

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

M. TECH. POWER SYSTEMS

REGULATION – 2020 (Full Time)

(For students admitted from the Academic Year 2020-21)

M.Tech –Power System (Full Time) Curriculum and Syllabus 2020 Regulation

	I SEMESTER							
S.No	Subject Code	Title of Subject	L	T	P	C		
1	MEE20P001	Power System Analysis	3	0	0	3		
2	MEE20P002	Power System Dynamics -I	3	0	0	3		
3	MEE20PEXX	Elective - I	3	0	0	3		
4	MEE20PEXX	Elective - II	3	0	0	3		
5	MET20RM01	Research Methodology and IPR	2	0	0	2		
6	MEE20PL01	Power System Steady State Analysis Lab	0	0	4	2		
7	MEE20PL02	Renewable Energy lab	0	0	4	2		
8	MET20AUXX	Audit - I	2	0	0	0		
		TOTAL	16	0	8	18		

II SEMESTER								
S.No	Subject Code	Title of Subject	L	T	P	C		
1	MEE20P003	Digital Protection of Power System	3	0	0	3		
2	MEE20P004	Power System Dynamics -II	3	0	0	3		
3	MEE20PEXX	Elective - III	3	0	0	3		
4	MEE20PEXX	Elective - IV	3	0	0	3		
5	MEE20PL03	Mini project	0	0	4	2		
6	MEE20PL04	Power System Protection Lab	0	0	4	2		
7	MEE20PL05	Smart Grid Technology Lab	0	0	4	2		
8	MET20AUXX	Audit - II	2	0	0	0		
		TOTAL	14	0	12	18		

	III SEMESTER							
S.No	Subject Code	Title of Subject	L	T	P	C		
1	MEE20PEXX	Elective - V	3	0	0	3		
2	MET20OEXX	Open Elective	3	0	0	3		
3	MEE20PL06	Phase – I Dissertation	0	0	20	10		
		TOTAL	6	0	20	16		

		IV SEMESTER				
S.No	Subject Code	Title of Subject	L	T	P	C
1	MEE20PL07	Phase – II Dissertation	0	0	32	16
		TOTAL	0	0	32	16

Summary of Credits:	
Credits.	1
1 st Semester Credits	8
2 nd Semester Credits	1 8
ard a second	1
3 rd Semester Credits	6 1
4 th Semester Credits	6
Total	6

LIST OF ELECTIVES FOR THE SEMESTERS

	ELECTIVE - I							
S.No	Subject Code	Title of Subject	L	T	P	C		
1	MEE20PE01	Renewable Energy System	3	0	0	3		
2	MEE20PE02	Smart Grids	3	0	0	3		
3	MEE20PE03	High Power Converters	3	0	0	3		
4	MEE20PE04	Wind and Solar Systems	3	0	0	3		

	ELECTIVE - II							
S.No	Subject Code	Title of Subject	L	T	P	C		
1	MEE20PE05	Electrical Power Distribution System	3	0	0	3		
2	MEE20PE06	Mathematical Methods for Power Engineering	3	0	0	3		
3	MEE20PE07	Pulse Width Modulation for PE Converters	3	0	0	3		
4	MEE20PE08	Electric and Hybrid Vehicles	3	0	0	3		

	ELECTIVE - III							
S.No	Subject Code	Title of Subject	L	T	P	C		
1	MEE20PE09	Restructured Power Systems	3	0	0	3		
2	MEE20PE10	Digital Signal Processing	3	0	0	3		
3	MEE20PE11	Dynamics of Electrical Machines	3	0	0	3		
4	MEE20PE12	Power Apparatus Design	3	0	0	3		

	ELECTIVE - IV							
S.No	Subject Code	Title of Subject	L	T	P	C		
1	MEE20PE13	Advanced Micro-controller Based Systems	3	0	0	3		
2	MEE20PE14	SCADA System and Applications	3	0	0	3		
3	MEE20PE15	Electric Power Quality	3	0	0	3		
4	MEE20PE16	Artificial Intelligence Techniques	3	0	0	3		

	ELECTIVE - IV							
S.No	Subject Code	Title of Subject	L	T	P	C		
1	MEE20PE17	Power System Transients	3	0	0	3		
2	MEE20PE18	FACTS and Custom Power Devices	3	0	0	3		
3	MEE20PE19	Industrial Load Modeling and Control	3	0	0	3		
4	MEE20PE20	Dynamics of Linear Systems	3	0	0	3		

	AUDIT COURSE I & II								
S.No	Subject Code	Title of Subject	L	T	P	C			
1	MET20AU01	English For Research Writing	2	0	0	0			
2	MET20AU02	Disaster management	2	0	0	0			
3	MET20AU03	Sanskrit for Technical Knowledge	2	0	0	0			
4	MET20AU04	Value Education	2	0	0	0			
5	MET20AU05	Constitution of India	2	0	0	0			
6	MET20AU06	Pedagogy Studies	2	0	0	0			
7	MET20AU07	Stress management by Yoga	2	0	0	0			
8	MET20AU08	Personality Development through Life Enlightenment Skills	2	0	0	0			

	OPEN ELECTIVE							
S.No	Subject Code	Title of Subject	L	T	P	C		
1	MET20OE01	Business Analytics	3	0	0	3		
2	MET20OE02	Industrial Safety	3	0	0	3		
3	MET20OE03	Operations Research	3	0	0	3		
4	MET20OE04	Cost Management of Engineering Projects	3	0	0	3		
5	MET20OE05	Composite Materials	3	0	0	3		
6	MET20OE06	Waste to Energy	3	0	0	3		

Credit distribution

SEMESTER	CREDITS
I	18
II	18
III	16
IV	16
TOTAL	68

	Subject Code:	Subject Name: POWER SYSTEM ANALYSIS	T/L	L	T	P	C
	MEE20P001	Prerequisite: Circuit Theory	T	3	0	0	3
Γ	TD/T / TD1 /T	11 I	C 1'4				

T/L/: Theory/LabL: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

OBJECTIVE: Students will be able to:

- 1. Study various methods of load flow and their advantages and disadvantages
- 2. Understand how to analyze various types of faults in power system
- 3. Understand power system security concepts and study the methods to rank the contingencies
- 4. Understand need of state estimation and study simple algorithms for state estimation

COURSE	OUTCOM	IES (COs)	: The stud	ents will be	e able to				
CO1	Able	to calculate v	oltage phase	ors at all bus	es, given the	e data using	yarious meth	ods of load fl	ow
CO2	Able	to calculate f	ault currents	s in each pha	se				
CO3	Rank	various cont	ingencies ac	cording to th	neir severity				
CO4	Estim	ate the bus v	oltage phase	ors given var	ious quantiti	es viz. pow	er flow, voltag	ges, taps, CB	status etc
CO5	Estim	ate closeness	s to voltage o	collapse and	calculate PV	curves usi	ng continuatio	n power flow	,
Mapping	of Course	Outcomes	with Progr	am Outcor	mes (POs)				
Cos/Pos	PO1	PO2	PO3	PO	04 P	O5	PO6	PO7	PO8
CO1	Н	Н	Н	Н	[]	M	M	M	M
CO2	Н	M	Н	Н	[Н	M	Н	Н
CO3	Н	Н	M	M	I .	H	Н	Н	Н
CO4	Н	Н	M	Н	[]	M	M	M	Н
CO5	M	M	M	M	ſ	Н	L	M	H
COs / PSOs	PSO1	PSO2	PSO	3					
CO1	Н	Н	Н						
CO2	M	Н	Н						
CO3	Н	M	Н						
CO4	Н	M	Н						
CO5	M	M	M						
					CO5				
	Basic Science s	Enginee ring Science s	Humani ties and Social Science s	Progra m Core	Progra m Elective s	Open Elective s	Practical / Project	Internsh ips / Technic al Skill	Soft Skills

MEE20P001 POWER SYSTEM ANALYSIS 3 0 0 3

UNIT I Load Flow 9hours

Over view of Newton-Raphson, Gauss Seidal – Fast Decoupled methods-Convergence Properties- Sparsity Techniques – Handling Q-max- violations in constant matrix, inclusion in frequency effects- AVR in load flow, handling of discrete variable in load flow.

UNIT II Fault Analysis 9hours

Simultaneous faults - open conductors faults- generalized method of fault analysis

UNIT III Security Analysis

9hours

Security state diagram, contingency analysis, generator shift distribution factors- line outage distribution factor, multiple line outages -overload index ranking - Power System Equivalents -WARD -REI Equivalents

UNIT IV State Estimation 9hours

Sources of errors in Measurement – Virtual and Pseudo – measurement – Observability – Tracking State Estimation – WSL Method –Bad Data Correction

UNIT V Voltage Stability 9hours

Voltage Collapse- P-V Curve, Multiple Power Flow Solution – Continuation Power Flow – Optimal Multiples Load Flow – Voltage Collapse Proximity Indices

Total no. of Hours: 45

Suggested Reading:

- 1. J.J. Grainger &W.D.Stevenson, "Power system analysis", McGraw Hill ,2003
- 2. A.R. Bergen & Vijay Vittal, "Power System Analysis", Pearson, 2000
- 3. L.P. Singh, "Advanced Power System Analysis and Dynamics", New Age International, 2006
- 4. G.L. Kusic, "Computer aided power system analysis", Prentice Hall India, 1986
- 5. A.J. Wood, "Power generation, operation and control", John Wiley, 1994
- 6. P.M. Anderson, "Faulted power system analysis", IEEE Press, 1995

Subject Co		ject Name	POWERS	SYST	EM D	YNAMI	CS –I		T/L	L	T	P	C
MEE20P0	002 Pre	requisite:								3	0	0	3
T/L/: The	ory/LabL :	Lecture T:	Tutorial P	:Pract	tical/ P	roject R	: Resea	rch C:	Credits				
		nts will be a											
		•	cs and its pl	•									
	_		natical mode	els for	synch	ronous m	achine						
3. M	lodeling of	induction n	notor										
COURSE		, ,	: The stude										
CO1	Unde	rstand the mo	odeling of syr	nchron	ous ma	chine in de	etails						
CO2	Carry	out simulati	on studies of	power	system	dynamics	s using N	MATLA	AB-SIMU	LINK, MI	POV	VER	
CO3	Carry	out stability	analysis with	h and v	vithout	power sys	tem stab	ilizer (PSS)				
CO4	Unde	rstand the lo	ad modeling i	in pow	er syste	m							
Mapping of	of Course	Outcomes	with Progra	am Oı	utcome	es (POs)							
Cos/Pos	PO1	PO2	PO3		PO4	P	O5	PO) 6	PO7		PO8	
CO1	Н	Н	Н	н н				N	Л	M		M	
CO2	Н	M	Н		Н		H	N	Л	Н Н		Н	
CO3	Н	Н	M		M		H	I	I	Н		Н	
CO4	Н	Н	M		Н		M	N	Л	M		Н	
COs / PSOs	PSO1	PSO2	PSO3	3									
CO1	Н	Н	Н										
CO2	Н	M	Н										
CO3	Н	Н	M										
CO4	Н	Н	M										
H/M/L ind	icates Strei	ngth of Cor	elation H	- High	n, M- N	ledium, I	L-Low	•	.		•		
	Basic	Enginee	Humani	Progr		Progra	Open		Practical	Interns	h S	Soft Skill	S
	Science	ring	ties and	m Co		n	Electi	ve /	Project	ips /			
	S	Science	Social			Elective	S			Techni			
		S	Science		S	3				al Skill			
			S										
				V	1								
Approval							<u> </u>						
1 1ppi Ovai													

MEE20P002 POWER SYSTEM DYNAMICS –I 3 0 0 3

UNIT I Synchronous Machines

9hours

Per Unit Systems – Park's Transformation (Modified) – Flux Linkage Equations

UNIT II 9hours

Voltage and Current Equations - Formulation of State -space Equations - Equivalent circuit

UNIT III 9hours

Sub-transient and transient inductance and Time constants – Simplified models of synchronous machines

UNIT IV System Modeling 9hours

Small signal model: Introduction to frequency model - Excitation systems and Philips-Heffron model

UNIT V Load Modeling 9hours

PSS Load modeling- Modeling of Induction Motors- Prime mover controllers

Total no. of Hours: 45

Suggested Reading:

- 1. P. M. Anderson & A. A. Fouad "Power System Control and Stability", Galgotia, New Delhi, 1981
- 2. J Machowski, J Bialek& J. R W. Bumby, "Power System Dynamics and Stability", John Wiley & Sons, 1997
- 3. P.Kundur, "Power System Stability and Control", McGraw Hill Inc., 1994.
- 4. E.W. Kimbark, "Power system stability", Vol. I & III, John Wiley & Sons, New York 2002

Subject Co		oject Name: R	RESEAR	СН МЕ	THODOL	OGY	AND	T/L	L	T	P	С
		requisite: C	ore Subjects	S				T	2	0	0	2
T/L/: Theo	ory/LabL :	Lecture T : 7	utorial P:I	Practical/	Project R	: Resea	rch C:	Credits				•
OBJECTI	VE: The g	oal is to emp	hasize the in	nportanc	e of innova	tion and	d creati	ivity by ı	understand	ding	the rese	arch
concepts as	nd ethics w	hich will aid	to build the	nation II	PR status.							
COURSE	OUTCON	MES (COs):	The studen	ts will b	e able to							
CO1	Understa	nd research p	roblem form	nulation b	y Analyzii	ng rese	arch re	lated inf	ormation	and	its execu	ıtion
	-	ing research										
CO2		nd that today				ıter, Inf	ormati	on Techi	nology, bu	it to	morrow	world
		iled by ideas,										
CO3		nding that wh to emphasis t										
		in general &				tenectu	ai Piop	erty Kig	ni to be p	10111	oted and	Jiig
CO4		nd that IPR p										
		nt in R & D,			on of new a	and bett	er prod	lucts, and	d in turn b	ring	gs about,	
3.5		growth and			(BO)							
		Outcomes w					1					
Cos/Pos	PO1	PO2	PO3	PC)4 P	PO5	PC) 6	PO7		PO	8
CO1	M	H	Н	H	[H	N	1	Н		H	
CO2	M	H	Н	H	[H	N		Н		H	
CO3	M	H	Н	Н	[H	N		H		Н	
CO4	H	H	M	Н	I	M	N	1	M		Н	
COs / PSOs	PSO1	PSO2	PSO3									
CO1	Н	Н	Н									
CO2	Н	Н	Н									
CO3	Н	Н	H									
CO4	Н	Н	Н									
H/M/L ind	icates Stre	ngth of Corre	lation H- l	High, M-	Medium, l	L-Low		ı		<u>l</u>		
	Basic	Enginee	Humani	Progra	Progra	Ope	n P	ractical	Internsl	h	Soft S	kills
	Science	ring		m Core	m	Electi	ive /	Project	ips /			
	S	Science	Social Science		Elective	S			Technic al Skill			
		S	Science		S				ai Skiii	L		
				$\sqrt{}$								
Approval												
Арргочаг												

MET20RM01

RESEARCH METHODOLOGY AND IPR

3 0 0 3

UNIT I SELECTION, ANALYSIS AND STATEMENT OF THE RESEARCH PROBLEM 6hours

Literature Review and Formulation of Objectives – using the following Critical thinking Skills – Drawing a Concept map, Oral Communication, Debating, Questioning, Collaborating, Evaluation and Reasoning

UNIT II RESEARCH DESIGN

6hours

Types of Study, Types of Data, Measures of Variablility, Setting up the Hypotheses, data collection techniques and tools, sampling, Describing data – Charts and graphs; Data processing – Categorization, coding, summarization.

UNIT III DATA ANALYSIS AND REPORT WRITING

6hours

Statistical measures, Regression and correlation, significance test; Report writing – Purpose, format, content, editing and evaluation. Using Citation tools; Report for specific purposes – Theses, Journals, Grant application. Oral presentation to an audience; use of project management digital tools and plagiarism checking.

UNIT IV INTRODUCTION TO INTELLECTUAL PROPERTY

6hours

Types of intellectual property rights – Patent, Copyright, Trade Mark, Industrial Design, Geographical Indication, Trade Secrets - Traditional Knowledge. Elements of Patentability - Novelty, Non Obviousness (Inventive Steps), Industrial Application – Non patentable inventions – Process of patenting – National and International – Form and Fees for IP India

UNIT V PRIOR ART SEARCH, PATENT DRAFTING

6hours

Drafting patent Claims – Types of claims - Registration Procedure, Rights and Duties of Patentee; Patent infringement; Licensing – Franchising - Joint ventures; Non-Disclosure Agreements (NDAs) - Material Transfer Agreements (MTAs).

Total no. of Hours: 30

References:

- 1. C. Vijayalakshmi and C. Sivapragasam (2011) Research Methods Tips and Techniques, , MJP Publishers
- 2. Deboraj Rumsey (2010) Statistics Essentials for Dummies, Wiley Publishing Incorporated
- 3. Bouchoux (2013) Intellectual Property, DELMAR CENGAGE Learning, USA
- 4. V K Ahuja (2017) Law Relating to Intellectual Property Rights, LexisNexis Butterworths India

IMPORTANT WEB LINKS

- 1. https://www.wipo.int/portal/en/index.html
- 2. http://ipindia.nic.in/
- 3. https://www.epo.org
- 4. https://www.uspto.gov

Subject Co		ject Name ALYSIS LA		R SYST	EM S	TEAI	OY ST	CATE	T/L	L	T	P	С
		requisite: P							L	0	0	4	2
T/L/: Theo	ory/LabL:	Lecture T:	Tutorial P	Practica:	al/ Proj	ect R	: Resea	arch C	: Credits				
OBJECTI													
		o know ab				S							
	• T	'o understa	nd Load F	low Ana	ılysis								
	• Т	ام بیس م ا م سم د م	ما مام ما د	Zov-14 A	.1								
		'o understar 'o gain kno				onic ('ircuit	e					
		o gam kno 'o familiar	-						using F	Electrical	So	ftware	
COURSE		IES (COs)					icai ai	11105	using I	<u> </u>	50	reware	
CO1		will know											
CO2		will under											
CO2													
		will under					i o O'						
CO4		will have							3.5.5	T 1 D D ==	<u> </u>		
CO5		will under					l drive	s usin	ig MAT	LAB, PSO	CA	D	
		Outcomes v	vith Progr			POs)							
Cos/Pos	PO1	PO2	PO3	P	O 4	P	O5	P	O6	PO7		POS	3
CO1	Н	Н	M		M		L]	L	M		M	
CO2	M	M	M		H		H		H	M		M	
CO3	M	M	L		L		L		L	Н		Н	
CO4	Н	Н	M		H		H	ľ	М	M		L	
CO5	M	M	M		M]	M	I	М	Н		Н	
COs / PSOs	PSO1	PSO2	PSO:	3									
CO1	Н	M	L										
CO2	M	M	M										
CO3	M	L	Н										
CO4	Н	M	M										
CO5	M	Н	L										
		ngth of Corr		- High, N	1- Med	ium, I	L-Low	l					
	Basic	Enginee	Humani	Progra		ogra	Ope	en T	Practical	Internsl	n T	Soft Sk	ills
	Science	ring	ties and	m Core	1	m	Elect		/ Project		-	2011 51	-1110
	S	Science	Social			ctive	S			Technic			
		S	Science			S				al Skill	l		
			S										
								-	V				
A 1													
Approval													

MEE20PL01 POWER SYSTEM STEADY STATE ANALYSIS LAB 0 0 4

List of Experiments:

- 1. Transient Stability Studies
- 2. Short Circuit Studies
- 3. Load Flow Studies
- 4. Load Forecasting and Unit Commitment
- 5. Simulation of Multilevel Converters
- 6. Performance analysis of a three phase synchronous machine in the isolated and grid connected modes of operation
- 7. To analyse the effect of FACTS controllers by performing steady state analysis
- 8. Simulation of Thyristor Converters

Total no. of Hours: 45

Subject Code:	Subject Name: RENEWABLE ENERGY LAB	T/L	L	T	P	C
MEE20PL02	Prerequisite:	L	0	0	4	2

T/L/: Theory/LabL: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

OBJECTIVE: Students can

- obtain knowledge about specific wind power, calculate the wind frequency, turbines characteristics, time period and frequency of the rotating turbine at different speeds.
- To understand the Characteristics of Solar Modules when connected in series and parallel
- To help the students to understand the modelling, simulation, implementation and performance characteristics of solar photovoltaic and wind turbine.
- To help the students to design and simulate the performance characteristics of a Micro-grid

COURSE	OUTCOM	ES (COs) : 7	The students	will be able	to									
CO1						ower, turbin	es characteris	stics.						
			ne at differe		, in a p	o ., 01, 101	05 01101 0000011	,						
CO2					conductors	and p-n jun	ction energy	band,						
		Illumination effect on PV Modules, effect of Temperature, Effect of Shading on PV Modules,												
		Effect of Angle of Inclination of Solar Modules.												
CO3	Capable of understanding the concept of the Characteristics of Solar Modules when													
	connected in series and parallel Students will be able to model, simulate, implement and perform the characteristics of solar													
CO4				imulate, im _l	plement and	d perform th	e characterist	ics of solar						
		aic and win												
CO5						nance charac	eteristics of a	Micro-grid						
Mapping	of Course O	utcomes wi	th Program	Outcomes (1	POs)									
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8						
CO1	Н	Н	Н	Н	M	M	M	M						
CO2	Н	M	Н	Н	H	M	Н	Н						
CO3	H H M M H H H													
COS	н													
CO4	Н	Н	M	Н	M	M	M	Н						
CO4	Н	Н	M	Н	M	M	M	Н						
CO4 CO5 COs / PSOs	H M	H M PSO2	M M PSO3	Н	M	M	M	Н						
CO4 CO5	H M	H M	M M	Н	M	M	M	Н						
CO4 CO5 COs / PSOs	H M PSO1	H M PSO2	M M PSO3	Н	M	M	M	Н						
CO4 CO5 COs/ PSOs CO1	H M PSO1	H M PSO2	M M PSO3	Н	M	M	M	Н						
CO4 CO5 COs/ PSOs CO1 CO2	H M PSO1 H M	H M PSO2 M L	M M PSO3	Н	M	M	M	Н						

	Basic Science	Enginee ring	Humani ties and	Progra m Core	Progra m	Open Elective	Practical / Project	Internsh ips /	Soft Skills
	S	Science s	Social Science s	in Core	Elective s	S	/ Troject	Technic al Skill	
							√		
Approval									

MEE20PL02

RENEWABLE ENERGY LAB

2

List of Experiments:

- 1. Power Curves
- 2. Build a Wind Farm
- 3. Test the capabilities of the Hydrogen Fuel Cells and Capacitors4. Effect of Temperature on Solar Panel Output
- 5. Variables affecting Solar Panel outpus
- 6. Effect of Load on Solar Panel Output7. Wind Turbine Output : The effect of Load
- 8. Test the capabilities of Solar panels and Wind Turbines

Total no. of Hours: 45

Subject Co MEE20P0		oject Name STEM	: DIGITA	L PF	ROTEC	CTION	OF POW	ER	T/L	L	T	P	C
	Pre	requisite:							T	3	0	0	3
T/L/: The	ory/LabL :	Lecture T:	Tutorial I	P:Pra	ctical/ I	Project F	R : Resear	ch C:	Credits				
		nts will be ab	le to:										
	•	erical relays											
		nathematical a				on							
3. St	udy of algo	rithms for nu	merical prote	ection									
COURSE	OUTCON	MES (COs)	: The stud	ents v	will be	able to							
CO1		importance											
CO2	Apply M	athematical	approach t	oward	ds prote	ection							
CO3	Learn to	develop var	ious Protec	tion a	lgorith	ms							
Mapping	of Course	Outcomes	with Progr	am O	Outcom	es (POs))						
Cos/Pos	PO1	PO2	PO3	3	PO4	4	PO5	PC	D6	PO7		POS	3
CO1	Н	Н	Н		Н		M	N	1	M N		M	
CO2	Н	M	Н		Н		Н	N	1	Н		Н	
CO3	Н	Н	M		M		Н	F	· I	Н		Н	
COs/	PSO1	PSO2	PSO	3									
PSOs	Н	TT	н										
CO1		H											
CO2	Н	M	H										
CO3	H	Н	M										
H/M/L ind	icates Stre	ngth of Cor	relation H	I- Hig	gh, M- N	Medium,	L-Low						
	Basic	Enginee	Humani		ogra	Progra	Open		Practical	Internsl	h	Soft Sk	cills
	Science	ring	ties and	m C	Core	m	Electiv	re /	Project	ips /			
	S	Science	Social			Elective	S			Technic al Skill			
		S	Science s			S				ai Skiii	1		
			3										
				V									

Approval

MEE20P003

DIGITAL PROTECTION OF POWER SYSTEM

3 0 0 .

UNIT I Relays 9hours

Evolution of digital relays from electromechanical relays - Performance and operational characteristics of digital protection- Mathematical background to protection algorithms - Finite difference techniques

UNIT II Numerical methods

9hours

Interpolation formulae - Forward, backward and central difference interpolation -Numerical differentiation -Curve fitting and smoothing -Least squares method -Fourier analysis -Fourier series and Fourier transform -Walsh function analysis

UNIT III Digital Protection

9hours

Basic elements of digital protection -Signal conditioning: transducers, surge protection, analog filtering, analog multiplexers -Conversion subsystem: the sampling theorem, signal aliasing -Error, sample and hold circuits, multiplexers, analog to digital conversion - Digital filtering concepts, -The digital relay as a unit consisting of hardware and software

UNIT IV Algorithms 9hours

Sinusoidal wave based algorithms -Sample and first derivative (Mann and Morrison) algorithm. -Fourier and Walsh based algorithms

UNIT V Advancement in Protection

9hours

Fourier Algorithm: Full cycle window algorithm, fractional cycle -window algorithm. -Walsh function based algorithm -Least Squares based algorithms. Differential equation based algorithms. -Traveling Wave based Techniques -Digital Differential Protection of Transformers -Digital Line Differential Protection -Recent Advances in Digital Protection of Power Systems.

Total no. of Hours: 45

Suggested Reading:

- 1. A.G. Phadke and J. S. Thorp, "Computer Relaying for Power Systems", Wiley/Research studies Press, 2009
- 2. A.T. Johns and S. K. Salman, "Digital Protection of Power Systems", IEEE Press,1999
- 3. Gerhard Zeigler, "Numerical Distance Protection", Siemens Publicis Corporate Publishing, 2006
- 4. S.R.Bhide "Digital Power System Protection" PHI Learning Pvt.Ltd.2014

•	Subject Name: POWER SYSTEM DYNAMICS - II	T/L	L	T	P	C
MEE20P004	Prerequisite:	T	3	0	0	3
T/L/: Theory/La	abL : Lecture T : Tutorial P : Practical/ Project R : Research C:	Credits			•	

OBJECTIVE: Students will be able to:

- 1. Study of power system dynamics
- 2. Interpretation of power system dynamic phenomena
- 3. Study of various forms of stability

COURSE	OUTCOM	ES (COs) : 7	The students	will be able	e to									
CO1	Gain valua	Gain valuable insights into the phenomena of power system including obscure ones.												
CO2	Understand	nderstand the power system stability problem.												
CO3	Analyze th	analyze the stability problems and implement modern control strategies.												
CO4	Simulate si	Simulate small signal and large signal stability problems.												
Mapping	of Course O	Course Outcomes with Program Outcomes (POs)												
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8						
CO1	Н	Н	Н	Н	M	M	M	M						
CO2	Н	M	Н	Н	Н	M	Н	Н						
CO3	Н	Н	M	M	Н	Н	Н	Н						
CO4	Н	Н	M	Н	M	M	M	Н						
COs / PSOs	PSO1	PSO2	PSO3											
CO1	Н	Н	H											
CO2	M	Н	Н											
CO3	Н	H M M												
CO4	Н	M	Н											
TT /3 # /T ' 1		1 60 1		1 37 37 1		·	·	· · · · · · · · · · · · · · · · · · ·						

H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low

	Basic	Enginee	Humani	Progra	Progra	Open	Practical	Internsh	Soft Skills
	Science	ring	ties and	m Core	m	Elective	/ Project	ips /	
	S	Science	Social		Elective	S	_	Technic	
		s	Science		s			al Skill	
			S						
				-1					
				V					
Approval									

MEE20P004

POWER SYSTEM DYNAMICS - II

3 0 0 3

UNIT I Dynamics

9hours

Pagin Concepts of Dynamic Systems Stability Definition Small Signal Stability of Hypagulated and Dagulated

Basic Concepts of Dynamic Systems – Stability Definition – Small Signal Stability of Unregulated and Regulated System – Low Frequency Oscillations- Effect of Damper – Flux Linkage Variation and AVR

UNIT II Stability Assessment

9hours

Large Signal Rotor Angle Stability – Dynamic Equivalents and coherency – Direct method of Stability Assessment – Stability Enhancing Techniques – Mitigation using Power System Stabilizer

UNIT III Synchronization

9hours

Asynchronous Operation and Resynchronization - Multi-machine Stability

UNIT IV Voltage Stability

9hours

Dynamic Analysis of Voltage Stability - Voltage Collapse

UNIT V

Frequency Stability – Automatic Generation Control – Primary and Secondary Control – Sub-synchronous Resonance and Counter measures

Total no. of Hours: 45

Suggested Reading

- 1. P. Kundur, "Power System Stability and Control", McGraw Hill Inc, 1994
- 2. J. Machowski, Bialek, Bumby, "Power System Dynamics and Stability", John Wiley & Sons, 1997
- 3. L. Leonard Grigsby (Ed.); "Power System Stability and Control", Second edition, CRC Press, 2007
- 4. V. Ajjarapu, "Computational Techniques for voltage stability assessment & control"; Springer, 2006

Subject Co		ect Name: P	OWER SYS	STEM PRO	TECTION I	AB T/L	L	T	P	C		
MEE20PL	O4 Prer	equisite:				L	0	0	4	2		
T/L/: Theo	ory/LabL : I	ecture T : Tu	ıtorial P :Pr	actical/ Proje	ect R : Resea	rch C: Credit	S					
OBJECTI	IVE:											
		nd operatir	_		•							
\Box T	o perform	performan	ce of an ov	er and und	ler voltage	relay						
\Box T	o study th	e character	ristics of M	CB & HR	C Fuse							
\Box T	o perform	the simulat	ion for SL	G and DL	G fault in a	a power sys	tem netv	vork				
□ Т	o perform	the testing o	of breakdov	vn strength	of transfo	rmer oil.						
COURSE	OUTCOM	ES (COs):	The students	will be able	e to							
CO1	Capable of	apable of understand the operating characteristics of IDMT relay										
CO2	Obtain th	Obtain the performance of an over and under voltage relay										
CO3	Gain the	Gain the knowledge of MCB & HRC Fuse characteristics										
CO4	Understand the simulation concepts for SLG and DLG fault in a power system network											
CO5	Familiar	to the testi	ng of break	down strei	ngth of trai	nsformer oi	l .					
Mapping o	of Course C	Outcomes wit	th Program	Outcomes (1	POs)							
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7		POS	8		
CO1	Н	Н	Н	Н	M	M	M		M			
CO2	Н	M	Н	Н	Н	M	Н		Н			
CO3	Н	Н	M	M	Н	Н	Н		Н			
CO4	Н	Н	M	Н	M	M	M		Н			
CO5	M	M	M	M	Н	L	M		Н			
00 /	PSO1	PSO2	PSO3									
COs / PSOs		<u> </u>										
	Н	Н	Н									
PSOs	H H	H H	H H									
PSOs CO1												
PSOs CO1 CO2	Н	Н	Н									

	Basic Science s	Enginee ring Science s	Humani ties and Social Science s	Progra m Core	Progra m Elective s	Open Elective s	Practical / Project	Internsh ips / Technic al Skill	Soft Skills
Approval							V		

MEE20PL04	Power System Protection Lab	0	0	4	2	1
-----------	-----------------------------	---	---	---	---	---

List of Experiments:

- 1. Testing of Current Transformers & Potential Transformers
- 2. Testing of Over current & Earth fault relays
- 3. Testing of Transformer differential relays
- 4. Testing of Line Distance relays
- 5. Testing of Line Differential relays6. Testing of Over fluxing relays
- 7. Testing of load shedding relays
- 8. Testing of Under/Over frequency relays
- 9. Testing of over voltage and under voltage relays
- 10. Testing of Negative sequence relays
- 11. Testing of auxiliary relays

Total no. of Hours: 45

Subject Code:	Subject Name:	SMART GRID TECHNOLOGY LAB	T/L	L	T	P	C
MEE20PL05	Prerequisite:			0	0	4	2

T/L/: Theory/LabL: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

OBJECTIVE:

- To understand smart grid need and its regulations.
- To provide solution in various levels of smart grid.

To understand Microgrid, Communication and Measurement technology.

COURSE	OUTCOMI	ES (COs): T	he students	will be able	to							
CO1	Understan	ds the diffe	rence betwe	een smart g	rid and trad	itional grid	design a Sma	rtgrid				
CO2	Understan	ds the Sma	rtgrid comn	nunication a	and measure	ement techn	ology					
CO3	Ability to	Ability to design a Smart Grid										
CO4	Understan	Understands the storage technologies										
CO5	Ability to model and apply control for the interoperability state.											
Mapping	ing of Course Outcomes with Program Outcomes (POs)											
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8				
CO1	Н	Н	Н	Н	M	M	M	M				
CO2	H	M	Н	Н	H	M	Н	Н				
CO3	Н	H	M	M	H	Н	Н	Н				
CO4	Н	Н	M	Н	M	M	M	Н				
CO5	M	M	M	M	Н	L	M	Н				
COs/	PSO1	PSO2	PSO3									
PSOs												
CO1	H	H	Н									
CO2	M	H	H									
CO3	H	H M M										
CO4	H	H M H										
CO5	M	M	M									
H/M/L ind	icates Streng	gth of Correla	ntion H- Hi	gh, M- Medi	um, L-Low	•						

	Basic Science s	Enginee ring Science s	Humani ties and Social Science s	Progra m Core	Progra m Elective s	Open Elective s	Practical / Project	Internsh ips / Technic al Skill	Soft Skills
Approval							V		

MEE20PL05

SMART GRID TECHNOLOGY LAB

0 0 4 2

List of Experiments:

- 1. Propagation of disturbances
- 2. Synchrophasors on power grid test bed
- 3. Intelligent means of recovering from faults
- 4. Grid stability due to intermittency (Solar & Wind)
- 5. Islanding Mitigation / Prevention
- 6. Island creation and Load shedding
- 7. Intelligent automatic generation control with high penetration of renewable
- 8. Microgrids

Total no. of Hours: 45

Subject Code:	Subject Name: RENEWABLE ENERGY SYSTEM	T/L	L	T	P	C
MEE20PE01	Prerequisite:	T	3	0	0	3

T/L/: Theory/LabL: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

OBJECTIVE: Students will be able to:

- 1. To learn various renewable energy sources
- 2. To gain understanding of integrated operation of renewable energy sources
- 3. To understand Power Electronics Interface with the Grid

OUTCOM	ES (COs) : T	The students	will be able	e to						
Knowledge	about renewal	ole energy								
Understand	the working o	f distributed g	eneration syste	em in autonon	nous/grid conn	ected modes				
Know the Impact of Distributed Generation on Power System										
of Course O	utcomes wit	th Program	Outcomes (1	POs)						
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8			
Н	Н	Н	Н	M	M	M	M			
Н	M	Н	Н	Н	M	Н	H			
Н	Н	M	M	Н	Н	Н	Н			
PSO1	PSO2	PSO3								
	Knowledge Understand Know the Ir of Course O PO1 H H H	Knowledge about renewal Understand the working o Know the Impact of Distrior of Course Outcomes with PO1 PO2 H H H M H M H H	Knowledge about renewable energy Understand the working of distributed g Know the Impact of Distributed General of Course Outcomes with Program PO1 PO2 PO3 H H H H H M H H M M	Knowledge about renewable energy Understand the working of distributed generation system of Course Outcomes with Program Outcomes (IPO1 PO2 PO3 PO4 H H H H H H H H H H H H H H H H H H H	Understand the working of distributed generation system in autonom Know the Impact of Distributed Generation on Power System of Course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 H H H H H H H H H H H H H	Knowledge about renewable energy Understand the working of distributed generation system in autonomous/grid conn Know the Impact of Distributed Generation on Power System of Course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 H H H H H M M M H M H H H H H M	Knowledge about renewable energy Understand the working of distributed generation system in autonomous/grid connected modes Know the Impact of Distributed Generation on Power System of Course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 H H H H H H M M M M H H H H H H H H H			

	Basic Science s	Enginee ring Science s	Humani ties and Social Science s	Progra m Core	Progra m Elective s	Open Elective s	Practical / Project	Internsh ips / Technic al Skill	Soft Skills
Approval									

MEE20PE01

RENEWABLE ENERGY SYSTEM

0 0 3

UNIT I Generating Station

9hours

Introduction, Distributed vs Central Station Generation - Sources of Energy such as Micro-turbines - Internal Combustion Engines

UNIT II Renewable Energy Sources

9hours

Introduction to Solar Energy, Wind Energy, Combined Heat and Power - Hydro Energy, Tidal Energy, Wave Energy - Geothermal Energy, Biomass and Fuel Cells

UNIT III Grid Performance

9hours

Power Electronic Interface with the Grid - Impact of Distributed Generation on the Power System - Power Quality Disturbances

UNIT IV Transmission System

9hours

Transmission System Operation - Protection of Distributed Generators

UNIT V Distribution System

9hours

Economics of Distributed Generation - Case Studies

Total no. of Hours: 45

Suggested Reading

- 1. RanjanRakesh, Kothari D.P, Singal K.C, "Renewable Energy Sources and Emerging Technologies", 2nd Ed. Prentice Hall of India ,2011
- Math H.Bollen, Fainan Hassan, "Integration of Distributed Generation in the Power System", July 2011, Wiley IEEE Press
- 3. Loi Lei Lai, Tze Fun Chan, "Distributed Generation: Induction and Permanent Magnet Generators", October 2007, Wiley-IEEE Press.
- 4. Roger A.Messenger, Jerry Ventre, "Photovoltaic System Engineering", 3rd Ed, 2010

5. James F.Manwell, Jon G.McGowan, Anthony L Rogers, "Wind energy explained: Theory Design and Application", John Wiley and Sons 2nd Ed, 2010

Course Outcomes:

Students will be able to:

Subject Code:	Subject Name: SMART GRIDS	T/L	L	T	P	C
MEE20PE02	Prerequisite:	T	3	0	0	3

T/L/: Theory/LabL: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

OBJECTIVE: Students will be able to:

- 1. Understand concept of smart grid and its advantages over conventional grid
- 2. Know smart metering techniques
- 3. Learn wide area measurement techniques
- 4. Understanding the problems associated with integration of distributed generation & its solution through smart grid.

COURSE	OUTCOMI	ES(COs): T	The students	will be able	e to							
CO1	Apprec	iate the differ	ence between	smart grid &	conventional g	grid						
CO2	Apply s	Apply smart metering concepts to industrial and commercial installations										
CO3	Formul	Formulate solutions in the areas of smart substations, distributed generation and wide area measurements										
CO4	Come ı	Come up with smart grid solutions using modern communication technologies										
Mapping of	Mapping of Course Outcomes with Program Outcomes (POs)											
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8				
CO1	Н	Н	Н	Н	M	M	M	M				
CO2	Н	M	Н	Н	Н	M	Н	Н				
CO3	Н	Н	M	M	Н	Н	Н	Н				
CO4	Н	Н	M	Н	M	M	M	Н				
COs/	PSO1	PSO2	PSO3									
PSOs												
CO1	Н	Н	Н									
CO2	M	Н	Н									

CO3	Н	M	M								
CO4	Н	M	Н								
H/M/L ind	H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low										
	Basic Science s	Enginee ring Science s	Humani ties and Social Science s	Progra m Core	Progra m Elective s	Open Elective s	Practical / Project	Internsh ips / Technic al Skill	Soft Skills		
					V						
Approval					l		l .	l	l		

MEE20PE02 SMART GRIDS 3 0 0 3

UNIT I Introduction to Smart Grid

9hours

Introduction to Smart Grid, Evolution of Electric Grid - Concept of Smart Grid, Definitions - Need of Smart Grid, Concept of Robust & Self Healing Grid Present development & International policies in Smart Grid Introduction to Smart Meters, Real Time Prizing, Smart Appliances - Automatic Meter Reading(AMR) - Outage Management System(OMS) - Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart - Sensors, Home & Building Automation - Smart Substations, Substation Automation, Feeder Automation .

UNIT II Wide Area Measurement

9hours

Geographic Information System(GIS) - Intelligent Electronic Devices(IED) & their application for monitoring & protection, Smart storage like Battery, SMES, Pumped Hydro - Compressed Air Energy Storage, Wide Area Measurement System(WAMS) -Phase Measurement Unit(PMU)

UNIT III Microgrid 9hours

Concept of micro-grid, need & applications of micro-grid, formation of micro-grid, Issues of interconnection, protection & control of micro-grid - Plastic & Organic solar cells, Thin film solar cells, Variable speed wind generators, fuel-cells, micro-turbines - Captive power plants, Integration of renewable energy sources

UNIT IV Power Quality in Smart Grid

9hours

Power Quality & EMC in Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources - Power Quality Conditioners for Smart Grid- Web based Power Quality monitoring - Power Quality Audit

UNIT V Components in Smart Grid

9hours

Advanced Metering Infrastructure (AMI), Home Area Network (HAN) - Neighborhood Area Network (NAN), Wide Area Network (WAN) -Bluetooth, ZigBee, GPS, Wi-Fi, Wi-Max based communication -Wireless Mesh Network, Basics of CLOUD Computing & Cyber Security for Smart Grid Broadband over Power line (BPL) -IP based protocols

Total no. of Hours: 45

Suggested Reading

Subject Code:

MEE20PE03

Subject Name:

Prerequisite:

- 1. Ali Keyhani, "Design of smart power grid renewable energy systems", Wiley IEEE, 2011
- Clark W. Gellings, "The Smart Grid: Enabling Energy Efficiency and Demand Response", CRC Press, 2009
- JanakaEkanayake, Nick Jenkins, KithsiriLiyanage, "Smart Grid: Technology and Applications", Wiley 2012
- 4. Stuart Borlase, "Smart Grid: Infrastructure, Technology and solutions " CRC Press
- 5. A.G.Phadke, "Synchronized Phasor Measurement and their Applications", Springer

OBJECTI	VE: Students	s will be able t	o:								
1. U	nderstand the	requirements	of high power	rated convert	ers						
2. U	nderstand the	different topo	logies involve	d for these co	nverters						
3. A	ble to understa	and the design	of protection	circuits for th	ese converters	S					
COURSE	OUTCOMI	ES(COs): T	The students	will be able	e to						
CO1	CO1 Learn the characteristics of PSDs such as SCRs, GTOs, IGBTs and use them in practical systems										
CO2	Knowledge of working of multi-level VSIs, DC-DC switched mode converters, cyclo-converters and PWM										
	techniques and the ability to use them properly										
CO3	Acquir	e knowledge o	of power condi	tioners and th	neir application	ns					
CO4	Ability	to design pow	ver circuit and	protection cir	rcuit of PSDs a	and converters					
Mapping of	of Course O	utcomes wit	h Program	Outcomes (POs)						
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8			
CO1	Н	Н	Н	Н	M	M	M	M			
CO2	H	M	Н	Н	Н	M	Н	Н			
CO3	H	Н	M	M	Н	Н	Н	Н			
CO4	Н	Н	M	Н	M	M	M	Н			
COs/	PSO1	PSO2	PSO3								
PSOs											
CO1	Н	M	M								
CO2	H	Н	M								
CO3	M	Н	Н								

HIGH POWER CONVERTERS

T/L/: Theory/LabL: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

T/L

T

L

3

T P

0 0

 \mathbf{C}

3

CO4	Н	M	M									
H/M/L ind	H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low											
	Basic Science s	Enginee ring Science s	Humani ties and Social Science s	Progra m Core	Progra m Elective s	Open Elective s	Practical / Project	Internsh ips / Technic al Skill	Soft Skills			
Approval	Approval											

MEE20PE03

HIGH POWER CONVERTERS

3 0 0 3

UNIT I Introduction to Converters

9hours

Power electronic systems - An overview of PSDs, multipulse diode rectifier, multipulse - SCR rectifier

UNIT II Inverters 9hours

Phase shifting transformers, multilevel voltage source inverters: two level voltage source inverter, - cascaded H bridge multilevel inverter

UNIT III Multilevel inverters

9hours

Diode clamped multilevel inverters, flying capacitor multilevel inverter- PWM current source inverters - DC to DC switch mode converters

UNIT IV Controllers 9hours

AC voltage controllers: Cyclo-converters, matrix converter - Power conditioners and UPS

UNIT V Modelling of Converters

9hours

Design aspects of converters, protection of devices and circuits

Total no. of Hours: 45

Suggested Reading:

- N. Mohan, T. M. Undeland and W. P. Robbins, "Power Electronics: Converter, Applications and Design", John Wiley and Sons, 1989
- 2. M.H. Rashid, "Power Electronics", Prentice Hall of India, 1994
- 3. B. K. Bose, "Power Electronics and A.C. Drives", Prentice Hall, 1986
- 4. Bin Wu, "High power converters and drives", IEEE press, Wiley Enter science

Subject Code:	Subject Name: WIND AND SOLAR SYSTEMS	T/L	L	T	P	C
MEE20PE04	Prerequisite:	T	3	0	0	3

 $T/L/: Theory/LabL: Lecture \ T: Tutorial \quad P: Practical/\ Project \quad R: Research \ C: \ Credits$

OBJECTIVE: Students will be able to:

- 1. To get exposure to wind and solar systems
- 2. To understand the factors involved in installation and commissioning of a Solar or Wind plant.
- 3. Learning the dynamics involved when interconnected with power system grid

001	A	:-4- 41 :			41		L				
CO1	Appreciate the importance of energy growth of the power generation from the renewable energy sources and participate in solving these problems										
CO2	Demon		wledge of the		nd power and	solar power go	eneration and all	associated issue			
CO3			wledge of phy nd solve the pr								
Mapping of	of Course O	utcomes wit	h Program	Outcomes (POs)						
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8			
CO1	Н	H	Н	Н	M	M	M	M			
CO2	H	M	Н	Н	Н	M	Н	Н			
CO3	Н	H	M	M	Н	H	Н	H			
CO4	Н	H	M	H	M	M	M	H			
CO5	M	M	M	M	Н	L	M	H			
COs/	PSO1	PSO2	PSO3								

CO1	Н	Н	M							
CO2	Н	Н	Н							
CO3	M	M	Н							
H/M/L ind	H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low									
	Basic Science s	Enginee ring Science s	Humani ties and Social Science s	Progra m Core	Progra m Elective s	Electiv			Soft Skills	
Approval										

MEE20PE04

WIND AND SOLAR SYSTEMS

3 0 0 3

UNIT I 9hours

Historical development and current status -characteristics of wind power generation network integration issues

UNIT II 9hours

Generators and power electronics for wind turbines -power quality standards for wind turbines, -Technical regulations for interconnections of wind farm with power systems

UNIT III 9hours

Isolated wind systems -reactive power and voltage control, economic aspects - Impacts on power system dynamics, power system interconnection

UNIT IV 9hours

Introduction of solar systems, merits and demerits, concentrators, various applications

UNIT V 9hours

Solar thermal power generation, PV power generation - Energy Storage device - Designing the solar system for small installations

Total no. of Hours: 45

Suggested Reading:

1. Thomas Ackermann, Editor, "Wind power in Power Systems", John Willy and sons ltd.2005

- 2. Siegfried Heier, "Grid integration of wind energy conversion systems", John Willy and sons ltd., 2006
- 3. K. Sukhatme and S.P. Sukhatme, "Solar Energy". Tata MacGraw Hill, Second Edition, 1996

Course Outcomes:

Students will be able to:

Subject Code: MEE20PE05	Subject Name: ELECTRIC POWER DISTRIBUTION SYSTEM	T/L	L	Т	P	C
	Prerequisite:		3	0	0	3

T/L/: Theory/LabL: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

OBJECTIVE:

Students will be able to:

- 1. Learning about power distribution system
- 2. Learning of SCADA System
- 3. Understanding Distribution Automation

COURSE OUTCOMES (COs): The students will be able to												
CO1	Knowledge	Knowledge of power distribution system										
CO2	Study of Dis	Study of Distribution automation and its application in practice										
CO3	Learn SCAI	Learn SCADA system										
Mapping	of Course O	utcomes wit	h Program	Outcomes (POs)							
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8				
CO1	Н	Н	Н	Н	M	M	M	M				
CO2	Н	M	Н	Н	Н	M	Н	Н				
CO3	Н	Н	M	M	Н	Н	Н	Н				
COs / PSOs	PSO1	PSO2	PSO3									
CO1	Н	H	H									

CO2	Н	M	Н					
CO3	Н	H	M					
CO4	Н	H	M					
CO5	M	M	M					
H/M/L ind	icates Stren	gth of Corr	elation H	- High, M	- Medium	, L-Low		•
	Basic Science s	Enginee ring Science s	Humani ties and Social Science s	Progra m Core	Program Electives	Electiv		Soft Skills
Approval								

MEE20PE05

ELECTRIC POWER DISTRIBUTION SYSTEM

3 0 0 3

UNIT I Distribution System

9hour

Distribution of Power, Management, Power Loads - Load Forecasting Short-term & Long-term - Power System Loading, Technological Forecasting. Advantages of Distribution Management System (D.M.S.) Distribution Automation- Definition - Restoration / Reconfiguration of Distribution Network, Different Methods and Constraints - Power Factor Correction

UNIT II Interconnection of Distribution

9hours

Control & Communication Systems - Remote Metering - Automatic Meter Reading and its implementation

UNIT III SCADA 9hours

Introduction- Block Diagram-SCADA Applied To Distribution Automation- Common Functions of SCADA - Advantages of Distribution Automation through SCADA

UNIT IV Optimization in Distribution

9hours

Calculation of Optimum Number of Switches, Capacitors, Optimum Switching Device Placement in Radial - Distribution Systems, Sectionalizing Switches – Types, Benefits -Bellman's Optimality Principle - Remote Terminal Units -Energy efficiency in electrical distribution & Monitoring

UNIT V Maintenance of Automated Distribution Systems

9hours

Difficulties in Implementing Distribution Automation in Actual Practice- Urban/Rural Distribution- Energy Management- AI techniques applied to Distribution Automation

Total no. of Hours: 45

Suggested Reading

- 1. A.S. Pabla, "Electric Power Distribution", Tata McGraw Hill Publishing Co. Ltd., Fourth Edition.
- 2. M.K. Khedkar, G.M. Dhole, "A Text Book of Electrical power Distribution Automation", University Science Press, New Delhi
- 3. Anthony J Panseni, "Electrical Distribution Engineering", CRC Press
- 4. James Momoh, "Electric Power Distribution, automation, protection & control", CRC Press

Subject Code: MEE20PE06	Subject Name: MATHEMATICAL METHODS FOR POWER ENGINEERING	T/L	L	T	P	С
	Prerequisite:	T	3	0	0	3

T/L/: Theory/LabL: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

OBJECTIVE: Students will be able to:

CO4

H

Η

M

- 1. To understand the relevance of mathematical methods to solve engineering problems.
- 2. To understand how to apply these methods for a given engineering problem.

COURSE	COURSE OUTCOMES (COs): The students will be able to											
CO1	Knowle	Knowledge about vector spaces, linear transformation, eigenvalues and eigenvectors of linear operators										
CO2		To learn about linear programming problems and understanding the simplex method for solving linear programming problems in various fields of science and technology										
CO3		Acquire knowledge about nonlinear programming and various techniques used for solving constrained and unconstrained nonlinear programming problems										
CO4	Unders	tanding the co	oncept of rand	om variables,	functions of ra	andom variable	e and their proba	ability distribution				
CO5	Unders	tand stochasti	c processes an	d their classif	ication							
Mapping of	of Course O	utcomes wi	th Program	Outcomes (POs)							
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8				
CO1	H H H M M M											
CO2	H	M	Н	Н	Н	M	Н	Н				
CO3	H	Н	M	M	Н	Н	Н	Н				

M

M

M

H

H

CO5	M	M	M	I	M.]	Н	L	M		Н
COs / PSOs	PSO1	PSO2	PSO3	3							
CO1	H	Н	Н								
CO2	Н	M	Н								
CO3	Н	Н	M								
CO4	Н	Н	M								
CO5	M	M	M								
H/M/L ind	H/M/L indicates Strength of Correlation H- High, M- Medium, L-Low										
	Basic Science s	Enginee ring Science s	Humani ties and Social Science s	Progra m Core	Prog m Elect s	1	Open Elective s	Practice / Project		/ nic	Soft Skills
Approval	I I				I		<u> </u>	1	I		

MEE20PE06 MATHEMATICAL METHODS FOR POWER ENGINEERING 3 0 0 3

UNIT I Matrix & Eigen

9hours

Vector Spaces - Linear transformations- Matrix representation of linear transformation- Eigen values and Eigen vectors of linear operator

UNIT II Linear & non-Linear Problems

9hours

Linear Programming Problems- Simplex Method- Duality - Non Linear Programming problems

UNIT III Constrained & Unconstraind Problems

9hours

Unconstrained Problems - Search methods - Constrained Problems

UNIT IV Random Variables

9hours

Lagrange method - Kuhn-Tucker conditions - Random Variables -Distributions

UNIT V Independent Random Variables

9hours

Independent Random Variables - Marginal and Conditional distributions - Elements of stochastic processes

Total no. of Hours: 45

Suggested Reading

- 1. Kenneth Hoffman and Ray Kunze, "Linear Algebra", 2nd Edition, PHI, 1992
- 2. Erwin Kreyszig, "Introductory Functional Analysis with Applications", John Wiley & Sons, 2004

- 3. Irwin Miller and Marylees Miller, John E. Freund's "Mathematical Statistics", 6th Edn, PHI, 2002
- 4. J. Medhi, "Stochastic Processes", New Age International, New Delhi. 1994
- 5. A Papoulis, "Probability, Random Variables and Stochastic Processes", 3rd Edition, McGraw Hill, 2002
- 6. John B Thomas, "An Introduction to Applied Probability and Random Processes", John Wiley, 2000
- 7. Hillier F S and Liebermann G J, "Introduction to Operations Research", 7th Edition, McGraw Hill, 2001
- 8. Simmons D M, "Non Linear Programming for Operations Research", PHI, 1975

Subject Code: MEE20PE07	Subject Name: FOR PE CONVERT	PULSE WIDTH MODULATION ERS	T/L	L	T	P	С
	Prerequisite:		T	3	0	0	3

T/L/: Theory/LabL: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

OBJECTIVE: Students will be able to:

CO₃

CO₄

Η

H

Н

Н

M

M

- 1. To understand Necessity and Importance of PWM techniques
- 2. Implementation of PWM controllers

COURSE OUTCOMES (COs): The students will be able to												
CO1	Appreciate importance of PWM techniques											
CO2	Implement PWM using different strategies											
CO3	Control CSI and VSI using PWM											
CO4	Compare performance of converter for different PWM techniques											
Mapping of Course Outcomes with Program Outcomes (POs)												
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8				
CO1	Н	Н	Н	Н	M	M	M	M				
CO2	Н	M	Н	Н	Н	M	Н	Н				

Н

M

Н

M

Η

M

Η

H

M

H

CO5	M	M	M	N	1	Н		L	M	Н
COs / PSOs	PSO1	PSO2	PSO	3						
CO1	Н	Н	Н							
CO2	M	Н	Н							
CO3	Н	M	M							
CO4	Н	M	Н							
CO5	M	M	M							
H/M/L ind	icates Stren	gth of Corr	elation H	- High, M	- Mediui	m, L-1	Low			
	Basic Science s	Enginee ring Science s	Humani ties and Social Science s	Progra m Core	Progr m Electiv s]	Open Elective s	Practical / Project		Soft Skills
Approval					I	I		L	l	

MEE20PE07 PULSE WIDTH MODULATION FOR PE CONVERTERS 3 0 0 3

UNIT I PE Converters 9hours

Introduction to PE converters- Modulation of one inverter phase leg -Modulation of single phase - VSI and 3 phase VSI

UNIT II CSI 9hours

Zero space vector placement modulation strategies -Losses-Discontinuous modulation -Modulation of CSI

UNIT III Modulation 9hours

Over modulation of converters -Programme modulation strategies

UNIT IV PWM Techniques 9hours

Pulse width modulation for multilevel inverters -Implementation of modulation controller

UNIT V Effect of PWM 9hours

Continuing developments in modulation as random PWM -PWM for voltage unbalance - Effect of minimum pulse width and dead time

Total no. of Hours: 45

Suggested Reading

- 1. D. Grahame Holmes, Thomas A. Lipo, "Pulse width modulation of Power Converter: Principles and Practice", John Wiley & Sons, 03-Oct-2003
- 2. Bin Vew, "High Power Converter", Wiley Publication

3. Marian K. Kazimicrczuk, "Pulse width modulated dc-dc power converter", Wiley Publication

Subject Code: MEE20PE08	Subject Name: ELECTRIC AND HYBRID VEHICLES	T/L	L	T	P	С
WIEEZUI EUO	Prerequisite:	T	3	0	0	3

T/L/: Theory/LabL: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

- 1. To understand upcoming technology of hybrid system
- 2. To understand different aspects of drives application
- 3. Learning the electric Traction

CO1	Acquire kno	wledge about	fundamental of	concepts, prin	ciples, analysi	s and design of	f hybrid and elec	ctric vehicles
CO2	To learn ele	ctric drive in v	vehicles / tract	ion.				
Mapping o	of Course O	utcomes wit	th Program	Outcomes (POs)			
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	Н	Н	Н	Н	M	M	M	M
CO2	Н	M	Н	Н	Н	M	Н	H

CO1	Н	Н							
CO2	Н	Н							
H/M/L ind	icates Strer	gth of Cor	relation H	I- High, M-	Medium, l	L-Low			
	Basic Science s	Enginee ring Science s	Humani ties and Social Science s	Progra m Core	Progra m Elective s	Open Elective s	Practical / Project	Internsh ips / Technic al Skill	Soft Skills
Approval								1	1

ELECTRIC AND HYBRID VEHICLES

3 0 0 3

UNIT I Hybrid & Electric Vehicles

9hours

History of hybrid and electric vehicles -Social and environmental importance of hybrid and electric vehicles -Impact of modern drive-trains on energy supplies- Basics of vehicle performance, vehicle power source – characterization Transmission characteristics - Mathematical models to describe vehicle performance

UNIT II Hybrid Traction

9hours

Basic concept of hybrid traction -Introduction to various hybrid drive-train topologies - Power flow control in hybrid drive-train topologies - Fuel efficiency analysis.

UNIT III DC Drives 9hours

Introduction to electric components used in hybrid and electric vehicles -Configuration and control of DC Motor drives - Configuration and control of Induction Motor drives configuration and control of Permanent Magnet Motor drives Configuration and control of Switch Reluctance Motor drives- drive system efficiency

UNIT IV ICE 9hours

Matching the electric machine and the internal combustion engine (ICE)- Sizing the propulsion motor, sizing the power electronics Selecting the energy storage technology - Communications, supporting subsystems

UNIT V Energy management

9hours

Introduction to energy management and their strategies used in hybrid and electric vehicle - Classification of different energy management strategies Comparison of different energy management strategies Implementation issues of energy strategies

Total no. of Hours: 45

Suggested reading

- 1. Sira -Ramirez, R. Silva Ortigoza, "Control Design Techniques in Power Electronics Devices", Springer.
- 2. Siew-Chong Tan, Yuk-Ming Lai, Chi Kong Tse, "Sliding mode control of switching Power Converters"

Subject Code:	Subject Name: RESTRUCTURED POWER SYSTEMS	T/L	L	T	P	С
MEE20PE09	Prerequisite:	T	3	0	0	3

T/L/: Theory/LabL: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

- 1. Understand what is meant by restructuring of the electricity market
- 2. Understand the need behind requirement for deregulation of the electricity market
- 3. Understand the money, power & information flow in a deregulated power system

COURSE	COURSE OUTCOMES (COs): The students will be able to										
CO1	Describe var	Describe various types of regulations in power systems									
CO2	Identify the	Identify the need of regulation and deregulation									
CO3	Define and o	Define and describe the Technical and Non-technical issues in Deregulated Power Industry									
CO4	Identify and	Identify and give examples of existing electricity markets									
CO5	Classify diff	erent market i	nechanisms ar	nd summarize	the role of var	rious entities in	n the market				
Mapping of	of Course O	utcomes wit	h Program	Outcomes (1	POs)						
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8			
CO1	H	Н	Н	Н	M	M	M	M			
CO2	Н	M	Н	Н	Н	M	Н	Н			

CO3	H	Н	M	M	Ī	Н	Н	Н	Н
CO4	Н	Н	M	Н	[M	M	M	Н
CO5	M	M	M	N	I	Н	L	M	Н
COs/	PSO1	PSO2	PSO3	3					
PSOs									
CO1	H	Н	H						
CO2	M	Н	H						
CO3	Н	M	M						
CO4	Н	M	Н						
CO5	M	M	M						
H/M/L ind	icates Stren	gth of Corr	elation H	- High, M-	Medium,	L-Low	.		1
	Basic	Enginee	Humani	Progra	Progra	Open	Practical	Internsh	Soft Skills
	Science	ring	ties and	m Core	m	Elective	/ Project	ips /	
	S	Science	Social		Elective	S		Technic	
		s	Science		S			al Skill	
			S						
					V				
Approval					<u> </u>				

RESTRUCTURED POWER SYSTEMS

3 0 0 3

UNIT I Restructured System

9hours

Fundamentals of restructured system - Market architecture - Load elasticity - Social welfare maximization

UNIT II Congestion Management

9hours

OPF: Role in vertically integrated systems and in restructured markets - congestion management

UNIT III Assessment

9hours

Optimal bidding - Risk assessment - Hedging - Transmission pricing - Tracing of power

UNIT IV Distributed Generation

9hours

Ancillary services - Standard market design -Distributed generation in restructured markets

UNIT V Recent Trends

9hours

Developments in India -IT applications in restructured markets -Working of restructured power systems –PJM-Recent trends in Restructuring

Total no. of Hours: 45

Suggested reading

1. LorrinPhilipson, H. Lee Willis, "Understanding electric utilities and de-regulation", Marcel Dekker Pub.,1998.

- 2. Steven Stoft, "Power system economics: designing markets for electricity", John Wiley and Sons, 2002.
- 3. Kankar Bhattacharya, Jaap E. Daadler, Math H.J. Boolen, "Operation of restructured power systems", Kluwer Academic Pub., 2001.
- 4. Mohammad Shahidehpour, MuwaffaqAlomoush, "Restructured electrical power systems: operation, trading and volatility", Marcel Dekker.

Subject Code:	Subject Name: DIGITAL SIGNAL PROCESSING	T/L	L	T	P	С
MEE20PE10	Prerequisite:	T	3	0	0	3

T/L/: Theory/LabL: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

OBJECTIVE: Students will be able to:

Η

Н

CO₁

CO₂

1. To understand the difference between discrete-time and continuous-time signals

H

Н

2. To understand and apply Discrete Fourier Transforms (DFT)

Η

M

COURSE	COURSE OUTCOMES (COs): The students will be able to										
CO1		Knowledge about the time domain and frequency domain representations as well analysis of discrete time signals and systems									
CO2	Study t	Study the design techniques for IIR and FIR filters and their realization structures.									
CO3	Acquire	Acquire knowledge about the finite word length effects in implementation of digital filters.									
CO4	Knowle signals	-	e various line	ar signal mod	lels and estima	ation of powe	er spectrum of s	stationary random			
CO5	Design	of optimum F	IR and IIR fil	ters							
Mapping of	of Course O	utcomes wit	h Program	Outcomes (1	POs)						
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8			

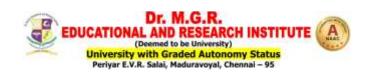
 \mathbf{M}

Н

M

M

Η


Η

 \mathbf{M}

Н

 \mathbf{M}

Η

CO3	H	Н	M	M	Ī.	Н	H	Н	Н
CO4	Н	Н	M	Н	[M	M	M	Н
CO5	M	M	M	M	ſ	Н	L	M	Н
COs/	PSO1	PSO2	PSO3	3					
PSOs									
CO1	H	Н	H						
CO2	M	Н	Н						
CO3	Н	M	M						
CO4	Н	M	Н						
CO5	M	M	M						
H/M/L ind	icates Stren	gth of Corr	elation H	- High, M-	Medium,	L-Low			I
	Basic	Enginee	Humani	Progra	Progra	Open	Practica	al Internsh	Soft Skills
	Science	ring	ties and	m Core	m	Electiv	e / Projec	et ips /	
	S	Science	Social		Elective	S		Technic	
		S	Science		S			al Skill	
			S						
					√				
Approval									

DIGITAL SIGNAL PROCESSING

3 0 0 3

UNIT I Discrete Time Signals

9hours

Discrete time signals - Linear shift invariant systems- Stability and causality -Sampling of continuous time signals Discrete time Fourier transform- Discrete Fourier series- Discrete Fourier transform - Z transform-Properties of different transforms

UNIT II DFT 9hours

Linear convolution using DFT - Computation of DFT Design of IIR digital filters from analog filters -Impulse invariance method - Bilinear transformation method

UNIT III FIR 9hours

FIR filter design using window functions - Comparison of IIR and FIR digital filters -Basic IIR and FIR filter realization structures - Signal flow graph representations Quantization process and errors - Coefficient quantization effects in IIR and FIR filters

UNIT IV A/D Conversion

9hours

A/D conversion noise- Arithmetic round-off errors - Dynamic range scaling - Overflow oscillations and zero Input limit cycles in IIR filters - Linear Signal Models

UNIT V Power Spectrum

9hours

All pole, All zero and Pole-zero models - Power spectrum estimation- Spectral analysis of deterministic signals Estimation of power spectrum of stationary random signals - Optimum linear filters- Optimum signal estimation Mean square error estimation - Optimum FIR and IIR Filters

Total no. of Hours: 45

Suggested reading

- 1. Sanjit K Mitra, "Digital Signal Processing: A computer-based approach ",TataMc Grow-Hill Edition1998
- 2. Dimitris G .Manolakis, Vinay K. Ingle and Stephen M. Kogon, "Statistical and Adaptive Signal Processing", Mc Graw Hill international editions. -2000

Subject Code: MEE20PE11	Subject MACHIN	Name: NES	DYNAMIC	OF	ELECTRICAL	T/L	L	T	P	С
	Prerequis	site:				T	3	0	0	3

T/L/: Theory/LabL: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

- 1. Learn Performance characteristics of machine
- 2. To understand the dynamics of the machine
- 3. To understand how to determine stability of machine
- 4. Learn the synchronous machine

COURSE	OUTCOM	ES(COs): T	The students	will be able	e to					
CO1	Formul	Formulation of electrodynamic equations of all electric machines and analyze the performance characteristics								
CO2	Knowle	Knowledge of transformations for the dynamic analysis of machines								
CO3	Knowle	Knowledge of determination of stability of the machines under small signal and transient conditions								
CO4	Study a	about synchron	nous machine							
Mapping	of Course O	utcomes wit	th Program	Outcomes (POs)					
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		

CO1	Н	Н	Н	Н	[M	M	M	M
CO2	Н	M	Н	Н	[H	M	H	Н
CO3	Н	Н	M	M	I	Н	Н	Н	Н
CO4	Н	Н	M	Н	[M	M	M	Н
COs/	PSO1	PSO2	PSO3	3					
PSOs									
CO1	H	Н	M						
CO2	H	Н	Н						
CO3	M	M	Н						
CO4	M	Н	M						
H/M/L ind	icates Stren	gth of Corr	elation H	- High, M-	Medium, I	L-Low	•		
	Basic Science s	Enginee ring Science s	Humani ties and Social Science s	Progra m Core	Progra m Elective s	Open Elective s	Practical / Project	Internsh ips / Technic al Skill	Soft Skills
Approval					ı	1		ı	

DYNAMIC OF ELECTRICAL MACHINES

3 0 0 3

UNIT I Commutator

Stability, Primitive 4 Winding Commutator Machine - Commutator Primitive Machine - Complete Voltage Equation of Primitive 4 Winding Commutator Machine

UNIT II Transfer Function & Equation

9hours

Torque Equation Analysis of Simple DC Machines using the Primitive Machine Equations - The Three Phase Induction Motor - Transformed Equations - Different Reference Frames for Induction Motor Analysis Transfer Function Formulation

UNIT III Synchronous Machine

9hours

Three Phase Salient Pole Synchronous Machine - Parks Transformation, Steady State Analysis

UNIT IV Transient Analysis of interconnected Machines

9hours

Large Signal Transient - Small Oscillation Equations in State Variable form - Dynamical Analysis of Interconnected Machines

UNIT V Transinet Analysis of Alternator

9hours

Large Signal Transient Analysis using Transformed Equations - DC Generator /DC Motor System Alternator /Synchronous Motor System

Total no. of Hours: 45

 \mathbf{C}

Suggested reading

Subject Code: | **Subject Name:**

- 1. D.P. Sengupta& J.B. Lynn," Electrical Machine Dynamics", The Macmillan Press Ltd. 1980
- 2. R Krishnan "Electric Motor Drives, Modeling, Analysis, and Control", Pearson Education., 2001
- 3. P.C. Kraus, "Analysis of Electrical Machines", McGraw Hill Book Company, 1987
- 4. Boldia& S.A. Nasar,,"Electrical Machine Dynamics", The Macmillan Press Ltd. 1992
- 5. C.V. Jones, "The Unified Theory of Electrical Machines", Butterworth, London. 1967

MEE20PE	12 Prere	equisite:				Т	3	0	0	3
T/L/: Theo	ory/LabL : L	ecture T : Tu	itorial P :Pr	actical/ Proje	ect R : Resea	arch C: Credi	ts			
1. Study the 2. Learning	modelling an	s will be able t alysis of rotati tic energy con f machines.	ing machine.							
COURSE CO1	To give	ES (COs): To a systematic state condition	approach for	modeling and	analysis of all	rotating mach	ines under b	oth tr	ansient an	d
CO2	Ability	to model and	design all typ	es of rotation	machines inclu	uding special r	machines			
Mapping o	of Course O	utcomes wit	h Program	Outcomes (POs)					
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7		POS	}
CO1	Н	Н	Н	Н	M	M	M		M	
CO2	Н	M	Н	Н	Н	M	Н		Н	

POWER APPARATUS DESIGN

T/L

COs / PSOs	PSO1	PSO2	PSO3	3					
CO1	Н	Н	Н						
CO2	Н	Н	Н						
H/M/L ind	icates Stren	gth of Corre	elation H	- High, M-	Medium	, L-Low			
	Basic Science s	Enginee ring Science s	Humani ties and Social Science s	Progra m Core	Progra m Elective s	Electi			Soft Skills
Approval	l				I	l	l	1	1

POWER APPARATUS DESIGN

3 0 0 3

UNIT I DC Machines & Transformers

9hours

Principles of Design of Machines -Specific loadings, choice of magnetic and electric loadings - Real and apparent flux densities, temperature rise calculation, Separation of main dimension for DC machines - Induction machines and synchronous machines - Design of Transformers-General considerations, output equation, emf per turn, choice of flux density and current density, main dimensions, leakage reactance and conductor size, design of tank and cooling

UNIT II Induction and Synchronous Machines

9hours

Specific loadings, choice of magnetic and electric loadings Real and apparent flux -densities, temperature rise calculation - Separation of main dimension for DC machines - Induction machines and synchronous machines - Heating and cooling of machines, types of ventilation, continuous and intermittent rating

UNIT III EMF Equations

9hours

General considerations, output equation, emf per turn, choice of flux density and current density, main dimensions, leakage reactance and conductor size, design of tank and cooling tubes - Calculation of losses, efficiency and regulation - Forces winding during short circuit

UNIT IV Harmonics 9hours

General considerations, output equation - Choice of specific electric and magnetic loadings, efficiency, power factor- Number of slots in stator and rotor - Elimination of harmonic torques

UNIT V Efficient of Machines

9hours

Design of stator and rotor winding, slot leakage flux - Leakage reactance, equivalent resistance of squirrel cage rotor - Magnetizing current, efficiency from design data - Types of alternators, comparison, specific loadings, output coefficient - design of main dimensions - Introduction to Computer Aided Electrical Machine Design Energy efficient machines

Total no. of Hours: 45

Suggested reading

- 1. Clayton A.E, "The Performance and Design of D.C. Machines", Sir I. Pitman & sons, Ltd.
- 2. M.G. Say, "The Performance and Design of A.C. Machines", Pitman
- 3. Sawhney A.K, "A course in Electrical Machine Design", DhanpatRai & Sons, 5th Edition

Subject Code: MEE20PE13	Subject Name: ADVANCED MICRO-CONTROLLER BASED SYSTEMS	T/L	L	Т	P	С
	Prerequisite:	T	3	0	0	3

T/L/: Theory/LabL: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

- 1. To understand the architecture of advance microcontrollers
- 2. To understand the applications of these controllers
- 3. To get some introduction to FPGA

COURSE	OUTCOMES (COs): The students will be able to
CO1	To learn how to program a processor in assembly language and develop an advanced processor based system
CO2	To learn configuring and using different peripherals in a digital system
CO3	To compile and debug a Program
CO4	To generate an executable file and use it

Cos/Pos	PO1	PO2	PO3	PO)4 P	PO5	PO6	PO7	PO8
CO1	H	Н	Н	Н	[M	M	M	M
CO2	H	M	Н	Н	I	H	M	Н	Н
CO3	Н	Н	M	M	I	H	Н	Н	Н
CO4	Н	Н	M	Н	I	M	M	M	Н
COs / PSOs	PSO1	PSO2	PSO	3					
CO1	Н	Н	Н						
CO2	M	Н	Н						
CO3	Н	M	M						
CO4	Н	M	Н						
H/M/L ind	icates Strer	ngth of Com	relation H	- High, M-	Medium, l	L-Low	•	'	
	Basic Science s	Enginee ring Science s	Humani ties and Social Science s	Progra m Core	Progra m Elective s	Open Elective s	Practical / Project	Internsh ips / Technic al Skill	Soft Skills

MEE20PE13 ADVANCED MICRO-CONTROLLER BASED SYSTEMS 3 0 0 3

UNIT I Computer Organizations

9hours

Basic Computer Organization- Accumulator based Processes-Architecture – Memory Organization-I/O Organization

UNIT II Micro-Controller

9hours

 $\label{lem:micro-controllers-Intel} \begin{tabular}{ll} Micro-Controllers-Intel 8051 - Intel 8056- Registers, Memories - I/O Ports, Serial Communication - Timers - Interrupts - Programming \\ \end{tabular}$

UNIT III Intel 8051 9hours

Intel 8051 - Assembly language programming - Addressing-Operations - Stack & Subroutines - Interrupts-DMA

UNIT IV Interfacing 9hours

PIC 16F877- Architecture Programming - Interfacing Memory/ I/O Devices - Serial I/O and data communication

UNIT V DSP 9hours

Digital Signal Processor (DSP) - Architecture - Programming - Introduction to FPGA - Microcontroller development for motor control applications - Stepper motor control using micro controller

Total no. of Hours: 45

Suggested reading

- 1. John.F.Wakerly: "Microcomputer Architecture and Programming", John Wiley and Sons 1981
- 2. Ramesh S.Gaonker: "Microprocessor Architecture, Programming and Applications with the 8085", Penram International Publishing (India), 1994
- 3. Raj Kamal: "The Concepts and Features of Microcontrollers", Wheeler Publishing, 2005
- 4. Kenneth J. Ayala, "The 8051 microcontroller", Cengage Learning, 2004
- 5. John Morton," The PIC microcontroller: your personal introductory course", Elsevier, 2005
- Dogan Ibrahim," Advanced PIC microcontroller projects in C: from USB to RTOS with the PIC18F Series", Elsevier, 2008
- 7. Microchip datasheets for PIC16F877

•	Subject Name: SCADA SYSTEM AND APPLICATIONS	T/L	L	T	P	C
MEE20PE14	Prerequisite:	T	3	0	0	3

T/L/: Theory/LabL: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

- 1. To understand what is meant by SCADA and its functions
- 2. To know SCADA communication
- 3. To get an insight into its application

COURSE	OUTCOMES (COs): The students will be able to
CO1	Describe the basic tasks of Supervisory Control Systems (SCADA) as well as their typical applications
CO2	Acquire knowledge about SCADA architecture, various advantages and disadvantages of each system
CO3	Knowledge about single unified standard architecture IEC 61850
CO4	To learn about SCADA system components: remote terminal units, PLCs, intelligent electronic devices, HMI systems, SCADA server

CO5 Mapping		Outcomes				ansmission	and distribution	on sector, indu	istries etc
Cos/Pos	PO1	PO2	PO3			PO5	PO6	PO7	PO8
CO1	Н	Н	Н	H]	M	M	M	M
CO2	Н	M	Н	Н	I	Н	M	Н	Н
CO3	Н	Н	M	N	1	Н	Н	Н	Н
CO4	Н	Н	M	H	[M	M	M	Н
CO5	M	M	M	N	I	H	L	M	H
COs / PSOs	PSO1	PSO2	PSO:	3					
CO1	H	Н	M						
CO2	Н	Н	Н						
CO3	M	M	Н						
CO4	M	Н	M						
CO5	M	M	Н						
H/M/L ind	icates Stren	gth of Corr	relation H	I- High, M-	Medium, I	L-Low			
	Basic Science s	Enginee ring Science s	Humani ties and Social Science s	Progra m Core	Progra m Elective s	Open Elective s	Practical / Project	Internsh ips / Technic al Skill	Soft Skills
Approval									

SCADA SYSTEM AND APPLICATIONS

3 0 0 3

UNIT I SCADA 9hours

Introduction to SCADA - Data acquisition systems - Evolution of SCADA - Communication technologies

UNIT II Monitoring 9hours

Monitoring and supervisory functions - SCADA applications in Utility Automation - Industries SCADA

UNIT III RTU 9hours

Industries SCADA System Components - Schemes- Remote Terminal Unit (RTU)- Intelligent Electronic Devices(IED) - Programmable Logic Controller (PLC) - Communication Network, SCADA Server, SCADA/HMI Systems

UNIT IV Architecture 9hours

SCADA Architecture - Various SCADA architectures, advantages and disadvantages of each system - single unified standard architecture -IEC 61850

UNIT V Communication 9hours

SCADA Communication various industrial communication technologies wired and wireless methods and fiber optics - Open standard communication protocols SCADA Applications: Utility applications Transmission and Distribution sector operations, monitoring, analysis and improvement - Industries - oil, gas and water - Case studies, Implementation, Simulation Exercises

Total no. of Hours: 45

Suggested reading

- Stuart A. Boyer: "SCADA-Supervisory Control and Data Acquisition", Instrument Society of America Publications, USA, 2004
- 2. Gordon Clarke, Deon Reynders: "Practical Modern SCADA Protocols: DNP3, 60870.5 and Related Systems", Newnes Publications, Oxford, UK.2004
- 3. William T. Shaw, "Cybersecurity for SCADA systems", PennWell Books, 2006
- 4. David Bailey, Edwin Wright, "Practical SCADA for industry", Newnes, 2003
- 5. Michael Wiebe, "A guide to utility automation: AMR, SCADA, and IT systems for electric power", PennWell 1999

•	Subject Name: ELECTRIC POWER QUALITY	T/L	L	T	P	C
MEE20PE15	Prerequisite:	T	3	0	0	3

T/L/: Theory/LabL: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

- 1. Understand the different power quality issues to be addressed
- Understand the recommended practices by various standard bodies like IEEE, IEC, etc on voltage& frequency, harmonics
- 3. Understanding STATIC VAR Compensators

COURSE	OUTCOMES (COs): The students will be able to
CO1	Acquire knowledge about the harmonics, harmonic introducing devices and effect of harmonics on system equipment and loads
CO2	To develop analytical modeling skills needed for modeling and analysis of harmonics in networks and components

CO3		ntroduce the		active p	ower fa	ctor c	correction	on based o	n sta	tic VAR con	mpensators and
CO4	To in	troduce the	student to	series an	d shunt	active	power	filtering to	echni	ques for har	monics.
Mapping of	of Course	Outcomes	with Progr	am Outo	comes (POs)					
Cos/Pos	PO1	PO2	PO3	3	PO4	P	PO5	PO6		PO7	PO8
CO1	Н	Н	н н		H		M	M		M	M
CO2	Н	M	Н		H		H	M		H	H
CO3	Н	Н	M		M H			Н	Н		Н
CO4	Н	Н	M		H]	M	M		M	Н
COs / PSOs	PSO1	PSO2	PSO	3							
CO1	H	H	Н								
CO2	M	H	Н								
CO3	Н	M	M								
CO4	Н	M	Н								
H/M/L ind	icates Strer	ngth of Com	relation H	I- High, I	M- Med	ium, I	L-Low				
	Basic Science s	Enginee ring Science s	Humani ties and Social Science s	Progra m Core	Ele	ogra m ctive s	Ope. Electi s			Internsh ips / Technic al Skill	Soft Skills
Approval					V						

ELECTRIC POWER QUALITY

3 0 0 3

UNIT I Overview of Power Quality

9hours

Introduction-power quality-voltage quality-overview of power quality phenomena - classification of power quality issues-power quality measures and standards-THD-TIF-DIN-C message weights-flicker factor transient phenomena-occurrence of power quality problems power acceptability curves-IEEE guides, standards and recommended practices.

UNIT II Harmonics 9hours

Harmonics-individual and total harmonic distortion - RMS value of a harmonic waveform- Triplex harmonics-important harmonic introducing devices-SMPS-Three phase power converters-arcing devices saturable devices-harmonic distortion of fluorescent lamps-effect of power system harmonics on power system equipment and loads.

UNIT III Modelling of Network

9hours

Modeling of networks and components under non-sinusoidal - conditions transmission and distribution systems Shunt capacitors-transformers-electric machines-ground systems loads that cause power quality problems power quality problems created by drives and its impact on drive

UNIT IV Improvement Of Power Quality

9hours

Power factor improvement- Passive Compensation Passive Filtering , Harmonic – Resonance Impedance Scan Analysis- Active Power Factor Corrected Single Phase Front End, Control Methods for Single Phase APFC Three Phase APFC and Control Techniques, PFC Based on Bilateral Single Phase and Three Phase Converter

UNIT V FACTS 9hours

Static VAR compensators-SVC and STATCOM Active Harmonic Filtering-Shunt Injection Filter for single phase, three-phase three-wire and three-phase fourwire systems d-q domain control of three phase shunt active filters uninterruptible power supplies constant voltage transformers series active power filtering techniques for harmonic cancellation and isolation - Dynamic Voltage Restorers for sag , swell and flicker problems - Grounding and wiring introduction - NEC grounding requirements-reasons for grounding - typical grounding and wiring problems solutions to grounding and wiring problems

Total no. of Hours: 45

Suggested reading

- 1. G.T. Heydt, "Electric power quality", McGraw-Hill Professional, 2007
- 2. Math H. Bollen, "Understanding Power Quality Problems", IEEE Press, 2000
- 3. J. Arrillaga, "Power System Quality Assessment", John wiley, 2000
- 4. J. Arrillaga, B.C. Smith, N.R. Watson & A. R. Wood, "Power system Harmonic Analysis", Wiley, 1997

Subject Code: MEE20PE16	Subject Name: TECHNIQUES	ARTIFICIAL	INTELLIGENCE	T/L	L	Т	P	С
	Prerequisite:			T	3	0	0	3

T/L/: Theory/LabL: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

- 1. Understanding fuzzy logic, ANN
- 2. Understanding GA & EP

COUR	SE OUTCOMES (COs): The students will be able to
CO1	Learn the concepts of biological foundations of artificial neural networks
CO2	Learn Feedback networks and radial basis function networks and fuzzy logics

CO3	Identi	fications of t	fuzzy and ne	ural netwo	ork						
CO4	Acqu	ire the know	ledge of GA								
Mapping of	of Course (Outcomes	with Progr	am Outo	omes (POs)					
Cos/Pos	PO1	PO2	PO3	I	PO4	P	O5]	PO6	PO7	PO8
CO1	H	Н	Н		H		M		M	M	M
CO2	Н	M	Н		H		H		M	Н	Н
CO3	Н	Н	M		M		H		Н	Н	Н
CO4	H	Н	M		Н		M		M	M	Н
COs / PSOs	PSO1	PSO2	PSO	3							
CO1	Н	Н	Н								
CO2	Н	M	Н								
CO3	H	Н	M								
CO4	H	Н	M								
H/M/L ind	icates Strer	ngth of Corr	relation H	- High, N	Л- Med	ium, I	L-Low				
	Basic Science s	Enginee ring Science s	Humani ties and Social Science s	Progra m Core	Ele	ogra m ctive s	Oper Electi s		Practica / Projec		Soft Skills
Approval							l				

ARTIFICIAL INTELLIGENCE TECHNIQUES

3 0 0 3

UNIT I Introduction to AI

9hours

Biological foundations to intelligent Systems -Artificial Neural Networks, Single layer and Multilayer Feed Forward NN - LMS and Back Propagation Algorithm - Feedback networks and Radial Basis Function Networks

UNIT II Fuzzy Logic 9hours

Fuzzy Logic - Knowledge Representation and Inference Mechanism - Defuzzification Methods

UNIT III Fuzzy Neuro 9hours

Fuzzy Neural Networks - some algorithms to learn the parameters of the network like GA

UNIT IV System Identification

9hours

System Identification using Fuzzy and Neural Network

UNIT V Genetic Algorithm

9hours

Genetic algorithm - Reproduction cross over, mutation - Introduction to evolutionary program -Applications of above mentioned techniques to practical problems

Total no. of Hours: 45

Suggested reading

- 1. J M Zurada, "An Introduction to ANN", Jaico Publishing House
- 2. Simon Haykins, "Neural Networks", Prentice Hall
- 3. Timothy Ross, "Fuzzy Logic with Engg. Applications", McGraw. Hill
- 4. Driankov, Dimitra, "An Introduction to Fuzzy Control", Narosa Publication
- 5. Golding, "Genetic Algorithms", Addison-Wesley Publishing Com

Subject Code:	Subject Name: POWER SYSTEM TRANSIENTS	T/L	L	T	P	C
MEE20PE17	Prerequisite:	T	3	0	0	3

T/L/: Theory/LabL: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

- 1. Learn the reasons for occurrence of transients in a power system
- 2. Understand the change in parameters like voltage & frequency during transients
- 3. To know about the lightning phenomenon and its effect on power system

COURSE	OUTCOMES (COs): The students will be able to
CO1	Knowledge of various transients that could occur in power system and their mathematical formulation
CO2	Ability to design various protective devices in power system for protecting equipment and personnel

CO3	Coordinati	ing the insula	ition of vario	ous equipme	nts in p	ower	system				
CO4	Modelling	the power sy	ystem for tra	nsient analy	sis						
Mapping	of Course	Outcomes	with Progr	am Outco	mes (I	POs)					
Cos/Pos	PO1	PO2	PO3	P	04	P	O5	PO	6	PO7	PO8
CO1	Н	Н	Н	Н Н]	M	M		M	M
CO2	Н	M	Н	I	I		Н	M		Н	Н
CO3	3 H H M		N	M H			Н		Н	Н	
CO4	Н	Н	M	I	I]	M	M		M	Н
COs / PSOs	PSO1	PSO2	PSO	3							
CO1	Н	Н	Н								
CO2	Н	M	Н								
CO3	Н	Н	M								
CO4	Н	Н	M								
H/M/L ind	icates Strer	ngth of Cor	relation H	- High, M	- Medi	um, I	L-Low		l	'	
	Basic Science s	Enginee ring Science s	Humani ties and Social Science s	Progra m Core	Pro n Elec s	n etive	Oper Electi s		ractical Project	Internsh ips / Technic al Skill	Soft Skills
					, v						
Approval			<u></u>			-					

POWER SYSTEM TRANSIENTS

3 0 0 3

UNIT I Electric Transient

9hours

9hours

Fundamental circuit analysis of electrical transient - Laplace Transform method of solving simple Switching transients - Damping circuits - Abnormal switching transients, Three-phase circuits and transients - Computation of power system transients

UNIT II Lightning 9hours

Principle of digital computation – Matrix method of solution - Modal analysis- Z transform- Computation using EMTP - Lightning, switching and temporary over voltages, Lightning -Physical phenomena of lightning.

UNIT III Overvoltage

Interaction between lightning and power system - Influence of tower footing resistance and Earth Resistance - Switching: Short line or kilometric fault -Energizing transients - closing and - re-closing of lines -line dropping, load rejection – over voltages induced by faults

UNIT IV Travelling Waves

9hours

Switching HVDC lineTravelling waves on transmission line -Circuits with distributed Parameters Wave Equation - Reflection, Refraction, Behaviour of Travelling waves at the line terminations - Lattice Diagrams – Attenuation and Distortion - Multi-conductor sys

UNIT V Insulation Coordination

9hours

Insulation co-ordination: Principle of insulation co-ordination in Air - Insulated substation (AIS) and Gas Insulated Substation (GIS) Coordination between insulation and protection level - Statistical approach - Protective devices - Protection of system against over voltages - lightning arresters, substation earthling

Total no. of Hours: 45

Suggested reading

1. Allan Greenwood, "Electrical Transients in Power System", Wiley & Sons Inc. New York, 1991

		Name:	FACTS	AND	CUSTOM	POWER	T/L	L	T	P	C
MEE20PE18	DEVICES	S									
	Prerequis	site:			•	•	Т	3	0	0	3

T/L/: Theory/LabL: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

OBJECTIVE: Students will be able to:

- 1. To learn the active and reactive power flow control in power system
- 2. To understand the need for static compensators
- 3. To develop the different control strategies used for compensation

COURSE OUTCOMES (COs): The students will be able to

CO1		ire knowledg nes at Transr						Reactive Pov	verCompensation
CO2		various Sta I_Inverter ba					or/GTOContr	olled Reactive	Power Systems,
CO3	To de	velop analyti	ical modelin	g skills need	ed for mod	eling and a	nalysis of such	Static VARS	ystems.
Mapping	of Course (Outcomes v	with Progr	am Outcoi	mes (POs)	ı			
Cos/Pos	PO1	PO2	PO3	PC)4	PO5	PO6	PO7	PO8
CO1	Н	Н	Н	Н		M	M	M	M
CO2	Н	M	Н	Н	I	Н	M	H	Н
CO3	Н	Н	M	M	ſ	Н	Н	Н	Н
COs / PSOs	PSO1	PSO2	PSO	3					
CO1	Н	Н	Н						
CO2	Н	M	Н						
CO3	Н	Н	M						
H/M/L ind	icates Strer	ngth of Corr	elation H	I- High, M-	Medium,	L-Low			
	Basic Science s	Enginee ring Science s	Humani ties and Social Science s	Progra m Core	Progra m Elective s	Open Elective s	Practical / Project		Soft Skills
Approval					•	•	•		

FACTS AND CUSTOM POWER DEVICES

3 0 0 3

UNIT I Reactive Power

9hours

Reactive power flow control in Power Systems - Control of dynamic power unbalances in Power System - Power flow control - Constraints of maximum transmission line loading -Benefits of FACTS Transmission line compensation - Uncompensated line -Shunt compensation, Series compensation Phase angle control Reactive power compensation Shunt and Series compensation principles - Reactive compensation at transmission and distribution level

UNIT II Compensators

9hours

Static versus passive VAR compensator- Static shunt compensators: SVC and STATCOM - Operation and control of TSC, TCR and STATCOM - Compensator control - Comparison between SVC and STATCOM

UNIT III Series Compensation

9hours

Static series compensation: TSSC, SSSC -Static voltage and phase angle regulators - TCVR and TCPAR Operation and Control - Applications, Static series compensation -GCSC, TCSC, TCSC and Static synchronous series compensators and their Control

UNIT IV UPFC 9hours

SSR and its damping Unified Power Flow Controller Circuit Arrangement, Operation and control of UPFC Basic Principle of P and Q control Independent real and reactive power flow control- Applications.

UNIT V FACTS 9hours

Introduction to interline power flow controller - Modeling and analysis of FACTS Controllers Simulation of FACTS controllers Power quality problems in distribution systems - harmonics, loads that create harmonics modeling, harmonic propagation, series and parallel resonances mitigation of harmonics passive filters, active filtering – shunt series and hybrid and their control Voltage swells, sags, flicker, unbalance and mitigation of these problems by power line conditioners IEEE standards on power quality.

Total no. of Hours: 45

Suggested reading

- 1. K R Padiyar, "FACTS Controllers in Power Transmission and Distribution", New Age International Publishers, 2007
- 2. X P Zhang, C Rehtanz, B Pal, "Flexible AC Transmission Systems- Modelling and Control", SpringerVerlag, Berlin, 2006
- 3. N.G. Hingorani, L. Gyugyi, "Understanding FACTS: Concepts and Technology of Flexible ACTransmission Systems", IEEE Press Book, Standard Publishers and Distributors, Delhi, 2001.
- 4. K.S.Sureshkumar ,S.Ashok , "FACTS Controllers & Applications", E-book edition, Nalanda DigitalLibrary, NIT Calicut,2003
- 5. G T Heydt, "Power Quality", McGraw-Hill Professional, 2007
- 6. T J E Miller, "Static Reactive Power Compensation", John Wiley and Sons, Newyork, 1982.

Subject Code: MEE20PE19	Subject Name: INDUSTRIAL LOAD MODELLING AND CONTROL	T/L	L	Т	P	C
	Prerequisite:	T	3	0	0	3
T/L/: Theory/L	abL: Lecture T: Tutorial P: Practical/ Project R: Research C:	Credits				

OBJECTIVE: Students will be able to:

- 1. To understand the energy demand scenario
- 2. To understand the modeling of load and its ease to study load demand industrially
- 3. To know Electricity pricing models
- 4. Study Reactive power management in Industries

CO1	Know	ledge about	load control	techniques i	n industries	and its appli	cation		
CO2	Learn	different typ	oes of indust	rial processe	s and optimi	ze the proce	ss using tools	s like LINDO	and LINGO
CO3	Apply	y load manag	ement to rec	luce demand	of electricit	y during pea	k time		
CO4	Apply	y different en	ergy saving	opportunitie	s in industrie	es			
Mapping	of Course	Outcomes	with Progr	am Outcoi	mes (POs)				
Cos/Pos	PO1	PO2	PO3	B PC)4 P	O5	PO6	PO7	PO8
CO1	Н	Н	Н	Н	[]	M	M	M	M
CO2	Н	M	Н	Н	I :	H	M	Н	H
CO3	Н	Н	M	N	I .	H	Н	Н	H
CO4	Н	Н	M	Н	[]	M	M	M	Н
COs / PSOs	PSO1	PSO2	PSO	3					
CO1	Н	Н	Н						
CO2	Н	M	Н						
CO3	Н	Н	M						
CO4	Н	Н	M						
H/M/L ind	licates Strer	ngth of Com	elation H	I- High, M-	Medium, I	L-Low			
	Basic Science s	Enginee ring Science s	Humani ties and Social Science s	Progra m Core	Progra m Elective s	Open Elective s	Practical / Project	Internsh ips / Technic al Skill	Soft Skills

MEE20PE19

INDUSTRIAL LOAD MODELLING AND CONTROL

UNIT I Energy Scenario

9hours

Electric Energy Scenario- Demand Side management – Industrial Load Management – Load Curves – Load Shappuing Objectives – Methodologies – barriers – Classification of Industrila Loads Continuous and batch Processes – Load modeling

UNIT II Electricity Pricing

9hours

Electricity Pricing – Dynamic and spot pricing – Models – Direct Load Control – Interruptible Load Control – Bottom Up approach – Scheduling – Formulation of Load models – Optimization and Control Algorithms – Case Studies

UNIT III Reactive Power Management

9hours

Reactive Power Management in Industries – Controls – Power Quality impacts – Application of Filters Energy saving in Industries

UNIT IV Cooling & Heating Loads

9hours

Cooling and heating loads – Load profiling – Modeling Cool Storage – Types Control Strategies – Optimal Operation- Problem Formulation – Case studies

UNIT V Control Strategies

9hours

Captive power units - Operating and control strategies - Power Pooling- Operation models - Energy banking-Industrial Cogeneration - Selection of Schemes Optimal Operating Strategies - Peak load saving - Constraints Problem formulation- Case study - Integrated Load management for Industries

Total no. of Hours: 45

Suggested reading

- 1. C.O. Bjork " Industrial Load Management Theory, Practice and Simulations", Elsevier, the Netherlands.1989
- 2. C.W. Gellings and S.N. Talukdar,. Load management concepts. IEEE Press, New York, 1986, pp. 3-28
- 3. Y. Manichaikul and F.C. Schweppe, "Physically based Industrial load", IEEE Trans. on PAS, April 1981
- 4. H. G. Stoll, "Least cost Electricity Utility Planning", Wiley Interscience Publication, USA, 1989.
- I.J.Nagarath and D.P.Kothari, .Modern Power System Engineering., Tata McGraw Hill publishers, NewDelhi, 1995
- 6. IEEE Bronze Book- "Recommended Practice for Energy Conservation and cost effective planning in Industrial facilities", IEEE Inc, USA

Subject Code:	Subject Name: DYNAMICS OF LINEAR SYSTEM	T/L	L	T	P	C
MEE20PE20	Prerequisite:	T	3	0	0	3

T/L/: Theory/LabL: Lecture T: Tutorial P: Practical/ Project R: Research C: Credits

- To understand the linear system and its functions
 To understand the stability analysis of linear syste

2. To	o understand	the stability	analysis of	linea	r system	ns and	imple	ment the	san	ne in MATI	LAB	
COURSE	OUTCOM	IES (COs)	: The stud	ents	will be	e able	to					
CO1							sign so	as to ol	otain	the ability	to apply the s	ame to
CO2		eering proble ledge on car					vsis o	f both lii	near	and nonlin	ear systems	
CO3		n observers :										
CO4	Ū	ire knowledg				•		leling, aı	nalys	sis and desi	gn	
CO5	•	op and utiliz				•		•	•		ntinuous and d	iscrete time
Mapping of	of Course (Outcomes v	with Progr	am	Outcor	mes (l	POs)					
Cos/Pos	PO1	PO2	PO3	3	PC)4	P	O5		PO6	PO7	PO8
CO1	Н	Н	Н		Н	[]	M		M	M	M
CO2	H	M	Н		Н	[H		M	Н	Н
CO3	H	Н	H M		M	M H		H	Н		Н	Н
CO4	H	Н	M	M		H		M		M	M	Н
CO5	M	M	M		M	I		H		L	M	Н
COs / PSOs	PSO1	PSO2	PSO	3								
CO1	Н	H	Н									
CO2	Н	M	Н									
CO3	Н	Н	M									
CO4	Н	Н	M									
CO5	M	M	M									
H/M/L ind		igth of Cori						L-Low				
	Basic Science s	Enginee ring Science s	Humani ties and Social Science s		rogra Core	n	ogra n etive s	Opei Electi s		Practica / Project		Soft Skills
Approval						$\sqrt{}$						

DYNAMICS OF LINEAR SYSTEM

3 0 0 3

UNIT I State Variable State variable representations of systems transfer function and transfer function matrix solutions of state equations

Observability and controllability - minimal realization of MIMO systems -analysis of linear time varying systems the concepts of stability

UNIT III Lyapunov Stability

UNIT II Observability

9hours

9hours

Lyapunov stability analysis Lyapunov function and its properties controllability by state variable feedback

UNIT IV Stability 9hours

Ackerman's Formula - stabilisation by output feedback asymptotic observers for state measurement observer design

UNIT V State Space 9hours

State space representation of discrete systems solution of state equations, controllability and observability analysis using Lyapunov method - State feedback of linear discrete time systems - design of observers - MATLAB Exercises

Total no. of Hours: 45

Suggested reading

- 1. Thomas Kailath, "Linear Systems", Prentice Hall Inc., Englewood Cliffs, N.J. 1980.
- 2. K. Ogata, "State Space Analysis of Control Systems", Prentice Hall Inc., Englewood Cliffs, N.J., 1965.
- 3. K. Ogata, "Modern Control Engineering, (second edition)", Prentice Hall Inc., Englewood Cliffs, N.J., 1990
- M.Gopal, "Digital Control and State Variable Methods", Tata McGraw Hill Publishing Company Ltd., New Delhi, 1997
- 5. C.T. Chen, "Linear System Theory and Design", New York: Holt Rinehart and Winston ,1984
- 6. R.C. Dorf, and R. T. "Bishop, Modern Control Systems", Addison Wesley Longman Inc., 1999.

AUDIT COURSES I & II

Subject Code:	Subject Name ENGLISH FOR RESEARCH	T/L	L	T	P/R	C
MET20AU01	PAPER WRITING					
	Prerequisite: Nil	T	2	0/0	0/0	0

L : Lecture T :	Tutorial P	Project	R : Res	search C	C: Credi	ts T/L:	Theory/	Lab				
Objectives To 1	know the art	of writi	ng the re	search 1	paper ar	nd thesi	s to En	sure the	good qı	uality of p	aper at vo	ery first-time
submission .												
COURSE OUT	TCOMES (C	COs): A	At the er	nd of th	is cour	se the s	tudents	would	be able	to		
CO1	Understand					ing skil	ls and le	evel of r	eadabili	ty		
CO2	Learn abou	t what t	o write i	n each s	section							
CO3	Understand	l the ski	lls neede	d when	writing	a Title						
Mapping of Co	ourse Outco	mes wit	h Progr	am Out	tcomes	(POs)						
COs/POs	PO 1	PO2	PO3	PO 4	PO 5	PO 6	PO 7	PO8	PO9	PO10	PO11	PO12
CO1	L	L	L	L	L	Н	L	L	L	Н	L	L
CO2	L	L	L	L	L	Н	L	L	L	Н	L	L
CO3	L	L	L	L	L	Н	L	L	L	Н	L	L
COs / PSOs	PS	SO1	PS	O2	PS	О3	PS	04	PSO 5			
CO1	L		L		L							
CO2	L		L		L							
CO3	L		L		L							
H/M/L indicate	es Strength	of Corr	elation	H- Hi	gh, M-	Mediu	m, L-Lo	ow				
	В	Е	Н	P	P	0	P	Int	S	Au		
	as	n	u	r	r	p	r	ern	О	dit		
	ic	gi	m	0	О	e	a	shi	f	cou		
Category	S	n	an	g	g	n	c	ps	t	rse		
	ci	e	iti	r	r	Е	ti	/	S			
	e	er	es	a	a	1	С	Te	k			
	n	in	an	m	m	e	a	ch	i			
	ce	g	d So		E	C	1	nic	1		1	
	S	S	So	C	E 1	ti	/ P	al Ski	1		1	
		ci	ci al	0		v		SK1 11	S		1	
		e n	Sc	r e	e c	e s	r o	111			1	
		c	ie		ti	3	j				1	
		es	nc		V		e e					
			es		e		c				1	
					s		t					
										/		

MET20AU01 ENGLISH FOR RESEARCH PAPER WRITING

2 0 0 0

Course Objectives:

Students will be able to:

- 1. Understand that how to improve your writing skills and level of readability
- 2. Learn about what to write in each section
- 3. Understand the skills needed when writing a Title
- 4. Ensure the good quality of paper at very first-time submission

Unit I 4 hours

Planning and Preparation, Word Order- Breaking up long sentences- Structuring Paragraphs and Sentences- Being Concise and Removing Redundancy,-Avoiding Ambiguity and Vagueness

Unit II 4 hours

Clarifying Who Did What, Highlighting Your Findings- Hedging and Criticising- Paraphrasing and Plagiarism-Sections of a Paper- Abstracts- Introduction

Unit III 8 hours

Review of the Literature- Methods- Results- Discussion- Conclusions- The Final Check- key skills are needed when writing a Title- key skills are needed when writing an Abstract- key skills are needed when writing an Introduction-skills needed when writing a Review of the Literature

Unit IV 4 hours

Skills are needed when writing the Methods- skills needed when writing the Results- skills are needed when writing the Discussion- skills are needed when writing the Conclusions.

Unit V 4 hours

Useful phrases- how to ensure paper is as good as it could possibly be the first- time submission

Total no. of Hours: 16

Suggested Reading:

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book .
- 4. Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

Subject Code: MET20AU02		Su	bject N	ame DI	SASTE	ER MA	NAGE	MENT	T	/ L	L	T P	P/ R	С
	İ	Pre	erequisit	te: Nil						T	2	0/0	0/0	0
L : Lecture T : 7	Tutorial	P :	Project	R : Res	earch C	: Credi	ts T/L:	Theory	/Lab			1		
Objectives Lea	arn to dei	non	strate a	critical u	ındersta	nding o	f key co	oncepts	in disas	ter risk	reduction	and hun	nanitar	ian
response.														
COURSE OUT														
CO1				lisaster r	isk redu	iction a	nd hum	anıtarıa	n respon	ise polic	cy and pra	ectice fro	m muli	tiple
CO2	perspec			anding o	f stands	ards of l	numanit	arian re	esnonse s	and nrac	rtical rele	vance in	specifi	c types
002		p an understanding of standards of humanitarian response and practical relevance in specific types sters and conflict situations.												
CO3		lly understand the strengths and weaknesses of disaster management approaches, planning and												
								neir hon	ne count	ry or the	e countrie	s they w	ork in	
Mapping of Co	ourse Ou	tcoı	mes witl	h Progra	am Out	comes	(POs)							
COs/POs	P	О	PO2	PO3	PO	PO	PO	PO	PO8	PO9	PO10	PO11	P	O12
	-	1			4	5	6	7						
CO1	L		L	L	L	L	Н	L	L	L	L	L	L	
CO2	L		L	L	L	L	Н	L	L	L	L	L	L	
CO3	L		L	L	L	L	Н	L	L	L	L	L	L	
COs / PSOs		PS	01	PS	O2	PS	О3	PS	SO4	PSO 5				
CO1	L			L		L								
CO2	L			L		L								
CO3	L			L		L								
H/M/L indicate	es Streng	gth o	of Corre	elation	H- Hi	gh, M-	Mediu	m, L-L	ow			<u>I</u>	.1	
	В		Б			В	_	1					Т	
		•	Е	Н	P	P	О	P	Int	S	Au			
	a	s	n	u	r	r	p	P r	ern	О	dit			
Coteses	io	s c	n gi	u m	r o	r o	p e	r a	ern shi	o f	dit cou			
Category	io S	s	n gi n	u m an	r o g	r o g	p e n	r a c	ern shi ps	o f t	dit			
Category	io	s c i	n gi n e	u m an iti	r o g r	r o g r	p e	r a	ern shi ps /	o f t S	dit cou			
Category	io S c	s c i	n gi n	u m an	r o g	r o g	p e n E	r a c ti	ern shi ps	o f t	dit cou			
Category	io S c e	s i	n gi n e er in	u m an iti es an d	r o g r a m	r o g r a	p e n E l e c	r a c ti c	ern shi ps / Te	o f t S k i	dit cou			
Category	ic S c e n	s i i	n gi n e er in g S	u m an iti es an d So	r o g r a m	r o g r a m	p e n E l e c ti	r a c ti c a l	ern shi ps / Te ch nic al	o f t S k i 1	dit cou			
Category	ic S c e n	s i i	n gi n e er in g S ci	u m an iti es an d So ci	r o g r a m	r o g r a m	p e n E l e c ti	r a c ti c a l /	ern shi ps / Te ch nic al Ski	o f t S k i	dit cou			
Category	ic S c e n	s i i	n gi n e er in g S ci e	u m an iti es an d So ci al	r o g r a m C o r	r o g r a m	p e n E l e c ti v e	r a c ti c a l / P r	ern shi ps / Te ch nic al	o f t S k i 1	dit cou			
Category	ic S c e n	s i i	n gi n e er in g S ci e n	u m an iti es an d So ci al Sc	r o g r a m	r o g r a m E l e c	p e n E l e c ti	r a c ti c a l / P r o	ern shi ps / Te ch nic al Ski	o f t S k i 1	dit cou			
Category	ic S c e n	s i i	n gi n e er in g S ci e n c	u m an iti es an d So ci al Sc ie	r o g r a m C o r	r o g r a m E l e c ti	p e n E l e c ti v e	r a c ti c a l / P r o j	ern shi ps / Te ch nic al Ski	o f t S k i 1	dit cou			
Category	ic S c e n	s i i	n gi n e er in g S ci e n	u m an iti es an d So ci al Sc	r o g r a m C o r	r o g r a m E l e c	p e n E l e c ti v e	r a c ti c a l / P r o	ern shi ps / Te ch nic al Ski	o f t S k i 1	dit cou			
Category	ic S c e n	s i i	n gi n e er in g S ci e n c	u m an iti es an d So ci al Sc ie nc	r o g r a m C o r	r o g r a m E l e c ti v	p e n E l e c ti v e	r a c ti c a l / P r o j e	ern shi ps / Te ch nic al Ski	o f t S k i 1	dit cou			

MET20AU02

DISASTER MANAGEMENT

 $2 \quad 0 \quad 0 \quad 0$

Course Objectives:

Students will be able to:

- 1. learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- 2. critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- 4. critically understand the strengths and weaknesses of disaster management approaches,
- 5. planning and programming in different countries, particularly their home country or the countries they work in

Unit I Introduction 4 hours

Disaster: Definition, Factors And Significance- Difference Between Hazard And Disaster- Natural And Manmade Disasters: Difference- Nature- Types And Magnitude.

Unit II Repercussions of Disasters And Hazards

4 hours

Economic Damage- Loss Of Human And Animal Life- Destruction Of Ecosystem-Natural Disasters: Earthquakes-Volcanisms- Cyclones- Tsunamis- Floods- Droughts And Famines- Landslides And Avalanches- Man-made disaster: Nuclear Reactor Meltdown- Industrial Accidents- Oil Slicks And Spills-Outbreaks Of Disease And Epidemics War And Conflicts.

Unit III Disaster Prone Areas In India

4 hours

Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics

Unit IV Disaster Preparedness And Management

4 hours

Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

Unit V Risk Assessment And Disaster Mitigation

8 hours

Disaster Risk: Concept And Elements, Disaster Risk Reduction- Global And National Disaster Risk Situation-Techniques Of Risk Assessment- Global Co- Operation In Risk Assessment And Warning- People's Participation In Risk Assessment- Strategies for Survival- Concept And Strategies Of Disaster Mitigation- Emerging Trends In Mitigation- Structural Mitigation And Non-Structural Mitigation- Programs Of Disaster Mitigation In India.

Total no. of Hours: 16

Suggested Reading:

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "'New Royal book Company.
- 2. Sahni, Pardeep Et.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi
- 3. Goel S. L., Disaster Administration And Management Text And Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi.

Subject Code:		Su	bject N	ame SA				EDGE	Т	C/L	L	T	P/R	C
MET20AU03		D.	:-:		CHNIC	CAL KN	OWL	EDGE	_	T	2	0/0	0/0	0
			erequisit							1	2	0/0	0/0	0
L : Lecture T :			-					-						
Objectives To														
to improve brai														
power. The eng literature			_									lge fron	n ancient	
COURSE OUT	ГСОМ	ES (C	COs): A	At the en	d of th	is cour	se the s	tudents	would	be able	to			
CO1				c Sanskı										
CO2	Ancie	nt Sa	nskrit lit	erature a	bout sc	cience &	techno	ology ca	ın be un	derstood	1			
CO3	Being	a log	ical lang	guage wi	ll help	to deve	lop logi	c in stu	dents					
Mapping of Co	ourse O	utco	mes witl	h Progra	am Out	tcomes	(POs)							
COs/POs		PO	PO2	PO3	PO	PO	PO	PO	PO8	PO9	PO1	0 PO	11	PO12
		1			4	5	6	7						
CO1		L	L	L	L	L	Н	L	L	L	L	L	L	
CO2]	L	L	L	L	L	Н	L	L	L	L	L	L	
CO3]	L	L	L	L	L	Н	L	L	L	L	L	L	
COs / PSOs		PS	01	PS	D2	PS	О3	PS	SO4	PSO 5				
CO1]	L		L		L								
CO2]	L		L		L								
CO3]	L		L		L								
H/M/L indicat	es Strei	ngth (of Corr	elation	H- Hi	gh, M-	Mediu	m, L-L	ow	1	1			

	В	Е	Н	P	P	О	P	Int	S	Au	
	as	n	u	r	r	p	r	ern	0	dit	
	ic	gi	m	О	О	e	a	shi	f	cou	
Category	S	n	an	g	g	n	c	ps	t	rse	
	ci	e	iti	r	r	E	ti	/	S		
	e	er	es	a	a	1	c	Te	k		
	n	in	an	m	m	e	a	ch	i		
	ce	g	d			c	1	nic	1		
	S	S	So	C	E	ti	/	al	1		
		ci	ci	О	1	V	P	Ski	S		
		e	al	r	e	e	r	11			
		n	Sc	e	c	S	О				
		c	ie		ti		j				
		es	nc		V		e				
			es		e		c				
					S		t				
										~	

MET20AU03

SANSKRIT FOR TECHNICAL KNOWLEDGE

0 0 (

Course Objectives:

Students will be able to:

- 1. To get a working knowledge in illustrious Sanskrit, the scientific language in the world
- 2. Learning of Sanskrit to improve brain functioning
- 3. Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power
- 4. The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature

Unit I 8 hours

Alphabets in Sanskrit-Past/Present/Future Tense-Simple Sentences

Unit II 8 hours

Order- Introduction of roots- Technical information about Sanskrit Literature

Unit III 8 hours

Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

Total no. of Hours: 24

Suggested Reading:

1. "Abhyaspustakam" – Dr. Vishwas, Samskrita-Bharti Publication, New Delhi

- 2. "Teach Yourself Sanskrit" Prathama Deeksha-Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
- 3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

Course Outcome

Students will be able to

- 1. Understanding basic Sanskrit language
- 2. Ancient Sanskrit literature about science & technology can be understood
- 3. Being a logical language will help to develop logic in students

Subject Code:		Su	bject N	ame VA	LUE E	DUCA	TION		T	'/L	L	T	P/R	C
MET20AU04		Pre	erequisit	e: Nil						T	2	0/0	0/0	0
L : Lecture T :	Tutorial	P :	Project	R : Res	earch C	: Credi	ts T/L:	Theory	/Lab			•		
Objectives .Un	derstand	valu	e of edu	ication a	nd self-	- develo	pment,	Imbibe	e good v	alues in	student	s . Let tl	nem sh	ould
know about the	importa	nce c	of charac	cter										
COURSE OUT	ГСОМЕ	CS (C	$(\mathbf{Os}): A$	At the er	nd of th	is cour	se the s	tudents	would	be able	to			
CO1				develop										
CO2	Learn t	earn the importance of Human values												
CO3	Develo	Developing the overall personality												
Mapping of Co	ourse Ou	utcor	nes witl	h Progr	am Out	comes	(POs)							
COs/POs	I	20	PO2	PO3	PO	PO	PO	PO	PO8	PO9	PO10	PO1	1	PO12
		1			4	5	6	7						
CO1	L	,	L	L	L	L	Н	L	L	L	L	L	L	
CO2	L	,	L	L	L	L	Н	L	L	L	L	L	L	
CO3	L	,	L	L	L	L	Н	L	L	L	L	L	L	
COs / PSOs		PSO1 PSO2 PSO3 PSO4 PSO 5												

CO1	L		L		L							
CO2	L		L		L							
CO3	L	L			L							
H/M/L indicates St	rength	of Corr	elation	H- Hi	gh, M-	Mediu	m, L-Lo	ow			•	
	В	Е	Н	P	P	0	P	Int	S	Au		
	as	n	u	r	r	p	r	ern	0	dit		
	ic	gi	m	О	О	e	a	shi	f	cou		
Category	S	n	an	g	g	n	С	ps	t	rse		
	ci	e	iti	r	r	E	ti	/	S			
	e	er	es	a	a	1	С	Te	k			
	n	in	an	m	m	e	a	ch	i			
	ce	g	d			c	1	nic	1			
	S	S	So	C	E	ti	/	al	1			
		ci	ci	О	1	V	P	Ski	S			
		e	al	r	e	e	r	11				
		n	Sc	e	С	S	О					
		С	ie		ti		j					
		es	nc		V		e					
			es		e		С					
					S		t					
										/		

MET20AU04 VALUE EDUCATION 2 0 0 0

Course Objectives

Students will be able to

- 1. Understand value of education and self- development
- 2. Imbibe good values in students
- 3. Let the should know about the importance of character

Unit-I: 4 hours

Values and self-development –Social values and individual attitudes-Work ethics- Indian vision of humanism-Moral and non- moral valuation- Standards and principles- Value judgements

Unit-II: 6 hours

Importance of cultivation of values-Sense of duty- Devotion- Self-reliance- Confidence- Concentration-Truthfulness- Cleanliness- Honesty- Humanity- Power of faith- National Unity-Patriotism-Love for nature-Discipline

Unit-III: 6 hours

Personality and Behavior Development - Soul and Scientific attitude- Positive Thinking- integrity and discipline-Punctuality- Love and Kindness- Avoid fault Thinking- Free from anger- Dignity of labour- Universal brotherhood and religious tolerance- True friendship- Happiness Vs suffering- love for truth-Aware of self-destructive habits-Association and Cooperation-Doing best for saving nature

Unit-IV: 6 hours

Character and Competence –Holy books vs Blind faith-Self-management and Good health-Science of reincarnation-Equality- Nonviolence-Humility- Role of Women- All religions and same message-Mind your Mind- Self-control-Honesty- Studying effectively

Suggested Reading:

1 Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

Course outcomes

Students will be able to

- 1. Knowledge of self-development
- 2.Learn the importance of Human values
- 3.Developing the overall personality

Subject Code:	Subject Name: CONSTITUTION OF INDIA	T/L	L	T /	P/R	C
MET20AU05				S		
	Prerequisite: Nil	T	2	0/0	0/0	0
Y Y		•				

L: Lecture T: Tutorial P: Project R: Research C: Credits T/L: Theory/Lab

Objectives Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective. To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

COURSE OUT	TCOMES (COs): At the end of this course the students would be able to know
CO1	Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of
	Gandhi in Indian politics.

CO2	Discuss the						of argui	nent tha	t inform	ed the con	nceptuali	zation of
CO3	. Discuss the leadership suffrage in	he circur of Jawal the Indi	nstances harlal Ne an Cons	surrounchru and titution.	nding the the even	e found entual f	ailure o					P] under the arough adult
CO4	Discuss the						56.					
Mapping of Co	ourse Outco	mes wit	h Progr	am Out	tcomes	(POs)						
COs/POs	PO 1	PO2	PO3	PO 4	PO 5	PO 6	PO 7	PO8	PO9	PO10	PO11	PO12
CO1	L	L	L	L	L	Н	L	L	L	L	L	L
CO2	L	L	L	L	L	Н	L	L	L	L	L	L
CO3	L	L	L	L	L	Н	L	L	L	L	L	L
CO4	L	L	L	L	L	Н	L	L	L	L	L	L
COs / PSOs	PS	SO1	PS	O2	PS	03	PS	SO4	PSO 5			
CO1	L		L		L							
CO2	L		L		L							
CO3	L		L		L							
CO4	L		L		L							
H/M/L indicat	es Strength	of Corr	elation	H- Hi	gh, M-	Mediu	m, L-L	ow				
	В	Е	Н	P	P	О	P	Int	S	Au		
	as	n	u	r	r	p	r	ern	0	dit		
	ic	gi	m	0	О	e	a	shi	f	cou		
Category	S	n	an	g	g	n	С	ps	t	rse		
	ci	e	iti	r	r	Е	ti	/	S			
	e	er	es	a	a	1	С	Te	k			
	n	in	an	m	m	e	a	ch	i			
	ce	g	d			С	1	nic	1			
	S	S	So	С	Е	ti	/	al	1			
		ci	ci	0	1	v	P	Ski	S			
		e	al	r	e	e	r	11				
		n	Sc	e	C	S	0					
		С	ie		ti		j					
		es	nc		V		e					
			es		e		c					
		1			S		t					
										~		

MET20AU05 CONSTITUTION OF INDIA 2 0 0 0

Course Objectives:

Students will be able to:

- 1. Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- 2. To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- 3. To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Unit-I: HISTORY OF MAKING OF THE INDIAN CONSTITUTION

4 hours

History-Drafting Committee-(Composition & Working)-Preamble-Salient Features

Unit-II: CONTOURS OF CONSTITUTIONAL RIGHTS & DUTIES

4 hours

Fundamental Rights-Right to Equality -Right to Freedom-Right against Exploitation- Right to Freedom of Religion-Cultural and Educational Rights- Right to Constitutional Remedies- Directive Principles of State Policy-Fundamental Duties.

Unit-III: ORGANS OF GOVERNANCE

4 hours

Parliament- Composition- Qualifications and Disqualifications- Powers and Functions- Executive- President-Governor- Council of Ministers- Judiciary, Appointment and Transfer of Judges, Qualifications- Powers and Functions

Unit-IV: LOCAL ADMINISTRATION

4 hours

District's Administration head: Role and Importance,- Municipalities: Introduction, Mayor and role of Elected Representative,-CEO of Municipal Corporation.- Pachayati raj: Introduction, PRI: Zila Pachayat.- Elected officials and their roles, CEO Zila Pachayat: Position and role.- Block level: Organizational Hierarchy (Different departments),- Village level: Role of Elected and Appointed officials,- Importance of grass root democracy

Unit-V: ELECTION COMMISSION

4 hours

Election Commission: Role and Functioning.- Chief Election Commissioner and Election Commissioners.- State Election Commission: Role and Functioning.- Institute and Bodies for the welfare of SC/ST/OBC and women.

Suggested Reading:

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

Course Outcomes:

- 1. Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
- 2. Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- 3. Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.
- 4. Discuss the passage of the Hindu Code Bill of 1956.

Subject Code:		Subj	ect Na	ame : P	<u>ED</u> AG	OGY S	TUDII	ES	Т	/ L	L	T	P/R	С
MET20AU06		Prere	equisit	e: Nil						T	2	0/0	0/0	0
L : Lecture T :	Tutorial	P : P	roject	R : Res	earch C	: Credi	ts T/L:	Theory/	/Lab			•		•
Objectives Stud	dents will	be ab	ole to:	4. Revie	ew exist	ing evic	dence of	n the re	view top	ic to in	form pro	gramme	desig	n and
policy making ι	undertake	n by t	he Dfl	ID, other	r agenci	ies and i	research	ners. 5.	Identify	critical	evidence	gaps to	guide	the
development.		•							•					
COURSE OUT	ГСОМЕ	S (CO	s): A	t the er	nd of th	is cours	se the s	tudents	would	be able	to know	7		
CO1		edago									rmal clas		in dev	eloping
CO2				e on the learners		veness (of these	pedago	gical pra	actices,	in what o	conditio	ns, and	l with
CO3				lucation ort effec				cum) aı	nd the sc	hool cu	rriculum	and gu	idance	
Mapping of Co														
COs/POs	P		PO2	PO3	PO	PO	PO	PO	PO8	PO9	PO10	PO1	1	PO12
CO1	1	I	Ĺ	L	4 L	5 L	<u>6</u> Н	7 L	L	L	L	L	L	
CO2	L	T	L	L	L	L	Н	L	L	L	L	L	L	
CO3	L	I		L	L	L	Н	L	L	L	L	L	L	
COs / PSOs		PSO	1	PS	02	PS	О3	PS	SO4	PSO 5				
CO1	L			L		L								
CO2	L			L		L								
CO3	L			L		L								
H/M/L indicate	es Streng	th of	Corre	elation	H- Hi	gh, M-	Mediui	n, L-Lo	OW					
	В		Е	Н	P	P	О	P	Int	S	Au			
	a	s	n	u	r	r	p	r	ern	О	dit			
	ic		gi	m	О	О	e	a	shi	f	cou			
Category	S		n	an	g	g	n	С	ps	t	rse			
	C	i	e	iti	r	r	E	ti	/	S				
	e		er	es	a	a	1	c	Te	k				
	n		in	an	m	m	e	a	ch	i				
	C		g	d			c	1	nic	1				
	S		S	So	C	Е	ti	/	al	1				
			ci	ci	О	1	v	P	Ski	S				
			e	al	r	e	e	r	11					
			n	Sc	e	c	S	0						
			c	ie		ti		j						
			es	nc		v		e						
				es		e s		c t						
					1						_			

MET20AU06 PEDAGOGY STUDIES 2 0 0 0

Course Objectives:

Students will be able to:

- 1. Review existing evidence on the review topic to inform programme design and policy making undertaken by the DfID, other agencies and researchers.
- 2. Identify critical evidence gaps to guide the development.

Unit-I: INTRODUCTION AND METHODOLOGY

4 hours

Aims and rationale, Policy background, Conceptual framework and terminology Theories of learning, Curriculum, Teacher education. Conceptual framework, Research questions. Overview of methodology and Searching.

Unit-II: 2 hours

Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education.

Unit-III: 4 hours

Evidence on the effectiveness of pedagogical practices -Methodology for the in depth stage: quality assessment of included studies-How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy- Theory of change. Strength and nature of the body of evidence for effective pedagogical practices- Pedagogic theory and pedagogical approaches- Teachers' attitudes and beliefs and Pedagogic strategies.

Unit-IV:

Professional development: alignment with classroom practices and followup Support -Peer support Support from the head teacher and the community- Curriculum and assessment Barriers to learning: limited resources and large class sizes.

Unit-V: RESEARCH GAPS AND FUTURE DIRECTIONS

2 hours

Research design -Contexts Pedagogy- Teacher education - Curriculum and assessment - Dissemination and research impact.

Suggested reading

- 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2):245-261.
- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.
- 4. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.
- 5. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.
- 6. Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.
- 7. www.pratham.org/images/resource%20working%20paper%202.pdf.

Course Outcomes:

Students will be able to understand:

1. What pedagogical practices are being used by teachers in formal and informal classrooms in

developing countries?

- 2. What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?
- 3. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?

Subject Code: MET20AU07		Subjec	t Name:	STRE	SS MA	NAGE	MENT		T/L	L	T	P/R	С					
1412011607				BY Y	OGA													
	=	Prerequis	ite : Basi	c Know	ledge o	f Yoga	,		T	2	0/0	0/0	0					
• T	o Unders	tand the E	asic Con	cepts of	f Yoga			•			'		•					
• T	'o Gain k	nowledge	on Ashta	nga yog	ga													
• T	o Acquir	e knowled	ge of Te	chnique	s and P	ractice	of Yoga	isanas										
	o Unders	tand stres	s and the	causes.	To Atta	ain the l	knowled	dge abou	it stress	busting	througl	h yoga						
CO1				U				oncepts		ì								
CO2							-	Ashtanga										
CO3					To Uno	derstand	d stress	and the	causes									
CO4			Acqı	uire kno	wledge	of Tecl	nniques	and Pra	ctice of	Yogasaı	nas							
CO5			A	ttain the	knowl	edge ab	out stre	ss busti	ng throu	gh yoga								
Mapping of Co	urse Out	comes wi	th Progr	am Out	tcomes	(POs)												
COs/POs	PO	PO2	PO3	PO	PO	PO	PO	PO8	PO9	PO10	PO	11	PO12					
	1			4	5	6	7											
CO1	L	L	L	L	L	Н	L	L	L	L	L	, L						
CO2	L	L	L	L	L	Н	L	L	L	L	L	L						
CO3	L	L	L	L	L	L	L	L	L	L	L	L						
CO4	L	L	L	L	L	Н	L	L	L	L	L	L						
CO5																		
COs / PSOs		PSO1	PS	O2	PS	О3	PS	SO4	PSO 5									
CO1	L		L		L													
CO2	L		L L															
CO3	L		L		L													
CO4	L		L		L													
CO5	L		L		L													
H/M/L indicate	s Streng	h of Cor	relation	H- Hi	gh, M-	Mediu	m, L-L	ow	1	<u> </u>								

	В	Е	Н	P	P	О	P	Int	S	Au	
	as	n	u	r	r	p	r	ern	0	dit	
	ic	gi	m	О	О	e	a	shi	f	cou	
Category	S	n	an	g	g	n	c	ps	t	rse	
	ci	e	iti	r	r	E	ti	/	S		
	e	er	es	a	a	1	c	Te	k		
	n	in	an	m	m	e	a	ch	i		
	ce	g	d			c	1	nic	1		
	S	S	So	C	E	ti	/	al	1		
		ci	ci	О	1	v	P	Ski	S		
		e	al	r	e	e	r	11			
		n	Sc	e	С	S	О				
		c	ie		ti		j				
		es	nc		v		e				
			es		e		c				
					S		t				
										>	_

MET20AU07

STRESS MANAGEMENT BY YOGA

2 0 0 0

Course Objectives:

- 1. To achieve overall health of body and mind
- 2. To overcome stress

Unit-I: 8 hours

Definitions of Eight parts of yoga(Ashtanga)

Unit-II: 8 hours

Yam and Niyam-Do's and Don't's in life-Ahinsa, satya, astheya, bramhacharya and aparigraha- Shaucha, santosh, tapa, swadhyay, ishwarpranidhan

Unit-III: 8 hours

Asan and Pranayam-i) Various yog poses and their benefits for mind & body-ii)Regularization of breathing techniques and its effects-Types of pranayam

Suggested Reading:

- 1. 'Yogic Asanas for Group Tarining-Part-I": Janardan Swami Yogabhyasi Mandal, Nagpur
- 2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, Advaita Ashrama (Publication Department), Kolkata

Course Outcomes:

- 1. Develop healthy mind in a healthy body thus improving social health also
- 2. Improve efficiency

Subject Code: MET20AU08				ame PE PMENT					Т	C/L	L	T	P/R	C	
MIE I ZUAUU8				PMEN I FENME			LIFE								
			erequisit							T	2	0/0	0/0	0	
L : Lecture T :	Tutoria	ıl P:	Project	R : Res	earch C	C: Credi	ts T/L:	Theory/	Lab		<u> </u>				
Objectives To						pily , To	becon	ne a per	son with	stable :	mind, pl	easing	personal	ity and	
determination.															
COURSE OU													1 1:	.1	
CO1				Bhagwad	-Geeta	will hel	p the st	udent 11	i develo	ping his	person	ality an	d achiev	e the	
CO2			l in life	s studied	Geeta	will lea	d the no	tion an	d manki	nd to ne	ace and	nrospe	rity		
CO3			erson who has studied Geeta will lead the nation and mankind to peace and prosperity of Neetishatakam will help in developing versatile personality of students.												
Mapping of Co								<u> </u>	persona	inty of 5	tuacins.				
•••					1			70	700			1.50			
COs/POs		PO 1	PO2	PO3	PO 4	PO 5	PO 6	PO 7	PO8	PO9	PO10	PO	11	PO12	
CO1		L	L	L	L	L	Н	L	L	L	L	L	L		
001			L	1	1		11	1							
CO2		L	L	L	L	L	Н	L	L	L	L	L	L		
CO3		L	L	L	L	L	Н	L	L	L	L	L	L		
COs / PSOs		PS	01	PS)2	PS	O3	PS	O4	PSO					
005/1505		10	.01	10	_		00	10		5					
CO1		L		L		L									
CO2		L		L L											
CO3		L		L		L									
H/M/L indicat	es Stre	ength o	of Corr	elation	H- Hi	gh, M-	Mediu	n, L-Lo	OW		l				

	В	Е	Н	P	P	0	P	Int	S	Au	
	as	n	u	r	r	p	r	ern	0	dit	
	ic	gi	m	О	О	e	a	shi	f	cou	
Category	S	n	an	g	g	n	c	ps	t	rse	
	ci	e	iti	r	r	Е	ti	/	S		
	e	er	es	a	a	1	С	Te	k		
	n	in	an	m	m	e	a	ch	i		
	ce	g	d			c	1	nic	1		
	S	S	So	C	E	ti	/	al	1		
		ci	ci	О	1	V	P	Ski	S		
		e	al	r	e	e	r	11			
		n	Sc	e	c	S	О				
		c	ie		ti		j				
		es	nc		V		e				
			es		e		c				
					S		t				
										>	_

MET20AU08

PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS

2 0 0 (

Course Objectives

- 1. To learn to achieve the highest goal happily
- 2. To become a person with stable mind, pleasing personality and determination
- 3. To awaken wisdom in students

Unit-I: 8 hours

Neetisatakam-Holistic development of personality -Verses- 19,20,21,22 (wisdom)-Verses- 29,31,32 (pride & heroism)-Verses- 26,28,63,65 (virtue)-Verses- 52,53,59 (dont's)- Verses- 71,73,75,78 (do's)

Unit-II: 8 hours

Approach to day to day work and duties-Shrimad Bhagwad Geeta: Chapter 2-Verses 41, 47,48,- Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17,23, 35,-Chapter 18-Verses 45, 46, 48.

Unit-III: 8 hours

Statements of basic knowledge-Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68- Chapter 12 -Verses 13, 14, 15, 16,17, 18- Personality of Role model. Shrimad Bhagwad Geeta:-Chapter2-Verses 17, Chapter 3-Verses 36,37,42,-Chapter 4-Verses 18, 38,39-Chapter18 – Verses 37,38,63

Suggested Reading:

1. "Srimad Bhagavad Gita" by Swami Swarupananda Advaita Ashram (Publication Department), Kolkata

2. Bhartrihari's Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

Course Outcomes:

- 1. Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve the highest goal in life
- 2. The person who has studied Geeta will lead the nation and mankind to peace and prosperity
- 3. Study of Neetishatakam will help in developing versatile personality of students.

OPEN ELECTIVES

Subject Code:		Su	bject N	ame BU	JSINES	SS ANA	LYTI	CS	T	'/L	L	T	P / 1	R	С
MET20OE01		Pre	erequisit	e: Nil						T	3	0/0	0/0	0	3
L : Lecture T : '	Tutoria	ıl P:	Project	R : Res	earch C	C: Credi	ts T/L:	Theory	/Lab				•		
Objectives . U mining technique understanding of managerial deci Use decision-m tools. Analyze finance, sports.	ues and of how ision m aking t and so	l under manag naking. tools/C lve pro	rstand regers use. To bed Operationally	elationsh business come fan ns resear From diff	ips bety analyti niliar w ch tech erent in	ween the ics to for ith processing in the processing in the interest in the in	e underl ormulate cesses n Mange	lying bue and so eeded to busine	isiness polve busi o develo ess proce	rocesse ness pro p, repor ess using	s of an oblems of, and a	organiz and to s nalyze ical and	ation suppo busin d man	. To g rt less d lagen	gain an ata. nent
finance, sports, pharmaceutical, aerospace etc. COURSE OUTCOMES (COs): At the end of this course the students would be able to															
CO1				nstrate k						will de	monstr	ate the	ability	y of t	hink
				decision											
CO2				nstrate tl		ty to use	e techni	cal skil	ls in pre	dicative	and pro	escripti	ve mo	odelir	ng to
				cision-n											
CO3	Stude	ents wi	ill demo	nstrate tl	he abilit	ty to tra	nslate d	lata into	clear, a	ctionab	le insig	nts			
Mapping of Co	ourse (Outcor	mes witl	h Progra	am Out	tcomes	(POs)								
COs/POs		PO	PO2	PO3	PO	PO	PO	PO	PO8	PO9	PO1	PC	11	P	O12
		1			4	5	6	7							
CO1		Н	Н	Н	Н	Н	L	L	L	M	M	M		M	

CO2	Н	Н	Н	Н	Н	L	L	L	M	M	M	M
CO3	Н	Н	Н	Н	Н	L	L	L	M	M	M	M
COs / PSOs	PS	PSO1		02	PS	О3	PS	O4	PSO 5			
CO1	Н				Н							
CO2	Н				Н							
CO3	Н				Н							
H/M/L indicates Str	elation	H- Hi	gh, M-	Mediui	n, L-Lo	OW						
Category	B as ic S ci e n ce s	E n gi n e er in g S ci e n c es	H u m an iti es an d So ci al Sc ie nc es	Proggram Coree	P r o g r a m E l e c ti v e e	O p e n E l e c ti v e s	P r a c ti c a l / P r o j e c t	Int ern shi ps / Te ch nic al Ski ll	S o f t S k i l l s	Au dit cou rse		
					S	_	ι					

MET20OE01

BUSINESS ANALYTICS

3 0 0 3

Course Objectives:

Students will be able to:

- 1. Understand the role of business analytics within an organization.
- 2. Analyze data using statistical and data mining techniques and understand relationships between the underlying business processes of an organization.
- 3. To gain an understanding of how managers use business analytics to formulate and solve business problems and to support managerial decision making.
- 4. To become familiar with processes needed to develop, report, and analyze business data.
- 5. Use decision-making tools/Operations research techniques.
- 6. Mange business process using analytical and management tools.
- 7. Analyze and solve problems from different industries such as manufacturing, service, retail, software, banking and finance, sports, pharmaceutical, aerospace etc.

Unit I Business analytics

9hours

Overview of Business analytics, Scope of Business analytics, Business Analytics Process, Relationship of Business Analytics Process and organisation, competitive advantages of Business Analytics. Statistical Tools: Statistical

Notation, Descriptive Statistical methods, Review of probability distribution and data modelling, sampling and estimation methods overview.

Unit II Trendiness and Regression Analysis

9hours

Modelling Relationships and Trends in Data, simple Linear Regression. Important Resources, Business Analytics Personnel, Data and models for Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics Technology.

Unit III Organization Structures of Business analytics

9hours

Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes. Descriptive Analytics, predictive analytics, predictive analytics analytics analytics analytics and its step in the business analytics Process, Prescriptive Modelling, nonlinear Optimization.

Unit IV Forecasting Techniques

9hours

Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with Casual Variables, Selecting Appropriate Forecasting Models. Monte Carlo Simulation and Risk Analysis: Monte Carle Simulation Using Analytic Solver Platform, New-Product Development Model, Newsvendor Model, Overbooking Model, Cash Budget Model.

Unit V Decision Analysis 9hours

Formulating Decision Problems, Decision Strategies with the without Outcome Probabilities, Decision Trees, The Value of Information, Utility and Decision Making - Recent Trends in : Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data journalism.

Total no. of Hours: 45

Suggested reading

- 1. Business analytics Principles, Concepts, and Applications by Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, Pearson FT Press.
- 2. Business Analytics by James Evans, persons Education

Course Outcomes:-

- 1. demonstrate knowledge of data analytics.
- 2. demonstrate the ability of think critically in making decisions based on data and deep analytics.
- 3. Use technical skills in predicative and prescriptive modeling to support business decision-making.
- 4. demonstrate the ability to translate data into clear, actionable insights.

Subject Code:		Subj	ject Na	ame IN	DUSTI	RIAL S	AFETY	Y	T	'/L	L	T	P/ F	R C
MET20OE02		Prere	equisit	e: Nil						T	3	0/0	0/0	3
L : Lecture T : 7	Tutorial	P : Pı	roject	R : Res	earch C	: Credi	ts T/L:	Theory/	Lab					
Objectives . U	nderstand	nderstand policies and protections put in place to ensure plant and factory worker protection from hazar											om hazards	
that could cause	e injury.	y.												
COURSE OUT	COMES	(CO	s): A	t the en	d of th	is cours	se the s	tudents	would	be able	to			
CO1	The diff	MES (COs): At the end of this course the students would be able to different safety measures followed in the industry												
CO2	Underst	and th	ne func	lamenta	ls of sat	fety pol	icy							
CO3	To unde	rstand	d the p	eriodic a	and pre	ventive	mainte	nance						
Mapping of Co	ourse Ou	come	es with	n Progra	am Out	comes	(POs)							
COs/POs	P) I	PO2	PO3	PO	PO	PO	PO	PO8	PO9	PO1) PO	11	PO12
	1				4	5	6	7						
CO1	Н	I	Н	Н	Н	Н	L	L	L	M	M	M]	M

CO2	Н	Н	Н	Н	Н	L	L	L	M	M	M	M
CO3	Н	Н	Н	Н	Н	L	L	L	M	M	M	M
COs / PSOs	PS	801	PS	O2	PS	O3	PSO4		PSO 5			
CO1	Н		Н		Н							
CO2	Н		Н		Н							
CO3	Н		Н		Н							
H/M/L indicates S	Strength	of Corr	elation	H- Hi	gh, M-	Mediui	m, L-L	ow			1	
	В	Е	Н	P	P	О	P	Int	S	Au		
	as	n	u	r	r	p	r	ern	О	dit		
	ic	gi	m	О	О	e	a	shi	f	cou		
Category	S	n	an	g	g	n	c	ps	t	rse		
	ci	e	iti	r	r	Е	ti	/	S			
	e	er	es	a	a	1	c	Te	k			
	n	in	an	m	m	e	a	ch	i			
	ce	g	d		_	c	1	nic	1			
	S	S	So ci	С	E	ti	/ P	al	1			
		ci	al	0	1	V		Ski ll	S			
		e	Sc	r e	e	e s	r o	11				
		n c	ie		c ti	8	j					
		es	nc		V		e e					
			es		e		c					
					S		t					
						_						

MET20OE02 INDUSTRIAL SAFETY 3 0 0 3

Course Objectives:

Students will be able to:

- 1. Understand the importance of safety
- 2. Maintain the wear & team of machines to reduce hazard

Unit I Industrial safety 9hours

Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Unit II Fundamentals of maintenance Engineering

9hours

Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

Unit III Wear and Corrosion and their Prevention

9hours

Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

Unit IV Fault tracing 9hours

Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

Unit V Periodic and preventive maintenance

9hours

Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

Total no. of Hours: 45

Suggested reading:

- 1. Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services.
- 2. Maintenance Engineering, H. P. Garg, S. Chand and Company.
- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London.

Course Outcome:

- 1. Identify the fault and attain knowledge on maintenance
- 2. Relate the periodic and preventive maintenance of machines

Subject Code:	Subject Name OPERATIONAL RESEARCH	T/L	L	T	P/R	C
MET20OE03	Prerequisite: Nil	T	3	0/0	0/0	3
L : Lecture T : Tutorial	P: Project R: Research C: Credits T/L: Theory/La	b				

COURSE OU	COMES (C	COs) : A	At the er	nd of th	is cours	se the s	tudents	would	be able	to		
CO1	Apply the d	ynamic p	rogramm	ing to so	lve prob	lems of o	discreet	and conti	nuous va	ariables.		
CO2	Apply the co	oncept of	non-line	ar progra	ımming							
CO3	Carry out se	ensitivity	analysis									
Mapping of Co	ourse Outco	mes wit	h Progr	am Out	tcomes	(POs)						
COs/POs	PO 1	PO2	PO3	PO 4	PO 5	PO 6	PO 7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	Н	Н	M	L	L	L	M	M	Н	M
CO2	Н	Н	Н	Н	M	L	L	L	M	M	Н	M
CO3	Н	Н	Н	Н	M	L	L	L	M	M	Н	M
COs / PSOs	PS	PSO1		PSO2		PSO3		PSO4				
CO1	M		M		M				5			
CO2	M		M		M							
CO3	M		M		M							
H/M/L indicat	es Strength	of Corr	elation	H- Hi	gh, M-	Mediur	n, L-L	ow				
	В	Е	Н	P	P	О	P	Int	S	Au		
	as	n	u	r	r	p	r	ern	О	dit		
	ic	gi	m	О	О	e	a	shi	f	cou		
Category	S	n	an	g	g	n	c	ps	t	rse		
	ci	e	iti	r	r	Е	ti	/	S			
	e	er	es	a	a	1	c	Te	k			
	n	in	an	m	m	e	a	ch	i			
	ce	g	d			c	1	nic	1			
	s	S	So	C	E	ti	/	al	1			
		ci	ci	О	1	v	P	Ski	S			
		e	al	r	e	e	r	11				
		n	Sc	e	c	S	О					
		c	ie		ti		j					
	1	es	nc		v		e					
		• • •										
			es		e		c					
			es		e s		c t					
			es			/						

MET200E03 OPERATIONS RESEARCH

3 0 0 3

Course Objectives:

Students will be able to:

Unit I Optimization Techniques

9hours

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

Unit II Formulation 9hours

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Unit III Non-Linear Programming

9hours

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

Unit IV Scheduling of Program

9hours

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

Unit V Competitive Program

9hours

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

Total no. of Hours: 45

Suggested reading:

- 1. H.A. Taha, Operations Research, An Introduction, PHI, 2008
- 2. H.M. Wagner, Principles of Operations Research, PHI, Delhi, 1982.
- 3. J.C. Pant, Introduction to Optimisation: Operations Research, Jain Brothers, Delhi, 2008
- 4. Hitler Libermann Operations Research: McGraw Hill Pub. 2009
- 5. Pannerselvam, Operations Research: Prentice Hall of India 2010
- 6. Harvey M Wagner, Principles of Operations Research: Prentice Hall of India 2010

Subject Code: MET20OE04		Su	bject N	ame CO		ANAGI EERIN(/ L	L	T	P/R	С
WIE 120OE04		Pre	erequisit		NGINE	NINITY (JIKO	IECIS		T	3	0/0	0/0	3
L : Lecture T : T	Tutorial				search C	C: Credi	ts T/L: '	Theory/				0/0	0/0	
Objectives To u								•		project	or busine	ess.		
COURSE OUT	COME	S (C	(Os) : A	At the er	nd of th	is cour	se the si	tudents	bluow	he able	to			
CO1				c Cost N				· · · · · · · · · · · · · · · · · · ·	Would	oc unic				
CO2				ots in dec				projects						
CO3	To fam	iliar	ize Qua	ntitative	techniq	ues for	cost ma	nagem	ent					
Mapping of Co	urse Ou	tcor	nes witl	h Progr	am Out	tcomes	(POs)							
COs/POs	P	О	PO2	PO3	PO	PO	PO	PO	PO8	PO9	PO10	PO1	1	PO12
		1			4	5	6	7				1		
CO1	Н		Н	Н	Н	M	L	L	L	M	M	Н	M	
CO2	Н		Н	Н	Н	M	L	L	L	M	M	Н	M	
CO3	Н		Н	Н	Н	M	L	L	L	M	M	Н	M	
COs / PSOs		PS	01	PS	O2	PSO3		PS	O4	PSO 5				
CO1	M	[M		M								
CO2	М	[M		M								
CO3	M	[M		M								
H/M/L indicate	s Streng	gth (of Corr	elation	H- Hi	gh, M-	Mediui	n, L-Lo	ow		•	-1	l.	
	E a		E n	H u	P r	P r	O p	P r	Int ern	S	Au dit			
	io		gi	m	0	0	e	a	shi	f	cou			
Category	S		n	an	g	g	n	c	ps	t	rse			
	С		e	iti	r	r	Е	ti	/	S				
	e		er	es	a	a	1	c	Te	k :				
	n		in	an d	m	m	e c	a 1	ch nic	i 1				
	s	e	g S	So	С	Е	ti	/	al	1				
			ci	ci	0	1	V	P	Ski	S				
			e	al	r	e	e	r	11	_				
			n	Sc	e	c	S	О						
			c	ie		ti		j						
			es	nc		V		e						
			1	0.0	1	e	ı	c	l	1		1	1	
				es		s		t						

MET20OE04

COST MANAGEMENT & ENGINEERING PROJECTS

3 0 0 3

Course Objectives:

Students will be able to:

- 1. Understand the cost management process
- 2. Relate the cost and finance

Unit I Overview of Cost Management Process

9hours

Introduction and Overview of the Strategic Cost Management Process

Unit II Concept of Cost 9hours

Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control - Provision of data for Decision-Making.

Unit III Project 9hours

Meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and non technical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

Unit IV Cost Behavior & Profit 9hours

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity- Based Cost Management, -Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control- Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

Unit V Quantitative Techniques

9hours

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

Total no. of Hours: 45

Suggested reading:

- 1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting
- 3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
- 4. Ashish K. Bhattacharya, Principles & Practices of CostAccounting A. H. Wheeler publisher
- 5. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.

Course Outcomes:

The student should be able to

- 1. Apply the cost management to the organization
- 2. Apply the concept of cost in the planning of profit

Subject Code:			-	ame CC	MPOS	SITE M	ATER	IALS	T	'/L	L	T	P/R	C	
MET20OE05		Pre	erequisit	te: Nil						T	3	0/0	0/0	3	
L : Lecture T :	Tutorial	P :	Project	R : Res	earch C	C: Credi	ts T/L:	Theory	/Lab						
Objectives To	understa	and	nature o	f the cor	nposite	materia	l and ap	pply the	m where	ever req	uired				
COURSE OUT	ГСОМЕ	ES (C	COs): A	At the er	nd of th	is cour	se the s	tudents	would	be able	to				
CO1			I the nature ,types and th applications of composite materials I the synthesis of different types of metal matrix materials												
CO2															
CO3	Unders	stand	the pol	ymeric c	omposi	te mate	rials an	d the ch	aracteri	stic feat	ure of co	mposite	materi	als	
Mapping of Co	ourse O	utcoi	mes wit	h Progra	am Out	tcomes	(POs)								
COs/POs		PO 1	PO2	PO3	PO 4	PO 5	PO 6	PO 7	PO8	PO9	PO10	PO1	1	PO12	
CO1	Н	I	Н	Н	Н	M	L	L	L	M	M	Н	M		
CO2	Н	I	Н	Н	Н	M	L	L	L	M	M	Н	M		
CO3	Н	I	Н	Н	Н	M	L	L	L	M	M	Н	M		
COs / PSOs		PSO1		PSO2		PSO3		PSO4		PSO 5					
CO1	N	1		M		M									
CO2	N	1		M		M									
CO3	N	1		M		M									
H/M/L indicat	es Stren	gth	of Corr	elation	H- Hi	gh, M-	Mediu	m, L-L	ow						
]	В	Е	Н	P	P	0	P	Int	S	Au				
		as	n	u	r	r	p	r	ern	0	dit				
Catagogg		ic c	gi	m	0	0	e	a	shi	f	cou				
Category		S ci	n e	an iti	g r	g r	n E	c ti	ps /	t S	rse				
		21 B	er	es	a	a	1	c	Te	k					
		n	in	an	m	m	e	a	ch	i					
		ce	g	d		1	c	1	nic	1					
		S	Š	So	C	E	ti	/	al	1					
			ci	ci	0	1	v	P	Ski	S					
			e	al	r	e	e	r	11						
			n	Sc ·	e	c	S	0							
			c	ie		ti		J							
			es	nc es		V		e c							
				es		e s		t							
							~								
			<u> </u>		L	L		l .	I	I					

MET200E05

COMPOSITE MATERIALS

3 0 0 3

Course Objectives:

Students will be able to:

- 1. Identify the material types
- 2. Importance of material and reinforcement

Unit I Introduction 9hours

Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

Unit II Reinforcements 9hours

Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Isostrain and Isostress conditions.

Unit III Manufacturing of Metal Matrix Composites

9hours

Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing. Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

Unit IV Manufacturing of Polymer Matrix Composites

9hours

Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

Unit V Strength 9hours

Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

Total no. of Hours: 45

Suggested Reading:

- 1. Material Science and Technology Vol 13 Composites by R.W.Cahn VCH, West Germany.
- 2. Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R. Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2007.
- 3. Hand Book of Composite Materials-ed-Lubin.
- 4. Composite Materials K.K.Chawla.

- 5. Composite Materials Science and Applications Deborah D.L. Chung.
- 6. Composite Materials Design and Applications Danial Gay, Suong V. Hoa, and Stephen W. Tasi

Course Outcomes:

The student should be able to

- 1. Prepare the reinforcement suitable for the stream
- 2. Prepare suitable moulding as per the requirement

Subject Code:		Su	bject N	ame W	ASTE T	O ENI	ERGY		T	C/L	L	T	P/R	С
MET20OE06		Pre	erequisit	te: Nil						T	3	0/0	0/0	3
L : Lecture T :	Tutorial	P :	Project	R: Res	search C	: Credi	ts T/L:	Theory	/Lab			•		*
Objectives To	understa	and 1	the conc	cept of p	roducin	g energ	y from t	the was	te mater	ial				
COURSE OUT	ГСОМЕ	CS (C	COs) : A	At the er	nd of th	is cour	se the s	tudents	s would	be able	to			
CO1		Understand the different type of waste which can be converted to fuel												
CO2		stand the concepts and methods of biomass pyrolysis, gasification and combustion												
CO3	Unders	nderstand the production and characterization of biogas technology												
Mapping of Co	ourse Ou	ıtcoı	mes wit	h Progr	am Out	comes	(POs)							
COs/POs	I	20	PO2	PO3	PO	PO	PO	PO	PO8	PO9	PO10	PO	1	PO12
		1			4	5	6	7						
CO1	H	[Н	Н	Н	M	L	L	L	M	M	Н	M	1
CO2	Н	[Н	Н	Н	M	L	L	L	M	M	Н	N	1
CO3	Н	[Н	Н	Н	M	L	L	L	M	M	Н	N	1
COs / PSOs		PS	01	PS	O2	PSO3 PSO4			6O4	PSO 5				
CO1	Н	[Н		Н								
CO2	Н	[Н		Н								
CO3	Н	[Н		Н								
H/M/L indicat	es Stren	gth o	of Corr	elation	H- Hi	gh, M-	Mediu	m, L-L	ow		<u> </u>			

	В	E	Н	P	P	О	P	Int	S	Au	
	as	n	u	r	r	p	r	ern	О	dit	
	ic	gi	m	О	0	e	a	shi	f	cou	
Category	S	n	an	g	g	n	c	ps	t	rse	
	ci	e	iti	r	r	E	ti	/	S		
	e	er	es	a	a	1	c	Te	k		
	n	in	an	m	m	e	a	ch	i		
	ce	g	d			c	1	nic	1		
	S	S	So	C	Е	ti	/	al	1		
		ci	ci	О	1	v	P	Ski	S		
		e	al	r	e	e	r	11			
		n	Sc	e	С	S	О				
		c	ie		ti		j				
		es	nc		v		e				
			es		e		c				
					S		t				
						~					

MET200E06 WASTE TO ENERGY 3 0 0 3

Course Objectives:

Students will be able to:

- 1. Understand the importance of waste tto be converted in to energy
- 2. Understand the process in a biogas plant

Unit I Introduction 9hours

Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

Unit II Biomass Pyrolysis 9hours

Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

Unit III Biomass Gasification

9hours

Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.

Unit IV Biomass Combustion

9hours

Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

Unit V Biogas 9hours

Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants - Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

Total no. of Hours: 45

Suggested Reading:

- 1. Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.
- 2. Biogas Technology A Practical Hand Book Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.
- 3. Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.
- 4. Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons, 1996.

Course Outcomes:

The student should be able to

- 1. Model a Biogas plant to produce energy
- 2. Design modern chullahs