

B.Tech. Robotics and Automation (Full Time) Curriculum – 2018 Regulation

	I SEMESTER										
S.NO.	SUBJECT	SUBJECT NAME	Ty/Lb	L	Τ/	P/R	С				
	CODE		/ETL		SLr						
1	BEN18001	Technical English –I	Ту	1	0/0	2/0	2				
2	BMA18001	Mathematics - I	Ту	3	1/0	0/0	4				
3	BPH18001	Engineering Physics –I	Ту	2	0/1	0/0	3				
4	BCH18001	Engineering Chemistry –I	Ту	2	0/1	0/0	3				
5	BES18001	Basic Electrical & Electronics Engineering	Ту	2	0/1	0/0	3				
6	BES18002	Basic Mechanical & Civil Engineering	Ту	2	0/1	0/0	3				
		PRACTICALS*									
1	BES18L01	Basic Engineering Workshop	Lb	0	0/0	2/0	1				
2	BES18ET1	Orientation To Entrepreneurship & Project	ETL	0	0/0	2/0	1				

Credits Sub Total: 20

	II SEMESTER									
S.NO.	SUBJECT	SUBJECT NAME	Ty/Lb	L	Τ/	P/R	С			
	CODE		/ETL		SLr					
1	BMA18003	Mathematics-II	Ту	3	1/0	0/0	4			
2	BPH18002	Engineering Physics –II	Ту	2	0/1	0/0	3			
3	BCH18002	Engineering Chemistry – II	Ту	2	0/1	0/0	3			
4	BES18003	Environmental Science*	NON	CRED	IT COU	RSE	NC			
		PRACTICALS*								
1	BEN18ET1	Communication Lab	ETL	1	0/0	2/0	1			
2	BES18ET2	Basic Engineering Graphics	ETL	1	0/0	2/0	2			
3	BES18L02	Integrated Physical Science Lab	Lb	0	0/0	2/0	1			
4	BES18ET3	C Programming and Lab	ETL	1	0/0	2/0	2			

Credits Sub Total: 16

TOTAL CREDITS: 36

C: Credits L: Lecture T: Tutorial S.Lr: Supervised Learning P: Problem / Practical R: Research Ty/Lb/ETL: Theory /Lab/Embedded Theory and Lab * Internal Evaluation

	III SEMESTER										
S.NO.	SUBJECT	SUBJECT NAME	Ty/Lb/	L	Τ/	P/R	С				
	CODE		ETL		SLr						
1	BMA18005	Mathematics-III for Mechanical and	Ту	3	1/0	0/0	4				
2	BME18003	Engineering Mechanics	Ту	3	1/0	0/0	4				
3	BRE18001	Electrical and Electronics Circuits	Ту	3	1/0	0/0	4				
4	BRE18002	Electrical Machines	Ту	3	0/0	0/0	3				
5	BRE18003	Basics of Robotics	Ту	3	0/0	0/0	3				
		PRACTICALS*									
1	BRE18ET1	Python Programming	ETL	1	0/1	3/0	3				
2	BRE18L01	Electrical & Electronic Circuits Lab	Lb	0	0/0	3/0	1				
3	BRE18L02	Electrical Machines Lab	Lb	0	0/0	3/0	1				

Credits Sub Total: 23

	IV SEMESTER									
S.NO.	SUBJECT	SUBJECT NAME	Ty/Lb/	L	Τ/	P/R	С			
	CODE		ETL		SLr					
1	BRE18004	Microprocessors and Microcontrollers	Ту	3	0/0	0/0	3			
2	BME18006	Strength of Materials	Ту	3	1/0	0/0	4			
3	BRE18005	Digital Electronics	Ту	3	1/0	0/0	4			
4	BRE18006	Instrumentation and Control for Robots	Ту	3	0/0	0/0	3			
5	BHS18NC1/	The Indian Constitution*/ The Indian	Ту	2	0/0	0/0	NC			
		PRACTICALS*								
1	BME18ET1	Machine Drawing	ETL	1	0/1	3/0	3			
2	BME18L11	Strength of Materials Lab	Lb	0	0/0	3/0	1			
3	BRE18L03	Instrumentation and Control Lab	Lb	0	0/0	3/0	1			
4	BRE18L04	Digital Electronics and Microprocessors	Lb	0	0/0	3/0	1			
5	BRE18TS1	Technical Skill-1	Lb	0	0/0	3/0	1			
6	BEN18SK1	Soft Skill –I (Career and Confidence	ETL	0	0/0	3/0	1			

Credits Sub Total: 22

C: Credits L: Lecture T: Tutorial S.Lr: Supervised Learning P: Problem / Practical R: Research Ty/Lb/ETL: Theory /Lab/Embedded Theory and Lab * Internal Evaluation

		V SEMESTER					
S.NO.	SUBJECT	SUBJECT NAME	Ty/Lb/	L	T /	P/R	С
	CODE		ETL		SLr		
1	BRE18007	Kinematics and Dynamics of Machinery	Ту	3	1/0	0/0	4
2	BRE18008	Programmable Logic Controllers	Ту	3	0/0	0/0	3
3	BME18014	CAD,CAM & CIM	Ту	3	0/0	0/0	3
4	BXX18EXX	Elective-I	Ту	3	0/0	0/0	3
5	BXX18OEX	Open Elective-I	Ту	3	0/0	0/0	3
		PRACTICALS*					
1	BRE18ET2	Linear Integrated Circuits	ETL	1	0/1	3/0	3
2	BRE18L05	CAD/CAM Lab	Lb	0	0/0	3/0	1
3	BRE18L06	Programmable Logic Controllers Lab	Lb	0	0/0	3/0	1
4	BRE18TS2	Technical Skill 2	Lb	0	0/0	3/0	1
5	BRE18L07	Industrial Training	Lb	0	0/0	3/0	1

Credits Sub Total: 23

		VI SEMESTER					
S.NO.	SUBJECT	SUBJECT NAME	Ty/Lb/	L	T/	P/R	С
	CODE		ETL		SLr		
1	BRE18009	Design of Machine Elements	Ту	3	1/0	0/0	4
2	BRE18010	Hydraulics and Pneumatics	Ту	3	0/0	0/0	3
3	BRE18011	Power Electronics and Drives	Ту	3	0/0	0/0	3
4	BXX18EXX	Elective II	Ту	3	0/0	0/0	3
5	BXX18EXX	Elective III	Ту	3	0/0	0/0	3
		PRACTICALS*					
1	BRE18L08	Industrial Automation Lab	Lb	0	0/0	3/0	1
2	BRE18L09	Power Electronics and Drives Lab	Lb	0	0/0	3/0	1
3	BEN18SK2	Soft Skill II (Qualitative and Quantitative	ETL	0	0/0	3/0	1
4	BRE18L10	Mini Project	Lb	0	0/0	3/0	1
5	BRE18TS3	Technical Skill 3	Lb	0	0/0	3/0	1

Credits Sub Total: 21

C: Credits L: Lecture T: Tutorial S. Lr : Supervised Learning P : Problem / Practical R : Research Ty/Lb/ETL: Theory/Lab/Embedded Theory and Lab *Internal evaluation

	VII SEMESTER									
S.NO.	SUBJECT	SUBJECT NAME	Ty/Lb/	L	T /	P/R	С			
	CODE		ETL		SLr					
1	BRE18012	Kinematics and Dynamics of Robots	Ту	3	1/0	0/0	4			
2	BRE18013	Industrial Applications of Robots	Ту	3	0/0	0/0	3			
3	BRE18014	Artificial Intelligence and Machine	Ту	3	0/0	0/0	3			
4	BXX18EXX	Elective IV	Ту	3	0/0	0/0	3			
		PRACTICALS*								
1	BRE18L11	Robot Programming Lab	Lb	0	0/0	3/0	1			
2	BXX18OLX	Open Lab	Lb	0	0/0	3/0	1			
3	BRE18L12	Project Phase -I	Lb	0	0/0	3/3	2			
4	BHS18FLX	Foreign Language	Lb	0	0/0	3/0	1			
			1		a 14	G 1 T	. 1 40			

Credits Sub Total: 18

	VIII SEMESTER									
S.NO.	SUBJECT	SUBJECT NAME	Ty/Lb	L	Τ/	P/R	С			
	CODE		/ETL		SLr					
1	BXX18OEX	Open Elective-II	Ту	3	0/0	0/0	3			
2	BMG18008	Engineering Economics and Industrial	Ту	3	0/0	0/0	3			
3	BXX18EXX	Elective-V	Ту	3	0/0	0/0	3			
	PRACTICALS*									
1	BRE18L13	Project Phase – II	Lb	0	0/0	12/12	8			

Credits Sub Total: 17

C: Credits L: Lecture T: Tutorial S.Lr: Supervised Learning P: Problem / Practical R: Research Ty/Lb/ETL: Theory /Lab/Embedded Theory and Lab * Internal Evaluation

CREDIT SUMMARY

Semester: 1	:	20 Credits
Semester: 2	:	16 Credits
Semester: 3	:	23 Credits
Semester: 4	:	22 Credits
Semester: 5	:	23 Credits
Semester: 6	:	21 Credits
Semester: 7	:	18 Credits
Semester: 8	:	17 Credits

TOTAL CREDITS - 160

	ELECTIVE -I									
S.NO.	SUBJECT	SUBJECT NAME	Ty/Lb/	L	Τ/	P/R	С			
	CODE		ETL		SLr					
		Elective: Mechanical Engineering								
1	BRE18E01	Maintenance and Safety Engineering	Ту	3	0/0	0/0	3			
2	BRE18E02	Micro Electro Mechanical Systems	Ту	3	0/0	0/0	3			
3	BRE18E03	Advanced Strength of Materials	Ту	3	0/0	0/0	3			
4	BRE18E04	Computer Integrated Manufacturing	Ту	3	0/0	0/0	3			
5	BRE18E05	Finite Element Analysis`	Ту	3	0/0	0/0	3			

Credits Sub Total: 15

		ELECTIVE -II					
S.NO.	SUBJECT	SUBJECT NAME	Ty/Lb/	L	Τ/	P/R	С
	CODE		ETL		SLr		
		Elective: Robotics					
1	BRE18E06	Automation System Design	Ту	3	0/0	0/0	3
2	BRE18E07	Industrial Networking	Ту	3	0/0	0/0	3
3	BRE18E08	Total Integrated Automation	Ту	3	0/0	0/0	3
4	BRE18E09	Micro Robotics	Ту	3	0/0	0/0	3
5	BRE18E10	Cognitive Robotics	Ту	3	0/0	0/0	3
6	BRE18E11	Cloud Robotics	Ту	3	0/0	0/0	3
7	BRE18E12	Medical Robotics	Ту	3	0/0	0/0	3
8	BRE18E13	Precision Equipment Design	Ту	3	0/0	0/0	3

Credits Sub Total: 24

	ELECTIVE –III									
S.NO.	SUBJECT	SUBJECT NAME	Ty/Lb/	L	Τ/	P/R	С			
	CODE		ETL		SLr					
		Elective: Electrical and Electronics								
		Engineering								
1	BRE18E14	Virtual Instrumentation	Ту	3	0/0	0/0	3			
2	BRE18E15	Advanced Microprocessors and Micro	Ту	3	0/0	0/0	3			
3	BRE18E16	Digital Control System	Ту	3	0/0	0/0	3			
4	BRE18E17	Special Machines and Controllers	Ту	3	0/0	0/0	3			

	ELECTIVE –IV											
S.NO.	SUBJECT	SUBJECT NAME	Ty/Lb/	L	T /	P/R	С					
	CODE		ETL		SLr							
		Elective: Electronics and										
		Communication Engineering										
1	BRE18E18	Digital Signal Processing	Ту	3	0/0	0/0	3					
2	BRE18E19	Embedded systems Design	Ту	3	0/0	0/0	3					
3	BRE18E20	Wireless Communication	Ту	3	0/0	0/0	3					
4	BRE18E21	VLSI Design	Ту	3	0/0	0/0	3					
5	BRE18E22	Internet of Things for Robot	Ту	3	0/0	0/0	3					

	ELECTIVE –V											
S.NO.	SUBJECT	SUBJECT NAME	Ty/Lb/	L	Τ/	P/R	С					
	CODE		ETL		SLr							
		Elective: Computer Science and										
		Engineering										
1	BRE18E23	Human Computer Interaction	Ту	3	0/0	0/0	3					
2	BRE18E24	Advanced Machine Learning	Ту	3	0/0	0/0	3					
3	BRE18E25	Randomized Algorithms	Ту	3	0/0	0/0	3					
4	BRE18E26	Graph Algorithms	Ту	3	0/0	0/0	3					
5	BRE18E27	Vision System and Image Processing	Ту	3	0/0	0/0	3					
6	BRE18E28	System Software	Ту	3	0/0	0/0	3					

SYLLABUS

SEMESTER – I

Subject (BEN180(Subje	ect Name:	TECH	INICA	L ENGI	LISH - I	-	/Lb TL	L	Т	/SLr	P/ R	С
DLIGOU	/1		P	rereau	site: No	one			l y	1		0/0	2/0	2
	e T : Tutoria Theory / La		upervised	l Learni	ng P : F		R : Resea		-	ts				
OBJECT	IVES:													
	ngthen their		•		cal and	business	situation	ns						
	practice in fu		-											
	n the effecti	•	•	Ũ										
give	n to give ins n passages. n learners in							prehend	land	infer t	he inf	formation	1 from	the
Students	completing t	he course				COMES	(COs): ((3 – 5)						
CO1	Strengthen	their activ	ve and tee	chnical	vocabul	lary								
CO2	Understand	l function	al gramm	ar and	gain pro	oficiency	in techr	nical wri	ting					
CO3	Learn the a prepare the	resume re	elevantly		-					_				
CO4	Learn to g from the gi				ons, rec	ommen	dations a	and com	prehe	nd an	id info	er the in	forma	tion
CO5	Focus on a				U									
	1		ing of Co		-		8					r		
COs/POs	s PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO		010	PO11	PO	
CO1				H							H		H	
CO2 CO3				H H		M			H		H H		H H	
CO3				H					H		H		H	
CO5				Н					Н		H		H	
	H/N	//L indic	ates stre	ngth of	correl	ation H	I – High	, M – M	lediu	n, L -	- Low	7	1	
Category	Basic Sciences	Engg Sciences	Humanities & Social Sciences	Denotion	core	Program Electives	Open	Electives	Practical /	120011	Internships /	Technical Skills	Soft Skills	
Approval			√											

DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code: BEN18001	Subject Name: TECHNICAL ENGLISH - I	Ty/Lb/E TL	L	T/SLr	P/R	С
	Prerequisite: None	Ту	1	0/0	2/0	2

UNIT IVOCABULARYBUILDING

The concept of Word Formation-Root words and affixes from foreign languages and their use in English to form derivatives-Homophones- Words often confused-Verbal analogy

BASIC WRITING SKILLS UNIT II

Using Idioms and phrases in sentences-Sentence structures: statements, interrogative and imperative-Use of Conditional/if' clauses in sentences-Importance of proper punctuation-Creating coherence with sentence markers-Organizing coherent paragraphs in essays

IDENTIFYING COMMON ERRORS IN WRITING UNIT III

Subject-verb agreement-Noun-pronoun agreement- Misplaced Modifiers-Articles-Prepositions- Redundancies and Clichés

UNIT IVWRITING PRACTICE- NATURE AND STYLE OF TECHNICAL WRITING

Describing Gadgets- Defining Concepts-Classifying Data-Comprehension-Essay Writing-Informal and Formal Letter Writing:

UNIT V ORAL COMMUNICATION AND INTERACTIVE LEARNING

(This unit involves interactive practice sessions in Language Lab)

Activities to develop knowledge in Word formation, Vocabulary and analytical thinking-Instructions and -Recommendations-Formal and Informal Registers in Speech-Listening and taking notes

Total no. of Periods: 30

TEXT BOOK:

- 1. Quest: A Textbook of Communication Skills, Vijay Nicole, 2017.
- 2. Pushkala, R, PadmasaniKannan S, Anuradha. V, ChandrasenaMRajeswaran

SUGGESTED READINGS:

(i) Practical English Usage. Michael Swan. OUP. 1995.

(ii) Remedial English Grammar. F.T. Wood. Macmillan.2007

(iii)On Writing Well.William Zinsser. Harper Resource Book. 2001

(iv) Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.

(v) Communication Skills. Sanjay Kumar and PushpLata.Oxford University Press. 2011.

(vi) Exercises in Spoken English. Parts.I-III. CIEFL, Hyderabad. Oxford University Press

(vi) Pronunciation in Use, Mark Hancock. Cambridge University Press. 2012

6

6

6

6

6

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

Subject Coc	le:	Subjec	et Name	: MATH	IEMAT	FICS – I			Ty/Lb/ ETL	L	T/SLr	P/ R	С	
BMA18001		Prereq	uisite: l	None					Ту	3	1/0	0/0	4	
L: Lecture, T/L/ETL: T							, R:]	Res	earch, C	: Credits	3			
OBJECTIV														
•	· · ·		-	ots in Alg	-									
•	Use the Identify		-	in Matrie		mater								
•	Underst		.		•	•	n							
•				ots in Fur				riab	oles					
	11.2		-	COURS)				
Students co	mpleting	the cou					,	,		, ,				
CO1	Find the	e summa	ation of	the give	n series	of binor	nial,	exp	onentia	l & loga	rithmic			
CO2				agonal	matrix	into a	n eo	quiv	alent d	liagonal	matrix u	ising or	thogonal	
		mation.												
CO3		nd expansion of trigonometric function into an infinite series and to separate a complex function to real and imaginary parts.												
CO4			0 3		in find	ing the c	leriv	ativ	e of give	en functi	on and to t	find the r	navima /	
0.04		of the g) III IIIIU	ing the t		auv	c or give				IIaxiiiia /	
CO5					erentiat	ion and i	maxi	ma	/ minim	a of a fu	nction of s	everal va	riables.	
		Мар	ping of	f Course	Outco	mes witl	n Pro	ogra	am Out	comes (l	POs)			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO	-	PO8	PO9	PO10	PO11	PO12	
CO1	Н	Н			Μ	Μ				Н	Н		Н	
CO2	Н	Н			Н	L							Н	
CO3	Н	Н			Μ					Μ	Н		L	
CO4	Н	Н			L					Μ	Н		Μ	
CO5	Н	Н				Μ				Μ	Μ		Н	
	H/N	/L ind	icates s	trength	of corr	elation	H –	Hi	gh, M –	Mediur	n, L – Low	7		
~		_		2 1)						_	scal		S	
Category	Basic Sciences	50	Sciences	& Social Sciences	Program	Program Electives		en	Electives	Practical / Project	Internships / Technical Skills		Soft Skills	
ateg	Basic	Engg	ciel	s So cier	rõg	rog		Open	lect	ractical Project	ternshi echnic Skills		oft S	
C	S	υ		S & II	P	Ц Ц Ц Ц			Щ	Pr I	Inl / T		Sc	
Approval														

Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code:	Subject Name: MATHEMATICS – I	Ty/Lb/ ETL	L	T/SLr	P/R	C
BMA18001	Prerequisite: None	Ту	3	1/0	0/0	4

UNIT I **ALGEBRA**

Binomial, Exponential, Logarithmic Series (without proof of theorems) - Problems on Summation, Approximation and Coefficients.

UNIT II MATRICES

Characteristic equation – Eigen values and Eigen vectors of a real matrix – Properties of Eigen values – Cayley - Hamilton theorem(without proof) – Orthogonal reduction of a symmetric matrix to Diagonal form.

UNIT III TRIGONOMETRY

Expansions of Sin n θ , Cos n θ in powers of Sin θ and Cos θ – Expansion of Tan n θ – Expansions of Sinⁿ θ and $\cos^{n}\theta$ in terms of Sines and Cosines of multiples of θ – Hyperbolic functions– Separation into real and imaginary parts.

UNIT IV DIFFERENTIATION

Basic concepts of Differentiation - Elementary differentiation methods - Parametric functions - Implicit function –Leibnitz theorem (without proof) – Maxima and Minima – Points of inflection.

UNIT V **FUNCTIONS OF SEVERAL VARIABLES**

Partial derivatives - Total differential - Differentiation of implicit functions - Taylor's expansion - Maxima and Minima by Lagrange's Method of undetermined multipliers – Jacobians.

Total no. of Periods: 60

TEXT BOOKS

- 1. Kreyszig E., Advanced Engineering Mathematics (10th ed.), John Wiley & Sons, (2011).
- 2. Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).

REFERENCES

- 1. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).
- 2. John Bird, Basic Engineering Mathematics (5th ed.), Elsevier Ltd, (2010).
- 3. P.Kandasamy, K.Thilagavathy and K. Gunavathy, Engineering Mathematics Vol. I (4th Revised ed.), S.Chand& Co., Publishers, New Delhi (2000).
- 4. John Bird, Higher Engineering Mathematics (5th ed.), Elsevier Ltd, (2006).

12

12

12

12

12

Subject Cod BPH18001	e:	Subje	ect Name	e: ENGI	NEERIN	NG PHYS	SICS - I	I Ty/		2 T/	SLr	P/R	C
		Prere	quisite:	None				Т	y 2	c C)/1	0/0	3
L: Lecture 7 T/L/ETL: T					0	Project F	R : Rese	arch C: C	redits	I		I	
OBJECTIV													
					-	ering & T usic conce		ogy.					
						ering & T		ogy.					
	-		-	ns using p	-	-	~ ~ 41 •	al offerst	wa ta alian				
• Proc		present						ıgh effecti			iumcauo)[]	
Students con	npleting	this cou	ırse wer		RSE OU	JTCOMI	ES (CO	s): (3 − 5)					
CO1	Demon	strate c	ompeter	ncy in uno	derstandi	ing basic	concep	ts.					
CO2	Utilize	scienti	fic met	hods for	formal	investig	ations	& demor	istrate c	ompetenc	y with	experime	ntal
	method	ls and v	erify the	concept	to conte	nt knowle	edge.						
CO3	Identify	y and pr	ovide so	olutions f	or engin	eering pro	blems.						
CO4	Relate	the tech	nical co	ncepts to	day to d	lay life an	d to pra	actical situ	ations.				
CO5	Think a	analytic	ally to in	nterpret c	oncepts.								
	1	N	Aapping	g of Cou	rse Outc	comes wit	h Prog	ram Outo	comes (P	Os)			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	2
CO1	Н	Н		М	М	М							
CO2	Н	Н	Μ	M	М	М			М	M			
CO3	Н	H	Н	M	Μ	М				Μ		M	
CO4	Н	Н	Μ	Μ		М			Μ	М		M	
CO5	H	H	Μ			Μ		Μ				L	
	1	H/M/I	L indica	tes streng	th of co	rrelation	H – Hi	gh, M − N	ledium,	L – Low			
ury	es	-0	es tioc	ial es	в	m es		l 'es	al / xt	ips / cal	S	ills	
Category	Basic Sciences	Engg	Dumonitioe	& Social Sciences	Program core	Program Electives		Open Electives	Practical / Project	Internships Technical	Skills	Soft Skills	
Ca	Sc			& Sc	Pr	Pr.		Ē	Prê Pi	Inter Tec		Sol	
	\checkmark												
Approval													
rr													

B.Tech Robotics and Automation- 2018 Regulation

Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

(Deemed to be University) University with Graded Autonomy Status

Subject Code:	Subject Name: ENGINEERING PHYSICS - I	Ty/Lb/ ETL	L	T/SLr	P/R	C
BPH18001	Prerequisite: None	Ту	2	0/1	0/0	3

UNIT I **MECHANICS & PROPERTIES OF MATTER**

Mechanics: Introduction- scalar and vector quantities - rigid body - moment of inertia - forces in nature -Newton's laws of motion - derivation of Newton's second law of motion - motion of rocket - dynamical concepts - kinematics - conservation of energy and momentum - conservative and non-conservative forces mechanics of continuous media - friction and its applications.

Properties of Matter: Elasticity - stress, strain and Hook's law - Poisson's ratio - three moduli of elasticity twisting couple on a wire - viscosity - flow of liquid through a narrow tube: Poiseuille's law - Ostwald's viscometer - flow of blood in human body.

SHM AND ACOUSTICS **UNIT II**

SHM: Simple harmonic motion - differential equation of SHM - graphical representation of SHM - average kinetic energy of vibration - total energy of vibration - free and forced vibrations - damped and undamped vibrations - resonance - transverse wave on a string - law of transverse vibration of string - verification of the laws of transverse vibration of string - standing waves.

Acoustics: Fundamentals of acoustics - reverberation- reverberation time - factors affecting acoustics. Ultrasonics -Production of ultrasonic waves - detection of ultrasonic waves - acoustic grating - application of ultrasonic waves.

UNIT III WAVE OPTICS

Huygen's principle - interference of light -wavefront splitting and amplitude -airwedge - Newton's rings -Michelson interferometer and its applications - Fraunhofer diffraction from a single slit - Rayleigh criterion for limit of resolution - diffraction grating and resolving power of a telescope.

ELECTROMAGNETIC THEORY UNIT IV

Electric field - coulomb's law - alternating emf - rms and average value of an alternating current & voltage resistors, capacitors and inductor - energy stored in a capacitor - LCR circuit & resonance - magnetismdefinition - types - BiotSavart law - energy stored in a magnetic field - Domain theory - electromagnetic induction - self and mutual inductance - Faraday's law of electromagnetic induction -Lenz law.

UNIT V LASER

Laser principle and characteristics - amplification of light by population inversion - properties of laser beams: mono-chromaticity, coherence, directionality and brightness - different types of lasers - Ruby laser-Nd-YAG laser-He-Ne laser-CO₂ laser - semiconductor laser - applications of lasers in science, engineering and medicine.

TEXT BOOKS

- 1. Brijlal, M. N. Avadhanulu& N. Subrahmanyam, Text Book of Optics, S. Chand Publications, 25th edition, 2012
- 2. R. Murugeshan, Electricity and Magnetism, S.Chand Publications, 10th edition, 2017
- 3. R. Murugeshan & Kiruthiga Sivaprasath, Modern Physics, S.Chand Publications, 2016

REFERENCES:

1.Dr. Senthil Kumar Engineering Physics I VRB Publishers, 2016

2.N Subrahmanyam & Brijlal, Waves and Oscillations, Vikas Publications, New Delhi, 1988

3.N Subrahmanyam & Brijlal, Properties of Matter, S. Chand Co., New Delhi, 1982

4.N Subrahmanyam & Brijlal, Text book of Optics, S. Chand Co., New Delhi, 1989

5.R. Murugeshan, Electricity and Magnetism, S. Chand & Co., New Delhi, 1995

14

9

9

9

9

9

Total No of Periods: 45

Dr. M.G. R. CATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

Subject Co BCH18001		Subject	Name:	ENGIN	EERIN	G CHEM	1ISTRY		Ty/ Lb/ ETL	L	T/	′SLr	P/R	C	
DCIII000	L								Ty	2)/1	0/0	3	
		Prerequi	isite: No	one					Тy	2	(<i>)/</i> 1	0/0	5	
L : Lecture			-		0	5	R : Res	earch	C: Cı	redits					
T/L/ETL:	Theory /	Lab / Em	bedded	Theory	and Lab										
OBJECTI	VES:														
	•	Providing	-	-		-			-						
	•	To create				ter quali	ty param	eters,	water	analys	sis and so	ftening o	f wate	r	
		from ind Imparting	-	-		storage	nd fuel	aa 11a							
	•	-	-			-			ds						
	•	Introducing modern materials such as composites along with basic concepts of polymer													
		chemistry and plastics.													
		COURSE OUTCOMES (COs): (1–5)													
CO1	Gain a	a clear understanding of the basics of chemical thermodynamics which include concepts such as													
		alpy, Entropy and Free energy.													
CO2		in an overall idea of Water quality parameters, Boiler requirements, problems, Water softening and													
		nestic Water treatment. roving the basic knowledge in electrical conductance and emf and also understand the chemical													
CO3		les of stor			e in elect	trical con	iductance	e and	emr a	and als	so unders	tand the	cnem	icai	
CO4		e the info			orrosion	and und	erstand t	he me	chani	sms of	corrosio	n and the	meth	ods	
001		osion con		usout		und und	erstand t		onum	01110 01	corrobio	ii uiid tiit	meth	045	
CO5	Articul	ate the sci	ience of	polyme	ers and co	omposites	5.								
		Ma	pping o	of Cours	se Outco	mes with	n Progra	m Ou	tcom	es (PO	s)				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	3	PO9	PO10	PO11	PO	12	
CO1	Н	Н											N		
CO2	Н	Н	Μ	H		H	H						N		
CO3	H	Μ	H				L						L		
CO4 CO5	H		L	H											
05	H	I/M/L in	diantas	strongt	h of corr	olotion	U Uia	ьм	Mod	lium	I Low		N	1	
	1			suengu			$\frac{11 - 111g}{1}$			iiuiii,	L = L0w				
Ŋ	Se	SS	ies	al	Е	es m		es	-I /		ips cal	lls			
Category	Basic Sciences	Engg Sciences & Social & Social & Social Program Electives Electives Project Project Skills Soft Skills													
Cate	B: Scie	Engg Sciences	Humanities	& Social Sciences	Program core	Program Electives	Ô.	Elec	Practical Decised	Ĭ	Internships / Technical Skills	Soft Skills			
-			H					_ _	H		II /	S			
	\checkmark														
Approval															
			1				1					1			

(Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai - 95

DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code:	Subject Name: ENGINEERING CHEMISTRY – I	Ty/	L	T/SLr	P/R	C
		Lb/				
BCH18001		ETL				
	Prerequisite: None	Ту	2	0/1	0/0	3

UNIT I CHEMICAL THERMODYNAMICS

Introduction, Terminology in thermodynamics -System, Surrounding, State and Path functions, Extensive and intensive properties. Laws of thermodynamics – I and II laws-Need for the II law. Enthalpy, Entropy, Gibbs free energy, Helmholtz free energy - Spontaneity and its criteria. Maxwell relations, Gibbs -Helmholtz equation (relating E & A) and (relating H & G), Van't Hoff equations.

UNIT II TECHNOLOGYOF WATER

Water quality parameters – Definition and expression. Analysis of water – alkalinity, hardness and its determination (EDTA method only).Boiler feed water and Boiler troubles-Scales and sludges, Caustic embrittlement, Priming and Foaming and Boiler corrosion. Water softening processes - Internal and external conditioning – Lime soda, Zeolite, Demineralisation methods.Desalination processes-RO and Electrodialysis.Domestic water treatment.

UNIT III **ELECTROCHEMISTRY AND ENERGY STORAGE DEVICES**

Conductance - Types of conductance and its Measurement. Electrochemical cells - Electrodes and electrode potential, Nernst equation – EMF measurement and its applications. Types of electrodes- Reference Electrodes-

Standard hydrogen electrode- Saturated calomel electrode-Quinhydrone electrode – Determination of P^H using these electrodes.Reversible and irreversible cells- Fuel cells- H2-O2 fuel cell, Batteries-Lead storage battery, Nickel- Cadmium and Lithium-Battery.

UNIT IV CORROSION AND PROTECTIVE COATING

Introduction-Causes of Corrosion-Consequences- Factors affecting corrosion. Theories of corrosion-Chemical corrosion and Electrochemical corrosion. Methods of corrosion control - corrosion inhibitors, Sacrificial anode and Impressed current cathodic protection.

Protective coatings- Metallic coatings- Chemical conversion coatings-paints-Constituents and functions. 9

POLYMERS AND COMPOSITES UNIT V

Monomers – Functionality – Degree of polymerization-Tacticity.Polymers – Classification, Conducting Polymers, Biodegradable polymers- Properties and applications. Plastics – Thermoplastics and thermosetting plastics, Compounding of plastics - Compression moulding, injection moulding and extrusion processes.

Polymer composites-introduction-Types of composites-particle reinforced-fiber reinforced-structural composites-examples.Matrix materials, reinforcement materials-Kevlar, Polyamides, fiber glass, carbon fibers, ceramics and metals.

TEXTBOOKS:

- 1. P.Udhayakala., S.Dinakar&L.Sankar., "Chemistry for Engineers", Charulatha Publications (2018).
- 2. C.SreekuttanUnnithan, "Applied Chemistry", Sreelakshmi Publications, (2007).
- 3. Dr.R.Sivakumar, Dr.R.Jayaprakasamand Dr.N.Sivakumar "Engineering Chemistry I & II" Tata McGraw Hill Publishing Company Ltd, Reprint 2013.

REFERENCES:

- 1. P.C. Jain & Monika Jain, "Engineering Chemistry", DhanpatRai publishing Co., (Ltd.) (2013).
- 2. J. C. Kuriacose & J. Rajaram, "Chemistry in Engineering & Technology", Tata McGraw Hill (1996).

8

9

10

9

Total number of Periods: 45

Dr. M.G.R. UCATIONAL AND RESEARCH INSTITUTE (Deemed to be University)

University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

Subject C	Code:				ELECTF INEERI	RICAL & NG	ζ		y/Lb ETL	L	T/S	Lr	P/R	C
BES18	001	Prerequi							Ту	2	0/1	1	0/0	3
L : Lecture T/L/ETL : 7			-		U	Project	R : Rese	arch C: (Credits	I				
OBJECTI														
		the conce	•					•						
• Ac	quire kn	owledge o	on conve	ntional a	&non-co	nventiona	al energy	producti	on.					
• Gai	in inforn	nation on	measure	ment of	electrica	l paramet	ters.							
• Ide	ntify bas	sic theoret	ical prin	ciples b	ehind the	e working	g of mode	ern electr	onic ga	dgets.				
• Der	monstrat	e digital e	electroni	c circuit	s and ass	emble sir	nple dev	ices.						
Students co	mpleting	g the cour	se were		RSE OU	ГСОМЕ	S (Cos) :	: (3 – 5)						
CO1	Studen	ts underst	and Fun	damenta	ıl laws ar	d theore	ns and th	neir pract	ical ap	plication	s			
CO2	Predict	the behav	vior of d	ifferent	electric a	nd magn	etic Circi	uits.						
CO3	Identif	y conventi	ional and	l Non-co	onventio	nal Electr	rical pow	er Gener	ation, 7	Fransmis	sion a	nd Dist	ributio	on.
CO4	Identif	y & Apply	schema	atic sym	bols and	understa	nd the wo	orking pr	inciple	s of elec	tronic	devices	5	
CO5	Analyz	e basics o	f digital	electror	nics and s	solving p	roblems a	and desig	n com	oinationa	al circu	uits		
		Ma	apping o	of Cours	se Outco	mes with	n Progra	m Outco	mes (I	POs)				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	PO PO	10	PO11	РО	12
CO1	Н	Н	Н	Н								Μ	L	
CO2	Н	H	Н	М	М		М					Μ		
CO3	Н	М	Н	М	Н		М		М				L	
CO4	Н	М		М			М					Μ	L	
CO5	Н	М	Н	Μ	Н				М			Μ	L	
		H/M/L	indicate	s strengt	th of corr	elation	H – High	n, M – M	edium,	L – Lov	7			
Category	Basic Sciences	Engg Sciences	Humanities	& Social Sciences	Program core	Program Electives	Open	Electives	Project	Internships / Technical	Skills	Soft Skills		
Approval		V												

B. Tech Robotics and Automation- 2018 Regulation

Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code:	Subject Name: BASIC ELECTRICAL &	Ty/Lb	L	T/SLr	P/R	С
	ELECTRONICS ENGINEERING	/ETL				
BES18001	Prerequisite: None	Ту	2	0/1	0/0	3

UNIT I ELECTRIC CIRCUITS

Electrical Quantities – Ohms Law – Kirchhoff's Law – Series and Parallel Connections – Current Division and Voltage Division Rule - Source Transformation – Wye (Y) – Delta (Δ), Delta (Δ) – Wye (Y) Transformation – Rectangular to Polar and Polar to Rectangular.

UNIT II MACHINES & MEASURING INSTRUMENTS

Construction & Principle of Operation of DC motor & DC Generator – EMF equation of Generator – Torque Equation of Motor – Construction & Principle of operation of a Transformer – PMMC – Moving Iron types of meter – Single Phase Induction Type Energy Meter.

UNIT III BASICS OF POWER SYSTEM

Generation of Electric Power (Thermal, Hydro, Wind and Solar) – Transmission & Distribution of Electric Power – Types of Transmission & Distribution Schemes – Representation of Substation.

UNIT IV ELECTRON DEVICES

Passive Circuit Components-Classification of Semiconductor-PN Junction Diode-Zener diode- Construction and Working Principle – Applications--BJT-Types of configuration-JFET.

UNIT V DIGITAL SYSTEM

Number System – Binary, Decimal, Octal, Hexadecimal – Binary Addition Subtraction, Multiplication & Division–Boolean Algebra – Reduction of Boolean Expressions – Logic Gates - De-Morgan's Theorem, Adder – Subtractor.

Total no of Periods: 45

TEXT BOOKS:

- 1. D P Kothari, I J Nagrath, Basic Electrical Engineering, Second Edition, Tata McGraw-Hill Publisher
- 2. A Course in Electrical and Electronic Measurements and Instrumentation. A.K. Sawhney, publisher DHANPAT RAI&CO
- 3. Text Book of Electrical Technology: Volume 3: Transmission, Distribution and Utilization. B.L.Theraja, A.K.Theraja, publisher S.CHAND
- 4. Morris Mano, M. (2002) Digital Logic and Computer Design. Prentice Hall of India
- 5. Millman and Halkias1991, Electronic Devices and Circuits, Tata McGraw Hill,

REFERENCES:

1. R.Muthusubramanian, S.Salivahanan, K A Muraleedharan, Basic Electrical, Electronics And Computer Engineering, Second Edition, ,Tata McGraw-Hill publisher.

9

9

9

9

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

Subject Co BES18002			ect Name SINEER		C MECI	HANICA	L & CIV		y/Lb ETL	L	T/S	SLr	P/R	C		
DE510002		Prere	quisite:	None					Ту	2	0/	/1	0/0	3		
L : Lecture T/L/ETL : '						Project	R : Resea	rch C:	Credits							
DemoTo ideLearn	Basics of nstrate H entify & s basics of	low meta solve pro f Building	ls are for blems in g materia	rmed, joi Enginee als and c rete, type	ined, usin ering Me onstructi es of mas	ng machin chanics on conry Cor	ts and boi ning opera nstruction	ations L of Road		_		_	-			
Students co		Demonstrate the working principles of power plants, IC Engines and boilers. Utilize the concept of metals forming, joining process and apply in suitable machining process														
CO2					Ŷ	-					hining p	proces	SS			
CO3 CO4	-	fy and provide solutions for problems in engineering mechanics e the concept of Building materials and construction able to perform concrete mix and masonry types														
C04 C05	Utilize the concept of Building materials and construction able to perform concrete mix and masonry types Demonstrate how Roads, Railways, dams, Bridges have been constructed															
		Μ	lapping	of Cour	se Outco	omes wit	h Progra	m Outc	omes (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9	PO10	PO	11	PO12		
CO1	Н					Μ		Н	Н		Н			Н		
CO2	H				L	Μ		Μ	M		Μ			Μ		
CO3	H	H			L	L		Μ	M		M 			M 		
CO4 CO5	H H				L L	L L		M	M		M 			M 		
05		H/M/I	ndicate	strong			H _ Hig		M Mediu					Μ		
Category	Basic Sciences H/manities & mutues Engg Sciences Humanities & mutues Humanities & Social Sciences Program Electives Program Electives Program core Program Core N/M/H Soft Skills Soft Skills															
Са	Basic	Engg	Hume	Socia	Prog	Prograi	Open		Practic	T	Techn		Sof			
Approval																

Subject Code: BES18002	Subject Name: BASIC MECHANICAL & CIVIL ENGINEERING	Ty/Lb /ETL	L	T/SLr	P/R	С
	Prerequisite: None	Ту	2	0/1	0/0	3

UNIT I THERMAL ENGINEERING

Classification of internal combustion engine – two stroke, four stroke petrol and diesel engines. Classification of Boilers – Cochran boiler – Locomotive boilers – Power plant classification – Working of Thermal and Nuclear power plant.

UNIT II MANUFACTURING PROCESS

Metal forming processes – Rolling, forging, drawing, extrusion and sheet metal operations- fundamentals only. Metal Joining processes – Welding - arc and gas welding, Soldering and Brazing. Casting process – Patterns -Moulding tools - Types of moulding - Preparation of green sand mould -Operation of Cupola furnace. Basics of metal cutting operations – Working of lathe- parts-Operations performed. Drilling machine – Classification – Radial drilling machine - Twist drill nomenclature.

UNIT III MECHANICS

Stresses and Strains – Definition – Relationship – Elastic modulus – Centre of gravity – Moment of Inertia – Problems. (Simple Problems Only).

UNIT IV BUILDING MATERIALS AND CONSTRUCTION

Materials:Brick - Types of Bricks - Test on bricks - Cement – Types, Properties and uses of cement – Steel - Properties and its uses – Ply wood and Plastics.

Construction:Mortar – Ingredients – Uses – Plastering - Types of mortar - Preparation – Uses – Concrete – Types – Grades – Uses – Curing – Introduction to Building Components (foundation to roof) – Masonry – Types of masonry (Bricks & Stones)

UNIT V ROADS, RAILWAYS, BRIDGES & DAMS

Roads – Classification of roads – Components in roads – Railways -Components of permanent way and their function – Bridges – Components of bridges – Dams – Purpose of dams – Types of dams.

Total No. of Periods: 45

9

13

9

7

7

TEXT BOOKS

- 1. S. Bhaskar, S. Sellappan, H.N.Sreekanth,, (2002), "Basic Engineering" Hi-Tech Publications
- 2. K. Venugopal, V. Prabhu Raja, (2013-14), "Basic Mechanical Engineering", Anuradha Publications.
- 3. K.V. Natarajan (2000), Basic Civil Engineering, Dhanalakshmi Publishers
- 4. S.C. Sharma(2002), Basic Civil Engineering, Dhanpat Raj Publications

REFERENCES

1. PR.SL. Somasundaram, (2002), "Basic Mechanical Engineering" –, Vikas Publications.

2. S.C. Rangawala(2002), Building Material and Construction, S. Chand Publisher

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

Subject C	code:	Subject Name: BASIC ENGINEERING WORKSHOP Prerequisite: None							/Lb TL	L	T/S	Ĺr	P/R	C		
BES18L)1	Prerequ	isite: N	one				Lł)	0	0/0		2/0	1		
L : Lectur T/L/ETL	: Theory /		-		•		R : Re	search C	: Cred	its						
OBJECT		iarize the	nlumbi	ng tools	fittings	, carpentr	v tools	etc								
			•	0	C	surement	-		ntities							
		-		-		gates and		-		•						
		ay simple		•	0 0	ates and	solucini	g process	,							
	•				•	ake a wor	king me	dal								
	• Execu	a proje			•		Ū.									
Students	completin	COURSE OUTCOMES (COs): (3 – 5) ompleting the course were able to Demonstrate fitting tools and carpentry tools, & Perform the process of Filing, Chipping, Cutting.														
CO1	Demonst	rate fittin	g tools a	and carp	entry too	ols, & Per	form the	e process	of Fil	ing, C	Chipping	g, Cut	ting.			
CO2	Perform to Joints															
CO3	Joints Demonstrate various types of wirings and other equipments. Measure fundamental parameters using the electronic instruments															
CO4	Measure	fundamei	ntal para	ameters	using the	e electron	ic instru	ments								
		Ma	apping	of Cour	se Outco	omes witl	n Progr	am Outc	omes	(POs)					
COs/POs	5 PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9	PO10	PO	11	PO12		
CO1	Н	Н	Н	Μ	М			L	M					L		
CO2	Н		Н	L	М			L	L							
CO3	Н		М	L				L	L							
CO4	Н	Н	М	L				L	L					Μ		
CO5																
]	H/M/L in	dicates	strengt	th of cor	relation	H – Hi	gh, M – 1	Mediu	m, L	– Low		l			
Category	Basic Sciences	Engg Sciences	Humanitie	s & Social Sciences	Program core	Program Electives	Open	Electives	Project		nternsmp s / Technical	Skills	SIIIXC 110C			
Approval																

Subject Code: BES18L01	Subject Name: BASIC ENGINEERING WORKSHOP	Ty/L b/ET L	L	T/S Lr	P/R	С
	Prerequisite: None	Lb	0	0/0	2/0	1

MECHANICAL ENGINEERING PRACTICE

1. FITTING:

Study of fitting tools and Equipments – Practicing, filing, chipping and cutting – making V-joints, half round joint, square cutting and dovetail joints.

2. CARPENTRY:

Introduction – Types of wood – Tools – Carpentry processes – Joints – Planning practice – Tee Halving Joint – Cross Lap Joint – Maritse and Tenon Joint – Dovetail Joint

3. SHEET METAL:

Study of tools and equipments – Fabrication of tray, cones and funnels.

CIVIL ENGINEERING PRACTICE

- 1. Study of Surveying and its equipments
- 2. Preparation of plumbing line sketches for water supply and sewage lines
- 3. Basic pipe connection using valves, laps, couplings, unions, reduces and elbows in house hold fittings

ELECTRICAL ENGINEERING PRACTICE

- 1. Measurement of electrical quantities voltage, current, power & power factor in RLC circuit.
- 2. Measurement of energy using single phase energy meter.
- 3. Measurement of resistance to earth of an electrical equipment.
- 4. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
- 5. Fluorescent lamp wiring.
- 6. Stair case wiring

ELECTRONIC ENGINEERING PRACTICE

- 1.Study of Electronic components and equipments Resistor, colour coding measurement of AC signal parameter (peak- peak, rms period, frequency) using CRO
- 2. Soldering practice Components Devices and Circuits Using general purpose P

Total No. of Periods : 45

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

Subject C	Code:	Subject	Name:	ORIEN	TATIO	N TO			Ty/	L	T/SI	Lr	P/R	C	
BES18I	CT1	ENTRE	PRENI	EURSH	IP & PF	ROJECT	LAB		Lb/ ETL						
		Prerequi	isite: No	one					ETL	0	0/0)	2/0	1	
	L:]	Lecture T									C: Cre	edits			
			T/L/	ETL : T	"heory /]	Lab / Em	bedded 7	Theory	and Lab)					
OBJECTIV		our ontro		ohin Edu	notion t	manafarm	individ	vola int	0.0110000		dama				
		how entre	•	•			s marvia	uais int	o succe	ssiui iea	aders.				
	•	vidual po													
		difference				tunities									
		ponents &		_											
• Use	brainsto	rming in	a group												
Students con	npleting	the cours	e were a		RSE OU	TCOM	£S (COs	s): (3 – s	5)						
CO1	<u> </u>	Develop a Business plan & improve ability to recognize business opportunity													
CO2	Do a self-analysis to build an entrepreneurial career.														
CO3															
	Articulate an effective elevator pitch. Analyze the local market environment & demonstrate the ability to find an attractive market														
CO4	Analyz	e the loca	l marke	t enviror	nment &	demonst	rate the	ability t	o find a	n attrac	tive m	narket			
C05	Identify	the requ	ired skil	ls for en	treprene	urship &	develop)							
		Μ	apping	of Cour	se Outc	omes wit	h Progr	am Ou	tcomes	(POs)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO		D10	PO11	P	012	
CO1		M	Μ	H	M	M	M		M		M	M		L	
CO2 CO3	Н	M M	Μ	H M	M	H H	Μ	H H	H H		H H	Μ		Μ	
CO4		H	M	M	Μ	M		H	M		M	Н			
CO5		M	M	H	M	M	Н	H	M		M	H		L	
	H/M/L indicates strength of correlation H – High, M – Medium, L – Low														
ry	Sč	S	ies	al SS	в	m es		es	t t	ips	cal	lls			
Category	Basic Sciences	Engg Sciences	nanit	& Social Sciences	Program core	Program Electives	Open	scuv	Practical / Project	rnshi ·	echnic Skills	Soft Skills			
Ca	Basic Sciences Engg Sciences & Social & Social Sciences & Social Sciences Program Electives Electives Project Project Project Skills Soft Skills														
A															
Approval															
					L										

Subject Code:	Subject Name: ORIENTATION TO	Ty/	L	T/SLr	P/R	С
	ENTREPRENEURSHIP & PROJECT LAB	Lb/				
BES18ET1	ENTREI REIVEURSIIII & I ROJECT LAB	ETL				
	Prerequisite: None	ETL	0	0/0	2/0	1

UNIT I CHARACTERISTICS OF A SUCCESSFUL ENTREPRENEUR

Introduction to entrepreneurship education – Myths about entrepreneurship – How has entrepreneurship changed the country – Dream it. Do it - Idea planes - Some success stories – Global Legends – Identify your own heroes.

UNITII ENTREPRENEURIAL STYLE

Entrepreneurial styles – Introduction, concept & Different types - Barrier to Communication – Body language speaks louder than words

UNIT III DESIGN THINKING

Introduction to Design thinking – Myth busters – Design thinking Process - Customer profiling – Wowing your customer – Personal selling – concept & process – show & tell concept – Introduction to the concept of Elevator Pitch

UNIT IV RISK MANAGEMENT

Introduction to risk taking & Resilience – Managing risks (Learning from failures, Myth Buster) – Understanding risks through risk takers – Why do I do? – what do I do?

UNIT VPROJECT

How to choose a topic – basic skill sets necessary to take up a project – creating a prototype – Pitch your project – Project presentation.

REFERENCE BOOKS& WEBSITE:

- 1. Encyclopedia of Small Business (2011) (e book)
- 2. Oxford Handbook of Entrepreneurship (2014)–(e book)
- 3. lms.learnwise.org

Total No. of Periods : 15

SEMESTER-II

			Periyar	E.V.R. S	alai, Ma	duravo	yal, Chen	nai – 95	1						
Subjec	t Code:	stoffeer	RAME	NFP	EMARG	ESAN	CAL E	2		NG	T/	SLr	P/R	C	
BMA	18003	Draraqui	isite: Nor	10					ETL Гу	3	1	./0	0/0	4	
		Flelequi	isite. Noi	le					I y	3		/0	0/0	4	
	re T : Tutor					Project	R : Res	search C	C: Cre	dits					
T/L/ETL	: Theory /]	Lab / Emb	edded Th	neory ar	nd Lab										
OBJECT			ъ .		• •										
		erstand the				0									
	• Iden	tify the Ba	asic conc	epts in	Multipl	e integr	als								
	• Use	the Basic	concepts	in Ordi	inary D	ifferent	ial equat	ions							
	• App	ly the Bas	ic concep	ots of A	nalytic	al Geon	netry.								
	• Ana	lyze the B	asic conc	epts of	Vector	Calculu	18								
	COURSE OUTCOMES (COs): (3 – 5) dents completing the course were able to														
Students of															
CO1	Integrate	given fund	ction by	using r	nethod	s of inte	egration	and to	find t	he ar	ea un	der curv	e and	the	
	volume of a solid by revaluation.														
CO2	Evaluate the multiple integrals / area /volume and to change the order of integration.														
CO3	Solve the ordinary differential equation and to solve Eulers differential equation.														
CO4															
CO5	Find the g	radient, m	aximum	directio	nal der	ivative	and worl	c done b	y a fo	rce a	nd to	verify G	reen/		
	Stokes/ G											2			
			ng of Co		utcom	es with	Program	n Outco	mes (POs))				
COs/POs	s PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO		010	PO11	PO)12	
CO1	H	H	100	101	M	M	107	100	M		M	1011	H		
CO2		H			M	H			H		H		N		
CO3	Н	H			Μ	Н			Н		Н		N		
CO4	H	Н			L	М			M		H		N	1	
CO5	Н	Н			Μ	Μ			Μ		H		N	1	
	H/N	M/L indica	ates stre	ngth of	correl	ation 1	H – Higl	n, M – N	lediu	m, L	– Lov	W	1		
ſ	Sč	SS	tie ial	SD F	1	n SS		es	1/ +	•	ip	al	lls		
Category	Basic Sciences	Engg Sciences	Soc	Droaram	core	Program Electives	Open	Electives	Protect	5	rnsh	s / Technical Skills	Ski		
Cat	B Sci	E Sci	Humanitie s & Social	Dr.D	C	Prc Ele		Ele	Practical	•	Internship	Tec Sl	Soft Skills		
Approval															
			I			1	2019				1		I	26	

Prerequisite: None:

Subject Name: MATHEMATICS – II

UNIT I INTEGRATION 12 Basic concepts of Integration – Methods of Integration – Integration by substitution – Integration by parts – Definite integrals- Properties of definite integrals - Problems on finding Area and Volume using single integrals (simple problems).

UNIT II MULTIPLE INTEGRALS

Subject Code:

BMA18003

Double integral in Cartesian and Polar Co-ordinates - Change of order of integration - Triple integral in Cartesian Co-ordinates – Spherical Polar Co-ordinates – Change of variables (simple problems).

UNIT III ORDINARY DIFFERENTIAL EOUATIONS

First order differential equations – Second and higher order linear differential equations with constant coefficients and with RHS of the form: e^{ax} , x^n , Sin ax, Cos ax, $e^{ax}f(x)$, x f(x) where f(x) is Sin bx or Cos bx – Differential equations with variable coefficients (Euler's form) (simple problems).

UNIT IV THREE-DIMENSIONAL ANALYTICAL GEOMETRY

Direction Cosines and Ratios - Equation of a straight line - Angle between two lines - Equation of a plane -Co-planar lines – Shortest distance between skew lines – Sphere – Tangent plane.

UNIT V VECTOR CALCULUS

Scalar and Vector functions - Differentiation - Gradient, Divergence and Curl - Directional derivatives -Irrotational and Solenoidal fields- Line, Surface and Volume integrals - Green's, Stoke's and Gauss divergence theorems (statement only) – Verification.

Total no. of Periods: 60

TEXTBOOKS:

- 1. Kreyszig E., Advanced Engineering Mathematics (10th ed.), John Wiley & Sons, (2011).
- 2. Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).

REFERENCES:

- 1. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).
- 2. John Bird, Basic Engineering Mathematics (5th ed.), Elsevier Ltd, (2010).
- 3. P.Kandasamy, K.Thilagavathy and K. Gunavathy, Engineering Mathematics Vol. I (4th Revised ed.), S.Chand& Co., Publishers, New Delhi (2000).
- 4. John Bird, Higher Engineering Mathematics (5th ed.), Elsevier Ltd, (2006).

DEPARTMENT OF MECHANICAL ENGINEERING

12

12

12

С

4

T/SLr

1/0

L

3

Ty/ Lb/

ETL

Ty

P/R

0/0

12

(Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

DEPARTMENT OF MECHANICAL ENGINEERING

					-	-	NICAL					-			
Subject Co	ode:	Subjec	t Name:	ENGIN	Ty/Lb /ETL	L	T/SLr	P/R	С						
BPH18002	2	Prerequ	uisite: No	one					Ту	2	0/1	0/0	3		
L: Lecture	T: Tutor	ial SLr :	Supervi	sed Lea	rning P :	Project	R : Res	search (C: Credi	ts			I		
T/L/ETL: '	Theory /	Lab / En	nbedded	Theory	and Lab										
OBJECT				111001	<u>uno 200</u>										
	esign, con				•		f								
	evelop a nderstand						e or mate	erials							
	oply the s		-		-		chnolog	у							
Students c	ompletin	g the cou	irse were		RSE OUT	ГСОМ	ES (COs	s): (3 – 1	5)						
CO1	Demon	strate sk	ills nece	essary f	or condu	icting r	esearch	related	to conte	ent kno	wledge and	l labora	tory		
	skills.														
CO2	Apply I	knowledg	ge and co	oncepts	in advan	ced mat	erials an	d devic	es.						
CO3	Acquire	ed Analy	tical, Ma	athemati	ical skills	s for sol	ving eng	gineering	g proble	ms.					
CO4	Ability	Ability to design and conduct experiments as well as function in a multi-disciplinary teams.													
CO5	Generate analytical thought to interpret results & place them within a broader context														
		Ma	pping o	f Cours	se Outco	mes wi	th Prog	ram Ou	tcomes	(POs)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12		
CO1	Н	Н	Μ	Μ	Μ	L				Μ		L	4		
CO2	H	Н		Μ	Μ							L	ı		
CO3	H	Н	Н	Н	M					Μ					
CO4	H	Н	Н	Н	Μ				H	Μ		L	ı		
CO5	H	Μ	Μ	Μ	Μ	L			Μ	Μ		L	4		
	H	I/M/L in	dicates	strengtl	h of corr	elation	H – H	igh, M -	- Mediı	ım, L –	Low				
			s			es			ct		S				
y	nces	nces	es &		core	ectiv	tives		roje		ps / Skill	lls			
Category	Scie	Scie	unitie Scie		am e	n Ele	Elec		l/ F		nshi cal S	Soft Skills			
Cat	Basic Sciences	Engg Sciences	Humanities & Social Sciences		Program core	Program Electives	Open Electives		Practical / Project		Internships / Technical Skills	Sofi			
	В	Щ	H Sc		ц	Pro	Ó		Pra		Te				
Approval															
												2	.8		

B.Tech Robotics and Automation- 2018 Regulation

University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

(Deemed to be University)

Subject Code:	Subject Name: ENGINEERING PHYSICS – II	Ty/Lb	L	T/SLr	P/R	С
		/ETL				
BPH18002	Prerequisite: None	Ту	2	0/1	0/0	3

UNIT I QUANTUM PHYSICS

Quantum free electron theory - deBroglie waves - derivation of deBroglie waves - Davisson and Germer experiment - uncertainty principle - electron microscope-scanning electron microscope - physical significance of wave function - Schrodinger wave equation and its applications - Fermi energy- effective mass - phonons - Fermi function-density of states - origin of bandgap in solids - 1D scattering of electrons in periodic potential.

UNIT II SEMICONDUCTORS

Introduction - properties of semiconductors - classification of semiconductor - effect of temperature in semiconductor - hole current - carrier concentration in intrinsic semiconductor (electron and hole density) - variation of Fermi energy level and carrier concentration with temperature in an intrinsic semiconductor - carrier transport - diffusion - drift - mobility - Hall effect - determination of Hall coefficient and its applications - diodes.

UNIT III LIGHT SEMICONDUCTOR INTERACTION

Types of electronic materials: metals, semiconductors and insulators - qualitative analysis of extrinsic semiconductor & its applications - optical transition in bulk semiconductors: absorption, spontaneous and stimulated emission - exciton and its types - traps and its types - colour centers and its types and importance - luminescence - classifications of luminescence based on excitation - optical loss and gain - Photovoltaic effect - Photovoltaic potential - spectral response - solar energy converters - solar cells.

UNIT IV OPTO ELECTRONIC DEVICES

Photodetectors-photoconductors-photodiodesprinciple, construction, working and characteristics-Phototransistors-Laser diodes - LED theory, construction and working - seven segment display, advantages of LED - LCD theory, construction and working.

UNIT V ENGINEERED MATERIALS

Classification of engineered materials - Nano phase materials - its synthesis and properties - shape memory alloys and its applications - biomaterials – nonlinear optical materials - metallic glasses - metamaterials - homo and hetero junction semiconductors - semiconducting materials for optoelectronic devices - quantum wells, wires and dots.

TEXT BOOKS:

- (1) P.K. Palanisamy, Semiconductor Physics and Optoelectronics, Scitech Publications, 2010
- (2) Jyoti Prasad Bandyopadhyay, Semicoductor Devices, S. Chand Publications, 2014
- (3) Charles Kittal, Introduction to Solid State Physics, Wiley Publications, 2012

REFERENCES:

- (1) S. Shubhashree, S. Bharathi Devi & S. Chellammal Madhusudanan, Engineering Physics, Sree Lakshmi Publications, 2004
- (2) G. Senthil Kumar, N. Iyandurai, & G. Vijayakumar, Material Science, VRB Publishers, 2017
- (3) R.Murugeshan & Kiruthigasivaprakash, Modern Physics, 14th edition, S. Chand & Co, 2008
- (4) Pallab Bhattacharya, Semiconductor optoelectronic devices, second edition, Pearson Education, 2003

9

9

9

9

9

Total no. of Periods: 45

29

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

Subject Co	ode:	Subject N	ame: EN	– II	Ty/Lł ETL		T/SLr	P/R	C						
BCH1800	2	Prerequisi	ite: None						Ту	2	0/1	0/0	3		
		rial SLr : S Lab / Embe	.		•	Project	R : Rese	earch C:	Credits						
 In an To In To 	nparting the troducing ad nano m b impart a troducing b give an	he basic cor the chemis aterials. sound know salient feat overview of g the course	try of eng wledge o cures of fin modern C	gineerin n the pr uels and analyt OURS	ng mater rinciples d combu ical tech	rials suc s of cher stion. nniques	h as cen	nent, lub	ricants, a	abrasive	s, refract	ories, a	-		
CO1	Understand the science of phase equilibria and apply the phase rule to different systems.Gain an overview of Engineering Materials such as Lime, Cement, Lubricants, Abrasives,														
CO2	Gain an overview of Engineering Materials such as Lime, Cement, Lubricants, Abrasives, Refractories, Alloys and Nanomaterials. Recognize the essential information about consumer products such as Soaps and Detergents, also														
CO3	Recognize the essential information about consumer products such as Soaps and Detergents, also gaining the basic knowledge about Explosives and Propellants.														
CO4	Discover the fuel Chemistry and Combustion process.														
CO5	Inferri	ng few imp	ortant Ar	alytica	l Techni	iques an	d their a	pplicatio	ons.						
1		Mapp	oing of C	ourse	Outcom	es with	Progra	m Outco	omes (P	Os)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC)12		
CO1	Н											I			
CO2	Н		Н			L	Н					I	L		
CO3	Н					Н						I	[]		
CO4	Н	Μ	Н	Н			Н					Ν	Л		
CO5	Н				Μ							I	I		
	•	H/M/L ind	licates str	ength o	of correl	ation I	H – High	i, M − M	edium, I	L – Low	1	1			
Category	Basic Sciences	Engg Sciences	Humanities & Social	Durantees		Program Electives	Open	Electives	Practical / Project		Internships / Technical	Soft Skills			
Approval	Approval Approval														

(Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code:	Subject Name: ENGINEERING CHEMISTRY – II	Ty/Lb/	L	T/SLr	P/R	С
		ETL				
BCH18002	Prerequisite: None	Ту	2	0/1	0/0	3

UNIT I PHASE EQUILIBRIA

Introduction – Definition of terms involved in phase rule. Derivation of Gibbs phase rule – Applications to one component system – water system. Binary system – Eutectic system – Pb - Ag system, Bi - Cd system. Thermal analysis – Cooling curves.

UNIT II MATERIAL CHEMISTRY

Cement – Manufacture, Chemistry of setting and hardening. Lubricants – Requirements of good lubricants, Mechanism, Properties of lubricants, Classification – Examples.Abrasives–Classification –Moh'sscale-Hardandsoftabrasives,Preparation ofartificial abrasives(siliconcarbide,boroncarbide),Applications of abrasives.Refractories– Classification, Properties-Refractoriness, RUL, Porosity, Thermalspalling.Alloys-Classification of alloys–Purposeofmakingalloys-Ferrous and non-Ferrousalloys-Heat treatment. Nano materials – properties, carbonnano tubes – properties, fabrication – carbon arc method, laser vapourization method.

UNIT III APPLIED CHEMISTRY

Soapsanddetergents: Soaps – Saponification of oils and fats, manufacture of soaps, classification of soap – soft soap, medicated soap, herbal soap, shaving soap and creams.

Detergents - Anionic detergents - manufacture and applications, Comparison of soaps and detergents.

Rocket propellants and explosives:Rocket propellants – characteristics, solid and liquid propellants – examples.Explosives- Introduction, characteristics, classification, Oxygen balance, preparation, properties and uses of detonators, low explosives and high explosives, Dynamites, Gun cotton, Cordite.

Food adulterants- Common adulterants in different foods – milk and milk products, vegetableoils, and fats, spices and condiments, cereals, pulses, sweetening agents and beverages, Contamination with toxic chemicals – pesticides and insecticides.

UNIT IV FUELS & COMBUSTION

Introductionto Fuels – classification – Calorific value – GCV, LCV.Solid Fuels–Coal-Proximate Analysis, Metallurgical Coke–Manufacture of Metallurgical Coke.Liquid Fuel–Refining of Petrol, Synthetic Petrol– Manufacturing Process–HydrogenationofCoal, Polymerization,Cracking–Knocking–OctaneNumber– LeadedPetrol(or)Anti–knocking – Cetane Number–Ignition Lag. Gaseous fuels–CNG–LPG–WaterGas, Producer gas–Biogas- Combustion– FlueGasanalysis–Orsat's method.

UNIT V ANALYTICAL AND CHARACTERIZATION TECHNIQUES

Electron microscopes: Scanning electron microscope & Transmission electron microscope, instrumentation and applications. Absorption and Emission Spectrum - Beer - Lambert's law.Visible and UV Spectroscopy – instrumentation – Block diagram - working.IR Spectroscopy – instrumentation - Block diagram – molecular vibrations – stretching and bending – H_2O , CO_2 . –Characterization of some important organic functional groups. Chromatographic techniques – column, thin layer and paper.

TEXTBOOKS:

- 1. P.Udhayakala., S.Dinakar&L.Sankar., "Chemistry for Engineers", Charulatha Publications (2018).
- 2. Dr.R.Sivakumar, Dr.R.Jayaprakasam and Dr.N.Sivakumar "Engineering Chemistry I & II" Tata McGraw Hill Publishing Company Ltd, Reprint 2013.
- **3.** C. S.Unnithan, T. Jayachandran& P. Udhayakala, "Industrial Chemistry", Sreelakshmi Publications (2009).

REFERENCES:

1. P.C. Jain & Monika Jain, "Engineering Chemistry", DhanpatRai publishing Co., (Ltd.) (2013).

10

9

9

Total no. of Periods: 45

9

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

Subject Co	ode:	Subjec	t Name:	ENVI	RONME	NTAL S	CIE	NCI	E	Ty/Lb	L	T/	SLr	P/R	C
BES18003				(No	n- Credit	ed)				/ETL					
DESIGUUS		Prereg	uisite: N	one						Ty]	Non Cr	edit	
	L: Le				Supervis	ed Learn	ing F	P : P	roject	-	earch				
					heory / L										
OBJECTI	VES:														
•	To acqu	ire know	vledge of	f the Er	vironme	nt and Ec	cosys	stem	& Bi	odiversit	У				
•	To acqu	ire knov	vledge of	f the dif	fferent ty	pes of En	viro	nme	ntal p	ollution					
•					esources										
•	-		-		issues ar										
•	To attai	n familia	arity of h		opulation										
Ctor landa a		(1			RSE OU	ГСОМЕ	S (C	COs)	: (3 –	5)					
Students co	, U					0. D:	1.	•							
CO1	To know	about E	nvironn	nent and	d Ecosyst	em & Bi	odive	ersit	У						
CO2	To clear	y comp	rehend a	ir, wate	er, Soil, N	Iarine, N	oise,	, The	ermal	and Nuc	lear l	Polluti	ons and	Solid	Waste
	manager	nent and	identify	the im	portance	of natura	l res	ourc	es lik	e forest,	wate	r, and	food rea	sources	
CO3	-		-		and water										
							-				• 1				1
CO4	To identify its problems and concerns climate change, global warming, acid rain, ozone layer depletion														
	etc.,														
CO5	To expla	in famil	y welfar	e progr	ammes ai	nd role of	finfo	orma	tion t	echnolog	gy in	human	health	and	
	environn	nent													
		Ma	apping o	of Cour	se Outco	mes with	h Pro	ogra	m O	utcomes	(POs	5)			
COs/POs	PO1	PO2	PO3	PO4		PO6	1	07	Р	PO9		O10	PO1	PO	012
									0				1		
							_		8						
C01						M	-	H	Μ					N	
CO2						M	_	H				Μ		N	
CO3						M	_	H	M					N	
CO4						M		H	Μ		_	M		N	
CO5			12 4			M		H	L M	N/- 1*-	T	M		N	/1
	H	/M/L 1n	dicates	streng	th of cori	relation	<u>H</u> –	- Hig	gh, M	– Medu	ım, I	2 - L0	W		
N N	s	ş	ies 11	s	ц	n s		9	8	1/ t		/ SC	3	lls	
Category	Basic Sciences	Engg Sciences	Humanities & Social	Sciences	Program core	Program Electives		Open	Elecuves	Practical Project		Internships Technical	Skills	Soft Skills	
ate	Ba	Encie	z So	cie	rog cc	rog		O ¹ O	Jac	Pro		ern erh	SK	oft :	
	S	S	Hı S		щ	шш		p	Ц	E .		Int	-	Ň	
			ν												
			'												
Approval															

Subject Code:	Subject Name: ENVIRONMENTAL SCIENCE	Ty/Lb	L	T/SLr	P/R	С
BES18003	(Non- Credited)	/ETL				
	Prerequisite: None	Ту		Non Cr	edit	

UNIT I ENVIRONMENT AND ECOSYSTEM

Definition, Scope and Importance of environment - need for public awareness - concept, structure and function of an ecosystem- producers, consumers and decomposers - energy flow in the ecosystem. Biodiversity at national and local levels - India

UNIT II ENVIRONMENT POLLUTION

Definition – causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Nuclear hazards (g) E-Wastes and causes, effects and control measures.

UNIT III NATURAL RESOURCES

Forest resources: Use and over-exploitation, deforestation. Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems. Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

From unsustainable to sustainable development – urban problems related to energy – water conservation, rain water harvesting, watershed management – resettlement and rehabilitation of people; its problems and concerns climate change, global warming, acid rain, ozone layer depletion, nuclear accidents, central and state pollution control boards- Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

Population growth, variation among nations – population explosion, environment and human health – human rights – value education – HIV/AIDS – women and child welfare – role of information technology in environment and human health

TEXT BOOKS

- 1. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education (2004).
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGrawHill, NewDelhi, (2006).

REFERENCES

- 1. Vairamani, S. and Dr. K. Sankaran. *Elements of Environmental and Health Science*. Karaikudi: KPSV Publications, 5th Edition, July 2013.
- 2. If thikarudeen, Etal, Environmental Studies, Sooraj Publications, 2005.
- 3. *R.Murugesan*, *Environmental Studies*, *Millennium Publishers and Distributors*, 2nd *Edition*, *July*, 2009.

Subject Co	de:	Subject	Name: C	COMN	IUNICA	TION	LAB	, r	Ty/Lb/	L	T/SLr	P/R	C
	74	Ū.							ETL				
BEN18E7	1	Droroqui	isite: Nor	20					ETL	1	0/0	2/0	1
L : Lecture	T : Tutor				rning P	: Project	R : Res	search (0/0	2/0	1
T/L/ETL :			.		•	• J • • •							
OBJECTI	VES:												
	•	he academ		-				•					
	U	earners' w p the simp	U					bing an	d report	writing			
		certain lif			•	•		and do r	oresentat	ion			
		reading sl	cill with o	compr	ehensior	1 I	C	-					
a 1					E OUT	COMES	5 (COs):	(3-5)					
Students co	ompleting	the course	e would t	be able	e to								
CO1	strengthe	en their ac	ctive voc	abular	y and a	ppropria	ite langi	lage us	age thro	ugh read	ling poem	s, stori	es,
	texts, nev	wspapers,	magazine	es and	research	articles	5						
CO2	use appropriate technical vocabulary in interpreting data												
CO3	engage effectively in role-play, dialogue, conversation and interviews												
CO4	equip them for effective interaction with people in all situations both academic and professional												
CO5	learn Eng	glish langı	lage as a	'life s	kill' and	prepare	for plac	ement i	nterviev	VS			
		Mapp	ing of C	ourse	Outcom	es with	Progra	m Outc	comes (I	POs)			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12
CO1				Н						H		Н	
CO2				Η						H		H	
CO3				Η		Μ			Н	Н		Н	
CO4				Η					Н	Н		Н	
CO5				Н					H	Н		Н	
	l	H/M/L ind	icates str	ength	of correl	lation I	I – High	n, M – N	ledium,	L – Low	7	1	
			SS						/	\ _	Ì	S	
Category	Basic Sciences	Engg Sciences	Humanities & Social	Sciences	Program core	Program Electives	en	Electives	Practical Project	Internchine	Technical Skills	Soft Skills	
ate	Basic	Engg	uma & Sc	ciel	Progra	Prog	Open	llect	ractical Project	Prne	echnica Skills	oft S	
0		9 1	Ξ ³		-	Гщ		щ	Р	lnt	L	Ň	
	1		1			1			1	1		1	
													. <u> </u>
Approval													

Subject Code: BEN18ET1	Subject Name: COMMUNICATION LAB	Ty/Lb/ ETL	L	T/SLr	P/ R	С
	Prerequisite: None	ETL	1	0/0	2/0	1
UNIT I Listening and S	peaking- Informal and Formal Contexts	·		6	·	
UNIT II Compeering -A	nchoring -Group Discussion			6		
UNIT III Poster Presenta	tion -Welcome Speech -Vote of Thanks			6		
UNIT IV Formal Present	ation -Power point presentation of charts/ Diagrams			8		
UNIT V Facing an Inter	view- Mock Interview			4		

Total no. of Periods: 30

SUGGESTED READINGS:

- (1) Practical English Usage. Michael Swan. OUP. 1995.
- (2) Remedial English Grammar. F.T. Wood. Macmillan.2007
- (3) On Writing Well. William Zinsser. Harper Resource Book. 2001
- (4) Study Writing. Liz Hamp-Lyons and Ben Heasly.Cambridge University Press. 2006.
- (5) Communication Skills. Sanjay Kumar and PushpLata.Oxford University Press. 2011.
- (6) Exercises in Spoken English. Parts.I-III. CIEFL, Hyderabad. Oxford University Press
- (7) Pronunciation in Use, Mark Hancock. Cambridge University Press. 2012

Dr. M.G.R. CATIONAL AND RESEARCH INSTITUTE

(Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

Subject C		Subjec GRAP		me: BASIC ENGINEERING CS						L	T/SI	Lr P/	R	С
BES18E	Γ2	Prerequ	uisite: None					E	TL	1	0/0) 2/	2/0	2
	L: L	ecture T				ed Learn ab / Emb				arch C:	Cred	lits		
d • D • T p • K	earn to kr rawing sh braw Proje to identify rojection fnow the b earn the b	eet. ection of p the angle pasics of of <u>assics of I</u> g the cou e concept s rate the d ng applic pasic sket rate the p sectional	points, li e of proj- elevatior <u>Drafting</u> rse were t of Engi rafting p ations. ching teo rojectior view of	ne, plan ection a n and pla using A COUR able to neering practice chniques as of Poi	es and so nd develo an of bui utoCAD RSE OU Graphic visualiza s of engin ints, Line building	olids usin opment o lding. Software FCOME s Technic tion and p neering e es, Planes s and util	g Drafte f surface S (COs) ques to c projectic quipmer and Sol ize Auto	$\frac{1}{3} = \frac{5}{2}$ $\frac{1}{3} = \frac{1}{3}$ $\frac{1}$	ers, Nur useful f	ijection nbers, I or conv	and C	Orthogra	phic in In	dian
COs/POs	PO1	PO2	PO3	PO4	PO5	omes with PO6	PO7	PO8	PO9		010	PO11	PO	012
<u> </u>											-			
CO1 CO2	H	H	H	M	M	M			H	H				H
CO2 CO3	H	H	H 	M	Μ	M			H	H				H
CO3	H H	H H	H M	L M		M H		M	M H		A H			M 11
C04	H	H	H	M	H	L		M	H	I				H
	11					relation	U Uia							H
Category	Basic Sciences	Engg Sciences	S	& Social Sciences	Program core	Program Electives			Project		/ lechnical Skills	Soft Skills		
Approva	1								√					

DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code: BES18ET2	Subject Name: BASIC ENGINEERING GRAPHICS	Ty/Lb /ETL	L	T/SLr	P/R	C
DESIGE 12	Prerequisite: None	ETL	1	0/0	2/0	2

(Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

CONCEPTS AND CONVENTIONS (Not for examination)

Introduction to drawing, importance and areas of applications – BIS standards – IS: 10711 - 2001: Technical products Documentation – Size and layout of drawing sheets – IS 9606 – 2001: Technical products Documentation – Lettering – IS 10714 & SP 46 – 2003: Dimensioning of Technical Drawings – IS: 15021 - 2001: Technical drawings – Projections Methods – drawing Instruments, Lettering Practice – Line types and dimensioning – Border lines, lines title blocks Construction of polygons – conic sections – Ellipse, Parabola, Hyperbola and cycloids.

UNITI PROJECTION OF POINTS, LINES AND PLANE SURFACES

Projection of points and straight lines located in the first quadrant – Determination of true lengths and true inclinations – projection of polygonal surface and circular lamina in simple position only.

UNIT II PROJECTION OF SOLIDS

Projection of simple solids like prism, pyramid, cylinder and cone in simple position Sectioning of above solids in simple vertical position by cutting plane inclined to one reference plane and perpendicular to the other.

UNIT IIIDEVELOPMMENT OF SURFACES AND ISOMETRIC PROJECTION

Development of lateral surfaces of simple and truncated solids – prisms, pyramids, cylinders, and cones. Principles of isometric projection – isometric scale – isometric projections of simple solids, like prisms pyramids, cylinders and cones.

UNIT IV ORTHOGRAPHICS PROJECTIONS

Orthographic projection of simple machine parts – missing views

BUILDING DRAWING

Building components – front, Top and sectional view of a security shed.

UNIT V COMPUTER AIDED DRAFTING

Introduction to CAD – Advantages of CAD – Practice of basic commands – Creation of simple components drawing using CAD software.

Total no. of Periods: 30

Note: First angle projection to be followed.

TEXT BOOKS:

- 1. Bhatt, N.D. and Panchal, V.M. (2014) Engineering Drawing Charotar Publishing House
- 2. Gopalakrishnan, K.R. (2014) Engineering Drawing (Vol.I& II Combined) Subhas Stores, Bangalore.

6

6

6

3

6

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

Subject Co BES18L0		Subject I	Name: II		RATED	PHYSICA LAB	L		^r y/Lb/ ETL	Ι	L T/S	Lr	P/R	C
	-	Prerequi	site: Nor	ne					Lb	() 0/0)	2/0	1
	T: Tutorial Theory / La					oject R : R	esear	ch C: 0	Credit	S				
OBJECT														
•	Demonstr measuren		lity to m	hake ph	ysical me	easurement	s & u	ndersta	and the	e limit	s of precisi	on 1n		
•			o measu	re nron	erties of v	variety of i	necha	nical	ontica	1 eleci	trical and e	lectroni	veveter	ne
•		•		• •		EMF using			•				syster.	
•					•	hromatogr		-	· •					
•		arize the c	oncepts	of chem	n. Informa	atics								
						COMES								
CO1	Recognize	the correct				ing the cou								
	-			-										
CO2	Construct a	nd compar	the pro	operties	of variet	ty of mech	anical	l, optic	al, ele	ctrical	and electro	onic syst	ems.	
CO3	Familiariziı	ng the titra	tion met	hods us	sing cond	luctometry	& po	tention	netry					
CO4	Developing	the Resea	rch spiri	it throug	gh the kn	owledge o	f Che	minfor	matics	s & Ar	alytical sk	ills.		
		Ma	pping o	f Cours										
					\mathbf{v}	mes with 1	Progr	am Oı	itcom	es (Po	s)			
Cos/Pos	DO1				1	mes with	_				-	DO11	D	10
03/1 03	PO1	PO2	PO3	PO4	PO5	PO6	Progr P O	ram Ou PO8		es (Po PO9	PO10	PO11	PC	012
		PO2	PO3	PO4	PO5		Р				-	PO11	PC)12
CO1	Н	PO2 H	PO3	PO4 H	PO5 H		P O				PO10	PO11	PC	012
		PO2	PO3	PO4	PO5		P O				-	P011	PC)12
CO1	Н	PO2 H	PO3	PO4 H	PO5 H		P O				PO10	PO11	PC	012
CO1 CO2	H H	PO2 H H	PO3 L M	PO4 H H	PO5 H H		P O			PO9	PO10	PO11)12 //
CO1 CO2 CO3	H H H H	PO2 H H H H	PO3 L M M H	PO4 H H H	PO5 H H H		P O 7	PO8	3	PO9 H H	PO10 M			
CO1 CO2 CO3 CO4	H H H	PO2 H H H H/M/L ind	PO3 L M H dicates s	PO4 H H H strengtl	PO5 H H H n of corr	PO6	P 0 7	PO8	3 — — Mee	PO9 H H dium,	PO10 M L – Low	H		
CO1 CO2 CO3 CO4	H H H	PO2 H H H H/M/L ind	PO3 L M H dicates s	PO4 H H H strengtl	PO5 H H H n of corr	PO6	P 0 7	PO8	3 — — Mee	PO9 H H dium,	PO10 M L – Low	H		
CO1 CO2 CO3 CO4	H H H	PO2 H H H H/M/L ind	PO3 L M H dicates s	PO4 H H H strengtl	PO5 H H H n of corr	PO6	P 0 7	PO8	3 — — Mee	PO9 H H dium,	PO10 M L – Low	H		
CO1 CO2 CO3	H H H	PO2 H H H H/M/L ind	PO3 L M H ticates s	PO4 H H H strengtl	PO5 H H H n of corr	PO6	P 0 7	PO8	Practical / Droisect	PO9 H dium,	PO10 M L – Low			
CO1 CO2 CO3 CO4	H H H	PO2 H H H H/M/L ind	PO3 L M H dicates s	PO4 H H H strengtl	PO5 H H H n of corr	PO6	P 0 7	PO8	3 — — Mee	PO9 H dium,	PO10 M L – Low	H		
CO1 CO2 CO3 CO4	H H H	PO2 H H H H/M/L ind	PO3 L M H dicates s	PO4 H H H strengtl	PO5 H H H n of corr	PO6	P 0 7	PO8	Practical / Droisect	PO9 H dium,	PO10 M L – Low	H		

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code:	Subject Name: INTEGRATED PHYSICAL SCIENCE LAB	Ty/Lb/ ETL	L	T/SLr	P/R	C
BES18L02	Prerequisite: None	Lb	0	0/0	2/0	1

LIST OF EXPERIMENTS

- 1. Determination of Coefficient of Viscosity of a given liquid by Poiseuille's method.
- 2. Particle Size determination using Laser Source.
- 3. Determination of Numerical Aperture of an Optical Fiber.
- 4. Spectrometer- Refractive Index/Dispersive power/i-d curve.
- 5. Potentiometer Resistance of a wire.
- 6. Transistor Characteristics -Input Resistance, Output Resistance and Gain.
- 7. Studies on acid-base conductometric titration.
- 8. Determination of redox potentials using potentiometry.
- 9. Determination of R_fvalues of various components using thin layer chromatography.
- 10. Viscosity studies using capillary viscometer.
- 11. Compute the structures of the given polymers, drugs, bio molecules using Chem Draw.
- 12. Studies on potential energy surface of the given molecules.
- 13. Estimate NMR spectra from a Chem Draw structure.

Total no. of Periods: 30

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

P/R C
2/0 2
11 PO12
Н
М
М
М
I
s
Skill
Soft Skills
5 2

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code:	Subject Name: C PROGRAMMING AND LAB	Ty/Lb	L	T/SLr	P/R	С
		/ETL				
BES18ET3	Prerequisite: None	ETL	1	0/0	2/0	2

UNIT IINTRODUCTION

Fundamentals, C Character set, Identifiers and Keywords, Data Types, Variables and Constants, Structure of a C Program, Executing a C Program.

UNIT II EXPRESSION AND STATEMENT

Operators, Types-Complex and Imaginary, Looping Statement-For, While, Do, Break, continue, Decision Statement-If, If else, Nested if, Switching Statement, Conditional Operator.

UNIT III ARRAYS AND FUNCTIONS

Defining an Array, Using Array elements as counters, Generate Fibonacci number, Generate Prime Numbers, Initializing Arrays, Multidimensional Arrays, Defining a Function, Function call -types of Function calls - Function pass by value -Function pass by reference, Write a Program in Recursive Function.

UNIT IV STRUCTURES AND POINTERS

Working with Structures -Introduction -Syntax of structures -Declaration and initialization -Declaration of structure variable -Accessing structure variables, Understanding Pointers -Introduction -Syntax of Pointer.

UNIT V STRINGS AND FILE HANDLING

Strings -Syntax for declaring a string -Syntax for initializing a string -To read a string from keyboard, Files in C -File handling functions -Opening a File closing a file --example: fopen, fclose -Reading data from a File- Problem solving in C

Total no. of Periods: 30

1. www.spoken-tutorials.org

2. <u>http://www.learn-c.org/</u>

REFERENCE:

Stephen G. Kochen"Programming in C- A complete introduction to the C Programming Language. Third Edition, Sams Publishing -2004

Ajay Mital, "Programming in C: A Practical Approach", Pearson Publication-2010

LIST OF PROGRAMS

- 1. Write a program to check 'a' is greater than 'b' or less than 'b' Hint: use if statement.
- 2. Write another program to check which value is greater 'a', 'b' or 'c'. Hint: use else-if statement. (Take values of a, b, c as user inputs)
- 3. Write a Program to find the sum of the series: $x + X^3/3! + X^5/5! + \dots X^n/n!$
- 4. Write a C Program to solve a Quadratic Equation by taking input from Keyboard
- 5. Write a C Program to arrange 20 numbers in ascending and descending Order. Input the Numbers from Keyboard
- 6. Write a C Program to Multiply a 3 x 3 Matrix with input of members from Keyboard
- 7. Write a program that takes marks of three students as input. Compare the marks to see which student has scored the highest. Check also if two or more students have scored equal marks.
- 8. Write a program to display records of an employee. Like name, address, designation, salary.
- 9. Write a C program, declare a variable and a pointer. Store the address of the variable in the pointer. Print the value of the pointer

Write a C program to concatenate String 'best' and String 'bus'. Hint: strcat(char str1, char str2); Explore the other functions in string library.

Write a program to create a file TEST. Write your name and address in the file TEST. Then display. it on the console using C program

6

6

6

SEMESTER-III

Dr. M.G.R. DUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status

			Periyar E RTMEN	.V.R. Sal	ai, Madu	ravoyal,	Chennai	i – 95	RINC				
Subject Code:	Su		me: MA $MECHA$	THEM	ATICS	III FOI	R		Ty / Lb/ ETL		T / S.Lr	P/ R	C
BMA18005	Pr	rerequisi	te: Math						Ту		1/0	0/0	4
T. T. sterm T.	Traction	1 01	Contraction	. 1 T		Ducient	D . D		Carlie				
L : Lecture T : T/L/ETL : The					•	Project	R : Rese	earch C:	Credits				
OBJECTIVE				y and La	uo								
				echnique	es which	empha	size the	develop	oment of ri	gorous	logical t	hinking	and
analyt	ical skil	ls.								0	e	C	
			ns of parti	al differ	ential ec	quation,	its appli	cations,	Fourier set	ries, tra	nsforms	and Laj	place
	ormatio												
COURSE OU													
CO1			stand the H		•			ntial equ	ations				
CO2			stand the I		1								
CO3					•				al Heat and	Wave	equations	5	
CO4			stand the I										
CO5			stand the H		•			orms					
Mapping of C						es (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Η	Η	Μ	Μ	L	L	L	L	L	L	L	L	
CO2	Η	Η	Μ	Μ	L	L	L	L	L	L	L	L	
CO3	Η	Н	Μ	Μ	L	L	L	L	L	L	L	L	
CO4	Η	Η	Μ	Μ	L	L	L	L	L	L	L	L	
CO5	Η	Η	Μ	Μ	L	L	L	L	L	L	L	L	
COs / PSOs	P	SO1	PSC	02	PS	03	PS	04	PSO5				
CO1	Μ		L		L		Н		L				
CO2	Μ		L		L		Н		L				
CO3	Μ		L		L		Н		L				
CO4	Μ		L		L		Н		L				
CO5	Μ		L		L		Н		L				
H/M/L indica		ength of	Correlati	on H-	High, N	1- Medi	um, L-I	LOW					
					s								
	x		d es		ive	s	ject	-					
~	Jce	ad	s an enco	ore	lect	ive	Pro	Skil					
Category	cieı	erin S	ities Scia	n C	nE	lect		nips al (ills				
ate	c S	inee nce	nan al	gran	gran	пE	tice	rnsł nnic	Sk				
Ũ	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	 ✓								S				
Approval													

Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

(Deemed to be University) University with Graded Autonomy Status

Subject Code:	Subject Name : MATHEMATICS III FOR	Ty / Lb/	L	Τ/	P/ R	С
	MECHANICAL AND CIVIL ENGINEERS	ETL		S.Lr		
BMA18005	Prerequisite: Mathematics I & II	Ту	3	1/0	0/0	4

UNIT- I: PARTIAL DIFFERENTIAL EQUATIONS

Formation of PDE by eliminating arbitrary constants and eliminating arbitrary functions – Solutions of standard types of first order equations – Lagrange's equation – Linear partial differential equations of second and higher order with constant coefficients.

UNIT- II: FOURIER SERIES

Dirichlet's conditions – General Fourier series – Half range Sine & Cosine series – Complex form of Fourier series – Parseval's identity – Harmonic Analysis.

UNIT- III: APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Classification of second order linear partial differential equations - Solutions of one dimensional wave equation, one-dimensional heat equation - Steady state solution of two dimensional heat equations (Cartesian coordinates only) - Fourier series solutions.

UNIT- IV: LAPLACE TRANSFORMS

Transforms of simple functions - Properties of Transforms - Inverse Transforms - Transforms of Derivatives and Integrals – Periodic functions – Initial and final value theorems – Convolution theorem – Applications of Laplace transforms for solving linear ordinary differential equations up to second order with constant coefficients and Linear simultaneous differential equations of first order with constant coefficients.

UNIT- V: FOURIER TRANSFORMS

Statement of Fourier integral theorem - Fourier transform pairs - Fourier Sine and Cosine transforms -Properties – Transforms of simple functions – Convolution theorem – Parseval's theorem.

TEXT BOOKS

- 1) Veerarajan T. (2007), Engineering Mathematics (for first year), Tata McGraw-Hill Publishing Co.,
- 2) Veerarajan T. (2005), Engineering Mathematics (for semester III), Tata McGraw Hill Publishing Co.,

REFERENCES:

- 1) Singaravelu (2009), Transforms and Partial Differential Equations, Meenakshi Agency.
- 2) Kreyszig E. (2011), Advanced Engineering Mathematics (9th ed.), John Wiley & Sons.
- 3) Grewal B.S. (2012), Higher Engineering Mathematics, Khanna Publishers.

12

Total no. of Periods: 60

12

12

12

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code:	S	ubject Na	me: EN	GINEE	RING N	MECHA	ANICS		Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
BME18003	Р	rerequisi	te: Engin	eering l	Physics				Ту	3	1/0	0/0	4
L : Lecture T :	Tutor	ial SLr	: Supervis	ed Lear	ning P:	Project	R : Res	search C	C: Credits				
T/L/ETL : The						-							
OBJECTIVE	:												
• To	o gain i	knowledg	e of static	s ,dynar	nics ,fric	ction, m	oment o	f inertia	of the part	ticle.			
				COURS	E OUT	COME	S (COs)	: (3-5)				
CO1		Will be al	ole to anal	yse the	concept	of static	s of a pa	article a	nd rigid bo	ody			
CO2		Will be al	ole to anal	yse the	propertie	es of sur	face and	d solids					
CO3		Will be at	ole to anal	yse and	calculat	e the fri	ctional f	force in	different of	bjects.			
CO4			ole to anal										
CO5			ole to anal										
				Course					comes (PC)s)			
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10) PO1	PO	12
CO1	Μ	H		Μ								Η	
CO2	Μ	Η										Η	
CO3	Μ	Η		Μ								Η	
CO4	Μ	Η										Η	
CO5	Μ	Η		Μ								Η	
Cos / PSOs	P	SO1	PS	02	PS	03	PS	SO4					
CO1		Μ	H	[Μ						
CO2		Μ	H	[
CO3		Μ	H	[
CO4		Μ	H	[
CO5		Μ	H										
H/M/L indica	tes Sti	rength of	Correlat	<u>ion H</u>	High, I	M- Med	lium, L-	Low					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

B.Tech Robotics and Automation- 2018 Regulation

Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

(Deemed to be University) University with Graded Autonomy Status

Subject Code:	Subject Name : ENGINEERING MECHANICS	Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
BME18003	Prerequisite: Engineering Physics	Ту	3	1/0	0/0	4

UNIT-I: STATICS

STATICS OF PARTICLE: Introduction – units and Dimensions – Laws of mechanics – concurrent forces in a plane-resolution and Composition of forces – equilibrium of the particle-resultant force. Forces in space – Equilibrium of a particle in space

STATICS OF RIGID BODY: Free body diagram – Types of supports and their reactions – Moments and Couples – Moment of a force about a point and about an axis – Varignon's theorem – equilibrium of Rigid bodies in two dimensions –Equilibrium of Rigid bodies in three dimensions

UNIT- II: PROPERTIES OF SURFACE AND SOLIDS

Determination of Area and volume – Determination and derivation of First moment of area(Centroid), Second moment of area(Moment of Inertia) of Regular as well as irregular geometrical area – Centroid of line elements. Mass moment of inertia and polar moment of inertia. Principal moments of inertia of plane areas – Principal axes of inertia-Product of Inertia.

UNIT-III: FRICTION

Introduction – Laws of Dry Friction – Coefficient of friction – friction of a body lying on an inclined plane. Application of friction-Ladder friction-Wedge friction-Screw friction.

UNIT- IV: DYNAMICS OF PARTICLES

KINEMATICS: Displacement, Velocity-Constant and variable Acceleration, their relationship – linear and curvilinear motion- Projectile motion, relative motion. KINETICS: Linear and Curvilinear motion-Work-Energy method, Impulse and Momentum, Impact-collision of Elastic bodies. Newton's law-D'Alembert's principle.

UNIT- V: DYNAMICS OF RIGID BODIES

KINEMATICS: Introduction-Rotation-Linear and Angular Velocity as well as acceleration. General plane motion-Absolute and Relative velocity in plane motion. Instantaneous centre of Rotation in plane motion-Location. KINETICS: Relation between Translatory and Rotary motion of the body-Work energy equation of particles –D'Alembert's principle.

TEXT BOOKS

- 1) R.S.Khurmi. (2008), "A Textbook of Engineering Mechanics", S.Chand & co Ltd.
- 2) S.Rajasekaran et.al. (2009), "*Fundamentals of Engineering Mechanics*", Vikas Publishing House Pvt Ltd., 3rd Edition.

REFERENCES:

- 1) Arthur.P.Boresi,Richard.J.Schmidt, "Engineering Mechanics : Statics & Dynamics", Thomson Brooks/Cole,Chennai.
- 2) Palanichamy M.S, Nagan.S, (2001), "Engineering Mechanics Statics and Dynamics" Tata Mc Graw Hill.
- *3) Beer & Johnson et.al, (2010) "Vector Mechanics for Engineers (Statics and Dynamics)", Tata Mc Graw Hill.*

Total no. of Periods: 60

12

12 pla

12

12

Dr. M.G.R. CATIONAL AND RESEARCH INSTITUTE

University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

(Deemed to be University)

DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code:		Subject Na	ame: ELF		CAL AN CUITS	DELE	CTRON		Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
BRE18001		Prerequisi		Electric	al and I	Electroi	nics	,	Ту	3	1/0	0/0	4
L : Lecture T :		E ngineeri r tal SLr :		ed Lear	ning P:	Project	R : Res	earch C:	Credits				
T/L/ETL : The			-		-								
	•		ueu meo		au								
the baDesign	lerstan ethods sics 0 1 of an	nding of: s of analyz f MOS T nplifiers, o various an	ransistors oscillators alog circu	s and the uits	ir applic	ations		etwork t	heorems				
Students will							. ,						
CO1		To unders											
CO2		To unders	stand the f	fundame	ntals of	Analog	circuits,	differen	tiate the A	AC circu	iits.		
CO3		To learn											
CO4		To justify				electron	ic devic	es like os	scillators	and amp	olifier		
CO5		To study		Ũ									
Mapping of C				0	1	<u>`</u>	<i></i>						
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO	12
CO1 CO2	H H	H H	H H	H H	M H	M	L L	M H	H	M M	H H	H H	
<u>CO2</u> CO3	H H	H	H H	н Н	H H	M L	L L	н М	M H	H	H	H H	
<u>CO4</u>	H	H	H	H	H	L	L	L	H	H	M	H	
<u>CO5</u>	H	H	M	H	H	L	L	L	H	M	L	H	
COs / PSOs		PSO1	PSC			03		504	PSO5				
CO1	Η		Μ				Н						
CO2	Η		L				Н						
CO3	Η		L				Η						
CO4	Η		Μ				Н						
<u>CO5</u>	H	41 6	H				H	.					
H/M/L indica	tes Sti	rength of		ion H-	• High, I	VI- Med	ium, L-						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills	Interdisciplinary subject			
Approval													

Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

University with Graded Autonomy Status

Subject Code:	Subject Name: ELECTRICAL AND ELECTRONICS	Ty / Lb/	L	Τ/	P/ R	С
	CIRCUITS	ETL		S.Lr		
BRE18001	Prerequisite: Basic Electrical and Electronics	Ту	3	1/0	0/0	4
	Engineering					

UNIT I : DC CIRCUITS

Introduction – V-I relationships of circuit parameters – Voltage source and current source - Kirchhoff's laws – Network reduction techniques – Mesh and Node analysis – Superposition theorem – Thevenin's theorem – Norton's Theorem – Maximum power transfer theorem

UNIT II : AC CIRCUITS

RMS and average values of periodic waves – Form factor – phase and phase difference – RL, RC, RLC circuits – Parallel circuits – power and power factor – Introduction to three phase system – Solution of balanced three phase circuits – Power measurement of 3-phase system

UNIT III : INTRODUCTION TO MOS TRANSISTORS

NMOS and PMOS transistors – Fabrication, Process parameters for MOS and CMOS, Electrical properties of CMOS circuits and device modeling.

UNIT IV : AMPLIFIERS AND OSCILLATORS

Transistor biasing - CE, CB and CC – Amplifiers - Current gain - Voltage gain - Frequency response - Power amplifiers - Feedback Amplifiers – Oscillators - RC Phase shift - Wein Bridge – Hartley - Collpit's analysis

UNIT V : ANALOG CIRCUITS

Operational amplifier Ideal characteristics – Applications - Current to voltage - Voltage to current converters – Arithmetic circuit – Adder – Subtractor – Multiplier – Differentiator – Integrator - Inverting and Non-inverting amplifiers - Buffer - 555 Timer - Block diagram – Multivibrators

TEXT BOOKS

- 1. Floyd (2005) Electronic Device, (7th ed.), Pearson Education
- 2. David, A. Bell (2009) Fundamentals of Electronic Devices and Circuits, (5th ed.), Oxford University Press
- Sudhakar, Shyammohan (2010) Circuits & Networks Analysis & Synthesis, Tata McGraw Hill(unit 1 & 2)

REFERENCES:

- 1. Milman, Halkias (2010) Integrated Electronic, TataMcgraw hill publication
- 2. Boyle stad Nashelsky (2009) Electronic Devices and Circuit theory, (10th ed.), PHI

48

Total no. of Periods: 60

12

12

12

12

Dr. M.G.R. UCATIONAL AND RESEARCH INSTITUTE

(Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code:	S	ubject Na	me: EL	ECTRI	CAL M	IACHI	NES		Ty/Lb/ET L	L	T S.Lr	/ P/ R	C		
BRE18002		rerequisi ngineerin		ic Ele	ectrical	and	Electro	onics							
L : Lecture T : T/L/ETL : The	ory/La	b/Embed	.		•	Project	R : Rese	earch C	C: Credits						
• To • To	acqui	arize the re the kno	wledge of	felectric	cal transf	formers			C machines notors						
• To • To	have e gain k	the opera exposure anowledge	to transfor	rmers er and se											
COURSE OU					1 1			1		1 .	1				
CO1		The stud machines		e gained	1 KNOW	edge in	princip	ies of	operations	and c	naracter	ristics of	DC		
CO2		The stude	ents have g		-										
CO3									mers and in	duction	n motors	6			
CO4 CO5		The stude The stude													
Mapping of C								Servo	motors						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1) PO1	1 PO	12		
CO1	Η	Н	Н	Η	Н	L	Μ	Η	Η	Н	Μ	Μ			
CO2	Η	Н	H	Η	Н	L	Μ	Η	H	Н	Μ	Μ			
CO3	H	Μ	H	H	H	Μ	L	H	H	H	Μ	Μ			
CO4	H	H	H	H	H	M	L	H	H	H	M	M			
CO5	H	H	H	Η	H	Η	H DCO4	Η	H PSO5	Н	H	H			
COs / PSOs CO1	PSO1 H	1	PSO2 H		PSO3 M		PSO4 H		PSO5 H						
CO1 CO2	н Н		H H		M		н Н		H						
CO2 CO3	H		H		M		H		H						
CO4	H		H		M		H		H						
CO5	Н		Н		Μ		Н		L						
H/M/L indicat	tes Str	ength of	Correlati	on H-	High, N	A- Med	ium, L-I	Low							
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills						
C -	В		H Sc			0	Prɛ	Ē							
Approval															

Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 TMENT OF MECHANICAL FNCINEERI

(Deemed to be University)

Subject Code: BRE18002	Subject Name: "ELECTRICAL MACHINES	₽ ₽₩Ĕ₩ ₽ ETL	L	T / S.Lr	P/ R	С
	Prerequisite: Basic Electrical and Electronics Engineering	Ту	3	0/0	0/0	3

UNIT I: D.C. MACHINES

Constructional details - EMF equation - methods of excitation - self and separately excited generators characteristics of series, and shunt generators – principle of operation of D.C. Motor – back emf and torque equation – characteristics of series and shunt motors - starting of D.C. Motors – types of starters - speed control and braking of DC. motors.

UNIT II: TRANSFORMERS

Constructional Details – Principle Of Operation – EMF Equation – Transformation Ratio – Transformer on No Load - Parameters Referred To HV/LV Windings - Equivalent Circuit - Transformer on Load - Regulation -Testing - Load Test - 3- PHASE Transformers connections.

UNIT III : INDUCTION MOTORS

Construction – types – principle of operation of three-phase induction motors – equivalent circuit – starting and speed control – single-phase induction motors (only qualitative analysis).

UNIT IV: SYNCHRONOUS MACHINES

Construction of Synchronous machines-types – induced emf – Equivalent circuit of excited-rotor synchronous motor- Equivalent circuit of excited-rotor synchronous motor - Starting - Permanent magnet synchronous motors

UNIT V: SPECIAL MACHINES

Brushless alternators – reluctance motor – stepper motor servo motor - Hysteresis motors.

Total no. of Periods: 45

TEXT BOOKS :

1. Murugesh Kumar K., "Electric Machines Vo I", Vikas Publishing House Pvt Ltd, 2010.

2. Murugesh Kumar K., "Electric Machines Vol II", Vikas Publishing House Pvt Ltd, 2010

3. Mehta V.K. and Rohit Mehta, Principles of Power System", S.Chand and Company Ltd, 2003

REFERENCES:

1. Fitzgerald A.E., Charles Kingsley, Stephen.D.Umans, "Electric Machinery", Tata McGraw Hill publishing Company Ltd, 2003.

2. Gupta J.B., "Theory and Performance of Electrical Machines", S.K.Kataria and Sons, 2002

3. Kothari D.P. and Nagrath I.J., "Electric Machines", Tata McGraw Hill Publishing Company Ltd, 2002.

4. Bhimbhra P.S. "Electrical Machinery", Khanna Publishers, 2003.

9

9

9

9

EDUCATIONAL AND RESEARCH INSTITUTE	A
(Deemed to be University)	MAAC
University with Graded Autonomy Status	-

Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

		DED/						ennai – ! FNCH		<u>.</u>		-	•
Subject Code:	Sı	ubject Na	me: BA	SICS (SF ROI	Botic		LINGI	FERING	L	Τ/	P /	С
									ETL		S.Lr	R	_
BRE18003	P	rerequisi	te: Noi	ne					Ту	3	0/0	0/0	3
L : Lecture T :	Tutori	ial SLr	: Superv	vised Le	earning	P : Proj	ect R:	Researc	h C: Credi	ts			
T/L/ETL : Theo	_	ab/Embed	lded The	eory and	d Lab								
OBJECTIVE													
•		nderstand			•		_						
•		nderstand		-						C 1			
	To a	nalyze di							nificance o	of robots	in vari	ous inc	lustries.
				COUR			ES (CC be able)s) : (3-	5)				
CO1		Understa	and the a	automat					nce				
CO2		Understa											
CO3							behind f	he desig	n of robots				
CO4		Understa											
CO5				<u> </u>					of unmann	ed vehic	les		
000						-		• •	itcomes (P		105.		
COs/Pos	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 I	PO12
CO1	Η	Η	Η	Η	Μ	Η	Μ	L	H	Μ	H	I	
CO2	Н	Н	Н	Η	Н	Μ	L	L	Μ	Μ	L	I	I
CO3	Н	Н	Н	Η	Н	L	L	Μ	Н	Н	Н	I	N
CO4	Н	Н	Н	H	Н	L	L	Μ	Н	Н	М	I	N
CO5	Н	Н	Н	Η	Н	L	L	Μ	Н	Н	Н	ľ	N
COs / PSOs	P	PSO1	PS	02	PS	03	PS	503					
CO1		L	I		I	I		H					
CO2		L	Ν	Л	I	I		L					
CO3		L	Ν	Л	Ν	Л]	Μ					
CO4		L	Ν	A	I	I]	М					
CO5		L	Ν	Л	Ν	Л]	М					
H/M/L indicat	es Str	rength of	Correl	ation	H- Hig	h, M- N	Iedium	, L-Lov	V				
	s		nd es										
	nce	හු	s ar enc	ore		tive		ips Sk					
_	cie	erin %	itie Sci	n C	n es	lleci	al /	Internships / Technical Skill	ills				
ory	ic S	inee	nan al	grar	grar	nE	stici ect	teri	Sk				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	 ▲ Program Core 	Program Electives	Dpen Electives	Practical Project	In Tec	Soft Skills				
C_3				\checkmark									
A pprovol													
Approval													
					1								

Automation and Robotics -Robotics in Science Fiction -A Brief History of Robotics- The Robotics Market and the Future Prospects UNIT II: FUNDAMENTALS OF ROBOTICS

UNIT II: FUNDAMENTALS OF ROBOTICS 12 Definition of a Robot – Basic Components -Robot Anatomy- Robot Configurations: Polar, Cylindrical, Cartesian coordinate and Jointed – Arm, Robot Motion: Degrees of Freedom, types of movements – Vertical, Radial and Rotational Traverse, Roll, Pitch and Yaw: Joint Notation Scheme: Wok Volume. Robot drives Systems, Robot control types and precision of movement.

UNIT III: END EFFECTORS AND SENSORS

UNIT I: INTRODUCTION TO ROBOTICS

Mechanical gripper, vacuum cups, magnetic gripper, Tools as end effectors, Tactile sensors, proximity and range sensors, vision sensors.

UNIT IV: APPLICATIONS OF ROBOT

Applications: Use of Robot in manufacturing –material transfer, machining loading, unloading, welding & assembly. Medical, Agricultural and space applications.

UNIT V: UNMANNED VEHICLES

Drones- Types and Applications; Unmanned Vehicles: Ground, Ariel and Underwater – Types and Applications – Biomimictic- Introduction

TEXT BOOKS:

1 Mikell P. Groover et. al., "Industrial Robots - Technology, Programming and Applications", McGraw Hill, Special Indiation Edition,(2012)

2. John J.Craig, "Introduction to Robotics", Pearson, 2009.

3. Deb S. R. and Deb S., "Robotics Technology and Flexible Automation", Tata McGraw Hill Education Pvt. Ltd, 2010.

REFERENCES:

1. Richard D Klafter, Thomas A Chmielewski, Michael Negin, "Robotics Engineering – An Integrated Approach", Eastern Economy Edition, Prentice Hall of India Pvt. Ltd., 2006.

2. *Fu K S, Gonzalez R C, Lee C.S.G, "Robotics: Control, Sensing, Vision and Intelligence", McGraw Hill, 1987* 3. <u>https://www.robots.com/applications</u>

4. https://www.asme.org/engineering-topics/articles/bioengineering/top-6robotic-applications-in-medicine.

6

9

Q

9

Total no. of Periods: 45

Subject Code: Subject Name: BASICS OF ROBOTICS Ty / Lb/ L Τ/ **P/ R** С ETL S.Lr 3 **BRE18003** 0/0 **Prerequisite:** None Тy 0/0 3

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University)

University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code: BRE18ET1	S	ubject Na	me : PY 7	THON P	ROGR	AMMIN	NG		Ty / Lb/ ETL	L	T / S.Lr	P/ R	C	
DREIGETT	P	rerequisi	te: Basics	of Com	puters	with C	program	ming	ETL	1	0/1	3/0	3	
L : Lecture T : T										1 1			_	
Ty/Lb/ETL : The	eory/Lal	b/Embedd	led Theor	y and La	.b									
• To use o	bject or	the funda iented pro ear, non-l	ogrammin inear data	g to imp structur	lement d es and th	lata strue neir app	ctures.		ly in pyt	hon.				
CO1	,	To acquir					(COs):	(3-5)						
CO2		-		-										
		•	acquire Object Oriented Skills in Python develop the skill of designing Graphical user Interfaces in Python											
CO3						*								
CO4	,	To develo	develop the ability to write database applications in Python											
CO5	,	To develo	op files, n	nodules,	package	s in pyt	hon prog	grammin	g					
			oping of (1			1		-				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1			
<u>CO1</u>	H	Н	H	H	M	H	M	M	H	Н	H		H	
CO2 CO3	H	H H	H H	H H	M L	H	M M	M	H H	H M	H H		H H	
$\frac{CO3}{CO4}$	H H	H	H H	H H	L M	H H	M	M M	H	H	H		н Н	
C04 C05	Н	Н	Н	Н	L	Н	M	M	Н	М	H		п Н	
COs / PSOs		SO1	PS			03		504	11	101			11	
C01	-	501	15	-	10			H						
CO2								H						
CO3]	H						
CO4								H						
CO5								H						
H/M/L indicate	s Streng	gth of Co	rrelation	H- Hi	gh, M- I	Medium	ı, L-Low	7						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	←Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
				N										
Approval														

(Deemed to be University) University with Graded Autonomy Status

Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

Subject Code:	Subject DEPARTMENT OF MECHANICAL ENGI	NEE/RIM (μ	Τ/	P/ R	C
	PYTHON PROGRAMMING	ETL		S.Lr		
BRE18ET1	Prerequisite: Basics of Computers with C	ETL	1	0/1	3/0	3
	programming					

UNIT-1 BASICS OF PYTHON

Entering and Storing Data- Data Types- Binding Values to Names- More Python Syntax Basics- Reading and Converting User Input. Making Decisions- Conditions in Python- Making Decisions: Simple if Statements.-Multiple Choice Decisions.

Lab component: Programs for the above concepts.

UNIT-II ITERATION AND LISTS

Iteration: For and While Loops- Terminating the Current Iteration. — Sequence Containers: Lists and Tuples-Writing Lists and Tuples- Accessing Sequence Values- Manipulating Lists and Tuples. **Lab component**: Programs for the above concepts.

UNIT-III SETS AND DICTS

Sets and Dicts- Creating Sets- Working with Sets- Working with Dicts- Applying Dicts: Counting Words. **Lab component**: Programs for the above concepts.

UNIT-IV FORMATTING

String Formatting- The format () Method- Function Arguments- Format Field Names- More About Looping--Fun with the range () function- While Loops and User Input Validation. Lab component: Programs for the above concepts.

UNIT-V FILES, MODULES, PACKAGES

Files and exception: Text files Creating a New File- Writing to a File- Reading Files as Text ,format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs: word count, copy file.

Lab components:

- 1. Write a program to compute distance between two points taking input from the user (Pythagorean Theorem)
- 2. Write a program add.py that takes 2 numbers as command line arguments and prints its sum.
- 3. Write a Program for checking whether the given number is a even number or not
- 4. Write a program using a while loop that asks the user for a number, and prints a countdown from that number to zero.
- 5. Write a program using a for loop that loops over a sequence.
- 6. Write a program using a while loop that asks the user for a number, and prints a countdown from that number to zero.

Total No. of Periods: 45

Text Books

1. Introduction to Programming Using Python, First Edition by Y. Daniel Liang,©2013 Prentice Hall 2. Dawson, Michael. Python Programming for the Absolute Beginner (3rd ed.). Boston, MA: Course Technology, 2010.

REFERENCES:

1. Shaw, Zed A., 2012. Learn Python the Hard Way, Second Edition, Shavian Publishing, LLC, 183 p

9

9

9

9

Dr. M.G.R. JCATIONAL AND RESEARCH INSTITUTE

(Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code		bject Na ELECTI	me : RICAL A	ND ELI	ECTRO	NICS C	IRCUI		Ty / Lb/	L	T / S.Lr	P/ R	С
BRE18L01					AB				ETL				
	Pr	erequisi	te: Theor	etical co	oncepts i	in Electi	rical An	d	Lb	0	0/0	3/0	1
L : Lecture T:	Tutorial	SLr : Su	s Enginee	ring Learning	g P : Pro	ject R : I	Research	C:Credi	its				
T/L/ETL : The						,							
	•			y und Ed	.0								
OBJECTIVE			y the elec	tric circi	uits analy	vzed by	network	theorem	IS				
			ntally the				network	theorem	15				
		-											
COURSE OU					_	-	_			_		_	
CO1		udents w eorems.	ill practica	ally anal	yze the v	various e	electric c	vircuits v	erified th	eoretical	ly by netw	vork	
CO2	Stu	idents w	ill be expo	osed prac	ctically v	various e	lectroni	c circuit	based exp	periment	S		
CO3			ill be able						,				
CO4	Stu	idents w	ill be able	to desig	n regula	tors of v	arious t	vpes					
				C			-						
CO5	Stı	idents w	ill be able	to desig	n rectifi	ers of va	rious ty	pes					
Monnierer			:	C		(D)							
Mapping of C Cos/Pos	PO1	PO2	PO3	ogram (PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
C01	H	н Н	<u>Н</u>	H	M	H	<u>и</u>	100 M	H	H	H		H
<u>CO2</u>	H	H	H		M	H	M	M	H	H	H		H
				Н									
CO3	Н	Н	Н	Н	L	Н	М	М	Н	М	Н		Η
CO4	Н	Н	Н	Н	М	Н	М	М	Н	Н	Н		H
CO5	Н	Н	Н	Н	L	Н	М	М	Н	М	Н		H
Cos / PSOs	PS	501	PSC	02	PSO:	3	PS	504					
CO1]	H					
CO2								H					
CO3								H					
CO4								H					
CO5								H					
		H/M/L	indicates	s Streng	th of Co	orrelatio	n H- Hi	gh, M- I	Medium,	L-Low			
	lces	50		ore				s /					
ury	cien	ring	ties ial	Ŭ	- s	s	1/	Internships Technical	lls				
Category	c S(nee	lani Soc	ran	ran tive	ו live	tica	Internship Technical	Ski	1			
Cat	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical Project	Int(Tec	Soft Skills				
	B	Ň	N I I I		ЦЦ	ОШ			S				
A nnrous1										-		_	
Approval													

DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code: BRE18L01	Subject Name : ELECTRICAL AND ELECTRONICS CIRCUITS LAB	Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
	Prerequisite: Theoretical concepts in Electrical And Electronics Engineering	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS:

ELECTRICAL CIRCUITS

- 1. Verification of KCL and KVL theorem.
- 2. Verification of Superposition theorem
- 3. Verification of maximum power transfer theorem
- 4. Verification of Norton theorem.
- 5. Verification of Thevenin's theorem.
- 6. Verification of Nodal and Mesh Analysis.

ELECTRONIC CIRCUITS

- 7. Characteristics of PN and Zener diode
- 8. I/P and O/P characteristics of BJT
- 9. I/P and O/p characteristics of FET
- 10. Design of Oscillators.
- 11. Rectifiers-Full Wave, Half Wave and their characteristics.
- 12. Design of Voltage Regulator

Total No. of Periods: 45

Dr. M.G.R. CATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code:		Subject]	Name : E	LECTR	ICAL N	ACHI	NES I	AB	Ty /Lb/	L	T/S.Lr	P/ R	С
BRE18L02									/LD/ ETL				
	Pre	erequisit	te: Theor	etical co	oncepts i	in Elect	rical An	d	Lb	0	0/0	3/0	1
	Ele	ctronics	<u>Enginee</u>	ring	- -	·	D		1.				
L : Lecture T:	l'utorial	SLr : St	ipervised	Learning	g P : Pro	ject R :	Research	h C:Cre	edits				
T/L/ETL : The OBJECTIVE	•			y and La	ab								
				of DC		T has a			hish mainl				
									hich mainl OC machine				
			-	-	-		-		Load char				
									done in th		cs, Loud (C 51, D 11	ike test,
									ors and oth		al machin	es.	
	COURSE OUTCOMES (COs) : (3-5)												
COLLES (COS): (3-5) Various types of DC machines and Transformers which mainly covers experiments with real machines and													
	students gain practical experience in using various DC machines												
									Load chara	cteristic	s		
		rious types of experiments related to Electrical machinery like Load characteristics study the characteristics of synchronous motors											
	To study the characteristics of induction motors												
CO5	CO5 To study single and three phase power measurement												
Car/Dar					e Outco				tcomes (P		DO11		10
Cos/Pos CO1	РО1 Н	РО2 Н	РОЗ Н	РО4 Н	PO5 M	РО6 Н	РО7 М	PO8 M	РО9 Н	PO10 H	PO11 H	PO	H
CO2	Н	Н	Н	Н	М	Н	М	Μ	Н	Н	Н		Н
CO3	Н	Н	Н	Н	L	Н	М	Μ	Н	М	Н		H
CO4	Н	Н	Н	Н	М	Н	М	Μ	Н	Н	Н		Н
CO5	Н	Н	Н	Н	L	Н	Μ	М	Н	Μ	Н		Η
Cos / PSOs	PS	01	PSC)2	PSO3	3	PSO ₄	4					
CO1								H					
CO2								H					
CO3								H					
CO4													
CO5 H/M/L indica	tog Stro	nath of (Connelati	on U U	ich M	Modiur		H					
n/wi/L indica		igui oi (correlatio		1gn, M-		11, L-L0	w					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical	Soft Skills				
							\checkmark						
Approval													

Subject Code:	Subject Name : ELECTRICAL MACHINES LAB	Ty/	L	T/S.Lr	P/ R	С
		Lb				
BRE18L02		ETL				
	Prerequisite: Theoretical concepts in Electrical And Electronics Engineering	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- 1. Open Circuit and Load Test on DC Shunt Generator
- 2. Load Test on DC Shunt Motor.
- 3. Load Test on DC Series Motor.
- 4. Swinburne's Test
- 5. Speed Control on DC Shunt Motor
- 6. O.C. and S.C. test on 1-phaseTransformer
- 7. Load Test on single phase Transformer
- 8. Load Test on Alternator.
- 9. Load Test on 3-phase Squirrel cage Induction Motor.
- 10. Load Test on 1-phase Induction Motor.
- 11. Single and three phase power measurement

Total No. of Periods: 45

SEMESTER-IV

(Deemed to be University)

University with Graded Autonomy Status

Periyar E.V.R. Salai, Maduravoyai, Chennai – 95	
DEDADTMENT OF MECHANICAL ENCINEED	NC

	<u> </u>	H.H.KIN(+				
Subject Code:	Subject Name : MICROPROCESSORS AND	Ty/Lb/	L	Τ/	P /	С
	MICROCONTROLLERS	ETL		S.Lr	R	
BRE18004	Prerequisite: Electrical and Electronics	Ту	3	0/0	0/0	3
	Engineering					

L : Lecture T : Tutorial SLr : Supervised Learning P : Project R : Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab

OBJECTIVE :

- To study the architecture, addressing modes, and assembly language program of 8085 microprocessor. To understand the concepts of different peripherals and their applications ٠
- To learn the functions of 8051 microcontroller and PIC controller and their applications.

							6 (COs)					
CO1	The St	tudents	will be	expose	ed to dif	fferent	introdu	ctory con	cepts of	f 8085 m	icroproce	essor.
CO2	The st proces		will sh	ow the	ir abilit	y with	respect	to differ	ent prog	grammin	g skills	in 8085
CO3			will be	made a	ware of	f differ	ent inte	rfacing de	evices li	ke 8255	,8259,82	79 etc.
CO4	The st	The students will demonstrate their expertise in writing an ALP in 8051 and PIC to do										
		real time applications										
CO5		The students will apply their understanding to do a project to develop an application using these microcontrollers.										
Mapping of Course	Outcon	nes witl	h Prog	ram Ou	ıtcome	s (POs)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	H	Μ	Μ	Μ	Μ	H	L	L	L	Μ	Μ	L
CO2	Н	Н	Н	Н	Н	Н	L	Μ	L	Μ	Μ	Μ
CO3	Μ	Μ	Μ	Μ	Н	Η	Μ	Н	L	Μ	Н	Μ
CO4	Η	Η	Η	Η	Η	L	Μ	Η	L	Μ	L	Η
CO5	Η	Μ	L	Μ	Μ	Μ	Η	L	Η	Μ	Η	Η
COs / PSOs		01		02		03		SO4				
CO1	Η		Η		Μ		Η					
CO2	Η		Н		L		Η					
CO3	Μ		Η		L		Η					
CO4	Η		Μ		L		Η					
CO5	L		L		Μ		Η					
H/M/L indicates Str	ength o	f Corre	elation	H- H	ligh, M	- Medi	um, L-	Low				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core ✓	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
Approval												
								-				

University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

(Deemed to be University)

Subject Code:	Subject Name : MICROPROCESSORS AND	Ty/	L	Τ/	P /	С
	MICROCONTROLLERS	Lb/		S.Lr	R	
BRE18004		ETL				
	Prerequisite: Electrical and Electronics Engineering	Ту	3	0/0	0/0	3

UNIT I: 8085 PROCESSOR

Hardware Architecture, pin outs – Functional Building Blocks of Processor – Memory organization – I/O ports and data transfer concepts– Timing Diagram – Interrupts.

UNIT II: PROGRAMMING OF 8085 PROCESSOR

Instruction -format and addressing modes – Assembly language format – Data transfer, data manipulation & control instructions – Programming: Loop structure with counting & Indexing – Look up table - Subroutine instructions - stack.

UNIT III: PERIPHERAL INTERFACING

Study on need, Architecture, configuration and interfacing, with ICs: 8255, 8259, 8254, 8237, 8251, 8279, - A/D and D/A converters.

UNIT IV: 8051 AND PIC MICRO CONTROLLER

Hardware Architecture, – Functional Building Blocks of Processor – Memory organization – I/O ports and data transfer concepts– Timing Diagram – Interrupts- Programming concepts with 8051 and PIC.

UNIT V MICRO CONTROLLER PROGRAMMING & APPLICATIONS

Data Transfer, Manipulation, Control Algorithms& I/O instructions – Simple programming exercises key board and display interface – Closed loop control of servo motor- stepper motor control.

Total No. of Periods: 45

TEXT BOOKS

1. Krishna Kant, "Microprocessor and Microcontrollers", Eastern Company Edition, Prentice Hall of India, New Delhi , 2007.

2. R.S. Gaonkar, "Microprocessor Architecture Programming and Application", with 8085, Wiley Eastern Ltd., New Delhi, 2013.

3. Soumitra Kumar Mandal, "Microprocessor & Microcontroller Architecture, Programming & Interfacing using 8085, 8086,8051", McGraw Hill Edu, 2013.

4. Muhammed Ali Mazdi,et.al ,"PIC Microcontroller and Embedded Systems", Pearson ,2014.

REFERENCES:

1. Muhammad Ali Mazidi & Janice Gilli Mazidi, R.D.Kinely ,, The 8051 Micro Controller and Embedded Systems", PHI Pearson Education, 5th Indian reprint, 2003.

2. N.Senthil Kumar, M.Saravanan, S.Jeevananthan, "Microprocessors and Microcontrollers", Oxford, 2013.

3. Valder – Perez, "Microcontroller – Fundamentals and Applications with PIC," Yeesdee Publishers, Tayler & Francis, 2013.

9

9

9

9

DUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

Dr. M.G.R.

	S	DEPA Jubject Na	Periyar E ARTMEN ame : ST	NT OF	MECH	IANIC	AL EN		E RING Ty / Lb/	L	Τ/	P/ R	C
Subject Code		ubject 14							ETL		S.Lr	1, 1	
	P	rerequisi	te: Engin	eering N	Mechan	ics			Ту	3	1/0	0/0	4
BME18006	. Tutor		Cupanzia	ad Laam	ina D.	Droiset	D.D.o.	acreh C	Cradita				
L : Lecture T			•		C	Project	K : Kes	search C	Credits				
T/L/ETL : The		ab/Embed	ded Theor	ry and L	ab								
OBJECTIVE			C (1 /								
		inciples of shear for											
		deflection		iung ni	ment u	agrains							
_													
COURSE OU	U TCO I	MES (CO	(3-5):)									
CO1		Will learn						rmation	of solids				
CO2		Will be al		•									
CO3		Will be al				-	rings.						
CO4		Will be al											
CO5		Will be al											
Mapping of (1					-		D 0 7	Dec				4.0
Cos/Pos	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10) PO11	PO	12
CO1	Μ	H		Μ		Μ							
CO2	M	H											
CO3	M	H		Μ		Μ							
<u>CO4</u>	M	H											
CO5	M	H		M			-						
Cos / PSOs	ł	PSO1	PSC		PS	03	PS	504	PSO5				
CO1		M	Н										
CO2		H		r			Μ						
CO3		M	H										
CO4		H		r									
CO5	tog St	M manath of	H		II:ah I	M Mod	ium T	Low					
H/M/L indica	1105 51	ength of	Correlati	оп п-	riigii, ľ	v1- 1v1ea	10111, L-	LUW					
			al					al					
		ces	Social					nici					
		ien			ves		ect	ech					
ory	Ices	S SC	and	ore	ecti	ives	Proj	ps / T Skill					
Category	cier	l ini	lties s	Ŭ	ιEl	lect	1 / I	nips Sl	lls				
ũ	c S	inee	nce	ran	ran	nΕ	tica	rnsł	Ski				
	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
		Щ			<u>н</u>				v 1				
	1						ľ						
Approval													
												62	

B.Tech Robotics and Automation- 2018 Regulation

B.Tech Robotics and Automation- 2018 Regulation

DEPARTMENT OF MECHANICAL ENGINEERING

(Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

Subje	ct Name : STRENGTH OF MATERIALS	Ty / Lb/	L	Τ/	P/ R	С
Subject Code:		ETL		S.Lr		
Prere	quisite: Engineering Mechanics	Ту	3	1/0	0/0	4
BME18006		-				

UNIT -I STRESS, STRAIN AND DEFORMATION OF SOLIDS

Rigid and Deformable bodies - Strength, Stiffness and Stability - Stresses; Tensile, Compressive and Shear -Deformation of simple and compound bars under axial load - Thermal stress - Elastic constants and their relationship – strain energy due to axial load – stress due to suddenly applied load and impact load.

UNIT- II: BEAMS - LOADS AND STRESSES

Types of beams: Supports and Loads – Shear force and Bending Moment in beams – Cantilever, Simply supported beams and Overhanging beams Stresses in beams - Theory of simple bending - Stress variation along the length and in the beam section – Effect of shape of beam section on stress induced – Shear stress distribution in beams of different sections.

UNIT- III: TORSION OF SHAFTS AND SPRINGS

Theory of pure torsion- Torsion of circular and hollow shafts – Stepped shafts – Composite shaft – Stress due to combined bending and torsion. Type of springs - Stiffness- Springs in series-Springs in parallel - Stresses and deflections in helical springs and leaf springs – Design of helical springs- design of buffer springs - leaf springs.

UNIT- IV: DEFLECTION OF BEAMS

Double integration method- Macaulay's Method- Area Moment Theorems for Computations of slope and deflection in Beams. Columns - End conditions - Equivalent length of a column - Euler equation -Slenderness ratio – Rankine formula for columns.

UNIT- V: ANALYSIS OF STRESSES IN TWO DIMENSIONS

Biaxial state of stresses – Thin cylindrical and spherical shells – Deformation in thin cylindrical and spherical shells – Biaxial stresses at a point-Stress as Tension. Stresses on inclined plane – Principal planes and Principal stresses – Mohr's circle for biaxial stresses – Maximum shear stress - Strain energy and Strain Energy Density.

Total No. of Periods: 60

TEXT BOOKS

- Rajput R.K. "Strength of Materials (Mechanics of Solids)", S.Chand & company Ltd., New Delhi, 1. 2010.
- 2. S.Ramamruthum and R. Narayan, "Strength of Materials", Dhanpat Rai & Sons,

REFERENCES:

- 1. Beer F. P. and Johnston R, (2002) "Mechanics of Materials", McGraw-Hill Book Co, Third Edition
- 2. Egor P. Popov, "Engineering Mechanics of Solids", Prentice Hall of India, New Delhi.

63

12

12

12

12

DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code:		Su	Subject Name : DIGITAL ELECTRONICS							L	T / S.Lr	P/ R	C
BRE18005		Prerequ	isite: Ele	ctrical a	nd Ele	ctronic	s Circui		<u>ETL</u> Ty	3	1/0	0/0	4
L : Lecture T: T/L/ETL : The			.	•		ject R :	Researc	ch C:Cred	lits				<u></u>
• Te	o make ombinat o make	the studer tional logic the studer luce differ	c circuits nts realize	the desig	gn of se	quentia	l logic c	ircuits us	-	-	h regard to) gates a	and
C01		Students): (3-5)	icents				
CO2		Students						•	•				
					U			e		1:			
CO3		Students		•		•		0	•				
CO4		Students											
CO5		Students	will be ex	posed to	differer	nt logic	families	with resp	pect to di	gital des	ign.		
		Ma	pping of	Course	Outcon	nes wit	h Progr	am Outc	omes (PO	Os)			
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	H	M	Μ	Μ	Μ	H	L	L	L	Μ	Μ	L	
CO2 CO3	H	H	H	H	H	H	L	M		M	M	M	
<u>CO3</u>	M H	<u>М</u> Н	M H	M H	H H	H L	M M	H H	L L	M M	H L	M H	
<u>CO5</u>	H	M	L	M	M	M	H	L L	H	M	H	H	
Cos / PSOs		PSO1		02		SO3		PSO4					
CO1	H		Н		М		Н						
CO2	H		Н		L		H						
CO3 CO4	M H		H		L		H						
C04 C05			M		L M		H H						
H/M/L indica	tes Str	ength of (L Correlati	on H- Hi		Mediu		DW					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

DRABARAMENTSKRAAMSCHAANFAANFAALSKALL T

BRE18005		Lb/ ETL		S.Lr	r/ K	C	
	Prerequisite: Electrical and Electronics Circuits	Ту	3	1/0	0/0	4	

(Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai - 95

UNIT - I: BOOLEAN ALGEBRA

0.1.

. 0

Boolean Algebra - De Morgan's Law - Simplifications of Boolean Expression - Sum of Products and Product of Sums – Karnaugh Map(up to 5 variables) – QuineMcClusky Method of Simplification (Including Don't care conditions)

UNIT - II: COMBINATIONAL LOGIC

Logic gates – AND, OR, NOT, NOR, NAND and EX-OR – Combinational Logic- Arithmetic Circuits – Half adder - Full adder, Half Subtractor - Decimal Adder - Excess 3 Adder - Code Converters - Multiplexer -Demultiplexer- Encoder - Decoder - Design of General Combinational Logic Circuit. PAL, PLA and FPGA.

UNIT-III: SEQUENTIAL LOGIC DESIGN

Building Blocks Of Sequential Logic-Rs, JK, Master-Slave, D And T Flip-Flop, Design of Asynchronous and Synchronous Counters - Binary and BCD Counters - Shift Registers.

UNIT - IV: SEQUENTIAL MACHINES

Basic Models Of Sequential Machines - Concept Of State Diagram - State Table - State Reduction - Design and Implementation of Synchronous Sequential Circuits .Design and Implementation of Asynchronous Sequential Circuits.

UNIT- V: LOGIC FAMILIES AND MEMORY DEVICE

Characteristics of RTL, DTL, TTL, Families - Schottky, Clamped TTL, ECL, IIL -Classification of memories - ROM- ROM organization - PROM - EPROM - EEPROM - EAPROM, RAM

Total no. of Periods: 60

TEXTBOOKS:

- 1. Charles H. Roth, "Fundamentals of Logic Design", Thompson Learning, 5th Edition
- 2. FLOYD:" Digital Fundamentals", 10th Edition Universal Book Stall, New Delhi.1993
- 3. Morris Mano, "Digital Electronics and Design", Prentice Hall of India, 2000

REFERENC::

- 1. John F. Wakerly, "Digital Design", Fourth Edition, Pearson/PHI, 2008
- 2. John.M Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.
- 3. Charles H.Roth. "Fundamentals of Logic Design", 6th Edition, Thomson Learning, 2013.
- 4. Donald P.Leach and Albert Paul Malvino, "Digital Principles and Applications", 6th Edition, TMH, 2006.
- 5. Donald D.Givone, "Digital Principles and Design", TMH, 2003

12

12

12

TT /

12

12

Dr. M.G.R. CATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code: BRE18006	Sı	ubject Na			IENTA L FOR				Ty / Lb/ ETL	L	T / S.Lr	P/ R	
	P	rerequisi	te: Bas	ics of R	Robotics	5			Ту	3	0/0	0/	0 3
L : Lecture T : T T/L/ETL : Theo						P : Proje	ect R:	Research	C: Crea	lits			
OBJECTIVE :	-	lo, Linoca		ory and	Luo								
		luce the te	erminolo	gies as	sociated	l with th	ne measu	uring sys	tem.				
		t knowled											
		stand and				f measu	iring pre	essure, di	splacem	ent and	l velocit	у.	
		luce basic		•									
• 10	mathe	ematically					FS (CO	D s):(3-	5)				
				COUR			be able	· ·	5)				
CO1		To intro	luce the	termin					suring s	ystem.			
CO2		To impa			-						rements	•	
CO3		To under											city.
CO4		To intro								_			
CO5		To make	the stuc	lents n	nathema	tically 1	nodel th	ne physic	al system	ms			
	I					-		gram Ou	-				
COs/POs	PO1	l PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0	PO11	PO12
CO1	Η	Н	Н	Η	Μ	Μ	L	Μ	Н		A	Η	Н
CO2	H	H	H	H	H	M	L	H	Μ		M	H	H
<u>CO3</u>	H	H	H	H	H	L	L	L	H		H	H	M
CO4 CO5	H H	H H	H M	H H	H H	L L	L L	L L	H H		H M	M L	H H
COs / PSOs		<u>н</u> 2SO1	PS			L		504	п		VI	L	п
CO1	H	501	M	02	H	05	H	504					
CO2	H		L		H		H						
CO3	Н		L		Н		Н						
CO4	Η		Μ		Η		Н						
CO5 H/M/L indicate	H		H		H		H						
H/M/L indicate	es Str		Correla	tion	H- High	n, M- M	ledium,	, L-Low	1				1
Уıс	iences	Engineering Sciences	ies and ciences	Core	Program Electives	etives	Practical / Project	Internships / Technical Skill	ls				
Category	Basic Sciences	Engineer	Humanities and Social Sciences	Program Core	Program	Open Electives	Practical	Inter Techr	Soft Skills				
Approval													

B.*Tech Robotics and Automation- 2018 Regulation*

67

(Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING **Subject Code:** Subject Name: INSTRUMENTATION AND Tv/ L Τ/ P/ С **CONTROL FOR ROBOTS** Lb/ S.Lr R **BRE18006** ETL

CH INSTITUTE

Ty

3

0/0

0/0

9

9

9

3

UNIT I: MEASURING SYSTEM

Factors in making the measurements-accuracy, precision, resolution, repeatability, reproducibility, hysteresis, sensitivity, range. International standards for measurement. Errors in Measurement – Gross Errors, Systematic Errors, Mounting and deformation Error - Thermally Induced Error - Interpolation Error - Dynamic Error, Calibration techniques.

UNIT II: TRANSDUCERS FOR TEMPERATURE AND PRESSURE MEASUREMENT

Terminology, principle of operation, Characteristics and signal conditioning- Bimetallic thermostats, Resistance Temperature Detectors, Thermistors, Thermocouples, solid state temperature sensors, Liquid manometers, Capacitance diaphragms, piezoelectric diaphragm.

UNIT III: DISPLACEMENT, VELOCITY & FLOW MEASUREMENT

Prerequisite: Basics of Robotics

Principle of operation, Characteristics and signal conditioning-, Venturi flow meters, Magnetic flow meter, float switch, Linear and angular measurement systems, Potentiometer type- resistive- strain gauge, capacitive and inductive, LVDT, Limit switches, inductive and capacitive proximity switches, ultrasonic and photoelectric sensors- linear scales, Laser Interferometers, tachogenerator, Encoders-absolute and incremental ,Synchros and resolvers.

UNIT IV: INTRODUCTION TO CONTROL SYSTEMS

Open-loop and closed -loop systems-comparison, Transfer function; Block diagram reduction, Signal flow graphs, PI, PD and PID control concepts and explanation.

UNIT V MATHEMATICAL MODELS OF PHYSICAL SYSTEMS

Mechanical systems - Translational and rotational systems, Gear trains, Electrical systems, Components of feedback control systems - Potentiometers as error sensing devices, Synchros, Servomotors, Stepper motors. **Total No. of Periods: 45**

TEXT BOOKS:

1. Peter Elgar,"Sensors for Measurement and Control", Addison-Wesley Longman Ltd, 1998

2. A.K.Sawhney, "Electrical & Electronic Measurement & Instruments", Dhanpat Rai & Co., 2010

3. I.J.Nagrath, M.Gopal,"Control Systems Engineering", New Age International Publications, 2008

REFERENCES:

1. Patranabis D, "Sensors and Transducers", Prentice-Hall of India Private Limited, New Delhi, 2003. 2. Ernest O Doebelin, "Measurement systems Application and Design", Tata McGraw-Hill Book Company, 2010.

9

Dr. M.G.R. DUCATIONAL AND RESEARCH INSTITUTE

A

(Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

Subject C BHS18NC		•	ect Name STITUT	: THE I ION	INDIAN	N		Ty / Lb/	L	T/SLr	P/R	С	
								ETL			0.40		
			quisite: N		·	D 1		Ту	2	0/0	0/0	NC	
L : Lecture			-	vised Lear	0	: Project	R : Re	search C	C: Credit	S			
T/L/ETL :		ab/Embe	aded The	eory and L	Lab								
OBJECT			www.af.tha	history of		leine of 1	Indian (To modify t					
	provide a			•		-							
	 To understand the preamble and the basic structures of the Constitutio To Know the fundamental rights, duties and the directive principles or 									~			
	 To know the functionality of the legislature, the exe 								-	•			
	• To understand the functionality of the legislature, the exe OURSE OUTCOMES (COs) : (3-5)					executiv	e and th	e judicia	ury				
	e Students will be able to												
CO1			erview of	the histor	v of the	makino	ng of Indian Constitution						
CO1 CO2	<u> </u>				ne basic structures of the Constitution								
CO3			-			es and the directive principles of sta							
							lincipies	of state	poncy				
	-	Course Outcomes with Program								[1		
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12	
							-	-		-	1		
CO1						H	L	L	L	L			
CO2						Н	L	L	L	L			
CO3						Η	L	L	Μ	L			
COs /	PS	01	PS	SO2	PS	03							
PSOs													
CO1	L		L		Μ								
CO2	L		L		Μ								
CO3	L		L		Μ								
H/M/L in	licates St	rength o	f Correla	ation H	- High,	M- Med	lium, L	-Low	[1	1	[
and the second sec	Basic	Engg Sciences	 Humanities & Social Sciences 	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				

ATIONAL AND RESEARCH INSTIT

University with Graded Autonomy Status Perivar E.V.R. Salai, Maduravoval, Chennai – 95

Subject Code: BHS18NC1	DEFINITION CONSTITUTION	NG INÉÉR II ETL	Nđ	T/SLr	P/R	С
	Prerequisite: NIL	Tv	2	0/0	0/0	NC

UNIT 1	3
The History of the Making of Indian Constitution, Preamble and the Basic Structures	
UNIT 2	3
Fundamental Rights and Duties, Directive Principles of State Policy	
UNIT 3	3
Legislature, Executive and Judiciary	
UNIT 4	3
Emergency Powers	
UNIT 5	3

Special Provisions for Jammu and Kashmir, Nagaland and Other Regions, Amendments

Total no. of Periods: 15

TEXT BOOKS:

1. D D Basu, Introduction to the Constitution of India, 20th Edn., LexisnexisButterworths, 2012.

REFERENCE BOOKS:

1. Rajeev Bhargava (ed), Ethics and Politics of the Indian Constitution, Oxford University

Press, New Delhi, 2008.

2. Granville Austin, The Indian Constitution: Cornerstone of a Nation, Oxford University Press, Oxford, 1966.

3. Zoya Hassan, E. Sridharan and R. Sudarshan (eds), India's Living Constitution: Ideas, Practices, Controversies, Permanent Black, New Delhi, 2002.

4. Subhash C. Kashyap, Our Constitution, National Book Trust, New Delhi, 2011.

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University)

University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

Subjec BHS18			•	ame : T IONAL K					Ty / I ETL	2 b /	L	T/SLr	P/R	C
		Pr	erequisi	te: NIL					Ту		2	0/0	0/0	NC
T/L/E7	ГL : 7			Lr : Superv		0	P : Proje	ect R : I	Researc	h C: Cr	edits	8		
OBJE			1.1 D	1 .	1 10	1 • 11	.		1	1.17	1	1 0 4		
				re- colonia raditional								0.		
				y of Physic									•••	htra
•		ronomy				mennisu	y, maa		iit and i	nemic	cture		Stu Dila	, iii a,
•				rigin of M	athema	tics, Avi	iation T	echnolog	gy in A	ncient l	[ndia	, Crafts	and Tra	de in
	An	cient Ind	lia						0.					
				COs) : (3-	5)									
		s will be			1 10		D · · 1	.		1 77	1	1 0		
CO1				re- colonia										
CO2				raditional										
CO3				Drigin of M	Iathema	tics, Av	iation T	echnolo	gy in A	ncient	India	a, Crafts	and Tra	de in
Monni		ient Ind		mag with	Ducano	m Outo	omog (T							
				mes with				- U S)						
COs/P	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10	PO11	PO12
CO1			Н	Η	L		М				Μ	[L
CO2			Н	Н	L		Μ				Μ	[L
CO3			H	Н	L		Μ				Μ	[L
COs /		PS	01	PSC)2	PS	03							
PSOs		_		_										
CO1		L		L		M								
CO2		L		L		M								
CO3 H/M/I	indi	L icotos St	rongth	L of Correl	ation	M H- High	h M_M	ledium,	I J ou	,				
11/1/1	_ mu	icales Si					, 1 v1- 1v]							
	Category	Basic Sciences	Engg Sciences	Humanities & Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
				✓ _										

(Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai - 95

DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code: BHS18NC2	Subject Name : THE INDIAN TRADITIONAL KNOWLEDGE	Ty / Lb/ ETL	L	T/SLr	P/R	С
	Prerequisite: NIL	Ту	2	0/0	0/0	NC

UNIT I

Historical Background: TKS During the Pre- colonial and Colonial Period, Indian Traditional Knowledge System 3

UNIT II

Traditional Medicine, Traditional Production and Construction Technology UNIT III

History of Physics and Chemistry, Traditional Art and Architecture and Vastu Shashtra, Astronomy and Astrology

UNIT IV

Origin of Mathematics, Aviation Technology in Ancient India, Crafts and Trade in Ancient India

UNIT V

TKS and the Contemporary World, TKS and the Indian Union, TKS and IT Revolution.

Total no. of Periods: 15

TEXT BOOKS:

1. Amit Jha (2009), Traditional knowledge system in india, 1st Edition, Delhi University (North Campus)

2. Dr.A.K.Ghosh (2011), Traditional Knowledge of Household Products

3

3

3

Dr. M.G.R. CATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status D

Subject Code	. 5	ubject N	Periy	ar E.V.F	vith G I. Salai, NE DD	Madura Madura	Autor	omy S Chennai	$\frac{-95}{T_{\rm X}}$	_ I	Τ/	P /	С
BME18ET1	e. 51	Subject Periver E.Y.R. Salai, Maduravoyal, Chenna Subject Periver E.Y.R. Salai, Maduravoyal, Chenna DEPARTMENT OF MECHANICAL EN Prerequisite: Basic Engineering Graphics								ING	S.Lr	R R	
DMETOETT	P									1	0/1	3/0	3
L : Lecture T : Tutorial S Lr : Supervised					Learnir					Credits			
T/L/ETL : Th			-				roject	11.1105	curch er	cican			
OBJECTIVI													
• T	`o imp	art the k	nowledg	e in Ma	chine D	Drawing	g fundar	nentals.					
• T	'o imp	oart the l	cnowledg	ge to re	ad, dra	w and	to unde	rstand	various n	nachine	e elemei	nts and	industrial
d	rawing	g.											
			nponent		embly	drawing	g using	CAD so	oftware.				
COURSE O													
CO1		To impart the knowledge in Machine Drawing fundamentals.											
CO2		To impart knowledge to read, draw and to understand various machine elements and industrial											
CO3	drawing. To draw the component and assembly drawing using CAD software.												
<u>CO3</u> CO4								using C	LAD SOIN	wale.			
<u>C04</u> C05		To prepare isometric views of the structures. To convert part drawing to orthographic views											
Mapping of (
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1) PO1	1 PC)12
CO1	Η									Μ			Μ
CO2	Μ		Μ						Μ	H			L
CO3	Μ	Н							L	H			L
CO4	M	H							L	H			L
CO5	M	H	DCI		DC		Dí		L	Н			L
COs / PSOs	PSO1		PSO2		PSO3		PSO4		PSO5				
CO1	L		Н				L						
CO1 CO2	L L		M										
CO3			M										
CO4			Μ										
Co5			Μ										
H/M/L indication	ates S	trength	of Corre	elation	H-H	igh, M·	Mediu	ım, L-I	LOW				
	ses		and	re	ctives	ves	roject	ps / Skill					
	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skil	Soft Skills				
rty	Basic	Engineeri Sciences	Human Social	Prog	Prog1	Open	Pract	Ir Ter	Soft				
Category				~									
Approval													

Subject Code:	Subject Name : MACHINE DRAWING	Ty / Lb/	L	Τ/	P/ R	С

B.Tech Robotics and Automation- 2018 Regulation

DEPARTMENT OF MECHANICAL ENGINEERING

(Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

		ETL		S.Lr			
BME18ET1	Prerequisite: Basic Engineering Graphics	ETL	1	0/1	3/0	3	
							l

UNIT-I-DRAWING STANDARDS

Code of practice for Engineering Drawing, BIS specifications –Welding symbols, riveted joints, keys, and fasteners – Reference to hand book for the selection of standard components like bolts, nuts, screws, keys etc.

UNIT- II - INTRODUCTION TO MACHINE DRAWING

Fundamentals of machine drawing: Geometric Dimensioning - Limits, fits, Tolerances - Types - Tolerance Analysis. Isometric to Orthographic conversion of Part drawings and vice versa, Assembly Drawings -Manual drawing.

UNIT- III - PREPARATION OF ASSEMBLY MODELS

Preparing the assembly views (with minimum four components) of various industrial oriented equipments.(E.g. Piston and connection rod, Coupling and shafts, Plummer block, Tail stock, Cotter Joint, Knuckle Joint, Universal Joint and Screw Jack)

UNIT- IV - PREPARATION OF PART MODELS USING MODELING SOFTWARE

Preparing isometric view of various industrial oriented machine components - Selection of machine components from software library - Conversion of part drawing into orthographic views. (Drafting)

(UNIT-s I, II and III should be practiced by drafting equipment- UNIT- IV to be practiced by CAD software)

TEXT BOOKS:

1. N. D. Bhatt and V. M. Panchal, "Machine Drawing", Charotar Publishing House, Anand, Gujarat, India. 2004.

REFERENCES:

1. K R Gopalakrishnan, "Machine drawing", Subhas Stores, Bangalore. 2007

73

NSTITUTE

15

5

10

15

Subject Code	. 5		Universi Periyar E	ty with		d Autor	nomy S	0.0	Ty/Lb/	L	Τ/	P/ R	С
BME18L11		DEP	aneriner STRENG	NT OF I	MECH MATEI	ANICA	L ENG LAB	SINEE	RING ETL		S.Lr	1/1	C
	Р	rerequis	ite: Stre	ength of	Materia	als			Lb	0	0/0	3/0	1
L : Lecture T T/L/ETL : The			1		U	Project	R : Rese	arch C:	Credits				
OBJECTIVE	C: The s	tudent wi	ll learn	-			6	. 1					
• Exper			$\frac{1}{1} \frac{1}{1} \frac{1}$	<u> </u>	nical pro	perties of	of materi	als					
COURSE OC			Hardness t		nd their	annlicat	tions						
CO2								perties	of material	s			
CO3			valuation				pro	F-1100					
CO4			estimate sp										
CO5		E	Estimate fa	tigue tes	t.								
Mapping of C					1								
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	H	Μ	Μ	Μ	Μ	H	L	L	L	Μ	Μ	L	
CO2	Η	H	H	H	H	H	L	Μ	L	Μ	Μ	Μ	
<u>CO3</u>	M	M	M	M	H	H	M	H	L	M	H	M	
<u>CO4</u>	H	H	Н	H	H	L	M	H	L	M	L	H	
CO5	H	M	L		M	M	H		H	Μ	H	H	
Cos / PSOs	P	<u>SO1</u>	PS	02		03		504	PSO5				
CO1 CO2		H H			M M		H H						
$\frac{CO2}{CO3}$		M			H								
<u>CO3</u>		IVI			11		H						
CO4 CO5							H						
H/M/L indica	ntes Str	ength of	Correlati	ion H-	l High, N	1- Medi							
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval							✓ 						

Subject Code:	Subject Name : STRENGTH OF MATERIALS LAB	Ty / Lb/	L	Τ/	P/ R	С
BME18L11		ETL		S.Lr		
	Prerequisite: Strength of Materials	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- 1. Evaluation of Engineering Stress/strain diagram on steel rod.
- 2. Compression test on Bricks, Concrete blocks
- 3. Deflection test on beams- Verification of Maxwell Theorem
- 4. Hardness testing of Steel, Copper and Aluminium using Brinell hardness machines
- 5. Hardness testing of Steel ,Copper and Aluminium using Rockwell machine
- 6. Estimation of Spring constant ,under Tension and Compression
- 7. Estimation of notch toughness of steel using Charpy impact testing machine

Dr. M.G.R. (Deemed to be University) University with Graded Autonomy Status

			Pe	riyar E.V	/.R. Sala	i, Madu	ravoyal,	Chennai	- 95	· · · · ·		r	1
Subject Code: BRE18L03		Subj	DENARG	FMEN	ROM NTROL	NECH	MNI @A	NP ENG	INE/ER Lb/ ETL	ING	T / S.Lr	P/ R	С
	Pr	erequisi	te: Instr	umenta	tion an	d Conti	rol for H	Robots	Lb	0	0/0	3/0	1
I. I. star T.	Tractions	-1 01	. C) . D	-4 D - F) 1.					
L : Lecture T : T/L/ETL : The			-		•	: Proje	Ct R : F	Research	C: Credi	ts			
	JECT			ory and	Lau								
			lents prac	ctically	to know	about	sensors	and the	various t	vnes us	ed for the	e measi	rement of
			Quantitie			uoout	June 1		, anous t	pes us		, incust	
		•	ole instru		meet th	ne requi	rements	of indus	trial appl	ication	8		
												e, Capa	citive and
		transdu											
			onse of tl		loop ,cl	osed loo	op ,first	order an	d second	order s	ystems		
COURSE OU													
				knowle	edge in	sensors	and the	various	types use	ed for the	he measu	rement	of various
		Quantit		Imorrila	daalin	incturn	anta ta r	maat tha		onto of	inductric	lonnlio	ations
			Ū		ů.				<u> </u>		industria		
	The students have gained knowledge about the transducer used for the measurement temperature, Resistive, Capacitive and Inductive transducers												
							open lo	on close	dloon f	irst and	second o	rder sv	stems
	The students have gained knowledge about the open loop ,closed loop ,first and second order systems The students have gained knowledge about speed control of dc motors.												
			5		<u> </u>	<u> </u>			101013.				
	f Course Outcomes with Program Outcomes (POs)PO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12												
CO1	H	M	H	H	H	L	M	H	H	H	M		12
CO2	H	H	M	H	H	L	M	H	H	H	M	M	
CO3	H	Н	Н	Н	Н	Μ	L	Н	Н	Н	Μ	Μ	
CO4	H	Μ	Н	Н	Н	L	Μ	Н	Η	Η	Μ	Μ	
CO5	H	Μ	Η	Н	Η	L	Μ	H	Η	Η	Μ	Μ	
Cos / PSOs	PS		PSC	02		03		SO4	PSO5				
CO1		I	H		Μ		H						
CO2	H		M		M		H						
<u>CO3</u>	<u> </u>		H M		M		H					_	
CO4 CO5	H H		M		H H		H H						
H/M/L indicat				tion I	II H- High	. M- M		L-Low					
	lces	ng	ano nce	ore	ctiv	ive	oje	s/ Skil	ls				
X	cier	seri ace	ties	n C	Ele	lect	/P1	ship al S	Skil				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
ate	asi	Eng	um ocia	Prof	gr?	Ied	acti	Int(ech	Sc				
U L	В		H Sc		Prc	C	Prí	L					
Approval													

Subject Code:	Subject Name : INSTRUMENTATION AND	Ty / Lb/	L	Τ/	P/ R	С
	CONTROL LAB	ETL		S.Lr		
BRE18L03	Prerequisite: Instrumentation and Control for Robots	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- 1. Force Measurement using Load Cell
- 2. Displacement Measurement using LVDT
- 3. Thermocouple
- 4. Resistance Temperature Detectors.
- 5. Strain measurement.
- 6. Study of thermistors.
- 7. Study of Open Loop and Closed Loop systems.
- 8. Speed Control of AC-DC Servomotor using PI/PD/PID Controllers.
- 9. Modeling and Analysis of first order systems using PI/PD Controller
- 10. Modeling and Analysis of first order systems using PID Controller
- 11. Modeling and Analysis of second order systems using PI Controller
- 12. Modeling and Analysis of second order systems using PID Controller.

Dr. M.G.R. CATIONAL AND RESEARCH INSTITUTE

(Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code:		Subject 1	Name : D MICR		L ELEO CESSOI		ICS A	ND	Ty / Lb/ ETL	L	T / S.Lr	P/ R	C		
BRE18L04															
		Prerequis and Micro			tronics,	Microp	rocesso	r	Lb	0	0/0	3/0	1		
L : Lecture T :					ning P:	Project	R : Res	earch C	: Credits						
T/L/ETL : The						Tiojeet	10.100	euren e	· creans						
OBJECTIVE				•											
• To	make	students fa	amiliar wi	th differ	ent type	s of desi	igns as s	equentia	al logic cir	cuits, c	ombinatio	nal logi	с		
	rcuits														
		ge of basic													
						nultidisc	ciplinary	project	s using mic	croproc	essor and				
COURSE OU		ntroller ba	<u> </u>												
COURSE OU				-	fforont o	atas and	lamplos	thom t	o design co	mhina	tional logi	circui	te		
CO1					-				rcuits usin		-		15.		
CO2		Will be ab					•	Ũ		g mp n	ops				
CO4		Will be ab	_	-	-		_								
C05		Will be ab		<u> </u>	<u> </u>										
Mapping of C				<u> </u>	<u> </u>			ners							
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12		
CO1	H	M		H H L M H H M M											
CO2	H	H	HHLMHHMMMHLMHHMM												
CO3	H	H													
CO4	Н	H	Н	Н	Н	Μ	L	Н	Н	Н	Μ	Μ			
CO5	Н	H	Н	Н	Н	М	L	Н	Н	Н	M	Μ			
Cos / PSOs		SO1	PSC		PS			604							
CO1		L	Н		I		H	I							
CO2		L	Μ	[I		H	I							
CO3			Μ	[H	I							
CO4			Μ	[H	I							
CO5			Μ	[I	I							
H/M/L indica	tes Sti	rength of	Correlati	on H-	High, N	/I- Medi	ium, L-l	Low	1		I				
			d SS		Program Electives		ect	s/ kill							
~	Basic Sciences	50	Humanities and Social Sciences	ore	ecti	Open Electives	Practical / Project	Internships / Technical Skil							
gor	cien	ring	ties Scie	1 Cc	n El	ecti	1/H	ims] nic;	lls						
Category	c S	nee	ani al 3	ran	ran	ιEl	tica	Inte ech	Ski						
C	asi	Engineering Sciences	lum ocia	Program Core	rog	per	ract	Ē	Soft Skills						
-	<u> </u>	ШS	H S	Ч	4	O			S						
Approval															
												78			

Subject Code: BRE18L04	Subject Name : DIGITAL ELECTRONICS AND MICROPROCESSOR LAB	Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
	Prerequisite: Digital electronics, Microprocessor and Micro controllers	Lb	0	0/0	3/0	1

DIGITAL ELECTRONICS

- 1. Adders and Subtractors
- 2. Multiplexers and Demultiplexers
- 3. Encoder and Decoders
- 4. Study of Flip Flops, Registers/Counters
- 5. Implementation of any general combinational/sequential logic circuits

MICROPROCESSOR AND MICROCONTROLLER

Experiments Based on ALP for 8085,8051

- 1. Programs on data Transfer Instructions
- 2. Programs on Arithmetic and Logical Instructions
- 3. Programs on Branch Instructions
- 4. Programs on Subroutines
- 5. Stepper Motor Control

Experiments Based on PIC

- 1. Programs on data manipulation.
- 2. Programs on I/O port programming.
- 3. Serial data programming.
- 4. LCD and Keyboard programming.
- 5. ADC, DAC and Sensor programming.
- 6. Stepper, DC motor programming

Dr. M.G.R. ATIONAL AND RESEARCH INSTIT

(Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

		DI	EPARTN	AENT (OF ME	CHAN	ICAL	ENGL	NEERIN	Ĵ			
Subject Code	: Su	bject Na	ame: 7		ICAL S		[Ty / Lb/	L	Τ/	P/ R	С
				(EV	VALUA	TION)			ETL		S.Lr		
BRE18TS1			te: None						Lb	0	0/0	3/0	1
L : Lecture T :	Tutoria	l S.Lr	: Supervis	ed Lear	ning P	: Project	R : Re	search (C: Credits				
T/L/ETL : The	eory/Lab	/Embed	ded Theor	y and L	ab								
OBJECTIVE	: The c	objective	e is to deve	elop the	technica	al skill o	f the stu	dents.					
COURSE OU	тсом	ES (CO	s): (3-5)									
CO1			chnical ski		ired in tl	he field	of study						
CO2	Bridge student	01	between	the skill	l require	ements o	of the er	nployer	or industr	y and tl	he compe	tency o	f the
CO3			nployabili	ty of the	student	s.							
Mapping of C							5)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н	Н	Η	Η	Н	Μ	Μ	Н	Μ	Н	Μ	
CO2	Н	Н	Μ	Н	Η	Н	Μ	Μ	Н	Н	Н	Η	
CO3	Η	Н	Η	Н	Η	Η	Μ	Μ	Η	Η	Η	Η	
COs / PSOs	PS	01	PSC)2	PS	03		604					
CO1		M	Μ			I		М					
CO2		M	Μ			I		M					
CO3		A	Μ			I		М					
H/M/L indica	tes Stre	ngth of	Correlati	on H-	High, I	M- Med	ium, L-						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Students should undergo training for at least 1 month in any industry/Training center/NPTEL-SWAYAM certification etc for skill development. The report along with certificate in proof of Skill acquired should be submitted during Viva-Voce examination to be conducted by the department.

Subject Code	:	Subje	ct Name:		SKILLS E BUII			&	Ty/ Lb/	L	T / S.Lr	P/ R	С
BEN18SK1			CONF	IDENC	E DUII	LDING)			ETL		5.Lr		
	Pr	erequisite	: None						ETL	0	0/0	3/0	1
L : Lecture T :	Tuto	rial SLr	Supervis	ed Learr	ning P:	Project	R : Res	earch C:	Credits	•		•	
T/L/ETL : The	eory/L	.ab/Embed	ded Theor	ry and L	ab								
OBJECTIVE			_	_					_				
		vareness ir ositive frar			top con	ipanies l	helping	them imp	prove the	ir skill	set matrix	x, leading	g to
		lents be av			hniques	of cand	idate rec	ruitment	and helr	them	nrenare ('V's and	
resum	-				innques	or cana		runnem	and nerp	, mem	propure c	v s und	
		lent how to	o face vari	ous type	es of inte	erview, p	oreparing	g for HR	, technica	al inter	views.		
	-	dents imp				-		-				various 1	mock
sessio	ns.	-						-					
					E OUT								
CO1		Be aware											
CO2		Be aware				itment t	echniqu	es like gi	oup disc	ussion,	, interviev	vs and be	able
CO3		to prepare				arris and	ha mean	and for	IID and t	taahnia	alintami		
CO3 CO4		Prepare for Improve t									ai mervi	ews.	
CO4		Able to bi					* *	lonning	moek ses	510115.			
CO5		Able to et	<u> </u>		1								
			apping of				Progra	m Outc	omes (Po	os)			
Cos/Pos	POI		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1			12
CO1	L	L	L	L	L	Μ	Μ	H	Μ	Η	Μ	H	
CO2	L	L	L	L	L	Μ	Μ	H	M	H	M	H	
<u>CO3</u>	L		L	L	L	M	M	H	M	H	M	H	
CO4 CO5	L L	L L	L L	L L	L L	M M	M M	H H	M M	H H	<u>M</u>	H H	
Cos / PSOs		PSO1	L PSC		L PS			<u>п</u> 04	IVI	п	IVI		
C01	L	1501	L	14	L	05	H	-04					
CO2	L		L		L		H						
CO3	L		L		L		Н						
CO4	L		L		L		Η						
CO5	L		L		L		Η						
H/M/L indica	tes St			on H-	High, N	I- Med i	um, L-]	Low	Т				
		ring	ies			s	/	ips cal	lls	ilqi			
ory		nee	anit Soc	ram	ram ive	ive	ical sct	rnshi chnic	Ski	disc	sct		
Category	Basic	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical Project	Internships Technical	Soft Skills	Interdiscipli	Subject		
Cat	Цų	<u>ы ш х</u>	H Sy H	ЪŬ	L L L	<u>о</u> Ш	L L	II.	Š ∕	In	N II		
									×				
Approval													
Approval													
		I	L	I	L	I		l	I	1			

Subject Code:	Subject Name: SOFT SKILLS-I (CAREER & CONFIDENCE BUILDING	Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
BEN18SK1	Prerequisite: None	ETL	0	0/0	3/0	1

SUBJECT OBJECTIVES:

- To develop an independent personality •
- To be sure of presenting one-self
- To acquire knowledge in specialized sectors

To Improve:

- 1. Behavioral Pattern and Basic Etiquette, Value System, Inter Personal Skills
- 2. Behaving in Corporate Culture, Self Awareness / Confidence
- 3. Managing Self and Personality Styles including Body Language
- 4. International Culture / Cross Cultural Etiquette, Communication Skill

UNIT- I

Creation of awareness of the top companies / different verticals / Subjects for improving skill set matrix, Industry expectations to enable them to prepare for their career – Development of positive frame of mind – Avoiding inhibitions – Creation of self awareness – Overcoming of inferiority / superiority complex.

UNIT-II

Selection of appropriate field vis-à-vis personality / interest to create awareness of existing industries, Preparation of Curriculum Vitae - OBJECTIVESs, Profiles vis-à-vis companies.

UNIT-III

Group discussions: Do's and Don'ts - handling of group discussions - What evaluators look for! Interpersonal relationships - with colleagues - clients - understanding one's own behaviour - perception by others, How to work with persons whose background, culture, language / work style different from one's, behaviour pattern in multi-national offices.

UNIT-IV

Interview - awareness of facing questions - Do's and Don'ts of personal interview / group interview, Enabling students prepare for different Procedures / levels to enter into any company – books / websites to help for further preparation, Technical interview – how to prepare to face it. Undergoing employability skills test.

UNIT-V

Entrepreneurship development – preparation for tests prior to the interview – Qualities and pre-requisites for launching a firm.

TEXT BOOKS:

- 1. Agarwal, R.S. Chand, S. (1989) Quantitative Aptitude. Publication.
- 2. ShaliniVerma,(2009) Soft Skills. Publication Pearson.

REFERENCES:

- 1. Shaliniverma,(2012) Enhancing employability @ SOFT SKILLS. Publication Pearson
- 2. Kiranmai Dutt, P. Geetha Rajeevan, C.L. Prakash, N.(2010) A Subject in Communication Skills. Publication Foundation Books.
- 3. Nirakonar,(2011) English Language Laboratories.PHI Learning.
- 4. Anandamurugan, S.(2011) Placement Interviews. Publication Tata McGraw Hill Education.

Total No. of Periods: 30

6

6

6

6

SEMESTER-V

Subject Code: BRE18007		oject Na MACH			ATICS	AND D	YNAM	ICS	Ty / Lb/ ETL	L	T / S.L	r P/ R	
DICE10007	Pre	erequisi	te: Ei	ngineer	ing Me	chanics	5		Ty	3	1/0	0/	0 4
L : Lecture T : '		.		0	<u> </u>			Researc	, v	edits			
T/L/ETL : Theo	ory/Lab	/Embed	ded Th	eory an	d Lab								
OBJECTIVE :													
• To and me	underst l accele chanist	tand the ration T ns and c	princip o under am med basic c	les in a rstand the chanismed oncepts	nalyzing he motions sof toot	g the as on of a s hed gea	sembly specifie	nges in th with resp d set of l d kinema	pect to the tot inkages, the total section of to	he displ , design	aceme few li	ent, veloo	
			C					s) : (3- 5)				
CO1		To under nachine					e able t nd layou	ut of link	ages in	the asse	embly	of a syst	em
CO2				ne princ	riples in	analyzi	ing the s	assembly	7				
CO2				•	•	•	0	cified se		ages de	esign f	ew links	ge
	n	nechani	sms			C	•			C	Ũ		50
CO4	J	To under	rstand tl	ne basic	c concep	ots of to	othed g	earing ar	nd kinem	natics of	f gear	trains	
CO5	τ	Jndersta	derstand the concept of balancing and vibration.										
Mapping of Co	ourse C	Outcom	es with	Progra	m Out	comes (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10)	PO11	PO12
CO1	Н	Н	Н	Н	М	Н	М	М	Н	N	1	Н	Н
CO2	Н	Н	Н	Н	Н	Μ	L	L	Μ	N	1	L	Н
CO3	Н	Н	Н	Н	Н	Μ	L	L	Μ	N	1	L	Н
CO4	Н	H	Н	Н	H	Μ	L	L	Μ	N	1	L	Н
CO5	H	H	H	Η	Η	Μ	L	L	Μ	N	1	L	H
COs / PSOs	PS	01	PS	02	PS	03	PS	504					
CO1	Ν	N	N	Л	J	H		H					
CO2		M		<u>/</u>		H		H					
CO3		L		I		M		H					
CO4 CO5		<u>Լ</u>		H H		<u>M</u> M		M M					
H/M/L indicat								n, L-Low	7				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	 ▲ Program Core 	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval				•									

UNIT I: KINEMATICS OF MACHINES

OF MACHINERY

Prerequisite:

Mechanisms – Terminology and definitions – kinematics inversions of 4 bar and slide crank chain – kinematics analysis in simple mechanisms – velocity and acceleration polygons – Analytical methods – computer approach - cams - classifications - displacement diagrams - layout of plate cam profiles - derivatives of followers motion - circular arc and tangent cams.

Engineering Mechanics

UNIT II : GEARS AND GEAR TRAINS

Spur gear - law of toothed gearing - involute gearing - Interchangeable gears - Gear tooth action interference and undercutting – nonstandard teeth – gear trains – parallel axis gears trains – epicyclic gear trains – automotive transmission gear trains.

UNIT III: FRICTION

Subject Code:

BRE18007

Sliding and Rolling Friction angle – friction in threads – Friction Drives – Friction clutches– Belt and rope drives - brakes - Tractive resistance.

UNIT IV : FORCE ANALYSIS

Applied and Constrained Forces – Free body diagrams – static Equilibrium conditions – Two, Three and four members - Static Force analysis in simple machine members - Dynamic Force Analysis - Inertia Forces and Inertia Torque – D"Alembert"s principle – superposition principle – dynamic Force Analysis in simple machine members.

UNIT V : BALANCING AND VIBRATION

Static and Dynamic balancing – Balancing of revolving and reciprocating masses – Balancing machines – free vibrations - Equations of motion - natural Frequency - Damped Vibration - critical speed of simple shaft -Torsional vibration - Forced vibration - harmonic Forcing - Vibration isolation.

TEXT BOOKS:

1. Ambekar A.G., "Mechanism and Machine Theory" Prentice Hall of India, New Delhi, 2007 2. Shigley J.E., Pennock G.R and Uicker J.J., "Theory of Machines and Mechanisms", Oxford University Press, 2003

REFERENCES:

1. Thomas Bevan, "Theory of Machines", CBS Publishers and Distributors, 1984.

2. Ghosh. A, and A.K. Mallick, "Theory and Machine", Affiliated East-West Pvt. Ltd., New Delhi, 1988.

3. Rao.J.S. and Dukkipatti R.V. "Mechanisms and Machines", Wiley-Eastern Ltd., New Delhi, 1992.

4. John Hannah and Stephens R.C., "Mechanics of Machines", Viva Low Prices Student Edition, 1999.

5. V.Ramamurthi, Mechanisms of Machine, Narosa Publishing House, 2002.

6. Robert L.Norton, Design of Machinery, McGraw-Hill, 2004.

Subject Name: KINEMATICS AND DYNAMICS L Ty/

Lb/

ETL

Тy

3

12

12

12

12

Total No. of Periods : 60

12

P/

R

0/0

С

4

Τ/

S.Lr

1/0

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code	: Sı	ubject Na	ame : PR				GIC		Ty / Lb/	L	T /	P/ R	С
BRE18008	-	· · ·			OLLER		<u> </u>		ETL		S.Lr	0.40	
			te: Digita						Ty Credite	3	0/0	0/0	3
L : Lecture T : T/L/ETL : The						: Projec	l K Ke	search C	. Credits				
	BJECT			ry and L	ao								
			h factory	automat	ion								
			programm			ollers							
		to progra		-									
			HMI syste										
• Te	o learn	to install	and maint	ain proc	cedures f	for PLC	and be e	exposed	to applica	tions of	PLC		
COURSE OU	JTCON	AES (CO	s):(3-5)									
CO1	The stu	idents ha	ve gained	knowlee	dge in w	vith fact	ory auto	mation					
CO2	The stu	idents ha	ve gained	knowle	dge in pr	rogramn	nable log	gic contr	ollers.				
CO3			ve gained		U	•							
CO4	The stu	idents ha	ve gained	knowle	dge in H	IMI sys	tems						
CO5		idents har ations of	ve gained	knowlee	dge to in	stall and	d mainta	in proce	dures for]	PLC and	be expos	ed to	
Mapping of C				noram	Outcom	nes (PO	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	H	Н	Н	Н	Н	L	Μ	Н	Н	H	Μ	Μ	
CO2	Н	Н	I H H H L M H H H M M										
CO3	H	Η	Н	Η	Н	Μ	L	Η	Н	Η	Μ	Μ	
CO4	Н	Н	Н	Н	Н	Μ	L	Н	Н	Н	Μ	Μ	
CO5	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	
COs / PSOs	P	SO1	PSC	02	PS	03	PS	504					
CO1		H	Η		Μ		Η						
CO2		H	M		M		H						
CO3		H	H		Μ		Η						
CO4		H	Н		Μ		Η						
CO5		H	Н		Μ		H						
H/M/L indica	tes Str	ength of	Correlati	ion H·	· High, I	M- Med	lium, L-						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval				\checkmark									

(Deemed to be University) versity with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

Subject	Subject Name : PROGRAMMABLE LOGIC	Ty / Lb/	L	Τ/	P/ R	С
Code:	CONTROLLERS	ETL		S.Lr		
	Prerequisite: Digital Electronics, C programming	Ту	3	0/0	0/0	3
BRE18008		_				

UNIT I : INTRODUCTION TO FACTORY AUTOMATION

History and developments in industrial automation. Vertical integration of industrial automation, Control elements in industrial automation, PLC introduction.

UNIT II : PROGRAMMABLE LOGIC CONTROLLERS

Basics of PLC, Advantages, Capabilities of PLC, Architecture of PLC, Scan cycle, Types of PLC, Types of I/O modules, Configuring a PLC, PLC wiring.

UNIT III: PROGRAMMING OF PLC

Types of Programming - Simple process control programs using Relay Ladder Logic - PLC arithmetic functions - Timers and counters -data transfer-comparison and manipulation instructions, PID instructions, PTO / PWM generation.

UNIT IV HMI SYSTEMS

Necessity and Role in Industrial Automation, Text display - operator panels - Touch panels - Panel PCs -Integrated displays, interfacing PLC to HMI.

UNIT V INSTALLATION

Installation and maintenance procedures for PLC - Troubleshooting of PLC, PLC Networking, Networking standards & IEEE Standard - Protocols - Field bus - Process bus and Ethernet. APPLICATIONS OF PLC Case studies of Machine automation, Process automation, Selection parameters for PLC. Introduction to Programmable Automation Controller.

TEXT BOOKS:

1. John W Webb & Ronald A Reis, "Programmable logic controllers: Principles and Applications", Prentice Hall India, 2003.

2. Frank D Petruzella "Programmable Logic Controllers ", McGraw Hill Inc, 2005

REFERENCES:

1. Bolton W., "Mechatronics", Pearson Education, 2009 2. Kelvin T Erikson, "Programmable Logic Controllers", Dogwood Valley Press, 2005 Q

0

0

9

Total No. of Periods: 45

87

9

Subject Cod	e:	Subject Na	ame : CA	D,CAN	I & CIN	I			Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
BME18014		Prerequisi	ite: Mach	ine Dra	wing				Ту	3	0/0	0/0	3
L : Lecture T	: Tuto	orial SLr	: Supervis	sed Lear	ning P:	Project	R : Res	search C	: Credits	1 1			4
T/L/ETL : Th	neory/I	Lab/Embec	lded Theo	ry and I	Lab								
OBJ	ECTI	VE:											
		an overvie	ew of how	v compu	ters are	being u	sed in d	esign, de	evelopmen	t of Ma	nufacturir	ig plans	s and
	ifactur		1.2 .			~							
• To u	ndersta	and the nee	d for inte	gration of	of CAD,	CAM ar	nd CIM						
				COURS	SE OUT	COME	S (COs)	(3-5))				
CO1		Understa	nd the use						/				
CO2		Learning	various (CAD mo	deling to	echniqu	es						. <u> </u>
CO3		Learning											
<u>CO4</u>		Learning					lanning	methods					
CO5		Learning	the FMS		and functions and function and		anom O	ntoomo					
Cos/Pos	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	H	H	H	H	H	L	M	H	H	H	M	M	
CO2	H	H	H	H	H	L	M	H	H	H	M	M	
CO3	H	H	H	H	H	M	L	H	H	H	M	Μ	
CO4	H	H	H	H	H	M	L	H	H	H	M	Μ	
C05	H	H	H	H	H	H	H	H	H	H	H	H	
Cos / PSOs		PSO1	PS	02	PS	03	P	SO4					
CO1		Н	Н		Μ		Н						
CO2		Н	Μ		М		Η						
CO3		Н	Н		М		Η						
CO4		Н	Н		М		H						
CO5		Н	Н		Μ		Н						
H/M/L indic	ates S	trength of	Correlat	ion H	- High, I	M- Med	lium, L-	Low			•		
		ş	ial					cal					
		nce	Social		s		tt.	hnic					
2	S	Scie	pr		tive	SS	jec	[ec]					
Category	nce	1g 5	ss ai	Ore	llec	tive	Prc	s / 7					
Cate	Scie	erii	nitie es	m (mE	Elec	al/	hip	aills				
Ŭ	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Dpen Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	Baé	Enį	Hu Sci	Prc	Prc	Op	Pra	Inter Skill	Sof				
Approval													

2) HMT, (2000) "Mechatronics", Tata McGraw -Hill Ed.

3) Mikkel. P.Groover, (2007) "Automation, Production and Computer Integrated Manufacturing", PHI., Pvt Ltd.

REFERENCE BOOKS

- 1. Mikell P Groover, "Automation, Production Systems and Computer Integrated Manufacturing", Pearson Education
- 2. Rao, Tewari, Kundra, "Computer Aided Manufacturing", McGraw Hill
- 3. P. Radhakrishnan, "Computer Numerical Control", New Central Book Agency

TEXT BOOKS 1) Chris McMohan and Jimmie Browne, "CAD/CAM", Addison Wesley Publications, 2nd Ed.

View-port transformation. Geometry and Topology, Comparison of wireframe, surface and solid models, Properties of solid model, properties of representation schemes, Concept of Half-spaces, Boolean operations. Schemes: B-rep, CSG, Sweep representation, ASM, Primitive instancing, Cell Decomposition and Octree encoding **UNIT- III COMPUTER AIDED MANUFACTURING** 9

Homogeneous representation; Translation, Scaling, Reflection, Rotation, Shearing in 2D and 3D;. Window to

CAM Concepts, Objectives & scope, Nature & Type of manufacturing system, Evolution, Benefits of CAM, Role of management in CAM, Concepts of Computer Integrated Manufacturing, Impact of CIM on personnel, Role of manufacturing engineers, CIM Wheel to understand basic functions.

NC and CNC Technology: Types, Classification, Specification and components, Construction Details-Axis designation, NC/CNC tooling. Fundamentals of Part programming, Types of format, Part Programming for drilling, lathe and milling machine operations.

UNIT- IV GROUP TECHNOLOGY AND CAPP

Introduction, part families, part classification and coding systems: OPITZ, PFA, FFA, Cell design, rank order clustering, composite part concepts, Benefits of group technology. Approaches to Process Planning, Different

UNIT- V FLEXIBLE MANUFACTURING SYSTEM

Q Introduction & Component of FMS, Needs of FMS, general FMS consideration, Objectives, Types of flexibility and FMS, FMS lay out and advantages. Automated material handling system: Types and Application, Automated Storage and Retrieval System, Automated Guided Vehicles, Cellular manufacturing, Tool Management, Tool supply system, Tool Monitoring System, Flexible Fixturing, Flexible Assembly Systems.

UNIT- I INTRODUCTION

Subject Name :

Subject Code:

BME18014

A typical product cycle, CAD tools for the design process of product cycle, CAD / CAM system evaluation criteria, Input / Output devices;

Graphics Displays: Refresh display, DVST, Raster display, pixel value and lookup table, estimation of graphical memory, LCD, LED fundamentals. Concept of Coordinate Systems: Working Coordinate System, Model Coordinate System, Screen Coordinate System. Graphics exchange standards.

UNIT- II GEOMETRIC TRANSFORMATIONS AND MODELING

CAD,CAM & CIM

Prerequisite: Machine Drawing

CAPP system, application and benefits

Tv / Lb/

ETL

Tv

L

3

Τ/

S.Lr

0/0

9

9

P/ R

0/0

С

3

Subject Code: BRE18ET2	: :	Subject Na	ame: LIN	EAR IN	NTEGR	ATED (CIRCUI	ITS	Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
]	Prerequisi	te: Elect	rical an	d Electr	onics C	fircuits		ETL	1	0/1	3/0	3
L : Lecture T :	Tuto	orial SLr :	Supervis	ed Lear	ning P:	Project	R : Res	earch C:	Credits				
T/L/ETL : The	eory/I	Lab/Embed	ded Theor	ry and L	ab								
OBJECTIVE													
•		introduce t		-			-						
•		teach the li					-		-				
•		introduce t teach the th	-			s of anal	og mun	iphers an	lu PLL.				
•		introduce t	•			generati	on and i	ntroduce	e some sp	ecial fu	nction IC	Cs.	
COURSE OU													
CO1		Basics of	· · · · ·		fiers								
CO2		Application	ons of ope	rational	amplifie	ers							
CO3		Analog m	ultiplier a	nd PLL									
CO4		Analog to	digital ar	nd digita	l to anal	og conv	erters						
CO5		Waveform	n generato	ors and s	pecial fu	inction	ICS						
Mapping of C	ours	e Outcome	es with Pr	ogram	Outcom	es (POs	5)						
COs/POs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10) PO1	1 PO	12
CO1	Η	L	Μ	Μ	L	Μ	Н	Μ	Н	Μ	Μ	Η	
CO2	Η	L	Μ	Μ	L	Μ	Μ	Μ	Н	Μ	Μ	Η	
CO3	Η	Μ	L	Η	Μ	Η	Μ	H	Μ	Η	Η	Μ	
CO4	Η	Μ	Μ	Η	Μ	Η	Η	Н	Μ	Η	Η	Μ	
CO5	Η	L	L	Η	L	Η	Η	Н	Н	Η	Η	Η	
COs / PSOs		PSO1	PSO2		PS	03	PSO4						
CO1	Η		Μ		Н		Μ						
CO2	Η		Μ		Н		Μ						
CO3	Η		L		H		L						
CO4	Η		Μ		H		Μ						
CO5	H		L		H		L	_					
H/M/L indica	tes S		Correlati	on H-	· High, N	M- Med	ium, L-	Low	[
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills	Interdisciplinary Subject			

UNIT I : BASICS OF OPERATIONAL AMPLIFIERS

Current mirror and current sources, Current sources as active loads, Voltage sources, Voltage References, BJT Differential amplifier with active loads, Basic information about op-amps - Ideal Operational Amplifier -General operational amplifier stages -and internal circuit diagrams of IC 741, DC and AC performance characteristics, slew rate, Open and closed loop configurations.

UNIT II : APPLICATIONS OF OPERATIONAL AMPLIFIERS

Sign Changer, Scale Changer, Phase Shift Circuits, Voltage Follower, V-to-I and I-to-V converters, adder, subtractor, Instrumentation amplifier, Integrator, Differentiator, Logarithmic amplifier, Antilogarithmic amplifier, Comparators, Schmitt trigger, Precision rectifier, peak detector, clipper and clamper, Low-pass, highpass and band-pass Butterworth filters.

UNIT III : ANALOG MULTIPLIER AND PLL

Analog Multiplier using Emitter Coupled Transistor Pair - Gilbert Multiplier cell - Variable transconductance technique, analog multiplier ICs and their applications, Operation of the basic PLL, Closed loop analysis, Voltage controlled oscillator, Monolithic PLL IC 565, application of PLL for AM detection, FM detection, FSK modulation and demodulation and Frequency synthesizing.

UNIT IV : ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTERS 9 Analog and Digital Data Conversions, D/A converter – specifications - weighted resistor type, R-2R 2R Ladder types - switches for D/A converters,-Ladder type, Voltage Mode and Current-Mode R high speed sample-andhold circuits, A/D Converters - specifications - Flash type - Successive Approximation type - Single Slope type - Dual Slope type - A/D Converter using Voltage-to-Time Conversion - Over-sampling A/D Converters.

UNIT V : WAVEFORM GENERATORS AND SPECIAL FUNCTION ICS Sine-wave generators, Multivibrators and Triangular wave generator, Saw-tooth wave generator, ICL8038 function generator, Timer IC 555, IC Voltage regulators - Three terminal fixed and adjustable voltage regulators - IC 723 general purpose regulator - Monolithic switching regulator, Switched capacitor filter IC MF10, Frequency to Voltage and Voltage to Frequency converters, Audio Power amplifier, Video Amplifier, Isolation Amplifier, Opto-couplers and fibre optic IC.

LAB COMPONENTS:

1. Adder

Subject Code:

BRE18ET2

- 2. Subtractor
- 3. Inverting amplifier
- 4. Non-inverting amplifier
- 5. Voltage follower
- 6. Square wave generator using 555
- 7. Sine wave generator using 741
- 8. A/D & D/A converters

TEXT BOOKS:

1. D.Roy Choudhry, Shail Jain, "Linear Integrated Circuits", New Age International Pvt. Ltd., 2000.

2. Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", 3rd Edition, Tata Mc Graw-Hill. 2007.

REFERENCES:

1. Ramakant A. Gayakwad, "OP-AMP and Linear ICs", 4th Edition, Prentice Hall / Pearson Education, 2001.

2. Robert F.Coughlin, Frederick F.Driscoll, "Operational Amplifiers and Linear Integrated Circuits", Sixth Edition, PHI, 2001.

3. B.S.Sonde, "System design using Integrated Circuits", 2nd Edition, New Age Pub, 2001

4. Gray and Meyer, "Analysis and Design of Analog Integrated Circuits", Wiley International, 2005.

5. Michael Jacob, "Applications and Design with Analog Integrated Circuits", Prentice Hall of India, 1996.

Subject Name: LINEAR INTEGRATED CIRCUITS

Prerequisite: Electrical and Electronics Circuits

Total No. of Periods : 45

0

3/0

P/R

Τ/

0/1

S.Lr

L

1

Tv / Lb/

ETL

ETL

С

3

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code BRE18L05		bubject Na			CAM L	AB			Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
T. J. J. and J. J. T. J.		Prerequisi				Duciest	D.D.		Lb	0	0/0	3/0	1
L : Lecture T :			•		C	Project	K : Kese	earch C: C	realts				
T/L/ETL : The	eory/L	ab/Embed	ded Theor	y and La	ab								
OBJECTIVE													
U U	.	ical knowl	•	-		•		•		-	-	ns	
• To get	practi	ical knowl		•	<u> </u>				ind relate	d softw	vare.		
<u>CO1</u>		C = 1 = 1					S (COs)						
CO1		Gain the l	Ű.						ing.				
CO2		Gain the l	Ű.		Č.								
CO3		Gain the k							and M	111100	noration	naina	CNC
CO4		Gain the Software.	KIIOWIEdg	ge of v	writing	program	i for Cl	NC Lathe		ining (operations	using	UNU
CO5		Gain the k	nowledge	of sime	ilating	lectronic	o circuit	using CA	Deoftwa	re			
					<u> </u>			using CA utcomes (
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10) PO1	1 PO	12
CO1	H	H	M		H								
CO2	H	H	M		H								
CO3	Н	H	Μ		Н								
CO4	Н	H	Μ		Н								
CO5	Н	H	Μ		Н								
Cos / PSOs	1	PSO1	PSC	02	PS	03	PS	504					
CO1		Н	Н		Μ		Н						
CO2		Н	Μ		Μ		Н						
CO3		Η	Н		Μ		Η						
CO4		Η	Н		Μ		Η						
CO5		Н	Н		Μ		Н						
H/M/L indica	tes St	rength of	Correlati	on H-	High, N	1- Medi	um, L-I	JOW				•	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Subject Code:	Subject Name :	Ty / Lb/	L	Τ/	P/ R	С
	CAD,CAM LAB	ETL		S.Lr		
BRE18L05	Prerequisite: CAD,CAM &CIM	Lb	0	0/0	3/0	1

- 1. Shafts subjected to Bending Moment and Twisting Moment
- 2. Shafts with Axial Load, Bending Moment and Twisting Moment
- 3. Open and Closed coiled helical springs
- 4. Leaf Springs
- 5. Power Screws
- 6. Wire ropes for various loads
- 7. Connecting rod
- 8. Crank shaft
- 9. Exercises in CNC lathe.
- 10. Exercises in CNC milling machine.
- 11. Programming in CAM software
- 12. Simulation of electrical/electronic circuits using CAD software.

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code BRE18L06			ame : PRO LLERS I		MMABI	LE LOG	SIC		Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
			te: C pro				ctronics	5,	Lb	0	0/0	3/0	1
L : Lecture T :							R : Res	earch C	: Credits	1 1			
T/L/ETL : The	eory/Lat	/Embed	ded Theoi	ry and L	ab								
OB	JECTI	VE :											
		•	ng in PLC										
	•	-	eration of		L								
• To			$\frac{1}{1}$										
CO1			nts have		knowled	l ge in p	rogramr	ning wit	h PLC				
CO2	T	he stude	nts have	gained l	knowled	lge abo	ut the o	peration	of SCAD	A			
CO3	T	he stude	nts have	gained l	knowled	lge abo	ut appli	cations (of PLC				
CO4	T	he stude	nts have	gained l	knowled	ge abo	ut design	ning diff	erent cont	trol syste	ems		
						0	0	C		•			
CO5	T	he stude	nts have	gained l	knowled	lge abo	ut contro	olling sp	eed of DC	^C motor			
Mapping of C	Course (Jutcome	es with Pr	ogram	Outcom	es (POs	5)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		l PO	12
CO1	Н	Μ	Н	H	Н	Η	Μ	Н	H	Н	Μ	Μ	
<u>CO2</u>	H	H	M	H	H	H	M	H	H	H	M	M	
CO3	H	H	H	H	H	M	M	H	H	H	M	M	
CO4	H	H	H	H	H	M	M	H	H	H	M	M	
CO5 COs / PSOs	H		H PSC	H	H	M O2	M	Н 504	H	H	Μ	M	
COS/PSOS CO1		501 H	H PSC)2	M PS	03	H PS	004					
CO2		H	M		M		H						
CO3		H	H		M		H						
CO4]	H	Н		Μ		Н						
CO5]	H	Н		Μ		Н						
H/M/L indica	tes Stre	ngth of	Correlati	on H-	High, N	A- Med	ium, L-	Low			•		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Ü	B	Engi	Huma		Pro	Ō	Pra	Intern					

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

			J			
Subject Code:	Subject Name : PROGRAMMABLE LOGIC	Ty / Lb/	L	Τ/	P/ R	С
	CONTROLLERS LAB	ETL		S.Lr		
BRE18L06						
	Prerequisite: C programming, Digital Electronics,	Lb	0	0/0	3/0	1
	Instrumentation and Control for Robots					

LIST OF EXPERIMENTS:

- 1. To study Ladder logic programming of a industrial PLC like SEIMENS/FATEK/MICROLOGIX
- 2. To write a programme for control of bottling mechanism for soft drinks.
- 3. To write a Programme for Car Parking.
- 4. To study step sequence.
- 5. To write a Programme for Crane Control
- 6. To write a programme & interface simulated hardware unit of Tank level control.
- 7. To write a programme & interface & control a traffic light.
- 8. To write a programme & interface & control a simulated elevator control.
- 9. To write a programme & interface & control a conveyer belt .
- 10. To write a programme & interface & control speed of a DC motor .
- 11. To write a programme & interface & temperature control system using analog outputs.
- 12. To study the operation of SCADA.

Subject Code	: Su	bject Na	ame: /		ICAL S		II		Ty / Lb/	L	Τ/	P/ R	C	
				(E'	VALUA	TION)			ETL		S.Lr			
BRE18TS2			te: None						Lb	0	0/0	3/0	1	
L : Lecture T :	: Tutoria	al S.Lr	: Supervis	sed Lear	ning P:	Project	R : Re	search (C: Credits					
T/L/ETL : The	eory/Lał	o/Embed	ded Theor	ry and L	ab									
OBJECTIVE	: The o	objective	e is to deve	elop the	technica	l skill o	f the stu	dents.						
COURSE OU	TCOM	ES (CO	s): (3-5)										
CO1	Develo	op the tee	chnical sk	ills requ	ired in tl	ne field	of study							
CO2	Bridge studen	• •	between	the skil	l require	ements c	of the er	nployer	or industr	y and tl	ne compet	ency o	f the	
CO3			nployabili	ty of the	e student	s.								
Mapping of C	Course (Outcome	es with Pr	ogram	Outcom	es (POs	5)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO	12	
CO1	Η	Н	H H H H M M H M H											
CO2	Н	Н	Μ	Н	H	Н	Μ	Μ	Н	Η	H	Η		
CO3	Η	Η	Н	Η	H	Η	Μ	Μ	H	Η	H	Η		
COs / PSOs	PS	501	PSO	02	PS	03	PS	SO4						
CO1	I	М	N	I		H]	М						
CO2	I	М	N	I		H]	М						
CO3		M	N			H		М						
H/M/L indica	tes Stre	ength of	Correlati	on H-	High, N	M- Med	ium, L-			1				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
Approval								×						

Students should undergo training for at least 1 month in any industry/Training center/SWAYAM-NPTEL Certification etc for skill development. The report along with certificate in proof of Skill acquired should be submitted during Viva-Voce examination to be conducted by the department.

Subject Code	: S	ubject Na	ame : IN				G		Ty / Lb/	L	T/	P/ R	C			
BRE18L07	P	rerequisi	te: None	(EVA	LUATI	UN)			ETL Lb	0	S.Lr 0/0	3/0	1			
	-	rerequisi							10	Ŭ	0/0	010				
L : Lecture T :	Tutor	ial SLr	: Supervis	ed Lear	ning P :	Project	R : Res	earch C	: Credits							
Γ/L/ETL : The	eory/La	ab/Embed	ded Theo	ry and L	ab											
OBJECTIVE		5	ective of	the Impl	ant trair	ning is to	provide	e a short	-term work	k experi	ence in a	n Indust	try/			
Company/ Org																
COURSE OU			<u> </u>	,												
CO1		To get an	insight o	f an indu	istry / oi	rganizati	on/comp	pany per	taining to	the dom	nain of st	udy.				
CO2		To acquir	e skills ar	nd know	ledge fo	or a smoo	oth trans	ition int	o the caree	er.						
CO3		To coin f	ald armon	ionoo on	d aat lin	lead with	a tha mus	facion	al motoriali							
CO3		ro gain fi	ieia exper	ience an	ia get fir	al network	•									
Mapping of C	Course	Outcome	mes with Program Outcomes (POs)													
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	l PO	12			
C O 1	Μ	L	L	L	L	Η	Η	Η	Н	Η	Η	Η				
CO2	Η	Μ	Н	Н	Μ	H	Η	Н	Н	Н	H	Μ				
C O 3	Η	Η	Н	Н	Μ	Η	Η	Η	Н	Η	H	Μ				
COs / PSOs	I	PSO1	PS		-	503		SO4	PSO5							
CO1		Μ	N			H		М								
CO2		Μ	N			H		М								
CO3		Μ	N			H		М								
H/M/L indica	ites Sti	rength of	Correlat	ion H·	• High, I	M- Med	ium, L-Ì	Low		T						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills							
								./								
								~								

Students are supposed to undergo industrial training in Robotic related Industries for a minimum period of 15 days during IV/ V semester holidays. They have to prepare a report on the Industrial visit with a certificate in proof of the Industrial visit from competent authority in the industry.

At the end of the Vth semester Viva-Voce examination will be conducted by the internal Examiner duly appointed by the Head of the department and the students will be evaluated.

SEMESTER-VI

Subject Code	: Sı	ıbject Na	ame : DE	SIGN O	F MAC	HINE I	ELEME	INTS	Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
BRE18009			te: Engin Kinemat						Ту	3	1/0	0/0	4
L : Lecture T :									C: Credits				
T/L/ETL : The	ory/La	b/Embed	ded Theor	ry and L	ab								
OBJECTIVE	: The	student	will learn										
			arious gea	urs and b	earings								
-	-	_	ible eleme		-	oupling	s ,chain	and rop	bes				
• Design	n of fric	ction clut	ches			r c	-	Ĩ					
COURSE OU	TCOM	IES (CO	s):(3-5)									
CO1	I	Design pi	inciples o	f variou	s gears a	and bear	ings.						
CO2						ments, l	ike shaf	t, coupl	ings ,chain	and rop	bes		
<u>CO3</u>		U	V belts a										
<u>CO4</u>		<u> </u>	lling cont		ngs								
CO5			iction bea	<u> </u>	0		.)						
Mapping of C Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	s) PO7	PO8	PO9	PO10	PO11	PO	10
C08/P08	H	H	H H	H H	H H	L	M	H	H H	H	M	M	14
<u>CO1</u> CO2	H	H	H	H	H	L	M	H	H	H	M	M	
<u>CO3</u>	H	H	H	H	H	M	L	H	H	H	M	M	
<u>CO4</u>	H	H	H	H	H	M	L	H	H	H	M	M	
CO5	H	H	H	H	H	H	H	H	H	H	H	H	
Cos / PSOs	P	SO1	PS	02	PS	03	PS	504					
CO1		Н	Н		Μ		Н						
CO2		Н	Μ		Μ		Η						
CO3		Н	Η		Μ		H						
CO4		H	Η		Μ		H						
<u>CO5</u>		H	Н		Μ		H	_					
H/M/L indica	tes Str	ength of	Correlati	ion H-	High, N	M- Med	ium, L-		1	1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval				•									

(Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code:	Subject Name : DESIGN OF MACHINE ELEMENTS	Ty / Lb/ ETL	L	T/ S.Lr	P/ R	С
BRE18009	Prerequisite: Engineering Mechanics, Strength of Materials, Kinematics and Dynamics of Machinery	Ту	3	1/0	0/0	4

UNIT I : DESIGN OF GEARS

Review of gear fundamentals, interference, gear forces, determining dimensions of a spur gear pair. Design of helical gears-parallel axis helical gear, normal and transverse planes, helix angles, equivalent number of teeth, determining dimension of helical gear pair, nomenclature of straight and bevel gears.

UNIT II : DESIGN OF SHAFTS AND COUPLINGS

Forces on shafts due to gears, belts and chains, estimation of shaft size based on strength and critical speed. Couplings-types and applications, Design of square keys-use of standards, rigid couplings, flexible flange couplings - selection.

UNIT III : SELECTION OF V BELTS AND CHAINS

V belts for given power and velocity ratio, selection of micro V-belts, timing belts. Selection of roller chain and power speed ratio, silent chain.

UNIT IV : ROLLING CONTACT BEARINGS

Static and dynamic load capacity, cubic mean load, variable load, probability of survival, selection of deep groove and angular contact ball bearings.

UNIT V : FRICTION DRIVES

Clutches - role of clutches, positive and gradually engaged clutches, toothed claw clutches, design of single plate and multiple plate clutches, variable speed drives, types and selection.

TEXT BOOKS:

1. Robert L Mott, "Machine Elements in Mechanical Design", Macmillan Publishing Co., London, 1992.

2. Shigley and Mische, "Mechanical Engineering Design", McGraw Hill, Inc., New Delhi, 2000.

REFERENCES:

1. Bandari V B, "Design of Machine Elements ", Tata McGraw Hill Publishers Co. Ltd., New Delhi, 2003.

2. Robert L Nortan, "Machine Design-An Integrated Approach", Pearson Publishers, New Delhi, 2003.

3. Maitra G M, "Handbook of Gear Design", Tata McGraw Hill, New Delhi, 1998

4. Faculty of Mechanical Engineering, PSG College of Technology, "Design Data Book", M/s. DPV Printers, Coimbatore, 2000

13

13

13

13

8

Subject Code:		ıbject Na NEUMA'		DRAUL	JCS	AND)		Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
BRE18010		rerequisi							Ту	3	0/0	0/0	3
L : Lecture T	: Tuto	orial SL	r : Super	vised Lea	arning	g P:	Projec	et R : Rese	earch C:	Credits			
T/L/ETL : Th	eory/I	Lab/Embe	edded Th	neory and	Lab								
To anTo deTo an	ndersta nalyse esign d esign d UTCC W	ill be abl	hydraul nydraulio pneumat Os):(3 e to und	ic circuits c circuits. tic circuit ic circuits 3-5) erstand th	s. s. ie bas	ic pri	inciple	s of hydra	ulics				
CO2 CO3		ill be abl		•		· ·							
CO3		fill be able		<u> </u>									
CO5		ill be able											
Mapping of				•									
Cos/Pos	PO1	PO2	PO3	PO4	POS	5 1	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	Η	Н	Н	H	Η]		Μ	Η	Н	Η	Μ	Μ
	H	H	Н	H	Η		Ĺ	Μ	Η	H	H	Μ	Μ
	H	H	H	H	H		M	L	H	H	H	M	M
	H	H	H	H	H		M	L	H	H	H	M	M
CO5 Cos /	H	<u>H</u> 501	H	H 502	H	PSO	H	H PSC	H M	H	H	H	H
PSOs	Pa	501	P	02		F30	3	PSC	74				
CO1		H	Н		Μ			Н					
CO2		H	M		M			H					
CO3		H	Η		Μ			Н					
CO4		H	Η		Μ			Н					
CO5		H	Н		Μ			Η					
H/M/L indica	ates S	trength o	of Corre	lation	<u>H- Hi</u>	igh, I	<u>M- Me</u>	dium, L-I	Low				1
Category	Basic Sciences	Engineering Sciences Humanities and	Social Sciences Program Core	 ▲ Program Electives 		Open Electives	Practical / Project		Internships /		Soft Skills		
Approval													

Subject Code: BRE18010	Subject Name : HYDRAULICS AND PNEUMATICS	Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
	Prerequisite: Engineering Physics.	Ту	3	0/0	0/0	3

UNIT I: BASICS OF FLUIDS:

Properties of fluids, Units and dimensions, Viscosity, surface tension and capillarity, compressibility and bulk modulus. Flow characteristics, continuity equation, energy equation, Euler and Bernoullis equation, impulse momentum equation and applications.

UNIT II: HYDRAULIC SYSTEM

Hydraulic principles – Hydraulic pumps – Characteristics – pump selection – pumping circuits - Hydraulic actuators – Linear and rotary selection – Characteristics – Hydraulic valves –Pressure – Flow – Direction controls – Applications – Hydraulic Fluids – Symbols.

UNIT III: HYDRAULIC CIRCUITS DESIGN AND SELECTION

Hydraulic circuits – Reciprocating – Quick-return – sequencing – synchronizing –Accumulators circuits – Safety circuits – Industrial circuits – Press, milling machine, Planner, forklift etc. Design of Hydraulic circuits – selection of components – Installation and maintenance of Hydraulic power packs.

UNIT IV: PNEUMATIC SYSTEMS

Fundamentals – Control elements – logic circuits – position – pressure sensing – switching – Electro-pneumatic – Electro-hydraulic circuits.

UNIT V: DESIGN AND SELECTION

Design of Pneumatic circuits – classic – cascade – step counter – combination methods – Selection criteria – for pneumatic components – Installation and Maintenance of Hydraulic and Pneumatic power packs.

Total No. of Periods: 45

0

TEXT BOOKS

- 1) Anthony Esposito, (2008) "Fluid power with applications", Pearson education Pvt. Ltd, 7th edition.
- 2) S.K.Bansal(2012) "Fluid Mechanics and Hydraulic Machines" Lakshmi publications Pvt Limited, New Delhi.
- **3**) S.Ilango and V.soundarrajan ,(2011) "*Introduction to Hydraulics and Pneumatics*",Prentice hall india,2nd Edition.

REFERENCES:

1) W.Bolton, (2012) "Pneumatic and Hydraulic Systems", Butterworth, 3rd edition.

Dr. M.G.

EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEDA DIMENT OF MECHANICAL ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING Subject Code: Subject Name : POWER ELECTRONICS AND Ty / Lb/ L T/ P/R C													
Subject Code:	S	•							Ty / Lb/ ETL	L	Τ/	P/ R	С
			DRIVES erequisite: Electrical and Electronics circuits								S.Lr		
BRE18011									Ту	3	0/0	0/0	3
L : Lecture T :	Tutor	ial S Lr	: Supervis	ed Lear	ning P :	Project	R : Res	search C	C: Credits				
T/L/ETL : The	ory/La	ab/Embed	ded Theor	y and L	ab								
		TVE :											
		liarity to F						istics.					
	-	ble of desi	0 0	00	ng of fir	ing circi	uits.						
		liarization		ers									
		udy about			Inductor	al drive	<i>.</i>						
•	10 118	we knowle	edge in D		mausuri	ai drive	5.						
COURSE OU	TCO	MES (CO	s): (3-5))									
CO1		The stude	nts have g	gained k	nowledg	e in Po	ower Ele	ctronic	Devices ar	nd its ch	aracteristi	cs	
CO2		The stude	nts have g	ained k	nowledg	e in de	sign of t	he trigg	ering of fi	ring circ	cuits		
CO3		The students have gained knowledge in inverters											
CO4		The stude	nts have g	ained k	nowledg	e in ch	oppers						
CO5		The stude	nts have g	ained k	nowledg	e in DC	& AC I	ndustria	l drives.				
Mapping of C	ourse	Outcome	es with Pr	ogram	Outcom	es (POs	5)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н	Н	Н	Н	L	Μ	Н	Н	Н	Μ	Μ	
CO2	Η	H	Н	Η	Н	L	Μ	Η	H	Н	Μ	Μ	
CO3	Η	Μ	Н	H	Η	Μ	L	Н	H	H	H	Μ	
CO4	Η	Н	Н	H	Η	Μ	L	Н	H	H	Μ	Μ	
CO5	Η	Η	Η	Η	Η	H	Н	Н	H	Н	H	H	
COs / PSOs	P	<u>PSO1</u>	PSC)2		PSO3 PSO4		604					
<u>CO1</u>		H	H		M H								
CO2 CO3		H H	H H		M M		H H					_	
CO4		H H	H		M		H						
CO4 CO5		H	H		M		H					_	
H/M/L indicat	oc Sti			on H-		A. Mod		[ow					
				<u> </u>									
		es	cial		s			cal					
	ses	enc	Soc	re	ive	'es	ject	ihni					
	enc	Sci	nd xes	Co	lect	ctiv	Pro	Tec 1	aills				
ory	Sci	ing	ities and Sciences	am	nΕ	Ele	al /	ps / J Skill	t Sk				
Category	Basic Sciences	een	nitie Sci	Program Core	gran	Open Electives	žtici	ship 2	Soft Skills				
Ca	\mathbf{Ba}	Engineering Sciences	Humanities and Social Sciences	Pr	Program Electives	Op	Practical / Project	Internships / Technical Skill					
		En	Hu		щ			Int					
-													
				\checkmark									
Approval													

TEXT BOOKS:

1. Rashid M.H, "Power Electronics-circuits, Devices and Applications, PHI, New Delhi, 2004 2Dubey, G.K "Power Semiconductors and Drives", Prentice Hall, 1989

REFERENCES:

1. Bimal KBose, "Modern Power Electronics and AC Drives ", Pearson Education , 2002. 2. Joseph Vithyathil, "Power Electronics", Mcgraw Hill, USA, 1995. 3Mohan, Udeland and Robbins, "Power Electronics", John Wiley and sons, New York, 2003. 4. Vedam Subramaniam, "Thyristor control of Electrical Drives", Tata McGraw-hill, New Delhi, 1998

UNIT I: REVIEW OF POWER SEMICONDUCTOR DEVICES

Prerequisite: Electrical and Electronics circuits

Power diodes --power transistors-Characteristics of SCR, TRIAC, Power MOSFET, IGBT-Thyristor protection circuits-thyristor trigeering circuits.

POWER ELECTRONICS AND

DRIVES

UNIT II CONVERTERS

Subject Code:

BRE18011

Single Phase-three Phases-Half controlled -full controlled rectifiers-Dual converters-Effect of source and load inductance-AC regulators (no derivations).

UNIT III INVERTERS AND CONVERTERS

Subject Name :

Voltage Source Inverters-bridge inverters-Current Source inverters-Voltage and waveform control of inverters-Dc choppers-Step up and step down –uninterrupted power supplies-introduction to dries-basic elements of driveload characteristics-selection of drive.

Basic characteristic of DC motor-Criteria for Drive selection-Operating modes-quadrant operation of chopper-

UNIT IV DC DRIVES

Closed loop control of DC drives.

UNIT V AC DRIVES

Induction motor-Performance characteristics-Stator and rotor voltage control, frequence and voltage control-Current Control-Introduction to synchronous motor, stepper motor, switched reluctance motor drives-basics of vector control.

Total no. of Periods: 45

Τ/

0/0

S.Lr

Tv/

Lb/

Τv

ETL

L

3

9

9

С

3

P/R

0/0

9

9

0

Subject Code	: 8	bubject Na	ame IND	USTRL	AL AU	ΓΟΜΑΊ	FION L	AB	Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
BRE18L08	F	Prerequisi	te: Hydra	aulics ar	nd Pneu	matics			Lb	0	0/0	3/0	1
L : Lecture T :	: Tuto	rial SLr	: Supervis	ed Learn	ning P:	Project	R : Res	earch C	C: Credits				
T/L/ETL : The	eory/L	ab/Embed	ded Theo	ry and L	ab								
OBJECTIVE	S:												
		vledge on											
					d hydrau	lic circu	its with	automa	ation studio	softwa	re and wit	h kits	
		vledge of i											
COURSE OU													
<u>CO1</u>		Will get k											
CO2			gn and im	plement	pneuma	atic and	hydraul	ic circu	its with au	tomatio	n studio s	oftware	e and
CO3		with kits	nowlada	o of diff	anont tra	nomitto	in ind	atmial m	00000				
CO3 CO4		Will get k Will get k						surial pr	ocess				
C04 C05		Will get k					ystem						
Mapping of C		<u> </u>	<u> </u>)						
Cos/Pos	PO1	1	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	L		Н		Н							Н	
CO2	L		Н		Н							H	
CO3	L		L		Μ							Н	
CO4	L		L		Μ							Н	
CO5	L		L		Μ							Н	
Cos / PSOs	I	PSO1	PS		PSO3 PSO4 H H			_					
CO1		H		H H									
CO2		H	H		H		H						
CO3		H	H		M		H					_	
CO4 CO5		H H	H H		M M		H H						
H/M/L indica	tos St					M Mod		Low					
II/WI/L IIIuica			Correlat										
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Subject Code:	Subject Name :INDUSTRIAL AUTOMATION LAB	Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
BRE18L08	Prerequisite: Hydraulics and Pneumatics	Lb	0	0/0	3/0	1

3LIST OF EXPERIMENTS:

- 1. Study of different types of hydraulic and pneumatic components.
- 2. Study of robotics arm and its configuration.
- 3. Study of Robotic end effectors
- 4. Exercises in Pneumatic / Hydraulic Trainer Kit.
- 5. Design of pneumatic and hydraulic circuits using Automation Studio software.
- 6. Study of reciprocating movement of double acting cylinder using pneumatic direction control valves.
- 7. Use of direction control valve and pressure control valve clamping devices for jig and fixture.
- 8. Study of the characteristics of the pressure transmitter in Industrial Process.
- 9. Study of the characteristics of the Temperature transmitter in Industrial Process.
- 10. Study of the characteristics of the Flow transmitter in Industrial Process.
- 11. Study on Distributed Control System in Industries.
- 12. Study of Level Control in Industrial Process.

Subject Code		ubject Na RIVES	ame : PO'	WER E	LECTR	ONICS	S AND		Ty / Lb/ ETL	L	T / S.Lr	P/ R	C	
BRE18L09		rerequisite: Power electronics and drives							Lb	0	0/0	3/0	1	
L : Lecture T								earch C		U	0/0	5/0	1 4	
			•		e	Tiojeet	R . R es		. creans					
T/L/ETL : The	eory/La	b/Embed	ded Theor	ry and L	.ab									
OBJECTIVE	2:													
• Te	o provie	de hands	on experie	ence wit	h power	electro	nic conv	erter de	sign and te	sting				
	•				•				0	C				
COURSE OU														
CO1		The stude	ents have g	gained k	nowledg	ge in po	ower elec	ctronic o	converter d	lesign a	nd testing			
CO2	1	Would have gained hands on experience with Characteristics of SCR and TRIAC												
<u> </u>		Would have gained hands on experience with IGBT based single and Three phase PWM inverter												
CO3		would ha	ve gained	hands of	on experi	lence wi	th IGB'I	based	single and	Three]	phase PW	M inve	rter	
<u>CO4</u>		Won1 1 1-		honda		an an	th dani-	ning	itahad	10 00		~*		
CO4		would ha	ive gained	nands o	m experi	ience wi	un desig	ning sw	itched mod	le powe	er convert	er		
CO5	1	Would ha	ve gained	hands of	on experi	ience wi	th desig	ning po	wer electro	onic bas	ed system	IS		
			Buillet								•••••			
Mapping of C	Course	Outcome	es with Pr		Outcom	nes (PO	s)	-		_				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	
CO1	Η	Μ	Н	Η	Н	H	Μ	Η	H	H	Н	Η		
CO2	Н	Μ	Н	Η	H	H	Μ	Н	H	H	H	Η		
CO3	Η	Μ	Н	Η	Η	Η	Μ	Η	H	Η	Н	Η		
CO4	Н	Μ	Н	Η	Н	Н	Μ	Н	H	Н	Н	Η		
CO5	Н	Μ	Н	Η	Н	Η	Μ	Η	H	Н	Н	Η		
COs / PSOs		SO1	PSC)2		03		SO4						
CO1		H	H		Μ		Η							
CO2		H	H		Μ		Η							
CO3		H	H		Μ		Η							
CO4		H	H		Μ		Η							
CO5		H	H		Μ		H							
H/M/L indica	tes Str	ength of	Correlati	ion H-	• High, I	M- Med	ium, L-			1				
			Ч					kil						
		ces	ocia		SS	_	t l	al S						
	ces	ien	Sc	ore	tive	ves	ojec	nica	×					
	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	chr	Soft Skills					
Улс	Sci	ng	ities and Sciences	am	JΕ	Ele	ul /	Te	SI					
Category	sic	seri	itie Sci	Igc	ran	en	tici) S(Jofi					
Cat	$\mathbf{B}_{\mathbf{a}}$	gine	nan	Pr	log	Op	rac	hif						
		Enį	Iun		P		Ь	jrns						
								Internships / Technical Skill						
	1	1	1	1	1	1	1	1		1				
Approval														

Subject Code:	Subject Name : POWER ELECTRONICS AND	Ty / Lb/	L	Τ/	P/ R	С
	DRIVES LAB	ETL		S.Lr		
BRE18L09	Prerequisite: Power electronics and drives	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS:

- 1. Gate Pulse Generation using R, RC and UJT.
- 2. Characteristics of SCR and TRIAC
- 3. Characteristics of MOSFET and IGBT
- 4. AC to DC half controlled converter
- 5. AC to DC fully controlled Converter
- 6. Step down and step up MOSFET based choppers
- 7. IGBT based single phase PWM inverter
- 8. IGBT based three phase PWM inverter
- 9. AC Voltage controller
- 10. Switched mode power converter
- 11. Simulation of PE circuits ($1\Phi \& 3\Phi$ semi converter, $1\Phi \& 3\Phi$ full converter, dc-dc converters, ac voltage controllers).

Subject Code:	Subject N	Name: SO AND QU					TIVE	Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
BEN18SK2		_				~)						
	Prerequis		1 7	· D	D	D D	1.0	ETL	0	0/0	3/0	1
L : Lecture T : Tu	utorial SLr	: Supervis	ed Leari	ning P:	Project	R : Res	earch C	: Credits				
T/L/ETL : Theory	y/Lab/Embec	Ided Theor	ry and L	ab								
OBJECTIVES:												
	e awareness i			top con	npanies	helping	them in	nprove thei	r skill s	et matrix,	leading	g to
	a positive fra			1	. f 1	. 1. 4	•.		41	CI	· ·	
• To help s resume.	students be av	ware of vai	rious tec	nniques	of cand	idate rec	ruitmei	nt and help	them p	repare Cv	's and	
	student how t	o face vari	ous type	es of inte	erview 1	nrenarin	σ for H	R technica	l intervi	ews		
-	students imp				-		-				rious 1	nock
sessions.	students mig	nove men	verbui	reading	, marran	und und	present	uton skin	s oj pe		11005 1	noek
COURSE OUTO	COMES (CO	(3-5))									
CO1				mpanies	leading	to impro	ovemen	t in skills a	amongst	them.		
CO2	Be aware	of variou	s candid	ate recru	itment 1	techniqu	es like	group disc	ussion, i	nterviews	and be	e
	able to p	repare CV	's and re	esumes.								
CO3			7					or HR and t		l interviev	vs.	
CO4						ls by per	forming	g mock ses	sions.			
CO5	-	their data	-									
Mapping of Cou					1	1						
	<u>PO1 PO2</u>	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO	12
CO1 L		L L	L	L L	M	M	H	M	H	M	H	
CO2 L CO3 L			L L		M M	M M	H H	M M	H H	M M	H H	
CO3 L CO4 L		L	L	L	M	M	H	M	H	M	H	
C04 L C05 L		L	L		M	M	H	M	H	M	H	
Cos / PSOs	PSO1	PS			03		504					
CO1 L		L	-	H								
CO2 L	4	L		Η								
CO3 L	1	L		Η								
CO4 L		L		Η								
CO5 L		L		H								
H/M/L indicates	Strength of	<u>Correlati</u>	on H-	High, N	M- Med	ium, L-I			1			
Category Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills ≺	Interdisciplinary Subject			

Subject Code:	Subject Name: SOFT SKILLS-II	Ty / Lb/	L	Τ/	P/ R	С
	(QUALITATIVE AND QUANTITATIVE SKILLS)	ETL		S.Lr		
BEN18SK2						
	Prerequisite: None	ETL	0	0/0	3/0	1

The purpose of this Subject is to build confidence, inculcate various Soft skills and also helps the students to identify in achieving their personal potential.

At the end of this training program the participant will be able to,

Explain the concept problem solving

- Outline the basic steps in problem solving.
- List out the key elements
- Explain the use of tools and techniques in problem solving.
- Discuss the personality types and problem solving techniques.
- By adapting different thinking styles in group and learn environment.
- Recognizing and removing barriers to thinking in challenging situations.
- Make better decision through critical thinking and creative problem solving.

METHODOLOGY

The entire program is designed in such a way that every student will participate in the class room activities. The activities are planned to bring out the skills and talent of the students which they will be employing during various levels in their real life.

- 1. Group activities + individual activities
- 2. Collaborative learning
- 3. Interactive sessions
- 4. Ensure Participation
- 5. Empirical Learning

UNIT I Logical Reasoning I

Logical Statements – Arguments – Assumptions – Courses of Action.

UNIT II Logical Reasoning II

Logical conclusions – Deriving conclusions from passages – Theme detection.

UNIT III Arithmetical Reasoning I

Number system – H.C.F & L.C.M – Problem on ages – Percentage – Profit & Loss – Ratio & Proportion – Partnership.

UNIT IV Arithmetical Reasoning II

Time & Work – Time & Distance – Clocks – Permutations & Combinations – Heights & Distances – Odd man out and Series.

UNIT V Data Interpretation

Tabulation – Bar graphs – Pie graphs – Line graphs.

Reference Book:

Total No. of Periods: 30

1. R.S.Agarwal, A modern approach to Logical Reasoning, S.Chand & Co., (2017).

2. R.S.Agarwal, A modern approach to Verbal and Non verbal Reasoning, S.Chand & Co., (2017).

3. R.S.Agarwal, Quantitative Aptitude for Competitive Examinations, S.Chand & Co., (2017).

4. A.K.Gupta, Logical and Analytical Reasoning, Ramesh Publishing House, (2014).

5. B.S.Sijwali, Indu sijwali, A new approach to Reasoning (Verbal and Non verbal), Arihant Publishers, (2014).

Subject Code	: S	ubject Na	ame : MI	NI-PRO	JECT				Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
BRE18L10		rerequisit kills.	e: Knowl	edge of	Interdisc	ciplinary	Subject	s and	Lb	0	0/0	3/0	1
L : Lecture T :	Tutor	ial SLr :	Supervis	ed Learr	ning P:	Project	R : Rese	earch C	: Credits				
T/L/ETL : The	eory/La	b/Embed	ded Theor	ry and L	ab								
OBJECTIVE	: The	main obj	ective of	the this c	course is	to bring	out the	interdis	sciplinary s	skills in	students b	ру	
encouraging th													
project can be													
COURSE OU													
CO1		To apply	the interd	isciplina	ry know	ledge fo	r carryir	ng out a	n innovativ	ve, indus	strial appl	cation	
		Project.											
		— :	1			• 1 1		•	1	1 .			
CO2		To acquir	e desired	technolo	ogical sk	ills requ	ired in th	ne inter	disciplinary	y domai	n		
CO3		To enhan	ce the em	nlovahil	ity skille	of the s	tudents						
				proyabili	ity skills	or the s	iuuems.						
Mapping of C	lourse	Outcome	s with Pi	ogram (Outcom	es (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Μ	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	
CO2	Н	Μ	Н	Н	Μ	Н	Н	Н	Н	Н	Н	Μ	
CO3	Н	Н	Н	Н	Μ	Н	Н	Н	Н	Н	Н	Μ	
H/M/L indica	tes Str	ength of	Correlati	ion H-	High, N	/- Medi	um, L-I	JOW					
			1				,						
			Sciences										
			Scie					/ Technical Skill					
								al S					
		Sciences	and Social					nice					
ry		ien	S		ves		ect	schi					
tegory	ces		anc	ore	scti	ves	Project	'Τ _€					
Cate	iene	ing	ies	7	Ele	ecti	~		ls				
Ŭ	Sc	leer	mit	am	am	Ele	cal	ishi	ŝkil				
	Basic Sciences	Engineerin	Humanities	Program C	Program Electives	Dpen Electives	Practical ,	Internships	Soft Skills				
	B	En	Ĥ	P_{Γ}	Pr	0 ¹	Pr	Ini	Sc				
							\checkmark						
Approval													
					1						1		

Students will have an opportunity to expose their knowledge and talent to make an innovative project. Students are supposed to do innovative projects useful to industries/society in the area of Robotics Engineering and related areas, under the guidance of a staff member of their study. They have to prepare a project report and submit to the department.

At the end of the semester Viva-Voce examination will be conducted by the internal Examiner duly appointed by the Head of the department and the students will be evaluated.

Subject Code	: Su	ıbject Na	ame : TE((E		AL SKI TION)	LL-3			Ty / Lb/	L	T / S.Lr	P/ R	C
BRE18TS3			× ×		,				ETL				
	Pr	erequisi	te: None						Lb	0	0/0	3/0	1
L : Lecture T :	Tutoria	al SLr	: Supervis	ed Learr	ning P:	Project	R : Res	earch C	: Credits				
T/L/ETL : The	eory/La	b/Embed	ded Theor	ry and L	ab								
OBJECTIVE	: The	objective	e is to deve	elop the	technica	ıl skill o	f the stu	dents.					
COURSE OU	TCOM	IES (CO	os) : (3- 5)									
CO1	Devel	op the tee	chnical sk	ills requ	ired in tl	ne field	of study						
CO2	Bridge studen		between	the skil	l require	ements of	of the en	nployer	or industr	y and th	ne compe	etency o	of the
CO3			nployabili	ty of the	student	s.							
Mapping of C	Course	Outcome	es with Pr	ogram	Outcom	es (POs	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Н	Н	Η	Η	Η	Н	Μ	Μ	Н	Μ	Η	Μ	
CO2	Н	Н	Μ	Н	Н	Н	Μ	Μ	Н	H	Н	Н	
CO3	Η	Η	Η	Η	Η	Н	Μ	Μ	Н	Η	Η	Η	
COs / PSOs	PS	501	PSC)2	PS	03	PS	604					
CO1		Μ	Μ	[]		I	Ι	М					
CO2		Μ	Μ			I		M					
CO3		Μ	Μ			I		M					
H/M/L indica	tes Str	ength of	Correlati	on H-	High, N	M- Med	ium, L-	Low		T			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval								-					

Students should undergo training for at least 1 month in any **industry/Training Centre/ SWAYAM-NPTEL Certification** etc for skill development. The report along with certificate in proof of Skill acquired should be submitted during viva voce examination to be conducted by the department.

SEMESTER-VII

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code:	S S	ubject N						L ENGI CS OF			Τ/	P / R	С			
u u		U			OBOTS				Lb/		S.Lr					
BRE18012	Duc	nominita	. Vinor	notios o	nd Drun	omics of	Maahii		ETL	3	1/0	0/0	4			
L : Lecture T :		<mark>requisite</mark> al SI r						esearch C:	Ty Credits	3	1/0	0/0	4			
T/L/ETL : The			•		Ū.				cicuits							
OBJECTIVE				ory une	Luc											
		stand the	snecific	nations a	and kine	tics of re	botics									
			-					ixis and Si	ix axis rol	bots						
		stand the	-		•											
• To	under	stand the	differer	nt motio	n of rob	ots										
COURSE OU) s):(3-	5)												
Students will			ار ار در مرد ا	an of	1:66				a of uploof							
CO1	C	Jain the	knowled	ige of a	interent	specific	cations a	nd kinetic	s of rodol	lics						
CO2	0	Gain the l	knowled	lge of	work spa	ace analy	vsis of ro	bots								
CO3	(Gain the	knowled	lge of di	ifferentia	al motior	n and sta	tics								
		~														
CO4		Gain the l			, ,	•	es									
CO5		Gain the l		•	•											
Mapping of C	ourse	e Outcomes with Program Outcomes (POs) 1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO8	PO9	PC	D10	PO11	PO12				
CO1	Η	Н	Н	Н	Μ	Н	Μ	Н		Μ	Н	Н				
CO2	Η	Н	Η	H	H	Μ	L	L	Μ		Μ	L	H			
<u>CO3</u>	H	H	H	H	H	M	L	L	M		M		H			
CO4 CO5	H H	H H	H H	H H	H H	M M	L L	L L	M M		M M	L L	H H			
COs / PSOs		501		02		503		SO4	IVI		IVI	L				
CO1		M		<u>л – – – – – – – – – – – – – – – – – – –</u>	-	H	-	H								
CO2		M	N	A		H		Н								
CO3		L		H		M		H								
CO4		L	T	H		M		Μ								
CO5		L		H		M		M								
H/M/L indicat	tes Str	ength of		ation	H- High	, M- Me	edium, I	L-Low	-							
		es	Social					ical								
		enc			es		chn									
~	ses	Sci	put	e	ctiv	/es	II Te									
Category	ienc	ing	ies a	Coi	Ele	sctiv	/P1	ps / T Skill	ls							
ate	Sci	leer	aniti ces	am	am	Ele	ical	idsu	Skil							
C	Basic Sciences	Engineering Sciences	Humanities and Sciences	▲ Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills							
	Bi	Ē	Ϋ́Η	[™] P1	Pr	0	Pr F	In	Š							
						1	1	1					1			
Approval																

DEPARTMENT OF MECHANICAL ENGINEERING Subject Name: KINEMATICS AND DYNAMICS OF 5/27/2011

(Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

Subject Code:	Subject Name: KINEMATICS AND DYNAMICS OF	Ту /	L	Τ/	P/ R	С
	ROBOTS	Lb/		S.Lr		
BRE18012		ETL				
	Prerequisite: Kinematics and Dynamics of Machinery	Ту	3	1/0	0/0	4

UNIT –I INTRODUCTION

Specifications of Robots- – Work envelope - Flexible automation versus Robotic technology –Dot and cross products, Co-ordinate frames, Rotations, Homogeneous Coordinates, Link coordinates, D-H Representation, Arm equation -Two axis, three axis, four axis, five axis and six axis robots. Inverse Kinematic problem, General properties of solutions, Tool configuration, Inverse Kinematics of Two axis Three axis, Four axis and Five axis robots.

UNIT -II WORKSPACE ANALYSIS

Workspace analysis of Four axis, Five axis and Six axis robots, Perspective transformation, structured illumination, Camera calibration, Work envelope of Four and Five axis robots, Workspace fixtures.

UNIT -III DIFFERENTIAL MOTION AND STATICS

The tool Configuration Jacobian matrix for three axis and, four axis robots, joint space singularities, resolved motion rate control, manipulator Jacobian for three and four axis joint space singularities, induced joint torques and forces.

Introduction, Langrangian mechanics, Effects of moments of Inertia, Dynamic equation for two axis planar

UNIT -IV DYNAMIC ANALYSIS AND FORCES

UNIT –V TRAJECTORY PLANNING

Trajectory planning Pick and place operations, Continuous path motion, Interpolated motion, Straight line motion.

TEXT BOOKS:

articulated robot.

1. Robert J. Schilling, -Fundamentals of Robotics Analysis and Controll, PHI Learning, 2009.

2. Niku S B, -Introduction to Robotics, Analysis, Systems, Applications, Prentice Hall, 2001.

REFERENCES:

- 1. John J Craig, —Introduction to Robotics, Pearson, 2009.
- 2. Deb S R and Deb S, —Robotics Technology and Flexible Automation^{II}, Tata McGraw Hill Education Pvt. Ltd, 2010.
- 3. Richard D Klafter, Thomas A Chmielewski, Michael Negin, "Robotics Engineering An Integrated Approach", Eastern Economy Edition, Prentice Hall of India P Ltd., 2006.
- 4. Saha S K, —Introduction to Robotics^{II}, Tata McGraw Hill Education Pvt. Ltd, 2010.

Total No. of Periods: 60

12

12

12

12

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

DEPARTMENT OF MECHANICAL ENGINEERING **Subject Code:** Subject Name: INDUSTRIAL APPLICATIONS Τ/ **P**/ C Ty/ L **OF ROBOTS** Lb/ S.Lr R **BRE18013** ETL 3 0/0 0/0 **Prerequisite: Basics of robotics** Τv 3 SLr : Supervised Learning P : Project R : Research C: Credits L : Lecture T : Tutorial T/L/ETL : Theory/Lab/Embedded Theory and Lab **OBJECTIVE :** To give a conceptual understanding of usage of robots in manufacturing industries To analyse robots for processing operations To analyse the robots for assembly inspection, selection and select robots based on various design considerations COURSE OUTCOMES (COs) : (3-5) Students will be able to Understand the usage of robots for material handling purposes **CO1 CO2** Appreciate the significance of robots in processing applications **CO3** Appreciate the role of robots in assembly and inspection **CO4** Appreciate the role of robots in unsafe and safe environments **CO5** Select and design robots based on various considerations Mapping of Course Outcomes with Program Outcomes (POs) **COs/POs PO1 PO2** PO3 **PO4 PO5 PO6 PO7 PO8** PO9 **PO10 PO11 PO12 CO1** Η Η Η Η Μ Η Μ Μ Н Μ Η Н **CO2** Н Н Н Н Н Μ L L Μ М L Н **CO3** H Н Η Η Н Μ L L Μ L Н Μ **CO4** Η Η L Μ Η Η Η Η Μ L Μ L **CO5** H Η Η Η Η Μ L L Μ Μ L Н COs / PSOs PSO1 PSO₂ PSO3 PSO4 **CO1** Μ Μ Η Η **CO2** H Μ Μ Н **CO3** L Η Μ H **CO**4 Η Μ L Μ **CO5** H Μ L Μ H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low

		8			0	,		/			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	 ▲ Program Core 	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills		

Subject Code: BRE18013	Subject Name: INDUSTRIAL APPLICATIONS OF ROBOTS	Ty / Lb/ ETL	L	T/ S.Lr	P/ R	C
DRE10015	Prerequisite: Basics of robotics	Ty	3	0/0	0/0	3

UNIT I: MATERIAL TRANSFER AND MACHINE LOADING/UNLOADING

General considerations in Robot material handling-material transfer application-machine loading and unloading-robot cell design and control.

UNIT II ROBOT FOR PROCESSING OPERATIONS

Applications of Robots in Spot Welding-Continuous Arc welding-Spray coating-Other processing operations using robots-examples and case studies.

UNIT III ASSEMBLY AND INSPECTION

Assembly and Robotic Assembly Automation-part presentation Methods-Assembly Operations-Compliance and the Remote Center Compliance (RCC) Device-Assembly System Configurations-Adaptable-programmable Assembly system-Designing for Robotic Assembly-Inspection Automation.

UNIT IV ROBOTS FOR UNSAFE AND SAFE ENVIRONMENTS

Robot in hazardous and inaccessible non manufacture environments-construction-underground coal mining-fire fighting operations-under sea operations-Space operations etc.Robots in Service industries-Teaching, security and household robots-case studies

UNIT V SELECTION AND DESIGN CONSIDERATION OF ROBOTS

Factors influencing the choice of a robot, robot performance testing-Path/point accuracy and repeatabilitymaximum working envelop-kinematic and state values-robot safety-considerations-Factors affecting robot safety measures-safety features built into industrial robot-safety barriers and other devices

Total no. of Periods: 45

TEXT BOOKS:

- 1. Mikell P. Groover,"Industrial Robotics Technology, Programming and Applications", 2nd Edition, John Mcgraw Hill Book Company, 2013
- 2.Bernard Hodges,"Industrial Robotics", Second Editon, Jaico Publishing House, 1993

REFERENCES:

- 1. Deb S R and Deb S, —Robotics Technology and Flexible Automation^{II}, Tata McGraw Hill Education Pvt. Ltd, 2010.
- 2. Saha S K, —Introduction to Robotics, Tata McGraw Hill Education Pvt. Ltd, 2010

9 iar

0

9

Subject Code			CIAL IN	LEAI	RNING				Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
BRE18014		A	te: Basics		,		0	0	Ty Constitute	3	0/0	0/0	3
L : Lecture T			: Supervis		C	Project	K : Kes	search C	: Credits				
Ty/Lb/ETL: 1	Theory	/Lab/Emt	edded Th	eory and	l Lab								
OBJECTIVE													
•		•	Artificial	Ũ									
			solving pr		Ũ		Ũ						
			s of Exper			hachine	learning						
COURSE OL								•		1 1.1			
CO1					-				AI search a	-			
CO2		world pro	blems in t	terms of	data ma	inageme	nt	ning, an	d machine	e learnir	ig techni	ques to	real
CO3		Ability to	use AI fo	or statisti	cal deci	sion ma	king						
CO4		Be expose	ed to intro	ductory	concept	s in mac	chine lea	arning					
CO5		Find the u	usage of ro	obotics i	n AI								
Mapping of C						1							
COs/POs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1 CO2	H H	<u>Н</u> Н	H H	H H	M M	H H	M M	M M	H H	H H	H H		H H
CO3	H	H	Н	Н	L	Н	M	M	Н	М	Н		н Н
CO4	Н	Н	Н	Н	L	Н	М	М	Н	М	Н		Н
CO5	Н	Н	Н	Н	L	Н	Μ	Μ	Н	Μ	Н		Н
COs / PSOs	F	PSO1	PSC	02	PS	503		<u>504</u>					
<u>CO1</u>								H					
CO2 CO3							-	<u>н</u> н					
CO4								H					
C04 C05								H					
H/M/L indicat	tes Stre	ength of C	orrelation	H-H	igh, M-	Medium	n, L-Lov				1		
					.5, 111-								
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Dpen Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	Bí	Ш Ш	H _I S	► Pr	Pr		Pr L		Š				
				· ·				$\left \right $			_		
Approval													

DEPARTMENT OF MECHANICAL ENGINEERING a . .

Iniversity with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

(Deemed to be

Subject Code:	Subject Name :	Ty / Lb/	L	Τ/	P/ R	С
	ARTIFICIAL INTELLIGENCE AND MACHINE	ETL		S.Lr		
	LEARNING					
BRE18014	Prerequisite: Basics of Robotics, Python Programming	Ту	3	0/0	0/0	3

UNIT 1: INTRODUCTION OF ALAND ML

Introduction to data science and AI&ML: Data Science AI & ML, Use Cases in Business and Scope, Scientific Method, Modeling Concepts, CRISP-DM Method, Statistical analysis: Initial Data Analysis, probability, R essentials: Commands and Syntax, Packages and Libraries, Introduction to Data Types, Data Structures in R -Vectors, Matrices, Arrays, Lists, Factors, Data Frames, Importing and Exporting Data, Control structures and Functions.

UNIT 2: DATA MANAGEMENT

Data Acquisition, Data Pre-Processing And Preparation, Data Quality And Transformation, Handling Text Data, Principle Of Big Data, Big Data Framework-Hadoop, Spark, Nosql.

UNIT 3: STATISTICAL DECISION MAKING

Data Visualization, Sampling And Estimation, Inferential Statistics, Linear Regression, Non Linear Regression.

UNIT 4: MACHINE LEARNING

Foundation for ML, Clustering, Classification: Naïve bayes classifier, K-Nearest neighbors, support vector machine, decision tree, ensembles methods, Association rule mining.

UNIT 5 : AI IN ROBOTICS

Robotic perception, localization, mapping- configuring space, planning uncertain movements, dynamics and control of movement, Ethics and risks of artificial intelligence in robotics

Total No. of Periods: 45

TEXT BOOKS:

1. Micheal Negnevitsky, "Artificial Intelligence: A guide to Intelligent Systems",. Harlow: Addison-Wesley, 2005.

REFERENCES:

- 1. Nils J. Nilsson, "Introduction to Machine Learning", 2005.
- 2. Pang-Ning Tan, Michael Steinbach., Introduction to Data Mining, Pearson, 2019.

9

0

9

Q

			Periya	(De rsity w ar E.V.R.	AND eemed to ith Gra Salai, Ma	be Univ ded Au aduravo	ARCH ersity) itonomy yal, Chen	INSTI y Status mai – 95 NGINE								
Subject Code:	: 5	Subject N	ame:		PROG	RAMM	IING	Ty/	L	T/S.Lı	• P/ R	C				
BRE18L11				LAB				Lb/ ETL								
		erequisite						Lb	0	0/0	3/0	1				
L : Lecture T :	Tutoria	al S.Lr :	Supervi	sed Lea	rning P	: Project	t R : Res	earch C:	Credits							
T/L/ETL : The	ory/La	b/Embedd	led Theo	ry and L	ab											
OBJECTIVE																
•																
•	• To learn robot programming and simulation for industrial application.															
COURSE OU	COURSE OUTCOMES (COs) : (3- 5)															
	COURSE OUTCOMES (COs) : (3- 5) tudents will be able to															
CO1	CO1 To understand different types of robots based on configuration and application															
CO2	CO2 To learn robot programming exercise															
CO3	CO3 To learn robot programming and simulation for writing practice															
CO4	CO4 To learn robot programming and simulation for any industrial process															
CO5	O5 To learn robot programming and simulation for multi process															
Mapping of C	Mapping of Course Outcomes with Program Outcomes (POs)															
COs/POs	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1	Н	H H H M H M M H M H														
CO2	Н	Н	Н	Н	Н	Μ	L	L	Μ	Μ	L	Н				
CO3	Н	Μ	Н	Н	Н	L	М	L	Н	Н	H	Н				
CO4	Н	Μ	H	Н	Н	L	Μ	L	Н	Н	Н	Н				
CO5	Н	Μ	Н	Н	Н	L	Μ	L	Н	Н	Н	Н				
COs / PSOs	Р	SO1	PS	02	PS	03	PS	504								
CO1		H	N	1	I	H]	H								
CO2		Η	N	Л		H]	H								
СОЗ		Η	I	I	N	Л]	H								
CO4		Η	I	I	N	A]	H								
CO5		Η	I	I	N	Л]	H								
	H	/M/L ind	icates St	trength	of Corr	elation	H- Hig	h, M- M	edium, l	L-Low						
Category	Category Basic Sciences Basic Sciences Engineering Engineering Social Sciences Program Electives Program Electives Program Electives Program Sciences Soft Skills Soft Skills															
Approval																

Subject Code:	Subject Name:	ROBOT PROGRAMMING LAB	Ty/	L	Τ/	P /	C
			Lb/		S.Lr	R	
BRE18L11			ETL				
	Prerequisite: I	ndustrial Applications of Robots	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS:

- Determination of maximum and minimum position of links.
- Verification of transformation (Position and orientation) with respect to gripper and world coordinate system
- Estimation of accuracy, repeatability and resolution.
- Robot programming and simulation for pick and place
- Robot programming and simulation for Color identification
- Robot programming and simulation for Shape identification
- Robot programming and simulation for machining (cutting, welding)
- Robot programming and simulation for writing practice
- Robot programming and simulation for any industrial process (Packaging, Assembly)
- Robot programming and simulation for multi process.

These programs can be done through proprietary robotic software.

Total No. of Periods : 45

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University)

(Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

DEPARTMENT OF MECHANICAL ENGINEERING Subject Code: Ty/Lb/ Subject Name : PROJECT PHASE -I Τ/ **P/ R** С L **BRE18L12** ETL S.Lr Prerequisite: Knowledge of Mechanical Engg & 0 2 Lb 0/0 3/3 **Interdisciplinary fundamental concepts** L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab **OBJECTIVE**: The main objective of the Project phase-I is to apply the knowledge gained by the students through their course of study to carry out a socially relevant /Innovative /Interdisciplinary /Research project COURSE OUTCOMES (COs) : (3-5) **CO1** Students will start analyzing the previous project works. **CO2** Students will analyze the various technical tools required for the project work. **CO3** Students will embark upon the necessity of team work. Mapping of Course Outcomes with Program Outcomes (POs) **COs/POs PO1** PO2 **PO3 PO4 PO5 PO6 PO7 PO8 PO9** PO10 **PO11 PO12 CO1** Μ L L L L Η Η Η Η Η Н Η **CO2** Η Η H Μ Η Μ H Μ H Η Η Η **CO3** Н Η Η Η Μ Η Н Н Н Н H Μ COs / PSOs PSO1 PSO₂ PSO3 PSO4 **CO1** Η H Μ H **CO2** Μ Η Η Η **CO3** Μ Η Η Н H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low nternships / Technical Skil Social **Engineering Sciences** rogram Electives ractical / Project Category Humanities and **Dpen** Electives **Basic Sciences** rogram Core Soft Skills Sciences \checkmark Approval

Students should identify the topic of the Project and should collect the literatures and datas, at the end of the semester the students should submit their Project Phase - I report to the Department and Viva -Voce examination will be conducted with external examiners and this carries 6 credits.

Subject Code	: S	ubject Na	ame: Fo	OREIG	N LAN	GUAGE	C		Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
BHS18FLX	Р	rerequisi	te: None	e					Lb	0	0/0	3/0	1
L : Lecture T :	Tutor	ial SLr	Supervis	ed Learr	ning P:	Project	R : Res	earch C	: Credits				
T/L/ETL : The	eory/La	ab/Embed	ded Theor	ry and L	ab								
OBJECTIVE						equip the	e studen	ts with o	one foreign	langua	ge which	will en	able
them for highe		-			ad								
COURSE OU CO1		-	(3-5) : (3-5) will have		mowled	an in an	a foraign	n longuo	<u></u>				
COI	1	Students	will have	written k	nowled	ge in on	e loreigi	n langua	ge.				
CO2		Students	will have	reading	knowled	ge in on	e foreig	n langua	ige				
CO3	1	Students	will have	spoken k	nowled	ge in on	e foreigi	n langua	ge				
Mapping of C	ourse	Outcome	es with Pr	ogram	Outcom	es (POs	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	М	L	L	L	L	Н	Η	Н	Н	Η	Н	H	
CO2	Н	Μ	Н	Η	Μ	Н	Н	H	Н	Н	H	Μ	
CO3	Н	Н	Н	Н	М	Н	Н	Н	Н	Н	Н	Μ	
COs / PSOs	P	SO1	PS	02	PS	03	PS	504	PSO5				
CO1													
CO2													
H/M/L indica	tes Sti	ength of	Correlat	ion H-	High, N	M- Med	ium, L-	Low				•	
Category	Basic Sciences	Engineering Sciences	Humanities and Social	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Students should acquire proficiency in any one foreign language and submit a certificate in proof and submit during examination.

SEMESTER-VIII

D G M EDUCATIONAL AND RESEARCH INSTI (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

ITUTE

	T		EPART	MENT	OF M	ECHA		ENGINEEI				-1
Subject Code:	Sub		me : El INDUST					Ty / Lb/ ETL	L	T / S.Lr	. P/ R	C
BMG18008	Prere	equisite	: None					Ту	3	0/0	0/0	3
L : Lecture T : T	utorial	SLr:	Supervis	sed Lear	ning P :	Project	R : Resea	arch C: Cred	its			
T/L/ETL : Theor	y/Lab./	Embed	ded Theo	ory and I	Lab.							
OBJECTIVE:	The stud	dent wil	l learn:									
•	Concep	ots of ind	dustrial r	nanagen	nent and	econom	nics					
COURSE OUT	COME	ES (COs	s) :									
CO1		Will b	e introdu	uced to 1	nanager	nent con	cepts					
CO2		Will b	e aware	of orga	nization	al behav	ior					
CO3		Will b	e aware	of dem	and and	supply a	inalysis					
CO4		Will b	e aware	of theor	y of pro	duction						
CO5		Will b	e aware	of mac	roeconor	mic conc	cepts					
Mapping of Co	urse Oi						-	& Program S	Spec	ific Outc	omes (PSO	s)
COs/POs			/					0	P			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	0 9	PO10	PO11	PO12
CO1	Μ	Η	Μ	Μ	Μ	L				Μ		Μ
CO2	Μ	H	Μ	Μ	Μ	L				Μ		Μ
CO3	M				L	M		M	H	H	M	M
CO4	M				L	M		M	H	H	<u>M</u>	M
CO5 COs / PSOs	M PS	501	PS	02	L	M 03	PSO4	Μ	H	H	Μ	M
CO3/1505	15		15	02		<u>И</u>	1304 L					
CO2						M						
CO3						M						
CO4					N	N						
CO5						M						
H/M/L indicate	s Stren	gth of (Correlat	ion H	- High, I	M- Med	ium, L-L	ow				- 1
Category	Basic Sciences	Engineering Sciences	 Humanities and Social Sciences 	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
Approval												

University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

(Deemed to be

Subject Code:	Subject Name : ENGINEERING ECONOMICS AND INDUSTRIAL MANAGEMENT	Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
BMG18008	Prerequisite: None	Ту	3	0/0	0/0	3

UNIT - I Introduction to Management

The Nature of Management –Management: Science or Art – Difference between administration and management - Evolution of management thought - Roles of managers– F.W.Taylor and Henri Fayol contribution to the management- Organization and the environmental factors.

UNIT - II Managing Organizational Behavior

Definition- need and Importance of Organizational Behavior – Nature and Scope of Organizational Behavior -Role of managers – Contributing disciplines to Organizational Behavior - Frame work of Organizational Behavior.

UNIT – III Demand & Supply Analysis

Meaning of demand, the demand curve, Elasticity of demand, types of elasticity of demand. **Supply** –Meaning, the supply curve, equilibrium with supply and demand curves.

UNIT IV Theory of Production


Meaning of Production, Basic concepts- total, average, and marginal product, short run and long run production Function, Law of Variable Proportion. Production function with two variable inputs – Isoquants – Meaning, Properties, ISO cost Lines, All variable inputs – Returns to Scale, **Cost Analysis**: Determinants of Costs, types of Cost.

UNIT V Macro Economic Concepts

National income concepts, Inflation, Balance of Payment, Circular flow of income Monetary and Fiscal Policy, Demonization, Exchange Rates

REFERENCE BOOKS:

- 1. Meenakshi Gupta Principles of Management PHI Learning Pvt. Ltd.-2009.
- 2. L.M.Prasad Principles and Practice of Management Sultan Chand & Sons 7th Edition 2007.
- 3. Harold Koontz Principles of Management Tata McGraw Hill 2004.
- 4. Mithani, D.M, Managerial Economics- Theory & applications, Himalaya pub.
- 5. Mehta, P, L, Managerial Economics. Analysis, problem & cases, Sultan Chand

9

9 orc

Q

9

0

Subject Code	: 8	Subject Na	ame : PF	ROJECI	PHAS	E-II			Ty / Lb/ ETL		T / S.Lr	P/ R	C
BRE18L13]	Prerequisi	te: Core	and inte	rdiscip	linary k	nowled	ge	Lb	0	0/0	12/12	8
L : Lecture T :	Tuto	rial SLr :	Supervis	ed Learr	ning P:	Project	R : Res	earch C	: Credits	· · ·			
T/L/ETL : The	eory/L	.ab/Embed	ded Theo	ry and L	ab								
OBJECTIVE													gh
seven semeste	rs of t	heir study							-	/Resear	ch proje	ct.	
<u>CO1</u>		C (1 (COURS									
CO1		Students	will gain	experien	ce in col	liecting	interature	e reviev	V .				
CO2		Students	will learn	to use v	arious te	chnical	tools .						
002		20000000				••••••							
CO3		Students	will expe	rience the	e team w	vork.							
			• •	0	0.4	•	D	<u> </u>	(200				
COs/POs			pping of PO3		1				comes (PO	1	DO1		10
<u>COS/POS</u> CO1	PO1 M	l PO2 L	L POS	PO4 L	PO5 L	PO6 H	PO7 H	PO8 H	PO9 H	PO10 H	PO1	1 PO: H	14
$\frac{CO1}{CO2}$	H	M	H H	H	M	H	H	H	H	H	H	M	
CO3	H	H	H	H	M	H	H	H	H	H	H	M	
COs / PSOs		PSO1	PS			03		504					
CO1	-	Μ	Н		Н		Н						
CO2]	Μ	Н		Н		Η						
CO3		Μ	H		H		H						
H/M/L indica	tes St	rength of		<u>ion H-</u>	High, N	A- Med	ium, L-	Low		1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Subject Code:	Subject Name : PROJECT PHASE-II	Ty / Lb/	L	Τ/	P/ R	С
		ETL		S.Lr		
BRE18L13	Prerequisite: Core and interdisciplinary	Lb	0	0/0	12/12	8
	knowledge					

GUIDELINES:

- To make the students to make use of the knowledge and skill developed during their four years of study and to apply them for making an innovative product/process for the development of society and industries.
- Students are expected to do a Project work either in an Industry or at the University in the field of Robotics in group, not exceeding 4 students in a group. Each group will be allotted a guide based on the area of Project work.
- Number of reviews will be conducted during the semester to monitor the development of project. Students have to submit the thesis at the end of the semester and appear for the Project Viva-Voce examination conducted by one internal examiner and one external examiner.50% weight age will be given for the internal assessment and 50% weight age for the Project viva a voce examination.

ELECTIVE SUBJECTS

ELECTIVE: MECHANICAL ENGINEERING

Subject Code:	Su	ıbject Na	ame: N		ENANO ENGIN			ETY	Ty / Lb/ ETL	L	T/ S.Lr	P/ R	C
BRE18E01		rerequisi quipmen						turing	Ту	3	0/0	0/0	3
L : Lecture T :				vised L	earning	P:Pro	ject R	: Resear	ch C: Cred	lits			
T/L/ETL : The	ory/La	ıb/Embec	lded Th	eory an	d Lab								
OBJECTIVE	: To ii	npart kno	owledge	on ma	intenan	ce , fun	damenta	als and S	Safety Engi	ineerin	g pract	ices	
COURSE OU			(3)	- 5)									
Students will b CO1	be abl	e to											
		To gain		÷		•			ce				
CO2		To gain		Ũ		•••		•					
CO3		To gain				•		operation	1				
CO4		To gain		U			•						
CO5		To gain			0								
Mapping of Co											_ 1		
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	D PC	011	PO12
CO1	Η	Н	Н	Μ	Μ	Μ	Μ	Μ	Н	Μ	Н		Н
CO2	Η	Н	Н	М	М	М	L	Μ	Μ	Μ	L		Н
CO3	H	Н	Н	Μ	Μ	Μ	L	Μ	Μ	Μ	L		Н
CO4	H	Η	Н	Μ	Μ	Μ	L	М	Μ	Μ	L		Н
CO5	Н	Н	Н	Μ	Μ	Μ	L	Μ	Μ	Μ	L		Н
COs / PSOs	P	SO1	PS	02	PS	03	PS	504					
CO1		L	1		I	I		H					
CO2		L	N	1	I	I		Μ					
CO3		L	N	1	I	I		Μ					
CO4		L	N	1	I	I	-	Μ					
CO5		L	N	1	I	H	-	Μ					
H/M/L indicat	tes Str	0	Correl	ation	H- Hig	gh, M- I	Mediun	n, L-Lo	W	·			
		Ices						1				T	
	s	Engineering Sciences	nd es		▲ Program Electives	S	ject	Internships / Technical Skill					
jory	Basic Sciences	ng S	Humanities and Social Sciences	Program Core	Ileci	Open Electives	Practical / Project	Internships echnical Sk					
Category	Scie	eerii	nitie Sc.	um (un F	Elec	cal /	nterr chni	Soft Skills				
Ü	sic	gine	umaı cial	ogra	ogra	en]	actic	Ir Tec	ft S]				
	Ba	En	HcSo	Pro	Pr	OF	Pr		So	_			
Approval					×								
rr-s.m													

Subject Code:	Subject Name: MAINTENANCE AND SAFETY	Ty/	L	Τ/	P/ R	С
	ENGINEERING	Lb/		S.Lr		
BRE18E01		ETL				
	Prerequisite: Working Principles of	Ту	3	0/0	0/0	3
	Manufacturing Equipments					

UNIT I MAINTENANCE:

Types – breakdown, preventive, predictive, TPM; elements of preventive maintenance – checklist, schedule, procedure.

UNIT II TOTAL PRODUCTIVE MAINTENANCE:

Principles; preparatory stages of implementation – TPM organisation structure, creation; basic TPM policies and aids, master plan. TPM IMPLEMENTATION: Small group activities, autonomous maintenance, establishing planned maintenance, training, developing equipment management program.

UNIT III SAFETY SYSTEMS ANALYSIS:

Definitions, safety systems; safety information system: basic concept, safety cost / benefit analysis; industrial safety engineering, OSHA regulations.

UNIT IV HAZARD ANALYSIS:

General hazard analysis: electrical, physical and chemical hazard, detailed hazard analysis. Cost effectiveness in hazard elimination. Logical analysis: map method, tabular method, fault tree analysis and hazop studies. FIRE PROTECTION SYSTEM: Chemistry of fire, water sprinkler, fire hydrant, alarm and detection system. Suppression system: CO2 system, foam system, Dry Chemical Powder (DCP) system, halon system, portable extinguisher.

UNIT V SAFETY IN MACHINE OPERATION:

Design for safety, lock out system, work permit system, safety in use of power press, cranes. Safety in foundry, forging, welding, hot working and cold working, electroplating and boiler operation. SAFETY AND LAW: Provisions in factory act for safety, explosive act, workmen compensation act, compensation calculation. Boiler act and pollution control act.

TEXT BOOKS:

- 1. John Ridley, "Safety at Work", Butter Worth Publisher, Oxford, 1997.
- 2. Robinson C J and Ginder A P, "Implementing TPM", Productivity Press, USA, 1995.

REFERENCES:

1. Dhillon B S, "Maintainability, Maintenance and Reliability for Engineers", CRC Press, 2006.

2. Heinrich H W, "Industrial Accident Prevention", National Safety Council, Chicago, 1998.

- 3. National Safety Council, "Personal Protective Equipment", Bombay, 1998.
- 4. National Safety Council, "Accident Prevention Manual for Industrial Operations", Chicago, 1995.
- 5. Patrick A Michaud, "Accident Prevention and OSHA Compliance", CRC Press, 1995.
- 6. Derek James, "Fire Prevention Handbook", Butter Worth & Co., Oxford, 1991.

7. Dan Peterson, "Techniques of Safety Management", 1990.

10

Total No. of Periods : 45

6

12

7

	•	N	IECHAN		YSTEMS	ĔŤI	' Lb/	L	T / S.Lr	P/ R	С	
			ndamental			Ту		3	0/0	0/0	3	
Tutor	ial SLr	: Super	vised Lear	ming P	: Project F	R : Resea	arch C: C	Credits				
ory/La	ab/Embe	dded Th	eory and l	Lab7								
S:												
	-						fabricate	e MEM	S devices.			
					on techniqu	les						
					C							
						word El	actrical	and Ma	abanical	nainaarin	~	
icate o	n me app	plication			cipines be	Syond El	lectrical	and Me	chanical e	engmeering	3.	
TCO	MES (CO	(3)	- 5)									
g	ain the k	nowledg	ge of semi	conducto	ors and sol	id mech	anics to	fabrica	te MEMS	devices.		
g	ain know	vledge o	f different	materia	ls used for	MEMS	1					
g	ain know	vledge o	f applicati	ons of M	IEMS							
g	ain the k	nowledg	ge of micr	omachin	ing technio	ques						
g	ain the k	nowledg	ge of optic	al and p	olymer M	EMS						
					1		1	1	1		-1	
	-										PO12	
									-		H	
											H	
											H	
											H H	
								н	N	H	H	
10	501	L	302	1.	303	15	04					
	L		L		Н]	H					
			L									
		f Correl										
s		es		ive	s	ject	s/ kill					
nce	δ	s ar enc	ore	lect	live	Pro	hip: al S					
cie	erin <u>ss</u>	sci	n C	пE	llec	al /	ans nic:	ills				
ic S	ine	nan ial	grat	grai	in E	stica	Inte ech	Sk				
Basi	Eng	Soci	Prof	Prog	Ope	Prac	Ĕ	Soft				
Ι				✓								
	eory/La S: ovide k icate c roduce roduce icate c TCOI be abl g g g g g g g g g g g g g g g g g g g	servy/Lab/Embed S: ovide knowledge icate on the ruck roduce various roduce different icate on the app TCOMES (CO be able to gain the k gain the k gain the k gain the k course Outcom PO1 PO2 H H H H H H H H H H H H H H H	bory/Lab/Embedded Th S: wide knowledge of semicate on the rudiments roduce various sensors roduce different materi- icate on the application TCOMES (COs) : (3 be able to gain the knowledge of gain knowledge of gain the	bory/Lab/Embedded Theory and I S: wide knowledge of semiconductor icate on the rudiments of Micro for roduce various sensors and actual roduce different materials used for icate on the applications of MEM TCOMES (COs) : ($3-5$) be able to gain the knowledge of semi gain knowledge of application gain the knowledge of application gain the knowledge of optice Course Outcomes with Program PO1 PO2 PO3 PO4 H H H H M H	sory/Lab/Embedded Theory and Lab7 S: ovide knowledge of semiconductors and so icate on the rudiments of Micro fabrication roduce various sensors and actuators roduce different materials used for MEM icate on the applications of MEMS to dis TCOMES (COs) : (3-5) be able to gain the knowledge of semiconductor gain knowledge of applications of M gain the knowledge of applications of M gain the knowledge of optical and p course Outcomes with Program Outcor PO1 PO2 PO3 PO4 PO5 H H H M M H H H M M H H H M M H H H M M H H H H M M H H H H H M H H H H H K M H H H H H K M H H H H H K M H H H H K M H H H H K M H H H H K M H H H K H K M H H H K H K M H H H K M K H K H K M K H K M K H K H K M K H K H K M K H K H K M K H K H K H K M K H K H K H K H K H K H K H K H	sory/Lab/Embedded Theory and Lab7 S: wide knowledge of semiconductors and solid mecha icate on the rudiments of Micro fabrication technique roduce various sensors and actuators roduce different materials used for MEMS icate on the applications of MEMS to disciplines be TCOMES (COs) : (3-5) be able to gain the knowledge of semiconductors and sol gain knowledge of different materials used for gain knowledge of applications of MEMS gain the knowledge of applications of MEMS gain the knowledge of optical and polymer M course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 H H H M M M H H H M M M H H H M M M H H H H M M M H H H H H M H H H H H M H	sory/Lab/Embedded Theory and Lab7 S: wide knowledge of semiconductors and solid mechanics to acate on the rudiments of Micro fabrication techniques roduce various sensors and actuators roduce different materials used for MEMS acate on the applications of MEMS to disciplines beyond EI TCOMES (COs) : (3-5) be able to gain the knowledge of semiconductors and solid mech gain knowledge of applications of MEMS gain the knowledge of applications of MEMS gain the knowledge of optical and polymer MEMS course Outcomes with Program Outcomes (POS) PO1 PO2 PO3 PO4 PO5 PO6 PO7 H H H H M M M M H H H H M M M M H H H H	Bory/Lab/Embedded Theory and Lab7 S: wide knowledge of semiconductors and solid mechanics to fabricate icate on the rudiments of Micro fabrication techniques roduce different materials used for MEMS gain the knowledge of semiconductors and solid mechanics to gain knowledge of applications of MEMS gain the knowledge of micromachining techniques gain the knowledge of optical and polymer MEMS Sourse Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 H H M M M M M H H M M M M M H H H M M M M H H H M M M M M H H H M M M M M M M	S: wide knowledge of semiconductors and solid mechanics to fabricate MEM: icate on the rudiments of Micro fabrication techniques roduce various sensors and actuators roduce different materials used for MEMS icate on the applications of MEMS to disciplines beyond Electrical and Me TCOMES (COs) : (3-5) be able to gain the knowledge of semiconductors and solid mechanics to fabricat gain knowledge of applications of MEMS gain the knowledge of applications of MEMS gain the knowledge of micromachining techniques gain the knowledge of optical and polymer MEMS Course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 H H H H M M M M M H H H H H M M M M M M H H H H H M M M M M M H H H H H H M M M M M M H H H H H H M M M M M H H H H H H M M M M M M H H H H H H M M M M M M H H H H H H M M M M M M H H H H H H M M M M M M H H H H H H M M M M M M H H H H H H M M M M M M H H H H H H M M M M M M H H H H H H M M M M M M H H H H H H M M M M M M M Source Source So	servy/Lab/Embedded Theory and Lab7 S: wide knowledge of semiconductors and solid mechanics to fabricate MEMS devices, icate on the rudiments of Micro fabrication techniques roduce various sensors and actuators roduce different materials used for MEMS cate on the applications of MEMS to disciplines beyond Electrical and Mechanical of TCOMES (COs) : (3-5) be able to gain the knowledge of applications of MEMS gain the knowledge of applications of MEMS gain the knowledge of optical and polymer MEMS course Outcomes with Program Outcomes (POs) PO1 PO2 PO4 PO4 PO4 PO4 PO5 PO1 PO2 PO3 PO1 PO2 PO3 PO1 PO2 PSO3 PSO4 I I I <td cols<="" td=""><td>ory/Lab/Embedded Theory and Lab7 S: wide knowledge of semiconductors and solid mechanics to fabricate MEMS devices. cate on the rudiments of Micro fabrication techniques roduce various sensors and actuators roduce different materials used for MEMS cate on the applications of MEMS to disciplines beyond Electrical and Mechanical engineering TCOMES (COs) : (3-5) be able to gain the knowledge of semiconductors and solid mechanics to fabricate MEMS devices. gain knowledge of applications of MEMS gain the knowledge of applications of MEMS gain the knowledge of optical and polymer MEMS </td></td>	<td>ory/Lab/Embedded Theory and Lab7 S: wide knowledge of semiconductors and solid mechanics to fabricate MEMS devices. cate on the rudiments of Micro fabrication techniques roduce various sensors and actuators roduce different materials used for MEMS cate on the applications of MEMS to disciplines beyond Electrical and Mechanical engineering TCOMES (COs) : (3-5) be able to gain the knowledge of semiconductors and solid mechanics to fabricate MEMS devices. gain knowledge of applications of MEMS gain the knowledge of applications of MEMS gain the knowledge of optical and polymer MEMS </td>	ory/Lab/Embedded Theory and Lab7 S: wide knowledge of semiconductors and solid mechanics to fabricate MEMS devices. cate on the rudiments of Micro fabrication techniques roduce various sensors and actuators roduce different materials used for MEMS cate on the applications of MEMS to disciplines beyond Electrical and Mechanical engineering TCOMES (COs) : (3-5) be able to gain the knowledge of semiconductors and solid mechanics to fabricate MEMS devices. gain knowledge of applications of MEMS gain the knowledge of applications of MEMS gain the knowledge of optical and polymer MEMS

Sul	bject Code:	Subject Name:	MICRO ELECTRO	Ty / Lb/	L	Τ/	P/ R	С
			MECHANICAL SYSTEMS	ETL		S.Lr		
BR	RE18E02	Prerequisite: Fu	indamentals of sensors	Ту	3	0/0	0/0	3

UNIT I INTRODUCTION

Intrinsic Characteristics of MEMS - Energy Domains and Transducers- Sensors and Actuators - Introduction to Micro fabrication - Silicon based MEMS processes - New Materials - Review of Electrical and Mechanical concepts in MEMS - Semiconductor devices - Stress and strain analysis - Flexural beam bending- Torsional deflection.

UNIT II SENSORS AND ACTUATORS-I

Electrostatic sensors – Parallel plate capacitors – Applications – Interdigitated Finger capacitor – Comb drive devices - Micro Grippers - Micro Motors - Thermal Sensing and Actuation - Thermal expansion - Thermal couples - Thermal resistors - Thermal Bimorph - Applications - Magnetic Actuators - Micromagnetic components - Case studies of MEMS in magnetic actuators- Actuation using Shape Memory Alloys

UNIT III SENSORS AND ACTUATORS-II

Piezoresistive sensors – Piezoresistive sensor materials - Stress analysis of mechanical elements – Applications to Inertia, Pressure, Tactile and Flow sensors - Piezoelectric sensors and actuators - piezoelectric effects piezoelectric materials – Applications to Inertia, Acoustic, Tactile and Flow sensors.

UNIT IV MICROMACHINING

Silicon Anisotropic Etching – Anisotrophic Wet Etching – Dry Etching of Silicon – Plasma Etching – Deep Reaction Ion Etching (DRIE) – Isotropic Wet Etching – Gas Phase Etchants – Case studies - Basic surface micro machining processes - Structural and Sacrificial Materials - Acceleration of sacrificial Etch - Striction and Antistriction methods - LIGA Process - Assembly of 3D MEMS - Foundry process.

UNIT V POLYMER AND OPTICAL MEMS

Polymers in MEMS- Polimide - SU-8 - Liquid Crystal Polymer (LCP) - PDMS - PMMA - Parylene -Fluorocarbon - Application to Acceleration, Pressure, Flow and Tactile sensors- Optical MEMS - Lenses and Mirrors - Actuators for Active Optical MEMS.

Total No. of Periods : 45

TEXT BOOKS:

1. Chang Liu, "Foundations of MEMS", Pearson Education Inc., 2012.

2. Stephen D Senturia, "Microsystem Design", Springer Publication, 2000.

3. Tai Ran Hsu, "MEMS & Micro systems Design and Manufacture" Tata McGraw Hill, New Delhi, 2002.

REFERENCES:

1. Nadim Maluf, "An Introduction to Micro Electro Mechanical System Design", Artech House, 2000.

2. Mohamed Gad-el-Hak, editor, "The MEMS Handbook", CRC press Baco Raton, 2001.

3. Julian w. Gardner, Vijay K. Varadan, Osama O.Awadelkarim, Micro Sensors MEMS and Smart Devices, John Wiley & Son LTD, 2002.

4. James J.Allen, Micro Electro Mechanical System Design, CRC Press Publisher, 2005.

9

9

9

9

Subject Code	: S	ubject Na	ame: AD MA	VANC ATERIA		ENGT	H OF		Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
BRE18E03	Р	rerequisi	te: Stre	ength of	f Materi	als			Ту	3	0/0	0/0	3
L : Lecture T :	Tutor	ial SLr	: Supervis	ed Lear	ning P:	Project	R : Res	search C	: Credits				
T/L/ETL : The	eory/La	ab/Embed	lded Theo:	ry and L	ab								
OBJECTIVE	:												
• To	o analy	ze the str	nalysis of esses and esign stren	deforma	ations the	ough a	dvanced	mathem	s natical moo	dels.			
COURSE OU	TCO	MES (CC	(3-5) (3-5))									
CO1	1	To gain th	ne knowle	dge of a	analysis	of stress	ses in pl	ate and i	rotating di	scs			
CO2											ematical m	odels	
CO3	'	To gain th	ne knowle	dge of a	analysis	of rotati	ing discs	5					
CO4	'	To gain th	ne knowle	dge of b	eams of	elastic t	foundati	on					
CO5			e curved b										
Mapping of C													
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Η	Η	Η	Μ	Μ	Μ	Μ	Μ	Н	Μ	Н	Н	
CO2	Η	Η	Η	Μ	Μ	Μ	L	Μ	Μ	Μ	L	Н	
CO3	Η	Η	Η	Μ	Μ	Μ	L	Μ	Μ	Μ	L	Η	
CO4	Η	Η	Η	Μ	Μ	Μ	L	Μ	Μ	Μ	L	Η	
CO5	Η	H	Н	Μ	Μ	Μ	L	Μ	Μ	Μ	L	Н	
Cos / PSOs	P	SO1	PSC	02	PS	03	PS	SO4	PSO5				
CO1		Μ	H					L					
CO2		H	L	ı	Ν	Л]	Μ					
CO3		Μ	H	[Ν	ſ		L					
CO4		Μ	H	[Ν	Л		L					
CO5		Μ	H			1		L					
H/M/L indica	tes Sti	rength of	Correlati	ion H	- High, I	M- Med	lium, L-			1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

B.Tech-Robotics and Automation - 2018 Regulation

Subject Code:	Subject Name:	ADVANCED STRENGTH OF	Ty / Lb/	L	Τ/	P/ R	С
		MATERIALS	ETL		S.Lr		
BRE18E03	Prerequisite:	Strength of Materials	Ту	3	0/0	0/0	3

UNIT I ANALYSIS OF PLATES

Mathematical modeling of plates with normal loads - Point and Distributed Loads - Support conditions -Rectangular plates - Stresses along coordinate axes - Plate deformations - Axisymmetric plates - Radial and tangential stresses – plate deflections.

UNIT II THICK CYLINDERS AND SPHERES

Equilibrium and compatibility conditions – Lame's Theorem – Boundary conditions – distribution of radial and tangential stresses – compound cylinders – Interference fits - Stresses due to temperature distributions.

UNIT III ROTATING DISCS

Lame-Clayperon Theorem – radial and tangential stresses in discs due to centrifugal effects – boundary conditions - solid and hollow discs - Interference fit on shafts -Strengthening of the hub - residual stresses -Auto frettege – Discs of variable thickness – Disc profile for uniform strength.

UNIT IV BEAMS ON ELASTIC FOUNDATION

Infinite beam subjected to concentrated load - Boundary Conditions - Infinite beam subjected to a distributed load segment – Triangular load – Semi infinite beam subjected to loads at the ends and concentrated load near the ends – Short beams.

UNIT V CURVED BEAMS AND CONTACT STRESSES

Analysis of stresses in beams with large curvature – Stress distribution in curved beams – Stresses in crane hooks and C clamps – Contact Stresses – Hertz equation for contact stresses – applications to rolling contact elements.

TEXT BOOKS:

1. Boresi A.P., Schmidt R.J., "Advanced Mechanics of Materials", John Wiley and Sons, Sixth edition, 2003. 2. Dally J.W. and Riley W.F, "Experimental Stress Analysis", John Wiley and Sons 2003

REFERENCES:

1. Burr A. H., Cheatham J.B., "Mechanical Analysis and Design", Prentice Hall of India, Second Edition, 2001. 2. Den-Hartog J.P., "Strength of Materials", John Wiley and Sons.

Total No. of Periods : 45

10

10

8

8

Subject Code	: Sı	ıbject Na	ame : (COMPL					Гу/	L	T /	P/ R	C
	-	<u> </u>			ANUFA		ING		Lb/ETL		S.Lr	0.10	
BRE18E04 L : Lecture T :			ite: CAI	· ·					Fy	3	0/0	0/0	3
					U	: Projeci	I K : Ke	search C	: Credits				
T/L/ETL : The	eory/La	b/Embed	lded Theo	ory and I	Lab								
OBJECTIVE													
•			the appli					1		cturing	viz., Desi	ign, Pro	cess
_	-	-	nufacturin	-	-			lling syst	tem				
•			l the Mod l the conc			•••		manufa	cturing es	etome			
•	10 u	litterstand		epts and	applica		пехноге	manura	cturing sy	y sterns			
COURSE OU	TCON	AES (CC	D s) : (3- 5	5)									
CO1]	Го gain tl	he knowle	edge of (CAD/ C	AM use	d in moo	lern mar	nufacturin	ig systen	1		
CO2]	Го gain tl	he knowle	edge of o	compute	rized pr	ocess pl	anning					
CO3]	Го gain tl	he knowle	edge of	cellular	manufa	cturing s	system					
CO4]	Го gain tl	he knowle	edge of l	FMS and	d AGVs							
CO5]	Го gain tl	he knowle	edge of i	ndustria	l robotio	CS						
Mapping of C	ourse	Outcom	es with P	rogram	Outcon	nes (Pos	5)						
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Μ	Μ	H	Μ	H	Μ	H	Н	Μ	Η	Η	Μ	
CO2	Μ	Μ	Μ	Μ	H	Μ	H	Н	Μ	Μ	Η	Μ	
CO3	Μ	Μ	Μ	Μ	H	Μ	Н	Н	Μ	Μ	Н	Μ	
CO4	Μ	Μ	M	Μ	H	Μ	Н	Н	Μ	Μ	Н	Μ	
CO5	Μ	Μ	M	Μ	H	Μ	H	H	M	Μ	H	Μ	
Cos / PSOs		SO1	PS			03		504					
CO1		M	H		H		H						
CO2		M 	H		H		H		<u> </u>	-	_		
CO3		H	E E		H		H		<u> </u>				
CO4		H	H		H		H						
CO5 H/M/L indica		H ength of	Correlat		H - High	M_ Mor	H lium L	Jow					
		-	Correlat		- mgll,	141- 1416(iuiii, L	-100					
		Engineering Sciences			S		L L						
	S	Scie	nd Ses		Program Electives	SS	Practical / Project	Internships / Technical Skill					
ıry	Basic Sciences	s gu	Humanities and Social Sciences	Program Core	Elec	Open Electives	Prc	Internships /					
Category	Scie	erii	nitie Sc	m (mF	Elec	al/	terr	kill				
Cat	sic	gint	Human Social	gra	gra	en]	lctic	In Tec	Soft Skills				
ļ	Ba	En	Hu So(Prc	Prc	Op	\Pr{a}		So				
					✓								
Approval													

2. Radhakrishnan P, Subramanyan S.and Raju V., "CAD/CAM/CIM", 2nd Edition, New Age International (P) Ltd, New Delhi, 2000.

of India, 2008.

TEXT BOOKS:

REFERENCES:

1. Kant Vajpayee S, "Principles of Computer Integrated Manufacturing", Prentice Hall India, 2003. 105 2. Gideon Halevi and Roland Weill, "Principles of Process Planning – A Logical Approach" Chapman & Hall, London, 1995.

1. Mikell.P.Groover "Automation, Production Systems and Computer Integrated Manufacturing", Prentice Hall

UNIT I INTRODUCTION

Subject Code:

BRE18E04

Brief introduction to CAD and CAM - Manufacturing Planning, Manufacturing control- Introduction to CAD/CAM - Concurrent Engineering-CIM concepts - Computerised elements of CIM system -Types of production - Manufacturing models and Metrics – Mathematical models of Production Performance – Simple problems - Manufacturing Control - Simple Problems - Basic Elements of an Automated system - Levels of Automation – Lean Production and Just-In-Time Production.

UNIT II PRODUCTION PLANNING AND CONTROL AND COMPUTERISED PROCESS PLANNING

Process planning - Computer Aided Process Planning (CAPP) - Logical steps in Computer Aided Process Planning - Aggregate Production Planning and the Master Production Schedule - Material Requirement planning – Capacity Planning- Control Systems-Shop Floor Control-Inventory Control – Brief on Manufacturing Resource Planning-II (MRP-II) & Enterprise Resource Planning (ERP) - Simple Problems.

UNIT III CELLULAR MANUFACTURING

Subject Name :

Prerequisite: CAD,CAM & CIM

Group Technology(GT), Part Families - Parts Classification and coding - Simple Problems in Opitz Part Coding system - Production flow Analysis - Cellular Manufacturing - Composite part concept - Machine cell design and layout - Quantitative analysis in Cellular Manufacturing - Rank Order Clustering Method -Arranging Machines in a GT cell – Hollier Method – Simple Problems.

UNIT IV FLEXIBLE MANUFACTURING SYSTEM (FMS) AND AUTOMATED GUIDED VEHICLE SYSTEM (AGVS)

Types of Flexibility - FMS - FMS Components - FMS Application & Benefits - FMS Planning and Control-Quantitative analysis in FMS - Simple Problems. Automated Guided Vehicle System (AGVS) - AGVS Application – Vehicle Guidance technology – Vehicle Management & Safety.

UNIT V INDUSTRIAL ROBOTICS

Robot Anatomy and Related Attributes - Classification of Robots- Robot Control systems - End Effectors -Sensors in Robotics - Robot Accuracy and Repeatability - Industrial Robot Applications - Robot Part Programming – Robot Accuracy and Repeatability – Simple Problems.

Total No. of Periods : 45

(Deemed to be University) **University with Graded Autonomy Status** Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

MANUFACTURING

ETL

3

Ty

9

С

3

10

10

0/0

S.Lr

0/0

8

Subject Code	: S	Subject Na	ame: H	FINITE	ELEM	ENT A	NALYS		y / Lb/ TL	L	T / S.Lr	P/ R	C
BRE18E05		Prerequisi Machine H		ngth of	Materia	als, Des	ign of	Т	y	3	0/0	0/0	3
L : Lecture T				sed Lear	ming P	: Projec	t R : Re	search C	C: Credits	5			<u> </u>
T/L/ETL : The	eory/L	.ab/Embed	lded Theo	ry and I	Lab								
OBJECTIVE •		idents will damentals		Elemen	t Analys	sis and t	heir app	lications	5				
COURSE OU	JTCO	MES (CC	D s) : (3- 5	5)									
CO1		Will able	to model	field pr	oblems i	n engin	eering a	nd analy	ze variou	is equati	ons		
CO2		Will be a	ble to solv	ve proble	ems gov	erning	one dime	ensional	equation	s			
CO3		Will be al	ble to solv	ve proble	ems gov	erning t	wo dim	ensional	scalar e	quations			
CO4		Will be al	ble to solv	ve proble	ems gov	erning t	wo dim	ensional	vector e	quations			
CO5		Will be al	ble to form	nulate s	hape fur	nctions f	for isom	etric eler	nents				
Mapping of C	Course	e Outcom	es with P	rogram	Outcor	nes (Po	s)						
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Μ	Μ	Н	М	Н	Μ	Н	Н	Μ	Н	Н	Μ	
CO2	Μ	Μ	Μ	Μ	H	Μ	Н	Н	Μ	Μ	Н	Μ	
CO3	Μ	Μ	М	Μ	H	Μ	Н	Н	М	Μ	Н	Μ	
CO4	Μ	M	Μ	Μ	Н	Μ	Н	Н	М	Μ	Н	Μ	
CO5	Μ	М	Μ	М	Н	М	Н	Н	М	Μ	Н	Μ	
Cos / PSOs	I	PSO1	PSC	02	PS	03	PS	504					
CO1		Μ	Н	[Н		Н						
CO2		Μ	Н	[Н		Н						
CO3		Н	Н	[Н		Η						
CO4		Η	H	[Η		Η						
CO5		Η	H	[Н		Η						
H/M/L indica	tes St	rength of	Correlat	ion H	- High,	M- Me	dium, L	-Low					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical					
Approval													

Subject Code:	Subject Name : FINITE ELEMENT ANALYSIS	Ту /	L	Τ/	P/ R	С
		Lb/		S.Lr		
BRE18E05		ETL				
	Prerequisite: Strength of Materials, Design of	Ту	3	0/0	0/0	3
	Machine Elements					
				0		

UNIT I INTRODUCTION

Historical background-mathematical modeling of field problems in engineering-governing equations-discrete and continuous models-boundary-initial and Eigen value problems-weighed Residual methods-variational formulation of boundary value problems-Ritz technique-basic concepts of finite element method.

UNIT II ONE DIMENSIONAL PROBLEMS

One Dimensional Second Order Equations-Discretization-Element types-Linear and Higher order Elements-Derivation of shape functions and stiffness matrices and force vectors-Assembly of matrices-Solutions of problems from solid mechanics including thermal stresses-heat transfer ,Natural frequencies of longitudinal vibration and mode shapes –fourth order beam equation-Transverse deflections and Transverse Natural frequencies of beams

UNIT III TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS

Second Order 2D Equations involving Scalar Variable Functions-Variable formulation-finite element formulation-Triangular Elements and Quadrilateral Elements-Shape functions and element matrices and vectors. Application to field problems-Thermal problems-Torsion of non circular shafts

UNIT IV TWO DIMENSIONAL VECTOR VARIABLE PROBLEMS

Equations of Elasticity-Plane Stress, plane strain and axisymmetric problems-Constitutive matrices and Strain displacement matrices-Stiffness matrix-Stress calculations-Plate and Shell elements.

UNIT V ISOPARAMETRIC FORMULATION AND ADVANCED TOPICS

Natural co-ordinate systems-Isoparametric elements-shape functions for isoparametric elements-One and two dimensions-Serendipity elements-Numerical integration-Matrix solution techniques-Solutions Techniques to Dynamic problems-Introduction to Analysis Software-Introduction to Non-Linearity.

Total No. of Periods : 45

9

0

0

9

TEXT BOOKS:

J.N Reddy "An Introduction to the Finite element Method", 3rd Edition , Tata McGraw Hill, 2005.
 Seshu P., "Text Book of Finite Element Analysis", Prentice-Hall of India Pvt.Ltd, New Delhi, 2007.

REFERENCES:

 Logan ,D.L, "A first Subject in Finite Element Method", Thomson Asia Pvt.Ltd., 2002.
 Robert D.Cook,David S.Malkus et.al, "Concepts and Applications of Finite Element Analysis" 4th Edition,Wiley Student Edition,2002
 Rao, S.S., "The Finite Elelent Method in Engineering", 3rd Edition, 3rd Edition ,Butter worth Heinemann,2004

ELECTIVE:

ROBOTICS

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code:		bject Na							GINEE		T/	P/	С	
BRE18E06	Dr	ESIGN							Lb/ ETL		S.Lr	R		
	Pr	erequisi	te: Hy	drauli	cs and		Ty	3	0/0	0/0	3			
	Pr	ogramn	nable L	ogic co	ntrolle	rs			-					
L : Lecture T :			-			g P:Pr	oject F	R : Resea	arch C: (Credits				
T/L/ETL : Theo	•	b/Embeo	dded Th	neory an	nd Lab									
OBJECTIVE	:													
• To kno	w abo	ut the pr	neumati	cs and l	nydraul	ics in a	utomati	on of M	lechanic	al operat	ions.			
• To kno	w abo	ut the ele	ectric a	nd elect	ronic s	ystems	in autoi	mation o	of Mech	anical op	erations			
COURSE OU	ГСОМ	IES (CO	(3)	5-5)										
Students will b	oe able	e to												
CO1		To know												
CO2		<u> </u>		<u> </u>				and auto	mated a	ssembly				
CO3 CO4		Analyze Apprecia	A			-		tion						
<u>C04</u> C05		Analyse		<u> </u>				lion						
Mapping of Co														
COs/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	11	PO12	
CO1	Н	Н	Н	М	Μ	М	М	М	Н	Μ	Н		Н	
CO2	Н	Н	Н	Μ	Μ	Μ	L	Μ	Μ	Μ	L		H	
CO3	Н	Н	Н	Μ	Μ	Μ	L	Μ	Μ	Μ	L		Н	
CO4	Н	Н	Н	Μ	Μ	Μ	L	Μ	Μ	Μ	L		H	
CO5	Н	Н	Η	Μ	Μ	Μ	L	Μ	Μ	Μ	L		H	
COs / PSOs	PS	501	PS	02	PS	03	PS	SO4						
CO1		L	I		I	H H								
CO2		L	N	1	I	M M								
CO3	•	L	N	1	I	H		Μ						
CO4		L	N	1	I	H		Μ						
CO5		L	N	1	I	H		Μ						
H/M/L indicat	es Str	ength of	f Corre	lation	H- Hi	gh, M-	Mediu	m, L-L	ow					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
Approval								2018 Reg					142	

Subject Code:	Subject Name: AUTOMATION SYSTEM	Ty/	L	Τ/	P /	С
	DESIGN	Lb/		S.Lr	R	
BRE18E06		ETL				
	Prerequisite Hydraulics and Pneumatics,	Ту	3	0/0	0/0	3
	Programmable Logic controllers					

UNIT I FUNDAMENTAL CONCEPTS OF INDUSTRIAL AUTOMATION

Fundamental concepts in manufacturing and automation, definition of automation, reasons for automating. Types of production and types of automation, automation strategies, levels of automation.

UNIT II TRANSFER LINES AND AUTOMATED ASSEMBLY

General terminology and analysis, analysis of transfer lines without storage, partial automation. Automated flow lines with storage buffers. Automated assembly-design for automated assembly, types of automated assembly systems, part feeding devices, analysis of multi-station assembly machines. AS/RS, RFID system, AGVs, modular fixturing. Flow line balancing.

UNIT III PNEUMATIC CONTROL

Components, constructional details, filter, lubricator, regulator, constructional features, types of cylinders, control valves for direction, pressure and flow, air motors, air hydraulic equipments. PNEUMATIC CONTROL SYSTEM DESIGN: General approach to control system design, symbols and drawings, schematic layout, travel step diagram, circuit, control modes, program control, sequence control, cascade method, Karnaugh-Veitch mapping.

UNIT IV PROGRAMMABLE AUTOMATION

Special design features of CNC systems and features for lathes and machining centers. Drive system for CNC machine tools. Introduction to CIM; condition monitoring of manufacturing systems. DESIGN FOR HIGH SPEED AUTOMATIC ASSEMBLY: Introduction, Design of parts for high speed feeding and orienting, high speed automatic insertion. Analysis of an assembly. General rules for product design for automation. DESIGN OF MECHATRONIC SYSTEMS: Stages in design, traditional and mechatronic design, possible design solutions. Case studies-pick and place robot, engine management system.

UNIT V ELEMENTS OF HYDRAULIC SYSTEMS

Pumps and motors- types, characteristics. Cylinders, types, typical construction details. Valves for control of direction, flow and pressure, types, typical construction details. HYDRAULIC SYSTEM DESIGN: Power pack-elements, design. Pipes- material, pipe fittings. seals and packing. maintenance of hydraulic systems. Selection criteria for cylinders, valves, pipes. Heat generation in hydraulic system ADVANCED TOPICS IN HYDRAULICS AND PNEUMATICS: Electro pneumatics, ladder diagram. Servo and Proportional valves - types, operation, application. Hydro-Mechanical servo systems. PLCconstruction, types, operation, programming

TEXT BOOKS:

1. Mikell P Groover, "Automation Production Systems and Computer- Integrated Manufacturing" Pearson Education, New Delhi, 2001.

2. Wemer Depper and Kurt Stoll, "Pneumatic Application", Kemprath Reihe, Vogel Buch Verlag Wurzbutg, 1987.

3. Bolton W, "Mechatronics", Pearson Education, 1999.

REFERENCES:

1. Mikell P Groover, "Industrial Robots – Technology Programmes and Applications", McGraw Hill, New York, USA. 2000.

2. Wemer Deppert and Kurt Stoll, "Pneumatic Application", Kemprath Reihe, Vovel Verlag, Wurzburg, 1976.

3. Steve F Krar, "Computer Numerical Control Simplified", Industrial Press, 2001.

9

Total No. of Periods : 45

9 ed

Q

9

Dr. M.G. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

	1							ENGIN				
Subject Code BRE18E07	: St	ıbject Naı	ne: INI	DUSTRI	IAL NE'	TWOR	KING	Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
DILLIOLOV	Pı	rerequisite	e: Instru	imentat	ion and	Contro	Ty	3	0/0	0	3	
		obots, Pro	0					-				
L : Lecture T	Tuto	rial SLr	: Superv	ised Lea	rning P	: Projec	t R : Re	esearch C	: Credi	ts		
T/L/ETL : The	•	.ab/Embed	ded The	ory and	Lab							
OBJECTIVE								_				
		erstand the			-	etworks	using th	le layered	1 netwo	ork archit	ecture.	
		and the co liar with d	-			,						
		liar with w			•		applicati	ons.				
COURSE OU							-pp://www.	01101				
Students will	be ab	le to		-								
CO1		To unders	tand the	evolutio	on of con	nputer n	etworks	using the	e layere	ed netwo	rk architect	ure.
CO2	Understand the concepts of modbus.											
CO3		Be familia										
CO4		Familiariz										
CO5		Familiariz										
Mapping of C	Course	e Outcom	es with l	Program	n Outcor	mes (PC)s)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Η	Н	Μ	Μ	Μ	Μ	Μ	Н	Μ	Н	Н
CO2	Н	Η	Н	Μ	Μ	Μ	L	Μ	Μ	Μ	L	Н
CO3	Η	Η	Η	Μ	Μ	H	L	Μ	Μ	Μ	H	Н
CO4	Η	Н	н	Μ	Μ	Н	L	Μ	Μ	Μ	Н	Н
CO5	Η	Н	Н	Μ	Μ	Н	L	Μ	Μ	Μ	Н	Н
COs / PSOs	F	PSO1	PS	02	PS	03	PS	504				
CO1						Η		H				
CO2						H		H				
CO3						H		M				
CO4						I		H				
CO5	. ~					H		H				
H/M/L indica	tes St	rength of		ation H	I- High,	M- Me	dium, L					1
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	 Program Electives 	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
Approval												

(Deemed to be University) versity with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code:	Subject Name: INDUSTRIAL NETWORKING	Ty/	L	Τ/	P/ R	С
		Lb/		S.Lr		
BRE18E07		ETL				
	Prerequisite: Instrumentation and Control for	Ту	3	0/0	0	3
	Robots, Programmable Logic Controllers					

UNIT I INTRODUCTION

Modern instrumentation and control systems - OSI model - Protocols - Standards - Common problems and solutions - Grounding/shielding and noise - EIA-232 interface standard - EIA-485 interface standard - Current loop and EIA-485 converters. FIBRE OPTICS: Introduction - Fibre optic cable components and parameters -Basic cable types - Connection fibres - troubleshooting.

UNIT II MODBUS CONCEPTS

Overview – Protocol structure – Function codes – Modbus plus protocol –Data Highway – AS interface (AS-i) – Device Net: Physical layer – Topology – Device taps – Profibus PA/DP/FMS: Protocol stack – System operation.

UNIT III ETHERNET SYSTEMS

IEEE/ISO standards - Medium access control - frames - Reducing collisions - Auto negotiation - LAN system components - Structured cabling - Industrial Ethernet - Troubleshooting Ethernet. 99 CAN BUS: Concepts of bus access and arbitration – CAN: Protocol-Errors: Properties – detection – processing – Introduction to CAN 2.0B

UNIT IV WIRELESS COMMUNICATIONS

Radio spectrum – Frequency allocation – Radio modem – Intermodulation – Implementing a radio link – RFID: Basic principles of radio frequency identification - Transponders - Interrogators

UNIT V APPLICATIONS

Automotive communication technologies – Design of automotive X-by-Wire systems, - The LIN standard – The IEC/IEEE Train communication network: Applying train communication network for data communications in electrical substations.

TEXT BOOKS:

1. Steve Mackay, Edwin Wright, Deon Reynders and John Park, "Practical Industrial Data Networks: Design, Installation and Troubleshooting", Newnes (Elsevier), 2004 2. "Practical Filebus, Device Net and Ethernet for Industry", IDC Technology, 2006

REFERENCES:

1. Richard Zurawski, "The Industrial Communication Technology Handbook", Taylor and Francis, 2005

2. Dominique Paret, "Multiplexed Networks for Embedded Systems", John Wiley & Sons, 2007

3. Albert Lozano-Nieto, "RFID Design Fundamentals and Applications", CRC Press, 2011

8

10

12

9

6

Total No. of Periods: 45

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

								L ENGI		-			
Subject Code: BRE18E08	Su	bject Na			INTEO MATIC		ED		Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
		erequisi ogramn					tics ,		Ty	3	0/0	0/0	3
L : Lecture T :							oject R	: Resear	ch C: C	redits		I	
T/L/ETL : The	ory/Lal	b/Embec	lded Th	eory ar	nd Lab								
OBJECTIVE	:			•									
	o gain k plicatio		ge in va	rious e	lectrica	l and ele	ectronic	progran	nmable a	automat	ions an	id thei	r
COURSE OU' Students will b			Ds):(3	- 5)									
CO1		Analyze	the con	cepts o	f total i	ntegrate	d auton	nation					
CO2	1	Analyze	the role	e of hur	nan ma	chine in	terface	systems					
CO3	1	Analyse	the role	of SC	ADA								
CO4	1	Analyse	the diff	erent ro	oles of c	commur	nication	protoco	ls involv	ing SCA	ADA		
CO5	1	Analyse	distribu	ited cor	ntrol sys	stems							
Mapping of Co	ourse	Outcom	es with	Progra	am Out	tcomes	(POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 P	011	PO12
CO1	Н	Н	Η	Μ	Μ	Μ	Μ	Μ	Н	Μ		Η	Н
CO2	Н	Η	Η	Μ	Μ	М	Μ	М	Н	Μ		Η	Н
CO3	Н	Н	Н	Μ	Μ	Μ	Μ	Μ	Н	Μ		Η	Н
CO4	Н	Н	Н	Μ	Μ	М	Μ	М	Н	Μ		Н	Н
CO5	Н	Н	Η	Μ	М	М	Μ	М	Н	Μ		Н	Н
COs / PSOs	PS	501	PS	02	PS	03	PS	504					
CO1		L	Ι]	H		H					
CO2		L	Ι		J	H		H					
CO3		L	Ι		1	H		H					
CO4		L	Ι			H		H					
CO5		L	I			H		H					
H/M/L indicat	es Stro	ength of	Corre	lation	H- Hi	gh, M-	Mediu	n, L-Lo	W				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval					✓								

Subject Code:	Subject Name: TOTAL INTEGERATED AUTOMATION	Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
BRE18E08	Prerequisite: Hydraulics and Pneumatics , Programmable Logic Controllers	Ту	3	0/0	0/0	3

UNIT I TOTALLY INTEGRATED AUTOMATION:

Need, components of TIA systems, advantages, Programmable Automation Controllers (PAC), Vertical Integration structure.

UNIT II HMI SYSTEMS:

Necessity and Role in Industrial Automation, Need for HMI systems. Types of HMI- Text display - operator panels - Touch panels - Panel PCs - Integrated displays (PLC & HMI). Check with PLC 502 and remove

UNIT III SUPERVISORY CONTROL AND DATA ACQUISITION (SCADA)

Overview – Developer and runtime packages – architecture – Tools – Tag – Internal & External graphics, Alarm logging – Tag logging – structured tags– Trends – history– Report generation, VB & C Scripts for SCADA application.

UNIT IV COMMUNICATION PROTOCOLS OF SCADA

Proprietary and open Protocols - OLE/OPC - DDE - Server/Client Configuration - Messaging - Recipe - User administration - Interfacing of SCADA with PLC, drive, and other field device

UNIT V DISTRIBUTED CONTROL SYSTEMS (DCS) :

DCS - architecture - local control unit- programming language - communication facilities - operator interface engineering interfaces. APPLICATIONS OF PLC & DCS: Case studies of Machine automation, Process automation, Introduction to SCADA Comparison between SCADA and DCS.

Total No. of Periods: 45

TEXT BOOKS:

- John.W.Webb & Ronald A. Reis, "Programmable logic controllers: Principles and Applications", Prentice Hall India, 2003.
- 2 Michael P. Lukas, "Distributed Control systems", "Van Nostrand Reinfold Company"1995

REFERENCES:

- 1. Win C C Software Manual, Siemens, 2003
- 2. RS VIEW 32 Software Manual, Allen Bradly, 2005
- 3. CIMPLICITY SCADA Packages Manual, Fanuc India Ltd, 2004

0

9

Q

Subject Code:	Sut	oject Na	ame: N	AICRO	ROB	OTICS			Ty / I ETL	L b /	L T S.	/ Lr	P/ R	C
BRE18E09		erequisi							Ту		3 0/	0	0/0	3
L : Lecture T :	Tutoria	al SLr	: Supe	rvised l	Learnin	g P:P	roject	R : Re	searc	h C: C	Credits			
T/L/ETL : The	ory/Lal	b/Embe	dded T	heory a	nd Lab									
OBJECTIVE	:													
• To	o gain k	nowled	lge in n	nicro ro	bot wo	rking p	rinciple	and a	pplica	ations				
COURSE OU' Students will I			Os): (3	3- 5)										
CO1		vare of	the intr	oductor	y conc	epts of	MST							
CO2	Appre	ciate sc	aling la	ws and	materi	als for]	MEMS							
CO3	Appre	ciate th	e worki	ing of f	lexures	, actuat	ors and	senso	ors					
CO4	Appre	ciate th	e conce	ept of m	icrorob	otics								
CO5	Imple	ment m	icrorob	otics										
Mapping of C				0			· ,)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P	09	PO10	PO	11	PO12
CO1	Н	Н	Н	Μ	Μ	Μ	Μ	Μ		Η	Μ		H	Η
CO2	Н	Н	Н	Μ	Μ	Μ	Μ	Μ		Н	Μ]	H	Н
CO3	Н	Н	Н	Μ	Μ	Μ	Μ	Μ		Н	Μ]	H	Н
CO4	Н	Н	Н	Μ	Μ	Μ	Μ	Μ		Н	Μ]	H	Н
CO5	Н	Н	Н	Μ	Μ	Μ	Μ	Μ		Η	Μ]	H	Н
COs / PSOs	PS	01	PS	02	PS	03	PS	504						
CO1	I	_	Ι		I	I		H						
CO2	l		Ι		I	ł		H						
CO3	I		Ι		ŀ	I		H						
CO4	I		Ι		I			H						
CO5]		I			H		H						
H/M/L indicat	tes Stro	ength o	f Corre	elation		igh, M	- Medi	um, L	-Low	,				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships /	Soft Skills					
Approval					✓									

(Deemed to be University) versity with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code:	Subject Name: MICRO ROBOTICS	Ty/	L	Τ/	P/ R	С
		Lb/		S.Lr		
BRE18E09		ETL				
	Prerequisite: Basics of Robotics	Ту	3	0/0	0/0	3

UNIT I INTRODUCTION:

MST (Micro System Technology) – Micromachining - Working principles of Microsystems - Applications of Microsystems.

UNIT II SCALING LAWS AND MATERIALS FOR MEMS:

Introduction - Scaling laws - Scaling effect on physical properties, scaling effects on Electrical properties, scaling effect on physical forces. Physics of Adhesion - Silicon-compatible material system - Shape memory alloys - Material properties: Piezo resistivity, Piezoelectricity and Thermoelectricity.

UNIT III FLEXURES, ACTUATORS AND SENSORS:

Elemental flexures - Flexure systems - Mathematical formalism for flexures. Electrostatic actuators, Piezoelectric actuators, Magneto-strictive actuators. Electromagnetic sensors, Optical-based displacement sensors, Motion tracking with microscopes.

UNIT IV MICRO ROBOTICS:

Introduction, Task specific definition of micro-robots - Size and Fabrication Technology based definition of micro robots - Mobility and Functional-based definition of micro-robots - Applications for MEMS based microrobots.

UNI V IMPLEMENTATION OF MICROROBOTS:

Arrayed actuator principles for micro-robotic applications - Micro-robotic actuators - Design of locomotive micro-robot devices based on arrayed actuators. Micro-robotics devices: Micro-grippers and other micro-tools -Micro-conveyors - Walking MEMS Micro-robots - Multi-robot system: Micro-robot powering, Micro-robot communication.

Micro-fabrication principles - Design selection criteria for micromachining - Packaging and Integration aspects – Micro-assembly platforms and manipulators.

TEXT BOOKS:

1. Mohamed Gad-el-Hak, - The MEMS Handbook, CRC Press, New York, 2002.

2. Yves Bellouard, --Microrobotics Methods and Applications, CRC Press, Massachusetts, 2011.

REFERENCES:

1. Nadim Maluf and Kirt Williams, _|An Introduction to Microelectromechanical systems Engineering|, Artech House, MA, 2002.

2. Julian W Gardner, —Microsensors: Principles and Applications, John Wiley & Sons, 1994.

9

5

10

10

11

Total No. of Periods : 45

Subject Code: BRE18E10	Su	bject Na	ame:	COGN	ITIVE	ROBO	TICS		Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
		erequisi							Ту	3	0/0	0/0	3
L : Lecture T :	Tutori	al SLr	: Super	vised L	earning	g P:Pr	oject R	R : Rese	arch C:	Credits			
T/L/ETL : The	ory/La	b/Embe	dded Th	neory ar	nd Lab								
OBJECTIVE													
• Ba	asic kn	owledge	in cog	nitive ro	obot wo	orking p	orinciple	e and ap	plicatio	ns			
COURSE OU' Students will b			Os):(3	3- 5)									
CO1		Apprecia	ate the r	obot co	gnition	and pe	rception	n					
CO2		Build ma				and pe	100ption						
CO3		Analyse		nized na	th plan	ning							
CO4		Understa		•	•	<u> </u>							
CO5		Analyse			I								
Mapping of Co					1 0	·	(POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 P	011	PO12
CO1	Н	Н	Н	Μ	Μ	Μ	М	Μ	Н	Μ	[H	Η
CO2	Н	Н	Н	Μ	Μ	Μ	М	Μ	Н	Μ	[H	Η
CO3	Н	Н	Н	Μ	Μ	Μ	М	Μ	Н	Μ	[H	Н
CO4	Н	Н	Н	Μ	Μ	Μ	М	Μ	Н	Μ	[H	Н
CO5	Н	Н	Н	Μ	Μ	Μ	Μ	Μ	Н	Μ	[H	Н
COs / PSOs	PS	501	PS	02	PS	03	PS	504					
CO1		L	I		I	I		H					
CO2		L]		I	I		H					
CO3		L	I		I	I		H					
CO4		L	I		I	I		H					
CO5		L	I		I	Η		H					
H/M/L indicat	tes Str	ength of		lation	H- Hi	gh, M-	Mediu	m, L-L	ow				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	▲ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Subject Code:	Subject Name: COGNITIVE ROBOTICS	Ty/	L	Τ/	P/ R	С
		Lb/		S.Lr		
BRE18E10		ETL				
	Prerequisite: Basics of Robotics	Ту	3	0/0	0	3

UNIT I CYBERNETIC VIEW OF ROBOT COGNITION AND PERCEPTION:

Introduction to the Model of Cognition, Visual Perception, Visual Recognition, Machine Learning, Soft Computing Tools and Robot Cognition.

UNITII MAP BUILDING:

Introduction, Constructing a 2D World Map, Data Structure for Map Building, Explanation of the Algorithm, An Illustration of Procedure Traverse Boundary, An Illustration of Procedure Map Building ,Robot Simulation, Execution of the Map Building Program.

UNIT III RANDOMIZED PATH PLANNING:

Introduction, Representation of the Robot's Environment, Review of configuration spaces, Visibility Graphs, Voronoi diagrams, Potential Fields and Cell Decomposition, Planning with moving obstacles, Probabilistic Roadmaps, Rapidly exploring random trees, Execution of the Quadtree-Based Path Planner Program.

UNIT IV SIMULTANEOUS LOCALIZATION AND MAPPING (SLAM):

Problem Definition, Mathematical Basis, Example: SLAM in Landmark Worlds, Taxonomy of the SLAM Problem, Extended Kalman filter, Graph-Based Optimization Techniques, Particle Methods Relation of Paradigms.

UNIT V ROBOT PROGRAMMING PACKAGES:

Robot Parameter Display, Program for BotSpeak, Program for Sonar Reading Display, Program for Wandering Within the Workspace, Program for Tele-operation, A Complete Program for Autonomous Navigation.

TEXT BOOKS:

1. Patnaik, Srikanta, "Robot Cognition and Navigation An Experiment with Mobile Robots", Springer-Verlag Berlin and Heidelberg, 2007.

2. Howie Choset, Kevin LynchSeth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki, and Sebastian Thrun, —Principles of Robot Motion-Theory, Algorithms, and Implementation^{II}, MIT Press, Cambridge, 2005.

REFERENCES:

 Sebastian Thrun, Wolfram Burgard, Dieter Fox, —Probabilistic Robotics, MIT Press, 2005.
 Margaret E. Jefferies and Wai-Kiang Yeap, "Robotics and Cognitive Approaches to Spatial Mapping", Springer-Verlag Berlin Heidelberg 2008. 15

12

6

12

0

6

Total No. of Periods : 45

Subject Code:	Subje	ect Nam	e: CL	OUD RC	BOTIC	S		Ty / Lb/	L	T / S.Lr	P/ R	C
BRE18E11								ETL				
		-		of Robot				Ty	3	0/0	0/0	3
L : Lecture T : Tu			•		U	roject R	: Resea	rch C: C	Credits			
T/L/ETL : Theory	y/Lab/E	Embedde	ed Theor	y and Lal	0							
OBJECTIVE :												
				bot work	ting prin	ciple and	d applica	ations				
COURSE OUT Students will be	able to)										
CO1	Be aw	are of ir	ntroducto	ory conce	pts of te	lerobotic	es					
CO2	Appre	ciate the	e concep	t of netwo	orked ro	botics						
CO3	Appre	ciate the	e workin	g of onlir	ne roboti	cs						
CO4	Desig	n softwa	re archit	ecture of	online r	obots						
CO5	Analy	se differ	ent case	studies f	or the sa	me						
Mapping of Cou	rse Ou	tcomes	with Pr	ogram O	utcome	s (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	Η	Μ	Μ	Μ	Μ	Μ	Η	Μ	Н	Η
CO2	Н	Н	Η	Μ	Μ	Μ	Μ	Μ	Η	Μ	Н	Η
CO3	Н	Н	Н	Μ	Μ	Μ	Μ	Μ	Η	М	Н	Н
CO4	Н	Η	Н	Μ	М	Μ	Μ	Μ	Η	Μ	Н	Н
CO5	Н	Н	Н	Μ	Μ	Μ	Μ	Μ	Η	Μ	Н	Н
COs / PSOs	PS	601	PS	SO2	PS	03	PS	04				
CO1]	Ĺ		L	I	H	H	I				
CO2		L		L	I	H	H					
CO3		L		L		H	H					
CO4		L		L		H	H					
CO5 H/M/L indicates		L th of C		L m II I	ligh, M	H						
n/wi/L mulcates	Strenş		orrelatio									
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
					✓							
Approval												

Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code:	Subject Name: CLOUD ROBOTICS	Ty/	L	Τ/	P/ R	С
BRE18E11		Lb/ ETL		S.Lr		
	Prerequisite: Basics of Robotics	Ту	3	0/0	0/0	3

UNIT I INTRODUCTION:

Telerobotics: Overview and background – Brief history.

UNIT II COMMUNICATIONS AND NETWORKING:

The Internet – Wired Communication Links – Wireless Links – Properties of Networked Telerobotics – Building a Networked Telerobotic system – State command Presentation – Command Execution/ State Generation – Collaborative Control

UNIT III FUNDAMENTALS OF ONLINE ROBOTS:

Introduction – Robot Manipulators – Teleoperation – Teleoperation on a local network – Teleoperation via a constrained link.

UNIT IV ONLINE ROBOTS:

Introduction to networked robot system on the Web - Software Architecture and design - Interface design.

UNIT V CASE STUDY:

Performance of mobile robots controlled through the web - System Description - Software Architecture.

Total No. of Periods: 45

TEXT BOOKS:

- 1. Bruno Siciliano, Oussama Khatib, —Springer Handbook of Roboticsl, Springer Science and Business, 2010.
- 2. Ken Goldberg, Roland Siegwart, —Beyond Webcams An Introduction to Online Robots^{II}, MIT Press, 2010.

REFERENCES:

1. Borko Furht, Armando Escalante, —Handbook of Cloud Computing^{II}, Springer Science & Business, 2010. 2. Peter Sinčák, Pitoyo Hartono, Mária Virčíková, Ján Vaščák, Rudolf Jakša, —Emergent Trends in Robotics and Intelligent Systems^{II}, Springer, 2014.

5

13

10

7

Dr. M.G.R.	AND MANY OF
EDUCATIONAL AND RESEARCH INSTITUTE	(A)
University with Graded Autonomy Status	
Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING	

Subject Code	: Si	ubject Na	me: M	EDICA	L ROB	OTICS	Ty / I ETL	Lb/	L	T / S.Lr	P/ R	С
BRE18E12		rerequisit					Ту		3	0/0	0/0	3
L : Lecture T	: Tuto	orial SLr	: Superv	vised Le	arning F	?: Projec	et R:Re	esearch	C: Credi	ts		
T/L/ETL : Th	eory/I	Lab/Embe	dded Th	eory and	l Lab							
OBJECTIVE • E		knowledge	e in medi	ical robo	ot workin	ig princi	ple and a	applicati	ons			
COURSE OU Students will			Os): (3 - 3)	- 5)								
CO1		To catego	rize dif	ferent ty	pes of m	edical ro	obots					
CO2		To gain k	nowledg	e with r	espect to	perform	ning loca	alizatior	n and tra	cking metho	ds using	robots
CO3		To gain k	nowledg	e with	respect t	o differe	ent types	of surg	ical robo	ots		
CO4		Appreciat	e the wo	orking of	f robots v	with resp	ect to re	habilitat	tion			
CO5		Design ro	bots for	medical	care.							
Mapping of (Cours	e Outcom	es with	Progra	m Outco	omes (PO	Os)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	H	Н	Н	Μ	М	Μ	Μ	Μ	Н	М	Н	Н
CO2	Η	Н	Н	Μ	Μ	Μ	Μ	Μ	Н	Μ	H	H
CO3	Η	Н	H	Μ	Μ	Μ	Μ	Μ	Н	M	H	H
CO4	Η	Н	Н	Μ	Μ	Μ	Μ	Μ	Н	М	H	H
CO5	Η	Н	Η	Μ	Μ	Μ	Μ	Μ	H	Μ	Η	H
COs / PSOs	P	SO1	PS	02	PS	03	PS	04				
CO1		L	I		I	I	I	I				
CO2		L	l		I	I	I	I				
CO3		L	I		I	I	I					
CO4		L	1		I	I	I	ł				
CO5		L	l		ŀ	I	ŀ	I				
H/M/L indica	ntes S	trength of	f Correl	ation	H- High	, M- Me	dium, L	-Low				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
Approval					✓							

art of robotics in the field of healthcare. **UNIT II LOCALIZATION AND TRACKING:**

UNIT I INTRODUCTION:

8 Position sensors requirements - Tracking - Mechanical linkages - Optical - Sound-based - Electromagnetic -Impedance-based - In-bore MRI tracking - Video matching - Fiber optic tracking systems - Hybrid systems.

UNIT III SURGICAL ROBOTICS:

Minimally invasive surgery and robotic integration – surgical robotic sub systems - synergistic control. Control Modes - Radiosurgery - Orthopedic Surgery - Urologic Surgery and Robotic Imaging - Cardiac Surgery -Neurosurgery - case studies.

UNIT IV REHABILITATION and ROBOTS IN MEDICAL CARE:

Rehabilitation for Limbs - Brain-Machine Interfaces - Steerable Needles - case studies. Assistive robots -types of assistive robots - case studies.

UNIT V ROBOTS IN MEDICAL CARE:

DESIGN OF MEDICAL ROBOTS: Characterization of gestures to the design of robots- Design methodologies-Technological choices- Security.

TEXT BOOKS:

1. Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, -Robot Modeling and Control, Wiley Publishers, 2006.

2. Paula Gomes, "Medical robotics Minimally invasive surgery", Wood head, 2012.

REFERENCES:

1. Achim Schweikard, Floris Ernst, —Medical Robotics, Springer, 2015.

2. Jocelyne Troccaz, —Medical Robotics, Wiley-ISTE, 2012. 3. Vanja Bonzovic, Medical Robotics, I-tech Education publishing, Austria, 2008.

Subject Code:	Subject Name: MEDICAL ROBOTICS	Ty / Lb/ ETL	L	T/ S.Lr	P/ R	С
BRE18E12	Prerequisite: Basics of Robotics	Ту	3	0/0	0/0	3

Types of medical robots - Navigation - Motion Replication - Imaging - Rehabilitation and Prosthetics - State of

10

8

155

Total No. of Periods : 45

7

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEDA DTMENT OF MECHA NICAL ENCLINEEDING

								L ENC	GINEE			-	
Subject Code		ubject Na DESIGN	ame: P	RECIS	ION E	QUIPN	1ENT		Ty / Lb/	L	T / S.Lr	P/ R	С
BRE18E13	P	rerequis	ite: De	esign of	Machi	ine Elei	nents,		ETL Ty	3	0/0	0/0	3
		Kinematic					•		-				
L : Lecture T :	Tuto	rial SL1	: : Super	rvised L	earning	g P:Pr	oject F	R : Rese	arch C: (Credits			
T/L/ETL : The	eory/L	.ab/Embe	dded Th	neory ai	nd Lab								
OBJECTIVE													
		part know	-				-			-	-		
		and also to			•			0		machir	ning and	smart	materials
COURSE OU		to equip the	v		e electr	onic ma	inufacti	aring ind	lustries.				
Students will			$(\mathbf{S}):(\mathbf{S})$)-))									
CO1		Understa	and the	concept	ts of pre	ecision	enginee	ering con	ncepts				
CO2		Understa	and diff	erent ca	tegorie	es of mo	tion err	ors.	-				
CO3		Design of			-								
CO4		Analyse											
CO5		Undertst	and pre	cision of	control	techniq	ues						
Mapping of C	Cours	e Outcon	nes with	Progr	am Ou	tcomes	(POs)						
COs/POs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 1	PO11	PO12
CO1	Н	Н	Н	Н	Μ	Η	Μ	L	Н	Н	J	H	Н
CO2	Η	Н	Н	Н	Н	Μ	L	L	Μ	Н]	H	Н
CO3	Н	Н	Н	Н	Μ	Н	Μ	L	Н	Н]	H	Н
CO4	Н	Н	Н	Н	Μ	Н	Μ	L	Н	Н]	H	Н
CO5	Н	Н	Н	Н	Μ	H	Μ	L	Н	Н]	H	Н
COs / PSOs]	PSO1	PS	02	PS	603	PS	04					
CO1	H		М		Н		Н						
CO2	Μ		М		Μ		Н						
CO3	Н		М		М		Н						
CO4	Н		Μ		Μ		Н						
CO5	Н		Μ		Μ		Н						
H/M/L indica	tes St	trength o	f Corre	lation	H- Hi	igh, M-	Mediu	m, L-L	OW				
		seo									T		
Category Category	asic Sciences	ngineering Scien	fumanities and ocial Sciences	rogram Core	▲ Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
	<u> </u>				√ ✓				S				
Approval													
	1		1		I	1	1	1					

Subject Code:	Subject Name: PRECISION EQUIPMENT DESIGN	Ty/	L	Τ/	P/ R	С
		Lb/		S.Lr		
BRE18E13		ETL				
	Prerequisite: Design of Machine Elements,	Ту	3	0/0	0/0	3
	Kinematics and Dynamics of Machinery					

UNITI: INTRODUCTION TO PRECISION ENGINEERING:

Precision manufacturing, Intelligent manufacturing – objectives, Reconfigurable systems.

UNIT II : MOTION ERRORS:

Errors and error measurements, Model of measurement, Statistical measurements, Propagation of errors, Motion errors principle –translational body, rotational body, geometric and kinematic errors, Other types of errors in machines – thermal, cutting force induced, environmental, common geometric errors – cosine, abbe, dead path errors, Methodologies of error elimination.

UNIT III : DESIGN STRATEGIES FOR MACHINE TOOLS

Standard sizes, Precision engineering principles –design, modeling and simulation , Design roadmap – conceptual analysis, materials selection, kinematic design of bearing and guide ways, Structural analysis – static and dynamic analysis , Micro machines – design approach, design challenges – kinematics, interactive forces, actuators

UNIT IV : PARALLEL KINEMATIC MACHINES (PKM)

Serial and parallel systems, Precision design of PKM – need of PKM ,low cost, degrees of freedom, workspace volume, high stiffness and agility, repeatability in movement, low inertia, Configurations and characteristic issues – degrees of calculation, Design principles – Kinematic modeling.

UNIT V: PRECISION CONTROL

Fundamentals of motion control, system modeling and performance assessment, linear dynamics, nonlinear dynamics – force ripple, friction, hysteresis, incorporating nonlinear dynamics, Control design strategies – PID feedback, feed forward control, ripple, RBF compensation, internal model control, Case study: Design of piezoelectric actuator – piezoelectric actuator, LVDT, adaptive controller.

Total No. of Periods: 45

REFERENCES:

1. Samir Mekid, "Introduction to Precision Machine Design and Error Assessment", CRC-Press, Taylor and Francis Group, New York, 2009.

2. Alexander H Slocum, "Precision Machine Design", Prentice Hall Publishers, 1992.

3. Moore W R, "Foundations of Mechanical Accuracy", The Moore Special Tool Company, Bridgeport, Connecticut, 1970.

4. Nakazawa H, "Principles of Precision Engineering", Oxford University Press, Oxford, 1994.

5. Smith S.T, Chetwynd D.G, "Foundations of Ultra – Precision Mechanism Design", Gordon and Breach Publishers, Switzerland, 1992.

6

12

3

12

ELECTIVE: ELECTRICAL AND ELECTRONICS ENGINEERING

Subject Code	: Sı	ubject Na	ame : VI	RTUAL	INSTR	UMEN	TATIO	N	Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
BRE18E14	P	rerequisi	te: Instru	mentat	ion and	Contro	l for Ro	bots	Ty	3	0/0	0/0	3
L : Lecture T :		-	Supervis						Credits				<u> </u>
T/L/ETL : The	eory/La	b/Embed	ded Theor	ry and L	ab								
OB	JECT	IVE :											
		•	ics of vir			tion							
			gramming		-								
			a acquisiti										
			rument in										
• ']	l'o kno	w about t	he applica	tions of	virtual i	nstrume	ents are 1	ntroduc	ed in mech	natronic	s systems.		
COURSE OU	TCON	AES (CO	(3-5))									
CO1			· · ·		nowledg	e in bas	sics of V	/IRTU/	AL INSTR	UMEN'	TATION		
CO2			,		•				IG TECHN				
CO3						-			ΓION Syst		·		
CO4				0		-		-	NTERFA				
CO5				-					ns of virtu		ments are	e introd	luced
			ronics sys	0		0	11	•					
Mapping of C	ourse	Outcome	es with Pr	ogram	Outcom	es (POs	s)	-		_			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO	12
CO1	H	H	Н	Η	Н	L	Μ	H	H	H	Μ	H	
<u>CO2</u>	H	H	H	H	H	L	M	H	H	H	M	H	
CO3	H	M	H	H	H	M	L	H	H	H	H	H	
CO4	H	H	H	H	H	M	L	H	H	H	M	M	
CO5	H	H	Н	H	H	H	H	H	Н	H	H	H	
COs / PSOs		<u>SO1</u>	PSO	<u>J2</u>		03		04					
<u>CO1</u>		H	H H		M		H						
CO2 CO3		H H	H H		M H		H H						
CO4		H	H		H		H						
CO4 CO5		H	H		H		H						
H/M/L indica	tos Str		 Correlati	ion H		M_ Mod		[ow					
			-			vi- ivieu							
	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	cills				
Category	sic Sc	eering	nities and Sciences	Program Core	ram E	en Ele	tical /	ships / T Skill	Soft Skills				
Ca	\mathbf{Ba}	Engin	Humaı	Pr	Pro£	OF	Prac	Interns					
					V								
Approval													

Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

(Deemed to be University) Jniversity with Graded Autonomy Status

Subject Code:	Subject Name : VIRTUAL INSTRUMENTATION	Ty / Lb/	L	T / S.Lr	P/ R	C
BRE18E14		ETL				
	Prerequisite: Instrumentation and Control for Robots	Ту	3	0/0	0/0	3

UNIT I : REVIEW OF VIRTUAL INSTRUMENTATION

Historical perspectives, advantages, block diagram and architecture of a virtual instrument, data -flow techniques, graphical programming in data flow, comparison with conventional programming.

UNIT II : PROGRAMMING TECHNIQUES

VIS and sub-VIS loops and charts, arrays, clusters and graphs, case and sequence structures, formula nodes, local and global variables, string and file I/O.

UNIT III : DATA ACQUISTION BASICS

AOC.OAC. 010. Counters & timers. PC Hardware structure, timing. Interrupts OMA, software and hardware installation.

UNIT IV : COMMON INSTRUMENT INTERFACES

Current loop, RS.232C/RS.485, GPIB, System buses, interface buses: USB, PCMCIA, VXI, SCXI, PXI, etc., networking basics for office &.Industrial applications, Visa and IVI, image acquisition and processing. Motion control.

UNIT V :USE OF ANALYSIS TOOLS

Fourier transforms, power spectrum correlation methods, windowing & filtering, VI application in various fields.

Total No. of Periods : 45

TEXT BOOK

1. Gupta ," Virtual Instrumentation Using Lab view 2E" Tata McGraw-Hill Education, 2010

REFERENCES:

1. Gary Jonson, Labview Graphical Programming, Second Edition, McGraw Hill, New York, 1997

2. Sokoloff; Basic concepts of Labview 4, Prentice Hall Inc., New Jersey 1998.

3. Gupta S., Gupta J.P:, PC interfacing for Data Acquisition & Process Control, Second Edition, Instrument Society of America, 1994.

9

9

Dr. M.G. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

		D	EPARTN	IENT	OF ME	CHAN	ICAL	ENGI	NEERIN	G			
Subject Code			ame : AD RO CON			CROPE	ROCESS	SORS	Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
BRE18E15			te: Micro			Micro	controll	ers	Tv	3	0/0	0/0	3
L : Lecture T :		-		-								.,.	
T/L/ETL : The	ory/Lal	b/Embed	ded Theor	ry and L	ab								
OBJECT	TVE :												
			made to:			tecture	of 8085	microp	ocessor				
•			of 8086 1	-		c .							
			cts of I/O a				circuits	•					
			cation and e of 8051 1			•							
COURSE OU					intoner.								
CO1					e to: Stu	dy the A	Architect	ture of 8	3085 micro	process	or		
CO2						2				•			
	S	tudy the	Architect	ure of 8	086 mic	roproces	ssor.						
CO3		.1	1 .				T · · ·		•,				
CO4		earn the	design as	pects of	I/O and	Memor	y interfa	ICING CI	cuits.				
004	S	tudy abo	out commu	inication	1 and bu	s interfa	cing						
CO5			Architect				<u> </u>						
		•											
Mapping of C COs/POs	ourse PO1	PO2	es with Pr	ogram PO4	Outcom PO5	es (POs PO6	s) PO7	PO8	PO9	PO10	PO11	PO	10
COS/POS	H	H H	H H	H H	H H	H H	M	H H	H	H	M	H	12
<u>CO2</u>	H	H	H	H	H	H	M	H	H	H	M	H	
CO3	H	M	H	H	H	M	Н	H	H	H	H	H	
CO4	Н	Н	Н	H	Н	Μ	Н	H	Н	Н	Μ	М	
CO5	Н	Н	Н	H	Н	Н	Н	H	Н	Н	Н	Н	
COs / PSOs	PS	501	PSC)2	PS	03	PS	604					
CO1		H	Η		Μ		Н						
CO2		H	Н		Μ		Н						
CO3		H	Н		Η		Η						
CO4		H	Η		Η		Н						
CO5		H	Н		Н		Η						
H/M/L indica	tes Stre	ength of	Correlati	on H-	High, N	M- Med	ium, L-l	Low		1			
		es	Social		~		±)	cal					
	es	enc	Soc	re	ive	es	ject	hni					
Category	Basic Sciences	Sci	nd Ses	Program Core	lect	Open Electives	Pro	Tec 1	Soft Skills				
	Sci	ing	ities and Sciences	am	υE	Ele	al / a	ps / T Skill	t Sk				
	Isic	eer	nitie Sci	1g0.	jran)en	stice	ship	Sof				
	\mathbf{Ba}	Engineering Sciences	Humanities and Sciences	Pr	Program Electives	OF	Practical / Project	Internships / Technical Skill					
		Er	Hu					Int					
					1	1	1						
Approval													

UNIT I 8086 MICROPROCESSOR

Architecture – Pin description – Operating modes – Registers – Interrupts – Bus cycle – Addressing modes – Typical configuration of 8086 system – Overview of Instruction set.

Prerequisite: Microprocessors and Microcontrollers

UNIT II 80286 MICROPROCESSOR

Functional block diagram - Modes of operation - Real and protected mode - Memory management and protection features.

UNIT III 80386, 80486 PROCESSORS

80386: Functional block diagram - Programming model - Addressing modes and instruction set overview Address translation - Modes of operation - 80486 processor - Functional block diagram - Comparison of 80386 and 80486 processors.

UNIT IV PENTIUM MICROPROCESSOR

Introduction - Architecture - Special Pentium registers - Memory management.

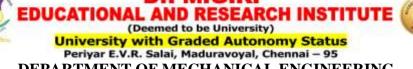
UNIT V PIC MICROCONTROLLER

Architecture – Memory structure – Register File – Addressing modes – Interrupts – Timers: Modes of operation PIC PERIPHERAL FUNCTIONS AND SPECIAL FEATURES: PWM output - Analog to Digital converter -UART - Watchdog timer - RESET Alternatives - Power Down mode - I 2C Bus operation

Total No. of Periods : 45

TEXT BOOKS:

1. Barry B Brey, "The Intel Microprocessor 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium and Pentium processor, Pentium II,III,4, Prentice Hall of India, New Delhi, 2005.


2. Douglas V Hall, "Microprocessors and Interfacing: Programming and Hardware", McGraw Hill, New Delhi, 2005.

3. John B Peatman, "Design with PIC Microcontroller, McGraw Hill, Singapore, 1st Reprint, 2001

REFERENCES:

1. Mohammed Rafiquzzaman, "Microprocessors and microcomputer based system design", CRC Press, 2005. 2. Walter A Triebel, Avtar Singh . "The 8088 and 8086 microprocessors Programming Interfacing software, Hardware and Applications", Pearson Education, 2009

3. Myke Pred ko, "Programming and Customising the PIC Microcontroller, "McGraw Hill, USA, 1998

	DEPARTMENT OF MECHANICAL ENGI	NEERIN	Ĵ			
Subject Code:	Subject Name : ADVANCED MICROPROCESSORS	Ty / Lb/	L	Τ/	P/ R	С
	AND MICRO CONTROLLERS	ETL		S.Lr		
BRE18E15	Prerequisite: Microprocessors and Microcontrollers	Tv	3	0/0	0/0	3

8

8

8

15

Subject Code:	Su	bject Na	ame : DIC	GITAL	CONTR	ROL SY	STEM		Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
BRE18E16	Pre	erequisi	te: Instru	mentat	ion and	Contro	l for Ro	bots	Ту	3	0/0	0/0	3
L : Lecture T :	Tutoria	l SLr	: Supervis	ed Lear	ning P:	Project	R : Res	earch C	: Credits				
T/L/ETL : The	ory/Lab	/Embed	ded Theor	ry and L	ab								
OBJECT	IVE :												
• To	unders	tand the	concept o	of Z – Ti	ansform	1							
• To	unders	tand the	sampled of	data sys	tems								
			state space		sis and s	tability	analysis						
	•		space ana	•	_								
• To	gain ki	nowledg	e in pole j	placeme	nt and o	bserver	gain						
COURSE OU	тсом	ES (CO	os) : (3- 5)									
CO1			the conce		– Transf	orm							
CO2			the sample										
CO3	To und	erstand	the state s	pace and	alysis an	d stabili	ity analy	sis					
CO4			ate space		2								
CO5	To gain	n knowle	edge in po	le place	ment an	d observ	ver gain						
Mapping of C	ourse (Outcome	es with Pr	ogram	Outcom	es (POs	s)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	Η	H	Н	Η	Н	Η	Μ	Η	H	H	Μ	H	
<u>CO2</u>	H	H	H	H	H	H	M	H	H	H	M	H	
CO3	H	M	H	H	H	M	H	H	H	H	H	H	
CO4	H	H	H	H	H	H	H	H	H	H	M	H	
CO5	H	H	H	Н	H	H	H	H	H	Η	H	H	
COs / PSOs CO1		01 H	PSC H	J2	H PS	03	H PS	604					
CO1 CO2		H	H		M		H						
CO3		H	H		H		M						
CO4		H	Н		Н		Н						
CO5		H	Н		Н		Н						
H/M/L indica	tes Stre	ngth of	Correlati	ion H-	High, I	M- Med	ium, L-	Low	I				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval					√								

(Deemed to be versity with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code:	Subject Name : DIGITAL CONTROL SYSTEM	Ty / Lb/	L	Τ/	P/ R	С
		ETL		S.Lr		
BRE18E16	Prerequisite: Instrumentation and Control for Robots	Ту	3	0/0	0/0	3

UNIT I Z TRANSFORM:

Sampled data theory - Sampling process - Sampling theorem - Signal reconstruction - Sample and hold circuits - Z Transform - Theorems on Z Transforms - Inverse Z Transforms.

UNIT II SAMPLED DATA SYSTEMS:

Pulse transfer function – Response of sampled data system to step and ramp inputs – mapping between s-plane and z-plane: Primary strips and Complementary Strips.

UNIT III STATE SPACE ANALYSIS:

State Space Representation of discrete time systems, Solving discrete time- state- space equations, Pulse Transfer Function Matrix, Discretization of continuous time state-space equations.

UNIT IV STABILITY ANALYSIS:

Stability Analysis of closed loop systems in the Z-Plane. Jury stability test - Stability Analysis by use of the Bilinear Transformation and Routh Stability criterion. Stability analysis using Liapunov theorems.

UNIT V POLE PLACEMENT AND OBSERVER DESIGN:

Controllability, Observability, Useful Transformations in State-Space analysis and Design, Design via Pole Placement, State Observers, Servo Systems.

TEXT BOOKS:

1. Ogata K., —Discrete-Time Control systems, 2nd Edition, PHI Learning Pvt. Ltd, 2009. 2. Kuo B.C., —Digital Control Systems, 2nd Edition, Oxford University Press, 2007.

REFERENCES:

1. Gopal M., —Modern Control Systems Theoryl, 3 rd Edition, New Age International Publications, 2014.

2. Gopal M., —Digital Control Engineering, New Age International Publications, 2003.

3. Gopal M., —Digital Control and State Variable Methods, 3rd Edition, TMH, 2008.

4. Richard C. Dorf and Robert H. Bishop, —Modern Control Systems, 12th Edition, Pearson Education, 2004.

164

11

6

8

11

Total No. of Periods : 45

BRE18E17 L : Lecture T : T T/L/ETL : Theor OBJECTIVES: • To COURSE OUT Students will be CO1 CO2	y/Lab/Emb know abou COMES (C able to gain the gain the gain the	r : Super edded Th t special COs) : (3 e knowle e knowle	rvised Loneory an types of 3-5) dge wor	earning d Lab	P : Proj			C: Cree		0/0	0/0 ns.	3
T/L/ETL : Theor OBJECTIVES: • To COURSE OUT Students will be CO1	y/Lab/Emb know abou COMES (C able to gain the gain the gain the	edded Th t special COs) : (3 e knowle e knowle	types of 3-5) dge wor	d Lab						olicatio	ns.	
OBJECTIVES: • To COURSE OUT Students will be CO1	know abou COMES (C able to gain the gain the gain the	t special COs) : (3 e knowle e knowle	types of 3- 5) dge wor	electric	al motor	s, their c	haracter	istics a	nd app	olicatio	ns.	
• To COURSE OUT Students will be CO1	COMES (C able to gain the gain the gain the	COs) : (3 e knowle e knowle	3- 5) dge wor		al motor	rs, their c	character	istics a	nd app	olicatio	ns.	
COURSE OUT Students will be CO1	COMES (C able to gain the gain the gain the	COs) : (3 e knowle e knowle	3- 5) dge wor		al motor	s, their c	character	istics a	nd app	olicatio	ns.	
Students will be CO1	able to gain the gain the gain the	e knowle e knowle	dge wor	king priv								
Students will be CO1	able to gain the gain the gain the	e knowle e knowle	dge wor	king priv								
CO1	gain the gain the gain the	e knowle		king priv								
	gain the gain the	e knowle		kino nriv								
CO2	gain the											
								. 1		DC		
CO3 CO4												
$\frac{CO4}{CO5}$		e knowle e workin					ianent m	agnet s	ynenro	onous r	notors	
Mapping of Cou												
	01 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	POI	10	PO11	PO12
CO1 H	Н	Н	М	Μ	М	Μ	М	Н	М		H	Н
CO2 H	Н	Н	Μ	Μ	М	L	Μ	Μ	Μ		L	H
СОЗ Н	Н	Н	Μ	Μ	Μ	L	Μ	Μ	Μ		L	Н
CO4 H	Н	Н	Μ	Μ	Μ	L	Μ	Μ	Μ		L	Н
CO5 H	Н	Н	Μ	Μ	Μ	L	Μ	Μ	Μ		L	Н
COs / PSOs	PSO1	PS	502	PS	03	PS	04					
C01	L		L	I	I	I	I					
CO2	L	I	М	I	H	N	Л					
CO3	L	I	М	I	H	N	Л					
CO4	L	l	М	I	H	N	Л					
CO5	L	I	М	I	I	N	Л					
H/M/L indicates	s Strength	of Corre	lation	H- Hig	h, M- M	ledium,	L-Low					•
							al					
Category	Engineering Sciences	Humanities and Social Sciences	Core	Electives	ctives	/ Project	Internships / Technical oft Skills	1				
Category Basic Sciences	Engineer	Humaniti Sciences	Program Core	▲ Program Electives	Open Electives	Practical / Project	Internshij Soft Skills					
				✓								
Approval												

(Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code:	Subject Name: SPECIAL MACHINES AND	Ty / Lb/	L	Τ/	P /	С
	CONTROLLERS	ETL		S.Lr	R	
BRE18E17	Prerequisite: Electrical Machines	Ту	3	0/0	0/0	3

UNIT I STEPPER MOTORS

Types - Constructional features – principle of operation – variable reluctance motor – single and Multi stack configurations – Permanent Magnet Stepper motor – Hybrid stepper motor. Different modes of Excitation - theory of torque predictions – Drive systems and circuit for open loop and closed loop control of stepper motor.

UNIT II SWITCHED RELUCTANCE MOTORS

Constructional features – principle of operation – Torque Equation - Power Converters for SR Motor – Rotor Sensing Mechanism & Logic Controller – Sensor less Control of SR motor - Applications.

UNIT III PERMANENT MAGNET BRUSHLESS D.C. MOTORS

Principle of operation – Types – Magnetic circuit analysis – EMF and torque equations – Power controllers – Motor characteristics and control – Applications.

UNIT IV PERMANENT MAGNET SYNCHRONOUS MOTORS

Principle of operation, EMF, power input and torque expressions, Phasor diagram, Power Controllers, Torque speed characteristics, Self control, Vector control, Current control Schemes – Applications.

UNIT V LINEAR MOTORS:

Linear Induction motor (LIM) classification – construction – Principle of operation – Concept of current sheet – goodness factor – DC Linear motor (DCLM) types – circuit equation - DCLM control applications – Linear Synchronous motor(LSM) – Types–Applications SERVOMOTORS: Servomotor – Types – Constructional features, principle of operation - control applications

TEXT BOOKS: 1. K. Venkataratnam," Special Electrical Machines", Universities Press (India) Private Limited, India, 2009. 2. Kenjo, T and Naganori, S "Permanent Magnet and brushless DC motors", Clarendon Press, Oxford, 1989

REFERENCES:

 Kenjo T, "Stepping Motors and their Microprocessor Controls", Clarendon Press London, 2003.
 Miller T J E, "Brushless Permanent Magnet and Reluctance Motor Drives", Clarendon Press, Oxford, 1989.
 Naser A and Boldea L, "Linear Electric Motors: Theory Design and Practical Applications", Prentice Hall Inc., New Jersey 1987.

4. Floyd E Saner," Servo Motor Applications", Pittman USA, 1993.

5. WILLIAM H YEADON, ALAN W YEADON, Handbook of Small Electric Motors, McGraw Hill, INC, 2001

8

8

11

Total No. of Periods : 45

ELECTIVE: ELECTRONICS AND COMMUNICATION ENGINEERING

Subject Code:	SI	ubject Na	ame: D	IGITAI	LSIGN	AL PRO	DCESSI	NG	Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
BRE18E18		rerequisi licrocont	te: Digita rollers	l Electr	onics, N	licropr	ocessors	s and	Ту	3	0/0	0/0	3
L : Lecture T :	Tutori	al SLr :	Supervis	ed Leari	ning P:	Project	R : Res	earch C	C: Credits				
T/L/ETL : The	ory/La	b/Embed	ded Theor	ry and L	ab								
• To lease		concepts	of Signals	and sys	stems and	d their a	pplicatio	ons in d	igital signa	ll Proces	ssing		
COURSE OU	TCON	AES (CO	s): (3-5)									
CO1	V	Will be al	ole to lear	n the con	ncepts of	f signal	and syst	ems					
CO2	V	Will be al	ole to perf	orm Z-7	Fransfor	ns and i	ts realiz	ations.					
CO3	V	Will have	the abilit	y to perf	form DF	T and F	FT tech	niques.					
CO4	V	Will be al	ole to desi	gn digita	al filters	in FIR a	and IIR	mode					
CO5			the modul						rocessor.				
Mapping of C		Outcome		ogram	Outcom	es (POs							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO	12
CO1	H	H	H	Η	H	Μ	L	L	L	L	L	Μ	
CO2	H	H	H	H	H	Μ	Μ	L	M	M	L	M	
CO3	Н	H	Н	Н	H	L	L	L	L	L	M	L	
CO4	Η	Η	Н	Η	Η	H	L	L	Μ	L	L	L	
CO5	Η	Η	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	
COs / PSOs		SO1	PSC)2		03		504					
CO1	H		H		L		H						
CO2	H		H		L		H						
CO3	H		Н		L		H					_	
CO4	H		H		L		H						
CO5	H		H		L		H						
H/M/L indica	tes Str	ength of	Correlati	on H-	High, N	M-Med	ium, L-			1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval					√								

Subject Code:	Subject Name : DIGITAL SIGNAL PROCESSING	Ty / Lb/	L	Τ/	P/ R	С
		ETL		S.Lr		
BRE18E18	Prerequisite: Digital Electronics, Microprocessors and	Ту	3	0/0	0/0	3
	Microcontrollers					

Unit I SIGNALS & SYSTEMS

Signal classifications – Signal Representation – Classification of Discrete time signals – Typical Discrete time signals – operation on signals – Discrete time system – Classification of Discrete time systems – solution of difference Equations.

Unit II Z TRANSFORM & REALISATIONS

Z Transform – Properties – System function – Inverse Z Transform – Realization of Digital filters – Direct Form-I, Direct Form-II, Transposed, parallel, cascade, Lattice- Ladder structure

Unit III DFT & FFT

Discrete Fourier Transform (DFT) – Definition – Properties – Convolution of sequences – Linear convolution - circular convolution. Introduction to Radix – 2 FFT – Properties – DIT (FFT) – DIF (FFT) – Algorithms of Radix – 2 FFT – Computing Inverse DFT by doing a direct DFT

Unit IV DESIGN OF DIGITAL FILTER

Review of design techniques for analog low pass filters –Frequency transformation – Properties of IIR filter design – Characteristics of FIR filters with linear phase - Fourier series Method – frequency sampling Method – Design of FIR filters using windows.

Unit V OVERVIEW OF DIGITAL SIGNAL PROCESSOR

Overview of Digital Signal Processors – Application of Digital Signal Processor – Memory Architecture of DSP Processor – Von Neumann Architecture – Harvard Architecture - Architecture of TMS320C5X Processor – Addressing modes – Pipelining .

Total No. of Periods : 45

9

9

9

0

Textbooks:

1.Sanjit k. Mitra "Digital signal processing", A Computer Based Approach, Tata McGraw Hill, NewDelhi 2.B.Venkataramani, M.Bhaskar, "Digital Signal Processors, Architecture, Programming and Application", Tata McGraw Hill, New Delhi, 2003.

3.Alan V Oppenheim, "Signals and Systems", Prentice Hall of India Pvt. Ltd, 2nd Edition, 1997 Hwei P. Hsu, Schaum's Outline Series, "Signals and Systems", Mc Graw Hill Companies, 2nd Edition

References:

1.A.V.Oppenheim, R.W. Schafer and J.R. Buck, "Discrete – Time Signal Processing", 8th Indian reprint, Pearson 2004.

2.Simon Haykin and Barry Van Veen," Signals and Systems", John Wiley and Sons, Inc., 1999.

Subject Code	: S	ubject Na	ame: EN	ABEDD	DED SY	STEMS	S DESIG	GN	Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
BRE18E19	Р	rerequisi	te: Digita	l Electr	onics				Ту	3	0/0	0/0	3
L : Lecture T :	Tutor	ial SLr	: Supervis	ed Lear	ning P:	Project	R : Res	earch C	: Credits				
T/L/ETL : The			•		U U	5							
	•			ry and L	ao								
OBJECTIVE		on undors	tanding of	workin	a of om	addad (ovetom e	nd its o	oplications				
COURSE OU					g of enn	Jeuueu	system a	nu ns a	spireations				
C01			nd the intr	,	v concer	ts of en	nbedded	system					
CO2			he archite		· •								
CO3		÷	the differ		• •		-		em.				
CO4			he differe	-									
C05		•	nd implem	<u> </u>				•					
		Outcomes with Program Outcomes (POs)											
COs/POs	PO1	PO1	PO1	PO1	PO1	PO1	PO1	PO1	PO1	PO1	PO1	PO	1
CO1	Η	H	Η	Н	H	Η	H	L	H	Η	H	H	
CO2	Η	Н	Н	Μ	Н	Η	Η	Η	Μ	Н	Μ	Μ	
CO3	Η	H	Η	Н	Μ	Н	L	Μ	Н	L	H	Η	
CO4	Η	Н	Н	Н	Н	Η	Н	L	Н	Η	Н	Η	
CO5	Η	Н	Н	Μ	Н	Η	Н	Н	М	Η	М	Μ	
COs / PSOs	P	SO1	PSC	02	PS	03	PS	504					
CO1		H	H		I	I]	H					
CO2			N	1		Ĺ							
CO3		Μ			I	Н							
CO4			Н	[]	H					
CO5		Н			I	Η							
H/M/L indica	tes Sti	rength of	Correlati	ion H-	High, I	M- Med	ium, L-			1			
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	 ✓ Program Electives 	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code:	Subject Name : EMBEDDED SYSTEMS DESIGN	Ty / Lb/ ETL	L	T / S.Lr	P/ R	С
BRE18E19	Prerequisite: Digital Electronics	Ту	3	0/0	0/0	3

(Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

UNIT I INTRODUCTION TO EMBEDDED SYSTEM

Embedded system, Functional building block of embedded system, Characteristics of embedded system applications, Challenges in embedded system design, Embedded system design processes.

UNIT II ARCHITECTURE OF EMBEDDED SYSTEM

Computer architecture taxonomy, CPUs - Programming input and output, Supervisor mode, Exceptions & Traps, Co - processors, Memory system mechanisms - CPU bus - Memory devices - I/O devices - Component interfacing - Assembly and linking - Basic compilation techniques – Program optimization.

UNIT III OS FOR EMBEDDED SYSTEMS

Introduction to RTOS, Multiple tasks and multiple processes, Context switching, Operating system, Scheduling policies. Interprocess communication mechanisms. Introduction to uC/ OS II.

UNIT IV PERFORMANCE ISSUES OF EMBEDDED SYSTEMS

CPU Performance, CPU power consumption, Program level performance analysis, Analysis and optimization of program size, energy and power, Evaluating operating system performance, Power management and optimization strategies for processes, Multiprocessors - CPUs and accelerators, Multiprocessor performance analysis.

UNIT V DESIGN & IMPLEMENTATION

Development and debugging, Manufacturing Testing, Program validation and Testing, Distributed embedded architecture, Networks for Embedded Systems - I 2 C Bus, CAN Bus, Design examples: Cell phones, Digital Still Cameras, Elevator Controller.

Total No. of Periods: 45

TEXT BOOKS:

1. Wayne Wolf, "Computers as Components: Principles of Embedded Computer Systems Design", The Morgan Kaufmann Series in Computer Architecture and Design, Elsevier Publications, 2008.

2. Rajkamal, "Embedded Systems - Architecture, Programming and Design", Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2010.

REFERENCES:

1. David E Simon, "An Embedded software primer", Pearson education India, New Delhi, 2004. 2. Sriram V Iyer, Pankaj Gupta, "Embedded Real-time Systems Programming", Tata McGrawHill Publishing Company Ltd, New Delhi, 2008

10

7

8

10

Subject Code	e: 8	Subje	ct Nam	e: WI	RELES	S COM	MUNICA	ATION	Ty / L ETL	b/	L	T / S.Lr	P/ R	C	
BRE18E20	I	Prere	quisite:	Basics	of Elect	ronics			Ту		3	0/0	0/0	3	
L : Lecture T	: Tutor	rial	SLr : Su	pervised	l Learnii	ng P:P	roject R	: Researc	h C: Cre	dits]				
T/L/ETL : Th	eory/L	ab/En	nbedded	l Theory	and Lat)									
OBJECTIVE	ES:														
UnderLearn	rstand the va	the de trious to the	esign of digital s concep	a cellula signaling ts of mu	r system g technic	n Jues and	ne charac multipatl chniques				el				
CO1					e of wire	eless cha	nnels								
CO2		0		U			hitecture								
CO3	W	/ill ga	in the k	nowledg	e of dig	ital sign	aling for	fading ch	annels						
CO4	W	/ill an	alyze m	ultipath	mitigati	on techn	iques								
CO5	W	/ill an	analyze different antenna techniques												
Mapping of (Course	e Outo	comes w	vith Pro	gram O	utcomes	s (POs)								
COs/POs	P	01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10	PO11	PO12	
CO1	H	[Η	Н	Н	Н	Н	Н	L	Н	Н		Η	Η	
CO2	Н	[Н	Н	Μ	Н	Н	Н	Н	Μ	Н		Μ	Μ	
CO3	H	[Η	Н	Η	Μ	Н	L	Μ	Н	L		Η	Η	
CO4	H	[Η	Н	Μ	Н	Н	Н	Η	Μ	Η		Μ	Μ	
CO5	H	I	Н	Н	Η	Μ	Н	L	Μ	Н	L		Η	Η	
COs / PSOs		PS		PS	02		503	PS	04						
CO1		H	I		L	I	М	N	Л						
CO2 CO3		I			<u></u> И			N N						<u> </u>	
CO4		I			A A			N							
CO5		Ι			ſ			N							
H/M/L indica	ates St	rengt	h of Co	rrelatio	n H-H	ligh, M	• Mediun	n, L-Low	7		•				
Category	Basic Sciences		Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
						N									

UNIT I WIRELESS CHANNELS

Large scale path loss – Path loss models: Free Space and Two-Ray models -Link Budget design – Small scale fading- Parameters of mobile multipath channels – Time dispersion parameters Coherence bandwidth – Doppler spread & Coherence time, Fading due to Multipath time delay spread – flat fading – frequency selective fading – Fading due to Doppler spread – fast fading – slow fading.

UNIT II CELLULAR ARCHITECTURE

Multiple Access techniques - FDMA, TDMA, CDMA – Capacity calculations–Cellular concept Frequency reuse - channel assignment- hand off- interference & system capacity- trunking & grade of service – Coverage and capacity improvement.

UNIT III DIGITAL SIGNALING FOR FADING CHANNELS

Structure of a wireless communication link, Principles of Offset-QPSK, p/4-DQPSK, Minimum Shift Keying, Gaussian Minimum Shift Keying, Error performance in fading channels, OFDM principle – Cyclic prefix, Windowing, PAPR.

UNIT IV MULTIPATH MITIGATION TECHNIQUES

Equalisation – Adaptive equalization, Linear and Non-Linear equalization, Zero forcing and LMS Algorithms. Diversity – Micro and Macrodiversity, Diversity combining techniques, Error probability in fading channels with diversity reception, Rake receiver,

UNIT V MULTIPLE ANTENNA TECHNIQUES

MIMO systems – spatial multiplexing -System model -Pre-coding - Beam forming - transmitter diversity, receiver diversity- Channel state information-capacity in fading and non-fading channels.

TEXTBOOKS:

1. Rappaport, T.S., "Wireless communications", Second Edition, Pearson Education, 2010.

2. Andreas.F. Molisch, "Wireless Communications", John Wiley – India, 2006.

REFERENCES:

1. David Tse and Pramod Viswanath, "Fundamentals of Wireless Communication", Cambridge University Press, 2005.

2. Upena Dalal, "Wireless Communication", Oxford University Press, 2009.

3. Van Nee, R. and Ramji Prasad, "OFDM for wireless multimedia communications", Artech House, 2000.

100	2				1.G.F				A ROMAN
1	ED	UCATI			RESE/		INSTI	TUTE	(NAAC
- ARC	-		rsity w	ith Gra	ded Aut	tonomy			
	DEI				aduravoy			DING	
	DEI		IENI C	of ME	CHANI	CAL EN	GINE	KING	

			DEI			T. IVILIA					9		
Approval													
Subject Co	de:	Subject	Name	WIR	ELESS	COMM	UNICAT	TION	Ty / Lb/	L	T/S.Lr	P/ R	C
BRE18E20									EU/ ETL				
		Prerequ	uisite: B	asics of	Electro	nics			Ту	3	0/0	0/0	3

LINET HE DICETAL CICNALING FOD FADING CHANNELS

9

Q

Total No. of Periods : 45

173

9

9

Dr. M.G.K. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

E

DEPARTMENT OF MECHANICAL ENGINEERING **Subject Code: VLSI DESIGN** Ty / Lb/ Τ/ P/R С Subject Name : L ETL S.Lr **BRE18E21 Prerequisite: Digital Electronics** Ty 3 0/0 0/0 3 L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL : Theory/Lab/Embedded Theory and Lab **OBJECTIVE :** To learn the basics of MOS Transistors. • To study the design of combinational logic circuit using CMOS. • To learn CMOS sequential logic circuits design. • To learn the concepts of modeling a digital system using HDL. • To study the basics of PIC microcontroller. COURSE OUTCOMES (COs) : (3-5) Will be able to understand the basics of MOS Transistor. **CO1 CO2** Will be able to design combinational circuits using CMOS logic. **CO3** Will be able to design sequential circuits using CMOS. **CO4** Will be able to design arithmetic building blocks **CO5** Will be able to implement different implementation strategies for VLSI Design. Mapping of Course Outcomes with Program Outcomes (POs) **COs/POs PO1 CO1** Н Η Η Н L Н Η Η Η Η H Η **CO2** Η Η Η Μ Η Η Η Η Μ Η Μ Μ **CO3** Н Н Н Н Μ Н L Н L Н Н Μ **CO4** Н Η Η L L Н Η Μ Μ Η Н L **CO5** Η Н Η Η Η Н L Η Μ Η Μ L COs / PSOs PSO1 PSO₂ PSO3 PSO4 **CO1** Η Η Η L **CO2** Н М **CO3** Μ L **CO4** Н М **CO5** Η Μ L L H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low Program Electives Practical / Project Internships / Technical Skill Humanities and Social Sciences **Open Electives** Engineering Sciences Program Core **Basic Sciences** Soft Skills Category $\sqrt{}$ Approval

DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code:	Subject Name : VLSI DESIGN	Ty / Lb/ ETL	L	T / S.Lr	P/ R	С	
BRE18E21	Prerequisite: Digital Electronics	Ту	3	0/0	0/0	3	

(Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

UNIT I MOS TRANSISTOR PRINCIPLE

NMOS and PMOS transistors, Process parameters for MOS and CMOS, Electrical properties of CMOS circuits and device modeling, Scaling principles and fundamental limits, CMOS inverter scaling, propagation delays, Stick diagram, Layout diagrams

UNIT II COMBINATIONAL LOGIC CIRCUITS

Examples of Combinational Logic Design, Elmore's constant, Pass transistor Logic, Transmission gates, static and dynamic CMOS design, Power dissipation – Low power design principles

UNIT III SEQUENTIAL LOGIC CIRCUITS

Static and Dynamic Latches and Registers, Timing issues, pipelines, clock strategies, Memory architecture and memory control circuits, Low power memory circuits, Synchronous and Asynchronous design

UNIT IV DESIGNING ARITHMETIC BUILDING BLOCKS

Data path circuits, Architectures for ripple carry adders, carry look ahead adders, High speed adders, accumulators, Multipliers, dividers, Barrel shifters, speed and area tradeoff

UNIT V IMPLEMENTATION STRATEGIES

Full custom and Semi custom design, Standard cell design and cell libraries, FPGA building block architectures, FPGA interconnect routing procedures.

TEXTBOOKS:

1. Jan Rabaey, Anantha Chandrakasan, B.Nikolic, "Digital Integrated Circuits: A Design Perspective", Second Edition, Prentice Hall of India, 2003.

2. M.J. Smith, "Application Specific Integrated Circuits", Addisson Wesley, 1997

REFERENCES:

1. N.Weste, K.Eshraghian, "Principles of CMOS VLSI Design", Second Edition, Addision Wesley 1993 2. R.Jacob Baker, Harry W.LI., David E.Boyee, "CMOS Circuit Design, Layout and Simulation", Prentice Hall of India 2005 3. A.Pucknell, Kamran Eshraghian, "BASIC VLSI Design", Third Edition, Prentice Hall of India, 2007

Total No. of Periods : 45

9

9

9 ect

Dr. M.G.K. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

DEPARTMENT OF MECHANICAL ENGINEERING Subject Name : Ty/Lb/ Subject Code: Τ/ **P/ R** С L **INTERNET OF THINGS FOR ROBOT** ETL S.Lr **BRE18E22** 3 Prerequisite: Instrumentation and Control for Robots, Τv 0/0 0/0 3 Microprocessors and Microcontrollers and Python Programming L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits Ty/Lb/ETL : Theory/Lab/Embedded Theory and Lab **OBJECTIVE :** To study basic of IoT and M2M. • To study IoT with Cloud Environment. • To design IoT systems with Python and Study physical Devices COURSE OUTCOMES (COs) : (3-5) **CO1** Will be able to get overview of IoT **CO2** Will be able to implement new approach based on IoT and M2M **CO3** Will be able to design IoT systems with cloud environment. **CO4** Will be able to use python software to configure IoT devices. C05 Will be able to implement new applications based on Raspberry PI and Intel Galileo Arduino board Mapping of Course Outcomes with Program Outcomes (POs) **PO9 COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO10 PO11 PO12 CO1** Μ Μ Μ Η Μ Μ Μ L L Η Μ Η **CO2** Μ Μ Η Η Η L Η L Η Μ Η Η Η Н Н Н Н Н Η Μ Η Μ Н Μ **CO3 CO4** Н Н Н Н Н Η Н Н Н Н Η Μ **CO5** Η Н Н Η Н Н Η Μ Η Н Η Η COs / PSOs PSO1 PSO₂ PSO3 PSO4 **CO1** Η Η Η Η Н Η **CO2** Μ Н **CO3** Η Η Μ Η **CO4** H H H H **CO5** Н Н H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low nternships / Technical Skill Social **Engineering Sciences** Program Electives Practical / Project Humanities and Category **Dpen** Electives **Basic Sciences** Program Core Soft Skills Sciences ~ Approval

versity with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

(Deemed to be University)

Subject Code:	Subject Name :	Ty / Lb/	L	Τ/	P/ R	С
	INTERNET OF THINGS FOR ROBOT	ETL		S.Lr		
BRE18E22	Prerequisite: Instrumentation and Control for Robots,	Ту	3	0/0	0/0	3
	Microprocessors and Microcontrollers and Python	-				
	Programming					

UNIT I: INTRODUCTION TO IoT

Definition and Characteristics of IoT-Things in IoT-IoT protocols-Logical Design of IoT-IoT enabling technologies-IoT levels

UNIT II: DOMAIN SPECIFIC IoT AND M2M

Home Automation-Cities-Environment-Energy-Retail-Logistics-Agriculture-Health and Lifestyle-Introduction to M2M-Difference between IoT and M2M-SDN and NFV for IoT

UNIT III :IoT SYSTEM MANAGEMENT AND CLOUD

Need for IoT system management-SNMP-NETCONF-YANG-NETOPEER-IoT design methodology-Case Study for IoT System-WAMP-AutoBahn for IoT-Xively-Django-Amazon Web for IoT-SkyNet IoT.

UNIT IV: IoT SYSTEMS-LOGICAL DESIGN USING PYTHON

Introduction-Installing Python-Python data types and data structures-Control flow-Functions-Modules-Packages-File Handling-Data/Time Operations-Classes-Python packages of Interest for IoT

UNIT V :IoT PHYSICAL DEVICES

Raspberry Pi-Linux on Raspberry Pi-Raspberry Pi Interfaces-Programmig Raspbeery Pi with Python-Arduino boards-Other IoT devices-Data analytics for IoT-Intel Galileo Arduino board specification(With simple programs)

Total No. of Periods : 45

TEXTBOOKS:

1. Arshadeep Bahaga, Vijay Madisetti,"Internet of things-A hands -on approach", Universities press, First Edition 2015

2. Adrian McEwen and Hakim Cassimally,"Designing the Internet of Things", Wiley, First Edition, 2014

3.C Hillar Gastn,"Internet of Things with Python", Packt publishing, first edition, 2016

REFERENCES:

1. Dominique DGuinard and Vlad M.Trifa, "Building the Web of things with examples in Node. is and Raspberry Pi", Manning Publications Co. 2016

2. Marco Schwartz, "Internet of Things with the Raspberry Pi:Build Internet of Things Projects Using the Raspberry Pi Platform", Kindle Edition

9

0

9

9

ELECTIVE: COMPUTER SCIENCE AND ENGINEERING

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

			EPARTN	MENT	OF ME	CHAN	ICAL	ENGIN	NEERIN					
Subject Code	: Sı	ibject Na		_			_		Ty / Lb/	L	Τ/	P/ R	С	
			JMAN CO						ETL		S.Lr			
BRE18E23	P	rerequisi	te: Basic	s of Cor	nputers	and ap	plication	ns	Ту	3	0/0	0/0	3	
L : Lecture T :	: Tutori	al SLr	: Supervis	ed Leari	ning P:	Project	R : Res	earch C:	Credits			1		
Ty/Lb/ETL: 7	Theory/	Lab/Emb	edded Th	eory and	l Lab									
OBJECTIVE	:													
•			dations of		-			_						
•			th the desi	ign techi	nologies	for indi	viduals a	and pers	ons with c	lisabilit	ies			
• COURSE OU		ge HCI	(3, 5))										
COURSE OU			n idea on		nent of l	nimans	in HCI							
001		wini get u	in fact on	mvorver		iumans	miller							
CO2	V	Will get a	n idea on	involver	ment of o	compute	ers in HC	CI						
CO3	- I V	Will have	an conce	ptual ide	a of app	lication	and don	nain spe	cific desig	,n				
CO4		How HCI	can be us	ed for d	iverse po	opulatio	n							
		How HCI can be used for diverse population How to manage HCI in the current scenario												
CO5		How to m	anage HC	I in the	current s	scenario								
Mapping of C							<i>i</i>			1				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10		PO		
<u>CO1</u>	H	H	M	H	M	H	H	M	H	H			H	
CO2 CO3	H H	H H	H H	H H	H M	H M	M H	M H	H H	H M	H H		M L	
CO4	H	H	H	H	M	M	H	H	H	M	H			
C04 C05	H	H	H	H	M	M	H	H	H	M	H		L L	
COs / PSOs		SO1	PSO			03		504		171				
CO1	H	501	H		H	05	H							
CO2	Η		Н		Μ		Н							
CO3	Η		Н		Μ		Н							
CO4	Η		Н				Н							
CO5	H		Η				Η							
H/M/L indica	ites Str	ength of	Correlat	ion H-	High, N	A- Med	ium, L-	Low						
		viences	d Social		ves		ect	Technical						
Category	Basic Sciences	Engineering Sciences	Humanities and Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
	Bas	Eng	Hur Scie	Pro	◆ Pro	Opt	Pra	In	Sof					
Approval														

B.Tech- Robotics	and Automation -	2018 Regulation
2110001100000000		

Subject Code:	Subject Name :	Ty / Lb/	L	Τ/	P/ R	С
	HUMAN COMPUTER INTERACTION	ETL		S.Lr		
BRE18E23	Prerequisite: Basics of Computers and applications	Ту	3	0/0	0/0	3

(Deemed to be University) versity with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

UNIT I: HUMANS IN HCI

Introduction-implications for HCI-overview of HCI-Mentor models in HCI-emotions in HCI- cognitive architecture -- task loading and stress in HCI-theoretical framework and mitigation strategies-motivating influencing and persuading users – human error identification in HCI

UNIT II :COMPUTERS IN HCI

Input technologies and techniques - sensor and recognition based input for interaction-visual displays-haptic interfaces-nonspeech auditory output-network based interaction-wearable computers-design of computer workstation

UNIT III: APPLICATION/DOMAIN SPECIFIC DESIGN

HCI in health care-designing emotions for games, entertainment interfaces and interactive productsmotor vehicle driver interfaces-HCI in aerospace-user centered design in games

UNIT IV: DESIGNING FOR DIVERSITY

The digital divide-the role of gender in HCI-IT and older adults-HCI for kids-IT for cognitive support-physical disabilities and computing technologies - an analysis of impairmentscomputing technologies for deaf and hard of hearing users

UNIT V: MANAGING HCI AND EMERGING ISSUES

Technology transfer-augmenting cognition in HCI-human values, ethics and design, cost justification-future trends in HCI

Total No. of Periods : 45

TEXT BOOKS:

- 1. Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, "Human Computer Interaction", 3rd Edition, Pearson Education, 2004.
- Preece J., Rogers Y., Sharp H., Baniyon D., Holland S. and Carey T. Human Computer Interaction, Addison-Wesley, 1994.

REFERENCES:

- 1. Brian Fling, "Mobile Design and Development", First Edition, O"Reilly Media Inc., 2009.
- Bill Scott and Theresa Neil, "Designing Web Interfaces", First Edition, O''Reilly, 2009. 2.
- B.Shneiderman; Designing the User Interface, Addison Wesley 2000 (Indian Reprint). 3.

180

9

Q

9

9

EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

E

DEPARTMENT OF MECHANICAL ENGINEERING Ty / Lb/ Subject Code: Τ/ P/R C **Subject Name :** L **ADVANCED MACHINE LEARNING ETL** S.Lr **BRE18E24 Prerequisite: Artificial Intelligence and Machine** 3 0/0 3 Tv 0/0 Learning L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits Ty/Lb/ETL : Theory/Lab/Embedded Theory and Lab **OBJECTIVE :** To learn machine learning techniques • To acquire knowledge about clustering and nonparametric methods • To understand multilaver perceptrons and dimensionality reduction To design and analyze machine learning experiments. • COURSE OUTCOMES (COs) : (3-5) **CO1** Understand the concept of Machine Learning CO₂ Recognize the importance and relevance of parametric and multivariate methods **CO3** Recognize the importance and relevance of clustering and non parametric methods **CO4** Understand the concept of linear discrimination and multilayer perceptrons **CO5** Understand the concept kernel machines and graphical models Mapping of Course Outcomes with Program Outcomes (POs) **COs/POs PO1 PO2 PO3 PO4 PO5** PO₆ **PO7 PO8 PO9 PO10 PO11 PO12 CO1** Н Η Μ Η Η Μ Μ Μ Η Μ Η Η **CO2** Μ Н Μ Н Η Μ Μ Н Μ Н Μ Η **CO3** Н Н Н Н Μ Н Μ Н Μ Μ Η Μ **CO4** Н Μ Н Μ Μ Н Η Η Η Η Μ Μ CO5 H Н Μ Н Н Μ Η Μ Н Μ Н Μ COs / PSOs PSO4 **PSO1** PSO2 PSO3 **CO1** Μ Η L Μ **CO2** Μ Н L Μ CO3 Μ Η L Μ **CO4** Μ Н L Μ **CO5** Μ Η L Μ H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low **Engineering Sciences** Internships / Technical Skill Program Electives Practical / Project ocial Sciences Humanities and **Dpen Electives Basic Sciences** Program Core Category Soft Skills Approval

DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code:	Subject Name :	Ty / Lb/	L	Τ/	P/ R	С
	ADVANCED MACHINE LEARNING	ETL		S.Lr		
BRE18E24	Prerequisite: Artificial Intelligence and Machine	Ту	3	0/0	0/0	3
	Learning					

UNIT I: INTRODUCTION TO MACHINE LEARNING

Machine Learning – Machine learning applications – learning association – supervised learning – learning a class from examples – learning multiple classes – regression – model selection and generation – Bayestan decision theory – losses and risk – discriminate functions – association rules.

UNIT II: PARAMETRIC AND MULTIVARIATE METHODS

Parametric methods – maximum likelihood estimation – Baye's estimator – parametric classification –regression – tuning model – multivariate methods – multivariate data – multivariate normal distribution – multivariate regression – dimensionality reduction – subset selection – factor analysis – multidimensional scaling – Isomap.

UNIT III: CLUSTERING AND NONPARAMETRIC METHODS

Clustering - Mixtures densities -k mean clustering -special and hierarchal clustering -Nonparametric density estimation -generalization to multivariate data -nonparametric classification <math>-outlier data - decision trees -univariate trees -pruning - rule extraction from trees -multivariate trees.

UNIT IV: LINEAR DISCRIMINATION AND MULTILAYER PERCEPTRONS

Linear discrimination – generalizing the linear model – pair wise separation – logistic discrimination – discrimination by regression – multilayer preceptrons – MLP – back propagation algorithms – training procedures – tuning – dimensionality reduction – deep learning – local models – competitive learning – radial basis – normalized basis – learning vector quantization - mixture of experts.

UNIT V: KERNEL MACHINES AND GRAPHICAL MODELS

Kernel machine – optimal separating hyper plane – v SVM – multiple kernel learning – large margin nearest neighbour classifier – graphical models – generative models – d Separation - belief propagation – Hidden morkov models – Bayesten estimation – combining multiple learners – reinforcement learning.

Total No. of Periods : 45

TEXT BOOKS:

- 1. Ethem Alpaydin, "Introduction to Machine Learning" 3rd Edition PHI- 2014
- 2. Snila Gollapudi, "Practical Machine Learning" PACKT 2016

REFERENCES:

- 1. Tom M Mitchell, "Machine Learning" McGraw-Hill 2013
- 2. David Barber "Bayesian Reasoning and Machine Learning" Cambridge University Press 2015.

9

9

9

9

9

.

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPA DTMENT OF MECHANICAL ENGINEERING

			EPART	MENI	C OF M	ECHA	NICA			ING	r		
Subject Code	: Su	bject N	ame : RANDO	MIZED) ALGO	RITH	MS		Ty / Lb/ ETL	L	T / S.Lr	P/ R	C
BRE18E25		erequis	ite: Prog	rammin	ig and N	Iathem	atical		Ty	3	0/0	0/0	3
L : Lecture T				sed Lea	rning P	: Projec	ct R : R	esearch	C: Credi	ts			<u> </u>
Ty/Lb/ETL : 7			-		-	5							
-				neory a									
OBJECTIVE		To und	retand t	ha mat	homotio	al four	dationa	naadaa	1 for u	ndorator	dina on	d dasi	mina
			erstand t		nematic	al loun	luations	needec	I TOP U	nuerstar	lung an	d desig	zning
			ciate the i		random	ized alg	orithms						
			e the stud			Ų							
			stand the										
			e the stud					ations of	f random	ized alg	orithms		
COURSE OU						<u></u>							
CO1			ntroduced		rent ran	domized	l algorit	hms					
CO2	v	Vill ha a	ble to ana	1470 1:1	foront	ohahili	tio mail	hoda					
02	v	v III be a		iyze uli	lefent pi	obabilit	suc men	nous					
CO3	v	Vill be a	ble to app	ly diffe	rent alge	braic te	chnique	s and ap	plication	IS			
CO4			ble to app	•	•		<u> </u>	•	1				
CO5			ble to app	•••		0 1	0						
Mapping of C				-	-		-						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO ₆	PO7	PO8	PO9	PO1) PO1	1 PO	12
CO1	Н	Н	Μ	Н	Н	Μ	Μ	Μ	Н	Μ	Н		H
CO2	Μ	Н	Μ	Н	Η	Μ	Μ	H	Μ	Η	Μ		H
CO3	H	Н	M	Н	Н	Μ	Н	Μ	Н	Μ	H]	Μ
CO4	Н	Н	M	H	Н	Μ	Н	Μ	Н	Μ	Н		Μ
CO5	Н	Н	Μ	Н	Н	Μ	Η	Μ	Н	Μ	Н]	Μ
COs / PSOs		501	PS	02		03		504	P	SO5		PSO6	
CO1	Μ		H		L		Μ						
CO2	M		H		L		M						
CO3	M		H		L		M						
CO4	M		H		L		M						
CO5	M		H	,		14 14	M	r v					
H/M/L indica	ites Str	ength of		uon F	I- High,	, IVI- IVIE	aium, I						
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives ✓	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills				
Approval													

Subj	ject Code:	Subject Name :	Ty/ Lb/	L	Τ/	P / R	С					
		RANDOMIZED ALGORITHMS	ETL		S.Lr							
		Prerequisite Programming and Mathematical	Ту	3	0/0	0/0	3					
BRE18E25	knowledge											

UNIT I :INTRODUCTION TO RANDOMIZED ALGORITHMS

Introduction to Randomized Algorithms - Min-cut – Elementary Probability Theory – Models of Randomized Algorithms – Classification of Randomized Algorithms – Paradigms of the Design of Randomized Algorithms - Game Theoretic Techniques – Game Tree Evaluation – Minimax Principle – Randomness and Non Uniformity.

UNIT II :PROBABILISTIC METHODS

Moments and Deviations – occupancy Problems – Markov and Chebyshev Inequalities – Randomized Selection – Two Point Sampling – The Stable Marriage Problem – The Probabilistic Method – Maximum Satisfiability – Expanding Graphs – Method of Conditional Probabilities – Markov Chains and Random Walks – 2-SAT Example – Random Walks on Graphs – Random Connectivity

UNIT III: ALGEBRAIC TECHNIQUES AND APPLICATIONS

Fingerprinting Techniques – Verifying Polynomial Identities – Perfect Matching in Graphs – Pattern Matching – Verification of Matrix Multiplication Structuring Problems – Ra- Data ndom Treaps – Skip Lists – Hash Tables.

UNIT IV :GEOMETRIC AND GRAPH ALGORITHMS

Randomized Incremental Construction – Convex Hulls – Duality – Trapezoidal Decompositions – Linear Programming – Graph Algorithms – Min-cut – Minimum Spanning Trees.

UNIT V: HASHING AND ONLINE ALGORITHMS

Hashing – Universal Hashing - Online Algorithms – Randomized Online Algorithms - Online Paging – Adversary Models – Relating the Adversaries – The k-server Problem.

Total No. of Periods : 45

0

9

9

TEXT BOOKS:

1. Rajeev Motwani and Prabhakar Raghavan, "Randomized Algorithms", Cambridge University Press, 1995.

REFERENCES:

1. Juraj Hromkovic, "Design and Analysis of Randomized Algorithms", Springer, 2010.

2. Michael Mitzenmacher and Eli Upfal, "Probability and Computing – Randomized Algorithms and Probabilistic Analysis", Cambridge University Press, 2005.

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code	: Sı	ibject Na			OF ME	СПАР	ICAL	ENGI	NEERINO Ty / Lb/	L	Τ/	P/ R	С	
U U		GRAPH ALGORITHMS							ETL		S.Lr			
BRE18E26	BRE18E26 Prerequisite: Programming an knowledge					athema	tical		Ту	3	0/0	0/0	3	
L : Lecture T :				ed Lear	ning P:	Project	R : Res	search C	: Credits					
Ty/Lb/ETL : T			-		•	Ū								
OBJECTIVE	:													
• To	o under	stand the	concept a	nd need	of grap	hs								
• To	o under	stand var	ious grapl	n algorit	hms									
• To	o under	stand the	various a	pplicatio	ons of gr	aph in r	eal worl	d proble	ems					
COURSE OU	TCON	IES (CO	os) : (3- 5)										
CO1	O1 Analyse the concept of graphs													
CO2	1	Analyse t	he concep	t of path	n and tre	e algorit	hms							
CO3	1	Analyse t	he concep	t of mat	ching									
CO4	1	Analyse t	he euleria	n and H	amiltoni	an grapl	ns							
CO5	1	Analyse g	graph ison	norphism	n									
Mapping of C										T				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10				
CO1	H	H	H	H	H	H	M	M	H	H	H		H	
CO2 CO3	H M	H H	H H	H H	M L	H H	M M	M M	H H	M M	H H		H H	
<u>CO3</u> CO4	M	п Н	п Н	п Н		п Н	M	M	H H	M	H H		<u>п</u> Н	
C04 C05	M	H	H	H		H	M	M	H	M			H	
COs / PSOs		SO1	PSC			03		504						
CO1	Μ		Η		L		Μ							
CO2	Μ		Η		L		Μ							
CO3	Μ		Η		L		Μ							
CO4	Μ		Н		L		Μ							
CO5	Μ		Η		L		Μ							
H/M/L indica	tes Str	ength of	Correlati	ion H·	• High, I	M- Med	ium, L-			1				
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills					
Approval														

UNIT II: PATH AND TREE ALGORITHMS:

Shortest path problem, Dijkstra's algorithm, Floyd's algorithm for all pair shortest path, BellmanFord-Moore shortest path algorithm for graphs with negative length edges. Minimum weight spanning tree - fundamental cycles, cotrees and bonds, Prim's and Kruskals's algorithms, Cheriton-Tarjan algorithm. Depth-first and breadthfirst algorithms for finding blocks.

UNIT III: MATCHING:

Maximum and perfect matchings, augmenting path, Berge's, Konig's and Tutte's theorems, Hall's theorem, Hungarian algorithm, Edmond-Blossom algorithm. Kuhn-Munkre's algorithm for optimal assignment. NETWORK FLOW: Maximum flow in a network, minimum cut, Ford-Fulkerson algorithm, Max-flow min-cut theorem. Similarity between matching and flow theories.

UNIT IV: EULERIAN AND HAMILTONIAN GRAPHS:

11 Eulerian trails and tours. Optimal Chinese Postman Tour - Edmond's and Johnson algorithm, Eulerian trail -Fleury's algorithm. Hamiltonian cycles – Ore's and Dirac's conditions. Gray codes, Traveling Salesman problem - Christofide's algorithm. VERTEX COLORING: Vertex coloring and bounds. Sequential coloring, largest degree first algorithms. Maximum clique and vertex coloring. Mycielski's construction for large chromatic number.

UNIT V:GRAPH ISOMORPHISM:

Isomorphism, subgraph isomorphism, László Babai's quasi-polynomial time solution for graph isomorphism problem. PLANAR GRAPHS: Euler's formula, dual graph, Kuratowski's theorem, 4-color problem, Wagner's theorem. Planarity testing – Hopcraft-Tarjan algorithm.

TEXT BOOKS:

1. Willian Kocay, Donald L. Kreher, Graphs, Algorithms, and Optimization, CRC Press, 2013. 2. Jonathan Gross and Jay Yellen, Graph Theory and its Applications, CRC Press, 2006.

REFERENCES:

1. Douglas B West, Introduction to Graph Theory, PHI Learning Pvt. Ltd., 2012.

2. Naveed Sherwani, Algorithms for VLSI Physical Design Automation, Springer, 2013.

3. Bang-Jensen, Jørgen, Gutin, Gregory Z., Diagraphs: Theory, Algorithms and Applications, Springer-Verlag, 2010.

211	EDUCATIONAL AND RESEARCH INSTITUTE
2	(Deemed to be University)
-	University with Graded Autonomy Status
	Periyar E.V.R. Salai, Maduravoyal, Chennai – 95
	DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code:	Subject Name :	Ty / Lb/	L	Τ/	P / R	С
-	GRAPH ALGORITHMS	ETL		S.Lr		
BRE18E26	Prerequisite: Programming and Mathematical	Ту	3	0/0	0/0	3
	knowledge	-				

UNIT I: INTRODUCTION:

Graphs, subgraphs, matrix representations, degree sequence, connected graphs, vertex and edge connectivity, distance in graphs, weighted graphs, graph classes, interval graphs, clique, independent set, vertex cover. Trees – characterizations, rooted, unrooted, spanning tree, matrix tree theorem, Cayley's formula. Graph operations union, intersection, product. Digraphs - connectivity, tournament, transitive closure, topological order. Algorithms – time and space complexities.

10

6

7

11

Total No. of Periods: 45

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEDA DEMARKING OF MECHA AUCOAL ENCOURSEDING

		D	EPARTN	MENT	OF ME	CHAN	ICAL	ENGIN	IEERIN	G			-
Subject Code	: S	Subject Na							Ty/	L	Τ/	P/ R	C
		VISIO	N SYSTI	EM ANI	D IMAG	GE PRO	CESSI	NG	Lb/		S.Lr		
BRE18E27						_			ETL	-			
		Prerequisi	0	0		nd	Mather	natical	Ту	3	0/0	0/0	3
L : Lecture T :		nowledge				Project	D · Dos	earch C	Credits				
			•		e	Flojeci	K . Kes	earch C.	Cieuns				
T/L/ETL : The	eory/L	.ab/Embed	ded Theor	ry and L	ab								
OBJECTIVE	:												
• To stu	dy and	d analyze	vision sys	tem, alg	orithms	and rob	otic visio	on.					
COURSE OU	TCO												
CO1		Will be in					ts						
CO2		Will analy											
CO3		Will analy			3	U							
CO4		Will be av			~ ~		-	to image	processii	ng			
CO5		Will be in				-							
Mapping of C	1												
Cos/Ps	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO	12
<u>CO1</u>	H	H	H	M	H	L	H	M	H	M	H	H	
CO2	H	H	M	M	H	H	M	M	H	M	H H		
CO3 CO4	H M	<u>M</u> H	H H	M H	M H	H M	M M	M L	M M	H L	H M	H H	
C04 C05	L	M	H	H	H	M	M	L	M	M	H	H	
Cos / PSOs		PSO1	PSO			03		504	PSO5	111			
CO1	H		H	-	M				1000				
CO2	Μ		Н		L								
CO3	Μ		Η		Н								
CO4	Μ		Η		Н								
CO5	H		Н		Μ			_					
H/M/L indica	tes St	rength of	Correlati	ion H-	High, I	M- Med	ium, L-			1			
Category	viences	Engineering Sciences	Humanities and Social Sciences	1 Core	Program Electives	ectives	Practical / Project	Internships / Technical Skill	lls				
Ŭ	Basic Sciences	Enginee	Humaniti Sciences	Program Core	Program 🔨	Open Electives	Practica	Internsh	Soft Skills				
Approval													

UNIT I : VISION SYSTEM

BRE18E27

Basic Components - Elements of visual perception, Lenses: Pinhole cameras, Gaussian Optics - Cameras -Camera-Computer interfaces.

UNIT II : VISION ALGORITHMS

Prerequisite:

knowledge, Basics of Robotics

Fundamental Data Structures: Images, Regions, Sub-pixel Precise Contours - Image Enhancement : Gray value transformations, image smoothing, Fourier Transform – Geometric Transformation - Image segmentation – Segmentation of contours, lines, circles and ellipses - Camera calibration - Stereo Reconstruction.

UNIT III: OBJECT RECOGNITION

Object recognition, Approaches to Object Recognition, Recognition by combination of views – objects with sharp edges, using two views only, using a single view, use of dept values.

UNIT IV : APPLICATIONS

Transforming sensor reading, Mapping Sonar Data, Aligning laser scan measurements - Vision and Tracking: Following the road, Iconic image processing, Multiscale image processing, Video Tracking - Learning landmarks: Landmark spatiograms, K-means Clustering, EM Clustering.

UNIT V ROBOT VISION

Basic introduction to Robotic operating System (ROS) - Real and Simulated Robots - Introduction to Open CV, Open NI and PCL, installing and testing ROS camera Drivers, ROS to Open CV - The cv bridge Package.

TEXT BOOKS:

1. Carsten Steger, Markus Ulrich, Christian Wiedemann, "Machine Vision Algorithms and Applications", WILEY-VCH, Weinheim, 2008.

2. Damian m Lyons, "Cluster Computing for Robotics and Computer Vision", World Scientific, Singapore, 2011.

REFERENCES:

1. Rafael C. Gonzalez and Richard E.woods, "Digital Image Processing", Addition - Wesley Publishing Company, New Delhi, 2007.

2. Shimon Ullman, "High-Level Vision: Object recognition and Visual Cognition", A Bradford Book, USA, 2000.

3. R.Patrick Goebel, "ROS by Example: A Do-It-Yourself Guide to Robot Operating System – Volume I", A Pi Robot Production, 2012.

and

Programming

	University with Graded Autonomy Sta Periyar E.V.R. Salai, Maduravoyal, Chennai – DEPARTMENT OF MECHANICAL ENGIN	95				
Subject Code:	Subject Name :	Ty/	L	Τ/	P/ R	C
	VISION SYSTEM AND IMAGE PROCESSING	Lb/		S.Lr		

0

Total No. of Periods : 45

9

0

9

0/0

3

0/0

ETL

Tv

Mathematical

Dr. M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE (Deemed to be University) University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95

DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code	: Su	ibject Na			TEM SC			EIGH	<u>NEERIN</u> Ty / Lb/		Τ/	P/ R	С		
DDE10E40	_			0		0.			ETL		S.Lr	0.40	3		
BRE18E28		rerequisi ardware	te: Basics	s of com	puter so	oftware	and		Ty 3 0/0 0/0						
L : Lecture T :			: Supervi	sed Lear	ming P	: Project	t R : Re	search (C: Credits	11					
T/L/ETL : The	ory/La	b/Embed	ded Theo	ry and L	ab										
OBJECT	IVES														
	forston	d the con	cept of as	comblor	a loodor	ond li	nkora								
			tal concep					ators							
			ot of virtu		-										
COURSE OU	TCON	IES (CO	s): (3-5)											
CO1			the know		assemb	lers									
CO2		•	the know	•			kers								
CO3			the know					emulator	ſS						
CO4			erstand th			-									
CO5						ode opti	mizing	techniqu	ues, garbag	ge colle	ctions and	d real v	vorld		
Manada		•	ntation of				-)								
Mapping of C COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	s) PO7	PO8	PO9	PO10	PO11	PO	12		
CO1	H	H	H	H	H	H	H	L	H	H	H	H	14		
CO2	Н	H	Н	M	H	H	H	H	M	H	M	M			
CO3	Η	Н	Н	Н	Μ	Н	L	Μ	Н	L	Н	Н			
CO4	Н	Η	Н	Н	Μ	Η	L	Μ	H	L	H	H			
CO5	Η	Η	Н	Н	Μ	Н	L	Μ	H	L	H	H			
COs / PSOs	PSO1		PSO2		PSO3		PSO4								
<u>CO1</u>		H H	H			M V		H T							
CO2 CO3		H M	L		H M		L H								
CO4		M	L			vi M		H							
C05		M				M		H							
H/M/L indica															
	es	ence	Soc	e	ves	es	ject	hnic							
	Basic Sciences	Scie	nd	Program Core	lecti	Open Electives	Proj	Tec]	ills						
ory	Sci	ng Ing	ities and Sciences	am	1 El	Ele	[/]r	ps / T Skill	Soft Skills						
Category	sic	eeri	nitie Sci	ogr	gran	en e	tice	ship S	Sofi						
Ca	\mathbf{Ba}	Engineering Sciences	Humanities and Social Sciences	Pr	Program Electives	Op	Practical / Project	Internships / Technical Skill	•						
		Er	Hu					Int							
					\checkmark										
Approval															

University with Graded Autonomy Status Periyar E.V.R. Salai, Maduravoyal, Chennai – 95 DEPARTMENT OF MECHANICAL ENGINEERING

(Deemed to be University)

Subject Code:	Subject Name :	SYSTEM SOFTWARE	Ty / Lb/ ETL	L	T/ S.Lr	P/ R	C
BRE18E28	Prerequisite: Basics hardware	s of computer software and	Ту	3	0/0	0/0	3

UNIT I ASSEMBLERS

Review of Computer Architecture – Machine Instructions and Programs – Assemblers –Basic Assembler Functions – Assembler Features – Assembler Design Options

UNIT II LOADERS AND LINKERS

Loaders and Linkers – Basic Loader Functions – Machine-Dependent Loader Features – Machine-Independent Loader Features – Loader Design Options-Dynamic Linking and Loading- Object files-Contents of an object file – designing an object format – Null object formats- Code sections- Relocation – Symbols and Relocation – Relocatable a.out- ELF.

UNIT III MACROPROCESSORS AND EMULATORS

Macroprocessors – Basic Macro Processor Functions – Machine-Independent Macro Processor Features – Macro Processor Design Options - - Emulation - basic Interpretation – Threaded Interpretation – Interpreting a complex instruction set – binary translation.

UNIT IV VIRTUAL MACHINES

Pascal P-Code VM – Object-Oriented VMs – Java VM Architecture – Common Language Infrastructure – Dynamic Class Loading.

UNIT V ADVANCED FEATURES

Instruction Set Issues – Profiling – Migration – Grids – Code optimizations- Garbage Collection- Examples of real world implementations of system software

Total No. of Periods : 45

TEXT BOOKS:

- 1. Leland L. Beck, "System Software", 3rd ed., Pearson Education, 1997.
- 2. John R. Levine, "Linkers & Loaders", Morgan Kauffman, 2003.

REFERENCES:

1. John J Donovan, "Systems Programming", McGraw Hill, 1999.

2. Dhamdhere D M, "Systems Programming", Tata McGraw Hill, 2001.

3. Aho A V, Sethi R and Ullman J D, "Compilers: Principles, Techniques and Tools", Addison Wesley, Longman, 1999.

4. Dhamdhere D M, "Compiler Construction Principles and Practice", Macmillan Company, 1997.

5. Holub Allen I, "Compiler Design in C", Prentice Hall, 2001.

16

8

10

5