- 37. FUNDAMENTALS OF ELECTRIC POWER UTILIZATION
- **38. INDUSTRIAL ELECTRONICS**
- **39. REAL-TIME EMBEDDED SYSTEMS**
- 40. CONTROLLER BASED SYSTEM DESIGN
- 41. INSTRUMENTATION ENGINEERING
- 42. HUMAN NUTRITION AND HEALTH
- 43. TECHNOLOGY OF BAKERY AND CONFECTIONERY PRODUCTS
- 44. FOOD PROCESSING AND PRESERVATION TECHNOLOGY
- 45. DISASTER MANAGEMENT
- 46. CYBER SECURITY
- 47. DAY-TO-DAY BIOLOGY
- 48. INTRODUCTION TO AUTOMATION
- 49. VIRTUAL INSTRUMENTATION
- 50. FUNDAMENTALS OF MEMS
 - B.Tech Regulation 2017 Approved by the Academic Council

- 51. INFORMATION SECURITY
- 52. INTRODUCTION TO DATABASE MANAGEMENT SYSTEM
- 53. PROFICIENCY IN ENGLISH AND ACCENT TRAINING
- 54. CREATIVE WRITING
- 55. INDIAN WRITING IN ENGLISH
- 56. SCIENCE FICTION
- 57. INTELLECTUAL PROPERTY RIGHTS , INNOVATION AND TECHNOLOGY
- 58. PRINCIPLES OF TECHNOLOGY AND INNOVATION MANAGEMENT
- 59. MARKETING MANAGEMENT
- 60. INDUSTRIAL MARKETING
- **61. STRESS MANAGEMENT**
- 62. BASICS OF BANKING AND CAPITAL MARKETS
- 63. FINANCE FOR NON FINANCE EXECUTIVES
- 64. FUNDAMENTALS OF ENTREPRENEURSHIP
- 65. OPERATIONS RESEARCH
- 66. ETHICAL VALUES FOR BUSINESS
- 67. INFORMATION SYSTEMS FOR ENGINEERS
- 68. DATA WAREHOUSING AND DATA
- 69. LEGAL ASPECTS OF BUSINESS
- 70. INDUSTRIAL ENGINEERING AND MANAGEMENT
- 71. BUSINESS ENVIRONMENT
- 72. CONCURRENT ENGINEERING
- 73. MEMS AND NANO MANUFACTURING
- 74. NON DESTRUCTIVE TESTING
- 75. NANO PROCESSING
- 76. LOW COST AUTOMATION
- 77. MANUFACTURING COST ESTIMATION
- 78. MICRO ELECTRO MECHANICAL SYSTEMS
- 79. INTRODUCTION TO HYDRAULICS AND PNEUMATICS
- 80. PLASTIC ENGINEERING
- 81. INTRODUCTION TO ROBOTICS
- 82. BASIC THERMODYNAMICS AND HEAT TRANSFER
- 83. RENEWABLE AND SUSTAINABLE ENERGY
- 84. ENERGY AUDITING
- 85. ENERGY CONSERVATION
- 86. SOLAR ENERGY UTILIZATION
- 87. HUMAN COMPUTER INTERFACE
- 88. ARTIFICIAL INTELLIGENCE AND NEURAL NETWORKS
- 89. APPLICATIONS OF NANOTECHNOLOGY
- 90. SOFTWARE DEVELOPMENT AND MANAGEMENT
- 91. TELECOM BILLING
- 92. Fire and Safety
- 93. NSS

S.No.	Course Work- Subject Area	•	of Total its (%)	Suggested Breakdown on Credits (for	Dr.MGR EandR Inst University
		Min	Max	Total 176)	credits
1	Humanities and Social Sciences (HS), including Management;	5(9.25)	10(18.5)	14	13
	TECHNICAL ENGLISH - I				2
	TECHNICAL ENGLISH - II				2
	ENVIRONMENTAL SCIENCE				3
	MANAGEMENT PAPER 1				3
	MANAGEMENT PAPER 2				3

S.No.	Course Work- Subject Area	Range o Credits Min		Suggested Breakdown on Credits (for Total 176)	Dr.MGR EandR Inst University credits
2	Basic Sciences(BS) including Mathematics, Physics, Chemistry, Biology;	15(27.75)	20(37)	30	30
	MATHS - I				4
	ENGINEERING PHYSICS				3
	MATERIAL SCIENCE				3
	ENGINEERING CHEMISTRY - I				3
	ENGINEERING CHEMISTRY - II				3
	MATHS - II				4
	PHYSICS LAB				1
	CHEMISTRY LAB				1
	MATHS - III				4
	MATHS - IV				4

S.No.	Course Work- Subject Area	Range o Credit Min		Suggested Breakdown on Credits (for Total 176)	Dr.MGR EandR Inst University credits
3	Engineering Sciences (ES), including Materials, Workshop, Drawing, Basics of Electrical/Electronics/Mechanical/Computer Engineering, Instrumentation;	15(27.75)	20(37)	30	29
	BASIC ELECTRICAL and ELECTRONICS ENGINEERING				3
	BASIC MECHANICAL and CIVIL ENGINEERING				3
	BASIC ENGINEERING GRAPHICS				2
	WORKSHOP and PROJECT LAB				1
	PROGRAMMING LAB				2
	BASIC ENGINEERING SCIENCE				3
	INTER DISCIPLINARY THEORY (4 PAPERS)				12
	INTER DISCIPLINARY LAB (3 LABS)				3

S.No.	Course Work- Subject Area	Ų	of Total ts (%) Max	Suggested Breakdown on Credits (for Total 176)	Dr.MGR EandR Inst University credits
4	Professional Subjects-Core (PC), relevant to the chosen specialization/branch; (May be split into Hard (no choice) and Soft (with choice), if required;)	30(55.5)	40(74)	50	68
	4 CREDIT DEPT CORE PAPER (9 papers)				36
	3 CREDIT DEPT CORE PAPER (7 papers)				21
	DEPARTMENT CORE LABS				11

Department of **BIOMEDICAL INSTRUMENTATION ENGINEERING**

S.No.	Course Work- Subject Area	Range of Total Credits (%)		Suggested Breakdown on Credits	Dr.MGR EandR Inst	
		Min	Max	(for Total 176)	University credits	
5	Professional Subjects – Electives (PE), relevant to the chosen specialization/ branch;	10(18.5)	15(27.75)	20	15	
	DEPT CORE ELECTIVES (5 PAPERS)				15	

S.No.	Course Work- Subject Area	•	of Total its (%) Max	Suggested Breakdown on Credits (for Total 176)	Dr.MGR EandR Inst University credits
6	Open Subjects- Electives (OE), from other technical and/or emerging subject areas;	5(9.25)	10(18.5)	12	10
	OPEN ELECTIVE (Inter Disciplinary No Prerequisite)				3
	SPECIAL ELECTIVE (Emerging Technology Syllabus to be framed)				3
	SOFT SKILL 1				2
	SOFT SKILL 2				2

S.No.	Course Work- Subject Area	Ų	of Total its (%) Max	Suggested Breakdown on Credits (for Total 176)	Dr.MGR EandR Inst University credits
7	Project Work, Seminar and/or Internship in Industry or elsewhere.	10(18.5)	15(27.75)	20	20
	TECHNICAL SKILLS (3)				3
	INPLANT TRAINING				1
	PROJECT PHASE – 1 and 2				12
	FOREIGN LANGUAGE				2
	MINI PROJECT				1
	ENTREPRENEURAIL SKIL DEVELOPMENT and PROJECT LAB				1

B.Tech Regulation 2017 Approved by the Academic Council

S. No	Description	No. of Papers	Credits
1	Department Core (3 credits) Inclusive of 3 ETL subjects	7	21
2	Department Core (4 credits)	9	36
3	Department Core Electives	5	15
4	Open Elective	1	3
5	Special Elective (ETL)	1	3
6	Management Papers	2	6
7	Core Department Lab	11	11
8	Interdisciplinary Theory	4	12
9	Interdisciplinary Lab	3	3
10	Mathematics	4	16
11	Basic Humanities and Sciences	6	16
12	Environmental Science	1	3
13	Basic Engineering Science	4	11
14	Basic Engineering and Science Labs	4	5
15	Technical Skills	3	3
16	Soft Skills	2	4
17	Foreign Language	1	2
18	Mini Project	1	1
19	Project (Phase 1 and 2)	2	12
20	In Plant Training	1	1
21	Entrepreneurial Skill Development and Project Lab	1	1
	Total	73	185

Department of **BIOMEDICAL INSTRUMENTATION ENGINEERING**

Note:

Revision-2 curriculum modified with the following changes

- In the 2nd semester curriculum, Entrepreneurial Skill Development and Project lab courses included with one credit weightage.
- Total number of Credits for the 1st year program has been increased to 41 credits and the overall credit has been increased to 185 credits.