

B.Tech –Electrical and Electronics Engineering (Part Time) Curriculum and Syllabus 2018 Regulation

		I SEMESTER					
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С
1	BMA18011	Numerical Methods for Electrical Engineers	Ту	3	1/0	0/0	4
2	BEE18002	DC Machines and Transformers	Ту	3	1/0	0/0	4
3	BME18I03	Thermodynamics and Fluid Mechanics	Ту	3	0/0	0/0	3
4	BEE18003	Electromagnetic Field Theory	Ту	3	0/0	0/0	3
		PRACTICALS*					
1	BEE18L14	Analog and Digital Electronics Lab	Lb	0	0/0	6/0	2

Credits Sub Total: 16

	II SEMESTER											
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С					
1	BEE18001	Circuit Theory and Network Analysis	Ту	3	1/0	0/0	4					
2	BEE18004	Electrical and Electronics Measurements	Ту	3	0/0	0/0	3					
3	BEC18I07	Communication Systems and IOT	Ту	3	0/0	0/0	3					
4	BEE18ET1	Linear and Digital Integrated Circuits	ETL	1	0/1	3/0	3					
		PRACTICALS*										
1	BEE18L15	Measurement and Control Lab	Lb	0	0/0	6/0	2					

Credits Sub Total :15

C: Credits L: Lecture T: Tutorial S.Lr: Supervised Learning P: Problem / Practical R: Research Ty/Lb/ETL: Theory /Lab/Embedded Theory and Lab * Internal Evaluation

	III SEMESTER											
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С					
1	BEE18006	Power System - I	Ту	3	0/0	0/0	3					
2	BEE18008	Control System	Ту	3	0/0	0/0	3					
3	BEE18ET2	Design of Electrical Machines	ETL	1	0/1	3/0	3					
4	BEE18005	AC & Special Machines	Ту	3	1/0	0/0	4					
		PRACTICALS*										
1	BEE18L16	Electrical Machines Lab	Lb	0	0/0	6/0	2					

Credits Sub Total :15

	IV SEMESTER										
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С				
1	BEE18007	Power System - II	Ту	3	1/0	0/0	4				
2	BEE18010	Power Electronics- I	Ту	3	1/0	0/0	4				
3	BXX18EXX	Elective I	Ту	3	0/0	0/0	3				
4	BEE18ET3	Energy Utilization and Conservation	ETL	1	0/1	3/0	3				
		PRACTICALS*									
1	BEE18L17	Power Electronics Lab	2	0	0/0	6/0	Lb				

Credits Sub Total :16

C: Credits L: Lecture T: Tutorial S.Lr: Supervised Learning P: Problem / Practical R: Research Ty/Lb/ETL: Theory /Lab/Embedded Theory and Lab * Internal Evaluation

	V SEMESTER											
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С					
1	BEE18009	Power System - III	Ту	3	1/0	0/0	4					
2	BEE18ET4	Industrial Drives and Automation	ETL	1	0/1	3/0	3					
3	BXX18EXX	Elective II	Ту	3	0/0	0/0	3					
PRACTICALS*												
1	BEE18L08	Power System Lab	L	0	0/0	3/0	1					

Credits Sub Total :11

	VI SEMESTER											
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R						
1	BEE18011	Microgrid Technology	Ту	3	1/0	0/0	4					
2	BXX18EXX	Elective III	Ту	3	0/0	0/0	3					
3	BXX18EXX	Elective IV	Ту	3	0/0	0/0	3					
		PRACTICALS*										
1	BEE18L12	Project Phase – I	L	0	0/0	3/3	2					

Credits Sub Total :12

	VII SEMESTER											
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С					
1	BEE18012	Power Electronics- II	Ту	3	1/0	0/0	4					
2	BEE18013	Smart Grid Technology	Ту	3	0/0	0/0	3					
		PRACTICALS*										
1	BEE18L13	Project Phase – II	L	0	0/0	12/12	8					

Credits Sub Total :15

C: Credits L: Lecture T: Tutorial S.Lr: Supervised Learning P: Problem / Practical R: Research Ty/Lb/ETL: Theory /Lab/Embedded Theory and Lab * Internal Evaluation

Credit Summary

- Semester: 1 : 16
- Semester : 2 :15
- Semester: 3 : 15
- Semester: 4 : 16
- Semester : 5 : 11
- Semester : 6 :12
- Semester: 7 : 15

Total Credits : 100

List of Electives

	ELECTIVE I										
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С				
1	BEE18E01	Wind Energy Conversion Techniques	Ту	3	0/0	0/0	3				
2	BEE18E02	IOT Applied to Electrical Engineering	Ту	3	0/0	0/0	3				
3	BEE18E11	Material Science in Aviation	Ty	3	0/0	0/0	3				
4	BEI18013	Power Plant Instrumentation	Ту	3	0/0	0/0	3				

	ELECTIVE II										
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С				
1	BEE18E05	Solar Energy Conversion Techniques	Ту	3	0/0	0/0	3				
2	BEE18E06	Green Building Technology	Ту	3	0/0	0/0	3				
3	BEE18E09	Restructuring of Distribution System	Ту	3	0/0	0/0	3				
4	BEE18E10	DG and Energy Storage Technology	Ту	3	0/0	0/0	3				

	ELECTIVE III											
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С					
1	BEE18E13	Safety for Electrical Engineers	Ту	3	0/0	0/0	3					
2	BEE18E14	Wide Area Monitoring Protection and Control	Ту	3	0/0	0/0	3					
3	BEE18E15	Robotics & Automation	Ty	3	0/0	0/0	3					
4	BEE18E16	Image Processing	Ty	3	0/0	0/0	3					

	ELECTIVE IV										
S.NO.	SUBJECT CODE	SUBJECT NAME	Ty/ Lb/ ETL	L	T/ SLr	P/R	С				
1	BEE18E17	Substation Designing	Ту	3	0/0	0/0	3				
2	BEE18E18	Industrial Control and Instrumentation	Ту	3	0/0	0/0	3				
3	BEE18E19	Electric Traction	Ту	3	0/0	0/0	3				
4	BEE18E20	Electric Transients & High Voltage Engineering	Ту	3	0/0	0/0	3				

C: Credits L : Lecture T: Tutorial S.Lr: Supervised Learning P: Problem / Practical R: Research Ty/Lb/ETL : Theory /Lab/Embeddded Theory and Lab * Internal Evaluation

	D	EPAR	IMEN	r of e	ELEC	TRI	CAL A	ND EL	ECTR	ONICS	ENGI	NEER	ING		
Subject		Subjec	et Name	e: NUN	/IERI	ICAI	L MET	HODS	FOR		T /L/	L	Τ/	P /	С
Code:		ELEC	TRICA	L EN	GINE	EERS	5				ETL		S.Lr	R	
BMA18011	-	Prereo	misite:								Т	3	1/0	0/0	4
I. I. Lastumo 7	г.т	Vitorio1	CI	Cupom	ind	Loom	ina D.	Droigo	+ D + D -	aaarah	C. Cradi	t a	1/0	0/0	•
$T/I / FTI \cdot T$	I : I 'heoi	ulonai rv/Lah/I	SLI : Smbedd	superv ed The	rised I	nd L	ung P: ah	Project	l K : Ke	esearch	C: Credi	lts			
OBJECTIV	E:	1 y/ Lao/ 1	Linocuu		ory a		u0								
To develop the ability in Numerical Skills															
COURSE C	COURSE OUTCOMES (Cos): (3-5)														
CO1		To und	understand the Basic concepts in Numerical Analysis												
CO2		To und	understand the Basic concepts in System of Linear Equations												
CO3		To und	inderstand the Basic concepts in Non Linear Equations												
CO4		To und	lerstand	the Ba	isic co	oncep	ots in In	terpolat	tion						
CO5		To und	lerstand	the Ba	sic co	oncep	ots in N	umerica	al Differ	entiatio	on and In	itegrat	ion		
Mapping of	i Coi	urse Ou	itcomes	with	Progi	ram (Outcon	nes (PO	s)		<u> </u>		-		
COs/POs		PO1	PO2	PO3	P	04	PO5	PO6	PO7	PO8	PO9	PO1	0 PC	D11	PO12
CO1		L	Н	L]	L	L	L	L	L	Μ	L		L	Μ
CO2		L	Н	L]	L	L	L	L	L	Μ	L		L	Μ
CO3		L	Н	L]]	L	L	L	L	L	Μ	L		L	Μ
CO4		L	Н	L]	L	L	L	L	L	Μ	L		L	Μ
CO5		L	Н	L]	L	L	L	L	L	Μ	L		L	Μ
Cos / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	05			
CO1		Ν	1		Μ		Ι	[1	Ĺ]	L			
CO2		Ν	1		Μ		I		I	[]	Ĺ			
CO3		Ν	1		Μ		I]	Ĺ]	L			
CO4		Ν	1		Μ		I	[]	[]	L			
CO5		N	<u>1</u>	1.1	M]	Ĺ			
H/M/L indic	cates	Strengt	h of Co	rrelatio	on F	1- H1	gh, M-	Mediun	n, L-Lo	W		1			
Category	Basic Sciences	Engineering Sciences	Humanities and Socia Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills	Interdicinlinary	(mind on one				
	\geq					1	1							1	

BMA18011NUMERICAL METHODS FOR ELECTRICAL ENGINEERS3 1/0 0/0 4

UNIT I BASICS OF NUMERICAL METHODS

Curve fitting-Method of group averages-Principle of least square-Method of moments-Finite differences-Operators (Forward, Backward & Shifting) -Relationship between the operators.

UNIT II SYSTEM OF LINEAR EQUATIONS

Gauss Elimination method – Gauss-Jordan method – Iterative methods – Gauss-Jacobi method – Gauss-Seidel method – Matrix Inversion by Gauss-Jordan method- Eigen value problem-Power method.

UNIT III NON LINEAR EQUATIONS

Solution of Algebraic and Transcendental equations – Method of false position -Fixed point iteration method (single and multi variables)- Newton-Raphson method (single and multi variables).

UNIT IV INTERPOLATION

Newton forward and backward differences – Central differences – Stirling's and Bessel's formulae – Interpolation with Newton's divided differences – Lagrange's method.

UNIT V NUMERICAL DIFFERENTIATION AND INTEGRATION

Numerical differentiation with interpolation polynomials – Numerical integration by Trapezoidal and Simpson's (both 1/3 rd & 3/8 th) rules – Two and three point Gaussian Quadrature formulae – Double integrals using Trapezoidal and Simpson's rules.

Total No. of Hours : 60

REFERENCE BOOKS:

- 1. Veerarajan T., Numerical Methods, Tata McGraw Hill Publishing Co., (2007).
- 2. Sastry S.S., Introductory Methods of Numerical Analysis, Prentice Hall of India, (2012).
- 3. Kandasamy P., Thilagavathy, Gunavathy K., Numerical Methods (Vol.IV), S.Chand & Co., (2008).
- 4. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).

12

12

12

12

Subject Code: BEE18002	Subje	ct Nam	e: DC N	MACHI	NES AN	ND TRA	ANSFO	RME	RS /	Г /L/	L	T / S.Lr	P/ R	C
	Prerec	nuisite:	Basic I	Electrica	l & Ele	ctronic	s Engg]	ETL T	3	1/0	0/0	4
$\mathbf{I} \cdot \mathbf{I}$ acture $\mathbf{T} \cdot \mathbf{T}$	itorial	<u><u> </u></u>	uporvia	ad Loorn	ing D.	Drojoct	D · D	coarch	C. Crod	lite	-	_, •	.,.	
T/L/ETL : Theory	v/Lab/E	mbedde	d Theor	rv and La	ng r. ab	Flojeci	K .KC	search		ints				
OBJECTIVE:) / Zu e / Z			ly and ze										
To provid	le the ki	nowledg	ge on th	e basic c	oncepts	of the 1	rotating	circuit	s.					
• To famili	arize an	d under	stand th	ne workii	ng princ	iple of	the DC	machin	es, tran	sform	ers a	and their	:	
performa	nce cha	racterist	ics											
To provid	le know	ledge o	n transf	ormer co	nnectio	ns	_							
To provid	le know	ledge o	n startir	ng and m	ethods of	of speed	l contro	l of mo	tors.	1 75	c			
• To study	the vari	$\frac{\text{ous loss}}{(\mathbf{C} \circ \mathbf{z})}$	$\frac{1}{(2,5)}$	different	t testing	method	ds for L	C mac	nines ar	id Tra	nsto	ormers		
COURSE OUT	Eamili	$\frac{\mathbf{O}(\mathbf{OS})}{ar know}$	t knowledge on the basic concepts of rotating circuits.											
	Under	at KIIOV	knowledge on the basic concepts of rotating circuits. and the performance, starting and methods of speed control of the Electrical machines											
CO2	Canab	le of de	and the performance, starting and methods of speed control of the Electrical machines of designing different transformer connections											
CO4	Incorn	orate k	of designing different transformer connections											
C05	Perfor	brate knowledge on different testing methods for DC machines and Transformers m model and analyze electrical apparatus and their application in power system												
Mapping of Cou	rse Out	comes	with Pr	ogram (Dutcom	es (PO	s)	then u	prication	<u>, , , , , , , , , , , , , , , , , , , </u>	0000	er syster		
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0	PO11	PO1	2
CO1	Н	Μ	Н	Μ	L	Н	Μ	L	Н	Μ		Н	N	1
CO2	Н	Μ	Μ	L	L	Μ	L	L	Н	Μ		Μ	Ν	1
CO3	Μ	L	Μ	Μ	Μ	Μ	Μ	Μ	Μ	L		Μ	Ι	
CO4	Μ	Μ	Μ	L	L	Μ	L	L	Μ	Μ		Μ	Ι	
CO5	L	H	Η	Μ	Μ	Н	Μ	Μ	L	Н		Н	N	1
COs / PSOs	PS	01	PS	502	PS	603	PS	04	PS	505				
CO1	I	I		H	I	M	I	N]	Μ				
CO2	N	<u>1</u>]	M	N	M	N	<u>/I</u>]	<u>M</u>				
<u>CO3</u>	l l	<u> </u>		<u>M</u>				<u> </u>						
CO4	1	<u>1</u> л	1	L M			1	V L		H M				
H/M/L indicates	N Strength	n of Cor	relation	H_ Hi	h M-1	n Medium		L. 37		VI				
					gii, ivi- i	- International	I, L-L0	**						
	JCe	a		s		mic								
È «	ciel	es		ive	ject	lect								
	a a	s	ore	ive	Pro	L/								
Cate	srin (Sci	пС	n E	l / l	iips	ills							
c S	inee	nan al	gran	gran n E	tice	nsł	Sk							
asi	ing	Hun	301	loξ loξ	rac	ntei	oft							
		ц S												
			\geq											

BEE18002 DC MACHINES AND TRANSFORMERS 3 1/0 0/0 4

UNIT I ELECTROMECHANICAL ENERGY CONVERSION

Principles of electromechanical energy conversion – Energy, Co-energy – Elementary concepts of rotating machines — Rotating magnetic field – generated voltage – Torque – Magnetic Leakage

UNIT II DC GENERATORS

Constructional features of DC machine – Principle of operation of DC generator – EMF equation – Methods of excitation and types of DC generators – Characteristics of Series, Shunt and Compound DC generators – Armature reaction – Commutation – Methods of improving commutation – Parallel operation of DC shunt and compound generators

UNIT III DC MOTORS

Principle of operation of DC motors – Back EMF and its significance – Torque equation – Types of DC motors – Voltage Equation – Characteristics of DC series, shunt and compound motors – Starting of DC motors – Types of starter – Speed control of DC series and shunt motors – Power flow, losses and efficiency

UNIT IV TRANSFORMERS

Principle of operation – Constructional features of single phase and three phase shell type and core type transformers –EMF equation –Transformer on No load and Load – Phasor diagram –Parameters referred to HV/LV windings – Equivalent circuit – three phase transformers-connections – Scott Connection-Regulation — Auto transformers

UNIT V TESTING OF DC MACHINES & TRANSFORMERS

Losses and efficiency in DC Machines and transformers – Condition for maximum efficiency – Testing of DC machines – Brake test, Swinburne's test, Retardation test and Hopkinson's test – Testing of transformers – Polarity test, load test, open circuit and short circuit tests, Sumpner's test – All day efficiency.

TEXT BOOKS:

- 1. Kothari, D.P, Nagrath, I.J.(2005) Electrical Machines,7th Edn, Tata McGraw Hill Publishing Co. Ltd, New Delhi
- 2. Murugesh Kumar, K. (2003) DC Machines & Transformers. Vikas Publishing House Pvt Ltd.
- 3. Theraja, B.L. Chand, S. (2008) Electrical Technology Volume.II AC /DC Machines.

REFERENCE BOOKS :

- 1. Fitzgerald, A.E, Charles Kingsley Jr, Stephen, D. Umans (2003) Electric Machinery. 6th Edn, McGraw Hill Companies.
- 2. Hill Stephen, J. Chapman, (2012) Electric Machinery Fundamentals, 5th Edn, McGraw Hill Companies, New Delhi
- 3. Bimbhra, P.S. (2003) Electrical Machinery. Khanna Publishers.
- 4. Gupta, J B. (2015) Theory & Performance of Electrical Machine, S.K. Kataria & Sons

12

12

Total No. of Hours : 60

12

12

Subject Code:	Subje MEC	ect Nam HANIC	e: THE S	CRMOD	YNAM	ICS AN	ND FLU	ID	T /L/	L	T / S.Lr	P/ R	C		
BME18103	Prere	quisite:	Basic I	Mechan	ical & (Civil E	ngg		ETL T	3	0/0	0/0	3		
L : Lecture T	: Tutoria	I SLr:	Superv	vised Lea	arning F	: Proje	ct R : F	Researc	h C: Cre	edits					
T/L/ETL : Th	eory/Lab	/Embed	ded The	eory and	Lab	5									
OBJECTIVE	2:														
•	To und	erstand	the basi	c Laws o	of Thern	nodynai	nics and	l the wo	orking p	rincip	le of IC	Engi	nes.		
•	To und	erstand	the desi	gn of Tu	rbines a	nd boile	ers.	· · ·	· T T 1	1.	1.	0 D			
•	To und To kno To stud	w the in	iportance iportance various	ce, appli	cation ai	and imp nd inter and tu	relation	ship of	various	prope	erties of	fluid	umps.		
COURSE OU	JTCOM	ES (Cos	(3-5))	pumps	una ta	i onnes								
CO1	Know	ledge o	n the ba	sic Law	s of The	rmodyn	amics a	nd the v	working	princ	iple of 1	C En	gines		
CO2	Capal	ole of se	lecting	the suita	ble turbi	nes and	l boilers	depend	ling upo	on the	applica	tions	-		
CO3	Incorp	corporating the knowledge gained in operating the Hydraulic machinery & Pumps nowledge on properties of different fluids and its applications													
CO4	Know	nowledge on properties of different fluids and its applications													
CO5	Devel	evelop knowledge on the working of different types of pumps and turbines													
Mapping of (Course C	outcome	s with	Progran	n Outco	mes (P	Os)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO1	0 PO	11	PO12		
<u>CO1</u>	M	M	M	H	M			M	H	M			H		
<u>CO2</u>				M	H	M	H	H	H	<u>M</u>		l l	M		
CO3	H	H	H			M		H	H			l r			
C04				H	M				H			l r			
COS / PSOS		<u>н</u>	П	<u>M</u>			н РS	L 04	H PS	<u>н</u>		L	IVI		
C01		<u>м</u>	L .	<u>302</u> М		н ц	15	<u>и</u>	10	<u>и</u>					
	<u>ו</u> ן	M		H	1	H	F	4 7	1	H					
CO3	1	M		M	1	M	N	<u> </u>	I	M					
CO4	I	М		Μ	I	M	N	ſ	Ι	M					
CO5]	H		H]	H	I	I]	H					
H/M/L indicat	tes Stren	gth of C	orrelation	on H-	High, M	- Mediu	ım, L-L	ow		- <u>r</u>					
Category	Basic Sciences Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives Onen Electives	Practical / Project	Internships / Technica Skill	Soft Skills								
	~														

BME18I03 THERMODYNAMICS AND FLUID MECHANICS 3 0/0 0/0 3

UNIT I BASIC CONCEPTS AND FIRST LAW OF THERMODYNAMICS

Thermodynamics systems, Concepts of continuum, Thermodynamics properties, Equilibrium, Process, Cycle, Work, Heat, Temperature, Zeroth law of thermodynamics. First law of thermodynamics – Applications to closed and open systems – Steady flow Energy Equations – Simple Problems

UNIT II SECOND LAW OF THERMODYNAMICS

Statements, Reversibility, Causes of irreversibility, Carnot Cycle, Reversed Carnot Cycle, Heat Engines, Refrigerators, Heat Pumps - Clausius Inequality – Entropy - Principles of increase of entropy - Carnot theorem.

UNIT III POWER CYCLES

Air cycles – Assumptions - Otto, Diesel, Dual and Brayton cycle – Air standard efficiency – Mean effective pressure – Working of two stroke and Four Stroke Petrol and Diesel Engines.

UNIT IV FLUID MECHANICS

Fluid properties; fluid statics, manometer, control-volume analysis of mass, momentum and energy; differential equations of continuity and momentum; Bernoulli's equation; viscous flow of incompressible fluids; boundary layer; elementary turbulent flow; flow through pipes, head losses in pipes, bends etc.

UNIT V FLUID MACHINERY

Introduction, types of pumps – reciprocating pump – centrifugal pump - construction details – working principles, Pelton-wheel, Francis and Kaplan turbines – construction and working principles.

Total No. of Hours : 45

TEXT BOOKS:

- 1. Nag, P.K. Engineering Thermodynamics, 2nd Edn, Tata McGraw Hill Publishing Company Ltd.
- 2. Rajput R.K., Fluid Mechanics and Hydraulic Machines, S.Chand and Co., India

REFERENCE BOOKS:

1. Holman, J.P. (1995) Thermodynamics, McGraw Hill.

2. Yunus A. Cengel, Thermodynamics-An Engineering Approach. ,Tata Mc.Graw Hill.

3. Bansal R.K., A Text Book of Fluid Mechanics and Hydraulic Machines , S.Chand and Co., India

9

9

9

Subject Code: BEE18003	1	Subjec	ct Nam ELEC	e: TROM	/IAG]	NET	IC FIE	LD TH	HEORY	7	T /L/ ETL	L	T / S.Lr	P/ R	C
DELIGOUS		Prereg	uisite:								L	3	0/0	0/0	3
L : Lecture T	: T	utorial	SLr:	Super	vised	Lear	ning P	: Proje	ect R : H	Researc	n C: Cre	dits			
T/L/ETL : T	heor	y/Lab/	Embed	ded Th	eory	and I	Lab								
OBJECTIV	E:														
•	Т	o acqu	ire knov	wledge	in E	lectro	magne	tic field	d theory						
•	Т	o provi	ide a so	lid fou	ndati	on in	Electro	ostatics	such as	Dipole	, Capac	itance			
•	Т	o attaiı	n famili	arity ir	1 Bou	ndar	y condi	tions a	nd Magi	netic fie	ld				
•	Т	o unde	rstand t	he rela	tion	betwe	een fiel	d theor	y and ci	rcuit the	eory				
•	Т	o ident	ify the	electro	magr	netic	wave p	ropagat	tion in n	nedium					
COURSE O	UT(ES (Cos	<u>s): (3-5</u>)		F 1			1.1.1					
C01		Unders	stand th	e tund	amen	tals i	n Elect	romag	netic fie	ld theor	у				
CO2		Founda	ation in	Electr	ostati	cs su	ch as D	pipole,	Capacita	ance					
CO3		Famili	arity in	Bound	lary c	ondit	ions an	d Mag	netic fie	ld					
CO4		Unders	termine the electromagnetic wave propagation in medium												
CO5		Detern	ermine the electromagnetic wave propagation in medium												
Mapping of	Cou	irse O	utcome	s with	Prog	gram	Outco	mes (P	Os)	-					
COs/POs		PO1	PO2	PO3	PC)4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12
<u>CO1</u>		H	M	M	M	-	H	M	H	M	H	M	L.		M
CO2		H	M	H	1	M	M	M	M	M	H	<u>M</u>	H		M
CO3		H	H	H		H	<u>H</u>	H	H	M	H	M		-	M
CO4		L	L	M	1	M	L	L	L	L	Μ	M	N	1	L
CO5		H	H	H		H	H	H	H	M	H		E		Μ
Cos / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	05			
<u>CO1</u>		<u> </u>	<u> </u>		<u>H</u>		H	<u>I</u>	1	<u>I</u>]	<u>I</u>			
<u>CO2</u>		<u> </u>	<u> </u>		H		<u> </u>	1		<u> </u>		<u>I</u>			
<u>CO3</u>			1 7					/ <u> </u>	N		1				
C04		IV.	1 л		<u>н</u> п		1 X	<u>1</u> л	1 T	<u>1</u> т]	1 T			
H/M/L indice	atac	Strong	1 th of C	orralati	n	υц	ich M	/I Modii	Im I I			1			
	ales	Sucing		oneiat		11-11	1g11, 1 v1 -	a	1111, L-L	.0 w					
Category	Basic Sciences	Engineering Sciences	Humanities ar Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technic Skill	Soft Skills						
				\mathbf{k}											

BEE18003 ELECTROMAGNETIC FIELD THEORY 3 0/0 0/0 3

UNIT I ELECTROSTATIC FIELD

Introduction - Concepts of different co-ordinate systems – Electric field intensity – Electric flux density - electric fields due to charge distributions – Electric potential – potential gradient - Gauss law & Coulomb's law with Application

UNIT II ELECTROSTATICS

Field due to dipoles – Dipole moment – Current and Current density Boundary conditions at dielectric and conductor surfaces – Capacitor - Capacitance– Energy stored and energy density – Capacitance due to Spherical shell, Coaxial cable

UNIT III MAGNETOSTATICS

Introduction to Magnetic materials- Magnetic field intensity- Magnetic flux density (B) – B in free space, conductor, magnetic materials. Magnetization and Permeability – Boundary conditions- Lorentz Law of force, – Biot-Savart Law – Ampere's Law –Magnetic field– Scalar and vector potential – Magnetic force – Torque – Inductance

UNIT IV ELECTRODYNAMIC FIELDS

Faraday's law, induced EMF – transformer and motional EMF, Maxwell's equations (differential and integral forms)- Displacement current - Relation between field theory and circuit theory.

UNIT V ELECTROMAGNETIC FIELDS AND WAVE PROPAGATION

Generation – electromagnetic wave equations – Wave parameters- velocity, intrinsic impedance, propagation constant – Wave propagation in free space, loss and lossless dielectrics, conductors – skin depth, Poynting vector

Total No of Hours : 45

TEXT BOOKS:

- 1. William Hayt, (2005) Engineering Electromagnetics.7th Edn,McGraw Hill.
- 2. Matthew. N.O. Sadiku,(2007) Elements of Electromagnetics.4th Edn, First Indian Edition,Oxford University Press.
- 3. Ashutosh Pramanik,(2006)Electromagnetism theory and application,Prentice Hall of India Private Ltd.

REFERENCE BOOKS :

- 1. David K. Cheng, (2004) Field and Wave Electromagnetics, 2nd Edn, Pearson Education.
- 2. William H. Hayt Jr, John A. Buck, (2006) Engineering Electromagnetics,7th Edn,Tata McGraw Hill Publishing Company Ltd.
- 3. Edminister, J.A. Schaum's, (2006) Theory and problems of Electromagnetics,2nd Edn,Special Indian Edition, Tata McGraw hill.

9

9

9

Subject Code: BEE18L14	Subjec ELEC	ct Name TRON	e: ANA ICS LA	LOG A ABORA	ND DIO FORY	GITAL			T /L/ ETL	L	T / S.Lr	P/ R	C	
	Prerec	quisite:							L	0	0/0	6/0	2	
L : Lecture T :	Tutorial	SLr:	Superv	ised Lea	rning P	: Proje	ect R : F	Researc	h C: Cre	edits				
T/L/ETL : The	ory/Lab/	Embed	ded The	ory and	Lab									
OBJECTIVE	1.1			1 61	•									
• 10	know th	ie basic	knowle	dge of lo	ogic gate		Б							
• De	sign kno	wieage	on imp	lemental	10n of E	soolean	flim flow	on na						
• Su	idents at	one to de	sign Co	ounters, i	arammi	s using	mp-no orilog L	ps IDI						
• 5u	study al	Quit mu	ltipleve	ge in pro	smultin	ng or v	ennog 1	IDL						
COURSE OU	TCOM	ES (Cos	(3-5)		munipi	CACIS								
CO1	Under	stand th	e basic	concepts	of logi	c gates								
CO2	Famili	arizatio	n to the	Design	and imp	lement	ation of	Boolea	n Funct	ion				
CO3	Under	erstand about Counters, Registers using flip-flops												
CO4	Under	stand th	e conce	pts in pr										
CO5	Capab	ble to understand about multiplexers and demultiplexers												
Mapping of C	ourse O	utcome	s with]	Program	o Outco	mes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12	
CO1	Н	H	H	Н	Μ	Μ	Μ	H	Н	Μ	L	ı	Μ	
CO2	Μ	Μ	Μ	Μ	Н	Η	Μ	Μ	Μ	L	N	[Η	
CO3	H	H	H	Μ	Μ	Μ	Н	H	Μ	Η	N	[L	
CO4	Н	H	Μ	Μ	L	L	Μ	H	Μ	Μ	H	[Μ	
CO5	M	Μ	Μ	M	L	Μ	Μ	H	Μ	L	N	[Μ	
Cos / PSOs	PS	01	PS	502	PS	03	PS	04	PS	05				
<u>CO1</u>	I	I		H	I	<u>M</u>		[<u> </u>	I	<u>M</u>				
<u>CO2</u>	N	<u>1</u> T		M		<u> </u>		<u>/</u>		<u> </u>				
<u>CO3</u>	1	1 T		M M		VI r				L Jr				
C04	1 1	1 J		M M		Li r		<u>л</u>	1	<u>и</u> Л				
H/M/L indicate	s Streng	th of C	orrelatio	on H-F	lioh M	- Mediı	um L-L	0W	1	VI.				
			JIICIUI			a								
Category Basic Sciences	Engineering Sciences	H M L H M Humanities Social Sciences M M Hogram Core M M M Hogram Core Heigh, M- Medium, L-Low												
					\mathbf{i}									

BEE18L14 ANALOG AND DIGITAL ELECTRONICS 0 0/0 3/0 2 LABORATORY

LIST OF EXPERIMENTS

- 1. Study of Logic Gates & Digital Logic families
- 2. Implementation of Boolean functions
- 3. Adders & Subtractors
- 4. Multiplexers and de-multiplexers
- 5. Study of Flip-flops
- 6. Study of Registers
- 7. Study of Counters
- 8. Design and Testing of RC Phase shift, LC Oscillators
- 9. Single phase half wave and full wave rectifiers with inductive and capacitive filters
- 10. Astable and Monostable Multivibrators

Total No. of Hours: 45

Subject Code: BEE18001	Subje NETV	ct Nam VORK	e: CIF ANAI	RCUIT LYSIS	Г ТІ	HEOR	Y ANI)		T /L/ ETL	L	T / S.Lr	P/ R	C
	Prere	quisite:								Т	3	1/0	0/0	4
L : Lecture T : T	utorial	SLr:	Superv	vised L	Learn	ning P	P : Proje	ect R:	Researc	ch C: Cr	edits		1	
T/L/ETL : Theor	y/Lab/I	Embedd	led The	eory ar	nd L	ab								
OBJECTIVE:	Indoreta	nd tha l	asics	of Elec	otric	Circu	ite							
• To i	mnart k	nowled	ge on i	networ	·k th	eorem	s							
• To i	mpart k	nowled	ge on t	the con	ncep	ts of	transie	nt respo	nse of	circuits				
• To u	indersta	nd Netv	work g	raphs,	cut	sets ar	nd Dual	ity of th	ne netw	ork				
• To U	Jndersta	and and	solvin	ig the t	wo	port ne	etworks	s, variou	is types	s of filter	rs and	Attenu	ators	
COURSE OUT	COME	S (Cos)): (3-5))										
CO1	Analy	ze the E	Electric	circui	its									
CO2	Apply	Circuit	theore	ems in	ana	lysing	proble	ms in po	ower sy	stem				
CO3	knowl	edge ab	out Co	oupled	circ	cuits ar	nd Tran	sient Re	esponse	e of Circ	uits			
CO4	Famili	arizatio	on of N	etwork	k gra	aphs								
CO5	Under	stand a	nd solv	ving the	e tw	o port	networ	`ks						
Mapping of Co	urse Ou	itcomes	s with	Progra	am	Outco	mes (F	Os)						
COs/POs	PO1	PO2	PO3	PO4	4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12
CO1	Η	Н	Н	Μ		Μ	L	L	Μ	H	Μ	I	I	Μ
CO2	Μ	L	L	Μ		Μ	L	L	Μ	Н	Μ	I	I	Μ
CO3	Μ	L	Μ	L		L	Μ	M	L	H	Μ	I	I	L
CO4	L	Μ	L	M		Μ	Μ	H	L	Μ	Η	H	I	L
CO5	H	H	H	H		M	H	M	L	M	M	H	I	L
COs / PSOs	PS	01	P	<u>SO2</u>		<u>PS</u>	03	PS	04	PS	05			
		1		H M		<u></u>			<u>/1</u>	1				
CO2		/ <u> </u> I		M		N	VI		<u>1</u> T		VI			
C03	I 	I T		T		נ ע	<u>л</u>		. <u>т</u> Л		<u>ц</u> Т			
CO5	N	1		M			<u>1</u> H	I	<u>,</u>		Л			
H/M/L indicates	Strengt	h of Co	orrelati	on H	I- Hi	igh, M	- Medi	um, L-I	LOW					
	S	nud					cal							
	snce			Se		t	ind							
ory SS	Scie	ces	(b)	tiv	es	ojec	Tec							
tego	ng '	es ien	Cor	Elec	ùiv.	Pro	/ S							
Car	eri	niti6 Sc	m (m	Elec	al/	hip	kills						
	gine	maı Sial	gra	gra	en]	ctic	erns 11	ît SI						
Bas	Enį	Hu Soc	Pro	Pro	Õ	Pra	Int(Ski	Sof						
			\geq											

BEE18001 CIRCUIT THEORY AND NETWORK ANALYSIS 3 1/0 0/0 4

UNIT I BASIC CIRCUIT CONCEPTS

Basic circuit elements-Ideal sources-Ohm's law-Kirchoff's laws-Network reduction: Voltage and Current division, Source transformation-Series and Parallel combination of R,L and C – Mesh and Nodal analysis for D.C and A.C. circuits

UNIT II NETWORK THEOREMS AND COUPLED CIRCUITS

Network theorems (Analysis of DC and AC Circuits): Thevenin, Norton, Superposition, Maximum power transfer and Reciprocity.

UNIT III NETWORK TOPOLOGY AND TRANSIENT ANALYSIS

Graph theory-Branch Nodal Analysis-Link loop Analysis-Tie set and Cut set matrices- Duality. Transients: Behavior of circuit elements under switching conditions and their representation- Forced and free Response of RL, RC, RLC circuits with DC and AC excitations.

UNIT IV TWO PORT NETWORKS, FILTERS AND ATTENUATORS

Characterization of two port networks in terms of Z, Y, H and T parameters-network equivalents-Relation between Network parameters- Analysis of T, Ladder, Bridged T and Lattice Networks - Filters

UNIT V S-DOMAIN ANALYSIS AND NETWORK SYNTHESIS

S-domain network-driving point and transfer impedances and their properties- transform network analysis -Concept of complex frequency- poles and zeros of network functions- time domain response from pole- zero plot- Reliability of one port network- Hurwitz polynomials

Total No. of Hours : 60

TEXT BOOKS:

- 1. Sudhakar, A. Shyammohan, S. and Palli (2015) Circuits and Networks: Analysis and Synthesis, 5th Edn, Tata McGraw-Hill
- 2. Smith , K.A. and. Alley, R.E (2014) Electrical Circuits, Cambridge University Press
- 3. Robert L. Boylestad and Louis Nashelsky (2013) Electronic Devices and Circuit Theory,11th Edn, Pearson Education

REFERENCE BOOKS :

- 1. Hyatt, W.H. Jr and Kimmerly, J.E., Engineering Circuits Analysis, McGraw Hill International.
- 2. Edminister, J.A., Theory and Problems of Electric Circuits, Schaum's Outline series McGraw Hill Book Company
- 3. Paranjothi S.R.(2000)Electric Circuit Analysis, New Age International Ltd., Delhi, 2nd Edition,.
- 4. Van Valkenburg, M.E., Network Analysis, Prentice Hall of India Private Ltd., New Delhi

12

12

12

12

Subject Code: BEE18004	Subject MEAS	ct Nam SUREM	e: ELI 1ENT:	ECTR S	ICA	L & E	LECT	RONIC	CS	T /L/ ETL	L	T / S.Lr	P / R	C
	Preree	quisite:								1	3	0/0	0/0	3
L : Lecture T : $T/L/ETL + The$	Tutorial	SLr :	Super	vised	Lear	ning P	: Proje	ect R : I	Researc	h C: Cro	edits			
OBJECTIVE	ory/Lad/	Embed		leory a	ina L	ad								
• To uno	lerstand	about Iı	nstrum	ents ai	nd its	Calib	ration.							
• To im	part kno	wledge	about	variou	is typ	es of A	Analog	and Dig	gital me	ters				
To und	lerstand	the vari	ous me	ethods	of M	leasure	ements	c						
To und	lerstand	the abo	ut diff	erent t	types	of Tra	insduce	ers and C	Convert	ers				
To unc	lerstand	the vari	ous ty	pes of	Stora	age and	l displa	y devic	es.					
COURSE OU	TCOM	ES (Cos	s): (3-5	5)										
<u>CO1</u>	Gain k	nowled	ge abo	out Ins	strum	ients ai	nd its C	Calibratio	on					
CO2	Ability	ity to understand the usage of meters ity to understand the various methods of Measurements												
CO3	Ability	ty to understand the various methods of Measurements ty to understand the application of transducers and Converters												
CO4	Ability	y to und	erstand	d the a	verters									
CO5	Gain k	lity to understand the application of transducers and Converters n knowledge about the Storage and display devices												
Mapping of C	ourse O	utcome	s with	Prog	ram	Outco	mes (P	Os)						
COs/POs	PO1	PO2	PO3	PO	4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12
CO1	Н	Η	Η	H	I	Η	H	Н	Μ	Н	Η	H	[Μ
CO2	H	H	Н	H	I	Μ	H	H	H	Μ	Μ	H	[Μ
CO3	H	H	H	H	I	Μ	H	H	H	H	H	H	[L
<u>CO4</u>	H	H	H	H	I	<u>H</u>	H	H	H	H	<u>H</u>	H		H
$\frac{CO5}{Cog/BSOg}$	H DC	<u>H</u>			1							E		L
COS/PSUS		<u>101</u>	r	<u>502</u> M		<u> </u>	<u>U3</u>		<u>и</u>		<u>505</u> 1			
CO1		<u>і</u> Л		M		I	I T		vi M	נ ז	Л			
CO3	I	I		M		N	N		H	I	M			
CO4	H	I		L		N	N]	L]	H			
CO5	Ν	1		Μ]	L	Ν	Μ]	L			
H/M/L indicate	es Streng	th of C	orrelat	ion I	H- Hi	igh, M	- Medi	um, L-L	JOW					
Category Rasic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technica Skill	Soft Skills						
			\mathbf{r}											

BEE18004 ELECTRICAL AND ELECTRONICS 3 0/0 0/0 3 MEASUREMENTS

UNIT I INTRODUCTION

Functional elements of Instrument -Static and Dynamic characteristics -Errors in measurement Statistical evaluation of measurement data -Standard and Calibration

UNIT II ELECTRICAL AND ELECTRONICS INSTRUMENTS

Principle and types of analog and digital ammeters and voltmeters –D'Arsonval Galvanometer-Construction, Torque Equation-Single and three phase Wattmeter and Energy meter - magnetic measurements -Instrument Transformers -Instruments for measurement of frequency and phase- Applications

UNIT III METHODS OF MEASUREMENTS

D.C & A.C potentiometers-D.C & A.C bridges- transformer ratio bridges- self-balancing bridges-PMMC, moving iron- Electrostatic and Electromagnetic interference –Grounding techniques - Calibration

UNIT IV TRANSDUCERS AND CONVERTERS

Classification of transducers – Selection of transducers – Resistive-capacitive & inductive transducers – Piezoelectric, Hall effect- optical and digital transducers –A/D and D/A conversion Techniques and its Types

UNIT V STORAGE AND DISPLAY DEVICES

Magnetic disc and Tape Recorders –Digital plotters and printers -CRT displays -Digital CRO – LED, LCD and Dot matrix displays- Data Loggers.

Total No. of Hours : 45

TEXT BOOKS:

- 1. Doebelin, E.O.(1990) Measurement Systems Application and Design,McGraw Hill Publishing Company
- 2. Sawhney, A.K.(2016) A course in Electrical and Electronic Measurements and Instrumentation, Dhanpat Rai& Sons
- 3. Kalsi, H.S. (2010) Electronic Instrumentation, 3rd Edn, Tata McGraw-Hill Education Pvt. Ltd

REFERENCE BOOKS:

- 1. Robert B Northrop (2005) Introduction to Instrumentation and Measurements, Taylor & Francis
- 2. Stout, M.B. (1986) Basic Electrical Measurement, Prentice Hall of India
- 3. Dalley, J.W. Riley, W.F. Meconnel, K.G(1993) Instrumentation for Engineering Measurement, John Wiley & Sons.
- 4. Moorthy, D.V.S. (1995) Transducers and Instrumentation., Prentice Hall of India Pvt. Ltd

9

9

9

9

Subject Code:		Subjec	t Nam	e: COI	MMU	INIC	ATIO	N SYS	TEMS	& IOT	Т /Г./	L	T/ SLr	P/ R	C
BEC18I07											ETL		5.11	N	
		Prereq	uisite:								Т	3	0/0	0/0	3
L : Lecture T	' : T	utorial	SLr :	Super	vised	Lear	ning P	: Proie	ct R : I	Researc	h C: Cre	dits			
T/L/ETL : Th	neor	ry/Lab/	Embed	ded Th	eory a	and L	Lab	J							
OBJECTIV	E:														
•	Т	'o unde	rstand t	he Ana	alog &	k Dig	gital Co	mmun	ication.						
•	Т	o study	/ about	the me	thods	to co	onvert .	Analog	to Digi	tal com	municat	ion u	sing coo	le the	ory.
•	Т	'o study	/ about	differe	ent m	odula	ation te	chniqu	es						
•	Т	'o intro	duce va	rious r	nedia	for c	ligital c	commu	nication	l					
•	Т	'o apply	y the co	ncept of	of Inte	ernet	of Thi	ngs in t	he real	world so	cenario				
COURSE O	UT	COME	ES (Cos	<u>;): (3-5</u>)				-	1.5.		<u> </u>			
CO1		Capabl	e of un	derstar	nding	the o	concept	ts of A	nalog ar	d Digit	al comn	nunica	ation cir	cuits	
CO2		Gain k	knowledge about the Communication conversion methods knowledge about the different concepts of modulation techniques												
CO3		Gain k	knowledge about the different concepts of modulation techniques												
CO4		Develo	elop knowledge about the various digital communication media												
CO5		Unders	velop knowledge about the various digital communication media derstand and incorporate the concepts of IOT in different fields.												
Mapping of	Coi	urse O	utcome	s with	Prog	ram	Outco	mes (P	Os)						
COs/POs		PO1	PO2	PO3	PO	4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12
CO1		Н	Μ	Μ	Ν	Л	L	L	Μ	Μ	L	Η	Ν	1	Н
CO2		Μ	Н	Н	N	Л	L	L	L	L	М	Μ	H	[Н
CO3		L	Μ	Μ	N	Λ	L	L	Μ	Н	М	L	Ν	1	Η
CO4		L	Μ	Μ	N	Л	Μ	Μ	Н	Н	Н	Μ	Ν	ſ	Н
CO5		Μ	Н	Η	N	Л	Μ	L	Μ	Н	Μ	Η	Ν	ſ	Μ
Cos / PSOs		PS	01	Р	SO2		PS	03	PS	04	PS	05			
CO1		L	4		L		I	[]	N	Л	N	1			
CO2		L	4		Μ		Ν	Λ]	I	Ν	1			
CO3		H	[Η		ł	H	I	Л					
CO4		<u> </u>	-		M]	[<u> </u>		[
	_	N.	1 1 (0	1			<u> </u>	L N 1 1		Λ	ŀ	1			
H/M/L indica	ates	Streng	th of C	orrelati	lon	H- H	1gh, M	- Medn	ım, L-L	ow					
	ences	ng Sciences	es an iences	Core	Electives	tives	Project	s / Technica							
Category	Basic Scie	Engineerii	Humanitie Social Sci	Program (Program I	Open Elec	Practical /	Internship Skill	Soft Skills						
		~													

BEC18I07 COMMUNICATION SYSTEMS & IOT 3 0/0 0/0 3

UNIT I SIGNALS & NOISE

Periodic & Aperiodic Signals – Noise - External Noise – Thermal Agitation – Shot Noise – Noise Figure – Signal to Noise ratio – Equivalent Noise resistance.

UNIT II INTRODUCTION TO COMMUNICATION

Basic Communication systems – Need for Modulation in communication systems – Amplitude Modulation – Double Side Band amplitude Modulation – Single sideband and VSB modulation – modulators. AM Transmitter and Receiver, FM transmitter and Receiver.

UNIT III MODULATION TECHNIQUES AND PULSE MODULATION

Phase modulation – Noise triangle – Pre-emphasis and de-emphasis – Stereophonic FM multiplex system – comparison of wideband and narrow band FM – AFC – Sampling theorem –Quantization, Quantization Error, PAM, PWM, PPM, PCM.

UNIT IV DIGITAL MODULATION & INFORMATION THEORY

ASK, FSK, PSK, Transmitter and Receiver. Introduction-Information & Entropy, Source Coding Theory, Discrete Memory less Channel, Mutual Information Channel Capacity, Channel Coding Theory.

UNIT V INTERNET OF THINGS

Introduction – Block diagram of IoT- IoT Architecture – Communication Technologies in IoT – Cloud Storage in IoT-Data Storage in IoT – Applications of IoT – Smart Home, Smart City, Smart Agriculture, Health Monitoring System.

Total No. of Hours: 45

TEXT BOOKS:

- 1. Roy Blake, (2002) Electronic Communication systems. 2nd Edn, Thomson Learning.
- 2. George Kennedy, (1992) Electronic communication systems, Tata McGraw Hill publications.
- 3. Michael Miller, (2015) The Internet of Things, Que Publishing

REFERENCE BOOKS:

- 1. Bruce Carlson, A. Taub & Schilling, (1986) Principles of Communication Systems, Tata McGraw Hill.
- 2. Simon Haykins, (2001) Principles of Communications, Prentice Hall of India.
- 3. Arshdeep Bahga, Vijay Madisetti (2015) Internet of Things A hands-on approach, Universities Press

9

9

9

9

Subject Code:	Subje INTE	ct Nam GRATI	e: LIN ED CII	EAR A	ND DIG S	ITAL			T /L/	L	T / S.Lr	P/ R	C
BEE18ET1	D	• • • • • • • • • • • • • • • • • • • •							ETL	1	0/1	2/0	2
	Prere	quisite:							EIL	I	0/1	3/0	3
L : Lecture T	Tutoria	SLr:	Superv	vised Le	arning F	? : Proje	ct R : F	Researc	h C: Cre	dits			
T/L/ETL : The	eory/Lab	/Embed	ded Th	eory and	Lab								
OBJECTIVE	• • • • • • • • • • • • • • • • • • • •		المعنا معلنا م		1								
• 1	o study u	le IC la	brication	n proce	iure.	d dooio	n for si	mol on	luciano	ina ()n omn	ICa	
• 1	o study i	naracier	Isues, I	hal block	re and th	a appli	n ior sig	gliai alla	al ICe li	ing C ka Ti	p-amp more D	ICS.	rouite
• I	gulator (lircuits	ADC		ts and th	e appire		JI speci		KC II	111015, 1		icuits,
• F	amiliarit	v of diff	Ferent ty	vpes of s	ates usi	ng truth	table w	ith logi	c circuit	s.			
• Fa	miliarity	to use	logic g	ates in s	equential	and co	mbinati	onal cir	cuits.				
COURSE OU	TCOM	ES (Cos	s): (3-5)									
CO1	Capab	le of un	derstan	ding the	concept	s of IC	fabricat	ion					
CO2	Realiz	alization of Circuits using Op-amps											
CO3	knowl	owledge about Special IC's and apply in designing logic circuits											
CO4	knowl	owledge about the basic gates											
CO5	Capab	bable to design logic Circuits using gates											
Mapping of C	Course O	utcome	s with	Program	n Outco	mes (P	Os)	1					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12
CO1	Μ	Μ	Μ	H	Μ	L	Μ	Μ	L	L	N	1	Μ
CO2	H	H	Μ	Μ	H	L	M	L	Μ	Μ	I		Μ
CO3	Μ	M	H	H	M	L	L	L	Μ	H	N	1	L
CO4	L	L	M	M	L	Μ	L	L	Μ	Μ	H	I	Μ
CO5	M	M	H	H	M				M	H	N	1	L
Cos / PSOs	PS	01	P	SO2	PS	503	PS	04	PS	05			
CO1		<u>1</u>		M			N	<u>/</u>	N	1			
<u>CO2</u>	1			H M			N	/1					
]	<u>1</u> Л		T		<u>ь</u> м							
C04		<u>и</u> Л		<u>ь</u> н		NT T		Л	1 1	<u>.</u>			
H/M/L indicat	es Strens	yth of C	orrelati	on H-	High. M	- Mediı	1m. L-L	ow		_			
	s	<u>nd</u>				cal	,						
	ience	sa		ves	ect	echnic							
	ces i Sc	nce	ore	ecti	roj	/ T(
<u>È</u> .	iing	ies	ŭ	Ele	/ P	sd	lls						
500	leel	anit 1 S	am	E1,	ical	idst	Skil						
. Caté	asıc	um: vcia	ogr	ogr	acti	terr. Till	oft S						
	й Ш	H _I S _c	Pr	Pr.	Pr	Sk Sk	Sc						
			\geq										

BEE18ET1 LINEAR AND DIGITAL INTEGRATED CIRCUITS 1 0/1 3/0 3

UNIT I IC FABRICATION

IC classification, fundamental of monolithic IC technology, epitaxial growth, masking and etching, diffusion of impurities. Realization of monolithic ICs and packaging. Fabrication of diodes, capacitance, resistance and FETs

UNIT II CHARACTERISTICS AND APPLICATIONS OF OP AMP

Ideal OP-Amp characteristics, offset voltage and current, differential amplifier; frequency response of OP-AMP; Basic applications of op-amp – summer, differentiator and integrator - Instrumentation amplifier, comparators, multivibrators, waveform generators, clippers, clampers, peak detector, S/H circuit

UNIT III SPECIAL IC'S

555 Timer circuit – Functional block, characteristics & applications; 566-voltage controlled oscillator circuit; 565-phase lock loop circuit functioning and applications, Analog multiplier ICs

UNIT IV BOOLEAN ALGEBRA

Deriving a Boolean equation from truth table-simplification of Boolean functions using K-map & Quine Mc Cluskey method, Implementation of a Boolean function using Logic gates and universal gates

UNIT V COMBINATIONAL CIRCUITS AND SEQUENTIAL CIRCUITS

Design of adder, subtractor, comparators, code converters, encoders, decoders, multiplexers and demultiplexers- Function realization multiplexers - Latches-Flip flops - Mealy and Moore Models- Design of Shift Registers and counters(Synchronous and Asynchronous Sequential Circuits) - Hazards

Total No. of Hours : 45

TEXT BOOKS:

- 1. Ramakant, A. Gayakward, (2003)Op-amps and Linear Integrated Circuits,6th Edn,Pearson Education PHI.
- 2. Roy Choudhary, D. Sheil B. Jani, (2003) Linear Integrated Circuits, 2nd Edn, New Age.
- 3. Morris Mano, M. (2002) Digital Logic and Computer Design, Prentice Hall of India

REFERENCE BOOKS:

- 1. Jacob Milman, Christos C. Halkias, (2003)Integrated Electronics Analog and Digital circuits system, Tata McGraw Hill.
- 2. Robert F. Coughlin, Fredrick F. Driscoll, (2002)Op-amp and Linear ICs. 4th Edn,Pearson Education/ PHI. Charles H. Roth, (2002) Fundamentals Logic Design, 4th Edn, Jaico Publishing.
- 3. Floyd,(2003) Digital Fundamentals, 8th Edn, Pearson Education.
- 4. John F. Wakerly, (2002) Digital Design Principles and Practice, 3rd Edn, Pearson Education

9

9

9

9

Subje Code: BEE1	ct 8L15]	Subject LABOR	Name: ME ATORY	ASUR	EME	NT	AND	CONT	ROL		T /L/ ETL	L	T / S.Lr	P/ R	C
]	Prerequ	isite:								L	0	0/0	6/0	2
L:Le	cture	T : 1	Futorial	SLr : Supe	ervised	Learr	ning	P:Pr	oject R	: Rese	arch C	: Credit	s	I	1	
T/L/E	TL : 7	Theo	ry/Lab/E	Embedded T	Theory a	and L	ab									
OBJE	CTI	VE:														
	٠	Тοι	understa	nd the Meas	suremen	nt and	l con	ntrol c	oncepts	5						
	•	Stu	dents wil	l obtain kno	owledge	e abo	ut di	fferen	t types o	of Tran	sducers	, bridge	es and	its cha	racter	istics.
	•	То	calibrate	energy me	eters in	i sing	le p	hase,	three pl	hase ar	nd mea	sure the	e pow	ver, iro	on los	s and
		pow	ver factor	•												
	•	To	familiari	ze the stud	ents wi	ith the	e me	easure	ment of	f low re	esistanc	e, indu	ctance	e and c	apacit	ance-
COL		tact	or using	simulation	packag	e sucl	h as	LABV	IEW /N	MATL	AB etc.					
	KSE (JUI	COME	<u>8 (Cos): (3</u>	•5)		4				.1	.1.2. 1	(
	Stuc	ients	get fam	inarized abo		erent	type	S OF 1	ers, bri	ages ar	id its ch		eristics.			
CO2	Und	ersta	ands the o	concept of o	calibrat	ion of	t ene	rgy m	single/	three p	hase an	d mea	sure the	e pow	er	
CO3	The	stud	lents get	s familiariz	ed wi	th the	e me	asurer	nent of	low re	esistanc	e, indu	ctance	e and c	apacit	ance-
COL	facto	or us	ing simu	lation pack	ages et	с.										
CO4	Atta	ined	knowled	$\frac{1}{1}$ dge on P/I a	ind I/P	Conv	erter	S								
CO5	Atta	ined	knowled	lge on Sma	rt Tran	sduce	rs									
Марр	ing o	f Co	urse Ou	tcomes wit	h Prog	ram	Out	comes	(POs)							
COs/I	POs]	PO1	PO2	PO3	PO	4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12
CO1			Μ	L	H	Μ	[Η	Μ	H	Μ	H	Μ	H	I	Н
CO2			Μ	L	Μ	H	[Η	H	H	Μ	Μ	L	H	I	Μ
CO3			L	Μ	H	H	[H	H	H	H	H	H	I	I	L
CO4			Μ	H	H	H	[Η	H	Η	H	H	Η	H	I	Μ
CO5			H	Μ	H	H	[Η	L	H	L	H	Μ	H	I	Μ
Cos /]	PSOs		PS	501	PS	502		PS	03	PS	04	PS	505			
CO1				М		H		I	I	I	I]	H			
CO2]	H		<u>H</u>		I	I	H	<u>I</u>]	H			
<u>CO3</u>		_		<u>H</u>		<u>H</u>		<u> </u>	<u>1</u>	1	1					
CO4				H T		H M		<u> </u>	1		1					
	• 1•		<u> </u>									_	H			
H/M/1	_ 1nd1	cates	s Strengt	n of Correla	ation	H- H1	igh, I	M-Me	edium, I	L-Low						
Category		Basic Sciences	Engineering Sciences	Humanities and Social Sciences	V Program Core	Program	Open Electives	Practical / Projec	Internships / Technical Skill	Soft Skills						
					٢											

BEE18L15 MEASUREMENT AND CONTROL LABORATORY 0 0/0 6/0 2

LIST OF EXPERIMENTS:

- 1. Study of temperature measuring transducers (Thermocouples).
- 2. Study of displacement and pressure transducers (LVDT)
- 3. Measure the stress and strain using strain gauge.
- 4. AC Bridges.
- 5. DC Bridges.
- 6. Calibration of Single phase Energy meter.
- 7. Calibration of Three-phase Energy meter.
- 8. Transfer function of self excited DC Generator
- 9. Transfer function of Armature controlled DC Motor.
- 10. Transfer function of Field controlled DC Motor.
- 11. Transfer function of AC Servomotor.

Total No. of Hours: 45

Subject Code:		Subjec	t Name	e: POV	VER S	SYST	EM -	I			T /L/ ETL	L	T / S.L	r R	C
BEE18006	-	Prereq	uisite:								Т	3	0/0	0/0	3
L : Lecture 7	Γ : Tι	utorial	SLr:	Supervi	ised L	earni	ng P:	Project	t R : Re	search	C: Credi	ts			
T/L/ETL : T	heory	y/Lab/H	Embedd	ed The	ory an	d La	b	5							
OBJECTIV	'E:		_												
•	To le	arn abo	ut Powe	r syster	n 1.										
•	To ki To m	10W abo	out trans	mission 1	i line j	param	neters								
•	To le	arn abo	ut distri	hution :	and su	hstati	on								
•	To kr	now abo	out the f	ault and	l prote	ction	on								
COURSE C	UTC	COME	S (Cos)	: (3-5)	- 11000	•••••									
CO1		Attain 1	knowled	lge on t	he bas	ic of	Power	system							
CO2		Knowle	edge on	transmi	ssion	line p	paramet	ter							
CO3		Ability	ility to model the transmission lines owledge on Distribution system												
CO4		Knowle	owledge on Distribution system												
CO5		Ability	owledge on Distribution system ility to recover the faulted line												
Mapping of	' Cou	rse Ou	tcomes	with I	Progra	am O	Outcom	nes (PO	s)						
COs/POs		PO1	PO2	PO3	PO	4	PO5	PO6	PO7	PO8	PO9	PO1	0 P	011	PO12
CO1		Η	Η	Н	H	Ι	L	H	Η	L	Н	H		H	Н
CO2		Μ	Μ	Н	N	1	L	Μ	Μ	L	Н	Μ		Μ	Η
CO3		Μ	Μ	Μ	N	1	Μ	Μ	Μ	Μ	L	Μ		Μ	Μ
CO4		H	L	Μ	H	I	Μ	H	Н	Μ	Μ	H		L	Μ
CO5		Μ	Μ	L	N	1	Μ	Μ	Μ	Μ	H	Μ		Μ	L
Cos / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	505			
<u>CO1</u>		<u> </u>	[L		I	H	N	<u>M</u>	1	M			
<u>CO2</u>		<u>N</u>	1				<u></u>	<u>/</u>				H			
<u>CO3</u>			<u>1</u> r						1			VI r			
C04			1 1		M		<u>ו</u> ו	п Л		<u>и</u> Л	<u>י</u> ד	L M			
H/M/L indic	ates	Strengt	h of Co	rrelatio	n H	- Hig	h. M-	Mediur	n. L-Loy	W		<u>vi</u>			
		s v	pu					cal							
		nce	а		ş		L.	hnid							
	s	cie	es		tive	S	jec	[ec]			Ś				
	nce	S S	s enc	ore	lect	tive	Pro	L / S							
ory	cie	erin	itie Sci	n C	пE	lec	al /	nips	ills	19	Idr				
teg	ic S	ine	nan ial	grar	grat	пE	tica	rnsł 1	Sk						
Ca	Basi	Eng	Hun Soci	Pro§	Pro§	Ope	Prac	Inte ₁ Skil	Soft	Intor					
				~											
							<u> </u>								

BEE18006 POWER SYSTEM - I 3 3 0/0 0/0

UNIT I **INTRODUCTION TO POWER SYSTEM**

Conventional sources of energy – Thermal, Nuclear, Diesel, Gas etc – Non-conventional Sources of Energy – Solar, Wind, Biomass, Geothermal, Tidal - Structure of Electrical Power System - Different operating Voltages

UNIT II TRANSMISSION LINE PARAMETERS

Mechanical design of transmission line between towers – sags and tension calculations with the effect of ice and wind - Parameters of Resistance, Inductance and Capacitance calculations - Single and three phase transmission lines - Single and Double circuits - Solid, Stranded and Bundled Conductors - Symmetrical and Unsymmetrical Spacing - Transposition of Lines - Concepts of GMR and GMD - Skin and Proximity Effects

UNIT III MODELLING AND PERFORMANCE OF TRANSMISSION LINES

Classification of lines – short line, medium line and long line – equivalent circuits, phasor diagram, attenuation constant, phase constant, surge impedance; transmission efficiency and voltage regulation, real and reactive power flow in lines, Power - circle diagrams, surge impedance loading, methods of voltage control; Ferranti effect

DISTRIBUTION SYSTEM AND SUBSTATIONS **UNIT IV**

Feeders, distributors and service mains - DC distributor - 2-wire and 3-wire, radial and ring main distribution - AC distribution - single phase and three phase 4-wire distribution - Substation - Classification, functions and major components - sample substation layout

UNIT V **FAULTS & PROTECTION**

Need and principles of protection – Nature, Causes and Consequences of faults - symmetrical components and fault calculation – Methods of Neutral grounding – Zones of protection and essential qualities of protection – Protection schemes – Protection against over voltages

TEXT BOOKS:

- 1. V. K. Mehta, "Principles of Power Systems", S. Chand, New Delhi, 2005
- 2. S.N. Singh, 'Electric Power Generation, Transmission and Distribution', Prentice Hall of India Pvt. Ltd, New Delhi, 2002
- 3. Ravindranath, B. and Chander, N. (1997) Power System Protection and Switchgear, Wiley
- 4. Chakrabarti, A. Soni, M.L.Gupta, P.V. Bhatnagar, U.S. (2002) A Text Book on Power System Engineering. Dhanpat Rai & Co. Pvt. Ltd

REFERENCE BOOKS:

- 1. Patra, S.P. Basu, S.K. and Chowduri, S. (1983) Power systems Protection. Oxford and IBH
- 2. Sunil S. Rao, (1986) Switchgear and Protection. New Delhi: Khanna Publishers
- 3. Central Electricity Authority (CEA), 'Guidelines for Transmission System Planning', New Delhi

9

9

9

9

9

Total No. of Hours : 45

Subject		Subjeo	et Nam	e: CO	NTRO	OL S	YSTE	М			Т	L	T/	P/	C
Code: BEE18008													S.Lr	ĸ	
22210000		Prerec	uisite:	BMA	18001	I, BM	[A180	03, BE	E18002		T	3	0/0	0/0	3
L : Lecture	Γ : T	utorial	SLr:	Super	vised	Learr	ning P	: Proje	ect R:	Researc	h C: Cre	edits			
T/L/ETL : T	heor	y/Lab/	Embed	ded Th	eory	and L	ab	J							
OBJECTIV	'E:														
•	Unde	erstand	the bas	sic con	npone	ents of	f contro	ol syste	ems						
•	Capa	able to	solve p	roblem	ns in t	ime d	omain	& freq	uency c	lomain					
•	Unde	erstand	the fre	quency	y resp	onse	for the	stabili	ty of the	e syster	n				
•	Unde	erstand	the Col	to spo	$\sim \Lambda n$	npens	sators	Forant	voriable	C					
COURSEC		COME	ES (Cos	(3-5		arysis	s or un	leient	variable	5					
CO1	<u>'</u>	The stu	idents u	inderst	and t	he bas	sic con	nponen	ts of co	ntrol sv	stems.				
CO2	,	The stu	idents a	ire cap	able t	o solv	ve prot	lems in	n time d	omain	& freque	ency o	lomain		
CO3	,	The stu	students understand the frequency response for the stability of the system.												
CO4	,	The stu	e students understand the frequency response for the stability of the system.												
CO5	,	The stu	e students understand the concept of Compensators e students understand the State space Analysis of different variables												
Mapping of	^c Cou	irse O	utcome	s with	Prog	gram	Outco	mes (P	Os)						
COs/POs		PO1	PO2	PO3	PC)4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12
CO1		Η	H	Μ]	H	Η	Μ	Μ	L	Μ	Μ	H	[L
CO2		Η	Μ	Η	J	H	Η	Μ	Н	Μ	Μ	Μ	H	[L
CO3		Η	H	Η]	H	Η	H	Η	L	Μ	H	H	I	Μ
CO4		Μ	Н	L	Ι	M	L	L	L	L	Μ	L	I		L
CO5		H	H	H		H	H		L	L	M	L	H	[Μ
Cos / PSOs		PS	01	ľ	<u>so2</u>		PS	03	PS	04	PS	05			
$\frac{CO1}{CO2}$			l r		H		1 T	<u>1</u>	1]				
CO2 CO3		<u>г</u> Н	ı I		<u>п</u> Н		I I	1 H	1	n M	1	n H			
CO4		I			L		N	- M		L	I	M			
CO5		Ν	1		Η		I	I	I	M]	H			
H/M/L indic	cates	Streng	th of Co	orrelati	ion	H- Hi	igh, M	- Medi	um, L-L	OW					
		ses	anc					lica							
		ienc			/es		sct	schr							
	ses	Sci	JCes	re	ctiv	ves	roje								
х.	ienc	ing	ies cieı	Co	Ele	sctiv	$/P_1$	ls							
105	Sci	leer	anit 1 S	am	am	Ele	cal	idal	skil						
Cate	asic	nigi	um: vcia	ogr	ogr	Den	acti	tern ill	oft S						
	B	Щ	Hı Sc	Pr	Pr	Ō	$\mathbf{P}_{\mathbf{r}}$	LI Sk	Sc						
				$\overline{}$											
		1					1								

BEE18008 CONTROL SYSTEM 3 0/0 0/0 3

UNIT I INTRODUCTION TO CONTROL SYSTEMS COMPONENTS

Open and closed loop Systems - mathematical models of physical systems - differential equations - transfer function - armature control - field control - block diagram reduction - signal flow graphs

UNIT II TIME RESPONSE ANALYSIS

Standard test signals - time response of first order - second order systems - steady state errors and error constants

UNIT III FREQUENCY RESPONSE AND CONCEPT OF STABILITY

Bode plot, polar plot, Nyquist stability - Concept of stability-necessary conditions - Hurwitz stability criterion -Routh stability criterion-relative stability analysis.

UNIT IV INTRODUCTION TO DESIGN OF COMPENSATORS

Realization of basic compensators-lag, lead, lag-lead. Introduction to P, PI, PD, PID controllers, tuning of PID controllers

UNIT V STATE SPACE REPRESENTATION

Concept of state- State Variable-State Equations- Sampling theorem- Controllability and observability

Total No. of Hours: 45

TEXT BOOKS:

- 1. Nagrath, L.J. Gopal, M. Control System Engineering.4th Ed. New age International (P) Ltd Publishers.
- 2. Ogata, K. Modern Control Engineering-analysis of system dynamics, system design using Root Locus. 4th Ed. Prentice Hall for practice and solutions.

REFERENCE BOOKS BOOKS:

1. www.GaliLMc.com - GALIL we move the world-featured tutorials - motion controllers, tuning servo systems, adjustment of PID filter.

9

9

9

9

Subject Code:	5	Subjec	t Name DESI	e: GN OF	ELECT	RICAL	A MAC	HINES		T /L/	L	T / S.Lr	P/ R	C		
BEE18E12]	Prerec	uisite:	BEE18	8002, BE	E18005	;			ETL ETL	1	0/1	3/0	3		
L : Lecture T	: Tı	utorial	SLr:	Superv	ised Lea	rning P	: Proje	ect R : I	Researc	h C: Cre	dits					
T/L/ETL : Th	leor	y/Lab/	Embed	led The	ory and	Lab	-									
OBJECTIV	E:															
•	T	he grac	luate w	ill be ca	pable of	designi	ng the	transfor	mers							
•	Te	o unde	rstand t	he desi	gning the	e rotor b	ars & s	slots.								
•	Tl	he grac	luate w	ill be ca	pable of	designi	ng mac	chine pa	rameter	s related	l to th	e Indus	trial r	needs.		
•	T	he grad	luate w	ill be ca	pable of	designi	ng the	Electric	al mach	ines						
•	Te	o unde	rstand t	he char	acteristic	es like sj	peed, to	orque et	c. of dif	ferent e	lectric	cal mac	nines.			
COURSE O	UT(ES (Cos): (3-5)	.1	6										
CO1	(Capabl	le of de	signing	the trans	sformers										
CO2		Ability	ty to design the rotor bars and slots ble of designing machine parameters related to the Industrial needs.													
CO3	(Capabl	ble of designing machine parameters related to the Industrial needs. liar with design of Electrical machines													
CO4]	Famili	iliar with design of Electrical machines lerstand the characteristics like speed, torque etc. of different electrical machines													
CO5	1	Unders	erstand the characteristics like speed, torque etc. of different electrical machines													
Mapping of	Cou	rse O	utcome	s with	Progran	<u>1 Outco</u>	mes (P	Os)	1	1						
COs/POs]	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	<u>0</u> PO	11	PO12		
CO1		Μ	Μ	Μ	H	Μ	Μ	H	H	H	Μ	H	I	Η		
CO2		H	Н	Η	Μ	L	Μ	Η	Μ	Η	Μ	I	I	Μ		
CO3		Μ	Μ	Μ	H	Н	Μ	L	Μ	H	L	N	ſ	L		
CO4		Μ	Μ	Н	Μ	L	L	Μ	H	H	Η	H	I	Η		
CO5		Η	Н	Μ	L	Μ	Η	Μ	Η	H	Η	H	I	Η		
Cos / PSOs		PS	01	PS	502	PS	03	PS	O4	PS	05					
CO1		N	1		Μ	N	Л	I	М	l	I					
CO2		E	I		H	I	I	I	Μ]						
CO3		Ν	1		Μ	N	Л]	H]						
CO4		E	I		Μ	N	Л	I	M]	I					
CO5		H	Ι		H	I	I	Ι	M							
H/M/L indica	tes	Streng	th of Co	orrelatio	on H-I	High, M	- Medi	um, L-L	ow		-					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives Open Electives	Practical / Project	Internships / Technica Skill	Soft Skills								
				~												

BEE18ET2 DESIGN OF ELECTRICAL MACHINES 1 0/1 3/0 3

UNIT I INTRODUCTION

Major considerations – Limitations – Space factor temperature gradient – Heat flow in two dimensions – Thermal resistivity of winding – Temperature gradient in conductors placed in slots

UNIT II DC MACHINES

Magnetic circuit calculations –Net length of Iron –Real & Apparent flux densities– D.C machines output equations –Design of shunt and series field windings– Design of Commutator and brushes.

UNIT III TRANSFORMERS

KVA output for single and three phase transformers – Window space factor – Temperature rise of Transformers – Design of Tank with & without cooling tubes – Conservator- Breather

UNIT IV INDUCTION MOTORS

Magnetic leakage calculations – Leakage reactance of poly-phase machines- Output equation of Induction motor — circle diagram – Dispersion co-efficient – relation between D & L for best power factor.

UNIT V SYNCHRONOUS MACHINES

Runaway speed – construction – output equations – choice of loadings – Design of salient pole machines – Short circuit ratio – Introduction to computer aided design – Program to design main dimensions of Alternators.

Total No. of Hours: 45

TEXT BOOKS:

1. Sawhney, A.K. Dhanpat Rai & Sons, (1984) A Course in Electrical Machine Design. New Delhi:

REFERENCE BOOKS:

1. Sen, S.K. (1987) Principles of Electrical Machine Designs with Computer Programmes. New Delhi: Oxford and IBH Publishing Co. Pvt. Ltd.

9

9

Q

9

Subject Code:		Subject Name: AC AND SPECIAL MACHINES									T /L/	L	T / S.Lr	P/ R	C			
BEE18005											ETL							
		Prerec	quisite:	BEE1	7001	/ BEF	E 18002	2			Т	3	1/0	0/0	4			
L : Lecture '	T : T	utorial	SLr:	Super	vised	Learr	ning P	: Proje	ect R : I	Resear	ch C: Cre	dits						
T/L/ETL : T	T/L/ETL : Theory/Lab/Embedded Theory and Lab																	
OBJECTIV	• Understands the construction and operation of Synchronous generator																	
•	 Onderstands the construction and operation of Synchronous generator Acquires Knowledge about synchronous motors used in the Power system 																	
•	 Additional about synchronous motors used in the Power system Able to learn about three phase induction motor and to draw the circle diagram of Induction 														uction			
Aole to learn about three phase induction motor and to draw the circle diagram of induction machine																		
 Gains knowledge in starting and speed control of three phase induction motor 																		
 Understand the concepts of various special machines involved in the power system network 													/ork					
COURSE OUTCOMES (Cos): (3-5)																		
CO1	Understand the concepts of synchronous generator																	
CO2		Capable knowledge about synchronous motors and its performance characteristics																
CO3		Can draw the circle diagram of Induction machine																
CO4		Knowledgeable in starting and speed control of three phase induction motor																
CO5 Acquire knowledge in special electrical machines																		
Mapping of	f Cou	irse O	utcome	s with	Prog	gram	Outco	mes (P	Os)				T					
COs/POs		PO1	PO2	PO3	PC)4	PO5	PO6	PO7	PO8	PO9	PO1	.0 PO	11	PO12			
CO1		H	H	H]	H	H	H	H	M	H	M	ŀ	ł	H			
<u>CO2</u>		M	M	M	I	M	M	M	M	M	M		I	I	L			
CO3		H	H	H		H	H	H	H	M	M	M	ł	1	L			
<u>CO4</u>		M	M	M	1	M	M	M	M	M	M	M		1	H			
CO5						H			H					1	L			
Cos / PSUs		<u>P50</u>	01 4	N			<u>гзоз</u> н		P304 M		1505 T							
$\frac{CO1}{CO2}$			1 1				<u> </u>		M									
<u>CO2</u>		I	1		L		M M				H							
CO4		Ē	I	H			M		L		M							
CO5		Ν	ſ	M			I	I	L		L							
H/M/L indic	cates	Streng	th of Co	orrelati	ion	H- Hi	igh, M	- Medi	um, L-L	.OW								
		es	and					ical										
		enc			es		ct	chn										
	es	Sci	ces	ė	ctiv	es	oje	Te			ary							
>	enc	ng	es :ien	Cor	Ele	ctiv	/ Pr	/ SC	s		lina							
gor.	Sci	eri	niti Sc	m	[m	Ele	cal ,	ship	kill		icip							
ate	sic	gin(ma cial	gra	brg	en	lctic	ern: II	ft S		erd							
C	\mathbf{Ba}_{a}	En	Hu Soc	Prc	Prc	Op	Pra	Int Ski	Soj		Int							
				~														
				٢														

BEE18005 AC AND SPECIAL MACHINES 3 1/0 0/0 4

UNIT I SYNCHRONOUS GENERATOR

Types & Constructional Features of Synchronous Generators– EMF Equation – Synchronous reactance – Armature reaction – Voltage regulation – EMF, MMF and ZPF methods – Change of excitation and mechanical input - Application

UNIT II SYNCHRONOUS MOTOR

Principle of operation – Construction – Equivalent Circuit and phasor diagram – Power and Torque – Power flow – Power developed by synchronous motors – Speed-Torque characteristics – Effect of change in excitation – V curves and inverted V curves – Hunting & suppression - Application

UNIT III THREE PHASE INDUCTION MOTOR

Construction – Types of rotors – Cage and wound rotor machines – Principle of operation – Production of rotating magnetic field – Equivalent circuit – Torque and Power output – Torque-slip characteristics – Condition for maximum efficiency – Testing – Load Test – No load and Blocked rotor test – Circle diagram.

UNIT IV STARTING & SPEED CONTROL OF INDUCTION MOTORS

Necessity for Starters – Starting methods of three phase induction motor – Types of Starters – Stator resistance and reactance – Rotor resistance starter- star-delta starter – Cogging & Crawling – Speed control – Voltage control –Rotor resistance control.

UNIT V SPECIAL MACHINE

Single phase induction motor – Constructional details – Double revolving field theory – Equivalent circuit – Speed-torque characteristics – Starting methods – Split-phase motor - shaded-pole induction motor – Universal motor – Variable Reluctance motor, Switched Reluctance Motor, Stepper Motor, Permanent Magnet Motors - Application

Total No. of Hours : 60

TEXT BOOKS:

- 1. Nagrath, I.J. Kothari, D.P. (2005) Electric Machines.7th Ed. New Delhi: T.M.H publishing Co Ltd.
- 2. Bhimbhra, P.S. (2003) Electrical Machinery. Khanna Publishers.

REFERENCE BOOKS:

- 1. Fitzgerald, Kingsley, Umans, (1990) Electric Machinery. 5th Ed. New Delhi: McGraw Hill Books co.
- 2. Stephen J. Chapman, (1985) Electric Machinery Fundamentals. New Delhi : McGraw Hill Book Co.
- 3. Say, M.G. (1980) Alternating current Machines.4th Ed. ELBS & Pitman. London:
- 4. Sen, S.K. (1984) Electrical Machinery. New Delhi: Khanna Publishers.

12

12

12

12

Subject Code:	;	Subject Name: ELECTRICAL MACHINES LAB										L	T / S.Lr	P/ R	C			
BEE18L16											ETL	_						
]	Prerec	quisite:							L	0	0/0	3/0	2				
L : Lecture T	: T	utorial	SLr :	Super	vised	l Lea	rning I	P: Proj	ect R :	Researc	ch C: Ci	edits	•					
T/L/ETL : T	heor	y/Lab/	Embed	ded Th	eory	and	Lab											
OBJECTIV	E:				1 5		1 7 1	a		6 D	a a		13.6					
•	loa Loa	nalyze	the Int	ernal a	nd Ey	xtern	al Load	Chara	cteristic	s for D	C Gener	rators a	and Mo	ors				
•	IO (I Fo fi	etermi	ne the s	speed c	ontro	of usi	ng diffe	erent m	Acching	for DC	Motor	and Ge	enerator					
 To analyze the Load Characteristics of Synchronous machines 																		
•	 To find Voltage Regulation of Synchronous machines 																	
 To find voltage regulation of Synchronous machines. To study the effect of frequency and voltage control action of Three phase induction machine 													nes					
COURSE OUTCOMES (Cos): (3-5)													1100111					
C01	Analyze the Load Characteristics of DC Generators and Mo										otors	otors						
CO2]	Determine different methods of speed control for DC Machines																
CO3	1	Understand the losses incorporated in DC Machines																
CO4]	Determine the characteristics of transformers and induction motors.																
CO5	Understand the basic knowledge of alternators																	
Mapping of	Cou	ırse O	utcome	es with	Prog	gran	n Outco	omes (I	POs)									
COs/POs]	PO1	PO2	PO3	PC)4	PO5	PO6	PO7	PO8	PO9	PO1 0) PO	11	PO12			
CO1		М	Μ	Н	Ν	M	L	Μ	Η	М	Н	Μ	H	I	М			
CO2		М	Μ	Н	Ν	M	L	Н	Μ	Μ	Н	Μ	H	I	Μ			
CO3		Н	Н	Μ	N	Ν	L	M	Н	L	Н	Μ	H	I	Н			
CO4		Н	Н	Н	M		М	М	Н	M	M	Μ	H	I	L			
CO5	H	H H		H H		H M		H M		H	[Н						
Cos / PSOs		PS	01	Р	SO2		PS	03	r504		PS05							
<u>CO1</u>		<u> </u>	<u>I</u>	M			N	<u>/</u>	M		<u>M</u>							
<u>CO2</u>		H	1 T		M		N	/1	M		M							
		<u> </u>	1 1					/			M							
C04	204 M				п		<u> </u>											
H/M/L indic	ates	Streng	$\frac{1}{1}$	orrelat	mrelation H-High M-Medium I-Low							11						
	ates	streng		onoide				a	um, L I	2011								
y ences		ing Science	les al ciences	Core	Electives	ctives	/ Project	ps / Technic	S	linary	6							
Categor	Basic Sci	Engineer	Humaniti Social So	Program	Program	Open Ele	Practical	Internshi _] Skill	Soft Skill	Interdicir								

BEE18L16 ELECTRICAL MACHINES LAB 0 0/0 6/0 2

LIST OF EXPERIMENTS

- 1. Open Circuit Characteristics Of DC Shunt Generator
- 2. Load Characteristics of DC Compound Generator
- 3. Load test on DC Shunt Motor
- 4. Load test on DC Series Motor
- 5. Swinburne's Test
- 6. OC and SC test on Single Phase Transformer
- 7. Load test on Single Phase Transformer
- 8. Load Test on Three Phase Alternator
- 9. Load Test on Three Phase Induction Motor
- 10. Load Test on Single Phase Induction Motor

Total No. of Hours: 45

Subject	5	Subjec	et Nam	e: PO	WER	SYS	ГЕМ -	Т	L	T/	P/	C			
BEE18007													S.LI	R	
]	Prerequisite: Basic Electrical & Electronics Engg,									T	3	1/0	0/0	4
]	BEE18	3006						00	,					
L : Lecture T	: Tı	utorial	SLr:	Super	vised	Learr	ning P	: Proje	ect \mathbf{R} :	Researc	h C: Cre	edits			
T/L/ETL : T	heor	y/Lab/	Embed	ded Th	leory	and L	ab								
OBJECTIV	• To attain knowledge about the basic principles of Palay														
•	l'o at	ttain ki	nowledg	ge abo	ut the	basic	princi	ples of	Relay						
•	 To attain knowledge on Numerical relays. Circuit breakers 														
 To attain knowledge on Numerical relays, Circuit bleakers To model the power system components 															
To model the power system components COURSE OUTCOMES (Cos): (3-5)															
COURSE O	Ability to work on Relay														
CO2		Attained knowledge on the protection of Apparatus													
CO3		Ability to work on Numerical Relays													
CO4		Ability to design Circuit breakers													
CO5		Ability to model Power System Components													
Mapping of	Cou	irse O	utcome	s with	Prog	gram	Outco	mes (P	Os)						
COs/POs]	PO1	PO2	PO3	PC)4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12
CO1		Η	Η	Η]	H	L	H	Η	L	Η	Η	E	[Η
CO2		Μ	Μ	Η	I	M	L	Μ	Μ	L	H	Μ	N	1	Η
CO3		Μ	Μ	Μ	Ι	M	Μ	Μ	Μ	Μ	L	Μ	Ν	1	Μ
CO4		Н	L	Μ]	H	Μ	Η	Н	Μ	Μ	Η	I		Μ
CO5		Μ	Μ	L	Ι	M	Μ	Μ	Μ	Μ	H	Μ	Ν	1	L
Cos / PSOs		PS	01	PSO2			PS	03	PSO4		PSO5				
CO1		H	[L			H		M		M				
<u>CO2</u>		<u>N</u>	1		L		M L]					
<u>CO3</u>		N	1		M		M M			1					
C04			1 1				H M								
H/M/L indice	atac	Strong	L th of C	orralat	ion	u ui	ah M	Madi			I	VI			
	ales			лета	1011	11-11		- Micul	uIII, L-I	20 W					
IJ	iences	ring Science	ties au sciences	Core	Electives	ectives	/ Project	ips / Technic	lls						
Catego	Basic Sc	Enginee	Humanit Social S	Program	Program	Open El	Practical	Internshi Skill	Soft Ski						
				\mathbf{i}											

POWER SYSTEM - II 3 1/0 0/0 4

UNIT I RELAYS

BEE18007

Operating Principles of relays - Common relay terms - Universal Torque Equation.– Electromagnetic relays, Induction relays – Over current relays - Directional, Distance, Differential and negative sequence relays

UNIT II APPARATUS PROTECTION

Generator Protection - Motor protection - Bus bar protection and Transmission line and Feeder protection - CT and PT protection

UNIT III STATIC AND NUMERICAL RELAYS

Static relays - **c**omponents of static relays – over current relays, differential protection and distance protection – Microprocessor based relays - Block diagram of Numerical relays

UNIT IV CIRCUIT BREAKERS

Arc phenomena – arc interruption – Current zero interruption theories – recovery voltage and restriking voltage - RRRV – current chopping – Resistance switching- Various types of circuit breakers – selection and Testing of circuit breakers – Fuses – HRC fuses

UNIT V: MODELLING OF POWER SYSTEM COMPONENTS

Modern Electric Power System and its component -Modelling of Generator, Transformer, Transmission System and Load Representation in Single line diagram – per phase and per unit representation – change of base - Analysis for system planning and operational studies

Total No. of Hours : 60

TEXT BOOKS::

- 1. V. K. Mehta, "Principles of Power Systems", S. Chand, New Delhi, 2005
- 2. S.N. Singh, 'Electric Power Generation, Transmission and Distribution', Prentice Hall of India Pvt. Ltd, New Delhi, 2002
- 3. Ravindranath, B. and Chander, N. (1997) Power System Protection and Switchgear, Wiley
- 4. Chakrabarti, A. Soni, M.L.Gupta, P.V. Bhatnagar, U.S. (2002) A Text Book on Power System Engineering. Dhanpat Rai & Co. Pvt. Ltd

REFERENCE BOOKS BOOKS:

- 1. Patra, S.P. Basu, S.K. and Chowduri, S. (1983) Power systems Protection. Oxford and IBH
- 2. Sunil S. Rao, (1986) Switchgear and Protection. New Delhi: Khanna Publishers
- 3. Central Electricity Authority (CEA), 'Guidelines for Transmission System Planning', New Delhi

12

12

12

12

Subject Code:		Subje	ct Nam	e: POV	VER	ELE	CTRC	DNICS	- I		T /L/	L	T / S.Lr	P/ R	C	
BEE18010											ETL		1.10	0.40		
		Prerec	quisite:	Basic	Elect	rical	& Ele	ctronic	s Engg		Т	3	1/0	0/0	4	
L : Lecture	T : T	utorial	SLr:	Super	vised	Lear	ning P	: Proje	ct R : F	Researc	h C: Cre	dits				
T/L/ETL : 1	Theor	y/Lab/	Embed	ded Th	eory a	and L	.ab									
OBJECTIV	VE:		_	_												
	• T	o attan	n Powe	r Elect	ronic	Dev ₁	ces and	d its ch	aracteris	stics.						
	• T	o desig	gn the tr	ıggerir	ig of	firing	circui	ts.	1.							
		o learn	the in	verters.	, cnop	ppers	and In	dustria	drives.							
		o attaii	$\frac{1}{2} \frac{1}{2} \frac{1}$	$\frac{1}{2}$	$\frac{n DC}{N}$	αA	C Driv	es								
COURSE C			LO (COS): (3-3) r Ela	otroni	o Dovi	000 000	lita aha	rootorio	tion					
		A 1:114	ledge of	I POWe						racteris	ucs					
CO2		ADIIITY	$\frac{1}{1}$ to desi	gn the	trigg	ering	OI IIIII	ng circi	litts							
<u>CO3</u>		Knowl	edge or	h chopp	$\frac{\text{Ders}, 1}{DC}$	nvert	ers									
<u>CO4</u>		Knowl	ledge or	n AC &	$\frac{DC}{1}$	Drive			. 1							
<u>C05</u>	6.0	urse Outcomes with Program Outcomes (POs)														
Mapping of		Irse U	rse Outcomes with Program Outcomes (POs) O1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
COS/POS		<u>P01</u>	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 M H M M M M M M J													
		<u>п</u> М		<u>п</u> п		VI Л			IVI					I T		
C02		T	п	 				п	п	п	п	<u>п</u> М		1 1		
			IVI M	п		n Ar	<u>п</u> М				M			1 /r		
C04			M	IVI		VL r		M			M			1 /r		
$\frac{CO5}{Cos/BSOs}$					502		L DS			\mathbf{M}		$\frac{M}{05}$	1	1	IVI	
C08/F508		19		Г	502 M		13	<u>05</u>	10	<u>04</u> T	15	<u>05</u>				
$\frac{CO1}{CO2}$		 	1 T					<u>и</u>	1 T	л т		<u>и</u>				
<u>CO2</u>		I. 	I T		<u>и</u> н		I	<u>1</u> 1	1	<u>.</u> Т		<u>и</u> Т				
CO4		 N	т Л		M		I	<u>л</u> Л		<u>.</u> Л		<u>л</u>				
C05		I			L		1	<u>.</u>		<u>.</u>	1	/ <u>.</u> []				
H/M/L india	cates	Streng	th of Co	orrelati	on	H- H	igh, M	- Mediu	ım, L-L	OW						
		s	nd		-			cal	7							
		nce	а		s			ini								
	~	cie	es		ive	s	ject	Gecl								
	ice	\mathbf{S}	enc	ore	ect	ive	Pro	L /								
ıry	cier	nin	ties Scie	Ŭ	ιEl	ect	1/1	ips	lls							
ego	S	nee	ani al S	ran	ran	Ш	ica	nsh	Ski							
Cat	asic	ngi	um oci£	10g	:0g	pen	act	teri cill	oft							
	B	Щ	Η S	\mathbf{P}_{1}	Pı	0	\mathbf{P}_{1}	LI SI	Ň							
				\geq												

BEE18010

POWER ELECTRONICS - I

3 1/0 0/0 4

UNIT I **POWER SEMICONDUCTOR DEVICES**

Power semiconductor devices Overview: Characteristics of power Structure, operation, Static characteristics and switching characteristics (Turn on and Turn off) of SCR, TRIAC, BJT, MOSFET and IGBT - Two transistor model of SCR - Series and Parallel operation of SCR - Turn on circuits for SCR - Different techniques of commutation - Protection of Thyristors against over voltage, over current, dv/dt and di/dt

UNIT II PHASE CONTROLLED CONVERTERS

Single phase and three phase half controlled and fully controlled rectifiers with R, RL and RLE loads – Waveforms of load voltage and line current – Inverter operation of fully controlled converter – harmonic factor, power factor, ripple factor, distortion factor - operation with freewheeling diode - effect of source inductance dual converter.

UNIT III **INVERTERS**

Voltage and current source inverters – Single phase and three phase inverters (both 120° mode and 180° mode) inverters - PWM techniques: Sinusoidal PWM, modified sinusoidal PWM - multiple PWM - Resonant series inverter – current Source Inverter – UPS

UNIT IV DC DRIVES

Features of armature controlled, field controlled DC drives using conventional rheostat (Shunt and series), conventional Ward-Leonard control, Slow speed operation inching and jogging. Transfer functions of armature controlled, field controlled DC motors.

UNIT V **AC DRIVES**

Induction motor drives- speed control by stator frequency variation – operation of induction motor on variable frequency sources - operation of IM on non sinusoidal waveforms - constant flux operation current fed operation – dynamic and regenerative braking of CSI and vs. drives – slip controlled drives – Introduction to vector control - cycloconverter drives -features

TEXT BOOKS:

- 1. Rashid, M.H. (2004) Power Electronics Circuits Devices and Applications.3rd Ed. Prentice Hall of India.
- 2. Bimbhra, P.S. (1999) Power Electronics.3rd Ed. Khanna Publishers.

REFERENCE BOOKS:

- 1. Singh, M.D. Kanchandani, (2002) Power Electronics. New Delhi: Tata McGraw Hill & Hill publication Company Ltd.
- 2. Dubey, G.K. Doradia, S.R. Joshi, A. Sinha, R.M. (1986) Thyristorised Power Controllers. Wiley Eastern Limited.
- 3. Lander, W. (1993) Power Electronics.3rd Ed. McGraw Hill and Company.

12

12

12

12

12

Total No. of Hours : 60

Subject Code: BEE18ET3		Subjec CONS	ct Nam SERVA	e: ENE TION	RGY	Y UT	ILIZA	TION	AND		T /L/ ETL	L	T / S.Lr	P/ R	C	
]	Prereg	quisite:								ETL	1	0/1	3/0	3	
L : Lecture '	T : T	utorial	SLr:	Superv	vised	Learn	ning P	: Proje	ect R : I	Researc	h C: Cre	dits		1		
T/L/ETL : T	heor	y/Lab/	Embed	ded The	eory a	and L	ab									
OBJECTIV	/E:						1 11 11									
•	To st	tudy th	e energ	y conse	ervati	on or	1 buildi	ngs								
•	The a	analyse	e the he	ating a		oling	of bui	laings								
•	Unde	erstand	the end	ergy en	icien	it equ	ipment	.5								
•	Desi	an the	bouse x	viring	energ	gy auc	nung									
COURSEC		COME	ES (Cos	witting (3-5))											
CO1		Can ab	ble to st	udy the	ener	gy co	nserva	tion on	buildin	ıg						
CO2		Can an	alyse th	ne heati	ng ar	nd co	oling o	f build	ing	0						
CO3	(Can ab	le to an	alyse t	he en	ergy	efficie	nt equi	pments							
CO4		Ability	to perf	form en	ergy	audit										
CO5		Ability	v to find	l solutio	on for	r ener	gy con	servati	on							
Mapping of	f Cou	irse O	e Outcomes with Program Outcomes (POs)													
COs/POs]	PO1	Outcomes with Program Outcomes (POs)PO2PO3PO4PO5PO6PO7PO8PO9PO10PO1111													
CO1		Μ	L	Н	I	I	Μ	L	Н	Н	Μ	L	H	I	Η	
CO2		Μ	Μ	Μ	N	A	Μ	Μ	Μ	Μ	Μ	Μ	N	1	Μ	
CO3		Μ	L	H	N	А	Μ	L	H	Μ	Μ	L	H	I	Μ	
CO4		Η	H	H	I	H	Η	H	H	H	H	H	H	I	H	
CO5		M	M	H	I	H	M	M	H	H	M	M	H	I	H	
Cos / PSOs		PS	01	P	<u>802</u>		<u>PS</u>	03	PS	<u>504</u>	PS	05				
			l r				<u> </u>					<u>H</u>				
C02			1 /		M		<u> </u>		1	VI U		1 T				
C03	_		1 1		H		I	1	1	n Fr	1	n T				
C05		H	<u>1</u> [M		1 	<u>і</u> Л	1	H	1	H H				
H/M/L indic	cates	Streng	th of C	orrelati	on	H- Hi	igh. M	- Medi	um. L-L	/OW						
		s	nd					cal	,							
	Se	Science	a ces	ø	tives	es	oject	Techni								
IJ	ience	ring ;	ties Sciene	t Con	l Elec	ectiv	/ Pr(
atego	sic Sc	ginee	mani cial S	gram	ogram	en El	lctica	ernsh ill	ft Ski							
C	Ba	En	Hu So(Prc	Prc	Op	Pré	Int Ski	So							
				\checkmark												

BEE18ET3 ENERGY UTILIZATION AND CONSERVATION 1 0/1 3/0 3

UNITI HEATING AND WELDING

Advantages and methods of electric heating, resistance ovens, induction heating, dielectric heating, the arc furnace - heating of building. Electric welding, resistance and arc welding, control devices

UNIT II ILLUMINATION

Importance of lighting – properties of good lighting scheme – laws of illumination –photometry - types of lamps – lighting calculations – basic design of illumination schemes for residential, commercial, street lighting and sports ground – energy efficiency lamps.

UNIT III ELECTRIC DRIVES

Type of electric drives, choice of motor, starting and running characteristics, speed control, temperature rise, particular applications of electric drives, types of industrial loads, continuous, intermittent and variable loads, load equalization

UNIT IV INTRODUCTION TO ELECTRIC AND HYBRID VEHICLES

Configuration and performance of electrical vehicles, traction motor characteristics, tractive effort, transmission requirement and energy consumption

UNITV ENERGY CONSERVATION

Principle of energy conservation - waste heat recovery - Heat pump – Economics of energy conservation, cogeneration, combined cycle plants, electrical energy conservation opportunities

Total No of Hours : 45

TEXT BOOKS:

- 1. Epenshaw Taylor, (2009) Utilization Of Electric Energy. 12th Impression. Universities Press.
- 2. Mehrdad, Ehsani, Yim in Gao, Sabastien E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles.CRC Press.
- 3. Wadhwa, C.L. (2003) Generation, Distribution and Utilization of Electrical Energy. NewAge International Pvt. Ltd.
- 4. Gupta, B.R. (2003) Generation of Electrical Energy. New Delhi: Eurasia Publishing House (P) Ltd.

REFERENCE BOOKS:

- 1. Soni Gupta, Bhatnager-DhanapatRai& sons A Course in Electrical Power.
- 2. Uppal, S.L. Electrical Power. Khanna Publications

9

9

9

9

Subject Code:	Subj POV	ect Nam /ER EL	e: ECTR(ONIC	CS LA	ABOR	Y		T / L/	L	T / S.Lr	P/ R	C	
BEE18L17										ETL				
	Prere	quisite:								Т	0	0/0	6/0	2
L : Lecture T :	Tutoria	l SLr:	Superv	vised	Learı	ning P	: Proje	ct R : F	Researc	h C: Cro	edits	1		
T/L/ETL : The	ory/Lal	/Embed	ded Th	eory a	and L	ab								
OBJECTIVE	:													
\succ	To obta	in an ov	verview	of di	iffere	nt type	s of p	ower se	micondu	uctor de	vices	and the	ir swi	itching
	characte	ristics wit	h differ	ent trig	ggerir	ng meth	ods.	c			c ,	11 1 0		
	10 unde	rstand the	operation	ion, c	charac	eteristic	s and p	erforma	nce para	imeters of	of cont	rolled R	ectifie	ers and
	To unde	stand the	technio	ues to	cont	rol the s	speed of	Brushle	ss DC N	Aotor and	1 SR N	lotor		
COURSE OU	TCOM	ES (CO	$\frac{1}{s}$: (3	- 5)	U O I I U		<u>, pece or</u>	Diasine	00201	10001 000		10101		
CO1	Stude	nts will u	nderstar	nd the	opera	tion of	power e	electronic	es device	es and ga	in kno	wledge	of the	
	comp	arative stu	ıdy of d	ifferen	nt dev	rices ba	sed on the	heir swit	ching cl	naracteris	stics .			
CO2	Stude	nts will u	nderstar	nd the	opera	tion, c	haracter	istics an	d perfor	mance p	arame	ters of co	ontroll	ed
	Recti	iers and l	nverters	3	1. (1.	1		(1 (1	1 . C D	1.1	DOM		CD
03	Stude	nts capab	le to un	dersta	na th	e techni	ques to	control	ne spee	a of Brus	sniess	DC MOt	or and	SK
CO4	Stude	nts able t	o under	rstand	the o	peratic	n of AC	2 Voltage	e Contro	ollers				
CO5	Stude	Students able to understand the operation of different converters and incorporate in designing the												
000	HVD	HVDC transmission System												
Mapping of C	ourse (Outcome	es with	Prog	ram	Outco	mes (P	Os)						
COs/POs	PO1	PO2	PO3	PC)4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12
CO1	Н	Н	Н	H	I	М	Μ	Н	L	Н	Μ	H	[L
CO2	Η	Н	H	H	I	Μ	Μ	Н	L	Μ	Μ	H	I	L
CO3	Η	H	Η	H	I	Η	Μ	Н	L	Μ	Μ	H	I	L
CO4	Η	Н	H	H	I	Η	Н	Н	Μ	Н	Μ	H	I	L
CO5	Η	Η	Н	H	I	Η	Н	Н	Μ	Н	Μ	H	I	L
COs / PSOs	P	501	P	SO2		PS	03	PS	04	PS	605			
CO1		Н		Η		ł	H	I	H]	H			
CO2		Н		Н		I	ł	I	Η]	H			
CO3		H		Η		ł	H	I		1	Μ			
CO4		H		H		ŀ	H	I	H]	H			
CO5		M	1.0	H		H	<u> </u>		H]	H			
H/M/L indicat	es Stren	gth of C	orrelati	on I	H- H	igh, M	- Medii	ım, L-L	ow		1			
Category	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technica Skill	Soft Skills						

BEE18L17

POWER ELECTRONICS LABORATORY

0 0/0 6/0 2

LIST OF EXPERIMENTS

- 1. Characteristics of SCR, MOSFET, IGBT and TRIAC
- 2. Gate Pulse Generation using R, RC and UJT
- 3. Single phase half controlled and fully controlled bridge converter with R load and RL loads
- 4. Single phase AC voltage controller using TRIAC, DIAC with R AND RL loads
- 5. IGBT based Chopper
- 6. IGBT Based PWM Inverter
- 7. Single phase parallel inverter
- 8. Single phase Series inverter
- 9. Forced commutation circuits (Class A, Class B, Class C, Class D & Class E).
- 10. Single phase cyclo-converter with R and RL loads

Total No of Hours: 45

Subject Code:	Subje	ct Name	e: POW	ER :	SYS	ГЕМ •	· III			T /L/	L	T/ SLr	P/ R	C
BEE18009												5.17	N	
	Prerec	quisite:	BEE18	8004,	BEF	E 18007	1			T	3	1/0	0/0	4
L : Lecture T :	Tutoria	1 SLr:	Superv	vised	Lear	ning l	P : Proje	ct R : R	esearc	h C: Cree	dits		1	
T/L/ETL : The	ory/Lab	/Embed	ded Th	eory	and I	Lab	Ũ							
OBJECTIVE	:													
• To	attain ł	oasic kn	owledg	ge on	Pow	er Qua	lity and	power S	ystem	operatio	n			
• To	plot loa	ad durati	ion curv	ve an	d uno	lerstan	d the ne	ed for re	gulatio	on				
• To	impart	knowled	lge on I	Frequ	iency	/ contr	ol and V	oltage C	Control					
• To	study t	he econo	omic op	perati	on of	f powe	r system	and Un	it com	mitment				
• To	know t	he impo	rtance of	of Sy	stem	Monit	toring an	d Power	Quali	ty Measu	ıreme	nt Equ	ipme	nts
COURSE OU	тсом	ES (Cos	s): (3-5)										
CO1	Acquir	re knowl	ledge of	n Po	wer (Quality	y and por	wer Syst	tem op	eration				
CO2	Unders	standing	of loa	ad du	ratio	n curve	e and reg	ulation	needs					
CO3	Famili	ar to Fre	quency	v cont	trol a	nd Vo	ltage Co	ntrol						
CO4	knowle	edge on	econor	nic o	perat	ion of	power s	ystem ai	nd Uni	t commit	ment			
CO5	Under	stand th	e impo	rtanc	e of S	System	n Monito	ring and	l Powe	r Quality	/ Mea	sureme	ent	
	Equip	ments	_			-		-						
Mapping of C	ourse C	Jutcome	es with	Prog	gram	Outco	omes (P	Os)	-					
COs/POs	PO1	PO2	PO3	PO	94	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12
CO1	Η	Η	Η	H	I	Η	H	Η	Η	Η	Η	ŀ	I	Η
CO2	Η	Н	Η	H	I	Η	Н	Η	L	Μ	L	I	I	L
CO3	Η	Η	Η	H	I	Η	Η	Η	L	Μ	L	I	I	L
CO4	Μ	Μ	Μ	N	1	Μ	Μ	Η	L	Μ	Μ	I	I	Η
CO5	Η	Η	Η	H	I	Η	Η	Η	Μ	Η	Η	ł	I	Μ
Cos / PSOs	PS	01	P	SO2		P	SO3	PS	04	PS	05			
CO1	J	H		Η			H	I	I	I	I			
CO2	l	H		Μ			Μ	I	I	I	H			
CO3]	H		Н			H	N	Л	N	Л			
CO4]	H		Μ			L	I	I	I	Ι			
CO5		H		L			M	N	/I	I	I			
H/M/L indicate	es Stren	gth of C	orrelati	on	H- H	ligh, M	I- Mediu	m, L-Lo)W		-		1	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		ocial		ives	S	ject	ill							
lce	ad	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ore	lect	ive	Pro	Sk							
ory cier	rin	tie	n C( n El n El n C( n El n C( n El n C( n El n C( n El n C( n El n C( n C( n El n El n C( n El n El n El n C( n El n El n El n El n El n El n El n El											
egc Sc	nee	ani	ran	Ε	ica	nsh hni	Ski							
Cat	lgii	pi .	īđo.	БO.	pen	act	ter. Гec	off						
	Ē	H an a	Pr	P1	Ō	Pı	In / ]	S						
			$\mathbf{i}$											



## BEE18009 POWER SYSTEM - III 3 1/0 0/0 4

## UNITI INTRODUCTION TO POWER QUALITY AND SYSTEM OPERATION

Power Quality Terms- Overloading- Under Voltage- Over Voltage-Voltage Sag- Voltage Swell – Voltage imbalance- Voltage fluctuation-Power Frequency Variation – Harmonics - System load Characteristics–load curves and load-duration curve - load factor - diversity factor - Need for Voltage regulation and frequency regulation in power system - Basic P-F and Q-V control loops

## UNIT II REAL POWER - FREQUENCY CONTROL

Fundamentals of AGC-Fundamentals of Speed Governing mechanisms and modeling - Speed-Load characteristics-regulation of two Synchronous Machines in parallel - Control areas - LFC of single & Multi areas Static & Dynamic Analysis of uncontrolled and controlled cases – Tie line with frequency bias control – Steady state instabilities

## UNIT III REACTIVE POWER–VOLTAGE CONTROL

Excitation system Modeling - Static & Dynamic Analysis - stability Compensation-Principles of transmission line compensation - Effect of Generator loading - static VAR System Modeling - System Level Voltage control

## UNIT IV ECONOMIC DISPATCH AND UNIT COMMITMENT

Need for Economic Dispatch-Characteristics curve for Steam and hydroelectric Units - Co-ordination Equation with Loss and without losses- Base point and Participation Factor- Constraints and solutions in Unit Commitment -Priority List methods-Forward Dynamic Programming approach

## UNIT V MONITORING & COMPUTER CONTROL OF POWER SYSTEMS

Need of computer control of power systems. Concept of energy control centre (or) load dispatch centre and the functions - system monitoring - data acquisition and control. System hardware configuration – SCADA and EMS functions-Control Strategies – Power quality Measurement Equipment – Harmonic Analyser – Flicker meter

## Total No. of Hours : 60

## **TEXT BOOKS:**

- 1. Allen. J. Wood and Bruce F. Wollenberg,(2003) Power Generation, Operation and Control. John Wiley & Sons. Inc
- 2. Chakrabarti & Halder,(2004) Power System Analysis: Operation and Control. Ed. Prentice Hall of India
- 3. Kundur, P,(1994) Power System Stability and Control. USA: MCGraw Hill Publisher

## **REFERENCE BOOKS:**

- 1. Kothari, D.P. and Nagrath, I.J. (2003) Modern Power System Analysis.3rd .Tata McGraw Hill Publishing Company Limited
- 2. Grigsby, L.L. (2001) The Electric Power Engineering, Hand Book. CRC Press & IEEE Press
- 3. Hadi Saadat, (2007) Power System Analysis.11th Reprint
- 4. N.V.Ramana, (2011)Power System Operation and Control," Pearson
- 5. C.A.Gross, (2011)Power System Analysis," Wiley India

12

12

12

12



Subject Code: BEE18ET4	5	Subjec II	ct Nam NDUST	e: 'RIAI	DRI	VES	AND A	AUTO	MATIO	ON	T /L/ ETL	L	T / S.Lr	P/ R	С	
	]	Prerec	quisite:	BEE	18009	, BEI	E <b>1801</b> 0	, BEE	18005		ETL	1	0/1	3/0	3	
L : Lecture T	: Tו	utorial	SLr:	Super	vised	Lear	ning P	: Proje	ect R:	Researc	h C: Cro	dits		•		
T/L/ETL : T	heor	y/Lab/	Embed	ded Th	neory	and L	Lab									
UDJECIIV	<b>с:</b> Т/	o deve	lon Intr	oducti	on to	Indua	strial D	rives								
		o deve	lop Inu lop kno	wledg	e on I	T = T = T	rives	11005								
	T	o deve	lop kno	wledg	e on F	Energ	v Cons	ervatio	on And	Special	Class O	f Driv	ves			
•	T	o gain	Knowle	edge o	n SC	ADA	y cons	or valie	/11 / 111 <b>G</b>	opeeiui			05			
•	Te	o gain	knowle	dge oi	n PLC	2										
COURSE O	UT	COME	ES (Cos	s): (3-5	5)											
CO1		To dev	velop In	troduc	tion t	o Ind	ustrial	Drives								
CO2	,	Го dev	velop kr	nowled	lge on	DC	Drive									
CO3	,	To dev	To develop knowledge on Energy Conservation And Special Class Of Drives To gain Knowledge on SCADA													
CO4	,	To gain Knowledge on SCADA														
CO5	,	Го gai	o gain Knowledge on PLC co gain knowledge on PLC cose Outcomes with Program Outcomes (POs)													
Mapping of	Cou	rse O	utcome	s with	Prog	gram	Outco	mes (P	Os)							
COs/POs	]	PO1	PO2	PO3	PC	)4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO1</b>	0 PO	11	PO12	
CO1		Η	L	L	Ι	N	Μ	L	Н	Н	H	L	N	I	Μ	
CO2		Η	Н	Μ	Ι	N	Μ	L	L	Η	Μ	Η	I		Μ	
CO3		Μ	Μ	L	Ι	N	Μ	Μ	Η	L	Μ	Μ	E	[	L	
CO4		Η	Μ	Μ	]	Ĺ	L	Μ	Н	Μ	Η	Μ	E	[	Μ	
CO5		Μ	Н	Μ	]	H	Μ	L	Η	Μ	H	Μ	E	[	Μ	
Cos / PSOs		PS	01	I	PSO2		PS	03	PS	<b>SO4</b>	PS	05				
CO1		I			Η		Ν	Λ		L		Ĺ				
CO2		N	1		Η		Ν	Λ		H	I	N				
CO3		E	I		L		J		]	M	]	H				
CO4		<u> </u>	-		M		H	<u>I</u>	]	<u>M</u>		L				
		N CL	$\frac{1}{1}$	1.	<u>M</u>		<u> </u>			L	1	M				
H/M/L indic	ates	Streng	th of C	orrelat	10n	<u>н- н</u>	ign, M	- Medi	um, L-I	LOW		1				
Category	<b>Basic Sciences</b>	Engineering Sciences	Humanities an Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technic: Skill	Soft Skills							
				$\mathbf{k}$												



## BEE18ET4 INDUSTRIAL DRIVES AND AUTOMATION 1 0/1 3/0 3

## UNIT I INTRODUCTION

Definition, block diagram and types of Electric Drives – dynamics of electric drives – torque equations – speed torque characteristics of DC and AC motors – components of load torque – load equalization – steady state stability – heating and cooling curves – loading conditions and classes of duty – Selection of power rating for drive motors

## UNIT II DC DRIVES

Speed control of DC series and shunt motors – concepts of constant torque and constant power control – concepts of Armature and field control, Ward Leonard control system – Speed control Using single phase controlled rectifiers – fully controlled – half controlled – speed control using 3 phase fully controlled rectifier – control using DC choppers – multi quadrant operation – electric braking – closed loop control of DC drives

## UNIT III ENERGY CONSERVATION AND SPECIAL CLASS OF DRIVES

Need for energy conservation in electrical drives – improvement of power factor, improvement of quality supply – solar and battery powered drives – Drives used for traction – Control of fractional hp motors

## UNIT IV SCADA

SCADA-Direct digital control-AI and except control system-Case studies on computer control for industrial process

## UNIT V PLC

Evaluation of PLC's- Sequential and programmable controllers-Architecture-Relay logic-Applications of PLC-Bottle fielding system

## **Total No of Hours : 45**

9

9

9

9

9

## **TEXT BOOKS:**

- 1. Dubey. G.K., "Power Semiconductor Controlled Drives", Prentice Hall International, 1989
- 2. B. K.Bose, "Modern Power Electronics and AC Drives", Prentice Hall Onglewood cliffs, New Jersey, 2002
- 3. D. Patranabis, Principle of industrial instrumentation, Tata MCgrahills publishers company ltd, 1996
- 4. Prof. Rajesh Mehra, DLC-Theory and Practical, Lakshmi Publications 2016

## **REFERENCE BOOKS:**

- 1. E.O Doubelin, "Measurement System"- Application Tata- MCgrahills 2004
- 2. Kevin collis, "PLC programming for In Industrial Automation, Diggory Press Publishers, 2007
- 3. Vedam Subrahmanyam, "Electric drives concepts and applications", TMH Pub. Co.Ltd. 1994



Subject		Subje	et Nam	e: PO	WER	SYS'	TEM I			T T	L	T /	<b>P</b> /	С	
Code: BEE18L08											/L/ ETL		S.Lr	ĸ	
		Prerec	quisite:								L	0	0/0	3/0	1
L : Lecture '	T : T	utorial	SLr:	Super	vised	Lear	ning P	: Proje	ect R : I	Researc	h C: Cre	edits			
T/L/ETL : T	heor	y/Lab/	Embed	ded Th	neory	and L	ab								
OBJECTIV	/E:	T - 1-	1				1	_							
	•		now abo	out the	trans	$m_{1SS1}$	on line	2S							
		Tou	nderstar	iu Lua id abo	ut Fai	w All ilt Δn	alysis								
	•	Tog	ain kno	wledge	e on P	ower	Electro	onic Ci	rcuits						
	•	To fa	miliar a	about S	Simul	ation	of Elec	ctrical of	drives u	sing El	ectrical S	Softw	are		
COURSE O	DUT	COMI	ES (Cos	s): (3-5	5)					0					
CO1		Studen	ts will	know	about	t the t	ransmi	ssion l	ines						
CO2		Studen	ts will	under	stand	Load	Flow	Analys	is						
CO3		Studen	ts will	unders	stand	Load	Fault A	Analys	is						
CO4		Studen	ts will	have 1	knowl	edge	on Pov	ver Ele	ctronic	Circuit	s				
CO5		Students will understand Simulation of Electrical drives using MATLAB, PSCAD													
Mapping of	f Cot	irse O	utcome	s with	Prog	gram	Outco	mes (P	Os)						
COs/POs		PO1	PO2	PO3	PC	)4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO1	0 PO	11	PO12
CO1		Η	Н	Μ	1	M	L	L	Μ	Μ	L	L	I	_	Μ
CO2		Μ	Μ	Μ	]	H	Η	H	Μ	Μ	L	Μ	I	I	Μ
CO3		Μ	Μ	L	]	Ĺ	L	L	H	H	H	Μ	N	1	Μ
CO4		H	Н	Μ	]	H	H	Μ	Μ	L	H	H	N	1	Μ
<u>CO5</u>		M	M	M	1	M	M	M	H	H	M	M	N	1	H
Cos / PSOs		PS	01	ł	<u>'SO2</u>		PS	03	PS	504	PS	05			
			1 /		M			L Jr	1		1				
CO2 CO3			<u>1</u> 1				N	H H		M H		<b>VI</b> [.			
CO4		H	<u> </u>		M		N	M	I	M	N	<u> </u>			
CO5		Ν	ſ		Н		]	L	]	L	Ν	M			
H/M/L indic	cates	Streng	th of C	orrelat	ion	H- Hi	igh, M	- Medi	um, L-L	OW		T			
		ses	and					ical							
		enc			es		ct	chn							
	es	Sci	Ices	e	ctiv	/es	oje	Te							
y	enc	ing	les cier	Col	Ele	ctiv	$/P_1$	/ sd	S						
gor	Sci	eer	l S.	am	am	Ele	cal	shij	kill						
ate	ısic	ıgin	uma	ogr	ngo	nəc	acti	tern ill	ft S						
	$\mathbf{B}_{\mathbf{\hat{b}}}$	Е	Hı So	$\mathbf{P}_{\mathbf{r}}$	$\mathbf{P}_{\mathbf{n}}$	Of	Pr	Int Sk	Sc						
				$\mathbf{i}$											



## **BEE18L08**

POWER SYSTEM LAB

0 0/0 3/0 1

## LIST OF EXPERIMENTS:

- 1. Computation of Parameters and Modeling of Transmission Lines
- 2. Formation of Bus Admittance and Impedance Matrices and Solution of Networks.
- 3. Load Flow Analysis I : Solution of Load Flow And Related Problems Using Gauss-Seidel Method
- 4. Load Flow Analysis II: Solution of Load Flow and Related Problems Using Newton-Raphson and Fast-Decoupled Methods
- 5. Transient and Small Signal Stability Analysis: Single-Machine Infinite Bus System
- 6. To study the performance of an over voltage relay.
- 7. To study the performance of under voltage relay.
- 8. To study the performance of Earth fault relay.
- 9. To perform inter turn protection of transformer.
- 10. To study flash point test of transformer oil.
- 11. To study characteristics of MCB & HRC Fuse.
- 12. To study radial feeder performance when a) fed at one end b) fed at both ends
- 13. To simulate the SLG fault in a power system network
- 14. To simulate the DLG fault in a power system network

**Total No of Hours: 45** 



Subject Code:	S	Subjec	et Namo	e: MIC	CRO	GRID	) TEC	HNOL	OGY		Т /Г./	L	T/ SLr	P/ R	C	
BEE18011											ETL		5.17	n		
	]	Prerec	uisite:	BEE1	8010	, BEF	E18009	)			Т	3	1/0	0/0	4	
L : Lecture '	Г : Ті	utorial	SLr:	Super	vised	Lear	ning P	: Proje	ect R : I	Researc	h C: Cre	dits				
T/L/ETL : T	heor	y/Lab/	Embedo	led Th	eory	and L	ab	-								
OBJECTIV	<b>'E:</b>															
•	To st	udy at	out var	ious co	onvei	ntiona	1 & No	onconve	entional	source	of energ	gy res	ources			
•	To st	udy th	e conce	pt of 1	Micro	ogrid	and the	e contro	ol modes	8						
•	To ir	npart k	nowled	lge on	D1str	ibutec	d Gene	ration								
•	To al To u	nalyse	the imp	act of	Gria	Integ	ration.	a and t	ha prota	otion	homos	or M	iorogrid			
COURSEC			$\frac{110}{5}$ (Cos	$\frac{000 \text{ pc}}{100 \text{ c}}$	bwer (	quant	y issue	s and u	ne prote	ction se	inemes i	OF IVI	icrogrid	•		
COURSE C		Under	tanding	<u>). (3-3</u> 1 of va	7 rious	conve	entions	aland	Noncon	vention	al sourc	e of e	nerov r	ecolir	rec	
<u>CO2</u>	1	Famili	$\frac{1}{2}$ ar to M	icrogr	id an	d the	control	mode		vention	ai soure		nergy i	csourc	.05	
CO3	1	knowle	edge on	Distr	ibute	d Gen	eration		•							
CO4	1	Famili	ar to G	rid Int	egrat	ion	crution	1								
CO5		Acauir	cquire knowledge on various power quality issues and the protection schemes for													
	]	Microg	icrogrid.													
Mapping of	^c Cou	rse O	rogrid. Outcomes with Program Outcomes (POs)													
COs/POs	]	PO1	PO2	PO3	PO	04	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO1</b>	0 PO	11	PO12	
CO1		Μ	Μ	Μ		H	Η	Μ	L	Н	Н	Η	I	I	Η	
CO2		L	L	Μ		H	Μ	Μ	H	Μ	Н	Μ	I	I	Μ	
CO3		Μ	Μ	Μ		L	Μ	H	H	Μ	Μ	Μ	I	I	Μ	
CO4		Η	L	Μ		H	Μ	Μ	L	Μ	Μ	Μ	H	I	Μ	
CO5		H	H	L		L	Μ	H	H	Μ	H	Μ	H	I	Μ	
Cos / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	05				
<u>CO1</u>		N	1		M			H		L r		I				
<u>CO2</u>		<u></u>			H		<u> </u>				1	<u>/1</u>				
<u>CO3</u>		<u>t</u> N	l T		H M		<u></u>	VL r		L Jr	1	<u>/I</u> T				
C04			l r		H		ر ا	L M		r r	1	. <b>1</b> . r				
H/M/L india	ates	Streng	th of Co	orrelati	ion	H- H	igh M	- Medi	um L-I	0W						
	aces	strong			lon			cal	, <u></u> L							
		nce			S			nic								
	s	cie	nd es		ive	ş	ject	[ec]								
	nce	$\mathbf{s}$	s ar enc	ore	lect	ive	Pro	L / .								
ory	cie	erin	itie Sci	n C	пE	lect	ul /	nips	ills							
tegu	c S	inee	al al	ran	ran	nΕ	tice	'nst	Sk							
Cai	asi	igu	Hun oci	rog	rog	)pei	rac	nter kill	oft							
	Щ		ЧS		<u> </u>			SE	S			1				
-		1		- I		1	1					1		1		
				-												



# BEE18011 MICROGRID TECHNOLOGY 3 1/0 0/0 4

## UNIT I INTRODUCTION

Conventional and Non-Conventional Power Generation - Advantages & Disadvantages – Energy Crisis in India – Review of Solar, Wind, Fuel Cells, Biomass, Tidal- Thermal, Hydel, Nuclear- Microturbines

## UNIT II OVER VIEW OF MICROGRID

Composition of Microgrid- Structure-Operation Modes-Control Modes-Three state control of independent microgrid-Inverter Control – Grid Connection and separation control

## UNIT III DISTRIBUTED GENERATION

Concept- Topologies- Selection of Sources- Standards for interconnecting Distributed resources to Power System- Energy Storage Systems- Market Design Issues – Distributed Generation Optimization and Energy Management

## UNIT IV IMPACT OF GRID INTEGRATION

Requirements for Grid Connection- Limits on operational parameters-Voltage-Frequency-THD Response to grid abnormal operating conditions- islanding issues - Integration with NCE sources – Reliability

## UNIT V POWER QUALITY ISSUES AND PROTECTION IN MICROGRID

Issues in Microgrid – Modelling and Stability Analysis – Economics in Microgrid- Operation and Protection strategies – Protection scheme for Distribution network connected with Microgrid

## **Total No of Hours : 60**

## TEXT BOOKS::

- Fusheng Li, Ruisheng Li, Fengquan Zhou (2015), Microgrid Technology and Engineering Application, 1st Ed, Elsevier
- 2. Nikos Hatziagyriou (2013), Microgrids: Architectures and Control, Wiley

## **REFERENCE BOOKS:**

- 1. S.T.Rama, E.Sheeba Percis, A.Nalini, S.Bhuvaneswari, (2017), Handbook on Standalone Renewable Energy Systems, 1st Edn, Research India Publication ISBN No 978-93-87374-12-6
- 2. David Gao, (2015) Energy Storage for Sustainable Microgrid, 1st Ed, Elsevier
- **3.** Magdi S, Mahmoud , (2017), Microgrid- Advanced Control Methods and Renewable Energy System Integration, Butterworth –Heinemann- Elsevier
- 4. Chowdhury, S, Chowdhury, SP, Crossley, P, Microgrids and Active Distribution Networks, IET

12

12

12

12



Subject	Subj	ect Nam	e: PRC	<b>JECT</b>	PHASE			T	L	T /	<b>P</b> /	С			
Code: BEE18L12									/L/ ETL		S.Lr	ĸ			
	Prer	equisite							L	0	0/0	3/3	2		
L : Lecture T	Tutori	al SLr	Superv	vised Le	arning P	: Proje	ct R : F	Researc	h C: Cre	dits					
T/L/ETL : The	eory/La	b/Embed	ded The	eory and	Lab										
OBJECTIVE	:	6.1. 3	( ' D					• • •		• •			•		
► The o	bjective	of the N	Aain Pr	oject 1s	to culmi	hate the	acaden	11c stud	ly and p	rovid	e an opp	portur	nty to		
facult	e a pro	or The p	issue,	address	unrougn atas tha s	Tocused	i anu ap s shility	to sym	thesize of	und ar	r the un	know	ledge		
and s	cills ac	mired to	real-w	orld iss	ues and	proble	ms Thi	s proie	ct affirr	ns the	e studer	its to	think		
critica	lly and	creativel	y, find	an optin	nal soluti	on, mal	ce ethica	al decis	ions and	to pr	esent ef	fectiv	ely.		
COURSE OU	TCON	IES (Co	s): (3-5)	)		,				-			<u> </u>		
CO1	Appl	y the know	owledge	e and ski	lls acqui	red in t	he cours	se of stu	ıdy addr	essin	g a spec	ific			
	prob	em or is	sue.												
CO2	To e	ncourage	studen	ts to thir	nk critica	lly and	creative	ely abou	it societ	al issu	ues and	devel	op		
<u> </u>	user	friendly	and read	chable s	olutions			•••••			(	11.			
03	10 re	o take on the challenges of teamwork, prepare a presentation and demonstrate the innate													
CO4	To ta	take on the challenges of teamwork, prepare a presentation and demonstrate the innate													
	talen	ents.													
Mapping of C	DO1	Dutcom	es with	Program	n Outco	mes (P	US)	DOS	<b>DO</b> 0	DO1		11	DO12		
	<u>гот</u> н	<u>г02</u> н	<u>гоз</u> н	<u>г04</u> н	<u>105</u> M	<u>го</u> н	н	100 I	<u>г09</u> М	<u>гог</u> м		II . r	<u>го12</u> н		
	H	- H	H	H	H	H	H	M	M	M	– II – H	r	H		
CO3	H	H	H	H	H	H	H	M	M	H		[	M		
CO4	H	M	H	H	H	H	M	Н	H	H	H	[	H		
Cos / PSOs	P	SO1	P	SO2	PS	03	PS	04	PS	05					
CO1		H		H	]	H	H	I	I	I					
CO2		H		H	]	H	I	I	I	I					
CO3		H		H	]	H	H	I	I	I					
CO4		H		H		H	I	I	I	I					
H/M/L indicat	es Strei	igth of C	orrelati	on H-	$\frac{\text{High, M}}{ }$	- Mediu	ım, L-L	ow							
	ces	an				nica									
	ien	Š		ves	ect	ech									
	S S C C C S	nce	ore	ecti	roj	/ T(									
ĥ.	ling	ies cie	Ŭ	E	/ P	ips	lls								
080	leel	anit I S	am	am F1	ical	idst	Skil								
Cate	asic lgir	um: ocia	1g0	Ig0	acti	terr cill	oft S								
	<u>م</u> ق	E H S	L L			LI SI	Š								
					~										
					-										



Subject	Subje	ct Nam	e: POV	VER	ELE	CTRC	DNICS	- II		Т	L	T/ SIr	P/	C	
BEE18012												<b>5.L</b> I	N		
	Prerec	quisite:	BEE1	8009	, BEF	E <b>1801</b> 0	)			T	3	1/0	0/0	4	
L : Lecture T : 7	Futorial	SLr :	Superv	vised	Lear	ning P	: Proie	ect R :	Researc	h C: Cre	dits				
T/L/ETL : Theo	ry/Lab/	Embed	ded Th	eory	and L	.ab									
<b>OBJECTIVE:</b>															
•	To at	ttain kn	owledg	e on	HVD	С									
•	To m	nodel th	e HVD	C sys	stem										
•	To k	now abo	ot FAC	TS C	Contro	llers									
	To m	nodel th	e Powe	er flov	w syst	tem									
COURSE OUT		<u>28 (Cos</u>	<u>6): (3-5</u>	)											
	Attain	ed knov	vieage	abou											
CO2	Ability	y to mo	tel the		C Sy	stem									
03	Knowl	eage or	I FAC I	3											
CO4	Attain	knowle	dge on	FAC	CTS C	Control	lers								
CO5	Ability	y to mo	del Pov	ver fl	ow us	sing ST	CATCC	M, TC	SC etc						
Mapping of Co	urse O	e Outcomes with Program Outcomes (POs)													
COs/POs	PO1	Outcomes with Program Outcomes (POs)1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO121PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12													
CO1	H	H	H	]	H	H	Μ	H	L	L	Μ	N	1	L	
CO2	H	H	H	]	H	Μ	Μ	L	L	Μ	Μ	I	I	Μ	
CO3	Μ	H	H	Ι	M	L	L	Μ	H	M	Μ	ŀ	I	H	
CO4	Μ	M	Μ	Ι	M	Μ	H	H	Μ	M	L	I		L	
CO5	L	H	H	]	H	H	M	Μ	H	M	H	ŀ	I	Μ	
Cos / PSOs	PS	01	P	SO2		PS	03	PS	504	PS	05				
<u>CO1</u>	<u> </u>	I -		H		<u> </u>	<u>/</u>		H	I					
<u>CO2</u>	<u> </u>	<u> </u>		M		<u> </u>	<u>/1</u>								
CO3		<u>/1</u>				I	L T				1 7				
C04		л Т	-			1 N	<u>л</u>				/I J				
H/M/L indicates	Streng	$\mathbf{I}$	orrelati	<u></u>	H- Hi	ioh M.	- Medi	um I-I			1				
			Jiioluti	011			al	um, 12 1	20 **						
	lce	aı		s			nic								
	cie	es		ive	s	ject	Cect								
lcei	so S	enc	ore	lect	ive	Pro	L /								
ory cier	nin	Scie	J C	ЪЕ	lect	1/]	ups	lls							
c Sc	nee	ani al 2	ran	ran	ЪЕ	tica	nsh	Ski							
Cat asic	ngi	lum ocia	rog	rog	per	raci	kill	oft							
	Щ	ΞŇ	<u>д</u>	Ъ.	0	<u>д</u>	H. S	Ś			+				
i I	1	1	_								1		1		



## BEE18012 POWER ELECTRONICS - II 3 1/0 0/0 4

## UNIT I INTRODUCTION TO HVDC

Introduction of DC Power transmission technology – Classification of HVDC links- Components of HVDC transmission system- Comparison of AC and DC- Planning and Modern trends in DC transmission.

## UNIT II HVDC CABLES AND MODELING OF HVDC SYSTEMS

Introduction of DC cables – Basic physical phenomenon arising in DC insulation – Practical dielectrics – Dielectric stressconsideration – Economics of DC cables compared with AC cables- Introduction to converter model of HVDC

## UNIT III INTRODUCTION TO FACTS

The concept of flexible AC transmission - reactive power control in Electrical power transmission lines - uncompensated transmission line – series and shunt compensation. Overview of FACTS devices - Static Var Compensator (SVC) – Thyristors Switched Series capacitor (TCSC) – Unified Power Flow controller (UPFC) - Integrated Power Flow Controller (IPFC).

## UNIT IV EMERGING FACTS CONTROLLERS

Static Synchronous Compensator (STATCOM) – operating principle – V-I characteristics – Unified Power Flow Controller (UPFC) – Principle of operation - modes of operation – applications

## UNIT V POWER FLOW MODELING

Power flow modeling of SVC, TCSC, STATCOM and UPFC.

## **Total No of Hours : 60**

## **TEXT BOOKS:**

- 1. Mohan Mathur, R. Rajiv K. Varma, Thyristor Based Facts Controllers for Electrical Transmission Systems. IEEE press and John Wiley & Sons, Inc.
- 2. ACHA etal, E. Power Electronic Control in Electrical Systems. Newness Power Engineering Series.
- 3. Padiyar, K. R.(1990) HVDC power transmission system. 1st Ed. New Delhi: Wiley Eastern Limited.
- 4. Edward Wilson Kimbark, (1971) Direct Current Transmission. Vol. I. Wiley inter science. New York: London: Sydney:

## **REFERENCE BOOKS:**

- **1.**John, A.T.(1999) Flexible AC Transmission System. Institution of Electrical and Electronic Engineers (IEEE).
- 2. Narain G. Hingorani, Laszio, Gyugyl, (2001)Understanding FACTS Concepts and Technology of Flexible AC Transmission System. Delhi: Standard Publishers.

12

12

12

12



Subject Code:		Subje	ct Nam	e: SMA	ART	GRII	D TEC	HNOI	LOGY		T /L/	L	T / S.Lr	P/ R	C	
BEE18013	_										ETL		0.40	0.40		
	-	Prerec	luisite:	BEE1	8009,	, BEE	<b>E1801</b> 0	, BEE	18011		Т	3	0/0	0/0	3	
L : Lecture '	T:T	utorial	SLr:	Super	vised	Learr	ning P	: Proje	ect R : F	Researc	h C: Cre	dits				
T/L/ETL : 1	heor	y/Lab/	Embed	ded Th	eory a	and L	ab									
OBJECTIV	/E:															
•	T o	o unde	rstand s	smart g	rid ne	eed ar	nd its re	egulati	ons.							
•	T o	o prov	ide solu	tion in	vario	ous le	vels of	smart	grid.							
•	• T	o unde	rstand	Microg	grid, (	Comn	nunicat	tion and	d Measu	irement	technol	ogy.				
COURSE (	DUT	COME	ES (Cos	s): (3-5	)											
CO1		Unders	stands t	he diffe	erence	e betv	veen si	nart gr	id and t	radition	al grid o	lesign	a Sma	rtgrid	-	
CO2		Unders	stands t	he Sma	rtgrio	d com	munic	ation a	nd meas	suremen	nt techno	ology				
CO3	1	Ability	to desi	gn a Si	nart (	Grid										
CO4		Unders	stands t	he stor	age te	chno	logies									
CO5		Ability	to mod	del and	apply	y cont	trol for	the int	eropera	bility s	ate.					
Mapping of	f Cou	irse O	rse Outcomes with Program Outcomes (POs)													
COs/POs		PO1	Outcomes with Program Outcomes (POs)1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12HHHHIMIHIMIH													
CO1		Η	1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12           I         H         H         H         L         M         L         H         L         M         L         H													
CO2		Η	Η	Η	N	A	Μ	Н	Н	Η	Μ	Н	]	Η	Η	
CO3		L	Η	Η	N	Λ	Η	Μ	Η	Μ	Н	Μ	]	I	Μ	
CO4		Μ	L	Н	I	H	Μ	L	Н	L	Μ	L	]	Η	L	
CO5		Η	Η	L	I	L	L	Μ	Μ	Η	L	Μ	Ν	<b>A</b>	Η	
Cos / PSOs		PS	01	P	SO2		PS	03	PS	<b>O4</b>	PS	05				
CO1		Ι			Μ		Ι		I	I	J	H				
CO2		N	1		Н		I	I	I	I	I	N				
CO3		E	I		Μ		H	I	Ν	Л	Ν	N				
CO4		N	1		L		H	I	]	L	]	L				
CO5		Ι	4		Μ		N	ſ	I	I	I	N				
H/M/L indic	cates	Streng	th of C	orrelati	on	H- Hi	igh, M	- Mediu	ım, L-L	ow				1		
Category	Basic Sciences	Engineering Sciences	Engineering Sciences     M     M     M       Humanities     Social Sciences     and       Social Sciences     Annow Medium     Fractices       Social Sciences     and       Program Electives     and       Soft Skills     Project       Soft Skills     Annow Medium													
				~												



## BEE18013 SMART GRID TECHNOLOGY 3 0/0 0/0 3

## UNIT I INTRODUCTION TO SMART GRID

Traditional power grid- Smart grid Definition- Need for smart grid- Smart Grid Risks- Smart grid risks vs Benefits- Regulations in smart grid- Privacy information impacts and security standards- Smart grid security strategy- smart grid impact- applying security control and managing the overall risks.

## UNIT II SMART GRID COMMUNICATIONS AND MEASUREMENT TECHNOLOGY

Functions of Smart grid Component- Communication and measurement- Monitoring Measurement Technologies- WAMS, PMU, Smart meter, AMI etc. GIS and Google Mapping Tools- MAS- Microgrid and Smart grid Comparison.

## UNIT III DESIGNING SMART GRID

Barriers and solution to smart grid development- General Level Automation- Power System Automation at Transmission Level- Distribution Level Automation- End user level- Applications for adaptive control and optimization.

## UNIT IV RENEWABLE & STORAGE

Renewable resources- Sustainable energy options for the smart grid-solar Technology- modeling PV- Wind turbine systems- Biomass- Bio-energy- Small and Micro Hydro power- Fuel cell- Geothermal Heat pumps-Penetration and variability issues associated with sustainable energy technology- Demand response issues-Electric Vehicles- PHEV Technology- Environmental implications- Storage Technologies

## UNIT V INTEROPERABILITY AND CYBER SECURITY

Introduction- Interoperability- State of art- Benefits and challenges- Model- Control- Standards- Cyber security – Risks- Possible operation for improving -Case Study in Smart Grid Activity and Approach for smart grid Application

## Total No. of Hours : 45

## **TEXT BOOKS:**

- 1. Gilbert N. Sorebo, & Michael C. Echols, Smart Grid Security- An end to end view of security in the new Electrical grid. CRC Press.
- 2. James Momoh, Smart Grid- Fundamentals of Design and Analysis. CRC Press.
- 3. Janaka B. Ekanayake, Kithsiri Liyanage, Jian zhong Wu, Akihiko Yokoyama, Nick Jenkins Smart Grid Technology & Application. in Wiley.

## **REFERENCE BOOKS:**

1. S.T.Rama, E.Sheeba Percis, A.Nalini, S.Bhuvaneswari, (2017), Handbook on Standalone Renewable Energy Systems, 1st Edn, Research India Publication ISBN No 978-93-87374-12-6

9

9

9

9



Subject		Subje	ct Nam	e: PR(	OJE(	CT F	PHASE	- II			T	L	T /	<b>P</b> / <b>R</b>	C	
Code: BEE18L13											L/		S.Lr			
DELIGEIC		Prerec	quisite:	:							L	0	0/0	12/12	8	
L : Lecture 7	Г : Т	utorial	SLr	: Super	vised	l Lea	arning	P:Pro	ect R :	Resear	rch C: C	redits				
T/L/ETL : T	heor	y/Lab/	/Embed	lded Th	neory	and	Lab									
OBJECTIV	<b>E:</b> ]	The ob	jective	of the l	Main	Proj	ect is to	o culmi	nate the	e acade	mic stuc	ly and	l prović	le an		
opportunity	to ex	xplore	a probl	em or i	ssue	, adc	lress the	rough f	ocused	and ap	plied res	search	under	the direc	ction	
of a faculty i	ment	tor. In	e projec		onstra	ates	the stuc	s proje	ollity to ct affirm	syntne	size and	1 appr	y the Ki	nowledge	$e$ and $\frac{1}{4}$	
creatively fi	nd a	n onti	nal soli	ution r	nake	ethia	ns. 111 cal deci	s proje	nd to m	resent e	effective	lv lv		cally and	1	
COURSE O	UT		ES (Co	s): (3-5	5)	Cum		510115 <b>u</b>	nu to pi			19.				
CO1		Apply	the kno	owledg	e and	skil	lls acqu	ired in	the cou	rse of s	tudy ad	dressi	ng a sp	ecific		
		proble	m or is	sue.			1				5		0 1			
CO2		To end	encourage students to think critically and creatively about societal issues and develop er friendly and reachable solutions													
		user fr	iendly a	and rea	chab	le so	olutions									
CO3		To refi	o refine research skills and demonstrate their proficiency in communication skills. o take on the challenges of teamwork, prepare a presentation and demonstrate the innate													
CO4		To tak	take on the challenges of teamwork, prepare a presentation and demonstrate the innate													
		talents	take on the challenges of teamwork, prepare a presentation and demonstrate the innate lents.													
Mapping of	Cou	arse O	utcom	es with	Prog	gran	n Outc	omes (	POs)	1	-					
COs/POs		PO1	PO2	PO3	PO	94	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	PO9	<b>PO1</b>	0 PO	11 I	PO12	
CO1		Η	H	H	H	I	H	H	H	H	H	H		H	H	
CO2		H	H	H	H	I	H	H	H	H	H	<u>H</u>		H	H	
<u>CO3</u>		H	H	H	<u> </u>	ł	H	H	H	H	H	<u>H</u>		H	H	
CO4		H	H	H		1	H	H	H	H	H	H		H	H	
Cos / PSOs		PS	01	P	<u>SO2</u>		PS	03	PS	04	PS	05				
<u>CO1</u>		<u> </u>	<u>[</u>		H		ŀ	<u>I</u>	I	<u>I</u>		H				
			l r		<u>H</u> 11		l T	1 T	1	<u>1</u> т						
CO3		Г Г	1 T		<u>п</u> u		ת ד	1 J	1	1 1	1	n ur				
H/M/L indic	ates	Streng	th of C	'orrelat	ion	H-	Hioh N	1 1- Med	ium L-	Low		L				
	ates	outene			1011	11 1		i line								
		JCe	aı		s			nnic								
		cieı	SS		ive	s	ject	ecł								
	sec	Š	ence	ore	ect	ive	Proj	L /								
uy	cier	rin	ties Scie	Ū	ΠE	lect	1/1	ips	lls							
egc	Š	nee	ani al 3	ran	ran	Ξ	tica	nsh	Ski							
Cat	asi	ngi	lum ocia	rog	rog	per	raci	lter kill	oft			1				
-	В	Щ	ΞŚ	<u>д</u>	Д	0	<u> </u>	Ir S	S							
				1			1					1				



Subject Code: BEE18E01	Subjec TECH	ct Name INIQUI	e: WIN ES	<b>ID E</b> I	NER		T /L/ ETL	L	T / S.Lr	P/ R	C				
	Prerec	quisite:								Т	3	0/0	0/0	3	
L : Lecture T : 7	Futorial	SLr:	Superv	vised	Learr	ning P	: Proje	ect R : ]	Researc	h C: Cre	dits				
T/L/ETL : Theo	ory/Lab/	Embed	ded The	eory a	and L	ab									
OBJECTIVE:	To know	u tha ha	cioc of	Wind	1 Eno		nuorai	on Cust							
	TO KHOV To solve	v the En	SICS OI	winc ricic		rgy Co	nversio	JII Syste							
•	To knov	v the Po	wer El	ectro	nic D	evices	and its	charac	eristics	1					
• *	Fo unde	rstand o	lifferen	nt con	verte	rs	una no	ontarao	.01150101						
• 7	To desig	gn wind	Energy	y con	versio	on syst	em suc	h as sul	osystem	is and its	com	ponents			
COURSE OUT	ГСОМІ	ES (Cos	s): (3-5)	)					2						
CO1	Knowl	edge or	n Wind	Ener	gy Sy	vstems									
CO2	Capabi	ility to f	find sol	lution	for E	Energy	Crisis								
CO3	Attaine	ed knov	vledge	on va	rious	types	of conv	verters							
CO4	Famili	arity in	Power	Elect	tronic	s Devi	ces and	l its per	forman	ce.					
CO5	Ability	Ability to design Electrical Machines for Wind Energy Conversion System													
Mapping of Co	ourse O	utcome	s with	Prog	ram	Outco	mes (P	Os)							
COs/POs	<b>PO1</b>	PO2	PO3	PO	)4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO1</b>	0 <b>PO</b>	11	PO12	
CO1	Η	L	L	N	A	Μ	H	Μ	L	L	Η	H	[	L	
CO2	Μ	Н	Η	I	H	Η	Η	Η	H	Μ	Μ	H	[	Н	
CO3	Н	Μ	Μ	I	I	Μ	H	Μ	Μ	Μ	L	H	[	Μ	
CO4	Μ	Μ	Μ	N	A	L	H	Μ	Μ	H	Μ	H	[	L	
CO5	H	H	H	H	H	H	H	M	H	H	M	H	[	Μ	
Cos / PSOs	PS	01	P	<u>SO2</u>		PS	03	PS	604	PS	05				
<u>CO1</u>	N	1						1	M						
CO2				<u>н</u> м		N	<u>л</u>	ו		1	La r				
CO4		 /		M		I	1 7		M	1	[] []				
CO5	E	I		H		Ī	I		H	N	<u>I</u>				
H/M/L indicate	s Streng	th of C	orrelati	on 1	H- Hi	gh, M	- Medi	um, L-L	OW						
	SS	and					cal								
	ence			es		ct	chni								
es	Sci	ces	ė	ctiv	es	oje	Te								
y enc	ng	es cien	Coi	Ele	ctiv	/P1	/ sc	S							
gor	een	S	m	am	Ele	cal	shij	kill							
ate	gin	uma cial	;1gc	)gr;	en	acti	ern ill	ft S							
Ba	En	Hu So	Pr(	Pr(	Op	Prí	Int Sk	So			-				



## BEE18E01WIND ENERGY CONVERSION TECHNIQUES30/00/03

## UNIT I INTRODUCTION TO WIND SYSTEMS

Historical uses of wind – History of wind turbines – Wind characteristics: Meteorology of wind – wind speed distribution across the world – spatial and temporal factors – Eolian features - Biological indicators. Wind measurement: Anemometers – balloon trackers. Wind energy conversion systems (WECS) - classifications

## UNIT II WIND ENERGY CONVERSION

Meteorology of wind – Wind speed statistics – Aerodynamic design principles; Aerodynamic theories; Axial momentum, blade element and Strip theory; Maximum power coefficient - tip loss correction; Rotor design and characteristics - Power, torque and speed characteristics – Wind turbine performance measurement – Loading analysis

## UNIT III WIND TURBINE SUBSYSTEMS & COMPONENTS

Design of WECS components – Stall, pitch & yaw control mechanisms – Brake control mechanisms - Theoretical simulation of wind turbine characteristics; Test methods

## UNIT IV APPLICATION OF WIND ENERGY

Wind pumps - Performance analysis, design concept and testing - Principle of Wind Energy Generators - Stand alone, grid connected and hybrid applications of WECS - Economics of wind energy utilization - Wind energy in India

## UNIT V OVERVIEW OF SMALL HYDROPOWER SYSTEM

Overview of micro, mini and small hydro systems- Hydrology- Elements of pumps and turbine - Selection and design criteria of pumps and turbines - Site selection and civil works - Speed and voltage regulation - Investment issues load management and tariff collection; Distribution and marketing issues: case studies; Potential of small hydro power in India.

## Total No of Hours : 45

## **TEXT BOOKS:**

- 1. Manwell, J.F. Mcgowan, J.G. Rogers, A.L.(2002) Wind Energy Explained Theory, Design & Application. John Wiley & Sons
- 2. Gray L. Johnson, (1985) Wind Energy Systems. Prentice Hall Inc
- 3. Bose, B.K. (2001) Modern Power Electronics & AC Drives. Prentice Hall

## **REFERENCE BOOKS:**

- 1. Vaughn Nelson, (2009) Wind Energy Renewable Energy & the Environment. CRC Press
- 2. S.T.Rama, E.Sheeba Percis, A.Nalini, S.Bhuvaneswari, (2017), Handbook on Standalone Renewable Energy Systems, 1st Edn, Research India Publication ISBN No 978-93-87374-12-6

9 ed

9

9

9



Subject Code:		Subjec ENGI	t Nam NEERI	e: IOT NG	APPI	LIEI	O TO I	ELEC	<b>FRICA</b>	L	T /L/	L	T / S.Lr	P/ R	C
BEE18E02	_	Prerec	uisite:								ETL T	3	0/0	0/0	3
I · Lecture '	 Т · Т	Intorial	SI r ·	Super	vised I	earn	ing P	· Proje	oct <b>R</b> · F	Pecearo	$\frac{1}{h C \cdot Cr}$	dite			
T/L/ETL : T	T . T Theor	ry/Lab/	Embedo	ded Th	eory ar	nd La	ab	. 110jt	λι <b>Κ</b> .Ι	Cocare	n c. ch	Ans			
OBJECTIV	VE:	•			2										
•	To s	study Io	oT in El	ectric l	Engine	ering	g								
•	To s	study T	elemati	cs Dev	ices										
•	To S	Study I	oT Sens	sors											
•	To S	Study S	mart gr	rid and	Micro	grid	l								
	• 10 Study Smart Space Security System URSE OUTCOMES (Cos): (3-5)														
COURSE (	<u> </u>	JICOMES (Cos): (3-5)       Knowledge of IoT in Electrical Engineering													
01		Knowledge of Io1 in Electrical Engineering													
CO2		Attain knowledge on Telematic Devices													
CO3		Ability to work on IoT sensors													
CO4		Knowledge on Smart grid and Micro grid													
CO5 Knowledge on Smart Space Security System															
Mapping of Course Outcomes with Program Outcomes (POs)															
COs/POs		<b>PO1</b>	PO2	<b>PO3</b>	PO4	1	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	PO9	<b>PO1</b>	0 PO	11	PO12
CO1		Н	Η	Μ	H		L	Η	Μ	Н	Μ	Η	Ν	1	L
CO2		Μ	Η	Μ	H		L	Μ	Μ	Μ	Μ	Μ	Ν	1	Μ
CO3		Μ	Μ	Μ	H		L	Μ	Н	Μ	H	Μ	N	1	Μ
CO4		L	Μ	Μ	Μ		H	Μ	Μ	H	Μ	H	I		Μ
CO5		Μ	Η	H	L		Μ	L	Μ	L	Μ	Μ	Ν	1	H
Cos / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	605			
<u>CO1</u>		H	[		M		<u>N</u>	<u>/</u>	N	<u>/I</u>	l	M			
		<u>H</u>	l r		M		<u>N</u>	/ <u>1</u> T		1					
<u>CO3</u>			1				1	<u>1</u> л			1				
C04 C05			, Т		M			/ <u>1</u> /ſ		<u>и</u> Л	1	VI 17			
H/M/L india	cates	Streng	∎ th of Co	orrelati	$\frac{1}{0}$ n H	I- Hi	oh M.	- Medi	um L-L	0W					
	cuios	strong	ndpu	litituti			511, 111	cal	, L L						
Category	Basic Sciences	Engineering Science	Humanities a Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technic Skill	Soft Skills						



## BEE18E02 IOT APPLIED TO ELECTRICAL ENGINEERING 3 0/0 0/0 3

## UNITI INTRODUCTION TO IOT

Introduction – Need of IOT in Electrical Engineering – Challenges in Implementation of IOT – Trends in Electrical Engineering – Configuration and Scalability – Efficiency – Quality of Service

## UNIT II TELEMATICS

Smart Devices – Smart Apps – Wearable Technology – Vehicle Telemetry – Smart Homes and Building Automation – Vehicle Charging Station

## UNIT III SMART ENERGY

Generation – Transmission – Distribution and Metering – Storage – Smart Monitoring and Diagnostics System at Major Power Plants – Micro grid and Virtual Power

## UNIT IV INDUSTRIAL IOT

Real-Time Monitoring and Control of Processes – Deploying Smart Machine – Smart Sensor – Smart Controllers – SCADA – Proprietary Communication

## UNIT V SECURITY MEASURES

Securing Smart Spaces and Smart Grid – Smart Grid – Service that need to be Secure - Security Requirement – Security Smart Spaces – Smart Tracking Firewall – Cryptographic Key in the IoT

## **Total No of Hours : 45**

## **TEXT BOOKS:**

1. George Mastorakis , (2016), Internet of Things (IoT) in 5G Mobile Technologies, 1st ed. Edition, , Publisher SPRINGER

## **REFERENCE BOOKS:**

1. Enterprise IoT: Strategies and Best Practices for Connected Products and Services, Dirk Slama, Frank Puhlmann, Jim Morrish, Rishi M Bhatnagar, Publisher O'REILLY

9 .

9

9

9



Subject Code:		Subjec	et Namo	e: MAT	<b>FERIA</b>	AL S	CIEN	CE IN	AVIA'	TION	T /L/	L	T / S.Lr	P/ R	C
BEEISEII	-	Prereg	uisite:								T	3	0/0	0/0	3
L : Lecture T	`: T	utorial	SLr:	Superv	rised L	earn	ing P	: Proie	ct R : I	Researc	h C: Cre	edits			
T/L/ETL : T	neor	y/Lab/	Embedo	led The	eory an	nd La	ab	J							
OBJECTIV	E:														
• To g	ain I	basic k	nowled	ge on C	Cryoger	nic T	Fechno	ology							
To in	npa	rt know	vledge o	on Supe	r Allo	y and	d its A	pplicat	tions						
• To k	now	the im	portanc	e of Fl	exible	Elec	ctronic	S							
• To h	<ul> <li>To have a wide spread knowledge about Nanoscience and nano material</li> <li>To learn about Drone</li> </ul>														
• To learn about Drone															
COURSE OUTCOMES (Cos): (3-5)															
CO1		Attained basic knowledge on Cryogenic Technology													
CO2		Knowledge on Super Alloy and its application													
CO3		Knowledge on Flexible Electronics													
<b>CO4</b>		Attained knowledge on nano science and nano material													
CO5		Knowledge on Drone													
Mapping of	Coi	ourse Outcomes with Program Outcomes (POs)													
COs/POs		<b>PO1</b>	PO2	PO3	PO3 PO4 I			<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO1</b>	0 PO	11	PO12
CO1		Η	Μ	$\mathbf{M}$	L		L	Μ	Μ	Μ	Н	Μ	Ν	Л	Μ
CO2		Η	Μ	Μ	L		L	Н	Μ	Η	Н	Н	Ν	Л	Μ
CO3		H	Η	L	Μ		Μ	Μ	Μ	Μ	Μ	Μ	]	I	$\mathbf{M}$
CO4		Μ	Μ	Μ	Μ		Μ	L	Η	L	L	L	Ν	Л	Η
CO5		Η	L	Н	H		Η	Μ	Μ	Μ	Μ	Μ	]		Μ
Cos / PSOs		PS	01	P	502		PS	03	PS	04	PS	05			
CO1		H	[		Μ		N	1	l	H	]	Ĺ			
CO2		H	[		L		N	1	Γ	М	Ι	N			
CO3		N	1		Μ		Ι		J	H	]	L			
CO4		H	[		H		N	1	Ν	Ν	Ι	N			
CO5		N	1		Μ		H	I	]	[	]	H			
H/M/L indic	ates	Streng	th of Co	orrelatio	on H	- Hi	gh, M-	Medi	ım, L-L	OW		_			
Category	<b>Basic Sciences</b>	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills						



#### **BEE18E11 MATERIAL SCIENCE IN AVIATION** 3 0/0 0/0 3

#### UNIT I INTRODUCTION TO CRYOGENIC TECHNOLOGY

Terms & Phenomena associated with Cryogenic Systems - Prominent contributors- Critical Aspects and Issues involved – Benefits from Integration – Early applications of Cryogenic Technology- Gas Separation process – Industrial Applications of Cryogenic fluid technology

#### UNIT II SUPER ALLOY

Introduction- Basic Metallurgy - characteristics & Facts -Properties - Microstructure - Strengthening -Melting & Conversion – Investment casting- Corrosion & Protection of Super Alloy - Applications

#### **UNIT III FLEXIBLE ELECTRONICS**

History – Materials for Flexible Electronics – Degrees – Substrates – Backplanes Electronics – Frontplane Technologies – Encapsulation - Fabrication Technology – Sheets by batch Processing and Web by Roll to Roll Processing

#### NANOSCIENCE AND NANO TECHNOLOGY **UNIT IV**

Nano – Current Technologies – Energetics – Implications – Electron Microscopes – Optical Microscopes – Photoelectron Spectroscopy for the study of nano materials – Metal clusture and nano particles – nano crystals – Raman Scattering – Basics of nanomaterials

#### UNIT V DRONE AND AIR VEHICLE

Introduction - Types of flying drones - Current Uses - Drone Components - Concepts and Systems -Regulations & Safety – Applications – Future Trends

## Total No. of Hours : 45

## **TEXT BOOKS:**

- 1. Jha, AR, (2006), Cryogenic Technology and Applications, Elsevier
- 2. John, K Tien, Superalloys, Supercomposites and Superceramics, Elsevier
- 3. William S, Wong, Alberto Salleo, Flexible Electronics: Materials and Applications, Springer
- 4. Pradeep, T, (2012) Nanoscience and Nanotechnology, Mc Graw Hill

## **REFERENCE BOOKS:**

- 1. Mattew, JD, Stephen JD, Superalloys, A Technical guide, 2nd Ed, ASM International.
- 2. Murty, BS, Shankar, P, Baldev Raj, BB Rath, James Murday, Nanoscience and Nanotechnology, Springer
- 3. Robokingdom LLC, (2016)Drone Book

9

9

9

9



Subject Code: BEI18013	Subje POW	ct Nam ER PLA	e: ANT IN	ISTRUN	IENTA	TION			T /L/ ETL	L	T / S.Lr	P/ R	C		
	Prere	quisite:							T	3	0/0	0/0	3		
L : Lecture T :	Tutorial	SLr:	Superv	ised Lea	rning P	• : Proje	ct R : F	Researc	h C: Cre	edits					
T/L/ETL : The	ory/Lab	/Embed	ded The	ory and	Lab										
OBJECTIVE	<b>:</b> :1::	. 40 D	din - 1-1	<b>1</b>	<b>b</b> _11										
	mahla ta		ung bi	JCKS and	bollers.										
	ipable to	analyse	e Electi	s paramé	tors in r	nowar r	lante								
	<ul> <li>Understand the control loops in boiler</li> </ul>														
<ul> <li>Capable to monitor and control the renewable energy systems</li> </ul>															
COURSE OUTCOMES (Cos): (3-5)															
CO1	The students get familiarized to Building blocks and boilers.														
CO2	The st	The student becomes capable to measure Electrical parameters													
CO3	The st	The student will be able to analyse various parameters in pwer plants													
CO4	The st	The students understand the control loops in boiler													
CO5	The student becomes Capable to monitor and control the renewable energy systems														
Mapping of C	ping of Course Outcomes with Program Outcomes (POs)														
COs/POs	PO1 PO2 PO3 PO4				PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO1</b>	0 PO	11	PO12		
CO1	Н	Μ	Μ	L	L	L	L	L	Μ	Μ	I	I	L		
CO2	Μ	Μ	L	L	Η	L	L	Μ	Μ	L	I	I	Μ		
CO3	H	Н	H	H	H	Μ	Μ	Μ	H	Μ	H	I	H		
CO4	Н	Μ	L	Μ	L	L	L	Μ	Μ	Μ	I	I	Μ		
CO5	H	H	Μ	H	H	Μ	H	Μ	H	Μ	H	I	H		
Cos / PSOs	PS	01	PS	502	PS	603	PS	04	PS	05					
<u>CO1</u>		H		L	]	L	N	<u>/</u>	]	L					
<u>CO2</u>					1	M			1						
CO3				H M	1		1	1 1	1						
C04			-	<u>и</u> ப	1			<u>и</u> Л	1	u T					
H/M/L indicat	es Streng	th of C	orrelatio	n H-l	High M	- Mediı	Im I-I								
		2				a	лп, <u>с</u> с	011							
Category	Engineering Sciences Humanities an Social Sciences Program Core Program Electives Open Electives				Practical / Project	Internships / Technic Skill	Soft Skills								
				~											



#### **BEI18013** POWER PLANT INSTRUMENTATION 3 0/0 0/0 3

#### UNIT I **OVERVIEW OF POWER GENERATION**

Brief survey of methods of power generation - hydro, thermal, nuclear, solar and wind power - importance of instrumentation in power generation – thermal power plants – building blocks – details of boiler processes UP&I diagram of boiler – cogeneration.

#### UNIT II **MEASUREMENTS IN POWER PLANTS**

Electrical measurements – current, voltage, power, frequency, power factor etc. – non electrical parameters – flow of feed water, fuel, air and steam with correction factor for temperature - steam pressure and steam temperature - drum level measurement - radiation detector - smoke density measurement - dust monitor.

#### UNIT III **ANALYZERS IN POWER PLANTS**

Flue gas oxygen analyzer – analysis of impurities in feed water and steam – dissolved oxygen analyzer – chromatography – PH meter – fuel analyzer – pollution monitoring instruments.

#### **UNIT IV CONTROL LOOPS IN BOILER**

Combustion control - air/fuel ratio control - furnace draft control - drum level control - main stem and reheat steam temperature control – super heater control – attemperator – de aerator control – distributed control system in power plants – interlocks in boiler operation.

#### UNIT V **TURBINE – MONITORING AND CONTROL**

Speed, vibration, shell temperature monitoring and control – steam pressure control – lubricant oil temperature control – cooling system

## Total No of Hours : 45

## **TEXT BOOKS::**

- 1. Sam G. Dukelow, (1991) The control of Boilers, instrument .Society of America
- 2. (1971) Modern Power Station Practice. Vol.6. Instrumentation, Controls and Testing. Pergamon Press. Oxford

## **REFERENCE BOOKS:**

- 1. Elonka, S.M. and Kohal, A.L. (1994) Standard Boiler Operations. New Delhi: McGraw-Hill
- 2. Jain, R.K.(1995) Mechanical and industrial Measurements. Delhi: Khanna Publishers

## 9

9

# 9

9



Subject Code: BEE18E05		Subjec TECH	ct Name INIQUI	e: SOL ES	AR ENE	CRGY (	CONVI	ERSIO	N	T /L/ ETL	L	T / S.Lr	P/ R	C	
		Prerec	uisite:							Т	3	0/0	0/0	3	
L : Lecture	Г : Т	`utorial	SLr:	Superv	ised Lea	rning P	: Proje	ct R : F	Researc	h C: Cre	edits				
T/L/ETL : T	heor	ry/Lab/	Embede	ded The	ory and l	Lab									
OBJECTIV	′E:														
•	To s	tudy at	out Sol	lar Radi	ation and	the col	llector	types	_						
•	To i	mpart k	cnowled	lge on t	he Appli	cation o	f Solar	thermal	Techn	ology					
•	To u	indersta	and the	fundam	entals of	Solar P	hotovo	ltaic cel	ls						
•	<ul> <li>To learn about the solar passive Architecture</li> </ul>														
• 10 learn about the solar passive Architecture COURSE OUTCOMES (Cos): (3-5)															
COURSE C	COLKSE OUTCOMES (Cos): (3-5)         COL         Students understand Solar Radiation and the collector types														
		Acquire knowledge on the Application of Solar thermal Technology													
C02		Acquire knowledge on the Application of Solar thermal Technology Understand the fundamentals of Solar Photovoltaic cells													
CO4		Familiar to design the Solar cells in cost effective manner													
C05		Incorporate the knowledge about the solar passive Architecture													
Mapping of Course Outcomes with Program Outcomes (POs)															
COs/POs		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								PO9	PO1	0 PO	11	PO12	
CO1		Μ	H	Н	Μ	Μ	L	Μ	Μ	Μ	L	N	1	L	
CO2		Μ	Μ	Μ	L	Μ	Н	M	L	Μ	Н	Ν	1	Н	
CO3		L	Μ	L	Μ	Η	Μ	L	Μ	Н	Μ	I		Μ	
CO4		Μ	Н	Н	Μ	L	Μ	Н	Μ	L	Μ	E	[	Μ	
CO5		Н	Н	Η	Μ	L	Μ	Н	Μ	L	Μ	E	I	Μ	
Cos / PSOs		PS	01	PS	502	PS	03	PS	04	PS	05				
CO1		N	1	]	М	I	I	N	Л	]	Ĺ				
CO2		Ν	1	]	М	]		Ν	Λ	]	H				
CO3		Ν	1		L	N	Л	I	ł	1	M				
<u>CO4</u>		E	I		H H	N	<u>/</u>			I I	M T				
CO5	otoc	Strong	l th of C	orralatio	H m U U	lich M	<u>/I</u> Modiu			1	VI				
H/WI/L IIIuic	ales	Stieng				ngn, wi	- Mediti न्ह	1111, L-L	<u>ow</u>						
Category	<b>Basic Sciences</b>	Engineering Sciences Humanities and Social Sciences Program Core Program Electives				Practical / Project	Internships / Technic Skill	Soft Skills							



## BEE18E05SOLAR ENERGY CONVERSION TECHNIQUES30/00/03

## UNIT I SOLAR RADIATION AND COLLECTORS

Solar Radiation- Solar angles - Sun path diagrams - shadow determination – Solar Collectors - flat plate collector thermal analysis - heat capacity effect - testing methods-evacuated tubular collectors - concentrator collectors - classification - tracking systems - compound parabolic concentrators - parabolic trough concentrators - concentrators with point focus - Heliostats – performance of the collectors

## UNIT II APPLICATIONS OF SOLAR THERMAL TECHNOLOGY

Principle of working, types - design and operation of - solar heating and cooling systems - solar water heaters - thermal storage systems - solar still - solar cooker - domestic, community - solar pond - solar drying

## UNIT III SOLAR PV FUNDAMENTALS

Solar cells - p-n junction: homo and hetro junctions - metal-semiconductor interface - dark and illumination characteristics - efficiency limits - variation of efficiency with band-gap and temperature - efficiency measurements - high efficiency cells - preparation of metallurgical, electronic and solar grade Silicon - production of single crystal Silicon: Czokralski (CZ) and Float Zone (FZ) method

## UNIT IV SOLAR PHOTOVOLTAIC SYSTEM DESIGN AND APPLICATIONS

Solar cell array system analysis and performance prediction- Shadow analysis: reliability - solar cell array design concepts - PV system design - design process and optimization -voltage regulation - maximum tracking – use of computers in array design - quick sizing method - array protection and troubleshooting - stand alone - hybrid and grid connected system - System installation - operation and maintenances - field experience - PV market analysis and economics of SPV systems

## UNIT V SOLAR PASSIVE ARCHITECTURE

Thermal comfort - heat transmission in buildings- bioclimatic classification – passive heating concepts: direct heat gain - indirect heat gain - isolated gain and sunspaces - passive cooling concepts: evaporative cooling - application of wind, water and earth for cooling; shading - paints and cavity walls for cooling - roof radiation traps - earth air-tunnel. – energy efficient landscape design - thermal comfort – concept of solar temperature and its significance - calculation of instantaneous heat gain through building envelope

## **TEXT BOOKS:**

- 1. Sukhatme S P, (1984), Solar Energy, Tata McGraw Hill
- 2. Kreider, J.F. and Frank Kreith, (1981), Solar Energy Handbook, McGraw Hill

## **REFERENCE BOOKS:**

- 1. Garg H P., Prakash J., (2000), Solar Energy: Fundamentals & Applications, Tata McGraw Hill
- S.T.Rama, E.Sheeba Percis, A.Nalini, S.Bhuvaneswari, (2017), Handbook on Standalone Renewable Energy Systems, 1st Edn, Research India Publication ISBN No 978-93-87374-12-6
- 3. Alan L Fahrenbruch and Richard H Bube, (1983), Fundamentals of Solar Cells: PV Solar Energy Conversion, Academic Press
- 4. Larry D Partain, (1995), Solar Cells and their Applications, John Wiley and Sons, Inc.

9

**Total No of Hours** : 45

9

#### 9 |atc

9



Subject Code:		Subjec	et Nam	e: GR	EEN	BUIL	DING	G TEC	HNOL	OGY	T /L/	L	T / S.Lr	P/ R	С
<b>BEE18E06</b>											ETL			0.40	
		Prerec	quisite:								Т	3	0/0	0/0	3
L : Lecture '	$\Gamma: T$	utorial	SLr:	Super	vised	Learr	ning P	: Proje	ect R:]	Researc	h C: Cre	edits			
T/L/ETL : T	<u>heor</u>	y/Lab/	Embede	ded Th	eory	and L	ab								
OBJECTIV	/E:	1		6.0	T	1 1.									
• 106	duca	ite the	concept	t of Gr	een B	Suildir	ng D		_						
• 101	indei	stand	the Desi	ign coi	icept	5 01 G	reen B	ullaing	5						
• 10 8	attain	KNOW	leage of	n reau	ction	of car	DON IO	oting							
• 101 • To (	explore the future trends in Green Building and to revamp the ecological design.														
COURSE (	OUTCOMES (Cos): (3-5)														
COURSE C		Knowledge on Green building													
CO2		Ability to understand the Design concepts of Green building													
CO3		Attained knowledge on reduction of Carbon footing													
CO4		Acquired knowledge on the importance of Environmental issues													
CO5		Ability to explore the future trends on Green building													
Mapping of Course Outcomes with Program Outcomes (POs)															
COs/POs		PO1	PO2	PO3	PC	)4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO1	0 PO	11	PO12
CO1		Η	Μ	Η	I	M	Μ	L	L	Μ	Μ	L	I	4	Η
CO2		Μ	L	Μ	I	M	Η	Μ	Μ	H	Μ	L	Ν	ſ	Μ
CO3		Μ	Μ	L	I	M	Μ	L	Μ	Μ	Μ	Μ	I		L
CO4		Μ	H	L	]	H	H	Μ	H	Μ	H	Μ	Ν	1	Μ
CO5		Μ	Μ	L	1	M	L	H	Μ	H	Μ	L	N	1	H
Cos / PSOs		PS	01	P	SO2		PS	03	PS	<b>SO4</b>	PS	05			
<u>CO1</u>		<u> </u>	I		M		I	<u>I</u>		L	I	M			
<u>CO2</u>		<u>N</u>	1		H		<u> </u>	<u>I</u>	1	M		H r			
<u>CO3</u>		<u>t</u>	1				<u> </u>					L Jr			
C04			1 1		M			<u>ч</u>	1	VI 17		T T			
H/M/L india	rates	Streng	th of Co	orrelati	ion	H- Hi	ioh M	- Medi	um L-I	.0W		1			
	ulus	strong s	u or or	literat				Cal	<u>aiii, 2 1</u>						
		ience	a		ves		ect	echnic							
	lces	3 Sc	ince	ore	ecti	ives	roj	T							
ry	ien	ring	ties	ŭ	Ē	ecti	/ F	ips	lls						
ego	SC	nee	al S ram El I ical				nsh	Ski							
Cat	asic	ngi	lum oci	rog	rog	per	ract	htern kill	oft						
-	В	Щ	ΝĒ	d.	<u> </u>	0	Ē.	LI S	S			+			



# BEE18E06GREEN BUILDING TECHNOLOGY30/00/03

## UNIT I INTRODUCTION TO GREEN BUILDING

Basics of Green - Sustainable Design – ecological Design – Green Design – Green Buildings- Progress & Obstacles- High Performance Green Buildings

## UNIT II DESIGN OF GREEN BUILDING

Foundations of Green Building-Environmental concerns- Assessment- Design process- Green building excecution project- Heat Island Mitigation – Sustainable sites

## UNIT III REDUCTION OF CARBON FOOTING

Building energy Issues – Design Strategy – Renewable Energy Systems- Smart Building & energy Management Systems - Reducing the Carbon footprint

## UNIT IV ENVIRONMENTAL ASPECTS

Hydrological cycle - Sustainable storm water management - Construction Operations and commissioning of Green Building – Construction & Demolition Waste management - Indoor Environmental Quality

## UNIT V FUTURE TRENDS

Economics in Green Building – Managing First costs – Financial barriers - Articulating Performance goals for future Green Buildings – Revamping Ecological Design

## **Total No of Hours : 45**

## **TEXT BOOKS:**

- 1. Charles J.Kibert Sustainable Construction: Green Building Design and Delivery, 3rd Edition Wiley Publisher, (2012)ISBN :978-0-470-90445-9
- 2. Francis D, K, Ching, Ian M, Shapiro, Green Building Illustrated, Wiley

## **REFERENCE BOOKS:**

- 1. Sam Kubba, Handbook of Green Building Design, and Construction, Elsevier Publisher(2012) ISBN: 978-0-12-385128-4
- Charles J.Kibert, Martha C.Monroe, Anna L.Peterson, Richard R.Plate, Leslie Paul Thiele, Working Toward Sustainability: Ethical Decision –Making in a Technological World, Wiley Publisher, ISBN : 978-0-470-53972-9
- 3. S.T.Rama, E.Sheeba Percis, A.Nalini, S.Bhuvaneswari, (2017), Handbook on Standalone Renewable Energy Systems, 1st Edn, Research India Publication ISBN No 978-93-87374-12-6

9

9

9

9



Subject Code: BEE18E09		Subjec DISTI	ct Name RIBUT	e: : R ION S	EST] YSTI	RUC' EM	TURI	NG OF	1		T /L/ ETL	L	T / S.Lr	P/ R	C
		Prerec	uisite:								Т	3	0/0	0/0	3
L : Lecture 7	Г : Т '	utorial	SLr:	Super	vised	Lear	ning P	: Proje	ect R : F	Research	h C: Cre	dits			
1/L/EIL:1	heor <b>F</b> •	y/Lab/	Embedo	ded Th	eory a	and L	ab								
• To s	E. tudv	about	Distrib	ution s	vstem	and	I oad F	Pattern							
• To i	mna	rt know	vledge (	on the l	Distri	butio	n feede	r							
• To r	estru	icture t	he Dist	ributio	n netv	vork	and ex	tent co	ntrol for	Low v	oltage n	etwor	ĸ		
• To u	inde	rstand t	the self	healing	g cont	trol te	chniqu	ies			0				
• To a	To attain confidence on Automation in Distribution field														
COURSE O	URSE OUTCOMES (Cos): (3-5)														
CO1		Knowledge on the Distribution System and the load pattern.													
CO2		Attained knowledge on the Distribution feeder													
CO3		Ability to restructure the Distribution network													
CO4		Knowledge on self healing control techniques													
CO5 Attained confidence on Automation of Distribution network.															
Mapping of Course Outcomes with Program Outcomes (POs)															
COs/POs		PO1	PO2	PO3	PO	94	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	PO9	<b>PO1</b>	0 PO	11	PO12
CO1		H	Μ	Μ	I	I	Μ	M	Μ	L	Μ	L	N	1	Μ
CO2		H	Μ	H	N	Л	Μ	M	H	Μ	Μ	M	N	1	M
CO3		M	H	Μ	I	-	H	H	M	M	H	L	I	I	H
CO4		Μ	Μ	H	N	Л	M	H	Н	H	M	M	N	1	M
<u>CO5</u>		L	L	M		Л	H	H	M	M		H	I	I	L
Cos / PSOs		PS	01	P	<u>SO2</u>		<u> </u>	03	PS	04	PS	05			
			1				<u> </u>	<u>/I</u>		<u>/I</u>	1				
C02			<u>1</u> л		M			<u>/l</u> T		/ <u> </u> T	1				
C03			I T		T		1 N	.1 Л		1 Л	נ ז	<u>п</u> Л			
C04		N	1 1		M		I	<b>/1</b> [ ,		/ <b>1</b>	1	<b>vi</b> [,			
H/M/L indic	ates	Streng	th of Co	orrelati	on	H- Hi	igh. M-	- Medi	ım. L-L	ow					
Category	<b>Basic Sciences</b>	Engineering Sciences Engineering Sciences Humanities and Social Sciences and Program Electives Open Electives Practical / Project Internships / Technical Skill Soft Skills													



## BEE18E09 RESTRUCTURING OF DISTRIBUTION SYSTEM 3 0/0 0/0 3

## UNITI INTRODUCTION TO DISTRIBUTION SYSTEM

Development of Power Distribution Network –Load Growth and Diversified Demands – Load Modeling- Load Demand Forecasting - Self healing Techniques – Line parameters- Overhead lines, Insulators and Supports-Cables- Insulation Resistance – Voltage drop and Power loss in Conductor

## UNITII DISTRIBUTION FEEDER

Primary Distribution system – Secondary Distribution system – Design Considerations - Substation location and planning – Feeder Loading – Voltage drop considerations – Drop with different loadings –Voltage drop constant with different loading

## UNITIII RESTRUCTURING THE NETWORK

Design of Network – Voltage selection – Sizing –Voltage control- Current loading- Earthing –Cost Factor - LV Distribution Networks – Switchgear for Distribution Substation and LV Networks – Extended Control of Distribution Substations and LV Network

## UNIT IV SELF HEALING CONTROL

Self Healing –Principle –Characteristics- Control method – Urban Distribution network self-healing control method based on Quantity of State – Based on Distributed Power and Microgrid- Based on Coordination Control model

## UNIT V AUTOMATION IN DISTRIBUTION SYSTEM

Implementation of Distribution Network self-healing – Relay Protection Units – Basic Requirements – Self Adapttion – SCADA / RTU- History and Development of SCADA -Principle and Operation – Automation of Distribution System – PMU /WAMS and SCADA /EMS – Application of PMU or WAMS

## **Total No of Hours : 45**

## **TEXT BOOKS:**

- 1. Kamaraju, V (2009), Electrical power Distribution System, Tata McGraw Hill
- 2. Abdelhay A, Sallam, Om, P, Malik, (2011), Electric Distribution Systems, Wiley

## **REFERENCE BOOKS:**

- 1. Xinxin Gu, Ning Jiang (2017), Self Healing Control Technology for Distribution Networks, Wiley
- 2. James Northcote-Green, Robert Wilson, Control and Automation of electrical Power Distribution Systems, Taylor & Francis

9

9

9

9



Subject Code: BEE18E10	5	Subjec D	ct Nam G & E	e: ENERC	GY ST	<b>FOR</b>	AGE 1	ECHI	NOLO	GY	T /L/ ETL	L	T / S.Lr	P/ R	C
	I	Prereg	uisite:								T	3	0/0	0/0	3
L : Lecture T	: Tu	ıtorial	SLr:	Super	vised	Lear	ning P	: Proje	ect R :	Researc	h C: Cr	edits			
T/L/ETL : Th	eory	y/Lab/	Embed	ded Th	eory a	and L	ab								
OBJECTIVE	2:		.1	a.		- I									
• To stu	ıdy	about	the Ene	ergy St	orage	Tech	nology	1							
• To kr	.OW	the wo	orking I	rincip		Batte	ries and	d its ty	pes	مناه المعدم	a devanta	~ ~ ~			
• 10 III	ipar olve	t KHOW	ous typ			stor	ig with	icos	antage	and dis	auvanta	ges			
<ul> <li>To have a wide spread knowledge on Electric Vehicle</li> </ul>															
COURSE OUTCOMES (Cos): (3-5)															
CO1	Attain Knowledge on various energy resources														
CO2	ŀ	Knowledge on the concept of Distributed generation													
CO3	ŀ	Knowledge on Fuel cells and Batteries													
CO4	A	Ability to analyze various types of energy storage devices													
CO5	Knowledge on Electric vehicles														
Mapping of Course Outcomes with Program Outcomes (POs)															
COs/POs	Ι	PO1	PO2	<b>PO3</b>	PO	4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO1</b>	0 PC	011	PO12
CO1		H	Μ	Н	N	1	Н	Μ	Μ	Μ	L	Η	]	H	Μ
CO2		H	Μ	Μ	Ν	1	Μ	Μ	Μ	Μ	Μ	Η	I	M	Μ
CO3		H	Η	Μ	N	1	Μ	Μ	Μ	Μ	Μ	Μ	I	M	L
CO4		Μ	L	L	Ι	_	Μ	Н	Μ	Η	L	L	I	M	L
CO5		Η	L	Μ	N	1	L	L	Н	Μ	Н	Μ	]	H	L
Cos / PSOs		PS	01	P	SO2		PS	03	PS	<b>504</b>	PS	605			
CO1		H	I		H		N	ſ		L		L			
CO2		N	1		M		<u> </u>		]	M	l	M			
CO3		N	1		L		<u> </u>	<u>/</u>		H		H			
<u>CO4</u>	_	<u>N</u>	1		M		<u>N</u>	<u>/</u>		M		H			
CO5		N. Strong	1 th of C	orralati	$\frac{\mathbf{H}}{\mathbf{n}}$		t ich M	1 Madir		<u>M</u>		VI			
n/M/L Illuica	les :	Streng		JITEIALI		п- п	ign, wi	- Mean	uIII, L-I	200					
Category	Basic Sciences         Engineering Sciences         Humanities       and         Social Sciences         Program Core         V       Program Electives         Open Electives					Open Electives	Practical / Project	Internships / Technic: Skill	Soft Skills						


# BEE18E10 DG & ENERGY STORAGE TECHNOLOGY 3 0/0 0/0 3

# UNIT I INTRODUCTION

Conventional Power generation – Advantages and disadvantages – energy crisis – Non- conventional energy resources – review of solar, Wind energy system, biomass, tidal sources

# UNITII DISTRIBUTED GENERATION

Concept of distributed generation – topologies – selection of sources – regulatory standards – Security issues in DG implementation – Energy storage element - Necessity of energy storage – types of energy storage – comparison of energy storage technologies - Application

# UNITIII BATTERIES & FUEL CELL

Batteries – Measurement – Storage and types - Fuel Cell – History of fuel cell – Principle of electrochemical Storage – Types – Hydrogen oxygen cells, Hydrogen air cell – Hydrocarbon air cell –alkaline fuel cell – detailed analysis – advantage and drawback of each cell.

# UNIT IV ALTERNATE ENERGY STORAGE TECHNOLOGIES

Flywheel – Super Capacitors – Principles & applications, Compressed Air Energy Storage- Concept of Hybrid Storage – Microgrid economics - Applications

# UNIT V ELECTRIC VEHICLE

Electric Vehicle – Types – Hybrid Vehicle – Battering Charging – Usage of batteries in Hybrid vehicle – Fundamentals of Electric vehicle modeling – Types of PHEVs and Automotive system

# **Total No of Hours: 45**

# **TEXT BOOKS:**

- Ibrabim Dincer, marc A,Rosen, (2011) Thermal Energy Storage Systems and Applications, 2nd Ed, John Wiley
- 2. James Larminie, John Lowry (2003), Electric Vehicle Technology Explained, John Wiley & Sons
- 3. Sumedha Rajakaruna, Farhad Shahnia, Arindham Ghosh, "Plug-in-ElectricVehicles in Smart Grid Integration Techniques", Springer, 2015

# **REFERENCE BOOKS:**

- 1. Seth Leitman, Bob Brant (2013) Build Your Own Electric Vehicle, 3rd Ed, McGraw Hill
- 2. S.T.Rama, E.Sheeba Percis, A.Nalini, S.Bhuvaneswari, (2017), Handbook on Standalone Renewable Energy Systems, 1st Edn, Research India Publication ISBN No 978-93-87374-12-6
- 3. James larminie, Andrew Dicks, (2003), Fuel Cell Systems Explained, Wiley

9

9

9

9 · 1





Subject Code:		Subjec S	et Nam SAFET	e: Y FOF	RELI	ECTI	RICAI	L ENG	INEER	S	T /L/	L	T / S.Lr	P/ R	C
BEE18E13	_	Prerec	uisite:									3	0/0	0/0	3
L · Lecture 7	 `• Т	utorial	- SLr ·	Superv	vised	Learr	ning P	· Proie	ct R·F	Researc	h C [.] Cre	edits			
T/L/ETL : T	heor	y/Lab/	Embed	led The	eory a	and L	ab			toseure		unus			
OBJECTIV	E:	2													
• To a	ttain	n know	ledge of	n Elect	rical S	Safety	y								
• To k	now	/ about	the ope	ration	of Ele	ectric	al Safe	ty Equ	ipments						
• To le	earn	about	the safe	ty proc	edure	es									
• To k	now	about /	the elec	ctrical s	safety	code	es								
• To the	ain	the stu	dents of	n the Sa	afety	traini	ng.								
COURSE O	UT	COME	ES (Cos	<u>): (3-5)</u>	)				1.0.0						
COI		Attained knowledge on the basics of Electrical Safety													
CO2		Knowledge about the operation of the Safety equipments													
CO3		Knowledge on the safety procedures													
CO4		Familiarity on the electrical safety codes													
CO5	Ability to become consultant and to attend the Vendors.														
Mapping of Course Outcomes with Program Outcomes (POs)															
COs/POs		PO1	PO2	PO3	PO	94	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	PO9	PO1	0 PO	11	PO12
CO1		H	Μ	L	N	/[	H	H	H	M	M	L	N	1	Μ
CO2		H	H	L	N	1	M	H	H	H	M	M	H	Ĩ	H
CO3		M	Μ	M	<u> </u>	1	L	M	M	M	H	M	N	1	L
CO4		H	L	H	N	/[	M	L	L	L	L	H	I		M
CO5		L	M	<u>M</u>			H		M	M	M	M	N	1	Μ
Cos / PSOs		PS	01	P	<u>802</u>		<u>PS</u>	03	PS	04	PS	05			
		<u> </u>	l		M		<u>N</u>	<u>/                                     </u>	N	<u>/</u>		H T			
CO2			1					/ <u> </u>		/ <b>I</b>					
<u>CO3</u>			I T		<u>п</u> М		1 N	1 Л		 Л		r r			
C04		N	1		L			л Л		<u>и</u> Л	1	L M			
H/M/L indic	ates	Streng	th of Co	orrelati	on l	H- Hi	igh. M-	- Mediı	ım. L-L	ow		•			
Category	<b>Basic Sciences</b>	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills						
					$\geq$										



# BEE18E13SAFETY FOR ELECTRICAL ENGINEERS30/00/03

# UNIT I GENERAL PRINCIPLES OF ELECTRIC SAFETY

Electricity and Human Body – Earthing – Grounding – General Inspection and testing requirement for electrical safety equipment – Flash and thermal production – head and Eye Protection – Electricians Safety kits

# UNIT II HAZARDS IN ELECTRICITY

Lighting Hazards - Hazardous area –Hazard Analysis – shock effect - Electrical Insulation – Electrical fires – Arc Flash – Arc energy – arcing voltage – Injury and death – Protective Strategies - Eectrical safety in hospitals

## UNIT III REGULATORY OF SAFETY REQUIREMENT AND STANDARDS

Risk assessment and Management – Safety against over voltage, extra-low and residual voltages – safety practice – Safety Audits – ANSI-IEEE Electrical safety code – Electrical standards at work place – Accident prevention

# UNIT IV SAFETY PROCEDURES

Residual current detectors - effects of electric and magnetic fields and electromagnetic radiation – electro surgical hazards – electrical fires and their investigation – Indian electricity safety Act – Area Classification – Safety issues with emerging energy sources

# UNIT V SAFETY TRAINING METHODS

Introduction – Elements of a Training Program – On the Job Training – Training Consultants and Vendors-Training Program Setup – Step by Step Method electrical safety

# Total No of Hours : 45

#### **Text Book:**

1. Electrical safety handbook - john cadick - McGRAW-HILL, Third Edition

9

# **9**

9

#### 9



Subject Code:		Subjec PROT	t Nam ECTIC	e: WII DN AN	DE A ID CO	REA ONTI		T /L/	L	T / S.Lr	P/ R	C			
BEE18E14	_	Prerec	uisite:									3	0/0	0/0	3
L : Lecture 7	`: T	utorial	SLr:	Super	vised	Lean	ning P	: Proie	ct R : F	Researc	h C: Cre	dits			
T/L/ETL : T	heor	y/Lab/	Embed	led Th	eory	and L	ab	· • J ·							
OBJECTIV	E:														
• To k	now	v about	the Pha	sor M	easur	emen	t Unit a	and its	importai	nce					
• To in	npa	rt knov	vledge o	on Stat	e Esti	matic	on and	the Op	timal pla	acemen	t of PM	U			
• To a	ttain	ı famili	arity or	Wide	Area	Mea	sureme	ent Sys	em						_
• To h	ave	a wide	e spread	l know	ledge	e abou	it the l	Protect	ion sche	emes an	d the D	ynam	ic mod	el of l	Power
Syst	em	y the learnt concept for the real time issues.													
	ppiy	COMES (Cos): (3-5)													
COURSE O		Familiarity in PMU													
		Acquired knowledge in State estimation and the Optimal Placement of PMU													
002															
CO3		Familiarity on Wide Area Measurements													
CO4		Attained a wide spread knowledge about the Protection Schemes													
CO5 Ability to apply the concepts for real time															
Mapping of Course Outcomes with Program Outcomes (POs)															
COs/POs		PO1	PO2	PO3	PC	)4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO1</b>	0 PO	11	PO12
CO1		H	Η	Μ	]	Ĺ	Μ	Η	L	Н	Μ	L	I	I	Μ
CO2		H	Μ	Η	Ι	N	H	Μ	L	Μ	L	Μ	N	1	L
CO3		Η	Η	Η	]	H	L	Μ	Η	Η	Μ	Μ	I	I	Μ
CO4		H	Η	Μ	Ι	N	L	Μ	Μ	Μ	L	Η	N	1	L
CO5		H	Μ	Μ	]	Ĺ	Μ	Μ	Н	Μ	L	Μ	Ν	1	L
Cos / PSOs		PS	01	P	SO2		PS	03	PS	04	PS	05			
CO1		H	[		L		I	I	I		]				
CO2		H	[		L		I	I	I		N	Л			
<u>CO3</u>		H	[		L		<u> </u>	<u>/</u>	I		N	<u>/</u>			
<u>CO4</u>					<u>H</u>		<u>1</u>	<u> </u>	l l	<u>1</u>		<u>/I</u>			
	-	<u>C</u> turan a	th of C		H		1 M de 1	1 Madir		/ <u>1</u>	1	1			
H/M/L Indic	ates	Streng		orrelati	lon	н- п	ign, M·	- Mean	ım, L-L	ow					
Category	<b>Basic Sciences</b>	Engineering Sciences	Humanities an Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technic Skill	Soft Skills						



# BEE18E14 WIDE AREA MONITORING PROTECTION AND 3 0/0 0/0 3 CONTROL

# UNIT I INTRODUCTION

PMU – History of PMU – Basic definition of Synchrophasor, Frequency, Accuracy Indexes – Sensors of PMUs – PMU Architecture- Data Acquisition System – Communication & Data Collector- Distributed PMU-International Standards.

# UNIT II STATE ESTIMATION AND PMUS

 $\label{eq:second} \begin{array}{l} \mbox{Introduction} - \mbox{Formulation of the SE problem} - \mbox{SE measurement Model} - \mbox{SE Classification} - \mbox{Role & Impact of PMU in SE} - \mbox{PMU based Transmission System SE and Distribution SE} - \mbox{Optimal PMU Placement} - \mbox{SE} \mbox{Applications} - \mbox{Automation Architecture with integrated PMU Measurement for SE} \end{array}$ 

# UNIT III WIDE AREA MEASUREMENT SYSTEMS

WAMS – Definition, Data resource, Communication Systems, Applications- Monitoring System Components – Substation Configuration and Communication – Substation Monitoring System- Voltage Stability Assessment – Adaptive load shedding -

# UNIT IV SMART GRID

Smart Transmission grid – Demands & Requirement– Wide Area Disturbances – SIPS Architecture – Components and Applications - Dynamic Model of large Power system- Eigen Values & Eigen vectors – Optimization model for equilibrium tracing – Q-V Sentivity – Small Signal Stability Analysis

# UNIT V WAMPAC APPLICATION

WAMPAC Application in Frequency Stability, Voltage Stability, Transient Stability, Small Signal Stability

# **Total No of Hours** : 45

# **TEXT BOOKS:**

- 1. Antonello Monti, Carlo Muscas, Ferdinanda Ponci, Phasor Measurement Units and Wide Area Monitoring Systems, Elsevier
- 2. Alfredo Vaccaro, Ahmed Faheem Zobaa, Wide Area Monitoring, Protection and Control Systems, IET

# **REFERENCE BOOKS:**

- 1. Begovic, Miroslav, M, Electrical Transmission Systems and Smart Grids, Springer
- 2. Fahd Hashiesh, Mansour, MM, Hossam E Mostafa (2011), Wide Area Monitoring, Protection and Control, Lambert

9

9

9

9



Subject Codo:	Subje	et Nam	e: ROI	BOT	ICS A	ND A	UTON	IATIO	N	Т	L	T/	P/	С
Code: BEE18E15										/L/ ETL		S.Lr	ĸ	
	Prerec	quisite:								T	3	0/0	0/0	3
L : Lecture T : 7	Futorial	SLr:	Super	vised	Lear	ning P	: Proie	ct R : F	Researc	h C: Cre	dits			
T/L/ETL : Theo	ry/Lab/	Embed	ded Th	eory	and L	ab								
<b>OBJECTIVE:</b>	2			2										
To intro	duce th	e basic	concep	ots an	d part	ts of ro	bots.							
To under	erstand	the wor	king of	robc	ots and	1 vario	us type	s of rob	ots.					
To mak	e the stu	idents f	amilia	with	the v	various	drive s	systems	of robo	ts, senso	ors an	d their a	applic	ations
in robot	s and p	rogrami	ming of	f robo	ots.									
To discu	uss the	uss the various application of robots, justification and implementation of robots.												
To stud	<i>i</i> about the manipulators, activators and grippers and their design considerations													
COURSE OUT	COMES (Cos): (3-5)													
C01	Knowledge on Robots													
CO2	Ability	Ability to understand the working of robots and various types of robots.												
CO3	Knowl	Knowledge on various drive systems of robots, sensors and their applications in robots and												
COA	progra	programming of robots.												
CO4	Knowledge on various application of robots, justification and implementation of robots.													
CO5	Attained knowledge on manipulators, activators and grippers and their design													
Considerations       Manning of Course Outcomes with Program Outcomes (POs)														
COs/POs	of Course Outcomes with Program Outcomes (POs)													
COS/FOS	<u>гог</u> н	F02	<u>гоз</u> М		)4 LT	105 I	T U0	<u>FU/</u>	ruo M	T U9	<u>гот</u> м		II . T	F012 T
	<u>н</u> Ч		Н		М	M	I I	M	T	L M	M		т 1	M
CO2	<u>н</u>	M	M	1	HI I	M	I	H	M	H	H	N	1	M
CO4	<u>M</u>	Н	I		M	T		M	I	M	 M	T	1	T
CO5	L	M	M		M	M	M	L	M	M	M		1	M
Cos / PSOs	PS	01	Р	SO2		PS	03	PS	04	PS	05		-	
CO1	F	I I	_	M		I		N	<u>л</u>		Л			
CO2	Ν	1		Μ		N	Λ	H	Ŧ	I	H			
CO3	Ν	1		Н		N	Л	Ν	Λ	Ν	Л			
CO4	Ν	1		Μ		I	I	I		]				
CO5	H	I		Μ		N	Л	I		N	Л			
H/M/L indicates	s Streng	th of C	orrelati	on	H- Hi	igh, M	- Medi	ım, L-L	ow					
	es	anc					ica							
	enc			es		ct	chn							
es	.i.j	ces	ø	ctiv	es	oje	Te							
				a di	2	5	/							
>	ng S	es tien	õ	Ē			S	S						
gory	sering S	nities Scien	m Coi	m Ele	Electi	:al / ]	ships	kills						
ategory ic Science	gineering S	manities vial Scien	gram Coi	gram Ele	en Electi	ctical / ]	ernships 11	ît Skills						
Category Basic Scienc	Engineering S	Humanities Social Scien	Program Co	Program El	Open Electi	Practical / ]	Internships Skill	Soft Skills						



# BEE18E15ROBOTICS AND AUTOMATION3 0/0 0/0 3

# UNIT I INTRODUCTION

Anatomy of robotics – History & Terminology of Robotics – various generations of robots – degrees of freedom – Asimov's laws of robotics

# UNIT II SENSORS IN ROBOTICS

Position sensors – optical, non-optical, Velocity sensors, Accelerometers, Proximity Sensors – Contact, non-contact, Range Sensing, touch and Slip Sensors, Force and Torque Sensors.

## UNIT III MANIPULATORS, ACTUATORS AND GRIPPERS

Construction of manipulators – manipulator dynamics and force control – electronic and pneumatic manipulator control circuits – end effectors – U various types of grippers – design considerations

## UNIT IV ROBOTICS IN MATERIAL HANDLING

General considerations in robot material handling – material transfer application – pick & place operations – machine loading & unloading – characteristics of robot application – Robot cell design – processing operations – Spot welding, Spray painting, Plastic moulding, forging

## UNIT V ROBOTICS IN FUTURE

Robot intelligence, Advanced Sensors, Capabilities, Tele robotics, Mechanical design Features, Mobility, locomotion and Navigation. The universal Hand Systems Integration and Networking

#### Total No of Hours : 45

#### **TEXTBOOKS:**

- 1. Mikell P. Weiss G.M., Nagel R.N., Odraj N.G., Industrial Robotics, McGraw-Hill Singapore,
- 2. Ghosh, Control in Robotics and Automation: Sensor Based Integration, Allied Publishers, Chennai, 1998.

#### **REFERENCE BOOKS:**

- 1. Deb.S.R., (1992), Robotics technology and flexible Automation, John Wiley.
- 2. Asfahl C.R., (1992), Robots and manufacturing Automation, John Wiley.
- 3. Klafter R.D., Chimielewski T.A., Negin M., (1994)., Robotic Engineering An integrated approach, Prentice Hall of India.
- 5. Mc Kerrow P.J. (1991)., Introduction to Robotics, Addison Wesley.
- 6. Issac Asimov (1986.), I Robot, Ballantine Books, New York.

9

9

9

9



Subject Code:		Subjec	ct Nam	e: IMA	AGE	PRO	CESSI	NG			T /L/	L	T / S.Lr	P/ R	C			
BEE18E10		Prereg	uisite:								T	3	0/0	0/0	3			
L : Lecture	$\Gamma: T$	utorial	SLr :	Super	vised	Lear	ning P	: Proje	ct R : I	Researc	h C: Cre	edits						
T/L/ETL : T	heor	y/Lab/	Embed	ded Th	eory	and L	ab											
OBJECTIV	<b>'E:</b>																	
• To a	apply	/ transf	formation	on tech	nique	es in I	Digital	Image	Process	ing								
• To :	apply	/ techn	iques ir	i imag	e enha	ancen	nent, re	storati	on, com	pressio	n, segme	entatio	on etc					
• To	learn	rn image restoration and image compression TCOMES (Cos): (3-5)																
COURSE C	DUT	Canability to transform techniques in Digital image processing																
		Capability to transform techniques in Digital image processing																
<u>CO2</u>	- '	Capable to apply techniques in image enhancement																
<u>CO3</u>		Ability to process and restore images																
<u>CO4</u>		Ability to segment the images																
<u>CO5</u>		Attain knowledge on implementing various algorithm in image processing																
Mapping of	Cou	ourse Outcomes with Program Outcomes (POs)																
COS/POS			PO2	PO3	PC	)4 	<u>P05</u>	PO6	P07	PO8	P09	POI	0 PO	11 1	<u>PO12</u>			
		H	H	NI T				M	H	IVI	IVI T			1				
<u>CO2</u>							<u>M</u>											
<u>CO3</u>		H	H	H	1			H	H	H	H		1	1	<u>H</u>			
<u>CO4</u>		H	H	H			H	H	H	H	H			1	H			
<u>CO5</u>				M		1	H				M		N	1	M			
Cos / PSOs		P50	01 •	ľ	<u>502</u>		<u>P5</u>	03	PS	04	PS	05						
		<u>N</u>	1		H M		<u> </u>	<u>/I</u>										
$CO_2$			1					/1	1		1	VL r						
<u>CO3</u>			 Л				 		r I		1	L r						
C04		N 	1 T		n T		N	<u>1</u> 1	1	п <u>.</u> Г	ر ۲							
H/M/L indic	ates	Streng	∎ th of Co	orrelat	ion	H- H	ioh M.	- Mediı	ım L-I	.0W		VI						
	accs						1, 11	al	, 111, 12 L									
Category	Basic Sciences	Engineering Sciences	Humanities an Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technic Skill	Soft Skills									
					_													



BEE18E16	IMAGE PROCESSING	3	0/0	0/0	3

#### UNIT I DIGITAL IMAGE FUNDAMENTALS AND TRANSFORMS

Elements of visual perception – Image sampling and quantization Basic relationship between pixels – Basic geometric transformations-Introduction to Fourier Transform and DFT – properties of 2D Fourier Transform – FFT – Separable Image Transforms - Walsh – Hadamard – Discrete Cosine Transform, Haar, Slant – Karhunen – Loeve transforms.

# UNIT II IMAGE ENHANCEMENT TECHNIQUES

Spatial Domain methods: Basic grey level transformation – Histogram equalization – Image subtraction – Image averaging –Spatial filtering: Smoothing, sharpening filters – Laplacian filters – Frequency domain filters : Smoothing–Sharpening filters-Homomorphic filtering.

## UNIT III IMAGE RESTORATION

Model of Image Degradation/restoration process – Noise models – Inverse filtering -Least mean square filtering – Constrained least mean square filtering – Blind image restoration – Pseudo inverse – Singular value decomposition.

## UNIT IV IMAGE COMPRESSION

Lossless compression: Variable length coding – LZW coding – Bit plane coding- predictive coding-DPCM. Lossy Compression: Transform coding – Wavelet coding – Basics of Image compression standards: JPEG, MPEG, Basics of vector quantization.

#### UNIT V IMAGE SEGMENTATION AND REPRESENTATION

Edge detection – Thresholding - Region Based segmentation – Boundary representation: chair codes- Polygonal approximation – Boundary segments – boundary descriptors: Simple descriptors-Fourier descriptors - Regional descriptors –Simple descriptors- Texture- Implementation of various algorithms in image processing using related simulation packages.

## Total No of Hours : 45

# **TEXT BOOKS:**

1. Rafael C Gonzalez, Richard E. Woods, (2003) Digital Image Processing.2nd Ed. Pearson Education.

#### **REFERENCE BOOKS:**

- William K. Pratt, (2001) Digital Image Processing. John Willey.. ChandaDutta Magundar, (2000) Digital Image Processing and Applications. Prentice Hall of India:
- 2. Millman Sonka, Vaclav hlavac, Roger Boyle, Broos, colic,(1999) Image Processing Analysis and Machine Vision. Thompson Learning
- 3. Jain, A.K.(1995) Fundamentals of Digital Image Processing. New Delhi: PHI.

9

9

9

9



Code: BEE18E17       /L/ ETL       S.Lr       K         Prerequisite:       T       3       0/0       0/0       3         L : Lecture T : Tutorial       SLr : Supervised Learning P : Project R : Research C: Credits       T/L/ETL : Theory/Lab/Embedded Theory and Lab       0       3         OBJECTIVE:       •       To study about the importance of Substation and its types       •       To impart knowledge on Gas Insulated Substation and its working Principle       •       •       •         •       To know the working principle and characteristics of Air-Insulated Substations       •       •       •       •         •       To understand the Integration and Automation of Substations       •       •       •       •       •       •         COURSE OUTCOMES (Cos): (3-5)       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •													
DELIGENT       T       3       0/0       0/0       3         L : Lecture T : Tutorial       SLr : Supervised Learning P : Project R : Research C: Credits       T/L/ETL : Theory/Lab/Embedded Theory and Lab         OBJECTIVE:       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •													
L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits         T/L/ETL : Theory/Lab/Embedded Theory and Lab         OBJECTIVE:         • To study about the importance of Substation and its types         • To impart knowledge on Gas Insulated Substation and its working Principle         • To know the working principle and characteristics of Air-Insulated Substations         • To have a wide spread knowledge about High voltage Power Electronics Substation such as HVDC station         • To understand the Integration and Automation of Substations         COURSE OUTCOMES (Cos): (3-5)         CO1       Attained the knowledge about the importance of Substations and its types         CO2       Attained familiarity about the Gas insulated Substations and its principles         CO3       Familiarity in the working of Air-insulated Substations													
<ul> <li>Theory/Lab/Embedded Theory and Lab</li> <li>OBJECTIVE:         <ul> <li>To study about the importance of Substation and its types</li> <li>To impart knowledge on Gas Insulated Substation and its working Principle</li> <li>To know the working principle and characteristics of Air-Insulated Substations</li> <li>To have a wide spread knowledge about High voltage Power Electronics Substation such as HVDC station</li> <li>To understand the Integration and Automation of Substations</li> </ul> </li> <li>COURSE OUTCOMES (Cos): (3-5)</li> <li>CO1 Attained the knowledge about the importance of Substations and its types</li> <li>CO2 Attained familiarity about the Gas insulated Substations</li> </ul> <li>CO3 Familiarity in the working of Air-insulated Substations</li>													
OBJECTIVE:       • To study about the importance of Substation and its types         • To impart knowledge on Gas Insulated Substation and its working Principle         • To know the working principle and characteristics of Air-Insulated Substations         • To have a wide spread knowledge about High voltage Power Electronics Substation such as HVDC station         • To understand the Integration and Automation of Substations         COURSE OUTCOMES (Cos): (3-5)         CO1       Attained the knowledge about the importance of Substations and its types         CO2       Attained familiarity about the Gas insulated Substations         CO3       Familiarity in the working of Air-insulated Substations         CO4       Knowledge on High voltage Power Electronics Substation													
<ul> <li>To study about the importance of Substation and its types</li> <li>To impart knowledge on Gas Insulated Substation and its working Principle</li> <li>To know the working principle and characteristics of Air-Insulated Substations</li> <li>To have a wide spread knowledge about High voltage Power Electronics Substation such as HVDC station</li> <li>To understand the Integration and Automation of Substations</li> <li>COURSE OUTCOMES (Cos): (3-5)</li> <li>CO1 Attained the knowledge about the importance of Substation and its types</li> <li>CO2 Attained familiarity about the Gas insulated substations and its principles</li> <li>CO3 Familiarity in the working of Air-insulated Substations</li> </ul>													
<ul> <li>To impart knowledge on Gas Insulated Substation and its working Principle</li> <li>To know the working principle and characteristics of Air-Insulated Substations</li> <li>To have a wide spread knowledge about High voltage Power Electronics Substation such as HVDC station</li> <li>To understand the Integration and Automation of Substations</li> <li>COURSE OUTCOMES (Cos): (3-5)</li> <li>CO1 Attained the knowledge about the importance of Substation and its types</li> <li>CO2 Attained familiarity about the Gas insulated substations and its principles</li> <li>CO3 Familiarity in the working of Air-insulated Substations</li> </ul>													
<ul> <li>To know the working principle and characteristics of Air-Insulated Substations</li> <li>To have a wide spread knowledge about High voltage Power Electronics Substation such as HVDC station</li> <li>To understand the Integration and Automation of Substations</li> <li>COURSE OUTCOMES (Cos): (3-5)</li> <li>CO1 Attained the knowledge about the importance of Substation and its types</li> <li>CO2 Attained familiarity about the Gas insulated substations and its principles</li> <li>CO3 Familiarity in the working of Air-insulated Substations</li> </ul>													
<ul> <li>To have a wide spread knowledge about High voltage Power Electronics Substation such as HVDC station</li> <li>To understand the Integration and Automation of Substations</li> <li>COURSE OUTCOMES (Cos): (3-5)</li> <li>CO1 Attained the knowledge about the importance of Substation and its types</li> <li>CO2 Attained familiarity about the Gas insulated substations and its principles</li> <li>CO3 Familiarity in the working of Air-insulated Substations</li> <li>CO4 Knowledge on High voltage Power Electronics Substation</li> </ul>													
station         • To understand the Integration and Automation of Substations         COURSE OUTCOMES (Cos): (3-5)         CO1       Attained the knowledge about the importance of Substation and its types         CO2       Attained familiarity about the Gas insulated substations and its principles         CO3       Familiarity in the working of Air-insulated Substations         CO4       Knowledge on High voltage Power Electronics Substation													
<ul> <li>To understand the Integration and Automation of Substations</li> <li>COURSE OUTCOMES (Cos): (3-5)</li> <li>CO1 Attained the knowledge about the importance of Substation and its types</li> <li>CO2 Attained familiarity about the Gas insulated substations and its principles</li> <li>CO3 Familiarity in the working of Air-insulated Substations</li> <li>CO4 Knowledge on High voltage Power Electronics Substation</li> </ul>													
COURSE OUTCOMES (Cos): (3-5)CO1Attained the knowledge about the importance of Substation and its typesCO2Attained familiarity about the Gas insulated substations and its principlesCO3Familiarity in the working of Air-insulated SubstationsCO4Knowledge on High voltage Power Electronics Substation													
CO1Attained the knowledge about the importance of Substation and its typesCO2Attained familiarity about the Gas insulated substations and its principlesCO3Familiarity in the working of Air-insulated SubstationsCO4Knowledge on High voltage Power Electronics Substation													
CO2Attained familiarity about the Gas insulated substations and its principlesCO3Familiarity in the working of Air-insulated SubstationsCO4Knowledge on High voltage Power Electronics Substation													
CO3Familiarity in the working of Air-insulated SubstationsCO4Knowledge on High voltage Power Electronics Substation													
CO4 Knowledge on High voltage Power Electronics Substation													
CO5 Knowledge on the integration of Substation													
Mapping of Course Outcomes with Program Outcomes (POs)													
COs/POs         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12													
CO1     H     L     M     M     H     M     L     M     H     L													
CO2MMLMHMHMHM													
CO3HLLLHMLMMM													
CO4 H M M H M H H M M M M L													
CO5MMLHLHMHMHM													
Cos / PSOsPSO1PSO2PSO3PSO4PSO5													
CO1 H M H M L													
CO2MMHML													
CO3     M     H     H     M													
CO4     M     H     M     L													
CO5     L     M     H     M     M       UMALE NO.     0     1     0     1     0													
H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low													
en an													
Image: Sign and													



# BEE18E17 SUBSTATION DESIGNING 3 0/0 0/0 3

## UNIT I INTRODUCTION TO SUBSTATION AND ITS TYPES

Need for Substation – Budgeting – Traditional & Innovative Substation Design – Site Selection and Acquisition- Station Design – Station Construction – Station Commissioning- bas bar arrangements in Switchyard

# UNIT II GAS INSULATED SUBSTATION

Sulfur Hexafluoride – Construction – Circuit Breaker – Current and Voltage Transformers – Disconnect and Ground Switches – Interconnecting Bus – Air, Power Cable and Direct Transformer Connections – Surge Arrester – Control System – Gas monitoring System – Gas compartments and Zones – Electrical & Physical Arrangement – Grounding – Testing – Installation – Operation and Interlocks – Economics.

## UNIT III AIR-INSULATED SUBSTATIONS

Introduction – Single and Double Bus Arrangement – Main and Transfer Bus Arrangement – Double Bus-Single Breaker Arrangement – Ring Bus Arrangement – Breaker and a Half Arrangement – Comparison of Configurations

## UNIT IV HIGH VOLTAGE POWER ELECTRONIC SUBSTATION

High Voltage Power Equipments - Converter Station(HVDC) – FACTS Controllers – Control & Protection System – Losses and cooling – Civil works – Reliability and Availability – Future Trends

#### UNIT V SUBSTATION INTEGRATION AND AUTOMATION

Definitions and Terminology – Open Systems- Architecture Functional Data paths – Substation Integration and Automation Systems – New Vs Existing Substations – Equipment conditioning Monitoring – Substation Integration and Automation Technical issues – Protocol Fundamentals and Considerations – Communication Protocol Application Areas

## **Total No of Hours : 45**

# **TEXT BOOKS::**

- 1. John D, Mc Donald (2007), Electric Power Substations Engineering, 2nd Ed, CRC Press
- 2. Sunil, S, Rao (2010), Switchgear Protection and Power Systems, 4th Ed. Khanna Publishers

#### **REFERENCE BOOKS:**

- 1. Khedkar, MK, Dhole, GM, Electric Power Distribution Automation, University Science Press
- 2. Satnam, PS and Gupta PV, Substation Design & Equipment, Dhanpat Rai Publications

9

#### 9

9

# 9



Subject Code: BEE18E18	Subje	ct Nam Il	e: NDUST	TRIA		ONTR NTAT	OL AN		T /L/ FTI	L	T / S.Lr	P/ R	C	
DELIGEIO	Prerec	quisite:		JIKC						T	3	0/0	0/0	3
L : Lecture T :	Tutorial	SLr:	Superv	vised	Learr	ning P	: Proje	ct R : I	Researc	h C: Cre	edits			
T/L/ETL : The	ory/Lab/	Embed	ded The	eory a	and L	ab								
OBJECTIVE:														
• To	know a	bout for	ce, tor	que, v	veloci	ty .		1	•. •					
• 10 • To	learn th	understand the Pressure and Temperature measurement												
		COMES (Cos): (3-5)												
COURSE OU	Attain	Attain knowledge on Power Regulatory systems												
	Knowl	Knowledge on Controllers and converters												
CO3	Canab	Capable to use the techniques for temperature and pressure measurement												
CO4	Attain	Attain knowledge on Thermocouple and pyrometers												
CO5	Ability	Ability to work in an Instrumentation Industry												
Mapping of Co	ourse O	rse Outcomes with Program Outcomes (POs)												
COs/POs	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO								<b>PO8</b>	PO9	<b>PO1</b>	0 PO	11	PO12
CO1	Μ	L	H M		Л	Μ	Μ	L	Η	Μ	Μ	E	I	Μ
CO2	Μ	L	Н	H	I	L	Μ	L	Η	Н	L	E	Ι	H
CO3	Η	Μ	Η	H	I	Η	H	Μ	Η	Η	Η	E	I	Η
CO4	Η	Η	Η	I	I	Η	H	Η	Η	Η	Η	E	I	H
CO5	Η	Η	Н	H	I	Н	H	Н	Η	Н	Н	E	I	H
Cos / PSOs	PS	01	P	<b>SO2</b>		PS	03	PS	04	PS	05			
CO1	N	1		L		I	I	I	И	I	M			
<u>CO2</u>	N	<u>/</u>		L		H	<u>I</u>	]	I	]	<u>[</u>			
C03	l I	1		<u>M</u>		1	1		1. T	J	<u>H</u>			
C04	1 I	1 T		<u>н</u> u		1 I	1 J		1 T	]	1 T			
H/M/L indicate	s Streno	$\mathbf{I}$	orrelati	n l	H- Hi	ioh M.	I Mediu	ım I-I	. <b>I</b> OW		1			
Category			SITCIUL				gal	лп, <u>с</u> с						
8	nce	a		s			nnic							
	cie	es		ive	S	ject	[ec]							
	ço S	s	ore	lect	ive	Pro	L / :							
Ciel Ciel	erin	itie Sci	n C	пE	lect	la /	nips	ills						
S S	ine	nan ial	grar	grar	пE	tic	rnsł 1	Sk						
3asi	ung	Hun Soci	Pro	Pro	odc	Prac	Inte	Soft						
				_	~		~~~~	•4			1			



# BEE18E18 INDUSTRIAL CONTROL AND INSTRUMENTATION 3 0/0 0/0 3

## UNIT I REGULATORY POWER SUPPLY

Overview of Switching Regulators and switch mode power supplies – Uninterrupted Power Supplies – Solid state circuit breakers - PLC

## UNIT II CONTROLLERS AND CONVERTERS

Analog Controllers – Proportional controllers – Proportional Integral Controllers – PID Controllers – Feed forward Controllers – Signal Conditioners – Instrumentation Amplifiers – Voltage to Current, Current to Voltage , Voltage to Frequency , Frequency to Voltage Converters – Isolation Circuits

## UNIT III PRESSURE MEASUREMENT

Units of pressure - Manometers - Different types - Elastic type pressure gauges - Bourdon type bellows - Diaphragms - Electrical methods - Elastic elements with LVDT and strain gauges - Capacitive type pressure gauge - Piezo resistive pressure sensor - Resonator pressure sensor - Measurement of vacuum - McLeod gauge - Thermal conductivity gauges - Ionization gauge, cold cathode and hot cathode types - Testing and calibration of pressure gauges - Dead weight tester.

## UNIT IV THERMOCOUPLE

Thermocouples – Laws of thermocouple – Fabrication of industrial thermocouples – Signal conditioning of thermocouples output – Thermal block Reference Books functions – Commercial circuits for cold junction compensation – Response of thermocouple – Special techniques for measuring high temperature using thermocouples – Radiation methods of temperature measurement

#### UNIT V APPLICATION IN INDUSTRIES

Stepper Motors and Servo motors – Control and Application – Servo Amplifiers – Selection of Servo motor and Application – Fibre Optics – Barcode Equipment and Application of Barcode in Industry

## **Total No. of Hours :45**

# **TEXT BOOKS:**

- 1. Doebelin, E.O.(2003) Measurement Systems Application and Design. Tata McGraw Hill publishing company.
- 2. Jain, R.K. (1999) Mechanical and Industrial Measurements. New Delhi: Khanna Publishers.
- 3. Michael Jacob,(1988) 'Industrial Control Electronics Applications and Design', Prentice Hall
- 4. Thomas, E.Kissel, (2003) Industrial Electronics, PHI

#### **Reference Bookss**

- 1. Patranabis, D.(1996) Principles of Industrial Instrumentation. Tata McGraw Hill Publishing Company Ltd.
- 2. Sawhney, A.K. and Sawhney, P.(2004) A Course on Mechanical Measurements, Instrumentation and Control Dhanpath Rai and Co.
- 3. Nakra, B.C. & Chaudary, B.C.Instrumentation Measurement & Analysis.Tata McGraw Hill Publishing Ltd.
- 4. Singh, S.K.(2003) Industrial Instrumentation and Control. Tata McGraw Hill.
- 5. Eckman, D.P. Industrial Instrumentation. Wiley Eastern Ltd.

9

9

9

9



Subject Code:		Subje	et Nam	e: ELF	CTF	RIC T	<b>TRAC</b>	FION			T /L/	L	T / S.Lr	P/ R	C
BEE18E19		Prerec	quisite:								ETL T	3	0/0	0/0	3
L : Lecture	Г : Т	utorial	SLr:	Superv	vised	Learr	ning P	: Proje	ect R:	Researc	h C: Cre	edits			
T/L/ETL : T	heor	y/Lab/	Embed	ded Th	eory	and L	ab								
OBJECTIV	<b>E</b> :		_												
•	To k	now a	bout tra	ction d	rive		_			~ .					
•	To e	estimate motor rating with Reference Books to Indian Standards apply concepts in electrical Machines													
		COMES (Cos): (3-5)													
COURSE C		Familiarity in Traction drive and its services													
		Canable to estimate motor rating with Reference Books to Indian Standards													
C02		Capable to apply concepts in Electrical machines													
CO4		Attain knowledge on special electric drive													
C05		Capable to model equivalent system of motor load.													
Mapping of	° Cor	capable to model equivalent system of motor foad. urse Outcomes with Program Outcomes (POs)													
COs/POs		PO1	PO2	PO3	PC	)4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	<b>PO1</b>	0 PO	11	PO12
CO1		Μ	Μ	М	]	L	Н	Μ	Μ	Μ	L	Н	N	1	М
CO2		Μ	Н	Μ	]	L	Н	Н	L	Μ	L	Н	I	I	L
CO3		L	Н	Н	Ν	M	Η	H	Н	H	Μ	Н	I	I	Η
CO4		Η	Н	Н	]	Η	Н	Н	Н	H	Η	Н	I	I	Η
CO5		H	Н	Н		H	Н	Η	Н	H	Η	Н	I	I	H
Cos / PSOs		PS	01	P	SO2		PS	03	PS	<b>504</b>	PS	505			
CO1		N	1		L		I	H	I	М	l	М			
CO2		N	1		L		I	Η	]	H		L			
CO3		E	I		Μ		ŀ	H	]	H	]	H			
<u>CO4</u>		H	I		H		<u> </u>	<u>I</u>		<u>H</u>		H			
CO5		<u>L</u>	l that C		H	11 11		H Maili		H		H			
H/M/L indic	ates	Streng	th of C	orrelati	on	H- H1	ign, M	- Medi	um, L-L	LOW					
Category	Basic Sciences	Engineering Sciences	Humanities an Social Sciences	Program Core	V Program Electives	Open Electives	Practical / Project	Internships / Technic: Skill	Soft Skills						



## ELECTRIC TRACTION 3

## UNIT I INTRODUCTION

**BEE18E19** 

Basic drive components, classification and operating modes of electric drive, nature and type of mechanical loads, review of speed torque, characteristics of electric motors and load, joint speed torque characteristics. **Electric Braking:** Plugging, dynamic and regenerative braking of DC and AC motors.

# UNIT II DYNAMICS OF ELECTRIC DRIVES SYSTEM

Equation of motion, equivalent system of motor load combination, stability considerations, electro mechanical transients during starting and braking, calculation of time and energy losses, optimum frequency of starting.

## UNIT III TRACTION DRIVE

Electric traction services, duty cycle of traction drives calculations of drive rating and energy consumption, desirable characteristics of traction drive and suitability of electric motors, control of traction drives. Energy Conservation in Electric Drive: Losses in electric drive system and their minimization energy, efficient operation of drives, load equalization.

# UNIT IV ESTIMATION OF MOTOR POWER RATING

Heating and cooling of electric motors, load diagrams, classes of duty, Reference Books to India standards, estimation of rating of electric motors for continuous, short time and intermittent ratings.

#### UNIT V SPECIAL ELECTRIC DRIVE

Servo motor drive, step motor drive, linear induction motor drive, permanent magnet motor drive. Selection of electric drive: Selection criteria of electric drive for industrial applications, case studies related to steel mills, paper mills, textile mills and machine tool etc.

# **Total No of Hours** : 45

#### **TEXT BOOKS:**

- 1. Dubey, G.K. (1995) Fundamentals of Electric Drive. Narosa Publishing House.
- 2. Chilkin, M. Electric Drive. Mir Publications.

#### **REFERENCE BOOKS:**

- 1. Pillai, S.K. A first course on Electric Drive. New age international publishers.
- 2. Dev, N.K. Sen, P.K. (1999) Electric Drives. Prentice Hall of India.
- 3. Vedam Subhramanyam, (1994) Electric Drive : Concepts and Applications. Tata McGraw Hill.

9

3

0/0

0/0

9 ls.

#### 9

# 9



Subject Code: BEE18E20	Subject VOL7	ct Nam FAGE I	e: ELE ENGIN	CTRIC EERIN(	TRANS 3	HIGH	T /L/ ETL	L	T / S.Lr	P / R	C			
	Preree	quisite:							I	3	0/0	0/0	3	
L : Lecture T : Tut	orial S	Lr : Sup	pervised	l Learnin	g P : P	roject I	R : Rese	earch C:	Credits					
T/L/ETL : Theory/	Lab/Em	bedded	Theory	and Lab										
OBJECTIVE:	ل مد ا مد م	~~! <u>.</u> 1	م ارسم			Deres V	-14	n d Turn						
• To underst	and and	whether we were and the switching operation in Transmission lines												
<ul> <li>To impart</li> <li>To provide</li> </ul>	kilowied	lge on T	lao on (	Ig waves	and the		ing ope	f Lligh I	1  Transi	Inssic	n mes	togog		
• To provide	strong i	v about	the Inc	ulators or	ni anu N	reasure			JC, AC, f Inculat	ore fo	inse vor	linges	n an	
• To acquire	knowle	y about dge on t	testing (	of variou	s Flectr	ical An	naratus	types 0	i msuiai	.015 10		man	/11	
COURSE OUTC	OMES (	(ES (Cos): (3-5)												
CO1	Acqui	Acquire knowledge on sources of Over Voltage and Transients												
CO2	Famili	Familiar to Travelling waves and the switching operation in Transmission lines												
CO3	Acqui	Acquire knowledge on Generation and Measurement of High DC, AC, Impulse voltages												
CO4	Famili	Familiarity to Insulators and analyze the various types of Insulators for coordination												
CO5	knowl	knowledge on testing of various Electrical Apparatus												
Mapping of Course Outcomes with Program Outcomes (POs)														
COs/POs	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO1</b>	0 PO	11	PO12	
CO1	Μ	Μ	Μ	Н	Н	L	Н	L	Μ	L	I	I	L	
CO2	Μ	Μ	Η	L	Μ	Μ	Η	Μ	Η	Μ	I	I	L	
CO3	Μ	Μ	L	L	L	L	Η	L	Η	L	H	ł	L	
CO4	Η	Η	L	Μ	L	Μ	Η	Μ	Η	Μ	I	I	L	
CO5	Μ	Μ	Μ	Н	Μ	L	Н	L	Η	Η	I	ł	Н	
Cos / PSOs	PS	01	PS	<b>SO2</b>	PS	03	PS	<b>SO4</b>	PS	05				
CO1	I			H	]	H	I	Μ	N	A				
CO2	Ν	1		Μ	I	N	]	H	]	L				
CO3	I			L	1	Μ	1	Μ	ŀ	H				
CO4	I	I		H	]	H	l	M	]	[				
		$\frac{\Lambda}{1}$	1	<u>M</u>		L 1'								
H/M/L indicates S	rength c		lation	H- High	, M- M	edium,	L-Low							
Category Basic Sciences	Engineering Sciences	Humanities an Social Sciences	Program Core	Program Electives Open Electives	Practical / Project	Internships / Technics Skill	Soft Skills							



#### **BEE18E20** ELECTRIC TRANSIENTS AND HIGH VOLTAGE 0/0 3 3 0/0 ENGINEERING

#### UNIT I **OVER VOLTAGE & TRANSIENTS**

Power System Transients – Types - Over Voltage due to Lightning– Characteristics – Theory of Formation of Cloud - Mechanism of Lighting - Over Voltage due to Switching Surge - Characteristics - Current Suppression - Current Chopping - Capacitance Switching - Multiple Re-striking Transients - Ferro **Resonance-** Tower Footing Resistance

#### **UNIT II TRAVELLING WAVES & TRANSIENTS ON TRANSMISSION LINES**

Circuits with Distributed Constants - Wave Equation - Reflection & Refraction of Travelling waves - Behavior of Travelling waves at Line Terminations – lattice Diagrams – Attenuation and Distortion of Travelling waves – Switching Operation involving Transmission lines - Multi conductor systems and Multi velocity waves -Switching Surges on an Integrated System

#### UNIT III **GENERATION OF HIGH VOLTAGE**

Generation of Direct Voltages - AC to DC Conversion- Electrostatic Generators - Alternating Voltages -Testing Transformers - Series Resonant Circuits- Impulse Voltages - Impulse Voltage Generator Circuitsoperation, Design & Construction of Impulse Generators- Control Systems

#### **UNIT IV MEASUREMENT OF HIGH VOLTAGES**

Measurement of AC, DC, Impulse Voltage, Switching Surge Voltages-Peak Voltage Measurements by Spark Gap- Electrostatic Voltmeter- Generating Voltmeter- Measurement of Peak Voltmeters - Voltage Dividing System- Impulse voltage measurement- Fast Digital Transient recorders for impulse measurements

#### UNIT V **INSULATION COORDINATION & APPARATUS TESTING**

Insulation Characteristics- Types of Insulation- Insulation Level- Statistical Approach to Insulation Coordination - HV Testing Lab - Classification- Testing of Insulators - Bushing - Cables - Transformers -Surge Diverters

#### **TEXT BOOKS:**

- 1. Kuffel, E, Zaengl, WS, Kuffel, J, (2000) High Voltage Engineering Fundamentals, 2nd Ed
- 2. Naidu, MS, Kamaraju, V, High Voltage Engineering, Tata Mc Graw Hill
- 3. Allan Greenwood, (2012) Electrical Transients in Power Systems, John Wiley

# **REFERENCE BOOKS:**

- 1. Wadhwa, CL, High Voltage Engineering, New Age International Publishers
- 2. Akihiro Ametani, Naoto Nagaoka, Yoshihiro Baba, Teruo Ohno, (2013) Power System Transients: Theory and Applications, CRC Press.
- 3. Dieter Kind, Kurt Feser, (1999), High Voltage Test Techniques, SBA Electrical Engineering Series, New Delhi
- 4. Gallagher, T.J, and Pearmain A, (1983), High Voltage Measurements, Testing and Design, John Wiley & Sons

9

9

#### **Total No of Hours : 45**

9

9