

CURRICULUM AND SYLLABUS (2018 REGULATION)

BACHELOR OF TECHNOLOGY CHEMICAL ENGINEERING

(PART TIME)

DEPARTMENT OF CHEMICAL ENGINEERING

		I SEMESTER					
S.NO.	SUBJECT CODE	SUBJECT NAME Ty/Lb/ ETL T/SLr					
1	BMA18024	Mathematics I For Chemical Engineers	Ту	3	1/0	0/0	4
2	BCE18I04	Environmental Engineering	Ту	3	0/0	0/0	3
3	BCT18007	Mechanical Operations	Ту	3	1/0	0/0	4
4	BCT18ET1	Fertilizer Technology	ETL	1	0/1	3/0	3
		PRACTICALS*					
1	BCT18L03	Mechanical Operation Lab	Lb	0	0/0	3/0	1

Credits Sub Total:15

		II SEMESTER					
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty / Lb/ ETL	L	T/SLr	P/R	С
1	BMA18025	Mathematics II For Civil and Chemical Engineers	Ту	3	1/0	0/0	4
2	BCS18I03	Computer Application In Chemical Engineering	Ту	3	0/0	0/0	3
3	BES18001	Basic Electrical & Electronics Engineering	Ту	2	0/1	0/0	3
4	BCT18ET3	Petroleum Technology	ETL	1	0/1	3/0	3
5	BCT18005	Chemical Technology	Ту	3	0/0	0/0	3

Credits Sub Total: 16 TOTALCREDITS: 31

 $C: Credits\ L: Lecture\ T: Tutorial\ S.Lr: Supervised\ Learning\ P: Problem\ /\ Practical\ R: Research$

Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab*Internal evaluation

	III SEMESTER											
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty / Lb/ ETL	L	T/SLr	P/R	С					
1	BBT18I01	Bio-Chemical Principles	Ty	3	0/0	0/0	3					
2	BCT18008	Chemical Process Calculation	Ty	3	1/0	0/0	4					
3	BCT18006	Fluid Mechanics	Ty	3	0/0	0/0	3					
4	BCT18ET4	Chemical Process Equipment Design & Drawing Lab	ETL	1	0/1	3/0	3					

Credits Sub Total: 13

		IV SEMESTER					
S.NO.	SUBJECT	SUBJECT NAME	Ty / Lb/	L	T/SLr	P/R	C
	CODE		ETL				
1	BCT18003	Chemical Engineering Thermodynamics	Ту	3	0/0	0/0	3
2	BCT18013	Mass Transfer-I	Ty	3	1/0	0/0	4
3	BCT18009	Heat Transfer	Ty	3	1/0	0/0	4
4	BXX18EXX	Elective 1	Ty	3	0/0	0/0	3
		PRACTICALS*					
1	BCT18L08	Heat Transfer Lab	Lb	0	0/0	3/0	1

Credits Sub Total: 15

 $C: Credits\ L: Lecture\ T: Tutorial\ S.Lr: Supervised\ Learning\ P: Problem\ /\ Practical\ R: Research$

Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab*Internal evaluation

		V SEMESTER							
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty / Lb/ ETL	L	T/SLr	P/R	С		
1	BCT18014	Mass Transfer II	Ту	3	1/0	0/0	4		
2	BCT18010	Chemical Reaction Engineering	Ту	3	1/0	0/0	4		
3	BCT18E13	Industrial Instrumentation	Ty	3	0/0	0/0	3		
4	BXX18EXX	Elective 2	Ту	0	0/0	0/0	3		
	PRACTICALS*								
1	BCT18L11	Chemical Reaction Engineering Lab	Lb	0	0/0	3/0	1		

Credits Sub Total: 15

		VI SEMESTER					
S.NO.	SUBJECT CODE	SUBJECT NAME	T/SLr	P/R	С		
1	BCT18004	Process Control And Dynamics	Ту	3	1/0	0/0	4
2	BXX18EXX	Elective 3	Ty	1	0/2	1/1	3
3	BMG18001	Total Quality Management For Chemical Engineers	Ту	3	0/0	0/0	3
4	BCT18011	Transport Phenomena	Ту	3	0/0	0/0	3
	•	PRACTICALS*			<u>'</u>		
1	BCT18L12	Project Phase -I	Lb	0	0/0	3/3	2

Credits Sub Total: 15

 $C: Credits\ L: Lecture\ T: Tutorial\ S.Lr: Supervised\ Learning\ P: Problem\ /\ Practical\ R: Research$

 $Ty/Lb/ETL: Theory/Lab/Embedded\ Theory\ and\ Lab*Internal\ evaluation$

	VII SEMESTER												
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty / Lb/ ETL	L	T / SLr	P/R	С						
1	BXX18EXX	Elective-4	Ту	0	0/0	0/0	3						
		PRACTICALS*											
1	BCT18L13	Project Phase -II	Lb	0	0/0	12/12	8						

C: Credits L: Lecture T: Tutorial S.Lr: Supervised Learning P: Problem / Practical R: Research

Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab*Internal evaluation

CREDIT SUMMARY

Semester: 1 : 15
Semester: 2 : 16
Semester: 3 : 13
Semester: 4 : 15
Semester: 5 : 15
Semester: 6 : 15
Semester: 7 : 11
Total Credits: 100

	ELECTIVES –SEMESTER 4										
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty / Lb/ ETL	L	T/SLr	P/R	С				
1	BCT18E01	Food Technology	Ту	3	0/0	0/0	3				
2	BCT18E02	Industry Pollution Prevention and Control	Ту	3	0/0	0/0	3				
3	BCT18E03	Chemistry of Polymer and Composite Materials	Ту	3	0/0	0/0	3				

	ELECTIVES –SEMESTER 5										
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty / Lb/ ETL	L	T/SLr	P/R	С				
1	BCT18E04	Green Chemistry and Engineering	Ту	3	0/0	0/0	3				
2	BCT18E05	Modern Separation Processes	Ту	3	0/0	0/0	3				
3	BCT18E06	Renewable Energy Engineering	Ту	3	0/0	0/0	3				

	ELECTIVES –SEMESTER 6											
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty / Lb/ ETL	L	T/SLr	P/R	С					
1	BCT18E07	Computational Fluid Dynamics	Ту	3	0/0	0/0	3					
2	BCT18E08	Frontiers of Chemical Engineering	Ту	3	0/0	0/0	3					
3	BCT18E09	Industrial Management	Ту	3	0/0	0/0	3					
4	BCT18E10	Drugs And Pharmaceutical Technology	Ту	3	0/0	0/0	3					

	ELECTIVES – SEMESTER 7											
S.NO.	SUBJECT	SUBJECT NAME	Ty / Lb/	L	T/SLr	P/R	C					
	CODE		ETL									
1	BCT18E11	Professional Ethics In Engineering	Ty	3	0/0	0/0	3					
2	BCT18E13	Process Optimization	Ту	3	0/0	0/0	3					

SEMESTER I (THEORY)

Subjec	ct Code:	Sul	bject Na	me: Ma	athema	tics	I for (Chemi	cal	Engi	neers	T	y / L	b/ ETI	L	T/SLr	P/R	C
BMA1	8024	Pro	erequisi	te: Nil								T	y		3	1/0	0/0	4
	cture T : T			•		_	P : Pro	oject R	: R	esear	ch C:	Cred	its					<u> </u>
	CTIVE:	of this c					ncepts	of Mat	trice	es, A	nalyti	e fund	ctions	s and, F	ourier	series to cl	nemical	
COUR	RSE OUT		G (COs)	: (3-5)														
CO1	To unde	rstand th	e basic o	concepts	in P.D	.E &	k its ap	plicati	on.									
CO2	To unde	rstand th	e basic o	concepts	in ana	lytic	for co	mplex	inte	egral								
Mappi	ing of Cou	ırse Out	tcomes v	vith Pro	gram (Out	comes	(POs)	1									
COs/P	Os	PO1	PO2	PO3	PO4	PC	D5	PO6	PO	D7	PO8	}	PO	9	PO10	PO11	PO12	2
CO1		Н	L	-	-	M		-	-		M		-		Н	-	L	
CO2		Н	M	-	-	-		-	-		L		-		-	-	Н	
COs /	PSOs	PS	O1	PS	O2		PSO	3		P	SO4							
CO1		M		Н		-			-									
CO2		M		Н		-			-									
Categ	gory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	1 22		Program Electives	Open Electives		Practical / Project		Internships /	rechnical Skill	Soft Skills				
		√																

BMA18024	MATHEMATICS I FOR CHEMICAL ENGINEERS	3	1/0	0/0	4

UNIT I MATRICES

12Hrs

Characteristic equation – Eigen values and Eigen vectors of a real matrix – Properties of Eigen values – Cayley - Hamilton theorem (without proof) – Orthogonal reduction pof a symmetric matrix to Diagonal form.

UNIT II DIFFERENTIAL EQUATIONS

12Hrs

Linear differential equations of second order with constant coefficients – Euler's equation – Simultaneous equations of first order with constant coefficients.

UNIT III ANALYTIC FUNCTIONS

12Hrs

Analytic functions – Cauchy Riemann equations in Cartesian and Polar form – Properties of analytic functions – Construction of analytic functions – Simple Transformations – Standard transformations : $w = z^2$, w = ez, $w = \sin z$, $w = \cosh z$ – Bilinear transformations.

UNIT IV COMPLEX INTEGRATION

12Hrs

Cauchy's integral theorem (without proof) – Cauchy's integral formulae (without proof) – Taylor's and Laurent's series (without proof) – Singularities: Types – Residues – Cauchy's residue theorem (without proof) – Evaluation of real integrals by Contour Integration (excluding poles on real axis)

UNIT V FOURIER SERIES

12Hrs

Dirichlet's conditions – General Fourier series – Half range Sine & Cosine series – Parseval's identity – Harmonic Analysis.

Total no. of Hours: 60Hrs

TEXT BOOKS:

- 1. Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2007).
- 2. Veerarajan T., Engineering Mathematics (for semester III), Tata McGraw Hill Publishing Co., (2005).

- 1. Singaravelu, Transforms and Partial Differential Equations, Meenakshi Agency, (2009).
- 2. Kreyszig E., Advanced Engineering Mathematics (9 th ed.), John Wiley & Sons, (2011).
- 3. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).

Subject C			Subj	ject N	Name :	Enviror	ment	al E	nginee	ring	7	Ty/Lb	/ETL	L	T/S.Lr	P/R	(
BCE18I0	4	_	Duan		aida. Ni	1					٠,	Т		3	0/0	0/0	1
I . I a atum	. Т.	Tutoni			site: Ni		i	D . D	maiaat '	D . Da		Ty	Tmodita	3	<u>U/U</u>	0/0	
L : Lectur					•		_	P:P	тојест	K : Ke	sear	cn C: C	redits				
T/L/ETL :			io/EII	ibeac	ied The	ory and	Lab										
OBJECT					C 1	. 1 .1		1	1 .	c		. 1			C '1''		
															facilities. ment faci	litios	
						rinciples									ment raci	nues.	
COURSE							usea	to ac	osigii a	a v arrec	u w	aste wa	iter treat	ments.			_
CO1				`	, ,		nking	wate	er supp	lv and	was	ste wat	er systei	ms. incl	uding wat	er	_
001		_				stributio	_		- Supp	1) 4114		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	or system	,	areaning was		
CO2			rstan	ding	of wate	r quality	and v	vaste	water	criteri	a an	d stanc	lards, ar	nd their	relation to	public	
	he	alth.															
CO3	Th	e abil	ity to	desig	on and e	evaluate	water	supr	olv and	waste	wat	er pro	iect alte	rnatives	on basis	of chose	<u>-</u> n
											.,	P10J	,		311 Oabib (- 41
Mapping											1						
COs/POs		PO1	P	O2	PO3	PO4	POS	5 1	PO6	PO7	P	PO8	PO9	PO10	PO11	PO	12
CO1		Н	M	I	M	-	-	1	L	-	-		-	M	-	L	
CO2	H M				-	-	-	-	•	-	-		-	M	-	-	
CO3		Н	M	I	L	-	-	ľ	М	-	-		-	M	-	Н	
COs / PS	Os	PSO	1		PSO2	ı	PSC)3		PO4							
CO1		H			H		Н			-							
CO2		H			H		Н			-							
CO3		H			H		H			-							
H/M/L in	dicat	es Str	enot	h of (orrela	tion H	 - Hio	h. M	I- Med	ium. l	'I.c)W					
						-			1					T	1		
					_							kill					
				ses	cial		0	3		्रा स		al S					
			ces	ien	So	ore	4iv.		ives	oje.		nica	<u>s</u>				
			zien	SS	ities and Sciences	n C	ا ا	i i	ecti	/ Pr		ech	Soft Skills				
Category	7		S S	ring	ies :	ran	1 4		E E	cal,		/ T	ft S				
2			Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Flectives	, a	Open Electives	Practical / Project		Internships / Technical Skill	So				
			B	ngi	nm;	1	Pro	1	0	Prê		nsh					
				田田	H							ıter					
		-					_					Ir					
														1			

BCE18I04	ENVIRONMENTAL ENGINEERING	3	0/0	0/0	3

UNIT I PLANNING FOR WATER SUPPLY SYSTEMS

9Hrs

Scope of environmental engineering – role of environmental engineer – Public water supply systems – objectives – design period – population forecasting – water demand – sources of water – sources selection – water quality – characterization – sources of wastewater – estimation of storm runoff.

UNIT II WATER TREATMENT

9Hrs

Screening - types of screening - plain sedimentation - sedimentation with coagulation - settling & flotation

- filtration – disinfection.

UNIT II SEWAGE TREATMENT – PRIMARY TREATMENT

9Hrs

Objectives – unit operations & processes – principles, functions and design of screen, grit chambers and primary sedimentation tanks.

UNIT IV SEWAGE TREATMENT – SECONDARY TREATMENT

9Hrs

Secondary treatment – activated sludge process and trickling filter; other treatment methods – stabilization ponds and septic tanks – advances in sewage treatment.

UNIT V SEWAGE DISPOSAL AND SLUDGE MANAGEMENT

9Hrs

Methods – dilution – self purification of surface water bodies – oxygen sag curve – land disposal – sewage farming – deep well injection – soil dispersion system. Thickening – sludge digestion – biogas recovery - drying beds – conditioning and dewatering – sludge disposal.

Total No of Hours: 45Hrs

TEXT BOOKS:

- 1. Garg, S.K., Environmental Engineering, Vols. I &II, Khanna Publishers, New Delhi, 1994
- 2. C.S.Shah, Water Supply And Sanitation, Galgotia Publishing Company, New Delhi, 1994

- 1. Manual on Water Supply And Treatment, Ministry Of Urban Development, Government Of India, New Delhi, 1999.
- 2. Manual on sewerage and sewage treatment, CPHEEO, Ministry Of Urban Development, Government Of India, New Delhi, 1993.
- 3. H.S.Peavy, D.R.Rowe and George Tchobanoglous, Environmental Engineering, Mcgraw-Hill Book Company, New Delhi, 1995.

Subject (Code:	Subje	ct Nam	e : Mech	anical O	peratio	ns		Ty/Lb/I	ETL	L	T/S.Lr	P/R	C
BCT180	07	Prere	quisite:	PCC					Ty		3	1/0	0/0	4
OBJECT	: Theor FIVE :	y/Lab/E	Embedde vledge o	upervised d Theory f particle	and Lat	lysis, siz	ze reduct	ion, sto	rage of so	olids, par				
					v through	n packed	beds, fl	uidizatio	on, filtrat	ion, fluic	l-solid c	onveying.		
COURS														
CO1				propertie										
CO2				cess and										
CO3	To sel	ect suita	ble size	reduction	n equipm	ent.								
Mapping	g of Cou	ırse Ou	tcomes	with Pro	gram O	utcomes	s (POs)							
COs/PO	S	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO11	PO	12
CO1		Н	M	L	-	-	L	-	-	-	-	M	L	
CO2		M	L	Н	-	-	-	M	-	L	-	L	Н	
CO3		L	M	Н	-	Н	-	-	-	-	-	M	Н	
COs / PS	SOs	PS	O1	PS	O2	PS	SO3	PS	SO4					
CO1		Н		M		L		-						
CO2		M		L		Н		-						
CO3		L		M		Н		-						
H/M/L i	ndicates	s Streng	gth of C	orrelatio	n H- H	ligh, M	- Mediu	m, L-Lo)					
Categor	у	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
					√									

BCT18007 MECHANICAL OPERATIONS	3	1/0	0/0	4	
--------------------------------	---	-----	-----	---	--

UNIT I PARTICLE CHARACTERISTICS AND SIZE ANALYSIS

12Hrs

General characteristics of solids, their behavior under different external forces, agglomeration, techniques for size analysis.

UNIT II SIZE REDUCTION

12Hrs

Laws of size reduction classification of equipment, methods of size reduction, disintegration, preparation of colloids.

UNIT III MECHANICAL SEPARATIONS

12Hrs

Screening and Screening equipment, effectiveness of screens, gravity settling, sedimentation, thickening, centrifugal separation, impingement methods, industrial dust removing equipment with special reference to electrostatic and magnetic separators, heavy media separations, floatation.

UNIT IV FILTRATION, MIXING AND AGITATION

12Hrs

Theory of filtration, Batch and continuous filters, centrifuges, membrane and ultra filtration. Equipment for blending and kneading, dispersion, power for agitation, correlations.

UNIT V STORAGE AND CONVEYING OF SOLIDS

12Hrs

Conveyors, elevators, pneumatic conveying, Different methods for storage of solids.

Total No.of Hours: 60Hrs

TEXT BOOK:

1. McCabe, W.L, Smith J.C and Harriot, P., "UNIT Operations in Chemical Engineering", McGraw-Hill, Fourth Edition, 1984.

REFERENCES:

1. Coulson, J.M., Richardson, J.F., "Chemical Engineering", Volume 2, Third Edition, Pergamon Press, 1977.

SEMESTER I (PRACTICAL)

Subject	Code:	Subj	ect Nan	ne : Ferti	lizer Te	chnolog	gy .	Ту	/Lb/ETL	L	T/S	S.Lr	P/R	(
BCT18I	ET1	Prer	equisite	e: PCC				E	ΓL	1	0/1		3/0	3
				Supervised ed Theory		_	roject R	: Resea	rch C: Cro	edits				_ _
OBJEC		y Lao L	mocaa	<u>ca Theory</u>	una Duc									
		e the sti	udents to	o learn the	e fertiliz	er manu	facturing	g includ	ling new o	or modi	fied fertil	izer pro	oducts a	nd
	new tech													
COURS	SE OUT	COME	S (COs)	: (3-5)										
CO1	At the	end of	this cou	rse, the stu	ıdents w	ould kn	ow abou	it the m	anufactur	ing tech	niques o	f fertiliz	zers and	l
		•	•	s in fertiliz	zer indus	stry.								
CO2	To do	all calcı	ulations	•										
Mappin	g of Cou	rse Ou	tcomes	with Pro	gram O	utcome	s (POs)							
COs/PC)e	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	1 P()12
	75			103	104	103		107	100	10)	1010			,12
CO1		M	H	-	-	-	L	-	-	-	-	H	-	
CO2		M	Н	-	-	-	M	-	-	-	-	Н	L	
COs / P	SOs	PS	O1	PS	02	PS	SO3	P	SO4					
CO1		M		M		-		-						
CO2		Н		L		-		-						
 H/M/L i	indicates	Streng	gth of C	orrelation	n H- H	 I igh, M	- Mediu	ım, L-L	∠ow					
			, 		1	T		Í	1		<u> </u>			
		ses	g Sciences	and Social	re	Electives	/es	/ Project	/ Technical ill					
		ienc	Sci	and l	ım Core	Elect	ectiv	Prc	/ Tec cill	Skills				
Catego	ers.	c Sc			gran		n El		· 🗸	Soft S				
Calego	'i y	Basic Sciences	Engineerir	Humanities Scie	Prograi	Program	Open Electives	Practical	Internships	Sc				
			Eng			Pr		Pı	Inter					

BCT18ET1	FERTILIZER TECHNOLOGY	1	0/1	3/0	3

UNIT I NITROGENOUS FERTILISERS

9Hrs

Methods of production of nitrogenous fertilizer-ammonium sulphate, nitrate, urea and calcium ammonium nitrate; ammonium chloride and their methods of production, characteristics and specifications, storage and handling.

UNIT II PHOSPHATIC FERTILISERS

9Hrs

Raw materials; phosphate rock, sulphur; pyrites etc., processes for the production of sulphuric and phosphoric acids; phosphates fertilizers – groundrock phosphate; bone meal-single superphosphate, triple superphosphate, triplesuperphosphate, thermal phosphates and their methods of production, characteristics and specifications.

UNIT III POTASSIC FERTILISERS

9Hrs

Methods of production of potassium chloride, potassium sulphatetheir characteristics and specifications.

UNIT IV COMPLEX AND NPK FERTILISERS

9Hrs

Methods of production of ammonium phosphate, sulphated ammonium phosphate, nitrophosphates, urea, ammonium phosphate, mono-ammonium phosphate and various grades of NPK fertilizers produced in the country.

UNIT V MISCELLANEOUS FERTILISERS

9Hrs

Mixed fertilizers and granulated mixtures; biofertilisers, nutrients, secondary nutrients and micro nutrients; fluid fertilizers, controlled release fertilizers, controlled release fertilizers.

Total No of Hours: 45Hrs

TEXT BOOKS:

- 1. "Handbook of fertilizer technology", Association of India, New Delhi, 1977.
- 2. Menno, M.G.; "Fertilizer Industry An Introductory Survey", HigginbothamsPvt. Ltd., 1973.

- 1. Sauchelli, V.; "The Chemistry and Technology of Fertilizers", ACSMONOGRAPH No. 148, Reinhold Publishing Cor. New York, 1980.
- 2. Fertiliser Manual, "UNITed Nations Industrial Development Organisation", UNITed Nations, New York, 1967.
- 3. Slack, A.V.; Chemistry and Technology of Fertilisers, Interscience, New York, 1966

PRACTICAL EXERCISE

- 1. Prepare chart for fertilizer classification with chemical formula and nutrient content.
- 2. Estimate nutrient content (% N, %P2O, % K2O) in different fertilizers from their chemical formula.
- 3. Estimate percentage of Nitrogen in Ammonium chloride by back titration.
- 4. Estimate percentage of Nitrogen in DAP by Kjeldhal's method.
- 5. Prepare potassium sulphate and potassium chloride.

SUGGESTED STUDENT ACTIVITIES

- 1. Following is the list of proposed student activities. These could be individual or group-based.
- 2. Prepare course/topic based presentations using internet.
- 3. Make a report on fertilizer plants in India/Tamil Nadu with their capacity of production and technology being used.
- 4. Participate in MCQ/Quiz.

SPECIAL INSTRUCTIONAL STRATEGY (IF ANY)

- 1. Show video/animation films about fertilizer production plants.
- 2. Arrange Visit to nearby fertilizer production plant.
- 3. Arrange expert lectures.

Arrange MCQ/Quiz arrange in normal term period.

Subject	Code:	Subj	ect Nan	ne : Mec	hanical	Operat	ion Lab	Ty/	Lb/ETL	L	T/S.L	r P/R		C
BCT18	Prerequisite: ESS Lb 0 0/0 3/0 1 Inter T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits TTVE: In this course, the students will learn characterization of solids, size reduction, techniques of solid – fluid separation and mixing. E OUTCOMES (COs): (3-5) The students would understand about solids, their characterization, handling and the various processes involving solids. And do all calculation g of Course Outcomes with Program Outcomes (POs) S PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 M H L M - M - H H M SOS PSO1 PSO2 PSO3 PSO4 M M M M M I I I I I I I I I I I I I I I I I I													
				_		-	Project R	: Resea	arch C: C	Credits				
		y Luo L	mocaac	<u>u meor</u>	y und Et									
•	In this co	n and n	nixing.			racteriza	ation of s	solids, s	ize reduc	ction, tec	hniques of	solid – f	luid	
CO1				lerstand	about so	olids, the	eir charac	cterizati	on, hand	ling and	the variou	s process	ses	
CO2		-												
				with Du	a a wa ma d)taam.	og (DOg)							
марри	ig or Cou	irse Ou	tcomes	WILLI FT	ogram (Julcom	es (FOs)							
COs/PO	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1		M	-	-	-	Н	-	-	-	Н	-	-	L	
CO2		M	-	M	-	Н	-	-	-	Н	-	-	M	
COs / P	PSOs	PSO1		PSO2	1	PSO3		PSO4						
CO1		M		M		-		-						
CO2		Н		L		-		-						
H/M/L	indicates	Streng	gth of Co	orrelatio	on H-	High, M	I- Medi	um, L-I	Low					
–Categ	gory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
								V						

BCT18L03	MECHANICAL OPERATION LAB	0	0/0	3/0	1

- 1. Jaw crusher
- 2. Crushing rolls
- 3. Ball mill
- 4. Size analysis by sieving
- 5. Size analysis by sub-sieving
- 6. Filter press
- 7. Leaf filter
- 8. Cyclone separator
- 9. Sedimentation
- 10. Elutriator
- 11. Rotary Drum filter
- 12. Effectiveness of screens

^{*} Minimum 10 experiments shall be offered

SEMESTER II (THEORY)

Subject Co	de:	•	Name : M d Chemica			or	Ty/	Lb/ ETL	L	T/S.L	r P	/ R	C
BMA18025	·		isite: Matl				Ту		3	1/0	0,	/0	4
COURSE (CO1	Theory/L VE: aim of the mical student of the control of the contr	rial SLr ab/Ember this cours idents. MES (CO	: Supervised ded Theorem : Supervised ded Theo	ed Learn ry and L oduce the	ning P :	ots of Pa	R : Rese	erential ec		s and, Tran	nsform me	ethods	s for
Mapping of	f Course	Outcom	es with Pı	rogram	Outcom	nes (POs	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	M	Н	M	-	-	Н	-	-	-	-	Н	Н	
CO2	M	Н	-	L	-	-	Н	-	L	-	-	L	
COs / PSOs	P	SO1	PSC)2	PS	03	P	SO4					
CO1	M		M		-		-						
CO2	Н		L		-		-						
H/M/L indi	icates St	rength of	Correlati	ion H-	High, I	M- Med	ium, L-	Low					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Skill Soft Skills				
	V		,										

BMA18025	MATHEMATICS II FOR CIVIL AND CHEMICAL	3	1/0	0/0	4
	ENGINEERS				

UNIT I PARTIAL DIFFERENTIAL EQUATIONS

12Hrs

Formation of PDE by eliminating arbitrary constants and eliminating arbitrary functions – Solutions of standard types of first order equations – Lagrange's equation – Linear partial differential equations of second and higher order with constant coefficients.

UNIT II APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS 12Hrs

Classification of second order linear partial differential equations – Solutions of one dimensional wave equation, onedimensional heat equation – Steady state solution of two dimensional heat equation (Cartesian coordinates only) – Fourier series solutions.

UNIT III LAPLACE TRANSFORMS I

12Hrs

Transforms of simple functions – Properties of Transforms – Inverse Transforms – Transforms of Derivatives and Integrals.

UNIT IV LAPLACE TRANSFORMS II

12Hrs

Periodic functions – Initial and final value theorems – Convolution theorem – Applications of Laplace transforms for solving linear ordinary differential equations up to second order with constant coefficients.

UNIT V FOURIER TRANSFORM

12Hrs

Statement of Fourier integral theorem – Fourier transform pairs – Fourier Sine and Cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's theorem.

Total no. of Hours: 60Hrs

TEXT BOOKS:

- 1. Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2007).
- 2. Veerarajan T., Engineering Mathematics (for semester III), Tata McGraw Hill Publishing Co., (2005).

- 1. Singaravelu, Transforms and Partial Differential Equations, Meenakshi Agency, (2009).
- 2. Kreyszig E., Advanced Engineering Mathematics (9 th ed.), John Wiley & Sons, (2011).
- 3. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).

Subject (•	ame : Cor Engineeri	-	Applica	tions in		Ty/Lb/I	ETL	L	T / S.Lr	P/R	C
BCS18I0	3			te: Comp		ıdamen	tals		Ту		3	0/0	0/0	3
L : Lectur	e T : T	utorial	SLr : S	upervised	Learnin	g P : Pro	oiect R :	Researc	ch C: Cre	dits				
T/L/ETL				_		-	oj ec e 11 .	11000011	0. 010					
OBJECT	IVE:													
	_			d on vario	us progr	amming	g languag	ges appl	ied for ch	nemical to	echnolo	ogy.		
COURSE	OUT	COME	S (COs)	: (3-5)										
CO1	Selec	ct approp	oriate co	mputer ap	plication	ns to sto	re and re	trieve d	ata.					
CO2	Disse	eminate	given in	formation	in basic	and adv	anced P	C applic	cations					
CO3	Ident	ify and a	apply dig	gital/comp	outer fun	damenta	als.							
Mapping	of Cou	urse Ou	tcomes	with Prog	gram Oı	itcomes	(POs)							
COs/POs		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO11	PO	12
CO1		Н	M	-	-	L	-	-	-	-	L	L	-	
CO2		M	M	-	-	-	-	M	-	-	L	Н	-	
CO3		L	L	-	-	Н	-	-	-	-	M	L	-	
COs / PS	Os	PS	SO1	PS	02	PS	SO3	PS	SO4					
CO1		M		L		M		L						
CO2		M		L		M		L						
CO3		L		M		L		M						
H/M/L in	dicate	s Streng	gth of Co	 orrelation	н- Н	igh, M-	Mediu	n, L-Lo	w					
Category	7	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
					1									

BCS18I03	COMPUTER APPLICATIONS IN CHEMICAL ENGINEERING	3	0/0	0/0	3

UNIT I INTRODUCTION TO PROGRAMMING LANGUAGES

9Hrs

Evaluation of Programming Languages - C, C++ and Java, Review on Windows operating system. Application Program : introduction to Word, Power point

UNIT II INTRODUCTION TO C PROGRAMMING

9Hrs

Introduction to C Programming - data types - constants - Variables - Expressions - Operators - input and output functions - Control Statements - Looping statements. Functions -Definition -Types of Function, Arrays - types of Array- Files handling.

UNIT III SPREAD SHEETS

9Hrs

Creating – opening and saving files – working with worksheets – entering data – editing – formatting – printing – formulae –Charts - Application in Density, molecular weight, mole and percentage compositions, Empirical and Molecular formula calculations, Heat of mixing, Gas laws, Vapour pressure, Chemical Kinetics calculations.

UNIT IV SPREAD SHEETS (DATA ANALYSIS)

9Hrs

Application in data processing, Statistical analysis of data, Regression. Analysis of variance, Interpolation, Graphical representations of various Chemical Engineering.

UNIT V FORTRAN

9Hrs

Syntax – Mathematical and logical operation – Looping – Conditional statements – function – sub function – Simple application Programs.

Total No. of Hours: 45Hrs

TEXT BOOK

- 1. Ashok N.Kamthane ,Programming with ANSI and Turbo C , Pearson Education, 2006
- 2. E. Joseph Billo, "Excel® for Chemists- A Comprehensive Guide", John Wiley & Sons, 3rd Edition

REFERENCE BOOKS:

- 1. B.W. Kernighan and D.M.Ritchie, The C Programming Language, 2nd Edition, PHI, 1988
- 2. Kanetkar Y., Let us C, BPB Pub., New Delhi, 1999.
- 3. Jerry, O., Breneman, G.L. Spreadsheet Chemistry, Prentice Hall, Englewood Cliffs, 1991.

Subject Code: BES18001	Subject Name : BASIC ELECTRICAL & ELECTRONICS ENGINEERING	Ty/Lb/ ETL	L	T/S.Lr	P/R	С
	Prerequisite : ESC	Ty	2	0/1	0/0	3

L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits

T/L/ETL: Theory / Lab / Embedded Theory and Lab

OBJECTIVES:

- Understand the concepts of circuit elements, circuit laws and coupled circuits.
- Acquire knowledge on conventional &non conventional energy production.
- Gain information on measurement of electrical parameters.
- Identify basic theoretical principles behind the working of modern electronic gadgets.
- Demonstrate digital electronic circuits and assemble simple devices.

COURSE OUTCOMES (Cos) : (3 – 5)

Students completing the course were able to

CO1	Students understand Fundamental laws and theorems and their practical applications
CO2	Predict the behavior of different electric and magnetic Circuits.
CO3	Identify conventional and Non-conventional Electrical power Generation, Transmission and
	Distribution.
CO4	Identify & Apply schematic symbols and understand the working principles of electronic devices
CO5	Analyze basics of digital electronics and solving problems and design combinational circuits

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	H	Н	Н							M	L
CO2	Н	Н	Н	M	M		M				M	
CO3	Н	M	Н	M	Н		M		M			L
CO4	Н	M		M			M				M	L
CO5	Н	M	Н	M	Н				M		M	L

H/M/L indicates strength of correlation H - High, M - Medium, L - Low

BES18001	BASIC ELECTRICAL & ELECTRONICS ENGINEERING	2	0/1	0/0	3

UNIT I ELECTRIC CIRCUITS

9Hrs

Electrical Quantities – Ohms Law – Kirchhoff's Law – Series and Parallel Connections – Current Division and Voltage Division Rule - Source Transformation – Wye (Y) – Delta (Δ) , Delta (Δ) – Wye (Y) Transformation – Rectangular to Polar and Polar to Rectangular.

UNIT II MACHINES & MEASURING INSTRUMENTS

9Hrs

Construction & Principle of Operation of DC motor & DC Generator – EMF equation of Generator – Torque Equation of Motor – Construction & Principle of operation of a Transformer – PMMC – Moving Iron types of meter – Single Phase Induction Type Energy Meter.

UNIT III BASICS OF POWER SYSTEM

9Hrs

Generation of Electric Power (Thermal, Hydro, Wind and Solar) – Transmission & Distribution of Electric Power – Types of Transmission & Distribution Schemes – Representation of Substation.

UNIT IV ELECTRON DEVICES

9Hrs

Passive Circuit Components-Classification of Semiconductor-PN Junction Diode-Zener diode- Construction and Working Principle –Applications--BJT-Types of configuration-JFET.

UNIT V DIGITAL SYSTEM

9Hrs

Number System – Binary, Decimal, Octal, Hexadecimal – Binary Addition Subtraction, Multiplication & Division–Boolean Algebra – Reduction of Boolean Expressions – Logic Gates - De-Morgan's Theorem, Adder – Subractor.

Total no of Periods: 45Hrs

TEXT BOOKS

- 1. D P Kothari, I J Nagrath, Basic Electrical Engineering, Second Edition, , Tata McGraw-Hill Publisher
- 2. A Course In Electrical And Electronic Measurements And Instrumentation, A.K. Sawhney, publisher DHANPAT RAI&CO
- 3. Text Book of Electrical Technology: Volume 3: Transmission, Distribution and Utilization, B.L. Theraja, A.K. Theraja, publisher S. CHAND
- 4. Morris Mano, M. (2002) Digital Logic and Computer Design. Prentice Hall of India
- 5. Millman and Halkias1991, Electronic Devices and Circuits, Tata McGraw Hill,

REFERENCES

1. R.Muthusubramanian, S.Salivahanan, K A Muraleedharan, Basic Electrical, Electronics And Computer Engineering, Second Edition, ,Tata McGraw-Hill publisher.

SEMESTER II (PRACTICAL)

Subject	Code:	Subjec	t Name	: Petrole	um Tec	hnology	, '	Ty/Lb/E	TL	L	T/S.Lr	P/R	С
BCT18E	T3	Prereq	uisite: I	PCC				ETL		1	0/1	3/0	3
L : Lectu	re T : T			upervised	Learnin	ng P : Pr	oject R	Researce	ch C: Cre	edits		I	L
T/L/ETL	: Theo	ry/Lab/E	mbedde	d Theory	and Lab)							
OBJEC	TIVE:												
• 7	Γο make	e the stud	dents un	derstand p	etroleu	m engine	eering p	rinciples	, their ap	plication	to petrole	eum and n	atural gas
		turing p											
COURS	E OUT	COMES	S (COs)	: (3-5)									
CO1	At the	end of t	his prac	tical cour	se, the s	tudent w	ould ha	ve a thor	ough un	derstandi	ng of skill	ls in Petro	leums.
CO2	Andd	o all cal	aulation	2									
CO2	Alla a	o an car	cuiation	S.									
Mapping	g of Co	urse Ou	tcomes	with Prog	gram O	utcomes	s (POs)						
COs/PO	a	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COS/PO	S	POI	PUZ	103	PU4	105	100	PO/	POS	PO9	POIU	POII	PO12
CO1		Н	-	L	-	-	Н	-	-	L	-	-	M
CO2		M	-	Н	-	M	-	-	-	M	-	-	M
COs / PS	SOs	PS	01	PS	02	PS	SO3	PS	SO4				
CO1		Н		M		-		-					
G04		3.7		-									
CO2		M		L		-		-					
H/M/L i	ndicate	s Streng	th of C	 orrelation	n H- H	ligh, M	- Mediu	m, L-Lo	w				
			,	I		g ,			T			_	T
Categor	ту	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
								√					

BCT18ET3	PETROLEUM TECHNOLOGY	1	0/1	3/0	3	
----------	----------------------	---	-----	-----	---	--

UNIT I INTRODUCTION

9Hrs

Refinery products – Refinery Feeds – Crude distillation – Coking and thermal process.

UNIT II CATALYTIC CRACKING

9Hrs

Catalytic Cracking - Catalytical hydro cracking - Hydro processing and Reused processing hydro treating.

UNIT III CATALYTICAL

9Hrs

Reforming and isomerization alkylation and polymerization – Product blending –Supporting processes.

UNIT IV LUBRICIATING

9Hrs

Lubriciating oil blending stocks petrochemical feed stocks.

UNIT V COST EVALUATION

9Hrs

Cost Evaluation - Economic evaluation of petroleum reused and refineries.

Total No. of Hours: 45Hrs

TEXT BOOKS:

1. Petroleum Refining: Technology and economics CRC Press V Edition 2007J.CH Garry, Hardward G.E and M.J.Kaiser.

REFERENCES:

1. Modern Petroleum Technology Upstream Vol I A.G. Lucas Hurley Edition, 2002

PRACTICAL EXERCISE

Classification of fuels: G/L/S

Automotive Fuels Bharat Standards II III & IV

SUGGESTED STUDENT ACTIVITIES

Solid Fuels: Characterization

- Coal
- Biomass
- Residue from Refinery
- Plastic waste
- Municipal domestic waste

Combustion of Fuels:

- Basic equation, air requirement norms for excess air.
- Heating value : GHV/LHV Calculations for mixture of components.
- Wobbe number for Gaseous Fuels definition and significance.
- Burners : Gas/Liquid/Hydrogen.
- Flue gas composition, Dew point calculations.
- Treatment of flue gas to meet local standards, Carbon Credit.

Subject	t Code:	Su	bject N	Name : Ch	emical T	Fechnolo	ogy	Ty /	Lb/ ETL	L	T/S	S.Lr	P/R	C
BCT18	005	Pro	erequi	site: Basic	science			Ту		3	0/0		0/0	3
				r : Superv		_	Project l	R : Rese	arch C: Cr	edits				
		•	b/Emb	edded The	ory and	Lab								
OBJEC													·	
•			•	, importar		-			•	g, conce	epts of un	nt oper	atıons	and
COUR				ents scenar		emicai &	amed p	ocess III	idustries.					
COUR			`	, ,										
CO1				e to explai						_				
	_			d informat										
CO2				nformed a					•	•				
				chemical gn and ope		sical pro	cesses 11	ivoivea	including	the eq	uipments	usea,	tneir	saret
	preca	ations	iii desi	gii and ope	eration.									
CO3		_	ve then	n first han	d inform	ation abo	out the en	nvironm	ent in indu	istries a	and prepa	re then	n well	for
	indus													
Mappii	ng of C	ourse	Outcor	nes with l	Program	Outcon	nes (POs	3)						
COs/Po	Os 1	201	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 P	O12
CO1	I	M	L	-	M	-	-	-	-	M	-	L	-	
CO2]	Η	M	-	-	-	-	-	-	Н	-	-	-	
CO3]		Н	-	-	-	L	-	-	Н	-	-	M	[
COs/		PSC	D1	PSC	02	PS	SO3	PS	SO4					
PSOs														
CO1]	H		L		L		M						
CO2	I	M		L		Н		H						
CO3	1			H		M		L						
H/M/L	indicat	es Str	ength o	of Correla	tion H	- High,	M- Med	ium, L-	Low					
			T											
			ces	cial		S		*	ical					
		ces	ien	Soc	ore	tive	ves	ojec	chn	S				
			SS	ities and Sciences	n C	Elec	ecti	/Pr	/ Te	Soft Skills				
Catego	orv	ic S	ering	ties cier	grar	am]	n E	cal	ips / T Skill	oft S				
Carogr) · J	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Sc				
			Eng	- Jun:		Pr		P	nter					
				1					I					
		1	1		1									

BCT18005	CHEMICAL TECHNOLOGY	3	0/0	0/0	3	
----------	---------------------	---	-----	-----	---	--

UNIT I INTRODUCTION

9Hrs

Chemical processing, the role of chemical engineers in process industries, importance of block diagrams and flow charts, UNIT operations, UNIT processes, process utilities sand economics, industrial safety and pollution, outline plant and equipment design, process control and instrumentation.

UNIT II FERTILIZER CHEMICALS

9Hrs

Growth elements, Function, Nitrogenous fertilizers, Ammonium sulfate, Ammonium Nitrate and Urea, Phosphatic fertilizers, single and triple superphosphate, Ammonium phosphate, Nitro phosphate, Potassium Fertilizers, Potassium Chloride, Potassium Nitrate and phosphate, Compound fertilizers and bio-fertilizers. PHOSPHORUS INDUSTRIES: Phosphate rock, benefaction, phosphoric acid-phosphate. NITROGEN INDUSTRIES: Synthesis ammonia and nitric acid. AGRICHEMICAL INDUSTRIES: Insecticides, pesticides, herbicides, plant nutrients and regulators

UNIT III INDUSTRIAL CHEMICALS - I

9Hrs

EXPLOSIVES AND PROPELLANTS INDUSTRIES: Explosives, types and characteristics, industrial and military explosives, propellants for rockets. SURFACE COATING INDUSTRIES: Paints, pigments, varnishes, lacquers, industria, and marine coatings. PHOTOGRAPHIC CHEMICALS: Photographic chemicals, manufacture of films, plates and papers, recovery. INDUSTRIAL GASES: Synthetic gas, natural gas, carbon dioxide sulphur-di-oxide, acetylene, helium and argon, hydrogen, oxygen, nitrogen.

UNIT IV INDUSTRIAL CHEMICALS - II

9Hrs

CHOLORO - ALKALI INDUSTRIES: Soda ash and sodium bicarbonate, Chlorine and caustic soda; bleaching powder and related bleaching agents, hydrochloric acid.SULPHUR AND SULPHURIC ACID INDUSTRIES: Mining and manufacturing of Sulphur, recovery of sulphur from polluting gases, sulphur trioxide and sulphuric acid.ELECTROLYTIC AND ELECTROTHERMAL INDUSTRIES: Abrasives, Carborondum, Calcium Carbide, Aluminium and Magnesium.

UNIT V INDUSTRIAL CHEMICALS - III

9Hrs

WATER IN INDUSTRY: Role of water treatment methods for industrial and domestic use, recovery of waste water, water conditioning.MARINE CHEMICALS: Sodium chloride, By-products of common salt industry, value added product.NUCLEAR INDUSTRIES: Production of uranium, thorium and zirconium from ores and minerals, separation of isotopes, waste disposal.

Total No of Hours: 45Hrs

TEXT BOOKS

- 1. Austin, G.T. Shreve, "Chemical Process Industries", Fifth Edition, McGraw Hill International Book Co., Singapore, 1984.
- 2. Dryden, C.E., "Outlines of Chemicals Technology", Edited andRevised by Gopala Rao, M. and Sitting, M., Second Edition, Affiliated East-West Press, 1993.

SEMESTER III (THEORY)

Subject	Code:	Subje	ct Nam	e : Bio-C	hemical	Princi	ples		Ty/Lb/I	ETL	L	T/S.Lr	P/R	C
BBT18I0	01		-	Enginee c concep	_		ics, phy	sics,	Ty		3	0/0	0/0	3
				Supervise		•	Project F	R : Rese	earch C: C	Credits				Į.
		ory/Lab/	Embedd	ed Theor	y and La	ab								
OBJEC		4 4 4	1		.1!4!	£ .1	1 . 1.			1 1	•			41
				ry and app o describ				•	mamics,	nermoa	ynami	c propertie	es, equa	tioi
					-	-	•		iids and	mixtures	s to de	sign chem	ical pro	oce
	olants.				<i>y</i>	1 1						U	1	
COURS	E OUT	ГСОМЕ	CS (COs):(3-5)										
CO1	Basic	concep	t for the	rmodynai	mics and	l first la	w can be	e under	stood.					
GOA				•										
CO2	PVT	behavio	r of flui	ds and ide	eal gas p	rocesses	s can be	analys	ed.					
Mapping	g of Co	ourse O	utcomes	with Pro	ogram (Outcom	es (POs)						
COs/PO	s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 PO	11 P	01
CO1		Н	-	-	M	-	-	Н	-	-	-	-	L	
CO2		M	-	-	-	-	-	L	-	-	M	-	-	
COs / PS	SOs	PSC	01	PS	O2	PS	SO3	P	SO4					
CO1		Н		Н		-		-						
CO2		M		Н		-		-						
H/M/L i	ndicate	es Stren	gth of (Correlatio	on H-	 High, N	I- Medi	um, L-	Low					
		1	<u> </u>			, 	1	, 			1	1		
Categor	ry	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
		Basic	Engineer	Humanities an	Progr	Prograr	Open	Practic	Internships /	Sof				
					√									

BBT18I01	BIO-CHEMICAL PRINCIPLES	3	0/0	0/0	3

UNIT I OVERVIEW OF FERMENTATION PROCESSES

9Hrs

Overview of fermentation industry, general requirements of fermentation processes, basic configuration of fermentor and ancillaries, main parameters to be monitored and controlled in fermentation processes.

UNIT II RAW MATERIALS AND MEDIA DESIGN FOR FERMENTATION PROCESS 9Hrs

Criteria for good medium, medium requirements for fermentation processes, carbon, nitrogen, minerals, vitamins and other complex nutrients, oxygen requirements, medium formulation of optimal growth and product formation, examples of simple and complex media, design of various commercial media for industrial fermentations – medium optimization methods

UNIT III STERILIZATION KINETICS

9Hrs

Thermal death kinetics of microorganisms, batch and continuous heat sterilization of liquid media, filter sterilization of liquid media, air sterilization and design of sterilization equipment - batch and continuous.

UNIT IV METABOLIC STOICHIOMETRY AND ENERGETICS

9Hrs

Stoichiometry of cell growth and product formation, elemental balances, degrees of reduction of substrate and biomass, available electron balances, yield coefficients of biomass and product formation, maintenance coefficients energetic analysis of microbial growth and product formation, oxygen consumption and heat evolution in aerobic cultures, thermodynamic efficiency of growth.

UNIT V KINETICS OF MICROBIAL GROWTH AND PRODUCT FORMATION 9Hrs

Modes of operation - batch, fed batch and continuous cultivation. Simple unstructured kinetic models for microbial growth, Monod model, growth of filamentous organisms, product formation kinetics - leudeking-piret models, substrate and product inhibition on cell growth and product formation.

Total No. of Hrs: 45Hrs

TEXT BOOKS:

- 1. Bailey and Ollis, "Biochemical Engineering Fundamentals", McGraw Hill (2nd Ed.), 1986.
- 2. Shule and Kargi, "Bioprocess Engineering", Prentice Hall, 1992.

- 1. Pauline Doran, Bioprocess Engineering Calculation, Blackwell Scientific Publications.
- 2. Peter F. Stanbury, Stephen J. Hall & A. Whitaker, Principles of Fermentation Technology, Science & Technology Books.
- 3. Harvey W. Blanch, Douglas S. Clark, Biochemical Engineering, Marcel Dekker, Inc.

Subject	Code:	Subje	ect Name	: Chem	nical Pr	ocess C	alcul	ation	s '	Ty / Lb/	ETL	L	T/S	.Lr	P/R	(
BCT18	008	Prerequisite: General Chemistry & basic chemical reactions							,	Ту		3	1/0		0/0	4
			SLr : S Embedde	_		_	Proje	ct R	: Res	earch C:	Credit	S				
OBJEC	CTIVE:															
			ngs togetl nd also co		_	_	ineeri	ng ar	d eco	onomics	for che	mica	al plan	nt desig	gn and	
			ES (COs)	: (3-5))											
CO1			ensions.													
CO2	Materi	ial balar	al balance and Energy balance calculation for all chemical processes.													
CO3	Calcul indust		or batch aı	nd conti	nuous p	processe	s app	ied to	o solı	ution of 1	problen	ns in	chem	ical pı	rocess	
Mappii	ng of Co	ourse O	utcomes	with Pr	ogram	Outcor	nes (I	POs)								
COs/POs		PO1	PO2	PO3	PO 4	PO5	PO 6			PO8	PO9	P	O10	PO1 1	PC)12
CO1		Н	M	L	-	-	-	L		-	-	-		-	L	
CO2		M	Н	L	-	-	-	N	[-	-	-		-	-	
CO3		M	Н	L	-	-	-	L		-	-	-		-	M	
COs / F	SOs	PSO1		PSO2		PSO3		PS	PSO4							
CO1		Н		Н		H M			Ī.							
CO2		M		H L		L	M		Ī							
CO3		Н		L M M				N	Ī							
H/M/L	indicate	es Strer	ngth of Co	orrelati	on H	- High,	M- N	ediu	m, L	-Low						
			ses	cial		Se			; t	ical						
Category		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	į	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
		Н	Engi	Hum		Prc			Pr	Inter						
					1											

BCT18008	CHEMICAL PROCESS CALCULATIONS	3	1/0	0/0	4

UNIT I UNITS, DIMENSIONS AND GAS CALCULATIONS

12Hrs

Basic and derived UNITs, use of model UNITs in calculations, Methods of expression, compositions of mixture and solutions. Ideal and real gas laws - Gas constant - calculations of pressure, volume and temperature using ideal gas law. Use of partial pressure and pure component volume in gas calculations, applications of real gas relationship in gas calculation.

UNIT II MATERIAL BALANCE

12Hrs

Stoichiometric principles, Application of material balance to UNIT operations like distillation, evaporation, crystallisation, drying etc., - Material balance with chemical reaction - Limiting and excess reactants - recycle - bypass and purging - Unsteady state material balances.

UNIT III HUMIDITY AND SATURATION

12Hrs

Calculation of absolute humidity, molal humidity, relative humidity and percentage humidity - Use of humidity in condensation and drying - Humidity chart, dew point.

UNIT IV FUELS AND COMBUSTION

12Hrs

Determination of Composition by orsat analysis of products of combustion of solid, liquid and gas fuels - Calculation of excess air from orsat technique, problems on sulphur and sulphur bearing compounds.

UNIT V THERMO PHYSICS AND THERMOCHEMISTRY

12Hrs

Heat capacity of solids, liquids, gases and solutions, use of mean heat capacity in heat calculations, problems involving sensible heat and latent heats, evaluation of enthalpy. Standard heat of reaction, heats of formation, combustion, solution, mixing etc., calculation of standard heat of reaction - Effect of pressure and temperature on heat of reaction - Energy balance for systems with and without chemical reaction. - unsteady state energy balances.

Total No of Hours: 60Hrs

TEXT BOOKS:

- 1. Bhatt, B.L., Vora, S.M., "Stoichiometry", Tata McGraw-Hill, 1976.
- 2. Himmelblau, D.M., "Basic Principles and Calculations in Chemical Engineering", EEE Sixth Edition, Prentice Hall Inc., 2003 (with CD containing programmes and problems).

- 1. Process Calculation for Chemical Engineering, Second Revised Edition, Chemical Engineering Education Development Centre, I.I.T., Madras, 1981
- 2. Process Calculations, Venkataramani, V and Anantharaman, N, Prentice Hall of India Pvt. Ltd. 2007

Subject	Su	bject Na	ame : Flu	id Mecl	nanics		Ty	/Lb/ETI	L	T / S	S.Lr	P/R	(
BCT18006		Pro	erequisi	te: maths & science				Ту	Ty		0/0		0/0	3
				Supervised and Theory		•	roject R	: Resear	rch C: Cı	redits				<u> </u>
OBJEC'		лу/Цао/Ц	Zinocuu	d Theory	and La									
• [Γo unde			_			applicat	ion to cl	nemical p	process	industries	including	pipe	
COURS				agitation (3-5))II & IIII)	ting.								
CO1	Abilit	ty to und	erstand	the fluid j	particle s	system a	ınd fluid	propert	ies.					
CO2	Study	y analytical solutions to variety of simplified problems.												
CO3	Apply	y concep	t of mas	s, momen	itum and	lenergy	conserv	ation to	flows.					
Mappin	g of Co	ourse Ou	itcomes	with Pro	gram O	utcome	s (POs)							
COs/PO	s]	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1]	H	M	-	-	-	-	M	-	-	-	L	L	
CO2]	M	L	-	Н	-	L	-	-	-	-	Н	M	
CO3]	H	M	-	-	-	-	Н	-	-	-	Н	M	
COs / PS	SOs	PSC) 1	PSO2		PSO3		PS	PSO4					
CO1]	H		M		L		Н						
CO2]	M		L		M		L						
CO3]	M		L		L		Н						
H/M/L i	ndicate	es Streng	gth of C	orrelatio	n H-I	High, M	- Mediu	im, L-L	ow					
Category		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
					√									

ſ	BCT18006	FLUID MECHANICS	3	0/0	0/0	3

UNIT I INTRODUCTION

9Hrs

Concept of fluid - the fluid as a continuum - properties of a fluid –density -viscosity –surface tension – heat capacity – vapour pressure.

UNIT II FLUID STATICS

9Hrs

Application to manometry – Floatation – gravity settling – centrifugal separation – acceleration.

UNIT III FLOW OF FLUIDS

9Hrs

Bernoullis theorem and application – laminar flow – turbulent flow – pressure drop – Newtonian and non-newtonian flow.

UNIT IV COMPRESSIBLE FLUID FLOW

9Hrs

Mach no – nozzle flow – flow of fluid through packed bed – fluidization.

UNIT V INDUSTRIAL PIPING

9Hrs

Valves – fluid moving machinery – pumps – characteristics of centrifugal pump – other types of pumps – compressors – work – blowers of pumps

Total No of periods: 45Hrs

TEXT BOOKS:

- 1. Noel de Nevers, "Fluid Mechanics for Chemical Engineers", Second Edition, McGraw-Hill, 1991.
- 2. McCabe, W.L, Smith J.C and Harriot .P.," UNIT Operations in Chemical Engineering ", McGraw-Hill, Sixth Edition 2000.

- 1. Chemical engineering hand book by Perry.
- 2. White, F.M., "Fluid Mechanics", 4th Edition, McGraw-Hill Inc., 1999.

SEMESTER III (PRACTICAL)

Subject Code:		t Name wing La	: Chemic b	al Proce	ess Equi	ipment	Design	Ty/L	b/ETL	L	T/5	S.Lr	P/R	C
BCT18ET4	Prerequisite: Chemical Process Equipment Design ETL								1	0/1		3/0	3	
L : Lecture T : T/L/ETL : The OBJECTIVE	eory/Lab/l	Embedd	ed Theory	and La	b	Ū				to dra	aw th	em with		<u></u>
appropriate di			ngn princi	ipres or	various (r proces	s equ ipin	ones una	to di		.0111 ***1011		
COURSE OU	TCOME	CS (COs):(3-5)											
	e end of the	•	ical cours oments.	e, the st	udent is	capable	of perfo	orming th	e design	calcı	ılatio	n of vari	ous	
CO2 To do	o all calcu	lations.												
Mapping of C	Course Ou	ıtcomes	with Pro	gram O	utcome	s (POs)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PC)10	PO11	PO	12
CO1	M	-	-	-	-	L	-	-	Н	-		-	Н	
CO2	M	-	Н	-	-	-	Н	-	-	L		-	Н	
COs / PSOs	PS	PSO1		PSO2		PSO3		PSO4						
CO1	M		M		-		-							
CO2	Н		L		-		-							
H/M/L indica	tes Stren	gth of C	Correlatio	n H- I	High, M	- Mediu	ım, L-L	ow	l			1		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
							√							

BCT18ET4	CHEMICAL PROCESS EQUIPMENT DESIGN & DRAWING LAB	1	0/1	3/0	3	
----------	--	---	-----	-----	---	--

UNIT – I 9Hrs

Design of storage vessels for non-volatile and volatile fluids – design of pressure vessels – design of vessel supports.

UNIT – II 9Hrs

Design of Heat Exchangers – Double pipe – shell & tube – finned tube – plate heat exchangers – design of evaporators – single & multi effect.

UNIT – III 9Hrs

Design of mass transfer operation equipment – Absorber – Distillation column – Plate and packed columns.

UNIT – IV 9Hrs

Design of Dryers – Rotary – Spray dryers – cooling towers

UNIT – V 9Hrs

Design of Agitated vessels – filters – cyclones

Total No of periods: 45Hrs

(All Tables/Chemical Engineers' Handbook/Data Books/Graph Sheets are permitted during the Examination.)

- 1. Fundamental principles, equations, general design and drawing considerations of cooling towers, evaporators and driers.
- 2. Heat exchangers, condensers and reboilers.
- 3. Distillation columns- sieve tray, and bubble cap tray columns and packed column.
- 4. Equipments for absorption and adsorption of gases.
- 5. Equipments for liquid-liquid extraction and solid-liquid extraction.

SEMESTER IV (THEORY)

Subject Co	ode:			me : Chemical Engineering Ty/Lb/ L T / S.Lr P/ R Communics ETL										
BCT18003	3									4				
			-	Engineen c concept	_		ics, phy	sics,	Ty		3	0/0	0/0	3
L : Lecture				Supervise		•	Project F	R : Resea	arch C: C	Credits	l			
T/L/ETL:		ry/Lab/I	Embedd	ed Theor	y and La	ıb								
OBJECTI		matand t	ha thaar	w and an	lication	a of aloa	vai a al +lb.	ama a dru	omica t	-hammad		manantia		tions
				y and app o describe				-	iamics, i	nermoa	ynamic	properue	s, equa	nons
				of thermo	•	•	•		ds and r	nixtures	to desi	gn chemi	cal pro	cess
	ints.					r						0	· · ·	
COURSE	OUT	COME	S (COs):(3-5)										
CO1	Basic	concept	t for the	rmodynar	nics and	l first lav	w can be	e unders	tood.					
CO2	PVT	behavio	r of fluid	ds and ide	eal gas p	rocesses	s can be	analyse	d.					
Mapping o	of Co	urse Ot	itcomes	with Pro	ogram (Outcom	es (POs)						
COs/POs]	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POI	1 PC	012
CO1]	Н	-	-	M	-	-	Н	-	-	-	-	L	
CO2	I	М	-	-	-	-	-	L	-	-	M	-	-	
COs / PSC)s	PSC	D1	PS	02	PS	SO3	PS	5O4					
CO1]	H		Н		-		-						
CO2	I	M		Н		-		-						
H/M/L ind	licate	s Stren	gth of C	 Correlatio	n H-	 High, N	I- Medi	um. L-I	Low					
				 	, 	 ,	I			T				
Category		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
					√									

BCT18003	CHEMICAL ENGINEERING THERMODYNAMICS	3	0/0	0/0	3
					i

UNIT I INTRODUCTION

7Hrs

Systems – surroundings – heat, work ,energy; first ,second and third law of thermodynamics, applications-heat engines, refrigeration, liquefaction .

UNIT II PURE FLUIDS

9Hrs

Fluids-state equations-ideal gas-actual gas-fugacity coefficient-activity-residual properties-exact differentials-fundamental energy property relation-maxwell's equation-heat capacity relation-entropy relationship-gibbs- helmholtz equations.

UNIT III SOLUTION THERMODYNAMICS

11Hrs

Partial molar properties-properties of solutions-determination of pmp-chemical potential- fugacity/ coefficient of solutions-lewis-randasl rule-ideal/real solutions- raoult's and henry's law- activity/activity coefficient of solutions-gibbsduhem equation-property change of mixing-excess properties.

UNIT IV PHASE EQUILIBRIA

11Hrs

Criteria for phase equilibrium-stability criteria-phase equilibria in single component system, multicomponent system-phase rule for non reacting systems-v.l.e at high pressure-non ideal solution v.l.e margules/vandar equations-consistency tests for v.l.e data.

UNIT V CHEMICAL REACTION EQUILIBRIA

7Hrs

Definition-stoichiometric number-extent of reaction-criteria for reaction equilibria-equilibrium constant-relations-effects of temp and pressure-other factors influencing reaction equilibria-phase rule for reacting system.

Total No. of Hours: 45Hrs

TEXT BOOKS:

- 1. Smith, J.M., and Van Ness, H.C., "Introduction to Chemical Engineering Thermodynamics", Kogakushai 1976.
- 2. Narayanan K.V" A text book of chemical engineering thermodynamics" Prentice Hall of India pvt. Ltd 2001.
- 3. Kyle, B.G., "Chemical and Process Thermodynamics 2nd edn. "Prentice Hall of India Pvt.Ltd., 1990.

REFERENCES:

- 1. Hougen, O.A., Watson, K.M., and Ragatz, R.A., "Chemical Process Principles Part II, Thermodynamics", John Wiley 1970.
- 2. Dodge, B.F., "Chemical Engineering Thermodynamics", McGraw-Hill, 1960.
- 3. Sandler, S.I., "Chemical and Engineering Thermodynamics 2nd edn.", Wiley, 1989.
- 4. Kyle, B.G., "Chemical and Process Thermodynamics 2nd edn.", Prentice Hall of India Pvt.Ltd., 1990.

Subject	Code:	Subje	ect Nam	e : Mass	Transfe	er-I			Ty/Lb/E	TL	L	T/S.Lr	P/R	C
BCT180	13		-	Enginee c concep	_		ics, phy	sics,	Ту		3	1/0	0/0	4
L : Lectu	re T :	Tutorial	SLr:	Supervis	ed Learn	ing P : I	Project F	R : Rese	earch C: 0	Credits				
T/L/ETL	: The	ory/Lab/	Embedd	led Theo	ry and La	ab								
OBJECT	ΓIVE:													
	_	_				the und	ergradua	ite stud	ents with	them O	stimpo	rtant sepa	ration	
				ess indus	•									
COURS	E OU	ICOMI	18 (COS	s) : (3- 5)									
CO1	Тор	rovide p	roper un	derstand	ing of U	NIT ope	rations							
CO2														
						~ :								
Mapping	g of C	ourse O	utcomes	s with Pr	ogram (Jutcom	es (POs)						
COs/PO	S	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	lo PO	11 P	012
CO1		Н	-	-	M	-	L	Н	-	-	-	-	L	
CO2		M	-	M	-	-	-	L	-	M	M	-	M	[
COs / PS	SOs	PS	01	PS	SO2	PS	SO3	P	SO4					
CO1		Н		Н		-		-						
CO2		M		Н		-		-						
H/M/L i	ndicat	es Strer	ngth of (Correlati	on H-	High, N	I- Medi	um, L	-Low	1		l		
Categor	ту	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
					√									

BCT18013	MASS TRANSFER-I	3	1/0	0/0	4
----------	-----------------	---	-----	-----	---

UNIT I DIFFUSION 12Hrs

Molecular and eddy diffusion in gases and liquids, steady state diffusion under stagnant and laminar flow onditions Diffusivity measurement and prediction, multicomponent diffusion, diffusion in solids and its applications.

UNIT II MASS TRANSFER COEFFICIENTS

12Hrs

Concept of mass transfer coefficients, mass transfer under laminar and turbulent flow past solids, boundary layers, mass transfer at fluids surfaces correlation of mass transfer coefficients, JD,HTU,and NTU concepts, theories of mass transfer and their applications, interphase mass transfer and over all mass transfer coefficients in binary and multicomponent systems, application to gas-liquid and liquid-liquid systems.

UNIT III HUMIDIFICATION AND AIR CONDITIONING

12Hrs

Basic concepts, psychrometric chart construction, Humidification and dehumidification operations, design calculations, cooling tower principle and operation, types of equipment, design calculation.

UNIT IV DRYING 12Hrs

Theory and mechanism of drying, drying characteristics of materials, batch and continuous drying, calculation for continuous drying, drying equipment, design and performance of various drying equipments.

UNIT V CRYSTALLISATION

12Hrs

Nuclei formation and crystal growth, theory of crystallisation, growth coefficients and the factors affecting these in crystallisation, batch and continuous industrial crystallisers, principle of design of equipment.

Total No of periods: 60Hrs

TEXT BOOKS

- 1. Treybal, R.E., "Mass Transfer Operations", McGraw-Hill Kogakusha, 1980.
- 2. McCabe, W.L., Smith, J.C., and Harriot, P., "UNIT Operations in Chemical Engineering", McGrawHill Edn, 1993.

REFERENCES

- 1. Roman Zarzytci, AndrzaiChacuk, "Absorption: Fundamentals and Application", Pergamon Press, 1993.
- 2. skelland, A.H.P., "Diffusional Mass Transfer", Krieger, Malabar FL (1985). Strigle (jr), R.F., "Packed Tower Design and Applications", Second Edition, Gulf Publishing Company, USA., 1994.
- 3. Coulson, J.M., Richardson, J.F., "Chemical Engineering" Vol. I, Pergamon Press, 1977.
- 4. Foust, A.S. Wenzel, L.A., Clump, C.W., Naus, L., and Anderson, L.B., "Principles of UNIT Operations", Second Edition, Wiley, 1980.

Subject													C	
BCT18	009	Prerec balanc	-	Basic ma	ths & n	naterial	energy		Ту		3	1/0	0/0	4
L : Lect	ture T : T	Cutorial	SLr : S	Supervise	d Learni	ng P : P	roject R	: Resea	rch C: C	redits			1	1
		ry/Lab/I	Embedd	ed Theory	and La	b								
OBJEC														
•				amentals o uipment in				sms in f	luids and	solids ar	nd thei	r applicat	ions in	
COUR				$\frac{(3-5)}{(3-5)}$	i proces	5 muust	1105.							
					1 (1 1' 4	. 1					
CO1	To imp	art knov	wledge (on heat co	nductio:	n, conve	ection ar	id radiat	ion phen	omena.				
CO2	To imp	art knov	wledge o	on applica	tion of l	neat tran	nsfer pri	nciples i	n heat ex	changer	design	•		
CO3	To imr	art knov	wledge (on the pri	nciples o	of evapo	ration a	nd evap	orator de	sign.				
	•				•									
Mappii	ng of Co	urse Ou	itcomes	with Pro	gram C	Outcome	es (POs)						
COs/Po	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 PO1	1 PC)12
CO1		Н	L	-	-	Н	-	-	-	-	-	M	M	
CO2		L	M	-	-	-	-	M	-	-	-	Н	M	
CO3		M	Н	-	-	L	-	-	-	-	-	Н	L	
COs / I	PSOs	PS	O1	PSC)2	PS	SO3	PS	SO4					
CO1		Н		M		L		Н						
CO2		L		M		Н		M						
CO3		Н		M		L		Н						
H/M/L	indicate	s Stren	gth of C	Correlatio	n H-	High, M	I- Medi	um, L-L	∠ow		1	I	l	
			S	al					al					
		es	ence	Socia	e	ves	es	ject	hmic					
		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	cills				
		Sci	ring	ities and Sciences	ram	m E	Ele	al/	ps / T Skill	Soft Skills				
Catego	ory	asic	neel	amiti Sc	rog	gra	pen	actic	ıshij	Sol				
		Д	Engi	[nm;	<u> </u>	Prc		Pra	nteri					
									II		-			
					,									
					$\sqrt{}$									

BCT18009	HEAT TRANSFER	3	1/0	0/0	4

UNIT I BASIC PRINCIPLES AND CONDUCTION

12Hrs

Importance of heat transfer in Chemical Engineering operations - Modes of heat transfer - Mean temperature difference. Concept of heat conduction - Fourier's law of heat conduction - one dimensional steady state heat conduction equation for flat plate, hollow cylinder, hollow sphere - Heat conduction through a series of resistances - Analogy between flow of heat and flow of electricity - Thermal conductivity measurement; effect of temperature on thermal conductivity; conduction through liquids.

UNIT II FILM COEFFICIENTS AND THEIR APPLICATION

12Hrs

Individual and overall heat transfer coefficients and the relationship between them - Conduction with heat source - Two dimensional steady state conduction - Analytical and graphical methods - Transient heat conduction.

UNIT III CONVECTION

12Hrs

Concept of heat transfer by convection - Natural and forced convection - Application of dimensional analysis for convection - Equations for forced convection under laminar, transition and turbulent conditions - Equations for natural convection - Heat transfer from condensing vapours, heat transfer to boiling liquids - Influence of boundary layer on heat transfer - Heat transfer to molten metals - Heat transfer in packed and fluidised beds.

UNIT IV HEAT EXCHANGERS

12Hrs

Parallel and counter flow heat exchangers - Log mean temperature difference - Single pass and multipass heat exchangers; plate heat exchangers; use of correction factor charts; heat exchangers effectiveness; number of transfer UNIT - Chart for different configurations - Fouling factors and wilson's plot - Design of various types of heat exchangers - Design of furnaces - Design of condensers, - Design of tubular reactors.

UNIT V RADIATION AND EVAPORATION

12Hrs

Concept of thermal radiations - Black body concept - Stefan Boltsman's law -concept of grey body - radiation between surfaces. Types of evaporation - single effect and multiple effect evaporation - Design calculation for single and multiple effect evaporation.

Total No of Hours: 60Hrs

TEXT BOOKS:

- 1. McCabe, W.L., Smith, J.C., and Harriot, P., "UNIT Operations in Chemical Engineering", McGraw-Hill Recent Edn.
- 2. BinayK.Dutta "Heat Transfer Principles and Applications", Prentice Hall of India, 2001.
- 3. Kern, D.Q., "Process Heat Transfer", McGraw-Hill Revised adition.

REFERENCES:

Coulson, J.M., Richardson, J.F., "Chemical Engineering", Vol.I., Pergamon and ECBPRACTICAL

SEMESTER IV (PRACTICAL)

Subjec	t Code:	Su	bject N	ame : He	at Tran	sfe <mark>r La</mark> l	b		Ty/Lb/F	ETL L	T/S	.Lr	P/R	C
BCT18	BL08	Pro	erequis	ite: Heat	Transfe	er			Lb	0	0/0		3/0	1
				Supervise ed Theory		•	roject R	: Resea	rch C: C	redits				1
OBJE	CTIVE:													
•	To enab			o learn he ator and h			onductio	n, conve	ection an	d radiatio	on and hea	ıt transfer		
COUR	SE OUT	COME	S (COs)):(3-5)										
CO1								_			fer methoox		_	SS
CO2	To do al	l calcula	ations.											
Mappi	ng of Co	urse Ou	itcomes	with Pro	ogram C	outcome	es (POs)							
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1		Н	-	-	Н	-	-	L	-	-	Н	M	L	
CO2		M	-	Н	Н	-	-	Н	-	Н	-	-	-	
COs / 1	PSOs	PS	6 O 1	PS	O2	PS	SO3	PS	SO4					
CO1		Н		M		-		-						
CO2		M		L		-		-						
H/M/L	indicate	s Stren	gth of C	 Correlatio	n H-	 High, M	I- Mediu	ım, L-L	ωw					
			es	iences					Skill					
Categ	ory	Basic Sciences	Engineering Sciences	nd Social Sc	Program Core	Program Electives	Open Electives	Practical / Project	/ Technical	Soft Skills				
		Basic	Enginee	Humanities and Social Sciences	Prog	Progra	Open	Practic	Internships / Technical Skill	Soc				
				. —	•	1	1							

BCT18L08	HEAT TRANSFER LAB	0	0/0	3/0	1
	HEAT TRANSFER LAD	1	ĺ	1	1 1

- 1. Thermal Conductivity measurement
- 2. Emissivity mesurement
- 3. Stefan-Boltzmann Constant verification
- 4. Thermocouple calibration
- 5. Natural Convection
- 6. Forced Convection
- 7. Parallel Flow Double Pipe Heat Exchanger
- 8. Counter Flow Double Pipe Heat Exchanger

SEMESTER V (THEORY)

Subjec	et Code:	Subject	Name :	Mass Tra	ansfer I	Ī.			Ty/Lb/	ETL	L	T / S.	Lr	P/R	С
BCT18	8014	Prerequ	isite: Ba	asic math	ematics	& energ	gy & ma	aterial	Ty		3	1/0		0/0	4
		balance													
L : Lec	ture T : T	utorial	SLr : Su	pervised I	Learning	P : Proj	ect R : F	Research	C: Credit	S		I	I		
		ry/Lab/En	nbedded	Theory a	nd Lab										
OBJE	CTIVE:	.1 . 1	. 1°CC		1		11 (1		1	11 4111	<i>,</i> •	1			
•		the studenrstand the		•		•			•				1.		
COUR		COMES			/eaming	uiu-iiqui	uextract	lionands	onanqui	uexirac	11011.	•			
CO1	To stud	y diffusio	n phenor	nenon in	various r	nass trar	nsfer the	ories.							
CO2	To stud	y Humidif	ication o	operation,	drying o	peration	and ads	sorption.							
Mappi	ing of Co	urse Outo	comes w	ith Progr	ram Out	comes (POs)								
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PC)10	PO11	PO	12
CO1		M	-	-	Н		-	-	Н	L	M	[-	-	
CO2		Н	-	-	-	-	-	-	M	L	L		-	M	
COs/I	PSOs	PSC)1	PSC	02	PS	O3	PS	SO4						
CO1		H		M		L		Н							
CO2		H		L		Н		Н							
H/M/L	indicate	es Strengt	h of Co	rrelation	H- Hig	gh, M- N	Aedium	, L-Low	l				l		
Categ	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
					1										

BCT18014	MASS TRANSFER II	3	1/0	0/0	4
					i I

UNIT I ABSORPTION

12Hrs

Equilibrium and operating line concept in absorption calculations; types of contactors, design of packed and plate type absorbers; Operating characteristics of stagewise and differential contactors, concepts of NTU, HTU and overall volumetric mass transfer coefficients; multicomponent absorption; mechanism and model of absorption with chemical reaction; thermal effects in absorption process.

UNIT II DISTILLATION

12Hrs

Vapour-liquid equilibria, Raoult's law and deviations from ideality, methods of distillation; fractionation of binary and multicomponent system; design calculations by McCabe-Thiele and ponchon-Savarit, methods; continuous contact distillation tower (packed tower) design; extractive and azeotropic; distillation low pressure distillation; steam distillation.

UNIT III LIQUID-LIQUID EXTRACTION

12Hrs

Equilibrium in ternary systems; equilibrium stagewise contact calculations for batch and continuous extractors, differential contact extraction equipment - spray, packed and mechanically agitated contactors and their design calculations; pulsed extractors, centrifugal extractors.

UNIT IV SOLID-LIQUID EXTRACTION (LEACHING)

12Hrs

Solid-liquid equilibria; leaching equipment-batch and continuous types; calculation of number of stages.

UNIT V ADSORPTION, ION EXCHANGEAND MISCELLANEOUS SEPARATION PROCESSES 12Hrs

Theories of adsorption of gases and liquids; industrial adsorbents, adsorption equipment for batch and continuous operation; design calculation of ion-exchange resins; principle of ion-exchange; industrial equipment. Membrane separation process; solid and liquid membranes; concept of osmosis; reverse osmosis; electrodialysis; their applications; foam separation process; Thermal and sweep diffusion process.

Total No. of Hrs: 60Hrs

TEXT BOOKS

1.R.E.Treybal, "Mass Transfer Operations", McGraw-Hill, Kogakusha, 1980.

2.W.L McCabe J.C.Smith, and Harriot. P., " UNIT Operations of Chemical Engineering", sixth edition McGraw-Hill. International Edition, 2001.

REFERENCES

- 1, C.Judson King "Separation Processes", Tata McGraw-Hill 1974.
- 2. A.H.P.Skelland, "Diffusional Mass Transfer", Krieger, Malapur, FL (1985).
- 3. Roman Zarfyki and Andrzej Chacuk, "Absorption Fundamentals and Applications", Pergamon Press, 1993.
- 4. P. Wankat" Equilibrium Stage Separations ", Prentice Hall, 1993.
- 5. R.F.Strigle (jr), Packed Tower Design and Application, 2nd Edn Gulf Publishing company U.S.A. 1994.

Subjec	t Code:	Subje	ect Nam	e: Chen	nical Re	action I	Enginee	ring	Ty/L	b/ETL	L	T/S	$\mathbf{Lr} \mid \overline{\mathbf{P}}$	/ R	C
BCT18	8010		equisite gy balar	: Basic m	naths, ch	emistry	y & mat	erial	Ту		3	1/0	0/	0	4
L : Lec	ture T : T	'utorial	SLr:	Supervise	ed Learn	ing P : F	Project R	: Resea	rch C: C	redits	1				
	L: Theor	ry/Lab/I	Embedd	ed Theor	y and La	ıb									
OBJE	CTIVE:														
•			_	om calcul problems			•		•				energy b	alanc	es
COUR	SE OUT					urate se	verai typ	000 100	actor iii j	process	mau	suics.			
CO1				omogene		tions									
CO2	Design	of ideal	reactor	s for sing	le and co	omplex	reaction	S							
CO3	Develo	p rate lo	oss for h	eterogene	eous reac	ctions									
Mappi	ng of Co	urse Ou	itcomes	with Pro	ogram (Outcom	es (POs))							
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PC)10	PO11	PO	12
CO1		Н	M	-	-	-	-	L	L	-	-		-	L	
CO2		L	Н	-	Н	-	-	M	Н	-	-		-	-	
CO3		Н	M	-	-	-	-	L	L	-	-		-	M	
COs/l	PSOs	PS	O1	PS	O2	PS	SO3	PS	SO4						
CO1		M		Н		L		M							
CO2		Н		M		L		Н							
CO3		L		M		Н		Н							
H/M/L	indicate	s Stren	gth of C	Correlatio	on H-	High, N	I- Medi	um, L-I	Low						
Categ	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
				<u> </u>	√										

BCT18010	CHEMICAL REACTION ENGINEERING	3	1/0	0/0	4

UNIT I REACTION KINETICS

12Hrs

Law of Mass Action, Rate Equation, Elementary, Non-Elementary Reactions-Their Mechanism, Theories Of Reaction Rate And Temp Dependency, Analysis Of Experimental Data-Evaluation Of Rate Equation Integral And Differential Analysis For Constant/Variable Volume Systems.

UNIT II HOMOGENEOUS REACTIONS

12Hrs

Batch, Stirred Tank Reactor Design, Choice Of Reactors, Optimum Yield And Conversion, Isothermal, Non Isothermal Reaction, Adiabatic Reactors, Rates Of Heat Exchange, Criteria For Stability Of Reactors, Equilibrium Constant-Evaluation, Effect Of Temperature

UNIT III HETEROGENEOUS REACTIONS-(NON CATALYTIC).

12Hrs

Rate Equations, Analysis Of Rate Equation, Rate Controlling Steps, Models For Explaining Kinetics, Volume And Surface Models, Controlling Resistances &Rate Controlling Steps; Time For Complete Conversion In Static And Fluidized Bed Reactors, Absorptions With Chemical Reactions, Mass Transfer Co Efficient& Kinetic Constants, Hatta Number, Enhancement Factor For First Order Reaction

UNIT IV HETEROGENEOUS REACTIONS- CATALYTIC REACTIONS

12Hrs

Adsorption Isotherms, Rates Of Adsorption/Desorption, Surface Reaction, Rate Controlling Steps Surface Area And Pore Volume Distribution-Diffusion Within Catalyst Particles, Mass And Heat Transfer Within Catalyst Particles, Effectiveness Factors-Internal & Overall: Thiele Modulus

UNIT V NON IDEAL REACTORS

12Hrs

Definition, Cause For Deviation From Identity, Concept Of Residence Time Distribution RTD E-Curve, F-Curve, Their Inter Relationship, Basic Model Tanks In Series Model, Conversion Relationships In Non-Ideal Reactors.

Total No of Hours: 60Hrs

TEXT BOOKS

- 1. Levenspiel.O, "Chemical Reaction Engineering", John Wiley, Second Edition, 1972.
- 2. Fogler. H.S., "Elements Of Chemical Reaction Engineering" 3rd Edition, Prentice Hall Of India Pvt. Ltd., 1999 (Indians Reprint 2003)

REFERENCES

- 1. Smith.J.M., " Chemical Engineering Kinetics", Mcgraw-Hill Third Edition, 1981.
- Levenspiel , O; " Chemical Reaction Engineering ", 2nd Edition, John Wiley, 1972.

Bubject	Code:	Subjec	t Name	: Industr	ial Instr	umenta	tion		Ty/L	b/ ETL		Γ/SLr	P/R	•
BCT18	E12	Prereq	uisite: I	Basic elec	trical a	nd electi	ronics		Ty		3 ()/0	0/0	3
L : Lect	ure T : T	utorial	SLr : S	upervised	l Learnir	ng P : Pro	oiect R :	Researc	h C: Cre	dits				L
				d Theory		•	3							
OBJEC	TIVE:													
							_	_	es and H	uman Val	lues, to	instill Mora	l and	
			•	ty and to	apprecia	te the rig	ghts of o	thers.						
COURS	SE OUT	COMES	S (COs)	: (3-5)										
CO1	Identif	y and an	alyze an	ethical is	ssue in th	ne subjec	t matter	under in	vestigat	ion or in	a releva	nt field.		
CO2	Identif	v ethical	concerr	ns in resea	arch and	intellect	ual cont	exts. inc	luding a	cademic i	ntegrity	, use and c	itation	of
002		-		resentatio					•		inegin)	, ase and e	· · · · · · · · · · · · · · · · · · ·	01
Mannir	a of Co		taamaa	with Pro	anom O	t.o	(DO a)							
											•			
COs/PC) s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1) PO11	PO	12
CO1		Н	-	-	L	-	-	-	L	-	Н	-	-	
CO2		M	-	-	L	-	-	M	-	-	-	-	L	
COs / P	PSOs	PS	SO1	PS	O2	PS	SO3	PS	6O4					
CO1		Н		M		-		-						
CO2		M		L		-		-						
H/M/I	indicate	s Strong	rth of Co	 orrelation	n H-F	ligh M-	Medin	n I -I o	X					
11/1/1/1/	mulcate	o ou che	in or Ci		11 11-1.	ngn, m	Wicului	, L-L0	•••	Ţ				
				×										
				45										
			S	ence					Skill					
		S	nces	Science	ده	ves	SS	ect	cal Skill					
Catego	ory	suces	Sciences	cial Science	Core	ectives	tives	Project	hnical Skill	Ills				
Catego	ory	Sciences	ng Sciences	l Social Science	am Core	n Electives	Electives	ıl / Project	Technical Skill	Skills				
Catego	ory	isic Sciences	leering Sciences	and Social Science	ogram Core	gram Electives	oen Electives	ctical / Project	ps / Technical Skill	Soft Skills				
Catego	ory	Basic Sciences	ngineering Sciences	ties and Social Science	Program Core	Program Electives	Open Electives	Practical / Project	nships / Technical Skill	Soft Skills				
Catego	ory	Basic Sciences	Engineering Sciences	nanities and Social Science	Program Core	Program Electives	Open Electives	Practical / Project	nternships / Technical Skill	Soft Skills				
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social Science	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social Science	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				

BCT18E12	INDUSTRIAL INSTUMENTATION	3	0/0	0/0	3

UNIT I 5Hrs

Introduction – Variables, UNITs & standards of measurement, Measurement terms – characteristic. Data analysis.

UNIT II 10Hrs

Process Variables Measurement–Temperature systems— Thermocouples, Thermo resistive system, Filled-system thermometers, Radiation thermometry, Location of temperature measuring devices in equipments, Pressure system — Mechanical pressure elements Pressure Transducers and Transmitters, Vacuum measurement, Resonant wire pressure Transducer, Flow system—Differential producers, Variable area flow meters, Velocity, vortex, mass, ultrasonic & other flow meters, positive displacement flow meters, Open—channel flow measurements, Force systems, Strain gauges Humidity Moisture system, Humidity Measurement, Moisture measurement system, Rheological system, Viscosity measurement, Radiation system, Nuclear radiation instrumentation.

UNIT III 12Hrs

Analytical instrumentation – Analysis instruments, Sample conditioning forprocess analyzers, X-ray Analytical methods, Quadrupole mass spectrometry, Ultra violet Absorption Analysis, Infra red process analyzers, Photometricreaction product analysers Oxygen analyzers, Oxidation – reduction potential lineasurements, pH measuring systems, Electrical conductivity and Resistivity measurements, Thermal conductivity, gas analysis, Combustible, Total hydrocarbon, and CO analyzer, Chromatography.

UNIT IV 9Hrs

Fundamentals of Automatic process control – Control algorithms-Automatic controllers – Electronic controllers – Electronic controllers – Fluidics – Programmable controllers.

UNIT V 9Hrs

Sensors, Transmitters and control valves - Pressure, Flow, Level, Temperatureand Composition sensors, Transmitters, Pneumatic and electronic controlvalves, Types, Actuator, accessories, Instrumentation symbols and Labels.

TOTAL No. of Hrs: 45Hrs

TEXTBOOKS:

- 1. Fribance, "Industrial Instrumentation Fundamentals", Mc Graw Hill Co. Inc. New York 1985
- 2. Eckman D.P. "Industrial Instrumentation", Wiley Eastern Ltd., 1989.
- 3. Considine D M and Considine G D "Process Instruments Controls" Handbook 3rd Edition, McGraw Hill Book Co., NY, 1990.
- 4. Schorg D E, Edgar T.F and Mellichamp D.A, "Process Dynamics and Control" John Wiley 1989.

REFERENCES:

- 1. Ernest Doebelin, Measurement systems, McGraw Hill Book, Co., NY, 1975.
- 2. Astrom K.J., Bjonwittenmark, Computer controlled systems, Prentice- Hallof India, New Delhi 1994.
- 3. Cartis Johnson, Process Control Instrumentation Technology, Prentice-Hallof India, New Delhi 1993.

SEMESTER V (PRACTICAL)

•		Subje	ect Nam	e : Chen	nical Rea	action E	Engineer	ing Lab	Ту	/Lb/ETL	L	T / S.Lr	P/R	(
BCT18	8L11	Prere	auisite:	Chemic	al React	ion Eng	ineerin	g	Lb		0	0/0	3/0]
L : Lec	cture T : T											0, 0	0,0	
OBJE	CTIVE:													
•	To impa	rt know	ledge or	n design o	of reactor	rs.								
COUR	RSE OUT	COME	S (COs)): (3-5)										
CO1	Students	s would	get a so	und work	ing knov	wledge o	on differ	ent type	s of reac	tors.				
CO2	To do al	l calcul	ations.											
Mappi	ing of Co	urse Ou	itcomes	with Pro	gram O	utcome	es (POs)							
COs/P	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2
CO1		M	Н	Н	-	L	-	-	-	M	-	-	Н	
CO2		M	Н	-	Н	-	-	Н	-	Н	-	M	-	
COs /	PSOs	PSO1		PSO2	<u> </u>	PSO3		PSO4						
CO1		M		M		-		-						
CO2		Н		L		-		-						
H/M/T	indicate	c Strone	oth of C	orrelatio	n H-1	 Tigh M	_ Modiı	ım I I	OW					
11/1/1/1	Indicate	South	gill of C	Claud	11-1		- Medit		l .				1	
Catego	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				

BCT18L11	CHEMICAL REACTION ENGINEERING LAB	0	0/0	3/0	1
					i l

- 1. Kinetic studies in a batch reactor
- 2. Kinetics in a plug flow reactor
- 3. Kinetics in a PFR followed by a CSTR
- 4. RTD in a PFR
- 5. RTD in a packed bed
- 6. RTD in CSTRs in series
- 7. Combined Reactor
- 8. Packed Bed Reactor
- 9. Adiabatic Reactor
- 10. Catalytic Reactor
- 11. Kinetics in Semi-batch Reactor

*Minimum 10 experiments shall be offered.

SEMESTER VI (THEORY)

Subject		Sul	bject Na	ame : Pro	cess Co	ntrol A	nd Dyn	amics		Ty/Lb/ ETL	L	T/5	S.Lr	P/ R	C
BCT180	04		-	te: Engin	_		•	II,		Ту	3	1/0		0/0	4
				Supervised ed Theory		_	oject R	: Resear	ch C: C	Credits					
OBJEC 7	ΓΙVE: Γο gain brinciple Γο desig	the knoves. gn variou	wledge o	of process	instrum	ents & ı				deling of a	_		process	using	first
CO1	withou	ut contro	ollers.							mplement	•				
CO2				ers and migns, and i					eve des	sired perfor	rmar	ice &	Underst	and	
Mapping	g of Cou	urse Ou	tcomes	with Pro	gram O	utcome	s (POs)								
COs/PO	S	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	D10	PO11	PO	12
CO1		Н	M	-	Н	-	-	Н	-	M	L		-	L	
CO2		M	-	-	Н	-	Н	-	-	Н	L		-	M	
COs / PS	SOs	PS	O 1	PSC	D2	PS	O3	PS	SO4						
CO1		Н		M		L		L							
CO2		M		L		Н		Н							
H/M/L i	ndicate	s Streng	gth of C	orrelatio	n H- H	ligh, M	- Mediu	m, L-L	ow						
Categor	ту	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
					√										

BCT18004	PROCESS CONTROL AND DYNAMICS	3	1/0	0/0	4
					i I

UNIT I RESPONSE OF FIRST ORDER SYSTEM

12Hrs

Laplace transformation, transform of standard functions, derivatives and integrals, inversion, theorems in Laplace transformation, application. Open-loop systems, first order systems and their transient response for standard input functions, first order systems in series, linearization and its application in process control, second order systems and their dynamics, transfer function for chemical reactors and dynamics.

UNIT II THE CONTROL SYSTEM

12Hrs

Closed loop control systems, development of block diagram for feed-back control systems, servo and regulator problems, Transfer function for controllers and final control element, principles of pneumatic and electronic controllers, transportation lag, transient response of closed-loop control systems and their stability.

UNIT III CLOSED LOOP TRANFER FUNCTIONS

12Hrs

Introduction to frequency response of closed-loop systems, control system design by frequency, Bode diagram, stability criterion, Nyquist diagram; Tuning of controller settings.

UNIT IV CONTROLSYSTEM DESIGN BY FREQUENCY RESPON

12Hrs

Controller mechanism, introduction to advanced control systems, cascade control, feed forward control, control of distillation towers and heat exchangers, introduction to microprocessors and computer control of chemical process.

UNIT V ADVANCED CONTRO SYSTEM

12Hrs

Principles of measurements and classification of process control instruments, measurements of temperature, pressure, fluid flow, liquid weight and weight flow rate, viscosity and consistency, p^H, concentration, electrical and thermal conductivity, humidity of gases, composition by physical and chemical properties and spectroscopy.

Total No of Hours: 60Hrs

TEXT BOOKS:

- 1. Patranabis .D, Principles of Process control, II edition, Tata McGraw Hill Publishing Co Ltd., 1981.
- 2. PeterHarriott, Processcontrol, Tata McGraw Hill Publishing Co., Reprint 2004.

REFERENCES:

- 1. Thomas, E.Marlin, Process Control, 2ndEdn, McGraw Hills International Edn 2000.George Stephanopoulos, Chemical Process Control, Prentice Hall of India 2003.
- 2. Norman H.CEAGLSKE, Automatic process control for chemical engineers, John Wiley & Sons, Japan

Subject	Code:		•	ame: Tota	_	ty Mana	gement	For	Ту	/ Lb/ETL	L	T/SLr	P/R	C
BMG18 (001			Engineer		, ,	104		TD.		12	0.40	0.40	1
			erequisi gineerin	te: Quali	ty contr	ol and q	uality		Ty		3	0/0	0/0	3
		Ì												
				upervised d Theory		g P : Pro	oject R :	Researc	h C: Cre	edits				
OBJEC'		y/Lau/E	inbedde	d Theory	and Lab									
		duce the	main pr	rinciples o	f busine	ss and so	ocial exc	cellence.						
			_	_					ality ma	nagement r	netho	dology for	the	
					nageme	nt in any	sphere	of busin	ess and	public sect	or.			
COURS	E OUT	COMES	S (COs)	:										
CO1	Help t	o apply	appropri	iate techni	iques in	identifyi	ng custo	omer nee	eds.					
CO2	Measu	re the c	ost of no	or quality	and pro	ress eff	ectivene	es and e	fficiency	7				
					•			ss and C		· ·				
Mapping	g of Cou	ırse Ou	tcomes	with Prog	gram Ou	itcomes	(POs)							
COs/PO	s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1		Н	M	Н	M	M	L	L	Н	Н	Н	M		H
CO2		M	M	M	-	M	L	-	Н	-	-	Н]	M
COs / PS	SOs	PS	6 01	PS	02	PS	O3	PS	6O4					
CO1		Н		M		L		H						
CO2		M		L		H		H						
H/M/L i	ndicates	Streng	gth of Co	orrelation	H- H	igh, M-	Mediu	m, L-Lo	W					
				ses										
			S	Sciences					Skil					
		es	ence		မွ	lves	es	ect	cal					
Categor	У	enc	Scie		Cor	lecti	ctiv	Proj	chni	ills				
		Basic Sciences	ing	d Sc	Program Core	Program Electives	Open Electives	Practical / Project	/ Te	Soft Skills				
		asic	neeı	s an	rogi	graı	pen	ıctic	ips /	Sof				
					(1)	. 0		1 60	- 4	1		1	1	
		B	Ingi	nitie		Pr		Pı	rns					
		B	Engineering Sciences	Humanities and Social	I	Pr		P ₁	Internships / Technical Skill					

 $\sqrt{}$

BMG18001	TOTAL QUALITY MANAGEMENT FOR CHEMICAL	3	0/0	0/0	3
	ENGINEERS				

UNIT I INTRODUCTION

9Hrs

Definition of Quality, Dimensions of Quality, Quality Planning, Quality costs - Analysis Techniques for Quality Costs, Basic concepts of Total Quality Management, Historical Review, Principles of TQM, Leadership – Concepts, Role of Senior Management, Quality Council, Quality Statements, Strategic Planning, Deming Philosophy, Barriers to TQM Implementation.

UNIT II TQM PRINCIPLES

9Hrs

Customer satisfaction – Customer Perception of Quality, Customer Complaints, Service Quality, Customer Retention, Employee Involvement – Motivation, Empowerment, Teams, Recognition and Reward, Performance Appraisal, Benefits, Continuous Process Improvement – Juran Trilogy, PDSA Cycle, 5S, Kaizen, Supplier Partnership – Partnering, sourcing, Supplier Selection, Supplier Rating, Relationship Development, Performance Measures – Basic Concepts, Strategy, Performance Measure.

UNIT III STATISTICAL PROCESS CONTROL (SPC)

9Hrs

The seven tools of quality, Statistical Fundamentals – Measures of central Tendency and Dispersion, Population and Sample, Normal Curve, Control Charts for variables and attributes, Process capability, Concept of six sigma, New seven Management tools.

UNIT IV TOM TOOLS

9Hrs

Benchmarking – Reasons to Benchmark, Benchmarking Process, Quality Function Deployment (QFD) – House of Quality, QFD Process, Benefits, Taguchi Quality Loss Function, Total Productive Maintenance (TPM) – Concept, Improvement Needs, FMEA – Stages of FMEA.

UNIT V QUALITY SYSTEMS

9Hrs

Need for ISO 9000 and Other Quality Systems, ISO 9000:2000 Quality System – Elements, Implementation of Quality System, Documentation, Quality Auditing, QS 9000, ISO 14000 – Concept, Requirements and Benefits.

Total No. of Hours: 45Hrs

TEXT BOOK:

1. Dale H.Besterfiled, et at., Total Quality Management, Pearson Education Asia, 1999 (Indian reprint 2002).

REFERENCES

- 1. JaesR.Evans& William M.Lidsay, The Management and Control of Quality, (5th Edition), South-Western (Thomson Learning), 2002 (ISBN 0-324-06680-5).
- 2. Feigenbaum.A.V. "Total Quality Management, McGraw Hill, 1991.
- 3. Oakland.J.S. "Total Quality Management Butterworth Heinemann Ltd., Oxford. 1989.
- **4.** Narayana V. and Sreenivasan, N.S. Quality Management Concepts and Tasks, New Age International 1996.
- 5. Zeiri. "Total Quality Management for Engineers Wood Head Publishers, 1991

		-		пэрогі	Phenom	iena		Ty/Lb/	CIL	L	T/S.Lr	P/R	C
1	Pre	erequisi	te: Mass	transfer	, Heat t	ransfer		Ту		3	0/0	0/0	3
e T : Tuto	orial	SLr : S	upervised	Learnin	ng P : Pro	oject R :	Researc	ch C: Cro	edits				
Theory/	Lab/E	mbedde	d Theory	and Lab									
IVE:													
		•					•		_	•	of Momentu	ım, ene	rgy
				l and ch	emical s	ystems	using a u	ınified ap	proach	l .			
OUTCO	DMES	s (COs)	: (3-5)										
Under	standi	ng of tra	nsport pr	ocesses.									
Ability	to de	evelop st	eady and	time de _l	pendent	solution	s along	with thei	r limita	tions.			
Ability	to an	alyze in	dustrial p	roblems	along w	ith appr	opriate	boundary	condit	ions.			
of Cours	se Ou	tcomes	with Prog	gram O	utcomes	s (POs)							
F	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
I		-	Н	-	-	-	-	L	-	M	-	Н	
I		-	L	-	-	Н	-	-	-	M	-	L	
I		-	Н	-	-	-	-	-	-	M	-	M	
Os	PS	O1	PSO	D2	PS	O3	PS	SO4					
N	<u> </u>		L		M		M						
N	<u> </u>		M		Н		M						
I	I		Н		Н		L						
dicates S	treng	th of Co	 orrelation	н- н	ligh, M-	Mediu	 m, L-Lo)W					
								ij					
		ses	ial		Š		t	1 Sk					
0	SCCS	ienc	Soc	ore	tive	ves	ojec	nica	S				
.5	CIEL	g Sc	and	m C	Elec	lecti	/ Pr	ech	Skill				
.;	20	erin	ties Scie	graı	am	ın E	ical	L / S	oft !				
D	Das	gine	nani S	Pro	rogr	Ope	ract	hip	Š				
		Enį	Hun		P			erns					
			, ,					Int					
	Theory/IVE: his course d mass in OUTCO Underst Ability Ability IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Theory/Lab/E IVE: his course will d mass in biolo OUTCOMES Understandi Ability to de Ability to an of Course Ou PO1 L L L L Ds PS M M H dicates Streng	Theory/Lab/Embedde IVE: his course will provide d mass in biological, no OUTCOMES (COs) Understanding of translation of translation of translation of translation of Course Outcomes PO1 PO2 L - L - L - DS PSO1 M M H dicates Strength of Co	Theory/Lab/Embedded Theory IVE: his course will provide the funda d mass in biological, mechanica OUTCOMES (COs): (3-5) Understanding of transport pro Ability to develop steady and Ability to analyze industrial prof PO1 PO2 PO3 L - H L - L L - H Os PSO1 PSO M L M M H H dicates Strength of Correlation	Theory/Lab/Embedded Theory and Lab IVE: his course will provide the fundamentals d mass in biological, mechanical and che OUTCOMES (COs): (3-5) Understanding of transport processes. Ability to develop steady and time dependent of Course Outcomes with Program Of Course Outcomes with Program Of L - H - L - L - L - L - L - L - L - L -	Theory/Lab/Embedded Theory and Lab IVE: his course will provide the fundamentals to solve d mass in biological, mechanical and chemical solution of Course (COs): (3-5) Understanding of transport processes. Ability to develop steady and time dependent dependent along where the course of Course Outcomes with Program Outcomes of Course Outcomes with Program Outcomes dependent depende	Theory/Lab/Embedded Theory and Lab IVE: his course will provide the fundamentals to solve real life of mass in biological, mechanical and chemical systems of the course of transport processes. Ability to develop steady and time dependent solution ability to analyze industrial problems along with approx of Course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 L - H H L - H H L - H H DS PSO1 PSO2 PSO3 M H H H H H H dicates Strength of Correlation H- High, M- Medium	Theory/Lab/Embedded Theory and Lab IVE: his course will provide the fundamentals to solve real life problem of course will provide the fundamentals to solve real life problem of mass in biological, mechanical and chemical systems using a recommendation of transport processes. Ability to develop steady and time dependent solutions along a bility to analyze industrial problems along with appropriate of Course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 L - H	Theory/Lab/Embedded Theory and Lab IVE: is course will provide the fundamentals to solve real life problems involved mass in biological, mechanical and chemical systems using a unified at OUTCOMES (COs): (3-5) Understanding of transport processes. Ability to develop steady and time dependent solutions along with their Ability to analyze industrial problems along with appropriate boundary of Course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 L - H L L - L H L DS PSO1 PSO2 PSO3 PSO4 M M M M M M M M M M M M M M M M M M M	is course will provide the fundamentals to solve real life problems involving trad mass in biological, mechanical and chemical systems using a unified approach OUTCOMES (COs): (3-5) Understanding of transport processes. Ability to develop steady and time dependent solutions along with their limital Ability to analyze industrial problems along with appropriate boundary condit of Course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 L - H L - L - L - L - L - L - L -	Theory/Lab/Embedded Theory and Lab IVE: it is course will provide the fundamentals to solve real life problems involving transports of d mass in biological, mechanical and chemical systems using a unified approach. OUTCOMES (COs): (3-5) Understanding of transport processes. Ability to develop steady and time dependent solutions along with their limitations. Ability to analyze industrial problems along with appropriate boundary conditions. of Course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 L - H L - M L - L - M L - M DS PSO1 PSO2 PSO3 PSO4 M M M M M M M M H M M M M M M M M M M	Theory/Lab/Embedded Theory and Lab IVE: its course will provide the fundamentals to solve real life problems involving transports of Momentud mass in biological, mechanical and chemical systems using a unified approach. OUTCOMES (COs): (3-5) Understanding of transport processes. Ability to develop steady and time dependent solutions along with their limitations. Ability to analyze industrial problems along with appropriate boundary conditions. of Course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 L - H L - M M M	Theory/Lab/Embedded Theory and Lab IVE: its course will provide the fundamentals to solve real life problems involving transports of Momentum, ene d mass in biological, mechanical and chemical systems using a unified approach. OUTCOMES (COs): (3-5) Understanding of transport processes. Ability to develop steady and time dependent solutions along with their limitations. Ability to analyze industrial problems along with appropriate boundary conditions. Of Course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO L - H L - M - H L - L - H M - L L - H M - M Os PSO1 PSO2 PSO3 PSO4 M L M M M H H H L dicates Strength of Correlation H- High, M- Medium, L-Low

BCT18011	TRANSPORT PHENOMENA	3	0/0	0/0	3
				ı	

UNIT I PHILOSOPHY AND FUNDAMENTALS OF TRANSPORT PHENOMENA 9Hrs

Importance of transport phenomena; analogous nature of transfer process; basic concepts, conservation laws; continuous concept, field, reference frames, substantial derivative and boundary conditions; methods of analysis; differential, integral and experimental methods.

UNIT II TRANSPORT BY MOLECULAR MOTION 9Hrs

Phenomenological laws of transport properties, Newtonian and non Newtonian fluids; rheological models; theories of transport properties of gases and liquids; effect of pressure and temperature.

UNIT III ONE DIMENSIONAL TRANSPORT IN LAMINAR FLOW 9Hrs

General method of shell balance approach to transfer problems; Choosing the shape of the shell; most common boundary conditions; momentum flux and velocity distribution for flow of Newtonian and non-newtonian fluids in pipes for flow of Newtonian fluids in planes, slits and annulus heat flux and temperature distribution for heat sources such as electrical, nuclear viscous and chemical; forced and free convection; mass flux and concentration profile for diffusion in stagnant gas, systems involving reaction and forced convection.

UNIT IV EQUATIONS OF CHANGE AND THEIR APPLICATIONS 9Hrs

Conservation laws and equations of change; Development of equations of continuity motion and energy in single multi components systems in rectangular co-ordinates and the forms in curvilinear co-ordinates; simplified forms of equations for special cases, solutions of momentum mass and heat transfer problems discussed under shell balance by applications of equation of change, scale factors; applications in scale-up

UNIT V TRANSPORT IN TURBULENT AND BOUNDARY LAYER FLOW ANALOGIES BETWEEN TRANSPORT PROCESSES 9Hrs

Turbulents phenomena; phenomenological relations for transfer fluxes; time smoothed equations of change and their applications for turbulent flow in pipes; boundary layer theory; laminar and turbulent hydrodynamics thermal and concentration boundary layer and their thicknesses; analysis of flow overflat surface. ANALOGIES BETWEEN TRANSPORT PROCESSES: Importance of analogy; development and applications of analogies between momentum and mass transfer; Reynolds, Prandtl, Von Karman and Colbum analogies

Total No of Hours: 45Hrs.

TEXT BOOKS:

- 1. R.B. Bird, W.E. Stewart and E.W.Lighfoot, "Transport Phenomena", John Wiley, 1978
- 2. Robert, S Brodkey, Harry C. Hershey, "Transport Phenomena", McGraw-Hill International Edn 1988.

REFERENCE:

- 1. L.S.Sissom, and D.R.Pitts, "Elements of Transport Phenomena", McGraw-Hill, New York, 1972.
- 2. R.W.Fahien, "Elementary Transport Phenomena", McGraw-Hill, New York, 1983.
- 3. J.R. Welty, R.W. Wilson, and C.W.Wicks, "Fundamentals of Momentum Heat and Mass Transfer", 2ndEdn. John Wiley, New York, 1973.

SEMESTER VI (PRACTICAL)

Subject Code:	Subject Name : Project Phase -1	Ty/Lb/ETL	L	T/S.Lr	P/R	С
BCT18L12	Prerequisite: Practical Knowledge of Basic Chemical Engineering Concepts	Lb	0	0/0	3/3	2

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVE:

- The objective of the Main Project is to culminate the academic study and provide an opportunity to explore a problem or issue, address through focused and applied research under the direction of a faculty mentor.
- The project demonstrates the student's ability to synthesize and apply the knowledge and skills acquired to realworld issues and problems.
- This project affirms the students to think critically and creatively, find an optimal solution, make ethical decisions

•	and to pr	,) tillik Ci	itically a	and crea	iiveiy, ii	nu an op	illiai 80	iution, mai	ke etnicai d	ecisions
COUR	SE OUT	COMES	S (COs)	: (3-5)									
CO1	Apply	the know	vledge ar	nd skills a	acquired	in the co	ourse of s	study ad	dressing	a specif	ic problem	or issue.	
CO2		ourage s		o think cı	ritically a	and creat	tively ab	out socie	etal issue	s and de	evelop user	friendly ar	nd
CO3				and dem	onstrate	their pro	oficiency	in com	munication	on skills			
CO4	To take	on the	challenge	es of tean	nwork, p	repare a	presenta	tion and	demons	trate the	innate tale	ents.	
 Mappii	ng of Cou	ırse Ou	tcomes v	vith Prog	gram Ou	tcomes	(POs)						
COs/P(Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		Н	Н	Н	H	M	H	Н	L	M	M	Н	Н
CO2		Н	Н	H	H	Н	H	Н	M	M	M	H	Н
COs / F	PSOs	PS	SO1	PS	SO2	PS	SO3	P	SO4				
CO1		Н		Н		M		Н					
CO2		Н		Н		Н		M					
H/M/L	indicates	s Streng	th of Co	rrelation	H- H	igh, M-	Mediun	ı, L-Lov	V				
		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
Catego	ory	Basic	Engi Sci	Humal Social	Progr	Progran	Open	Practica	Inter	Sofi			
								\ \ \					
								,					

BCT18L12	PROJECT PHASE -1	0	0/0	3/3	2

During the first term the students are required to:

- 1. Define the research problem.
- 2. Write a research proposal, which should contain –
- a. Project title
- b. Introduction
- c. Origin of the problem
- d. Literature review of research and development at national & international level
- e. Significance of the problem
- f. Objective
- g. Methodology
- h. Details of collaboration (if any)
- 3. Carry out *preliminary* experimental investigations or product design or process design etc.
- 4. Summarize the results (if any).

Criteria for Project Design:

- 1. Projects suggested by the staff on the basis of collected industrial problem.
- 2. Projects to cater to development of infrastructure of the department.
- 3. Projects to cater to preparation for application for funding agents.
- 4. Projects to cater to obtaining relevant data for doctoral programme.
- 5. Projects to recalibrate and standardize existing equipment.
- 6. Projects to establish relevant instrumentation and analytical procedures.
- 7. Projects to give students an opportunity if they suggest an innovative / alternate approach to the existing solution.

SEMESTER VII (PRACTICAL)

Subject Code:	Subje	ct Name	e : Projec	t Phase	II			Ty/Lb/E	TL	L	T/S.Lr	P/R	C
BCT18L13	Prerec	quisite:	Project P	hase – 1	1			Lb		0	0/0	12/1	2 8
L : Lecture T : T			•		_	oject R	Resear	ch C: Cre	dits			•	
T/L/ETL : Theo	ry/Lab/E	Embedde	ed Theory	and Lab)								
OBJECTIVE:													
	ective of	the proj	ject is to n	nake use	of the k	nowled	ge gaine	d by the	student	at vari	ous stages	of the	degree
course.													
COURSE OUT	COME	S (COs)	: (3-5)										
CO1 Projec	ts to esta	blish rel	evant inst	rumenta	tion and	analyti	cal proc	edures.					
CO2 Projec	ts to give	student	ts an oppo	rtunity i	f they su	iggest ai	n innova	tive / alte	rnate a	pproac	h to the ex	xisting	
solutio													
Mapping of Co	urse Ou	tcomes	with Prog	gram O	utcomes	(POs)							
CO-/BO-	DO1	DO2	DO2	DO4	DO5	DO(DO7	DOS	DOO	PO1	n DC	11	DO12
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	POI	0 PC	/11	PO12
CO1	Н	-	-	H	-	M	-	-	Н	-	-		L
CO2	M	M	-	Н	-	Н	-	-	Н	-	-		L
COs / PSOs	PSO1		PSO2		PSO3		PSO4						
CO1	H		H		M		Н						
COI	П		П		IVI		П						
CO2	Н		Н		Н		M						
H/M/L indicate	es Streng	gth of C	orrelation	ı H-H	ligh, M-	Mediu	m, L-Lo	OW					
		es											
		ienc	and		/es		ct	s/ kill					
G.	ses	Sci	ies cier	re	ectiv	ves	roje	Internships / echnical Ski					
Category	ien	ring	lanit al S	ı Co	ı Ele	ecti	1/P	erns mic	lls				
	c Sc	inee	Humanities and Social Sciences	ran.	Program Electives	n El	tica	Internships / Technical Skill	Ski				
	Basic Sciences	Engineering Sciences	I S	Program Core	Proξ	Open Electives	Practical / Project		Soft Skills				
							$\sqrt{}$						

BCT18L13	PROJECT PHASE II	0	0/0	12/12	8

Each student is required to submit a report on the project assigned to him by the department. The report should be based on the information available in the literature or data obtained in the laboratory/industry.

Students, in addition to the home problem will be permitted to undertake industrial/ consultancy project work, outside the department, in industries/Research labs for which proportional weightage will be given in the final assessment

The above phase I project may be continued or a separate project can be assigned depending upon the students interest.

Criteria for Project Design:

- 1. Projects suggested by the staff on the basis of collected industrial problem.
- 2. Projects to cater to development of infrastructure of the department.
- 3. Projects to cater to preparation for application for funding agents.
- 4. Projects to cater to obtaining relevant data for doctoral programme.
- 5. Projects to recalibrate and standardize existing equipment.
- 6. Projects to establish relevant instrumentation and analytical procedures.
- 7. Projects to give students an opportunity if they suggest an innovative / alternate approach to the existing solution

SEMESTER IV (ELECTIVE)

Subject C	Code:	Su	bject Na	ame: Foo		<u>IESTER</u> ology	LIV (EL	LEC IIV	Ty / Lb/	ETL	L	T/SI	Lr	P/R	(
BCT18E(01	Pr	erequisi	te: Chem	istry an	d Micro	obiology	7	Ty		3	0/0		0/0	3
L : Lectur T/L/ETL :				•		•	oject R :	Resear	ch C: Cro	edits					
OBJECT															
	•		_	the studer		•	•	-		•			in it, pa	ackagi	ng.
				food pois	soning, f	food rela	ited haza	ards and	safety, a	nd trans	portat	ion.			
COURSE		OME	S (COS)	: (3-5)											
CO1	Underst	anding	g the var	ious cause	es of foo	d deteri	oration a	and food	l poisoni	ng.					
CO2	Identific	cation	of appro	priate pro	cessing,	preserv	ation, ar	nd packa	aging me	thod.					
CO3	Analyze	produ	uct quali	ty and eff	ect of pr	ocessing	g technic	que on it	į .						
Mapping		•													
	•				-			T	1	T =				1	
COs/POs		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0	PO11	PO	12
CO1]	H	-	L	-	-	-	M	-	Н	-		L	-	
CO2]	M	-	L	-	L	-	Н	-	-	-		L	M	
CO3]	H	-	L	-	-	-	M	-	-	-		L	-	
COs / PS	Os	PS	SO1	PS	O2	PS	SO3	P	SO4						
CO1]	H		M		L		Н							
CO2]	M		L		Н		Н							
CO3]	M		H		H		L							
H/M/L inc	dicates S	trengt	h of Cor	 relation	H- High	 n, M- Me	edium, L	L-Low							
		ciences	g Sciences	and Social	n Core	Electives	ectives	/ Project	echnical Skil	kills					
Category	, s	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
						1									

BCT18E01	FOOD TECHNOLOGTY	3	0/0	0/0	3

UNIT I AN OVERVIEW

9Hrs

General aspects of food industry world food needs and Indian situation.

UNIT II FOOD CONSTITUENTS, QUALITY AND DERIVATIVE FACTORS 9Hrs Constituents of food quality and nutritive aspects food additives standards deteriorative factors and their control.

UNIT III GENERAL ENGINEERING ASPECTS AND PROCESSING METHODS 9Hrs

Preliminary processing methods conversion and preservation operations.

UNIT IV FOOD PRESERVATION METHODS

9Hrs

Preservation by heat and cold dehydration concentration drying irradiation microwave heating sterilization and pasteurization fermentation and pickling packing methods.

UNIT V PRODUCTION AND UTILISATION OF FOOD PRODUCTS 9Hrs

Cereal grains pulses vegetables; fruits; spices fats and oils bakery confectionery and chocolate productssoft and alcoholic beverages dairy products meat poultry and fish products.

Total No. of Hours: 45Hrs

TEXT BOOKS:

- 1. Heid J.L. Joslyn M.A., Fundamentals of Food Processing Operation, The AVI publishing Co., West port 1967.
- 2. Potter N.N., Food Science, The AVI publishing Co., Westport, 1963.

REFERENCES:

- 1. Heldman D.R., Food Process Engineering, The AVI publishing co., 1975.
- 2. Charm S.E., The Fundamentals of Foods Engineering, The AVI Publishing Co., Westport, 1966

Subject			bject Na nd Cont	ame: Indurol	ustry Po	llution	Prevent	ion	Ty / Lb/	ETL	L '	Γ/SLr	P/ 1	R
BCT18	E02	Pr	erequisi	te: Chem	istry an	d Micro	obiology	7	Ty		3 ()/0	0/0	3
L : Lect	ure T : T	utorial	SLr : S	upervised	Learnin	ng P : Pr	oject R :	Resear	ch C: Cre	edits				
		y/Lab/E	Embedde	d Theory	and Lab	1								
OBJEC														
•	•		•	the studer , food pois		•	•			•			it, packa	iging,
COURS	SE OUT	•		•	soming, i	000 101	iteu maza	iius aiiu	saicty, a	nu trans	ропано			
			<u> </u>	` '	C.C.	11.		1.0	1					
CO1	Under	standing	g the var	ious cause	es of foo	d deteri	oration a	ind food	1 poisonii	ng.				
CO2	Identi	fication	of appro	priate pro	cessing,	preserv	ation, ar	nd packa	aging me	thod.				
CO3	Analy	ze prodi	uct quali	ty and eff	ect of pr	ocessing	g technic	que on i	t.					
Mappir	g of Co	ırse Ou	tcomes	with Prog	eram O	utcomes	s (POs)							
								DO5	DO0	DOG		10 DO	\11 T	2012
COs/PO	JS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 PO)11 I	PO12
CO1		Н	-	L	-	-	-	M	-	Н	-	L	-	
CO2		M	-	L	-	L	-	Н	-	-	-	L	ľ	I
CO3		Н	-	L	-	-	-	M	-	-	-	L	-	
COs / P	SOs	PS	SO1	PS	02	PS	SO3	P	SO4					
CO1		Н		M		L		Н						
CO2		M		L		Н		Н						
CO3		M		Н		Н		L						
H/M/L	indicate	s Streng	gth of C	 orrelation	н- Н	ligh, M-	Mediu	 m, L-Lo	ow .					
			ses	ial		Š			1 Ski					
		ces	zienc	Soc	ore	tive	ives	ojec	nica	S				
G :		Basic Sciences	ıg Sc	ities and Sciences	Program Core	Elec	Open Electives	/Pr	[ech	Soft Skills				
Catego	ory	sic S	ærin	ities	gra	ram	en E	tical	L / s	oft				
		Ba	Engineering Sciences	Humanities and Social Sciences	Prc	Program Electives	Opí	Practical / Project						
			Er	Hu					Internships / Technical Skill					
									l Ir					
						V								

BCT18E02	INDUSTRY POLLUTION PREVENTION AND CONTROL	3	0/0	0/0	3

UNIT I INTRODUCTION 9Hrs

Industrial activity and environment, industrialization and sustainable development indicators of sustainability-sustainability strategies-Barriers to sustainability-Pollution prevention in achieving sustainability

UNIT II POLICIES AND REGULATIONS

9Hrs

Prevention vs control of industrial pollution-Environment policies and Regulations to encourage pollution prevention 143 CHEM-Engg&Tech-SRM-2013

UNIT III ENVIRONMENTAL CONTAMINANTS

9Hrs

Environment friendly chemical processes-Properties of environmental contaminants - Regulations for clean environment and implications for industries

UNIT IV LIFE CYCLE ASSESSMENT

9Hrs

Life cycle assessment and pollution prevention economics-Design for the environment-International environmental standards-Environmental technology assessment.

UNIT V INDUSTRIAL APPLICATIONS OF POLLUTION PREVENTION 9Hrs

Water, energy and reagent conservation-residuals management-Economic recovery and recycling of wastes. Industrial applications of pollution prevention, Life cycle assessment, waste audits and technology assessments

Total No. of Hours: 45Hrs

TEXT BOOK

- 1. Bishop .P, "Pollution Prevention: Fundamentals and Practice", McGraw Hill International Edn., McGraw Hill Book Co., Singapore, 2000.
- 2. Roy T.K. (Editor), "Chemical Technology for better Environment", Allied Publishers Ltd., Chennai, 1998.

REFERENCES

1. Freeman. H.M, "Industrial Pollution Prevention Hand Book", McGraw Hill, 1995. 2. James G. Mann and Y.A.Liu, "Industrial Water Reuse and Waste Water Minimization", McGraw Hill, 1999

Subject	Code:		•	ame: Che	•	of Polyn	ner And	1	Ty / Lb/	ETL	L	Γ/SLr	P/R	C
BCT181	E03			Materia							2 (2/0	0.40	_
-		Pr	erequisi	te: Chem	istry				Ту		3	0/0	0/0	3
				upervised		•	oject R :	Researc	ch C: Cro	edits	•			
		ry/Lab/E	Embedde	d Theory	and Lab									
OBJEC												0 1		
				o understai ners by m			•	•			•	ofpolymer	ization,	
	CHAFACIE	112a11011	or poryr	ners by m	oiccuiai	weight,	reaction	is and do	egradanc	ni oi poi	ymers.			
COURS	SE OUT	COME	S (COs)	: (3-5)										
CO1	Will d	lovolon 1	knowlad	ge in poly	morizati	ion took	niguos							
COI	Will d	ievelop i	KIIOWIEU	ige ili pory	menzau	ion tecm	inques							
CO2	Will b	e aware	about c	hemical re	eaction o	of polym	iers							
CO3	Will b	e able to	o determ	ine the me	olecular	weight	of the po	olymer						
Mannin	g of Co	urse On	tcomes	with Prog	rgm Ωι	itcomes	(POs)							
					-			T = _ = =	T =	1 =	1			
COs/PC)s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO11	PO	12
CO1		Н	-	L	-	M	-	M	-	Н	-	L	M	
CO2		M	L	L	-	L	L	Н	-	M	-	L	M	
CO3		Н	-	L	-	-	-	M	-	M	-	L	M	
COs/P	SOs	PS	SO1	PS	02	PS	503	PS	SO4					
CO1		Н		M		L		Н						
CO2		M		L		Н		Н						
CO3		M		Н		Н		L						
H/M/L	indicate	s Strend	oth of Co	 orrelation	н. н	igh M.	. Medin	m L.Lo	w					
			, this c		1	T	TVICUIU.	T	· · · · · · · · · · · · · · · · · · ·	1 1				
									kill					
		S	Engineering Sciences	Humanities and Social Sciences	4)	'es	S	ict ict	al S					
		nce	Scie	se Sc	Core	ectiv	tive	Proje	hnic	IIIs				
Catego	rv	Scie	ing (ities and Sciences	am	n El	Elec	al / I	Тес	Soft Skills				
		Basic Sciences	neer	unitie Sci	Program Core	Program Electives	Open Electives	Practical / Project	ips /	Sof				
		B	ngii	uma	Ъ	Pro	O	Pra	.ush					
				H					Internships / Technical Skill					
									, ,					

BCT18E03	CHEMISTRY OF POLYMER AND COMPOSITE MATERIALS	3	0/0	0/0	3

UNIT I FUNDAMENTAL CONCEPTS OF POLYMER

9Hrs

Introduction, classification of polymer, nomenclature, trade and common name of polymer, monomers and functionality concept of monomers (with example), concept of cross linking and isomerism, general applications of polymer.

UNIT II SOLVENTS, FILLERS AND ADDITIVES

9Hrs

Solvents: Introduction, Classification, types of solvents, types of solutions, method of finding chain length, demixing, flexible chains, particle size & shape, compatibility, phase transition, ternary systems. **Fillers**: Introduction, types of fillers, particle geometry, organic fillers, cellulosic, fibers, and inorganic fillers, applications. **Additives**: Introduction, plasticizers, classification, effect on chemical properties & stability, flexibilizers, release agents, antioxidants, applications.

UNIT III POLYMERIZATION PATHWAY

9Hrs

Step polymerization, chain polymerization, anionic polymerization, cationic polymerization, free radical polymerization (with kinetics), and ring opening polymerization.

UNIT IV POLYMER SYNTHESIS

9Hrs

Synthesis and applications of polystyrene, polyvinyl acetate, nylon-6, nylon-66, polyvinyl chloride, unsaturated polyvinyl chloride, chlorinated polyvinyl chloride, teflon, poly (3- hydroxybutyrate-co- 3-hydroxyvalerate)(PHBV), polyethylene terephthalate, poly glyptal, polymethyl methacrylate, poly urethane, neoprene, phenol formaldehyde, urea formaldehyde, melamine formaldehyde, epoxy resins, poly propylene, High-density polyethylene, low-density polyethylene.

UNIT V COMPOSITE MATERIALS

9Hrs

Introduction and industrial applications of composites, **Fiber Reinforced Composites** (**FRC**): introduction, importance and properties, manufacture of fiber fabric, manufacture of fiber preforms, Forming processes, Bladder moulding, Compression moulding, Autoclave and vacuum bag, Mandrel wrapping, Wet layup, Chopper gun, Filament winding, Pultrusion, Resin transfer moulding, Carbon fibre, Aramid fibre material, Kevlar.Introduction, example and application of Particle Reinforced Composites (PRC).

Total No. of Hours: 45Hrs

REFERENCE BOOKS:

- 1. A Textbook of Polymers Vol I & II, M. S. Bhatnagar, S. Chand Publication
- 2. Plastic Materials John Brydson, Elsevier Publication
- 3. Polymer Science & Technology Joel Fried, PHI
- 4. Introductory Polymer Chemistry, G. S. Misra, New Age International
- 5. Polymer Science, G. Govariker, New Age International

SEMESTER V (ELECTIVE)

Subjec	ct Code:	Sı	ıbject N	ame: Gr	een Che	mistry a	and Eng	ineerin	g Ty/	Lb/ETL	L	T/S.	Lr	P/R	(
BCT1	8E04	Pı	rerequis	ite: Nil					Ту		3	0/0		0/0	3
L : Lec	cture T : T	utorial	SLr:	Supervise	ed Learni	ng P : P	roject R	: Resea	rch C: C	redits					
	ΓL : Theo	ry/Lab/	Embedd	ed Theor	y and La	b									
	CTIVE:	.1 .	1 .	C 1			. 1 .		. 1 1	. 1 11 .					
•				•					-	ind pollut costs and	•			anta	
COUF	RSE OUT				istry, me	illous to	evaluati	e enviro	imemai	costs and	me c	ycie as	ssessiii	ents.	
CO1	Explain	how G	reen che	mistry an	d sustair	nability 1	relates to	proble	ms of so	cietal con	cern.				
	•			•				•				1. 1 .	/		
CO2	Anaiyze	a proc	ess and i	dentity n	ow it ma	y be ma	de more	enviror	imentali	y friendly	/susta	unabie	/green	•	
CO3	_	•				_		•		eience and	techi	nology	and		
	societal	issues	in both f	ocused ar	nd broad	interdis	ciplinary	contex	ts.						
Mappi	ing of Co	urse O	utcomes	with Pro	ogram C	outcome	es (POs)								
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10	PO11	PO	12
CO1		M	M	L	Н	-	-	-	-	-	M		-	-	
CO2		Н	M	L	Н	-	-	H	-	-	-		-	L	
CO3		M	H	Н	H	L	-	-	-	H	-		-	-	
COs /	PSOs	P	SO1	PS	SO2	PS	SO3	PS	6 O 4						
CO1		M		L		Н		H							
CO2		Н		Н		M		L							
CO3		Н		M		L		L							
 H/M/I	∠ indicate	s Stren	gth of C	 Correlatio	on H-	 High, M	I- Medi	ım, L-L	ow						
						·					1				
				nces					kill						
		10	Engineering Sciences	Scie		es		ct	Internships / Technical Skill						
		nces	cier	ial (Jore	ctiv	tive	roje	ımic	IIS					
Categ	gory	Scie	S gu	Soc		Ele	Elec ₁	1/P	Tecl	Ski					
	, ,	Basic Sciences		and	Program Core	ram	Open Electives	tica	. / Sc	Soft Skills					
		Ba	ıgine	ties	Pro	Program Electives	Op	Practical / Project	ship						
			En			F			tern						
				Humanities and Social Sciences					In						
			1	1	1	1	1	1	I	1	1			1	

BCT18E04	GREEN CHEMISTRY AND ENGINEERING	3	0/0	0/0	3

UNIT I ENVIROMENTAL ISSUES

9Hrs

Overview of Major Environmental Issues, Global Environmental Issues. Air Quality Issues. Water Quality Issues, Ecology, Natural Resources, Description of Risk. Value of Risk Assessment in the Engineering Profession. Risk-Based Environmental Law. Risk Assessment Concepts. Hazard Assessment. Dose-Response. Risk Characterization.

UNIT II POLLUTION PRAVENTION

9Hrs

Pollution Prevention- Pollution Prevention Concepts and Terminology. Chemical Process Safety. Responsibilities for Environmental Protection. Environmental Persistence. Classifying Environmental Risks Based on Chemical Structure. Exposure Assessment for Chemicals in the Ambient Environment.

UNIT III GREEN CHEMISTRY

9Hrs

Green Chemistry. Green Chemistry Methodologies. Quantitative/Optimization-Based Frameworks for the Design of Green Chemical Synthesis Pathways. Green Chemistry Pollution Prevention in Material Selection for Unit Operations. Pollution Prevention for Chemical Reactors. Pollution Prevention for Separation Devices. Pollution Prevention Applications for Separative Reactors. Pollution Prevention in Storage Tanks and Fugitive Sources.

UNIT IV ESTIMATION OF ENVIROMENTAL EFFECTS

9Hrs

Process Energy Integration. Process Mass Integration. Case Study of a Process Flow sheet- Estimation of Environmental Fates of Emissions and Wastes.

UNIT V ENVIROMENTAL EVALUATIONS

9Hrs

Magnitudes of Environmental Costs. A Framework for Evaluating Environmental Costs. Hidden Environmental Costs. Liability Costs. Internal Intangible Costs. External Intangible Costs. Introduction to Product Life Cycle Concepts. Life-Cycle Assessment. Life-Cycle Impact Assessments. Streamlined Life-Cycle Assessments. Uses of Life-Cycle Studies.

Total No. of Hours: 45Hrs

TEXT BOOKS:

- 1. Allen, D.T., Shonnard, D.R, Green Engineering: Environmentally Conscious Design of Chemical Processes. Prentice Hall PTR 2002.
- 2. MukeshDoble and Anil Kumar Kruthiventi, Green Chemistry and Engineering, Elsevier, Burlington, USA, 2007.

Subject Co	ode:	Su	bject N	ame: Mo	dern Se	paratio	n Proc	esses	T y/ Lb/	ETL	L T/	SLr	P/R	C
BCT18E0	5	Pro	erequis	ite: Adva	nced se	paratio	n		Ty		3 0/0		0/0	3
L : Lecture T/L/ETL :				-		_	Project l	R : Reso	earch C:	Credits				1
OBJECTI		y/Lao/1	Embedd	eu Theor	y and La									
		e the st	udents t	o learn th	ne princi	ple and	technic	al conce	ept of adv	vanced	separation	orocesses		
COURSE						1			1			•		
CO1	Tho	atudant	a would	fully und	Jarotand	leave and	aconta o	fanner	otion pro	200000 i	ncluding ed	milibeine	n store	
COI											ort effects		n stage	58,
CO2			lculatio		ing, in	inting ct	4505, 011	referrey	una mas	s cransp		•		
						<u> </u>	70.0	`						
Mapping of	of Cou	rse Oi	itcomes	with Pro	ogram (Jutcom	es (POs	s)						
COs/POs		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1		Н	-	-	Н	-	-	M	-	-	-	-	L	
CO2		M	-	-	-	-	-	Н	-	-	-	M	-	
COs/PSO)s	PS	01	PSC	02	PS	SO3	P	SO4					
CO1		Н		M		-		-						
CO2		M		L		-		-						
H/M/L ind	licates	Stren	gth of (Correlatio	on H-	High, N	M- Med	ium, L	-Low					
Category		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				

	-				
BCT18E05	MODERN SEPARATION PROCESSES	3	0/0	0/0	3
DCTTOE03	MODERI SEI ARATION I ROCESSES	5	U/ U	0/0	J

UNIT I BASICS OF SEPARATION PROCESS

9Hrs

Review of Conventional Processes, Recent advances in Separation Techniques based on size, surface properties, ionic properties and other special characteristics of substances, Process concept, Theory and Equipment used in cross flow Filtration, cross flow Electro Filtration, Surface based solid – liquid separations involving a second liquid.

UNIT II MEMBRANE SEPARATIONS

9Hrs

Types and choice of Membranes, Plate and Frame, tubular, spiral wound and hollow fiber Membrane Reactors and their relative merits, commercial, Pilot Plant and Laboratory Membrane permeators involving Dialysis, Reverse Osmosis, Nanofiltration, Ultra filtration and Micro filtration, Ceramic-Hybrid process and Biological Membranes.

UNIT III SEPARATION BY ADSORPTION

9Hrs

Types and choice of Adsorbents, Adsorption Techniques, Dehumidification Techniques, Affinity Chromatography and Immuno Chromatography, Recent Trends in Adsorption.

UNIT IV INORGANIC SEPARATIONS

9Hrs

Controlling factors, Applications, Types of Equipment employed for Electrophoresis, Dielectrophoresis, Ion Exchange Chromatography and Eletrodialysis, EDR, Bipolar Membranes.

UNIT V OTHER TECHNIQUES

9Hrs

Separation involving Lyophilisation, Pervaporation and Permeation Techniques for solids, liquids and gases, zone melting, Adductive Crystallization, other Separation Processes, Supercritical fluid Extraction, Oil spill Management, Industrial Effluent Treatment by Modern Techniques.

Total No. of Hours: 45Hrs

- 1. King, C. J., "Separation Processes", Tata McGraw Hill, 1982.83
- 2. Roussel, R. W., "Handbook of Separation Process Technology", John Wiley, New York, 1987.
- 3. Nakagawal, O. V., "Membrane Science and Technology" Marcel Dekkar, 1992.

Subject Code:	Subject Name: Renewable Energy Engineering	Ty / Lb/ ETL	L	T/SLr	P/R	С		
BCT18E06	Prerequisite: Conversion Technologies	Ту	3	0/0	0/0	3		
L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits								

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVE:

This course helps the students to understand the importance, availability, conversion technologies of renewable energy resources and its applications.

COURSE OUTCOMES (COs): (3-5)

CO1	Various aspects	of solar energy	and utilization.
-----	-----------------	-----------------	------------------

CO₂ Familiarize other renewable energy sources.

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	M	-	-	Н	-	-	-	M	-	-	Н
CO2	M	Н	-	L	-	-	-	-	Н	-	L	-
COs / PSOs	PSO1		PSO2		PSO3		PS	SO4				
CO1	Н		M		-		-					
CO2	M		L		-		-					

H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low

Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		
					√						

BCT18E06	RENEWABLE ENERGY ENGINEERING	3	0/0	0/0	3
					i I

UNIT I INTRODUCTION

9Hrs

World energy status, Current energy scenario in India, Environmental aspects of energy utilization, Environment - Economy - Energy and Sustainable development, energy planning.classification of Energy resources, Advantages and disadvantages of Non-Conventional source of energy, Renewable energy resources - potentials -achievements – applications.

UNIT II SOLAR ENERGY 9Hrs

Basic concepts, Solar thermal systems – Flat plate and concentrating collectors, Solar passive space - Solar heating and cooling techniques – Solar desalination –Solar Pond - Solar cooker - Solar dryers-Solar furnaces - Solar pumping, Solar 139 CHEM-Engg&Tech-SRM-2013 green house- Solar thermal power plant – Solar photo voltaic conversion – Solar cells – PV applications

UNIT III WINDENERGY 9Hrs

Introduction-Background-Availability- wind power plants, Power from the wind, Wind energy conversion systems, site characteristics, Wind turbines types –Horizontal and vertical axis-design principles of wind turbine, Magnus effect-Performance. Wind energy Applications – New developments - Safety and environmental aspects.

UNIT IV BIOMASS ENERGY 9Hrs

Biomass – usable forms- composition- fuel properties – applications, Biomass resources, Biomass conversion technologies - direction combustion - pyrolysis –gasification -anaerobic digestion, Bioethanol and Biodiesel Production – Recent developments. Energy farming, Biogas technology - Family biogas plants, Community and institutional biogas plants – design consideration – applications.

UNIT V OTHER RENEWABLE ENERGY SOURCES 9Hrs

Tidal energy – Wave energy – Open and closed OTEC Cycles – Small hydro –Geothermal energy Fuel cell technology - types, principle of operation –applications. Hydrogen energy production - Storage system.

Total No. of Hours: 45Hrs

TEXT BOOK:

- 1. Rai. G.D. "Non Conventional Energy Sources", Khanna Publishers, New Delhi, 1999.
- 2. Sukhatme.. S.P. "Solar Energ", Tata McGraw Hill Publishing Company Ltd., New Delhi, 1997.
- 3. "Renewable energy sources of conversion technology": Bansal..N.K Manfred Kleen Man and Michael Meliss, TMH Publicatio

- 1. Kothari. P, K C, Singal and Rakesh Ranjan, "Renewable EnergySources and Emerging Technologies", PHI Pvt. Ltd., New Delhi, 2008
- 2. Godfrey Boyle, Renewable Energy, Power for a Sustainable Future, OxfordUniversityPress, U.K, 1996.
- 3. Twidell. J.W. & Weir, A., Renewable Energy Sources, EFN Spon Ltd., UK, 1986.
- 4. Freris, Wind Energy Conversion systems, Prentice Hall, UK, 1990.

SEMESTER VI (ELECTIVE)

Subject			bject Na mamics	ame: Con	nputatio	onal Flui	id		Γy/ Lb/	ETL	L T	/S.Lr	P/R	(
BCT18E	JU /		erequisi echanic	ite: Basic	Mather	natics a	nd Fluic	1 7	Гу		3 0/	0	0/0	3
L : Lectu	re T : Tu			Supervised	l Learnin	ng P : Pr	oject R :	Resear	ch C: Cr	edits				
T/L/ETL	: Theory	y/Lab/E	Embedde	ed Theory	and Lab)								
OBJEC	TIVE:													
					_			_	_		dynamics			
	ndustrial kill.	lly imp	ortant ap	plications	s. This to	echnical	compete	ence in b	ouilding	and con	ducting C	FD simula	ations is	sa
COURS		COME	S (COs)	: (3-5)										
CO1					ne studer	nt should	l have a	Hands-c	n exper	ience w	ith a comn	nercial CE	D prog	ran
	Сроп	Compre			ic staaci	n snourd	- nave a	Traines (TOTICE W		nereiur er	D prog	
CO2														
Mapping	g of Cou	rse Ou	tcomes	with Prog	gram O	utcomes	s (POs)							
COs/PO	s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1) PO11	PO	12
001		3.5	**			_				**				
CO1		M	H	-	-	L	-	-	-	H	-	-	H	
CO2		M	Н	-	-	-	-	-	-	Н	Н	-	-	
COs / PS	SOs	PSO1		PSO2		PSO3		PSO4						
CO1		M		M		-		-						
CO2		H		L		_		-						
H/M/L i	ndicates	Streng	gth of C	orrelation	n H- H	Iigh, M-	Mediu	m, L-Lo)W					
				nces					kill					
		S	nces	Scie		'es	S	ct	al S					
		Basic Sciences	Engineering Sciences	cial	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill					
Categor	·v	Scie	ing	d So	ram	n El	Eleα	al / I	, Tec	Soft Skills				
Curegor		asic	neer	s an	rogi	ograi	ben	actic	ips /	Sc Sk				
		Щ	Engi	nitie		Pro		Pra	rnsk					
			. ,	Humanities and Social Sciences					Inte					
				H										
						$\sqrt{}$								

BCT18E07	COMPUTATIONAL FLUID DYNAMICS	3	0/0	0/0	3
					1

UNIT I CONSERVATION LAWS AND TURBULENCE MODELS

9Hrs

Governing equations of fluid flow and heat transfer –mass conservation, momentum and energy equation, differential and integral forms, conservation and non-conservation form. Characteristics of turbulent flows, time averaged Navier Strokes equations, turbulence models-one and two equation, Reynolds Stress, LES and DNS.

UNIT II FINITE DIFFERNCE APPROXIMATION

9Hrs

Mathematical behaviour of PDE, finite difference operators, basic aspects of discretization by FDM, explicit and implicit methods, error and stability analysis.

UNIT III FINITE VOLUME METHOD

9Hrs

Diffusion problems – explicit and implicit time integration Convection-diffusion problems – properties of discretisation schemes, central, upwind, hybrid, QUICK schemes Solution of discretised equations.

UNIT IV FLOW FIELD COMPUTATION

9Hrs

Pressure velocity coupling, staggered grid, SIMPLE algorithm, PISO algorithm for steady and unstead y flows.

UNIT V GRID GENERATION

9Hrs

Physical aspects, simple and multiple connected regions, grid generation by PDE solution, grid generation by algebraic mapping.

Total No. of Hours: 45Hrs

TEXT BOOKS:

- 1. Anderson, J. D., "Computational Fluid Dynamics: The Basics with Applications", McGraw-Hill, 1995.
- 2. Fletcher, C. A. J., "Computational Techniques for Fluid Dynamics", Springer Verlag, 1997.
- 3. Versteeg, H.K. and Malalasekera, W., "An Introduction to Computational Fluid Dynamics: The FiniteVolume Method", Pearson Education Ltd., 2007.

- 1. Chung T.J Computational Fluid Dynamics Cambridge University Press, 2003.
- 2. Muralidhar, K., and Sundararajan, T., "Computational Fluid Flow and Heat Transfer", arosaPublishing House, New Delhi, 2001.
- 3. Ghoshdastidar, P.S., "Computer Simulation of flow and heat transfer" Tata McGraw Hill Publishing Company Ltd. 1998.
- 4. Subas, V. Patankar "Numerical heat transfer fluid flow", Hemisphere Publishing Corporation, 1980.
- 5. Taylor, C and Hughes, J.B. "Finite Element Programming of the Navier Stock Equation", Pineridge Press Limited, U.K., 1981.

Subject	Code:	Su	bject Na	ame : Fro	ontiers o	f Chem	ical Eng	ineering	g Ty/	Lb/ETL	L	T/S.Lr	P/R	C
BCT181	E08	Pr	erequisi	ite: Chen	nical pro	duct de	sign		Ту		3	0/0	0/0	3
L : Lec	ture T : T	utorial	SLr : S	upervised	l Learnin	g P : Pro	oject R:	Researc	h C: Cre	dits				
T/L/ET	TL: Theor	ry/Lab/E	Embedde	d Theory	and Lab									
OBJE	CTIVE:													
•					and the cl	nemical	product	design a	nd availa	able renew	able ene	rgyresou	rces.	
COUR	SE OUT	COME	S (COs)	: (3-5)										
CO1	Upon co	ompletin	g the co	urse, the	student s	hould ha	ive a Ha	nds-on e	xperienc	e with a c	ommerc	ial CFD p	rogram	1.
CO2	To do al	ll calcula	ation.											
Mappi	ng of Co	urse Ou	tcomes	with Pro	gram Oı	ıtcomes	(POs)							
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1		M	-	M	-	-	-	L	-	-	-	-	H	
CO2		M	-	-	-	-	H	-	-	-	M	-	H	
COs /	Os / PSOs PSO1		501	PSO2		PSO3		PS	SO4					
CO1		M		M		-		-						
CO2		H		L		-		_						
H/M/L	indicate	s Streng	gth of Co	orrelatio	n H-H	ligh, M-	Mediui	n, L-Lo	W		1			
Categ	ory	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
						V								

BCT18E08	FRONTIERS OF CHEMICAL ENGINEERING	3	0/0	0/0	3

UNIT I PROCESS INTENSIFICATION

9Hrs

Novel reactor configurations combination of reaction and separation use of different energy fields, lab on a chip.

UNIT II CHEMICAL PRODUCT DESIGN

9Hrs

Scope and importance identification of needs and specifications sources of ideas and screening ideas selection of product idea process development for product manufacture specialty chemical manufacture economic aspects.

UNIT III RENEWABLE ENERGY

9Hrs

Hydrogen production, Hydrogen economy, Fuel Cell Technology, biofuel cells and bio-hydrogen, solar energy.

UNIT IV MATERIALS ENGINEERING

9Hrs

Polymers and composites, ceramics and glasses, colloidal dispersions and nanoparticles, thin films and electronic materials.

UNIT V BIOENGINEERING

9Hrs

Biomechanics, biotransport and biomaterials, biomolecular and cellular engineering, drug discovery and development.

Total No. of Hours: 45Hrs

TEXT BOOKS:

- 1. Keil, F. J., Modeling of Process Intensification Wiley-VCH Verlag GmbH & Co. KGaA2007
- 2. Cussler, E.l. and Moggridge, G.D., "Chemical product design" Cambridge University Press, Cambridge, 2001
- 3. Hoffmann,P, Tomorrow's energy: hydrogen, fuel cells, and the prospects for a cleaner planet, MIT Press, Sabon, 2002.

REFERENCES:

1. Mitchell, B.S., An introduction to materials engineering and science for chemical and materials engineers, John Wiley and Sons Inc., New Jersey, 2004

Subject	Code:	Su	bject N	ame: Ind	ustrial I	Manage	ment	T y/	L/b ETI		L	S/SLr	P/R	C
BCT18E	CO9	Pr	erequisi	ite: Basic	Manag	ement		Ty			3 0	/0	0/0	3
L : Lectu	re T : T	utorial	SLr : S	Supervised	d Learni	ng P : P1	oject R	: Resear	ch C: Cr	edits				
T/L/ETL	: Theo	ry/Lab/E	Embedde	ed Theory	and Lat)								
OBJEC'														
	_			ty to lear	n basic r	nanagen	nent con	cepts es	sential fo	or busine	ess.			
COURS														
CO1					udents w	ould ha	ve know	ledge o	n the bas	ic mana	gement p	rinciples to	becoi	ne
CO2	_	all calc	professulation.	1011a1.										
Mappin	g of Co	urse Ou	itcomes	with Pro	gram O	utcome	s (POs)							
COs/PO		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
COS/FO	8	roi	102	103	104	103	100	ro/	100	109	1010	FOII		14
CO1		Н	-	-	-	-	M	-	M	-	-	-	L	
CO2		M	-	-	-	-	Н	-	-	-	Н	-	-	
COs/PS	SOs	PS	SO1	PS	O2	PS	SO3	PS	SO4					
CO1		H		M		-		-						
CO2		M		L		-		-						
		~ :												
H/M/L i	ndicate	s Streng	gth of C	orrelatio	n H-1	High, M	- Mediu	m, L-L	ow -	1				
Categor	ту	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
						√								

BCT18E09	INDUSTRIAL MANAGEMENT	3	0/0	0/0	3
				j !	

UNIT I INTRODUCTION

Management - Definition - Functions - Evolution of Modern Management - Scientific Management Development of Management Thought. Approaches to the study of Management, Forms of Organization - Individual Ownership - Partnership - Joint Stock Companies - Co-operative Enterprises - Public Sector Undertakings, Corporate Frame Work - Share Holders - Board of Directors - Committees - Chief Executive - Trade Union.

UNIT II FUNCTIONS OF MANAGEMENT 9Hrs

Planning – Nature and Purpose – Objectives – Strategies – Policies and Planning Premises – Decision Making – Organizing – Nature and Process – Premises – Departmentalization – Line and staff – Decentralization – Organizational culture, Staffing - selection and training – Placement –Performance appraisal – Career Strategy – Organizational Development. Leading – Managing human factor – Leadership – Communication, Controlling - Process of Controlling – Controlling techniques, productivity and operations management – Preventive control, Industrial Safety.

UNIT III ORGANIZATIONAL BEHAVIOUR 9Hrs

Definition – Organization – Managerial Role and functions – Organizational approaches, Individual behaviour – causes – Environmental Effect – Behavior and Performance, Perception – Organizational Implications. Personality Contributing factors - Dimension – Need Theories – Process Theories – Job Satisfaction, Learning and Behavior Learning Curves, Work Design and approaches.

UNIT IV GROUP DYNAMICS 9Hrs

Group Behavior – Groups – Contributing factors – Group Norms, Communication – Process – Barriers to communication – Effective communication, leadership – formal and informal characteristics – Managerial Grid – Leadership styles – Group Decision Making – Leadership Role in Group. Decision, Group Conflicts – Types – Causes – Conflict Resolution – Inter group relations and conflict, Organization centralization and decentralization – Formal and informal – Organizational Structures – Organizational Change and Development – Change Process – Resistance to Change – Culture and Ethics.

UNIT V MODERN CONCEPTS 9Hrs

Management by Objectives (MBO), Management by Exception (MBE), Strategic. Management - Planningfor Future direction - SWOT Analysis - Information technology in management - Decisions support system - Business Process. Re-engineering (BPR) - Enterprises Resource Planning (ERP) - Supply Chain Management (SCM) - Activity Based Management (ABM).

Total No. of Hours: 45Hrs

9Hrs

TEXT BOOKS:

- 1. Herald Knottz and Heinz Weihrich, 'Essentials of Management', TataMcGraw Hill Education Pvt. Ltd., 2010.85
- 2. Stephen P. Robbins, 'Organization Behaviour', Pearson Education Inc., 13 edition, 2010.

- 1. Ties, AF, Stoner and R.Edward Freeman, 'Management' Prentice Hall of India Pvt. Ltd. New Delhi 110 011, 1992
- 2. Joseph J, Massie, 'Essentials of Management' Prentice Hall of India Pvt. Ltd. 1985.
- 3. P.C. Tripathi & P.N. Reddy, 'Principles of Management', TataMcGraw Hill, 2006.

Subject Code: BCT18E10 Subject N Pharmace Prerequis			· ·		0			T y/]	L/b ETI	_	L	T/SL	r	P/ R	(
		ite: Engineering Chemistry			Ty			3	0/0	(0/0				
L : Lect	ure T : T	utorial	SLr : S	Supervised	d Learni	ng P : Pr	oject R	: Resear	ch C: Cr	edits	<u>L</u>				
T/L/ETI	L: Theor	y/Lab/E	Embedde	ed Theory	and Lat)									
OBJEC	TIVE:														
	_			understan	_				of engin	eering	and drug	g discov	ery in	the	
				involving	g Chemi	cal Engi	neering.								
COURS	SE OUT	COME	S (COs)): (3-5)											
CO1				rse, the st	udents w	ould ha	ve know	ledge or	n the bas	ic mana	agement	princip	oles to	becor	ne
CO2	- C	gement(s	s) profes	ssional.											
Mappin	g of Cou	ırse Ou	tcomes	with Pro	gram O	utcome	s (POs)								
COs/PO)s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 P	011	PO	<u>12</u>
CO1		Н	-	-	-	-	M	-	M	-	-	-		L	
CO2		M	-	-	-	-	Н	-	-	-	Н	-		-	
GO / T			101	TO C		TD:C	102	De	10.4						
COs / P	SOs	PS	SO1	PSO2		PSO3		PSO4							
CO1		Н		M		-		-							
~~*				_											
CO2		M		L		-		-							
H/M/L	indicates	s Strens	gth of C	 orrelatio	n H- I	 High, M	- Mediu	 m, L-L0	OW .						
			<u>, </u>		1	T		<u> </u>	<u> </u>						
				Ş											
			S	ence					Skill						
		SS	nce	Sci	ပ္	ves	SS	ect	cal S						
Catego	ory	ence	Scie	cial	Cor	lecti	ctive	Proj	chni	ills					
		Sci	ring	d Sc	ram	m E	Ele	al/	/ Te	Soft Skills					
		Basic Sciences	inee	s an	Program Core	Program Electives	Open Electives	Practical / Project	ips,	Soj					
		Н	Engineering Sciences	Humanities and Social Sciences		Prc		Pri	Internships / Technical Skill						
				uma					Inte						
				H											
	-														

BCCT18E10 DRUGS AND PHARMACEUTICAL TECHNOLOGY	3	0/0	0/0	3	
---	---	-----	-----	---	--

UNIT I INTRODUCTION

9Hrs

Development of drugs and pharamaceutical industry; organic the rapeuticagents uses and economics.

UNIT II DRUG METABOLISM AND PHARMACO KINETICS &MICROBIOLOGICAL AND ANIMAL PRODUCTS 9Hrs

Drug metabolism; physico chemical principles; pharma kinetics-action of drugson human bodies. Antibioticsgram positive, gram negative and broad spectrumantibiotics; hormones

UNIT III IMPORTANT UNIT PROCESSES AND THEIR APPLICATION 9Hrs

Chemical conversion processes; alkylation; carboxylation; condensation and cyclisation; dehydration, esterification, halogenation, oxidation, sulfonation; complex chemical conversions fermentation.

UNIT IV MANUFACTURING PRINCIPLES & PACKING AND QUALITYCONTROL 9Hrs

Compressed tablets; wet granulation; dry granulation or slugging; advancementin granulation; direct compression, tablet presses formulation; coating pills; capsules sustained action dosage forms; parential solutions, oral liquids; injections; ointments; standard of hygiene and manufacturing practice. Packing; packing techniques; quality control.

UNIT V PHARMACEUTICAL PRODUCTS & PHARMACEUTICALANALYSIS 9Hrs

Vitamins; cold remedies; laxatives; analgesics; nonsteroidal contraceptives; external antiseptics; antacids and others. Analytical methods and tests forvarious drugs and pharmaceuticals – spectroscopy, chromatography, fluorimetry, polarimetry, refractometry, pHmetry.

TOTAL No. of Hrs: 45Hrs

TEXT BOOK:

1. Rawlines, E.A.; "Bentleys Text book of Pharmaceutics", III Edition, Bailliere Tindall, London, 1977.

- 1. Yalkonsky, S.H.; Swarbick. J.; "Drug and Pharamaceutical Sciences", Vol.I, II, III, IV, V, VI and VII, Marcel Dekkar Inc., New York, 1975.
- 2. "Remingtons Pharmaceutical Sciences", Mack Publishing Co., 1975.

SEMESTER VII (ELECTIVE)

Subjec	t Code:	Subjec	t Name	: Professi	onal Et	hics in I	Enginee	ring	Ty/L	b/ ETL	L	T / SLr	P/R	•
BCT18E11		Prerequisite: Moral science and general English									3	0/0	0/0	3
L : Lec	ture T : T	utorial	SLr : S	upervised	l Learnir	ng P : Pr	oject R :	Researc	ch C: Cre	edits				
		ry/Lab/E	Embedde	d Theory	and Lab)								
OBJE	CTIVE:					_	, .		17.7	** 1				
•				create ar ty and to			•	_	es andHi	ıman Val	ues, to	instill Mo	ral and	
COUR	SE OUT			-	арргеста	ie ine m	giits of o	uicis.						
					1	1.		1 •			1	. (" 11		
CO1	Identif	y and an	alyze an	ethical is	ssue in th	ie subjec	et matter	under 11	nvestigat	tion or in	a relev	ant field.		
CO2		•		ns in resea					_		ntegrit	y, use and	citation	of
	source	s, the ob	jective p	resentatio	on of dat	a, and th	e treatm	ent of h	uman su	bjects.				
Mappi	ng of Co	urse Ou	tcomes	with Pro	gram O	utcomes	(POs)							
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO1	1 PO	12
CO1		H	_	_	L	_	_	_	L	-	H	-		
CO2		M	-	-	L	-	-	M	-	-	-	-	L	
COs / I	PSOs	PS	601	PS	O2	PS	SO3	PS	SO4					
CO1		Н		M		-		-						
CO2		M		L		-		-						
H/M/L	indicate	s Streng	eth of C	 orrelatio	n H-H	ligh, M-	Mediu	m. L-Lo	W					
		1		T	1	T	1		1	1	1	1		
				es										
			SS	ienc					Skill					
Catego	Orv	es	Engineering Sciences	Humanities and Social Sciences	ဥ	Program Electives	es	ject	Internships / Technical Sl					
Catego	OI y	Basic Sciences	Scie	ocia	Program Core	lecti	Open Electives	Practical / Project		cills				
		Sci	ing	d Sc	ram	m E	Ele	al/	/ Te	Soft Skills				
		asic	neeı	s an	rog	graı	ben	ıctic	ips ,	Sof				
		B	Ingi	nitie		Pro		Pre	rmsh					
			Щ	ımaı					Inte					
				Hu										
						2								
						$\sqrt{}$								

BCT18E11	PROFESSIONAL ETHICS IN ENGINEERING	3	0/0	0/0	3

UNIT I HUMAN VALUES

9Hrs

Morals, values and Ethics – Integrity – Work ethic – Service learning – Civicvirtue – Respect for others – Living peacefully – Caring – Sharing – Honesty – Courage – Valuing time – Cooperation – Commitment – Empathy – Self confidence – Character – Spirituality – Introduction to Yoga and meditation for professional excellence and stress management.

UNIT II ENGINEERING ETHICS

9Hrs

Senses of 'Engineering Ethics' – Variety of moral issues – Types of inquiry –Moral dilemmas – Moral AutonomyKohlberg's theory – Gilligan's theory –Consensus and Controversy – Models of professional roles. Theories about right action – Self interest – Customs and Religion – Uses of Ethical Theories

UNIT III ENGINEERING AS SOCIAL EXPERIMENTATION

9Hrs

Engineering as Experimentation – Engineers as responsible Experimenters –Codes of Ethics – A Balanced Outlook on Law.

UNIT IV SAFETY, RESPONSIBILITIES AND RIGHTS

9Hrs

Safety and Risk – Assessment of Safety and Risk – Risk Benefit Analysis and Reducing Risk Respect for Authority – Collective Bargaining – Confidentiality– Conflicts of Interest – Occupational Crime – Professional Rights – Employee Rights – Intellectual Property Rights (IPR) – Discrimination.

UNIT V GLOBAL ISSUES

9Hrs

Multinational Corporations – Environmental Ethics – Computer Ethics – Weapons Development – Engineers as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – Moral Leadership – Code of Conduct – Corporate Social Responsibility

Total No. of Hours: 45Hrs

TEXT BOOKS:

- 1. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 2003.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.

- 1. Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, NewJersey, 2004.
- 2. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics Concepts and Cases", Cengage Learning, 2009
- 3. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2003
- 4. Edmund G Seebauer and Robert L Barry, "Fundametals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001

Subject Code:	Subject Name : Process Optimization	T y/ Lb/ ETL	L	T/S.Lr	P/R	С
BCT18E13	Prerequisite: PCE	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory/Lab/Embedded Theory and Lab

OBJECTIVE:

• To expose the students with various mathematical methods for numerical analysis and use of software tools

COURSE OUTCOMES (COs): (3-5)

CO1	Through this course, the students would have learnt about the systems of equations, probability statistics,
	error analysis and programming concepts using various software tools.
CO2	

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	M	Н	Н	-	L	-	-	-	-	-	Н	-
CO2	M	Н	Н	-	-	-	Н	-	-	-	Н	Н
COs / PSOs	PS	O1	PSO2		PS	PSO3		PSO4				
CO1	M		M		M	M		-				
CO2	Н		L		Н		-					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
					√							

BCT18E13	PROCESS OPTIMIZATION	3	0/0	0/0	3

UNIT I OPTIMISATION

15Hrs

Introduction; formulation of objective functions; fitting models to data classification of functions; necessary and sufficient conditions for optimum unimodal, multimodal functions; analytical methods lagrange multiplier methods.

UNIT II NUMERICAL METHODS

15Hrs

Unimodel functions; newton's quasi newton, secant methods; region elimination methods, polynomial approximation; quadratic and cubic interpolation techniques for optimum. Multimodal functions; direct methods; random, grid. Hooke's nelder and mead methods; Powell's technique; indirect methods gradient and conjugate gradient methods; secant methods.

UNIT III LINEAR AND NON-LINEAR PROGRAMMING APPLICATIONS 15Hrs

Review on basic concepts of LP formulations; Simplex methods; Integer, quadratic, geometric and dynamic programming. Heat transfer and energy conservation; separation processes; fluid flow systems; reactor design and operation; large scale systems.

Total No. of Hours: 45Hrs

TEXT BOOKS:

- 1. Edgar, T.F., Himmelblau, D.M., "Optimisation of Chemical Processes", McGraw-Hill II Edition 2001.
- 2. Reklaitis, G.V., Ravindran, A., Ragsdell, K.M. "Engineering Optimisation", John Wiley, II Edition 2006

- 1. Biles, W.E., Swain, J.J.; "Optimisation and Industrial Experimentation", Inter Science, New York, 1980.
- 2. Seinfeld, J.H.; Lapidus, L; "Process Modelling, Estimation and Identification" Prentice Hall, Englewood Cliffs, New Jersey, 1974.
- 3. Beveridge, C.S.; Schechter, R.S.; "Optimisation: Theory and Practice", McGraw-Hill Book Co., New York, 1970.