

B.Tech – Electrical and Electronics Engineering (Full Time)

Curriculum and Syllabus

2018 Regulation

I SEMESTER

S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С
1	BEN18001	Technical English - I	Ту	1	0/0	2/0	2
2	BMA18001	Mathematics - I	Ту	3	1/0	0/0	4
3	BPH18001	Engineering Physics - I	Ту	2	0/1	0/0	3
4	BCH18001	Engineering Chemistry - I	Ту	2	0/1	0/0	3
5	BES18001	Basic Electrical and Electronics Engineering	Ту	2	0/1	0/0	3
6	BES18002	Basic Mechanical and Civil Engineering	Ту	2	0/1	0/0	3
PRACT	ICALS*						
1	BES18L01	Basic Engineering Workshop	Lb	0	0/0	2/0	1
2	BES18ET1	Orientation to Entrepreneurship and Project Lab	ETL	0	0/0	2/0	1

Credits Sub Total: 20

	II SEMESTER									
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С			
1	BMA18003	Mathematics – II	Ту	3	1/0	0/0	4			
2	BPH18002	Engineering Physics –II	Ту	2	0/1	0/0	3			
3	BCH18002	Engineering Chemistry – II	Ту	2	0/1	0/0	3			
4	BES18003	Environmental Science*	Ту	NO	N CREI	DIT COU	JRSE			
PRACT	ICALS*									
1	BEN18ET1	Communication Lab	ETL	1	0/0	2/0	1			
2	BES18ET2	Basic Engineering Graphics	ETL	1	0/0	2/0	2			
3	BES18L02	Integrated Physical Science Lab	Lb	0	0/0	2/0	1			
4	BES18ET3	C Programming And Lab	ETL	1	0/0	2/0	2			

Credits Sub Total: 16

TOTAL CREDITS: 36

C: Credits L: Lecture T: Tutorial S.Lr: Supervised Learning P: Problem / Practical R: Research Ty/Lb/ETL: Theory /Lab/Embedded Theory and Lab * Internal Evaluation

	III SEMESTER									
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С			
1	BEE18001	Circuit Theory and Network Analysis	Ту	3	1/0	0/0	4			
2	BEE18002	DC Machines and Transformers	Ту	3	1/0	0/0	4			
3	BEE18003	Electromagnetic Field Theory	Ту	3	0/0	0/0	3			
4	BEE18004	Electrical and Electronics Measurements	Ту	3	0/0	0/0	3			
5	BME18I03	Thermodynamics and Fluid Mechanics	Ту	3	0/0	0/0	3			
PRACT	ICALS*									
1	BEE18L01	Electrical Machines- I Lab	Lb	0	0/0	3/0	1			
2	BEE18L02	Electrical Circuits Lab	Lb	0	0/0	3/0	1			
3	BME18IL2	Fluid Mechanics and IC Engine Lab	Lb	0	0/0	3/0	1			

Credits Sub Total: 20

IV SEMESTER									
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С		
1	BMA18011	Numerical Methods for Electrical Engineers	Ту	3	1/0	0/0	4		
2	BEE18005	AC and Special Machines	Ту	3	1/0	0/0	4		
3	BEE18006	Power System - I	Ту	3	0/0	0/0	3		
4	BEC18I07	Communication Systems and IOT	Ту	3	0/0	0/0	3		
5	BHS18NC1/ BHS18NC2	The Indian Constitution*/ The Indian Traditional Knowledge*	Ту	2	0/0	0/0	NC		
PRACT	[CALS*								
1	BEE18ET1	Linear and Digital Integrated Circuits	ETL	1	0/1	3/0	3		
2	BEE18L03	Electrical Machines –II Lab	Lb	0	0/0	3/0	1		
3	BEE18L04	Measurement and Instrumentation Lab	Lb	0	0/0	3/0	1		
4	BEC18IL5	Signal Processing and Communication Lab	Lb	0	0/0	3/0	1		
5	BEE18TS1	Technical Skill 1 (Computer Software Packages)	Lb	0	0/0	3/0	1		
6	BEN18SK1	Soft Skill I (Career and Confidence Building)	ETL	0	0/0	3/0	1		

Credits Sub Total: 22

C: Credits L: Lecture T: Tutorial S.Lr: Supervised Learning P: Problem / Practical R: Research Ty/Lb/ETL: Theory /Lab/Embedded Theory and Lab * Internal Evaluation

V SEMESTER									
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С		
1	BEE18007	Power System - II	Ту	3	1/0	0/0	4		
2	BEE18008	Control System	Ту	3	0/0	0/0	3		
3	BXX18EXX	Elective 1	Ту	3	0/0	0/0	3		
4	BXX18OEX	Open Elective 1	Ту	3	0/0	0/0	3		
		PRACTICALS*							
1	BEE18ET2	Design of Electrical Machines	ETL	1	0/1	3/0	3		
2	BEE18L05	Electronics Lab	Lb	0	0/0	3/0	1		
3	BEE18L06	Control System Lab	Lb	0	0/0	3/0	1		
4	BEI18IL1	Microprocessor, Microcontroller and ARM Processor Lab	Lb	0	0/0	3/0	1		
5	BEE18TS2	Technical Skill 2 (Electrical Software Packages)	Lb	0	0/0	3/0	1		

Credits Sub Total: 20

VI SEMESTER									
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С		
1	BEE18009	Power System - III	Ту	3	1/0	0/0	4		
2	BEE18010	Power Electronics- I	Ту	3	1/0	0/0	4		
3	BXX18EXX	Elective II	Ту	3	0/0	0/0	3		
4	BXX18OEX	Open Elective 2	Ту	3	0/0	0/0	3		
PRACTICALS*									
1	BEE18ET3	Energy Utilization and Conservation	ETL	1	0/1	3/0	3		
2	BEE18L07	Electrical Practice Lab	Lb	0	0/0	3/0	1		
3	BEE18L08	Power System Lab	Lb	0	0/0	3/0	1		
4	BEN18SK2	Soft Skill II (Qualitative and Quantitative Skills)	ETL	0	0/0	3/0	1		
5	BEE18L09	Mini Project/Inplant Training/Industrial training	Lb	0	0/0	3/0	1		
6	BEE18TS3	Technical Skill 3 (Evaluation of Design and Implementation Practice)	Lb	0	0/0	3/0	1		

Credits Sub Total: 22

C: Credits L: Lecture T: Tutorial S. Lr : Supervised Learning P : Problem / Practical R : Research Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab *Internal evaluation

VII SEMESTER									
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С		
1	BEE18011	Microgrid Technology	Ту	3	1/0	0/0	4		
2	BXX18EXX	Elective III	Ту	3	0/0	0/0	3		
3	BXX18EXX	Elective IV	Ту	3	0/0	0/0	3		
4	BMG18002	Management Concepts and Organizational Behavior	Ту	3	0/0	0/0	3		
		PRACTICALS*							
1	BEE18ET4	Industrial Drives and Automation	ETL	1	0/1	3/0	3		
2	BEE18L10	Microgrid Lab	Lb	0	0/0	3/0	1		
3	BEE18L11	Power Electronics and Drives Lab	Lb	0	0/0	3/0	1		
4	BEE18L12	Project Phase – I	Lb	0	0/0	3/3	2		
5	BHS18FLX	Foreign Language	TY	0	0/0	3/0	1		
6	BXX18OLX	Open Lab	Lb	0	0/0	3/0	1		

Credits Sub Total: 22

VIII SEMESTER									
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С		
1	BEE18012	Power Electronics- II	Ту	3	1/0	0/0	4		
2	BEE18013	Smart Grid Technology	Ту	3	0/0	0/0	3		
3	BXX18EXX	Elective V	Ту	3	0/0	0/0	3		
PRACTICALS*									
1	BEE18L13	Project Phase – II	L	0	0/0	12/12	8		

Credits Sub Total: 18

C: Credits L: Lecture T: Tutorial S.Lr: Supervised Learning P: Problem / Practical R: Research Ty/Lb/ETL: Theory /Lab/Embedded Theory and Lab * Internal Evaluation

CREDIT SUMMARY

:	20 Credits
:	16 Credits
:	20 Credits
:	22 Credits
:	20 Credits
:	22 Credits
:	22 Credits
:	18 Credits
ITS -	160
	ITS -

ELECTIVE -I									
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С		
1	BEE18E01	Wind Energy Conversion Techniques	Ту	3	0/0	0/0	3		
2	BEE18E02	IOT Applied to Electrical Engineering	Ту	3	0/0	0/0	3		
3	BEE18E03	Mechatronics	Ту	3	0/0	0/0	3		
4	BEE18E04	Artificial Intelligence	Ту	3	0/0	0/0	3		

ELECTIVE -II									
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С		
1	BEE18E05	Solar Energy Conversion Techniques	Ту	3	0/0	0/0	3		
2	BEE18E06	Green Building Technology	Ту	3	0/0	0/0	3		
3	BEE18E07	Neural Networks and its Application	Ту	3	0/0	0/0	3		
4	BEE18E08	Digital Signal Processing	Ту	3	0/0	0/0	3		

	ELECTIVE –III									
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С			
1	BEE18E09	Restructuring of Distribution System	Ту	3	0/0	0/0	3			
2	BEE18E10	DG and Energy Storage Technology	Ту	3	0/0	0/0	3			
3	BEE18E11	Material Science in Aviation	Ту	3	0/0	0/0	3			
4	BEI18013	Power Plant Instrumentation	Ту	3	0/0	0/0	3			

		ELECTIVE –IV					
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С
1	BEE18E13	Safety for Electrical Engineers	Ту	3	0/0	0/0	3
2	BEE18E14	Wide Area Monitoring Protection and Control	Ту	3	0/0	0/0	3
3	BEE18E15	Robotics and Automation	Ту	3	0/0	0/0	3
4	BEE18E16	Image Processing	Ту	3	0/0	0/0	3

		ELECTIVE -V					
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С
1	BEE18E17	Substation Designing	Ту	3	0/0	0/0	3
2	BEE18E18	Industrial Control and Instrumentation	Ту	3	0/0	0/0	3
3	BEE18E19	Electric Traction	Ту	3	0/0	0/0	3
4	BEE18E20	Electric Transients and High Voltage Engineering	Ту	3	0/0	0/0	3

		OPEN ELECTIVE					
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С
1	BEE18OE1	Electrical Safety for Engineers	Ту	3	0/0	0/0	3
2	BEE18OE2	Energy Conservation Techniques	Ту	3	0/0	0/0	3
3	BEE18OE3	Electric Vehicle Technology	Ту	3	0/0	0/0	3
4	BEE180E4	Biomedical Instrumentation	Ту	3	0/0	0/0	3
5	BEE18OE5	Introduction to Power Electronics	Ту	3	0/0	0/0	3
6	BEE18OE6	Industrial Instrumentation	Ту	3	0/0	0/0	3
7	BEE18OE7	Solar Energy Conversion System	Ту	3	0/0	0/0	3
8	BEE18OE8	Wind Energy Conversion System	Ту	3	0/0	0/0	3
9	BEE18OE9	Energy Storage Technology	Ту	3	0/0	0/0	3
		OPEN LAB					
1	BEE18OL1	Transducer Lab	Lb	0	0/0	3/0	1
2	BEE18OL2	PLC and SCADA Lab	Lb	0	0/0	3/0	1
3	BEE18OL3	Electrical Maintenance Lab	Lb	0	0/0	3/0	1
4	BEE18OL4	Power Electronics Lab	Lb	0	0/0	3/0	1
5	BEE18OL5	Bio Medical Instrumentation Lab	Lb	0	0/0	3/0	1

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING DEPARTMENT OF ENGLISH

Subje	ect			Subject	Name :'	ГЕСНИ	ICAL EN	GLISH	[- I	Ty/Lb/	ETL	L T/	SLr	P/R	C C
Code	biject de: BEN18001 Subject Name :TECHNICAL ENGLISH - I Prerequisite : None Ty/Lb/ETL L T/SLr P/R C Prerequisite : None Ty 1 0/0 2/0 2 L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory / Lab / Embedded Theory and Lab Ty 1 0/0 2/0 2 OBJECTIVES : • Use appropriate vocabulary and structure in academic communication • Use structural and functional grammar in academic writings. • Give instructions, suggestions and recommendations. • Interpret Charts, diagrams, advertisements, etc • Take notes, summarize and make power point presentations. O1 Use appropriate vocabulary and structure in academic communication • • • O2 Use structural and functional grammar in academic communication • • • O2 Use structural and functional grammar in academic communication • • • • O3 Give instructions, suggestions and recommendations. • • • • • O4 Interpret Charts, diagrams, advertisements, etc • • • • • • • • • • •										2				
	L : I T/L/	Lectu ETL	re T : : The	Tutorial eory / Lab	SLr : Su / Embed	pervised ded Theo	Learning ory and La	P : Proje ab	ect R :	Research	C: Credi	its			
	OB.	EC	TIVE	<u>s :</u>											
	•	Use	appr	opriate vo	cabularv	and strue	cture in ac	ademic	comm	unication					
	•	Use	struc	tural and	functiona	l gramm	ar in acad	emic wr	itings.						
	•	Give	e inst	ructions, s	uggestio	ns and re	commend	lations.	0						
	•	Inte	rpret	Charts, di	agrams, a	advertise	ments, etc	;							
	•	Tak	e not	es, summa	rize and	make po	wer point	presenta	ations.						
						-	-	-							
	CO	JRS	E OL	TCOME	S (Cos) :	(3-5)									
	Stud	ents	comp	oleting the	course w	ould be	able to								
C01			Use	appropria	te vocab	ulary and	a structure	in acade	emic c	ommunicati	on				
CO2			Use	structural	and fund	ctional g	rammar in	academ	ic writ	tings.					
CO3			Give instructions, suggestions and recommendations.												
CO4			Interpret Charts, diagrams, advertisements, etc												
CO5			Tak	e notes, st	ımmarize	and ma	ke power	point pre	esentat	ions.					
	Map	ping	g of C	Course Ou	tcomes	with Pro	gram Ou	tcomes	(POs)						
COs	/POs	PO)1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO	11	PO12
CO1												Н			
CO2												H			
CO3												H			
CO4												H			
CO5	D5 H														
	H/M	H/M/L indicates strength of correlation H – High, M – Medium, L – Low													
y															
gor		ic	ance	g ince	nani c	lal <u>snce</u> gran		gran		n Xive	stica ect			rnsh	ls
Caté		Basi	2016	Eng Scie	Hun Secs	Scie Prog	core	Pro _{ Elec		Ope Elec	Prac Proj			Inte	Soft Skil
		_ •	-				-								-1 -1
					'										

Dr.M.G.R.

BEN18001 TECHNICAL ENGLISH - I 1 0/0 2/0 2

UNIT I VOCABULARYBUILDING

The concept of Word Formation-Root words and affixes from foreign languages and their use in English to form derivatives.-Homophones- Words often confused-Verbal analogy

UNIT II BASIC WRITING SKILLS

Using Idioms and phrases in sentences-Sentence structures: statements, interrogative and imperative-Use of Conditional/if' clauses in sentences-Importance of proper punctuation-Creating coherence with sentence markers-Organizing coherent paragraphs in essays

UNIT III IDENTIFYING COMMON ERRORS IN WRITING

Subject-verb agreement-Noun-pronoun agreement- Misplaced modifiers-Articles-Prepositions-Redundancies and Clichés

UNIT IV WRITING PRACTICE- NATURE AND STYLE OF TECHNICAL WRITING 6

Describing Gadgets- Defining Concepts-Classifying data-Comprehension-Essay Writing-Informal and Formal Letter Writing:

UNIT V ORAL COMMUNICATION AND INTERACTIVE LEARNING

(This unit involves interactive practice sessions in Language Lab)

Activities to develop knowledge in Word formation, Vocabulary and analytical thinking-Instructions and – Recommendations-Formal and Informal Registers in Speech-Listening and taking notes

Total No of Hours: 30

TEXT BOOK :

- 1. Quest : A Textbook of Communication Skills, Vijay Nicole, 2017.
- 2. Pushkala, R, Padmasani Kannan S, Anuradha V, Chandrasena M Rajeswaran

SUGGESTED READINGS:

- 1. Practical English Usage. Michael Swan. OUP. 1995.
- 2. Remedial English Grammar. F.T. Wood. Macmillan.2007
- 3. On Writing Well. William Zinsser. Harper Resource Book. 2001
- 4. Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
- 5. Communication Skills. Sanjay Kumar and Pushp Lata. Oxford University Press. 2011.
- 6. Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press
- 7. Pronunciation in Use ,Mark Hancock. Cambridge University Press. 2012

6

6

Subie	ct	Subject	t Name	MATH	EMATI	$\frac{1}{1}$		VIA I	Tv/I	I	T/SI	P/R	C		
Code:BMA	18001	Bubjec							b/ET	Ľ	r	1/10	C		
	-								L						
		Prereq	uisite: N	lone					Ту	3	1/0	0/0	4		
L : Lecture	T : Tutor	ial SLr :	Supervi	sed Lear	ning P :	Project	R : 1	Rese	arch C:	Credits					
T/L/ETL : 7	Theory / I	Lab / Em	bedded [Theory a	nd Lab										
OBJECTI	VES:		anta in /	lashno											
• App	the Basi		te in Ma	trices											
• Use	ntify and	solve pr	blems i	n Trigon	ometry										
• Uno	derstand t	he Basic	concent	s in Diff	erentiatio	n									
• An	olv the Ba	asic conc	ents in F	Functions	of Seve	ral varial	bles								
- Apr	jiy the Dt		opts in I	unctions	of Beve	iai vaita	0105								
COURSE	DUTCON	MES (Co	os) : (3 –	- 5)											
Students co	mpleting	the cours	se were a	able to											
CO1	Find the	e summat	tion of th	ne given s	series of	binomia	l, ex	kpon	ential &	logarith	mic				
CO2	Transfor transfor	rm a no mation.	on – dia	agonal n	natrix ir	nto an e	equi	vale	nt diag	onal ma	ıtrix usi	ng orth	logonal		
CO3	Find ex	Find expansion of trigonometric function into an infinite series and to separate a complex function into real and imaginary parts.													
<u> </u>	Annalas						1			C		. 1	. 1 (1		
CO4	Apply I maxima	knowledg / minim	a of the	concepts given fur	in find	ing the	deri	vativ	ve of g	iven fur	iction a	nd to f	ind the		
CO5	Evaluate	e the par	tial / tota	l differei	ntiation a	ind maxi	ima	/ mi	nima of	a functi	on of sev	veral va	riables.		
Mapping o	f Course	Outcom	es with	Progran	n Outco	mes (PC)s)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PC)7	PO8	PO9	PO10	PO11	PO12		
CO1	Н	Н			Μ	М				Н	Н		Н		
CO2	Н	Н			Н	L							Н		
CO3	Н	Н			Μ					М	Н		L		
CO4	Н	Н			L					М	Н		М		
CO5	Н	Н				М				М	Μ		Н		
H/M/L ind	icates str	ength of	correla	tion H	– High, I	M – Me	diuı	m, I	L – Low	7					
Category	Basic Sciences	Engg Sciences	Humaniti	es & Social Sciences	Program core	Program Electives		Open	Electives	Practical / Project	Internship s /	Technical Skills	Soft Skills		

BMA18001

MATHEMATICS – I

UNIT I ALGEBRA

Binomial, Exponential, Logarithmic Series (without proof of theorems) – Problems on Summation, Approximation and Coefficients.

UNIT II MATRICES

Characteristic equation – Eigen values and Eigen vectors of a real matrix – Properties of Eigen values – Cayley - Hamilton theorem(without proof) – Orthogonal reduction of a symmetric matrix to Diagonal form.

UNIT III TRIGONOMETRY

Expansions of Sin n θ , Cos n θ in powers of Sin θ and Cos θ – Expansion of Tan n θ – Expansions of Sinⁿ θ and Cosⁿ θ in terms of Sines and Cosines of multiples of θ – Hyperbolic functions – Separation into real and imaginary parts.

UNIT IV DIFFERENTIATION

Basic concepts of Differentiation – Elementary differentiation methods – Parametric functions – Implicit function –Leibnitz theorem(without proof) – Maxima and Minima – Points of inflection.

UNIT V FUNCTIONS OF SEVERAL VARIABLES

Partial derivatives – Total differential – Differentiation of implicit functions – Taylor's expansion – Maxima and Minima by Lagrange's Method of undetermined multipliers – Jacobians.

Total No of Hours: 60

12

TEXT BOOKS:

- 1. Kreyszig E., Advanced Engineering Mathematics (10th ed.), John Wiley & Sons, (2011).
- 2. Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).

REFERENCE BOOKS:

- 1. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).
- 2. John Bird, Basic Engineering Mathematics (5th ed.), Elsevier Ltd, (2010).
- 3. P.Kandasamy, K.Thilagavathy and K. Gunavathy, Engineering Mathematics Vol. I (4th Revised ed.), S.Chand& Co., Publishers, New Delhi (2000).
- 4. John Bird, Higher Engineering Mathematics (5th ed.), Elsevier Ltd, (2006).

12

12

12

3 1/0 0/0 4

DEPARTMENT OF PHYSICS

Subject Code:BPH18001 Subject Name :ENGINEERING PHYSICS - I TYL b/ET L L L T/S L/ET L P/R C Prerequisite : None Ty 2 0/1 0/0 3 L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory / Lab / Embedded Theory and Lab 5 7 2 0/1 0/0 3 OBJECTIVES : 0 Outline the relation between Science, Engineering & Technology. • Demonstrate competency in understanding basic concepts. • Apply fundamental laws of Physics in Engineering & Technology. •																		
		Pr	erea	nici	te • Non	P							,	2	0/1			3
x x	.			u151	·				<u> </u>		1.0	I y		4	0/1)/0	5
L : Lecture T/I /FTI · T	I : Tutori 'heory / I	al SLr ab/Fr	::Su nhed	per ded	vised Le	arning P and I ab	: Proje	ect	R : Re	sea	rch C	: Crec	lits					
	neory / L		nocu	ucu	Theory													
OBJECTIV	ES:			~ .	_													
• Outline	the relation	on betv	veen	Sci	ence, En	gineerin	g & Te	echn	ology	•								
 Demons Apply fr 	undament	ipetenc al laws	s of P	una Phys	sics in F	ng Dasic	conce	pis. 'echi	nology	7								
To ident	tifv & sol	ve prol	blem	s us	sing phys	sics conc	epts.	cem	nonogy	y .								
Produce	and pres	ent acti	ivitie	s as	ssociated	with the	e cours	e th	rough	eff	ective	techn	ical c	comn	nuni	catior	ı	
COURSE (DUTCON	AES (C	Cos) :	: (3	- 5)													
Students con	mpleting	this cou	urse v	wer	e able to													
CO1	Demons	strate c	ompe	eten	icy in un	derstand	ing ba	sic c	concep	ots.								
CO2	Utilize	Jtilize scientific methods for formal investigations & demonstrate competency with experimental nethods and verify the concept to content knowledge. dentify and provide solutions for engineering problems.																
	method	hethods and verify the concept to content knowledge. dentify and provide solutions for engineering problems.																
CO3	Identify	dentify and provide solutions for engineering problems.																
CO4	Relate t	dentify and provide solutions for engineering problems. celate the technical concepts to day to day life and to practical situations.																
CO5	Think a	nalytic	ally t	o ir	nterpret o	concepts												
Mapping of	f Course	Outco	mes	witl	h Progra	am Outo	comes	(PO)s)									
COs/POs	PO1	PO2	PO	3	PO4	PO5	PO6		PO7		PO8	PO	9	PO1	10	PO1	1	PO12
CO1	Н	Η			Μ	Μ	Μ											
CO2	Н	Η	Μ	ſ	Μ	Μ	Μ					N	1	Μ	[
CO3	Н	Η	H	[Μ	Μ	Μ							Μ	[Μ
CO4	Н	Н	Μ	ſ	Μ		Μ					Ν	1	Μ	[Μ
CO5	Н	Н	Μ	[Μ				Μ							L
H/M/L indi	cates str	ength o	of co	rrel	lation I	H – Higł	n, M –	Me	dium,	L	- Lov	V	I					
y	s	c	x	÷	1	с с		S			S	1/		ip		al		
10g01	ic ince	00	ance	iani	c lial	gran	ran	tive		ц ;	ti ve	tica	1	msh		nnic ls		ls
Cate	Basi Scie	Eng	ocie	Hun	es & Soci	Pro _f	Pro 6	Elec	(Ope 1	Elec	Prac	2	Inte		I ecl Skil	Soft	Skil
-	√		-		,						1				ψ <u>η</u> [•1	-1	~ •
	,													<u> </u>				

BPH18001

ENGINEERING PHYSICS - I 2 0/1 0/0.3

UNIT I **MECHANICS & PROPERTIES OF MATTER**

Mechanics : Introduction- scalar and vector quantities - rigid body - moment of inertia - forces in nature -Newton's laws of motion - derivation of Newton's second law of motion - motion of rocket - dynamical concepts - kinematics - conservation of energy and momentum - conservative and non-conservative forces mechanics of continuous media - friction and its applications.

Properties of Matter: Elasticity - stress, strain and Hook's law - Poisson's ratio - three moduli of elasticity twisting couple on a wire - viscosity - flow of liquid through a narrow tube: Poiseuille's law - Ostwald's viscometer - flow of blood in human body.

UNIT II SHM AND ACOUSTICS

SHM: Simple harmonic motion - differential equation of SHM - graphical representation of SHM - average kinetic energy of vibration - total energy of vibration - free and forced vibrations - damped and undamped vibrations - resonance - transverse wave on a string - law of transverse vibration of string - verification of the laws of transverse vibration of string - standing waves.

Acoustics : Fundamentals of acoustics - reverberation- reverberation time - factors affecting acoustics Ultrasonics -Production of ultrasonic waves - detection of ultrasonic waves - acoustic grating - application of ultrasonic waves.

UNIT III WAVE OPTICS

Huygen's principle - interference of light - wavefront splitting and amplitude - airwedge - Newton's rings -Michelson interferometer and its applications - Fraunhofer diffraction from a single slit - Rayleigh criterion for limit of resolution - diffraction grating and resolving power of a telescope.

UNIT IV **ELECTROMAGNETIC THEORY**

Electric field - coulomb's law - alternating emf - rms and average value of an alternating current & voltage resistors, capacitors and inductor - energy stored in a capacitor - LCR circuit & resonance - magnetismdefinition - types - Biot Savart law - energy stored in a magnetic field - Domain theory - electromagnetic induction - self and mutual inductance - Faraday's law of electromagnetic induction -Lenz law.

UNIT V LASER

Laser principle and characteristics - amplification of light by population inversion - properties of laser beams: mono-chromaticity, coherence, directionality and brightness - different types of lasers - Ruby laser-Nd-YAG laser-He-Ne laser-CO₂ laser - semiconductor laser - applications of lasers in science, engineering and medicine.

TEXT BOOKS :

- 1. Brijlal, M. N. Avadhanulu& N. Subrahmanyam, Text Book of Optics, S. Chand Publications, 25th edition, 2012
- 2. R. Murugeshan, Electricity and Magnetism, S.Chand Publications, 10th edition, 2017
- 3. R. Murugeshan & Kiruthiga Sivaprasath, Modern Physics, S.Chand Publications, 2016

REFERENCE BOOKS:

- 1. Dr. Senthil Kumar Engineering Physics I VRB Publishers, 2016
- 2. N Subrahmanyam & Brijlal, Waves and Oscillations, Vikas Publications, New Delhi, 1988
- 3. N Subrahmanyam & Brijlal, Properties of Matter, S. Chand Co., New Delhi, 1982
- 4. N Subrahmanyam & Brijlal, Text book of Optics, S. Chand Co., New Delhi, 1989
- 5. R. Murugeshan, Electricity and Magnetism, S. Chand & Co., New Delhi, 1995
- 6. Thygarajan K & Ajay Ghatak, Laser Theory and Applications, Macmillan, New Delhi, 1981

Total No of Hours: 45

9

9

9

0

B.Tech – Electrical & Electronics Engineering - 2018 Regulation

DEPARTMENT OF CHEMISTRY

Subject	10001	Subject Name :ENGINEERING CHEMISTRY - I Ty/ Lb/ Lb/ ETL L T/S P/R C 8001 Prerequisite : None Ty 2 0/1 0/0 3														
Code:BCH	18001								ETL		Lr					
		Prer	equisite	e : None	e				Ту	2	0/1	0/0	3			
L : Lecture	T : Tuto	orial SLr	: Super	vised L	earning l	P : Projec	t R : Re	search (C: Credit	s			<u> </u>			
T/L/ETL :	Theory /	Lab / Er	nbedded	l Theory	y and La	b										
OBJECTI	VES :															
• Pro	oviding a	n insight	into ba	sic conc	cepts of c	chemical	thermod	ynamics								
• To	create	awarenes	s about	the wa	ter qual	ity paran	neters, v	vater ana	alysis an	d softer	ning o	f water	from			
ind	lustrial p	erspectiv	ve.													
• Im	parting	fundame	ntals of	emf, sto	orage and	l fuel cell	ls.									
• C1	reating a	wareness	about c	orrosio	n and its	control n	nethods.									
• Int	roducing	g moderi	n materi	als sucl	h as com	posites a	ılong wi	th basic	concepts	of poly	ymer c	hemist	ry and			
	istics.		N) - (1	5)												
COURSE	OUIC	DMES (C	$(1-1)^{-1}$	- 5)												
CO1	Gain a	clear un	derstand	ling of t	the basic	es of chei	mical th	ermodyn	amics w	hich ind	clude c	oncept	s such			
<u> </u>	as Enth	Enthalpy, Entropy and Free energy. tain an overall idea of Water quality parameters, Boiler requirements, problems, Water softening														
CO2	Obtain	tain an overall idea of Water quality parameters, Boiler requirements, problems, Water softening I Domestic Water treatment.														
CO3	Improv	Domestic Water treatment.														
005	nrincin	les of sto	rage dev	vices			luuctane			so unue	istanu		micai			
CO4	Observ	$\frac{100}{100}$ e the in	formatic	on abou	it corros	ion and	underst	and the	mechani	sms of	corro	sion ar	nd the			
001	method	ls of corr	osion co	ontrol.	•••••••					0110 01	• • • • • •					
CO5	Articul	ate the sc	cience of	f polym	ers and c	composite	es.									
Mapping of	of Cours	e Outcor	mes wit	h Progi	ram Out	tcomes (I	POs)									
COs/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10) PC	011 F	PO12			
CO1	Н	Η											Μ			
CO2	H	H	M	H		H	H						M			
CO3	H	Μ	H				L						L			
CO4	H		L	Н												
UU5 H/M/Lind	H licetes s	H														
	incates s				n – nig	<u> </u> 			w							
IJ	SS	Sč	itie	cial 3S	Е	es n		es /	, a	hip	cal	ills				
oge	ic	g Suce	nan	So Sho	graı	grau	ų i	tiv it	ect	Ins	hni Is	Š				
Cato	Bas Scie	Eng	Jur	s & Scie	Pro	Prog	Dpe	Llex 2	Proj	Inte	Skil	Sofi				
	I	щол	H		I C					IS		v 1				
	'N															

ENGINEERING CHEMISTRY – I 2 0/1 0/0 3

UNIT I CHEMICAL THERMODYNAMICS

Introduction, Terminology in thermodynamics –System, Surrounding, State and Path functions, Extensive and intensive properties. Laws of thermodynamics - I and II laws-Need for the II law. Enthalpy, Entropy, Gibbs free energy, Helmholtz free energy - Spontaneity and its criteria. Maxwell relations, Gibbs -Helmholtz equation (relating E & A) and (relating H & G), Van't Hoff equations.

UNIT II **TECHNOLOGY OF WATER**

BCH18001

Water quality parameters – Definition and expression. Analysis of water – alkalinity, hardness and its determination (EDTA method only). Boiler feed water and Boiler troubles-Scales and sludges, Caustic embrittlement, Priming and Foaming and Boiler corrosion. Water softening processes – Internal and external conditioning - Lime soda, Zeolite, Demineralisation methods. Desalination processes-RO and Electrodialysis .Domestic water treatment.

UNIT III ELECTROCHEMISTRY AND ENERGY STORAGE DEVICES

Conductance – Types of conductance and its Measurement. Electrochemical cells – Electrodes and electrode potential, Nernst equation – EMF measurement and its applications. Types of electrodes- Reference Books electrodes-Standard hydrogen electrode- Saturated calomel electrode-Quinhydrone electrode Determination of PH using these electrodes. Reversible and irreversible cells- Fuel cells- H2-O2 fuel cell, Batteries-Lead storage battery, Nickel- Cadmium and Lithium-Battery.

UNIT IV **CORROSION AND PROTECTIVE COATING**

Introduction-Causes of Corrosion-Consequences- Factors affecting corrosion. Theories of corrosion-Chemical corrosion and Electrochemical corrosion. Methods of corrosion control - corrosion inhibitors, Sacrificial anode and Impressed current cathodic protection.

Protective coatings- Metallic coatings- Chemical conversion coatings-paints-Constituents and functions.

UNIT V POLYMERS AND COMPOSITES

Monomers - Functionality - Degree of polymerization-Tacticity.Polymers - Classification, Conducting Polymers, Biodegradable polymers- Properties and applications. Plastics - Thermoplastics and thermosetting plastics, Compounding of plastics - Compression moulding, injection moulding and extrusion processes. Polymer composites-introduction-Types of composites-particle reinforced-fiber reinforced-structural composites-examples. Matrix materials, reinforcement materials-Kevlar, Polyamides, fiber glass, carbon fibers, ceramics and metals.

TEXTBOOKS:

- 1. P.Udhayakala., S.Dinakar&L.Sankar., "Chemistry for Engineers", Charulatha Publications(2018).
- 2. C.SreekuttanUnnithan, "Applied Chemistry", Sreelakshmi Publications, (2007).
- 3. Dr.R.Sivakumar, Dr.R.Jayaprakasam and Dr.N.Sivakumar, "Engineering Chemistry I & II", Tata McGraw Hill Publishing Company Ltd, Reprint 2013.

REFERENCE BOOKS:

- 1. P.C. Jain & Monika Jain, "Engineering Chemistry", Dhanpat Rai publishing Co., (Ltd.) (2013).
- 2. J. C. Kuriacose& J. Rajaram, "Chemistry in Engineering & Technology", Tata Mc Graw Hill (1996).
- 3. B.R.Puri, L.R.Sharma&M.S.Pathania, "Principles of Physical Chemistry", Vishal publishing co., (2013).

8

9

10

9

Total No of Hours: 45

9

B.Tech – Electrical & Electronics Engineering - 2018 Regulation

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Subject Code: BES	18001	Subj ELF	ject Nan CCTRO	ne :BAS NICS E	SIC ELI NGINE	ECTRI(ERING	CAL AN	D	Ty/ Lb/ ETL	L	T/S Lr	P/R	C		
		Prer	requisite	e : None					Ту	2	0/1	0/0	3		
L : Lecture T/L/ETL :	e T : Tuto Theory /	rial SLr Lab / En	: Superv nbedded	vised Lea Theory	arning P and Lab	: Projec	tR:Re	esearch	C: Credi	ts		<u> </u>			
OBJECTI	VES :														
•	Un	derstand	the conc	epts of c	circuit el	ements,	circuit l	aws and	coupled	circuit	s.				
•	Act Gai	juire kno n inform	wiedge of ation on	on conve measure	ement of	ænon c f electric	al paran	nai ener	gy produ	letion.					
•	Ide	ntify basi	c theore	tical prin	nciples t	behind th	ne worki	ng of m	odern ele	ectronio	c gadg	ets.			
•	Der	nonstrate	digital	electron	ic circui	ts and as	semble	simple of	levices.						
COURSE	OUTCO	MES (C	os) : (3 -	- 5)											
CO1	Student	ts underst	and Fun	damenta	al laws a	ind theor	ems and	l their p	ractical a	pplicat	ions				
CO2	Predict	the beha	vior of d	lifferent	electric	and mag	gnetic Ci	ircuits.							
CO3	Identify conventional and Non-conventional Electrical power Generation, Transmission and Distribution. Identify & Apply schematic symbols and understand the working principles of electronic devices														
CO4	Distribution. Identify & Apply schematic symbols and understand the working principles of electronic devices														
CO5	O5 Analyze basics of digital electronics and solving problems and design combinational circuits														
Mapping of	Analyze basics of digital electronics and solving problems and design combinational circuits Mapping of Course Outcomes with Program Outcomes (POs)														
COs/POs	Mapping of Course Outcomes with Program Outcomes (POs)COs/POsPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12														
CO1	Н	Н	Н	Н								Μ	L		
CO2	Н	Н	Н	Μ	Μ		Μ					Μ			
CO3	Н	Μ	Н	Μ	Н		Μ		Μ				L		
CO4	Н	Μ		Μ			Μ					Μ	L		
CO5	Н	Μ	Н	Μ	Н				Μ			Μ	L		
H/M/L ind	licates st	rength o	f correla	ation H	I – Higł	n, M – N	ledium	, L – L	OW		·				
Category	Basic Sciences	Engg	Humaniti	es & Social Sciences	Program core	Program Electives	Onen	Electives	Project	Internship s /	Technical Skills	Soft	Skills		
		N													

BES18001 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING 2 0/1 0/0 3

UNIT I ELECTRIC CIRCUITS

Electrical Quantities – Ohms Law – Kirchhoff's Law – Series and Parallel Connections – Current Division and Voltage Division Rule - Source Transformation – Wye (Y) – Delta (Δ) , Delta (Δ) – Wye (Y) Transformation – Rectangular to Polar and Polar to Rectangular.

UNIT II MACHINES & MEASURING INSTRUMENTS

Construction & Principle of Operation of DC motor & DC Generator – EMF equation of Generator – Torque Equation of Motor – Construction & Principle of operation of a Transformer – PMMC – Moving Iron types of meter – Single Phase Induction Type Energy Meter.

UNIT III BASICS OF POWER SYSTEM

Generation of Electric Power (Thermal, Hydro, Wind and Solar) – Transmission & Distribution of Electric Power – Types of Transmission & Distribution Schemes – Representation of Substation.

UNIT IV ELECTRON DEVICES

Passive Circuit Components-Classification of Semiconductor-PN Junction Diode-Zener diode- Construction and Working Principle – Applications--BJT-Types of configuration-JFET.

UNIT V DIGITAL SYSTEM

Number System – Binary, Decimal, Octal, Hexadecimal – Binary Addition Subtraction, Multiplication & Division– Boolean Algebra – Reduction of Boolean Expressions – Logic Gates - De-Morgan's Theorem , Adder – Subractor.

Total No of Hours: 45

TEXT BOOKS:

- 1. D P Kothari, I J Nagrath, Basic Electrical Engineering, Second Edition, , Tata McGraw-Hill Publisher
- 2. A Course In Electrical And Electronic Measurements And Instrumentation, A.K. Sawhney, publisher DHANPAT RAI&CO
- 3. Text Book of Electrical Technology: Volume 3: Transmission, Distribution and Utilization, B.L. Theraja, A.K. Theraja, publisher S.CHAND
- 4. Morris Mano, M. (2002) Digital Logic and Computer Design. Prentice Hall of India
- 5. Millman and Halkias1991, Electronic Devices and Circuits, Tata McGraw Hill,

REFERENCE BOOKS:

1. R.Muthusubramanian, S.Salivahanan, K A Muraleedharan, Basic Electrical, Electronics And Computer Engineering, Second Edition, ,Tata McGraw-Hill publisher.

9

9

9

9

DEPARMENT OF MECHANICAL ENGINEERING

Subject Code: BE	S18002	Su	bject Na	me :BA CIVIL	SIC ME ENGINI	ECHANI EERING	CAI	L Aľ	ND	Ty/ E7	Lb/ FL	L	T/SL	r	P/R	C
		Prer	equisite	e : None						Т	'y	2	0/1		0/0	3
L : Lectu T/L/ETL	re T : T : Theor	utorial S y / Lab /]	Lr : Supe Embedd	ervised l ed Theo	Learning ry and La	P : Proje ab	ct R	R : R0	esearch	n C:	Credi	ts	1			1
OBJEC • • • • • • • • • • • • • • • • • • •	FIVES : Learn H Demons machine To iden Learn b Know th Dams E OUT complet	Basics of strate Ho es tify & sol asics of E he basic p COMES ing the co	Internal w metal we probleming building process of (Cos) : (burse we	Combustion for the combustion of the concrete formula ($3-5$) or the combustion of the concrete formula ($3-5$) or the combustion of the	stion En rmed, jo Engineeri s and con ete, type	gines, po ined, usin ing Mech nstructior s of ma	ower ng n anic asoni	plan nach cs ry Co	its and ining of onstruc	boil opera	ers ations of Ro	Lath bads	ne, Mil , Railv	lling vay:	g and s, Bric	Drilling lges and
CO1	Demor	strate the	workin	g princij	oles of po	ower plan	ts, I	C Er	ngines	and	boilers	s				
CO2	Utilize	tilize the concept of metals forming, joining process and apply in suitable machining process tentify and provide solutions for problems in engineering mechanics														
CO3	Identif	entify and provide solutions for problems in engineering mechanics														
CO4	Identify and provide solutions for problems in engineering mechanics Utilize the concept of Building materials and construction able to perform concrete mix and masonry types															
CO5	Demon	strate ho	w Roads	, Railwa	ays, dam	s, Bridge	s ha	ve b	een co	nstru	icted					
Mapping	g of Cou	rse Outo	omes w	ith Prog	gram Ou	tcomes (POs	s)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PC)7	PO8]	PO9	P	010	PC)11	PO12
CO1	Н					М			Н		Н		Н			н
CO2	H				L	M			M		M		Μ			M
CO3	H	Н			L	L			Μ		М		Μ			М
CO4	H				L	L					Μ		Μ			Μ
CO5	Н				L	L			Μ		М		Μ			М
H/M/L i	ndicates	strengtl	of corr	elation	H – Hi	gh, M – I	Med	lium	, L –]	Low						
Category	Basic Sciences	 ✓ Engg ✓ Sciences 	Humaniti	es & Social Sciences	Program core	Program Electives		Open	Electives	Practical /	Project	Internship	s / Technical	Skills	Soft Skills	

BES18002 BASIC MECHANICAL AND CIVIL ENGINEERING 2 0/1 0/0 3

UNIT I THERMAL ENGINEERING

Classification of internal combustion engine – two stroke, four stroke petrol and diesel engines. Classification of Boilers – Cochran boiler – Locomotive boilers – Power plant classification – Working of Thermal and Nuclear power plant

UNIT II MANUFACTURING PROCESS

Metal forming processes – Rolling, forging, drawing, extrusion and sheet metal operations- fundamentals only. Metal Joining processes – Welding - arc and gas welding, Soldering and Brazing. Casting process – Patterns -Moulding tools - Types of moulding - Preparation of green sand mould -Operation of Cupola furnace.

Basics of metal cutting operations – Working of lathe- parts-Operations performed. Drilling machine – Classification – Radial drilling machine - Twist drill nomenclature

UNIT III MECHANICS

Stresses and Strains – Definition – Relationship – Elastic modulus – Centre of gravity – Moment of Inertia – Problems. (Simple Problems Only).

UNIT IV BUILDING MATERIALS AND CONSTRUCTION

<u>Materials</u>:Brick - Types of Bricks - Test on bricks - Cement – Types, Properties and uses of cement – Steel - Properties and its uses – Ply wood and Plastics.

<u>Construction</u>:Mortar – Ingredients – Uses – Plastering - Types of mortar - Preparation – Uses – Concrete – Types – Grades – Uses – Curing – Introduction to Building Components (foundation to roof) – Masonry – Types of masonry (Bricks & Stones)

UNIT V ROADS, RAILWAYS, BRIDGES & DAMS

Roads – Classification of roads – Components in roads – Railways -Components of permanent way and their function – Bridges – Components of bridges – Dams – Purpose of dams – Types of dams.

Total No of Hours : 45

TEXT BOOKS:

- 1. S. Bhaskar, S. Sellappan, H.N.Sreekanth, (2002), "Basic Engineering" –Hi-Tech Publications
- 2. K. Venugopal, V. Prabhu Raja, (2013-14), "Basic Mechanical Engineering", Anuradha Publications.
- 3. K.V. Natarajan (2000), Basic Civil Engineering, Dhanalakshmi Publishers
- 4. S.C. Sharma(2002), Basic Civil Engineering, Dhanpat Raj Publications

REFERENCE BOOKS:

- 1. PR.SL. Somasundaram, (2002), "Basic Mechanical Engineering" –, Vikas Publications.
- 2. S.C. Rangawala(2002), Building Material and Construction, S. Chand Publisher

9

13

0

7

DEPARTMENT OF ENGINEERING SCIENCES

Subject Code: BE	S18L01	Subje	ect Nam	e :BASI	C ENGI	NEERIN	NG WC	RKSH	OP	Ty Lb ET	/ I / L	_	T/ SL r	P/ R	C
		Prere	quisite :	None						Lt	. ()	0/0	2/0	1
L : Lectu T/L/ETL	re T : Tutor : Theory /]	ial SL Lab / E	r : Supe Embedde	rvised L d Theor	earning H y and Lal	P : Projec b	t R:R	esearch	C: C	redits					
OBJECT • • • • • • • • • •	TVES : Familiarize Identify ba Identify El Display sin Execute a p	the plusic ele ectroni nple fa oroject MES (umbing t ctrical w ic compo- brication independ Cos) : (tools, fit viring an onents ,l n techni dently a 3-5)	tings, car d measur ogic gate ques nd make	rpentry to rement of s and sol a workin	ools, et f electri dering g mode	c. cal quar process l	tities.						
Students	Domonstre	the co	urse wer	e able to)	ala 9- D	anforma	hannoa	and of	Elina	Ching	:	Cutt		
CO1 CO2	Perform th Joints	e proc	ess of fa	brication	n of tray,	$\frac{1}{10000000000000000000000000000000000$	d funne	els, Tee	Halvii	ng Cro	ss, Lap	Joir	nt Ma	ing. irtise	<u>k</u>
CO3	Demonstra	ate vari	ous type	es of wir	ings and	other equ	uipmen	s.							
CO4	Measure fu	undame	ental par	ameters	using the	e electroi	nic instr	uments							
Mapping	g of Course	Outco	omes wi	th Prog	ram Out	comes (l	POs)	_							
COs/POs	5 PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO)9	PO10	P	011	PC)12
CO1	Н	Н	Н	М	М			L		Μ					L
CO2	Н		Н	L	М			L		L					
CO3	Н		М	L				L		L					
CO4	Н	Н	М	L				L		L				-	М
CO5															
H/M/L in	ndicates str	ength	of corre	elation	H – Hig	h, M – N	Aedium	n, L – I	/OW						
Category	Basic Sciences	Engg Sciences	Humaniti	es & Social Sciences	Program core	Program Electives	Open	Electives	Practical / Proiect	Internship s /	Technical Skills		Soft	Skills	
									\checkmark						

BES18L01

BASIC ENGINEERING WORKSHOP 0 0/0 2/0 1

MEP PRACTICE

1. FITTING :

Study of fitting tools and Equipments – Practicing, filing, chipping and cutting – making V-joints,

half round joint, square cutting and dovetail joints.

2. CARPENTRY:

Introduction – Types of wood – Tools – Carpentry processes – Joints – Planning practice – Tee Halving Joint – Cross Lap Joint – Maritse and Tenon Joint – Dovetail Joint

3. SHEET METAL:

Study of tools and equipments – Fabrication of tray, cones and funnels.

CIVIL ENGINEERING PRACTICE

- 1. Study of Surveying and its equipments
- 2. Preparation of plumbing line sketches for water supply and sewage lines
- 3. Basic pipe connection using valves, laps, couplings, unions, reduces and elbows in house hold fittings

ELECTRICAL ENGINEERING PRACTICE

- 1. Measurement of electrical quantities voltage, current, power & power factor in RLC circuit.
- 2. Measurement of energy using single phase energy meter.
- 3. Measurement of resistance to earth of electrical equipment.
- 4. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
- 5. Fluorescent lamp wiring.
- 6. Stair case wiring

ELECTRONIC ENGINEERING PRACTICE

- 1. Study of Electronic components and equipments Resistor, colour coding measurement of AC signal parameter (peak- peak, rms period, frequency) using CRO
- 2. Soldering practice Components Devices and Circuits Using general purpose P

Abdul Kalam CoE for Innovation & Entrepreneurship

Subject Co BES18ET1	de :	Subject ENTRF	Name EPREN	: ORIE EURSH	CNTATIO IIP AND	ON TO PROJE	CT LA	B	Ty / Lb/ ETL	L	T/SL r	P/R	C		
		Prerequ	uisite : I	None					ETL	0	0/0	2/0	1		
L : Lecture '	Г : Tutoria heory / L	al SLr : ab / Emb	Supervi	sed Lea	rning P : and Lab	Project 1	R : Rese	arch	C: Credi	ts	1	1			
• Und	ES: lerstand h	ow entre	nreneur	shin Ed	ucation t	ransforms	s individ	luals i	nto succ	essful	leaders				
• Ider	tify indiv	idual po	tential &	kS have	career di	reams	, 1101 / 10	iuuis ii	no succ	c551u1	leaders.				
• Und	lerstand d	ifference	betwee	en ideas	& opport	tunities									
• Ider	tify comp	onents d	& create	action	plan.										
• Use	brainstor	ming in	a group	to gene	rate ideas	S.									
COURSE (DUTCON	IES (Co	s) : (3 –	- 5)											
CO1	Develop	a Busin	ess plan	n & imp	rove abili	ity to reco	ognize b	usines	s opport	unity					
CO2	Do a sel	a self analysis to build a entrepreneurial career. culate an effective elevator pitch.													
СОЗ	Articula	culate an effective elevator pitch.													
CO4	Analyze	the loca	l marke	t enviro	nment &	demonst	rate the	ability	to find	an att	ractive n	narket			
C05	Identify	the requ	ired ski	lls for e	ntreprene	urship &	develop)							
Mapping of	f Course	Outcom	es with	Progra	m Outco	mes (PO	s)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9	PO10	PO11	PO12		
CO1		Μ	Μ	Н	Μ	Μ	Μ		N	1	Μ	Μ	L		
CO2	Н	Μ		Н	Μ	Н	Μ	H	H	I	Н	Μ	Μ		
CO3		Μ	Μ	Μ		Н		Η	I	I	Н				
CO4		Н	Μ	Μ	Μ	Μ		H	N	1	Μ	Η			
CO5		Μ	Μ	N	1	Μ	Η	L							
H/M/L indi	cates stre	ength of	correla	tion H	– High,	M – Mee	dium, I	L – Lo	W			1			
Category	Basic Sciences	Sciences Engg Sciences Sciences es & Social Sciences Program Program Electives Project Project Project Project Soft Soft Soft Soft Soft Soft Soft Sof													

BES18ET1 ORIENTATION TO ENTREPRENEURSHIP AND PROJECT LAB 0 0/0 2/0 1

UNIT I CHARACTERISTICS OF A SUCCESSFUL ENTREPRENEUR

Introduction to entrepreneurship education – Myths about entrepreneurship – How has entrepreneurship changed the country – Dream it. Do it - Idea planes - Some success stories – Global Legends – Identify your own heroes.

UNITII ENTREPRENEURIAL STYLE

Entrepreneurial styles – Introduction, concept & Different types - Barrier to Communication – Body language speaks louder than words

UNIT III DESIGN THINKING

Introduction to Design thinking – Myth busters – Design thinking Process - Customer profiling – Wowing your customer – Personal selling – concept & process – show & tell concept – Introduction to the concept of Elevator Pitch

UNIT IV RISK MANAGEMENT

Introduction to risk taking & Resilience – Managing risks (Learning from failures, Myth Buster) – Understanding risks through risk takers – Why do I do? – what do I do?

UNIT V PROJECT

How to choose a topic – basic skill sets necessary to take up a project – creating a prototype – Pitch your project – Project presentation.

Total No of Hours : 15

3

3

3

3

3

REFERENCE BOOKS & WEBSITE:

- 1. Encyclopedia of small Business (2011) (e book)
- 2. Oxford Handbook of Entrepreneurship (2014) (ebook)
- 3. lms.learnwise.org

DEPARTMENT OF MATHEMATICS

Subject	t Code :	Subject	Name :	MA	THEMA	TICS –	Ty /]	Lb/	L	T/SLr	P/R	C
BMA	18003	11 Prereat	uisite : N	lone				L	3	1/0	0/0	4
		Trereq		vone			Ту	7	C	1/0	0/0	•
L : Lectu	re T : Tuto	rial SLr :	Supervi	sed I	Learning l	P : Projec	t R:R	esearc	h C: C	redits		1
T/L/ETL	: Theory /	Lab / Em	bedded 7	Theor	ry and La	b						
OBJECT	TIVES :											
• L	Inderstand	the Basic	concept	s in I	ntegratio	n						
• I	dentify the	Basic cor	ncepts in	Mul	tiple integ	grals						
• l	Jse the Bas	sic concep	ts in Ord	linary	y Differer	ntial equa	tions					
• A	Apply the H	Basic conc	epts of A	Analy	tical Geo	metry						
• A	analyze the	e Basic co	ncepts of	f Vec	tor Calcu	ılus						
COURS	E OUTCC	OMES (Co	(3 - 3) = (3 - 3)	- 5)								
CO1	Integrate	given fun	ction by	using	g method	s of integ	gration a	and to	find th	e area un	der curv	e and the
	volume of	f a solid b	y revalua	ation.								
CO2	Evaluate	the multip	le integr	als / a	area /volu	me and t	o chang	e the o	order of	integrati	on.	
<u> </u>	0 1 /1	1'	1.00 (• 1		1, 1	- -	1.00	. 1			
003	Solve the	ordinary	different	ial eq	luation an	id to solv	e Eulers	s diffei	cential e	equation.		
CO4	Find the	equation of	of planes	s, lin	es and sp	here and	to find	the s	hortest	distance	between	to skew
	lines.											
CO5	Find the g	gradient, n	naximum	n dire	ctional de	erivative	and wor	rk don	e by a f	orce and	to verify	Green/
	Stokes/ G	auss diver	gence th	leorei	m				•		2	
Mapping	of Cours	e Outcom	es with	Prog	ram Out	tcomes (I	POs)					
COs/POs	PO1	PO2	PO3	PO	4 PO5	PO6	PO7	PO8	PO	• PO10	PO11	PO12
CO1	Н	Н			М	Μ			M	Μ		Н
CO2	Н	Н			М	Н			Н	Н		М
CO3	Н	Н			Μ	Н			H	Н		Μ
CO4	Н	Н			L	Μ			Μ	Н		Μ
CO5	Н	Н			Μ	Μ			Μ	Н		М
H/M/L in	ndicates st	rength of	' correla	tion	H – Hig	h, M - N	ledium	, L –	Low	•	•	
y		~	ti		-	s	s		1/		ip -	
gor.	c	lces	ani	al nces	ram	ram ive	ive		ica		hsh	s
ate	asic	ngg cier	um & &	oci.	rog	rog lect	per lect		ract roje		nter	oft kill:
C	ΝŇ	ыŇ	н ег	ŇŇ	Ч Х	ЧЩ	ОШ		ቯ		Ir s	N N

BMA18003

UNIT I INTEGRATION

Basic concepts of Integration – Methods of Integration– Integration by substitution – Integration by parts – Definite integrals– Properties of definite integrals – Problems on finding Area and Volume using single integrals (simple problems).

UNIT II MULTIPLE INTEGRALS

Double integral in Cartesian and Polar Co-ordinates – Change of order of integration – Triple integral in Cartesian Co-ordinates – Spherical Polar Co-ordinates – Change of variables (simple problems).

UNIT III ORDINARY DIFFERENTIAL EQUATIONS

First order differential equations – Second and higher order linear differential equations with constant coefficients and with RHS of the form: e^{ax} , x^n , Sin ax, Cos ax, $e^{ax}f(x)$, x f(x) where f(x) is Sin bx or Cos bx – Differential equations with variable coefficients (Euler's form) (simple problems).

UNIT IV THREE DIMENSIONAL ANALYTICAL GEOMETRY

Direction Cosines and Ratios – Equation of a straight line – Angle between two lines – Equation of a plane – Co-planar lines – Shortest distance between skew lines – Sphere – Tangent plane.

UNIT V VECTOR CALCULUS

Scalar and Vector functions – Differentiation – Gradient, Divergence and Curl – Directional derivatives – Irrotational and Solenoidal fields– Line, Surface and Volume integrals – Green's, Stoke's and Gauss divergence theorems (statement only) – Verification.

TEXTBOOKS:

- 1. Kreyszig E., Advanced Engineering Mathematics (10th ed.), John Wiley & Sons, (2011).
- 2. Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).

REFERENCE BOOKS:

- 1. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).
- 2. John Bird, Basic Engineering Mathematics (5th ed.), Elsevier Ltd, (2010).
- 3. P.Kandasamy, K.Thilagavathy and K. Gunavathy, Engineering Mathematics Vol. I (4th Revised ed.), S.Chand& Co., Publishers, New Delhi (2000).
- 4. John Bird, Higher Engineering Mathematics (5th ed.), Elsevier Ltd, (2006).

MATHEMATICS – II

12

3 1/0 0/0 4

12

12

12

12

Total No of Hours: 60

DEPARTMENT OF PHYSICS

Subject	Subje	ect Name	: ENGI	NEERI	NG PI	HYSIC	S –I	I	Т	y /	L	Τ/	P/R	C
Code : BPH18002										.b/		SL		
21110002	Prere	quisite :	None]	Гу	2	0/1	0/0	3
L : Lecture	T: Tuto	rial SLr :	Supervi	sed Lea	arning l	P : Proj	ect]	R : I	Researc	h C:	Credi	its		
T/L/ETL : 7	Theory /	Lab / Em	bedded 7	Theory	and La	b								
OBJECTI	VES :													
• Des	sign, con	duct expe	eriment a	nd anal	yze dat	ta.								
• Dev	velop a S	Scientific	attitude a	t micro	and na	ano sca	le of	ma	terials					
Understand the concepts of Modern Physics														
• Apply the science of materials to Engineering & Technology														
COURSE OUTCOMES (Cos) : (3 – 5)														
Students completing the course were able to														
CO1	Demonstrate skills necessary for conducting research related to content knowledge and													
	labora	laboratory skills.												
CO2	Apply	Apply knowledge and concepts in advanced materials and devices.												
CO3	Acquired Analytical, Mathematical skills for solving engineering problems.													
CO4	Ability to design and conduct experiments as well as function in a multi-disciplinary teams.													
CO5	CO5 Generate analytical thought to interpret results & place them within a broader context													
Mapping o	f Course	e Outcom	es with	Progra	m Out	tcomes	(PO	s)						
COs/POs	PO1	PO2	PO3	PO 4	PO 5	PO 6	PO	7	PO8	PO 9	P 0	01	PO1 1	PO1 2
CO1	Н	Н	Μ	M	M	L				-		Μ	-	L
CO2	Н	H		Μ	Μ									L
CO3	Н	H	Н	Н	Μ							Μ		
CO4	Н	Η	Н	Н	Μ					H		Μ		L
CO5	Н	М	Μ	Μ	Μ	L				Μ		Μ		L
H/M/L indicates strength of correlation H – High, M – Medium, L – Low														
Ŋ	S	Sč	iti	S L	1	n es			es	al /			hip	
ego	iic	3g ence	ctiv	ctic	2		srns	t Ils						
Cat	Bas Scie	Eng Scie	Hur es é	Scii	core	Pro Ele	Pro Elec Ope			Pra			Inte s /	Sof Ski

BPH18002

ENGINEERING PHYSICS - II 2 0/1 0/0 3

UNIT I **QUANTUM PHYSICS**

Quantum free electron theory - deBroglie waves - derivation of deBroglie waves - Davisson and Germer experiment - uncertainty principle - electron microscope - scanning electron microscope - physical significance of wave function - Schrodinger wave equation and its applications - Fermi energy- effective mass - phonons - Fermi function-density of states - origin of bandgap in solids - 1D scattering of electrons in periodic potential.

UNIT II **SEMICONDUCTORS**

Introduction - properties of semiconductors - classification of semiconductor - effect of temperature in semiconductor - hole current - carrier concentration in intrinsic semiconductor (electron and hole density) variation of Fermi energy level and carrier concentration with temperature in an intrinsic semiconductor carrier transport - diffusion - drift - mobility - Hall effect - determination of Hall coefficient and its applications - diodes.

UNIT III LIGHT SEMICONDUCTOR INTERACTION

Types of electronic materials: metals, semiconductors and insulators - qualitative analysis of extrinsic semiconductor & its applications - optical transition in bulk semiconductors: absorption, spontaneous and stimulated emission - exciton and its types - traps and its types - colour centers and its types and importance - luminescence - classifications of luminescence based on excitation - optical loss and gain - Photovoltaic effect - Photovoltaic potential - spectral response - solar energy converters - solar cells.

UNIT IV **OPTO ELECTRONIC DEVICES**

Photodetectors - photoconductors - photodiodes principle, construction, working and characteristics Phototransistors - Laser diodes - LED theory, construction and working - seven segment display, advantages of LED - LCD theory, construction and working.

UNIT V **ENGINEERED MATERIALS**

Classification of engineered materials - nano phase materials - its synthesis and properties - shape memory alloys and its applications - biomaterials - non linear materials - metallic glasses - metamaterials - homo and hetero junction semiconductors - semiconducting materials for optoelectronic devices - quantum wells, wires and dots.

TEXT BOOKS :

- 1. P.K. Palanisamy, Semiconductor Physics and Optoelectronics, Scitech Publications, 2010
- Jyoti Prasad Bandyopadhyay, Semicoductor Devices, S. Chand Publications, 2014 2.
- 3. Charles Kittal, Introduction to Solid State Physics, Wiley Publications, 2012

REFERENCE BOOKS:

- S. Shubhashree, S. Bharathi Devi & S. ChellammalMadhusudanan, Engineering Physics, Sree 1. Lakshmi Publications, 2004
- G. Senthil Kumar, N. Iyandurai, & G. Vijayakumar, Material Science, VRB Publishers, 2017 2.
- R.Murugeshan&Kiruthigasivaprakash, Modern Physics, 14th edition, S. Chand & Co, 2008 3.
- Pallab Bhattacharya, Semiconductor optoelectronic devices, second edition, Pearson Education, 4. 2003
- V Rajendran & A. Marikani, Materials Science, Tata McGraw-Hill, New Delhi, 2004 5.

9

9

9

9

Total No of Hours: 45

DEPARTMENT OF CHEMISTRY

Subje	ct	Sub	ject Name	ENGIN:	IEER	ING CH	EMIST	TRY –	Ty / Lb	0/ L	T/SL	P/R	C		
Code BCH1	: 18002	II							ETL		r				
Prerequisite : None									Ту	2	0/1	0/0	3		
L : Leo T/L/E	cture TL : 7	T : Tuto Гheory /	rial SLr : Lab / Emt	Supervis bedded T	ed Le heory	arning P and Lab	: Projec	t R : Res	search C:	Credits					
OBJE	CTI	VES :													
•	Imp	parting th	ne basic co	oncepts of	f phas	e rule an	d apply	the same	to one ar	nd two c	omponer	nt system	ns.		
•	Intr	oducing	the chem	istry of	engine	eering m	aterials	such as	cement, I	lubricant	ts,abrasiv	ves, retr	actories,		
•	То	impart a	a sound ki	nowledge	e on tl	ne princi	ples of	chemistr	v involvi	ng diffe	rent app	lication-	oriented		
	topics														
•	Introducing salient features of fuels and combustion.														
	To give an overview on modern analytical techniques COURSE OUTCOMES (Cos): (1 5)														
	COUKSE OUTCOMES (Cos) : (1 – 5)														
CO1		U	Understand the science of phase equilibria and apply the phase rule to different systems.												
CO2		G	Gain an overview of Engineering Materials such as Lime, Cement, Lubricants, Abrasives,												
CO3		R	Recognize the essential information about consumer products such as Soaps and												
	Detergents, also gaining the basic knowledge about Explosives and Propellants.														
CO4		D	iscover the	e fuel Ch	emistr	y and Co	ombusti	on proces	ss.						
CO5		In	ferring fev	v importa	ant Ar	alytical	Technic	ues and t	their appli	ications.					
Mapp	ing o	f Cours	e Outcom	es with H	Progra	am Outc	omes (l	POs)							
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO12		
CO1		Н											L		
CO2		Н		Н			L	Н					L		
CO3		Н					H						L		
CO4		Н	Μ	Н	Н			Η					Μ		
CO5		Η				Μ							H		
H/M/L indicates strength of correlation H – High, M – Medium, L – Low															
Category Basic Sciences		Sciences	Engg Sciences	Humaniti es &	Sciences	Program core	Program Electives	Program Electives Open		Practical / Project	Internship s / Technical Skills		Soft Skills		

BCH18002

ENGINEERING CHEMISTRY – II 2 0/1 0/0 3

UNIT I PHASE EQUILIBRIA

Introduction – Definition of terms involved in phase rule. Derivation of Gibbs phase rule – Applications to one component system – water system. Binary system – Eutectic system – Pb – Ag system, Bi – Cd system. Thermal analysis – Cooling curves

UNIT II MATERIAL CHEMISTRY

Cement – Manufacture, Chemistry of setting and hardening. Lubricants – Requirements of good lubricants, Mechanism, Properties of lubricants, Classification – Examples. Abrasives–Classification –Moh's scale-Hard and soft abrasives, Preparation of artificial abrasives (silicon carbide, boron carbide), Applications of abrasives. Refractories – Classification, Properties-Refractoriness, RUL, Porosity, Thermal spalling Alloys Classification of alloys – Purpose of making alloys - Ferrous and non-Ferrous alloys - Heat treatment Nano materials – properties, carbon nano tubes – properties, fabrication – carbon arc method, laser vapourization method

UNIT III APPLIED CHEMISTRY

Soaps and detergents : Soaps – Saponification of oils and fats, manufacture of soaps, classification of soap – soft soap, medicated soap, herbal soap, shaving soap and creams.

Detergents - Anionic detergents - manufacture and applications, Comparison of soaps and detergents.

Rocket propellants and explosives: Rocket propellants – characteristics, solid and liquid propellants – examples. Explosives- Introduction, characteristics, classification, Oxygen balance, preparation, properties and uses of detonators, low explosives and high explosives, Dynamites, Gun cotton, Cordite.

Food adulterants- Common adulterants in different foods – milk and milk products, vegetable oils, and fats, spices and condiments, cereals, pulses, sweetening agents and beverages, Contamination with toxic chemicals – pesticides and insecticides.

UNIT IV FUELS & COMBUSTION

Introduction to Fuels – classification – Calorific value – GCV, LCV. Solid Fuels–Coal-Proximate Analysis, Metallurgical Coke–Manufacture of Metallurgical Coke – Liquid Fuel–Refining of Petrol, Synthetic Petrol–Manufacturing Process–Hydrogenation of Coal, Polymerization, Cracking–Knocking–Octane Number–Leaded Petrol (or) Anti–knocking – Cetane Number–Ignition Lag–Gaseous fuels–CNG–LPG–Water Gas, Producer gas–Biogas-Combustion–Flue Gas analysis–Orsat's method.

UNIT V ANALYTICAL AND CHARACTERIZATION TECHNIQUES

Electron microscopes: Scanning electron microscope & Transmission electron microscope, instrumentation and applications Absorption and Emission Spectrum - Beer - Lambert's law. Visible and UV Spectroscopy – instrumentation – Block diagram - working. IR Spectroscopy – instrumentation - Block diagram – molecular vibrations – stretching and bending – H_2O , CO_2 . –Characterization of some important organic functional groups. Chromatographic techniques – column, thin layer and paper.

Total No of Hours : 45

TEXTBOOKS:

- 1. P.Udhayakala., S.Dinakar&L.Sankar., "Chemistry for Engineers". Charulatha Publications (2018).
- 2. Dr.R.Sivakumar and Dr.N.Sivakumar" Engineering Chemistry" Tata McGraw Hill Publishing Company Ltd, Reprint 2013.
- 3. C. S.Unnithan, T. Jayachandran & P. Udhayakala, "Industrial Chemistry", Sreelakshmi Publications (2009).

REFERENCE BOOKS:

- 1. P.C. Jain & Monika Jain, "Engineering Chemistry", DhanpatRai publishing Co., (Ltd.) (2013).
- 2. B. R. Puri ,L.R. Sharma &M.S.Pathania, "Principles of Physical Chemistry", Vishal publishing co., (2013).

9

8

DEPARTMENT OF ENGINEERING SCIENCES

Subject	Subje	ect Name	: ENVI	RONM	IENTA	L		Ty /	L	T/S	P/R	C		
Code : BES18003	SCIE	NCE(No	n- Cred	ited)				Lb/ ETL		Lr				
	Prere	quisite :	None					Ту	-	-	-	-		
L : Lecture	T : Tuto	rial SLr :	Supervi	sed Le	arning I	P : Proj	ect R	: Researc	h C: C	redits				
T/L/ETL : '	Theory /	Lab / Em	bedded 7	Theory	and La	b								
	VES:	nowlada	of the	Enviro	nment o	nd Fee	ovotor	n & Riad	Vorcity					
• To	acquire k	nowledge	e of the	differer	nt types	of Env	vironm	ental nol	ution					
• To	know me	ore about	Natural	Resour	ces	51 1211 4	ii Oliili	entur pon						
• To	To gain understanding of social issues and the Environment													
 To attain familiarity of human population and Environment 														
COURSE OUTCOMES (Cos) : (3 – 5)														
Students completing the course were able to														
CO1 To known about Environment and Ecosystem & Biodiversity														
		To clearly comprehend air water Soil Marine Noise Thermal and Nuclear Pollutions and												
02		To clearly comprehend air, water, Soil, Marine, Noise, Thermal and Nuclear Pollutions and Solid Waste management and identify the importance of natural resources like forest												
	water	Solid Waste management and identify the importance of natural resources like forest,												
CO3	To discover water conservation and watershed management													
CO4 To identify its problems and songering alignets shares placel merring with the problems														
004	To identify its problems and concerns climate change, global warming, acid rain, ozone													
C05	To ar	nloin form	titu malf	no pro	aromm	n and	rola a	finforma	ion too	hnology	in humar			
	10 ex	piani iam	ny wella	are prog	gramme	es and	tote o	1 morma	lion tec	motogy	in numar	L		
Manning			os with	Drogre	m Out	comor)						
COs/POs	PO1	PO2	PO3	PO	PO	PO	PO7	, PO8	PO	PO1	PO1	PO1		
	- V -		1.00	4	5	6		- 00	9	0	1	2		
CO1						Μ	Η	Μ				Μ		
CO2						Μ	H			Μ		Μ		
CO3						M	H	M		2.4		M		
CO4						M	H TT	M		М				
H/M/L ind	icates st	rength of	corrolo	tion I	I _ Hia	h M	_ п Modi	ium T	Low	IVI		IVI		
11/101/12 1110		engti of			ı – mg		· Ivieu	uIII, L –						
		-	ies								lips /	lls		
gory) Ices	Ices	anit cial	lces	ram	am		ives	ical		nshi nica	Skil		
ates	asic cien	ngg cien	[um: So	cier	rogi ore	rogi	rogr lecti		ract		ltern echi kills	oft		
U	N B	ыŇ	H &	Ň	പ്ര	ц р	1	ОЩ	d d		H F S	Ň		
1		\checkmark												

BES18003

ENVIRONMENTAL SCIENCE

0 0 0 0

UNIT I ENVIRONMENT AND ECOSYSTEM

Definition, Scope and Importance of environment – need for public awareness – concept, structure and function of an ecosystem - producers, consumers and decomposers – energy flow in the ecosystem. Biodiversity at national and local levels – India

UNIT II ENVIRONMENT POLLUTION

Definition – causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Nuclear hazards (g) E-Wastes and causes, effects and control measures

UNIT III NATURAL RESOURCES

Forest resources: Use and over-exploitation, deforestation. Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems. Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

From unsustainable to sustainable development – urban problems related to energy – water conservation, rain water harvesting, watershed management – resettlement and rehabilitation of people; its problems and concerns climate change, global warming, acid rain, ozone layer depletion, nuclear accidents ,central and state pollution control boards- Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

Population growth, variation among nations – population explosion, environment and human health – human rights – value education – HIV/AIDS – women and child welfare – role of information technology in environment and human health

TEXT BOOKS:

- 1. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education (2004).
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGrawHill, NewDelhi, (2006).

REFERENCE BOOKS:

- 1. Vairamani, S. and Dr. K. Sankaran. Elements of Environmental and Health Science. Karaikudi: KPSV Publications, 5th Edition, July, 2013.
- 2. If this arudeen, Etal, **Environmental Studies**, Sooraj Publications, 2005.
- 3. R.Murugesan, **Environmental Studies**, Millennium Publishers and Distributors, 2nd Edition, July, 2009.

DEPARTMENT OF ENGLISH

Subject Code:		Su	bject Na	me :CO	OMMU	NICATI	ON LAB		Ty / Lł ETL	0/ L	T/S Lr	P/R	С
BEN18H	ET1	Pr	ereauisi	te : Nor	e				ETL	1	0/0	2/0	1
L : Lectu	ıre T : 7	 Futo	rial SLr	: Superv	vised Le	arning P	: Project	R : Re	search	C: Credits		_, .	_
T/L/ETI	: Theo	ry /	Lab / En	nbedded	Theory	and Lab							
OBJEC	TIVES	:											
The stud	lent sho	uld	be able to	С									
• 1	Use app	orop	riate voca	abulary	and stru	cture for	effective	interpe	ersonal a	nd acaden	nic comm	nunication	l.
•]	• Interpret charts, diagrams, advertisements, etc												
•]	Participate in group discussions and present projects effectively.												
•]	Present projects and ideas effectively												
• .	Attend interviews												
COURSE OUTCOMES (Cos) : (3 – 5)													
Student	Students completing the course were able to												
CO1	Use appropriate vocabulary and structure for effective interpersonal and academic communication												
CO2	Interpret charts, diagrams, advertisements, etc.												
CO3	B Participate in group discussions and present projects effectively												
CO4	Present projects and ideas effectively												
CO5	Atten	d int	terviews										
Mappin	g of Co	urs	e Outcor	nes witl	ı Progra	am Outo	comes (PO	Os)					
COs/PO	s PO	1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1											Н		
CO2											Н		
CO3											Н		
CO4											Н		
CO5											Н		
H/M/L i	indicate	es st	rength o	of correl	ation I	H – Higł	n, M – M	edium,	L – L0	W	-		
Category	Basic Sciences Engg Sciences Sciences Program Program Electives Project Project Project Technical		l ecunical Skills Soft	Skills									

BET18ET1	COMMUNICATION LAB	1	0/0	2/0	1
UNIT I Listening and Speaking- Infor	mal and Formal Contexts				6
UNIT II Interpretation of charts / Diag	rams – Group Discussion				6
UNIT III Compeering -Anchoring -Gro	up Discussion				6
UNIT IV Formal Presentation -Power p	oint presentation of charts/ Diagrams				8
UNIT V Interview					4

SUGGESTED READINGS:

(i) Practical English Usage. Michael Swan. OUP. 1995.
(ii) Remedial English Grammar. F.T. Wood. Macmillan.2007
(iii) Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
(iv) Communication Skills. Sanjay Kumar and Pushp Lata. Oxford University Press. 2011.
(v) Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press
(vi) Pronunciation in Use ,Mark Hancock. Cambridge University Press. 2012

DEPARTMENT OF MECHANICAL ENGINEERING

SubjectC BES18E	Code: Г2	Subjec	et Name	: BASI GRA	C ENGI PHICS	NEERIN	١G	T I E	Ty / Lb/ CTL	L	T/SL r	P/R	-	С
		Prereq	uisite :	None				E	TL	1	0/0	2/0		1
L : Lectu T/L/ETL	re T : Tuto : Theory /	orial SLr / Lab / En	: Super- nbedded	vised Le Theory	arning P and Lab	: Project	R :	Res	earch	C: Cred	its		1	
OBJECT • L • d • E • T p • k • L COURSI Students CO1 CO2	 Learn to know what kind of pencils to be used to sketch lines, numbers, Letters and Dimensioning in drawing sheet. Draw Projection of points, line, planes and solids using Drafters To identify the angle of projection and development of surfaces, isometric projection and Orthographic projection Know the basics of elevation and plan of building. Learn the basics of Drafting using AutoCAD Software COURSE OUTCOMES (Cos) : (3 – 5) Students completing the course were able to CO1 Utilize the concept of Engineering Graphics Techniques to draft letters, Numbers, Dimensioning in Indian Standards CO2 Demonstrate the drafting practice visualization and projection skills useful for conveying ideas in engineering applications. 													
CO3 Identify basic sketching techniques of engineering equipments														
CO4	CO4 Demonstrate the projections of Points, Lines, Planes and Solids.													
CO5 Manning	of Cours		nes wit	h Progre	am Oute	s and util		Auto	CAD	Soltwal	е.			
COs/POs	$rac{1}{1}$ PO1	PO2	PO3	PO4	PO5	PO6	P ()7	PO8	PO9	PO1) PO	11	PO12
0001200			2.00		1.00	200			2 00	2.07				
CO1	Н	Н	Н	М	Μ	М				Н	Н			Н
CO2	Н	Н	Н	Μ	Μ	Μ				Н	Н			Н
CO3	Н	Н	Н	L		Μ				Μ	Μ			Μ
CO4	Н	Н	Μ	Μ		Н			Μ	Н	H			H
CO5	Н	Η	Η	Μ	Н	L			Μ	Н	H			H
H/M/L indicates strength of correlation H – High, M – Medium, L – Low														
Category	Basic Sciences Engg Sciences Sciences Social Social Social Social Social Social Social Social Social Social Social Social Sciences Engg			Open Electives		Practical / Project	Internship	Internship s / Technical Skills		Skills				

BES18ET2 BASIC ENGINEERING GRAPHICS 1 0/0 2/0 2

CONCEPTS AND CONVENTIONS (Not for examination)

Introduction to drawing, importance and areas of applications – BIS standards – IS: 10711 - 2001: Technical products Documentation – Size and layout of drawing sheets – IS 9606 – 2001: Technical products Documentation – Lettering – IS 10714 & SP 46 – 2003: Dimensioning of Technical Drawings – IS : 15021 - 2001: Technical drawings – Projections Methods – drawing Instruments, Lettering Practice – Line types and dimensioning – Border lines, lines title blocks Construction of polygons – conic sections – Ellipse, Parabola, Hyperbola and cyloids.

UNIT I PROJECTION OF POINTS, LINES AND PLANE SURFACES 6

Projection of points and straight lines located in the first quadrant – Determination of true lengths and true inclinations – projection of polygonal surface and circular lamina in simple position only.

UNIT II PROJECTION OF SOLIDS

Projection of simple solids like prism, pyramid, cylinder and cone in simple position Sectioning of above solids in simple vertical position by cutting plane inclined to one Reference Books plane and perpendicular to the other.

UNIT III DEVELOPMMENT OF SURFACES AND ISOMETRIC PROJECTION 6

Development of lateral surfaces of simple and truncated solids – prisms, pyramids, cylinders, and cones. Principles of isometric projection – isometric scale – isometric projections of simple solids, like prisms pyramids, cylinders and cones.

UNIT IV ORTHOGRAPHICS PROJECTIONS

Orthographic projection of simple machine parts – missing views BUILDING DRAWING

Building components – front, Top and sectional view of a security shed.

UNIT V COMPUTER AIDED DRAFTING

Introduction to CAD – Advantages of CAD – Practice of basic commands – Creation of simple components drawing using CAD software.

Note:First angle projection to be followed.

TEXT BOOKS:

- 1. Bhatt, N.D. and Panchal, V.M. (2014) Engineering Drawing Charotar Publishing House
- 2. Gopalakrishnan, K.R. (2014) Engineering Drawing (Vol.I& II Combined) Subhas Stores, Bangalore.

Total No of Hours :30

6

6

Subject(BES18L	Code: 02	Subject	Name :	INTE PHYS SCIE	CGRATH SICAL NCE LA	ED AB	Ty / Ll ETL	b/]		r/SL r	P/R		С
		Prerequ	isite : N	lone			Lb	(0	0/0	2/0		1
L : Lectu T/L/ETL	re T : Tutor : Theory / I	ial SLr : S Lab / Embe	upervise edded Tl	ed Lean neory a	ning P : nd Lab	Project R	R : Resea	rch C:	Credi	ts		•	
OBJECT	 Demonstrate the ability to make physical measurements & understand the limits of precision in measurements. Display the ability to measure properties of variety of electrical, mechanical, optical systems. To help learners measure conductivity and EMF using electrical equipment. To understand the analytical skills through chromatography &viscometry 												
•]	 To understand the analytical skills through chromatography &viscometry To familiarize the concepts of cheminformatics 												
COURSE OUTCOMES (Cos) : (3 – 5) Students completing the course were able to													
CO1	O1 Recognize the correctness and precision in the results of measurements.												
CO2	Construct and compare the properties of variety of mechanical, optical, electrical and electronic												
	systems.												
CO3	CO3 Familiarizing the titration methods using conductometry & potentiometry												
CO4	Developing	g the Rese	arch spii	rit throu	igh the k	nowledge	e of Chei	minfori	natics	& Analy	tical sl	kills.	
Mapping	g of Course	Outcome	s with P	rogran	n Outco	mes (POs	5)						
COs/PO	s PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO	011	PO12
CO1	Н	Н	L	Н	Н								
CO2	Н	Н	М	Н	Н					Μ			
CO3	Н	Н	М	Н	Н				Н				
CO4	Н	Н	Н	Н	Н				H		H	I	Μ
H/M/L indicates strength of correlation H – High, M – Medium, L – Low													
Category	Basic Sciences Engg Sciences Sciences Program core Program		Program Electives	Open Electives Practical /		Project	Internship s /	Internship s / Technical Skille		SILLAC			

BES18L02

INTEGRATED PHYSICAL SCIENCE LAB 0 0/0 2/0 1

LIST OF EXPERIMENTS

- 1. Determination of Coefficient of Viscosity of a given liquid by Poiseuille's method.
- 2. Particle Size determination using Laser Source.
- 3. Determination of Numerical Aperture of an Optical Fiber.
- 4. Spectrometer- Refractive Index/Dispersive power/i-d curve.
- 5. Potentiometer Resistance of a wire.
- 6. Transistor Characteristics Input Resistance, Output Resistance and Gain .
- 7. Studies on acid-base conductometric titration.
- 8. Determination of redox potentials using potentiometry.
- 9. Determination of R_fvalues of various components using thin layer chromatography.
- 10. Viscosity studies using Digital capillary viscometer.
- 11. Compute the structures of the given polymers, drugs, biomolecules usingChem Draw.
- 12. Studies on potential energy surface of the given molecules.
- 13. Estimate NMR spectra from a Chem Draw structure.

DEPARTMENT OF COMPUTER SCIENCE

Subject BES18E	Code : T3	Subjec	et Name	C PR	ROGRA	MMING	AND L		Гу / Lb/ ETL	L	T/S Lr	P/R	С
		Prereq	uisite :	None				J	ETL	1	0/0	2/0	2
L : Lectu T/L/ETL	re T : Tu : Theory	torial SI / Lab / 1	Lr : Supe Embedde	ervised I ed Theo	Learning ry and L	g P : Proje ab	ct R : R	esearch	C: Cre	edits		-	
OBJECT	FIVES : Dutline th	e hasics	ofCla	nguage									
•	Apply fur	damenta	ol e La	orogram	ming.								
• F	Produce a	nd prese	nt activi	ties asso	bciated w	with the co	ourse.						
COURS	E OUTC	OMES	(Cos) : ((3-5)									
Students	completi	ng the co	ourse we	ere able t	to								
CO1	Acquire	knowled	dge how	to write	e and exe	ecute c pr	ograms						
CO2	Underst	and the f	fundame	ntal exp	ression a	and staten	nents of	C Langi	lage.				
CO3	Work w	ith array	s, functi	ons, poi	nters, str	ructures, S	Strings a	nd Files	in C.				
CO4	Identify	and pro-	vide solu	utions fo	or engine	ering pro	blems in	C prog	ammir	ng			
Mapping	g of Cour	se Outc	omes w	ith Prog	gram Ou	itcomes ((POs)						
COs/PO	s PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9)	PO10	PO11	PO12
CO1	Н	Н			Μ	М		Н	Μ				Н
CO2	Н	Μ			Н	М		Μ	Н				М
CO3	Н			Н		М		Μ	H				М
CO4	Н			Μ		М		Н	Μ				М
H/M/L i	ndicates	strength	of corr	elation	H – Hi	i gh, M − 1	Medium	n, L–L	ow	·			
Category	Basic Sciences	Engg Sciences	Humaniti	es & Social Sciences	Program core	Program Electives	Open	Electives	Practical / Project	;	Internship s / Technical	Skills Soft	Skills

C PROGRAMMING AND LAB

UNIT I **INTRODUCTION**

BES18ET3

Fundamentals, C Character set, Identifiers and Keywords, Data Types, Variables and Constants, Structure of a C Program, Executing a C Program.

EXPRESSION AND STATEMENT UNIT II

Operators, Types-Complex and Imaginary, Looping Statement-For, While, Do, Break, continue, Decision Statement-If, If else, Nested if, Switching Statement, Conditional Operator.

ARRAYS AND FUNCTIONS UNIT III

Defining an Array, Using Array elements as counters, Generate Fibonacci number, Generate Prime Numbers, Initializing Arrays, Multidimensional Arrays, Defining a Function, Function call -types of Function calls -Function pass by value -Function pass by Reference Books, Write a Program in Recursive Function.

UNIT IV STRUCTURES AND POINTERS

Working with Structures -Introduction -Syntax of structures -Declaration and initialization -Declaration of structure variable - Accessing structure variables, Understanding Pointers - Introduction - Syntax of Pointer.

STRINGS AND FILE HANDLING UNIT V

Strings -Syntax for declaring a string -Syntax for initializing a string -To read a string from keyboard, Files in C -File handling functions -Opening a File closing a file --example: fopen, fclose -Reading data from a File- Problem solving in C

- **1.** www.spoken-tutorials.org
- 2. <u>http://www.learn-c.org/</u>

REFERENCE BOOKS:

- 1. Stephen G. Kochen" Programming in C- A complete introduction to the C Programming Language. Third Edition, Sams Publishing -2004
- 2. Ajay Mital, "Programming in C: A Practical Approach", Pearson Publication-2010

LIST OF PROGRAMS

- 1. Write a program to check 'a' is greater than 'b' or less than 'b' Hint: use if statement.
- 2. Write another program to check which value is greater 'a', 'b' or 'c'. Hint: use else-if statement. (Take values of a, b, c as user inputs)
- 3. Write a Program to find the sum of the series : $x + X^3/3! + X^5/5! + \dots X^n/n!$
- 4. Write a C Program to solve a Quadratic Equation by taking input from Keyboard
- 5. Write a C Program to arrange 20 numbers in ascending and descending Order. Input the Numbers from Keyboard
- 6. Write a C Program to Multiply a 3 x 3 Matrix with input of members from Keyboard
- 7. Write a program that takes marks of three students as input. Compare the marks to see which student has scored the highest. Check also if two or more students have scored equal marks.
- 8. Write a program to display records of an employee. Like name, address, designation, salary.
- 9. Write a C program, declare a variable and a pointer. Store the address of the variable in the pointer. Print the value of the pointer.
- 10. Write a C program to concatenate String 'best' and String 'bus'. Hint: strcat(char str1, char str2);
- 11. Explore the other functions in string library.
- 12. Write a program to create a file TEST. Write your name and address in the file TEST. Then display it on the console using C program.

Total No of Hours: 30

6

6

6

6

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Subject Code: BEE18001	Su AN	ıbjec NAL	et Namo YSIS	e: CIR	RCUL	ГТН	EORY	AND	NETW	ORK	T /L/ ETL	L	T / S.Lr	P/ R	C		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Pr	ereq	uisite:	Basic	Elect	rical	& Ele	ctronic	s Engg		Т	3	1/0	0/0	4		
T/L/ETL : Theory/Lab/Embedded Theory and Lab OBJECTIVE: • To understand the basics of Electric Circuits • To impart knowledge on network theorems • To impart knowledge on the concepts of transient response of circuits • To understand Network graphs, cut sets and Duality of the network • To Understand and solving the two port networks, various types of filters and Attenuators COURSE OUTCOMES (Cos): (3-5) CO1 Analyze the Electric circuits CO2 Apply Circuit theorems in analysing problems in power system CO3 Knowledge about Coupled circuits and Transient Response of Circuits CO4 Familiarization of Network graphs CO5 Understand and solving the two port networks Mapping of Course Outcomes with Program Outcomes (POs) CO4 H CO3 M CO4 H CO3 M CO4 H CO5 Understand and solving the two port networks Mapping of Course Outcomes with Program Outcomes (POs) CO4 H H M CO3 M L L M H CO4 L M	L : Lecture T :	Tutori	al	SLr : S	upervi	sed L	earni	ng P:	Project	R : Re	search	C: Cred	its					
OBJECTIVE: • To understand the basics of Electric Circuits • To impart knowledge on network theorems • To impart knowledge on the concepts of transient response of circuits • To understand Network graphs, cut sets and Duality of the network • To Understand and solving the two port networks, various types of filters and Attenuators COURSE OUTCOMES (Cos): (3-5) CO1 Analyze the Electric circuits CO2 Apply Circuit theorems in analysing problems in power system CO3 Knowledge about Coupled circuits and Transient Response of Circuits CO4 Familiarization of Network graphs CO5 Understand and solving the two port networks Mapping of Course Outcomes with Program Outcomes (POs) CO3 M CO4 H H M CO3 M L M M H CO3 M L M M H M CO4 FO3 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO4 H H M <td>T/L/ETL : The</td> <td>ory/La</td> <td>ıb/Eı</td> <td>nbedde</td> <td>d Theo</td> <td>ory an</td> <td>d La</td> <td>b</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	T/L/ETL : The	ory/La	ıb/Eı	nbedde	d Theo	ory an	d La	b										
 To understand the basics of Electric Circuits To impart knowledge on network theorems To understand Network graphs, cut sets and Duality of the network To Understand and solving the two port networks, various types of filters and Attenuators COURSE OUTCOMES (Cos): 63-5 CO1 Analyze the Electric circuits CO2 Apply Circuit theorems in analysing problems in power system CO3 Knowledge about Coupled circuits and Transient Response of Circuits CO4 Familiarization of Network graphs CO5 Understand and solving the two port networks Mapping of Course Outcomes with Program Outcomes (POs) CO5/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 H H H H M M L L M H M H M CO2 M L L M M M L L M H H H L CO4 L M L M M L L M M H L M H H L CO4 L M L M L M M M L H M H H CO3 M L M L M M M H L M H H L CO4 H H H H H H H M M H L M H H L CO4 H H H H H H M M H L M H H L CO4 H H H H H H M M H M L M H H L CO4 H H H H H H M M M M L M H H L CO4 H H H H H H M M M M H L M H H L CO5 H H H H H H M M M M M CO3 M M L M L H M H M L M H H L CO4 H H H H H H M M M M M CO3 H H H H H H M M M M M CO3 H M M M M M M M CO3 H H H H H H M M M M M CO3 H M M M M M M M M CO3 H M M M M M M M M CO4 H H L M M M M M M CO4 H H H H H M M M M M CO5 J J J J J J J J J J J J J J J J J J J	OBJECTIVE:	1		1.1.1		6 121		····,										
 To impart knowledge on her work theorems To impart knowledge on the concepts of transient response of circuits To understand Network graphs, cut sets and Duality of the network To Understand and solving the two port networks, various types of filters and Attenuators COURSE OUTCOMES (Cos): (3-5) CO1 Analyze the Electric circuits CO2 Apply Circuit theorems in analysing problems in power system CO3 Knowledge about Coupled circuits and Transient Response of Circuits CO4 Familiarization of Network graphs CO5 Understand and solving the two port networks Mapping of Course Outcomes with Program Outcomes (POs) COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 H H H M M L L M M H M H M CO2 M L L M M M L L M M H M H M CO4 L M L M M M L H M M H L CO4 L M L M M M M L H M M H CO5 H H H H M M M M L M M M H L CO5 H H H H H M M M M M L M M M H CO5 H H H H H H M M M M M M CO3 M M L M M M M M M M M CO3 M M L M M M M M M M M CO4 H L M M M M M M M M CO5 M M M M M M M M M CO3 M M L M M M M M M M M CO4 H H H H H M M M M M M M CO5 M M M M M M M M CO3 M M L M M M M M M CO4 H L M M M M M M CO5 M M M M M M M CO3 M M L M M M M M M CO3 M M H M M M M M CO4 H H H M M M M M M CO5 M M M M M M M M CO5 M M M M M M M M CO5 M M M H L M M M M M CO5 M M M M M M M CO5 M M M H L M M M M CO5 M M M M M M M CO5 M M M H L M M M M CO5 M M M H L M M M M CO5 M M M M M M <	• 10	under	stan	d the ba	ISICS O	f Elec	tric (Ircuits										
 To impart knowledge on the concepts of transient response of circuits To understand and solving the two port networks, various types of filters and Attenuators COURSE OUTCOMES (Cos): (3-5) CO1 Analyze the Electric circuits CO2 Apply Circuit theorems in analysing problems in power system CO3 Knowledge about Coupled circuits and Transient Response of Circuits CO4 Familiarization of Network graphs CO5 Understand and solving the two port networks Mapping of Course Outcomes with Program Outcomes (POS) COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO5 Understand and solving the two port networks Mapping of Course Outcomes with Program Outcomes (POS) COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 H H H H M M L L M M H M H M CO2 M L L M M M L L M M H H M H L CO4 L M L M L M M M L H M H H L CO4 L M L M L M M M H L M M H L CO5 H H H H H M M M M L M M H L CO5 PSO1 PSO1 PSO2 PSO3 PSO4 PSO5 CO1 H H H H M M M M M M CO2 M M M M M M M CO2 M M M M M M M CO3 H M M M M M M CO4 H L M M M M M M CO4 H H H M M M M M M CO5 M M M M M M M CO4 H H H M M M M M M CO4 H H H M M M M M M CO4 H H L M M M M M M CO4 H H L M M M M M CO5 M M M H L M M M H CO4 H H L M M M M M CO5 M M M H L M M M H CO4 H H L M M M M M CO5 M M M H L M M M M CO4 H H L M M M M M M CO5 M M M H L M M M H CO4 H H L M M M M M CO5 M M M H L M M M M CO5 M M M H L M M M H CO5 M M M H L M M M H CO5 M M M H L M M M H CO5 M M M H L M M M H CO4 H H L M M M H CO5 M M M H L M M M	• 10 • To	impar	t Kn 1 -	owledge	e on no	etworl	k the	orems			fi							
 To Understand network graphs, cut sets and Duanty of the network. To Understand and solving the two port networks, various types of filters and Attenuators COURSE OUTCOMES (Cos): (3-5) CO1 Analyze the Electric circuits CO2 Apply Circuit theorems in analysing problems in power system CO3 Knowledge about Coupled circuits and Transient Response of Circuits CO4 Familiarization of Network graphs CO5 Understand and solving the two port networks Mapping of Course Outcomes with Program Outcomes (POS) CO5/POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 H H H H M M L L M H M H M CO2 M L L M M M L L M M H H H L CO4 L M L M M M M H L M M H L CO5 H H H H H M M M M H L M M H L CO5 H H H H H M M M M H L M M H L CO5 H H H H H M M M M M H L CO5 H H H H H M M M M M H L CO5 H H H H H H M M M M M H CO5 M M M M M M M M H CO3 H M M M M M M M M CO3 H M M M H L H M M M M CO3 H M M M M M M M M CO3 H M M M M M M M M CO4 H H H H H M M M M M M M CO5 M M M M M M M M M CO4 H H H H H M M M M M M M CO5 M M M M M M M M M M CO4 H H H H M M M M M M M CO5 M M M M M M M M M CO5 M M M M M M M M M CO4 H H L M M M M M M CO5 M M M H H L M M M M M M H L M M M M M M H M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M	• 10 • To	impar	t Kn	d Notw	e on tr	ie con	cepts	or trai	Duality	esponse	e of circ							
To To biderstand and solving the two port networks, various types of inters and Auendators COURSE OUTCOMES (Cos): (3-5) CO3 Knowledge about Coupled circuits and Transient Response of Circuits CO4 Familiarization of Network graphs CO5 Understand and solving the two port networks Mapping of Course Outcomes with Program Outcomes (POs) COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 COs/POS PO1 PO2 PO3 PO4 PO5 <	• 10 • To	Under	stan	d netwo	ork gra	apris, (tho tr	cut se	ort notu	Duanty	or the		K f filtora i	and A	ttonuot	ore			
COLONAL Cols, Cols, Colspan="2">Colspan="2"Cols			AFS	(\mathbf{Cos})	(3-5)	g une t	wop		voiks, v	anous	types 0	1 mers	anu A	uenuai	015			
Think just the December of Currents CO2 Apply Circuit theorems in analysing problems in power system CO3 Knowledge about Coupled circuits and Transient Response of Circuits CO4 Familiarization of Network graphs CO5 Understand and solving the two port networks Mapping of Course Outcomes with Program Outcomes (POs) COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 COs/POS PO1 L L M M L M M H H L M M H L L M M H L L CO4 L M M <	COURSE OU		nalvz	LS (Cos): (3-5) lyze the Electric circuits ly Circuit theorems in analysing problems in power system														
Sppi Circuit dicordins in anarysing problems in power system CO3 Knowledge about Coupled circuits and Transient Response of Circuits CO4 Familiarization of Network graphs CO5 Understand and solving the two port networks Mapping of Course Outcomes with Program Outcomes (POS) COs/POS PO1 PO1 PO1 PO1 PO11 PO12 CO5 Understand and solving the two port networks Mapping of Course Outcomes with Program Outcomes (POS) COs/POS PO1 PO11 PO12 CO3 M L L CO3 CO3 M L L M M L L CO3 PO4 PO5 C CO3 PSO1 PSO2 PSO3 PSO4 PSO5 CO3 M M<	CO^2	Δr	mlv	lyze the Electric circuits oly Circuit theorems in analysing problems in power system owledge about Coupled circuits and Transient Response of Circuits														
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	02	А	ргу	ly Circuit theorems in analysing problems in power system wledge about Coupled circuits and Transient Response of Circuits														
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CO3	Kr	nowl	wledge about Coupled circuits and Transient Response of Circuits illiarization of Network graphs														
CO5Understand and solving the two port networksMapping of Course Outcomes with Program Outcomes (POs)COs/POsPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12COs/POsPO1PO1PO11PO12CO1HHMLLMCO2MLLMMHLLCO4LLMLLMMLLMCO2MLLMMLLMCO2MLLMMMMCO3HHHMMMCO3HMMMMCO3F <t< td=""><td>CO4</td><td>Fa</td><td>milia</td><td colspan="14">wledge about Coupled circuits and Transient Response of Circuits iliarization of Network graphs</td></t<>	CO4	Fa	milia	wledge about Coupled circuits and Transient Response of Circuits iliarization of Network graphs														
Mapping of Course Outcomes with Program Outcomes (POS)COs/POSPO1PO2PO3PO4PO6PO7PO8PO9PO10PO11PO12COs/POSPO10PO11PO12CO1HHMLLMCO3MLMMMCO4LMMMMMCO4HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHMMMMMMMMMMMM </td <td>CO5</td> <td>Un</td> <td>nders</td> <td colspan="14">hiliarization of Network graphs lerstand and solving the two port networks</td>	CO5	Un	nders	hiliarization of Network graphs lerstand and solving the two port networks														
COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 COs/POs M L L M M L L M H M M H M M H M	Mapping of C	ourse	Out	comes	with P	Progra	m O	outcom	es (PO	s)								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	COs/POs	PC)1	PO2	PO3	PO)4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12		
CO2 M L L M M L L M H M H M H M H M H L Co3 M L M M L L M M L H M H M H L M M H H L M M H L M H H L M M H H L M M H L M M H L M M H L M M H L M M H L Co3 PSO5 Social Social Social Sciences Social Sciences Social Sciences M <td>CO1</td> <td>I</td> <td>H</td> <td>H</td> <td>Н</td> <td>N</td> <td>Л</td> <td>Μ</td> <td>L</td> <td>L</td> <td>Μ</td> <td>Н</td> <td>Μ</td> <td>I</td> <td>I</td> <td>Μ</td>	CO1	I	H	H	Н	N	Л	Μ	L	L	Μ	Н	Μ	I	I	Μ		
CO3 M L M L L M M L H M H L CO4 L M L M M M M M L M M H L Co4 CO4 L M H H H H M M L M M H L CO5 H H H H M M M L M M H L CO5 H H H H M M M M M M M L Co5 CO1 H H H M	CO2	N	M	L	L	N	Л	Μ	L	L	Μ	Н	Μ	I	I	Μ		
CO4 L M L M M M H L M H H L M H H L M M H L M M H L M M H L M M H H L M M H L M M H L Cos PSO2 PSO3 PSO4 PSO5 So Cos PSO3 PSO4 PSO5 So Cos M M H L M	CO3	N	M	L	Μ	I	L	L	Μ	Μ	L	Н	Μ	I	I	L		
CO5 H H H H H M H M L M M H L COs / PSOs PSO1 PSO2 PSO3 PSO4 PSO5 Image: Cos / PSOs PSO5 Image: Cos / PSOs PSO5 Image: Cos / PSOs PSO2 PSO3 PSO4 PSO5 Image: Cos / PSOs	CO4	I	Ĺ	Μ	L	N	Л	Μ	Μ	Н	L	Μ	Н	I	I	L		
COs / PSOs PSO1 PSO2 PSO3 PSO4 PSO5 C01 H H M M M M C02 M M M M M M C03 H M L H L Co C04 H L M M H Co C05 M M H L M H H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low Social Sciences Social Sciences Social Sciences Vill Social Sciences Social Sciences Social Sciences Social Sciences Social Sciences V/M/L Indicates Sciences Social Sciences Social Sciences Social Sciences Social Sciences Vill Social Sciences Social Sciences Social Sciences Social Sciences Social Sciences Social Sciences Vill Social Sciences Social Sciences Social Sciences Social Sciences Social Sciences Social Sciences Social Sciences Social Sciences Social Sciences Social Sci	CO5	I	H	Н	Н	I	I	Μ	Н	Μ	L	Μ	Μ	I	I	L		
CO1 H H M M M M CO2 M M M M M M M CO3 H M L H L L L Co3 CO4 H L M M H L M H L Co5 M M H L M H L M M H/M/L indicates Strength of Correlation H-High, M- Medium, L-Low Violation H-High, N- Medium, L-Low M M Volt Skill Solit Skills Junctical	COs / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	05					
CO2 M M M M M M M C03 H M L H L H L 0 C04 H L M M H L M H C04 H L M M H L M M C05 M M H L M M H L M H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low and and and H L H Value Soft Skill	CO1		H	[Н		N	1	N	Л	Ι	Ν					
CO3 H M L H L O C04 H L M M H O </td <td>CO2</td> <td></td> <td>N</td> <td>1</td> <td></td> <td>Μ</td> <td></td> <td>N</td> <td>1</td> <td>Ν</td> <td>A</td> <td>Ι</td> <td>N</td> <td></td> <td></td> <td></td>	CO2		N	1		Μ		N	1	Ν	A	Ι	N					
CO4 H L M M H CO5 M/M/L indicates Strength of Correlation H- High, M- Medium, L-Low Categoory Tengineering Sciences and M/M/L indicates Basic Sciences and Doben Electives and Cote Social Social Social Sciences and Cote Sciences Noben Electives Social Sciences and Cote Sciences and Solit Skill Jucostan Electives Sciences and Cote and and	CO3		H	[Μ		Ι		I	Η]	L					
CO3 M M L M C05 H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low Lagineering Sciences and and Variation Humanities Internships / Technical Social Sciences and and Soft Skills Soft Skills Soft Skills Lectives and and	CO4		H	[L		N	1	N	A]	H					
H/W/T indicates Strendth of Cortelation H- High' W- Wedimi' T-Tom Engineering Sciences and Core Basic Sciences and Core Brocial Sciences and Core Brocial Sciences and Core Social Sciences and Core Soft Skills Soft Skills Arectical / Project Arectives and Core Bractical / Project Arectives and Core Bractical / Project Arectical / Project Arecti	CO5		N	1		Μ		ł	I]	L	Ι	Ν					
Category Basic Sciences Engineering Sciences Humanities and Program Core Program Electives Program Electives Practical / Project Internships / Technica Skill Soft Skills	H/M/L indicate	s Stre	ngth	of Cor	relatio	n H	- Hig	<u>h, M- N</u>	Mediun	ı, L-Lov	N		-		r			
Basi Engi Basi Engi Basi Soft Soft	Category	c Sciences	neering Sciences	lanities and al Sciences	ram Core	ram Electives	n Electives	tical / Project	nships / Technica	Skills								
		Basi	Eng	Hun Soci	√ Pro£	Ρroξ	Ope	Prac	Inter Skil	Soft								

BEE18001 CIRCUIT THEORY AND NETWORK ANALYSIS 3 1/0 0/0 4

UNIT I BASIC CIRCUIT CONCEPTS

Basic circuit elements-Ideal sources-Ohm's law-Kirchoff's laws-Network reduction: Voltage and Current division, Source transformation-Series and Parallel combination of R,L and C – Mesh and Nodal analysis for D.C and A.C. circuits

UNIT II NETWORK THEOREMS AND COUPLED CIRCUITS

Network theorems (Analysis of DC and AC Circuits): Thevenin, Norton, Superposition, Maximum power transfer and Reciprocity.

UNIT III NETWORK TOPOLOGY AND TRANSIENT ANALYSIS

Graph theory-Branch Nodal Analysis-Link loop Analysis-Tie set and Cut set matrices- Duality. Transients: Behavior of circuit elements under switching conditions and their representation- Forced and free Response of RL, RC, RLC circuits with DC and AC excitations.

UNIT IV TWO PORT NETWORKS, FILTERS AND ATTENUATORS

Characterization of two port networks in terms of Z, Y, H and T parameters-network equivalents-Relation between Network parameters- Analysis of T, Ladder , Bridged T and Lattice Networks - Filters

UNIT V S-DOMAIN ANALYSIS AND NETWORK SYNTHESIS

S-domain network-driving point and transfer impedances and their properties- transform network analysis -Concept of complex frequency- poles and zeros of network functions- time domain response from pole- zero plot- Reliability of one port network- Hurwitz polynomials

Total No. of Hours: 60

TEXT BOOKS:

- 1. Sudhakar, A. Shyammohan, S. and Palli (2015) Circuits and Networks: Analysis and Synthesis, 5th Edn, Tata McGraw-Hill
- 2. Smith , K.A. and. Alley, R.E (2014) Electrical Circuits, Cambridge University Press
- 3. Robert L. Boylestad and Louis Nashelsky (2013) Electronic Devices and Circuit Theory,11th Edn, Pearson Education

REFERENCE BOOKS:

- 1. Hyatt, W.H. Jr and Kimmerly, J.E., Engineering Circuits Analysis, McGraw Hill International.
- 2. Edminister, J.A., Theory and Problems of Electric Circuits, Schaum's Outline series McGraw Hill Book Company
- 3. Paranjothi S.R.(2000)Electric Circuit Analysis, New Age International Ltd., Delhi, 2nd Edition,.
- 4. Van Valkenburg, M.E., Network Analysis, Prentice Hall of India Private Ltd., New Delhi

12

12

12

Subject Code BEE18002	: !	Subjec	et Nam	e: DC	MACI	HIN	IES AN	D TRA	ANSFO	RMEF	RS /	T /L/	L	T / S.Lr	P/ R	C
]	ETL				
]	Prerec	uisite:	Basic	Electr	rical	& Ele	ctronic	s Engg			Т	3	1/0	0/0	4
L : Lecture T :	Tute	orial	SLr : S	upervis	sed Lea	arni	ng P:	Project	R : Re	search	C: Cred	lits				
T/L/ETL : The	eory/	Lab/Ei	mbedde	d Theo	ry and	l Lal	b	5								
OBJECTIVE	:															
To pro	ovide	the kr	nowledg	ge on th	ne basi	c co	oncepts	of the 1	otating	circuits	S.					
To far	nilia	rize an	d under	stand t	he wor	rkin	g princ	iple of	the DC	machin	les, tran	sform	ers a	and their	:	
perfor	manc	ce char	acterist	ics												
To pro	ovide	know	ledge o	n trans	former	r cor	nnectio	ns								
To pro	ovide	know	ledge o	n starti	ng and	l me	thods of	of speed	l contro	l of mo	tors.					
To stu	dy tł	ne vari	ous loss	ses and	differ	rent	testing	metho	ds for D	C macl	nines ar	nd Tra	nsfo	ormers		
COURSE OU	TCO	OMES	(Cos):	(3-5)												
CO1]	Famili	iliar knowledge on the basic concepts of rotating circuits. erstand the performance, starting and methods of speed control of the Electrical machines													
CO2	I	Unders	derstand the performance, starting and methods of speed control of the Electrical machines bable of designing different transformer connections													
CO3	(Capabl	bable of designing different transformer connections proprote knowledge on different testing methods for DC machines and Transformers													
CO4]	Incorp	bable of designing different transformer connections prporate knowledge on different testing methods for DC machines and Transformers former model and analyze electrical analyze and their application in governments													
CO5]	Perfor	brporate knowledge on different testing methods for DC machines and Transformers form model and analyze electrical apparatus and their application in power system													
Mapping of C	ours	se Out	comes	with P	rograr	m O	outcom	es (PO	s)							
COs/POs]	PO1	PO2	PO3	PO4	4	PO5	PO6	PO7	PO8	PO9	PO1	.0	PO11	PO1	2
CO1		H	Μ	Η	Μ	[L	H	Μ	L	H	M		Η	N	1
CO2		H	Μ	Μ	L		L	Μ	L	L	H	M		Μ	N	1
CO3		Μ	L	Μ	Μ	[Μ	Μ	Μ	Μ	Μ	L		Μ	L	4
CO4		Μ	Μ	Μ	L		L	Μ	L	L	Μ	M		Μ	I	4
CO5		L	Η	H	Μ	[Μ	H	Μ	Μ	L	H		Η	N	1
COs / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	SO5				
CO1		H	I		H		N	1	Ν	Л		Μ				
CO2		N	1		Μ		N	1	I	А		Μ				
CO3		H	I		Μ		Ι	_]	H		L				
<u>CO4</u>		<u> </u>	I -		L		<u> </u>	<u>/</u>	N	<u>A</u>		H				
CO5		N	1	1.	M		<u> </u>	<u>I</u>		L		Μ				
H/M/L indicat	es St	rength	of Cor	relatior	<u>1 H-</u>	Hıg	h, M- I	Aedium	n, L-Lov	W						
Category	Sciences	eering Sciences	H H H niities N M H N H L M Sciences Sciences and Actives Sciences and Image: Sciences Sciences and Image: Sciences Sciences and Image: Sciences Image: Sciences and Image: Sciences Image: Sciences Image: Sciences Image: Sciences Image: Sciences Image: Sciences													
	Basic	Engin	Huma Social	Progr:	Progra	Open	Practi	Intern Skill	Soft S							
				\mathbf{k}												

BEE18002 DC MACHINES AND TRANSFORMERS 3 1/0 0/0 4

UNIT I ELECTROMECHANICAL ENERGY CONVERSION 12

12Principles of electromechanical energy conversion – Energy, Co-energy – Elementary concepts of rotating machines — Rotating magnetic field – generated voltage – Torque – Magnetic Leakage

UNIT II DC GENERATORS

Constructional features of DC machine – Principle of operation of DC generator – EMF equation – Methods of excitation and types of DC generators – Characteristics of Series, Shunt and Compound DC generators – Armature reaction – Commutation – Methods of improving commutation – Parallel operation of DC shunt and compound generators

UNIT III DC MOTORS

Principle of operation of DC motors – Back EMF and its significance – Torque equation – Types of DC motors – Voltage Equation – Characteristics of DC series, shunt and compound motors – Starting of DC motors – Types of starter – Speed control of DC series and shunt motors – Power flow, losses and efficiency

UNIT IV TRANSFORMERS

Principle of operation – Constructional features of single phase and three phase shell type and core type transformers –EMF equation – Transformer on No load and Load – Phasor diagram – Parameters referred to HV / LV windings – Equivalent circuit – three phase transformers-connections – Scott Connection-Regulation — Auto transformers

UNIT V TESTING OF DC MACHINES & TRANSFORMERS

Losses and efficiency in DC Machines and transformers – Condition for maximum efficiency – Testing of DC machines – Brake test, Swinburne's test, Retardation test and Hopkinson's test – Testing of transformers – Polarity test, load test, open circuit and short circuit tests, Sumpner's test – All day efficiency.

Total No. ofHours: 60

TEXT BOOKS:

- 1. Kothari, D.P, Nagrath, I.J.(2005) Electrical Machines,7th Edn, Tata McGraw Hill Publishing Co. Ltd, New Delhi
- 2. Murugesh Kumar, K. (2003) DC Machines & Transformers. Vikas Publishing House Pvt Ltd.
- 3. Theraja, B.L. Chand, S. (2008) Electrical Technology Volume.II AC /DC Machines.

REFERENCE BOOKS:

- 1. Fitzgerald, A.E, Charles Kingsley Jr, Stephen, D. Umans (2003) Electric Machinery. 6th Edn, McGraw Hill Companies.
- 2. Hill Stephen, J. Chapman, (2012) Electric Machinery Fundamentals, 5th Edn, McGraw Hill Companies, New Delhi
- 3. Bimbhra, P.S. (2003) Electrical Machinery. Khanna Publishers.
- 4. Gupta, J B. (2015) Theory & Performance of Electrical Machine, S.K. Kataria & Sons

12

12

Subject Code:	Su	bject]	Name:	ELEC	CTRO	MAG	GNET	IC FIF	LD TH	EORY	TY LB/	/] /	L	T / S.Lr	P/ R	C
BEE18003											ET	L				
	Pre	erequi	isite: Ba	asic E	lectri	cal &	Elect	ronics	Engg		L	4 ·	3	0/0	0/0	3
L : Lecture 7	Г : Ти	ıtorial	SLr:	Super	vised	Learr	ning P	: Proje	ect R : I	Researc	h C: Cr	edits				
T/L/ETL : T	heory	y/Lab/	Embed	ded Th	neory	and L	ab	5								
OBJECTIV	'Е:															
•	Τc	o acqu	ire knov	wledge	e in El	lectro	magne	tic fiel	d theory							
•	To	o prov	ide a so	lid fou	indati	on in	Electro	ostatics	such as	Dipole	e, Capa	citanc	e			
•	To	o attaii	n famili	arity ii	n Bou	ndary	condi	tions a	nd Mag	netic fie	eld					
•	To	o unde	rstand t	he rela	ation l	betwe	en fiel	d theor	y and ci	rcuit th	eory					
	To	o ident	ify the	electro	omagn	netic v	vave p	ropaga	tion in n	nedium						
COURSE O			LS (Cos): (3-5))	T	71		(. C.1.1	(1						
	Un	dersta	nd the I	undan	nental	s in F	Liectro	magne	tic field	theory						
CO2	Fou	indation in Electrostatics such as Dipole, Capacitance niliarity in Boundary conditions and Magnetic field														
CO3	Far	miliarity in Boundary conditions and Magnetic field derstand the relation between field theory and circuit theory														
CO4	Un	amiliarity in Boundary conditions and Magnetic field Inderstand the relation between field theory and circuit theory														
CO5	Det	nderstand the relation between field theory and circuit theory etermine the electromagnetic wave propagation in medium														
Mapping of	Cou	rse O	utcome	s with	Prog	gram	Outco	mes (P	POs)							
COs/POs	PO	1	PO2	PO3	PO)4	PO5	PO6	PO7	PO8	PO9	PO1	0	PO11	P	012
CO1		H	Μ	Μ	Ν	M	Η	Μ	Η	Μ	H	Μ		Н		Μ
CO2		H	Μ	Η	Ν	Ν	Μ	Μ	Μ	Μ	H	Μ		Н		Μ
CO3		H	Η	Η]	H	Η	Η	Η	Μ	H	Μ		Н		Μ
CO4		L	L	Μ	Ν	M	L	L	L	L	Μ	Μ		Μ		L
CO5		H	Н	Η]	H	Η	H	Η	Μ	H	Μ		Н		Μ
Cos / PSOs		PSO	1	F	PSO2		PS	03	PS	04	PS	505				
CO1		H			Η		I	H	l	H		H				
CO2		H			Η		I	I]	H		H				
CO3		Μ			Μ		Ν	N	Ν	М]	М				
CO4		Μ			Η		I	H]	H		H				
CO5		<u>M</u>			H		N	<u>/</u>		H		H				
H/M/L indic	ates S	Streng	th of Co	orrelat	ion	H- Hi	gh, M	- Medi	um, L-L	ow						
Category	Basic Sciences	Engineering Sciences	Humanities an Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technic: Skill	Soft Skills							
				\mathbf{F}												

BEE18003 ELECTROMAGNETIC FIELD THEORY 3 0/0 0/0 3

UNIT I ELECTROSTATIC FIELD

Introduction - Concepts of different co-ordinate systems – Electric field intensity – Electric flux density -electric fields due to charge distributions – Electric potential – potential gradient - Gauss law & Coulomb's law with Application

UNIT II ELECTROSTATICS

Field due to dipoles – Dipole moment – Current and Current density Boundary conditions at dielectric and conductor surfaces – Capacitor - Capacitance– Energy stored and energy density – Capacitance due to Spherical shell, Coaxial cable

UNIT III MAGNETOSTATICS

Introduction to Magnetic materials- Magnetic field intensity- Magnetic flux density (B) – B in free space, conductor, magnetic materials. Magnetization and Permeability – Boundary conditions- Lorentz Law of force, – Biot-Savart Law – Ampere's Law –Magnetic field– Scalar and vector potential – Magnetic force – Torque – Inductance

UNIT IV ELECTRODYNAMIC FIELDS

Faraday's law, induced EMF – transformer and motional EMF, Maxwell's equations (differential and integral forms)- Displacement current - Relation between field theory and circuit theory.

UNIT V ELECTROMAGNETIC FIELDS AND WAVE PROPAGATION

Generation – electromagnetic wave equations – Wave parameters- velocity, intrinsic impedance, propagation constant – Wave propagation in free space, loss and lossless dielectrics, conductors – skin depth, Poynting vector

Total No of Hours: 45

TEXT BOOKS:

- 1. William Hayt, (2005) Engineering Electromagnetics.7th Edn,McGraw Hill.
- 2. Matthew. N.O. Sadiku,(2007) Elements of Electromagnetics.4th Edn, First Indian Edition,Oxford University Press.
- 3. Ashutosh Pramanik,(2006)Electromagnetism theory and application,Prentice Hall of India Private Ltd.

REFERENCE BOOKS:

- 1. David K. Cheng, (2004) Field and Wave Electromagnetics, 2nd Edn, Pearson Education.
- 2. William H. Hayt Jr, John A. Buck, (2006) Engineering Electromagnetics,7th Edn,Tata McGraw Hill Publishing Company Ltd.
- 3. Edminister, J.A. Schaum's, (2006) Theory and problems of Electromagnetics,2nd Edn,Special Indian Edition, Tata McGraw hill.

9

9

9

9

Q

BEE 18004 EIL Prerequisite: Basic Electrical and Electronics Engg T 3 0/0 0/0 L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab OBJECTIVE:) 3													
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab OBJECTIVE:														
T/L/ETL : Theory/Lab/Embedded Theory and Lab OBJECTIVE:														
OBJECTIVE:														
• To understand about Instruments and its Calibration.														
• To impart knowledge about various types of Analog and Digital meters														
• To understand the various methods of Measurements														
• To understand the about different types of Transducers and Converters														
• To understand the various types of Storage and display devices.														
CO1 Gain knowledge about Instruments and its Calibration														
CO2 Ability to understand the usage of meters														
CO3 Ability to understand the various methods of Measurements	ity to understand the usage of meters ity to understand the various methods of Measurements ity to understand the application of transducers and Converters													
CO4 Ability to understand the application of transducers and Converters	ity to understand the various methods of Measurements ity to understand the application of transducers and Converters knowledge about the Storage and display devices													
CO5 Gain knowledge about the Storage and display devices	ty to understand the application of transducers and Converters knowledge about the Storage and display devices													
Mapping of Course Outcomes with Program Outcomes (POs)														
COs/POsPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11	PO12													
CO1 H H H H H H H H H H H	Μ													
CO2 H H H H M H H M M H	Μ													
CO3 H H H H M H H H H H	L													
CO4 H H H H H H H H H H H	H													
CO5 H H H H H H H L H M H	L													
Cos / PSOs PSO1 PSO2 PSO3 PSO4 PSO5														
CO1 H M H CO2 M M H														
CO2 M M H M CO3 H M H M														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low														
echnii ves a a														
s s s s s / J ro lettive s s														
ord \operatorname														
Image: Signal and Signal an														
Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca C														

BEE18004 ELECTRICAL AND ELECTRONICS 3 0/0 0/0 3 MEASUREMENTS

UNIT I INTRODUCTION

Functional elements of Instrument -Static and Dynamic characteristics -Errors in measurement Statistical evaluation of measurement data -Standard and Calibration

UNIT II ELECTRICAL AND ELECTRONICS INSTRUMENTS

Principle and types of analog and digital ammeters and voltmeters –D'Arsonval Galvanometer-Construction, Torque Equation-Single and three phase Wattmeter and Energy meter - magnetic measurements -Instrument Transformers -Instruments for measurement of frequency and phase- Applications

UNIT III METHODS OF MEASUREMENTS

D.C & A.C potentiometers-D.C & A.C bridges- transformer ratio bridges- self-balancing bridges-PMMC, moving iron- Electrostatic and Electromagnetic interference –Grounding techniques - Calibration

UNIT IV TRANSDUCERS AND CONVERTERS

Classification of transducers – Selection of transducers – Resistive-capacitive & inductive transducers – Piezoelectric, Hall effect- optical and digital transducers –A/D and D/A conversion Techniques and its Types

UNIT V STORAGE AND DISPLAY DEVICES

Magnetic disc and Tape Recorders –Digital plotters and printers -CRT displays -Digital CRO – LED, LCD and Dot matrix displays- Data Loggers.

Total No. of Hours: 45

TEXT BOOKS:

- 1. Doebelin, E.O.(1990) Measurement Systems Application and Design,McGraw Hill Publishing Company
- 2. Sawhney, A.K.(2016) A course in Electrical and Electronic Measurements and Instrumentation, Dhanpat Rai& Sons
- 3. Kalsi, H.S. (2010) Electronic Instrumentation, 3rd Edn, Tata McGraw-Hill Education Pvt. Ltd

REFERENCE BOOKS:

- 1. Robert B Northrop (2005) Introduction to Instrumentation and Measurements, Taylor & Francis
- 2. Stout, M.B. (1986) Basic Electrical Measurement, Prentice Hall of India
- 3. Dalley, J.W. Riley, W.F. Meconnel, K.G(1993) Instrumentation for Engineering Measurement, John Wiley & Sons.
- 4. Moorthy, D.V.S. (1995) Transducers and Instrumentation., Prentice Hall of India Pvt. Ltd

9

9

9

Subject Code: BME18I03	S I	Subjec MECH	et Name IANIC	e: TH S	ERM	ODY	NAMI	ICS AI	NDFLU	ID	TY / LB/ ETL	L	T / S.Lr	P/ R	С		
]	Prerec	uisite:	Basic	Mecl	nanic	al & C	'ivil E	ngg		Т	3	0/0	0/0	3		
L : Lecture 7	Γ : Τ ι	ıtorial	SLr:	Super	vised	Lear	ning P	: Proje	ect R : I	Researc	h C: Cre	dits	•	•			
T/L/ETL : T	heory	y/Lab/	Embed	ded Th	eory	and L	ab										
OBJECTIV	E:	1	. 1.	1 1	. т	c	T 1	1		1.1	1.		1 616				
•	T(T	o unde	rstand t	he bas	ic Lav	WS Of	Therm	lodyna	mics and	the wo	orking p	rincip	ole of IC	Eng	nes.		
) unde	rstand t	he pro	nortio	ull I lull	Juide a	and im	eis. Moment	ation of	Hydrau	lic m	achinar	v & D	umpe		
•	To	b know	v the im	portan	ce, ap	plica	tion an	id inter	relatior	ship of	various	prop	erties of	f fluid	umps.		
•	To	o study	/ about	variou	s type	es of p	oumps	and tu	rbines	•							
COURSE O	DUTC	COME	ES (Cos	<u>): (3-5</u>)		2										
CO1]	Knowl	edge or	the b	asic L	aws o	of Ther	modyr	namics a	nd the v	working	princ	ciple of	IC En	gines		
CO2	0	Capabl	le of sel	ecting	the s	uitabl	e turbi	nes and	1 boilers	depend	ling upo	n the	applica	tions			
CO3]	Incorp	orporating the knowledge gained in operating the Hydraulic machinery & Pumps owledge on properties of different fluids and its applications														
CO4]	Knowl	owledge on properties of different fluids and its applications velop knowledge on the working of different types of pumps and turbines														
CO5]	Develo	velop knowledge on the working of different types of pumps and turbines														
Mapping of	Cou	rse O	utcome	s with	Prog	ram	Outco	mes (P	Os)								
COs/POs]	PO1	PO2	PO3	PC)4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12		
CO1		Μ	Μ	Μ	J	H	Μ	L	L	Μ	Н	Μ	H	I	Н		
CO2		Μ	L	L	Ι	N	Н	Μ	Η	Н	Η	Μ	I	I	Μ		
CO3		Η	Η	Η	Ι	M	L	Μ	L	Η	Η	Μ	I	I	L		
CO4		Μ	Μ	Μ]	H	Μ	L	L	L	Η	Μ	I	I	L		
CO5		L	Н	Η	Ι	N	L	Μ	Η	L	Η	Η	I	I	Μ		
Cos / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	05					
CO1		Ν	1		Μ		ŀ	I	I	Л	I	I					
CO2		N	1		H		I	I		<u>I</u>	I	I -					
<u>CO3</u>		<u>N</u>	1		M		<u> </u>	<u>/</u>	1			1					
C04	_		l r				N	<u>л</u>		<u>л</u>		/ <u> </u> J					
H/M/L indic	ates	Streng	th of Co	orrelati	ion	H- H	ioh M	- Medi	um L-I	. I .0W	1	1					
	acos		uopu	Jiiciat				cal				1					
ategory	sic Sciences	gineering Science	geineering Sciences manities cial Sciences Bgram Electives and H- High, M- Medium, T-Tom Bgram Electives and Core en Electives and Project trives ff Skills ff Skills														
	Ba	En	Hu So	Prc	Prc	Op	\Pr_{c}	Int Ski	So			-					
		~															

BME18I03 THERMODYNAMICS ANDFLUID MECHANICS 3 0/0 0/0 3

UNIT I BASIC CONCEPTS AND FIRST LAW OF THERMODYNAMICS

Thermodynamics systems, Concepts of continuum, Thermodynamics properties, Equilibrium, Process, Cycle, Work, Heat, Temperature, Zeroth law of thermodynamics. First law of thermodynamics – Applications to closed and open systems – Steady flow Energy Equations – Simple Problems

UNIT II SECOND LAW OF THERMODYNAMICS

Statements, Reversibility, Causes of irreversibility, Carnot Cycle, Reversed Carnot Cycle, Heat Engines, Refrigerators, Heat Pumps - Clausius Inequality – Entropy - Principles of increase of entropy - Carnot theorem.

UNIT III POWER CYCLES

Air cycles – Assumptions - Otto, Diesel, Dual and Brayton cycle – Air standard efficiency – Mean effective pressure – Working of two stroke and Four Stroke Petrol and Diesel Engines.

UNIT IV FLUID MECHANICS

Fluid properties; fluid statics, manometer, control-volume analysis of mass, momentum and energy; differential equations of continuity and momentum; Bernoulli's equation; viscous flow of incompressible fluids; boundary layer; elementary turbulent flow; flow through pipes, head losses in pipes, bends etc.

UNIT V FLUID MACHINERY

Introduction, types of pumps – reciprocating pump – centrifugal pump - construction details – working principles, Pelton-wheel, Francis and Kaplan turbines – construction and working principles.

Total No. of Hours: 45

TEXT BOOKS:

- 1. Nag, P.K. Engineering Thermodynamics, 2nd Edn, Tata McGraw Hill Publishing Company Ltd.
- 2. Rajput R.K., Fluid Mechanics and Hydraulic Machines, S.Chand and Co., India

REFERENCE BOOKS:

1. Holman, J.P. (1995) Thermodynamics, McGraw Hill.

2. Yunus A. Cengel, Thermodynamics-An Engineering Approach. , Tata Mc. Graw Hill.

3. Bansal R.K., A Text Book of Fluid Mechanics and Hydraulic Machines , S.Chand and Co., India

9

9

9

9

Code:	Subject Name: ELECTRICAL MACHINES- I LAB TY / L T / P / C LB/ S.Lr R ETL Image: Comparison of the second seco															
BEE18L01										ETL		S.Lr	к			
DELIGEOT	Prerec	quisite:	Basic	Elect	rical	& Ele	ctroni	cs Engg	5	LIL	0	0/0	3/0	1		
L : Lecture T : '	Futorial	SLr:	Superv	vised	Learr	ning P	: Proje	ect R:	Resear	ch C: Cre	dits					
T/L/ETL : Theo	ory/Lab/	Embedo	ded The	eory a	and L	ab	5									
OBJECTIVE:																
• To	analyze	the Inte	ernal ar	nd Ex	ternal	Load	Charao	cteristic	s for D	C Genera	ators	and Mot	ors			
• To	determi	ne the s	peed co	ontrol	usin	g diffe	rent me	ethods f	for DC	Motor a	nd Ge	enerator				
• To	find the	constar	nt loss a	and co	opper	loss o	f DC N	Aachine	S							
• To	find the	equival	lent cir	cuit o	of tran	sform	er									
• To	determi	ne the e	fficien	cy and	d regu	ulation	of DC	Machi	nes and	l transfor	mer					
COURSE OUT	<u>COMI</u>	<u>£S (Cos</u>): (3-5))	• .•	6.0	0.0		13.6							
COI	Analyz	ze the L	oad Ch	aract	eristic	cs of L	C Gen	erators	and M	otors						
CO2	Detern	etermine different methods of speed control for DC Machines nderstand the losses incorporated in DC Machines apable of understand the performance of a Transformer														
CO3	Under	inderstand the losses incorporated in DC Machines apable of understand the performance of a Transformer														
CO4	Capab	apable of understand the performance of a Transformer compute the efficiency of a D.C. machine without actually loading it.														
CO5	Comp	ompute the efficiency of a D.C. machine without actually loading it.														
Mapping of Co	ourse O	ompute the efficiency of a D.C. machine without actually loading it. se Outcomes with Program Outcomes (POs)														
COs/POs	PO1	PO2	PO3	PO	4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12		
CO1	Μ	Μ	H	N	1	L	Μ	Н	Μ	Η	Μ	H	[Μ		
CO2	Μ	Μ	H	N	1	L	H	Μ	Μ	Η	Μ	H	[Μ		
CO3	Η	H	Μ	N	1	L	Μ	Н	L	Н	Μ	H	[H		
CO4	Η	H	Η	N	1	Μ	Μ	Н	Μ	Μ	Μ	H	[L		
CO5	H	H	H	I	ł	H	H	H	Μ	H	Μ	H	[H		
Cos / PSOs	PS	01	P	SO2		PS	03	PS	504	PS	05					
<u>CO1</u>	H	I		M		N	<u>/</u>	l	M	N	/[
<u>CO2</u>	<u> </u>	1		M		<u> </u>	1		M	N	<u>/</u>					
<u>CO3</u>	<u> </u>	1		<u>M</u>		<u> </u>		1	M		<u>/I</u>					
C04	<u> </u>	/I I		H M		<u> </u>	/ <u> </u> T			1	1 T					
UU5 U/M/L indicato	f Strong	1 th of C	orralati	IVI on 1		nh M	1 Modiu			1	1					
	s Sueng		JICIALI		11-111	gn, wi	- Mieur	uIII, L-L	20%							
	ces	ar					nic									
	ien	s		ves		ect	ech			~						
ces	Sc	nce	ore	ecti	ves	roj	T /			nary						
ry	ing	ies cie	ő	Ele	ecti	/ P	sd	ls	;	plir						
6 O	leei	anit 1 S	am	am	Ele	ical	ida	Skil		lici						
n n n n n n n n n n n n n n n n n n n	L L	ní ia	<u>5</u>	gr	en	acti	err ill	<u>,</u>		ж						
Catego Isic S	igi	E D	0	0	().			T T		9						
Catego Basic S	Engi	Hun Soc:	Pro	Pro	op	Pra	Int Sk	Sof		Inte						
ory ciences	neering Sciences	nanities and ial Sciences	gram Core	ıgram Electives	en Electives	actical / Project	ernships / Technica ill	t Skills	:	statictplinary						

BEE18L01 ELECTRICAL MACHINES- I LAB 0 0/0 3/0 1

LIST OF EXPERIMENTS

- 1. Open Circuit Characteristics Of DC Shunt Generator
- 2. Load Characteristics of DC Compound Generator
- 3. Load test on DC Shunt Motor
- 4. Load test on DC Series Motor
- 5. Swinburne's Test
- 6. Speed control of DC Shunt Motor
- 7. OC and SC test on Single Phase Transformer
- 8. Hopkinson's test
- 9. Load test on Single Phase Transformer
- 10. Separation Of No Load Losses In Single Phase Transformer
- 11. Sumpner's Test
- 12. Parallel Operation Of Single Phase Transformer

Total No of Hours: 45

Subject Code:		Subjec	et Nam	e: ELI	ECTI	RICA	AL CIF	RCUIT	S LAB	6		/ L		[/ Lr	P/ R	C	
BEE18L02											ETI	L		•••••	n		
		Prerec	uisite:	Basic	Elect	rical	& Ele	ctronic	es Engg		L	0	0	/0	3/0	1	
L : Lecture	Г : Т	utorial	SLr :	Superv	vised	Lear	ning P	: Proie	ect R:]	Resea	rch C: C	redits					
T/L/ETL : T	heor	ry/Lab/	Embed	led The	eory a	and L	Lab	J									
OBJECTIV	Έ:																
• To p	provi	ide prac	ctical ex	perien	ce of	elect	rical ci	rcuits									
• To	impa	art prac	tical ki	nowled	ge on	ı solv	ving cire	cuits us	sing net	work	theorems	5					
• To c	leve	lop pra	ctical k	nowled	lge o	n the	concep	ots of r	resonance	ce in o	coupled of	circuit	ts ar	id tra	nsien	t	
resp	onse	e of c	rcuits		1			C ("1		1							
• 10	desi	gn the	two poi	t netwo	orks,	varic	ous type	es of fil	ters and	I Atte	nuators						
			wiedge	$\frac{\text{on the}}{3.5}$	meas	suren	ient of	variou	is paran	leters	in power	rsyste	em				
COURSE C		Analv	ze and	solve f	, he El	ectri	c circui	ts									
CO2		Knowl	nowledge in Circuit theorems and apply in analyzing problems in power system erform analysis of Coupled circuits and Transient Response of Circuits														
		D 6	rform analysis of Coupled circuits and Transient Response of Circuits														
CO3		Pertori	form analysis of Coupled circuits and Transient Response of Circuits														
CO4		Capabl	pable of designing various types of filters and Attenuators														
CO5		Unders	derstand and apply the concepts in engineering applications														
Mapping of	Co	urse O	utcome	s with	Prog	ram	Outco	mes (P	Os)								
COs/POs		PO1	PO2	PO3	PO)4	PO5	PO6	PO7	PO	8 PO9	PO	10	POI	11	PO12	
CO1		Н	Н	Μ	N	Л	Μ	Н	Μ	Μ	Н	N	1	H	[Μ	
CO2		Μ	Н	Μ	I	I	Η	H	Μ	Μ	H	N	1	H	[Μ	
CO3		L	Μ	Μ	N	A	Μ	Μ	Μ	M	H	N	1	H	[L	
CO4		L	Μ	L	I	H	H	H	L	Μ	H	N	1	H	[L	
CO5		Μ	L	L	I	I	H	H	Μ	H	H	I	I	H	[Μ	
Cos / PSOs		PS	01	P	SO2		PS	03	PS	604	P	SO5					
<u>CO1</u>		<u> </u>	I		M		<u> </u>	<u>/</u>	I	M		<u>H</u>					
<u>CO2</u>		<u> </u>	1		<u>M</u>		<u> </u>	<u>/I</u>			_						
<u>CO3</u>			1 /		H T		1 T	1	1								
C04		N T	1		<u>г</u> н		1 F	J T	1	VI VI		<u>п</u> Т					
H/M/L indic	ates	Streng	th of Co	orrelati	on `	H- H	ioh M	- Mediı	ım L-I	ow.		L					
	ares		pu	JIICIUI			1511, 111	cal	ann, 🗅 L								
		nce	a		s			nic									
	s	cie	es		ive	S	ject	[ec]			N						
	nce	οŭ N	s enc	ore	lect	ive	Pro	L / :			inar						
ory	cieı	srin	itie Sci	n C	nΕ	lect	1 / I	iips	ills		ilqi						
tega	c S	inee	nan al	gran	gran	nΕ	tice	nst L	Sk		dic						
Cal	3asi	igu	Hum	rog	rog	Deel	rac	nter kill	oft		nteı						
	щ		чS	щ	щ	0		I S	S		Ē						
							>										

BEE18L02 ELECTRICAL CIRCUITS LAB 0 0/0 3/0 1

LIST OF EXPERIMENTS

.

- 1. Experimental verification of Kirchhoff's voltage and current laws
- 2. Experimental verification of Current and Voltage Division and Source Transformation
- 3. Experimental verification of network theorems (Thevenin, Norton, Superposition and maximum power transfer Theorem).
- 4. Verification of Nodal and Mesh Analysis
- 5. Experimental determination of time constant of series R-C electric circuits
- 6. Experimental determination of frequency response of RLC circuits.
- 7. Design and Simulation of series resonance circuit.
- 8. Design and Simulation of parallel resonant circuits
- 9. Simulation of three phase balanced and unbalanced star, delta networks circuits
- 10. Experimental determination of power in three phase circuits by two-watt meter method
- 11. Determination of two port network parameters
- 12. Design and Simulation of low pass and high pass passive filters
- 13. Determination of self, mutual inductance and coefficient of coupling

Total No of Hours: 45

Subject Code: BMF18II 2		Subjec F	et Nam LUID	e: MECH	[ANI	CS A	ND IC	CENG	INE LA	В	TY / LB/	L	T / S.Lr	P/ R	C	
DWIE10112	í I	Prerec	quisite:	Basic	Mech	anic	al & C	ivil E	ngg			0	0/0	3/0	1	
L : Lecture	Γ : Tι	ıtorial	SLr:	Superv	vised	Learr	ning P	: Proje	ect R : H	Researc	h C: Cro	edits				
T/L/ETL : T	heory	y/Lab/	Embed	ded The	eory a	and L	ab	U								
OBJECTIV	'Е:															
•	To	o analy	ze perf	ormand	e of t	flow	using v	various	measur	ing inst	ruments					
•	Pr	ovidir	ng fair k	nowled	lge oi	n the	workin	ng of va	arious P	umps fo	or testin	g thei	r perfoi	manc	e.	
•	Tł	ne grad	duate w	ill learr	the the	valve	timing	g and p	ort timi	ng diag	rams for	IC E	ngines.			
•	To	o analy	ze perf	ormand	e and	l Hea	ıt Balar	nce Tes	st of IC	Engine	s.					
•	To	o analy	ze perf	ormanc	e and	l Hea	ıt Balar	nce Tes	st of Ref	rigerat	or and b	oilers.				
COURSE C)UT(COME	ES (Cos): (3-5))											
CO1	1	Analyz	ze the p	erforma	ance o	of flo	w usin	g vario	us meas	uring i	nstrume	nts.				
CO2	(Gain k	in knowledge on the performance and testing of various pumps in knowledge on the concepts of timing diagrams for IC Engines													
CO3	(Gain k	in knowledge on the concepts of timing diagrams for IC Engines alyze the performance and testing of IC engines													
CO4	8	analyz	In knowledge on the concepts of timing diagrams for IC Engines alyze the performance and testing of IC engines alyze the performance and testing of Refrigerator and boilers													
CO5	1	Analyz	alyze the performance and testing of IC engines alyze the performance and testing of Refrigerator and boilers.													
Mapping of	Cou	rse O	utcome	s with	Prog	ram	Outco	mes (P	Os)							
COs/POs	I	PO1	PO2	PO3	PO	94	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12	
CO1		Μ	Μ	Н	H	I	Η	Μ	Μ	Μ	Н	Μ	Ν	/[L	
CO2		L	L	Н	N	1	Н	Μ	L	L	Н	Μ	Ν	/I	Н	
CO3		Μ	L	Μ	N	1	Μ	Н	Μ	L	Μ	Μ]		L	
CO4		Η	Μ	L	I	I	Н	Μ	Н	Μ	L	Μ	I	I	Μ	
CO5		Μ	Μ	Μ	N	1	Μ	Μ	Μ	Μ	Μ	Μ]	I	Н	
Cos / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	05				
CO1		Ν	1		H		N	ſ	1	H]	H				
CO2		H	I		H		N	1	I	H]	H				
CO3		N	1		H		I	I	Ν	Ν]	H				
CO4		H	I		Μ		N	1	Ν	A	I	N				
CO5		Ν	1		Μ		Ι			L		H				
H/M/L indic	ates !	Streng	th of Co	orrelati	on l	H- Hi	igh, M-	- Medi	um, L-L	OW				1		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technica Skill	Soft Skills	Interdicialinary						
							~									

BME18IL2 FLUID MECHANICS AND IC ENGINE LAB 0 0/0 3/0 1

LIST OF EXPERIMENTS

FLUID MECHANICS

- 1. Measurement of flow using Orificemeter.
- 2. Measurement of flow using Venturimeter.
- 3. Measurement of flow using flow through pipes.
- 4. Measurement of flow using Flow meter.
- 5. Performance test on Reciprocating pump.
- 6. Performance test on Centrifugal pump.

IC ENGINES

- 7. Valve timing and port timing diagrams for IC Engines.
- 8. Performance test on a Petrol Engine.
- 9. Performance test on a Diesel Engine.
- 10. Heat Balance test on an IC Engine.
- 11. Boiler performance and Heat Balance Test.
- 12. Performance test on a Refrigerator (Determination of COP)

Total No of Hours: 45

Subject Code:		Subjec ELEC	et Nam TRICA	e: NU AL EN	MER IGINI	ICA EER	L MET S	THODS	5 FOR		TY/LB/	L	T / S.L	r P. R	/	С
BMA18011		Duonoc	minitar	Math		latha	. 11				ETL T	2	1/0		0	1
I. I. Lastura	 T.T	Prerec	ci	Super	S I, IVI		-11	Drois	ot D i I			J	1/0	U/	U	4
$T/I / FTI \cdot 7$	I.I Theor	utoriai v/Lab/	SLI. Embed	Jed Th	viseu	Leal and I	inng r Sab	. Floje		(esearc	n C. Ci	suns				
OBJECTIV	VE•	y/La0/	Linocu		leory		240									
• To	devel	op the	ability	in Nur	nerica	al Ski	ills									
COURSE (DUT	COME	ES (Cos	s): (3-5	5)											
CO1		To und	lerstand	l the B	asic c	once	pts in N	Jumerio	cal Anal	ysis						
CO2		To unc	lerstand	l the B	asic c	once	pts in S	ystem	of Linea	ar Equa	tions					
CO3		To und	lerstand	l the B	asic c	once	pts in N	Ion Lin	ear Equ	ations						
CO4		To und	lerstand	l the B	asic c	once	pts in Iı									
CO5		To unc	lerstand	l the B	asic c	once	pts in N	erentiati	ion and	Integr	ation	1				
Mapping of	f Coı	irse O	utcome	s with	Prog	ram	Outco	mes (P								
COs/POs		PO1	PO2	PO3	PO)4	PO5	PO6	PO7	PO8	PO9	PO1	0 1	PO11	P	'012
CO1		L	H	L	I	[]	L	L	L	L	M	L		L		Μ
CO2		L	H	L	I	[]	L	L	L	L	Μ	L		L	<u> </u>	Μ
CO3		L	H	L	I	Ĺ	L	L	L	L	Μ	L		L		Μ
CO4		L	H	L	I	[]	L	L	L	L	Μ	L		L		Μ
CO5		L	Η	L	Ι	Ĺ	L	L	L	L	Μ	L		L		Μ
Cos / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	505				
CO1		N	1		Μ		Ι]]	Ĺ			\perp	
CO2		Ν	1		Μ		Ι]	L			<u> </u>	
CO3		Ν	1		Μ		Ι]	L			<u> </u>	
CO4		N	1		Μ		I]]	L			_	
CO5		N	Í		<u>M</u>					<u> </u>]	Ĺ				
H/M/L indi	cates	Streng	th of Co	orrelat	10n	H- H	ligh, M	- Medi	ım, L-L	ow						
Category	Basic Sciences	Engineering Sciences	Humanities and Soci Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technics Skill	Soft Skills	Interdicinlinary						
	7															

BMA18011 NUMERICAL METHODS FOR ELECTRICAL ENGINEERS 3 1/0 0/0 4

UNIT I BASICS OF NUMERICAL METHODS

Curve fitting-Method of group averages-Principle of least square-Method of moments-Finite differences-Operators (Forward, Backward & Shifting) -Relationship between the operators.

UNIT II SYSTEM OF LINEAR EQUATIONS

Gauss Elimination method – Gauss-Jordan method – Iterative methods – Gauss-Jacobi method – Gauss-Seidel method – Matrix Inversion by Gauss-Jordan method- Eigen value problem-Power method.

UNIT III NON LINEAR EQUATIONS

Solution of Algebraic and Transcendental equations – Method of false position -Fixed point iteration method (single and multi variables)- Newton-Raphson method (single and multi variables).

UNIT IV INTERPOLATION

Newton forward and backward differences – Central differences – Stirling's and Bessel's formulae – Interpolation with Newton's divided differences – Lagrange's method.

UNIT V NUMERICAL DIFFERENTIATION AND INTEGRATION

Numerical differentiation with interpolation polynomials – Numerical integration by Trapezoidal and Simpson's (both 1/3 rd & 3/8 th) rules – Two and three point Gaussian Quadrature formulae – Double integrals using Trapezoidal and Simpson's rules.

Total No. of Hours: 60

REFERENCE BOOKS:

- 1. Veerarajan T., Numerical Methods, Tata McGraw Hill Publishing Co., (2007).
- 2. Sastry S.S., Introductory Methods of Numerical Analysis, Prentice Hall of India, (2012).
- 3. Kandasamy P., Thilagavathy, Gunavathy K., Numerical Methods (Vol.IV), S.Chand & Co., (2008).
- 4. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).

12

12

12

Subject Code:		Subjec	et Nam	e: AC	C ANI) SPE	ECIAL	MAC	HINES		TY / LB/	L	T / S.Lr	P/ R	C		
BEE18005	_	Duonoo			7001/	DEE	10003				ETL	2	1/0	0/0	4		
		Prerec	uisite:	BEEI	/001/	BEE	18002				1	3	1/0	0/0	4		
L : Lecture	Г:Т	utorial	SLr:	Super	vised	Learn	ning P	: Proje	ect R : I	Researc	h C: Cre	dits					
1/L/EIL: I	heor	y/Lab/	Embed	ded Tr	leory	and L	ab										
OBJECHIV	е: П	nderst	ands the	e const	ructio	n and	lonera	tion of	Synchr	onous	renerator						
	A	cauire	s Know	ledge	about	svncl	hronou	is moto	ors used	in the F	ower sv	stem					
•	A	ble to	learn a	bout th	iree p	hase	inducti	on mo	tor and	to draw	the circ	le di	agram c	of Indu	uction		
	m	achine	;		ľ								8				
•	G	ains kı	nowledg	ge in s	tarting	g and	speed	control	l of three	e phase	inductio	n mo	tor				
•	U	ndersta	and the	conce	pts of	vario	us spe	cial ma	chines i	involve	d in the	powe	r system	netw	ork		
COURSE C)UT	COME	DMES (Cos): (3-5) Iderstand the concepts of synchronous generator pable knowledge about synchronous motors and its performance characteristics														
CO1		Unders	derstand the concepts of synchronous generator pable knowledge about synchronous motors and its performance characteristics n draw the circle diagram of Induction machine														
CO2		Capabl	pable knowledge about synchronous motors and its performance characteristics n draw the circle diagram of Induction machine														
CO3		Can dr	a draw the circle diagram of Induction machine owledgeable in starting and speed control of three phase induction motor														
CO4		Knowl	wedgeable in starting and speed control of three phase induction motor puire knowledge in special electrical machines														
CO5		Acquir	pwledgeable in starting and speed control of three phase induction motor quire knowledge in special electrical machines														
Mapping of	[°] Cot	irse O	utcome	s with	Prog	gram	Outco	mes (P	Os)	1	1 1						
COs/POs		PO1	PO2	PO3	PC)4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12		
CO1		H	H	H		H	H	H	H	M	H	<u>M</u>			H		
<u>CO2</u>		M	M	M	1	M	<u>M</u>	M	M	M	M						
CO3		H	H	H			H	H	H	M	M	M	H				
CO4		M	M		1			M		M		M			H		
		H DS(Н			H DS	<u>H</u>			H DC	<u>M</u> 05	E	1	L		
$\frac{C08}{C01}$	_	N	1 1	1	M		10	03 4		м М		05					
CO2		N	1		L]	. <u>.</u> [_		M		<u></u>					
CO3		L	4		L		N	A	I	M	H	Ī					
CO4		H	[Η		Ν	N]	Ĺ	N	1					
CO5		N	1		Μ		I	H]	Ĺ	Ι						
H/M/L indic	ates	Streng	th of C	orrelat	ion	H- Hi	igh, M	- Medi	um, L-L	OW							
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technica Skill	Soft Skills	Intardicialinany							
				\checkmark													

Dr.M.G.R. Educational and Research Institute (DEEMED TO BE UNIVERSITY) (An ISO Certified Institution) rsity with Graded Autonomy St Maduravoyal , Chennai - 600 095

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

3 1/0 0/0**BEE18005 AC AND SPECIAL MACHINES**

UNIT I SYNCHRONOUS GENERATOR

Types & Constructional Features of Synchronous Generators- EMF Equation - Synchronous reactance -Armature reaction – Voltage regulation – EMF, MMF and ZPF methods – Change of excitation and mechanical input - Application

SYNCHRONOUS MOTOR UNIT II

Principle of operation - Construction - Equivalent Circuit and phasor diagram - Power and Torque - Power flow - Power developed by synchronous motors - Speed-Torque characteristics - Effect of change in excitation – V curves and inverted V curves – Hunting & suppression - Application

UNIT III THREE PHASE INDUCTION MOTOR

Construction - Types of rotors - Cage and wound rotor machines - Principle of operation - Production of rotating magnetic field - Equivalent circuit - Torque and Power output - Torque-slip characteristics -Condition for maximum efficiency – Testing – Load Test – No load and Blocked rotor test – Circle diagram.

STARTING & SPEED CONTROL OF INDUCTION MOTORS UNIT IV 12

Necessity for Starters – Starting methods of three phase induction motor – Types of Starters – Stator resistance and reactance - Rotor resistance starter- star-delta starter - Cogging & Crawling - Speed control -Voltage control –Rotor resistance control.

UNIT V **SPECIAL MACHINE**

Single phase induction motor - Constructional details - Double revolving field theory - Equivalent circuit -Speed-torque characteristics - Starting methods - Split-phase motor - shaded-pole induction motor -Universal motor - Variable Reluctance motor, Switched Reluctance Motor, Stepper Motor, Permanent Magnet Motors - Application

Total No. of Hours: 60

TEXT BOOKS:

- 1. Nagrath, I.J. Kothari, D.P. (2005) Electric Machines.7th Ed. New Delhi: T.M.H publishing Co Ltd.
- 2. Bhimbhra, P.S. (2003) Electrical Machinery. Khanna Publishers.

REFERENCE BOOKS:

- 1. Fitzgerald, Kingsley, Umans, (1990) Electric Machinery. 5th Ed. New Delhi: McGraw Hill Books co.
- 2. Stephen J. Chapman, (1985) Electric Machinery Fundamentals. New Delhi : McGraw Hill Book Co.
- 3. Say, M.G. (1980) Alternating current Machines.4th Ed. ELBS & Pitman. London:
- 4. Sen, S.K. (1984) Electrical Machinery. New Delhi: Khanna Publishers.

12

12

12

Subject Code:		Subjec	et Nam	e: POV	VER	SYS'	TEM -	I			TY/ LB/	L	T/ S.Lr	P/ R	C	
BEE18006											ETL					
		Prerec	luisite:	Basic	Elect	rical	& Ele	ctronic	es Engg		Т	3	0/0	0/0	3	
L : Lecture	T : T	'utorial	SLr:	Super	vised	Learı	ning P	: Proje	ect R : I	Researc	h C: Cr	edits				
T/L/ETL : 7	Theor	ry/Lab/	Embed	led Th	eory a	and L	ab									
OBJECTIV		1														
•		earn ab	out Pov	ver sys	tem		nom oto	***								
•	Tor	nodel t	bo trans	missio	1011 111 n 1ina	ne pa	ramete	18								
•	Tol	earn ah	out dist	ributio	n and	suhs	tation									
•	Tok	cnow al	out the	fault a	and pr	otect	ion									
COURSE (DUT	COME	ES (Cos): (3-5)											
CO1		Attain	knowle	dge on	the b	oasic (of Pow	er syste	em							
CO2		Knowl	edge or	transi	nissio	on lin	e parar	neter								
CO3		Ability	to mod	lel the	transr	nissio	on line	s								
CO4		Knowl	wledge on Distribution system													
CO5		Ability	ity to recover the faulted line Outcomes with Program Outcomes (POs)													
Mapping of	f Co	urse O	utcome	s with	Prog	ram	Outco	mes (P	Os)							
COs/POs		PO1	PO2	PO3	PO	94	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12	
CO1		Н	H	Η	E	I	L	Н	Н	L	H	Η	I	I	Η	
CO2		Μ	Μ	Η	Ν	1	L	Μ	Μ	L	H	Μ	Ν	Л	Η	
CO3		Μ	Μ	Μ	Ν	1	Μ	Μ	Μ	Μ	L	Μ	Ν	Л	Μ	
CO4		H	L	Μ	H	ł	Μ	H	Н	Μ	Μ	H]		Μ	
CO5		Μ	Μ	L	N	1	M	M	Μ	Μ	H	M	N	Л	L	
Cos / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	05				
<u>CO1</u>		<u> </u>	I		L		I	I	N	<u>M</u>	1	M				
<u>CO2</u>			1 1				<u> </u>	/ <u> </u>		L.						
C03			I T		M		N	л Т		<u>л</u>	1	r r				
C04		N	1 1		M		1	<u>т</u> Л		л Л	1	L M				
H/M/L india	cates	Streng	th of Co	orrelati	on]	H- Hi	igh. M	- Mediı	ım. L-L	OW	-	•				
		s	pu		-			cal	,							
		nce	6		S		t	hni								
	S	Scie	ses		tive	SS	ojec	Tec			2					
	nce	lg S	ss ienc	Ore	llec	tive	Prc	s / '								
ory	cie	erir	itie Sci	n C	пE	llec	al /	hip	ills	14	Idr					
lteg	ic S	ine	nan ial	graı	graı	пE	otic	rns	SI							
C ³	Bas	Eng	Hur Soc.	Pro	Pro	Opé	Pra	Inte Skil	Sofi	Lato						
				\mathbf{i}												
							1					1		I		

BEE18006

POWER SYSTEM - I

0/0 3 0/0 3

9

9

9

UNIT I INTRODUCTION TO POWER SYSTEM

Conventional sources of energy – Thermal, Nuclear, Diesel, Gas etc – Non-conventional Sources of Energy - Solar, Wind, Biomass, Geothermal, Tidal - Structure of Electrical Power System - Different operating Voltages

UNIT II TRANSMISSION LINE PARAMETERS

Mechanical design of transmission line between towers – sags and tension calculations with the effect of ice and wind - Parameters of Resistance, Inductance and Capacitance calculations - Single and three phase transmission lines - Single and Double circuits - Solid, Stranded and Bundled Conductors - Symmetrical and Unsymmetrical Spacing - Transposition of Lines - Concepts of GMR and GMD - Skin and Proximity Effects

MODELLING AND PERFORMANCE OF TRANSMISSION LINES UNIT III

Classification of lines - short line, medium line and long line - equivalent circuits, phasor diagram, attenuation constant, phase constant, surge impedance; transmission efficiency and voltage regulation, real and reactive power flow in lines, Power - circle diagrams, surge impedance loading, methods of voltage control; Ferranti effect

UNIT IV **DISTRIBUTION SYSTEM AND SUBSTATIONS**

Feeders, distributors and service mains – DC distributor – 2-wire and 3-wire, radial and ring main distribution - AC distribution - single phase and three phase 4-wire distribution - Substation - Classification, functions and major components - sample substation layout

UNIT V **FAULTS & PROTECTION**

Need and principles of protection - Nature, Causes and Consequences of faults - symmetrical components and fault calculation - Methods of Neutral grounding - Zones of protection and essential qualities of protection - Protection schemes - Protection against overvoltages

Total No. ofHours: 45

TEXT BOOKS:

- 1. V. K. Mehta, "Principles of Power Systems", S. Chand, New Delhi, 2005
- S.N. Singh, 'Electric Power Generation, Transmission and Distribution', Prentice Hall of India Pvt. 2. Ltd, New Delhi, 2002
- 3. Ravindranath, B. and Chander, N. (1997) Power System Protection and Switchgear, Wiley
- 4. Chakrabarti, A. Soni, M.L.Gupta, P.V. Bhatnagar, U.S. (2002) A Text Book on Power System Engineering. Dhanpat Rai & Co. Pvt. Ltd

REFERENCE BOOKS:

- 1. Patra, S.P. Basu, S.K. and Chowduri, S. (1983) Power systems Protection. Oxford and IBH
- 2. Sunil S. Rao, (1986) Switchgear and Protection. New Delhi: Khanna Publishers
- 3. Central Electricity Authority (CEA), 'Guidelines for Transmission System Planning', New Delhi

9

Q

Subject Code: BEC18107		Subjec IOT	et Nam	e: COI	MMU	JNIC	ATIO	N SYS	TEMS	AND	TY / LB/	L	T / S.Lr	P/ R	C	
DEC10107		Prerec	quisite:	Basic	Elect	rical	& Ele	ctronio	s Engg			3	0/0	0/0	3	
L : Lecture '	T : T	utorial	SLr:	Super	vised	Lear	ning P	: Proje	ect R : I	Researc	h C: Cre	dits				
T/L/ETL : T	Theorem	ry/Lab/	Embed	ded Th	eory a	and L	ab									
ODJECII	, г. • Т	o unde	rstand t	he Ana	log &	k Dig	ital Co	mmun	ication.							
•	• Т	To study	y about	the me	thods	to co	onvert .	Analog	to Digi	tal com	municat	ion u	sing coo	le the	ory.	
•	r e	To study	y about	differe	ent m	odula	tion te	chniqu	es							
•) T	o intro	duce va	rious r	nedia	for d	igital c	commu	nicatior	1						
COUDSE		comply	y the co FS (Cos)	$\frac{1}{2}$	$\frac{\text{of Interview}}{2}$	ernet	of Thi	ngs in t	he real	world s	cenario					
COURSE C		Canabl	Capable of understanding the concepts of Analog and Digital communication circuits													
		Cain l	Gain knowledge about the Communication conversion methods													
02		Gain k	an knowledge about the Communication conversion methods													
CO3		Gain k	Bain knowledge about the different concepts of modulation techniques													
CO4		Develo	Develop knowledge about the various digital communication media													
CO5		Understand and incorporate the concepts of IOT in different fields.														
Mapping of	f Co	urse O	utcome	s with	Prog	ram	Outco	mes (P	Os)	•						
COs/POs		PO1	PO2	PO3	PC)4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12	
C01		H	M	M	N	A A	L	L	M	M	L			ſ	H	
CO2 CO2			H M	H M							M			l T		
			M	M		Л				п u	Ш	L M		I T	<u>п</u> u	
C04		<u></u> М	H	H		Л	M	IVI I.	M	н	M	H		1	<u>и</u> М	
Cos / PSOs		PS	01	 P	SO2	1	PS	03	PS	604	PS	05	1	•	IVI	
CO1		Ι	_		L]	L	I	M	ľ	M				
CO2		Ι			Μ		Ν	A]	H	ľ	N				
CO3		H	I		Η		I	H	Ι	Μ]	L				
<u>CO4</u>		<u> </u>			M]	[L						
L/M/L indi	potos	Strong	1 th of C	orrolati	$\frac{\mathbf{L}}{\mathbf{n}}$	<u>и и</u>	I iah M	Modi				1				
	laits			JITEIati		11-11	ign, wr	- Meul	uIII, L-L	.0w						
Category	Basic Sciences	Engineering Sciences	Humanities an Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technic Skill	Soft Skills							
		\mathbf{r}														

BEC18107COMMUNICATION SYSTEMS AND IOT30/00/03

UNIT I SIGNALS & NOISE

Periodic & Aperiodic Signals – Noise - External Noise – Thermal Agitation – Shot Noise – Noise Figure – Signal to Noise ratio – Equivalent Noise resistance.

UNIT II INTRODUCTION TO COMMUNICATION

Basic Communication systems – Need for Modulation in communication systems – Amplitude Modulation – Double Side Band amplitude Modulation – Single sideband and VSB modulation – modulators. AM Transmitter and Receiver, FM transmitter and Receiver.

UNIT III MODULATION TECHNIQUES AND PULSE MODULATION

Phase modulation – Noise triangle – Pre-emphasis and de-emphasis – Stereophonic FM multiplex system – comparison of wideband and narrow band FM – AFC – Sampling theorem –Quantization, Quantization Error, PAM, PWM, PPM, PCM.

UNIT IV DIGITAL MODULATION & INFORMATION THEORY

ASK, FSK, PSK, Transmitter and Receiver. Introduction-Information & Entropy, Source Coding Theory, Discrete Memory less Channel, Mutual Information Channel Capacity, Channel Coding Theory.

UNIT V INTERNET OF THINGS

Introduction – Block diagram of IoT- IoT Architecture – Communication Technologies in IoT – Cloud Storage in IoT-Data Storage in IoT – Applications of IoT – Smart Home, Smart City, Smart Agriculture, Health Monitoring System.

Total No.of Hours: 45

TEXT BOOKS:

- 1. Roy Blake, (2002) Electronic Communication systems. 2nd Edn, Thomson Learning.
- 2. George Kennedy, (1992) Electronic communication systems, Tata McGraw Hill publications.
- 3. Michael Miller, (2015) The Internet of Things, Que Publishing

REFERENCE BOOKS:

- 1. Bruce Carlson, A. Taub& Schilling, (1986) Principles of Communication Systems, Tata McGraw Hill.
- 2. Simon Haykins, (2001) Principles of Communications, Prentice Hall of India.
- 3. Arshdeep Bahga, Vijay Madisetti (2015) Internet of Things A hands-on approach, Universities Press

9

9

Q

Subject Code	:		Subject I	Name				Ty/	L	T /	P/R	С		
BHS18NC1			THE IN	DIAN	CONST	TITUTIO	DN	Lb/		S.Lr				
		_	Prerequis	site NI	ſ			ETI		0/0	0/0	NC		
L · Locturo T	• Tutori		r · Supor	vised Le	orning	D · Projoc	t D · Do	ly	$\frac{2}{h C \cdot C}$	U/U Tradits	0/0	NC		
T/L/ETL : Th	eory/La	ar S.L. b/Embe	edded The	eorv and	d Lab	r . Flojec	ι κ. κε	searc	n c. c	leuns				
OBJECTIVE	ES:			<u>j</u>										
• To pr	ovide ar	n overvi	ew of the	e history	of the	making o	f Indiar	n Con	stitutio	on				
• To un	derstan	d the pr	eamble a	nd the b	oasic str	uctures of	f the Co	nstitu	tion.					
• To Ki	now the	fundan	nental rig	hts, dut	ies and	the direct	ive prin	ciples	s of sta	ate policy	/			
• 10 un	derstan	d the fu	nctionali	ty of th	e legisla	ature, the	e execut	ive a	nd the	judiciar	У			
COURSE OU	UTCON	IES (C	Os) : Aft	er stud	ying thi	the stu	the student would be able to							
CO1	To prov	ide an o	overview	of the h	nistory o	of the mal	king of I	India	n Cons	stitution				
CO2	To unde	erstand	the prean	nble and	the bas	sic structu	ures of t	he Co	onstitu	tion.				
CO3	To Kno	w the f	undament	tal right	s, duties	s and the	directiv	e prir	ciples	of state	policy			
Mapping of (Course	Outcon	tcomes with Program Outcomes (POs)											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1						Н	L	L	L	L				
CO2						H	L	L	L	L				
CO2						Н	L	L	Μ	L				
COs / PSOs	PSO	1	PSO2	2	PSO	3								
CO1	L		L		Μ									
CO2	L		L		М									
CO3	L		L		Μ									
H/M/L indica	ates Str	ength o	of Correl	ation]	H- High	n, M- Me	dium, I	L-Lov	N	1				
								al						
							t t	nic						
jory							jec	[Tec]						
ateg			SS	core			/ Pro	S / 2						
0	ses	ces	niti vial	am	am ves	ves	cal	ship						
	asic	ıgg ien(uma Soc	ogr	ogra	pen ecti	acti	tern	SIIIS	oft cills				
	B; Sc	E	Ξ & X	Pr	Pr El	Ы Ы О	P1	In	2	Š,				
			✓											

BHS18NC1	THE INDIAN CONSTITUTION	Ту	2	0/0	0/0	NC
UNIT I				31	Hrs	
The History	of the Making of Indian Constitution, Preamble	and the Ba	asic S	tructure	S	
UNIT II				31	Irs	
Fundamenta	l Rights and Duties, Directive Principles of Stat	e Policy				
UNIT III				31	Irs	
Legislature	Executive and Judiciary					
UNIT IV				31	Hrs	
Emergency	Powers					
UNIT V				31	Irs	
Special Prov	visions for Jammu and Kashmir, Nagaland and O	ther Regio	ons, A	mendm	ents	

Total Hours: 15

TEXT BOOKS:

1. D D Basu, Introduction to the Constitution of India, 20th Edn., LexisnexisButterworths, 2012.

REFERENCE BOOKS:

- 1. Rajeev Bhargava (ed), Ethics and Politics of the Indian Constitution, Oxford University Press, New Delhi, 2008.
- 2. Granville Austin, The Indian Constitution: Cornerstone of a Nation, Oxford University Press, Oxford, 1966.
- 3. Zoya Hassan, E. Sridharan and R. Sudarshan (eds), India's Living Constitution: Ideas, Practices, Controversies, Permanent Black, New Delhi, 2002.
- 4. Subhash C. Kashyap, Our Constitution, National Book Trust, New Delhi, 2011.

Subject Code: BHS18NC2		S T F	ubjec THE I KNOV	t Name : NDIAN VLEDGI	TRA E	ADIT]	10	NAL		Ty/ Lb/ ETL	L	T/ S.Lr	P/R	С
		P	rerequ	uisite: NI	L					Ту	2	0/0	0/0	NC
L : Lecture T : T/L/ETL : The	Tutorial ory/Lab/H	S.Lr Embeo	: Supe ided 7	ervised Lo Theory an	earni d La	ing P : lb	: P	roject	R : Re	search	C: Ci	redits		
OBJECTIVES • To und • To und • To Kno Shasht • To und in Anc	understand the Pre- colonial and Colonial Period, Indian Traditional Knowledge System understand the Traditional Medicine, Traditional Production and Construction Technolo Know the History of Physics and Chemistry, Traditional Art and Architecture and Vastu Ishtra, Astronomy and Astrology understand the Origin of Mathematics, Aviation Technology in Ancient India, Crafts and Ancient India													m logy tu nd Trade
COURSE OU	TCOME	S (CC	\mathbf{Ds}): A	After stud	lyin	g this	co	urse t	he stu	dent v	vould	be able	to	~
CO1	To under	stand	the P	re- coloni	al ar	nd Col	lon	ial Per	riod, Ir	ndian 7	Fraditi	onal Kr	lowledg	e System
CO2	To under Technolo	rstand Ogy	the T	raditional	l Me	dicine	, Т	raditio	onal Pr	oducti	ion an	d Const	ruction	
CO3	To under Trade in	stand Ancie	the O ent Inc	rigin of N lia	Aath	ematio	cs,	Aviati	ion Te	chnolo	ogy in	Ancient	India, (Crafts and
Mapping of C	ourse Ou	itcom	es wit	h Progra	am (Outcor	me	es (POs	s)					
COs/POs	PO1	PO2	PO3	PO4		PO5	;	PO6	PO7	PO8	PO9	PO10	PO11	PO12
<u>CO1</u>		TT	TT	T				м				м		T
CO1 CO2		п Н	п Н	L L			_	M				M		L L
CO2		Н	Н	L				M				Μ		L
COs / PSOs	PSO1	I		PSO2	2	PS	03	3						
CO1	L			L		Μ								
CO2	L			L		Μ								
CO3	L			L		Μ								
H/M/L indicat	tes Streng	es Strength of Correlation H-						- Medi	ium, L	-Low				
Category	Basic Sciences	Engg Sciences		 ≺ & Social Sciences 	Program core	Program	Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills			

BHS18NC2 THE INDIAN TRADITIONAL KNOWLEDGE Ty 2 0/0 0/0 NC

UNIT I	3Hrs
Historical Background: TKS During the Pre- colonial and Colonial Period, Indian Traditional	
Knowledge System	
UNIT II	3Hrs
Traditional Medicine, Traditional Production and Construction Technology	
UNIT III	3Hrs
History of Physics and Chemistry, Traditional Art and Architecture and Vastu Shashtra, Astronom Astrology	iy and
UNIT IV	3Hrs
Origin of Mathematics, Aviation Technology in Ancient India, Crafts and Trade in Ancient India	
UNIT V	3Hrs
TKS and the Contemporary World, TKS and the Indian Union, TKS and IT Revolution	
Total	Hours: 15

TEXT BOOKS:

- 1. Amit Jha (2009), Traditional knowledge system in india, 1st Edition, Delhi University (North Campus)
- 2. Dr.A.K.Ghosh (2011), Traditional Knowledge of Household Products

Subject Code: BEE18ET1		Subjec INTE(ct Name GRATI	e: LIN ED CII	EAR RCUI	ANI TS	D DIGI	TAL			TY / LB/ ETL	L	T / S.Lr	P/ R	C	
		Prereg	uisite:	BEE18	8001						ETL	1	0/1	3/0	3	
L : Lecture 7	$\Gamma:\mathbf{T}$	utorial	SLr:	Superv	vised 1	Lear	ning P	: Proje	ect R : l	Researc	h C: Cre	edits				
T/L/ETL : T	heor	y/Lab/	Embed	ded The	eory a	ind L	Lab									
OBJECTIV	E: To a	4.1. dr. th	a IC fai	miantin		aadu										
•	TO SI	tudy tii tudy ch	e IC Iai	istics 1	n pro ealize		re. wite an	d desig	m for si	anal an	alveiem	ing (n_amn	ICs		
•	To si	tudy en tudy in	ternal f	inction	val blo	ocks	and the	a uesig	cations	of speci	al ICs li	ke Ti	p-amp mers F	ICs. ILL ci	rcuits	
	regul	lator C	ircuits.	ADC	iui oit	JURD	und th	uppin	cutions	or speed		KC II	iners, 1		realts,	
•	Fam	niliarity	of diff	erent ty	pes o	of gat	tes usin	g truth	table w	vith logi	c circuit	s.				
•]	Fami	iliarity	iarity to use logic gates in sequential and combinational circuits.													
COURSE O	UT	COME	COMES (Cos): (3-5)													
CO1		Capable of understanding the concepts of IC fabrication														
CO2		Realization of Circuits using Op-amps														
CO3		Knowledge about Special IC's and apply in designing logic circuits														
CO4		Knowl	Knowledge about the basic gates													
CO5		Capable to design logic Circuits using gates														
Mapping of	Cot	irse Oi	utcome	s with	Prog	ram	Outco	mes (P	Os)							
COs/POs		PO1	PO2	PO3	PO	4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12	
CO1		Μ	Μ	Μ	H	I	Μ	L	Μ	Μ	L	L	N	1	Μ	
CO2		H	H	Μ	N	ſ	H	L	Μ	L	Μ	Μ]		М	
CO3		M	M	H	H	I	M	L	L	L	M	<u>H</u>	N	1	L	
<u>CO4</u>		L		<u>M</u>	N	1		M		L	M	<u>M</u>		1	M	
				<u>H</u>		1	M						N	/1	L	
		150		P	502 M		<u> </u>	03	PS	04 M	PS	105				
$\frac{CO1}{CO2}$			L T		<u>и</u> н		1 T		I T	VI M	I I	r r				
CO2		H	1 [M		I	<u>.</u>		<u>vi</u> []		<u>с</u> Г.				
CO4		N	1		L		N	 /[L		 L				
CO5		N	1		H		Ι		I	М]	L				
H/M/L indic	ates	Streng	th of Co	orrelati	on I	H- H	igh, M	Mediu	um, L-L	OW		T				
Category Basic Sciences Engineering Sciences Humanities and Social Sciences					Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills							
				7												

BEE18ET1 LINEAR AND DIGITAL INTEGRATED CIRCUITS 1 0/1 3/0 3

UNIT I IC FABRICATION

IC classification, fundamental of monolithic IC technology, epitaxial growth, masking and etching, diffusion of impurities. Realization of monolithic ICs and packaging. Fabrication of diodes, capacitance, resistance and FETs

UNIT II CHARACTERISTICS AND APPLICATIONS OF OP AMP

Ideal OP-Amp characteristics, offset voltage and current, differential amplifier; frequency response of OP-AMP; Basic applications of op-amp – summer, differentiator and integrator - Instrumentation amplifier, comparators, multivibrators, waveform generators, clippers, clampers, peak detector, S/H circuit

UNIT III SPECIAL IC'S

555 Timer circuit – Functional block, characteristics & applications; 566-voltage controlled oscillator circuit; 565-phase lock loop circuit functioning and applications, Analog multiplier ICs

UNIT IV BOOLEAN ALGEBRA

Deriving a Boolean equation from truth table-simplification of Boolean functions using K-map & Quine Mc Cluskey method, Implementation of a Boolean function using Logic gates and universal gates

UNIT V COMBINATIONAL CIRCUITS AND SEQUENTIAL CIRCUITS

Design of adder, subtractor, comparators, code converters, encoders, decoders, multiplexers and demultiplexers- Function realization multiplexers - Latches-Flip flops - Mealy and Moore Models- Design of Shift Registers and counters(Synchronous and Asynchronous Sequential Circuits) - Hazards

TEXT BOOKS:

- 1. Ramakant, A. Gayakward, (2003)Op-amps and Linear Integrated Circuits,6th Edn,Pearson Education PHI.
- 2. Roy Choudhary, D. Sheil B. Jani, (2003) Linear Integrated Circuits, 2nd Edn, New Age.
- 3. Morris Mano, M. (2002) Digital Logic and Computer Design, Prentice Hall of India

REFERENCE BOOKS:

- 1. Jacob Milman, Christos C. Halkias, (2003)Integrated Electronics Analog and Digital circuits system, Tata McGraw Hill.
- 2. Robert F. Coughlin, Fredrick F. Driscoll, (2002)Op-amp and Linear ICs. 4th Edn,Pearson Education/ PHI. Charles H. Roth, (2002) Fundamentals Logic Design, 4th Edn, Jaico Publishing.
- 3. Floyd,(2003) Digital Fundamentals, 8th Edn, Pearson Education.
- 4. John F. Wakerly, (2002) Digital Design Principles and Practice, 3rd Edn, Pearson Education

Total No. of Hours: 45

9

9

9

Subject Code:	ŝ	Subjec	et Nam	e: EL	ECTI	RICA	LAB	TY / LB/	L	T / S.Lr	P/ R	C				
BEE18L03											ETL					
]	Prerec	uisite:	BEE1	8001						L	0	0/0	3/0	1	
L : Lecture 7	ר : Tו	ıtorial	SLr :	Super	vised	Lear	ning P	: Proie	ct R : F	Researc	h C: Cre	edits		1	1	
T/L/ETL : T	heory	y/Lab/	Embed	ded Th	eory a	and L	ab	· • j ·								
OBJECTIV	E:															
•	Го аг	nalyze	the Loa	ad Cha	racter	istics	of Syr	nchrono	ous mac	hines						
•	Го fi	nd Vo	ltage R	egulati	on of	Sync	hronou	is mach	nines.							
•	Го st	udy th	e effect	of fre	quenc	y and	l voltag	ge cont	rol actio	n of Th	ree pha	se ind	uction 1	nachi	nes.	
•	Гo be	e fami	liar witl	n the e	quival	lent c	ircuit c	of singl	e phase	inductio	on mach	nines.				
• 7	Гo st	udy th	e Perfo	rmance	e Cha	racter	istics o	of Spec	ial Mac	hines						
COURSE O	UTC	COMES (Cos): (3-5)														
CO1	1	Determine the characteristics of transformers and induction motors.														
CO2	I	Understand the basic knowledge of alternators														
CO3	1	Analyze the effect of frequency and voltage control action of Three phase induction														
	1	nachir	achines.													
CO4	I	Famili	amiliar with the equivalent circuit of single phase induction machines													
CO5	1	Analyze the Performance Characteristics of Special Machines														
Mapping of	f Course Outcomes with Program Outcomes (POs)															
COs/POs]	PO1	PO2	PO3	PC)4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12	
CO1		Η	Η	Η	I	I	Η	H	Η	Μ	Η	Μ	E	I	Η	
CO2		Μ	Μ	Μ	N	A	Μ	Μ	Μ	Μ	Μ	L	E	I	L	
CO3		Η	Η	Η	I	H	Η	H	Н	Μ	Μ	Μ	E	I	Η	
CO4		Μ	Μ	Μ	N	A	Μ	Μ	Μ	Μ	Μ	Μ	N	1	Η	
CO5		Η	Н	Н	I	Η	Н	H	Н	Μ	Η	Μ	E	I	L	
Cos / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	05				
CO1		H	I		Η		I	H	I	I	I	N				
CO2		N	1		Μ		N	A	Ν	Л	Ι	N				
CO3		H	I		Η		I	I	I	I	Ι	N				
CO4		Ν	1		Μ		N	Л	Ν	Л	Ι	N				
CO5		H	I		Η		I	I	I	I	Ι	N				
H/M/L indic	ates !	Streng	th of C	orrelati	ion	H- H	igh, M	- Medi	ım, L-L	ow		-		1		
Category	Basic Sciences	Engineering Sciences Engineering Sciences Humanities and Social Sciences Program Electives Open Electives Practical / Project Internships / Technical Skill Soft Skills														
							\mathbf{r}									

BEE18L03 ELECTRICAL MACHINES - II LAB 0 0/0 3/0 1

LIST OF EXPERIMENTS

- 1. Regulation of Three Phase Alternator By EMF and MMF Methods
- 2. Regulation of Three Phase Alternator By ZPF and ASA Methods
- 3. Load Test on Three Phase Alternator
- 4. Synchronizing and Parallel operation of Alternators
- 5. Performance Characteristics Of Synchronous Motor (V And Inverted V Curve)
- 6. Load Test on Three Phase Induction Motor
- 7. No load and blocked rotor test on three-phase induction motor
- 8. Load Test on Single Phase Induction Motor
- 9. Speed Control of Three Phase Induction Motor
- 10. Determination of Basic Step Angle Measurement Of Stepper Motor
- 11. Determination of the Characteristics of Repulsion Motor
- 12. Determination of the Characteristics of Universal Motor

Total No. of Hours: 45

Subje Code: BEE1	ct 8L04		Subject MEA	Name: SUREME	AB	TY / LB/ ETL	L	T / S.Lr	P/ R	С						
			Prerequ	isite: BEE	18004							L	0	0/0	3/0	1
L:Le	cture '	T : 1	Futorial	SLr : Supe	ervised	Lear	ning	P: Pr	oject R	R : Rese	earch C	: Credit	s			
T/L/E	TL : 7	Theo	ory/Lab/E	Embedded 7	Theory a	and L	ab									
OBJE	CTIV	/E:														
	•	To	understa	nd the Meas	sureme	nt and	d co	ntrol c	oncepts	5						
	•	Stu	dents wil	l obtain kn	owledg	e abo	ut di	ifferen	t types o	of Tran	sducers	, bridge	es and	its cha	racter	istics.
	•	То	calibrate	energy m	eters in	i sing	gle p	hase,	three p	hase ar	nd mea	sure the	e pow	ver, ir	on los	s and
		power factor. To familiarize the students with the measurement of low resistance, inductance and capacitance														
	•	To familiarize the students with the measurement of low resistance, inductance and capacitance factor using simulation package such as LARVIEW (MATLAR etc.													tance-	
COLU		tact	factor using simulation package such as LABVIEW /MATLAB etc.													
COUR CO1	KSE (TCOMES (Cos): (3-5)													
	Stud	ents	ts get familiarized about different types of Transducers, bridges and its characteristics.													
CO2	Und	ersta	ands the concept of calibration of energy meters in single/three phase and measure the power													er
CO3	The	e students gets familiarized with the measurement of low resistance, inductance and capacitance-														
~~ .	facto	actor using simulation packages etc.														
CO4	O4 Attained knowledge on P/I and I/P Converters															
CO5	Atta	ined	l knowled	lge on Sma	rt Tran	sduce	ers									
Марр	ing of	f Co	urse Ou	tcomes wit	h Prog	ram	Out	comes	(POs)							
COs/I	POs		PO1	PO2	PO3	PO	4	PO5	PO6	PO7	PO8	PO9	PO1	0 PC	011	PO12
CO1			Μ	L	H	N	1	H	Μ	Н	Μ	H	Μ]	Η	H
CO2			Μ	L	Μ	H	[H	H	H	Μ	Μ	L]	Η	Μ
CO3			L	Μ	H	H	[Η	H	H	H	H	H]	Η	L
CO4			Μ	H	Η	H	[Η	Н	Η	Η	H	H]	I	Μ
CO5			Η	Μ	Η	H	[H	L	H	L	Н	Μ]	I	Μ
Cos /]	PSOs		PS	501	PS	SO2		PS	03	PS	04	PS	SO5			
CO1			1	М		H		I	I	I	I]	H			
CO2]	H		H		I	I	ŀ	I]	H			
CO3]	H		H		ł	I	ŀ	I]	H			
CO4]	H		H		H	I	I	I]	H			
CO5				L		M		H	M		1]	H			
H/M/L	/L indicates Strength of Correlation H- High, M- Medium, L-Low															
Category	Basic Sciences Engineering Sciences Humanities and Social Sciences				Program Core	Program	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills						
					~											

BEE18L04 MEASUREMENT AND INSTRUMENTATION 0 0/0 3/0 1 LABORATORY

LIST OF EXPERIMENTS:

- 1. Study of temperature measuring transducers (Thermocouples).
- 2. Study of displacement and pressure transducers (LVDT)
- 3. Measure the stress and strain using strain gauge.
- 4. AC Bridges.
- 5. DC Bridges.
- 6. Calibration of Single phase Energy meter.
- 7. Calibration of Three-phase Energy meter.
- 8. Measurement of Three-phase power and power factor.
- 9. Hall effect transducer.
- 10. Characteristic of LDR, Thermistor and thermocouple.
- 11. Ramp response characteristic of filled in system thermometer.
- 12. P/I and I/P converters.
- 13. Study of smart transducers

Total No of Hours: 45

Subject Code: BEC18IL	.5	Subject COMM	Name: SIG UNICATI(isite: Basic	NAL DN LA	PRC AB rical	OCES	SING	AND	σ		TY LB/ ET	/] / L		T / S.Lr	P / R 3/0	C
T T	-	Trerequ		. Encu	1 ICai	<u>.</u>			5	1.0			0	0/0	5/0	1
L: Lectur	e T :	Tutorial	SLr : Sup Emboddod 7	ervised	d Lea	rning Lob	P : F	Project R	: Resea	rch C:	Credits					
OBIECT	IVE.	01 y/ La0/1		neory	anu	Lau										
ODJECT	•	Analyze a	nd impleme	ent dio	rital s	ional	nroce	essing svs	tems in	time d	omain					
	• I	Understan	nd the implement	ementa	tion of	of the	DFT	in terms	of the F	FT as	well as	som	ne o	f its ar	nlicat	tion
	• 1	Use MAT	LAB for D	SP svs	tem :	analy	sis and	d design	or the r	1 1, us	wen us	5011		1 115 up	prica	lion
	• 1	Fo impler	nent the var	ious a	nalos	y and	digita	il modula	tion and	demo	dulation	ı Tea	chni	iques		
	• 5	Students y	will be able	to det	ermi	ne the	e suita	bility of	a partici	ilar coi	nmunia	ratio	n sy	vstem	to a g	iven
	r	problem.			•••••			.011109 01	a puiro					,		
COURSE		TCOME	S (Cos): (3	-5)												
CO1		Acquired	l knowledge	e DFT	and	FFT										
CO2		Ability to	o design lin	ear dig	gital f	filters	both	FIR and 1	IIR usin	g diffe	rent tec	hniq	lues	•		
CO3		Ability to	o understan	d the c	conce	pt of	Multi	-rate sign	al proce	essing a	and sam	ple	rate	conve	ersion	
CO4		Acquired	cquired knowledge of analog and digital communication.													
CO5		Acquired	cquired knowledge different Modulation Techniques.													
Mapping	of C	ourse Ou	tcomes wit	th Pro	gran	ı Out	come	s (POs)	-							
COs/POs		PO1	PO2	PO3	P	04	PO5	PO6	PO7	PO8	PO9	PO	10	POI	1 P	012
CO1		Μ	H	H	Ι	M	Η	H	Η	Μ	H	N	M	H		L
CO2		Μ	H	H	I	M	Μ	Μ	Μ	Μ	H	ł	H	H		L
CO3		L	M	M]	Ĺ	H	H	H	H	H	ŀ	H	H		L
CO4		Μ	L	L	I	M	H	H	H	H	H	H	I	H		H
CO5	<u>,</u>	L	M	M		M	<u>H</u>		H	M	H			H		L
Cos / PSC)s	PS	<u>501</u>	P	<u>802</u>		P	<u>803</u>	PS	04	P	<u>505</u>				
			L T					H H	l T	1 T		<u>H</u> 11				
C02		ז						H M		1 Л		<u>н</u> u				
CO4		<u>ו</u> ז	M		M			L		/ 1		<u>н</u> Н				
CO5		<u>ו</u> ן	M		L			M		<u></u>		M				
H/M/L inc	licate	es Strengt	h of Correla	ation	H- H	High.	M- M	ledium. L	Low	-						
	SS			Φ		sə		E	2011							
~	ence	gu	es al	Cor		ctiv		os/ Sk	s							
gor	Sci	eri es	niti oci: ces	Ш	В	Ele	al	shif ical	kill							
ate§	sic	gine	mai I S. ien(gra	gra	en]	ctic	stras	ît Sl							
Ü	Bas	En _{ Sci	Hu and Sc	Pro	Pro	Op	Pra	Inte Tec	Sof							
							\mathbf{r}									

BEC18IL5 SIGNAL PROCESSING AND COMMUNICATION LAB 0 0/0 3/0 1

LIST OF EXPERIMENTS

SIGNAL PROCESSING :

- 1. Implementation of Sampling & Waveform Generation
- 2. Implementation of FIR & IIR Filters
- 3. Implementation of Fast Fourier Transforms
- 4. Implementation of Adaptive Filters
- 5. Implementation of Multirate Signal Processing Measurement on Signal Parameters in Time Domain & Frequency Domain.
- 6. Representation of Time Series; Computation Of Convolution Using Matlab
- 7. DFT Computation Using Matlab
- 8. Computational Experiments With Digital Filtering DSP Using Matlab

COMMUNICATION :

- 1. Design and Testing of Amplitude Modulation
- 2. Design and Testing of Amplitude Demodulation
- 3. Design and Testing of Frequency Modulation
- 4. Design and Testing of Frequency Demodulation (Any One Method)
- 5. Design and Testing of Pulse Amplitude Modulation & Demodulation
- 6. Design and Testing of ASK, FSK and PSK
- 7. Study of Line Coding and Decoding Techniques
- 8. Study of Sampling
- 9. Study of Pulse Code Modulation

Total No.of Hours: 45

Subject Code: BEE18TS1	Subj Softv	ect Nam vare Pac	e: TE(kages)	CHNI)	CAL	SKIL	L 1(Co	omputer		TY / LB/ ETL	L	T / S.Lr	P/ R	C	
	Prer	equisite:	-							ETL	0	0/0	3/0	1	
L : Lecture T :	Tutoria	l SLr:	Super	vised	Learr	ning P	: Proje	ct R : R	esearch	n C: Cre	dits				
T/L/ETL : The	ory/Lat	/Embed	ded Th	eory a	and L	ab									
• T	• 1e obie	ctive is t	o dev	elop t	he te	chnica	ıl skill	of the s	tudent	s					
COURSE OU	TCOM	ES (Cos	s): (3-5	5)											
CO1	Deve	lop the	techni	cal sl	cills 1	require	ed in th	e field	of stud	y					
CO2	Brid	ge the g	ap bet	ween	the s	kill re	quirem	ents of	the en	nployer	or in	dustry	and	the	
	com	betency	of the	stude	ents.										
CO3	Enha	nce the	emplo	oyabil	ity o	f the s	tudents	5.							
Mapping of C	Course (rse Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
COs/POs	PO1	D1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 H H H H H M M H M H													
CO1	Η	H H H H H H M I									Μ		H	Μ	
CO2	H	Н	Μ]	H	Η	Н	Μ	Μ	Н	Η		H	Η	
CO3	H	Н	H]	H	Η	Н	Μ	Μ	Н	Η		H	Н	
Cos / PSOs	Р	501	I	PSO2		PS	03	PS	04	PS	05				
CO1		H		Η		I	I	H	I]	H				
CO2		H		Η		I	I	H	I]	H				
CO3		H		Η		ŀ	I	H	I]	H				
CO4		H		H		I	I	H	ł]	H				
H/M/L indicat	es Stren	gth of C	orrelat	ion	H- Hi	gh, M-	· Mediu	ım, L-Lo	ow						
Category	Engineering Sciences	Engineering Sciences Engineering Sciences Humanities Humanities Humanities Hogram Core Sciences Sciences Sciences Sciences Sciences Soft Skills Internships / Technical Skill Internships / Technical Skills													

Subject Code: BEN18SK1		Subjec Confid	et Name lence B	e: SOF Juilding	T SK g)	KILL	-I ((Career	· &		TY / LB/ ETL	L	T / S.Lr	P / R	C
T. J. L. a. star and T	·	Prereg	uisite:	- C		T		. D		1		1.40	0/0	3/0	
L: Lecture I		utoriai	SLT: Embody	Superv	vised	Lear	ning P	: Proje	ect K : F	Research	n C: Cre	alts			
	F.	y/La0/.	Lindeu		cory a		au								
• T	г. Го с	reate av	wareneo	ss in st	udent	s var	ious to	n com	nanies h	elning t	hem im	nrove	their sl	cill set	t
r	natr	ix. lead	ling to	develo	o a po	s, vai sitive	e frame	e of mi	nd.	ciping (prove	then si		-
• 7	Го h	elp stu	dents b	e aware	e of v	ariou	s techn	iaues o	of candid	late rec	ruitmen	t and	help the	em pre	epare
	CV's	s and re	esume.					1					1	I	1
•]	Гo h	elp stu	dent ho	w to fa	.ce va	rious	types	of inter	view, pi	reparing	g for HR	, tech	nical in	tervie	ws.
•]	Гo h	elp stu	dents ir	nprove	their	verb	al read	ing, na	rration a	and pres	entatior	ı skill	s by per	forms	\$
V	varic	ous mo	ck sessi	ons.											
COURSE O	UT	COME	ES (Cos): (3-5)										
CO1		Be awa	are of v	arious	top co	ompa	nies lea	ading to	o improv	vement	in skills	amo	ngst the	m.	
CO2		Be awa	are of v	arious	candi	idate	recruit	ment to	echnique	es like g	group di	scuss	ion, inte	erview	/s and
GOA		be able	to prep	bare CV	√'s ar	nd res	sumes.	1		1.0	UD				
CO3		Prepare	epare for different types of interviews and be prepared for HR and technical interviews.												
	-	Improv	prove their verbal, written and other skills by performing mock sessions.												
Mapping of	Cou	irse Oi	utcome	s with	Prog	ram	Outco	mes (P	Os)	-	· · · · · ·				
COs/POs		PO1	PO2	PO3	PO)4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12
CO1		L	L	L	I		L	M	Μ	H	Μ	H	N	1	Н
CO2		L	L	L	I		L	M	Μ	H	Μ	Η	N	1	H
CO3		L	L	L	I		L	M	Μ	H	Μ	H	N	1	H
CO4		L	L	L	I		L	Μ	Μ	H	Μ	H	N	1	H
Cos / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	05			
CO1		L	4		L		ł	I	l						
<u>CO2</u>		L	4		L		H	<u>I</u>	I]				
<u>CO3</u>			/				<u> </u>	<u> </u>							
		L C(marked	$\frac{1}{1}$	1	L		1 1. N	1 M. 15				4			
H/M/L indica	ates	Streng	th of Co	orrelati	on .	H- H	ign, M·		um, L-L	ow					
Category	Basic Sciences	Engineering Sciences	Humanities an Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technic: Skill	Soft Skills						
			\mathbf{r}												

BEN18SK1 SOFT SKILL - I (Career and Confidence Building) 0 0/0 3/0 1

UNIT I

Creation of awareness of top companies / improving skill set matrix / Development of positive frame of mind / Creation of self-awareness.

UNIT II

Group discussions / Do's and don'ts – handling group discussions / what evaluators look for interpersonal relationships / Preparation of Curriculum Vitae / Resume.

UNIT III

Interview – awareness of facing questions – Do's and don'ts of personal interview / group interview, enabling students to prepare for different proce3dures such as HR interviews and Technical Interviews / self-introductions.

UNIT IV

Verbal aptitude, Reading comprehension / narration / presentation / Mock Interviews.

UNIT V

Practical session on Group Discussion and written tests on vocabulary and reading comprehension

Practical component P : Include case studies / application scenarios

Research component R : Future trends / research areas / Comparative Analysis

Total No. of Hours: 30

6

6

6

6

Subject Code:	5	Subjec	et Nam	e: PO	WER	SYS	ГЕМ -	· II			TY/	L	T/ S.Lr	P/ R	C	
BEE18007											ETL		5.11			
]	Prerec	uisite:	Basic	Elect	trical	& Ele	ctroni	cs Engg	5,	Т	3	1/0	0/0	4	
]	BEE18	3006													
L : Lecture 7	[: Tı	utorial	SLr:	Super	vised	Learr	ning P	: Proje	ect \mathbf{R} :]	Researc	h C: Cre	edits				
T/L/ETL : T	heory	y/Lab/	Embed	led Th	leory	and L	ab									
OBJECTIV	E:	• 1	1 1	1	1	ı ·		1 0	D 1							
•	Toatt	ain kn	owledg	e abou	it the	basic	princip	ples of	Relay							
•	IOKI Toot	now at	sout the	appar	atus p	brotect	lion	Cinoni	t huaalra	***						
•	10 at To m	lani Ki vodal ti	ho pow	ge on i		mpon	elays,	Circui	l Dieake	18						
COURSEO			ES (Cos))• (3 -5	6111 CC 5)	mpon	lents									
CO1		Ability	to wor	k on R	elav											
CO2		Attaine	ed knov	ledge	on th	e prot	ection	of Ap	oaratus							
CO3		Ability	to wor	k on N	Jumer	rical R	elays									
CO4	1	Ability	to desi	gn Cir	cuit b	oreake	rs									
CO5	1	Ability	to mod	lel Pov	wer S	ystem	Comp	onents								
Mapping of	Cou	rse O	e Outcomes with Program Outcomes (POs)													
COs/POs]	PO1	PO2	PO3	PC)4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12	
CO1		Н	Н	Н	I	H	L	Н	Н	L	Н	Н	E	[Н	
CO2		Μ	Μ	Н	I	N	L	Μ	Μ	L	Η	Μ	N	1	Н	
CO3		Μ	Μ	Μ	Ι	N	Μ	Μ	Μ	Μ	L	Μ	N	1	Μ	
CO4		Η	L	Μ]	H	Μ	H	Η	Μ	Μ	Η	I	4	Μ	
CO5		Μ	Μ	L	Ν	N	Μ	Μ	Μ	Μ	H	Μ	N	1	L	
Cos / PSOs		PS	01	P	PSO2		PS	03	PS	504	PS	05				
CO1		H	I		L		ŀ	H	I	М	Ι	N				
CO2		N	1		L		N	Λ		L]	H				
CO3		N	1		Μ		N	Λ	1	M	Ι	M				
CO4		<u> </u>	l r		M		I	<u>I</u>	1	M						
CO5	2422	N.	1 th of C		M		N ah M	Madi		M	1	VI				
H/M/L indic	ates	Streng		orrelat	ion	H- H1	gn, M		um, L-L	LOW		1				
Category	Basic Sciences	Engineering Sciences	Humanities an Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technic Skill	Soft Skills							
				\mathbf{i}												

BEE18007

POWER SYSTEM - II

UNIT I RELAYS

Operating Principles of relays - Common relay terms - Universal Torque Equation.– Electromagnetic relays, Induction relays – Over current relays - Directional, Distance, Differential and negative sequence relays

UNIT II APPARATUS PROTECTION

Generator Protection - Motor protection - Bus bar protection and Transmission line and Feeder protection - CT and PT protection

UNIT III STATIC AND NUMERICAL RELAYS

Static relays - components of static relays – over current relays, differential protection and distance protection – Microprocessor based relays - Block diagram of Numerical relays

UNIT IV CIRCUIT BREAKERS

Arc phenomena – arc interruption – Current zero interruption theories – recovery voltage and restriking voltage - RRRV – current chopping – Resistance switching- Various types of circuit breakers – selection and Testing of circuit breakers – Fuses – HRC fuses

UNIT V MODELLING OF POWER SYSTEM COMPONENTS

Modern Electric Power System and its component -Modelling of Generator, Transformer, Transmission System and Load Representation in Single line diagram – per phase and per unit representation – change of base - Analysis for system planning and operational studies

Total No. of Hours: 60

TEXT BOOKS:

- 1. V. K. Mehta, "Principles of Power Systems", S. Chand, New Delhi, 2005
- 2. S.N. Singh, 'Electric Power Generation, Transmission and Distribution', Prentice Hall of India Pvt. Ltd, New Delhi, 2002
- 3. Ravindranath, B. and Chander, N. (1997) Power System Protection and Switchgear, Wiley
- 4. Chakrabarti, A. Soni, M.L.Gupta, P.V. Bhatnagar, U.S. (2002) A Text Book on Power System Engineering. Dhanpat Rai & Co. Pvt. Ltd

REFERENCE BOOKS:

- 1. Patra, S.P. Basu, S.K. and Chowduri, S. (1983) Power systems Protection. Oxford and IBH
- 2. Sunil S. Rao, (1986) Switchgear and Protection. New Delhi: Khanna Publishers
- 3. Central Electricity Authority (CEA), 'Guidelines for Transmission System Planning', New Delhi

12

12

12

0/0

4

1/0

3

12

12

Subject Code:		Subje	et Namo	e: CO	NTR	OL S	YSTE	Μ			TY/	L	T/ SLr	P/ R	C	
BEE18008											ETL		5.11			
		Prerec	uisite:	BMA1	18001	, BM	A1800	3, BEI	E18002		Т	3	0/0	0/0	3	
L : Lecture	T:T	utorial	SLr:	Super	vised	Learr	ning P	: Proje	ect R:	Researc	h C: Cre	dits				
T/L/ETL : 7	Theor	y/Lab/	Embedo	ied Th	neory	and L	ab									
OBJECTIV	VE:															
•	Und	erstand	the bas	sic con	npone	ents of	f contro	ol syste	ems							
•	Capa	able to	solve p	roblen	ns in t	ime d	omain	& free	luency of	lomain						
•	Unde	erstand	the fre	quency	y resp	onse	tor the	stabili	ty of the	e systen	1					
•	Und	erstand	the cor	icept c	of Coi	npens	sators									
		erstand	the Sta	te spa	ce An	alysis	s of dif	ferent	variable	S						
COURSE C		COMI The st	<u>15 (Cos</u>): (3-3) tond t	haha	i		to of co	nteal ar	stoma					
		$\frac{1}{1}$ ne su		indersi		ne bas		nponen	$\frac{115}{1}$ of co	ntroi sy	stems.		1 ·			
CO2		The stu	udents a	re cap	able t	o solv	e prot	olems 1	n time d	lomain	& freque	ency of	lomain			
CO3		The stu	udents u	inderst	tand t	he fre	quency	y respo	nse for	the stab	ility of t	he sy	stem.			
CO4		The stu	udents u	inderst	tand t	he cor	ncept c	of Com	pensato	rs						
CO5		The stu	the students understand the State space Analysis of different variables													
Mapping of	f Cou	ırse O	se Outcomes with Program Outcomes (POs)													
COs/POs		PO1	PO2	PO3	PC)4	PO5	PO6	PO7	PO8	PO9	PO1	.0 PO	11	PO12	
CO1		Η	Н	Μ]	H	Η	Μ	Μ	L	Μ	Μ	I	I	L	
CO2		Η	Μ	Η]	H	Η	Μ	Н	Μ	Μ	Μ	I	I	L	
CO3		Η	Н	Η]	H	Η	Η	Н	L	Μ	Η	I	I	Μ	
CO4		Μ	Н	L	Ι	Ν	L	L	L	L	Μ	L	I		L	
CO5		Η	Н	Η]	H	Η	L	L	L	Μ	L	I	I	Μ	
Cos / PSOs	;	PS	01	P	PSO2		PS	03	PS	504	PS	05				
CO1		H	I		Η		I	H	I	М	I	I				
CO2		H	I		Η		I	H]	H	I	I				
CO3		H	I		Η		I	H	I	М	H	I				
CO4		Ι			L		Ν	N		L	N	1				
CO5		M H H M									H	I				
H/M/L indi	cates	Streng	th of Co	orrelat	ion	H- Hi	gh, M	- Medi	um, L-L	JOW		<u> </u>		r —		
	s	ciences	trength of Correlation H- High, M- Medium, L-Low													
Category	asic Science	ngineering S	umanities ocial Scienc	rogram Core	rogram Elect	pen Elective	ractical / Pro	ternships / 7 kill	oft Skills							
	<u> </u>	Щ	Ϋ́ς Ν	√ ₽	4	C		Ir	S							

BEE18008 CONTROL SYSTEM 3 0/0 0/0 3

UNIT I INTRODUCTION TO CONTROL SYSTEMS COMPONENTS

Open and closed loop Systems -mathematical models of physical systems-differential equations-transfer function-armature control-field control-block diagram reduction-signal flow graphs

UNIT II TIME RESPONSE ANALYSIS

Standard test signals-time response of first order - second order systems-steady state errors and error constants

UNIT III FREQUENCY RESPONSE AND CONCEPT OF STABILITY

Bode plot, polar plot, Nyquist stability - Concept of stability-necessary conditions- Hurwitz stability criterion-Routh stability criterion-relative stability analysis.

UNIT IV INTRODUCTION TO DESIGN OF COMPENSATORS

Realization of basic compensators-lag, lead, lag-lead. Introduction to P, PI, PD, PID controllers, tuning of PID controllers

UNIT V STATE SPACE REPRESENTATION

Concept of state- State Variable-State Equations- Sampling theorem- Controllability and observability

Total No. of Hours: 45

TEXT BOOKS:

- 1. Nagrath, L.J. Gopal, M. Control System Engineering.4th Ed. New age International (P) Ltd Publishers.
- 2. Ogata, K. Modern Control Engineering-analysis of system dynamics, system design using Root Locus. 4th Ed. Prentice Hall for practice and solutions.

REFERENCE BOOKS:

1. www.GaliLMc.com - GALIL we move the world-featured tutorials – motion controllers, tuning servo systems, adjustment of PID filter.

9

9

9

Subject Code: BEE18ET2		Subjec	t Nam DESI	e: GN OH	FELI	ECTF	RICAL	MAC	HINES	5	TY / LB/ ETL	L	T / S.Lr	P/ R	C	
		Prerec	uisite:	BEE1	8002,	BEE	18005				ETL	1	0/1	3/0	3	
L : Lecture T	: T	utorial	SLr :	Super	vised	Lear	ning P	: Proje	ect R:]	Resear	ch C: Cr	edits	1			
T/L/ETL : Th	eor	y/Lab/	Embed	ded Th	eory	and L	lab									
•	ш. Т	he grad	luate w	ill be c	anabl	le of d	lesigni	ng the	transfor	mers						
•	Т	o unde	rstand t	he des	ignin	g the	rotor b	ars & s	slots.							
•	Т	he grac	luate w	ill be c	apabl	le of o	designi	ng mao	chine pa	ramete	ers relate	d to th	ne Indus	trial n	eeds.	
•	Т	he grac	luate w	ill be c	apabl	le of o	lesigni	ng the	Electric	al mac	chines					
•	Т	o unde	rstand t	he cha	racter	ristics	like sp	beed, to	orque et	c. of d	ifferent e	lectric	cal macl	nines.		
COURSE O	UTO	Come	<u>LS (Cos</u>	5): (3-5) a tha i	tuonof										
				signing	g the	r hore	ormers	ota								
02		Abinty	to des	agn the	2 1010		and si	ots								
CO3		Capabl	e of de	signing	g mac	hine	parame	ters re	lated to	the In	dustrial n	eeds.				
CO4		Famili	ar with	design	ofE	lectric	cal mac	chines								
CO5		Unders	nderstand the characteristics like speed, torque etc. of different electrical machines se Outcomes with Program Outcomes (POs)													
Mapping of	Cor	irse O	se Outcomes with Program Outcomes (POs)													
COs/POs		PO1	PO2	PO3	PC)4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12	
CO1		M	<u>M</u>	M		H	M	M	H	H	H	M	<u> </u>	I	H	
CO2		H	<u>H</u>	H	1			M	H	M				1	M	
CO3		M					<u>н</u> т	IVI T						I T		
C04		н	н	п		VI T		L H	M	п	п	п Ц		I T	п Ц	
Cos / PSOs		- II PS	<u></u> 01	P	SO2		PS	03	PS	504	PS	505	I .		11	
CO1		N	1		M		N	1	1	M		H				
CO2		H	[Η		ł	ł	I	М		L				
CO3		N	1		Μ		Ν	1]	H		L				
CO4		H	[Μ		N	<u>/</u>	1	M]	H				
CO5		<u> </u>		1 /	H		<u>I</u>	H I		M		L				
H/M/L indica	ites	Streng	rg C	orrelat	lon	<u>н- н</u>	ign, M	- Medi 'ਚ	um, L-L	LOW						
Category	Basic Sciences	Engineering Sciences	Humanities ar Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technic. Skill	Soft Skills							
				\mathbf{k}												

BEE18ET2 DESIGN OF ELECTRICAL MACHINES 1 0/1 3/0 3

UNIT I INTRODUCTION

Major considerations – Limitations – Space factor temperature gradient – Heat flow in two dimensions – Thermal resistivity of winding – Temperature gradient in conductors placed in slots

UNIT II DC MACHINES

Magnetic circuit calculations –Net length of Iron –Real & Apparent flux densities– D.C machines output equations –Design of shunt and series field windings– Design of Commutator and brushes.

UNIT III TRANSFORMERS

KVA output for single and three phase transformers – Window space factor – Temperature rise of Transformers – Design of Tank with & without cooling tubes – Conservator- Breather

UNIT IV INDUCTION MOTORS

Magnetic leakage calculations – Leakage reactance of poly-phase machines- Output equation of Induction motor — circle diagram – Dispersion co-efficient – relation between D & L for best power factor.

UNIT V SYNCHRONOUS MACHINES

Runaway speed – construction – output equations – choice of loadings – Design of salient pole machines – Short circuit ratio – Introduction to computer aided design – Program to design main dimensions of Alternators.

Total No. of Hours: 45

TEXT BOOKS:

1. Sawhney, A.K. Dhanpat Rai & Sons, (1984) A Course in Electrical Machine Design. New Delhi:

REFERENCE BOOKS:

1. Sen, S.K. (1987) Principles of Electrical Machine Designs with Computer Programmes. New Delhi: Oxford and IBH Publishing Co. Pvt. Ltd.

0

9

9

Subject		Subjec	t Nam	e: ELF	ECTR	ONI	CS LA	В			TY/	L	T/ SIr	P/ P	C	
BEE18L05											ETL		5.11	N		
		Prerec	uisite:	BEE18	BET1	, BEI	E 1800 1	L			L	0	0/0	3/0	1	
L : Lecture 7	: T	utorial	SLr:	Super	vised	Lear	ning P	: Proje	ect R : H	Researc	h C: Cre	dits				
T/L/ETL : T	heor	ry/Lab/	Embed	ded Th	eory a	and L	ab	-								
OBJECTIV	E:															
• '	Fo k	cnow th	e basic	knowl	edge	of log	gic gate	es 1	. .							
•	Desi	ign kno	wledge	on imp	pleme	entati	on of E	soolean	flim flo	on						
•	Stud	lents ab	ole to de	esign C	ounte	rs, K	egister	s using	IIIp-IIO	ps IDI						
	διμα Γο ε	tudy al	quit mu	ltinley	ige ill ers an	prog id dei	multinl	ng or v evers	ernog r	IDL						
COURSE O			CS (Cos	(3-5))		nunipi	CACIS								
CO1		Unders	stand th	e basic	conc	epts	of logi	c gates								
CO2		Familia	arizatio	n to the	e Desi	ign a	nd imp	lement	ation of	Boolea	n Funct	ion				
CO3		Unders	stand ab	out Co	ounter	s, Re	gisters	using	flip-flop	S						
CO4		Unders	stand th	e conc	epts in	n pro	gramm	ing of	verilog	HDL						
CO5		Capabl	e to un	derstan	d abc	out m	ultiple	xers an	d demul	tiplexer	ſS					
Manning of	Col	urse Oi	Dutcomes with Program Outcomes (POs)													
COs/POs		PO1	Dutcomes with Program Outcomes (POs)PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12													
CO1		H	H	Η	H	I	Μ	Μ	Μ	Н	Н	Μ	Ι		Μ	
CO2		Μ	Μ	Μ	N	/I	Η	Н	Μ	Μ	Μ	L	Ν	1	Η	
CO3		Н	Н	Η	N	ſ	Μ	Μ	Н	Η	Μ	Η	Ν	1	L	
CO4		Н	Н	Μ	N	1	L	L	Μ	Η	Μ	Μ	H	I	Μ	
CO5		Μ	Μ	Μ	N	/	L	Μ	Μ	Η	Μ	L	N	1	Μ	
Cos / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	05				
CO1		H	[Η		Ν	Л]	L	Ν	/				
CO2		N	1		M		<u> </u>	I	I	<u> </u>	I	I				
<u>CO3</u>		<u> </u>			M		N	<u>/</u>		<u>/ </u>						
C04		<u>ון</u> נו	L		M		 	<u>.</u>		<u>1</u>		/ <u>1</u> /				
H/M/L indic	ates	Streng	th of Co	orrelati	on]	H- H	igh M	- Mediı	ım L-L	ow.	I	1				
	ares	strong	pu				1911, 111	cal	,							
		nce	а		s			hnid								
	s	cie	es		ive	ş	jecı	[ec]								
	nce	g S	s enc	ore	lect	tive	Pro	[/;								
ory	cie	erin	itie Sci	n C	пE	lleci	al /	hips	ills							
teg	IC S	ine	nan ial	grat	grat	пE	tica	rnsl 1	Sk							
Ca	Basi	Eng	Hun Soci	Pro	Pro	odC	Prac	Inte	Soft							
						<u> </u>			₩,							
							~									

BEE18L05

ELECTRONICS LAB

0 0/0 3/0 1

LIST OF EXPERIMENTS

- 1. Study of Logic Gates & Digital Logic families
- 2. Implementation of Boolean functions
- 3. Conduct an Experiment on Adders & Subtractors
- 4. Construct Multiplexers and de-multiplexers
- 5. Study of Flip-flops
- 6. Study of Registers
- 7. Study of Counters
- 8. Implementation of any general combinational / sequential logic circuits
- 9. Characteristics of Semiconductor diode and Zener Diode
- 10. Characteristics of JFET
- 11. Characteristics of UJT and Generation of saw tooth waveforms
- 12. Design and Testing of RC Phase shift, LC Oscillators
- 13. Single phase half wave and full wave rectifiers with inductive and capacitive filters
- 14. Differential amplifiers using FET
- 15. Astable and Monostable Multivibrators

Total No. of Hours: 45

Subject Code:		Subje	et Nam	e: CON	NTRO	DL SY	YSTE	M LAF	6		TY / LB/	L	T / S.Lr	P / R	C
BEE18L06	6										ETL				
		Prerec	uisite:	BEE18	8002, 1	BEE	18005				L	0	0/0	3/0	1
L : Lecture	T : 1	Futorial	SLr :	Superv	vised I	Learr	ning P	: Proje	ct R : F	Researc	h C: Cre	dits			
T/L/ETL : 7	Theo	ry/Lab/	Embed	ded The	eory a	nd L	ab								
OBJECTIV	VE:														
•	Tol	know th	e basic	knowle	edge o	of coi	ntrol sy	ystem							
•	Des	ign kno	wledge	on P,P	I, PID	O Cor	ntroller	S							
•	Stu	dents ab	ole to de	esign sr	nart C	ontro	oller								
•	Stu	dents ac	quire k	nowled	ge in '	Time	e varia	nt syste	m						
COURSE (OUT	COM	ES (Cos): (3-5))										
CO1		Attain	ed knov	vledge	on Syı	nchro	OS								
CO2		Ability	v to desi	gn P,P	I,PID	Cont	troller								
CO3		Ability	v to desi	gn sma	rt Coi	ntroll	ler for	the syst	tem						
CO4		Attains	s knowl	edge or	n trans	sfer f	unctio	n							
CO5		Attains	s knowl	edge or	n lead	-lag o	compe	nsator							
Mapping of	f Co	urse O	Outcomes with Program Outcomes (POs)												
COs/POs		PO1	Dutcomes with Program Outcomes (POs)PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12												
CO1		Η	Μ	Μ	Μ	I	Н	Μ	Μ	Н	Μ	Η	I	I	Μ
CO2		Μ	Н	Н	Μ	I	Μ	Н	Μ	Μ	Μ	Μ	N	ſ	Μ
CO3		Μ	Μ	Μ	H	[Η	Μ	Н	Н	Н	Н	I	I	Н
CO4		Μ	L	L	Μ	I	Н	L	Μ	Н	Μ	Н	I	I	Μ
CO5		Μ	L	Μ	Μ	I	Н	Μ	Μ	Н	Μ	Н	I	I	Μ
Cos / PSOs	5	PS	01	P	SO2		PS	03	PS	04	PS	05			
CO1		H	I		Μ		Ι		H	H	Ν	A			
CO2		Ν	1		Μ		N	Л	N	Л	Ν	A			
CO3		F	I		H		N	Л	I	I	l	I			
CO4		H	I		Μ		I	I	I	I	I	A			
CO5		H	I		Μ		N	Л	I	I	I	Л			
H/M/L indi	cates	s Streng	th of Co	orrelati	on H	I- Hi	igh, M·	- Mediu	ım, L-L	ow					
		SS	and					cal							
		nce			SS		t	ind							
	ŝ	cie	ses		tive	S	jec	lec							
	nce	50 00	s enc	ore	lec	μi	Prc	. / :							
ory	cie	erin	itie Sci	аC	υE	leci	l /	iips	ills						
egu	c S	nee	ani al	ran	ran	ЦЩ	tica	nsł	Sk						
Cat	asi	ngi	lum	rog	rog	per	raci	hter kill	oft						
-	В	Щ	Ϋ́Η	È,	<u>d</u>	0	Ā	Ir S	Ň						
							\geq								
												1		1	

BEE18L06

CONTROL SYSTEMS LAB

0 0/0 3/0 1

LIST OF EXPERIMENTS

- 1. Programmable Logic Controller Verification of truth tables of Logic gates, simple Boolean expressions, and application of spped control of motor
- 2. Effect of Feedback on DC servo motor
- 3. Transfer function of DC Motor
- 4. Transfer function of DC Generator
- 5. Temperature controller using PID
- 6. Characteristics of AC Servo motor
- 7. Effect of P, PI, PID Controller on a second order systems
- 8. Lag and Lead Compensation Magnitude and Phase plot
- 9. Simulation of P, PI, PID Controller
- 10. Simulation of Linear system Analysis
- 11. Simulation for Stability Analysis (Bode, Root Locus, Nyquist) of Linear Time Invariant system
- 12. Simulation and verification of state space model for classical transfer function
- 13. Design of Lead- Lag Compensator for the given system with specification

Total No. of Hours: 45

Subject Code: BEI18IL1		Subjec MICR LAB Prerec	ct Nam OCON	e: MIC TROI BEE18	CROI	PROC R ANI	CESSO D ARN	OR, /I PRO	CESSC)R	TY / LB/ ETL	L 0	T / S.Lr	P / R 3/0	C	
I · Lecture		utorial		Super	visad	Loor	ing D	· Proje	ot D · L	Decentro	$\frac{1}{h C \cdot Cr}$	dite	0/0	0/0	-	
T/L/ETL: T	T . T Theor	y/Lab/	Embed	ded Th	eory a	and L	ab	. 110jt	α κ . Ι	Cocare	n c. cr	Ans				
OBJECTIV	VE:															
	• [To und	erstand	progra	m the	e Asse	embly	langua	ge in Mi	icropro	cessor					
	• 7	To kno	w the p	rogram	n Asse	embly	' langu	age in	Microco	ontrolle	r					
	• 7	To und	erstand	simple	e prog	ramn	ning us	ing AF	RM proc	essor						
	• [To mak	ke progi	am usi	ng Kl	EIL so	oftware	e.								
COURSE (DUT		ES (Cos): (3-5)	.1 /	1	1 1	· ·	<u>N</u>						
COI		Capab	le of pro	ogramr	ning	the A	Assemt	oly lang	guage in	Micro	processo	or				
CO2		Famili	ar with	Interfa	acing	of pe	riphera	al devic	es using	g 8085						
CO3		Capab	le of un	derstar	nd the	prog	ram As	ssembl	y langua	ige in N	Aicrocon	ntrolle	er			
CO4		Capabl	le of un	derstar	nd sir	nple j	program	nming	using A	RM pr	ocessor					
CO5		Unders	stand th	e prog	ram u	sing I	KEIL s	oftwar	е.							
Mapping of	f Cou	arse O	e Outcomes with Program Outcomes (POs)													
COs/POs		PO1	PO2	PO3	PC)4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12	
CO1		Η	Μ	Η	N	А	Η	Η	Н	L	Н	Μ	H	I	Μ	
CO2		Μ	Μ	Μ	N	A	Μ	L	L	L	Μ	L	Ν	1	L	
CO3		H	Н	H	I	I	Η	H	Μ	Μ	H	Μ	H	I	Μ	
CO4		H	Μ	H	N	Л	Η	Μ	Μ	Μ	H	Μ	H	I	Μ	
CO5		H	M	<u>H</u>	N	Л	H	M	M	M	H	M	H	I	Μ	
Cos / PSOs		<u>PS</u>	01	P	<u>SO2</u>		<u>PS</u>	03	PS	04	PS	05				
					M		<u> </u>	/ <u> </u>		π	1					
C02		N	1 1		M		N	/ <u>1</u> /ſ		<u>и</u> Л	ر ۱	<u>п</u> ч				
CO4		N	<u>1</u> 1		M		N	<u>/</u>		<u> </u>]	H				
CO5		Ι			Μ		N	1	N	A	I	M				
H/M/L indi	cates	Streng	th of C	orrelati	on	H- Hi	gh, M·	- Medi	ım, L-L	OW						
		SS	and					ical								
Category	Basic Sciences	Engineering Science	Humanities 8 Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Techni Skill	Soft Skills							
							~									

BEI18IL1 MICROPROCESSOR, MICROCONTROLLER AND ARM 0 0/0 3/0 1 PROCESSOR LAB

LIST OF EXPERIMENTS:

- 1. Write a Program for Multi precision addition / subtraction / multiplication / division.
- 2. Write a Program for Increment / Decrement.
- 3. Write a Program for Ascending / Descending order.
- 4. Write a Program for Maximum / minimum of numbers.
- 5. Write a Program for A/D Interfacing.
- 6. Write a Program for D/A Interfacing.
- 7. Write a Program for Traffic light controller.
- 8. Write a Program for Stepper motor Control
- 9. Program on Simple Arithmetic Operations using ARM processor
- 10. Programming with control instructions using ARM processor
- 11. Seven segment display interfacing using ARM processors. (ARM926 kit)
- 12. LED display Interfacing using ARM processors.(ARM926 kit)

Total No.ofHours: 45

Subject Code:		Subje Softwa	ct Name are Pacl	: TEC	HNIC	CAL	SKIL	L 2 (Ele	ctrical		TY/ LB/	L	T / S.Lr	P/ R	С
BEE18TS2	2	Proroc	misito								ETL I	0	0/0	3/0	1
		Innu	luisite.								L	v	0/0	5/0	L
L : Lecture	T : 7	Futoria	l SLr :	Superv	vised	Lear	ning I	P: Project	rt R : R	esearch	C: Cre	dits			
T/L/ETL : 1	<u>Theo</u>	ory/Lab	/Embed	ded The	eory a	and I	Lab								
OBJECTI	VE:						11 0								
The object	ive i	is to d	evelop t	he tech	nnica	ul ski	ll of t	he stude	ents.						
COURSE (OUT	COM	ES (Cos	b): (3-5))										
CO1		Devel	op the t	echnic	al sk	ills r	equire	ed in the	field o	of study	7				
CO2		Bridge	e the ga	p betw	een t	the s	kill re	quireme	ents of t	he em	ployer	or ind	ustry a	and th	ne
		compe	etency of	of the s	tude	nts.									
CO3		Enhan	ice the e	employ	vabili	ity of	f the s	tudents.							
Mapping o	f Co	ourse C	se Outcomes with Program Outcomes (POs)												
COs/POs		PO1	PO2	PO3	PO	4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12
CO1		Н	Н	Η	H	I	Η	Н	Μ	Μ	Η	Μ	H	ł	М
CO2		Н	Η	М	H	I	Η	Н	Μ	Μ	Η	Η	H	I	Η
CO3		Н	Н	Η	H	I	Η	Н	Μ	Μ	Η	Η	H	ł	Η
Cos / PSOs	5	PS	01	PS	SO2		P	503	PS	04	PS	05			
CO1		I	Η		Н			Н	H	ł	I	Н			
CO2		I	Η		Н			Н	H	ł	I	Н			
CO3		I	Н		Н			Н	H	ł	I	Н			
H/M/L indi	cates	s Stren	gth of C	orrelati	on 1	H- H	ligh, N	I- Mediu	m, L-Lo	ow			•		
Category	Basic Sciences	Engineering	Humanities and Social	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills						
							$\overline{}$								

Subject Code:	5	Subje	ct Name	: POW	ER S	SYST	ГЕМ •	· III			TY / LB/	L	T / S.Lr	P/ R	C
BEE18009											ETL				
]	Prerec	quisite:	BEE18	8004,]	BEE	218007	1			Т	3	1/0	0/0	4
L : Lecture '	Т : Т	utoria	1 SLr:	Super	vised	Lear	ning l	P : Proje	ct R : R	esearcl	n C: Cre	dits			1
T/L/ETL : T	Theor	ry/Lab	/Embed	ded Th	eory a	and L	Lab	_							
OBJECTIV	/E:														
•	То а	attain ł	oasic kn	owledg	ge on l	Powe	er Qua	lity and	power S	ystem	operatio	n			
•	To p	plot loa	ad durati	on cur	ve and	d und	lerstan	d the ne	ed for re	gulatio	on				
•	To i	mpart	knowled	lge on	Frequ	ency	^v contr	ol and V	oltage C	Control					
•	To s	study t	he econo	omic op	peratio	on of	powe	r system	and Un	it com	nitment				
•	To l	know t	he impo	rtance	of Sys	stem	Moni	toring an	d Power	Quali	ty Meas	ureme	nt Equ	ipmeı	nts
COURSE O	DUT	COM	ES (Cos	s): (3-5)										
CO1		Acquii	re knowl	edge o	n Pov	wer (Quality	y and por	wer Syst	em op	eration				
CO2	1	Unders	standing	of loa	nd dur	atior	n curve	e and reg	ulation	needs					
CO3]	Famili	ar to Fre	quency	conti	rol a	nd Vo	ltage Co	ntrol						
CO4]	Knowl	edge on	econo	mic o	perat	tion of	f power s	system a	nd Uni	t comm	itmen	t		
CO5	۱	Unders	stand th	e impo	rtance	e of S	System	n Monito	ring and	Powe	r Quality	y Mea	sureme	ent	
]	Equipments													
Mapping of	f Co	urse C	Outcome	s with	Prog	ram	Outco	omes (P	Os)						
COs/POs]	PO1	PO2	PO3	PO4	4	PO5	PO6	PO7	PO8	PO9	PO1	0 PC	D11	PO12
CO1		Н	Н	H	H	[Η	H	Н	Н	H	Η]	H	Н
CO2		H	Н	Η	H	[Η	Н	Η	L	Μ	L]	H	L
CO3		H	Η	Η	H	[Η	H	Н	L	Μ	L]	H	L
CO4		Μ	Μ	Μ	Μ	[Μ	Μ	Н	L	Μ	Μ]	H	Н
CO5		Η	Н	Н	H	[Η	Н	Н	Μ	Η	Η]	H	Μ
Cos / PSOs		PS	01	P	SO2		P	SO3	PS	04	PS	605			
CO1		I	H		H			H	H	I	l	H			
CO2		I	H		Μ			Μ	H	I]	H			
CO3		I	H		H			H	N	1	I	Μ			
CO4		I	H		Μ			L	I	I]	H			
CO5		I	H		L			Μ	Ν	ſ]	H			
H/M/L indic	cates	Stren	gth of C	orrelati	on I	H- H	igh, N	I- Mediu	m, L-Lo	0W					
			cial		es		ct								
	es		So	e	ctiv	es	oje	kill							
~	enc	ng	Se	Cor	Elec	<i>i</i> tiv	$\mathbf{P}_{\mathbf{r}}$	s al S							
Ciory	Scie	eri	nitie	m (m	Ilec	al /	hip nice	cills						
lteg		ine	nar	grai	grai	пE	ctic	rns chr	S						
Ca	3as:	- ung	Hur Ind	roį	roį	Jpe	rac	nte Te	ofi						
	щ	ши	4 9			0		I						1	
				\mathbf{F}											

BEE18009 POWER SYSTEM - III 3 1/0 0/0 4

UNITI INTRODUCTION TO POWER QUALITY AND SYSTEM OPERATION 12

Power Quality Terms- Overloading- Under Voltage- Over Voltage-Voltage Sag- Voltage Swell – Voltage imbalance- Voltage fluctuation-Power Frequency Variation – Harmonics - System load Characteristics–load curves and load-duration curve - load factor - diversity factor - Need for Voltage regulation and frequency regulation in power system - Basic P-F and Q-V control loops

UNIT II REAL POWER - FREQUENCY CONTROL

Fundamentals of AGC-Fundamentals of Speed Governing mechanisms and modeling - Speed-Load characteristics-regulation of two Synchronous Machines in parallel - Control areas - LFC of single & Multi areas Static & Dynamic Analysis of uncontrolled and controlled cases – Tie line with frequency bias control – Steady state instabilities

UNIT III REACTIVE POWER-VOLTAGE CONTROL

Excitation system Modeling - Static & Dynamic Analysis - stability Compensation-Principles of transmission line compensation - Effect of Generator loading – static VAR System Modeling - System Level Voltage control

UNIT IV ECONOMIC DISPATCH AND UNIT COMMITMENT

Need for Economic Dispatch-Characteristics curve for Steam and hydroelectric Units - Co-ordination Equation with Loss and without losses- Base point and Participation Factor- Constraints and solutions in Unit Commitment -Priority List methods-Forward Dynamic Programming approach

UNIT V MONITORING & COMPUTER CONTROL OF POWER SYSTEMS 12

Need of computer control of power systems. Concept of energy control centre (or) load dispatch centre and the functions - system monitoring - data acquisition and control. System hardware configuration – SCADA and EMS functions-Control Strategies – Power quality Measurement Equipment – Harmonic Analyser – Flicker meter

Total No. ofHours: 60

12

12

12

TEXT BOOKS:

- 1. Allen. J. Wood and Bruce F. Wollenberg,(2003) Power Generation, Operation and Control. John Wiley & Sons. Inc
- 2. Chakrabarti & Halder,(2004) Power System Analysis: Operation and Control. Ed. Prentice Hall of India
- 3. Kundur, P,(1994) Power System Stability and Control. USA: MCGraw Hill Publisher

REFERENCE BOOKS:

- 1. Kothari, D.P. and Nagrath, I.J. (2003) Modern Power System Analysis.3rd .Tata McGraw Hill Publishing Company Limited
- 2. Grigsby, L.L. (2001) The Electric Power Engineering, Hand Book. CRC Press & IEEE Press
- 3. Hadi Saadat, (2007) Power System Analysis.11th Reprint
- 4. N.V.Ramana, (2011)Power System Operation and Control," Pearson
- 5. C.A.Gross, (2011)Power System Analysis," Wiley India

Subject		Subje	ct Nam	e: POV	VER	ELE	CTRC	DNICS	- I		TY/	L	T/ SIr	P/ P	C	
BEE18010											ETL		5.11	N		
		Prerec	quisite:	Basic	Elect	rical	& Ele	ctronic	s Engg		T	3	1/0	0/0	4	
L · Lecture	$T \cdot T$	utorial	SLr ·	Super	vised	Lear	ning P	• Proie	ct R · F	Researc	h C [.] Cre	edits				
T/L/ETL:7	Theor	v/Lab/	Embed	ded Th	eory a	and L	Lab	. 110je		teseure		Juito				
OBJECTIV	E:	<u> </u>														
	• T	o attai	n Power	Electi	onic	Devi	ces and	l its cha	racteris	tics.						
•	• T	o desig	gn the tr	iggerir	ng of :	firing	g circui	ts.								
	• T	o learn	the inv	verters,	chop	pers a	and Inc	lustrial	drives.							
	• T	'o attair	n knowl	ledge o	n DC	& A	C Driv	es								
COURSE (DUT	COMI	ES (Cos	s): (3-5)											
CO1		Knowl	ledge or	n Powe	r Elec	ctroni	ic Devi	ces and	l its cha	racteris	tics					
CO2		Ability	to desi	ign the	trigge	ering	of firir	ng circu	iits							
CO3		Knowl	ledge or	1 chopp	bers, i	nvert	ters									
CO4		Knowl	ledge or	n AC &	c DC	Drive	es									
CO5		Knowl	ledge or	n Contr	ol cir	cuits	and Ve	ector co	ontrol							
Mapping of	f Cot	ırse O	Knowledge on Control circuits and Vector control rse Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
COs/POs		PO1	se Outcomes with Program Outcomes (POs) O1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 U M U M M M M M M M M M													
CO1		Η	Second comes with Program Outcomes (POS)O1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12HMHMMMMMML													
CO2		Μ	Η	H	N	A	Μ	H	Η	Η	Η	Η	H	I	L	
CO3		L	Μ	Η	I	H	Η	Μ	Μ	Μ	Μ	Μ	N	1	\mathbf{M}	
CO4		Η	Μ	Μ	N	Л	Μ	Μ	Μ	Μ	Μ	Μ	N	1	L	
CO5		Μ	Μ	L	Ι	L	L	Μ	Μ	Μ	Μ	Μ	N	1	Μ	
Cos / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	05				
CO1		H	I		Μ		Ν	Л	I	H	I	N				
CO2		H	I		Μ		Ν	Л	I	Ι	1	N				
CO3		H	I		Н		I	I	I	I]]	H				
CO4		N	1		Μ		Ν	Λ	Ν	Л	1	N				
CO5		Ι	4		L		I			L]	Ĺ				
H/M/L indi	cates	Streng	th of C	orrelati	on	H- H	igh, M	- Mediu	ım, L-L	ow				1		
		ces	anc					nica								
		tien	ş		ves		ect	ech								
	ces	Š	nce	ore	ecti	ves	roj	/ T								
Σ.	ien	ing	ies cie	ŭ	Εľ	ecti	/ P	sd	\mathbf{ls}							
10g	\mathbf{Sc}	leel	anit 1 S	am	am	Ele	cal	idsi	ŝkil							
Cate	ısic	ıgir	limé	ogr	ogr	Den	acti	ill	oft S			1				
	${ m B}_{6}$	En	Hı So	$\mathbf{P}_{\mathbf{r}}$	Pr	Of	\mathbf{Pr}	Int Sk	Sc							
				\mathbf{k}												

BEE18010 POWER ELECTRONICS - I 3 1/0 0/0 4

UNITI POWER SEMICONDUCTOR DEVICES

Power semiconductor devices Overview: Characteristics of power Structure, operation, Static characteristics and switching characteristics (Turn on and Turn off) of SCR, TRIAC, BJT, MOSFET and IGBT – Two transistor model of SCR – Series and Parallel operation of SCR – Turn on circuits for SCR – Different techniques of commutation – Protection of Thyristors against over voltage, over current, dv/dt and di/dt

UNIT II PHASE CONTROLLED CONVERTERS

Single phase and three phase half controlled and fully controlled rectifiers with R, RL and RLE loads – Waveforms of load voltage and line current – Inverter operation of fully controlled converter – harmonic factor, power factor, ripple factor, distortion factor – operation with freewheeling diode – effect of source inductance – dual converter.

UNIT III INVERTERS

Voltage and current source inverters – Single phase and three phase inverters (both 120° mode and 180° mode) inverters – PWM techniques: Sinusoidal PWM, modified sinusoidal PWM - multiple PWM – Resonant series inverter – current Source Inverter – UPS

UNIT IV DC DRIVES

Features of armature controlled, field controlled DC drives using conventional rheostat (Shunt and series), conventional Ward-Leonard control, Slow speed operation inching and jogging. Transfer functions of armature controlled, field controlled DC motors.

UNIT V AC DRIVES

Induction motor drives- speed control by stator frequency variation – operation of induction motor on variable frequency sources – operation of IM on non sinusoidal waveforms – constant flux operation current fed operation – dynamic and regenerative braking of CSI and vs. drives – slip controlled drives – Introduction to vector control – cycloconverter drives –features

Total No. of Hours: 60

TEXT BOOKS:

- 1. Rashid, M.H. (2004) Power Electronics Circuits Devices and Applications.3rd Ed. Prentice Hall of India.
- 2. Bimbhra, P.S. (1999) Power Electronics.3rd Ed. Khanna Publishers.

REFERENCE BOOKS:

- 1. Singh, M.D. Kanchandani, (2002) Power Electronics. New Delhi: Tata McGraw Hill & Hill publication Company Ltd.
- 2. Dubey, G.K. Doradia, S.R. Joshi, A. Sinha, R.M. (1986) Thyristorised Power Controllers. Wiley Eastern Limited.
- 3. Lander, W. (1993) Power Electronics.3rd Ed. McGraw Hill and Company.

12

12

12

12

Subject Code: BEE18ET3		Subjec CONS	et Nam SERVA	e: ENI TION	ERGY	Y UT	ILIZA	TION	AND		TY / LB/ ETL	L	T / S.Lr	P/ R	C	
]	Prerec	quisite:								ETL	1	0/1	3/0	3	
L : Lecture	T : Tı	utorial	SLr:	Super	vised	Learr	ning P	: Proje	ect R:	Researc	h C: Cre	edits				
T/L/ETL : 1	Theor	y/Lab/	Embed	ded Th	eory	and L	ab									
OBJECTIV	/E:															
•	To st	udy th	e energ	y cons	ervati	ion on	build	ings								
•	The a	analyse	e the he	ating a	ind co	oling	of bui	ldings								
•	Unde	erstand	the end	ergy ef	ficier	it equi	ipment	S								
•	Unde	erstand	ls and a	nalyse	energ	gy aud	liting									
	Desig	gn the	house v	viring	N											
COURSE C	JUTC		<u>2S (Cos</u>	<u>s): (3-5</u>)				1 1 11							
COI	($Can at \overline{c}$	ble to sti	udy the	e ener	gy co	nserva	tion on	buildir	ng						
<u>CO2</u>	(Can an	an analyse the heating and cooling of building													
<u>CO3</u>	(Can ab	an able to analyse the energy efficient equipments Ability to perform energy audit													
<u>CO4</u>	1	Ability to perform energy audit														
CO5	4	Ability to find solution for energy conservation														
Mapping of	f Cou	rse O	rse Outcomes with Program Outcomes (POs)													
COs/POs]	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1														
CO1		Μ	L	H]	H	Μ	L	H	H	M	L]	H	H	
CO2		Μ	Μ	Μ	Ι	M	Μ	Μ	M	Μ	Μ	Μ	I	M	Μ	
CO3		Μ	L	H	Ι	M	Μ	L	H	Μ	Μ	L		H	Μ	
CO4		Η	H	H]	H	H	H	H	Η	H	H]	H	Η	
CO5		Μ	Μ	H		H	Μ	Μ	H	H	Μ	Μ]	H	H	
Cos / PSOs		PS	01	P	SO2		PS	03	PS	SO4	PS	05				
CO1		E	I		Μ]]	H]	H				
CO2		E	I		Μ		Ν	Л	1	M]	H				
CO3		N	1		M]]	H		H				
<u>CO4</u>		N	1		H		I	<u>I</u>		H		H				
CO5		<u>L</u>		1 /	M	<u></u>				H		H				
H/M/L indic	cates	Streng	th of Co	orrelati	lon	H- H1	gn, M		um, L-L	LOW						
Category	Basic Sciences	Engineering Science Engineering Science Humanities a Social Sciences Program Core Program Electives Open Electives Practical / Project Internships / Technic Skill Soft Skills														

BEE18ET3 ENERGY UTILIZATION AND CONSERVATION 1 0/1 3/0 3

UNITI HEATING AND WELDING

Advantages and methods of electric heating, resistance ovens, induction heating, dielectric heating, the arc furnace - heating of building. Electric welding, resistance and arc welding, control devices

UNIT II ILLUMINATION

Importance of lighting – properties of good lighting scheme – laws of illumination –photometry - types of lamps – lighting calculations – basic design of illumination schemes for residential, commercial, street lighting and sports ground – energy efficiency lamps.

UNIT III ELECTRIC DRIVES

Type of electric drives, choice of motor, starting and running characteristics, speed control, temperature rise, particular applications of electric drives, types of industrial loads, continuous, intermittent and variable loads, load equalization

UNIT IV INTRODUCTION TO ELECTRIC AND HYBRID VEHICLES

Configuration and performance of electrical vehicles, traction motor characteristics, tractive effort, transmission requirement and energy consumption

UNITV ENERGY CONSERVATION

Principle of energy conservation - waste heat recovery - Heat pump – Economics of energy conservation, cogeneration, combined cycle plants, electrical energy conservation opportunities

TEXT BOOKS:

- 1. Epenshaw Taylor, (2009) Utilization Of Electric Energy.12th Impression. Universities Press.
- 2. Mehrdad, Ehsani, Yim in Gao, Sabastien E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles.CRC Press.
- 3. Wadhwa, C.L. (2003) Generation, Distribution and Utilization of Electrical Energy. NewAge International Pvt. Ltd.
- 4. Gupta, B.R. (2003) Generation of Electrical Energy. New Delhi: Eurasia Publishing House (P) Ltd.

REFERENCE BOOKS:

- 1. Soni Gupta, Bhatnager-DhanapatRai& sons A Course in Electrical Power.
- 2. Uppal, S.L. Electrical Power. Khanna Publications

9

9

_

9

Total No of Hours: 45

Subject Code: BEE18L07	1	Subje	et Namo El	e: LECTI	RICA	AL PI	RACT	ICE L	AB		TY / LB/ ETL	L	T / S.Lr	P/ R	С		
]	Prerec	uisite:	BEE18	8004						L	0	0/0	3/0	1		
L : Lecture	Γ : Τι	utorial	SLr:	Superv	vised	Learı	ning P	: Proje	ct R : I	Researc	h C: Cre	dits					
T/L/ETL : T	heor	y/Lab/	Embed	ded The	eory a	and L	ab	_									
OBJECTIV	/E:																
•	To k	now al	oout var	ious el	ectric	al ap	paratus	s and it	s symbo	ol							
•	To ki	now ho	ow to di	raw a s	ingle	line o	liagran	n of a I	Power N	etwork							
	To le	arn ab	out the	wiring	syste	ems ir	n dome	stic and	d comm	ercial n	narkets						
COURSE C			LS (Cos): (3-5)) ::		. for I		in and I		11001						
	4	Ability	$\frac{1}{1}$ to desi	gn a w	iring	syste	m for I	Jomes	ic and I	naustria	al load						
CO2	4	Attain	knowle	dge on	vario	ous E	lectrica	al Gadg	gets								
CO3		Ability	bility to troubleshoot the domestic appliances bility to design a simple substation														
CO4		Ability	bility to design a simple substation														
CO5	-	Attain	ttain knowledge on Earthing														
Mapping of	f Cou	rse O	Outcomes with Program Outcomes (POs)														
COs/POs]	PO1	rse Outcomes with Program Outcomes (POs)O1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12HHHHHHHHHHH														
CO1		PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 H H M H M L M L L L M															
CO2		Η	Η	H	H	I	Μ	Μ	L	Μ	Μ	Η		H	Μ		
CO3		Μ	Μ	Μ	Ι		L	Μ	Μ	Η	Μ	L		М	L		
CO4		L	Μ	Μ	N	I	L	L	Μ	Η	Μ	Μ		L	Μ		
CO5		Μ	L	H	H	I	Μ	Μ	Н	Η	Μ	L		М	Μ		
Cos / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	05					
CO1		E	I		Μ		Ι		Ι	Л	Ι	Ν					
CO2		H	I		Μ		N	Λ]	Ĺ	Ν	N					
CO3		Ι	4		L		N	1	Ν	И]	H					
<u>CO4</u>		N	1		L		<u> </u>		Ν	<u>A</u>]	H					
CO5		<u>E</u>	l that C		M		<u>N</u>	<u>/</u> 		1		1					
H/M/L indic	cates	Streng	th of Co	orrelati	on	H- H	ign, M·	- Medit	ım, L-L	.ow							
Category	Basic Sciences	Engineering Sciences Engineering Sciences Nocial Sciences an Program Core Program Electives Open Electives Practical / Project Internships / Technics Skill Soft Skills															
							~										

BEE18L07

ELECTRICAL PRACTICE LAB

0/0 3/0 1

0

LIST OF EXPERIMENTS

- 1. Introduction to the symbols in Single line diagram and to draw a simple power network and Safety Procedures
- 2. Types of wiring
- 3. Estimation of Lighting and Power Loads
- 4. Introduction to PCB Design and design a simple board
- 5. Design of Single Phase Residential wiring using all the necessity apparatus with calculation
- 6. Design of Three Phase Residential wiring using all the necessity apparatus with calculation
- 7. Study on Trouble shooting of Electrical Equipments
- 8. Study of various Electrical Gadgets
- 9. Connect the Inverter to Power supply through 2/3 pin socket and 1- way switch (Back up)
- 10. Prepare pipe Earthing
- 11. Prepare Plate Earthing
- 12. Indian Electrical Act
- 13. Design a Substation of rating 11kV /400kV
- 14. Sketch the different types of Switch gear and Protection cables
- 15. Sketch the different types of supporting structures and different electrical earthing system

Total No of Hours: 45

Note: All the students need to bring insulated tool kit and follow the safety precautions in the lab sessions

Subject	Subject Name: POWER SYSTEM LAB TY / L T / P / C LB/ S.Lr R															
Code:										LB/		S.Lr	R			
BEE18L08	Droroc	micito	RFF1	8007							0	0/0	3/0	1		
	TTere	juisite.	DEEI	.0007	_				_		U	0/0	3/0	I		
L: Lecture T: T_{I}	Futorial	SLr : Embod	Super	vised	Lear	ning P	: Proje	ect R : I	Researc	h C: Cre	dits					
OBJECTIVE:	ny/Lau/	EIIIDeu		leory		200										
•	To k	now abo	out the	trans	missi	on line	s									
•	To u	ndersta	nd Loa	d Flo	w An	alysis										
•	To u	nderstai	nd abou	ut Fai	ılt Ar	alysis										
•	To ga	ain kno ⁻	wledge	e on P	ower	Electro	onic Ci	ircuits								
•	To fa	miliar a	about S	Simul	ation	of Elec	ctrical of	drives u	sing Ele	ectrical S	oftw	are				
COURSE OUT	COM	ES (Cos	s): (3-5	5)												
CO1	Studen	ts will	know	about	t the t	ransmi	ssion l	ines								
CO2	Studen	Students will understand Load Flow Analysis Students will understand Load Fault Analysis														
CO3	Studen	Students will understand Load Fault Analysis														
CO4	Studen	Students will have knowledge on Power Electronic Circuits														
CO5	Studen	Students will understand Simulation of Electrical drives using MATLAB, PSCAD														
Mapping of Co	ourse O	se Outcomes with Program Outcomes (POs)														
COs/POs	PO1	Irse Outcomes with Program Outcomes (POs)PO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12HHMMLLMMLLM														
CO1	Н	Η	Μ	Ι	Μ	L	L	Μ	Μ	L	L	L	4	Μ		
CO2	Μ	Μ	Μ]	H	H	H	Μ	Μ	L	Μ	H	[Μ		
CO3	Μ	Μ	L]	L	L	L	H	H	H	Μ	N	I	Μ		
CO4	H	H	M]	H	H	Μ	M	L	H	Η	N	I	Μ		
CO5	M	M	M		M	M		H	H	M	$\frac{M}{2}$	N	ſ	H		
Cos / PSOs			P	<u>'802</u>		<u>PS</u>	03	PS	<u>504</u>		05					
		<u>і</u> Л		M		I	L M	1	<u>VI</u> M		<u>и</u> Л					
CO2		1 /[L		I	H H	1	H H	I	<u> </u>					
CO4	I	I		M		N	M	I	M	N	1					
CO5	N	1		Η		J	Ĺ]	L	N	1					
H/M/L indicate	s Streng	th of C	orrelati	ion	H- H	igh, M	- Medi	um, L-L	OW							
	es	and					ical									
	enc			es		ct	chn									
S	Sci	ces	e	ctiv	es	oje	Te									
y enc	ng (S / Prc tiv less / S / Prc tiv less / S /															
Sci	shij = Ele = m = am = m = eer															
ate	gine	tma. cial)gr£	31g(en	lctić	ern: ill	ft S								
3a. C	E.	Hu So	Prc	Prc	dC	\Pr	Int ^t	0			1					

BEE18L08

POWER SYSTEM LAB

0/0 3/0 1

0

LIST OF EXPERIMENTS

- 1. Experimentation on Performance of Over Voltage Relay.
- 2. Experimentation on Performance of Under Voltage Relay.
- 3. Experimentation on Performance of Earth Fault Relay.
- 4. Experimentation on Performance of Differential Protection of transformer.
- 5. Experimentation on Dielectric Testing of transformer oil.
- 6. Experimentation on Performance of Over Current Relay using Electromagnetic and Digital Type.
- 7. Computation of Parameters and Modeling of Transmission Lines
- 8. Formation of Bus Admittance and Impedance Matrices and Solution of Networks.
- 9. Simulation on Load Flow Analysis I : Solution of Load Flow And Related Problems Using Gauss-Seidel Method
- 10. Simulation on Load Flow Analysis II: Solution of Load Flow and Related Problems Using Newton-Raphson and Fast-Decoupled Methods
- 11. Simulation on Transient and Small Signal Stability Analysis: Single-Machine Infinite Bus System
- 12. Simulation on SLG fault in a power system network
- 13. Simulation on DLG fault in a power system network
- 14. Study the characteristics of MCB & HRC Fuse.

Total No of Hours: 45

Subject Code: BEN18SK	2.	Subjec Quant	et Nam itative	e: SOI Skills)	FT SH)	KILI	2 –II (Q	Qualita	tive and	1	TY / LB/ ETL	L	T / S.Lr	P/ R	С	
DLIVIODI	_	Prerec	uisite:	BSK1	ISET1	1					ETL	0	0/0	3/0	1	
L : Lecture	T : 1	Futorial	SLr :	Super	vised	Lear	ming P	: Proje	ect R:	Researc	h C: Cr	edits				
T/L/ETL : 7	Theo	ry/Lab/	Embed	ded Th	eory a	and I	Lab									
OBJECTIV	/E:															
		• <u>To</u>	help stu	udents	to im	prov	e their]	Logical	reason	ing.						
		• To	help stu	udents	to im	prov	e their a	arithme	etic reas	oning.						
COUDCE		• To	help st	udents	impro	ove t	heir dat	a interp	oretation	n skills						
COURSE C	JUI		ONES (Cos): (3-5) repare students for Logical reasoning													
		Prepar	Prepare students for arithmetic reasoning													
002		Prepar	Prepare students for data interpretation skills													
CO3		Prepar	repare students for data interpretation skills													
Mapping of	f Co	urse O	e Outcomes with Program Outcomes (POs) 1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
COs/POs		PO1	rse Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1		L	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 L L L L M M H M H M H													
CO2		L	L	L	L		L	Μ	Μ	Н	Μ	Η	Μ]	H	
CO3		L	L	L	L		L	Μ	Μ	Η	Μ	Η	Μ]	H	
Cos / PSOs		PS	01	P	PSO2		PS	03	PS	504	PS	505				
CO1		I	4		L		I	H		L		L				
CO2		I	4		L]	I	-	L	-	L				
CO3			1 60	1 .	L			H		L		L				
H/M/L indi	cates	s Streng	th of Co	orrelat	10n	H- H	ligh, M	- Medn	ım, L-L	LOW						
Category	Basic Sciences	Engineering Sciences Humanities an Social Sciences an Program Core Program Electives Open Electives Practical / Project Internships / Technic Soft Skills														
			\mathbf{z}													

BEN18SK	2 SOFT SKILL –II (Qualitative and Quantitative Skills)	0	0/0	3/0	1
UNIT I Logical Stateme	LOGICAL REASONING I ents – Arguments – Assumptions – Courses of Action.				6
UNIT II Logical conclus	LOGICAL REASONING II sions – Deriving conclusions from passages – Theme detection.				6
UNIT III	ARITHMETICAL REASONING I				6
Number system Partnership.	n – H.C.F & L.C.M – Problem on ages – Percentage – Profit & Loss -	– Ra	tio & I	Propor	tion –
UNIT IV	ARITHMETICAL REASONING II				6
Time & Work - man out and Se	– Time & Distance – Clocks – Permutations & Combinations – Heighries.	hts &	è Dista	ances -	- Odd
UNIT V Tabulation – Ba	DATA INTERPRETATION ar graphs – Pie graphs – Line graphs.				6
	Т	otal	No. of	f Hour	:s : 30

REFERENCE BOOKS:

1. R.S.Agarwal, A modern approach to Logical Reasoning, S.Chand & Co., (2017).

2. R.S.Agarwal, A modern approach to Verbal and Non verbal Reasoning, S.Chand & Co., (2017).

3. R.S.Agarwal, Quantitative Aptitude for Competitive Examinations, S.Chand & Co., (2017).

4. A.K.Gupta, Logical and Analytical Reasoning, Ramesh Publishing House, (2014).

5. B.S.Sijwali, Indu sijwali, A new approach to Reasoning (Verbal and Non verbal), Arihant Publishers, (2014).

Subject Code:		Subject Name: MINI PROJECT/ INPLANTTY /LT /P /CTRAINING/ INDUSTRIAL TRAININGLB/S.LrRETLImage: Comparison of the second se														
BEE18L09)	Duono										0	0/0	2/0	1	
		Prerec	luisite:								L	U	0/0	3/0	I	
L : Lecture	Т:Т	lutorial	SLr:	Super	vised	Lear	ning P	: Proje	ct R : F	Researc	h C: Cre	edits				
T/L/ETL : T	heo:	ry/Lab/	Embed	ded Th	eory	and I	Lab									
OBJECH	/E:	maina	hiastin	ofthe	Innl	ant te		ia ta mu		ah ant t		lr avm		in on		
•	Indu	$\frac{111110}{18try/C}$	try/ Company/ Organization													
COURSE ()UT	COMF	ES (Cos	(3-5))	1011										
CO1		To get	an insi	ght of a	n ind	lustry	y / orga	nizatior	n/compa	any per	taining t	o the	domain	of stu	ıdy.	
CO2		To acq	uire ski	lls and	knov	vledg	ge for a	smooth	n transit	ion into	the car	eer.				
<u> </u>		To and	o gain field experience and get linked with the professional network.													
03		To gai	O gain held experience and get linked with the professional network.													
Mapping of	f Co	urse O	e Outcomes with Program Outcomes (POs)													
COs/POs		PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 M L L L L L L L L L													
CO1		Μ	L	L]	Ĺ	L	H	H	H	H	H	ŀ	I	H	
CO2		H	Μ	H	I	H	Μ	H	H	H	H	H	I	I	Μ	
CO3		H	Н	H	I	H	M	H	H	H	Н	H	I	I	M	
Cos / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	05				
<u>CO1</u>		H	I		H]	H	I	<u>I</u>]	<u>I</u>				
<u>CO2</u>		<u> </u>	l r		H		l		ł	<u> </u> _		<u> </u>				
		Etware a	l th of C		H	TT T1	l Cab M	H Madin		1		1				
H/M/L Indic	cates	Streng		orrelati	on	н- н	lign, M	- Medit	ım, L-L	ow						
		ces	an					nic								
		ien	S		ves		ect	ech								
	ces	Sc	nce	ore	ecti	ves	roj	T								
ry	ien	cing	ties	Ŭ	E	ecti	/ F	ips	lls							
089	Sc	Skil shi Ele an aniti heer														
Cate	asic	num ngin ngi														
	B															
												1				
							\geq									

Subject Code:		Subjec Design	t Name & Imp	: TEC	HNIC. ation	AL S Prac	SKIL ctice)	L 3 (Eva	aluation	n of	TY/LB/	L	T / S.Lr	P/ R	С	
BEE18TS3	•	Duonoa									ETL	0	0/0	2/0	1	
		Frereq	uisite:								L	U	0/0	3/0	1	
L : Lecture	T : 7	Futorial	SLr :	Superv	vised L	Learn	ning H	P: Projec	rt R : R	esearch	C: Cre	dits				
T/L/ETL : 7	Theo	ory/Lab/	Embede	led The	eory ar	nd L	ab									
OBJECTI	VE:															
The object	ive i	is to de	velop t	he tech	nnical	skil	ll of t	he stude	nts.							
COURSE	OUT	COMES (Cos): (3-5) Develop the technical skills required in the field of study														
CO1		Develo	op the to	echnic	al skil	lls re	equire	ed in the	field o	of study	7					
CO2		Bridge the gap between the skill requirements of the employer or industry and the														
		compe	competency of the students.													
CO3		Enhan	Enhance the employability of the students.													
Mapping o	f Co	urse O	Irse Outcomes with Program Outcomes (POs)													
COs/POs		PO1	PO2	PO3	PO4	PO9	PO1) PO	11	PO12						
CO1		Η	Η	Η	Η	Μ	H	I	М							
CO2		Н	Н	Μ	Н		Η	Н	Μ	Μ	Η	Η	H	ł	Н	
CO3		Н	Н	Н	Н		Η	Н	Μ	Μ	Η	Η	H	ł	Н	
Cos / PSOs	5	PSC	01	PS	SO2		PS	503	PS	04	PS	05				
CO1		Н	[Н			Н	H	H	I	Η				
CO2		H	[H			Н	H	ł	l	Η				
CO3		Н	[Н			Н	H	H	l	Η				
H/M/L indi	cates	s Streng	th of Co	orrelati	on H	I- Hi	gh, M	I- Mediu	m, L-Lo	ow						
Category	Basic Sciences	Engineering Sciences Humanities AndSocial Sciences Program Core Program Electives Internships / Technical Skill Soft Skills														
							\mathbf{i}									

Subject	1	Subject Name: MICROGRID TECHNOLOGY TY / L T / P / C LB/ S.Lr R FTL FTL FTL														
BEE18011											ETL		S.LI	N		
DELIGOIT		Prerec	uisite:	BEE1	8010	, BEF	C18009)			T	3	1/0	0/0	4	
I · Lecture '	$\mathbf{T} \cdot \mathbf{T}$	utorial	- SI r ·	Super	vised	Lear	ning P	· Proje	et R · I	2 ecearo	h C· Cre	dite				
T/L/ETL : T	heor	v/Lab/	Embeda	led Th	eorv	and L	ab	. 110je	λι Κ . I	researe	li C. Cit	uns				
OBJECTIV	/E:	<u>j</u>														
•	To st	tudy at	out var	ious co	onver	tional	l & No	onconve	entional	source	of energ	y res	ources			
•	To st	tudy th	e conce	pt of 1	Micro	ogrid a	and the	e contro	ol modes	5	-					
•	To ir	mpart k	cnowled	lge on	Distr	ibuted	l Gene	ration								
•	To a	nalyse	the imp	act of	Grid	Integr	ration.									
•	To u	ndersta	Iderstand various power quality issues and the protection schemes for Microgrid.													
COURSE C	DUT	COMES (Cos): (3-5) Understanding of various conventional and Nonconventional source of energy resources														
CO1		Understanding of various conventional and Nonconventional source of energy resources Familiar to Microgrid and the control modes														
CO2		Familiar to Microgrid and the control modes														
CO3		Knowledge on Distributed Generation														
CO4		Familiar to Grid Integration														
CO5		Acquire knowledge on various power quality issues and the protection schemes for														
		Vicrogrid.														
Mapping of	f Cou	irse O	1crogrid. se Outcomes with Program Outcomes (POs) 01 PO3 PO4 PO5 PO5 PO3 PO14 PO14 PO14													
COs/POs		PO1	PO2	PO3	PC)4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12	
CO1		Μ	Μ	Μ]	H	Η	M	L	H	H	H	I	I	H	
CO2		L	L	Μ]	H	Μ	M	H	Μ	Н	Μ	H	I	Μ	
CO3		Μ	Μ	Μ]	Ĺ	Μ	H	H	Μ	Μ	Μ	H	I	Μ	
CO4		H	L	Μ]	H	Μ	M	L	Μ	Μ	Μ	H	I	Μ	
CO5		H	H	L		Ĺ	Μ	H	H	Μ	H	Μ	H	I	Μ	
Cos / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	05				
CO1		Ν	1		Μ		I	I]	[I	I				
CO2		H	I		H		<u> </u>	<u>/I</u>]	[N	<u>/</u>				
<u>CO3</u>		<u> </u>	I T		H		<u> </u>	<u>/I</u>		[<u> </u>	N	<u>/</u>				
<u>CO4</u>		N	1		M				1			1				
CO5		E C (marked b	l thurf Cu		H	11 II:										
H/M/L indic	cates	Streng	th of Co	orrelati	lon	<u>н- н</u> і	gn, M		um, L-L	.ow		1				
		ces						nica								
		ien	- s		ves		sct	schi								
	ces	Sc	and	re	cti	ves	roje	Υ.								
ý	ienc	ing	ies cie	C	Ele	cti	/P	/ sd	ls							
gor	Sci	eer	niti S	am	am	Ele	cal	shij	kil							
ate	sic	gine active of active and active														
C	Ba	En	Hu So	Pr(Pr(Op	Prí	Int Sk	So							
				۲								1				

BEE18011 MICROGRID TECHNOLOGY 3 1/0 0/0 4

UNIT I INTRODUCTION

Conventional and Non-Conventional Power Generation - Advantages & Disadvantages – Energy Crisis in India – Review of Solar, Wind, Fuel Cells, Biomass, Tidal- Thermal, Hydel, Nuclear- Microturbines

UNIT II OVER VIEW OF MICROGRID

Composition of Microgrid-Structure-Operation Modes-Control Modes-Three state control of independent microgrid-Inverter Control – Grid Connection and separation control

UNIT III DISTRIBUTED GENERATION

Concept- Topologies- Selection of Sources- Standards for interconnecting Distributed resources to Power System- Energy Storage Systems- Market Design Issues – Distributed Generation Optimization and Energy Management

UNIT IV IMPACT OF GRID INTEGRATION

Requirements for Grid Connection- Limits on operational parameters-Voltage-Frequency-THD Response to grid abnormal operating conditions- islanding issues - Integration with NCE sources – Reliability

UNIT V POWER QUALITY ISSUES AND PROTECTION IN MICROGRID 12

Issues in Microgrid – Modelling and Stability Analysis – Economics in Microgrid- Operation and Protection strategies – Protection scheme for Distribution network connected with Microgrid

Total No of Hours: 60

TEXT BOOKS:

- 1. Fusheng Li, Ruisheng Li, Fengquan Zhou (2015), Microgrid Technology and Engineering Application, 1st Ed, Elsevier
- 2. Nikos Hatziagyriou (2013), Microgrids: Architectures and Control, Wiley

REFERENCE BOOKS:

- S.T.Rama,E.Sheeba Percis, A.Nalini, S.Bhuvaneswari, (2017), Handbook on Standalone Renewable Energy Systems, 1st Edn, Research India Publication ISBN No 978-93-87374-12-6
- 2. David Gao, (2015) Energy Storage for Sustainable Microgrid, 1st Ed, Elsevier
- **3.** Magdi S, Mahmoud , (2017), Microgrid- Advanced Control Methods and Renewable Energy System Integration, Butterworth –Heinemann- Elsevier
- 4. Chowdhury, S, Chowdhury, SP, Crossley, P, Microgrids and Active Distribution Networks, IET

12

12

12

Subject Code: BMG18002		Subjec ORGA	et Name ANISAT	e: MAI FION I	NAG BEH	EMF AVI(ENT CO DUR	ONCE	PTS AI	ND	TY / LB/ ETL	L	T / S.Lr	P/ R	C
]	Prereq	luisite:	-							L	3	0/0	0/0	3
L : Lecture T	: T	utorial	SLr:	Superv	vised	Lear	ning P	: Proje	ct R : F	Researc	h C: Cre	dits			
T/L/ETL : T	heor	y/Lab/	Embed	ded The	eory a	and L	Lab								
OBJECTIV	E :								_						
•	This	course	e is aim	ed at a	ddres	ssing	the co	ntempo	orary iss	sues, wl	nich fall	unde	er the l	oroad	title of
1	mana	agemer	nt, and i	ts func	tions	•	1 (•			<i>.</i> 1 •		• ,•	1
•	I her	e will	also be	an atte	empt	to an	alyze t	ne ben	avior of	101110	iuals wi	thin a	n orga	inizati	on and
		COME	SS(Cos	11g witt)• (3-5)		er gro	Sup of t	eams.							
COURSE O		Effecti	ve lead	ershin	, skills										
						-	-								
CO2	4	Accom	imodati	ng with	n co v	worke	ers and	at Woi	k enviro	onment					
CO3]	Enhan	ced lead	lership	skills	S									
CO4	1	Unders	Inderstanding and implementing good policies for the welfare of management and workers												orkers
Mapping of	Cou	rse Outcomes with Program Outcomes (POs)													
COs/POs]	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11													PO12
CO1		Η		Μ			Μ		L		Μ			L	
CO2		Μ	Μ					Μ		Н	Μ	Μ		L	Η
CO3		L		Η	I	H	Μ		Μ	Н	Μ	L]	М	
CO4		Μ	L					Μ			Μ				Μ
CO5															
Cos / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	05			
CO1		L			L		Ι]	Ĺ]				
CO2		L			L		I	[]	L]				
CO3			4		L				1	[. -					
<u>CO4</u>		L	4		L										
CO5	otoc	Ctuon o	th of C	amalati	<u></u>	II II	ich M	Madi	um I I						
H/M/L Indica	ates	Streng		orrelati	on .	н- н	ign, M·		IIII, L-L	.ow					
Category	Basic Sciences	Engineering Scienco Humanities Social Sciences Program Core Program Electives Open Electives Practical / Project Internships / Techn Skill Soft Skills													

BMG18002 MANAGEMENT CONCEPTS AND ORGANISATION 3 0/0 0/0 3 BEHAVIOR

UNIT I INTRODUCTION TO MANAGEMENT

 $\begin{array}{l} Definition \ of \ Management-Science \ or \ Art \ or \ Profession-Manager \ v_s \ Entrepreneur \ vs \ Leader-Types \ of \ Managers-Managerial \ roles \ and \ skills-Evolution \ of \ Management-Scientific, \ Human \ relations \ and \ system \ approaches \end{array}$

UNIT II PLANNING AND ORGANIZING

Nature and purpose of planning – planning process – types of planning – planning premises – Nature and purpose of organizing – Formal and Informal organization – organization chart – organization structure – types - Line and staff authority

UNIT III DIRECTING AND CONTROLLING

Leadership – Types and theories of leadership – communication – process of communication – barriers in communication – System and process of controlling – Budgetary and non budgetary control techniques – Direct and preventive control – reporting

UNIT IV INDIVIDUAL BEHAVIOR

Diversity - Attitudes and Job satisfaction – Emotions and Moods – personality and values – perception – Decision making – Motivation concepts – Motivation Applications

UNIT V GROUP BEHAVIOR

Foundations of Group Behavior – Understanding Teams – power and politics – Conflict and Negotiation – Stress Management

Total No of Hours :45

9

Q

9

9

TEXT BOOKS:

- 1. Harold Koontz and Heinz Weihrich "Essentials of Management" Tata McGraw Hill Education 2015
- 2. Stephen. P. Robbins, Timothy A. Judge and Seema Sanghi "Essentials of Organizational Behavior" Pearson 10th Edition 2010

REFERENCE BOOKS:

- 1. Tripathi PC & Reddy PN "Principles of Management" Tata McGraw Hill 2012
- 2. Stephen P. Robbins, David A.De.Cenzo, Mary Coulter "Fundamentals of Management" Pearson Education 2016

Subject Code: BEE18ET4		Subjec II	et Nam NDUST	e: 'RIAL	, DRI	VES	AND A	AUTO	MATIO	DN	TY / LB/ ETL	L	T / S.Lr	P/ R	C	
		Prerec	quisite:	BEE1	8009	, BEF	E 1801 0	, BEE	18005		ETL	1	0/1	3/0	3	
L : Lecture	T:T	utorial	SLr :	Super	vised	Learr	ning P	: Proj	ect R : l	Researc	h C: Cre	edits		1		
T/L/ETL : T	heor	y/Lab/	Embed	ded Th	eory	and L	ab									
OBJECTIV	/E:		1 T				1 D									
•		o deve	lop Intr	oducti	on to	Indus	trial D	rives								
•		o deve	lop kno	wledg	$e \text{ on } \mathbf{I}$		rives	orriotic	n And (Special		f Driv	100			
		o deve	Knowl	dra o	r SC/		y Colls		m Anu .	special			les			
		o gain	knowle	dge or	1 SC											
COURSE C			ES (Cos	(3-5)	6)	•										
CO1	'	To dev	velop In	troduc	tion to	o Indi	istrial	Drives								
CO2	,	To dev	velop kr	owled	ge on	DC I	Drive									
CO3	,	To dev	velop kr	nowled	ge on	Ener	gy Coi	nservat	ion And	l Specia	l Class	Of Dr	ives			
CO4	,	To gai	n Know	ledge	$\frac{1}{0}$ on SC	CADA	1			•						
CO5	,	To gai	n know	ledge (on PL	С										
Mapping of	f Cou	irse O	rse Outcomes with Program Outcomes (POs)													
COs/POs		PO1	PO2	PO3	PC)4	PO5	PO ₆	PO7	PO8	PO9	PO1	0 PO	11	PO12	
CO1		Η	L	L	I	M	Μ	L	Η	Н	Н	L	Ν	1	Μ	
CO2		Η	Н	Μ	I	M	Μ	L	L	Η	Μ	Η]		Μ	
CO3		Μ	Μ	L	Ι	N	Μ	Μ	Н	L	Μ	Μ	I	I	L	
CO4		Η	Μ	Μ]	L	L	Μ	Η	Μ	Н	Μ	I	I	Μ	
CO5		Μ	Н	Μ]	H	Μ	L	Η	Μ	H	Μ	I	I	Μ	
Cos / PSOs		PS	01	P	SO2		PS	03	PS	SO4	PS	05				
CO1		Ι			Η		Ν	Л]	L]	L				
CO2		Ν	1		Η		N	Л]	H	I	M				
<u>CO3</u>		E	I		L		<u> </u>	[1	M]	H				
<u>CO4</u>		<u> </u>			M		<u> </u>	1	1	M		<u>l</u>				
LOS	otoc	N Strong	$\frac{1}{1}$	orralat	M	и ц	I Inh M	_ Madi			ľ	VI				
H/M/L IIIdic	cates	Streng		Shelat	1011	п- п	ign, M	- Medi	um, L-L	.0w						
Category	Basic Sciences	Engineering Sciences	Humanities an Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technic. Skill	Soft Skills							
				\checkmark												

BEE18ET4INDUSTRIAL DRIVES AND AUTOMATION10/13/03

Dr.M.G.R. Educational and Research Institute (DEEMED TO BE UNIVERSITY) (An ISO Certified Institution) University with Graded Autonomy Status Maduravoyal, Chennai - 600 095

UNIT I INTRODUCTION

Definition, block diagram and types of Electric Drives – dynamics of electric drives – torque equations – speed torque characteristics of DC and AC motors – components of load torque – load equalization – steady state stability – heating and cooling curves – loading conditions and classes of duty – Selection of power rating for drive motors

UNIT II DC DRIVES

Speed control of DC series and shunt motors – concepts of constant torque and constant power control – concepts of Armature and field control, Ward Leonard control system – Speed control Using single phase controlled rectifiers – fully controlled – half controlled – speed control using 3 phase fully controlled rectifier – control using DC choppers – multi quadrant operation – electric braking – closed loop control of DC drives

UNIT III ENERGY CONSERVATION AND SPECIAL CLASS OF DRIVES

Need for energy conservation in electrical drives – improvement of power factor, improvement of quality supply – solar and battery powered drives – Drives used for traction – Control of fractional hp motors

UNIT IV SCADA

SCADA-Direct digital control-AI and except control system-Case studies on computer control for industrial process

UNIT V PLC

Evaluation of PLC's- Sequential and programmable controllers-Architecture-Relay logic-Applications of PLC-Bottle fielding system

TEXT BOOKS:

- 1. Dubey. G.K., "Power Semiconductor Controlled Drives", Prentice Hall International, 1989
- 2. B. K.Bose, "Modern Power Electronics and AC Drives", Prentice Hall Onglewood cliffs, New Jersey, 2002
- 3. D. Patranabis, Principle of industrial instrumentation, Tata MCgrahills publishers company ltd, 1996
- 4. Prof. Rajesh Mehra, DLC-Theory and Practical, Lakshmi Publications 2016

REFERENCE BOOKS:

- 1. E.O Doubelin, "Measurement System"- Application Tata- McGraw hills 2004
- 2. Kevin collis, "PLC programming for In Industrial Automation, Diggory Press Publishers, 2007
- 3. Vedam Subrahmanyam, "Electric drives concepts and applications", TMH Pub. Co.Ltd. 1994

0

9

9

9

Total No of Hours: 45

Subject	Subje	ct Name: N	/ICR(OGRID LA	AB					TY/	L	T/	P/	C
Code: RFF18L10										LB/ ETL		S.Lr	ĸ	
DELIGEIO	Prerec	quisite: BE	E1801	0, BEE180)09					L	0	0/0	3/0	1
I · Lecture T ·	Tutoria	$\frac{1}{1}$ SIr · Si	unervi	ed Learnin	σΡ	· Proje	ct R · R	esearc	h C · C	redite				
T/L/ETL : The	eorv/Lat	o/Embedde	d Theo	orv and Lab		. I loje		cscare	n c. c	licuits				
OBJECTIVE	:			,										
• St	udents o	can obtain	knowle	edge about	spec	cific w	ind pow	er, cal	culate	the w	ind fre	quency	, turb	oines
ch	aracteri	stics, time	period	and freque	ncy o	of the r	otating t	urbine	at dif	ferent	speeds	•		
• To	o unders	stand the Cl	naracte	ristics of S	olar I	Modul	es when	conne	cted in	n series	s and p	arallel		
• To	b help t	he student	s to u	nderstand t	he m	nodelli	ng, sim	ulation	, imp	lement	ation a	and per	rform	ance
ch	aracteri	stics of sol	ar phot	ovoltaic an	d wii	nd turt	oine.							
	b help th	the students	$\frac{10 \text{ desi}}{(2 \text{ s})}$	gn and sim	ulate	the pe	erforman	ce cha	racteri	stics o	t a Mi	cro-gri	d	
COURSE OU	Student	LES (COS):	(3-5)	adaa ahayt (ronord	atad wi	nd nowa	. turbin	as aba	rootorio	tion no	rformor	oo of	
COI	turbine	at different	speeds	euge about g	genera	ated wi	na power	, turbin	les cha	racteris	ucs, pe	riorinai		
CO2	Student	ts can under	stand th	e concept of	f semi	icondu	ctors and	p-n jur	ction e	energy l	band, Il	luminat	ion eff	fect
	on PV	Modules, ef	fect of 7	Femperature	n PV M	lodules	, Effect	t of Ang	gle of Ir	nclinati	ion			
	of Sola	r Modules.												
CO3	Capable and par	e of understa allel	anding	the concept	s of Sol	ar Moo	lules w	hen cor	inected	in seri	es			
CO4	Student	ts will be ab	le to mo	odel, simulat	te, im	plemen	it and per	form th	e char	acterist	ics of s	olar pho	otovolt	aic
	and wir	nd turbine.				-	-					•		
CO5	Student	ts will be ab	le to de	sign and sim	nulate	the per	rformanc	e chara	cteristi	cs of a	Micro-	grid		
Mapping of C	Course (Outcomes	with P	rogram Ou	utcon	nes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	P	05	PO6	PO 7	PO 8	PO 9	PO1	0 PO	1 F	PO1
CO1	Н	Н	Н	Н		Н	Н	, H	M	H	Μ	H	[L
CO2	Н	Н	Н	Н		Н	H	Н	Μ	Н	Μ	H	[L
CO3	Μ	М	Η	Н		Н	Н	Н	Μ	Н	Μ	H	[L
CO4	Н	Н	Н	Н		Н	Н	Н	Н	Н	Н	H	[Н
CO5	Η	Н	Η	Н		Η	Н	Н	L	Н	Н	H	[L
Cos / PSOs	Р	SO1		PSO2		PS	03	PS	04	P	SO5			
CO1		H		Μ		N	1]	H		H			
CO2		Μ		L		Ν	1]	L		Η			
CO3		H		H		Ν	1	J	I		L			
CO4		H		M		N	1]	H		L			
CO5	~	M		H		<u> </u>	<u> </u>	Ι	Л		L			
H/M/L indicat	es Stren	gth of Cori	elatior	1 H- High	<u>а, М-</u>	Medu	ım, L-Lo	OW						
<i>b</i>	ing	ies tial				 	ps /	ls						
goi	eer	unit Soc ces	am	ves	ves	cal	shi lica	ikil						
ic Ite	ain si	m€ d ¦	gr	en en	scti	icti oje	ern chn	ft S						
- <u>-</u> - <u>-</u> - <u>-</u>	≝. <u>∞</u>	= 2 .2	0			- CO +	. <u> </u>	· · · ·						
Ca Bas	Eng Scid	Hui and Sci	Prc	Op Ele	Ĕ	$\Pr_{\Gamma \mathcal{E}}$	Int Te	So						

BEE18L10

MICROGRID LAB

0/0 3/0 1

0

LIST OF EXPERIMENTS

- 1. Characteristics of PV Modules
- 2. Characteristics of Series connection PV Modules
- 3. Characteristics of Parallel Connection PV Modules
- 4. Effect of Shading in the PV Characteristics
- 5. Effect of Tilting in PV Characteristics
- 6. Evaluation of cut-in and start up speed of Wind Turbine
- 7. Evaluation of co-efficient of performance of Wind Turbine
- 8. Evaluation of Turbine Power and Wind Speed
- 9. Evaluation of TSR and Co-efficient of Power
- 10. Simulation of Characteristics Of PV Module.
- 11. Simulation of Characteristics Of Wind Turbine
- 12. Simulation of Characteristics Of PV Modules Connected in Parallel
- 13. Simulation of Characteristics Of PV Modules Connected in Series
- 14. Design of a Micro-grid using Matlab/PSCAD/ETAP

Total No of Hours: 45

Subject		Subject	t Name: PO)WER H	ELECTI	RON	ICS ANI	D DRIVI	ES LAI	B	TY/ LB/	L	T/ S.Lr	P/ R	С	
BEE18I	L11										ED/ ETL		0.11			
		Prereq	uisite: BEF	C18010							L	0	0/0	3/0	1	
L : Lect	ure T	: Tutoria	al SLr : Su	pervised	l Learnir	ng P	: Project	R : Rese	earch C	: Credi	ts			l	1	
T/L/ETI	. : Th	eory/Lab	o/Embedded	l Theory	and Lab	,	5									
OBJEC	TIVI	E:														
		• To	obtain an o	overview	of diff	erent	types o	f power	semico	onduct	or devic	es an	d their	switc	ching	
		• To	understand	the oper	ation c	harac	teristics	and ner	forman	ce nar	meters	of cor	ntrolled	Recti	fiers	
		and	Inverters.	une oper		marac		und per	ioiiiuii	ee puit		01 001	nionea	110011	11015	
		• To 1	understand	the techr	niques to	cont	rol the sp	eed of B	rushles	s DC N	Aotor ar	d SR	Motor			
		• To (understand	the oper	ration of	AC V	/oltage C	Controlle	rs							
		• To 1	understand	the appl	ications	of Po	wer Elec	tronic de	evices a	nd Ele	ctric dri	ves in	Power	Syster	m	
COURS	SE OI	UTCOM	ES (Cos):	(3-5)												
CO1		Student	s will under	rstand th	e operati	ion of	f power e ased on th	lectronic	s devic	es and	gain kn	owled	ge of th	le		
CO2		Student	s will under	rstand th	e operati	$\frac{1}{100}$	character	istics an	d perfo	rmance	e parame	eters o	f contro	olled		
		Rectifie	ers and Inve	rters	e operad	,,,,			a perro		Puruin			,		
CO3		Student	udents capable to understand the techniques to control the speed of Brushless DC Motor and SR													
		Motor														
CO4		Student	s able to u	nderstan	d the op	perati	on of AC	Voltage	e Contro	ollers						
CO5		Student	s able to un	derstand	the ope	eratio	n of diffe	erent con	verters	and inc	corporat	e in de	esigning	g the		
Mannin	a of (HVDC	transmissio	n Syster	m ama ma Ou	4000		-)								
COs/PC		PO1	PO2	PO3	PO4	utcon	PO5	5) PO6	P07	PO8	PO9	PO1) PO ¹	11 P	012	
CO1		H	H	H	H		M	M	H	L	H	M	<u>, 10</u> Н		<u>L</u>	
CO2		H	H	H	H		M	M	H	L	M	M	H	· · · · · ·	L	
CO3		Н	Н	Н	Н		Н	Μ	Н	L	Μ	Μ	H		L	
CO4		Н	Н	Н	Н		Н	Н	Н	Μ	H	Μ	H		L	
CO5		Н	Н	Н	Н		Н	Н	Н	Μ	Н	Μ	H		L	
Cos / PS	SOs	Р	SO1]	PSO2		PS	03	PS	04	PS	05				
CO1			Μ		Μ		I	I	I	I]	H				
CO2			Μ		Μ		N	1	I	I]	H				
CO3			H		H		N	1	I		I	N				
CO4			L		L		H	<u>I</u>	H	I		H				
CO5	1.		M	1	M		H I	<u>I</u>	ŀ	ł		H				
H/M/L i	ndica	ites Stren	gth of Corr	elation	H- H1gl	n, M-	Medium	, L-Low		<u> </u>						
	ces	F.0				ves		kill								
LZ	ien	ring	ties ial		S	ecti	\geq	ips al S	lls							
egol	Sc	neer	anit Soc	am	am tive	Εľ	ical	nshi nice	Skil							
Cate	asic	ngi Xien	um nd s	ogi ore	rogi lleci	pen	act oje	teri schi	oft (
	B	ых	A ar	ЧŪ	Ч Ц Ш	Õ	Pr Pr	Ц Ц	Š							
		I		\geq												

BEE18L11POWER ELECTRONICS AND DRIVES LAB00/03/01

LIST OF EXPERIMENTS

- 1. Characteristics of SCR, MOSFET, IGBT and TRIAC
- 2. Gate Pulse Generation using R, RC and UJT
- 3. Single phase half controlled and fully controlled bridge converter with R load and RL loads
- 4. Single phase AC voltage controller using TRIAC, DIAC with R AND RL loads
- 5. IGBT based Chopper
- 6. IGBT Based PWM Inverter
- 7. Single phase parallel inverter
- 8. Single phase Series inverter
- 9. Forced commutation circuits (Class A, Class B, Class C, Class D & Class E).
- 10. Single phase cyclo-converter with R and RL loads
- 11. Step down and step up MOSFET based choppers
- 12. Speed Control of DC Shunt Motor using three phase Rectifier
- 13. Simulation of Single Phase and Three Phase cyclo-converter
- 14. Simulation of the techniques to control the speed of Brushless DC Motor and SR Motor
- 15. Simulation of steady-state and transient performance of a HVDC transmission system

Total No of Hours: 45

Subject Code:	5	Subjec	ct Nam	e: PRO	JEC	ГPF	HASE ·	-I			TY / LB/	L	T / S.Lr	P/ R	C
BEE18L12											ETL				
	I	Prerec	quisite:								L	0	0/0	3/3	2
L : Lecture T	: Tt	itorial	SLr :	Superv	vised I	Lear	ning P	: Proje	ect R : H	Researc	h C: Cre	dits			
T/L/ETL : Th	neory	/Lab/	Embed	ded The	eory a	nd L	ab	5							
OBJECTIV	E:														
> The	objec	ctive c	of the M	Iain Pro	oject i	s to	culmin	ate the	acaden	nic stuc	ly and p	rovid	e an op	portur	nity to
explo	ore a	probl	lem or	issue,	addres	ss th	rough	focuse	d and ap	pplied 1	research	unde	r the di	rectio	n of a
facul	ty m	entor.	The pr	oject de	emons	strate	es the s	tudent	s ability	to syn	thesize a	and ap	oply the	e know	vledge
critic	skiin ally	s acqu	med to	real-w	ona i	imal	s and	proble	nis. 1111 ze ethicy	s proje	ions and	lto pr	e siude	ffectiv	unnk velv
COURSE O			ES (Cos	y; ma a	0000	ma	solution	<i>J</i> I , IIa				i to pi		iieeti v	ciy.
CO1		Apply	the kno	wledge	and s	skills	s acqui	red in t	he cours	se of stu	ıdv addı	ressin	g a spec	cific	
	Ţ	oroble	m or iss	ue.									5 F		
CO2]	Го enc	ourage	student	ts to th	nink	critical	lly and	creative	ely abou	it societ	al issu	ies and	devel	ор
	ι	iser fr	iendly a	ind reac	chable	solu	utions								
CO3]	Γo refi	ne rese	arch ski	ills an	d de	monstr	ate the	ir profic	iency i	n comm	unica	tion ski	11s.	
CO4]	Γo tak	o take on the challenges of teamwork, prepare a presentation and demonstrate the innate												
	t	alents	ilents.												
Mapping of	Cou	rse O	utcome	s with	Progr	am	Outco	mes (P	Os)	DOG	200	D 04			
COs/POs		<u>201</u>	PO2	PO3		4	<u>P05</u>	PO6	PO7	P08	PO9	<u>PO1</u>		11	PO12
		<u>H</u>	H	H		r		H	H		M	<u>M</u>		1	H
			H	H		r		H	H	M	M		1 T	1 T	H M
CO3			п	п		r r		п	п	IVI	IVI		T T	T	
C04			M 01	П	<u>п</u>		п DS			<u>п</u> 04	П	<u>п</u>		1	п
C01		15	1	1,	502 ц		15	<u>1</u>	15	U4 J	15	<u>и</u>			
CO_2		I	1 T		H H		I	1 1		I I	1	T T			
CO3		H	Ī		H		H	Ŧ	I	Ŧ]	H			
CO4		H	I		H		I	Ī	I	I]	H			
H/M/L indica	ites s	Streng	th of C	orrelation	on H	I-H	igh, M·	- Medi	ım, L-L	OW					
		se	and					cal							
		ence			SS		t	indi							
		CI6.	es		tive	SS	jec	Tec							
	S	τŇ	Ō		C 1	~	Ľ	-							
	suces	ng S	ss ienc	Core	Ile	ij	Ч	S							
ory	Sciences	ering So	nities Science	m Core	m Ele	Electiv	al / P	hips	cills						
itegory	ic Sciences	ineering So	nanities ial Science	gram Core	gram Ele	en Electiv	ctical / P	ernships . U	t Skills						
Category	Basic Sciences	Engineering S	Humanities Social Science	Program Core	Program Ele	Open Electiv	Practical / P	Internships . Skill	Soft Skills						
Category	Basic Sciences	Engineering S	Humanities Social Scienc	Program Core	Program Ele	Open Electiv	Practical / P	Internships Skill	Soft Skills						

Subject Code:		Subje	ct Nam	e: FOF	REIG	NL	ANGU.	AGE			TY/ LB/	L	T/ S.Lı	P/ R	C	
BHS18FL	X	Drorod	misito								ETL T	0	0/0	3/0	1	
		110100	juisite.								1	U	0/0	5/0	1	
L : Lecture	T : 1	Futorial	SLr:	Super	vised	Lear	ning P	: Proje	ect $\mathbf{R} : \mathbf{F}$	Researc	h C: Cre	edits				
1/L/EIL:	Theo	ory/Lab/	Embed	ded Th	eory	and L	Lab	ationa .		4000 of	the ferr					
OBJECII	v E:: to of	footivol	cognize	ine cu	longu		les, pra	clices, a	and neri	ally on	ne lore	ign co	ountry	, ith not	NO.	
speakers of	that	langua	у III а IV 0е	Jeigh	langu	lage a			a cultur	any ap	рюрпаю		iner w	itii iiat	lve	
			<u>ec</u> ES (Cos): (3-5)											
CO1		Achiev	ve funct	ional p	, rofici	iencv	in liste	ening, s	peaking	. readi	ng. and	writin	g.			
CO2		Develo	op an in	sight in	nto th	e nat	ure of 1		e itself.	the pro	ocess of	langu	age ar	d cult	ıre	
001		acquis	ition.						,• 100 • 11,	une pro	••••••••••••		-80 m			
CO3		Decod	e, analy	ze, and	l inte	rpret	authen	tic texts	s of diff	erent g	enres.					
Manning of	f Co	urse O	se Outcomes with Program Outcomes (POs)													
COs/POs		PO1	Outcomes with Program Outcomes (POs)PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12													
CO1		L	L	L]	L	L	H	L	H	M	H	-	H	L	
CO2		Μ	L	L]	Ĺ	L	H	L	Н	Н	Н		H	L	
CO3		L	L	Μ	Γ	M	L	H	Μ	Н	Μ	Н		H	L	
Cos / PSOs		PS	01	Р	SO2		PS	03	PS	04	PS	05				
CO1		Ι			L		J	Ĺ	l	Ĺ]	Ĺ				
CO2		Ι			L		l	L	J	L]	L				
CO3		Ι			L		I	L]	L]	L				
H/M/L indi	cates	s Streng	th of C	orrelati	on	H- H	igh, M	- Mediu	ım, L-L	ow		- <u>r</u>				
		ses	anc					nica								
		ienc			/es		ct	schr								
	ses	Sci	lces	e	ctiv	/es	oje	Te								
y	enc	ing	es cier	Co	Ele	ctiv	$/P_1$	/ sc	S							
gor	Sci	een	S	um	um	Ele	cal	shij	kill							
ate	sic	gin	uma cial)gra)gr	en	acti	ern ill	ft S							
	\mathbf{Ba}	En	Hu So	Pr(Pr(Op	\Pr_i	Int Sk	So							
			\geq													

Subject Code:		Subjec	et Nam	e: POV	VER	ELE	CTRC	ONICS	- II		TY / LB/	L	T / S.Lr	P / R	C
BEE18012	_	<u></u>	• • /	DEE4	0000	DET	140040				ETL		1/0	0.10	
		Prerec	luisite:	BEE1	8009,	, BEF	218010				Т	3	1/0	0/0	4
L : Lecture '	$\mathbf{T}:\mathbf{T}$	utorial	SLr :	Super	vised	Learn	ning P	: Proje	ect R : I	Researc	h C: Cre	dits			
T/L/ETL : T	heor	y/Lab/	Embed	ded Th	eory a	and L	.ab								
OBJECTIV	/E:	T					a								
	•	To at	tain kno	owledg	e on	HVD	C								
	•	Tom	iodel th		C sys	stem	11								
	•	To ki	now abo	Dut FA	CIS	Contr	ollers								
COUDSE		$\frac{10 \text{ m}}{\text{COM}}$	iodel th	e Powe	$\frac{r}{10v}$	v syst	tem								
COURSE C		Attoin	25 (Cos): (3-3) about		\mathbf{r}								
		Attaint		vieuge			stom								
		ADIIIIy Knowl	edge or	$\frac{101}{5}$ EACT	<u>חיט</u> רפ	C Sy	stem								
0.05		KIIOWI	euge of	FACI	3										
CO4		Attain	knowle	dge on	FAC	CTS C	Controll	lers							
CO5		Ability	to mo	iel Pov	ver flo	ow us	sing ST	ATCO	M, TCS	SC etc					
Mapping of	f Cot	irse O	se Outcomes with Program Outcomes (POs)												
COs/POs		PO1	PO2	PO3	PC)4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12
CO1		H	H	H	I	H	H	Μ	H	L	L	Μ	I	А	L
CO2		H	Η	H	I	I	Μ	Μ	L	L	Μ	Μ]	I	Μ
CO3		Μ	H	H	N	Л	L	L	Μ	H	Μ	Μ		H	H
CO4		Μ	Μ	Μ	N	А	Μ	H	H	Μ	M	L		Ĺ	L
CO5		L	H	H	I	H	H	Μ	Μ	H	M	H		I	Μ
Cos / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	05			
<u>CO1</u>		H	I		H		<u>N</u>	<u>/</u>]	H]				
CO2		E	<u>I</u>		M		<u> </u>	1		L T	1				
<u>CO3</u>		<u>N</u>	1				I		1			1			
C04			1 T				1 x	<u>1</u> л			N	/ <u> </u> T			
H/M/L india	rates	E. Streng	th of C	orrelati	$\frac{\mathbf{n}}{\mathbf{n}}$	<u>н_</u> н;	n igh M	/I Mediu			ſ	1			
	lates	Streng		JIICIali		11-11	ign, m	- Miculi	uIII, L-L	.0 w					
Category	Basic Sciences	Engineering Sciences	Humanities ar Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technic Skill	Soft Skills						
				\mathbf{r}											

POWER ELECTRONICS - II 3 1/0 0/0 4

UNIT I INTRODUCTION TO HVDC

Introduction of DC Power transmission technology – Classification of HVDC links- Components of HVDC transmission system- Comparison of AC and DC- Planning and Modern trends in DC transmission.

UNIT II HVDC CABLES AND MODELING OF HVDC SYSTEMS

Introduction of DC cables – Basic physical phenomenon arising in DC insulation – Practical dielectrics – Dielectric stressconsideration – Economics of DC cables compared with AC cables- Introduction to converter model of HVDC

UNIT III INTRODUCTION TO FACTS

The concept of flexible AC transmission - reactive power control in Electrical power transmission lines - uncompensated transmission line – series and shunt compensation. Overview of FACTS devices - Static Var Compensator (SVC) – Thyristors Switched Series capacitor (TCSC) – Unified Power Flow controller (UPFC) - Integrated Power Flow Controller (IPFC).

UNIT IV EMERGING FACTS CONTROLLERS

Static Synchronous Compensator (STATCOM) – operating principle – V-I characteristics – Unified Power Flow Controller (UPFC) – Principle of operation - modes of operation – applications

UNIT V POWER FLOW MODELING

Power flow modeling of SVC, TCSC, STATCOM and UPFC.

Total No of Hours:60

TEXT BOOKS:

BEE18012

- 1. Mohan Mathur, R. Rajiv K. Varma, Thyristor Based Facts Controllers for Electrical Transmission Systems. IEEE press and John Wiley & Sons, Inc.
- 2. ACHA etal, E. Power Electronic Control in Electrical Systems. Newness Power Engineering Series.
- 3.Padiyar, K. R.(1990) HVDC power transmission system.1st Ed. New Delhi: Wiley Eastern Limited.
- 4. Edward Wilson Kimbark, (1971) Direct Current Transmission. Vol. I. Wiley inter science. New York: London: Sydney:

REFERENCE BOOKS:

- **1.**John, A.T.(1999) Flexible AC Transmission System. Institution of Electrical and Electronic Engineers (IEEE).
- 2. Narain G. Hingorani, Laszio, Gyugyl, (2001)Understanding FACTS Concepts and Technology of Flexible AC Transmission System. Delhi: Standard Publishers.

12

12

12

12

Subject Code:		Subje	et Nam	e: SM	ART	GRII) TEC	HNOI	LOGY		TY/ LB/	L	T / S.Lı	P/ R	C	
BEE18013											ETL					
		Prerec	quisite:	BEE1	8009,	BEE	18010	, BEE1	8011		Т	3	0/0	0/0	3	
L : Lecture '	T:T	utorial	SLr :	Super	vised	Learr	ning P	: Proje	ect R : F	Researc	h C: Cre	dits		•	•	
T/L/ETL : T	heor	y/Lab/	Embed	ded Th	eory	and L	ab									
OBJECTIV	/E:															
•		o unde	rstand s	smart g	grid no	eed an	id its r	egulati	ons.							
•	• T	o prov	ide solu	tion in	vario	ous lev	vels of	smart	grid.							
		o unde	rstand	Micro	grid, (Comn	nunica	tion an	d Measu	iremen	technol	ogy.				
COURSE C	JUT		<u>28 (Cos</u>	<u>;; (3-5</u>)	1 /			.1 1.	1.4.	1 1	1 .	0		1	
		Under	stands t	he diff	erenc	e betv	veen si	nart gr	id and ti	radition	al grid c	lesign	a Sm	artgric	1	
<u>CO2</u>		Under	stands t	he Sma	artgrie	$\frac{1}{2}$ com	munic	ation a	nd meas	suremen	nt techno	ology				
<u>CO3</u>	4	Ability	to desi	gn a S	mart	Grid										
CO4		Unders	stands t	he stor	age te	echnol	logies									
CO5		Ability	to mod	lel and	l appl	y cont	rol foi	the int	eropera	bility s	tate.					
Mapping of	f Cou	irse O	rse Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
COs/POs		PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO													
CO1		Η	H	H		H	L	M	L	H	L	Μ		L	H	
CO2		Η	H	H	I	M	Μ	H	H	H	Μ	H		H	H	
CO3		L	H	H	I	N	Η	M	Н	Μ	H	Μ		H	Μ	
CO4		Μ	L	Η	J	H	Μ	L	Н	L	Μ	L		H	L	
CO5		Η	H	L]	Ĺ	L	Μ	Μ	H	L	Μ		Μ	Η	
Cos / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	05				
CO1		Ι			Μ]		I	H]	H				
CO2		N	1		Η		I	I	I	H	Ν	N				
CO3		H	I		Μ		I	H	N	Л	Ν	N				
CO4		Ν	1		L		I	I]	L]	L				
CO5		I			M		<u> </u>	<u>/I</u>	I	I	I	M				
H/M/L indic	cates	Streng	th of Co	orrelati	ion	H- Hi	gh, M	- Medi	ım, L-L	OW		T				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technica Skill	Soft Skills							
				\mathbf{r}												

BEE18013 SMART GRID TECHNOLOGY 3 0/0 0/0 3

UNITI INTRODUCTION TO SMART GRID

Traditional power grid- Smart grid Definition- Need for smart grid- Smart Grid Risks- Smart grid risks vs Benefits- Regulations in smart grid- Privacy information impacts and security standards- Smart grid security strategy- smart grid impact- applying security control and managing the overall risks.

UNITII SMART GRID COMMUNICATIONS AND MEASUREMENT TECHNOLOGY 9

Functions of Smart grid Component- Communication and measurement- Monitoring Measurement Technologies- WAMS, PMU, Smart meter, AMI etc. GIS and Google Mapping Tools- MAS- Microgrid and Smart grid Comparison.

UNITIII DESIGNING SMART GRID

Barriers and solution to smart grid development- General Level Automation- Power System Automation at Transmission Level- Distribution Level Automation- End user level- Applications for adaptive control and optimization.

UNIT IV RENEWABLE & STORAGE

Renewable resources- Sustainable energy options for the smart grid-solar Technology- modeling PV- Wind turbine systems- Biomass- Bio-energy- Small and Micro Hydro power- Fuel cell- Geothermal Heat pumps-Penetration and variability issues associated with sustainable energy technology- Demand response issues-Electric Vehicles- PHEV Technology- Environmental implications- Storage Technologies

UNITV INTEROPERABILITY AND CYBER SECURITY

Introduction- Interoperability- State of art- Benefits and challenges- Model- Control- Standards- Cyber security – Risks- Possible operation for improving -Case Study in Smart Grid Activity and Approach for smart grid Application

Total No. of Hours: 45

9

TEXT BOOKS:

- 1. Gilbert N. Sorebo, & Michael C. Echols, Smart Grid Security- An end to end view of security in the new Electrical grid. CRC Press.
- 2. James Momoh, Smart Grid- Fundamentals of Design and Analysis. CRC Press.
- 3. Janaka B. Ekanayake, Kithsiri Liyanage, Jian zhong Wu, Akihiko Yokoyama, Nick Jenkins Smart Grid Technology & Application. in Wiley.

REFERENCE BOOKS:

1. S.T.Rama,E.Sheeba Percis, A.Nalini, S.Bhuvaneswari, (2017), Handbook on Standalone Renewable Energy Systems, 1st Edn, Research India Publication ISBN No 978-93-87374-12-6

9 Vin

9

Subject	;	Subje	ct Nam	e: PR()JECT	PHAS		TY/	L	Τ/	P / R	С		
Code: BEE18I 13										LB/		S.Lr		
DELIGEIS]	Prerec	quisite:							L	0	0/0	12/12	8
L : Lecture T	' : T	utorial	SLr	: Super	vised L	earning	P:Pro	iect R :	Resear	ch C: C	redits			
T/L/ETL : TI	neor	y/Lab/	Embed	ded Th	eory an	d Lab		,						
OBJECTIV	E:T	he obj	ective o	of the N	lain Pro	oject is t	o culmi	nate the	acaden	nic stud	y and	provid	e an	
opportunity t	o ex	plore	a proble	em or is	ssue, a	ddress t	nrough f	ocused	and app	plied res	search	under	the direc	tion
of a faculty n	nent	or. Th	e projec	ct demo	onstrate	s the stu	ident's a	bility to	synthe	size and	l appl	y the ki	nowledge	e and
skills acquire	u io 1 a	n opti	voria is nal soli	sues an	a probl	ems. 11	lis proje	ct affirfi	ns the s	fective	to thi by	nk criti	carry and	1
COURSE O			ES (Co	(3-5)		iicai uco	1510115 a	inu to pi			iy.			
CO1		Apply	the kno	wledge	e and sl	tills aco	uired in	the cou	rse of s	tudy ad	dressi	ng a sp	ecific	
001	1	proble	m or is	sue.	- unu 51				100 01 0	caaj aa			•••••	
CO2	,	To enc	courage	studen	ts to the	nk criti	cally and	d creativ	vely abo	out soci	etal is	sues an	d develo	р
	1	user fr	iendly a	and rea	chable	solution	S							
CO3	,	To refi	ine rese	arch sk	ills and	demon	strate th	eir prof	iciency	in com	nunic	ation s	kills.	
CO4	,	To tak	e on the	e challe	nges of	teamw	ork, prej	pare a p	resenta	tion and	demo	onstrate	the inna	ate
	1	talents	•											
Mapping of	Cor	ırse O	utcom	es with	Progra	ım Out	comes (POs)		1 1				
COs/POs]	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	<u>PO1</u>	0 PO	11 I	2012
<u>CO1</u>		H	H	H	H	H	H	H	H	H	H	-	H	H
<u>CO2</u>		H	H	H	H			H	H	H	<u>H</u>			H
C03			п	П	П			н	П	н	<u>н</u> п	-		н
C04		п DS(<u>п</u> 01	П	<u>п</u>	П	<u>п</u>	П	<u>п</u> 04	П	<u>п</u> 05			п
$\frac{C05/1505}{C01}$		15 F	[] []	I K	<u>504</u> Н	L	<u>зоз</u> н	15	04 7	10	03 1			
CO2		H	<u> </u>		H		H	I	Ŧ	1	H H			
CO3		H	I		H		Н	I	H]	I			
CO4		H	I		H		Н	I	H]	H			
H/M/L indica	ates	Streng	gth of C	orrelati	ion H	- High,	M- Med	ium, L-	Low					
		es	and				ical							
		enc			es	t	chn							
	SS	Scie	ces	Ð	stiv	oje	Тес							
~	enco	ng	es ien	Cor	Elec	Pn								
çıory	Scie	eri	nitie Sc	m (m	al /								
ateg	ic	gine	nar ial	gra	gra	ctic								
Ű	Bas	Enξ	Hui Soc	Pro	Pro	Pra	Inte Ski	Sof						
						\geq								

Subject Code: BFF18F01	5	Subjec WI	et Name ND EN	e: IERGY	Y CO	NVE	RSIO	N TEC	CHNIQ	UES	TY / LB/	L	T / S.Lr	P / R	C
DEFICEO]	Prereg	uisite:								T	3	0/0	0/0	3
L : Lecture	Γ : Τι	utorial	SLr :	Super	vised	Learr	ning P	: Proje	ect R:	Researc	h C: Cre	dits			
T/L/ETL : T	heor	y/Lab/	Embed	ded Th	eory	and L	ab								
OBJECTIV	/E:					1.5	a		G						
•		o knov	v the ba	sics of	W1no	d Ener	rgy Co	onversi	on Syste	em					
•		o solve	e the En	ergy c	risis.	nia D		and :40	1						
•		o knov o undo	v the Po	Wer El	lectro	mic D	evices	and its	s charac	lenstics	•				
•		o desir	n wind	Energ		vorsi	ls on evet	am cui	oh ac cul	nevetar	e and its	com	nonente		
COURSEC		COME	SS(Cos	(3-5)	<u>y con</u> D	weisie	JII SYSI	em suc	II as su	Jsysten	is and ne	com	ponents)	
CO1		Knowl	edge or). (5-5) Wind	1 Ener	ov Sv	stems								
CO2	(Capabi	ility to f	ind so	lutior	n for E	Energy	Crisis							
CO3		Attaine	ed know	vledge	on va	arious	types	of conv	verters						
CO4		Famili	arity in	Power	Elec	tronic	s Devi	ces and	d its per	forman	ce				
CO5		Ability	to desi	gn Ele	ctrica	al Mac	chines	for Wi	nd Ener	gy Con	version	Syste	m		
Mapping of	f Cou	irse Outcomes with Program Outcomes (POs)													
COs/POs]	PO1	PO2	PO3	PC)4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12
CO1		Η	L	L	Ι	M	Μ	H	Μ	L	L	Н	I	I	L
CO2		Μ	Н	Η	J	H	Η	Η	Н	H	Μ	Μ	I	I	Η
CO3		Η	Μ	Μ	l	H	Μ	Η	Μ	Μ	Μ	L	I	I	Μ
CO4		Μ	Μ	Μ	Γ	Ν	L	H	Μ	Μ	Н	Μ	I	I	L
CO5		H	Н	Η]	H	Η	H	Μ	H	Н	Μ	I	I	Μ
Cos / PSOs		PS	01	P	SO2		PS	03	PS	604	PS	05			
CO1		N	1		L]	Ĺ	I	M]				
CO2		L	4		Η		Ν	Λ]	H]				
CO3		L			Μ		I	H	1	M]				
CO4		N	1		Μ		I	H	1	M					
CO5		<u> </u>	I	1	H			H		H	Ν	/[
H/M/L indic	cates	Streng	th of Co	orrelati	ion	H- H1	gh, M	- Medr	um, L-L	LOW		T		r –	
Category	Basic Sciences	Engineering Sciences	Humanities an Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technic: Skill	Soft Skills						
					7										

BEE18E01WIND ENERGY CONVERSION TECHNIQUES30/00/03

UNIT I INTRODUCTION TO WIND SYSTEMS

Historical uses of wind – History of wind turbines – Wind characteristics: Meteorology of wind – wind speed distribution across the world – spatial and temporal factors – Eolian features - Biological indicators. Wind measurement: Anemometers – balloon trackers. Wind energy conversion systems (WECS) - classifications

UNIT II WIND ENERGY CONVERSION

Meteorology of wind – Wind speed statistics – Aerodynamic design principles; Aerodynamic theories; Axial momentum, blade element and Strip theory; Maximum power coefficient - tip loss correction; Rotor design and characteristics - Power, torque and speed characteristics – Wind turbine performance measurement – Loading analysis

UNIT III WIND TURBINE SUBSYSTEMS & COMPONENTS

Design of WECS components – Stall, pitch & yaw control mechanisms – Brake control mechanisms - Theoretical simulation of wind turbine characteristics; Test methods

UNIT IV APPLICATION OF WIND ENERGY

Wind pumps - Performance analysis, design concept and testing - Principle of Wind Energy Generators - Stand alone, grid connected and hybrid applications of WECS - Economics of wind energy utilization - Wind energy in India

UNIT V OVERVIEW OF SMALL HYDROPOWER SYSTEM

Overview of micro, mini and small hydro systems- Hydrology- Elements of pumps and turbine - Selection and design criteria of pumps and turbines - Site selection and civil works - Speed and voltage regulation - Investment issues load management and tariff collection; Distribution and marketing issues: case studies; Potential of small hydro power in India.

Total No of Hours : 45

TEXT BOOKS:

- 1. Manwell, J.F. Mcgowan, J.G. Rogers, A.L.(2002) Wind Energy Explained Theory, Design & Application. John Wiley & Sons
- 2. Gray L. Johnson, (1985) Wind Energy Systems. Prentice Hall Inc
- 3. Bose, B.K. (2001) Modern Power Electronics & AC Drives. Prentice Hall

REFERENCE BOOKS:

- 1. Vaughn Nelson, (2009) Wind Energy Renewable Energy & the Environment. CRC Press
- 2. S.T.Rama,E.Sheeba Percis, A.Nalini, S.Bhuvaneswari, (2017), Handbook on Standalone Renewable Energy Systems, 1st Edn, Research India Publication ISBN No 978-93-87374-12-6

9

9

Q

Q

Subject Code:		Subjec ENGI	et Nam NEERI	e: IOT NG	' APF	PLIEI	DTO	ELEC	FRICA	L	TY/ LB/	L	T / S.Lr	P/ R	C
BEE18E02	F	Prerec	uisite:								ETL T	3	0/0	0/0	3
L : Lecture	T : T	Tutorial	SLr:	Super	vised	Learr	ning P	: Proie	ect R : F	Researc	h C: Cre	edits			
T/L/ETL : 7	Theo	ry/Lab/	Embed	ded Th	eory	and L	ab	· • j ·							
OBJECTIV	VE:														
•	To	study IO	OT in E	lectric	Engi	neerin	ng								
•	To	study T	elemati	cs Dev	vices										
•	To	Study I	OT Sen	sors			_								
•	To	Study S	mart gr	id and	Micr	o grid	1								
		Study S	mart Sp	pace So	ecurit	y Sys	tem								
COURSE (<u> </u>	Knowl	<u>LS (Cos</u>): (3-3) n Ela	atrical	Engir	aorina							
01		KIIOWI	euge of	1011		unca	Engli	leering							
CO2		Attain	knowle	dge or	Tele	matic	Devic	es							
CO3		Ability	to wor	k on I	DT se	nsors									
CO4		Knowl	edge or	n Smar	t grid	and M	Micro g	grid							
CO5		Knowl	nowledge on Smart Space Security System												
Mapping of	f Co	urse O	utcome	s with	Prog	ram	Outco	mes (P	Os)	r					
COs/POs		PO1	PO2	PO3	PC)4	PO5	PO6	PO7	PO8	PO9	PO1	0 PC	11	PO12
CO1		H	H	Μ	I	I	L	H	Μ	H	Μ	H	Ι	Л	L
CO2		Μ	H	Μ	I	Η	L	M	Μ	Μ	Μ	Μ	I	Л	Μ
CO3		Μ	Μ	Μ	I	H	L	M	H	Μ	H	Μ	I	А	Μ
CO4		L	Μ	Μ	N	A	Η	M	Μ	H	Μ	H]	Ĺ	Μ
CO5		M	H	<u>H</u>		Ĺ	M		M		M	M	I	А	H
Cos / PSOs		PS	01	P	<u>802</u>		<u>PS</u>	03	PS	04	PS	05			
			1		M		<u> </u>	<u>/</u>			1				
C02			<u>1</u> л					<u>/l</u> T	1	<u>1</u> л					
C03			1				I	<u>1</u> Л			נ ז				
C04		I	1		M			л Л		л Л		H			
H/M/L indi	cates	Streng	th of Co	orrelati	on	H- Hi	igh. M	- Medi	um. L-L	ow					
Category	Basic Sciences	Engineering Sciences M Humanities M Humanities and Social Sciences and Program Core H- High, W- Median Program Core and Program Core Program Core Program Electives and Nopen Electives N Soft Skill Soft Skills													
					\checkmark				-						

IOT APPLIED TO ELECTRICAL ENGINEERING

UNITI **INTRODUCTION TO IOT** 9 Introduction – Need of IOT in Electrical Engineering – Challenges in Implementation of IOT – Trends in Electrical Engineering - Configuration and Scalability - Efficiency - Quality of Service **UNIT II TELEMATICS** 9 Smart Devices - Smart Apps - Wearable Technology - Vehicle Telemetry - Smart Homes and Building Automation - Vehicle Charging Station UNIT III **SMART ENERGY** Generation - Transmission - Distribution and Metering - Storage - Smart Monitoring and Diagnostics System at Major Power Plants - Micro grid and Virtual Power UNIT IV **INDUSTRIAL IOT** 9

Real-Time Monitoring and Control of Processes – Deploying Smart Machine – Smart Sensor – Smart Controllers – SCADA – Proprietary Communication

UNIT V SECURITY MEASURES

Securing Smart Spaces and Smart Grid – Smart Grid – Service that need to be Secure - Security Requirement – Security Smart Spaces – Smart Tracking Firewall – Cryptographic Key in the IoT

Total No of Hours: 45

TEXT BOOKS:

BEE18E02

1. George Mastorakis , (2016), Internet of Things (IoT) in 5G Mobile Technologies,1st ed. Edition,, Publisher SPRINGER

REFERENCE BOOKS:

1. Enterprise IoT: Strategies and Best Practices for Connected Products and Services, Dirk Slama, Frank Puhlmann, Jim Morrish, Rishi M Bhatnagar, Publisher O'REILLY

0

3

0/0

0/0 3

Subject Code:		Subjec	et Nam	e: ME	СНА	TRO		TY/ LB/	L	T / S.Lr	P/ R	C				
BEE18E03	-	Duonor	misita									2	0/0	0/0	2	
	-	Tierec				_				_		3	0/0	0/0	5	
L: Lecture '	T:T	utorial	SLr : Embodi	Super	vised	Lear	ning P	: Proje	ect R:	Researc	h C: Cre	edits				
OBIECTIN	/ F •	y/La0/	Embed		eory	and L	ao									
•	то и	inderst	and the	concer	ots of	senso	ors and	transd	ucers							
•	Tol	earn in	terface	progra	mmii	ng										
•	To a	pply c	ontrol s	ystem	probl	ems										
COURSE (DUT	COME	ES (Cos	s): (3-5)											
CO1		Attain	knowle	dge on	Sens	sors a	nd Tra	nsduce	rs							
CO2		Ability	v to inte	rface in	n pro	gramr	ning									
CO3	(Capabl	le to de	sign co	ntrol	techn	iques									
CO4		Ability	v to desi	ign act	uator	s										
CO5		Capabl	le of un	derstar	nding	recen	t adva	ncemei	nts							
Mapping of	f Cou	irse O	se Outcomes with Program Outcomes (POs)01PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12													
COs/POs		PO1	I PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1 M M M M H M M M I													
CO1		H	Μ	M	1	M	M	L	H	Μ	Μ	M		M	L	
<u>CO2</u>		H	H	L		H	<u>M</u>	L	H	H	L	<u>H</u>		M		
<u>CO3</u>		<u>H</u>	H	H			<u>H</u>	M	H	H	H	<u>H</u>		H	M	
<u>CO4</u>		H	H	H			H	H	H	H	H			H	<u>H</u>	
						H								H	Н	
		<u> 15</u>		P	<u>502</u>		<u> </u>	<u>U3</u>	PS	004 IT	PS	05				
C01			1 1		M		1 1	1 J	ן ד		1					
C02		I	1		T.		1 1	Л	1	<u>vi</u> L	1	VI [
CO4		E	I	-	H		I		1	M]	H				
CO5		Ν	ſ		Н		Ι	1]	H]	H				
H/M/L indic	cates	Streng	th of Co	orrelati	on	H- Hi	igh, M·	- Medi	um, L-I	LOW						
		SS	and					ical								
	S	Science	ses 6		tives	SS	ject	Techni								
	ence	, gu	es ienc	Core	Elec	ctivε	Prc	. / SI	s							
gory	Scie	cri)	niti6 Sc	m (mI	Elec	al /	ship	kill							
ateξ	ic (gine	mai ial	gra	gra	en l	ctic	erns 11	î Sl							
Ů	Bas	Εnξ	Hui Soc	Pro	Pro	Opí	Pra	Inte Ski	Sof							
					7											

BEE18E03 MECHATRONICS 3 0/0 0/0 3

UNIT I INTRODUCTION

Mechatronics – definition and key issues – evolution – elements – mechatronics approach to modern Engineering design.

UNIT II SENSORS AND TRANSDUCERS

Types - displacement, position, proximity and velocity sensors - signal processing - data display.

UNIT III ACTUATION SYSTEMS

Mechanical types – applications – electrical types – applications – pneumatic and hydraulic systems – applications – selection of actuators

UNIT IV CONTROL SYSTEMS

Types of controllers – programmable logic controllers – applications – ladder diagrams – microprocessor applications in mechatronics – programming interfacing – computer applications

UNIT V RECENT ADVANCES

Manufacturing mechatronics – automobile mechatronics – medical mechatronics – office automation – case studies.

Total No of Hours: 45

TEXT BOOKS:

- 1. Bulton, N. (1995) Mechatronics : Electronic Control system for Mechanical and Electrical Engineering, Longman.
- 2. Dradly, D.A. Dawson, D. Burd, N.C. and Loader, A.J. (1993) Mechatronics: Electronics in products and processes, Chapman & Hall.

REFERENCE BOOKS:

- 1. HMT Mechatronics. New Delhi: Tata McGraw-Hill.
- 2. Galip Ulsoy, A. and Devices, W.R.(1989) Microcomputer Applications in Manufacturing .USA: John wiley.
- 3. James Harter,(1995) Electromechanics : Principles, concepts and devices. New Jersey: Prentice Hall.

9

Q

Subject Code:		Subjec	t Nam	e: AR	FIFI	CIAL	INTE	LLIG	ENCE		TY/	L	T/ S.Lr	P/ R	C
BEE18E04											ETL				
		Prereq	uisite:								Т	3	0/0	0/0	3
L : Lecture '	T : T	utorial	SLr :	Super	vised	Lear	ning P	: Proje	ect R : I	Researc	h C: Cre	dits			
T/L/ETL : 1	heor	y/Lab/	Embed	ded Th	eory	and L	Lab	5							
OBJECTIV	/E:														
•	• T	o attair	n famili	arity ir	n Arti	ficial	Intellig	gence							
•	• T	o study	/ about	Fuzzy	Syste	em.									
•	• T	o acqui	ire knov	wledge	of A	NN									
•	• T	o study	/ about	genetio	c algo	orithm	1								
•	• T	o do pi	ogrami	ning u	sing o	optim	ization	techni	ques.						
COURSE (DUT	COME	ES (Cos	s): (3-5)										
CO1		Familia	arity in	Artific	ial In	tellig	ence								
CO2		Acquir	ed knov	wledge	on F	uzzy	System	1							
CO3		Acquir	ed knov	wledge	on N	Jeural	l Netwo	ork							
CO4		Familia	arity in	Geneti	ic Alg	gorith	m								
CO5		Capable to solve issues with optimization techniques													
Mapping of	f Cou	irse Oi	rse Outcomes with Program Outcomes (POs)												
COs/POs		PO1	PO2	PO3	PC)4	PO5	PO6	PO7	PO8	PO9	PO1	0 PC)11	PO12
CO1		L	L	Н	J	H	L	Н	L	L	Μ	Μ]	H	Μ
CO2		Η	Μ	Μ		H	Η	Μ	Η	Η	Н	Η]	H	Η
CO3		М	Μ	L]	H	Μ	Н	Μ	Μ	Н	Μ]	H	\mathbf{M}
CO4		Μ	Η	Μ]	H	L	Μ	Μ	Μ	Μ	L]	H	Μ
CO5		Н	Η	Μ]	H	Μ	Н	Η	Η	H	Η]	H	Μ
Cos / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	05			
CO1		N	1		Μ		N	I]	Ĺ	N	/			
CO2		N	1		L		I	ł	Ν	Л	N	/[
CO3		L			L		I	ł]	L]				
CO4		N	1		Μ		N	Λ]	L]				
CO5		H	[Μ		H	ł		I	N	Λ			
H/M/L indic	cates	Streng	th of Co	orrelati	on	<u>H- H</u>	igh, M·	- Medi	um, L-L	ow		-			
Category	Basic Sciences	Engineering Sciences	Humanities an Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technica Skill	Soft Skills						
					$\overline{}$										

BEE18E04 ARTIFICIAL INTELLIGENCE

UNIT I INTRODUCTION TO ARTIFICIAL INTELLIGENCE

Computational Intelligence Paradigms - Heuristic Search – Techniques for heuristic search and classification, State Space Search – Strategies for implementation of Graph search based on Recursion patent – directed search production system and learning

UNIT II FUZZY SYSTEMS

Fuzzy Sets: Definitions - Membership Functions-Operators - Fuzzy Set Characteristics - Fuzziness and Probability. Fuzzy Logic and Reasoning: Fuzzy Logic - Linguistics Variables - Fuzzy Rules Fuzzy Inferencing - Fuzzification - Inferencing - Defuzzification - Fuzzy Controllers : Components of Fuzzy Controllers- Types - Mamdani Fuzzy Controller

UNIT III ARTIFICIAL NEURAL NETWORKS

Calculating the Net Input Signal - Activation Functions - Artificial Neuron Learning .Supervised Learning Neural Networks: Neural Network Types Feed forward Neural networks Supervised Learning Rules-Gradient Descent Optimization. Unsupervised Learning Neural Networks: Hebbian Learning Rule - Learning Rule - Stochastic Training Rule

UNIT IV EVOLUTIONARY ALGORITHM

Particle Swarm Optimization: Basic Particle Swarm Optimization -Global Best PSO-Local Best PSO. Genetic Algorithms: Canonical Genetic Algorithm -Crossover -Mutation - Control Parameters. Ant colony Algorithms: Ant Colony Optimization -Foraging Behaviour of Ants-Simple Ant Colony Optimization

UNIT V APPLICATION OF COMPUTATIONAL INTELLIGENCE

Study the Algorithm and Code for travel salesman problems, Traffic monitoring problems, transportations problems, fault diagnosis problems with computational intelligence

Total No of Hours: 45

Q

9

TEXTBOOKS:

- 1. Simon Haykin, (1994) Neural Networks: A Comprehensive Foundation, Macmillan College Publishing Company
- 2. Goldberg D.E. (2002) Genetic Algorithms in Search, Optimization and Machine Learning. Pearson Education Asia
- 3. Timothy. J. Ross, (2000) "Fuzzy Logic with Engineering Applications

REFERENCE BOOKS:

- 1. Andries P.Engelbrecht, (2000) Computational intelligence. University of Pretoria-South Africa
- 2. Singiresus. Rao, Engineering optimization. West Lafayette. Indiana
- 3. J. Yen and R. Langari, "Fuzzy Logic: Intelligence, Control, and Information", Prentice-Hall, 1999
- 4. Sudhir K., "Fuzzy Sets and Applications"
- 5. Bhargava A.K. "Fuzzy Set Theory Fuzzy Logic and their Applications

0/0 3

0/0

3

9

Subject Code: BEE18E05		Subjec TECH	t Namo NIQUI	e: SOL ES	AR EN	ERGY (CONVI	ERSIO	N	TY / LB/ ETL	L	T / S.Lr	P/ R	C
]	Prereg	uisite:							Т	3	0/0	0/0	3
L : Lecture 7	Γ : Τι	utorial	SLr:	Superv	ised Le	arning P	: Proje	ect R : F	Researc	h C: Cre	dits		I	
T/L/ETL : T	heor	y/Lab/	Embedo	led The	ory and	Lab								
OBJECTIV	E :													
• '	To st	tudy ab	out Sol	ar Radi	ation an	d the co	llector	types						
• '	To ir	npart k	nowled	lge on t	he Appl	ication c	of Solar	thermal	Techn	ology				
•	To u	ndersta	and the	fundam	entals o	f Solar F	hotovo	oltaic cel	ls					
•	To de	esign the Solar cells in cost effective manner. earn about the solar passive Architecture												
	<u>Fo</u> le	comes (Cos): (3-5)												
COURSE O		COMES (Cos): (3-5) Students understand. Solar Padiation and the collector type:												
	,	Students understand Solar Radiation and the collector types												
<u>CO2</u>	4	Acquire knowledge on the Application of Solar thermal Technology												
<u>CO3</u>		Unders	stand th	e funda	mentals	of Solar	Photo	voltaic c	ells					
<u>CO4</u>		rammar to design the Solar cells in cost effective manner												
		incorporate the knowledge about the solar passive Architecture												
Mapping of	Cou	Irse O	utcome	$\frac{s \text{ with }}{DO2}$	Program	n Outco	mes (P	$\frac{OS}{DO7}$	DOO	DOO	DO1		11	DO12
COS/POS		M	PO2	<u>P03</u>	P04	PO5	PO6	P0/	PU8	P09			II . r	<u>PO12</u>
		M	H	H		M		M	IVI T	M		IV	1 7	
		M	M				H				<u>H</u>			H M
					M	H	M		N	H			, ,	
<u>CO4</u>		M	H	<u>H</u>	M		M	H	M					
		H						H	M 04				L	M
		P59		P	502 M	PS	03	PS	04	PS	05			
			1 1	- -		1	1		/ <u>1</u> /		L T			
C02		IV.	1 1		<u>VI</u> T		L M		/ <u> </u> T					
C03		IV. 	I r		L U		VI Л	1	1	<u>ר</u> א	<u>и</u>			
C04		1 1	[[<u>н</u> Н		vi M				VI VI			
H/M/L indic	ates	Streng	th of Co	orrelatio	on H-	High M	- Mediı	um L-L	ow		<u>, 1</u>			
	ares	survey	pu				cal	, 2 2						
Category	Basic Sciences	Engineering Science	Humanities a Social Sciences	Program Core	Program Electives Onen Flectives	Practical / Project	Internships / Technic Skill	Soft Skills						
					7									

BEE18E05SOLAR ENERGY CONVERSION TECHNIQUES30/00/03

UNIT I SOLAR RADIATION AND COLLECTORS

Solar Radiation- Solar angles - Sun path diagrams - shadow determination – Solar Collectors - flat plate collector thermal analysis - heat capacity effect - testing methods-evacuated tubular collectors - concentrator collectors – classification - tracking systems - compound parabolic concentrators - parabolic trough concentrators - concentrators with point focus - Heliostats – performance of the collectors

UNIT II APPLICATIONS OF SOLAR THERMAL TECHNOLOGY

Principle of working, types - design and operation of - solar heating and cooling systems - solar water heaters - thermal storage systems - solar still - solar cooker - domestic, community - solar pond - solar drying

UNIT III SOLAR PV FUNDAMENTALS

Solar cells - p-n junction: homo and hetro junctions - metal-semiconductor interface - dark and illumination characteristics - efficiency limits - variation of efficiency with band-gap and temperature - efficiency measurements - high efficiency cells - preparation of metallurgical, electronic and solar grade Silicon - production of single crystal Silicon: Czokralski (CZ) and Float Zone (FZ) method

UNIT IV SOLAR PHOTOVOLTAIC SYSTEM DESIGN AND APPLICATIONS

Solar cell array system analysis and performance prediction- Shadow analysis: reliability - solar cell array design concepts - PV system design - design process and optimization -voltage regulation - maximum tracking – use of computers in array design - quick sizing method - array protection and troubleshooting - stand alone - hybrid and grid connected system - System installation - operation and maintenances - field experience - PV market analysis and economics of SPV systems

UNIT V SOLAR PASSIVE ARCHITECTURE

Thermal comfort - heat transmission in buildings- bioclimatic classification – passive heating concepts: direct heat gain - indirect heat gain - isolated gain and sunspaces - passive cooling concepts: evaporative cooling - application of wind, water and earth for cooling; shading - paints and cavity walls for cooling - roof radiation traps - earth air-tunnel. – energy efficient landscape design - thermal comfort – concept of solar temperature and its significance - calculation of instantaneous heat gain through building envelope

Total No of Hours: 45

9

9

9

9

9

TEXT BOOKS:

- 1. Sukhatme S P, (1984), Solar Energy, Tata McGraw Hill
- 2. Kreider, J.F. and Frank Kreith, (1981), Solar Energy Handbook, McGraw Hill

REFERENCE BOOKS:

- 1. Garg H P., Prakash J., (2000), Solar Energy: Fundamentals & Applications, Tata McGraw Hill
- 2. S.T.Rama,E.Sheeba Percis, A.Nalini, S.Bhuvaneswari, (2017), Handbook on Standalone Renewable Energy Systems, 1st Edn, Research India Publication ISBN No 978-93-87374-12-6
- 3. Alan L Fahrenbruch and Richard H Bube, (1983), Fundamentals of Solar Cells: PV Solar Energy Conversion, Academic Press
- 4. Larry D Partain, (1995), Solar Cells and their Applications, John Wiley and Sons, Inc.

Subject	5	Subjec	et Nam	e: GR	EEN	BUII	LDING	HNOLO	OGY	TY/	L	T/ SLr	P/ R	C	
BEE18E06											ETL		5. L1	N	
]	Prereg	uisite:								Т	3	0/0	0/0	3
L : Lecture 7	: Tı	utorial	SLr :	Super	vised	Lear	ning P	: Proje	ect R : I	Researc	h C: Cre	dits			
T/L/ETL : T	heor	y/Lab/.	Embed	ded Th	eory	and L	ab	5							
OBJECTIV	E:														
• To e	duca	te the	concept	t of Gr	een B	uildi	ng								
• To u	nder	stand t	the Des	ign coi	ncepts	s of G	Green B	uilding	5						
• To a	ttain	knowl	ledge o	n reduc	ction	of car	bon fo	oting							
• To in	npar	t the in	nportar	nce of l	Envir	onme	ntal iss	sues							
• To e	xplo	re the	e the future trends in Green Building and to revamp the ecological design.												
COURSE O	UT	COME	OMES (Cos): (3-5)												
CO1]	Knowledge on Green building													
CO2		Ability to understand the Design concepts of Green building													
CO3		Attained knowledge on reduction of Carbon footing													
CO4		Acquired knowledge on the importance of Environmental issues													
CO5		Ability to explore the future trends on Green building													
Mapping of	Cou	irse Oi	utcome	s with	Prog	gram	Outco	mes (P	Os)						
COs/POs]	PO1	PO2	PO3	PC)4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12
CO1		Η	Μ	H	Ι	N	Μ	L	L	Μ	Μ	L	L	<i>,</i>	Η
CO2		Μ	L	Μ	Ι	M	Η	Μ	Μ	H	Μ	L	Ν	[Μ
CO3		Μ	Μ	L	Ι	N	Μ	L	Μ	Μ	Μ	Μ	L	,	L
CO4		Μ	Η	L]	H	Η	Μ	Η	Μ	Η	Μ	Ν	[Μ
CO5		Μ	Μ	L	Ι	N	L	H	Μ	H	Μ	L	N	[Н
Cos / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	05			
CO1		H	I		Μ		I	H]	Ĺ	N	1			
CO2		N	1		Η		ŀ	I	I	M	H	I			
CO3		H	[Μ		Ν	A]	H	I				
CO4		N	1		Μ		Ν	N	I	М	N	1			
CO5		N	1		Μ		ŀ	H		H	H	I			
H/M/L indic	ates	Streng	$\frac{\text{th of } C}{T}$	orrelati	on	<u>H- H</u>	igh, M	- Medi	um, L-L	.ow		1			
Category	Basic Sciences	Engineering Sciences Humanities ar Social Sciences Program Electives Open Electives Practical / Project Internships / Technic Soft Skills							soft Skills						
	. 1				~										

BEE18E06GREEN BUILDING TECHNOLOGY30/00/03

UNIT I INTRODUCTION TO GREEN BUILDING

Basics of Green - Sustainable Design – ecological Design – Green Design – Green Buildings- Progress & Obstacles- High Performance Green Buildings

UNIT II DESIGN OF GREEN BUILDING

Foundations of Green Building-Environmental concerns- Assessment- Design process- Green building excecution project- Heat Island Mitigation – Sustainable sites

UNIT III REDUCTION OF CARBON FOOTING

Building energy Issues – Design Strategy – Renewable Energy Systems- Smart Building & energy Management Systems - Reducing the Carbon footprint

UNIT IV ENVIRONMENTAL ASPECTS

Hydrological cycle - Sustainable storm water management - Construction Operations and commissioning of Green Building – Construction & Demolition Waste management - Indoor Environmental Quality

UNIT V FUTURE TRENDS

Economics in Green Building – Managing First costs – Financial barriers - Articulating Performance goals for future Green Buildings – Revamping Ecological Design

Total No of Hours: 45

9

9

9

9

9

TEXT BOOKS:

- 1. Charles J.Kibert Sustainable Construction: Green Building Design and Delivery, 3rd Edition Wiley Publisher, (2012)ISBN :978-0-470-90445-9
- 2. Francis D, K, Ching, Ian M, Shapiro, Green Building Illustrated, Wiley

REFERENCE BOOKS:

- 1. Sam Kubba, Handbook of Green Building Design, and Construction, Elsevier Publisher(2012) ISBN: 978-0-12-385128-4
- Charles J.Kibert, Martha C.Monroe, Anna L.Peterson, Richard R.Plate, Leslie Paul Thiele, Working Toward Sustainability: Ethical Decision –Making in a Technological World, Wiley Publisher, ISBN : 978-0-470-53972-9
- S.T.Rama,E.Sheeba Percis, A.Nalini, S.Bhuvaneswari, (2017), Handbook on Standalone Renewable Energy Systems, 1st Edn, Research India Publication ISBN No 978-93-87374-12-6

Subject Code: BEE18E07		Subjec APPL	et Nam ICATI	e: NEU ON	JRAL	. NE'	TWOF	RKS A	ND ITS	5	TY / LB/ ETL	L	T / S.Lr	P/ R	C
		Prerec	uisite:								Т	3	0/0	0/0	3
L : Lecture T	T:T	Tutorial	SLr : Embed	Superv	vised	Learr	ning P ab	: Proje	ct R : I	Researc	h C: Cre	dits	1		1
OBJECTIV	/E:	I y/ Luo/	Linoca				ao								
• To !	knov	v the fu	ndamer	ntals of	Neur	al net	twork								
• To l	earn	the the	ory abo	out Neu	ral ne	etwor	'k								
• .To	lear	n the co	ontrol us	sing Ne	ural l	Netw	ork								
COURSE C)UT	COME	COMES (Cos): (3-5)												
CO1		Knowl	Knowledge on the fundamental of Neural network												
CO2		Attain	Attain knowledge on the architecture of the network topology												
CO3		Knowl	Inowledge on different types of topologies												
CO4		Ability	Ability to apply control using Neural network												
CO5		Ability	Ability to design Digital Filters												
Mapping of	f Co	urse O	utcome	s with	Prog	ram	Outco	mes (P	Os)						
COs/POs		PO1	PO2	PO3	PO	4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12
CO1		Η	Μ	Η	Ι		Μ	H	Μ	Η	L	L]		H
CO2		Μ	Η	Н	N	1	Η	Μ	Н	Η	Μ	L	N	Л	Μ
CO3		Н	Μ	Μ	E	I	L	H	Μ	Μ	Н	Μ]	Ĺ	L
CO4		Μ	Μ	Μ	N	1	Μ	Μ	Μ	Μ	Μ	Μ	N	Л	Μ
CO5		Μ	Μ	Н	H	I	Η	Μ	Μ	Η	Н	L	N	Л	H
Cos / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	05			
CO1		Ν	1		H		Ι]	Ĺ]	Ĺ			
CO2		H	[H		<u> </u>	<u>/</u>]	[Ι	M			
<u>CO3</u>		<u> </u>	1		M		<u> </u>	ł	N	<u>A</u>					
<u>CO4</u>		<u> </u>	1				<u> </u>	/ <u> </u>	N		1				
LO5	otor	N. Strong	$\frac{1}{th of C}$	orralati	H on 1	U U:	t ich M	1 Madiu			ľ				
	ales	Sucing		JITCIALI		1-11	ign, m-	- Mieun	1111, L-L	.0 w					
Category	Basic Sciences	Engineering Sciences Humanities and Soc Sciences Program Core Program Electives Open Electives Internships / Technic Skill Soft Skills													
					\geq										

BEE18E07 NEURAL NETWORKS AND ITS APPLICATION 3 0/0 0/0 3

UNIT I FUNDAMENTALS OF NEURAL NETWORKS

Introduction- Basic Structure of a Neuron- Model of Biological Neurons- Elements of Neural Networks Weighting Factors- Threshold- Activation Function.

UNIT II NEURAL NETWORKS THEORY

ADALINE- Linear Separable Patterns- Single Layer Perceptron- General Architecture- Linear Classification- Perceptron Algorithm- Multi-Layer Perceptron General Architecture- Input-Output Mapping.

UNITIII NEURAL NETWORK ARCHITECTURES

Introduction- NN Classifications- Feed forward and feedback networks- Supervised and Unsupervised Learning Networks- Back Propagation Algorithm- Delta Training Rule- Radial Basis Function Network (RBFN)- Kohonen Self Organization Network- Hopfield Network.

UNIT IV NEURAL NETWORKS FOR CONTROL

Schemes of neuro-control – identification and control of dynamical systems – adaptive neuro controller – case study.

UNIT V APPLICATION OF NEURAL NETWORKS

Introduction -Application of neural network in Design of digital filters- computer networking –Electrical Fault Diagnosis.

Total No of Hours: 45

TEXT BOOKS:

- 1. Ali Zilouchian Mo Jamshidi, (2000) Intelligent Control Systems Using Soft Computing Methodologies.
- 2. Englewood cliffs, N.J. Laurance Fausett, (1992) Fundamentals of Neural Networks. Prentice Hall.

REFERENCE BOOKS:

- 1. Tsoukala, L.H. and Robert E. Uhrig, (1997) Fuzzy and Neural approach in Engineering. John Wiley and Sons.
- 2. Jacek M. Zurada, (1997) Introduction to artificial Neural Systems. Mumbai: Jaico Publishing House.
- 3. Millon, W.T. Sutton, R.S. and Webrose, P.J.(1992) Neural Networks for control. MIT: Press.

9

Subject Code:		Subjec	et Nam	e: DIG	ITAL	SIC	GNAL	PROC	ESSIN	G	TY / LB/	L	T / S.Lr	P/ R	C
DEEIOEVO		Prerec	uisite:									3	0/0	0/0	3
L : Lecture '	T : T	utorial	SLr :	Super	vised	Lear	ning P	: Proje	ect R : I	Researc	h C: Cre	edits			
T/L/ETL : T	heor	y/Lab/	Embed	ded Th	eory a	nd L	Lab	J							
OBJECTIV	/E:														
•	, T	o unde	rstands	the fur	ndame	entals	s of sig	nals &	systems	5.					
•	• Ir	npart k	nowled	lge on 2	Z- trar	nsfor	m cond	cepts.	-						
•	, T	o Unde	erstand	the De	signin	g of	signals	susing	filters.						
•	, T	o avail	the kno	owledg	e on d	lesig	n IIR a	nd FIR	filters	with Fo	urier sei	ies m	ethod		
•	, T	o understand the Architecture and features of various signal processing chips													
COURSE (DUT	COMES (Cos): (3-5)													
CO1		Acquire knowledge in fundamentals of signals & systems.													
CO2		Capable of solving problems using Z- transform													
CO3		Familiar to design of signals using filters.													
CO4		Capable of design IIR and FIR filters with Fourier series method													
CO5		Incorporate the knowledge in development of projects.													
Mapping of	f Coı	ırse Ö	utcome	s with	Prog	ram	Outco	mes (P	Os)						
COs/POs		PO1	PO2	PO3	PO	4	PO5	PO6	PO7	PO8	PO9	PO1	0 PC	011	PO12
CO1		H	Μ	Μ	N	1	Μ	L	L	L	L	L	Ι	M	L
CO2		H	Н	L	H	I	Μ	L	L	L	Η	L	I	A	L
CO3		Η	Н	Η	H	I	Н	Μ	Η	Μ	Η	Μ]	H	Μ
CO4		Η	Η	Η	H	I	Н	H	Η	Μ	Н	Μ]	H	Μ
CO5		Η	Н	Η	H	ſ	Н	H	Н	Μ	H	Η]	H	Н
Cos / PSOs		PS	01	P	SO2		PS	03	PS	604	PS	05			
CO1		I	,		Η		I	Ι]	H]	H			
CO2		L	4		L		I	[]	Ĺ]	L			
CO3		Ν	1		Η		I	H]	H]	H			
CO4		H	[Η		I	H]	H]	H			
CO5		H	[Η		I	H		H]	H			
H/M/L indic	cates	Streng	th of C	orrelati	on I	H- H	igh, M	- Medi	um, L-L	ωW		1		_	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills						
					\geq										

BEE18E08DIGITAL SIGNAL PROCESSING30/00/03

UNIT I DISCRETE TIME SIGNALS AND SYSTEMS

Periodic and pulse signals – examples of sequences – pulse step, impulse, ramp, sine and exponential – differential equations – linear time invariant – stability, causality – DT systems – time domain analysis

UNIT II Z- TRANSFORM AND DFT

Z-transform and its properties – convolution – inverse Z-transform – discrete Fourier series – properties – sampling the Z-transform – Discrete Fourier Transform – properties for frequency domain analysis – linear convolution using discrete Fourier transform – overlap add method, overlap save method

UNIT III FAST FOURIER TRANSFORM (FFT)

Introduction to Radix 2 FFT's – decimation in time FFT algorithm – decimation in frequency FFT algorithm – computing inverse DFT using FFT – mixed radix FFT algorithm

UNIT IV IIR AND FIR FILTER DESIGN

Classification – reliability constrains – IIR design – bilinear transform method – impulse invariant method – step – invariance method – FIR design – Fourier series method – window function method

UNIT V PROGRAMMABLE DSP CHIPS

Architecture and features of TMS 320C50, TMS3201and ADSP 2181signal processing chips

Total No of Hours: 45

TEXT BOOKS:

- 1. Openheim A.V., and Schafer R.W., Discrete Time Signal Processing, Prentice Hall of India, New Delhi, 1992
- 2. Proakis J.G. and Manolakis, D.G., Digital Signal Processing Principles, Algorithms and Applications, Prentice Hall of India, New Delhi, 1997

REFERENCE BOOKS:

- 1. Antonian A., Digital Filters analysis and Design, Tata McGraw-Hill Publishing Co., New Delhi, 1988
- 2. Stanley W.D., Digital Signal Processing, Restion Publishing House, 1989. ADSP2181 Datasheet

9

9

9

Subject Code: BEE18E09		Subjec DISTI	ct Nam RIBUT	e: : RI ION S	ESTRU YSTEI	UCT M	URIN	G OF			TY / LB/ ETL	L	T / S.Lr	P / R	C
		Prereg	uisite:								Т	3	0/0	0/0	3
L : Lecture	Г : Т	utorial	SLr :	Superv	vised L	.earn	ning P	: Proje	ect R : F	Researc	h C: Cre	dits			
T/L/ETL : T	heor	y/Lab/	Embed	ded The	eory ar	nd La	ab								
OBJECTIV	'E:	1	D''I.			1 1	T I T								
• 10 s	tudy	about	Distrib	ution s	ystem a	and I	Load F	attern							
• 101 • Tor	mpa ostra	IL KIIOW	he Dist	n me i ributio	JISUIDI 2. notvu	uuon	and eve	tent co	ntrol for	Lowv	oltago n	atwor	·ŀ		
• To 1	inder	rstand t	the self	healing	r contr	ol te	chniau			LOW V	onage n	etwoi	ĸ		
• To a	ittair	confic	lence o	n Autor	mation	in E	Distrib	ution fi	eld						
COURSE C	DUT	COME	ES (Cos): (3-5)		2150110	<i>at</i> 1011 11	014						
CO1		Knowl	edge or	the D	istribut	tion	Systen	n and t	he load	pattern.					
CO2		Attaine	ed knov	vledge	on the	Dist	ributic	on feed	er						
CO3		Ability	bility to restructure the Distribution network												
CO4		Knowl	nowledge on self healing control techniques												
CO5		Attaine	ttained confidence on Automation of Distribution network.												
Mapping of	Cou	ırse O	utcome	s with	Progra	am (Outco	mes (P	Os)						
COs/POs		PO1	PO2	PO3	PO4	ļ	PO5	PO6	PO7	PO8	PO9	PO1	0 PC	D 11	PO12
CO1		Η	Μ	Μ	Η		Μ	Μ	Μ	L	Μ	L	I	Ν	Μ
CO2		Η	Μ	Н	Μ		Μ	Μ	Н	Μ	Μ	Μ	Ι	M	Μ
CO3		Μ	Н	Μ	L		Η	Н	Μ	Μ	Н	L]	H	Н
CO4		Μ	Μ	Н	Μ		Μ	Н	Н	Н	Μ	Μ	I	M	Μ
CO5		L	L	Μ	Μ		Η	Η	Μ	Μ	L	Η]	H	L
Cos / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	05			
CO1		H	I		L		N	ſ	N	ſ	I	Λ			
<u>CO2</u>		H	[M		<u>N</u>	<u>/</u>	N	<u>/</u>	N	<u>/</u>			
<u>CO3</u>		<u>N</u>	1		M		<u> </u>	<u> </u>		<u> </u>		<u> </u>			
<u>CO4</u>			1 /r		L M		<u>N</u>	/1		/1		V L			
LO5	otor	Strong	1 th of C	orroloti	$\frac{\mathbf{N}}{\mathbf{n}}$	Ui.	ah M	- Modiu					ļ		
	acs	Sucing		Jielati		- 11	gn, wi	- meul	лп, г-г	UW					
Category	Basic Sciences	Engineering Science Engineering Science Humanities a Program Core Program Electives Open Electives Internships / Techni Skill Soft Skills													
					$\overline{}$										

BEE18E09 RESTRUCTURING OF DISTRIBUTION SYSTEM 3 0/0 0/0 3

UNIT I INTRODUCTION TO DISTRIBUTION SYSTEM

Development of Power Distribution Network –Load Growth and Diversified Demands – Load Modeling-Load Demand Forecasting - Self healing Techniques – Line parameters- Overhead lines, Insulators and Supports- Cables- Insulation Resistance – Voltage drop and Power loss in Conductor

UNITII DISTRIBUTION FEEDER

Primary Distribution system – Secondary Distribution system – Design Considerations - Substation location and planning – Feeder Loading – Voltage drop considerations – Drop with different loadings –Voltage drop constant with different loading

UNITIII RESTRUCTURING THE NETWORK

Design of Network – Voltage selection – Sizing –Voltage control- Current loading- Earthing –Cost Factor - LV Distribution Networks – Switchgear for Distribution Substation and LV Networks – Extended Control of Distribution Substations and LV Network

UNIT IV SELF HEALING CONTROL

Self Healing –Principle –Characteristics- Control method – Urban Distribution network self-healing control method based on Quantity of State – Based on Distributed Power and Microgrid- Based on Coordination Control model

UNIT V AUTOMATION IN DISTRIBUTION SYSTEM

Implementation of Distribution Network self-healing – Relay Protection Units – Basic Requirements – Self Adaption – SCADA / RTU- History and Development of SCADA -Principle and Operation – Automation of Distribution System – PMU /WAMS and SCADA /EMS – Application of PMU or WAMS

Total No of Hours: 45

TEXT BOOKS:

- 1. Kamaraju, V (2009), Electrical power Distribution System, Tata McGraw Hill
- 2. Abdelhay A, Sallam, Om, P, Malik, (2011), Electric Distribution Systems, Wiley

REFERENCE BOOKS:

- 1. Xinxin Gu, Ning Jiang (2017), Self Healing Control Technology for Distribution Networks, Wiley
- 2. James Northcote-Green, Robert Wilson, Control and Automation of electrical Power Distribution Systems, Taylor & Francis

9

9

9

9

Subject Code: BEE18E10	2	Subjec DG	ct Name AND	e: ENER	RGY S	STOI	RAGE	TECH	INOLC	OGY	TY / LB/ ETL	L	T / S.Lr	P/ R	C
]	Prereg	uisite:								Т	3	0/0	0/0	3
L : Lecture	Г : Ті	utorial	SLr:	Superv	vised	Learr	ning P	: Proje	ect R : l	Researc	h C: Cre	dits	1		
T/L/ETL : T	heor	y/Lab/	Embed	ded The	eory a	and L	ab								
OBJECTIV	'E:														
• To s	study	about	the Ene	ergy Sto	orage	Tech	nology	y							
• To k	cnow	the wo	orking l	Princip	le of I	Batter	ries and	d its ty	pes						
• To i	mpar	t knov	vledge o	on Fuel	Cells	s alon	g with	its adv	antage	and dis	advantag	ges			
• To a	inaly	se vari	ous typ	es of ei	nergy	stora	ge dev	vices.							
• To h	nave	a wide spread knowledge on Electric Venicle COMES (Cos): (3-5)													
COURSE C	DUTO	COMES (Cos): (3-5)													
	4	Attain Knowledge on various energy resources													
		Knowledge on the concept of Distributed generation													
<u>CO3</u>		Ability to analyze various types of energy storage devices													
<u>CO4</u>	4	Ability to analyze various types of energy storage devices													
<u>CO5</u>		Knowledge on Electric vehicles													
Mapping of		Irse U	utcome	$\frac{\text{s with}}{\text{DO2}}$	Prog	ram (Dutco	mes (P	$\frac{US}{DO7}$	DOP	DOD	DO1		11	DO12
			PO2 M	<u>РОЗ</u> и		ν4 Λ	<u>РО5</u> и	PU0 M	PU / M	PU8 M	F09			11 1	<u>F012</u> M
			M	<u>п</u> М		л Л	<u>п</u> М	M	M			<u>п</u> и		1 Л	
CO2		<u>п</u> ц	H	M		л Л	M	M	M	M	M	<u>п</u> М		/1 /ſ	
CO4		M	II I	T	T		M	Н	M	Н	T	T		л Л	
C05		н	I I	M	N	<u>л</u>	T	T	н	M	н			T I	<u>г</u>
$\frac{COS}{COS/PSOS}$		PS	D1	P	SO2	1	 PS	03	PS	604	II PS	$\frac{11}{05}$		1	L
CO1		H	[<u>н</u>			<u>л</u>		[,	1	[,			
CO2		N	1		M		I		I	M	N	<u>л</u>			
CO3		N	1		L		N	Л]	H]	H			
CO4		N	1		Μ		N	Л	I	М]	H			
CO5		N	1		H		ł	Ι	Ι	М	Γ	Л			
H/M/L indic	ates	Streng	th of Co	orrelati	on I	H- Hi	gh, M	- Medi	um, L-L	low					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills						

BEE18E10DG AND ENERGY STORAGE TECHNOLOGY30/00/03

UNIT I INTRODUCTION

Conventional Power generation – Advantages and disadvantages – energy crisis – Non- conventional energy resources – review of solar, Wind energy system, biomass, tidal sources

UNITII DISTRIBUTED GENERATION

Concept of distributed generation – topologies – selection of sources – regulatory standards – Security issues in DG implementation – Energy storage element - Necessity of energy storage – types of energy storage – comparison of energy storage technologies - Application

UNITIII BATTERIES & FUEL CELL

Batteries – Measurement – Storage and types - Fuel Cell – History of fuel cell – Principle of electrochemical Storage – Types – Hydrogen oxygen cells, Hydrogen air cell – Hydrocarbon air cell – alkaline fuel cell – detailed analysis – advantage and drawback of each cell.

UNIT IV ALTERNATE ENERGY STORAGE TECHNOLOGIES

Flywheel – Super Capacitors – Principles & applications, Compressed Air Energy Storage- Concept of Hybrid Storage – Microgrid economics - Applications

UNIT V ELECTRIC VEHICLE

Electric Vehicle – Types – Hybrid Vehicle – Battering Charging – Usage of batteries in Hybrid vehicle – Fundamentals of Electric vehicle modeling – Types of PHEVs and Automotive system

Total No of Hours: 45

TEXT BOOKS:

- Ibrabim Dincer, marc A,Rosen, (2011) Thermal Energy Storage Systems and Applications, 2nd Ed, John Wiley
- 2. James Larminie, John Lowry (2003), Electric Vehicle Technology Explained, John Wiley & Sons
- 3. Sumedha Rajakaruna, Farhad Shahnia, Arindham Ghosh, "Plug-in-ElectricVehicles in Smart Grid Integration Techniques", Springer, 2015

REFERENCE BOOKS:

- 1. Seth Leitman, Bob Brant (2013) Build Your Own Electric Vehicle, 3rd Ed, McGraw Hill
- 2. S.T.Rama,E.Sheeba Percis, A.Nalini, S.Bhuvaneswari, (2017), Handbook on Standalone Renewable Energy Systems, 1st Edn, Research India Publication ISBN No 978-93-87374-12-6
- 3. James larminie, Andrew Dicks, (2003), Fuel Cell Systems Explained, Wiley

9

9

9

9

Subject Code:	Subj	ect Nam	e: MA	TERIA	L SCIE	ΓION	TY/	L	T/ SIr	P/ P	C			
BEE18E11									ETL		3. LI	N		
	Prer	equisite							Т	3	0/0	0/0	3	
L : Lecture T	Tutoria	l SLr	: Superv	vised Le	arning H	P : Proje	ect R : H	Researc	h C: Cre	edits				
T/L/ETL : Th	eory/La	o/Embed	ded The	eory and	l Lab	Ū								
OBJECTIVE	:													
To ga	n basic	knowled	lge on C	Cryogen	ic Techn	ology								
To im	part kno	wledge	on Supe	er Alloy	and its A	Applica	tions							
To kn	ow the i	mportan	ce of Fl	exible I	Electroni	cs								
• To ha	ve a wic	le spread	knowle	edge ab	out Nanc	science	and nat	no mate	rial					
To le	arn aboi	it Drone												
COURSE OU	TCOM	OMES (Cos): (3-5)												
CO1	Attai	Attained basic knowledge on Cryogenic Technology												
CO2	Knov	Knowledge on Super Alloy and its application												
CO3	Knov	Knowledge on Flexible Electronics												
CO4	Attai	Attained knowledge on nano science and nano material												
CO5	Knov	Knowledge on Drone												
Mapping of (Course (se Outcomes with Program Outcomes (POs)												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12	
CO1	Η	Μ	Μ	L	L	Μ	Μ	Μ	Η	Μ	Ν	1	Μ	
CO2	Η	Μ	Μ	L	L	Η	Μ	Η	Η	Н	Ν	1	Μ	
CO3	Н	Н	L	Μ	Μ	Μ	Μ	Μ	Μ	Μ	H	I	Μ	
CO4	Μ	Μ	Μ	Μ	Μ	L	Η	L	L	L	N	1	Η	
CO5	Н	L	Η	Н	Н	Μ	Μ	Μ	Μ	Μ	I	_	Μ	
Cos / PSOs	P	SO1	P	SO2	PS	503	PS	04	PS	05				
CO1		H		Μ]	М	I	Ι]	Ĺ				
CO2		H		L]	Μ	N	Л	Ι	M				
CO3		Μ		Μ		L]	I]	L				
CO4		H		H]	M	Ν	Л	I	N				
CO5		Μ		Μ		H		L		H				
H/M/L indicat	es Strer	gth of C	orrelati	on H-	High, M	I- Medi	um, L-L	ow		1				
ory .	crences ering Sciences	ering Sciences ities and Sciences and In Core lectives lectives ips / Technica ills												
Catego	Enginee	Engineer Engineer Social S Program V Program Dpen Eld Practical Soft Skil												

BEE18E11MATERIAL SCIENCE IN AVIATION30/00/03

UNIT I INTRODUCTION TO CRYOGENIC TECHNOLOGY

Terms & Phenomena associated with Cryogenic Systems – Prominent contributors- Critical Aspects and Issues involved – Benefits from Integration – Early applications of Cryogenic Technology- Gas Separation process – Industrial Applications of Cryogenic fluid technology

UNIT II SUPER ALLOY

Introduction- Basic Metallurgy – characteristics & Facts –Properties – Microstructure – Strengthening – Melting & Conversion – Investment casting- Corrosion & Protection of Super Alloy - Applications

UNIT III FLEXIBLE ELECTRONICS

History – Materials for Flexible Electronics – Degrees – Substrates – Backplanes Electronics – Frontplane Technologies – Encapsulation - Fabrication Technology – Sheets by batch Processing and Web by Roll to Roll Processing

UNIT IV NANOSCIENCE AND NANO TECHNOLOGY

Nano – Current Technologies – Energetics – Implications – Electron Microscopes – Optical Microscopes – Photoelectron Spectroscopy for the study of nano materials – Metal clusture and nano particles – nano crystals – Raman Scattering – Basics of nanomaterials

UNIT V DRONE AND AIR VEHICLE

Introduction – Types of flying drones – Current Uses – Drone Components – Concepts and Systems – Regulations & Safety – Applications – Future Trends

Total No. ofHours: 45

TEXT BOOKS:

- 1. Jha, AR, (2006), Cryogenic Technology and Applications, Elsevier
- 2. John, K Tien, Superalloys, Supercomposites and Superceramics, Elsevier
- 3. William S, Wong, Alberto Salleo, Flexible Electronics: Materials and Applications, Springer
- 4. Pradeep, T, (2012) Nanoscience and Nanotechnology, Mc Graw Hill

REFERENCE BOOKS:

- 1. Mattew, JD, Stephen JD, Superalloys, A Technical guide, 2nd Ed, ASM International.
- 2. Murty, BS, Shankar, P, Baldev Raj, BB Rath, James Murday, Nanoscience and Nanotechnology, Springer
- 3. Robokingdom LLC, (2016)Drone Book

9

9

9

Subject Code: BEI18013	1	Subjec	et Name POW	e: ER PL	ANT	' INS'	TRUN	IENTA	ATION		TY / LB/ ETL	L	T / S.Lr	P/ R	С
]	Prereg	quisite:								Т	3	0/0	0/0	3
L : Lecture '	T : Tı	utorial	SLr:	Superv	vised	Learr	ning P	: Proje	ect R:1	Researc	h C: Cre	edits			
T/L/ETL : T	heor	y/Lab/.	Embedo	ded The	eory a	and L	ab								
OBJECTIV	/E:														
•	Fami	liarity	to Buil	ding bl	ocks	and b	oilers.								
•	Capa	ble to	measur	e Electi	rical j	paran	neters.								
•	Capa	ble to	analyse	variou	s par	amete	ers in p	ower p	olants						
•	Unde	erstand	the cor	ntrol lo	ops ir	n boil	er								
•	Capa	ble to monitor and control the renewable energy systems													
COURSE O	DUT	COME	OMES (Cos): (3-5)												
CO1	,	The students get familiarized to Building blocks and boilers.													
CO2	,	The student becomes capable to measure Electrical parameters													
CO3	r	The stu	ident w	ill be a	ble to	o anal	yse va	rious p	aramete	rs in po	wer pla	nts			
CO4	r	The students understand the control loops in boiler													
CO5	,	The student becomes Capable to monitor and control the renewable energy systems													
Mapping of	f Cou	irse Oi	se Outcomes with Program Outcomes (POs)												
COs/POs]	PO1	PO2	PO3	PO	94	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12
CO1		H	Μ	Μ	Ι		L	L	L	L	Μ	Μ	I	I	L
CO2		Μ	Μ	L	Ι		Η	L	L	Μ	Μ	L	I	I	Μ
CO3		Н	Н	Η	H	I	Η	Μ	Μ	Μ	Н	Μ	1	I	Н
CO4		Н	Μ	L	N	I	L	L	L	Μ	Μ	Μ]	H	Μ
CO5		Η	Н	Μ	I	I	Η	Μ	Η	Μ	Н	Μ]	I	Н
Cos / PSOs		PS	01	P	SO2		PS	03	PS	O4	PS	05			
CO1		H	I		L		Ι		I	M]	Ĺ			
CO2		H	I		L		N	A	I	M	Ν	N			
CO3		H	I		Η		N	A]	H	Ν	N			
CO4		N	1		Μ		I	I	I	Μ	Ν	N			
CO5		H	I		Η		I	H	Ι	Ν]	H			
H/M/L indic	cates	Streng	th of Co	orrelati	on l	H- Hi	igh, M	- Medi	ım, L-L	ow					
Category	Basic Sciences	Engineering Sciences Humanities and Social Sciences Program Core Program Electives Open Electives					Practical / Project	Internships / Technica Skill	Soft Skills						

BEI18013 POWER PLANT INSTRUMENTATION 0/0 3 0/0 3

UNIT I **OVERVIEW OF POWER GENERATION**

Brief survey of methods of power generation - hydro, thermal, nuclear, solar and wind power - importance of instrumentation in power generation – thermal power plants – building blocks – details of boiler processes UP&I diagram of boiler – cogeneration.

UNIT II **MEASUREMENTS IN POWER PLANTS**

Electrical measurements – current, voltage, power, frequency, power factor etc. – non electrical parameters – flow of feed water, fuel, air and steam with correction factor for temperature - steam pressure and steam temperature - drum level measurement - radiation detector - smoke density measurement - dust monitor.

UNIT III ANALYZERS IN POWER PLANTS

Flue gas oxygen analyzer - analysis of impurities in feed water and steam - dissolved oxygen analyzer chromatography – PH meter – fuel analyzer – pollution monitoring instruments.

UNIT IV **CONTROL LOOPS IN BOILER**

Combustion control - air/fuel ratio control - furnace draft control - drum level control - main stem and reheat steam temperature control - super heater control - attemperator - de aerator control - distributed control system in power plants - interlocks in boiler operation.

TURBINE – MONITORING AND CONTROL UNIT V

Speed, vibration, shell temperature monitoring and control - steam pressure control - lubricant oil temperature control - cooling system

Total No of Hours: 45

TEXT BOOKS:

- 1. Sam G. Dukelow, (1991) The control of Boilers, instrument .Society of America
- 2. Modern Power Station Practice.Vol.6.Instrumentation, Controls and Testing. Pergamon Press. Oxford

REFERENCE BOOKS:

- 1. Elonka, S.M. and Kohal, A.L. (1994) Standard Boiler Operations. New Delhi: McGraw-Hill
- 2. Jain, R.K.(1995) Mechanical and industrial Measurements. Delhi: Khanna Publishers

9

9

Subject Code:		Subjec S	et Nam SAFET	e: Y FOI	REL	ECTI	S	TY / LB/	L	T / S.Lr	P/ R	C			
DEE10E13	-	Prerec	uisite:									3	0/0	0/0	3
L : Lecture	T : T	utorial	SLr :	Super	vised	Learr	ning P	: Proje	ct R : F	Researc	h C: Cre	dits			
T/L/ETL : T	heor	y/Lab/	Embed	ded Th	eory a	and L	ab	5							
OBJECTIV	/E:														
• To a	attain	h know	ledge of	n Elect	rical	Safety	У								
• To l	know	about	the ope	eration	of Ele	ectric	al Safe	ty Equ	ipments						
• To l	earn	about	the safe	ty proc	cedure	es									
• To I	know	about	the elec	ctrical a	safety	code	es								
	rain	the stu	OMES (Cos): (3-5)												
COURSE C		Attaina	UMES (Cos): (3-5) trained knowledge on the basics of Electrical Safety												
01		Attaint	trained knowledge on the basics of Electrical Safety												
CO2		Knowl	nowledge about the operation of the Safety equipments												
CO3		Knowl	Inowledge on the safety procedures												
CO4		Famili	amiliarity on the electrical safety codes												
CO5		Ability to become consultant and to attend the Vendors.													
Mapping of	f Cou	ırse O	utcome	s with	Prog	ram	Outco	mes (P	Os)						
COs/POs		PO1	PO2	PO3	PC)4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12
CO1		Η	Μ	L	N	Л	Η	Η	Η	Μ	Μ	L	Ν	1	Μ
CO2		Η	Н	L	N	A	Μ	Н	Η	Η	Μ	Μ	I	I	Η
CO3		Μ	Μ	Μ	I	H	L	Μ	Μ	\mathbf{M}	Η	Μ	N	1	L
CO4		Н	L	Н	N	A	Μ	L	L	L	L	Η]		М
CO5		L	Μ	Μ	J	Ĺ	Н	Μ	Μ	Μ	Μ	Μ	N	1	М
Cos / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	05			
CO1		H	I		Μ		N	ſ	N	Л	I	I			
CO2		H	I		Μ		N	1	N	Л	I	I			
CO3		Ν	1		Η		I	I	I	L	N	1			
<u>CO4</u>		H	[M		<u>N</u>	<u> </u>	N	<u>л</u>					
		N.		1 /	L		<u>N</u>	<u>/I</u>		Λ	Ν	/			
H/M/L indic	cates	Streng	th of Co	orrelati	on	H- Hi	ign, M·		ım, L-L	OW					
Category	Basic Sciences	Basic Sciences Engineering Science Humanities a Social Sciences a V Program Core V Program Electives Practical / Project b Internships / Techni Soft Skills													

BEE18E13SAFETY FOR ELECTRICAL ENGINEERS30/00/03

UNIT I GENERAL PRINCIPLES OF ELECTRIC SAFETY

Electricity and Human Body – Earthing – Grounding – General Inspection and testing requirement for electrical safety equipment – Flash and thermal production – head and Eye Protection – Electricians Safety kits

UNIT II HAZARDS IN ELECTRICITY

Lighting Hazards - Hazardous area –Hazard Analysis – shock effect - Electrical Insulation – Electrical fires – Arc Flash – Arc energy – arcing voltage – Injury and death – Protective Strategies - Eectrical safety in hospitals

UNIT III REGULATORY OF SAFETY REQUIREMENT AND STANDARDS

Risk assessment and Management – Safety against over voltage, extra-low and residual voltages – safety practice – Safety Audits – ANSI-IEEE Electrical safety code – Electrical standards at work place – Accident prevention

UNIT IV SAFETY PROCEDURES

Residual current detectors - effects of electric and magnetic fields and electromagnetic radiation – electro surgical hazards – electrical fires and their investigation – Indian electricity safety Act – Area Classification – Safety issues with emerging energy sources

UNITV SAFETY TRAINING METHODS

Introduction – Elements of a Training Program – On the Job Training – Training Consultants and Vendors-Training Program Setup – Step by Step Method electrical safety

Total No of Hours: 45

TEXT BOOK:

1. Electrical safety handbook - John Cadick - McGRAW-HILL, Third Edition

9

9

9

Subject Code:		Subjec PROT	et Name ECTIC	e: WII DN AN	DE AH D CC	REA DNTI		TY/ LB/	L	T / S.Lr	P/ R	C			
DEE10E14		Prereg	uisite:									3	0/0	0/0	3
L : Lecture 7	[] : T	utorial	SLr :	Superv	vised	Learr	ning P	: Proje	ect R : F	Researc	h C: Cre	edits			
T/L/ETL : T	heor	y/Lab/	Embedo	ded Th	eory a	and L	ab	5							
OBJECTIV	E:														
• To k	now	about	the Pha	sor Me	easure	ement	Unit a	and its	importa	nce					
• To in	mpa	rt know	vledge (on State	e Estir	matio	on and	the Op	timal pla	acemen	t of PM	U			
• To a	ttain	1 tamili	arity or	Wide	Area	Meas	sureme	ent Sys	tem		1.1 5			1 6	D
• To f	nave	a wide	e spread	l know	ledge	aboi	it the I	Protect	ion sche	emes an	d the L	ynam	nc mod	el of	Power
Syst	em	tha la	he learnt concept for the real time issues.												
	ppiy TTT	$\frac{1}{1}$ COME	The learnt concept for the real time issues.												
COURSE O		Familia	DMES (Cos): (3-5) miliarity in PMU												
CO2		Acquir	equired knowledge in State estimation and the Optimal Placement of PMU												
CO3		Familia	miliarity on Wide Area Measurements												
CO4		Attaine	ttained a wide spread knowledge about the Protection Schemes												
CO5		Ability to apply the concepts for real time													
Mapping of	Mapping of Course Outcomes with Program Outcomes (POs)														
COs/POs		PO1	PO2	PO3	PO	4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12
CO1		H	Η	Μ	L		Μ	H	L	Н	Μ	L	I	ł	Μ
CO2		H	Μ	Η	N	1	Η	Μ	L	Μ	L	Μ	N	1	L
CO3		Η	Η	Η	H	I	L	Μ	Η	Η	Μ	Μ	I	I	Μ
CO4		Η	Η	Μ	N	1	L	Μ	Μ	Μ	L	Η	N	1	L
CO5		Η	Μ	Μ	L		Μ	Μ	Η	Μ	L	Μ	N	1	L
Cos / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	05			
CO1		H	[L		ł	I	I]	L			
CO2		H	[L		H	H	I		1	M			
<u>CO3</u>		<u> </u>	[N	<u>/</u>	I	-	1	M			
<u>CO4</u>		<u>H</u> 1			H		1 T	1		1	1				
LO5	otoc	Strong	th of C	orralati	H on I	<u>и п</u> :	t ah M	1 Madir				1			
H/WI/L IIIdic	ales	Sueing		Jitelati		п- пі	gn, w	- Meur	1111, L-L	0w					
Category	Basic Sciences	Engineering Science Humanities & Social Sciences Program Electives Open Electives Practical / Project Internships / Techni Skill Soft Skills													
					\geq										

BEE18E14 WIDE AREA MONITORING PROTECTION AND 3 0/0 0/0 3 CONTROL

UNIT I INTRODUCTION

PMU – History of PMU – Basic definition of Synchrophasor, Frequency, Accuracy Indexes – Sensors of PMUs – PMU Architecture- Data Acquisition System – Communication & Data Collector- Distributed PMU- International Standards.

UNIT II STATE ESTIMATION AND PMUS

Introduction – Formulation of the SE problem – SE measurement Model – SE Classification – Role & Impact of PMU in SE – PMU based Transmission System SE and Distribution SE - Optimal PMU Placement – SE Applications – Automation Architecture with integrated PMU Measurement for SE

UNIT III WIDE AREA MEASUREMENT SYSTEMS

WAMS – Definition, Data resource, Communication Systems, Applications- Monitoring System Components – Substation Configuration and Communication – Substation Monitoring System- Voltage Stability Assessment – Adaptive load shedding -

UNIT IV SMART GRID

Smart Transmission grid – Demands & Requirement– Wide Area Disturbances – SIPS Architecture – Components and Applications - Dynamic Model of large Power system- Eigen Values & Eigen vectors – Optimization model for equilibrium tracing – Q-V Sentivity – Small Signal Stability Analysis

UNIT V WAMPAC APPLICATION

WAMPAC Application in Frequency Stability, Voltage Stability, Transient Stability, Small Signal Stability

Total No of Hours: 45

9

9

9

9

9

TEXT BOOKS:

- 1. Antonello Monti, Carlo Muscas, Ferdinanda Ponci, Phasor Measurement Units and Wide Area Monitoring Systems, Elsevier
- 2. Alfredo Vaccaro, Ahmed Faheem Zobaa, Wide Area Monitoring, Protection and Control Systems, IET

REFERENCE BOOKS:

- 1. Begovic, Miroslav, M, Electrical Transmission Systems and Smart Grids, Springer
- 2. Fahd Hashiesh, Mansour, MM, Hossam E Mostafa (2011), Wide Area Monitoring, Protection and Control, Lambert

Subject Code:	Subje	ct Nam	e: ROB	BOTICS	S AND A	N	TY / LB/	L	T / S.Lr	P/ R	С			
BEE18E15									ETL					
	Prerec	quisite:							Т	3	0/0	0/0	3	
L : Lecture T : 7	Futorial	SLr :	Superv	vised Le	arning F	? : Proje	ct R : F	Researc	h C: Cre	dits			·	
T/L/ETL : Theo	ory/Lab/	Embed	ded The	eory and	Lab									
OBJECTIVE:	1	. 1		(.		1								
• To intro	bauce th	the wor	concept king of	ts and p	arts of ro	obots.	a of rob	oto						
• To unde	erstand	udente f	king of	robols a		ous type	s of rod	ols. of roho	ta conc		dthair	onnlia	otiona	
• To mak	te une su	rogrami	aiiiiiai ning of	robots		surves	systems	01 1000	us, sense	JIS all	ia men a	applic	ations	
To disc	uss the	various	annlica	tion of	obots ii	istificat	ion and	imnlen	nentatio	n of r	obots			
To alse To stud	v about	about the manipulators, activators and grippers and their design considerations												
COURSE OUT		OMES (Cos): (3-5)												
CO1	Knowl	Inowledge on Robots												
CO2	Ability	bility to understand the working of robots and various types of robots.												
CO3	Knowl	nowledge on various drive systems of robots, sensors and their applications in robots and												
	progra	rogramming of robots.												
CO4	Knowl	Knowledge on various application of robots, justification and implementation of robots.												
CO5	Attained knowledge on manipulators, activators and grippers and their design													
Manufactor	considerations													
COs/POs	PO1	PO2	<u>s with 1</u> PO3	Progra	$\frac{n Outco}{PO5}$	PO6		PO8	PO9	PO1		11	PO12	
CO3/1 O3	<u>н</u>	102 L	<u>105</u> M	H	105 L	L	<u> </u>	100 M	L	<u>101</u> M		I	<u>1012</u> L	
CO2	H	M	H	M	M	L	M	L	M	M		1	M	
CO3	H	M	M	H	M	L	H	M	H	H		1	M	
CO4	M	H	L	M	L	M	M	L	M	M	I		L	
CO5	L	M	M	M	M	M	L	M	M	M	N	1	M	
Cos / PSOs	PS	01	PS	SO2	PS	503	PS	04	PS	05				
CO1	H	I		Μ]	L	Ν	ſ	ľ	M				
CO2	Ν	1		Μ	I	М	I	ł	J	H				
CO3	N	1		H	1	М	Ν	Λ	ľ	N				
CO4	Ν	1		Μ]	H]]	L				
CO5	H	I		Μ	1	M	I		Ι	N				
H/M/L indicates	s Streng	th of Co	orrelatio	on H-	High, M	- Mediu	ım, L-L	ow		<u> </u>				
	ces	an				nica								
	ien	s		ves	sct	schi								
ses														
y ienc	ing	ies cieı	C	Ele	/ P	/ sd	S							
Sci	eer	l S	am	am	cal	shi	kil							
ate aic	gin	uma cial	ngc	ngr ne	acti	ern ill	ft S							
Ba	En	Ht So	Prí	<u>Pr</u>	Pr	Int Sk	So							
1 1	1													

ROBOTICS AND AUTOMATION BEE18E15 3 0/0 0/0 3

UNIT I **INTRODUCTION**

Anatomy of robotics - History & Terminology of Robotics - various generations of robots - degrees of freedom - Asimov's laws of robotics

UNIT II SENSORS IN ROBOTICS

Position sensors - optical, non-optical, Velocity sensors, Accelerometers, Proximity Sensors - Contact, noncontact, Range Sensing, touch and Slip Sensors, Force and Torque Sensors.

MANIPULATORS, ACTUATORS AND GRIPPERS UNIT III

Construction of manipulators - manipulator dynamics and force control - electronic and pneumatic manipulator control circuits – end effectors – U various types of grippers – design considerations

UNIT IV **ROBOTICS IN MATERIAL HANDLING**

General considerations in robot material handling – material transfer application – pick & place operations – machine loading & unloading – characteristics of robot application – Robot cell design – processing operations - Spot welding, Spray painting, Plastic moulding, forging

UNIT V **ROBOTICS IN FUTURE**

Robot intelligence, Advanced Sensors, Capabilities, Tele robotics, Mechanical design Features, Mobility, locomotion and Navigation. The universal Hand Systems Integration and Networking

Total No of Hours: 45

TEXTBOOKS:

- 1. Mikell P. Weiss G.M., Nagel R.N., Odraj N.G., Industrial Robotics, McGraw-Hill Singapore,
- 2. Ghosh, Control in Robotics and Automation: Sensor Based Integration, Allied Publishers, Chennai, 1998.

REFERENCE BOOKS:

- 1. Deb.S.R., (1992), Robotics technology and flexible Automation, John Wiley.
- 2. Asfahl C.R., (1992), Robots and manufacturing Automation, John Wiley.
- 3. Klafter R.D., Chimielewski T.A., Negin M., (1994)., Robotic Engineering An integrated approach, Prentice Hall of India.
- 5. Mc Kerrow P.J. (1991)., Introduction to Robotics, Addison Wesley.
- 6. Issac Asimov (1986.), I Robot, Ballantine Books, New York.

9

9

Subject Code:		Subjec	et Nam	e: IMA	GE PRO		TY / LB/	L	T/ S.Lr	P / R	C					
BEE18E16										ETL						
		Prerec	luisite:							Т	3	0/0	0/0	3		
L : Lecture 7	[: T	'utorial	SLr:	Superv	ised Lea	rning P	: Proje	ect R : I	Researc	h C: Cre	dits			-		
T/L/ETL : T	heor	ry/Lab/	Embed	ded The	ory and	Lab										
OBJECTIV	E:															
• To a	pply	y transf	ormatio	on techr	niques in	Digital	Image	Process	ing							
• To a	ppl	y techn	image restoration and image compression													
• To l	earn	1mage restoration and image compression COMES (Cos): (3-5)														
COURSE O			COMES (Cos): (3-5)													
	_	Capabi	Capability to transform techniques in Digital image processing													
	_	Capab	Capable to apply techniques in image enhancement Ability to process and restore images													
<u>CO3</u>		Ability	bility to process and restore images													
C04		Ability	Ability to segment the images													
CO5 Monning of	Car	Attain	Attain knowledge on implementing various algorithm in image processing													
COs/POs		DO1			Program		mes (P		DUS	DO 0	DO1		11	PO12		
	_	<u>гог</u> ц	г02 ц	<u>гоз</u> м	<u>г04</u> М	<u>105</u>	r00 M	го/	rUo M	F09 M			/11 Л	<u>F012</u> M		
		<u>т</u>	M	T	H H		T	M	T	T	M		r I	M		
CO2		H	H	H	M	L	H	H	H	H H	H	1	H	H		
CO4		H	H	H	H	H	H	H	H	H	H		H	H		
CO5		Μ	Μ	Μ	H	Н	Μ	Μ	Μ	Μ	Μ	I	M	Μ		
Cos / PSOs		PS	01	PS	502	PS	03	PS	04	PS	05					
CO1		Ν	1		H	Γ	M	I	H	J	H					
CO2		Ν	1]	Μ	Ι	M	N	N	Ν	Л					
CO3		Ι	4]	М]	L	Ν	Л]	L					
CO4		Ν	1		H	Ι	M	l	H]	[]					
CO5		H	I		L]	H]	L	Ν	Λ					
H/M/L indic	ates	Streng	th of C	orrelatio	on H-l	High, M	- Medi	ım, L-L	OW							
		suces	anc		Se	it.	chnica									
	es	Scie	ces	e	ctiv(ojec	Tec									
	enc	Britis S S / Three S S S / Three S S S S / Three S S S S / Three S S S S S S S S S S S S S S S S S S														
gory	Scie	eri	Sc	m (Elec II	al /	hip	kill								
ateξ	iic '	gine	mai	gra	gra en H	ctic	erns 11	ît Sl			1					
Ü	Bas	Eng	Hui Soc	Pro	Ope Ope	Pra	Int∈ Ski	Sof								
					<											

BEE18E16

IMAGE PROCESSING

UNIT I DIGITAL IMAGE FUNDAMENTALS AND TRANSFORMS

Elements of visual perception – Image sampling and quantization Basic relationship between pixels – Basic geometric transformations-Introduction to Fourier Transform and DFT - properties of 2D Fourier Transform - FFT - Separable Image Transforms -Walsh - Hadamard - Discrete Cosine Transform, Haar, Slant – Karhunen – Loeve transforms.

UNIT II **IMAGE ENHANCEMENT TECHNIQUES**

Spatial Domain methods: Basic grey level transformation – Histogram equalization – Image subtraction – Image averaging –Spatial filtering: Smoothing, sharpening filters – Laplacian filters – Frequency domain filters: Smoothing-Sharpening filters-Homomorphic filtering.

UNIT III **IMAGE RESTORATION**

Model of Image Degradation/restoration process - Noise models - Inverse filtering -Least mean square filtering - Constrained least mean square filtering - Blind image restoration - Pseudo inverse - Singular value decomposition.

UNIT IV **IMAGE COMPRESSION**

Lossless compression: Variable length coding – LZW coding – Bit plane coding- predictive coding-DPCM. Lossy Compression: Transform coding – Wavelet coding – Basics of Image compression standards: JPEG, MPEG, Basics of vector quantization.

UNIT V **IMAGE SEGMENTATION AND REPRESENTATION**

Edge detection - Thresholding - Region Based segmentation - Boundary representation: chair codes-Polygonal approximation - Boundary segments - boundary descriptors: Simple descriptors-Fourier descriptors - Regional descriptors - Simple descriptors- Texture- Implementation of various algorithms in image processing using related simulation packages.

Total No of Hours: 45

TEXT BOOKS:

1. Rafael C Gonzalez, Richard E. Woods, (2003) Digital Image Processing.2nd Ed. Pearson Education.

REFERENCE BOOKS:

- 1. William K. Pratt, (2001) Digital Image Processing. John Willey.. ChandaDutta Magundar, (2000) Digital Image Processing and Applications. Prentice Hall of India:
- 2. Millman Sonka, Vaclav hlavac, Roger Boyle, Broos, colic,(1999) Image Processing Analysis and Machine Vision. Thompson Learning
- 3. Jain, A.K.(1995) Fundamentals of Digital Image Processing. New Delhi: PHI.

9

0/0

0

3

0/0

3

9

Subject	Subje	ct Nam	e: SUB	STATIC	ON DES		TY/	L	Τ/	P /	С				
Code:									LB/		S.Lr	R			
DELIGE17	Prerec	uisite:								3	0/0	0/0	3		
I. I. Lastura T.	Tutorial	<u> </u>	Supara	icad Lag	mina D	Droig	ot D · D	Docoorol		odita					
T/L/ETL : The	orv/Lab/	SLI: Embed	ded The	sed Lea	rning P Lab	: Proje		Cesearci	n C: Cr	eans					
OBJECTIVE :	<u>, 240,</u>			iory unu	200										
• To	study al	oout the	e import	ance of S	Substati	on and	its types								
• To	impart l	cnowled	ige on (Gas Insul	ated Su	bstation	n and its	workir	ng Princ	iple					
• To	know th	ne work	ing prin	ciple and	1 charac	teristic	s of Air-	Insulat	ed Subs	station	S				
• To	have a v	e a wide spread knowledge about High voltage Power Electronics Substation such as HVDC													
sta	tion	erstand the Integration and Automation of Substations													
• To	understa	lerstand the Integration and Automation of Substations OMES (Cos): (3-5)													
COURSE OU	TCOMI	DMES (Cos): (3-5) tained the knowledge about the importance of Substation and its types													
	Attaine	tained the knowledge about the importance of Substation and its types													
CO2	Attain	ained familiarity about the Gas insulated substations and its principles													
CO3	Famili	niliarity in the working of Air-insulated Substations													
CO4	Knowl	nowledge on High voltage Power Electronics Substation													
CO5	Knowl	nowledge on the integration of Substation													
Mapping of C	ourse O	rrse Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12		
CO1	H	L	Μ	Μ	Μ	Η	Μ	L	Μ	Μ	H	I	L		
CO2	Μ	Μ	Μ	L	Μ	Н	Μ	Н	Μ	Μ	H	I	Μ		
CO3	Η	L	L	L	L	Η	Μ	L	Μ	Μ	N	1	Μ		
CO4	Η	Μ	Μ	H	Μ	H	Η	Μ	Μ	Μ	N	1	L		
CO5	Μ	Μ	L	H	L	H	Η	Μ	H	Μ	H	ł	Μ		
Cos / PSOs	PS	01	PS	502	PS	03	PS	04	PS	SO5					
CO1	H	I]	Μ]	H	Ν	Л		L					
CO2	N	1		M		H	N	<u>/</u>]	L					
<u>CO3</u>	N	1		H		H T		/1		M	_				
<u>CO4</u>	N	1		M											
UU5	L L	$\frac{1}{th of C}$	orrolatio	M n U I	Jigh M	n Modiu			1	VI					
TI/WI/L mulcate	s Streng					- Meun	1111, L-L	0w							
	seou	aı		s		nic									
	cier	SS		ive	ect	ect									
Sec															
ry lien	Ling I	ties Scie	Ŭ	h El	I / I	ips	lls								
ego	nee	ani u S	ran	El	ica	nsh	Ski								
Cat(1gi	um	ıgo.	ligo:	act	tern cill	tt ;								
	а́ Ш														
				~											

BEE18E17 SUBSTATION DESIGNING 3 0/0 0/0 3

UNIT I INTRODUCTION TO SUBSTATION AND ITS TYPES

Need for Substation – Budgeting – Traditional & Innovative Substation Design – Site Selection and Acquisition- Station Design – Station Construction – Station Commissioning- bas bar arrangements in Switchyard

UNIT II GAS INSULATED SUBSTATION

Sulfur Hexafluoride – Construction – Circuit Breaker – Current and Voltage Transformers – Disconnect and Ground Switches – Interconnecting Bus – Air, Power Cable and Direct Transformer Connections – Surge Arrester – Control System – Gas monitoring System – Gas compartments and Zones – Electrical & Physical Arrangement – Grounding – Testing – Installation – Operation and Interlocks – Economics.

UNIT III AIR-INSULATED SUBSTATIONS

Introduction – Single and Double Bus Arrangement – Main and Transfer Bus Arrangement – Double Bus-Single Breaker Arrangement – Ring Bus Arrangement – Breaker and a Half Arrangement – Comparison of Configurations

UNIT IV HIGH VOLTAGE POWER ELECTRONIC SUBSTATION

High Voltage Power Equipments - Converter Station(HVDC) – FACTS Controllers – Control & Protection System – Losses and cooling – Civil works – Reliability and Availability – Future Trends

UNIT V SUBSTATION INTEGRATION AND AUTOMATION

Definitions and Terminology – Open Systems- Architecture Functional Data paths – Substation Integration and Automation Systems – New Vs Existing Substations – Equipment conditioning Monitoring – Substation Integration and Automation Technical issues – Protocol Fundamentals and Considerations – Communication Protocol Application Areas

Total No of Hours: 45

TEXT BOOKS:

- 1. John D, Mc Donald (2007), Electric Power Substations Engineering, 2nd Ed, CRC Press
- 2. Sunil, S, Rao (2010), Switchgear Protection and Power Systems, 4th Ed. Khanna Publishers

REFERENCE BOOKS:

- 1. Khedkar, MK, Dhole, GM, Electric Power Distribution Automation, University Science Press
- 2. Satnam, PS and Gupta PV, Substation Design & Equipment, Dhanpat Rai Publications

9

9

9

Subject Code: BFF18F18		Subje	et Namo II	e: NDUST	FRIA	L C(TY / LB/	L	T / S.Lr	P/ R	C				
DELIGEIO	_	Prerec	quisite:	1146								3	0/0	0/0	3	
L : Lecture '	T : T	utorial	SLr :	Superv	vised	Learr	ning P	: Proje	ect R : I	Researc	h C: Cre	edits				
T/L/ETL : T	Theor	ry/Lab/	Embed	ded Th	eory a	and L	ab									
OBJECTIV	/E:															
•	Tol	know a	bout for	rce, tor	que, v	veloci	ty .									
•	Tol	learn th	e measu	uremen	t of a		ration,	vibrati	on, den	sity and	d viscosi	ty				
			and the \mathbf{S}	Pressu	re and	d Ten	nperati	ire me	asureme	ent						
COURSE C		Attain	ttain knowledge on Power Regulatory systems													
		Knowl	adga or	uge on	allar	ond	convor	tors	21115							
CO2		Canab	apable to use the techniques for temperature and pressure measurement													
CO4		Attain	tain knowledge on Thermocouple and pyrometers													
C05		Ability	bility to work in an Instrumentation Industry													
Mapping of	f Coi	urse O	Any to work in an Instrumentation Industry													
COs/POs		PO1	se Outcomes with Program Outcomes (POs) O1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1		Μ	L	Н	N	Л	Μ	Μ	L	H	Μ	Μ		H	Μ	
CO2		Μ	L	Н	I	I	L	Μ	L	Н	Н	L		H	Н	
CO3		Н	Μ	Н	I	Η	Н	Н	Μ	Н	Η	Н		H	Η	
CO4		Н	Н	Н	I	Ι	Н	Н	Н	Н	Н	Н		H	Н	
CO5		Н	Н	Η	I	Ι	Н	Н	Н	Н	Н	Н		H	Н	
Cos / PSOs		PS	01	Р	SO2		PS	03	PS	04	PS	05				
CO1		Ν	1		L		I	H	I	N	I	M				
CO2		Ν	1		L		I	H]]	H]	L				
CO3		H	I		Μ		I	I]	H]	H				
CO4		E	I		H		ŀ	I]	H]	H				
CO5		E	I	1.1	H		I	H I		H		H				
H/M/L indic	cates	Streng	th of Co	orrelati	on	H- H1	gh, M	- Medu	um, L-L	.ow						
Category		ces	an					nice								
		ien	s		ves		ect	schi								
	ces	Sc	Sci Te roje													
	ien	ing	ies cie	Co	Еle	ecti	/ P	bs '	ls							
	Sc	leer	anit 1 S	am	am	Еľ	cal	ida	škil							
	ısic	ıgir	umí	ogr	ogr	ben	acti	terr. jill	oft S							
	Bĩ	Ē														
					$\overline{}$											

BEE18E18 INDUSTRIAL CONTROL AND INSTRUMENTATION 3 0/0 0/0 3

UNIT I REGULATORY POWER SUPPLY

Overview of Switching Regulators and switch mode power supplies – Uninterrupted Power Supplies – Solid state circuit breakers - PLC

UNIT II CONTROLLERS AND CONVERTERS

Analog Controllers – Proportional controllers – Proportional Integral Controllers – PID Controllers – Feed forward Controllers – Signal Conditioners – Instrumentation Amplifiers – Voltage to Current, Current to Voltage, Voltage to Frequency, Frequency to Voltage Converters – Isolation Circuits

UNIT III PRESSURE MEASUREMENT

Units of pressure - Manometers – Different types – Elastic type pressure gauges – Bourdon type bellows – Diaphragms – Electrical methods – Elastic elements with LVDT and strain gauges – Capacitive type pressure gauge – Piezo resistive pressure sensor – Resonator pressure sensor – Measurement of vacuum – McLeod gauge – Thermal conductivity gauges – Ionization gauge, cold cathode and hot cathode types – Testing and calibration of pressure gauges – Dead weight tester.

UNIT IV THERMOCOUPLE

Thermocouples – Laws of thermocouple – Fabrication of industrial thermocouples – Signal conditioning of thermocouples output – Thermal block Reference Books functions – Commercial circuits for cold junction compensation – Response of thermocouple – Special techniques for measuring high temperature using thermocouples – Radiation methods of temperature measurement

UNIT V APPLICATION IN INDUSTRIES

Stepper Motors and Servo motors – Control and Application – Servo Amplifiers – Selection of Servo motor and Application – Fibre Optics – Barcode Equipment and Application of Barcode in Industry

Total No. of Hours :45

TEXT BOOKS:

- 1. Doebelin, E.O.(2003) Measurement Systems Application and Design. Tata McGraw Hill publishing company.
- 2. Jain, R.K. (1999) Mechanical and Industrial Measurements. New Delhi: Khanna Publishers.
- 3. Michael Jacob,(1988) 'Industrial Control Electronics Applications and Design', Prentice Hall
- 4. Thomas, E.Kissel, (2003) Industrial Electronics, PHI

REFERENCE BOOKS:

- 1. Patranabis, D.(1996) Principles of Industrial Instrumentation. Tata McGraw Hill Publishing Company Ltd.
- 2. Sawhney, A.K. and Sawhney, P.(2004) A Course on Mechanical Measurements, Instrumentation and Control Dhanpath Rai and Co.
- 3. Nakra, B.C. & Chaudary, B.C.Instrumentation Measurement & Analysis.Tata McGraw Hill Publishing Ltd.
- 4. Singh, S.K.(2003) Industrial Instrumentation and Control. Tata McGraw Hill.
- 5. Eckman, D.P. Industrial Instrumentation. Wiley Eastern Ltd.

9

9

9

Subject Code:		Subjec	et Nam	e: ELF	CTF	RIC 1		TY/LB/	L	T/ S.Lr	P/ R	C			
BEE18E19											ETL				
		Prerec	quisite:								Т	3	0/0	0/0	3
L : Lecture	$\Gamma : T$	utorial	SLr :	Superv	vised	Lear	ning P	: Proje	ect R:	Researc	h C: Cre	edits			
T/L/ETL : T	heor	y/Lab/	Embed	ded The	eory a	and L	Lab								
OBJECTIV	/E:		1	· • •											
•		cnow a	bout tra	ction d	rive	Dafa	non oo T	Doolra t	o India	Stand	anda				
•	To a	apply concepts in electrical Machines													
COURSE C	$\overline{\mathbf{UT}}$	COME	OMES (Cos): (3-5)												
CO1		Familiarity in Traction drive and its services													
CO2		Capable to estimate motor rating with Reference Books to Indian Standards													
CO3		Capab	Capable to apply concepts in Electrical machines												
CO4		Attain	Attain knowledge on special electric drive												
CO5		Capable to model equivalent system of motor load.													
Mapping of	f Cot	irse O	utcome	s with	Prog	ram	Outco	mes (P	Os)						
COs/POs		PO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12													
CO1		Μ	Μ	Μ]	L	Η	Μ	Μ	Μ	L	Η	Ν	/	Μ
CO2		Μ	Н	Μ	I	Ĺ	Η	H	L	Μ	L	Η	I	I	L
CO3		L	Η	Η	N	М	Η	Н	Η	Η	Μ	Η]	I	Η
CO4		Η	Н	Н	I	I	Η	H	Н	Н	Н	Η	J	ł	Η
CO5		Η	Η	Η	I	Ι	Η	Η	Н	Η	Н	Η]	I	Η
Cos / PSOs		PS	01	P	SO2		PS	03	PS	504	PS	05			
CO1		Ν	1		L		ŀ	I	1	М	1	M			
CO2		N	1		L		ł	I]	H]	L			
CO3		<u> </u>	I		<u>M</u>		H	<u>I</u>		H		H			
CO4		<u> </u>	<u> </u>		<u>H</u>		<u> </u>	<u> </u>		H		H			
		<u>C</u> (marked)	$\frac{1}{1}$		H		1 1. N	1 M. 15		H		H			
H/M/L indic	cates	Streng		orrelati	on	п- п	ign, M·	- Mean ਛ	um, L-L	LOW		T			
Category	Basic Sciences	Engineering Sciences Humanities an Social Sciences an Program Core Open Electives Practical / Project Internships / Technic Soft Skills													
					\mathbf{k}										

ELECTRIC TRACTION 3 0/0 0/0 3

UNIT I INTRODUCTION

BEE18E19

Basic drive components, classification and operating modes of electric drive, nature and type of mechanical loads, review of speed torque, characteristics of electric motors and load, joint speed torque characteristics. Electric Braking: Plugging, dynamic and regenerative braking of DC and AC motors.

UNIT II DYNAMICS OF ELECTRIC DRIVES SYSTEM

Equation of motion, equivalent system of motor load combination, stability considerations, electro mechanical transients during starting and braking, calculation of time and energy losses, optimum frequency of starting.

UNIT III TRACTION DRIVE

Electric traction services, duty cycle of traction drives calculations of drive rating and energy consumption, desirable characteristics of traction drive and suitability of electric motors, control of traction drives. Energy Conservation in Electric Drive: Losses in electric drive system and their minimization energy, efficient operation of drives, load equalization.

UNIT IV ESTIMATION OF MOTOR POWER RATING

Heating and cooling of electric motors, load diagrams, classes of duty, Reference Books to India standards, estimation of rating of electric motors for continuous, short time and intermittent ratings.

UNIT V SPECIAL ELECTRIC DRIVE

Servo motor drive, step motor drive, linear induction motor drive, permanent magnet motor drive. Selection of electric drive: Selection criteria of electric drive for industrial applications, case studies related to steel mills, paper mills, textile mills and machine tool etc.

Total No of Hours: 45

9

Q

9

9

9

TEXT BOOKS:

- 1. Dubey, G.K. (1995) Fundamentals of Electric Drive. Narosa Publishing House.
- 2. Chilkin, M. Electric Drive. Mir Publications.

REFERENCE BOOKS:

- 1. Pillai, S.K. A first course on Electric Drive. New age international publishers.
- 2. Dev, N.K. Sen, P.K. (1999) Electric Drives. Prentice Hall of India .
- 3. Vedam Subhramanyam, (1994) Electric Drive : Concepts and Applications. Tata McGraw Hill.

Subject Code: BEE18E20		Subjec ELE	ct Nam CTRIC	e: C TRA	NSIE ENG	ENTS INE	5 AND ERINC	AGE	TY / LB/ ETL	L	T / S.Lr	P/ R	С			
		Prerec	quisite:								Т	3	0/0	0/0	3	
L : Lecture T : T	Futor	ial S	Lr : Sup	pervise	d Lea	rning	g P:Pr	oject I	R : Rese	earch C:	Credits	5				
T/L/ETL : Theo	ry/L	ab/Eml	bedded	Theory	/ and	Lab										
OBJECTIVE:									1.	1 55						
• To unde		nd and	gain kn	owledg	ge on	sour	ces of (Over Vo	oltage a	nd Tran	sients		1'			
• To impa	art Ki	10wled	ge on I	ravelli	ng wa Cara	aves	and the	switch	ing ope	ration 11	n Transi	missic	n lines	40000		
To prov To attain	n for	strong F	iliarity about the Insulators and analyze the various types of Insulators for coordination													
• To attai	iiro k	moulo	iowledge on testing of various Electrical Apparatus													
COURSE OUT		MES (TES (Cos): (3-5)													
CO1		Acouir	IES (Cos): (3-5) Acquire knowledge on sources of Over Voltage and Transients													
<u>CO2</u>		Acquire knowledge on sources of Over Voltage and Transients														
		Familiar to Travelling waves and the switching operation in Transmission lines														
03		Acquire knowledge on Generation and Measurement of High DC, AC, Impulse voltages														
CO4		Familiarity to Insulators and analyze the various types of Insulators for coordination														
CO5		knowledge on testing of various Electrical Apparatus														
Mapping of Co	urse	Outco	omes wi	ith Pro	ogran	n Ou	tcomes	(POs)		_						
COs/POs		PO1	PO2	PO3	PC)4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12	
CO1		Μ	Μ	Μ	I	H	Н	L	Н	L	Μ	L	I	ł	L	
CO2		Μ	Μ	H]	L	Μ	Μ	H	Μ	Н	Μ]	I	L	
CO3		Μ	Μ	L]	L	L	L	H	L	H	L	I	I	L	
CO4		Η	H	L	N	N	L	Μ	H	M	H	Μ		ł	L	
CO5		M	M	M	I	H	M	L	H	L	H	H		I	H	
Cos / PSOs		<u>PS</u>	01	P	<u>SO2</u>		PS	03	PS	04	PS	505				
<u>CO1</u>		<u> </u>			H M		<u> </u>	<u>i</u>	1		1	M r				
CO2		<u>N</u>	1				<u> </u>	/ <u> </u> /		H M	1	L 17				
C03		L	J T		<u>г</u> н			4 4				n r				
C05		 N	<u> </u>		M		I	1	1	• <u> </u>		L L				
H/M/L indicates	s Stre	ength o	f Corre	lation	H- H	High.	M- Me	dium.	L-Low							
	ces	engin of Contention H- High, M- Medium, L-Low Image: A state of the state of														
Category	Basic Scien	Engineering	Humanities Social Scie	Program Co	Program El	Open Electi	Practical / F	Internships Skill	Soft Skills							
					$\overline{}$											

BEE18E20 ELECTRIC TRANSIENTS AND HIGH VOLTAGE 3 0/0 0/0 3 ENGINEERING

UNIT I OVER VOLTAGE & TRANSIENTS

Power System Transients – Types - Over Voltage due to Lightning– Characteristics – Theory of Formation of Cloud – Mechanism of Lighting – Over Voltage due to Switching Surge – Characteristics – Current Suppression – Current Chopping – Capacitance Switching – Multiple Re-striking Transients – Ferro Resonance- Tower Footing Resistance

UNIT II TRAVELLING WAVES & TRANSIENTS ON TRANSMISSION LINES 9

Circuits with Distributed Constants – Wave Equation – Reflection & Refraction of Travelling waves – Behavior of Travelling waves at Line Terminations – lattice Diagrams – Attenuation and Distortion of Travelling waves – Switching Operation involving Transmission lines – Multi conductor systems and Multi velocity waves – Switching Surges on an Integrated System

UNIT III GENERATION OF HIGH VOLTAGE

Generation of Direct Voltages – AC to DC Conversion- Electrostatic Generators – Alternating Voltages – Testing Transformers – Series Resonant Circuits- Impulse Voltages – Impulse Voltage Generator Circuits- operation, Design & Construction of Impulse Generators- Control Systems

UNIT IV MEASUREMENT OF HIGH VOLTAGES

Measurement of AC, DC, Impulse Voltage, Switching Surge Voltages-Peak Voltage Measurements by Spark Gap- Electrostatic Voltmeter- Generating Voltmeter- Measurement of Peak Voltmeters – Voltage Dividing System- Impulse voltage measurement- Fast Digital Transient recorders for impulse measurements

UNIT V INSULATION COORDINATION & APPARATUS TESTING

Insulation Characteristics- Types of Insulation- Insulation Level- Statistical Approach to Insulation Coordination – HV Testing Lab – Classification- Testing of Insulators – Bushing – Cables – Transformers – Surge Diverters

TEXT BOOKS:

- 1. Kuffel, E, Zaengl, WS, Kuffel, J, (2000) High Voltage Engineering Fundamentals, 2nd Ed
- 2. Naidu, MS, Kamaraju, V, High Voltage Engineering, Tata Mc Graw Hill
- 3. Allan Greenwood, (2012) Electrical Transients in Power Systems, John Wiley

REFERENCE BOOKS:

- 1. Wadhwa, CL, High Voltage Engineering, New Age International Publishers
- 2. Akihiro Ametani, Naoto Nagaoka, Yoshihiro Baba, Teruo Ohno, (2013) Power System Transients: Theory and Applications, CRC Press.
- 3. Dieter Kind, Kurt Feser, (1999), High Voltage Test Techniques, SBA Electrical Engineering Series, New Delhi
- 4. Gallagher, T.J, and Pearmain A, (1983), High Voltage Measurements, Testing and Design, John Wiley & Sons

9

9

9

Total No of Hours: 45